WorldWideScience

Sample records for stars seyfert galaxies

  1. The Occurence of Nuclear Starbursts in Seyfert 1 Galaxies

    Science.gov (United States)

    Schinnerer, E.; Colbert, E.; Armus, L.; Scoville, N. Z.

    2001-05-01

    Medium resolution H and K band spectra with high angular reesolution were obtained for a small sample of nearby Seyfert galaxies using NIRSPEC at the Keck telescope. Recent studies with medium resolution have found evidence for a lack of powerful starbursts in Seyfert1 galaxies. Differences between the two Seyfert types might provide a challenge for the unified scheme proposed for Seyfert galaxies. A preliminary analysis indicates that most of the Seyfert1 galaxies do indeed show signs of circumnuclar star formation. Detailed modelling using population synthesis in conjunction with NIR spectral synthesis will allow to estimate the age, star formation history and mass of these stellar population.

  2. Nuclear star formation activity and black hole accretion in nearby Seyfert galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Esquej, P. [Centro de Astrobiología, INTA-CSIC, Villafranca del Castillo, E-28850, Madrid (Spain); Alonso-Herrero, A.; Hernán-Caballero, A. [Instituto de Física de Cantabria, CSIC-Universidad de Cantabria, E-39005 Santander (Spain); González-Martín, O.; Ramos Almeida, C.; Rodríguez Espinosa, J. M. [Instituto de Astrofísica de Canarias (IAC), C/Vía Láctea, E-38205, La Laguna (Spain); Hönig, S. F. [UCSB Department of Physics, Broida Hall 2015H, Santa Barbara, CA (United States); Roche, P. [Department of Physics, University of Oxford, Oxford OX1 3RH (United Kingdom); Mason, R. E. [Gemini Observatory, Northern Operations Center, 670 North A' ohoku, HI 96720 (United States); Díaz-Santos, T. [Spitzer Science Center, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Levenson, N. A. [Gemini Observatory, Casilla 603, La Serena (Chile); Aretxaga, I. [Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), Aptdo. Postal 51 y 216, 72000 Puebla (Mexico); Packham, C. [Department of Physics and Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 (United States)

    2014-01-01

    Recent theoretical and observational works indicate the presence of a correlation between the star-formation rate (SFR) and active galactic nucleus (AGN) luminosity (and, therefore, the black hole accretion rate, M-dot {sub BH}) of Seyfert galaxies. This suggests a physical connection between the gas-forming stars on kpc scales and the gas on sub-pc scales that is feeding the black hole. We compiled the largest sample of Seyfert galaxies to date with high angular resolution (∼0.''4-0.''8) mid-infrared (8-13 μm) spectroscopy. The sample includes 29 Seyfert galaxies drawn from the AGN Revised Shapley-Ames catalog. At a median distance of 33 Mpc, our data allow us to probe nuclear regions on scales of ∼65 pc (median value). We found no general evidence of suppression of the 11.3 μm polycyclic aromatic hydrocarbon (PAH) emission in the vicinity of these AGN, and we used this feature as a proxy for the SFR. We detected the 11.3 μm PAH feature in the nuclear spectra of 45% of our sample. The derived nuclear SFRs are, on average, five times lower than those measured in circumnuclear regions of 600 pc in size (median value). However, the projected nuclear SFR densities (median value of 22 M {sub ☉} yr{sup –1} kpc{sup –2}) are a factor of 20 higher than those measured on circumnuclear scales. This indicates that the SF activity per unit area in the central ∼65 pc region of Seyfert galaxies is much higher than at larger distances from their nuclei. We studied the connection between the nuclear SFR and M-dot {sub BH} and showed that numerical simulations reproduce our observed relation fairly well.

  3. H α IMAGING OF NEARBY SEYFERT HOST GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Theios, Rachel L.; Malkan, Matthew A. [Department of Physics and Astronomy, University of California, Los Angeles, 430 Portola Plaza, Los Angeles, CA 90095 (United States); Ross, Nathaniel R., E-mail: rtheios@astro.caltech.edu [Raytheon Space and Airborne Systems, 2000 E El Segundo Boulevard, El Segundo, CA 90245 (United States)

    2016-05-01

    We used narrowband (Δ λ = 70 Å) interference filters with the CCD imaging camera on the Nickel 1.0 m telescope at Lick Observatory to observe 31 nearby ( z < 0.03) Seyfert galaxies in the 12 μ m active galaxy sample. We obtained pure emission-line images of each galaxy, which reach down to a flux limit of 7.3 × 10{sup −15} erg cm{sup −2} s{sup −1} arcsec{sup −2}, and corrected these images for [N ii] emission and extinction. We separated the H α emission line of the “nucleus” (central 100–1000 pc) from that of the host galaxy. The extended H α emission is expected to be powered by newly formed hot stars, and indeed correlates well with other indicators of current star formation rates (SFRs) in these galaxies: extended 7.7 μ m polycyclic aromatic hydrocarbon, total far-infrared, and radio luminosity. Relative to what would be expected from recent star formation, there is a 0.8 dex excess of radio emission in our Seyfert galaxies. The H α luminosity we measured in the centers of our galaxies is dominated by the active galactic nucleus (AGN), and is linearly correlated with the hard X-ray luminosity. There is, however, an upward offset of 1 dex in this correlation for the Seyfert 1s, because their nuclear H α emission includes a strong additional contribution from the broad-line region. We found a correlation between SFR and AGN luminosity. In spite of selection effects, we concluded that the absence of bright Seyfert nuclei in galaxies with low SFRs is real, albeit only weakly significant. Finally, we used our measured spatial distributions of H α emission to determine what these Seyfert galaxies would look like when observed through fixed apertures (e.g., a spectroscopic fiber) at high redshifts. We found that although all of these Seyfert galaxies would be detectable emission-line galaxies at any redshift, most of them would appear to be dominated by (>67%) their H ii region emission. Only the most luminous AGNs (log( L {sub Hα}/erg s

  4. Star formation in active galaxies and quasars

    International Nuclear Information System (INIS)

    Heckman, T.M.

    1987-01-01

    I review the observational evidence for a causal or statistical link between star formation and active galactic nuclei. The chief difficulty is in quantitatively ascertaining the star formation rate in active galaxies: most of the readily observable manifestations of star formation superficially resemble those of an active nucleus. Careful multi-wavelength spatially-resolved observations demonstrate that many Seyfert galaxies are undergoing star formation. Our survey of CO emission from Seyferts (interpreted in conjunction IRAS data) suggests that type 2 Seyferts have unusually high rates of star formation, but type 1 Seyferts do not. Recent work also suggests that many powerful radio galaxies may be actively forming stars: radio galaxies with strong emission-lines often have blue colors and strong far-infrared emission. Determining the star formation rate in the host galaxies of quasars is especially difficult. Multi-color imaging and long-slit spectroscopy suggests that many of the host galaxies of radio-loud quasars are blue and a cold interstellar medium has been detected in some quasar hosts

  5. The Seyfert galaxy population

    International Nuclear Information System (INIS)

    Meurs, E.

    1982-01-01

    A large sample of Seyfert galaxies, many of which are Markarian galaxies, has been observed with the WSRT in lambda 21 cm continuum radiation. The results are presented, and the number of radio detected Seyferts has now increased considerably. A number of accurate optical positions are given that were needed to identify radio sources with the Seyfert galaxies observed. Optical and radio luminosity functions of Seyfert galaxies are derived. The results are compared with such functions for other categories of objects that may be related to these galaxies. The discussions focus on the possible connections between normal galaxies, Seyferts, and optically selected quasars. Three investigations are reported on individual objects that are related to Seyfert galaxies. WSRT observations of four bright, optically selected quasars are presented. The identification of an X-ray discovered BL Lacertae object is discussed. Its radio emission is on a much lower level than for other BL Lacs. Perhaps it is a radio-quiet object in this class, suggesting a comparable difference in radio emission for BL Lacs as is known for quasars. Photo-electric photometry for the Seyfert galaxy NGC 1566 is reported. Besides a monitoring programme, multi-aperture photometry is described. (Auth.)

  6. Infrared studies of Seyfert galaxies and of the irregular galaxy M82

    International Nuclear Information System (INIS)

    Rodriguez Espinosa, J.M.

    1985-01-01

    Middle and far infrared studies of the irregular galaxy M82 and of Seyfert galaxies are presented. M 82 was observed spectrophotometrically from 8 to 13 microns at 6 different positions selected across its 10μm emitting region. The observations show that the mid-IR emitting region is fairly homogeneous and that similar physical processes are responsible for the emission observed throughout the central region of M82. A model is proposed to explain the 8 to 13μm spectrum of M82. A model accumulates 10 5 orion units in the central region of M82. The proposed model explains satisfactorily most of the observed properties of M82 from x-ray to radio wavelengths. It is also suggested that a similar model may be applied to other active nuclei, like the emission line galaxy NGC 1614 and the classical Seyfert 1 galaxy NGC 7469. For Seyfert galaxies, the dat analyzed are drawn from the recently released IRAS catalog. It is found that Seyfert galaxies are strong far infrared sources but, unlike the near and mid-IR emission from these sources, the far-IR emission does not appear to be produced by the active nucleus. Rather it is shown that the observed far-IR properties of Seyfert galaxies are consistent with their far-IR emission being produced in intense episodes of star formation taking place in or near the central regions of these galaxies

  7. Optical emission line spectra of Seyfert galaxies and radio galaxies

    International Nuclear Information System (INIS)

    Osterbrock, D.E.

    1978-01-01

    Many radio galaxies have strong emission lines in their optical spectra, similar to the emission lines in the spectra of Seyfert galaxies. The range of ionization extends from [O I] and [N I] through [Ne V] and [Fe VII] to [Fe X]. The emission-line spectra of radio galaxies divide into two types, narrow-line radio galaxies whose spectra are indistinguishable from Seyfert 2 galaxies, and broad-line radio galaxies whose spectra are similar to Seyfert 1 galaxies. However on the average the broad-line radio galaxies have steeper Balmer decrements, stronger [O III] and weaker Fe II emission than the Seyfert 1 galaxies, though at least one Seyfert 1 galaxy not known to be a radio source has a spectrum very similar to typical broad-line radio galaxies. Intermediate-type Seyfert galaxies exist that show various mixtures of the Seyfert 1 and Seyfert 2 properties, and the narrow-line or Seyfert 2 property seems to be strongly correlated with radio emission. (Auth.)

  8. Extended Narrow-Line Region in Seyfert Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Congiu, Enrico [Dipartimento di Fisica e Astronomia “G. Galilei”, Università di Padova, Padova (Italy); Astronomical Observatory of Brera, National Institute for Astrophysics, Milan (Italy); Contini, Marcella [School of Physics and Astronomy, Tel Aviv University, Tel Aviv (Israel); Ciroi, Stefano; Cracco, Valentina [Dipartimento di Fisica e Astronomia “G. Galilei”, Università di Padova, Padova (Italy); Di Mille, Francesco [Las Campanas Observatory, La Serena (Chile); Berton, Marco [Dipartimento di Fisica e Astronomia “G. Galilei”, Università di Padova, Padova (Italy); Astronomical Observatory of Brera, National Institute for Astrophysics, Milan (Italy); Frezzato, Michele; La Mura, Giovanni; Rafanelli, Piero, E-mail: enrico.congiu@phd.unipd.it [Dipartimento di Fisica e Astronomia “G. Galilei”, Università di Padova, Padova (Italy)

    2017-10-24

    We present our recent results about the extended narrow-line region (ENLR) of two nearby Seyfert 2 galaxies (IC 5063 and NGC 7212) obtained by modeling the observed line profiles and spectra with composite models (photoionization+shocks) in the different regions surrounding the AGN. Then, we compare the Seyfert 2 ENLRs with the very extended one recently discovered in the narrow-line Seyfert 1 (NLS1) galaxy Mrk 783. We have found several evidences of interaction between the ISM of the galaxies and their radio jets, such as (a) the contribution of shocks in ionizing the high velocity gas, (b) the complex kinematics showed by the profile of the emission lines, (c) the high fragmentation of matter, etc. The results suggest that the ENLR of IC 5063 have a hollow bi-conical shape, with one edge aligned to the galaxy disk, which may cause some kind of dependence on velocity of the ionization parameter. Regarding the Mrk 783 properties, it is found that the extension of the optical emission is almost twice the size of the radio one and it seems due to the AGN activity, although there is contamination by star formation around 12 arcsec from the nucleus. Diagnostic diagrams excluded the contribution of star formation in IC 5063 and NGC 7212, while the shock contribution was used to explain the spectra emitted by their high velocity gas.

  9. Extended Narrow-Line Region in Seyfert Galaxies

    International Nuclear Information System (INIS)

    Congiu, Enrico; Contini, Marcella; Ciroi, Stefano; Cracco, Valentina; Di Mille, Francesco; Berton, Marco; Frezzato, Michele; La Mura, Giovanni; Rafanelli, Piero

    2017-01-01

    We present our recent results about the extended narrow-line region (ENLR) of two nearby Seyfert 2 galaxies (IC 5063 and NGC 7212) obtained by modeling the observed line profiles and spectra with composite models (photoionization+shocks) in the different regions surrounding the AGN. Then, we compare the Seyfert 2 ENLRs with the very extended one recently discovered in the narrow-line Seyfert 1 (NLS1) galaxy Mrk 783. We have found several evidences of interaction between the ISM of the galaxies and their radio jets, such as (a) the contribution of shocks in ionizing the high velocity gas, (b) the complex kinematics showed by the profile of the emission lines, (c) the high fragmentation of matter, etc. The results suggest that the ENLR of IC 5063 have a hollow bi-conical shape, with one edge aligned to the galaxy disk, which may cause some kind of dependence on velocity of the ionization parameter. Regarding the Mrk 783 properties, it is found that the extension of the optical emission is almost twice the size of the radio one and it seems due to the AGN activity, although there is contamination by star formation around 12 arcsec from the nucleus. Diagnostic diagrams excluded the contribution of star formation in IC 5063 and NGC 7212, while the shock contribution was used to explain the spectra emitted by their high velocity gas.

  10. Extended Narrow-Line Region in Seyfert Galaxies

    Directory of Open Access Journals (Sweden)

    Enrico Congiu

    2017-10-01

    Full Text Available We present our recent results about the extended narrow-line region (ENLR of two nearby Seyfert 2 galaxies (IC 5063 and NGC 7212 obtained by modeling the observed line profiles and spectra with composite models (photoionization+shocks in the different regions surrounding the AGN. Then, we compare the Seyfert 2 ENLRs with the very extended one recently discovered in the narrow-line Seyfert 1 (NLS1 galaxy Mrk 783. We have found several evidences of interaction between the ISM of the galaxies and their radio jets, such as (a the contribution of shocks in ionizing the high velocity gas, (b the complex kinematics showed by the profile of the emission lines, (c the high fragmentation of matter, etc. The results suggest that the ENLR of IC 5063 have a hollow bi-conical shape, with one edge aligned to the galaxy disk, which may cause some kind of dependence on velocity of the ionization parameter. Regarding the Mrk 783 properties, it is found that the extension of the optical emission is almost twice the size of the radio one and it seems due to the AGN activity, although there is contamination by star formation around 12 arcsec from the nucleus. Diagnostic diagrams excluded the contribution of star formation in IC 5063 and NGC 7212, while the shock contribution was used to explain the spectra emitted by their high velocity gas.

  11. Connection between Seyfert galaxies and clusters

    International Nuclear Information System (INIS)

    Petrosyan, A.R.

    1988-01-01

    To identify Seyfert galaxies that are members of clusters, the sample of known Seyfert galaxies (464 objects) is tested against the Zwicky, Abell, and southern clusters. On the basis of the criteria adopted in the paper, 67 Seyfert galaxies are selected as probable members of Zwicky clusters, 15 as members of Abell clusters, and 18 as members of southern clusters. Lists of these objects are given

  12. Is the cluster environment quenching the Seyfert activity in elliptical and spiral galaxies?

    Science.gov (United States)

    de Souza, R. S.; Dantas, M. L. L.; Krone-Martins, A.; Cameron, E.; Coelho, P.; Hattab, M. W.; de Val-Borro, M.; Hilbe, J. M.; Elliott, J.; Hagen, A.; COIN Collaboration

    2016-09-01

    We developed a hierarchical Bayesian model (HBM) to investigate how the presence of Seyfert activity relates to their environment, herein represented by the galaxy cluster mass, M200, and the normalized cluster centric distance, r/r200. We achieved this by constructing an unbiased sample of galaxies from the Sloan Digital Sky Survey, with morphological classifications provided by the Galaxy Zoo Project. A propensity score matching approach is introduced to control the effects of confounding variables: stellar mass, galaxy colour, and star formation rate. The connection between Seyfert-activity and environmental properties in the de-biased sample is modelled within an HBM framework using the so-called logistic regression technique, suitable for the analysis of binary data (e.g. whether or not a galaxy hosts an AGN). Unlike standard ordinary least square fitting methods, our methodology naturally allows modelling the probability of Seyfert-AGN activity in galaxies on their natural scale, I.e. as a binary variable. Furthermore, we demonstrate how an HBM can incorporate information of each particular galaxy morphological type in an unified framework. In elliptical galaxies our analysis indicates a strong correlation of Seyfert-AGN activity with r/r200, and a weaker correlation with the mass of the host cluster. In spiral galaxies these trends do not appear, suggesting that the link between Seyfert activity and the properties of spiral galaxies are independent of the environment.

  13. The circumnuclear environment of nearby non-interacting Seyfert galaxies

    International Nuclear Information System (INIS)

    Pogge, R.W.

    1988-01-01

    An investigation into the physical conditions prevailing in the regions immediately surrounding the active nuclei in 20 nearby, non-interacting Seyfert galaxies is reported. CCD interference-band images isolating the bright emission lines of Hα + [N II] λλ6548, 6583 and [O III] λ5007 have been obtained to search for spatially extended circumnuclear emission regions. Long-slit, low resolution spectrophotometry of interesting cases was used to probe the ionization state of the extended emission regions. For comparison, a CCD Hα + [N II] interference-band imaging survey of a statistically significant sample of 91 bright non-Seyfert spiral galaxies meeting the same non-interaction criteria has been carried out. Only three out of nine Seyfert 1s have spatially extended ionized gas regions compared with eight out of eleven Seyfert 2s. Enhanced circumnuclear star formation is uncommon to both Seyfert 1s and 2s. Extended emission in Seyfert 1s has essentially the same morphology in both Hα + [N II] and [O III] emission. In the Seyfert 2s, the Hα + [N II] and [O III] images show different extended emission morphologies. The [O III] emission regions appear as either one- or two-sided structures, four of which are resolved into two distinct cones of high-ionization gas emanating from the active nucleus. The morphology and ionization of these regions suggest collimation of the nuclear ionizing radiation field. The 91 non-interacting non-Seyfert spiral galaxies exhibit a rich variety of nuclear and circumnuclear emission-line structures ranging from no emission detected to bright stellar nuclei with complicated circumnuclear emission regions extending for many kiloparsecs

  14. Spectroscopy of the galaxy components of N and Seyfert galaxies

    International Nuclear Information System (INIS)

    Boroson, T.A.; Oke, J.B.; Palomar Observatory, Pasadena, CA)

    1987-01-01

    Nuclear and off-nuclear spectra of nine active galaxies are presented. The sample consists of four Seyfert galaxies, two N galaxies, one Seyfert radio galaxy, and one liner/Seyfert 2 galaxy. All of the objects show continuum emission off the nucleus. Four clearly show absorption features from a stellar population. Velocities have been measured for the off-nuclear emission and absorption lines. In the case of I Zw 1, the absorption-line velocities are inconsistent with 21-cm H I measurements of this object. 26 references

  15. Recent star formation in interacting galaxies

    International Nuclear Information System (INIS)

    Joseph, R.D.; Wright, G.S.

    1985-01-01

    The subset of galaxy-galaxy interactions which have resulted in a merger are, as a class, ultraluminous IR galaxies. Their IR luminosities span a narrow range which overlaps with the most luminous Seyfert galaxies. However, in contrast with Seyfert galaxies, the available optical, IR, and radio properties of mergers show no evidence for a compact non-thermal central source, and are easily understood in terms of a burst of star formation of extraordinary intensity and spatial extent; they are 'super starbursts'. We argue that super starbursts occur in the evolution of most mergers, and discuss the implications of super starbursts for the suggestion that mergers evolve into elliptical galaxies. Finally, we note that merger-induced shocks are likely to leave the gas from both galaxies in dense molecular form which will rapidly cool, collapse, and fragment. Thus a merger might in fact be expected to result in a burst of star formation of exceptional intensity and spatial extent, i.e. a super starburst. (author)

  16. Large-Scale Outflows in Seyfert Galaxies

    Science.gov (United States)

    Colbert, E. J. M.; Baum, S. A.

    1995-12-01

    \\catcode`\\@=11 \\ialign{m @th#1hfil ##hfil \\crcr#2\\crcr\\sim\\crcr}}} \\catcode`\\@=12 Highly collimated outflows extend out to Mpc scales in many radio-loud active galaxies. In Seyfert galaxies, which are radio-quiet, the outflows extend out to kpc scales and do not appear to be as highly collimated. In order to study the nature of large-scale (>~1 kpc) outflows in Seyferts, we have conducted optical, radio and X-ray surveys of a distance-limited sample of 22 edge-on Seyfert galaxies. Results of the optical emission-line imaging and spectroscopic survey imply that large-scale outflows are present in >~{{1} /{4}} of all Seyferts. The radio (VLA) and X-ray (ROSAT) surveys show that large-scale radio and X-ray emission is present at about the same frequency. Kinetic luminosities of the outflows in Seyferts are comparable to those in starburst-driven superwinds. Large-scale radio sources in Seyferts appear diffuse, but do not resemble radio halos found in some edge-on starburst galaxies (e.g. M82). We discuss the feasibility of the outflows being powered by the active nucleus (e.g. a jet) or a circumnuclear starburst.

  17. Radio properties of type 1.8 and 1.9 Seyfert galaxies

    International Nuclear Information System (INIS)

    Ulvestad, J.S.

    1986-01-01

    A number of type 1.8 and 1.9 Seyfert galaxies have been observed at the VLA in order to compare their properties with those of the other types of Seyfert galaxy. The observed types have radio luminosities in the range of 10 to the 39th-40.5th args/s, with the median near 10 to the 40th ergs/s. Most of these galaxies have radio sources with diameters of about 500 pc or less. The ratio of radio luminosity to featureless optical continuum luminosity in the Seyfert 1.8/12.9 galaxies and Seyfert 1.2/1.5 galaxies is intermediate between the values for Seyfert 1 and Seyfert 2 galaxies. The infrared-to-radio ratio decreases along the sequence from Seyfert 1 galaxies, through intermediate Seyfert galaxies, to Seyfert 2 galaxies. This systematic statistical difference in the ratio of two aspect-independent quantities implies that the differences among the Seyfert classes cannot be attributed solely to differences in viewing angle. 39 references

  18. GAS OUTFLOWS IN SEYFERT GALAXIES: EFFECTS OF STAR FORMATION VERSUS AGN FEEDBACK

    Energy Technology Data Exchange (ETDEWEB)

    Melioli, C.; Pino, E. M. de Gouveia Dal, E-mail: claudio.melioli@iag.usp.br, E-mail: dalpino@iag.usp.br [Department of Astronomy (IAG-USP), University of Sao Paulo (Brazil)

    2015-10-20

    Large-scale, weakly collimated outflows are very common in galaxies with large infrared luminosities. In complex systems in particular, where intense star formation (SF) coexists with an active galactic nucleus (AGN), it is not clear yet from observations whether the SF, the AGN, or both are driving these outflows. Accreting supermassive black holes are expected to influence their host galaxies through kinetic and radiative feedback processes, but in a Seyfert galaxy, where the energy emitted in the nuclear region is comparable to that of the body of the galaxy, it is possible that stellar activity is also playing a key role in these processes. In order to achieve a better understanding of the mechanisms driving the gas evolution especially at the nuclear regions of these galaxies, we have performed high-resolution three-dimensional hydrodynamical simulations with radiative cooling considering the feedback from both SF regions, including supernova (Type I and II) explosions and an AGN jet emerging from the central region of the active spiral galaxy. We computed the gas mass lost by the system, separating the role of each of these injection energy sources on the galaxy evolution, and found that at scales within 1 kpc an outflow can be generally established considering intense nuclear SF only. The jet alone is unable to drive a massive gas outflow, although it can sporadically drag and accelerate clumps of the underlying outflow to very high velocities.

  19. Demographics of Starbursts in Nearby Seyfert Galaxies

    Science.gov (United States)

    Schinnerer, E.; Colbert, E.; Armus, L.; Scoville, N. Z.; Heckman, T.

    2002-12-01

    We investigate the frequency of circumnuclear starbursts in Seyfert galaxies using medium-resolution H and K band spectroscopy. An unbiased sample of ~20 nearby Seyfert galaxies was observed at the KeckII telescope with an average seeing of ~0.7''. Preliminary analysis shows strong stellar absorption lines for most galaxies in our sample. Comparison of stellar equivalent widths in the H and K band will allow us to determine the average age of the dominating stellar population. Evidence for an age trend with Seyfert type would provide a strong hint toward a starburst/AGN connection.

  20. A millimeter-wave survey of CO emission in Seyfert galaxies

    International Nuclear Information System (INIS)

    Heckman, T.M.; Blitz, L.; Wilson, A.S.; Armus, L.; Miley, G.K.

    1989-01-01

    Emission in the 115 GHz 1-0 line of CO has been detected in 18 Seyfert galaxies in a sample of 43. The CO properties of 29 Seyferts in the Revised Shapley Ames Catalog (RSA) are compared with the CO properties of normal galaxies of the same Hubble type. These RSA type 2 Seyferts have an average ratio of CO-to-blue luminosity that is about twice as large as that of the normal galaxies, but the RSA type 1 Seyferts have normal CO luminosities. The RSA type 2 Seyfert galaxies have an unusually large average ratio of CO luminosity-to-H I mass compared to normal disk galaxies. The RSA type 2 Seyferts have an average far-IR luminosity that is about four times larger than a non-Seyfert comparison sample, while the RSA type 1 Seyferts are not significantly more luminous than the non-Seyferts. The result imply that the two classes of Seyferts are intrinsically different from one another and that one class cannot evolve into another in less than a few million years. 129 refs

  1. Optical polarization position angle versus radio structure axis in Seyfert galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Antonucci, R R.J. [National Radio Astronomy Observatory, Charlottesville, VA (USA)

    1983-05-12

    The hypothesis that there are two polarization classes of Seyfert galaxies, analogous to the perpendicular and parallel radio galaxy groups, is investigated by examining optical polarimetry data. In the sample considered it is shown that all the Seyfert 1 galaxies have roughly parallel polarization while all the Seyfert 2 galaxies have roughly perpendicular polarizations. These alignment effects can be interpreted as being due to thin and thick scattering disks, respectively, surrounding the continuum sources. This would represent a fundamental difference between the two types of Seyfert galaxies.

  2. Hubble Space Telescope Imaging of the Circumnuclear Environments of the CfA Seyfert Galaxies: Nuclear Spirals and Fueling

    Science.gov (United States)

    Pogge, Richard W.; Martini, Paul

    2002-01-01

    We present archival Hubble Space Telescope (HST) images of the nuclear regions of 43 of the 46 Seyfert galaxies found in the volume limited,spectroscopically complete CfA Redshift Survey sample. Using an improved method of image contrast enhancement, we created detailed high-quality " structure maps " that allow us to study the distributions of dust, star clusters, and emission-line gas in the circumnuclear regions (100-1000 pc scales) and in the associated host galaxy. Essentially all of these Seyfert galaxies have circumnuclear dust structures with morphologies ranging from grand-design two-armed spirals to chaotic dusty disks. In most Seyfert galaxies there is a clear physical connection between the nuclear dust spirals on hundreds of parsec scales and large-scale bars and spiral arms in the host galaxies proper. These connections are particularly striking in the interacting and barred galaxies. Such structures are predicted by numerical simulations of gas flows in barred and interacting galaxies and may be related to the fueling of active galactic nuclei by matter inflow from the host galaxy disks. We see no significant differences in the circumnuclear dust morphologies of Seyfert 1s and 2s, and very few Seyfert 2 nuclei are obscured by large-scale dust structures in the host galaxies. If Sevfert 2s are obscured Sevfert Is, then the obscuration must occur on smaller scales than those probed by HST.

  3. Inclination effects on the recognition of Seyfert galaxies

    International Nuclear Information System (INIS)

    Keel, W.C.

    1980-01-01

    Axial ratios have been measured from images of 91 Seyfert galaxies thought to be disk systems, and their distribution as a function of axial ratio compared to that of field spirals similarly distributed in distance. There is a deficiency of nearly edge-on Seyfert 1 galaxies relative to the comparison sample. Examination of the visibility of nuclei in a sample of nearby spirals indicates that the effect is too large to be caused by absorption in the disks of normal spiral galaxies, while no absorption other than that expected from such disks is found in non-Seyfert Markarian spirals with bright, condensed nuclei

  4. The origin of coronal lines in Seyfert galaxies

    International Nuclear Information System (INIS)

    Korista, K.T.; Ferland, G.J.

    1989-01-01

    This paper examines the possibility that the coronal line region in Seyfert galaxies may be the result of an interstellar medium (ISM) exposed to, and subsequently photoionized by, a 'bare' Seyfert nucleus. It is shown that a 'generic' AGN continuum illuminating the warm-phase of the ISM of a spiral galaxy can produce the observed emission. In this picture the same UV-radiation cone that is responsible for the high-excitation extended narrow-line emission clouds observed out to 1-2 kpc or farther from the nuclei of some Seyfert galaxies also produces the coronal lines. Soft X-rays originating in the nucleus are Compton-scattered off the ISM, thus producing extended soft X-ray emission, as observed in NGC 4151. The results of the calculations show a basic insensitivity to the ISM density, which explains why similar coronal line spectra are found in many Seyfert galaxies of varying physical environments. 60 refs

  5. Spectrophotometry of the Seyfert galaxy NGC 4593

    International Nuclear Information System (INIS)

    MacAlpine, G.M.; Williams, G.A.; Lewis, D.W.

    1979-01-01

    Spectrophotometry of the bright class 1 Seyfert galaxy NGC 4593 is presented. The emission-line characteristics are briefly discussed and compared with those of other Seyfert galaxies. The measured hydrogen Balmer-line ratios are reasonably consistent with expected recombination values, and the emission intensities of Fe II, He I 5876, and forbidden O III 4363 relative to other lines are stronger than average in NGC 4593

  6. Line profile variations in selected Seyfert galaxies

    International Nuclear Information System (INIS)

    Kollatschny, W; Zetzl, M; Ulbrich, K

    2010-01-01

    Continua as well as the broad emission lines in Seyfert 1 galaxies vary in different galaxies with different amplitudes on typical timescales of days to years. We present the results of two independent variability campaigns taken with the Hobby-Eberly Telescope. We studied in detail the integrated line and continuum variations in the optical spectra of the narrow-line Seyfert galaxy Mrk 110 and the very broad-line Seyfert galaxy Mrk 926. The broad-line emitting region in Mrk 110 has radii of four to 33 light-days as a function of the ionization degree of the emission lines. The line-profile variations are matched by Keplerian disk models with some accretion disk wind. The broad-line region in Mrk 926 is very small showing an extension of two to three light-days only. We could detect a structure in the rms line-profiles as well as in the response of the line profile segments of Mrk 926 indicating the BLR is structured.

  7. 3D Studies of Neutral and Ionised Gas and Stars in Seyfert and Inactive Galaxies

    NARCIS (Netherlands)

    Mundell, C. G.; Dumas, G.; Schinnerer, E.; Nagar, N.; Wilcots, E.; Wilson, A. S.; Emsellem, E.; Ferruit, P.; Peletier, R. F.; De Zeeuw, P. T.; Haan, S.

    Abstract: We are conducting the first systematic 3D spectroscopic imaging survey to quantify the properties of the atomic gas (HI) in a distance-limited sample of 28 Seyfert galaxies and a sample of 28 inactive control galaxies with well-matched optical properties (the VHIKINGS survey). This study

  8. The Phoenix galaxy as seen by NuSTAR

    DEFF Research Database (Denmark)

    Masini, A.; Comastri, A.; Puccetti, S.

    2017-01-01

    Aims. We study the long-term variability of the well-known Seyfert 2 galaxy Mrk 1210 (also known as UGC 4203, or the Phoenix galaxy). Methods. The source was observed by many X-ray facilities in the last 20 yr. Here we present a NuSTAR observation and put the results in the context of previously ...

  9. Optical variability of the Seyfert galaxy nuclei

    International Nuclear Information System (INIS)

    Lyutyj, V.M.

    1979-01-01

    The results of the UBV observations of compact Seyfert galaxies during 1968-78 are given. The full amplitude ΔB approximately 2sup(m) of the variability of the nucleus of 3C 120 is considerably larger than that of any other Seyfert galaxy. The minimum brightness of 3C 120 in 1978, B=16sup(m).25 was observed for the first time during the photometric history of the object since 1900. The time delay Δt < or approximately 70sup(d) of the variability of colour index U-B of the nucleus of 3C 120 relatively to that of B and B-V have been discovered. This time delay is interpreted as the variability of the Balmer continuum. The nucleus of 2 Zw 136 appears to show such a variability also. The location of 3C 120 and 2 Zw 136 on two-colour diagram corresponds to the combined colours of hot (05) and cold (K-M) stars, if the time delay of U-B variability is taken into account. The colour indices of the nucleus of 3C 120 during the minimum of 1978 (B=16sup(m).25) correspond to those of the ring between the 7''-30'' apertures. This indicates to a very small contributions of the variable source during the 1978 minimum

  10. An evolutionary link between Seyfert I and II galaxies

    International Nuclear Information System (INIS)

    Penston, M.V.; Perez, E.

    1984-01-01

    First spectra from the newly sited Isaac Newton Telescope show NGC 4151 and 3C 390.3 to have taken on a classification very close to Seyfert II. It is proposed that Seyfert II galaxies are Seyfert Is in which the continuum source is temporarily off. (author)

  11. Bright emission lines in new Seyfert galaxies

    International Nuclear Information System (INIS)

    Afanasev, V.L.; Denisiuk, E.K.; Lipovetskii, V.A.; Shapovalova, A.I.

    1983-01-01

    Observational data are given on bright emission lines (H-alpha, H-beta, and forbidden N II, S II, and O III) for 14 recently discovered Seyfert galaxies. The investigated objects can be divided into three groups, which correspond approximately to the first (5 objects), the intermediate (4 objects), and the second (4 objects) Seyfert types. Attention is drawn to the properties of the galaxy Markaryan 1018, which has features of both the first and the second type and is distinguished by the weakness of its emission lines, which is probably due to a gas deficit. 7 references

  12. Star Formation in the Central Regions of Galaxies

    Science.gov (United States)

    Tsai, Mengchun

    2015-08-01

    The galactic central region connects the galactic nucleus to the host galaxy. If the central black hole co-evolved with the host galaxies, there should be some evidence left in the central region. We use the environmental properties in the central regions such as star-forming activity, stellar population and molecular abundance to figure out a possible scenario of the evolution of galaxies. In this thesis at first we investigated the properties of the central regions in the host galaxies of active and normal galaxies. We used radio emission around the nuclei of the host galaxies to represent activity of active galactic nuclei (AGNs), and used infrared ray (IR) emission to represent the star-forming activity and stellar population of the host galaxies. We determined that active galaxies have higher stellar masses (SMs) within the central kiloparsec radius than normal galaxies do independent of the Hubble types of the host galaxies; but both active and normal galaxies exhibit similar specific star formation rates (SSFRs). We also discovered that certain AGNs exhibit substantial inner stellar structures in the IR images; most of the AGNs with inner structures are Seyferts, whereas only a few LINERs exhibit inner structures. We note that the AGNs with inner structures show a positive correlation between the radio activity of the AGNs and the SFRs of the host galaxies, but the sources without inner structures show a negative correlation between the radio power and the SFRs. These results might be explained with a scenario of starburst-AGN evolution. In this scenario, AGN activities are triggered following a nuclear starburst; during the evolution, AGN activities are accompanied by SF activity in the inner regions of the host galaxies; at the final stage of the evolution, the AGNs might transform into LINERs, exhibiting weak SF activity in the central regions of the host galaxies. For further investigation about the inner structure, we choose the most nearby and luminous

  13. The group environment of Seyfert galaxies. II. Spectrophotometry of galaxies in groups

    International Nuclear Information System (INIS)

    Fricke, K.J.; Kollatschny, W.

    1989-01-01

    Medium-resolution spectrophotometric data of 104 galaxies have been obtained. These galaxies are members of 22 loose groups of < 1 Mpc size. Thirteen of these groups contain Seyfert galaxies. In this paper we present calibrated emission-line data and absolute optical spectra of the individual galaxies as well as plates of each group

  14. A NuSTAR survey of nearby ultraluminous infrared galaxies

    DEFF Research Database (Denmark)

    Teng, Stacy H.; Rigby, Jane R.; Stern, Daniel

    2015-01-01

    We present a Nuclear Spectroscopic Telescope Array (NuSTAR), Chandra, and XMM-Newton survey of nine of the nearest ultraluminous infrared galaxies (ULIRGs). The unprecedented sensitivity of NuSTAR at energies above 10 keV enables spectral modeling with far better precision than was previously......] line luminosity than do Seyfert 1 galaxies. We identify IRAS 08572+3915 as another candidate intrinsically X-ray weak source, similar to Mrk 231. We speculate that the X-ray weakness of IRAS 08572+3915 is related to its powerful outflow observed at other wavelengths....

  15. Seyfert Galaxies: Radio Continuum Emission Properties and the ...

    Indian Academy of Sciences (India)

    sample of Seyfert galaxies in the framework of the unification scheme. Key words. Galaxies: ... 25/49 sub-fields. Self-calibration is used iteratively to improve the image quality. 4. ... Antonucci, R. R. J., Miller, J. S. 1985, Astrophys. J., 297, 621.

  16. "Observing" the Circumnuclear Stars and Gas in Disk Galaxy Simulations

    Science.gov (United States)

    Cook, Angela; Hicks, Erin K. S.

    2018-06-01

    We present simulations based on theoretical models of common disk processes designed to represent potential inflow observed within the central 500 pc of local Seyfert galaxies. Mock observations of these n-body plus smoothed particle hydrodynamical simulations provide the conceptual framework in which to identify the driving inflow mechanism, for example nuclear bars, and to quantify to the inflow based on observable properties. From these mock observations the azimuthal average of the flux distribution, velocity dispersion, and velocity of both the stars and interstellar medium on scales of 50pc have been measured at a range of inclinations angles. A comparison of the simulated disk galaxies with these observed azimuthal averages in 40 Seyfert galaxies measured as part of the KONA (Keck OSIRIS Nearby AGN) survey will be presented.

  17. INVESTIGATING THE CORE MORPHOLOGY-SEYFERT CLASS RELATIONSHIP WITH HUBBLE SPACE TELESCOPE ARCHIVAL IMAGES OF LOCAL SEYFERT GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Rutkowski, M. J.; Hegel, P. R.; Kim, Hwihyun; Windhorst, R. A. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-1404 (United States); Tamura, Kazuyuki [Naruto University of Education, Nakashima, Takashima, Naruto-cho, Naruto-shi 772-8502 (Japan)

    2013-07-01

    The unified model of active galactic nuclei (AGNs) has provided a successful explanation for the observed diversity of AGNs in the local universe. However, recent analysis of multi-wavelength spectral and image data suggests that the unified model is only a partial theory of AGNs, and may need to be augmented to remain consistent with all observations. Recent studies using high spatial resolution ground- and space-based observations of local AGNs show that Seyfert class and the ''core'' (r {approx}< 1 kpc) host-galaxy morphology are correlated. Currently, this relationship has only been established qualitatively, by visual inspection of the core morphologies of low-redshift (z < 0.035) Seyfert host galaxies. We re-establish this empirical relationship in Hubble Space Telescope optical imaging by visual inspection of a catalog of 85 local (D < 63 Mpc) Seyfert galaxies. We also attempt to re-establish the core morphology-Seyfert class relationship using an automated, non-parametric technique that combines both existing classification parameter methods (the adapted CAS and G-M {sub 20}) and a new method which implements the Source Extractor software for feature detection in unsharp-mask images. This new method is designed explicitly to detect dust features in the images. We use our automated approach to classify the morphology of the AGN cores and determine that Sy2 galaxies visually appear, on average, to have more dust features than Sy1. With the exception of this ''dustiness'' however, we do not measure a strong correlation between the dust morphology and the Seyfert class of the host galaxy using quantitative techniques. We discuss the implications of these results in the context of the unified model.

  18. Soft X-ray Emission from Large-Scale Galactic Outflows in Seyfert Galaxies

    Science.gov (United States)

    Colbert, E. J. M.; Baum, S.; O'Dea, C.; Veilleux, S.

    1998-01-01

    Kiloparsec-scale soft X-ray nebulae extend along the galaxy minor axes in several Seyfert galaxies, including NGC 2992, NGC 4388 and NGC 5506. In these three galaxies, the extended X-ray emission observed in ROSAT HRI images has 0.2-2.4 keV X-ray luminosities of 0.4-3.5 x 10(40) erg s(-1) . The X-ray nebulae are roughly co-spatial with the large-scale radio emission, suggesting that both are produced by large-scale galactic outflows. Assuming pressure balance between the radio and X-ray plasmas, the X-ray filling factor is >~ 10(4) times as large as the radio plasma filling factor, suggesting that large-scale outflows in Seyfert galaxies are predominantly winds of thermal X-ray emitting gas. We favor an interpretation in which large-scale outflows originate as AGN-driven jets that entrain and heat gas on kpc scales as they make their way out of the galaxy. AGN- and starburst-driven winds are also possible explanations if the winds are oriented along the rotation axis of the galaxy disk. Since large-scale outflows are present in at least 50 percent of Seyfert galaxies, the soft X-ray emission from the outflowing gas may, in many cases, explain the ``soft excess" X-ray feature observed below 2 keV in X-ray spectra of many Seyfert 2 galaxies.

  19. A mid- to far-infrared variability study of the intermediate Seyfert galaxy, Mk 6

    International Nuclear Information System (INIS)

    Clement, R.; Sembay, S.; Coe, M.J.; Hanson, C.G.

    1988-01-01

    A mid- to far-infrared (MFIR) variability study of the intermediate Seyfert galaxy, Mk 6, is presented using data from the Infrared Astronomical Satellite (IRAS). We have analysed 25 observations of this source covering a period of about 1 month. Within the expected errors, the source shows no evidence for variability and this may be an indication that there is a strong contribution to the MFIR emission from thermal re-radiation by dust. This interpretation is consistent with previous studies which suggest that the bulk of the far-infrared (30 -100 μm) emission in Seyfert galaxies originates from cool (35 - 75 K) dust associated with star formation regions in the surrounding envelope of the active nucleus. The lack of variability at 12 and 25 μm can also be readily explained by dust emission. However, in this case, the dust temperatures required to produce emission at these wavelengths makes the narrow-line region a more feasible location for the dust grains. (author)

  20. A Radio Study of the Seyfert Galaxy Markarian 6: Implications for Seyfert Life Cycles

    Science.gov (United States)

    Kharb, P.; O'Dea, C. P.; Baum, S. A.; Colbert, E. J. M.; Xu, C.

    2006-11-01

    We have carried out an extensive radio study with the Very Large Array on the Seyfert 1.5 galaxy Mrk 6 and imaged a spectacular radio structure in the source. The radio emission occurs on three different spatial scales: ~7.5 kpc bubbles, ~1.5 kpc bubbles lying nearly orthogonal to them, and a ~1 kpc radio jet lying orthogonal to the kiloparsec-scale bubble. To explain the complex morphology, we first consider a scenario in which the radio structures are the result of superwinds ejected by a nuclear starburst. However, recent Spitzer observations of Mrk 6 provide an upper limit to the star formation rate (SFR) of ~5.5 Msolar yr-1, an estimate much lower than the SFR of ~33 Msolar yr-1 derived assuming that the bubbles are a result of starburst winds energized by supernova explosions. Thus, a starburst alone cannot meet the energy requirements for the creation of the bubbles in Mrk 6. We then present an energetically plausible model wherein the bubbles are a result of energy deposited by the kiloparsec-scale jet as it plows into the interstellar medium. Finally, we consider a model in which the complex radio structure is a result of an episodically powered precessing jet that changes its orientation. This model is the most attractive as it can naturally explain the complex radio morphology and is consistent with the energetics, the spectral index, and the polarization structure. Radio emission in this scenario is a short-lived phenomenon in the lifetime of a Seyfert galaxy, which results from an accretion event.

  1. Radio Jets Clearing the Way Through a Galaxy: Watching Feedback in Action in the Seyfert Galaxy IC 5063

    NARCIS (Netherlands)

    Morganti, R.; Oosterloo, T. A.; Oonk, J. B. R.; Frieswijk, W.; Tadhunter, C. N.

    2015-01-01

    High-resolution (0.5 arcsec) CO(2-1) observations performed with the Atacama Large Millimetre/submillimetre Array have been used to trace the kinematics of the molecular gas in the Seyfert 2 galaxy{IC 5063}. Although one of the most radio-loud Seyfert galaxy, IC 5063 is a relatively weak radio

  2. The Frequency of Circumnuclear Starbursts in Seyfert Galaxies --- Testing the Starburst-AGN Connection

    Science.gov (United States)

    Schinnerer, E.; Colbert, E.; Armus, L.; Scoville, N. Z.; Heckman, T. M.

    We obtained sub-arcsecond medium resolution near-infrared spectra of a sample of nearby bright Seyfert galaxies (8 Seyfert 1s, 11 Seyfert 2s) using the KeckII telescope. The stellar absorption lines present in the spectra were used in conjunction with population synthesis models to determine the age of the circumnuclear stellar population. Initial analysis of a sub-sample of the Seyfert galaxies has provided no evidence for a connection between the age of the circumnuclear stellar population and the Seyfert type. The derived ages for the circumnuclear stellar population are in the range of 10 Myr to < 0.5 Gyr assuming an instantaneous starburst (using the STARBURST99 models).

  3. An Intermediate-Mass Black Hole in the Dwarf Seyfert 1 Galaxy POX 52

    Science.gov (United States)

    Barth, A.; Ho, L.; Sargent, W.

    2004-06-01

    We describe new observations of POX 52, a previously known but nearly forgotten example of a dwarf galaxy with an active nucleus. While POX 52 was originally thought to be a Seyfert 2 galaxy, the new data reveal an emission-line spectrum very similar to that of the dwarf Seyfert 1 galaxy NGC 4395, with clear broad components to the permitted line profiles. The host galaxy appears to be a dwarf elliptical; this is the only known case of a Seyfert nucleus in a galaxy of this type. Applying scaling relations to estimate the black hole mass from the broad Hβ linewidth and continuum luminosity, we find MBH ≈ 1.6×105 M⊙. The stellar velocity dispersion in the host galaxy is 36 km s-1, also suggestive of a black hole mass of order 105 M⊙. Further searches for AGNs in dwarf galaxies can provide crucial constraints on the demographics of black holes in the mass range below 106 M⊙.

  4. Distribution of surface brightness in Seyfert galaxies. III. Analysis of data

    International Nuclear Information System (INIS)

    Afanas'ev, V.L.; Doroshenko, V.T.; Terebizh, V.Yu.

    1987-01-01

    The observational data on the distribution of the surface brightness μ(r) in normal and Seyfert galaxies given in the first two parts of the study [1,2] are considered. The general form of μ(r) for r ≤ approximately equals 2 kpc is the same for the two groups of galaxies. The values of the parameters that characterize the central part of the spherical component are found, namely, the surface brightness μ 1 /sup (0)/, the brightness, the brightness gradient n 1 , and the color indices (U-B) 1 /sup (0)/ and (B-V) 1 /sup (0)/ at distance 1 kpc from the center. The range of variation of the basic parameters and the correlations of the parameters with each other and with the absolute magnitudes M/sub B//sup (0)/ of the galaxies find a natural explanation in the framework of the standard models of the spherical subsystems of galaxies. The relationships have approximately the same form for normal and Seyfert galaxies. The photometric characteristics of the central regions of Sy 1 and Sy 2 type galaxies are similar. The obtained results do not contradict the idea that all sufficiently bright spiral galaxies can pass through a Seyfert stage with a characteristic time of ∼10 8 yr

  5. NGC 985 - Extended ionized regions and the far-infrared luminosity of a ring-shaped Seyfert galaxy

    International Nuclear Information System (INIS)

    Rodriguez Espinosa, J.M.; Stanga, R.M.

    1990-01-01

    Narrow-band H-alpha images and long-slit spectroscopy of the Seyfert galaxy NGC 985 are presented. Large-scale extended ionized zones are seen to cover a significant fraction of the ring of this object. These ionized zones are responsible for a considerable fraction (greater than 35 percent) of the far-infrared emission of NGC 985. These ionized zones are interpreted as giant H II region complexes, formed in a recent burst of star formation. It is also argued that that starburst was triggered by a galaxy interaction. 41 refs

  6. Broad line regions in Seyfert-1 galaxies

    International Nuclear Information System (INIS)

    Groningen, E. van.

    1984-01-01

    To reproduce observed emission profiles of Seyfert galaxies, rotation in an accretion disk has been proposed. In this thesis, the profiles emitted by such an accretion disk are investigated. Detailed comparison with the observed profiles yields that a considerable fraction can be fitted with a power-law function, as predicted by the model. The author analyzes a series of high quality spectra of Seyfert galaxies, obtained with the 2.5m telescope at Las Campanas. He presents detailed analyses of two objects: Mkn335 and Akn120. In both cases, strong evidence is presented for the presence of two separate broad line zones. These zones are identified with an accretion disk and an outflowing wind. The disk contains gas with very high densities and emits predominantly the lower ionization lines. He reports on the discovery of very broad wings beneath the strong forbidden line 5007. (Auth.)

  7. THE ROLE OF RADIATION PRESSURE IN THE NARROW LINE REGIONS OF SEYFERT HOST GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Davies, Rebecca L.; Dopita, Michael A.; Kewley, Lisa; Groves, Brent; Sutherland, Ralph; Hampton, Elise J.; Banfield, Julie [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Shastri, Prajval; Kharb, Preeti; Bhatt, Harish [Indian Institute of Astrophysics, Sarjapur Road, Bengaluru 560034 (India); Scharwächter, Julia [LERMA, Observatoire de Paris, PSL, CNRS, Sorbonne Universités, UPMC, F-75014 Paris (France); Jin, Chichuan [Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Zaw, Ingyin [New York University (Abu Dhabi), 70 Washington Square S, New York, NY 10012 (United States); James, Bethan [Institute of Astronomy, Cambridge University, Madingley Road, Cambridge CB3 0HA (United Kingdom); Juneau, Stéphanie [CEA-Saclay, DSM/IRFU/SAp, F-91191 Gif-sur-Yvette (France); Srivastava, Shweta, E-mail: Rebecca.Davies@anu.edu.au [Astronomy and Astrophysics Division, Physical Research Laboratory, Ahmedabad 380009 (India)

    2016-06-10

    We investigate the relative significance of radiation pressure and gas pressure in the extended narrow line regions (ENLRs) of four Seyfert galaxies from the integral field Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7). We demonstrate that there exist two distinct types of starburst-active galactic nucleus (AGN) mixing curves on standard emission line diagnostic diagrams, which reflect the balance between gas pressure and radiation pressure in the ENLR. In two of the galaxies the ENLR is radiation pressure dominated throughout and the ionization parameter remains constant (log U ∼ 0). In the other two galaxies radiation pressure is initially important, but gas pressure becomes dominant as the ionization parameter in the ENLR decreases from log U ∼ 0 to −3.2 ≲ log U ≲ −3.4. Where radiation pressure is dominant, the AGN regulates the density of the interstellar medium on kiloparsec scales and may therefore have a direct impact on star formation activity and/or the incidence of outflows in the host galaxy to scales far beyond the zone of influence of the black hole. We find that both radiation pressure dominated and gas pressure dominated ENLRs are dynamically active with evidence for outflows, indicating that radiation pressure may be an important source of AGN feedback even when it is not dominant over the entire ENLR.

  8. Some implications of excess soft X-ray emission from Seyfert 1 galaxies

    International Nuclear Information System (INIS)

    Fabian, A.C.; Guilbert, P.W.; Arnaud, K.A.; Shafer, R.A.; Tennant, A.F.; Ward, M.J.

    1986-01-01

    The X-ray spectrum of Seyfert 1 galaxies is characterized by a hard power-law spectrum. It is often postulated that this maintains a Compton-heated two-phase Broad-Line Region (BLR) around the central source. It is shown here that the strong excess soft X-ray emission observed in MKN 841 and other Seyfert galaxies invalidates this model if the BLR is spherically symmetric. Alternatives are proposed. (author)

  9. Evolutionary behaviour of AGN: Investigations on BL Lac objects and Seyfert II galaxies

    Science.gov (United States)

    Beckmann, V.

    2000-12-01

    -ray sources (e.g. from the ROSAT All-Sky Survey) with neither optical nor radio counterpart in prominent databases (e.g. POSS plates for the optical, and NVSS/FIRST radio catalogues). The Seyfert II survey on the southern hemisphere derived a sample of 29 galaxies with 22 in a complete sample. The selection procedure developed in this work is able to select Seyfert II candidates with a success rate of ~40%. The Seyfert II galaxies outnumber the Seyfert I by a factor of 3...4 when comparing the total flux of the objects, but are less numerous than the type I objects when studying the core luminosity function. This luminosity function of the Seyfert II cores is the first one presented up to now. Hence it is possible to estimate the number of luminous Type II AGN, and the conclusion is drawn that absorbed AGN with MV > 1 and Type II Quasars or not. In summary the AGN phenomenon appears to be linked closely to merging and interacting events. For the BL Lac phenomenon the merging area seems to form the progenitor, while the Seyfert II phenomenon could be triggered by merging events. The role of star burst activity in terms of activity of the central engine remains illusive.

  10. Relativistic jets in narrow-line Seyfert 1 galaxies. New discoveries and open questions

    Directory of Open Access Journals (Sweden)

    D’Ammando F.

    2013-12-01

    Full Text Available Before the launch of the Fermi satellite only two classes of AGNs were known to produce relativistic jets and thus emit up to the γ-ray energy range: blazars and radio galaxies, both hosted in giant elliptical galaxies. The first four years of observations by the Large Area Telescope on board Fermi confirmed that these two are the most numerous classes of identified sources in the extragalactic γ-ray sky, but the discovery of γ-ray emission from 5 radio-loud narrow-line Seyfert 1 galaxies revealed the presence of a possible emerging third class of AGNs with relativistic jets. Considering that narrow-line Seyfert 1 galaxies seem to be typically hosted in spiral galaxy, this finding poses intriguing questions about the nature of these objects, the onset of production of relativistic jets, and the cosmological evolution of radio-loud AGN. Here, we discuss the radio-to-γ-rays properties of the γ-ray emitting narrow-line Seyfert 1 galaxies, also in comparison with the blazar scenario.

  11. MULTI-WAVELENGTH PROBES OF OBSCURATION TOWARD THE NARROW-LINE REGION IN SEYFERT GALAXIES

    International Nuclear Information System (INIS)

    Kraemer, S. B.; Schmitt, H.R.; Crenshaw, D. M.; Melendez, M.; Turner, T.J.; Guainazzi, M.; Mushotzky, R.F.

    2011-01-01

    We present a study of reddening and absorption toward the narrow line regions (NLRs) in active galactic nuclei (AGNs) selected from the Revised Shapley-Ames, 12 μm, and Swift/Burst Alert Telescope samples. For the sources in host galaxies with inclinations of b/a > 0.5, we find that the mean ratio of [O III] λ5007, from ground-based observations, and [O IV] 28.59 μm, from Spitzer/Infrared Spectrograph observations, is a factor of two lower in Seyfert 2s than Seyfert 1s. The combination of low [O III]/[O IV] and [O III] λ4363/λ5007 ratios in Seyfert 2s suggests more extinction of emission from the NLR than in Seyfert 1s. Similar column densities of dusty gas, N H ∼ several x 10 21 cm -2 , can account for the suppression of both [O III] λ5007 and [O III] λ4363, as compared to those observed in Seyfert 1s. Also, we find that the X-ray line O VII λ22.1 A is weaker in Seyfert 2s, consistent with absorption by the same gas that reddens the optical emission. Using a Hubble Space Telescope/Space Telescope Imaging Spectrograph slitless spectrum of the Seyfert 1 galaxy NGC 4151, we estimate that only ∼30% of the [O III] λ5007 comes from within 30 pc of the central source, which is insufficient to account for the low [O III]/[O IV] ratios in Seyfert 2s. If Seyfert 2 galaxies have similar intrinsic [O III] spatial profiles, the external dusty gas must extend further out along the NLR, perhaps in the form of nuclear dust spirals that have been associated with fueling flows toward the AGN.

  12. Star-formation rates in the nuclei of violently interacting galaxies

    International Nuclear Information System (INIS)

    Bushouse, H.A.

    1986-01-01

    Spectrophotometry has been obtained of the nuclear regions of a large sample of violently interacting spiral galaxies. The sample galaxies were chosen to include only those systems having tails, plumes, or other morphological features consistent with strong tidal interactions involving disk galaxies. The interacting galaxies are found to exhibit a wide range of nuclear optical emission-line strengths, but show a significantly higher overall level in both Hα emission-line equivalent width and luminosity than samples of field spirals observed in a similar fashion. While galaxy-galaxy interactions can lead to large nuclear star-formation bursts, this is not a ubiquitous phenomenon. A large fraction (approx.30%) of the nuclei show only weak or no detectable optical emission lines and are characterized by stellar absorption spectra of old, elliptical galaxy-like stellar populations, thus indicating little recent or continuing star-formation activity. These circumstances can occur even in instances where the nucleus of the other component has a large population of young stars. While exhaustion of a galaxy's gas supply during the later phases of interaction can account for post-burst systems, it cannot explain systems that have experienced no significant star-formation activity throughout the entire interaction process. Seyfert and low-ionization nuclei also are rare in violently interacting systems which, coupled with the large number of nuclei found to have little star-formation activity, suggests either an initial lack of near-nuclear gas or that gas is present but in inappropriate forms to support star formation or fuel nuclear activity

  13. On the driver of relativistic effect strength in Seyfert galaxies

    Czech Academy of Sciences Publication Activity Database

    Guainazzi, M.; Bianchi, S.; de La Calle, I.; Dovčiak, Michal; Longinotti, A. L.

    2011-01-01

    Roč. 531, July (2011), A131/1-A131/13 ISSN 0004-6361 Institutional research plan: CEZ:AV0Z10030501 Keywords : accretion disks * relativistic processes * nuclei galaxies * Seyfert galaxy * X-rays Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.587, year: 2011

  14. POX 52: A Dwarf Seyfert 1 Galaxy with an Intermediate-Mass Black Hole

    Science.gov (United States)

    Barth, Aaron J.; Ho, Luis C.; Rutledge, Robert E.; Sargent, Wallace L. W.

    2004-05-01

    We describe new optical images and spectra of POX 52, a dwarf galaxy with an active nucleus that was originally detected in the POX objective-prism survey. While POX 52 was originally thought to be a Seyfert 2 galaxy, the new data reveal an emission-line spectrum very similar to that of the dwarf Seyfert 1 galaxy NGC 4395, with broad components to the permitted line profiles, and we classify POX 52 as a Seyfert 1 galaxy. The host galaxy appears to be a dwarf elliptical, and its brightness profile is best fit by a Sérsic model with an index of 3.6+/-0.2 and a total magnitude of MV=-17.6. Applying mass-luminosity-line width scaling relations to estimate the black hole mass from the broad Hβ line width and nonstellar continuum luminosity, we find MBH~1.6×105Msolar. The stellar velocity dispersion in the host galaxy, measured from the Ca II λ8498, 8542 lines, is 36+/-5 km s-1, also suggestive of a black hole mass of order 105Msolar. Further searches for active nuclei in dwarf galaxies can provide unique constraints on the demographics of black holes in the mass range below 106Msolar.

  15. A new southern Seyfert 1 galaxy

    CERN Document Server

    West, R M; Danks, A C

    1978-01-01

    ESO 140-G43 (Fairall-51) is confirmed as a 14/sup m/ type 1 Seyfert galaxy at V/sub 0/=4150 km s/sup -1/. M/sub V/=-20.8; largest diameter 40 kpc (H/sub 0/=55 km s/sup -1/ Mpc/sup -1/). It has two open spiral arms. R.A.=18/sup h/40/sup m/.2; Decl.=-62 degrees 25' (1950). (8 refs).

  16. Spectral properties of the narrow-line region in Seyfert galaxies selected from the SDSS-DR7

    Science.gov (United States)

    Vaona, L.; Ciroi, S.; Di Mille, F.; Cracco, V.; La Mura, G.; Rafanelli, P.

    2012-12-01

    Although the properties of the narrow-line region (NLR) of active galactic nuclei (AGN) have been deeply studied by many authors in the past three decades, many questions are still open. The main goal of this work is to explore the NLR of Seyfert galaxies by collecting a large statistical spectroscopic sample of Seyfert 2 and Intermediate-type Seyfert galaxies having a high signal-to-noise ratio in order to take advantage of a high number of emission lines to be accurately measured. 2153 Seyfert 2 and 521 Intermediate-type Seyfert spectra were selected from Sloan Digital Sky Survey Data Release 7 (SDSS-DR7) with a diagnostic diagram based on the oxygen emission-line ratios. All the emission lines, broad components included, were measured by means of a self-developed code, after the subtraction of the stellar component. Physical parameters, such as internal reddening, ionization parameter, temperature, density, gas and stellar velocity dispersion were determined for each object. Furthermore, we estimated mass and radius of the NLR, kinetic energy of the ionized gas and black hole accretion rate. From the emission-line analysis and the estimated physical properties, it appears that the NLR is similar in Seyfert 2 and Intermediate-Seyfert galaxies. The only differences, lower extinction, gas kinematics in general not dominated by the host galaxy gravitational potential and higher percentage of [O III]λ5007 blue asymmetries in Intermediate-Seyfert, can be ascribed to an effect of inclination of our line of sight with respect to the torus axis.

  17. Far-ultraviolet and optical spectrophotometry of X-ray selected Seyfert galaxies

    International Nuclear Information System (INIS)

    Clarke, J.T.; Bowyer, S.; Grewing, M.; California Univ., Berkeley; Tuebingen Universitaet, West Germany)

    1986-01-01

    Five X-ray selected Seyfert galaxies were examined via near-simultaneous far-ultraviolet and optical spectrophotometry in an effort to test models for excitation of emission lines by X-ray and ultraviolet continuum photoionization. The observed Ly-alpha/H-beta ratio in the present sample averages 22, with an increase found toward the high-velocity wings of the H lines in the spectrum of at least one of the Seyfert I nuclei. It is suggested that Seyfert galaxies with the most high-velocity gas exhibit the highest Ly-alpha/H-beta ratios at all velocities in the line profiles, and that sometimes this ratio may be highest for the highest velocity material in the broad-line clouds. Since broad-lined objects are least affected by Ly-alpha trapping effects, they have Ly-alpha/H-beta ratios much closer to those predicted by early photoionization calculations. 21 references

  18. NuSTAR spectral analysis of two bright Seyfert 1 galaxies: MCG +8-11-11 and NGC 6814

    Science.gov (United States)

    Tortosa, A.; Bianchi, S.; Marinucci, A.; Matt, G.; Middei, R.; Piconcelli, E.; Brenneman, L. W.; Cappi, M.; Dadina, M.; De Rosa, A.; Petrucci, P. O.; Ursini, F.; Walton, D. J.

    2018-01-01

    We report on the NuSTAR observations of two bright Seyfert 1 galaxies, namely MCG +8-11-11 (100 ks) and NGC 6814 (150 ks). The main goal of these observations was to investigate the Comptonization mechanisms acting in the innermost regions of an active galactic nucleus (AGN) which are believed to be responsible for the UV/X-ray emission. The spectroscopic analysis of the NuSTAR spectra of these two sources revealed that although they had different properties overall (black hole masses, luminosity and Eddington ratios), they had very similar coronal properties. Both presented a power-law spectrum with a high-energy cut-off at ∼150-200 keV, a relativistically broadened Fe K α line and the associated disc reflection component, plus a narrow iron line likely emitted in Compton thin and distant matter. The intrinsic continuum was well described by Comptonization models that show for MCG +8-11-11 a temperature of the coronal plasma of kTe ∼ 60 keV and an extrapolated optical depth τ = 1.8; for NGC 6814, the coronal temperature was kTe ∼ 45 keV with an extrapolated optical depth of τ = 2.5. We compare and discuss these values to some most common Comptonization models that aim at explaining the energy production and stability of coronae in AGNs.

  19. An optical and near-infrared polarization survey of Seyfert and broad-line radio galaxies. Pt. 1

    International Nuclear Information System (INIS)

    Brindle, C.; Hough, J.H.; Bailey, J.A.; Axon, D.J.; Ward, M.J.; McLean, I.S.

    1990-01-01

    We present new broad-band optical and near-infrared (0.44-2.2 μm) flux density and polarization measurements of a sample of 71 Seyfert galaxies and three broad-line radio galaxies. We confirm the results of earlier studies which show that the polarization of Seyferts is generally low in the V-band and at longer wavelengths, but in the B-band somewhat higher polarizations are commonly found. After correction has been made for the effects of stellar dilution, we find that Seyfert 2 nuclei are probably more highly polarized than Seyfert 1's. The small sample of Seyfert 2's selected using the 'warm' IRAS colour criterion tend to be more highly polarised than those selected by optical techniques. (author)

  20. VLA Observation of Seyfert Galaxy MRK 6

    Science.gov (United States)

    Xu, C.; Baum, S. A.; O'Dea, C.; Colbert, E. J. M.

    1997-12-01

    We have obtained deep radio observation of the Seyfert 1.5 galaxy Mrk6 with all VLA configurations at 6 and 20 cm. We confirm the existence of two pairs of diffuse low surface brightness radio lobes at different scales and orientations. The larger pair of lobes extend ( ~ 40" or 20 kpc) ~ 30(deg) NW-SE, and is evidence of starburst-driven superwind as suggested in Baum et. al (1993). The outer lobes are roughly perpendicular to a set of inner lobes which extend ( ~ 4" or 2 kpc) E-W and are in turn perpendicular to the inner jets imaged by Kukula et. al (1996). Both pairs of lobes appear to have shell-like structures, as implied by the observed anti-symmetric emission morphology which might be due to limb brightening as a result of increasing optical depth at the line of sight. The width of each structure is comparable to the length of the next smaller structure suggesting a "self-similar" (and possibly dynamical) relationship between these structures. These nested "bubble-like" structures with different orientations pose a challenge to the current paradigm of energy transport in Seyfert galaxies.

  1. Interpretation of the X-ray variability of type 1 Seyfert galaxy nuclei and quasars

    International Nuclear Information System (INIS)

    Zentsova, A.S.

    1985-01-01

    The hypothesis is analyzed that the X-ray variability of type 1 Seyfert galaxies ad quasars causes the absorption of the central object X radiation by emission clouds. It is shown that this hypothesis can explain the characteristic time scale of the X-ray variability and its amplitude. It is indicated that systematic X-ray observations of Seyfert galaxies and quasars for the investigation of the physical conditions in the emission clouds are important

  2. Motion and properties of nuclear radio components in Seyfert galaxies seen with VLBI

    Science.gov (United States)

    Middelberg, E.; Roy, A. L.; Nagar, N. M.; Krichbaum, T. P.; Norris, R. P.; Wilson, A. S.; Falcke, H.; Colbert, E. J. M.; Witzel, A.; Fricke, K. J.

    2004-04-01

    We report EVN, MERLIN and VLBA observations at 18 cm, 6 cm and 3.6 cm of the Seyfert galaxies NGC 7674, NGC 5506, NGC 2110 and Mrk 1210 to study their structure and proper motions on pc scales and to add some constraints on the many possible causes of the radio-quietness of Seyferts. The component configurations in NGC 7674 and NGC 2110 are simple, linear structures, whereas the configurations in NGC 5506 and Mrk 1210 have multiple components with no clear axis of symmetry. We suggest that NGC 7674 is a low-luminosity compact symmetric object. Comparing the images at different epochs, we find a proper motion in NGC 7674 of (0.92±0.07) c between the two central components separated by 282 pc and, in NGC 5506, we find a 3 σ upper limit of 0.50 c for the components separated by 3.8 pc. Our results confirm and extend earlier work showing that the outward motion of radio components in Seyfert galaxies is non-relativistic on pc scales. We briefly discuss whether this non-relativistic motion is intrinsic to the jet-formation process or results from deceleration of an initially relativistic jet by interaction with the pc or sub-pc scale interstellar medium. We combined our sample with a list compiled from the literature of VLBI observations made of Seyfert galaxies, and found that most Seyfert nuclei have at least one flat-spectrum component on the VLBI scale, which was not seen in the spectral indices measured at arcsec resolution. We found also that the bimodal alignment of pc and kpc radio structures displayed by radio galaxies and quasars is not displayed by this sample of Seyferts, which shows a uniform distribution of misalignment between 0° and 90°. The frequent misalignment could result from jet precession or from deflection of the jet by interaction with gas in the interstellar medium.

  3. Superwind Outflow in Seyfert Galaxies? : Optical Observations of an Edge-On Sample

    Science.gov (United States)

    Colbert, E.; Gallimore, J.; Baum, S.; O'Dea, C.; Lehnert, M.

    1994-12-01

    Large-scale galactic winds (superwinds) are commonly found flowing out of the nuclear region of ultraluminous infrared and powerful starburst galaxies. Stellar winds and supernovae from the nuclear starburst are thought to provide the energy to drive these superwinds. The outflowing gas escapes along the rotation axis, sweeping up and shock-heating clouds in the halo, which produces optical line emission, X-rays and radio synchrotron emission. These features can most easily be studied in edge-on systems, so that the wind emission is not confused by that from the disk. Diffuse radio emission has been found (Baum et al. 1993, ApJ, 419, 553) to extend out to kpc-scales in a number of edge-on Seyfert galaxies. We have therefore launched a systematic search for superwind outflows in Seyferts. We present here narrow-band optical images and optical spectra for a sample of edge-on Seyferts. These data have been used to estimate the frequency of occurence of superwinds. Approximately half of the sample objects show evidence for extended emission-line regions which are preferentially oriented perpendicular to the galaxy disk. It is possible that these emission-line regions may be energized by a superwind outflow from a circumnuclear starburst, although there may also be a contribution from the AGN itself. A goal of this work is to find a diagnostic that can be used to distinguish between large-scale outflows that are driven by starbursts and those that are driven by an AGN. The presence of starburst-driven superwinds in Seyferts, if established, would have important implications for the connection between starburst galaxies and AGN.

  4. Long time scale hard X-ray variability in Seyfert 1 galaxies

    Science.gov (United States)

    Markowitz, Alex Gary

    This dissertation examines the relationship between long-term X-ray variability characteristics, black hole mass, and luminosity of Seyfert 1 Active Galactic Nuclei. High dynamic range power spectral density functions (PSDs) have been constructed for six Seyfert 1 galaxies. These PSDs show "breaks" or characteristic time scales, typically on the order of a few days. There is resemblance to PSDs of lower-mass Galactic X-ray binaries (XRBs), with the ratios of putative black hole masses and variability time scales approximately the same (106--7) between the two classes of objects. The data are consistent with a linear correlation between Seyfert PSD break time scale and black hole mass estimate; the relation extrapolates reasonably well over 6--7 orders of magnitude to XRBs. All of this strengthens the case for a physical similarity between Seyfert galaxies and XRBs. The first six years of RXTE monitoring of Seyfert 1s have been systematically analyzed to probe hard X-ray variability on multiple time scales in a total of 19 Seyfert is in an expansion of the survey of Markowitz & Edelson (2001). Correlations between variability amplitude, luminosity, and black hole mass are explored, the data support the model of PSD movement with black hole mass suggested by the PSD survey. All of the continuum variability results are consistent with relatively more massive black holes hosting larger X-ray emission regions, resulting in 'slower' observed variability. Nearly all sources in the sample exhibit stronger variability towards softer energies, consistent with softening as they brighten. Direct time-resolved spectral fitting has been performed on continuous RXTE monitoring of seven Seyfert is to study long-term spectral variability and Fe Kalpha variability characteristics. The Fe Kalpha line displays a wide range of behavior but varies less strongly than the broadband continuum. Overall, however, there is no strong evidence for correlated variability between the line and

  5. Superwind Outflows in Seyfert Galaxies? : Large-Scale Radio Maps of an Edge-On Sample

    Science.gov (United States)

    Colbert, E.; Gallimore, J.; Baum, S.; O'Dea, C.

    1995-03-01

    Large-scale galactic winds (superwinds) are commonly found flowing out of the nuclear region of ultraluminous infrared and powerful starburst galaxies. Stellar winds and supernovae from the nuclear starburst provide the energy to drive these superwinds. The outflowing gas escapes along the rotation axis, sweeping up and shock-heating clouds in the halo, which produces optical line emission, radio synchrotron emission, and X-rays. These features can most easily be studied in edge-on systems, so that the wind emission is not confused by that from the disk. We have begun a systematic search for superwind outflows in Seyfert galaxies. In an earlier optical emission-line survey, we found extended minor axis emission and/or double-peaked emission line profiles in >~30% of the sample objects. We present here large-scale (6cm VLA C-config) radio maps of 11 edge-on Seyfert galaxies, selected (without bias) from a distance-limited sample of 23 edge-on Seyferts. These data have been used to estimate the frequency of occurrence of superwinds. Preliminary results indicate that four (36%) of the 11 objects observed and six (26%) of the 23 objects in the distance-limited sample have extended radio emission oriented perpendicular to the galaxy disk. This emission may be produced by a galactic wind blowing out of the disk. Two (NGC 2992 and NGC 5506) of the nine objects for which we have both radio and optical data show good evidence for a galactic wind in both datasets. We suggest that galactic winds occur in >~30% of all Seyferts. A goal of this work is to find a diagnostic that can be used to distinguish between large-scale outflows that are driven by starbursts and those that are driven by an AGN. The presence of starburst-driven superwinds in Seyferts, if established, would have important implications for the connection between starburst galaxies and AGN.

  6. Properties of Narrow line Seyfert 1 galaxies

    Science.gov (United States)

    Rakshit, Suvendu; Stalin, Chelliah Subramonian; Chand, Hum; Zhang, Xue-Guang

    2018-04-01

    Narrow line Seyfert 1 (NLSy1) galaxies constitute a class of active galactic nuclei characterized by the full width at half maximum (FWHM) of the Hα broad emission line 10 pixel-1. A strong correlation between the Hα and Hα emission lines is found both in the FWHM and flux. The nuclear continuum luminosity is found to be strongly correlated with the luminosity of Hα, Hα and [O III] emission lines. The black hole mass in NLSy1 galaxies is lower compared to their broad line counterparts. Compared to BLSy1 galaxies, NLSy1 galaxies have a stronger FeII emission and a higher Eddington ratio that place them in the extreme upper right corner of the R4570 - λEdd diagram. The distribution of the radio-loudness parameter (R) in NLSy1 galaxies drops rapidly at R>10 compared to the BLSy1 galaxies that have powerful radio jets. The soft X-ray photon index in NLSy1 galaxies is on average higher (2.9 ± 0.9) than BLSy1 galaxies (2.4 ± 0.8). It is anti-correlated with the Hα width but correlated with the FeII strength. NLSy1 galaxies on average have a lower amplitude of optical variability compared to their broad lines counterparts. These results suggest Eddington ratio as the main parameter that drives optical variability in these sources.

  7. NEAR-INFRARED SPECTROSCOPY OF NEARBY SEYFERT GALAXIES: IS THERE EVIDENCE FOR SHOCK EXCITATION IN NARROW-LINE REGIONS?

    Energy Technology Data Exchange (ETDEWEB)

    Terao, K. [Graduate School of Science and Engineering, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577 (Japan); Nagao, T.; Toba, Y. [Research Center for Space and Cosmic Evolution, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577 (Japan); Hashimoto, T. [National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan (China); Yanagisawa, K. [Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, Honjo 3037-5, Kamogata-cho, Asaguchi, Okayama 719-0232 (Japan); Matsuoka, K. [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Ikeda, H. [National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo, 181-8588 (Japan); Taniguchi, Y., E-mail: terao@cosmos.phys.sci.ehime-u.ac.jp [The Open University of Japan, Wakaba 2-11, Mihama-ku, Chiba 261-8586 (Japan)

    2016-12-20

    One of the important unsettled problems regarding active galactic nuclei (AGNs) is the major ionization mechanism of gas clouds in AGN narrow-line regions (NLRs). In order to investigate this issue, we present our J -band spectroscopic observations of a sample of 26 nearby Seyfert galaxies. In our study, we use the flux ratio of the following two forbidden emission lines, [Fe ii]1.257  μ m and [P ii]1.188  μ m, because it is known that this ratio is sensitive to the ionization mechanism. We obtain the [Fe ii]/[P ii] flux ratio or its lower limit for 19 objects. In addition to our data, we compile this flux ratio (or its lower limit) for 23 nearby Seyfert galaxies from the literature. Based on the collected data, we find that three Seyfert galaxies show very large lower limits of the [Fe ii]/[P ii] flux ratios (≳10): NGC 2782, NGC 5005, and Mrk 463. It is thus suggested that the contribution of the fast shock in the gas excitation is significantly large for them. However, more than half of the Seyfert galaxies in our sample show moderate [Fe ii]/[P ii] flux ratios (∼2), which is consistent with pure photoionization by power-law ionizing continuum emission. We also find that the [Fe ii]/[P ii] flux ratio shows no clear correlation with the radio loudness, suggesting that the radio jet is not the primary origin of shocks in NLRs of Seyfert galaxies.

  8. A study of the structure and kinematics of the narrow-line region in Seyfert galaxies

    International Nuclear Information System (INIS)

    Veilleux, S.

    1989-01-01

    The results of a high resolution study of the narrow emission line profiles of 16 Seyfert galaxies are presented. It is shown that the line profile parameters published in earlier low resolution studies are sometimes strongly influenced by resolution effects. In spite of these important systematic errors, many of the results derived from low resolution data are confirmed in the high resolution data. The narrow line profiles of Seyfert galaxies have a stronger base relative to core than a Gaussian. Most of the emission lines present a blueward asymmetry in the lower portion of their profile. In some galaxies, the line widths and/or line asymmetries are correlated with the ionization potential and/or critical density of the lines. There is a weak correlation between the line asymmetry and the dust content of the narrow line region (NLR). The large scatter in this relation, the absence of a similar correlation in Seyfert 1 to 1.5 galaxies, and the presence of a blue asymmetry in galaxies with dustfree line-emitting regions suggest that dust obscuration is not the only mechanism responsible for the line asymmetry in active galaxies. An optically-thick disk close to the nucleus is proposed as the other source of line asymmetry. An important result is that the host galaxy is probably playing a role in the kinematics of some of the gas in the NLR. A multicomponent model of the NLR is proposed to explain these results

  9. NuSTAR reveals the Comptonizing corona of the broad-line radio galaxy 3C 382

    Energy Technology Data Exchange (ETDEWEB)

    Ballantyne, D. R.; Bollenbacher, J. M. [Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Brenneman, L. W. [Harvard-Smithsonian CfA, 60 Garden Street MS-67, Cambridge, MA 02138 (United States); Madsen, K. K.; Baloković, M.; Harrison, F. A.; Walton, D. J. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Boggs, S. E. [Space Science Laboratory, University of California, Berkeley, CA 94720 (United States); Christensen, F. E.; Craig, W. W. [DTU SpaceNational Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Gandhi, P. [Department of Physics, University of Durham, South Road, Durham DH1 3LE (United Kingdom); Hailey, C. J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Lohfink, A. M. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Marinucci, A. [Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, via della Vasca Navale 84, I-00146 Roma (Italy); Markwardt, C. B.; Zhang, W. W. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Stern, D., E-mail: david.ballantyne@physics.gatech.edu [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2014-10-10

    Broad-line radio galaxies (BLRGs) are active galactic nuclei that produce powerful, large-scale radio jets, but appear as Seyfert 1 galaxies in their optical spectra. In the X-ray band, BLRGs also appear like Seyfert galaxies, but with flatter spectra and weaker reflection features. One explanation for these properties is that the X-ray continuum is diluted by emission from the jet. Here, we present two NuSTAR observations of the BLRG 3C 382 that show clear evidence that the continuum of this source is dominated by thermal Comptonization, as in Seyfert 1 galaxies. The two observations were separated by over a year and found 3C 382 in different states separated by a factor of 1.7 in flux. The lower flux spectrum has a photon-index of Γ=1.68{sub −0.02}{sup +0.03}, while the photon-index of the higher flux spectrum is Γ=1.78{sub −0.03}{sup +0.02}. Thermal and anisotropic Comptonization models provide an excellent fit to both spectra and show that the coronal plasma cooled from kT{sub e} = 330 ± 30 keV in the low flux data to 231{sub −88}{sup +50} keV in the high flux observation. This cooling behavior is typical of Comptonizing corona in Seyfert galaxies and is distinct from the variations observed in jet-dominated sources. In the high flux observation, simultaneous Swift data are leveraged to obtain a broadband spectral energy distribution and indicates that the corona intercepts ∼10% of the optical and ultraviolet emitting accretion disk. 3C 382 exhibits very weak reflection features, with no detectable relativistic Fe Kα line, that may be best explained by an outflowing corona combined with an ionized inner accretion disk.

  10. DISCOVERY OF RELATIVISTIC OUTFLOW IN THE SEYFERT GALAXY Ark 564

    International Nuclear Information System (INIS)

    Gupta, A.; Mathur, S.; Krongold, Y.; Nicastro, F.

    2013-01-01

    We present Chandra High Energy Transmission Grating Spectra of the narrow-line Seyfert-1 galaxy Ark 564. The spectrum shows numerous absorption lines which are well modeled with low-velocity outflow components usually observed in Seyfert galaxies. There are, however, some residual absorption lines which are not accounted for by low-velocity outflows. Here, we present identifications of the strongest lines as Kα transitions of O VII (two lines) and O VI at outflow velocities of ∼0.1c. These lines are detected at 6.9σ, 6.2σ, and 4.7σ, respectively, and cannot be due to chance statistical fluctuations. Photoionization models with ultra-high velocity components improve the spectral fit significantly, providing further support for the presence of relativistic outflow in this source. Without knowing the location of the absorber, its mass and energy outflow rates cannot be well constrained; we find E-dot (outflow)/L bol lower limit of ≥0.006% assuming a bi-conical wind geometry. This is the first time that absorption lines with ultra-high velocities are unambiguously detected in the soft X-ray band. The presence of outflows with relativistic velocities in active galactic nuclei (AGNs) with Seyfert-type luminosities is hard to understand and provides valuable constraints to models of AGN outflows. Radiation pressure is unlikely to be the driving mechanism for such outflows and magnetohydrodynamic may be involved

  11. Optical Variability of Narrow-line and Broad-line Seyfert 1 Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Rakshit, Suvendu; Stalin, C. S., E-mail: suvenduat@gmail.com [Indian Institute of Astrophysics, Block II, Koramangala, Bangalore-560034 (India)

    2017-06-20

    We studied the optical variability (OV) of a large sample of narrow-line Seyfert 1 (NLSy1) and broad-line Seyfert 1 (BLSy1) galaxies with z < 0.8 to investigate any differences in their OV properties. Using archival optical V -band light curves from the Catalina Real Time Transient Survey that span 5–9 years and modeling them using damped random walk, we estimated the amplitude of variability. We found that NLSy1 galaxies as a class show lower amplitude of variability than their broad-line counterparts. In the sample of both NLSy1 and BLSy1 galaxies, radio-loud sources are found to have higher variability amplitude than radio-quiet sources. Considering only sources that are detected in the X-ray band, NLSy1 galaxies are less optically variable than BLSy1 galaxies. The amplitude of variability in the sample of both NLSy1 and BLSy1 galaxies is found to be anti-correlated with Fe ii strength but correlated with the width of the H β line. The well-known anti-correlation of variability–luminosity and the variability–Eddington ratio is present in our data. Among the radio-loud sample, variability amplitude is found to be correlated with radio-loudness and radio-power, suggesting that jets also play an important role in the OV in radio-loud objects, in addition to the Eddington ratio, which is the main driving factor of OV in radio-quiet sources.

  12. A High Definition View of AGN Feedback: Chandra Imaging of Nearby Seyfert Galaxies

    Science.gov (United States)

    Wang, Junfeng; Fabbiano, G.; Risaliti, G.; Elvis, M.; Karovska, M.; Zezas, A.; Mundell, C. G.

    2010-03-01

    To improve the physics of AGN feedback, it is crucial to evaluate the true role of outflows on galaxy evolution observationally. I will present new results from Chandra spectral imaging of nearby Seyfert galaxies, which offer unique opportunities to examine feedback in action in much greater detail than at high redshift. Exploiting Chandra's highest possible resolution, we are able to study structures in NGC 4151 on spatial scales of 0.5 arcsec (30 pc), showing an extended X-ray morphology overall consistent with the optical NLR. We find that most of the NLR clouds in NGC 4151 have [OIII] to soft X-ray ratio consistent with the values observed in NLRs of some Seyfert 2 galaxies, which indicates a uniform ionization parameter even at large radii. We examine various X-ray emission mechanisms of the radio jet and consider thermal emission from interaction between radio outflow and the NLR clouds the most probable origin for the X-ray emission associated with the jet.

  13. A close look at Seyfert 2 nuclei

    International Nuclear Information System (INIS)

    Fischer, Sebastian; Smajic, S; Valencia-S, M; Vitale, A; Zuther, J; Eckart, A

    2012-01-01

    We present SINFONI adaptive optics assisted and seeing limited NIR integral field spectroscopy of the central hundreds of pc of ten z < 0.01 Seyfert 2 galaxies. The main goal of this study is to assess the significance of star formation and extinction in the circumnuclear region of Seyfert 2s. The immediate surroundings of the nuclei are resolved at linear scales of about 50-100 parsecs for most of the observed sources. The intensity and line-of-sight velocity distribution of different species is derived from the 3D SINFONI data by calculating the higher order moments of the emission lines. As part of this work in progress, the resulting maps are currently analyzed following the approach of generalized surface photometry, which allows us to identify the multiple kinematical components in the circumnuclear region of Seyfert 2s.

  14. Optical Variability of Narrow-line and Broad-line Seyfert 1 Galaxies

    Science.gov (United States)

    Rakshit, Suvendu; Stalin, C. S.

    2017-06-01

    We studied the optical variability (OV) of a large sample of narrow-line Seyfert 1 (NLSy1) and broad-line Seyfert 1 (BLSy1) galaxies with z anti-correlated with Fe II strength but correlated with the width of the Hβ line. The well-known anti-correlation of variability-luminosity and the variability-Eddington ratio is present in our data. Among the radio-loud sample, variability amplitude is found to be correlated with radio-loudness and radio-power, suggesting that jets also play an important role in the OV in radio-loud objects, in addition to the Eddington ratio, which is the main driving factor of OV in radio-quiet sources.

  15. PHYSICAL CONDITIONS IN THE INNER NARROW-LINE REGION OF THE SEYFERT 2 GALAXY MARKARIAN 573

    International Nuclear Information System (INIS)

    Kraemer, S. B.; Trippe, M. L.; Crenshaw, D. M.; Fischer, T. C.; Melendez, M.; Schmitt, H. R.

    2009-01-01

    We have examined the physical conditions within a bright emission-line knot in the inner narrow-line region (NLR) of the Seyfert 2 galaxy Mrk 573 using optical spectra and photoionization models. The spectra were obtained with the Hubble Space Telescope/Space Telescope Imaging Spectrograph, through the 0.''2 x 52.''0 slit, at a position angle of -71. 0 2, with the G430L and G750M gratings. Comparing the spatial emission-line profiles, we found [Fe X] λ 6734 barely resolved, [O III] λ5007 centrally peaked, but broader than [Fe X], and [O II] λ3727 the most extended. Spectra of the central knot were extracted from a region 1.''1 in extent, corresponding to the full width at zero intensity in the cross-dispersion direction, of the knot. The spectra reveal that [Fe X] is broader in velocity width and blueshifted compared with lines from less ionized species. Our estimate of the bolometric luminosity indicates that the active galactic nucleus (AGN) is radiating at or above its Eddington luminosity, which is consistent with its identification as a hidden Narrow-Line Seyfert 1. We were able to successfully match the observed emission-line ratios with a three-component photoionization model. Two components, one to account for the [O III] emission and another in which the [Fe X] arises, are directly ionized by the AGN, while [O II] forms in a third component, which is ionized by a heavily absorbed continuum. Based on our assumed ionizing continuum and the model parameters, we determined that the two directly ionized components are ∼55 pc from the AGN. We have found similar radial distances for the central knots in the Seyfert 2 galaxies Mrk 3 and NGC 1068, but much smaller radial distances for the inner NLR in the Seyfert 1 galaxies NGC 4151 and NGC 5548. Although in general agreement with the unified model, these results suggest that the obscuring material in Seyfert galaxies extends out to at least tens of parsecs from the AGN.

  16. INVESTIGATING THE CORE MORPHOLOGY-SEYFERT CLASS RELATIONSHIP WITH HUBBLE SPACE TELESCOPE ARCHIVAL IMAGES OF LOCAL SEYFERT GALAXIES

    International Nuclear Information System (INIS)

    Rutkowski, M. J.; Hegel, P. R.; Kim, Hwihyun; Windhorst, R. A.; Tamura, Kazuyuki

    2013-01-01

    The unified model of active galactic nuclei (AGNs) has provided a successful explanation for the observed diversity of AGNs in the local universe. However, recent analysis of multi-wavelength spectral and image data suggests that the unified model is only a partial theory of AGNs, and may need to be augmented to remain consistent with all observations. Recent studies using high spatial resolution ground- and space-based observations of local AGNs show that Seyfert class and the ''core'' (r ∼ 20 ) and a new method which implements the Source Extractor software for feature detection in unsharp-mask images. This new method is designed explicitly to detect dust features in the images. We use our automated approach to classify the morphology of the AGN cores and determine that Sy2 galaxies visually appear, on average, to have more dust features than Sy1. With the exception of this ''dustiness'' however, we do not measure a strong correlation between the dust morphology and the Seyfert class of the host galaxy using quantitative techniques. We discuss the implications of these results in the context of the unified model.

  17. Searches for H2O masers toward narrow-line Seyfert 1 galaxies

    Science.gov (United States)

    Yoshiaki, Hagiwara; Doi, Akihiro; Hachisuka, Kazuya; Horiuchi, Shinji

    2018-05-01

    We present searches for 22 GHz H2O masers toward 36 narrow-line Seyfert 1 galaxies (NLS1s), selected from known NLS1s with vsys ≲ 41000 km s-1. Out of the 36 NLS1s in our sample, 11 have been first surveyed in our observations, while the observations of other NLS1s were previously reported in literature. In our survey, no new water maser source from NLS1s was detected at the 3σ rms level of 8.4 mJy to 144 mJy, which depends on different observing conditions or inhomogeneous sensitivities of each observation using three different telescopes. It is likely that the non-detection of new masers in our NLS1 sample is primarily due to insufficient sensitivities of our observations. Including the five known NLS1 masers, the total detection rate of the H2O maser in NLS1s is not remarkably different from that of type 2 Seyfert galaxies or LINERs. However, more extensive and systematic searches of NLS1 would be required for a statistical discussion of the detection rate of the NLS1 maser, compared with that of type 2 Seyferts or LINERs.

  18. Free-Free Absorption on Parsec Scales in Seyfert Galaxies

    Science.gov (United States)

    Roy, A. L.; Ulvestad, J. S.; Wilson, A. S.; Colbert, E. J. M.; Mundell, C. G.; Wrobel, J. M.; Norris, R. P.; Falcke, H.; Krichbaum, T.

    Seyfert galaxies come in two main types (types 1 and 2) and the difference is probably due to obscuration of the nucleus by a torus of dense molecular material. The inner edge of the torus is expected to be ionized by optical and ultraviolet emission from the active nucleus, and will radiate direct thermal emission (e.g. NGC 1068) and will cause free-free absorption of nuclear radio components viewed through the torus (e.g. Mrk 231, Mrk 348, NGC 2639). However, the nuclear radio sources in Seyfert galaxies are weak compared to radio galaxies and quasars, demanding high sensitivity to study these effects. We have been making sensitive phase referenced VLBI observations at wavelengths between 21 and 2 cm where the free-free turnover is expected, looking for parsec-scale absorption and emission. We find that free-free absorption is common (e.g. in Mrk 348, Mrk 231, NGC 2639, NGC 1068) although compact jets are still visible, and the inferred density of the absorber agrees with the absorption columns inferred from X-ray spectra (Mrk 231, Mrk 348, NGC 2639). We find one-sided parsec-scale jets in Mrk 348 and Mrk 231, and we measure low jet speeds (typically £ 0.1 c). The one-sidedness probably is not due to Doppler boosting, but rather is probably free-free absorption. Plasma density required to produce the absorption is Ne 3 2 105 cm-3 assuming a path length of 0.1 pc, typical of that expected at the inner edge of the obscuring torus.

  19. NICMOS POLARIMETRY OF 'POLAR-SCATTERED' SEYFERT 1 GALAXIES

    International Nuclear Information System (INIS)

    Batcheldor, D.; Robinson, A.; Axon, D. J.; Young, S.; Quinn, S.; Smith, J. E.; Hough, J.; Alexander, D. M.

    2011-01-01

    The nuclei of Seyfert 1 galaxies exhibit a range of optical polarization characteristics that can be understood in terms of two scattering regions producing orthogonal polarizations: an extended polar scattering region (PSR) and a compact equatorial scattering region (ESR), located within the circum-nuclear torus. Here we present NICMOS 2.0 μm imaging polarimetry of six 'polar-scattered' Seyfert 1 (S1) galaxies, in which the PSR dominates the optical polarization. The unresolved nucleus ( 2μm ) is consistent with the average for the optical spectrum(θ v ), implying that the nuclear polarization is dominated by polar scattering at both wavelengths. The same is probably true for NGC 3227. In both NGC 4593 and Mrk 766, there is a large difference between θ 2μm and θ v off-nucleus, where polar scattering is expected to dominate. This may be due to contamination by interstellar polarization in NGC 4593, but there is no clear explanation in the case of the strongly polarized Mrk 766. Lastly, in Mrk 1239, a large change (∼60 0 ) in θ 2 μ m between the nucleus and the annulus indicates that the unresolved nucleus and its immediate surroundings have different polarization states at 2 μm, which we attribute to the ESR and PSR, respectively. A further implication is that the source of the scattered 2 μm emission in the unresolved nucleus is the accretion disk, rather than torus hot dust emission.

  20. Multiwavelength Observations of the Dwarf Seyfert 1 Galaxy POX 52

    Science.gov (United States)

    Thornton, Carol E.; Barth, A. J.; Ho, L. C.; Rutledge, R. E.; Greene, J. E.

    2006-12-01

    POX 52 is an unusual narrow-line Seyfert 1 galaxy, having an estimated black hole mass of order 105 solar masses and a dwarf host galaxy with an absolute magnitude of only MV = -17.6, which gives us a unique opportunity to study black hole-bulge relations in the low-mass regime. We present new observations from a multiwavelength campaign to study its active nucleus and host galaxy. The data include observations from the Chandra and XMM-Newton Observatories, the Hubble Space Telescope, and the Very Large Array. Chandra data show a highly variable point source with a 2.0 10.0 keV luminosity of 0.7 * 1042 ergs/s. We will also describe the X-ray spectral shape, the structure of the host galaxy as determined from GALFIT modeling of the HST ACS/HRC images, and the spectral energy distribution of the active nucleus.

  1. Large-Scale Environment Properties of Narrow-Line Seyfert 1 Galaxies at z < 0.4

    Energy Technology Data Exchange (ETDEWEB)

    Järvelä, Emilia [Metsähovi Radio Observatory, Aalto University, Espoo (Finland); Department of Electronics and Nanoengineering, Aalto University, Espoo (Finland); Lähteenmäki, A. [Metsähovi Radio Observatory, Aalto University, Espoo (Finland); Department of Electronics and Nanoengineering, Aalto University, Espoo (Finland); Tartu Observatory, Tõravere (Estonia); Lietzen, H., E-mail: emilia.jarvela@aalto.fi [Tartu Observatory, Tõravere (Estonia)

    2017-11-30

    The large-scale environment is believed to affect the evolution and intrinsic properties of galaxies. It offers a new perspective on narrow-line Seyfert 1 galaxies (NLS1) which have not been extensively studied in this context before. We study a large and diverse sample of 960 NLS1 galaxies using a luminosity-density field constructed using Sloan Digital Sky Survey. We investigate how the large-scale environment is connected to the properties of NLS1 galaxies, especially their radio loudness. Furthermore, we compare the large-scale environment properties of NLS1 galaxies with other active galactic nuclei (AGN) classes, for example, other jetted AGN and broad-line Seyfert 1 (BLS1) galaxies, to shed light on their possible relations. In general NLS1 galaxies reside in less dense large-scale environments than any of our comparison samples, thus supporting their young age. The average luminosity-density and distribution to different luminosity-density regions of NLS1 sources is significantly different compared to BLS1 galaxies. This contradicts the simple orientation-based unification of NLS1 and BLS1 galaxies, and weakens the hypothesis that BLS1 galaxies are the parent population of NLS1 galaxies. The large-scale environment density also has an impact on the intrinsic properties of NLS1 galaxies; the radio loudness increases with the increasing luminosity-density. However, our results suggest that the NLS1 population is indeed heterogeneous, and that a considerable fraction of them are misclassified. We support a suggested description that the traditional classification based on the radio loudness should be replaced with the division to jetted and non-jetted sources.

  2. Time dependent emission line profiles in the radially streaming particle model of Seyfert galaxy nuclei and quasi-stellar objects

    Science.gov (United States)

    Hubbard, R.

    1974-01-01

    The radially-streaming particle model for broad quasar and Seyfert galaxy emission features is modified to include sources of time dependence. The results are suggestive of reported observations of multiple components, variability, and transient features in the wings of Seyfert and quasi-stellar emission lines.

  3. Atomic hydrogen properties of active galactic nuclei host galaxies: H I in 16 nuclei of galaxies (NUGA) sources

    International Nuclear Information System (INIS)

    Haan, Sebastian; Schinnerer, Eva; Mundell, Carole G.; García-Burillo, Santiago; Combes, Francoise

    2008-01-01

    We present a comprehensive spectroscopic imaging survey of the distribution and kinematics of atomic hydrogen (H I) in 16 nearby spiral galaxies hosting low luminosity active galactic nuclei (AGN), observed with high spectral and spatial resolution (resolution: ∼20'', ∼5 km s –1 ) using the NRAO Very Large Array (VLA). The sample contains a range of nuclear types ranging from Seyfert to star-forming nuclei, and was originally selected for the NUclei of GAlaxies project (NUGA)—a spectrally and spatially resolved interferometric survey of gas dynamics in nearby galaxies designed to identify the fueling mechanisms of AGN and the relation to host galaxy evolution. Here we investigate the relationship between the H I properties of these galaxies, their environment, their stellar distribution, and their AGN type. The large-scale H I morphology of each galaxy is classified as ringed, spiral, or centrally concentrated; comparison of the resulting morphological classification with the AGN type reveals that ring structures are significantly more common in low-ionization narrow emission-line regions (LINER) than in Seyfert host galaxies, suggesting a time evolution of the AGN activity together with the redistribution of the neutral gas. Dynamically disturbed H I disks are also more prevalent in LINER host galaxies than in Seyfert host galaxies. While several galaxies are surrounded by companions (some with associated H I emission), there is no correlation between the presence of companions and the AGN type (Seyfert/LINER).

  4. Massive stars in galaxies

    International Nuclear Information System (INIS)

    Humphreys, R.M.

    1987-01-01

    The relationship between the morphologic type of a galaxy and the evolution of its massive stars is explored, reviewing observational results for nearby galaxies. The data are presented in diagrams, and it is found that the massive-star populations of most Sc spiral galaxies and irregular galaxies are similar, while those of Sb spirals such as M 31 and M 81 may be affected by morphology (via differences in the initial mass function or star-formation rate). Consideration is also given to the stability-related upper luminosity limit in the H-R diagram of hypergiant stars (attributed to radiation pressure in hot stars and turbulence in cool stars) and the goals of future observation campaigns. 88 references

  5. Radio and infrared observations of (almost) one hundred non-Seyfert Markarian galaxies

    Science.gov (United States)

    Dressel, Linda L.

    1987-01-01

    The 13 cm flux densities of 96 non-Seyfert Markarian galaxies were measured at Arecibo Observatory. Far infrared flux densities have been published for 78 of these galaxies in the IRAS catalog. The radio, infrared, and optical fluxes of these galaxies and of a magnitude limited sample of normal galaxies were compared to clarify the nature of the radio emission in Markarian galaxies. It was found that Markarian galaxies of a given apparent magnitude and Hubble type generally have radio fluxes several times higher that the fluxes typical of normal galaxies of the same magnitude and type. Remarkably, the ratio of radio flux to far infrared flux is nearly the same for most of these starburst galaxies and for normal spiral disks. However, the compact and peculiar Markarian galaxies consistently have about 60% more radio flux per unit infrared flux than the other Markarian galaxies and the normal spirals. It is not clear whether this difference reflects a difference in the evolution of the starbursts in these galaxies or whether there is excess radio emission of nonstellar origin.

  6. Einstein SSS+MPC observations of Seyfert type galaxies

    Science.gov (United States)

    Holt, S. S.; Turner, T. J.; Mushotzky, R. F.; Weaver, K.

    1989-01-01

    The X-ray spectra of 27 Seyfert galaxies measured with the Solid State Spectrometer (SSS) onboard the Einstein Observatory is investigated. This new investigation features the utilization of simultaneous data from the Monitor Proportional Counter (MPC) and automatic correction for systematic effects in the SSS. The new results are that the best-fit single power law indices agree with those previously reported, but that soft excesses are inferred for at least 20 percent of the measured spectra. The soft excesses are consistent with either an approximately 0.25 keV black body or Fe-L line emission.

  7. An atlas of Calcium triplet spectra of active galaxies

    CERN Document Server

    Garcia-Rissmann, A; Asari, N V; Fernandes, R C; Schmitt, H; González-Delgado, R M; Storchi-Bergmann, T

    2005-01-01

    We present a spectroscopic atlas of active galactic nuclei covering the region around the 8498, 8542, 8662 Calcium triplet (CaT) lines. The sample comprises 78 objects, divided into 43 Seyfert 2s, 26 Seyfert 1s, 3 Starburst and 6 normal galaxies. The spectra pertain to the inner ~300 pc in radius, and thus sample the central kinematics and stellar populations of active galaxies. The data are used to measure stellar velocity dispersions (sigma_star) both with cross-correlation and direct fitting methods. These measurements are found to be in good agreement with each-other and with those in previous studies for objects in common. The CaT equivalent width is also measured. We find average values and sample dispersions of W_CaT of 4.6+/-2.0, 7.0 and 7.7+/-1.0 angstrons for Seyfert 1s, Seyfert 2s and normal galaxies, respectively. We further present an atlas of [SIII]\\lambda 9069 emission line profiles for a subset of 40 galaxies. These data are analyzed in a companion paper which addresses the connection between ...

  8. FAR-INFRARED LINE SPECTRA OF SEYFERT GALAXIES FROM THE HERSCHEL-PACS SPECTROMETER

    International Nuclear Information System (INIS)

    Spinoglio, Luigi; Pereira-Santaella, Miguel; Busquet, Gemma; Dasyra, Kalliopi M.; Calzoletti, Luca; Malkan, Matthew A.; Tommasin, Silvia

    2015-01-01

    We observed the far-IR fine-structure lines of 26 Seyfert galaxies with the Herschel-PACS spectrometer. These observations are complemented with Spitzer Infrared Spectrograph and Herschel SPIRE spectroscopy. We used the ionic lines to determine electron densities in the ionized gas and the [C I] lines, observed with SPIRE, to measure the neutral gas densities, while the [O I] lines measure the gas temperature, at densities below ∼10 4  cm –3 . Using the [O I]145 μm/63 μm and [S III]33/18 μm line ratios, we find an anti-correlation of the temperature with the gas density. Various fine-structure line ratios show density stratifications in these active galaxies. On average, electron densities increase with the ionization potential of the ions. The infrared lines arise partly in the narrow line region, photoionized by the active galactic nucleus (AGN), partly in H II regions photoionized by hot stars, and partly in photo-dissociated regions. We attempt to separate the contributions to the line emission produced in these different regions by comparing our observed emission line ratios to theoretical values. In particular, we tried to separate the contribution of AGNs and star formation by using a combination of Spitzer and Herschel lines, and we found that besides the well-known mid-IR line ratios, the line ratio of [O III]88 μm/[O IV]26 μm can reliably discriminate the two emission regions, while the far-IR line ratio of [C II]157 μm/[O I]63 μm is only able to mildly separate the two regimes. By comparing the observed [C II]157 μm/[N II]205 μm ratio with photoionization models, we also found that most of the [C II] emission in the galaxies we examined is due to photodissociation regions

  9. FAR-INFRARED LINE SPECTRA OF SEYFERT GALAXIES FROM THE HERSCHEL-PACS SPECTROMETER

    Energy Technology Data Exchange (ETDEWEB)

    Spinoglio, Luigi; Pereira-Santaella, Miguel; Busquet, Gemma [Istituto di Astrofisica e Planetologia Spaziali, INAF, Via Fosso del Cavaliere 100, I-00133 Roma (Italy); Dasyra, Kalliopi M. [Observatoire de Paris, LERMA (CNRS:UMR8112), 61 Av. de l' Observatoire, F-75014, Paris (France); Calzoletti, Luca [Agenzia Spaziale Italiana (ASI) Science Data Center, I-00044 Frascati (Roma) (Italy); Malkan, Matthew A. [Astronomy Division, University of California, Los Angeles, CA 90095-1547 (United States); Tommasin, Silvia, E-mail: luigi.spinoglio@iaps.inaf.it [Weizmann Institute of Science, Department of Neurobiology, Rehovot 76100 (Israel)

    2015-01-20

    We observed the far-IR fine-structure lines of 26 Seyfert galaxies with the Herschel-PACS spectrometer. These observations are complemented with Spitzer Infrared Spectrograph and Herschel SPIRE spectroscopy. We used the ionic lines to determine electron densities in the ionized gas and the [C I] lines, observed with SPIRE, to measure the neutral gas densities, while the [O I] lines measure the gas temperature, at densities below ∼10{sup 4} cm{sup –3}. Using the [O I]145 μm/63 μm and [S III]33/18 μm line ratios, we find an anti-correlation of the temperature with the gas density. Various fine-structure line ratios show density stratifications in these active galaxies. On average, electron densities increase with the ionization potential of the ions. The infrared lines arise partly in the narrow line region, photoionized by the active galactic nucleus (AGN), partly in H II regions photoionized by hot stars, and partly in photo-dissociated regions. We attempt to separate the contributions to the line emission produced in these different regions by comparing our observed emission line ratios to theoretical values. In particular, we tried to separate the contribution of AGNs and star formation by using a combination of Spitzer and Herschel lines, and we found that besides the well-known mid-IR line ratios, the line ratio of [O III]88 μm/[O IV]26 μm can reliably discriminate the two emission regions, while the far-IR line ratio of [C II]157 μm/[O I]63 μm is only able to mildly separate the two regimes. By comparing the observed [C II]157 μm/[N II]205 μm ratio with photoionization models, we also found that most of the [C II] emission in the galaxies we examined is due to photodissociation regions.

  10. REVERBERATION MAPPING RESULTS FOR FIVE SEYFERT 1 GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Grier, C. J.; Peterson, B. M.; Pogge, R. W.; Martini, Paul; Zu, Y.; Kochanek, C. S.; Shappee, B.; Stanek, K. Z.; Salvo, C. Araya; Beatty, T. G.; Bird, J. C. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Denney, K. D. [Marie Curie Fellow at the Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Bentz, M. C. [Department of Physics and Astronomy, Georgia State University, Astronomy Offices, One Park Place South SE, Suite 700, Atlanta, GA 30303 (United States); Sergeev, S. G.; Borman, G. A. [Crimean Astrophysical Observatory, P/O Nauchny Crimea 98409 (Ukraine); Kaspi, S. [School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Minezaki, T. [Institute of Astronomy, School of Science, University of Tokyo, 2-21-1, Osawa, Mitaka, 181-0015, Tokyo (Japan); Siverd, R. [Department of Physics and Astronomy, Vanderbilt University, 5301 Stevenson Center, Nashville, TN 37235 (United States); Bord, D. J. [Department of Natural Sciences, The University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, MI 48128 (United States); Che, X. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 41809 (United States); and others

    2012-08-10

    We present the results from a detailed analysis of photometric and spectrophotometric data on five Seyfert 1 galaxies observed as a part of a recent reverberation mapping program. The data were collected at several observatories over a 140 day span beginning in 2010 August and ending in 2011 January. We obtained high sampling-rate light curves for Mrk 335, Mrk 1501, 3C 120, Mrk 6, and PG 2130+099, from which we have measured the time lag between variations in the 5100 A continuum and the H{beta} broad emission line. We then used these measurements to calculate the mass of the supermassive black hole at the center of each of these galaxies. Our new measurements substantially improve previous measurements of M{sub BH} and the size of the broad line-emitting region for four sources and add a measurement for one new object. Our new measurements are consistent with photoionization physics regulating the location of the broad line region in active galactic nuclei.

  11. REVERBERATION MAPPING RESULTS FOR FIVE SEYFERT 1 GALAXIES

    International Nuclear Information System (INIS)

    Grier, C. J.; Peterson, B. M.; Pogge, R. W.; Martini, Paul; Zu, Y.; Kochanek, C. S.; Shappee, B.; Stanek, K. Z.; Salvo, C. Araya; Beatty, T. G.; Bird, J. C.; Denney, K. D.; Bentz, M. C.; Sergeev, S. G.; Borman, G. A.; Kaspi, S.; Minezaki, T.; Siverd, R.; Bord, D. J.; Che, X.

    2012-01-01

    We present the results from a detailed analysis of photometric and spectrophotometric data on five Seyfert 1 galaxies observed as a part of a recent reverberation mapping program. The data were collected at several observatories over a 140 day span beginning in 2010 August and ending in 2011 January. We obtained high sampling-rate light curves for Mrk 335, Mrk 1501, 3C 120, Mrk 6, and PG 2130+099, from which we have measured the time lag between variations in the 5100 Å continuum and the Hβ broad emission line. We then used these measurements to calculate the mass of the supermassive black hole at the center of each of these galaxies. Our new measurements substantially improve previous measurements of M BH and the size of the broad line-emitting region for four sources and add a measurement for one new object. Our new measurements are consistent with photoionization physics regulating the location of the broad line region in active galactic nuclei.

  12. Serendipitous discovery of warm absorbers in the Seyfert 2 galaxy IRAS 18325-5926

    International Nuclear Information System (INIS)

    Zhang Shuinai; Gu Qiusheng; Peng Zhixin; Ji Li

    2011-01-01

    Warm absorption is a common phenomenon in Seyfert 1s and quasars, but is rare in Seyfert 2s. We report the detection of warm absorbers with high energy resolution in the Seyfert 2 galaxy IRAS 18325-5926 for the first time with Chandra HETGS spectra. An intrinsic absorbing line system with an outflow velocity ∼ 400 km s -1 was found, which is contributed by two warm absorbers with FWHM of 570 km s -1 and 1360 km s -1 , respectively. The two absorbers were adjacent, and moving transversely across our line of sight. We constrained the distance between the center and the absorbers to be a small value, suggesting that the absorbers may originate from the highly ionized accretion disk wind ejected five years ago. The perspective of this type 2 Seyfert provides the best situation in which to investigate the vertical part of the funnel-like outflows. Another weak absorbing line system with zero redshift was also detected, which could be due to Galactic absorption with very high temperature or an intrinsic outflow with a very high velocity ∼ 6000 km s -1 . (research papers)

  13. Star Formation in Irregular Galaxies.

    Science.gov (United States)

    Hunter, Deidre; Wolff, Sidney

    1985-01-01

    Examines mechanisms of how stars are formed in irregular galaxies. Formation in giant irregular galaxies, formation in dwarf irregular galaxies, and comparisons with larger star-forming regions found in spiral galaxies are considered separately. (JN)

  14. An optical and near-infrared polarization survey of Seyfert and broad-line radio galaxies. Pt. 2

    International Nuclear Information System (INIS)

    Brindle, C.; Hough, J.H.; Bailey, J.A.; Axon, D.J.; Ward, M.J.; McLean, I.S.

    1990-01-01

    We discuss the wavelength dependence (0.44-2.2 μm) of polarization of the sample of 71 Seyfert and three broad-line radio galaxies presented in a previous paper. For four galaxies, 3A 0557-383, Fairall 51, IC 4392A and NGC 3783, we also present spectropolarimetry covering the wavelength range of 0.4-0.6 μm. (author)

  15. Hidden Broad-line Regions in Seyfert 2 Galaxies: From the Spectropolarimetric Perspective

    International Nuclear Information System (INIS)

    Du, Pu; Wang, Jian-Min; Zhang, Zhi-Xiang

    2017-01-01

    The hidden broad-line regions (BLRs) in Seyfert 2 galaxies, which display broad emission lines (BELs) in their polarized spectra, are a key piece of evidence in support of the unified model for active galactic nuclei (AGNs). However, the detailed kinematics and geometry of hidden BLRs are still not fully understood. The virial factor obtained from reverberation mapping of type 1 AGNs may be a useful diagnostic of the nature of hidden BLRs in type 2 objects. In order to understand the hidden BLRs, we compile six type 2 objects from the literature with polarized BELs and dynamical measurements of black hole masses. All of them contain pseudobulges. We estimate their virial factors, and find the average value is 0.60 and the standard deviation is 0.69, which agree well with the value of type 1 AGNs with pseudobulges. This study demonstrates that (1) the geometry and kinematics of BLR are similar in type 1 and type 2 AGNs of the same bulge type (pseudobulges), and (2) the small values of virial factors in Seyfert 2 galaxies suggest that, similar to type 1 AGNs, BLRs tend to be very thick disks in type 2 objects.

  16. Star Formation in low mass galaxies

    Science.gov (United States)

    Mehta, Vihang

    2018-01-01

    Our current hierarchical view of the universe asserts that the large galaxies we see today grew via mergers of numerous smaller galaxies. As evidenced by recent literature, the collective impact of these low mass galaxies on the universe is more substantial than previously thought. Studying the growth and evolution of these low mass galaxies is critical to our understanding of the universe as a whole. Star formation is one of the most important ongoing processes in galaxies. Forming stars is fundamental to the growth of a galaxy. One of the main goals of my thesis is to analyze the star formation in these low mass galaxies at different redshifts.Using the Hubble UltraViolet Ultra Deep Field (UVUDF), I investigate the star formation in galaxies at the peak of the cosmic star formation history using the ultraviolet (UV) light as a star formation indicator. Particularly, I measure the UV luminosity function (LF) to probe the volume-averaged star formation properties of galaxies at these redshifts. The depth of the UVUDF is ideal for a direct measurement of the faint end slope of the UV LF. This redshift range also provides a unique opportunity to directly compare UV to the "gold standard" of star formation indicators, namely the Hα nebular emission line. A joint analysis of the UV and Hα LFs suggests that, on average, the star formation histories in low mass galaxies (~109 M⊙) are more bursty compared to their higher mass counterparts at these redshifts.Complementary to the analysis of the average star formation properties of the bulk galaxy population, I investigate the details of star formation in some very bursty galaxies at lower redshifts selected from Spitzer Large Area Survey with Hyper-Suprime Cam (SPLASH). Using a broadband color-excess selection technique, I identify a sample of low redshift galaxies with bright nebular emission lines in the Subaru-XMM Deep Field (SXDF) from the SPLASH-SXDF catalog. These galaxies are highly star forming and have

  17. Radio Jets Clearing the Way Through a Galaxy: Watching Feedback in Action in the Seyfert Galaxy IC 5063

    Science.gov (United States)

    Morganti, R.; Oosterloo, T. A.; Oonk, J. B. R.; Frieswijk, W.; Tadhunter, C. N.

    2015-12-01

    High-resolution (0.5 arcsec) CO(2-1) observations performed with the Atacama Large Millimetre/submillimetre Array have been used to trace the kinematics of the molecular gas in the Seyfert 2 galaxy{IC 5063}. Although one of the most radio-loud Seyfert galaxy, IC 5063 is a relatively weak radio source (P1.4GHz=3 ×1023 W Hz-1). The data reveal that the kinematics of the gas is very complex. A fast outflow of molecular gas extends along the entire radio jet (˜ 1 kpc), with the highest outflow velocities about 0.5 kpc from the nucleus, at the location of the brighter hot-spot in the W lobe. All the observed characteristics can be described by a scenario of a radio plasma jet expanding into a clumpy medium, interacting directly with the clouds and inflating a cocoon that drives a lateral outflow into the interstellar medium. This suggests that most of the observed cold molecular outflow is due to fast cooling of the gas after the passage of a shock and that it is the end product of the cooling process.

  18. THE MOLECULAR WIND IN THE NEAREST SEYFERT GALAXY CIRCINUS REVEALED BY ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Zschaechner, Laura K.; Walter, Fabian; Farina, Emanuele P.; Kruijssen, J. M. Diederik [Max Planck Institute für Astronomie—Königstuhl 17, D-69117 Heidelberg (Germany); Bolatto, Alberto; Veilleux, Sylvain [Department of Astronomy and Joint Space Science Institute, University of Maryland, College Park, MD 20642 (United States); Leroy, Adam [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Meier, David S. [Department of Physics, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801 (United States); Ott, Jürgen, E-mail: zschaechner@mpia.de [National Radio Astronomy Observatory—P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801 (United States)

    2016-12-01

    We present ALMA observations of the inner 1′ (1.2 kpc) of the Circinus galaxy, the nearest Seyfert. We target CO (1–0) in the region associated with a well-known multiphase outflow driven by the central active galactic nucleus (AGN). While the geometry of Circinus and its outflow make disentangling the latter difficult, we see indications of outflowing molecular gas at velocities consistent with the ionized outflow. We constrain the mass of the outflowing molecular gas to be 1.5 × 10{sup 5}−5.1 × 10{sup 6} M {sub ⊙}, yielding a molecular outflow rate of 0.35–12.3 M {sub ⊙} yr{sup −1}. The values within this range are comparable to the star formation (SF) rate in Circinus, indicating that the outflow indeed regulates SF to some degree. The molecular outflow in Circinus is considerably lower in mass and energetics than previously studied AGN-driven outflows, especially given its high ratio of AGN luminosity to bolometric luminosity. The molecular outflow in Circinus is, however, consistent with some trends put forth by Cicone et al., including a linear relation between kinetic power and AGN luminosity, as well as its momentum rate versus bolometric luminosity (although the latter places Circinus among the starburst galaxies in that sample). We detect additional molecular species including CN and C{sup 17}O.

  19. LLAMA: normal star formation efficiencies of molecular gas in the centres of luminous Seyfert galaxies

    Science.gov (United States)

    Rosario, D. J.; Burtscher, L.; Davies, R. I.; Koss, M.; Ricci, C.; Lutz, D.; Riffel, R.; Alexander, D. M.; Genzel, R.; Hicks, E. H.; Lin, M.-Y.; Maciejewski, W.; Müller-Sánchez, F.; Orban de Xivry, G.; Riffel, R. A.; Schartmann, M.; Schawinski, K.; Schnorr-Müller, A.; Saintonge, A.; Shimizu, T.; Sternberg, A.; Storchi-Bergmann, T.; Sturm, E.; Tacconi, L.; Treister, E.; Veilleux, S.

    2018-02-01

    Using new Atacama Pathfinder Experiment and James Clerk Maxwell Telescope spectroscopy of the CO 2→1 line, we undertake a controlled study of cold molecular gas in moderately luminous (Lbol = 1043-44.5 erg s-1) active galactic nuclei (AGN) and inactive galaxies from the Luminous Local AGN with Matched Analogs (LLAMA) survey. We use spatially resolved infrared photometry of the LLAMA galaxies from 2MASS, the Wide-field Infrared Survey Explorer the Infrared Astronomical Satellite and the Herschel Space Observatory (Herschel), corrected for nuclear emission using multicomponent spectral energy distribution fits, to examine the dust-reprocessed star formation rates, molecular gas fractions and star formation efficiencies (SFEs) over their central 1-3 kpc. We find that the gas fractions and central SFEs of both active and inactive galaxies are similar when controlling for host stellar mass and morphology (Hubble type). The equivalent central molecular gas depletion times are consistent with the discs of normal spiral galaxies in the local Universe. Despite energetic arguments that the AGN in LLAMA should be capable of disrupting the observable cold molecular gas in their central environments, our results indicate that nuclear radiation only couples weakly with this phase. We find a mild preference for obscured AGN to contain higher amounts of central molecular gas, which suggests connection between AGN obscuration and the gaseous environment of the nucleus. Systems with depressed SFEs are not found among the LLAMA AGN. We speculate that the processes that sustain the collapse of molecular gas into dense pre-stellar cores may also be a prerequisite for the inflow of material on to AGN accretion discs.

  20. X-Ray Variability Characteristics of the Seyfert 1 Galaxy NGC 3783

    Science.gov (United States)

    Markowitz, A.

    2005-12-01

    We have characterized the energy-dependent X-ray variability properties of the Seyfert 1 galaxy NGC 3783 using archival XMM-Newton and Rossi X-Ray Timing Explorer data. The high-frequency fluctuation power spectral density function (PSD) slope is consistent with flattening toward higher energies. Light-curve cross-correlation functions yield no significant lags, but peak coefficients generally decrease as energy separation of the bands increases on both short and long timescales. We have measured the coherence between various X-ray bands over the temporal frequency range of 6×10-8-1×10-4 Hz; this range includes the temporal frequency of the low-frequency PSD break tentatively detected by Markowitz et al. and includes the lowest temporal frequency over which coherence has been measured in any active galactic nucleus to date. Coherence is generally near unity at these temporal frequencies, although it decreases slightly as energy separation of the bands increases. Temporal frequency-dependent phase lags are detected on short timescales; phase lags are consistent with increasing as energy separation increases or as temporal frequency decreases. All of these results are similar to those obtained previously for several Seyfert galaxies and stellar mass black hole systems. Qualitatively, these results are consistent with the variability models of Kotov et al. and Lyubarskii, wherein the X-ray variability is due to inwardly propagating variations in the local mass accretion rate.

  1. X-Ray Spectral Properties of Seven Heavily Obscured Seyfert 2 Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Marchesi, S.; Ajello, M. [Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States); Comastri, A. [INAF—Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Cusumano, G.; Parola, V. La; Segreto, A., E-mail: smarche@clemson.edu [INAF—Istituto di Astrofisica Spaziale e Fisica Cosmica, Via U. La Malfa 153, I-90146 Palermo (Italy)

    2017-02-10

    We present the combined Chandra and Swift -BAT spectral analysis of seven Seyfert 2 galaxies selected from the Swift -BAT 100 month catalog. We selected nearby ( z ≤ 0.03) sources lacking a ROSAT counterpart that never previously been observed with Chandra in the 0.3–10 keV energy range, and targeted these objects with 10 ks Chandra ACIS-S observations. The X-ray spectral fitting over the 0.3–150 keV energy range allows us to determine that all the objects are significantly obscured, with N{sub H} ≥ 10{sup 23} cm{sup −2} at a >99% confidence level. Moreover, one to three sources are candidate Compton-thick Active Galactic Nuclei (CT-AGNs; i.e., N{sub H}≥10{sup 24} cm{sup −2}). We also test the recent spectral curvature method developed by Koss et al. to find candidate CT-AGNs, finding a good agreement between our results and their predictions. Because the selection criteria we adopted were effective in detecting highly obscured AGNs, further observations of these and other Seyfert 2 galaxies selected from the Swift -BAT 100 month catalog will allow us to create a statistically significant sample of highly obscured AGNs, therefore providing a better understanding of the physics of the obscuration processes.

  2. JET PROPERTIES OF GeV-SELECTED RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXIES AND POSSIBLE CONNECTION TO THEIR DISK AND CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiao-Na; Lin, Da-Bin; Liang, En-Wei [Department of Physics and GXU-NAOC Center for Astrophysics and Space Sciences, Guangxi University, Nanning 530004 (China); Zhang, Jin [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Xue, Zi-Wei; Zhang, Shuang-Nan, E-mail: zhang.jin@hotmail.com [Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650011 (China)

    2015-01-01

    The observed spectral energy distributions of five GeV-selected narrow-line Seyfert 1 (NLS1) galaxies are fitted with a model including the radiation ingredients from the relativistic jet, the accretion disk, and the corona. We compare the properties of these GeV NLS1 galaxies with flat spectrum radio quasars (FSRQs), BL Lacertae objects (BL Lacs), and radio-quiet (RQ) Seyfert galaxies, and explore possible hints for jet-disk/corona connection. Our results show that the radiation physics and the jet properties of the GeV NLS1 galaxies resemble that of FSRQs. The luminosity variations of PMN J0948+0022 and 1H 0323+342 at the GeV band is tightly correlated with the beaming factor (δ), similar to that observed in FSRQ 3C 279. The accretion disk luminosities and the jet powers of the GeV NLS1 galaxies cover both the ranges of FSRQs and BL Lacs. With the detection of bright corona emission in 1H 0323+342, we show that the ratio of the corona luminosity (L {sub corona}) to the accretion disk luminosity (L {sub d}) is marginally within the high end of this ratio distribution for an RQ Seyfert galaxy sample, and the variation of jet luminosity may connect with L {sub corona}. However, it is still unclear whether a system with a high L {sub corona}/L {sub d} ratio prefers to power a jet.

  3. Infrared observations of Seyfert galaxies and quasars

    International Nuclear Information System (INIS)

    Neugebauer, G.

    1978-01-01

    The infrared energy distributions of the Seyfert galaxies apparently contain three components: a galactic stellar component, a thermal component from heated dust, plus a nonthermal component. The appearance of the infrared energy distribution depends on which component dominates. There is also a correlation observed between the infrared energy distribution and the Khachikian Weedman class. Preliminary data on bright quasars are given. The infrared energy distributions generally increase into the infrared with a power law slope of approximately 1. In detail they differ from power laws with a significant fraction emitting most of their energy near 3μm. No differences in radio loud and radio quiet are obvious from the infrared energy distributions. The variability of the quasars in the infrared is generally correlated with the variability in the visible, although significant exceptions have been observed. (Auth.)

  4. Hidden Broad Line Seyfert 2 Galaxies in the CfA and 12micron Samples

    OpenAIRE

    Tran, Hien D.

    2001-01-01

    We report the results of a spectropolarimetric survey of the CfA and 12micron samples of Seyfert 2 galaxies (S2s). Polarized (hidden) broad line regions (HBLRs) are confirmed in a number of galaxies, and several new cases (F02581-1136, MCG -3-58-7, NGC 5995, NGC 6552, NGC 7682) are reported. The 12micron S2 sample shows a significantly higher incidence of HBLR (50%) than its CfA counterpart (30%), suggesting that the latter may be incomplete in hidden AGNs. Compared to the non-HBLR S2s, the H...

  5. Formation of stars and star clusters in colliding galaxies

    International Nuclear Information System (INIS)

    Belles, Pierre-Emmanuel

    2012-01-01

    Mergers are known to be essential in the formation of large-scale structures and to have a significant role in the history of galaxy formation and evolution. Besides a morphological transformation, mergers induce important bursts of star formation. These starburst are characterised by high Star Formation Efficiencies (SFEs) and Specific Star Formation Rates, i.e., high Star Formation Rates (SFR) per unit of gas mass and high SFR per unit of stellar mass, respectively, compared to spiral galaxies. At all redshifts, starburst galaxies are outliers of the sequence of star-forming galaxies defined by spiral galaxies. We have investigated the origin of the starburst-mode of star formation, in three local interacting systems: Arp 245, Arp 105 and NGC 7252. We combined high-resolution JVLA observations of the 21-cm line, tracing the HI diffuse gas, with UV GALEX observations, tracing the young star-forming regions. We probe the local physical conditions of the Inter-Stellar Medium (ISM) for independent star-forming regions and explore the atomic-to-dense gas transformation in different environments. The SFR/HI ratio is found to be much higher in central regions, compared to outer regions, showing a higher dense gas fraction (or lower HI gas fraction) in these regions. In the outer regions of the systems, i.e., the tidal tails, where the gas phase is mostly atomic, we find SFR/HI ratios higher than in standard HI-dominated environments, i.e., outer discs of spiral galaxies and dwarf galaxies. Thus, our analysis reveals that the outer regions of mergers are characterised by high SFEs, compared to the standard mode of star formation. The observation of high dense gas fractions in interacting systems is consistent with the predictions of numerical simulations; it results from the increase of the gas turbulence during a merger. The merger is likely to affect the star-forming properties of the system at all spatial scales, from large scales, with a globally enhanced turbulence

  6. Narrow-Line Seyfert 1 Galaxies

    OpenAIRE

    Komossa, S.

    2007-01-01

    Presento una revisión breve de las propiedades conocidas de las galaxias Seyfert 1 con líneas angostas (NLS1) en todo el espectro electromagnético y de los modelos propuestos para explicarlas. Sus propiedades de continuo y de emisión de líneas manifiestan una forma extrema de la actividad Seyfert. Las galaxias NLS1 en sí pueden ofrecer pistas importantes para discernir los parámetros que impulsan la actividad nuclear. Sus tasas de acreción altas y cercanas a la tasa de Eddington proveen...

  7. Star-forming galaxy models: Blending star formation into TREESPH

    Science.gov (United States)

    Mihos, J. Christopher; Hernquist, Lars

    1994-01-01

    We have incorporated star-formation algorithms into a hybrid N-body/smoothed particle hydrodynamics code (TREESPH) in order to describe the star forming properties of disk galaxies over timescales of a few billion years. The models employ a Schmidt law of index n approximately 1.5 to calculate star-formation rates, and explicitly include the energy and metallicity feedback into the Interstellar Medium (ISM). Modeling the newly formed stellar population is achieved through the use of hybrid SPH/young star particles which gradually convert from gaseous to collisionless particles, avoiding the computational difficulties involved in creating new particles. The models are shown to reproduce well the star-forming properties of disk galaxies, such as the morphology, rate of star formation, and evolution of the global star-formation rate and disk gas content. As an example of the technique, we model an encounter between a disk galaxy and a small companion which gives rise to a ring galaxy reminiscent of the Cartwheel (AM 0035-35). The primary galaxy in this encounter experiences two phases of star forming activity: an initial period during the expansion of the ring, and a delayed phase as shocked material in the ring falls back into the central regions.

  8. Distribution and Kinematics of Ionized Gas in the central 500pc of Seyfert Galaxies

    Science.gov (United States)

    Hyland, Ella; Hicks, Erin K. S.; Kade, Kiana

    2018-06-01

    We have characterized the spatial distribution and kinematics of the ionized hydrogen gas in a sample of 40 Seyfert galaxies as part of the KONA (Keck OSIRIS Nearby AGN) survey. An analysis of the narrow Brackett Gamma emission (2.16 microns) in the central 500 pc of these local AGN will be presented. Measurements include the azimuthal averages of the flux distribution, velocity dispersion, and emission line equivalent width. In addition, the excitation of the Brackett Gamma emission is considered using the ratio of its flux with that of molecular hydrogen (2.12 microns) as a diagnostic. A comparison of the circumnuclear narrow Brackett Gamma emission characteristics in the Seyfert type 1 and type 2 subsamples will also be presented.

  9. CORRELATION ANALYSIS OF A LARGE SAMPLE OF NARROW-LINE SEYFERT 1 GALAXIES: LINKING CENTRAL ENGINE AND HOST PROPERTIES

    International Nuclear Information System (INIS)

    Xu Dawei; Komossa, S.; Wang Jing; Yuan Weimin; Zhou Hongyan; Lu Honglin; Li Cheng; Grupe, Dirk

    2012-01-01

    We present a statistical study of a large, homogeneously analyzed sample of narrow-line Seyfert 1 (NLS1) galaxies, accompanied by a comparison sample of broad-line Seyfert 1 (BLS1) galaxies. Optical emission-line and continuum properties are subjected to correlation analyses, in order to identify the main drivers of the correlation space of active galactic nuclei (AGNs), and of NLS1 galaxies in particular. For the first time, we have established the density of the narrow-line region as a key parameter in Eigenvector 1 space, as important as the Eddington ratio L/L Edd . This is important because it links the properties of the central engine with the properties of the host galaxy, i.e., the interstellar medium (ISM). We also confirm previously found correlations involving the line width of Hβ and the strength of the Fe II and [O III] λ5007 emission lines, and we confirm the important role played by L/L Edd in driving the properties of NLS1 galaxies. A spatial correlation analysis shows that large-scale environments of the BLS1 and NLS1 galaxies of our sample are similar. If mergers are rare in our sample, accretion-driven winds, on the one hand, or bar-driven inflows, on the other hand, may account for the strong dependence of Eigenvector 1 on ISM density.

  10. Are star formation rates of galaxies bimodal?

    Science.gov (United States)

    Feldmann, Robert

    2017-09-01

    Star formation rate (SFR) distributions of galaxies are often assumed to be bimodal with modes corresponding to star-forming and quiescent galaxies, respectively. Both classes of galaxies are typically studied separately, and SFR distributions of star-forming galaxies are commonly modelled as lognormals. Using both observational data and results from numerical simulations, I argue that this division into star-forming and quiescent galaxies is unnecessary from a theoretical point of view and that the SFR distributions of the whole population can be well fitted by zero-inflated negative binomial distributions. This family of distributions has three parameters that determine the average SFR of the galaxies in the sample, the scatter relative to the star-forming sequence and the fraction of galaxies with zero SFRs, respectively. The proposed distributions naturally account for (I) the discrete nature of star formation, (II) the presence of 'dead' galaxies with zero SFRs and (III) asymmetric scatter. Excluding 'dead' galaxies, the distribution of log SFR is unimodal with a peak at the star-forming sequence and an extended tail towards low SFRs. However, uncertainties and biases in the SFR measurements can create the appearance of a bimodal distribution.

  11. Modeling time delays in the X-ray spectrum of the Seyfert galaxy MCG-6-30-15

    Czech Academy of Sciences Publication Activity Database

    Goosmann, René; Czerny, B.; Karas, Vladimír; Ponti, G.

    2007-01-01

    Roč. 466, č. 3 (2007), s. 865-873 ISSN 0004-6361 R&D Projects: GA MŠk(CZ) LC06014; GA AV ČR IAA300030510 Grant - others:GAUK(CZ) GAUK 299/2004; EU(XE) ESA-PECS project No. 98040 Institutional research plan: CEZ:AV0Z10030501 Source of funding: V - iné verejné zdroje Keywords : accretion disks * galaxie s: Seyfert * active galaxie s * radiative transfer Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.259, year: 2007

  12. Star formation histories of irregular galaxies

    International Nuclear Information System (INIS)

    Gallagher, J.S. III; Hunter, D.A.; Tutukov, A.V.

    1984-01-01

    We explore the star formation histories of a selection of irregular and spiral galaxies by using three parameters that sample the star formation rate (SFR) at different epochs: (1) the mass of a galaxy in the form of stars measures the SFR integrated over a galaxy's lifetime; (2) the blue luminosity is dominated primarily by stars formed over the past few billion years; and (3) Lyman continuum photon fluxes derived from Hα luminosities give the current ( 8 yr) SFR

  13. The ionizing radiation of Seyfert 2 galactic nuclei

    Science.gov (United States)

    Ho, Luis C.; Shields, Joseph C.; Filippenko, Alexei V.

    1993-01-01

    We report the discovery of a nonrandom trend in the dispersion of emission-line intensity ratios for Seyfert 2 galaxies. The sense of this pattern suggests the influence of a single physical parameter, the hardness of the ionizing continuum, which controls the heating energy per ionizing photon. We compare the observed line ratios with new photoionization calculations and find that the observed distributions can be reproduced if the ionizing continuum is parametrized by a power law. Our results also suggest an inverse correlation between luminosity and continuum hardness for Seyfert 2 nuclei; if true, this trend extends a similar pattern known in quasars and Seyfert 1 galaxies to active galactic nuclei of lower luminosity. Samples of Seyfert 2 nuclei with improved selection uniformity are desirable for elaboration of these findings.

  14. Star Formation in Merging Galaxies Using FIRE

    Science.gov (United States)

    Perez, Adrianna; Hung, Chao-Ling; Naiman, Jill; Moreno, Jorge; Hopkins, Philip

    2018-01-01

    Galaxy interactions and mergers are efficient mechanisms to birth stars at rates that are significantly higher than found in our Milky Way galaxy. The Kennicut-Schmidt (KS) relation is an empirical relationship between the star-forming rate and gas surface densities of galaxies (Schmidt 1959; Kennicutt 1998). Although most galaxies follow the KS relation, the high levels of star formation in galaxy mergers places them outside of this otherwise tight relationship. The goal of this research is to analyze the gas content and star formation of simulated merging galaxies. Our work utilizes the Feedback In Realistic Environments (FIRE) model (Hopkins et al., 2014). The FIRE project is a high-resolution cosmological simulation that resolves star-forming regions and incorporates stellar feedback in a physically realistic way. In this work, we have noticed a significant increase in the star formation rate at first and second passage, when the two black holes of each galaxy approach one other. Next, we will analyze spatially resolved star-forming regions over the course of the interacting system. Then, we can study when and how the rates that gas converts into stars deviate from the standard KS. These analyses will provide important insights into the physical mechanisms that regulate star formation of normal and merging galaxies and valuable theoretical predictions that can be used to compare with current and future observations from ALMA or the James Webb Space Telescope.

  15. The extreme flare in III Zw 2: evolution of a radio jet in a Seyfert galaxy

    NARCIS (Netherlands)

    Brunthaler, A.; Falcke, H.D.E.; Bower, G.C.; Aller, M.F.; Aller, H.D.; Teraesranta, H.

    2005-01-01

    A very detailed monitoring of a radio flare in the Seyfert I galaxy III Zw 2 with the VLA and the VLBA is presented. The relative astrometry in the VLBA observations was precise on a level of a few microarcseconds. Spectral and spatial evolution of the source are closely linked and these

  16. The extreme flare in III Zw 2:. Evolution of a radio jet in a Seyfert galaxy

    NARCIS (Netherlands)

    Brunthaler, A.; Falcke, H.D.E.; Bower, G.C.; Aller, M.F.; Aller, H.D.; Teräsranta, H.

    2005-01-01

    A very detailed monitoring of a radio flare in the Seyfert I galaxy III Zw 2 with the VLA and the VLBA is presented. The relative astrometry in the VLBA observations was precise to a few muas. The spectral and spatial evolutions of the source are closely linked, and these observations allowed us to

  17. X-RAY HIGH-RESOLUTION SPECTROSCOPY REVEALS FEEDBACK IN A SEYFERT GALAXY FROM AN ULTRA-FAST WIND WITH COMPLEX IONIZATION AND VELOCITY STRUCTURE

    International Nuclear Information System (INIS)

    Longinotti, A. L.; Krongold, Y.; Guainazzi, M.; Santos-Lleo, M.; Rodriguez-Pascual, P.; Giroletti, M.; Panessa, F.; Costantini, E.

    2015-01-01

    Winds outflowing from active galactic nuclei (AGNs) may carry significant amounts of mass and energy out to their host galaxies. In this paper we report the detection of a sub-relativistic outflow observed in the narrow line Seyfert 1 galaxy IRAS 17020+4544 as a series of absorption lines corresponding to at least five absorption components with an unprecedented wide range of associated column densities and ionization levels and velocities in the range of 23,000–33,000 km s −1 , detected at X-ray high spectral resolution (E/ΔE ∼ 1000) with the ESA's observatory XMM-Newton. The charge states of the material constituting the wind clearly indicate a range of low to moderate ionization states in the outflowing gas and column densities that are significantly lower than observed in highly ionized ultra-fast outflows. We estimate that at least one of the outflow components may carry sufficient energy to substantially suppress star formation and heat the gas in the host galaxy. IRAS 17020+4544 therefore provides an interesting example of feedback by a moderately luminous AGN that is hosted in a spiral galaxy, a case barely envisaged in most evolution models, which often predict that feedback processes take place in massive elliptical galaxies hosting luminous quasars in a post-merger phase

  18. X-RAY HIGH-RESOLUTION SPECTROSCOPY REVEALS FEEDBACK IN A SEYFERT GALAXY FROM AN ULTRA-FAST WIND WITH COMPLEX IONIZATION AND VELOCITY STRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Longinotti, A. L. [Catedrática CONACYT—Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis E. Erro 1, Tonantzintla, Puebla, C.P. 72840, México (Mexico); Krongold, Y. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Apartado Postal 70264, 04510 Mexico D.F. (Mexico); Guainazzi, M.; Santos-Lleo, M.; Rodriguez-Pascual, P. [ESAC, P.O. Box, 78 E-28691 Villanueva de la Cañada, Madrid (Spain); Giroletti, M. [INAF Osservatorio di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy); Panessa, F. [INAF—Istituto di Astrofisica e Planetologia Spaziali di Roma (IAPS), Via del Fosso del Cavaliere 100, I-00133 Roma (Italy); Costantini, E. [SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht (Netherlands)

    2015-11-10

    Winds outflowing from active galactic nuclei (AGNs) may carry significant amounts of mass and energy out to their host galaxies. In this paper we report the detection of a sub-relativistic outflow observed in the narrow line Seyfert 1 galaxy IRAS 17020+4544 as a series of absorption lines corresponding to at least five absorption components with an unprecedented wide range of associated column densities and ionization levels and velocities in the range of 23,000–33,000 km s{sup −1}, detected at X-ray high spectral resolution (E/ΔE ∼ 1000) with the ESA's observatory XMM-Newton. The charge states of the material constituting the wind clearly indicate a range of low to moderate ionization states in the outflowing gas and column densities that are significantly lower than observed in highly ionized ultra-fast outflows. We estimate that at least one of the outflow components may carry sufficient energy to substantially suppress star formation and heat the gas in the host galaxy. IRAS 17020+4544 therefore provides an interesting example of feedback by a moderately luminous AGN that is hosted in a spiral galaxy, a case barely envisaged in most evolution models, which often predict that feedback processes take place in massive elliptical galaxies hosting luminous quasars in a post-merger phase.

  19. Radio jets and gamma-ray emission in radio-silent narrow-line Seyfert 1 galaxies

    Science.gov (United States)

    Lähteenmäki, A.; Järvelä, E.; Ramakrishnan, V.; Tornikoski, M.; Tammi, J.; Vera, R. J. C.; Chamani, W.

    2018-06-01

    We have detected six narrow-line Seyfert 1 (NLS1) galaxies at 37 GHz that were previously classified as radio silent and two that were classified as radio quiet. These detections reveal the presumption that NLS1 galaxies labelled radio quiet or radio silent and hosted by spiral galaxies are unable to launch jets to be incorrect. The detections are a plausible indicator of the presence of a powerful, most likely relativistic jet because this intensity of emission at 37 GHz cannot be explained by, for example, radiation from supernova remnants. Additionally, one of the detected NLS1 galaxies is a newly discovered source of gamma rays and three others are candidates for future detections. 37 GHz data are only available in electronic form at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/L1

  20. Variability of Fe II Emission Features in the Seyfert 1 Galaxy NGC 5548

    DEFF Research Database (Denmark)

    Vestergaard, Marianne; Peterson, B. M.

    2005-01-01

    We study the low-contrast Fe II emission blends in the ultraviolet (1250--2200A) and optical (4000--6000A) spectra of the Seyfert 1 galaxy NGC 5548 and show that these features vary in flux and that these variations are correlated with those of the optical continuum. The amplitude of variability ...... are correlated indicates that line fluorescence in a photoionized plasma, rather than collisional excitation, is responsible for the Fe II emission. The iron emission templates are available upon request....

  1. Orphan Stars Found in Long Galaxy Tail

    Science.gov (United States)

    2007-09-01

    Astronomers have found evidence that stars have been forming in a long tail of gas that extends well outside its parent galaxy. This discovery suggests that such "orphan" stars may be much more prevalent than previously thought. The comet-like tail was observed in X-ray light with NASA's Chandra X-ray Observatory and in optical light with the Southern Astrophysical Research (SOAR) telescope in Chile. The feature extends for more than 200,000 light years and was created as gas was stripped from a galaxy called ESO 137-001 that is plunging toward the center of Abell 3627, a giant cluster of galaxies. "This is one of the longest tails like this we have ever seen," said Ming Sun of Michigan State University, who led the study. "And, it turns out that this is a giant wake of creation, not of destruction." Chandra X-ray Image of ESO 137-001 and Tail in Abell 3627 Chandra X-ray Image of ESO 137-001 and Tail in Abell 3627 The observations indicate that the gas in the tail has formed millions of stars. Because the large amounts of gas and dust needed to form stars are typically found only within galaxies, astronomers have previously thought it unlikely that large numbers of stars would form outside a galaxy. "This isn't the first time that stars have been seen to form between galaxies," said team member Megan Donahue, also of MSU. "But the number of stars forming here is unprecedented." The evidence for star formation in this tail includes 29 regions of ionized hydrogen glowing in optical light, thought to be from newly formed stars. These regions are all downstream of the galaxy, located in or near the tail. Two Chandra X-ray sources are near these regions, another indication of star formation activity. The researchers believe the orphan stars formed within the last 10 million years or so. The stars in the tail of this fast-moving galaxy, which is some 220 million light years away, would be much more isolated than the vast majority of stars in galaxies. H-alpha Image of

  2. The formation of galaxies from pregalactic stars

    International Nuclear Information System (INIS)

    Jones, Janet

    1982-01-01

    A knowledge of how and when the first stars formed is vital for our understanding of the formation and early evolution of galaxies. Evidence is given that the first stars were pregalactic: indeed, that at least two generations of stars had formed before galaxies collapsed. A model is presented describing the effects of pregalactic stars on galaxy evolution. The first generation -primordial stars- were massive and few in number. A brief description is given for the formation of such a star. The second generation included stars of all masses and involved widespread star formation. Gas ejected from these stars on timescales of 6 x 10 7 to 6 x 10 8 years induced a qualitative change into the dynamics of collapsing perturbations, leading to a characteristic mass of galaxies of 10 10 - 10 12 M 0 . Variations in the rate of gas ejection were responsible for different morphological structures - elliptical and spirals. A few comments are made on some other implications of the model

  3. Stacked Star Formation Rate Profiles of Bursty Galaxies Exhibit “Coherent” Star Formation

    Science.gov (United States)

    Orr, Matthew E.; Hayward, Christopher C.; Nelson, Erica J.; Hopkins, Philip F.; Faucher-Giguère, Claude-André; Kereš, Dušan; Chan, T. K.; Schmitz, Denise M.; Miller, Tim B.

    2017-11-01

    In a recent work based on 3200 stacked Hα maps of galaxies at z˜ 1, Nelson et al. find evidence for “coherent star formation”: the stacked star formation rate (SFR) profiles of galaxies above (below) the “star formation main sequence” (MS) are above (below) that of galaxies on the MS at all radii. One might interpret this result as inconsistent with highly bursty star formation and evidence that galaxies evolve smoothly along the MS rather than crossing it many times. We analyze six simulated galaxies at z˜ 1 from the Feedback in Realistic Environments (FIRE) project in a manner analogous to the observations to test whether the above interpretations are correct. The trends in stacked SFR profiles are qualitatively consistent with those observed. However, SFR profiles of individual galaxies are much more complex than the stacked profiles: the former can be flat or even peak at large radii because of the highly clustered nature of star formation in the simulations. Moreover, the SFR profiles of individual galaxies above (below) the MS are not systematically above (below) those of MS galaxies at all radii. We conclude that the time-averaged coherent star formation evident stacks of observed galaxies is consistent with highly bursty, clumpy star formation of individual galaxies and is not evidence that galaxies evolve smoothly along the MS.

  4. Star Formation Histories of Dwarf Irregular Galaxies

    Science.gov (United States)

    Skillman, Evan

    1995-07-01

    We propose to obtain deep WFPC2 `BVI' color-magnitude diagrams {CMDs} for the dwarf irregular {dI} Local Group galaxies GR 8, Leo A, Pegasus, and Sextans A. In addition to resolved stars, we will use star clusters, and especially any globulars, to probe the history of intense star formation. These data will allow us to map the Pop I and Pop II stellar components, and thereby construct the first detailed star formation histories for non-interacting dI galaxies. Our results will bear on a variety of astrophysical problems, including the evolution of small galaxies, distances in the Local Group, age-metallicity distributions in small galaxies, ages of dIs, and the physics of star formation. The four target galaxies are typical dI systems in terms of luminosity, gas content, and H II region abundance, and represent a range in current star forming activity. They are sufficiently near to allow us to reach to stars at M_V = 0, have 0.1 of the luminosity of the SMC and 0.25 of its oxygen abundance. Unlike the SMC, these dIs are not near giant galaxies. This project will allow the extension of our knowledge of stellar populations in star forming galaxies from the spirals in the Local Group down to its smallest members. We plan to take maximum advantage of the unique data which this project will provide. Our investigator team brings extensive and varied experience in studies of dwarf galaxies, stellar populations, imaging photometry, and stellar evolution to this project.

  5. A Multiwavelength Study of POX 52, a Dwarf Seyfert Galaxy with an Intermediate Mass Black Hole

    Science.gov (United States)

    Barth, Aaron

    2004-09-01

    POX 52 is a Seyfert 1 galaxy with unprecedented properties: its host galaxy is a dwarf elliptical, and its stellar velocity dispersion is only 36 km/s. The stellar velocity dispersion and the broad emission-line widths both suggest a black hole mass of order 10^5 solar masses. We request HST ACS/HRC imaging to perform a definitive measurement of the host galaxy structure; STIS UV and optical spectroscopy to study the nonstellar continuum and the structure of the broad-line region; and Chandra ACIS imaging to investigate the spectral and variability properties of the X-ray emission. The results of this program will give a detailed understanding of the host galaxy and accretion properties of one of the very few known black holes in the mass range around 10^5 solar masses.

  6. The host galaxy of the gamma-ray narrow-line Seyfert 1 galaxy 1H 0323+342

    Energy Technology Data Exchange (ETDEWEB)

    León Tavares, J.; Chavushyan, V.; Puerari, I.; Patiño-Alvarez, V.; Carramiñana, A.; Carrasco, L.; Guichard, J.; Olguín-Iglesias, A.; Valdes, J. [Instituto Nacional de Astrofísica Óptica y Electrónica (INAOE), Apartado Postal 51 y 216, 72000 Puebla (Mexico); Kotilainen, J. [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Väisäläntie 20, FI-21500 Piikkiö (Finland); Añorve, C. [Facultad de Ciencias de la Tierra y del Espacio (FACITE) de la Universidad Autónoma de Sinaloa, Blvd. de la Americas y Av. Universitarios S/N, Ciudad Universitaria, C.P. 80010, Culiacán Sinaloa (Mexico); Cruz-González, I. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Ap. 70-264, 04510 DF (Mexico); Antón, S. [Instituto de Astrofísica de Andalucía-CSIC, E-18008 Granada (Spain); Karhunen, K.; Sanghvi, J., E-mail: leon.tavares@inaoep.mx [Tuorla Observatory, Department of Physics and Astronomy, University of Turku, FI-20100 Turku (Finland)

    2014-11-01

    We present optical and near-infrared (NIR) imaging data of the radio-loud, narrow-line Seyfert 1 galaxy 1H 0323+342, which shows intense and variable gamma-ray activity discovered by the Fermi satellite with the Large Area Telescope. Near-infrared and optical images are used to investigate the structural properties of the host galaxy of 1H 0323+342; this together with optical spectroscopy allows us to examine its black hole mass. Based on two-dimensional (2D) multiwavelength surface-brightness modeling, we find that statistically, the best model fit is a combination of a nuclear component and a Sérsic profile (n ∼ 2.8). However, the presence of a disk component (with a small bulge n ∼ 1.2) also remains a possibility and cannot be ruled out with the present data. Although at first glance a spiral-arm-like structure is revealed in our images, a 2D Fourier analysis of the imagery suggests that this structure corresponds to an asymmetric ring, likely associated with a recent violent dynamical interaction. We discuss our results in the context of relativistic jet production and galaxy evolution.

  7. Intra-night optical variability properties of X-ray bright Narrow-line Seyfert 1 galaxies

    Science.gov (United States)

    Ojha, Vineet; Chand, Hum; Gopal-Krishna

    2018-04-01

    We present Intra Night Optical Variability (INOV) study of the 9 Narrow-line Seyfert 1 (NLSy 1) galaxies which are detected in X-ray at more than 3σ level. Our observations cover a total of 9 nights ( 36 hr) with each NLSy 1 monitored for ≥ 3.5 hr in each night. After applying F-test to assess variability status of these sources, we found none of these sources to be variable. Such non-variability nature of X-ray detected NLSy 1 galaxies suggests the lack of jet dominance as far as X-ray emission is concerned. Higher photometric accuracy for these faint sources, achievable with the newly installed ARIES 3.6m DOT will be helpful.

  8. H{sub 2}O Megamasers toward Radio-bright Seyfert 2 Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J. S.; Liu, Z. W. [Center for Astrophysics, Guangzhou University, Guangzhou, 510006 (China); Henkel, C. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Wang, J. Z. [Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Coldwell, G. V., E-mail: jszhang@gzhu.edu.cn [FCEFyN-UNSJ-CONICET, San Juan (Argentina)

    2017-02-20

    Using the Effelsberg-100 m telescope, we perform a successful pilot survey on H{sub 2}O maser emission toward a small sample of radio-bright Seyfert 2 galaxies with a redshift larger than 0.04. The targets were selected from a large Seyfert 2 sample derived from the spectroscopic Sloan Digital Sky Survey Data Release 7 (SDSS-DR7). One source, SDSS J102802.9+104630.4 ( z ∼ 0.0448), was detected four times during our observations, with a typical maser flux density of ∼30 mJy and a corresponding (very large) luminosity of ∼1135 L {sub ⊙}. The successful detection of this radio-bright Seyfert 2 and an additional tentative detection support our previous statistical results that H{sub 2}O megamasers tend to arise from Seyfert 2 galaxies with large radio luminosity. The finding provides further motivation for an upcoming larger H{sub 2}O megamaser survey toward Seyfert 2s with particularly radio-bright nuclei with the basic goal to improve our understanding of the nuclear environment of active megamaser host galaxies.

  9. LUMINOUS BURIED ACTIVE GALACTIC NUCLEI AS A FUNCTION OF GALAXY INFRARED LUMINOSITY REVEALED THROUGH SPITZER LOW-RESOLUTION INFRARED SPECTROSCOPY

    International Nuclear Information System (INIS)

    Imanishi, Masatoshi

    2009-01-01

    We present the results of Spitzer Infrared Spectrograph 5-35 μm low-resolution spectroscopic energy diagnostics of ultraluminous infrared galaxies (ULIRGs) at z> 0.15, classified optically as non-Seyferts. Based on the equivalent widths of polycyclic aromatic hydrocarbon emission and the optical depths of silicate dust absorption features, we searched for signatures of intrinsically luminous, but optically elusive, buried active galactic nuclei (AGNs) in these optically non-Seyfert ULIRGs. We then combined the results with those of non-Seyfert ULIRGs at z IR 12 L sun . We found that the energetic importance of buried AGNs clearly increases with galaxy infrared luminosity, becoming suddenly discernible in ULIRGs with L IR > 10 12 L sun . For ULIRGs with buried AGN signatures, a significant fraction of infrared luminosities can be accounted for by the detected buried AGN and modestly obscured (A V < 20 mag) starburst activity. The implied masses of spheroidal stellar components in galaxies for which buried AGNs become important roughly correspond to the value separating red massive and blue less-massive galaxies in the local universe. Our results may support the widely proposed AGN-feedback scenario as the origin of galaxy downsizing phenomena, where galaxies with currently larger stellar masses previously had higher AGN energetic contributions and star formation originating infrared luminosities, and have finished their major star formation more quickly, due to stronger AGN feedback.

  10. H2O Megamasers toward Radio-bright Seyfert 2 Nuclei

    Science.gov (United States)

    Zhang, J. S.; Liu, Z. W.; Henkel, C.; Wang, J. Z.; Coldwell, G. V.

    2017-02-01

    Using the Effelsberg-100 m telescope, we perform a successful pilot survey on H2O maser emission toward a small sample of radio-bright Seyfert 2 galaxies with a redshift larger than 0.04. The targets were selected from a large Seyfert 2 sample derived from the spectroscopic Sloan Digital Sky Survey Data Release 7 (SDSS-DR7). One source, SDSS J102802.9+104630.4 (z ˜ 0.0448), was detected four times during our observations, with a typical maser flux density of ˜30 mJy and a corresponding (very large) luminosity of ˜1135 L ⊙. The successful detection of this radio-bright Seyfert 2 and an additional tentative detection support our previous statistical results that H2O megamasers tend to arise from Seyfert 2 galaxies with large radio luminosity. The finding provides further motivation for an upcoming larger H2O megamaser survey toward Seyfert 2s with particularly radio-bright nuclei with the basic goal to improve our understanding of the nuclear environment of active megamaser host galaxies. Based on observations with the 100 m telescope of the MPIfR (Max-Planck-Institut für Radioastronomie) at Effelsberg.

  11. Outflows in the narrow-line region of bright Seyfert galaxies - I. GMOS-IFU data

    Science.gov (United States)

    Freitas, I. C.; Riffel, R. A.; Storchi-Bergmann, T.; Elvis, M.; Robinson, A.; Crenshaw, D. M.; Nagar, N. M.; Lena, D.; Schmitt, H. R.; Kraemer, S. B.

    2018-05-01

    We present two-dimensional maps of emission-line fluxes and kinematics, as well as of the stellar kinematics of the central few kpc of five bright nearby Seyfert galaxies - Mrk 6, Mrk 79, Mrk 348, Mrk 607, and Mrk 1058 - obtained from observations with the Gemini Multi-Object Spectrograph Integral Field Unit on the Gemini North Telescope. The data cover the inner 3.5 arcsec × 5.0 arcsec - corresponding to physical scales in the range 0.6 × 0.9-1.5 × 2.2 kpc2 - at a spatial resolution ranging from 110 to 280 pc with a spectral coverage of 4300-7100 Å and velocity resolution of ≈90 km s-1. The gas excitation is Seyfert like everywhere but show excitation gradients that are correlated with the gas kinematics, reddening and/or the gas density. The gas kinematics show in all cases two components: a rotation one similar to that observed in the stellar velocity field, and an outflow component. In the case of Mrk607, the gas is counter-rotating relative to the stars. Enhanced gas velocity dispersion is observed in association with the outflows according to two patterns: at the locations of the highest outflow velocities along the ionization axis or perpendicularly to it in a strip centred at the nucleus that we attribute to an equatorial outflow. Bipolar outflows are observed in Mrk 348 and Mrk 79, while in Mrk 1058 only the blueshifted part is clearly observed, while in cases of Mrk 6 and Mrk 607, the geometry of the outflow needs further constraints from modelling to be presented in a forthcoming study, where the mass flow rate and powers will also be obtained.

  12. MASS OUTFLOW IN THE SEYFERT 1 GALAXY NGC 5548

    International Nuclear Information System (INIS)

    Crenshaw, D. M.; Kraemer, S. B.; Schmitt, H. R.; Kaastra, J. S.; Arav, N.; Gabel, J. R.; Korista, K. T.

    2009-01-01

    We present a study of the intrinsic UV absorption and emission lines in an historically low-state spectrum of the Seyfert 1 galaxy NGC 5548, which we obtained in 2004 February at high spatial and spectral resolution with the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. We isolate a component of emission with a width of 680 km s -1 that arises from an 'intermediate-line region' (ILR), similar to that we discovered in NGC 4151, at a distance of ∼1 pc from the central continuum source. From a detailed analysis of the five intrinsic absorption components in NGC 5548 and their behavior over a span of eight years, we present evidence that most of the UV absorbers only partially cover the ILR and do not cover an extended region of UV continuum emission, most likely from hot stars in the circumnuclear region. We also find that four of the UV absorbers are at much greater distances (greater than 70 pc) than the ILR, and none have sufficient N V or C IV column densities to be the ILR in absorption. At least a portion of the UV absorption component 3, at a radial velocity of -530 km s -1 , is likely responsible for most of the X-ray absorption, at a distance less than 7 pc from the central source. The fact that we see the ILR in absorption in NGC 4151 and not in NGC 5548 suggests that the ILR is located at a relatively large polar angle (∼45 deg.) with respect to the narrow-line region outflow axis.

  13. PROBING THE PHYSICS OF NARROW LINE REGIONS IN ACTIVE GALAXIES. II. THE SIDING SPRING SOUTHERN SEYFERT SPECTROSCOPIC SNAPSHOT SURVEY (S7)

    Energy Technology Data Exchange (ETDEWEB)

    Dopita, Michael A.; Davies, Rebecca; Kewley, Lisa; Hampton, Elise; Sutherland, Ralph [RSAA, Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia); Shastri, Prajval; Kharb, Preeti; Jose, Jessy; Bhatt, Harish; Ramya, S. [Indian Institute of Astrophysics, Koramangala 2 B Block, Bangalore 560034 (India); Scharwächter, Julia [LERMA, Observatoire de Paris, CNRS, UMR 8112, 61 Avenue de l’Observatoire, F-75014 Paris (France); Jin, Chichuan [Qian Xuesen Laboratory for Space Technology, Beijing (China); Banfield, Julie [CSIRO Astronomy and Space Science, P.O. Box 76, Epping NSW, 1710 Australia (Australia); Zaw, Ingyin [New York University (Abu Dhabi), 70 Washington Square South, New York, NY 10012 (United States); Juneau, Stéphanie [CEA-Saclay, DSM/IRFU/SAp, F-91191 Gif-sur-Yvette (France); James, Bethan [Institute of Astronomy, Cambridge University, Madingley Road, Cambridge CB3 0HA (United Kingdom); Srivastava, Shweta, E-mail: Michael.Dopita@anu.edu.au [Astronomy and Astrophysics Division, Physical Research Laboratory, Ahmedabad 380009 (India)

    2015-03-15

    Here we describe the Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7) and present results on 64 galaxies drawn from the first data release. The S7 uses the Wide Field Spectrograph mounted on the ANU 2.3 m telescope located at the Siding Spring Observatory to deliver an integral field of 38 × 25 arcsec at a spectral resolution of R = 7000 in the red (530–710 nm), and R = 3000 in the blue (340–560 nm). From these data cubes we have extracted the narrow-line region spectra from a 4 arcsec aperture centered on the nucleus. We also determine the Hβ and [O iii] λ5007 fluxes in the narrow lines, the nuclear reddening, the reddening-corrected relative intensities of the observed emission lines, and the Hβ and [O iii] λ5007 luminosities determined from spectra for which the stellar continuum has been removed. We present a set of images of the galaxies in [O iii] λ5007, [N ii] λ6584, and Hα, which serve to delineate the spatial extent of the extended narrow-line region and also to reveal the structure and morphology of the surrounding H ii regions. Finally, we provide a preliminary discussion of those Seyfert 1 and Seyfert 2 galaxies that display coronal emission lines in order to explore the origin of these lines.

  14. Gravitational instability, evolution of galaxies and star formation

    International Nuclear Information System (INIS)

    Palous, J.

    1979-01-01

    The gravitational collapse is the key to the theories of galaxy and star formation. The observations, showing intrinsic differences between elliptical and spiral galaxies, guide our fundamental conceptions on the formation and evolution of systems in question. Stars in elliptical galaxies and in spherical components of spiral galaxies were formed in a short period of time during early phases of protogalactic collapse, at a time of violent star formation. The disc-like components of spiral galaxies, however, were built gradually in the course of galactic evolution. Star formation in elliptical galaxies is described by the collision model of interstellar clouds, while star formation in discs is characterised by several processes: the expansion of HII regions, the expansion of supernovae remnants and the shock wave related to the presence of the spiral structure. (author)

  15. ON THE STAR FORMATION PROPERTIES OF VOID GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Moorman, Crystal M.; Moreno, Jackeline; White, Amanda; Vogeley, Michael S. [Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Hoyle, Fiona [Pontifica Universidad Catolica de Ecuador, 12 de Octubre 1076 y Roca, Quito (Ecuador); Giovanelli, Riccardo; Haynes, Martha P., E-mail: crystal.m.moorman@drexel.edu [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University Ithaca, NY 14853 (United States)

    2016-11-10

    We measure the star formation properties of two large samples of galaxies from the SDSS in large-scale cosmic voids on timescales of 10 and 100 Myr, using H α emission line strengths and GALEX FUV fluxes, respectively. The first sample consists of 109,818 optically selected galaxies. We find that void galaxies in this sample have higher specific star formation rates (SSFRs; star formation rates per unit stellar mass) than similar stellar mass galaxies in denser regions. The second sample is a subset of the optically selected sample containing 8070 galaxies with reliable H i detections from ALFALFA. For the full H i detected sample, SSFRs do not vary systematically with large-scale environment. However, investigating only the H i detected dwarf galaxies reveals a trend toward higher SSFRs in voids. Furthermore, we estimate the star formation rate per unit H i mass (known as the star formation efficiency; SFE) of a galaxy, as a function of environment. For the overall H i detected population, we notice no environmental dependence. Limiting the sample to dwarf galaxies still does not reveal a statistically significant difference between SFEs in voids versus walls. These results suggest that void environments, on average, provide a nurturing environment for dwarf galaxy evolution allowing for higher specific star formation rates while forming stars with similar efficiencies to those in walls.

  16. Star formation properties of galaxy cluster A1767

    International Nuclear Information System (INIS)

    Yan, Peng-Fei; Li, Feng; Yuan, Qi-Rong

    2015-01-01

    Abell 1767 is a dynamically relaxed, cD cluster of galaxies with a redshift of 0.0703. Among 250 spectroscopically confirmed member galaxies within a projected radius of 2.5r 200 , 243 galaxies (∼ 97%) are spectroscopically covered by the Sloan Digital Sky Survey. Based on this homogeneous spectral sample, the stellar evolutionary synthesis code STARLIGHT is applied to investigate the stellar populations and star formation histories of galaxies in this cluster. The star formation properties of galaxies, such as mean stellar ages, metallicities, stellar masses, and star formation rates, are presented as functions of local galaxy density. A strong environmental effect is found such that massive galaxies in the high-density core region of the cluster tend to have higher metallicities, older mean stellar ages, and lower specific star formation rates (SSFRs), and their recent star formation activities have been remarkably suppressed. In addition, the correlations of the metallicity and SSFR with stellar mass are confirmed. (paper)

  17. Reverberation mapping of the Seyfert 1 galaxy NGC 7469

    International Nuclear Information System (INIS)

    Peterson, B. M.; Grier, C. J.; Pogge, R. W.; De Rosa, G.; Denney, K. D.; Martini, Paul; Zu, Y.; Kochanek, C. S.; Shappee, B.; Araya Salvo, C.; Beatty, T. G.; Bird, J. C.; Horne, Keith; Bentz, M. C.; Sergeev, S. G.; Borman, G. A.; Kaspi, S.; Minezaki, T.; Siverd, R. J.; Bord, D. J.

    2014-01-01

    A large reverberation-mapping study of the Seyfert 1 galaxy NGC 7469 has yielded emission-line lags for Hβ λ4861 and He II λ4686 and a central black hole mass measurement M BH ≈ 1 × 10 7 M ☉ , consistent with previous measurements. A very low level of variability during the monitoring campaign precluded meeting our original goal of recovering velocity-delay maps from the data, but with the new Hβ measurement, NGC 7469 is no longer an outlier in the relationship between the size of the Hβ-emitting broad-line region and the luminosity of the active galactic nucleus. It was necessary to detrend the continuum and Hβ and He II λ4686 line light curves and those from archival UV data for different time-series analysis methods to yield consistent results.

  18. Reverberation mapping of the Seyfert 1 galaxy NGC 7469

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, B. M.; Grier, C. J.; Pogge, R. W.; De Rosa, G.; Denney, K. D.; Martini, Paul; Zu, Y.; Kochanek, C. S.; Shappee, B.; Araya Salvo, C.; Beatty, T. G.; Bird, J. C. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Horne, Keith [SUPA Physics and Astronomy, University of St. Andrews, Fife KY16 9SS (United Kingdom); Bentz, M. C. [Department of Physics and Astronomy, Georgia State University, Astronomy Offices, 25 Park Place, Suite 605, Atlanta, GA 30303 (United States); Sergeev, S. G.; Borman, G. A. [Crimean Astrophysical Observatory, P/O Nauchny Crimea 298409 (Russian Federation); Kaspi, S. [School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Minezaki, T. [Institute of Astronomy, School of Science, University of Tokyo, 2-21-1, Osawa, Mitaka, 181-0015 Tokyo (Japan); Siverd, R. J. [Department of Physics and Astronomy, Vanderbilt University, 6301 Stevenson Center, Nashville, TN 37235 (United States); Bord, D. J., E-mail: peterson.12@osu.edu [Department of Natural Sciences, The University of Michigan—Dearborn, 4901 Evergreen Road, Dearborn, MI 48128 (United States); and others

    2014-11-10

    A large reverberation-mapping study of the Seyfert 1 galaxy NGC 7469 has yielded emission-line lags for Hβ λ4861 and He II λ4686 and a central black hole mass measurement M {sub BH} ≈ 1 × 10{sup 7} M {sub ☉}, consistent with previous measurements. A very low level of variability during the monitoring campaign precluded meeting our original goal of recovering velocity-delay maps from the data, but with the new Hβ measurement, NGC 7469 is no longer an outlier in the relationship between the size of the Hβ-emitting broad-line region and the luminosity of the active galactic nucleus. It was necessary to detrend the continuum and Hβ and He II λ4686 line light curves and those from archival UV data for different time-series analysis methods to yield consistent results.

  19. NuSTAR observations of water megamaser AGN

    DEFF Research Database (Denmark)

    Masini, A.; Comastri, A.; Balokovic, M.

    2016-01-01

    Aims. We study the connection between the masing disk and obscuring torus in Seyfert 2 galaxies. Methods. We present a uniform X-ray spectral analysis of the high energy properties of 14 nearby megamaser active galactic nuclei observed by NuSTAR. We use a simple analytical model to localize the m...

  20. Star-formation complexes in the `galaxy-sized' supergiant shell of the galaxy Holmberg I

    Science.gov (United States)

    Egorov, Oleg V.; Lozinskaya, Tatiana A.; Moiseev, Alexei V.; Smirnov-Pinchukov, Grigory V.

    2018-05-01

    We present the results of observations of the galaxy Holmberg I carried out at the Russian 6-m telescope in the narrow-band imaging, long-slit spectroscopy, and scanning Fabry-Perot interferometer modes. A detailed analysis of gas kinematics, ionization conditions, and metallicity of star-forming regions in the galaxy is presented. The aim of the paper is to analyse the propagation of star formation in the galaxy and to understand the role of the ongoing star formation in the evolution of the central `galaxy-sized' supergiant H I shell (SGS), where all regions of star formation are observed. We show that star formation in the galaxy occurs in large unified complexes rather than in individual giant H II regions. Evidence of the triggered star formation is observed both on scales of individual complexes and of the whole galaxy. We identified two supernova-remnant candidates and one late-type WN star and analysed their spectrum and surrounding-gas kinematics. We provide arguments indicating that the SGS in Holmberg I is destructing by the influence of star formation occurring on its rims.

  1. Star Formation Histories of Nearby Dwarf Galaxies

    OpenAIRE

    Grebel, Eva K.

    2000-01-01

    Properties of nearby dwarf galaxies are briefly discussed. Dwarf galaxies vary widely in their star formation histories, the ages of their subpopulations, and in their enrichment history. Furthermore, many dwarf galaxies show evidence for spatial variations in their star formation history; often in the form of very extended old populations and radial gradients in age and metallicity. Determining factors in dwarf galaxy evolution appear to be both galaxy mass and environment. We may be observi...

  2. Emission-line galaxies and quasars in the southern hemisphere. I. Description and applications of an objective-prism survey

    International Nuclear Information System (INIS)

    Smith, M.G.

    1975-01-01

    A selection of objects from the first plates of a low-dispersion, objective-prism survey for emission-line galaxies and quasars is used to illustrate the application of the survey to the following lines of research in extragalactic astronomy: quasi-stellar objects, Seyfert galaxies, instabilities in galaxies produced by tidal interaction or explosive events, and rates of star formation and the general chemical evolution of galaxies. Included in the discussion is a description of how the survey provides a new, purely optical, color-independent method for the direct isolation of bright, high-redshift QSOs with strong emission lines (Lα is often directly visible on the Schmidt-survey plates). The newly discovered objects used for illustration are a radio-quiet QSO of redshift 2.07, a luminous, class 2 Seyfert galaxy, a compact blue emission-line galaxy with a jet or streamer, yet with no obvious interacting companion, and a blue galaxy with Hβ flux 50 times that of 30 Doradus, and low metal abundances, which is undergoing a very intense burst of star formation. These objects are to be discussed in greater detail in subsequent papers in this series

  3. Black-hole-regulated star formation in massive galaxies

    Science.gov (United States)

    Martín-Navarro, Ignacio; Brodie, Jean P.; Romanowsky, Aaron J.; Ruiz-Lara, Tomás; van de Ven, Glenn

    2018-01-01

    Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.

  4. Black-hole-regulated star formation in massive galaxies.

    Science.gov (United States)

    Martín-Navarro, Ignacio; Brodie, Jean P; Romanowsky, Aaron J; Ruiz-Lara, Tomás; van de Ven, Glenn

    2018-01-18

    Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.

  5. Stars at Low Metallicity in Dwarf Galaxies

    NARCIS (Netherlands)

    Tolstoy, Eline; Battaglia, Giuseppina; Cole, Andrew; Hunt, LK; Madden, S; Schneider, R

    2008-01-01

    Dwarf galaxies offer an opportunity to understand the properties of low metallicity star formation both today and at the earliest times at the, epoch of the formation of the first stars. Here we concentrate on two galaxies in the Local Group: the dwarf irregular galaxy Leo A, which has been the

  6. Colors of galaxies with continuing star formation

    International Nuclear Information System (INIS)

    Zasov, A.V.; Demin, V.V.

    1979-01-01

    A position of non-elliptical galaxies on a two-colour diagram (B-V)-(U-B) is considered from the data on the RC2 catalogue. Correction was made for internal reddening of light in galaxies. A sequence of colour indices on a two-colour diagram is compared with theoretical sequences for the Salpeter's initial mass function of stars (IMF). To reach the best agreement between calculated and observed colours of galaxies it is demanded that IMF change systematically along a morphological Hubble's sequence of galaxies and IMF in most of spiral galaxies of early types must have a deficiency of massive stars with respect to the Salpeter's IMF. A difference between colour indices of inner and outer parts of spiral galaxies shows that internal light absorption is possibly stronger in the inner regions of galaxies. A relation between dust content of galaxies and their IMF is in qualitative agreement with the Kahn's theory which gives an upper limit of mass of young stars

  7. Galaxies in the act of quenching star formation

    Science.gov (United States)

    Quai, Salvatore; Pozzetti, Lucia; Citro, Annalisa; Moresco, Michele; Cimatti, Andrea

    2018-04-01

    Detecting galaxies when their star-formation is being quenched is crucial to understand the mechanisms driving their evolution. We identify for the first time a sample of quenching galaxies selected just after the interruption of their star formation by exploiting the [O III] λ5007/Hα ratio and searching for galaxies with undetected [O III]. Using a sample of ˜174000 star-forming galaxies extracted from the SDSS-DR8 at 0.04 ≤ z growth of the quiescent population at these redshifts. Their main properties (i.e. star-formation rate, colours and metallicities) are comparable to those of the star-forming population, coherently with the hypothesis of recent quenching, but preferably reside in higher-density environments.Most candidates have morphologies similar to star-forming galaxies, suggesting that no morphological transformation has occurred yet. From a survival analysis we find a low fraction of candidates (˜ 0.58% of the star-forming population), leading to a short quenching timescale of tQ ˜ 50 Myr and an e-folding time for the quenching history of τQ ˜ 90 Myr, and their upper limits of tQ < 0.76 Gyr and τQ <1.5 Gyr, assuming as quenching galaxies 50% of objects without [O III] (˜7.5%).Our results are compatible with a 'rapid' quenching scenario of satellites galaxies due to the final phase of strangulation or ram-pressure stripping. This approach represents a robust alternative to methods used so far to select quenched galaxies (e.g. colours, specific star-formation rate, or post-starburst spectra).

  8. Star clusters in the Whirlpool Galaxy

    NARCIS (Netherlands)

    Scheepmaker, R.A.

    2009-01-01

    This thesis presents the results of observational studies of the star cluster population in the interacting spiral galaxy M51, also known as the Whirlpool galaxy. Observations taken by the Hubble Space Telescope in the optical and the near-UV are used to determine fundamental properties of the star

  9. Evidence for an Ionized Accretion Disk in the Seyfert 2 Galaxy NGC 1068

    Science.gov (United States)

    Colbert, E. J. M.; Weaver, K. A.; Mulchaey, J. S.; Mushotzky, R. F.

    2000-10-01

    We present results from analyses of RXTE, ASCA and BeppoSAX X-ray spectral data from the archetypal Seyfert 2 galaxy NGC 1068. Simultaneous RXTE and ASCA data (spanning 4 - 100 keV) are best fit with a power-law continuum with photon index Γ ~ 1.7 (in agreement with the canonical value for type 1 Seyferts), plus reflection from ionized matter with ξ ~ 1000. Reflection from ionized matter is significantly preferred over reflection from cold matter (Δ χ2 ≈ 50 for 320 dof). When the Fe line complex is modelled with three narrow Gaussians at 6.4, 6.7 and 6.97 keV, we find that the 6.7 keV line flux increases by a factor of ≈ 2 in four months, between the RXTE/ASCA and BeppoSAX observations. Thus we argue that the 6.7 keV line emission comes to us directly from the accretion disk, and not from the electron scattering region further out from the nucleus. We find no evidence for variability in the line fluxes at 6.4 and 6.97 keV. Although ionized accretion disks are thought to be present in NLS1 nuclei, we are only now finding evidence for them in ``broad-line'' Seyfert nuclei (type 1: 1E 1615+061 and type 2: NGC 1068, this work). We shall discuss the implications of these results on the particular geometry required in NGC 1068.

  10. The discrimination between star-forming and AGN galaxies in the absence of Hαand [NII]: A machine learning approach

    Science.gov (United States)

    Teimoorinia, H.; Keown, J.

    2018-05-01

    In the absence of the two emission lines Hαand [NII] (6584Å) in a BPT diagram, we show that other spectral information is sufficiently informative to distinguish AGN galaxies from star-forming galaxies. We use pattern recognition methods and a sample of galaxy spectra from the Sloan Digital Sky Survey (SDSS) to show that, in this survey, the flux and equivalent width of [OIII] (5007Å) and Hβ, along with the 4000Å break, can be used to classify galaxies in a BPT diagram. This method provides a higher accuracy of predictions than those which use stellar mass and [OIII]/Hβ. First, we use BPT diagrams and various physical parameters to re-classify the galaxies. Next, using confusion matrices, we determine the `correctly' predicted classes as well as confused cases. In this way, we investigate the effect of each parameter in the confusion matrices and rank the physical parameters used in the discrimination of the different classes. We show that in this survey, for example, {g - r} colour can provide the same accuracy as galaxy stellar mass to predict whether or not a galaxy hosts an AGN. Finally, with the same information, we also rank the parameters involved in the discrimination of Seyfert and LINER galaxies.

  11. Variable blurred reflection in the narrow-line Seyfert 1 galaxy Mrk 493

    Science.gov (United States)

    Bonson, K.; Gallo, L. C.; Wilkins, D. R.; Fabian, A. C.

    2018-04-01

    We examine a 200 ks XMM-Newton observation of the narrow-line Seyfert 1 galaxy Mrk 493. The active galaxy was half as bright as in a previous 2003 snapshot observation and the current lower flux enables a study of the putative reflection component in detail. We determine the characteristics of the 2015 X-ray continuum by first analyzing the short-term variability using model-independent techniques. We then continue with a time-resolve analysis including spectral fitting and modelling the fractional variability. We determine that the variability arises from changes in the amount of primary flux striking the accretion disk, which induces changes in the ionization parameter and flux of the blurred reflection component. The observations seem consistent with the picture that the primary source is of roughly constant brightness and that variations arise from changes in the degree of light bending happening in the vicinity of the supermassive black hole.

  12. Broad-band properties of the CfA Seyfert Galaxies. II - Infrared to millimeter properties

    Science.gov (United States)

    Edelson, R. A.; Malkan, M. A.; Rieke, G. H.

    1987-01-01

    IR and mm observations of the 48 Seyfert 1 and 2 galaxies (SG1s and SG2s) of the CfA sample (Huchra and Berg, 1987) are reported. Data obtained (1) in the NIR using the 1.55-m reflector at Stewart Observatory and the 3-m IRTF during 1984-1986, (2) in the FIR with IRAS, and (3) at 1.3 mm using the 12-m NRAO telescope at KPNO in June 1984 are presented in extensive tables and graphs and characterized in detail. None of the objects was detected at 1.3 mm, and the IR spectra of the SG2s are found to be significantly steeper (indicating thermal emission) than those of SG1s and QSOs (nonthermal emission). Turnover in the IR emission below 100 microns (in half of the objects detected at three or more IRAS wavelengths) is shown to be consistent with an accretion disk in dust-free SG1s and with unusually warm (35-65 K) dust in SG2s. It is inferred that a 60-100-micron cool excess is masking turnover in the other SGs, so that a general association of SG nuclei with strong star formation can be confirmed.

  13. GAMMA RAYS FROM STAR FORMATION IN CLUSTERS OF GALAXIES

    International Nuclear Information System (INIS)

    Storm, Emma M.; Jeltema, Tesla E.; Profumo, Stefano

    2012-01-01

    Star formation in galaxies is observed to be associated with gamma-ray emission, presumably from non-thermal processes connected to the acceleration of cosmic-ray nuclei and electrons. The detection of gamma rays from starburst galaxies by the Fermi Large Area Telescope (LAT) has allowed the determination of a functional relationship between star formation rate and gamma-ray luminosity. Since star formation is known to scale with total infrared (8-1000 μm) and radio (1.4 GHz) luminosity, the observed infrared and radio emission from a star-forming galaxy can be used to quantitatively infer the galaxy's gamma-ray luminosity. Similarly, star-forming galaxies within galaxy clusters allow us to derive lower limits on the gamma-ray emission from clusters, which have not yet been conclusively detected in gamma rays. In this study, we apply the functional relationships between gamma-ray luminosity and radio and IR luminosities of galaxies derived by the Fermi Collaboration to a sample of the best candidate galaxy clusters for detection in gamma rays in order to place lower limits on the gamma-ray emission associated with star formation in galaxy clusters. We find that several clusters have predicted gamma-ray emission from star formation that are within an order of magnitude of the upper limits derived in Ackermann et al. based on non-detection by Fermi-LAT. Given the current gamma-ray limits, star formation likely plays a significant role in the gamma-ray emission in some clusters, especially those with cool cores. We predict that both Fermi-LAT over the course of its lifetime and the future Cerenkov Telescope Array will be able to detect gamma-ray emission from star-forming galaxies in clusters.

  14. Survey of Milliarcsec Structure in Eight Seyfert Galaxies: Results on NGC 1068 and NGC 4151

    Science.gov (United States)

    Roy, A. L.; Ulvestad, J. S.; Colbert, E. J. M.; Wilson, A. S.; Norris, R. P.

    We are surveying eight nearby Seyfert galaxies (four Sy1s and four Sy2s) that have compact radio cores, using the VLBA. We are interested in parsec-scale morphology and low-frequency absorption effects, and so are observing four frequencies (1.6, 4.8, 8.4 and 15 GHz) to get spectral-index diagnostics. In this paper, we present results on two galaxies, NGC 1068 and NGC 4151. NGC 4151 shows a curved radio jet on the sub-parsec scale, with the smallest scale structure misaligned by $55^\\circ$ from the jet on scales of parsecs to hundreds of parsecs. NGC 1068 contains several components in the inner tens of parsecs, with those components showing a variety of absorption and resolution effects.

  15. The first three years of IUE

    International Nuclear Information System (INIS)

    Gondhalekar, P.M.; Jordan, C.; Meadows, A.J.

    1981-11-01

    The report is in sections, entitled: introduction (organization of IUE Satellite project; summary of highlights); highlights; active galaxies (Non-Seyfert; Seyfert; BL Lac objects; quasars); normal galaxies (objects in LMC; interstellar material in other galaxies; H II regions; nuclei of spiral galaxies; emission line galaxies); high energy objects (X-ray binary systems; novae); hot stars (including: Wolf-Rayet stars, planetary nebulae, novae); cool stars (including: main sequence stars, giants and supergiants, flare stars and other variable objects); interstellar medium; solar system. (U.K.)

  16. A Multiwavelength Study of POX 52, a Dwarf Seyfert Galaxy with an Intermediate-Mass Black Hole

    Science.gov (United States)

    Barth, Aaron

    2004-07-01

    We propose a comprehensive optical, UV, and X-ray investigation of the unique galaxy POX 52. POX 52 is a Seyfert 1 galaxy with unprecedented properties: its host galaxy appears to be a dwarf elliptical, and its stellar velocity dispersion is only 36 km/s. The stellar velocity dispersion and the broad emission-line widths both suggest a black hole mass of order 10^5 solar masses, placing POX 52 in a region of AGN parameter space that is almost completely unexplored at present. We request ACS/HRC imaging to perform a definitive measurement of the host galaxy structure; STIS UV and optical spectroscopy to study the nonstellar continuum and the structure of the broad-line region; and Chandra ACS imaging to detect the X-ray emission from the nucleus and investigate its spectral and variability properties. The results of this program will give a detailed understanding of the host galaxy and accretion properties of one of the very few known black holes in the mass range around 10^5 solar masses.

  17. The Maximum Flux of Star-Forming Galaxies

    Science.gov (United States)

    Crocker, Roland M.; Krumholz, Mark R.; Thompson, Todd A.; Clutterbuck, Julie

    2018-04-01

    The importance of radiation pressure feedback in galaxy formation has been extensively debated over the last decade. The regime of greatest uncertainty is in the most actively star-forming galaxies, where large dust columns can potentially produce a dust-reprocessed infrared radiation field with enough pressure to drive turbulence or eject material. Here we derive the conditions under which a self-gravitating, mixed gas-star disc can remain hydrostatic despite trapped radiation pressure. Consistently taking into account the self-gravity of the medium, the star- and dust-to-gas ratios, and the effects of turbulent motions not driven by radiation, we show that galaxies can achieve a maximum Eddington-limited star formation rate per unit area \\dot{Σ }_*,crit ˜ 10^3 M_{⊙} pc-2 Myr-1, corresponding to a critical flux of F*, crit ˜ 1013L⊙ kpc-2 similar to previous estimates; higher fluxes eject mass in bulk, halting further star formation. Conversely, we show that in galaxies below this limit, our one-dimensional models imply simple vertical hydrostatic equilibrium and that radiation pressure is ineffective at driving turbulence or ejecting matter. Because the vast majority of star-forming galaxies lie below the maximum limit for typical dust-to-gas ratios, we conclude that infrared radiation pressure is likely unimportant for all but the most extreme systems on galaxy-wide scales. Thus, while radiation pressure does not explain the Kennicutt-Schmidt relation, it does impose an upper truncation on it. Our predicted truncation is in good agreement with the highest observed gas and star formation rate surface densities found both locally and at high redshift.

  18. LeMMINGs - I. The eMERLIN legacy survey of nearby galaxies. 1.5-GHz parsec-scale radio structures and cores

    Science.gov (United States)

    Baldi, R. D.; Williams, D. R. A.; McHardy, I. M.; Beswick, R. J.; Argo, M. K.; Dullo, B. T.; Knapen, J. H.; Brinks, E.; Muxlow, T. W. B.; Aalto, S.; Alberdi, A.; Bendo, G. J.; Corbel, S.; Evans, R.; Fenech, D. M.; Green, D. A.; Klöckner, H.-R.; Körding, E.; Kharb, P.; Maccarone, T. J.; Martí-Vidal, I.; Mundell, C. G.; Panessa, F.; Peck, A. B.; Pérez-Torres, M. A.; Saikia, D. J.; Saikia, P.; Shankar, F.; Spencer, R. E.; Stevens, I. R.; Uttley, P.; Westcott, J.

    2018-05-01

    We present the first data release of high-resolution (≤0.2 arcsec) 1.5-GHz radio images of 103 nearby galaxies from the Palomar sample, observed with the eMERLIN array, as part of the LeMMINGs survey. This sample includes galaxies which are active (low-ionization nuclear emission-line regions [LINER] and Seyfert) and quiescent (H II galaxies and absorption line galaxies, ALGs), which are reclassified based upon revised emission-line diagrams. We detect radio emission ≳0.2 mJy for 47/103 galaxies (22/34 for LINERS, 4/4 for Seyferts, 16/51 for H II galaxies, and 5/14 for ALGs) with radio sizes typically of ≲100 pc. We identify the radio core position within the radio structures for 41 sources. Half of the sample shows jetted morphologies. The remaining half shows single radio cores or complex morphologies. LINERs show radio structures more core-brightened than Seyferts. Radio luminosities of the sample range from 1032 to 1040 erg s-1: LINERs and H II galaxies show the highest and lowest radio powers, respectively, while ALGs and Seyferts have intermediate luminosities. We find that radio core luminosities correlate with black hole (BH) mass down to ˜107 M⊙, but a break emerges at lower masses. Using [O III] line luminosity as a proxy for the accretion luminosity, active nuclei and jetted H II galaxies follow an optical Fundamental Plane of BH activity, suggesting a common disc-jet relationship. In conclusion, LINER nuclei are the scaled-down version of FR I radio galaxies; Seyferts show less collimated jets; H II galaxies may host weak active BHs and/or nuclear star-forming cores; and recurrent BH activity may account for ALG properties.

  19. Numerical Study on Outflows in Seyfert Galaxies I: Narrow Line Region Outflows in NGC 4151

    Energy Technology Data Exchange (ETDEWEB)

    Mou, Guobin; Wang, Tinggui; Yang, Chenwei, E-mail: gbmou@ustc.edu.cn [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei 230026 (China)

    2017-07-20

    The origin of narrow line region (NLR) outflows remains unknown. In this paper, we explore the scenario in which these outflows are circumnuclear clouds driven by energetic accretion disk winds. We choose the well-studied nearby Seyfert galaxy NGC 4151 as an example. By performing 3D hydrodynamical simulations, we are able to reproduce the radial distributions of velocity, mass outflow rate, and kinetic luminosity of NLR outflows in the inner 100 pc deduced from spatial resolved spectroscopic observations. The demanded kinetic luminosity of disk winds is about two orders of magnitude higher than that inferred from the NLR outflows, but is close to the ultrafast outflows (UFO) detected in the X-ray spectrum and a few times lower than the bolometric luminosity of the Seyfert. Our simulations imply that the scenario is viable for NGC 4151. The existence of the underlying disk winds can be confirmed by their impacts on higher density ISM, e.g., shock excitation signs, and the pressure in NLR.

  20. Numerical Study on Outflows in Seyfert Galaxies I: Narrow Line Region Outflows in NGC 4151

    International Nuclear Information System (INIS)

    Mou, Guobin; Wang, Tinggui; Yang, Chenwei

    2017-01-01

    The origin of narrow line region (NLR) outflows remains unknown. In this paper, we explore the scenario in which these outflows are circumnuclear clouds driven by energetic accretion disk winds. We choose the well-studied nearby Seyfert galaxy NGC 4151 as an example. By performing 3D hydrodynamical simulations, we are able to reproduce the radial distributions of velocity, mass outflow rate, and kinetic luminosity of NLR outflows in the inner 100 pc deduced from spatial resolved spectroscopic observations. The demanded kinetic luminosity of disk winds is about two orders of magnitude higher than that inferred from the NLR outflows, but is close to the ultrafast outflows (UFO) detected in the X-ray spectrum and a few times lower than the bolometric luminosity of the Seyfert. Our simulations imply that the scenario is viable for NGC 4151. The existence of the underlying disk winds can be confirmed by their impacts on higher density ISM, e.g., shock excitation signs, and the pressure in NLR.

  1. Numerical Study on Outflows in Seyfert Galaxies I: Narrow Line Region Outflows in NGC 4151

    Science.gov (United States)

    Mou, Guobin; Wang, Tinggui; Yang, Chenwei

    2017-07-01

    The origin of narrow line region (NLR) outflows remains unknown. In this paper, we explore the scenario in which these outflows are circumnuclear clouds driven by energetic accretion disk winds. We choose the well-studied nearby Seyfert galaxy NGC 4151 as an example. By performing 3D hydrodynamical simulations, we are able to reproduce the radial distributions of velocity, mass outflow rate, and kinetic luminosity of NLR outflows in the inner 100 pc deduced from spatial resolved spectroscopic observations. The demanded kinetic luminosity of disk winds is about two orders of magnitude higher than that inferred from the NLR outflows, but is close to the ultrafast outflows (UFO) detected in the X-ray spectrum and a few times lower than the bolometric luminosity of the Seyfert. Our simulations imply that the scenario is viable for NGC 4151. The existence of the underlying disk winds can be confirmed by their impacts on higher density ISM, e.g., shock excitation signs, and the pressure in NLR.

  2. Halo carbon stars associated with dwarf spheroidal galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Van Den Bergh, S.; Lafontaine, A.

    1984-11-01

    Star counts have been performed for rings centered on the carbon star at 1 69 degrees, b + 55 degrees at a distance of 60 kpc. The counts were performed in order to determine whether halo carbon stars might be situated in dwarf spheroidal galaxies which are too star-poor to have been recognized as galaxies. The counts were made on a IIIa-J plate baked in forming gas that was exposed for 40 minutes through a 2C filter with the Palomar 1.2-m Schmidt telescope. It is shown that the carbon star is not situated in a dwarf spheroidal galaxy brighter than M(V) 5.7.

  3. X-ray spectral variability of Seyfert 2 galaxies

    Science.gov (United States)

    Hernández-García, L.; Masegosa, J.; González-Martín, O.; Márquez, I.

    2015-07-01

    Context. Variability across the electromagnetic spectrum is a property of active galactic nuclei (AGN) that can help constrain the physical properties of these galaxies. Nonetheless, the way in which the changes happen and whether they occur in the same way in every AGN are still open questions. Aims: This is the third in a series of papers with the aim of studying the X-ray variability of different families of AGN. The main purpose of this work is to investigate the variability pattern(s) in a sample of optically selected Seyfert 2 galaxies. Methods: We use the 26 Seyfert 2s in the Véron-Cetty and Véron catalog with data available from Chandra and/or XMM-Newton public archives at different epochs, with timescales ranging from a few hours to years. All the spectra of the same source were simultaneously fitted, and we let different parameters vary in the model. Whenever possible, short-term variations from the analysis of the light curves and/or long-term UV flux variations were studied. We divided the sample into Compton-thick and Compton-thin candidates to account for the degree of obscuration. When transitions between Compton-thick and thin were obtained for different observations of the same source, we classified it as a changing-look candidate. Results: Short-term variability at X-rays was studied in ten cases, but variations are not found. From the 25 analyzed sources, 11 show long-term variations. Eight (out of 11) are Compton-thin, one (out of 12) is Compton-thick, and the two changing-look candidates are also variable. The main driver for the X-ray changes is related to the nuclear power (nine cases), while variations at soft energies or related to absorbers at hard X-rays are less common, and in many cases these variations are accompanied by variations in the nuclear continuum. At UV frequencies, only NGC 5194 (out of six sources) is variable, but the changes are not related to the nucleus. We report two changing-look candidates, MARK 273 and NGC 7319

  4. IRAS bright galaxy sample. II. The sample and luminosity function

    International Nuclear Information System (INIS)

    Soifer, B.T.; Sanders, D.B.; Neugebauer, G.; Madore, B.F.; Danielson, G.E.; David Dunlap Observatory, Richmond Hill, Canada; Palomar Observatory; California Institute of Technology, Pasadena)

    1987-01-01

    A statistically complete sample of 324 of the brightest infrared galaxies discovered at 60 microns in the IRAS all-sky survey is described. The results show that far-infrared emission is a significant luminosity component in the local universe, representing 25 percent of the luminosity emitted by stars in the same volume. Above 10 to the 11th solar luminosities, the infrared luminous galaxies are the dominant population of objects in the universe, being as numerous as the Seyfert galaxies and more numerous than quasars at higher luminosities. The infrared luminosity appears to be independent of the optical luminosity of galaxies. Most infrared bright galaxies appear to require much of the interstellar matter to be contributing to the observed infrared luminosity. Approximately 60-80 percent of the far-infrared luminosity of the local universe can be attributed, directly or indirectly, to recent or ongoing star formation. 67 references

  5. Galaxies

    International Nuclear Information System (INIS)

    1981-01-01

    Normal galaxies, radio galaxies, and Seyfert galaxies are considered. The large magellanic cloud and the great galaxy in Andromedia are highlighted. Quasars and BL lacertae objects are also discussed and a review of the spectral observations of all of these galaxies and celestial objects is presented

  6. C III] EMISSION IN STAR-FORMING GALAXIES NEAR AND FAR

    Energy Technology Data Exchange (ETDEWEB)

    Rigby, J. R. [Astrophysics Science Division, Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Bayliss, M. B. [Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138 (United States); Gladders, M. D. [Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Avenue, Chicago, IL 60637 (United States); Sharon, K.; Johnson, T. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Wuyts, E. [Max Plank Institute for Extraterrestrial Physics, Giessenbachstrasse 1, D-85748 Garching (Germany); Dahle, H. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway); Peña-Guerrero, M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2015-11-20

    We measure [C iii] 1907, C iii] 1909 Å emission lines in 11 gravitationally lensed star-forming galaxies at z ∼ 1.6–3, finding much lower equivalent widths than previously reported for fainter lensed galaxies. While it is not yet clear what causes some galaxies to be strong C iii] emitters, C iii] emission is not a universal property of distant star-forming galaxies. We also examine C iii] emission in 46 star-forming galaxies in the local universe, using archival spectra from GHRS, FOS, and STIS on HST and IUE. Twenty percent of these local galaxies show strong C iii] emission, with equivalent widths < −5 Å. Three nearby galaxies show C iii] emission equivalent widths as large as the most extreme emitters yet observed in the distant universe; all three are Wolf–Rayet galaxies. At all redshifts, strong C iii] emission may pick out low-metallicity galaxies experiencing intense bursts of star formation. Such local C iii] emitters may shed light on the conditions of star formation in certain extreme high-redshift galaxies.

  7. The environments of Markarian galaxies

    International Nuclear Information System (INIS)

    Mackenty, J.W.; Simpson, C.; Mclean, B.

    1990-01-01

    The extensively studied Markarian sample of 1500 ultraviolet excess galaxies contains many Seyfert, starburst, and peculiar galaxies. Using the 20 minute V plates obtained for the construction of the Hubble Space Telescope Guide Star Catalog, the authors investigated the morphologies of the Markarian galaxies and the environments in which they are located. The relationship between the types of nuclear activity and the morphologies and environments of the Markarian galaxies is discussed. The authors conclude that the type of nuclear activity present in the galaxies of the Markarian sample is not dependent on either the morphology or the local environment of the galaxy. This is not to imply that nuclear activity per se is not influenced by the environment in which the nucleus is located. Rather the type of nuclear activity (at least in the Markarian population) does not appear to be determined by the environment

  8. Spatially-resolved star formation histories of CALIFA galaxies. Implications for galaxy formation

    Science.gov (United States)

    González Delgado, R. M.; Pérez, E.; Cid Fernandes, R.; García-Benito, R.; López Fernández, R.; Vale Asari, N.; Cortijo-Ferrero, C.; de Amorim, A. L.; Lacerda, E. A. D.; Sánchez, S. F.; Lehnert, M. D.; Walcher, C. J.

    2017-11-01

    This paper presents the spatially resolved star formation history (SFH) of nearby galaxies with the aim of furthering our understanding of the different processes involved in the formation and evolution of galaxies. To this end, we apply the fossil record method of stellar population synthesis to a rich and diverse data set of 436 galaxies observed with integral field spectroscopy in the CALIFA survey. The sample covers a wide range of Hubble types, with stellar masses ranging from M⋆ 109 to 7 × 1011 M⊙. Spectral synthesis techniques are applied to the datacubes to retrieve the spatially resolved time evolution of the star formation rate (SFR), its intensity (ΣSFR), and other descriptors of the 2D SFH in seven bins of galaxy morphology (E, S0, Sa, Sb, Sbc, Sc, and Sd) and five bins of stellar mass. Our main results are that (a) galaxies form very fast independently of their current stellar mass, with the peak of star formation at high redshift (z > 2). Subsequent star formation is driven by M⋆ and morphology, with less massive and later type spirals showing more prolonged periods of star formation. (b) At any epoch in the past, the SFR is proportional to M⋆, with most massive galaxies having the highest absolute (but lowest specific) SFRs. (c) While today, the ΣSFR is similar for all spirals and significantly lower in early-type galaxies (ETG), in the past, the ΣSFR scales well with morphology. The central regions of today's ETGs are where the ΣSFR reached the highest values (> 103 M⊙ Gyr-1 pc-2), similar to those measured in high-redshift star-forming galaxies. (d) The evolution of ΣSFR in Sbc systems matches that of models for Milky Way-like galaxies, suggesting that the formation of a thick disk may be a common phase in spirals at early epochs. (e) The SFR and ΣSFR in outer regions of E and S0 galaxies show that they have undergone an extended phase of growth in mass between z = 2 and 0.4. The mass assembled in this phase is in agreement with

  9. A SAMPLE OF SEYFERT-2 GALAXIES WITH ULTRALUMINOUS GALAXY-WIDE NARROW-LINE REGIONS: QUASAR LIGHT ECHOES?

    International Nuclear Information System (INIS)

    Schirmer, M.; Diaz, R.; Levenson, N. A.; Winge, C.; Holhjem, K.

    2013-01-01

    We report the discovery of Seyfert-2 galaxies in SDSS-DR8 with galaxy-wide, ultraluminous narrow-line regions (NLRs) at redshifts z = 0.2-0.6. With a space density of 4.4 Gpc –3 at z ∼ 0.3, these 'green beans' (GBs) are amongst the rarest objects in the universe. We are witnessing an exceptional and/or short-lived phenomenon in the life cycle of active galactic nuclei (AGNs). The main focus of this paper is on a detailed analysis of the GB prototype galaxy J2240–0927 (z = 0.326). Its NLR extends over 26 × 44 kpc and is surrounded by an extended NLR. With a total [O III] λ5008 luminosity of (5.7 ± 0.9) × 10 43 erg s –1 , this is one of the most luminous NLRs known around any type-2 galaxy. Using VLT/XSHOOTER, we show that the NLR is powered by an AGN, and we derive resolved extinction, density, and ionization maps. Gas kinematics is disturbed on a global scale, and high-velocity outflows are absent or faint. This NLR is unlike any other NLR or extended emission line region known. Spectroscopy with Gemini/GMOS reveals extended, high-luminosity [O III] emission also in other GBs. WISE 24 μm luminosities are 5-50 times lower than predicted by the [O III] fluxes, suggesting that the NLRs reflect earlier, very active quasar states that have strongly subsided in less than a galaxy's light-crossing time. These light echoes, or ionization echoes, are about 100 times more luminous than any other such echo known to date. X-ray data are needed for photoionization modeling and to verify the light echoes.

  10. UVES Abundances of Stars in Nearby Dwarf Spheroidal Galaxies

    Science.gov (United States)

    Tolstoy, Eline; Venn, Kim; Shetrone, Matt; Primas, Francesca; Hill, Vanessa; Kaufer, Andreas; Szeifert, Thomas

    2002-07-01

    It is a truth universally acknowledged, that a galaxy in possession of a good quantity of gas must want to form stars. It is the details of how and why that baffle us all. The simplest theories either would have this process a carefully self-regulated affair, or one that goes completely out of control and is capable of wrecking the galaxy which hosts it. Of course the majority of galaxies seem to amble along somewhere between these two extremes, and the mean properties tend to favour a quiescent self-regulated evolutionary scenario. But there area variety of observations which require us to invoke transitory ‘bursts’ of star-formation at one time or another in most galaxy types. Several nearby dwarf spheroidal galaxies have clearly determined star-formation histories with apparent periods of zero star formation followed by periods of fairly active star formation. If we are able to understand what separated these bursts we would understand several important phenomena in galaxy evolution. Were these galaxies able to clear out their gas reservoir in a burst of star formation? How did this gas return? or did it? Have these galaxies receieved gas from the IGM instead? Could stars from these types of galaxy contribute significantly to the halo population in our Galaxy? To answer these questions we need to combine accurate stellar photometry and Colour-Magnitude Diagram interpretation with detailed metal abundances to combine a star-formation rate versus time with a range of element abundances with time. Different elements trace different evolutionary process (e.g., relative contributions of type I and II supernovae). We often aren't even sure of the abundance spread in these galaxies. We have collected detailed high resolution UVES spectra of four nearby dwarf spheroidal galaxies (Sculptor, Fornax, Leo I & Carina) to begin to answer these questions. This is a precursor study to a more complete study with FLAMES. We presented at this meeting the initial results for

  11. New View of Distant Galaxy Reveals Furious Star Formation

    Science.gov (United States)

    2007-12-01

    A furious rate of star formation discovered in a distant galaxy shows that galaxies in the early Universe developed either much faster or in a different way from what astronomers have thought. "This galaxy is forming stars at an incredible rate," said Wei-Hao Wang, an astronomer at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico. The galaxy, Wang said, is forming the equivalent of 4,000 Suns a year. This is a thousand times more violent than our own Milky Way Galaxy. Location of Distant Galaxy Visible-light, left (from HST) and Infrared, right, (from Spitzer) Images: Circles indicate location of GOODS 850-5. CREDIT: Wang et al., STScI, Spitzer, NASA, NRAO/AUI/NSF Click on image for high-resolution file (1 MB) The galaxy, called GOODS 850-5, is 12 billion light-years from Earth, and thus is seen as it was only about 1.5 billion years after the Big Bang. Wang and his colleagues observed it using the Smithsonian Astrophysical Observatory's Submillimeter Array (SMA) on Mauna Kea in Hawaii. Young stars in the galaxy were enshrouded in dust that was heated by the stars and radiated infrared light strongly. Because of the galaxy's great distance from Earth, the infrared light waves have been stretched out to submillimeter-length radio waves, which are seen by the SMA. The waves were stretched or "redshifted," as astronomers say, by the ongoing expansion of the Universe. "This evidence for prolific star formation is hidden by the dust from visible-light telescopes," Wang explained. The dust, in turn, was formed from heavy elements that had to be built up in the cores of earlier stars. This indicates, Wang said, that significant numbers of stars already had formed, then spewed those heavy elements into interstellar space through supernova explosions and stellar winds. "Seeing the radiation from this heated dust revealed star formation we could have found in no other way," Wang said. Similar dusty galaxies in the early Universe may contain most of the

  12. Star Formation Quenching in Quasar Host Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Carniani, Stefano, E-mail: sc888@mrao.cam.ac.uk [Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom); Kavli Institute for Cosmology, University of Cambridge, Cambridge (United Kingdom)

    2017-10-16

    Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN). In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionized and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ~ 2.4 obtained with SINFONI in the H- and K-band. All the quasars show [Oiii]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM < 500 km/s), which is spatially extended and associated with star formation in the host galaxy. On paper fast outflows are spatially anti-correlated with star-formation powered emission, i.e., star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50–100 M{sub ⊙} yr{sup −1}, has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2) ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2) transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.

  13. Star Formation Quenching in Quasar Host Galaxies

    International Nuclear Information System (INIS)

    Carniani, Stefano

    2017-01-01

    Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN). In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionized and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ~ 2.4 obtained with SINFONI in the H- and K-band. All the quasars show [Oiii]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM < 500 km/s), which is spatially extended and associated with star formation in the host galaxy. On paper fast outflows are spatially anti-correlated with star-formation powered emission, i.e., star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50–100 M ⊙ yr −1 , has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2) ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2) transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.

  14. Star Formation Quenching in Quasar Host Galaxies

    Directory of Open Access Journals (Sweden)

    Stefano Carniani

    2017-10-01

    Full Text Available Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN. In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionized and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ~ 2.4 obtained with SINFONI in the H- and K-band. All the quasars show [Oiii]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM < 500 km/s, which is spatially extended and associated with star formation in the host galaxy. On paper fast outflows are spatially anti-correlated with star-formation powered emission, i.e., star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50–100 M⊙ yr−1, has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2 ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2 transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.

  15. Wolf-Rayet stars in the Andromeda Galaxy

    International Nuclear Information System (INIS)

    Moffat, A.F.J.; Shara, M.M.; Space Telescope Science Institute, Baltimore, MD)

    1987-01-01

    A survey of M31 for strong-line Wolf-Rayet (W-R) stars has been completed, confirming the trends found previously, that (1) M31 is at present about an order of magnitude less active in star formation than the Galaxy, as reflected in the total number of W-R stars, assumed to have evolved from massive progenitors; (2) the number ratio of late to early WC stars, WCL/WCE, varies systematically with galactocentric radius as in the Galaxy, possibly a consequence of the metallicity gradient in the disk; and (3) most W-R stars lie in the prominent ring of active star formation at R = 7-12 kpc from the center of M31. 19 references

  16. The soft-X-ray emission of Ark 120. XMM-Newton, NuSTAR, and the importance of taking the broad view

    DEFF Research Database (Denmark)

    Matt, G.; Marinucci, A.; Guainazzi, M.

    2014-01-01

    We present simultaneous XMM-Newton and NuSTAR observations of the 'bare' Seyfert 1 galaxy, Ark 120, a system in which ionized absorption is absent. The NuSTAR hard-X-ray spectral coverage allows us to constrain different models for the excess soft-X-ray emission. Among phenomenological models, a ...

  17. ORIGIN OF THE GALAXY MASS-METALLICITY-STAR FORMATION RELATION

    International Nuclear Information System (INIS)

    Harwit, Martin; Brisbin, Drew

    2015-01-01

    We describe an equilibrium model that links the metallicity of low-redshift galaxies to stellar evolution models. It enables the testing of different stellar initial mass functions and metal yields against observed galaxy metallicities. We show that the metallicities of more than 80,000 Sloan Digital Sky Survey galaxies in the low-redshift range 0.07 ≤ z ≤ 0.3 considerably constrain stellar evolution models that simultaneously relate galaxy stellar mass, metallicity, and star formation rates to the infall rate of low-metallicity extragalactic gas and outflow of enriched matter. A feature of our model is that it encompasses both the active star forming phases of a galaxy and epochs during which the same galaxy may lie fallow. We show that the galaxy mass-metallicity-star formation relation can be traced to infall of extragalactic gas mixing with native gas from host galaxies to form stars of observed metallicities, the most massive of which eject oxygen into extragalactic space. Most consequential among our findings is that, on average, extragalactic infall accounts for one half of the gas required for star formation, a ratio that is remarkably constant across galaxies with stellar masses ranging at least from M* = 2 × 10 9 to 6 × 10 10 M ☉ . This leads us to propose that star formation is initiated when extragalactic infall roughly doubles the mass of marginally stable interstellar clouds. The processes described may also account quantitatively for the metallicity of extragalactic space, though to check this the fraction of extragalactic baryons will need to be more firmly established

  18. ORIGIN OF THE GALAXY MASS-METALLICITY-STAR FORMATION RELATION

    Energy Technology Data Exchange (ETDEWEB)

    Harwit, Martin; Brisbin, Drew, E-mail: harwit@verizon.net [Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853 (United States)

    2015-02-20

    We describe an equilibrium model that links the metallicity of low-redshift galaxies to stellar evolution models. It enables the testing of different stellar initial mass functions and metal yields against observed galaxy metallicities. We show that the metallicities of more than 80,000 Sloan Digital Sky Survey galaxies in the low-redshift range 0.07 ≤ z ≤ 0.3 considerably constrain stellar evolution models that simultaneously relate galaxy stellar mass, metallicity, and star formation rates to the infall rate of low-metallicity extragalactic gas and outflow of enriched matter. A feature of our model is that it encompasses both the active star forming phases of a galaxy and epochs during which the same galaxy may lie fallow. We show that the galaxy mass-metallicity-star formation relation can be traced to infall of extragalactic gas mixing with native gas from host galaxies to form stars of observed metallicities, the most massive of which eject oxygen into extragalactic space. Most consequential among our findings is that, on average, extragalactic infall accounts for one half of the gas required for star formation, a ratio that is remarkably constant across galaxies with stellar masses ranging at least from M* = 2 × 10{sup 9} to 6 × 10{sup 10} M {sub ☉}. This leads us to propose that star formation is initiated when extragalactic infall roughly doubles the mass of marginally stable interstellar clouds. The processes described may also account quantitatively for the metallicity of extragalactic space, though to check this the fraction of extragalactic baryons will need to be more firmly established.

  19. Revisiting The First Galaxies: The epoch of Population III stars

    Energy Technology Data Exchange (ETDEWEB)

    Muratov, Alexander L. [U. Michigan, Dept. Astron.; Gnedin, Oleg Y. [U. Michigan, Dept. Astron.; Gnedin, Nickolay Y. [Chicago U., Astron. Astrophys. Ctr.; Zemp, Marcel [Beijing, KITPC

    2013-07-19

    We investigate the transition from primordial Population III (Pop III) star formation to normal Pop II star formation in the first galaxies using new cosmological hydrodynamic simulations. We find that while the first stars seed their host galaxies with metals, they cannot sustain significant outflows to enrich the intergalactic medium, even assuming a top-heavy initial mass function. This means that Pop III star formation could potentially continue until z 6 in different unenriched regions of the universe, before being ultimately shut off by cosmic reionization. Within an individual galaxy, the metal production and stellar feedback from Pop II stars overtake Pop III stars in 20-200 Myr, depending on galaxy mass.

  20. Star clusters in evolving galaxies

    Science.gov (United States)

    Renaud, Florent

    2018-04-01

    Their ubiquity and extreme densities make star clusters probes of prime importance of galaxy evolution. Old globular clusters keep imprints of the physical conditions of their assembly in the early Universe, and younger stellar objects, observationally resolved, tell us about the mechanisms at stake in their formation. Yet, we still do not understand the diversity involved: why is star cluster formation limited to 105M⊙ objects in the Milky Way, while some dwarf galaxies like NGC 1705 are able to produce clusters 10 times more massive? Why do dwarfs generally host a higher specific frequency of clusters than larger galaxies? How to connect the present-day, often resolved, stellar systems to the formation of globular clusters at high redshift? And how do these links depend on the galactic and cosmological environments of these clusters? In this review, I present recent advances on star cluster formation and evolution, in galactic and cosmological context. The emphasis is put on the theory, formation scenarios and the effects of the environment on the evolution of the global properties of clusters. A few open questions are identified.

  1. TORUS AND ACTIVE GALACTIC NUCLEUS PROPERTIES OF NEARBY SEYFERT GALAXIES: RESULTS FROM FITTING INFRARED SPECTRAL ENERGY DISTRIBUTIONS AND SPECTROSCOPY

    International Nuclear Information System (INIS)

    Alonso-Herrero, Almudena; Ramos Almeida, Cristina; Mason, Rachel; Asensio Ramos, Andres; Rodriguez Espinosa, Jose Miguel; Perez-Garcia, Ana M.; Roche, Patrick F.; Levenson, Nancy A.; Elitzur, Moshe; Packham, Christopher; Young, Stuart; Diaz-Santos, Tanio

    2011-01-01

    We used the CLUMPY torus models and a Bayesian approach to fit the infrared spectral energy distributions and ground-based high angular resolution mid-infrared spectroscopy of 13 nearby Seyfert galaxies. This allowed us to put tight constraints on torus model parameters such as the viewing angle i, the radial thickness of the torus Y, the angular size of the cloud distribution σ torus , and the average number of clouds along radial equatorial rays N 0 . We found that the viewing angle i is not the only parameter controlling the classification of a galaxy into type 1 or type 2. In principle, type 2s could be viewed at any viewing angle i as long as there is one cloud along the line of sight. A more relevant quantity for clumpy media is the probability for an active galactic nucleus (AGN) photon to escape unabsorbed. In our sample, type 1s have relatively high escape probabilities, P esc ∼ 12%-44%, while type 2s, as expected, tend to have very low escape probabilities. Our fits also confirmed that the tori of Seyfert galaxies are compact with torus model radii in the range 1-6 pc. The scaling of the models to the data also provided the AGN bolometric luminosities L bol (AGN), which were found to be in good agreement with estimates from the literature. When we combined our sample of Seyfert galaxies with a sample of PG quasars from the literature to span a range of L bol (AGN) ∼ 10 43 -10 47 erg s -1 , we found plausible evidence of the receding torus. That is, there is a tendency for the torus geometrical covering factor to be lower (f 2 ∼ 0.1-0.3) at high AGN luminosities than at low AGN luminosities (f 2 ∼ 0.9-1 at ∼10 43 -10 44 erg s -1 ). This is because at low AGN luminosities the tori appear to have wider angular sizes (larger σ torus ) and more clouds along radial equatorial rays. We cannot, however, rule out the possibility that this is due to contamination by extended dust structures not associated with the dusty torus at low AGN luminosities

  2. Clustering of Star-forming Galaxies Near a Radio Galaxy at z=5.2

    Science.gov (United States)

    Overzier, Roderik A.; Miley, G. K.; Bouwens, R. J.; Cross, N. J. G.; Zirm, A. W.; Benítez, N.; Blakeslee, J. P.; Clampin, M.; Demarco, R.; Ford, H. C.; Hartig, G. F.; Illingworth, G. D.; Martel, A. R.; Röttgering, H. J. A.; Venemans, B.; Ardila, D. R.; Bartko, F.; Bradley, L. D.; Broadhurst, T. J.; Coe, D.; Feldman, P. D.; Franx, M.; Golimowski, D. A.; Goto, T.; Gronwall, C.; Holden, B.; Homeier, N.; Infante, L.; Kimble, R. A.; Krist, J. E.; Mei, S.; Menanteau, F.; Meurer, G. R.; Motta, V.; Postman, M.; Rosati, P.; Sirianni, M.; Sparks, W. B.; Tran, H. D.; Tsvetanov, Z. I.; White, R. L.; Zheng, W.

    2006-01-01

    We present HST ACS observations of the most distant radio galaxy known, TN J0924-2201 at z=5.2. This radio galaxy has six spectroscopically confirmed Lyα-emitting companion galaxies and appears to lie within an overdense region. The radio galaxy is marginally resolved in i775 and z850, showing continuum emission aligned with the radio axis, similar to what is observed for lower redshift radio galaxies. Both the half-light radius and the UV star formation rate are comparable to the typical values found for Lyman break galaxies at z~4-5. The Lyα emitters are sub-L* galaxies, with deduced star formation rates of 1-10 Msolar yr-1. One of the Lyα emitters is only detected in Lyα. Based on the star formation rate of ~3 Msolar yr-1 calculated from Lyα, the lack of continuum emission could be explained if the galaxy is younger than ~2 Myr and is producing its first stars. Observations in V606i775z850 were used to identify additional Lyman break galaxies associated with this structure. In addition to the radio galaxy, there are 22 V606 break (z~5) galaxies with z850dropouts extracted from GOODS and the UDF parallel fields. We find evidence for an overdensity to very high confidence (>99%), based on a counts-in-cells analysis applied to the control field. The excess suggests that the V606 break objects are associated with a forming cluster around the radio galaxy. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program 9291.

  3. Peculiar early-type galaxies with central star formation

    International Nuclear Information System (INIS)

    Ge Chong; Gu Qiusheng

    2012-01-01

    Early-type galaxies (ETGs) are very important for understanding the formation and evolution of galaxies. Recent observations suggest that ETGs are not simply old stellar spheroids as we previously thought. Widespread recent star formation, cool gas and dust have been detected in a substantial fraction of ETGs. We make use of the radial profiles of g — r color and the concentration index from the Sloan Digital Sky Survey database to pick out 31 peculiar ETGs with central blue cores. By analyzing the photometric and spectroscopic data, we suggest that the blue cores are caused by star formation activities rather than the central weak active galactic nucleus. From the results of stellar population synthesis, we find that the stellar population of the blue cores is relatively young, spreading from several Myr to less than one Gyr. In 14 galaxies with H I observations, we find that the average gas fraction of these galaxies is about 0.55. The bluer galaxies show a higher gas fraction, and the total star formation rate (SFR) correlates very well with the H I gas mass. The star formation history of these ETGs is affected by the environment, e.g. in the denser environment the H I gas is less and the total SFR is lower. We also discuss the origin of the central star formation of these early-type galaxies.

  4. Observation of soft X-ray spectra from a Seyfert 1 and a narrow emission-line galaxy

    International Nuclear Information System (INIS)

    Singh, K.P.; Garmire, G.P.; Nousek, J.

    1985-01-01

    The 0.2-40 keV X-ray spectra of the Seyfert 1 galaxy Mrk 509 and the narrow emission-line galaxy NGC 2992 are analyzed. The results suggest the presence of a steep soft X-ray component in Mrk 509 in addition to the well-known Gamma = 1.7 component found in other active galactic nuclei in the 2-40 keV energy range. The soft X-ray component is interpreted as due to thermal emission from a hot gas, probably associated with the highly ionized gas observed to be outflowing from the galaxy. The X-ray spectrum of NGC 2992 does not show any steepening in the soft X-ray band and is consistent with a single power law (Gamma = 1.78) with very low absorbing column density of 4 x 10 to the 21st/sq cm. A model with partial covering of the nuclear X-ray source is preferred, however, to a simple model with a single power law and absorption. 34 references

  5. New metallicity calibration for Seyfert 2 galaxies based on the N2O2 index

    Science.gov (United States)

    Castro, C. S.; Dors, O. L.; Cardaci, M. V.; Hägele, G. F.

    2017-05-01

    We derive a new relation between the metallicity of Seyfert 2 active galactic nuclei (AGNs) and the intensity of the narrow emission-lines ratio N2O2 = log([N II] λ6584/[O II] λ3727). The calibration of this relation was performed by determining the metallicity (Z) of a sample of 58 AGNs through a diagram containing the observational data and the results of a grid of photoionization models obtained with the cloudy code. We find the new Z/Z⊙-N2O2 relation using the obtained metallicity values and the corresponding observational emission-line intensities for each object of the sample. Estimations derived through the use of this new calibration indicate that the narrow-line regions of Seyfert 2 galaxies exhibit a large range of metallicities (0.3 ≲ Z/Z⊙ ≲ 2.0), with a median value Z ≈ Z⊙. Regarding the possible existence of correlations between the luminosity L(Hβ), the electron density and the colour excess E(B - V) with the metallicity in this kind of objects, we do not find correlations between them.

  6. Environmental effects on star formation in dwarf galaxies and star clusters

    Science.gov (United States)

    Pasetto, Stefano; Cropper, Mark; fujita, Yutaka; Chiosi, Cesare; Grebel, Eva K.

    2015-08-01

    We investigate the competitive role of the different dissipative phenomena acting on the onset of star formation history of gravitationally bound system in an external environment.Ram pressure, Kelvin-Helmholtz instability, Rayleigh-Taylor, and tidal forces are accounted separately in an analytical framework and compared in their role in influencing the star forming regions. The two-fluids instability at the interface between a stellar system and its surrounding hotter and less dense environment is related to the star formation processes through a set of differential equations. We present an analytical criterion to elucidate the dependence of star formation in a spherical stellar system on its surrounding environment useful in theoretical interpretations of numerical results as well as observational applications. We show how spherical coordinates naturally enlighten the interpretation of the two-fluids instability in a geometry that directly applies to astrophysical case. Finally, we consider the different signatures of these phenomena in synthetically realized colour-magnitude diagrams of the orbiting system thus investigating the detectability limits of these different effects for future observational projects and their relevance.The theoretical framework developed has direct applications to the cases of dwarf galaxies in galaxy clusters and dwarf galaxies orbiting our Milky Way system, as well as any primordial gas-rich cluster of stars orbiting within its host galaxy.

  7. A CLOSER VIEW OF THE RADIO-FIR CORRELATION: DISENTANGLING THE CONTRIBUTIONS OF STAR FORMATION AND ACTIVE GALACTIC NUCLEUS ACTIVITY

    International Nuclear Information System (INIS)

    Moric, I.; Smolcic, V.; Riechers, D. A.; Scoville, N.; Kimball, A.; Ivezic, Z.

    2010-01-01

    We extend the Unified Radio Catalog, a catalog of sources detected by various (NVSS, FIRST, WENSS, GB6) radio surveys, and SDSS, to IR wavelengths by matching it to the IRAS Point and Faint Source catalogs. By fitting each NVSS-selected galaxy's NUV-NIR spectral energy distribution (SED) with stellar population synthesis models we add to the catalog star formation rates (SFRs), stellar masses, and attenuations. We further add information about optical emission-line properties for NVSS-selected galaxies with available SDSS spectroscopy. Using an NVSS 20 cm (F 1.4 G Hz ∼> 2.5 mJy) selected sample, matched to the SDSS spectroscopic ('main' galaxy and quasar) catalogs and IRAS data (0.04 < z ∼< 0.2) we perform an in-depth analysis of the radio-FIR correlation for various types of galaxies, separated into (1) quasars, (2) star-forming, (3) composite, (4) Seyfert, (5) LINER, and (6) absorption line galaxies using the standard optical spectroscopic diagnostic tools. We utilize SED-based SFRs to independently quantify the source of radio and FIR emission in our galaxies. Our results show that Seyfert galaxies have FIR/radio ratios lower than, but still within the scatter of, the canonical value due to an additional (likely active galactic nucleus (AGN)) contribution to their radio continuum emission. Furthermore, IR-detected absorption and LINER galaxies are on average strongly dominated by AGN activity in both their FIR and radio emission; however their average FIR/radio ratio is consistent with that expected for star-forming galaxies. In summary, we find that most AGN-containing galaxies in our NVSS-IRAS-SDSS sample have FIR/radio flux ratios indistinguishable from those of the star-forming galaxies that define the radio-FIR correlation. Thus, attempts to separate AGNs from star-forming galaxies by their FIR/radio flux ratios alone can separate only a small fraction of the AGNs, such as the radio-loud quasars.

  8. Anisotropic ionizing radiation in Seyfert galaxies. I - The extended narrow-line region in Markarian 573

    Science.gov (United States)

    Tsvetanov, Zlatan; Walsh, J. R.

    1992-01-01

    The morphology, kinematics, and ionization state of the nuclear extended narrow-line region (ENLR) of the Seyfert 2 galaxy Mrk 573 are studied using narrow-band images of a grid of long-slit spectra. The entire ENLR is mapped spectroscopically, and velocity structure is studied. The velocity field map shows a typical galactic rotation picture with some important deviations. A simple geometric model, in accordance with the 'unified schemes', is employed to study the effects of various parameters of the observed picture. The best match is achieved when a biconical radiation field illuminates the ISM of the host galaxy that takes part in a normal galaxy rotation but also has radial motions close to the nucleus. The emission-line images reveal an ENLR elongated along the radio axis in the northwest-southeast direction, but a map of the flux ratio forbidden O III 5007/(H-alpha + forbidden N II) shows a different structure, with the highest excitation peak offset by about 4 arcsec along the radio axis to the southeast.

  9. A catapult model for the narrow-line region in Seyferts and radio galaxies

    International Nuclear Information System (INIS)

    Smith, M.D.

    1984-01-01

    The kinematics and stability of clouds falling radially into a supersonic wind are studied. A critical parameter is found, the ejection coefficient, which separates clouds which continue to gravitate inwards from those which are catapulted out by the ram pressure of the wind. This leads to a maximum size for ejected clouds. The clouds are partially broken up by fluid dynamic instabilities and the fragments expelled with enhanced velocities. This model is applied to the narrow-line region of Seyferts and radio galaxies. A quasi-steady picture may be established for the wind-ambient medium interaction zone. The wind is shocked and escapes through jets or bubbles; the ambient medium cools, forming the clouds which gravitate inwards. (author)

  10. Revisiting The First Galaxies: The effects of Population III stars on their host galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Muratov, Alexander L. [U. Michigan, Dept. Astron.; Gnedin, Oleg Y. [U. Michigan, Dept. Astron.; Gnedin, Nickolay Y. [Chicago U., Astron. Astrophys. Ctr.; Zemp, Marcel [Beijing, KITPC

    2013-07-12

    We revisit the formation and evolution of the first galaxies using new hydrodynamic cosmological simulations with the adaptive refinement tree code. Our simulations feature a recently developed model for H2 formation and dissociation, and a star formation recipe that is based on molecular rather than atomic gas. Here, we develop and implement a recipe for the formation of metal-free Population III (Pop III) stars in galaxy-scale simulations that resolve primordial clouds with sufficiently high density. We base our recipe on the results of prior zoom-in simulations that resolved the protostellar collapse in pre-galactic objects. We find the epoch during which Pop III stars dominated the energy and metal budget of the first galaxies to be short-lived. Galaxies that host Pop III stars do not retain dynamical signatures of their thermal and radiative feedback for more than 108 years after the lives of the stars end in pair-instability supernovae, even when we consider the maximum reasonable efficiency of the feedback. Though metals ejected by the supernovae can travel well beyond the virial radius of the host galaxy, they typically begin to fall back quickly, and do not enrich a large fraction of the intergalactic medium. Galaxies with a total mass in excess of 3 × 106 M re-accrete most of their baryons and transition to metal-enriched Pop II star formation.

  11. Chemical Abundances of Metal-poor stars in Dwarf Galaxies

    NARCIS (Netherlands)

    Venn, Kim A.; Jablonka, Pascale; Hill, Vanessa; Starkenburg, Else; Lemasle, Bertrand; Shetrone, Matthew; Irwin, Mike; Norris, John; Yong, David; Gilmore, Gerry; Salvadori, Stephania; Skuladottir, Asa; Tolstoy, Eline; Bragaglia, A.; Arnaboldi, M.; Rejkuba, M.; Romano, D.

    2016-01-01

    Stars in low-mass dwarf galaxies show a larger range in their chemical properties than those in the Milky Way halo. The slower star formation efficiency make dwarf galaxies ideal systems for testing nucleosynthetic yields. Not only are alpha-poor stars found at lower metallicities, and a higher

  12. Star formation suppression in compact group galaxies

    DEFF Research Database (Denmark)

    Alatalo, K.; Appleton, P. N.; Lisenfeld, U.

    2015-01-01

    , bars, rings, tidal tails, and possibly nuclear outflows, though the molecular gas morphologies are more consistent with spirals and earlytype galaxies than mergers and interacting systems. Our CO-imaged HCG galaxies, when plotted on the Kennicutt-Schmidt relation, shows star formation (SF) suppression...... color space. This supports the idea that at least some galaxies in HCGs are transitioning objects, where a disruption of the existing molecular gas in the system suppresses SF by inhibiting the molecular gas from collapsing and forming stars efficiently. These observations, combined with recent work...

  13. A FANAROFF-RILEY TYPE I CANDIDATE IN NARROW-LINE SEYFERT 1 GALAXY Mrk 1239

    Energy Technology Data Exchange (ETDEWEB)

    Doi, Akihiro [The Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuou-ku, Sagamihara, Kanagawa 252-5210 (Japan); Wajima, Kiyoaki [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong, Daejeon 305-348 (Korea, Republic of); Hagiwara, Yoshiaki [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Inoue, Makoto, E-mail: akihiro.doi@vsop.isas.jaxa.jp [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China)

    2015-01-10

    We report finding kiloparsec-scale radio emissions aligned with parsec-scale jet structures in the narrow-line Seyfert 1 (NLS1) galaxy Mrk 1239 using the Very Large Array and the Very Long Baseline Array. Thus, this radio-quiet NLS1 has a jet-producing central engine driven by essentially the same mechanism as that of other radio-loud active galactic nuclei (AGNs). Most of the radio luminosity is concentrated within 100 parsecs and overall radio morphology looks edge-darkened; the estimated jet kinetic power is comparable to Fanaroff-Riley Type I radio galaxies. The conversion from accretion to jet power appears to be highly inefficient in this highly accreting low-mass black hole system compared with that in a low-luminosity AGN with similar radio power driven by a sub-Eddington, high-mass black hole. Thus, Mrk 1239 is a crucial probe to the unexplored parameter spaces of central engines for a jet formation.

  14. Star formation quenching in quasar host galaxies

    Science.gov (United States)

    Carniani, Stefano

    2017-10-01

    Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN). In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionised and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ˜2.4 obtained with SINFONI in the H- and K-band. All the quasars show [OIII]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM anti-correlated with star-formation powered emission, i.e. star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50 - 100 M⊙/yr, has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2) ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2) transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.

  15. A model for the origin of bursty star formation in galaxies

    Science.gov (United States)

    Faucher-Giguère, Claude-André

    2018-01-01

    We propose a simple analytic model to understand when star formation is time steady versus bursty in galaxies. Recent models explain the observed Kennicutt-Schmidt relation between star formation rate and gas surface densities in galaxies as resulting from a balance between stellar feedback and gravity. We argue that bursty star formation occurs when such an equilibrium cannot be stably sustained, and identify two regimes in which galaxy-scale star formation should be bursty: (i) at high redshift (z ≳ 1) for galaxies of all masses, and (ii) at low masses (depending on gas fraction) for galaxies at any redshift. At high redshift, characteristic galactic dynamical time-scales become too short for supernova feedback to effectively respond to gravitational collapse in galactic discs (an effect recently identified for galactic nuclei), whereas in dwarf galaxies star formation occurs in too few bright star-forming regions to effectively average out. Burstiness is also enhanced at high redshift owing to elevated gas fractions in the early Universe. Our model can thus explain the bursty star formation rates predicted in these regimes by recent high-resolution galaxy formation simulations, as well as the bursty star formation histories observationally inferred in both local dwarf and high-redshift galaxies. In our model, bursty star formation is associated with particularly strong spatiotemporal clustering of supernovae. Such clustering can promote the formation of galactic winds and our model may thus also explain the much higher wind mass loading factors inferred in high-redshift massive galaxies relative to their z ∼ 0 counterparts.

  16. The Different Nature in Seyfert 2 Galaxies With and Without Hidden Broad-Line Regions

    OpenAIRE

    Wu, Yu-Zhong; Zhang, En-Peng; Liang, Yan-Chun; Zhang, Cheng-Min; Zhao, Yong-Heng

    2011-01-01

    We compile a large sample of 120 Seyfert 2 galaxies (Sy2s) which contains 49 hidden broad-line region (HBLR) Sy2s and 71 non-HBLR Sy2s. From the difference in the power sources between two groups, we test if HBLR Sy2s are dominated by active galactic nuclei (AGNs), and if non-HBLR Sy2s are dominated by starbursts. We show that: (1) HBLR Sy2s have larger accretion rates than non-HBLR Sy2s; (2) HBLR Sy2s have larger \\Nev $\\lambda 14.32$/\\Neii $\\lambda 12.81$ and \\oiv $\\lambda 25.89$/\\Neii $\\lam...

  17. STAR-GALAXY CLASSIFICATION IN MULTI-BAND OPTICAL IMAGING

    International Nuclear Information System (INIS)

    Fadely, Ross; Willman, Beth; Hogg, David W.

    2012-01-01

    Ground-based optical surveys such as PanSTARRS, DES, and LSST will produce large catalogs to limiting magnitudes of r ∼> 24. Star-galaxy separation poses a major challenge to such surveys because galaxies—even very compact galaxies—outnumber halo stars at these depths. We investigate photometric classification techniques on stars and galaxies with intrinsic FWHM best ) where the training data are (unrealistically) a random sampling of the data in both signal-to-noise and demographics and (2) a more realistic scenario where training is done on higher signal-to-noise data (SVM real ) at brighter apparent magnitudes. Testing with COSMOS ugriz data, we find that HB outperforms ML, delivering ∼80% completeness, with purity of ∼60%-90% for both stars and galaxies. We find that no algorithm delivers perfect performance and that studies of metal-poor main-sequence turnoff stars may be challenged by poor star-galaxy separation. Using the Receiver Operating Characteristic curve, we find a best-to-worst ranking of SVM best , HB, ML, and SVM real . We conclude, therefore, that a well-trained SVM will outperform template-fitting methods. However, a normally trained SVM performs worse. Thus, HB template fitting may prove to be the optimal classification method in future surveys.

  18. X-ray monitoring of the radio and γ-ray loud Narrow-Line Seyfert 1 Galaxy PKS2004–447

    Directory of Open Access Journals (Sweden)

    Kreikenbohm A.

    2013-12-01

    Full Text Available We present preliminary results of the X-ray analysis of XMM-Newton and Swift observations as part of a multi-wavelength monitoring campaign in 2012 of the radio-loud narrow line Seyfert 1 galaxy PKS 2004–447. The source was recently detected in γ-rays by Fermi/LAT among only four other galaxies of that type. The 0:5 – 10 keV X-ray spectrum is well-described by a simple absorbed powerlaw (Γ ∼ 1.6. The source brightness exhibits variability on timescales of months to years with indications for spectral variability, which follows a “bluer-when-brighter” behaviour, similar to blazars.

  19. Galaxies interactions and induced star formation

    CERN Document Server

    Kennicutt Jr, Robert C; Barnes, JE

    1998-01-01

    The papers that make up this volume present a comprehensive review of the field of galaxy interaction. Galaxies are dynamic forces that evolve, interact, merge, blaze and reshape. This book offers a historical perspective and studies such topics as induced star formation.

  20. GAS, STARS, AND STAR FORMATION IN ALFALFA DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Huang Shan; Haynes, Martha P.; Giovanelli, Riccardo [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Brinchmann, Jarle [Sterrewacht Leiden, Leiden University, NL-2300 RA Leiden (Netherlands); Stierwalt, Sabrina [Spitzer Science Center, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Neff, Susan G., E-mail: shan@astro.cornell.edu, E-mail: haynes@astro.cornell.edu, E-mail: riccardo@astro.cornell.edu, E-mail: jarle@strw.leidenuniv.nl, E-mail: sabrina@ipac.caltech.edu, E-mail: susan.g.neff@nasa.gov [NASA GSFC, Code 665, Observational Cosmology Lab, Greenbelt, MD 20771 (United States)

    2012-06-15

    We examine the global properties of the stellar and H I components of 229 low H I mass dwarf galaxies extracted from the ALFALFA survey, including a complete sample of 176 galaxies with H I masses <10{sup 7.7} M{sub Sun} and H I line widths <80 km s{sup -1}. Sloan Digital Sky Survey (SDSS) data are combined with photometric properties derived from Galaxy Evolution Explorer to derive stellar masses (M{sub *}) and star formation rates (SFRs) by fitting their UV-optical spectral energy distributions (SEDs). In optical images, many of the ALFALFA dwarfs are faint and of low surface brightness; only 56% of those within the SDSS footprint have a counterpart in the SDSS spectroscopic survey. A large fraction of the dwarfs have high specific star formation rates (SSFRs), and estimates of their SFRs and M{sub *} obtained by SED fitting are systematically smaller than ones derived via standard formulae assuming a constant SFR. The increased dispersion of the SSFR distribution at M{sub *} {approx}< 10{sup 8} M{sub Sun} is driven by a set of dwarf galaxies that have low gas fractions and SSFRs; some of these are dE/dSphs in the Virgo Cluster. The imposition of an upper H I mass limit yields the selection of a sample with lower gas fractions for their M{sub *} than found for the overall ALFALFA population. Many of the ALFALFA dwarfs, particularly the Virgo members, have H I depletion timescales shorter than a Hubble time. An examination of the dwarf galaxies within the full ALFALFA population in the context of global star formation (SF) laws is consistent with the general assumptions that gas-rich galaxies have lower SF efficiencies than do optically selected populations and that H I disks are more extended than stellar ones.

  1. GAS, STARS, AND STAR FORMATION IN ALFALFA DWARF GALAXIES

    International Nuclear Information System (INIS)

    Huang Shan; Haynes, Martha P.; Giovanelli, Riccardo; Brinchmann, Jarle; Stierwalt, Sabrina; Neff, Susan G.

    2012-01-01

    We examine the global properties of the stellar and H I components of 229 low H I mass dwarf galaxies extracted from the ALFALFA survey, including a complete sample of 176 galaxies with H I masses 7.7 M ☉ and H I line widths –1 . Sloan Digital Sky Survey (SDSS) data are combined with photometric properties derived from Galaxy Evolution Explorer to derive stellar masses (M * ) and star formation rates (SFRs) by fitting their UV-optical spectral energy distributions (SEDs). In optical images, many of the ALFALFA dwarfs are faint and of low surface brightness; only 56% of those within the SDSS footprint have a counterpart in the SDSS spectroscopic survey. A large fraction of the dwarfs have high specific star formation rates (SSFRs), and estimates of their SFRs and M * obtained by SED fitting are systematically smaller than ones derived via standard formulae assuming a constant SFR. The increased dispersion of the SSFR distribution at M * ∼ 8 M ☉ is driven by a set of dwarf galaxies that have low gas fractions and SSFRs; some of these are dE/dSphs in the Virgo Cluster. The imposition of an upper H I mass limit yields the selection of a sample with lower gas fractions for their M * than found for the overall ALFALFA population. Many of the ALFALFA dwarfs, particularly the Virgo members, have H I depletion timescales shorter than a Hubble time. An examination of the dwarf galaxies within the full ALFALFA population in the context of global star formation (SF) laws is consistent with the general assumptions that gas-rich galaxies have lower SF efficiencies than do optically selected populations and that H I disks are more extended than stellar ones.

  2. The Effects of Galaxy Interactions on Star Formation

    Science.gov (United States)

    Beverage, Aliza; Weiner, Aaron; Ramos Padilla, Andres; Ashby, Matthew; Smith, Howard A.

    2018-01-01

    Galaxy interactions are key events in galaxy evolution, and are widely thought to trigger significant increases in star formation. However, the mechanisms and timescales for these increases are still not well understood. In order to probe the effects of mergers, we undertook an investigation based on the Spitzer Interacting Galaxies Survey (SIGS), a sample of 102 nearby galaxies in 48 systems ranging from weakly interacting to near coalescence. Our study is unique in that we use both broadband photometry and a large sample of objects chosen to be statistically meaningful. Our data come from 32 broad bands ranging from the UV to far-IR, and we model spectral energy distributions (SEDs) using the Code for Investigating Galaxy Emission (CIGALE) to estimate physical characteristics for each galaxy. We find marginal statistical correlations between galaxy interaction strength and dust luminosity and the distribution of dust mass as a function of heating intensity. The specific star formation rates, however, do not show any enhancement across the interaction stages. This result challenges conventional wisdom that mergers induce star formation throughout galaxy interaction.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.

  3. Cosmic-ray energy densities in star-forming galaxies

    Directory of Open Access Journals (Sweden)

    Persic Massimo

    2017-01-01

    Full Text Available The energy density of cosmic ray protons in star forming galaxies can be estimated from π0-decay γ-ray emission, synchrotron radio emission, and supernova rates. To galaxies for which these methods can be applied, the three methods yield consistent energy densities ranging from Up ~ 0.1 − 1 eV cm−3 to Up ~ 102 − 103 eV cm−3 in galaxies with low to high star-formation rates, respectively.

  4. The HR diagram for luminous stars in nearby galaxies

    International Nuclear Information System (INIS)

    Humphreys, R.M.

    1978-01-01

    Due to the extreme faintness of stars in other galaxies it is only possible to sample the brightest stars in the nearest galaxies. The observations must then be compared with comparable data for the brightest stars, the supergiants and O-type stars, in the Milky Way. The data for the luminous stars are most complete for the Milky Way and the Large Magellanic Cloud. The luminosities for the stars in our Galaxy are based on their membership in associations and clusters, and consequently are representative of Population I within approximately 3kpc of the Sun. The data for the stars in the LMC with spectral types O to G8 come from published observations, and the M supergiants are from the author's recent observations of red stars in the LMC. This is the first time that the M supergiants have been included in an HR diagram of the Large Cloud. The presence of the red stars is important for any discussion of the evolution of the massive stars. (Auth.)

  5. Star formation and the surface brightness of spiral galaxies

    International Nuclear Information System (INIS)

    Phillipps, S.; Disney, M.

    1985-01-01

    The (blue) surface brightness of spiral galaxies is significantly correlated with their Hα linewidth. This can be most plausibly interpreted as a correlation of surface brightness with star formation rate. There is also a significant difference in surface brightness between galaxies forming stars in a grand design spiral pattern and those with floc star formation regions. (author)

  6. VARIABILITY AND STAR FORMATION IN LEO T, THE LOWEST LUMINOSITY STAR-FORMING GALAXY KNOWN TODAY

    Energy Technology Data Exchange (ETDEWEB)

    Clementini, Gisella; Cignoni, Michele; Ramos, Rodrigo Contreras; Federici, Luciana; Tosi, Monica [INAF, Osservatorio Astronomico di Bologna, I-40127 Bologna (Italy); Ripepi, Vincenzo; Marconi, Marcella; Musella, Ilaria, E-mail: gisella.clementini@oabo.inaf.it, E-mail: rodrigo.contreras@oabo.inaf.it, E-mail: luciana.federici@oabo.inaf.it, E-mail: monica.tosi@oabo.inaf.it, E-mail: michele.cignoni@unibo.it, E-mail: ripepi@na.astro.it, E-mail: marcella@na.astro.it, E-mail: ilaria@na.astro.it [INAF, Osservatorio Astronomico di Capodimonte, I-80131 Napoli (Italy)

    2012-09-10

    We present results from the first combined study of variable stars and star formation history (SFH) of the Milky Way 'ultra-faint' dwarf (UFD) galaxy Leo T, based on F606W and F814W multi-epoch archive observations obtained with the Wide Field Planetary Camera 2 on board the Hubble Space Telescope. We have detected 14 variable stars in the galaxy. They include one fundamental-mode RR Lyrae star and 11 Anomalous Cepheids with periods shorter than 1 day, thus suggesting the occurrence of multiple star formation episodes in this UFD, of which one about 10 Gyr ago produced the RR Lyrae star. A new estimate of the distance to Leo T of 409{sup +29}{sub -27} kpc (distance modulus of 23.06 {+-} 0.15 mag) was derived from the galaxy's RR Lyrae star. Our V, V - I color-magnitude diagram (CMD) of Leo T reaches V {approx} 29 mag and shows features typical of a galaxy in transition between dwarf irregular and dwarf spheroidal types. A quantitative analysis of the SFH, based on the comparison of the observed V, V - I CMD with the expected distribution of stars for different evolutionary scenarios, confirms that Leo T has a complex SFH dominated by two enhanced periods about 1.5 and 9 Gyr ago, respectively. The distribution of stars and gas shows that the galaxy has a fairly asymmetric structure.

  7. KILOPARSEC-SCALE RADIO STRUCTURES IN NARROW-LINE SEYFERT 1 GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Doi, Akihiro; Kino, Motoki [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuou-ku, Sagamihara, Kanagawa 252-5210 (Japan); Nagira, Hiroshi [Graduate School of Science and Engineering, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi 753-8512 (Japan); Kawakatu, Nozomu [Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 (Japan); Nagai, Hiroshi [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Asada, Keiichi, E-mail: akihiro.doi@vsop.isas.jaxa.jp [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China)

    2012-11-20

    We report the finding of kiloparsec (kpc)-scale radio structures in three radio-loud narrow-line Seyfert 1 (NLS1) galaxies from the Faint Images of the Radio Sky at Twenty-centimeters of the Very Large Array, which increases the number of known radio-loud NLS1s with kpc-scale structures to six, including two {gamma}-ray-emitting NLS1s (PMN J0948+0022 and 1H 0323+342) detected by the Fermi Gamma-ray Space Telescope. The detection rate of extended radio emissions in NLS1s is lower than that in broad-line active galactic nuclei (AGNs) with a statistical significance. We found both core-dominated (blazar-like) and lobe-dominated (radio-galaxy-like) radio structures in these six NLS1s, which can be understood in the framework of the unified scheme of radio-loud AGNs that considers radio galaxies as non-beamed parent populations of blazars. Five of the six NLS1s have (1) extended radio luminosities suggesting jet kinetic powers of {approx}> 10{sup 44} erg s{sup -1}, which is sufficient to make jets escape from hosts' dense environments; (2) black holes of {approx}> 10{sup 7} M {sub Sun }, which can generate the necessary jet powers from near-Eddington mass accretion; and (3) two-sided radio structures at kpc scales, requiring expansion rates of {approx}0.01c-0.3c and kinematic ages of {approx}> 10{sup 7} years. On the other hand, most typical NLS1s would be driven by black holes of {approx}< 10{sup 7} M {sub Sun} in a limited lifetime of {approx}10{sup 7} years. Hence, the kpc-scale radio structures may originate in a small window of opportunity during the final stage of the NLS1 phase just before growing into broad-line AGNs.

  8. Carbon-enhanced metal-poor stars in dwarf galaxies

    OpenAIRE

    Salvadori, Stefania; Skuladottir, Asa; Tolstoy, Eline

    2015-01-01

    We investigate the frequency and origin of carbon-enhanced metal-poor (CEMP) stars in Local Group dwarf galaxies by means of a statistical, data-calibrated cosmological model for the hierarchical build-up of the Milky Way and its dwarf satellites. The model self-consistently explains the variation with dwarf galaxy luminosity of the observed: i) frequency and [Fe/H] range of CEMP stars; ii) metallicity distribution functions; iii) star formation histories. We show that if primordial faint sup...

  9. Wolf-Rayet Stars in Starburst Galaxies

    OpenAIRE

    Mas-Hesse, J. Miguel; Kunth, Daniel; Cervino, Miguel

    1999-01-01

    Wolf-Rayet stars have been detected in a large number of galaxies experiencing intense bursts of star formation. All stars initially more massive than a certain, metallicity-dependent, value are believed to experience the Wolf-Rayet phase at the end of their evolution, just before collapsing in supernova explosion. The detection of Wolf-Rayet stars puts therefore important constraints on the evolutionary status of starbursts, the properties of their Initial Mass Functions and their star forma...

  10. Initial mass function for early-type stars in starburst galaxies

    International Nuclear Information System (INIS)

    Sekiguchi, K.; Anderson, K.S.

    1987-01-01

    The IMF slope of early-type stars in starburst galaxies is investigated using IUE observations and a technique that utilizes mass-linewidth relations for early-type stars. Fourteen low-resolution IUE spectra of eight starburst galaxies and three H II region galaxies are used to obtain line-strength ratios Si IV(1400 A)/C IV(1550 A). These are compared to model line ratios, and indicate that the average IMF slope for OB stars in these intense star-formation regions is appreciably flatter than that of the solar neighborhood. 46 references

  11. Stochastic star formation and the evolution of galaxies

    International Nuclear Information System (INIS)

    Seiden, P.E.; Schulman, L.S.; Gerola, H.

    1979-01-01

    The mechanism of stochastic self-propagating star formation has previously been invoked to explain the origin of spiral arms in galaxies. In this paper we extend the application of this mechanism to account for the diversity of morphological types and the evolution of galaxies. The new property that arises from consideration of this mechanism is that the rate of star formation exhibits the critical behavior of a phase transition. This is a general property of the system and is not strongly dependent on the details of the star--interstellar gas interaction. Examination of the properties of this phase transition provides a general scenario for the evolution of galaxies and the origin of the various morphological types

  12. Quasars, Seyfert galaxies and active galactic nuclei

    International Nuclear Information System (INIS)

    Osterbrock, D.E.

    1987-01-01

    This chapter is devoted to the spectroscopic methods for analyzing the observed plasma in the nuclei of quasars, Seyfert galazies, and active galactic nuclei. Both the narrow-line region and the broad-line region are discussed. Physical models are presented

  13. THE NUCLEAR ACTIVITIES OF NEARBY S0 GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Meng-Yuan; Gu, Qiu-Sheng; Chen, Yan-Mei; Zhou, Luwenjia, E-mail: qsgu@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210093, P. R. China (China)

    2016-11-01

    We present a study of nuclear activities in nearby S0 galaxies. After cross-matching the Sloan Digital Sky Survey Data Release 7 with the Third Reference Catalog of Bright Galaxies (RC3) and visually checking the SDSS images, we derive a sample of 583 S0 galaxies with the central spectrophotometric information. In order to separate nebular emission lines from the underlying stellar contribution, we fit the stellar population model to the SDSS spectra of these S0 galaxies. According to the BPT diagram, we find that 8% of S0 galaxies show central star-forming activity, while the fractions of Seyfert, Composite, and low-ionization nuclear emission-line regions (LINERs) are 2%, 8%, and 21.4%, respectively. We also find that star-forming S0s have the lowest stellar masses, over one magnitude lower than the others, and that the active S0s are mainly located in the sparse environment, while the normal S0s are located in the dense environment, which might suggest that the environment plays an important role in quenching star formation and/or AGN activity in S0 galaxies. By performing bulge-disk decomposition of 45 star-forming S0s in g - and r -bands with the 2D fitting software Galfit, as well as exploiting the catalog of 2D photometric decompositions of Meert et al., we find that the bulges of approximately one-third of star-forming S0 galaxies (16/45) are bluer than their disks, while for other types of S0s the bulge and disk components show similar color distributions. Besides, the Sérsic index of most star-forming S0s bulges is less than two, while for normal S0s, it is between two and six.

  14. Star formations rates in the Galaxy

    International Nuclear Information System (INIS)

    Smith, L.F.; Mezger, P.G.; Biermann, P.

    1978-01-01

    Data relevant to giant HII regions in the Galaxy are collected. The production rate for Lyman continuum photons by O stars in giant HII regions is 4.7 10 52 s -1 in the whole Galaxy. The corresponding present rate of star formation is M (sun)/yr, of which 74% occurs in main spiral arms, 13% in the interarm region and 13% in the galactic center. The star formation rates, the observed heavy element and deuterium abundances in the solar neighbourhood are compared to model predictions based on star formation proportional to a power (k) of the gas surface density. The mass function is terminated at Msub(u)=100 M (sun) above and M 1 below. Msub(u)=50 M (sun) is also considered. Comparing with data derived from observations a) the star formation rate, b) metal abundances, c) deuterium abundances, and d) colors of the stellar population, we find that models of k=1/2 to 1, and M 1 1 M (sun) are formed together with O and B stars, but under rather special conditions of the interstellar gas, while lower mass stars form wherever dense molecular clouds exist. The high rate of star formation in the galactic center may represent a burst. (orig.) [de

  15. GEMINI NEAR INFRARED FIELD SPECTROGRAPH OBSERVATIONS OF THE SEYFERT 2 GALAXY MRK 573: IN SITU ACCELERATION OF IONIZED AND MOLECULAR GAS OFF FUELING FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Travis C.; Straughn, A. N. [Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Machuca, C.; Crenshaw, D. M.; Baron, F.; Revalski, M.; Pope, C. L. [Department of Physics and Astronomy, Georgia State University, Astronomy Offices, 25 Park Place, Suite 605, Atlanta, GA 30303 (United States); Diniz, M. R.; Riffel, R. A. [Departamento de Física, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil); Kraemer, S. B. [Institute for Astrophysics and Computational Sciences, Department of Physics, The Catholic University of America, Washington, DC 20064 (United States); Schmitt, H. R. [Naval Research Laboratory, Washington, DC 20375 (United States); Storchi-Bergmann, T., E-mail: travis.c.fischer@nasa.gov [Departamento de Astronomia, Universidade Federal do Rio Grande do Sul, IF, CP 15051, 91501-970 Porto Alegre, RS (Brazil)

    2017-01-01

    We present near-infrared and optical emission-line and stellar kinematics of the Seyfert 2 galaxy Mrk 573 using the Near-Infrared Field Spectrograph (NIFS) at Gemini North and Dual Imaging Spectrograph at Apache Point Observatory, respectively. By obtaining full kinematic maps of the infrared ionized and molecular gas and stellar kinematics in a ∼700 × 2100 pc{sup 2} circumnuclear region of Mrk 573, we find that kinematics within the Narrow-Line Region are largely due to a combination of both rotation and in situ acceleration of material originating in the host disk. Combining these observations with large-scale, optical long-slit spectroscopy that traces ionized gas emission out to several kpcs, we find that rotation kinematics dominate the majority of the gas. We find that outflowing gas extends to distances less than 1 kpc, suggesting that outflows in Seyfert galaxies may not be powerful enough to evacuate their entire bulges.

  16. Gemini Near Infrared Field Spectrograph Observations of the Seyfert 2 Galaxy MRK 573: In Situ Acceleration of Ionized and Molecular Gas Off Fueling Flows

    Science.gov (United States)

    Fischer, Travis C.; Machuca, C.; Diniz, M. R.; Crenshaw, D. M.; Kraemer, S. B.; Riffel, R. A.; Schmitt, H. R.; Baron, F.; Storchi-Bergmann, T.; Straughn, A. N.; hide

    2016-01-01

    We present near-infrared and optical emission-line and stellar kinematics of the Seyfert 2 galaxy Mrk 573 using the Near-Infrared Field Spectrograph (NIFS) at Gemini North and Dual Imaging Spectrograph at Apache Point Observatory, respectively. By obtaining full kinematic maps of the infrared ionized and molecular gas and stellar kinematics in approximately 700 x 2100 pc(exp 2) circumnuclear region of Mrk 573, we find that kinematics within the Narrow-Line Region are largely due to a combination of both rotation and in situ acceleration of material originating in the host disk. Combining these observations with large-scale, optical long-slit spectroscopy that traces ionized gas emission out to several kpcs, we find that rotation kinematics dominate the majority of the gas. We find that outflowing gas extends to distances less than 1 kpc, suggesting that outflows in Seyfert galaxies may not be powerful enough to evacuate their entire bulges.

  17. REVERBERATION MAPPING MEASUREMENTS OF BLACK HOLE MASSES IN SIX LOCAL SEYFERT GALAXIES

    International Nuclear Information System (INIS)

    Denney, K. D.; Peterson, B. M.; Pogge, R. W.; Atlee, D. W.; Bentz, M. C.; Bird, J. C.; Comins, M. L.; Dietrich, M.; Eastman, J. D.; Adair, A.; Au-Yong, K.; Chisholm, E.; Ewald, S.; Ferbey, S.; Jackson, K.; Brokofsky, D. J.; Gaskell, C. M.; Hedrick, C. H.; Doroshenko, V. T.; Efimov, Y. S.

    2010-01-01

    We present the final results from a high sampling rate, multi-month, spectrophotometric reverberation mapping campaign undertaken to obtain either new or improved Hβ reverberation lag measurements for several relatively low-luminosity active galactic nuclei (AGNs). We have reliably measured the time delay between variations in the continuum and Hβ emission line in six local Seyfert 1 galaxies. These measurements are used to calculate the mass of the supermassive black hole at the center of each of these AGNs. We place our results in context to the most current calibration of the broad-line region (BLR) R BLR -L relationship, where our results remove outliers and reduce the scatter at the low-luminosity end of this relationship. We also present velocity-resolved Hβ time-delay measurements for our complete sample, though the clearest velocity-resolved kinematic signatures have already been published.

  18. Infrared emission in Seyfert 2 galaxies - Reprocessed radiation from a dusty torus?

    Science.gov (United States)

    Storchi-Bergmann, Thaisa; Mulchaey, John S.; Wilson, Andrew S.

    1992-01-01

    New and existing data for a sample of nine Seyfert 2 galaxies with known 'ionization cones' are combined in order to test whether collimation results from shadowing of radiation from a small isotropic nuclear source by a thick dusty torus. The number of ionizing photons emitted by the compact nucleus is calculated from the emission-line ratios measured for gas within the cones. On the assumption that this compact nuclear source radiates isotropically, the optical-UV power incident on the torus, which is expected to be reradiated in the IR, is determined. It is found that the observed IRAS luminosities are consistent with the torus model in eight of the nine objects with sufficient data to perform the calculation. It is concluded that the data are generally consistent with collimation and reradiation by a dusty torus.

  19. The SAMI Galaxy Survey: spatially resolving the main sequence of star formation

    Science.gov (United States)

    Medling, Anne M.; Cortese, Luca; Croom, Scott M.; Green, Andrew W.; Groves, Brent; Hampton, Elise; Ho, I.-Ting; Davies, Luke J. M.; Kewley, Lisa J.; Moffett, Amanda J.; Schaefer, Adam L.; Taylor, Edward; Zafar, Tayyaba; Bekki, Kenji; Bland-Hawthorn, Joss; Bloom, Jessica V.; Brough, Sarah; Bryant, Julia J.; Catinella, Barbara; Cecil, Gerald; Colless, Matthew; Couch, Warrick J.; Drinkwater, Michael J.; Driver, Simon P.; Federrath, Christoph; Foster, Caroline; Goldstein, Gregory; Goodwin, Michael; Hopkins, Andrew; Lawrence, J. S.; Leslie, Sarah K.; Lewis, Geraint F.; Lorente, Nuria P. F.; Owers, Matt S.; McDermid, Richard; Richards, Samuel N.; Sharp, Robert; Scott, Nicholas; Sweet, Sarah M.; Taranu, Dan S.; Tescari, Edoardo; Tonini, Chiara; van de Sande, Jesse; Walcher, C. Jakob; Wright, Angus

    2018-04-01

    We present the ˜800 star formation rate maps for the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey based on H α emission maps, corrected for dust attenuation via the Balmer decrement, that are included in the SAMI Public Data Release 1. We mask out spaxels contaminated by non-stellar emission using the [O III]/H β, [N II]/H α, [S II]/H α, and [O I]/H α line ratios. Using these maps, we examine the global and resolved star-forming main sequences of SAMI galaxies as a function of morphology, environmental density, and stellar mass. Galaxies further below the star-forming main sequence are more likely to have flatter star formation profiles. Early-type galaxies split into two populations with similar stellar masses and central stellar mass surface densities. The main-sequence population has centrally concentrated star formation similar to late-type galaxies, while galaxies >3σ below the main sequence show significantly reduced star formation most strikingly in the nuclear regions. The split populations support a two-step quenching mechanism, wherein halo mass first cuts off the gas supply and remaining gas continues to form stars until the local stellar mass surface density can stabilize the reduced remaining fuel against further star formation. Across all morphologies, galaxies in denser environments show a decreased specific star formation rate from the outside in, supporting an environmental cause for quenching, such as ram-pressure stripping or galaxy interactions.

  20. A window on first-stars models from studies of dwarf galaxies and galactic halo stars

    Science.gov (United States)

    Venkatesan, Aparna

    2018-06-01

    Dwarf galaxies dominate the local universe by number and are predicted to be even more dominant at early times, with many having large star formation rates per unit mass. The cosmological role of dwarf galaxies in the metal enrichment and the reionization of the universe is an important but unresolved problem at present. Nearby low-mass galaxies are much more accessible observationally for detailed study and may be local analogs of the types of galaxies that hosted the first-light sources relevant for reionization. I will share recent results on UV studies of the escaping radiation from nearby low-mass starforming galaxies, as well as the tantalizing similarities in element abundance patterns between local dwarf galaxies and the latest data compilations on extremely metal-poor stars in galactic halos. I will highlight trends of interest in a variety of individual elements at values of [Fe/H] between -7 and -3, including alpha-elements, elements originating mostly in intermediate-mass stars, lithium, titanium, and r-process elements. These trends constrain not only models of the first stars and their supernovae, but provide a window into the physical conditions in early galaxies and when metal-free star formation may have ceased in the early universe.This work was supported by the University of San Francisco Faculty Development Fund, and NSF grant AST-1637339. We thank the Aspen Center for Physics, where some of this work was conducted, and which is supported by National Science Foundation grant PHY-1607611.

  1. DECISION TREE CLASSIFIERS FOR STAR/GALAXY SEPARATION

    International Nuclear Information System (INIS)

    Vasconcellos, E. C.; Ruiz, R. S. R.; De Carvalho, R. R.; Capelato, H. V.; Gal, R. R.; LaBarbera, F. L.; Frago Campos Velho, H.; Trevisan, M.

    2011-01-01

    We study the star/galaxy classification efficiency of 13 different decision tree algorithms applied to photometric objects in the Sloan Digital Sky Survey Data Release Seven (SDSS-DR7). Each algorithm is defined by a set of parameters which, when varied, produce different final classification trees. We extensively explore the parameter space of each algorithm, using the set of 884,126 SDSS objects with spectroscopic data as the training set. The efficiency of star-galaxy separation is measured using the completeness function. We find that the Functional Tree algorithm (FT) yields the best results as measured by the mean completeness in two magnitude intervals: 14 ≤ r ≤ 21 (85.2%) and r ≥ 19 (82.1%). We compare the performance of the tree generated with the optimal FT configuration to the classifications provided by the SDSS parametric classifier, 2DPHOT, and Ball et al. We find that our FT classifier is comparable to or better in completeness over the full magnitude range 15 ≤ r ≤ 21, with much lower contamination than all but the Ball et al. classifier. At the faintest magnitudes (r > 19), our classifier is the only one that maintains high completeness (>80%) while simultaneously achieving low contamination (∼2.5%). We also examine the SDSS parametric classifier (psfMag - modelMag) to see if the dividing line between stars and galaxies can be adjusted to improve the classifier. We find that currently stars in close pairs are often misclassified as galaxies, and suggest a new cut to improve the classifier. Finally, we apply our FT classifier to separate stars from galaxies in the full set of 69,545,326 SDSS photometric objects in the magnitude range 14 ≤ r ≤ 21.

  2. The Mass of the Black Hole in the Seyfert 1 Galaxy NGC 4593 from Reverberation Mapping

    DEFF Research Database (Denmark)

    Denney, Kelly D.; Bentz, Misty C.; Peterson, Bradley M.

    2006-01-01

    We present new observations leading to an improved black hole mass estimate for the Seyfert 1 galaxy NGC 4593 as part of a reverberation-mapping campaign conducted at the MDM Observatory. Cross-correlation analysis of the H_beta emission-line light curve with the optical continuum light curve...... reveals an emission-line time delay of 3.73 (+-0.75) days. By combining this time delay with the H_beta line width, we derive a central black hole mass of M_BH = 9.8(+-2.1)x10^6 M_sun, an improvement in precision of a factor of several over past results....

  3. Galaxy Evolution in the Radio Band: The Role of Star-forming Galaxies and Active Galactic Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Mancuso, C.; Prandoni, I. [INAF-IRA, Via P. Gobetti 101, I-40129 Bologna (Italy); Lapi, A.; Obi, I.; Perrotta, F.; Bressan, A.; Celotti, A.; Danese, L. [SISSA, Via Bonomea 265, I-34136 Trieste (Italy); Gonzalez-Nuevo, J. [Departamento de Fisica, Universidad de Oviedo, C. Calvo Sotelo s/n, E-33007 Oviedo (Spain)

    2017-06-20

    We investigate the astrophysics of radio-emitting star-forming galaxies and active galactic nuclei (AGNs) and elucidate their statistical properties in the radio band, including luminosity functions, redshift distributions, and number counts at sub-mJy flux levels, which will be crucially probed by next-generation radio continuum surveys. Specifically, we exploit the model-independent approach by Mancuso et al. to compute the star formation rate functions, the AGN duty cycles, and the conditional probability of a star-forming galaxy to host an AGN with given bolometric luminosity. Coupling these ingredients with the radio emission properties associated with star formation and nuclear activity, we compute relevant statistics at different radio frequencies and disentangle the relative contribution of star-forming galaxies and AGNs in different radio luminosity, radio flux, and redshift ranges. Finally, we highlight that radio-emitting star-forming galaxies and AGNs are expected to host supermassive black holes accreting with different Eddington ratio distributions and to occupy different loci in the galaxy main-sequence diagrams. These specific predictions are consistent with current data sets but need to be tested with larger statistics via future radio data with multiband coverage on wide areas, as will become routinely achievable with the advent of the Square Kilometre Array and its precursors.

  4. NuSTAR and XMM-Newton observations of NGC 1365: Extreme absorption variability and a constant inner accretion disk

    DEFF Research Database (Denmark)

    Walton, D. J.; Risaliti, G.; Harrison, F. A.

    2014-01-01

    We present a spectral analysis of four coordinated NuSTAR+XMM-Newton observations of the Seyfert galaxy NGC 1365. These exhibit an extreme level of spectral variability, which is primarily due to variable line-of-sight absorption, revealing relatively unobscured states in this source for the first...

  5. Massive stars in the Sagittarius Dwarf Irregular Galaxy

    Science.gov (United States)

    Garcia, Miriam

    2018-02-01

    Low metallicity massive stars hold the key to interpret numerous processes in the past Universe including re-ionization, starburst galaxies, high-redshift supernovae, and γ-ray bursts. The Sagittarius Dwarf Irregular Galaxy [SagDIG, 12+log(O/H) = 7.37] represents an important landmark in the quest for analogues accessible with 10-m class telescopes. This Letter presents low-resolution spectroscopy executed with the Gran Telescopio Canarias that confirms that SagDIG hosts massive stars. The observations unveiled three OBA-type stars and one red supergiant candidate. Pending confirmation from high-resolution follow-up studies, these could be the most metal-poor massive stars of the Local Group.

  6. Galaxy Mission Completes Four Star-Studded Years in Space

    Science.gov (United States)

    2007-01-01

    NASA's Galaxy Evolution Explorer is celebrating its fourth year in space with some of M81's 'hottest' stars. In a new ultraviolet image, the magnificent M81 spiral galaxy is shown at the center. The orbiting observatory spies the galaxy's 'sizzling young starlets' as wisps of bluish-white swirling around a central golden glow. The tints of gold at M81's center come from a 'senior citizen' population of smoldering stars. 'This is a spectacular view of M81,' says Dr. John Huchra, of the Harvard Smithsonian Center for Astrophysics, Cambridge, Mass. 'When we proposed to observe this galaxy with GALEX we hoped to see globular clusters, open clusters, and young stars...this view is everything that we were hoping for.' The image is one of thousands gathered so far by GALEX, which launched April 28, 2003. This mission uses ultraviolet wavelengths to measure the history of star formation 80 percent of the way back to the Big Bang. The large fluffy bluish-white material to the left of M81 is a neighboring galaxy called Holmberg IX. This galaxy is practically invisible to the naked human eye. However, it is illuminated brilliantly in GALEX's wide ultraviolet eyes. Its ultraviolet colors show that it is actively forming young stars. The bluish-white fuzz in the space surrounding M81 and Holmberg IX is new star formation triggered by gravitational interactions between the two galaxies. Huchra notes that the active star formation in Holmberg IX is a surprise, and says that more research needs to be done in light of the new findings from GALEX. 'Some astronomers suspect that the galaxy Holmberg IX is the result of a galactic interaction between M81 and another neighboring galaxy M82,' says Huchra. 'This particular galaxy is especially important because there are a lot of galaxies like Holmberg IX around our Milky Way galaxy. By understanding how Holmberg IX came to be, we hope to understand how all the little galaxies surrounding the Milky Way developed.' 'Four years after GALEX

  7. Star Formation in Dwarf Galaxies: Life in a Rough Neighborhood

    Energy Technology Data Exchange (ETDEWEB)

    Murray, S

    2003-10-16

    Star formation within dwarf galaxies is governed by several factors. Many of these factors are external, including ram-pressure stripping, tidal stripping, and heating by external UV radiation. The latter, in particular, may prevent star formation in the smallest systems. Internal factors include negative feedback in the form of UV radiation, winds and supernovae from massive stars. These act to reduce the star formation efficiency within dwarf systems, which may, in turn, solve several theoretical and observational problems associated with galaxy formation. In this contribution, we discuss our recent work being done to examine the importance of the many factors in the evolution of dwarf galaxies.

  8. KILOPARSEC-SCALE JETS IN THREE RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Richards, Joseph L.; Lister, Matthew L., E-mail: jlr@purdue.edu [Department of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907 (United States)

    2015-02-10

    We have discovered kiloparsec-scale extended radio emission in three narrow-line Seyfert 1 galaxies (NLS1s) in sub-arcsecond resolution 9 GHz images from the Karl G. Jansky Very Large Array. We find all sources show two-sided, mildly core-dominated jet structures with diffuse lobes dominated by termination hotspots. These span 20–70 kpc with morphologies reminiscent of FR II radio galaxies, while the extended radio luminosities are intermediate between FR I and FR II sources. In two cases the structure is linear, while a 45° bend is apparent in the third. Very Long Baseline Array images at 7.6 GHz reveal parsec-scale jet structures, in two cases with extended structure aligned with the inner regions of the kiloparsec-scale jets. Based on this alignment, the ratio of the radio core–luminosity to the optical luminosity, the jet/counter-jet intensity and extension length ratios, and moderate core brightness temperatures (≲10{sup 10} K), we conclude these jets are mildly relativistic (β≲0.3, δ∼1−1.5) and aligned at moderately small angles to the line of sight (10–15°). The derived kinematic ages of ∼10{sup 6}–10{sup 7} yr are much younger than radio galaxies but comparable to other NLS1s. Our results increase the number of radio-loud NLS1s with known kiloparsec-scale extensions from 7 to 10 and suggest that such extended emission may be common, at least among the brightest of these sources.

  9. Fermi/LAT Observations of Swift/BAT Seyfert Galaxies: On the Contribution of Radio-Quiet Active Galactic Nuclei to the Extragalactic gamma-Ray Background

    Science.gov (United States)

    Teng, Stacy H.; Mushotzky, Richard F.; Sambruna, Rita M.; Davis, David S.; Reynolds, Christopher S.

    2011-01-01

    We present the analysis of 2.1 years of Fermi Large Area Telescope (LAT) data on 491 Seyfert galaxies detected by the Swift Burst Alert Telescope (BAT) survey. Only the two nearest objects, NGC 1068 and NGC 4945, which were identified in the Fermi first year catalog, are detected. Using Swift/BAT and radio 20 cm fluxes, we define a new radio-loudness parameter R(sub X,BAT) where radio-loud objects have logR(sub X,BAT) > -4.7. Based on this parameter, only radio-loud sources are detected by Fermi/LAT. An upper limit to the flux of the undetected sources is derived to be approx.2x10(exp -11) photons/sq cm/s, approximately seven times lower than the observed flux of NGC 1068. Assuming a median redshift of 0.031, this implies an upper limit to the gamma-ray (1-100 GeV) luminosity of BAT Seyfert galaxies with significant Fermi/LAT detections. A majority of these objects do not have Swift/BAT counterparts, but their possible optical counterparts include blazars, flat-spectrum radio quasars, and quasars.

  10. Modelling the star formation histories of nearby elliptical galaxies

    Science.gov (United States)

    Bird, Katy

    Since Lick indices were introduced in 1994, they have been used as a source of observational data against which computer models of galaxy evolution have been compared. However, as this thesis demonstrates, observed Lick indices lead to mathematical ill-conditioning: small variations in observations can lead to very large differences in population synthesis models attempting to recreate the observed values. As such, limited reliance should be placed on any results currently or historically in the literature purporting to give the star formation history of a galaxy, or group of galaxies, where this is deduced from Lick observations taken from a single instrument, without separate verification from at least one other source. Within these limitations, this thesis also constrains the star formation histories of 21 nearby elliptical galaxies, finding that they formed 13.26 +0.09 -0.06 Gyrs ago, that all mergers are dry, and that galactic winds are formed from AGN activity (rather than being supernovae-driven). This thesis also finds evidence to support the established galaxy-formation theory of "downsizing". An existing galactic model from the literature is examined and evaluated, and the reasons for it being unable to establish star formation histories of individual galaxies are ascertained. A brand-new model is designed, developed, tested and used with two separate data sets, corroborated for 10 galaxies by data from a third source, and compared to results from a Single Stellar Population model from the literature, to model the star formation histories of nearby elliptical galaxies.

  11. Galaxy formation hydrodynamics: From cosmic flows to star-forming clouds

    International Nuclear Information System (INIS)

    Bournaud, F.

    2011-01-01

    Major progress has been made over the last few years in understanding hydrodynamical processes on cosmological scales, in particular how galaxies get their baryons. There is increasing recognition that a large part of the baryons accrete smoothly onto galaxies, and that internal evolution processes play a major role in shaping galaxies mergers are not necessarily the dominant process. However, predictions from the various assembly mechanisms are still in large disagreement with the observed properties of galaxies in the nearby Universe. Small-scale processes have a major impact on the global evolution of galaxies over a Hubble time and the usual sub-grid models account for them in a far too uncertain way. Understanding when, where and at which rate galaxies formed their stars becomes crucial to understand the formation of galaxy populations. I discuss recent improvements and current limitations in 'resolved' modeling of star formation, aiming at explicitly capturing star-foul-ling instabilities, in cosmological and galaxy-sized simulations. Such models need to develop three-dimensional turbulence in the ISM, which requires parsec-scale resolution at redshift zero. (authors)

  12. THE FIRST GALAXIES: ASSEMBLY UNDER RADIATIVE FEEDBACK FROM THE FIRST STARS

    International Nuclear Information System (INIS)

    Pawlik, Andreas H.; Milosavljević, Miloš; Bromm, Volker

    2013-01-01

    We investigate how radiative feedback from the first stars affects the assembly of the first dwarf galaxies. To this end, we perform cosmological zoomed smoothed particle hydrodynamics simulations of a dwarf galaxy assembling inside a halo reaching a virial mass ∼10 9 M ☉ at z = 10. The simulations follow the non-equilibrium chemistry and cooling of primordial gas and the subsequent conversion of the cool dense gas into massive metal-free stars. To quantify the radiative feedback, we compare a simulation in which stars emit both molecular hydrogen dissociating and hydrogen/helium ionizing radiation with a simulation in which stars emit only molecular hydrogen dissociating radiation, and further with a simulation in which stars remain dark. Photodissociation and photoionization exert a strong negative feedback on the assembly of the galaxy inside the main minihalo progenitor. Gas condensation is strongly impeded, and star formation is strongly suppressed in comparison with the simulation in which stars remain dark. The feedback on the gas from either dissociating or ionizing radiation implies a suppression of the central dark matter densities in the minihalo progenitor by factors of up to a few, which is a significant deviation from the singular isothermal density profile characterizing the dark matter distribution inside the virial radius in the absence of radiative feedback. The evolution of gas densities, star formation rates, and the distribution of dark matter becomes insensitive to the inclusion of dissociating radiation in the late stages of the minihalo assembly, and it becomes insensitive to the inclusion of ionizing radiation once the minihalo turns into an atomically cooling galaxy. The formation of a rotationally supported extended disk inside the dwarf galaxy is a robust outcome of our simulations not affected by the inclusion of radiation. Low-mass galaxies in the neighborhood of the dwarf galaxy show a large scatter in the baryon fraction which is

  13. Star formation rates and abundance gradients in disk galaxies

    International Nuclear Information System (INIS)

    Wyse, R.F.G.; Silk, J.

    1989-01-01

    Analytic models for the evolution of disk galaxies are presented, placing special emphasis on the radial properties. These models are straightforward extensions of the original Schmidt (1959, 1963) models, with a dependence of star formation rate on gas density. The models provide successful descriptions of several measures of galactic disk evolution, including solar neighborhood chemical evolution, the presence and amplitude of metallicity and color gradients in disk galaxies, and the global rates of star formation in disk galaxies, and aid in the understanding of the apparent connection between young and old stellar populations in spiral galaxies. 67 refs

  14. IR Observations of a Complete Unbiased Sample of Bright Seyfert Galaxies

    Science.gov (United States)

    Malkan, Matthew; Bendo, George; Charmandaris, Vassilis; Smith, Howard; Spinoglio, Luigi; Tommasin, Silvia

    2008-03-01

    IR spectra will measure the 2 main energy-generating processes by which galactic nuclei shine: black hole accretion and star formation. Both of these play roles in galaxy evolution, and they appear connected. To obtain a complete sample of AGN, covering the range of luminosities and column-densities, we will combine 2 complete all-sky samples with complementary selections, minimally biased by dust obscuration: the 116 IRAS 12um AGN and the 41 Swift/BAT hard Xray AGN. These galaxies have been extensively studied across the entire EM spectrum. Herschel observations have been requested and will be synergistic with the Spitzer database. IRAC and MIPS imaging will allow us to separate the nuclear and galactic continua. We are completing full IR observations of the local AGN population, most of which have already been done. The only remaining observations we request are 10 IRS/HIRES, 57 MIPS-24 and 30 IRAC pointings. These high-quality observations of bright AGN in the bolometric-flux-limited samples should be completed, for the high legacy value of complete uniform datasets. We will measure quantitatively the emission at each wavelength arising from stars and from accretion in each galactic center. Since our complete samples come from flux-limited all-sky surveys in the IR and HX, we will calculate the bi-variate AGN and star formation Luminosity Functions for the local population of active galaxies, for comparison with higher redshifts.Our second aim is to understand the physical differences between AGN classes. This requires statistical comparisons of full multiwavelength observations of complete representative samples. If the difference between Sy1s and Sy2s is caused by orientation, their isotropic properties, including those of the surrounding galactic centers, should be similar. In contrast, if they are different evolutionary stages following a galaxy encounter, then we may find observational evidence that the circumnuclear ISM of Sy2s is relatively younger.

  15. YOUNG, ULTRAVIOLET-BRIGHT STARS DOMINATE DUST HEATING IN STAR-FORMING GALAXIES

    International Nuclear Information System (INIS)

    Law, Ka-Hei; Gordon, Karl D.; Misselt, K. A.

    2011-01-01

    In star-forming galaxies, dust plays a significant role in shaping the ultraviolet (UV) through infrared (IR) spectrum. Dust attenuates the radiation from stars, and re-radiates the energy through equilibrium and non-equilibrium emission. Polycyclic aromatic hydrocarbons (PAHs), graphite, and silicates contribute to different features in the spectral energy distribution; however, they are all highly opaque in the same spectral region-the UV. Compared to old stellar populations, young populations release a higher fraction of their total luminosity in the UV, making them a good source of the energetic UV photons that can power dust emission. However, given their relative abundance, the question of whether young or old stellar populations provide most of these photons that power the IR emission is an interesting question. Using three samples of galaxies observed with the Spitzer Space Telescope and our dusty radiative transfer model, we find that young stellar populations (on the order of 100 million years old) dominate the dust heating in star-forming galaxies, and old stellar populations (13 billion years old) generally contribute less than 20% of the far-IR luminosity.

  16. Quenching or Bursting: Star Formation Acceleration—A New Methodology for Tracing Galaxy Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Martin, D. Christopher; Darvish, Behnam; Seibert, Mark [California Institute of Technology, MC 405-47, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Gonçalves, Thiago S. [Observatorio do Valongo, Universidade Federal do Rio de Janeiro, Ladeira Pedro Antonio, 43, Saude, Rio de Janeiro-RJ 20080-090 (Brazil); Schiminovich, David [Department of Astronomy, Columbia University, New York, NY 10027 (United States)

    2017-06-10

    We introduce a new methodology for the direct extraction of galaxy physical parameters from multiwavelength photometry and spectroscopy. We use semianalytic models that describe galaxy evolution in the context of large-scale cosmological simulation to provide a catalog of galaxies, star formation histories, and physical parameters. We then apply models of stellar population synthesis and a simple extinction model to calculate the observable broadband fluxes and spectral indices for these galaxies. We use a linear regression analysis to relate physical parameters to observed colors and spectral indices. The result is a set of coefficients that can be used to translate observed colors and indices into stellar mass, star formation rate, and many other parameters, including the instantaneous time derivative of the star formation rate, which we denote the Star Formation Acceleration (SFA), We apply the method to a test sample of galaxies with GALEX photometry and SDSS spectroscopy, deriving relationships between stellar mass, specific star formation rate, and SFA. We find evidence for a mass-dependent SFA in the green valley, with low-mass galaxies showing greater quenching and higher-mass galaxies greater bursting. We also find evidence for an increase in average quenching in galaxies hosting an active galactic nucleus. A simple scenario in which lower-mass galaxies accrete and become satellite galaxies, having their star-forming gas tidally and/or ram-pressure stripped, while higher-mass galaxies receive this gas and react with new star formation, can qualitatively explain our results.

  17. Quenching or Bursting: Star Formation Acceleration—A New Methodology for Tracing Galaxy Evolution

    Science.gov (United States)

    Martin, D. Christopher; Gonçalves, Thiago S.; Darvish, Behnam; Seibert, Mark; Schiminovich, David

    2017-06-01

    We introduce a new methodology for the direct extraction of galaxy physical parameters from multiwavelength photometry and spectroscopy. We use semianalytic models that describe galaxy evolution in the context of large-scale cosmological simulation to provide a catalog of galaxies, star formation histories, and physical parameters. We then apply models of stellar population synthesis and a simple extinction model to calculate the observable broadband fluxes and spectral indices for these galaxies. We use a linear regression analysis to relate physical parameters to observed colors and spectral indices. The result is a set of coefficients that can be used to translate observed colors and indices into stellar mass, star formation rate, and many other parameters, including the instantaneous time derivative of the star formation rate, which we denote the Star Formation Acceleration (SFA), We apply the method to a test sample of galaxies with GALEX photometry and SDSS spectroscopy, deriving relationships between stellar mass, specific star formation rate, and SFA. We find evidence for a mass-dependent SFA in the green valley, with low-mass galaxies showing greater quenching and higher-mass galaxies greater bursting. We also find evidence for an increase in average quenching in galaxies hosting an active galactic nucleus. A simple scenario in which lower-mass galaxies accrete and become satellite galaxies, having their star-forming gas tidally and/or ram-pressure stripped, while higher-mass galaxies receive this gas and react with new star formation, can qualitatively explain our results.

  18. Quenching or Bursting: Star Formation Acceleration—A New Methodology for Tracing Galaxy Evolution

    International Nuclear Information System (INIS)

    Martin, D. Christopher; Darvish, Behnam; Seibert, Mark; Gonçalves, Thiago S.; Schiminovich, David

    2017-01-01

    We introduce a new methodology for the direct extraction of galaxy physical parameters from multiwavelength photometry and spectroscopy. We use semianalytic models that describe galaxy evolution in the context of large-scale cosmological simulation to provide a catalog of galaxies, star formation histories, and physical parameters. We then apply models of stellar population synthesis and a simple extinction model to calculate the observable broadband fluxes and spectral indices for these galaxies. We use a linear regression analysis to relate physical parameters to observed colors and spectral indices. The result is a set of coefficients that can be used to translate observed colors and indices into stellar mass, star formation rate, and many other parameters, including the instantaneous time derivative of the star formation rate, which we denote the Star Formation Acceleration (SFA), We apply the method to a test sample of galaxies with GALEX photometry and SDSS spectroscopy, deriving relationships between stellar mass, specific star formation rate, and SFA. We find evidence for a mass-dependent SFA in the green valley, with low-mass galaxies showing greater quenching and higher-mass galaxies greater bursting. We also find evidence for an increase in average quenching in galaxies hosting an active galactic nucleus. A simple scenario in which lower-mass galaxies accrete and become satellite galaxies, having their star-forming gas tidally and/or ram-pressure stripped, while higher-mass galaxies receive this gas and react with new star formation, can qualitatively explain our results.

  19. Predicting galaxy star formation rates via the co-evolution of galaxies and haloes

    Science.gov (United States)

    Watson, Douglas F.; Hearin, Andrew P.; Berlind, Andreas A.; Becker, Matthew R.; Behroozi, Peter S.; Skibba, Ramin A.; Reyes, Reinabelle; Zentner, Andrew R.; van den Bosch, Frank C.

    2015-01-01

    In this paper, we test the age matching hypothesis that the star formation rate (SFR) of a galaxy of fixed stellar mass is determined by its dark matter halo formation history, e.g. more quiescent galaxies reside in older haloes. We present new Sloan Digital Sky Survey measurements of the galaxy two-point correlation function and galaxy-galaxy lensing as a function of stellar mass and SFR, separated into quenched and star-forming galaxy samples to test this simple model. We find that our age matching model is in excellent agreement with these new measurements. We also find that our model is able to predict: (1) the relative SFRs of central and satellite galaxies, (2) the SFR dependence of the radial distribution of satellite galaxy populations within galaxy groups, rich groups, and clusters and their surrounding larger scale environments, and (3) the interesting feature that the satellite quenched fraction as a function of projected radial distance from the central galaxy exhibits an ˜r-.15 slope, independent of environment. These accurate predictions are intriguing given that we do not explicitly model satellite-specific processes after infall, and that in our model the virial radius does not mark a special transition region in the evolution of a satellite. The success of the model suggests that present-day galaxy SFR is strongly correlated with halo mass assembly history.

  20. A Missing Link in Galaxy Evolution: The Mysteries of Dissolving Star Clusters

    Science.gov (United States)

    Pellerin, Anne; Meyer, Martin; Harris, Jason; Calzetti, Daniela

    2007-05-01

    Star-forming events in starbursts and normal galaxies have a direct impact on the global stellar content of galaxies. These events create numerous compact clusters where stars are produced in great number. These stars eventually end up in the star field background where they are smoothly distributed. However, due to instrumental limitations such as spatial resolution and sensitivity, the processes involved during the transition phase from the compact clusters to the star field background as well as the impact of the environment (spiral waves, bars, starburst) on the lifetime of clusters are still poorly constrained observationally. I will present our latest results on the physical properties of dissolving clusters directly detected in HST/ACS archival images of the three nearby galaxies IC 2574, NGC 1313, and IC 10 (D detect and spatially resolve individual stars in nearby galaxies within a large field-of-view. For all ACS images obtained in three filters (F435W, F555W or F606W, and F814W), we performed PSF stellar photometry in crowded field. Color-magnitude diagrams (CMD) allow us to identify the most massive stars more likely to be part of dissolving clusters (A-type and earlier), and to isolate them from the star field background. We then adapt and use a clustering algorithm on the selected stars to find groups of stars to reveal and quantify the properties of all star clusters (compactness, size, age, mass). With this algorithm, even the less compact clusters are revealed while they are being destroyed. Our sample of three galaxies covers an interesting range in gravitational potential well and explores a variety of galaxy morphological types, which allows us to discuss the dissolving cluster properties as a function of the host galaxy characteristics. The properties of the star field background will also be discussed.

  1. Gas, Stars, and Star Formation in Alfalfa Dwarf Galaxies

    Science.gov (United States)

    Huang, Shan; Haynes, Martha P.; Giovanelli, Riccardo; Brinchmann, Jarle; Stierwalt, Sabrina; Neff, Susan G.

    2012-01-01

    We examine the global properties of the stellar and Hi components of 229 low H i mass dwarf galaxies extracted from the ALFALFA survey, including a complete sample of 176 galaxies with H i masses ALFALFA dwarfs are faint and of low surface brightness; only 56% of those within the SDSS footprint have a counterpart in the SDSS spectroscopic survey. A large fraction of the dwarfs have high specific star formation rates (SSFRs), and estimates of their SFRs and M* obtained by SED fitting are systematically smaller than ones derived via standard formulae assuming a constant SFR. The increased dispersion of the SSFR distribution at M* approximately less than10(exp 8)M(sub 0) is driven by a set of dwarf galaxies that have low gas fractions and SSFRs; some of these are dE/dSphs in the Virgo Cluster. The imposition of an upper Hi mass limit yields the selection of a sample with lower gas fractions for their M* than found for the overall ALFALFA population. Many of the ALFALFA dwarfs, particularly the Virgo members, have H i depletion timescales shorter than a Hubble time. An examination of the dwarf galaxies within the full ALFALFA population in the context of global star formation (SF) laws is consistent with the general assumptions that gas-rich galaxies have lower SF efficiencies than do optically selected populations and that Hi disks are more extended than stellar ones.

  2. STRUCTURES OF LOCAL GALAXIES COMPARED TO HIGH-REDSHIFT STAR-FORMING GALAXIES

    International Nuclear Information System (INIS)

    Petty, Sara M.; De Mello, DuIlia F.; Gallagher, John S.; Gardner, Jonathan P.; Lotz, Jennifer M.; Matt Mountain, C.; Smith, Linda J.

    2009-01-01

    The rest-frame far-ultraviolet morphologies of eight nearby interacting and starburst galaxies (Arp 269, M 82, Mrk 8, NGC 520, NGC 1068, NGC 3079, NGC 3310, and NGC 7673) are compared with 54 galaxies at z ∼ 1.5 and 46 galaxies at z ∼ 4 observed in the Great Observatories Origins Deep Survey (GOODS) taken with the Advanced Camera for Surveys onboard the Hubble Space Telescope. The nearby sample is artificially redshifted to z ∼ 1.5 and 4 by applying luminosity and size scaling. We compare the simulated galaxy morphologies to real z ∼ 1.5 and 4 UV-bright galaxy morphologies. We calculate the Gini coefficient (G), the second-order moment of the brightest 20% of the galaxy's flux (M 20 ), and the Sersic index (n). We explore the use of nonparametric methods with two-dimensional profile fitting and find the combination of M 20 with n an efficient method to classify galaxies as having merger, exponential disk, or bulge-like morphologies. When classified according to G and M 20 20/30% of real/simulated galaxies at z ∼ 1.5 and 37/12% at z ∼ 4 have bulge-like morphologies. The rest have merger-like or intermediate distributions. Alternatively, when classified according to the Sersic index, 70% of the z ∼ 1.5 and z ∼ 4 real galaxies are exponential disks or bulge-like with n>0.8, and ∼ 30% of the real galaxies are classified as mergers. The artificially redshifted galaxies have n values with ∼ 35% bulge or exponential at z ∼ 1.5 and 4. Therefore, ∼ 20%-30% of Lyman-break galaxies have structures similar to local starburst mergers, and may be driven by similar processes. We assume merger-like or clumpy star-forming galaxies in the GOODS field have morphological structure with values n 20 > - 1.7. We conclude that Mrk 8, NGC 3079, and NGC 7673 have structures similar to those of merger-like and clumpy star-forming galaxies observed at z ∼ 1.5 and 4.

  3. GEOMETRY OF STAR-FORMING GALAXIES FROM SDSS, 3D-HST, AND CANDELS

    International Nuclear Information System (INIS)

    Van der Wel, A.; Chang, Yu-Yen; Rix, H.-W.; Martig, M.; Bell, E. F.; Holden, B. P.; Koo, D. C.; Mozena, M.; Faber, S. M.; Ferguson, H. C.; Brammer, G.; Kassin, S. A.; Giavalisco, M.; Skelton, R.; Whitaker, K.; Momcheva, I.; Van Dokkum, P. G.; Dekel, A.; Ceverino, D.; Franx, M.

    2014-01-01

    We determine the intrinsic, three-dimensional shape distribution of star-forming galaxies at 0 < z < 2.5, as inferred from their observed projected axis ratios. In the present-day universe, star-forming galaxies of all masses 10 9 -10 11 M ☉ are predominantly thin, nearly oblate disks, in line with previous studies. We now extend this to higher redshifts, and find that among massive galaxies (M * > 10 10 M ☉ ) disks are the most common geometric shape at all z ≲ 2. Lower-mass galaxies at z > 1 possess a broad range of geometric shapes: the fraction of elongated (prolate) galaxies increases toward higher redshifts and lower masses. Galaxies with stellar mass 10 9 M ☉ (10 10 M ☉ ) are a mix of roughly equal numbers of elongated and disk galaxies at z ∼ 1 (z ∼ 2). This suggests that galaxies in this mass range do not yet have disks that are sustained over many orbital periods, implying that galaxies with present-day stellar mass comparable to that of the Milky Way typically first formed such sustained stellar disks at redshift z ∼ 1.5-2. Combined with constraints on the evolution of the star formation rate density and the distribution of star formation over galaxies with different masses, our findings imply that, averaged over cosmic time, the majority of stars formed in disks

  4. Little Bear’s pulsating stars: Variable star census of UMi dSph Galaxy

    Directory of Open Access Journals (Sweden)

    Kinemuchi K.

    2017-01-01

    Full Text Available Recent observations and a photometric search for variable stars in the Ursa Minor dwarf spheroidal galaxy (UMi dSph are presented. Our observations were taken at Apache Point Observatory in 2014 and 2016 using the 0.5m ARCSAT telescope and the West Mountain Observatory (WMO 0.9m telescope of Brigham Young University in 2016. Previously known RR Lyrae stars in our field of view of the UMi dSph are identified, and we also catalog new variable star candidates. Tentative classifications are given for some of the new variable stars. We have conducted period searches with the data collected with the WMO telescope. Our ultimate goal is to create an updated catalog of variable stars in the UMi dSph and to compare the RR Lyrae stellar characteristics to other RR Lyrae stars found in the Local Group dSph galaxies.

  5. Space Telescope and Optical Reverberation Mapping Project.I. Ultraviolet Observations of the Seyfert 1 Galaxy NGC 5548 with the Cosmic Origins Spectrograph on Hubble Space Telescope

    NARCIS (Netherlands)

    De Rosa, G.; Peterson, B.M.; Ely, J.; Kriss, G.A.; Crenshaw, D.M.; Horne, K.; Korista, K.T.; Netzer, H.; Pogge, R.W.; Arévalo, P.; Barth, A.J.; Bentz, M.C.; Brandt, W.N.; Breeveld, A.A.; Brewer, B.J.; Dalla Bontà, E.; De Lorenzo-Cáceres, A.; Denney, K.D.; Dietrich, M.; Edelson, R.; Evans, P.A.; Fausnaugh, M.M.; Gehrels, N.; Gelbord, J.M.; Goad, M.R.; Grier, C.J.; Grupe, D.; Hall, P.B.; Kaastra, J.; Kelly, B.C.; Kennea, J.A.; Kochanek, C.S.; Lira, P.; Mathur, S.; McHardy, I.M.; Nousek, J.A.; Pancoast, A.; Papadakis, I.; Pei, L.; Schimoia, J.S.; Siegel, M.; Starkey, D.; Treu, T.; Uttley, P.; Vaughan, S.; Vestergaard, M.; Villforth, C.; Yan, H.; Young, S.; Zu, Y.

    2015-01-01

    We describe the first results from a six-month long reverberation-mapping experiment in the ultraviolet based on 171 observations of the Seyfert 1 galaxy NGC 5548 with the Cosmic Origins Spectrograph on the Hubble Space Telescope. Significant correlated variability is found in the continuum and

  6. RING STAR FORMATION RATES IN BARRED AND NONBARRED GALAXIES

    International Nuclear Information System (INIS)

    Grouchy, R. D.; Buta, R. J.; Salo, H.; Laurikainen, E.

    2010-01-01

    Nonbarred ringed galaxies are relatively normal galaxies showing bright rings of star formation in spite of lacking a strong bar. This morphology is interesting because it is generally accepted that a typical galactic disk ring forms when material collects near a resonance, set up by the pattern speed of a bar or bar-like perturbation. Our goal in this paper is to examine whether the star formation properties of rings are related to the strength of a bar or, in the absence of a bar, to the non-axisymmetric gravity potential in general. For this purpose, we obtained Hα emission line images and calculated the line fluxes and star formation rates (SFRs) for 16 nonbarred SA galaxies and four weakly barred SAB galaxies with rings. For comparison, we combine our new observations with a re-analysis of previously published data on five SA, seven SAB, and 15 SB galaxies with rings, three of which are duplicates from our sample. With these data, we examine what role a bar may play in the star formation process in rings. Compared to barred ringed galaxies, we find that the inner ring SFRs and Hα+[N II] equivalent widths in nonbarred ringed galaxies show a similar range and trend with absolute blue magnitude, revised Hubble type, and other parameters. On the whole, the star formation properties of inner rings, excluding the distribution of H II regions, are independent of the ring shapes and the bar strength in our small samples. We confirm that the deprojected axis ratios of inner rings correlate with maximum relative gravitational force Q g ; however, if we consider all rings, a better correlation is found when a local bar forcing at the radius of the ring, Q r , is used. Individual cases are described and other correlations are discussed. By studying the physical properties of these galaxies, we hope to gain a better understanding of their placement in the scheme of the Hubble sequence and how they formed rings without the driving force of a bar.

  7. Radio ejection and broad forbidden emission lines in the Seyfert galaxy NGC 7674

    International Nuclear Information System (INIS)

    Unger, S.W.; Pedlar, A.; Axon, D.J.

    1988-01-01

    The Seyfert nucleus in NGC7674 (Mkn533) is remarkable for its broad asymmetric forbidden line profiles, which extend 2000 kms -1 blueward of the systemic velocity. The galaxy also has a compact nuclear radio source. We have obtained new high-resolution radio observations of NGC7674, using the European VLBI network and the VLA, and optical spectroscopic observations using the Isaac Newton Telescope. The radio maps reveal a triple radio source with a total angular extent of about 0.7 arcsec, and provide evidence that the radio emission is powered by collimated ejection. In the plane of the sky, the ejection axis appears roughly perpendicular to the galactic rotation axis. Although the dominant radio components are separated by 0.5 arcsec, the broad [OIII]λ5007 line emission is confined to within about 0.25 arcsec of the continuum nucleus. (author)

  8. Dwarf galaxies in the coma cluster: Star formation properties and evolution

    Science.gov (United States)

    Hammer, Derek M.

    The infall regions of galaxy clusters are unique laboratories for studying the impact of environment on galaxy evolution. This intermediate region links the low-density field environment and the dense core of the cluster, and is thought to host recently accreted galaxies whose star formation is being quenched by external processes associated with the cluster. In this dissertation, we measure the star formation properties of galaxies at the infall region of the nearby rich cluster of galaxies, Coma. We rely primarily on Ultraviolet (UV) data owing to its sensitivity to recent star formation and we place more emphasis on the properties of dwarf galaxies. Dwarf galaxies are good tracers of external processes in clusters but their evolution is poorly constrained as they are intrinsically faint and hence more challenging to detect. We make use of deep GALEX far-UV and near-UV observations at the infall region of the Coma cluster. This area of the cluster has supporting photometric coverage at optical and IR wavelengths in addition to optical spectroscopic data that includes deep redshift coverage of dwarf galaxies in Coma. Our GALEX observations were the deepest exposures taken for a local galaxy cluster. The depth of these images required alternative data analysis techniques to overcome systematic effects that limit the default GALEX pipeline analysis. Specifically, we used a deblending method that improved detection efficiency by a factor of ˜2 and allowed reliable photometry a few magnitudes deeper than the pipeline catalog. We performed deep measurements of the total UV galaxy counts in our field that were used to measure the source confusion limit for crowded GALEX fields. The star formation properties of Coma members were studied for galaxies that span from starbursts to passive galaxies. Star-forming galaxies in Coma tend to have lower specific star formation rates, on average, as compared to field galaxies. We show that the majority of these galaxies are likely

  9. Star-Formation Histories, Abundances, and Kinematics of Dwarf Galaxies in the Local Group

    NARCIS (Netherlands)

    Tolstoy, Eline; Hill, Vanessa; Tosi, Monica; Blandford, R; Kormendy, J; VanDishoeck, E

    2009-01-01

    Within the Local Universe galaxies can be studied in great detail star by star, and here we review the results of quantitative studies in nearby dwarf galaxies. The color-magnitude diagram synthesis method is well established as the most accurate way to determine star-formation histories of galaxies

  10. A COMPARATIVE STUDY OF KNOTS OF STAR FORMATION IN INTERACTING VERSUS SPIRAL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Beverly J.; Olmsted, Susan; Jones, Keith [Department of Physics and Astronomy, East Tennessee State University, Johnson City TN 37614 (United States); Zaragoza-Cardiel, Javier [Instituto de Astrofisica de Canarias, La Laguna, Tenerife (Spain); Struck, Curtis, E-mail: smithbj@etsu.edu [Department of Physics and Astronomy, Iowa State University, Ames IA 50011 (United States)

    2016-03-15

    Interacting galaxies are known to have higher global rates of star formation on average than normal galaxies, relative to their stellar masses. Using UV and IR photometry combined with new and published Hα images, we have compared the star formation rates (SFRs) of ∼700 star forming complexes in 46 nearby interacting galaxy pairs with those of regions in 39 normal spiral galaxies. The interacting galaxies have proportionally more regions with high SFRs than the spirals. The most extreme regions in the interacting systems lie at the intersections of spiral/tidal structures, where gas is expected to pile up and trigger star formation. Published Hubble Space Telescope images show unusually large and luminous star clusters in the highest luminosity regions. The SFRs of the clumps correlate with measures of the dust attenuation, consistent with the idea that regions with more interstellar gas have more star formation. For the clumps with the highest SFRs, the apparent dust attenuation is consistent with the Calzetti starburst dust attenuation law. This suggests that the high luminosity regions are dominated by a central group of young stars surrounded by a shell of clumpy interstellar gas. In contrast, the lower luminosity clumps are bright in the UV relative to Hα, suggesting either a high differential attenuation between the ionized gas and the stars, or a post-starburst population bright in the UV but faded in Hα. The fraction of the global light of the galaxies in the clumps is higher on average for the interacting galaxies than for the spirals. Thus either star formation in interacting galaxies is “clumpier” on average, or the star forming regions in interacting galaxies are more luminous, dustier, or younger on average.

  11. Galaxies and gamma-ray astronomy

    International Nuclear Information System (INIS)

    Bignami, G.F.; Fichtel, C.E.; Hartman, R.C.; Thompson, D.J.

    1979-01-01

    Comparisons between the recently measured X-ray spectra of active galaxies, the intensity upper limits to the γ-ray emission above 35 MeV from the same objects obtained from data from SAS 2, and other γ-ray data are used to address the nature of the high-energy spectra of several types of active galaxies, their contribution to the measured diffuse γ-ray emission between 1 and 150 MeV, and constraints which may be placed on cosmological evolutionary factors. It is found that a substantial increase in slope of the photon energy spectrum must occur in the low-energy γ-ray region for Seyfert galaxies, BL Lac objects, and emission line galaxies. A spectral steepening is also seen for 3C 273 and Cen A, the only quasar and radio galaxy for which accurate X-ray spectra are presently available above 20 keV. A cosmological integration shows that Seyfert galaxies, BL Lac objects, and quasars may account for most of the 1--150 MeV diffuse background, even without significant evolution. Sharp emission line galaxies and radio galaxies made a much smaller contribution under the same assumptions. The observed isotropic γ-radiation limits the γ-ray evolution possible for Seyfert galaxies, BL Lac objects, and quasars. The high-latitude galactic radiation limits the γ-ray evolution of normal field galaxies. The integrated emission of normal field galaxies with evolution back to z=4 cannot exceed about 10 times the integrated emission assuming no evolution

  12. Red Misfits in the Sloan Digital Sky Survey: properties of star-forming red galaxies

    Science.gov (United States)

    Evans, Fraser A.; Parker, Laura C.; Roberts, Ian D.

    2018-06-01

    We study Red Misfits, a population of red, star-forming galaxies in the local Universe. We classify galaxies based on inclination-corrected optical colours and specific star formation rates derived from the Sloan Digital Sky Survey Data Release 7. Although the majority of blue galaxies are star-forming and most red galaxies exhibit little to no ongoing star formation, a small but significant population of galaxies (˜11 per cent at all stellar masses) are classified as red in colour yet actively star-forming. We explore a number of properties of these galaxies and demonstrate that Red Misfits are not simply dusty or highly inclined blue cloud galaxies or quiescent red galaxies with poorly constrained star formation. The proportion of Red Misfits is nearly independent of environment, and this population exhibits both intermediate morphologies and an enhanced likelihood of hosting an active galactic nucleus. We conclude that Red Misfits are a transition population, gradually quenching on their way to the red sequence and this quenching is dominated by internal processes rather than environmentally driven processes. We discuss the connection between Red Misfits and other transition galaxy populations, namely S0s, red spirals, and green valley galaxies.

  13. STAR FORMATION IN PARTIALLY GAS-DEPLETED SPIRAL GALAXIES

    International Nuclear Information System (INIS)

    Rose, James A.; Miner, Jesse; Levy, Lorenza; Robertson, Paul

    2010-01-01

    Broadband B and R and Hα images have been obtained with the 4.1 m SOAR telescope atop Cerro Pachon, Chile, for 29 spiral galaxies in the Pegasus I galaxy cluster and for 18 spirals in non-cluster environments. Pegasus I is a spiral-rich cluster with a low-density intracluster medium and a low galaxy velocity dispersion. When combined with neutral hydrogen (H I) data obtained with the Arecibo 305 m radio telescope, acquired by Levy et al. (2007) and by Springob et al. (2005b), we study the star formation rates in disk galaxies as a function of their H I deficiency. To quantify H I deficiency, we use the usual logarithmic deficiency parameter, DEF. The specific star formation rate (SSFR) is quantified by the logarithmic flux ratio of Hα flux to R-band flux, and thus roughly characterizes the logarithmic SFR per unit stellar mass. We find a clear correlation between the global SFR per unit stellar mass and DEF, such that the SFR is lower in more H I-deficient galaxies. This correlation appears to extend from the most gas-rich to the most gas-poor galaxies. We also find a correlation between the central SFR per unit mass relative to the global values, in the sense that the more H I-deficient galaxies have a higher central SFR per unit mass relative to their global SFR values than do gas-rich galaxies. In fact, approximately half of the H I-depleted galaxies have highly elevated SSFRs in their central regions, indicative of a transient evolutionary state. In addition, we find a correlation between gas depletion and the size of the Hα disk (relative to the R-band disk); H I-poor galaxies have truncated disks. Moreover, aside from the elevated central SSFR in many gas-poor spirals, the SSFR is otherwise lower in the Hα disks of gas-poor galaxies than in gas-rich spirals. Thus, both disk truncation and lowered SSFR levels within the star-forming part of the disks (aside from the enhanced nuclear SSFR) correlate with H I deficiency, and both phenomena are found to

  14. Origin of stars and structure of galaxies

    International Nuclear Information System (INIS)

    Palous, J.

    1988-01-01

    The substance is described of molecular clouds from interstellar mass and the origin, process and termination of the gravitational collapse are described which lead to the creation of stars. The probability is described of the origin of high-mass and lower-mass stars. The connection is discussed between the creation of stars, molecular clouds and the structure of galaxies. (E.S.). 7 figs

  15. BROAD-LINE REVERBERATION IN THE KEPLER-FIELD SEYFERT GALAXY Zw 229-015

    International Nuclear Information System (INIS)

    Barth, Aaron J.; Nguyen, My L.; Malkan, Matthew A.; Filippenko, Alexei V.; Li, Weidong; Cenko, S. Bradley; Choi, Jieun; Duchene, Gaspard; Ganeshalingam, Mohan; Gorjian, Varoujan; Joner, Michael D.; Bennert, Vardha Nicola; Botyanszki, Janos; Childress, Michael; Cucciara, Antonino; Comerford, Julia M.; Da Silva, Robert; Fumagalli, Michele; Gates, Elinor L.; Gerke, Brian F.

    2011-01-01

    The Seyfert 1 galaxy Zw 229-015 is among the brightest active galaxies being monitored by the Kepler mission. In order to determine the black hole mass in Zw 229-015 from Hβ reverberation mapping, we have carried out nightly observations with the Kast Spectrograph at the Lick 3 m telescope during the dark runs from 2010 June through December, obtaining 54 spectroscopic observations in total. We have also obtained nightly V-band imaging with the Katzman Automatic Imaging Telescope at Lick Observatory and with the 0.9 m telescope at the Brigham Young University West Mountain Observatory over the same period. We detect strong variability in the source, which exhibited more than a factor of two change in broad Hβ flux. From cross-correlation measurements, we find that the Hβ light curve has a rest-frame lag of 3.86 +0.69 -0.90 days with respect to the V-band continuum variations. We also measure reverberation lags for Hα and Hγ and find an upper limit to the Hδ lag. Combining the Hβ lag measurement with a broad Hβ width of σ line = 1590 ± 47 km s -1 measured from the rms variability spectrum, we obtain a virial estimate of M BH = 1.00 +0.19 -0.24 x 10 7 M sun for the black hole in Zw 229-015. As a Kepler target, Zw 229-015 will eventually have one of the highest-quality optical light curves ever measured for any active galaxy, and the black hole mass determined from reverberation mapping will serve as a benchmark for testing relationships between black hole mass and continuum variability characteristics in active galactic nuclei.

  16. A Study of Two Dwarf Irregular Galaxies with Asymmetrical Star Formation Distributions

    Science.gov (United States)

    Hunter, Deidre A.; Gallardo, Samavarti; Zhang, Hong-Xin; Adamo, Angela; Cook, David O.; Oh, Se-Heon; Elmegreen, Bruce G.; Kim, Hwihyun; Kahre, Lauren; Ubeda, Leonardo; Bright, Stacey N.; Ryon, Jenna E.; Fumagalli, Michele; Sacchi, Elena; Kennicutt, R. C.; Tosi, Monica; Dale, Daniel A.; Cignoni, Michele; Messa, Matteo; Grebel, Eva K.; Gouliermis, Dimitrios A.; Sabbi, Elena; Grasha, Kathryn; Gallagher, John S., III; Calzetti, Daniela; Lee, Janice C.

    2018-03-01

    Two dwarf irregular galaxies, DDO 187 and NGC 3738, exhibit a striking pattern of star formation: intense star formation is taking place in a large region occupying roughly half of the inner part of the optical galaxy. We use data on the H I distribution and kinematics and stellar images and colors to examine the properties of the environment in the high star formation rate (HSF) halves of the galaxies in comparison with the low star formation rate halves. We find that the pressure and gas density are higher on the HSF sides by 30%–70%. In addition we find in both galaxies that the H I velocity fields exhibit significant deviations from ordered rotation and there are large regions of high-velocity dispersion and multiple velocity components in the gas beyond the inner regions of the galaxies. The conditions in the HSF regions are likely the result of large-scale external processes affecting the internal environment of the galaxies and enabling the current star formation there.

  17. The ionisation parameter of star-forming galaxies evolves with the specific star formation rate

    Science.gov (United States)

    Kaasinen, Melanie; Kewley, Lisa; Bian, Fuyan; Groves, Brent; Kashino, Daichi; Silverman, John; Kartaltepe, Jeyhan

    2018-04-01

    We investigate the evolution of the ionisation parameter of star-forming galaxies using a high-redshift (z ˜ 1.5) sample from the FMOS-COSMOS survey and matched low-redshift samples from the Sloan Digital Sky Survey. By constructing samples of low-redshift galaxies for which the stellar mass (M*), star formation rate (SFR) and specific star formation rate (sSFR) are matched to the high-redshift sample we remove the effects of an evolution in these properties. We also account for the effect of metallicity by jointly constraining the metallicity and ionisation parameter of each sample. We find an evolution in the ionisation parameter for main-sequence, star-forming galaxies and show that this evolution is driven by the evolution of sSFR. By analysing the matched samples as well as a larger sample of z physically consistent with the definition of the ionisation parameter, a measure of the hydrogen ionising photon flux relative to the number density of hydrogen atoms.

  18. Broad-band properties of the CfA Seyfert galaxies. III - Ultraviolet variability

    Science.gov (United States)

    Edelson, R. A.; Pike, G. F.; Krolik, J. H.

    1990-01-01

    A total of 657 archived IUE spectra are used to study the UV variability properties of six members of the CfA Seyfert I galaxy sample. All show strong evidence for continuum and line variations and a tendency for less luminous objects to be more strongly variable. Most objects show a clear correlation at zero lag between UV spectral index and luminosity, evidence that the variable component is an accretion disk around a black hole which is systematically smaller in less luminous sources. No correlation is seen between the continuum luminosity and equivalent width of the C IV, Mg II, and semiforbidden C III emission lines when the entire sample is examined, but a clear anticorrelation is present when only repeated observations of individual objects are considered. This is due to a combination of light-travel time effects in the broad-line region and the nonlinear responses of lines to continuum fluctuations.

  19. Radial distributions of star populations in elliptical galaxies

    International Nuclear Information System (INIS)

    Angeletti, Lucio; Giannone, Pietro

    2010-01-01

    The dynamical structure of stars in low-ellipticity early-type galaxies has been approached in a conceptually simple manner by making use of the mass structure inferred from the radial surface brightness and the stellar metal abundance as derived from that of the contracting gas mass when the stars formed. Families of models depending on three parameters can be used to fit the surface radial profiles of spectro-photometric indices. In particular, the behavior of the spectral index Mg 2 is selected, and the observations for eleven galaxies are matched with models. With the fitting values of the free parameters, we have studied the spatial (within the galaxy) and projected (on the image of the galaxy) distributions of the metal abundances. We present the results for three chosen galaxies characterized by rather different values of the fitting parameters. Our results can be of interest for the formation of stellar populations and call attention to the need for more detailed observations.

  20. Characterizing the Interstellar and Circumgalactic Medium in Star-forming Galaxies

    Science.gov (United States)

    Du, Xinnan; Shapley, Alice; Crystal Martin, Alison Coil, Charles Steidel, Tucker Jones, Daniel Stark, Allison Strom

    2018-01-01

    Rest-frame UV and optical spectroscopy provide valuable information on the physical properties of the neutral and ionized interstellar medium (ISM) in star-forming galaxies, including both the systemic interstellar component originating from HII regions, and the multi-phase outflowing component associated with star-formation feedback. My thesis focuses on both the systemic and outflowing ISM in star-forming galaxies at redshift z ~ 1-4. With an unprecedented sample at z~1 with the rest-frame near-UV coverage, we examined how the kinematics of the warm and cool phrases of gas, probed by the interstellar CIV and low-ionization features, respectively, relate to each other. The spectral properties of CIV strongly correlate with the current star-formation rate, indicating a distinct nature of highly-ionized outflowing gas being driven by massive star formation. Additionally, we used the same set of z~1 galaxies to study the properties of the systemic ISM in HII regions by analyzing the nebular CIII] emission. CIII] emission tends to be stronger in lower-mass, bluer, and fainter galaxies with lower metallicity, suggesting that the strong CIII] emitters at lower redshifts can be ideal analogs of young, bursty galaxies at z > 6, which are possibly responsible for reionizing the universe. We are currently investigating the redshift evolution of the neutral, circumgalactic gas in a sample of ~1100 Lyman Break Galaxies at z ~ 2-4. The negative correlation between Lya emission and low-ionization interstellar absorption line strengths appears to be universal across different redshifts, but the fine-structure line emitting regions are found to be more compact for higher-redshift galaxies. With the detailed observational constraints provided by the rest-UV and rest-optical spectroscopy, our study sheds light on how the interstellar and circumgalactic gas components and different phases of gas connect to each other, and therefore provides a comprehensive picture of the overall

  1. STAR CLUSTER COMPLEXES AND THE HOST GALAXY IN THREE H II GALAXIES: Mrk 36, UM 408, AND UM 461

    Energy Technology Data Exchange (ETDEWEB)

    Lagos, P. [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Telles, E. [Observatorio Nacional, Rua Jose Cristino, 77, Rio de Janeiro 20921-400 (Brazil); Nigoche-Netro, A. [Instituto de Astrofisica de Andalucia (IAA), Glorieta de la Astronomia s/n, 18008 Granada (Spain); Carrasco, E. R., E-mail: plagos@astro.up.pt, E-mail: etelles@on.br, E-mail: nigoche@iaa.es, E-mail: rcarrasco@gemini.edu [Gemini Observatory/AURA, Southern Operations Center, Casilla 603, La Serena (Chile)

    2011-11-15

    We present a stellar population study of three H II galaxies (Mrk 36, UM 408, and UM 461) based on the analysis of new ground-based high-resolution near-infrared J, H, and K{sub p} broadband and Br{gamma} narrowband images obtained with Gemini/NIRI. We identify and determine the relative ages and masses of the elementary star clusters and/or star cluster complexes of the starburst regions in each of these galaxies by comparing the colors with evolutionary synthesis models that include the contribution of stellar continuum, nebular continuum, and emission lines. We found that the current star cluster formation efficiency in our sample of low-luminosity H II galaxies is {approx}10%. Therefore, most of the recent star formation is not in massive clusters. Our findings seem to indicate that the star formation mode in our sample of galaxies is clumpy, and that these complexes are formed by a few massive star clusters with masses {approx}>10{sup 4} M{sub Sun }. The age distribution of these star cluster complexes shows that the current burst started recently and likely simultaneously over short timescales in their host galaxies, triggered by some internal mechanism. Finally, the fraction of the total cluster mass with respect to the low surface brightness (or host galaxy) mass, considering our complete range in ages, is less than 1%.

  2. Prospects of the "WSO-UV" Project for Star Formation Study in Nearby Dwarf Galaxies

    Science.gov (United States)

    Makarova, L. N.; Makarov, D. I.

    2017-12-01

    In the present work we consider the questions of star formation and evolution of nearby dwarf galaxies. We describe the method of star formation history determination based on multicolor photometry of resolved stars and models of color-magnitude diagrams of the galaxies. We present the results of star formation rate determination and its dependence on age and metallicity for dwarf irregular and dwarf spheroidal galaxies in the two nearby galaxy groups M81 and Cen A. Similar age of the last episode of star formation in the central part of the M81 group and also unusually high level of metal enrichment in the several galaxies of the Cen A group are mentioned. We pay special attention to the consideration of perspectives of star formation study in nearby dwarf galaxies with he new WSO-UV observatory.

  3. A CENSUS OF OXYGEN IN STAR-FORMING GALAXIES: AN EMPIRICAL MODEL LINKING METALLICITIES, STAR FORMATION RATES, AND OUTFLOWS

    International Nuclear Information System (INIS)

    Zahid, H. J.; Dima, G. I.; Kewley, L. J.; Erb, D. K.; Davé, R.

    2012-01-01

    In this contribution, we present the first census of oxygen in star-forming galaxies in the local universe. We examine three samples of galaxies with metallicities and star formation rates (SFRs) at z = 0.07, 0.8, and 2.26, including the Sloan Digital Sky Survey (SDSS) and DEEP2 survey. We infer the total mass of oxygen produced and mass of oxygen found in the gas-phase from our local SDSS sample. The star formation history is determined by requiring that galaxies evolve along the relation between stellar mass and SFR observed in our three samples. We show that the observed relation between stellar mass and SFR for our three samples is consistent with other samples in the literature. The mass-metallicity relation is well established for our three samples, and from this we empirically determine the chemical evolution of star-forming galaxies. Thus, we are able to simultaneously constrain the SFRs and metallicities of galaxies over cosmic time, allowing us to estimate the mass of oxygen locked up in stars. Combining this work with independent measurements reported in the literature, we conclude that the loss of oxygen from the interstellar medium of local star-forming galaxies is likely to be a ubiquitous process with the oxygen mass loss scaling (almost) linearly with stellar mass. We estimate the total baryonic mass loss and argue that only a small fraction of the baryons inferred from cosmological observations accrete onto galaxies.

  4. Environmental effects on stellar populations of star clusters and dwarf galaxies

    Science.gov (United States)

    Pasetto, Stefano; Cropper, Mark; Fujita, Yutaka; Chiosi, Cesare; Grebel, Eva K.

    2017-03-01

    We investigate the competitive role of the different dissipative phenomena acting on the onset of star formation of gravitationally bound systems in an external environment. Ram pressure, Kelvin-Helmholtz and Rayleigh-Taylor instabilities, and tidal forces are accounted for separately in an analytical framework and compared in their role in influencing the star forming regions. We present an analytical criterion to elucidate the dependence of star formation in a spherical stellar system on its surrounding environment. We consider the different signatures of these phenomena in synthetically realized colour-magnitude diagrams (CMDs) of the orbiting system thus investigating the detectability limits of these different effects for future observational projects and their relevance. The developed theoretical framework has direct applications to the cases of massive star clusters, dwarf galaxies in galaxy clusters and dwarf galaxies orbiting our Milky Way system, as well as any primordial gas-rich cluster of stars orbiting within its host galaxy.

  5. Halo Histories vs. Galaxy Properties at z=0, III: The Properties of Star-Forming Galaxies

    Science.gov (United States)

    Tinker, Jeremy L.; Hahn, ChangHoon; Mao, Yao-Yuan; Wetzel, Andrew R.

    2018-05-01

    We measure how the properties of star-forming central galaxies correlate with large-scale environment, δ, measured on 10 h-1Mpc scales. We use galaxy group catalogs to isolate a robust sample of central galaxies with high purity and completeness. The galaxy properties we investigate are star formation rate (SFR), exponential disk scale length Rexp, and Sersic index of the galaxy light profile, nS. We find that, at all stellar masses, there is an inverse correlation between SFR and δ, meaning that above-average star forming centrals live in underdense regions. For nS and Rexp, there is no correlation with δ at M_\\ast ≲ 10^{10.5} M⊙, but at higher masses there are positive correlations; a weak correlation with Rexp and a strong correlation with nS. These data are evidence of assembly bias within the star-forming population. The results for SFR are consistent with a model in which SFR correlates with present-day halo accretion rate, \\dot{M}_h. In this model, galaxies are assigned to halos using the abundance matching ansatz, which maps galaxy stellar mass onto halo mass. At fixed halo mass, SFR is then assigned to galaxies using the same approach, but \\dot{M}_h is used to map onto SFR. The best-fit model requires some scatter in the \\dot{M}_h-SFR relation. The Rexp and nS measurements are consistent with a model in which both of these quantities are correlated with the spin parameter of the halo, λ. Halo spin does not correlate with δ at low halo masses, but for higher mass halos, high-spin halos live in higher density environments at fixed Mh. Put together with the earlier installments of this series, these data demonstrate that quenching processes have limited correlation with halo formation history, but the growth of active galaxies, as well as other detailed galaxies properties, are influenced by the details of halo assembly.

  6. Star formation and substructure in galaxy clusters

    International Nuclear Information System (INIS)

    Cohen, Seth A.; Hickox, Ryan C.; Wegner, Gary A.; Einasto, Maret; Vennik, Jaan

    2014-01-01

    We investigate the relationship between star formation (SF) and substructure in a sample of 107 nearby galaxy clusters using data from the Sloan Digital Sky Survey. Several past studies of individual galaxy clusters have suggested that cluster mergers enhance cluster SF, while others find no such relationship. The SF fraction in multi-component clusters (0.228 ± 0.007) is higher than that in single-component clusters (0.175 ± 0.016) for galaxies with M r 0.1 <−20.5. In both single- and multi-component clusters, the fraction of star-forming galaxies increases with clustercentric distance and decreases with local galaxy number density, and multi-component clusters show a higher SF fraction than single-component clusters at almost all clustercentric distances and local densities. Comparing the SF fraction in individual clusters to several statistical measures of substructure, we find weak, but in most cases significant at greater than 2σ, correlations between substructure and SF fraction. These results could indicate that cluster mergers may cause weak but significant SF enhancement in clusters, or unrelaxed clusters exhibit slightly stronger SF due to their less evolved states relative to relaxed clusters.

  7. Was the Narrow Line Seyfert 1 RGB J0044+193 ever radio loud?

    NARCIS (Netherlands)

    Maccarone, T.J.; Miller-Jones, J.C.A.; Fender, R.P.; Pooley, G.G.

    2005-01-01

    We show new radio data and a re-analysis of old data for the Narrow Line Seyfert 1 (NLSy1) galaxy RGB J0044+193. This galaxy has previously been suggested to be both radio loud, and highly variable in the radio. As most NLSy 1 galaxies are radio quiet, this was interpreted as possible evidence that

  8. Approximations to galaxy star formation rate histories: properties and uses of two examples

    Science.gov (United States)

    Cohn, J. D.

    2018-05-01

    Galaxies evolve via a complex interaction of numerous different physical processes, scales and components. In spite of this, overall trends often appear. Simplified models for galaxy histories can be used to search for and capture such emergent trends, and thus to interpret and compare results of galaxy formation models to each other and to nature. Here, two approximations are applied to galaxy integrated star formation rate histories, drawn from a semi-analytic model grafted onto a dark matter simulation. Both a lognormal functional form and principal component analysis (PCA) approximate the integrated star formation rate histories fairly well. Machine learning, based upon simplified galaxy halo histories, is somewhat successful at recovering both fits. The fits to the histories give fixed time star formation rates which have notable scatter from their true final time rates, especially for quiescent and "green valley" galaxies, and more so for the PCA fit. For classifying galaxies into subfamilies sharing similar integrated histories, both approximations are better than using final stellar mass or specific star formation rate. Several subsamples from the simulation illustrate how these simple parameterizations provide points of contact for comparisons between different galaxy formation samples, or more generally, models. As a side result, the halo masses of simulated galaxies with early peak star formation rate (according to the lognormal fit) are bimodal. The galaxies with a lower halo mass at peak star formation rate appear to stall in their halo growth, even though they are central in their host halos.

  9. The Star Formation Histories of Disk Galaxies: The Live, the Dead, and the Undead

    Energy Technology Data Exchange (ETDEWEB)

    Oemler, Augustus Jr; Dressler, Alan [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101-1292 (United States); Abramson, Louis E. [Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Los Angeles CA 90095-1547 (United States); Gladders, Michael D. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Poggianti, Bianca M. [INAF-Osservatorio Astronomico di Padova, vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Vulcani, Benedetta [School of Physics, The University of Melbourne, VIC 3010 (Australia)

    2017-07-20

    We reexamine the properties of local galaxy populations using published surveys of star formation, structure, and gas content. After recalibrating star formation measures, we are able to reliably measure specific star formation rates well below that of the so-called “main sequence” of star formation versus mass. We find an unexpectedly large population of quiescent galaxies with star formation rates intermediate between the main sequence and passive populations and with disproportionately high star formation rates. We demonstrate that a tight main sequence is a natural outcome of most histories of star formation and has little astrophysical significance but that the quiescent population requires additional astrophysics to explain its properties. Using a simple model for disk evolution based on the observed dependence of star formation on gas content in local galaxies, and assuming simple histories of cold gas inflow, we show that the evolution of galaxies away from the main sequence can be attributed to the depletion of gas due to star formation after a cutoff of gas inflow. The quiescent population is composed of galaxies in which the density of disk gas has fallen below a threshold for star formation probably set by disk stability. The evolution of galaxies beyond the quiescent state to gas exhaustion and the end of star formation requires another process, probably wind-driven mass loss. The environmental dependence of the three galaxy populations is consistent with recent numerical modeling, which indicates that cold gas inflows into galaxies are truncated at earlier epochs in denser environments.

  10. ASSESSING RADIATION PRESSURE AS A FEEDBACK MECHANISM IN STAR-FORMING GALAXIES

    International Nuclear Information System (INIS)

    Andrews, Brett H.; Thompson, Todd A.

    2011-01-01

    Radiation pressure from the absorption and scattering of starlight by dust grains may be an important feedback mechanism in regulating star-forming galaxies. We compile data from the literature on star clusters, star-forming subregions, normal star-forming galaxies, and starbursts to assess the importance of radiation pressure on dust as a feedback mechanism, by comparing the luminosity and flux of these systems to their dust Eddington limit. This exercise motivates a novel interpretation of the Schmidt law, the L IR -L' CO correlation, and the L IR -L' HCN correlation. In particular, the linear L IR -L' HCN correlation is a natural prediction of radiation pressure regulated star formation. Overall, we find that the Eddington limit sets a hard upper bound to the luminosity of any star-forming region. Importantly, however, many normal star-forming galaxies have luminosities significantly below the Eddington limit. We explore several explanations for this discrepancy, especially the role of 'intermittency' in normal spirals-the tendency for only a small number of subregions within a galaxy to be actively forming stars at any moment because of the time dependence of the feedback process and the luminosity evolution of the stellar population. If radiation pressure regulates star formation in dense gas, then the gas depletion timescale is 6 Myr, in good agreement with observations of the densest starbursts. Finally, we highlight the importance of observational uncertainties, namely, the dust-to-gas ratio and the CO-to-H 2 and HCN-to-H 2 conversion factors, that must be understood before a definitive assessment of radiation pressure as a feedback mechanism in star-forming galaxies.

  11. The AGN Population in Nearby Galaxies

    International Nuclear Information System (INIS)

    Filho, Mercedes; Barthel, Peter; Ho, Luis

    2006-01-01

    In order to determine the incidence of black hole accretion-driven nuclear activity in nearby galaxies, we have compiled radio data for the LINERs, composite LINER,/Hn and Seyfert galaxies from a complete magnitude-limited sample of bright nearby galaxies (Palomar sample). Our results show an overall radio detection rate of 54% (22% of all bright nearby galaxies) and we estimate that at least ∼50% (∼20% of all bright nearby galaxies) are true AGN. By comparing the radio luminosity function of the LINERs, composite LINER/Hll and Seyferts galaxies in the Palomar sample with those of selected moderate-redshift AGN, we fhd that our sources naturally extend the radio luminosity function of powerful AGN down to powers of about 10 times that of Sgr A*

  12. HOST GALAXY PROPERTIES OF THE SWIFT BAT ULTRA HARD X-RAY SELECTED ACTIVE GALACTIC NUCLEUS

    International Nuclear Information System (INIS)

    Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain; Winter, Lisa M.; Baumgartner, Wayne; Tueller, Jack; Gehrels, Neil; Valencic, Lynne

    2011-01-01

    We have assembled the largest sample of ultra hard X-ray selected (14-195 keV) active galactic nucleus (AGN) with host galaxy optical data to date, with 185 nearby (z * >10.5) have a 5-10 times higher rate of spiral morphologies than in SDSS AGNs or inactive galaxies. We also see enhanced far-infrared emission in BAT AGN suggestive of higher levels of star formation compared to the comparison samples. BAT AGNs are preferentially found in the most massive host galaxies with high concentration indexes indicative of large bulge-to-disk ratios and large supermassive black holes. The narrow-line (NL) BAT AGNs have similar intrinsic luminosities as the SDSS NL Seyferts based on measurements of [O III] λ5007. There is also a correlation between the stellar mass and X-ray emission. The BAT AGNs in mergers have bluer colors and greater ultra hard X-ray emission compared to the BAT sample as a whole. In agreement with the unified model of AGNs, and the relatively unbiased nature of the BAT sources, the host galaxy colors and morphologies are independent of measures of obscuration such as X-ray column density or Seyfert type. The high fraction of massive spiral galaxies and galaxy mergers in BAT AGNs suggest that host galaxy morphology is related to the activation and fueling of local AGN.

  13. Delayed star formation in isolated dwarf galaxies: Hubble space telescope star formation history of the Aquarius dwarf irregular

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Andrew A. [School of Physical Sciences, University of Tasmania, Private Bag 37, Hobart, Tasmania, 7001 Australia (Australia); Weisz, Daniel R. [Department of Astronomy, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Dolphin, Andrew E. [Raytheon, 1151 East Hermans Road, Tucson, AZ 85706 (United States); Skillman, Evan D. [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55441 (United States); McConnachie, Alan W. [NRC Herzberg Institute of Astrophysics, Dominion Astrophysical Observatory, Victoria, BC, V9E 2E7 Canada (Canada); Brooks, Alyson M. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Leaman, Ryan, E-mail: andrew.cole@utas.edu.au, E-mail: drw@ucsc.edu, E-mail: adolphin@raytheon.com, E-mail: skillman@astro.umn.edu, E-mail: alan.mcconnachie@nrc-cnrc.gc.ca, E-mail: abrooks@physics.rutgers.edu, E-mail: rleaman@iac.es [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain)

    2014-11-01

    We have obtained deep images of the highly isolated (d = 1 Mpc) Aquarius dwarf irregular galaxy (DDO 210) with the Hubble Space Telescope Advanced Camera for Surveys. The resulting color-magnitude diagram (CMD) reaches more than a magnitude below the oldest main-sequence turnoff, allowing us to derive the star formation history (SFH) over the entire lifetime of the galaxy with a timing precision of ≈10% of the lookback time. Using a maximum likelihood fit to the CMD we find that only ≈10% of all star formation in Aquarius took place more than 10 Gyr ago (lookback time equivalent to redshift z ≈ 2). The star formation rate increased dramatically ≈6-8 Gyr ago (z ≈ 0.7-1.1) and then declined until the present time. The only known galaxy with a more extreme confirmed delay in star formation is Leo A, a galaxy of similar M {sub H} {sub I}/M {sub *}, dynamical mass, mean metallicity, and degree of isolation. The delayed stellar mass growth in these galaxies does not track the mean dark matter accretion rate from CDM simulations. The similarities between Leo A and Aquarius suggest that if gas is not removed from dwarf galaxies by interactions or feedback, it can linger for several gigayears without cooling in sufficient quantity to form stars efficiently. We discuss possible causes for the delay in star formation including suppression by reionization and late-time mergers. We find reasonable agreement between our measured SFHs and select cosmological simulations of isolated dwarfs. Because star formation and merger processes are both stochastic in nature, delayed star formation in various degrees is predicted to be a characteristic (but not a universal) feature of isolated small galaxies.

  14. A High-definition View Of The Circum-nuclear Regions In Nearby Seyferts With Chandra And HST

    Science.gov (United States)

    Wang, Junfeng; Fabbiano, G.; Elvis, M.; Risaliti, G.; Karovska, M.; Zezas, A.; Mundell, C. G.

    2011-09-01

    To improve our understanding of AGN feedback, it is crucial to evaluate the true role of outflows on galaxy evolution observationally. I will present new results from the CHandra survey of Extended Emission-line Regions in nearby Seyfert galaxies (CHEERS), which aims to examine feedback in action in much greater detail than at high redshift. Findings from Chandra studies of the circum-nuclear region in the archetypal Seyfert 1 galaxy NGC 4151 will be discussed in detail. Exploiting Chandra's highest possible resolution, we find evidence for X-ray emission from interaction between radio outflow and the optical narrow-line region clouds, in addition to the emission from photoionized gas.

  15. Evolved stars in the Local Group galaxies - II. AGB, RSG stars and dust production in IC10

    Science.gov (United States)

    Dell'Agli, F.; Di Criscienzo, M.; Ventura, P.; Limongi, M.; García-Hernández, D. A.; Marini, E.; Rossi, C.

    2018-06-01

    We study the evolved stellar population of the Local Group galaxy IC10, with the aim of characterizing the individual sources observed and to derive global information on the galaxy, primarily the star formation history and the dust production rate. To this aim, we use evolutionary sequences of low- and intermediate-mass (M account for 40% of the sources brighter than the tip of the red giant branch. Most of these stars descend from ˜1.1 - 1.3 M⊙ progenitors, formed during the major epoch of star formation, which occurred ˜2.5 Gyr ago. The presence of a significant number of bright stars indicates that IC10 has been site of significant star formation in recent epochs and currently hosts a group of massive stars in the core helium-burning phase. Dust production in this galaxy is largely dominated by carbon stars; the overall dust production rate estimated is 7 × 10-6 M⊙/yr.

  16. A Hard X-Ray Study of the Normal Star-Forming Galaxy M83 with NuSTAR

    DEFF Research Database (Denmark)

    Yukita, M.; Hornschemeier, A. E.; Lehmer, B. D.

    2016-01-01

    We present the results from sensitive, multi-epoch NuSTAR observations of the late-type star-forming galaxy M83 (d = 4.6 Mpc). This is the first investigation to spatially resolve the hard (E > 10 keV) X-ray emission of this galaxy. The nuclear region and similar to 20 off-nuclear point sources......, including a previously discovered ultraluminous X-ray source, are detected in our NuSTAR observations. The X-ray hardnesses and luminosities of the majority of the point sources are consistent with hard X-ray sources resolved in the starburst galaxy NGC 253. We infer that the hard X-ray emission is most...

  17. A Variation of the Present Star Formation Activity of Spiral Galaxies

    OpenAIRE

    Tomita, Akihiko; Tomita, Yoshio; Saito, Mamoru

    1996-01-01

    The star formation rate in spiral galaxies is considered to be decreasing continuously with time in a time scale of $10^{9}$ yr. The present star formation activity, on the other hand, shows various degrees among galaxies. We make a new data set of 1681 nearby spiral galaxies from available databases and study the statistics of the present star formation activity. We analyze far-infrared and optical B-band surface brightnesses of the H II regions and the non-H II regions in M~31 and show that...

  18. Current star formation in S0 galaxies: NGC 4710

    International Nuclear Information System (INIS)

    Wrobel, J.M.

    1990-01-01

    Elliptical (E) and lenticular (S0) galaxies lack the substantial interstellar medium (ISM) found in the star-forming spiral galaxies. However, significant numbers of E and S0 galaxies are known to contain detectable amounts of interstellar matter (e.g., Jura 1988). Thus, it is worth investigating whether these galaxies are currently able to form stars from their ISM, or whether they should be consigned to the dustbin of inert objects (Thronson and Bally 1987). The results strongly imply that current star formation is responsible for NGC 4710's far infrared and radio continuum properties. If this is indeed the case, then one expects this star formation to be fueled by molecular gas, which is presumably dominated by H2 and can be traced by the CO-12 J=1 to 0 line. Both Kenney and Young (1988) and Sage and Wrobel (1989) have detected such an emission line from NGC 4710, and infer the presence of more than 10(exp 8) solar mass of H2. The origin of the molecular gas in NGC 4710 remains a mystery. The galaxy is very deficient in HI (Kenney and Young, in preparation), suggesting that it originally was a spiral galaxy from which the outer, mainly atomic, gas was stripped by the ram pressure of the Virgo Cluster's intracluster medium, leaving only a central interstellar medium (ISM) rich in molecular gas. Alternatively, the CO may have originated via stellar mass loss with subsequent cooling, cooling flows, or capture from a gas-rich companion. Information on the morphology and kinematics of the CO can be compared with that of the galaxy's other gases and stars to distinguish among these various possible origins for the molecular gas. Major axis CO mapping with single dishes indicate an unresolved source. Thus, a millimeter array is currently being used to image NGC 4710 in CO to provide the needed morphological and kinematical data

  19. Star formation and mass assembly in high redshift galaxies

    Science.gov (United States)

    Santini, P.; Fontana, A.; Grazian, A.; Salimbeni, S.; Fiore, F.; Fontanot, F.; Boutsia, K.; Castellano, M.; Cristiani, S.; de Santis, C.; Gallozzi, S.; Giallongo, E.; Menci, N.; Nonino, M.; Paris, D.; Pentericci, L.; Vanzella, E.

    2009-09-01

    Aims: The goal of this work is to infer the star formation properties and the mass assembly process of high redshift (0.3 ≤ z MUSIC catalog, which has multiwavelength coverage from 0.3 to 24 μm and either spectroscopic or accurate photometric redshifts. We describe how the catalog has been extended by the addition of mid-IR fluxes derived from the MIPS 24 μm image. We compared two different estimators of the star formation rate (SFR hereafter). One is the total infrared emission derived from 24 μm, estimated using both synthetic and empirical IR templates. The other one is a multiwavelength fit to the full galaxy SED, which automatically accounts for dust reddening and age-star formation activity degeneracies. For both estimates, we computed the SFR density and the specific SFR. Results: We show that the two SFR indicators are roughly consistent, once the uncertainties involved are taken into account. However, they show a systematic trend, IR-based estimates exceeding the fit-based ones as the star formation rate increases. With this new catalog, we show that: a) at z>0.3, the star formation rate is correlated well with stellar mass, and this relationship seems to steepen with redshift if one relies on IR-based estimates of the SFR; b) the contribution to the global SFRD by massive galaxies increases with redshift up to ≃ 2.5, more rapidly than for galaxies of lower mass, but appears to flatten at higher z; c) despite this increase, the most important contributors to the SFRD at any z are galaxies of about, or immediately lower than, the characteristic stellar mass; d) at z≃ 2, massive galaxies are actively star-forming, with a median {SFR} ≃ 300 M_⊙ yr-1. During this epoch, our targeted galaxies assemble a substantial part of their final stellar mass; e) the specific SFR (SSFR) shows a clear bimodal distribution. Conclusions: The analysis of the SFR density and the SSFR seems to support the downsizing scenario, according to which high mass galaxies

  20. Playing with Positive Feedback: External Pressure-triggering of a Star-forming Disk Galaxy

    Science.gov (United States)

    Bieri, Rebekka; Dubois, Yohan; Silk, Joseph; Mamon, Gary A.

    2015-10-01

    In massive galaxies, the currently favored method for quenching star formation is via active galactic nuclei (AGN) feedback, which ejects gas from the galaxy using a central supermassive black hole. At high redshifts however, explanation of the huge rates of star formation often found in galaxies containing AGNs may require a more vigorous mode of star formation than is attainable by simply enriching the gas content of galaxies in the usual gravitationally driven mode that is associated with the nearby universe. Using idealized hydrodynamical simulations, we show that AGN-pressure-driven star formation potentially provides the positive feedback that may be required to generate the accelerated star formation rates observed in the distant universe.

  1. STAR CLUSTER DISRUPTION IN THE STARBURST GALAXY MESSIER 82

    International Nuclear Information System (INIS)

    Li, Shuo; Li, Chengyuan; De Grijs, Richard; Anders, Peter

    2015-01-01

    Using high-resolution, multiple-passband Hubble Space Telescope images spanning the entire optical/near-infrared wavelength range, we obtained a statistically complete U-band-selected sample of 846 extended star clusters across the disk of the nearby starburst galaxy M82. Based on a careful analysis of the clusters' spectral energy distributions, we determined their galaxy-wide age and mass distributions. The M82 clusters exhibit three clear peaks in their age distribution, thus defining relatively young, log (t yr –1 ) ≤ 7.5, intermediate-age, log (t yr –1 ) in [7.5, 8.5], and old samples, log (t yr –1 ) ≥ 8.5. Comparison of the completeness-corrected mass distributions offers a firm handle on the galaxy's star cluster disruption history. The most massive star clusters in the young and old samples are (almost) all concentrated in the most densely populated central region, while the intermediate-age sample's most massive clusters are more spatially dispersed, which may reflect the distribution of the highest-density gas throughout the galaxy's evolutionary history, combined with the solid-body nature of the galaxy's central region

  2. Galaxy evolution in extreme environments: Molecular gas content star formation and AGN in isolated void galaxies

    Science.gov (United States)

    Das, Mousumi; Iono, Daisuke; Saito, Toshiki; Subramanian, Smitha

    Since the early redshift surveys of the large scale structure of our universe, it has become clear that galaxies cluster along walls, sheet and filaments leaving large, empty regions called voids between them. Although voids represent the most under dense parts of our universe, they do contain a sparse but significant population of isolated galaxies that are generally low luminosity, late type disk galaxies. Recent studies show that most void galaxies have ongoing star formation and are in an early stage of evolution. We present radio, optical studies of the molecular gas content and star formation in a sample of void galaxies. Using SDSS data, we find that AGN are rare in these systems and are found only in the Bootes void; their black hole masses and radio properties are similar to bright spirals galaxies. Our studies suggest that close galaxy interactions and gas accretion are the main drivers of galaxy evolution in these systems despite their location in the underdense environment of the voids.

  3. The broad component of hydrogen emission lines in nuclei of Seyfert galaxies: Comments on a charge exchange model

    International Nuclear Information System (INIS)

    Katz, A.

    1975-01-01

    A model to account for the broad hydrogen line emission from the nuclei of Seyfert galaxies based on charge exchange and collisional processes, as proposed by Ptak and Stoner, is investigated. The model consists of a source of fast (E approx. 10 5 eV) protons streaming through a medium of quiescent gas. One of the major problems that results from such a model concerns the strong narrow hydrogen line core that would be produced, in direct conflict with the observations. The lines cannot arise from gas arranged throughout a spherical volume surrounding the source of the fast particles because the fast protons would produce far more ionizations than the possible number of recombinations. A very dense shell source of less than 1 AU in thickness and at least several tens of parsecs in radius must be invoked to reproduce the asymmetric broad profiles observed. There must be absorption throughout the center of the shell to account for the line profiles. The gas cannot be arranged in dense clumps throughout a large volume because momentum exchange of the gas with the primary particles would quickly accelerate any clumps. The energy balance and energy requirements of such a model are investigated, and it is found that an energy equal to or greater than the total luminosity of most Seyfert galaxies is required to produce the hydrogen line alone. The gas must be mostly neutral and den []e (N approx. 10 7 ) if a reasonable temperature is to be maintained

  4. CATCHING QUENCHING GALAXIES: THE NATURE OF THE WISE INFRARED TRANSITION ZONE

    Energy Technology Data Exchange (ETDEWEB)

    Alatalo, Katherine; Appleton, Philip N.; Rich, Jeffrey A. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Cales, Sabrina L. [Department of Astronomy, Faculty of Physical and Mathematical Sciences, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Kewley, Lisa J. [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston, ACT 2611 (Australia); Lacy, Mark [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Lisenfeld, Ute [Departamento de Física Teórica y del Cosmos, Universidad de Granada, Granada (Spain); Nyland, Kristina, E-mail: kalatalo@caltech.edu [Physics Department, New Mexico Tech, Socorro, NM 87801 (United States)

    2014-10-10

    We present the discovery of a prominent bifurcation between early-type galaxies and late-type galaxies, in [4.6]-[12] μm colors from the Wide Field Infrared Survey Explorer (WISE). We then use an emission-line diagnostic comparison sample to explore the nature of objects found both within and near the edges of this WISE infrared transition zone (IRTZ). We hypothesize that this bifurcation might be due to the presence of hot dust and polyaromatic hydrocarbon (PAH) emission features in late-type galaxies. Using a sample of galaxies selected through the Shocked Poststarburst Galaxy Survey (SPOGS), we are able to identify galaxies with strong Balmer absorption (EW(Hδ) > 5 Å) as well as emission lines inconsistent with star formation (deemed SPOG candidates, or SPOGs*) that lie within the optical green valley. Seyferts and low-ionization nuclear emission line regions, whose u – r colors tend to be red, are strongly represented within IRTZ, whereas SPOGs* tend to sit near the star-forming edge. Although active galactic nuclei are well represented in the IRTZ, we argue that the dominant IRTZ population is composed of galaxies that are in late stages of transitioning across the optical green valley, shedding the last of their remnant interstellar media.

  5. THE STAR FORMATION HISTORY AND CHEMICAL EVOLUTION OF STAR-FORMING GALAXIES IN THE NEARBY UNIVERSE

    International Nuclear Information System (INIS)

    Torres-Papaqui, J. P.; Coziol, R.; Ortega-Minakata, R. A.; Neri-Larios, D. M.

    2012-01-01

    We have determined the metallicity (O/H) and nitrogen abundance (N/O) of a sample of 122,751 star-forming galaxies (SFGs) from the Data Release 7 of the Sloan Digital Sky Survey. For all these galaxies we have also determined their morphology and obtained a comprehensive picture of their star formation history (SFH) using the spectral synthesis code STARLIGHT. The comparison of the chemical abundance with the SFH allows us to describe the chemical evolution of the SFGs in the nearby universe (z ≤ 0.25) in a manner consistent with the formation of their stellar populations and morphologies. A high fraction (45%) of the SFGs in our sample show an excess abundance of nitrogen relative to their metallicity. We also find this excess to be accompanied by a deficiency of oxygen, which suggests that this could be the result of effective starburst winds. However, we find no difference in the mode of star formation of the nitrogen-rich and nitrogen-poor SFGs. Our analysis suggests that they all form their stars through a succession of bursts of star formation extended over a period of few Gyr. What produces the chemical differences between these galaxies seems therefore to be the intensity of the bursts: the galaxies with an excess of nitrogen are those that are presently experiencing more intense bursts or have experienced more intense bursts in their past. We also find evidence relating the chemical evolution process to the formation of the galaxies: the galaxies with an excess of nitrogen are more massive, and have more massive bulges and earlier morphologies than those showing no excess. Contrary to expectation, we find no evidence that the starburst wind efficiency decreases with the mass of the galaxies. As a possible explanation we propose that the loss of metals consistent with starburst winds took place during the formation of the galaxies, when their potential wells were still building up, and consequently were weaker than today, making starburst winds more

  6. TURBULENCE AND STAR FORMATION IN A SAMPLE OF SPIRAL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Erin; Chien, Li-Hsin [Department of Physics and Astronomy, Northern Arizona University 527 S Beaver Street, Flagstaff, AZ 86011 (United States); Hunter, Deidre A., E-mail: erin-maier@uiowa.edu, E-mail: Lisa.Chien@nau.edu, E-mail: dah@lowell.edu [Lowell Observatory 1400 W Mars Hill Road, Flagstaff, AZ 86001 (United States)

    2016-11-01

    We investigate turbulent gas motions in spiral galaxies and their importance to star formation in far outer disks, where the column density is typically far below the critical value for spontaneous gravitational collapse. Following the methods of Burkhart et al. on the Small Magellanic Cloud, we use the third and fourth statistical moments, as indicators of structures caused by turbulence, to examine the neutral hydrogen (H i) column density of a sample of spiral galaxies selected from The H i Nearby Galaxy Survey. We apply the statistical moments in three different methods—the galaxy as a whole, divided into a function of radii and then into grids. We create individual grid maps of kurtosis for each galaxy. To investigate the relation between these moments and star formation, we compare these maps with their far-ultraviolet images taken by the Galaxy Evolution Explorer satellite.We find that the moments are largely uniform across the galaxies, in which the variation does not appear to trace any star-forming regions. This may, however, be due to the spatial resolution of our analysis, which could potentially limit the scale of turbulent motions that we are sensitive to greater than ∼700 pc. From comparison between the moments themselves, we find that the gas motions in our sampled galaxies are largely supersonic. This analysis also shows that the Burkhart et al. methods may be applied not just to dwarf galaxies but also to normal spiral galaxies.

  7. Predicting Galaxy Star Formation Rates via the Co-evolution of Galaxies and Halos

    OpenAIRE

    Watson, Douglas F.; Hearin, Andrew P.; Berlind, Andreas A.; Becker, Matthew R.; Behroozi, Peter S.; Skibba, Ramin A.; Reyes, Reinabelle; Zentner, Andrew R.; Bosch, Frank C. van den

    2014-01-01

    In this paper, we test the age matching hypothesis that the star formation rate (SFR) of a galaxy of fixed stellar mass is determined by its dark matter halo formation history, and as such, that more quiescent galaxies reside in older halos. This simple model has been remarkably successful at predicting color-based galaxy statistics at low redshift as measured in the Sloan Digital Sky Survey (SDSS). To further test this method with observations, we present new SDSS measurements of the galaxy ...

  8. Stellar Abundances for Galactic Archaeology Database. IV. Compilation of stars in dwarf galaxies

    Science.gov (United States)

    Suda, Takuma; Hidaka, Jun; Aoki, Wako; Katsuta, Yutaka; Yamada, Shimako; Fujimoto, Masayuki Y.; Ohtani, Yukari; Masuyama, Miyu; Noda, Kazuhiro; Wada, Kentaro

    2017-10-01

    We have constructed a database of stars in Local Group galaxies using the extended version of the SAGA (Stellar Abundances for Galactic Archaeology) database that contains stars in 24 dwarf spheroidal galaxies and ultra-faint dwarfs. The new version of the database includes more than 4500 stars in the Milky Way, by removing the previous metallicity criterion of [Fe/H] ≤ -2.5, and more than 6000 stars in the Local Group galaxies. We examined the validity of using a combined data set for elemental abundances. We also checked the consistency between the derived distances to individual stars and those to galaxies as given in the literature. Using the updated database, the characteristics of stars in dwarf galaxies are discussed. Our statistical analyses of α-element abundances show that the change of the slope of the [α/Fe] relative to [Fe/H] (so-called "knee") occurs at [Fe/H] = -1.0 ± 0.1 for the Milky Way. The knee positions for selected galaxies are derived by applying the same method. The star formation history of individual galaxies is explored using the slope of the cumulative metallicity distribution function. Radial gradients along the four directions are inspected in six galaxies where we find no direction-dependence of metallicity gradients along the major and minor axes. The compilation of all the available data shows a lack of CEMP-s population in dwarf galaxies, while there may be some CEMP-no stars at [Fe/H] ≲ -3 even in the very small sample. The inspection of the relationship between Eu and Ba abundances confirms an anomalously Ba-rich population in Fornax, which indicates a pre-enrichment of interstellar gas with r-process elements. We do not find any evidence of anti-correlations in O-Na and Mg-Al abundances, which characterizes the abundance trends in the Galactic globular clusters.

  9. Low-ionization galaxies and evolution in a pilot survey up to z = 1

    International Nuclear Information System (INIS)

    Giraud, Edmond; Gu Qiusheng; Melnick, Jorge; Selman, Fernando; Quintana, Hernan; Toledo, Ignacio; Zelaya, Paula

    2011-01-01

    We present galactic spectroscopic data from a pencil beam of 10.75' x 7.5' centered on the X-ray cluster RXJ0054.0-2823 at z = 0.29. We study the spectral evolution of galaxies from z = 1 down to the cluster redshift in a magnitude-limited sample at R ≤ 23, for which the statistical properties of the sample are well understood. We divide emission-line galaxies into star-forming galaxies, Low Ionization Nuclear Emission line Regions (LINERs), and Seyferts by using emission-line ratios of [OII], Hβ, and [OIII], and derive stellar fractions from population synthesis models. We focus our analysis on absorption and low-ionization galaxies. For absorption-line galaxies, we recover the well-known result that these galaxies have had no detectable evolution since z ∼ 0.6 - 0.7, but we also find that in the range z = 0.65 - 1, at least 50% of the stars in bright absorption systems are younger than 2.5 Gyr Faint absorption-line galaxies in the cluster at z = 0.29 also had significant star formation during the previous 2 - 3 Gyr, but their brighter counterparts seem to be only composed of old stars. At z ∼ 0.8, our dynamically young cluster had a truncated red-sequence. This result seems to be consistent with a scenario where the final assembly of E/S0 took place at z < 1. In the volume-limited range 0.35 ≤ z ≤ 0.65, we find that 23% of the early-type galaxies have LINER-like spectra with Hβ in absorption and have a significant component of A stars. The vast majority of LINERs in our sample have significant populations of young and intermediate-aged stars and are thus not related to AGNs, but to the population of 'retired galaxies' recently identified by Cid Fernandes et al. in the Sloan Digital Sky Survey (SDSS). Early-type LINERs with various fractions of A stars and E+A galaxies appear to play an important role in the formation of the red sequence.

  10. Simulating Gamma-Ray Emission in Star-forming Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Pfrommer, Christoph [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); Pakmor, Rüdiger; Simpson, Christine M.; Springel, Volker, E-mail: cpfrommer@aip.de [Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany)

    2017-10-01

    Star-forming galaxies emit GeV and TeV gamma-rays that are thought to originate from hadronic interactions of cosmic-ray (CR) nuclei with the interstellar medium. To understand the emission, we have used the moving-mesh code Arepo to perform magnetohydrodynamical galaxy formation simulations with self-consistent CR physics. Our galaxy models exhibit a first burst of star formation that injects CRs at supernovae. Once CRs have sufficiently accumulated in our Milky Way–like galaxy, their buoyancy force overcomes the magnetic tension of the toroidal disk field. As field lines open up, they enable anisotropically diffusing CRs to escape into the halo and to accelerate a bubble-like, CR-dominated outflow. However, these bubbles are invisible in our simulated gamma-ray maps of hadronic pion-decay and secondary inverse-Compton emission because of low gas density in the outflows. By adopting a phenomenological relation between star formation rate (SFR) and far-infrared emission and assuming that gamma-rays mainly originate from decaying pions, our simulated galaxies can reproduce the observed tight relation between far-infrared and gamma-ray emission, independent of whether we account for anisotropic CR diffusion. This demonstrates that uncertainties in modeling active CR transport processes only play a minor role in predicting gamma-ray emission from galaxies. We find that in starbursts, most of the CR energy is “calorimetrically” lost to hadronic interactions. In contrast, the gamma-ray emission deviates from this calorimetric property at low SFRs due to adiabatic losses, which cannot be identified in traditional one-zone models.

  11. Simulating Gamma-Ray Emission in Star-forming Galaxies

    Science.gov (United States)

    Pfrommer, Christoph; Pakmor, Rüdiger; Simpson, Christine M.; Springel, Volker

    2017-10-01

    Star-forming galaxies emit GeV and TeV gamma-rays that are thought to originate from hadronic interactions of cosmic-ray (CR) nuclei with the interstellar medium. To understand the emission, we have used the moving-mesh code Arepo to perform magnetohydrodynamical galaxy formation simulations with self-consistent CR physics. Our galaxy models exhibit a first burst of star formation that injects CRs at supernovae. Once CRs have sufficiently accumulated in our Milky Way-like galaxy, their buoyancy force overcomes the magnetic tension of the toroidal disk field. As field lines open up, they enable anisotropically diffusing CRs to escape into the halo and to accelerate a bubble-like, CR-dominated outflow. However, these bubbles are invisible in our simulated gamma-ray maps of hadronic pion-decay and secondary inverse-Compton emission because of low gas density in the outflows. By adopting a phenomenological relation between star formation rate (SFR) and far-infrared emission and assuming that gamma-rays mainly originate from decaying pions, our simulated galaxies can reproduce the observed tight relation between far-infrared and gamma-ray emission, independent of whether we account for anisotropic CR diffusion. This demonstrates that uncertainties in modeling active CR transport processes only play a minor role in predicting gamma-ray emission from galaxies. We find that in starbursts, most of the CR energy is “calorimetrically” lost to hadronic interactions. In contrast, the gamma-ray emission deviates from this calorimetric property at low SFRs due to adiabatic losses, which cannot be identified in traditional one-zone models.

  12. Connections between Star Cluster Populations and Their Host Galaxy Nuclear Rings

    Science.gov (United States)

    Ma, Chao; de Grijs, Richard; Ho, Luis C.

    2018-04-01

    Nuclear rings are excellent laboratories for probing diverse phenomena such as the formation and evolution of young massive star clusters and nuclear starbursts, as well as the secular evolution and dynamics of their host galaxies. We have compiled a sample of 17 galaxies with nuclear rings, which are well resolved by high-resolution Hubble and Spitzer Space Telescope imaging. For each nuclear ring, we identified the ring star cluster population, along with their physical properties (ages, masses, and extinction values). We also determined the integrated ring properties, including the average age, total stellar mass, and current star formation rate (SFR). We find that Sb-type galaxies tend to have the highest ring stellar mass fraction with respect to the host galaxy, and this parameter is correlated with the ring’s SFR surface density. The ring SFRs are correlated with their stellar masses, which is reminiscent of the main sequence of star-forming galaxies. There are striking correlations between star-forming properties (i.e., SFR and SFR surface density) and nonaxisymmetric bar parameters, appearing to confirm previous inferences that strongly barred galaxies tend to have lower ring SFRs, although the ring star formation histories turn out to be significantly more complicated. Nuclear rings with higher stellar masses tend to be associated with lower cluster mass fractions, but there is no such relation for the ages of the rings. The two youngest nuclear rings in our sample, NGC 1512 and NGC 4314, which have the most extreme physical properties, represent the young extremity of the nuclear ring age distribution.

  13. Probing the Physics of Narrow-line Regions in Active Galaxies. IV. Full Data Release of the Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7)

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Adam D.; Dopita, Michael A.; Davies, Rebecca; Hampton, Elise; Kewley, Lisa; Banfield, Julie; Groves, Brent; Sutherland, Ralph [RSAA, Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia); Shastri, Prajval; Sairam, Lalitha [Indian Institute of Astrophysics, Sarjapur Road, Bengaluru 560034 (India); James, Bethan L. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Jin, Chichuan [Max-Planck-Institut für Extraterrestrische Physik, Garching (Germany); Juneau, Stéphanie [CEA-Saclay, DSM/IRFU/SAp, F-91191 Gif-sur-Yvette (France); Kharb, Preeti [National Centre for Radio Astrophysics—Tata Institute of Fundamental Research, Pune University Campus, Post Bag 3, Ganeshkhind Pune 411007 (India); Scharwächter, Julia [Gemini Observatory, Northern Operations Center, 670 N. A’ohoku Place, Hilo, Hawaii 96720 (United States); Shalima, P. [Regional Institute of Education, Manasagangotri, Mysore 570006 (India); Sundar, M. N. [Jain University, 3rd Block Jayanagar, Bengaluru 560011 (India); Zaw, Ingyin, E-mail: adam.thomas@anu.edu.au [New York University (Abu Dhabi), 70 Washington Sq. S, New York, NY 10012 (United States)

    2017-09-01

    We present the second and final data release of the Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7). Data are presented for 63 new galaxies not included in the first data release, and we provide 2D emission-line fitting products for the full S7 sample of 131 galaxies. The S7 uses the WiFeS instrument on the ANU 2.3 m telescope to obtain spectra with a spectral resolution of R  = 7000 in the red (540–700 nm) and R  = 3000 in the blue (350–570 nm), over an integral field of 25 × 38 arcsec{sup 2} with 1 × 1 arcsec{sup 2} spatial pixels. The S7 contains both the largest sample of active galaxies and the highest spectral resolution of any comparable integral field survey to date. The emission-line fitting products include line fluxes, velocities, and velocity dispersions across the WiFeS field of view, and an artificial neural network has been used to determine the optimal number of Gaussian kinematic components for emission-lines in each spaxel. Broad Balmer lines are subtracted from the spectra of nuclear spatial pixels in Seyfert 1 galaxies before fitting the narrow lines. We bin nuclear spectra and measure reddening-corrected nuclear fluxes of strong narrow lines for each galaxy. The nuclear spectra are classified on optical diagnostic diagrams, where the strength of the coronal line [Fe vii] λ 6087 is shown to be correlated with [O iii]/H β . Maps revealing gas excitation and kinematics are included for the entire sample, and we provide notes on the newly observed objects.

  14. Crashing galaxies, cosmic fireworks

    International Nuclear Information System (INIS)

    Keel, W.C.

    1989-01-01

    The study of binary systems is reviewed. The history of the study of interacting galaxies, the behavior of gas in binary systems, studies to identify the processes that occur when galaxies interact, and the relationship of Seyfert galaxies and quasars to binary systems are discussed. The development of an atlas of peculiar galaxies (Arp, 1966) and methods for modeling galaxy interactions are examined

  15. Semi-Automatic Removal of Foreground Stars from Images of Galaxies

    Science.gov (United States)

    Frei, Zsolt

    1996-07-01

    A new procedure, designed to remove foreground stars from galaxy proviles is presented here. Although several programs exist for stellar and faint object photometry, none of them treat star removal from the images very carefully. I present my attempt to develop such a system, and briefly compare the performance of my software to one of the well-known stellar photometry packages, DAOPhot (Stetson 1987). Major steps in my procedure are: (1) automatic construction of an empirical 2D point spread function from well separated stars that are situated off the galaxy; (2) automatic identification of those peaks that are likely to be foreground stars, scaling the PSF and removing these stars, and patching residuals (in the automatically determined smallest possible area where residuals are truly significant); and (3) cosmetic fix of remaining degradations in the image. The algorithm and software presented here is significantly better for automatic removal of foreground stars from images of galaxies than DAOPhot or similar packages, since: (a) the most suitable stars are selected automatically from the image for the PSF fit; (b) after star-removal an intelligent and automatic procedure removes any possible residuals; (c) unlimited number of images can be cleaned in one run without any user interaction whatsoever. (SECTION: Computing and Data Analysis)

  16. STAR Formation Histories Across the Interacting Galaxy NGC 6872, the Largest-Known Spiral

    Science.gov (United States)

    Eufrasio, Rafael T.; Dwek, E.; Arendt, RIchard G.; deMello, Duilia F.; Gadotti, DImitri A.; Urrutia-Viscarra, Fernanda; deOliveira, CLaudia Mendes; Benford, Dominic J.

    2014-01-01

    NGC6872, hereafter the Condor, is a large spiral galaxy that is interacting with its closest companion, the S0 galaxy IC 4970. The extent of the Condor provides an opportunity for detailed investigation of the impact of the interaction on the current star formation rate and its history across the galaxy, on the age and spatial distribution of its stellar population, and on the mechanism that drives the star formation activity. To address these issues we analyzed the far-ultraviolet (FUV) to near-infrared (near-IR) spectral energy distribution of seventeen 10 kpc diameter regions across the galaxy, and derived their star formation history, current star formation rate, and stellar population and mass. We find that most of the star formation takes place in the extended arms, with very little star formation in the central 5 kpc of the galaxy, in contrast to what was predicted from previous numerical simulations. There is a trend of increasing star formation activity with distance from the nucleus of the galaxy, and no evidence for a recent increase in the current star formation rate due to the interaction. The nucleus itself shows no significant current star formation activity. The extent of the Condor also provides an opportunity to test the applicability of a single standard prescription for conversion of the FUV + IR (22 micrometer) intensities to a star formation rate for all regions. We find that the conversion factor differs from region to region, arising from regional differences in the stellar populations.

  17. High molecular gas fractions in normal massive star-forming galaxies in the young Universe.

    Science.gov (United States)

    Tacconi, L J; Genzel, R; Neri, R; Cox, P; Cooper, M C; Shapiro, K; Bolatto, A; Bouché, N; Bournaud, F; Burkert, A; Combes, F; Comerford, J; Davis, M; Schreiber, N M Förster; Garcia-Burillo, S; Gracia-Carpio, J; Lutz, D; Naab, T; Omont, A; Shapley, A; Sternberg, A; Weiner, B

    2010-02-11

    Stars form from cold molecular interstellar gas. As this is relatively rare in the local Universe, galaxies like the Milky Way form only a few new stars per year. Typical massive galaxies in the distant Universe formed stars an order of magnitude more rapidly. Unless star formation was significantly more efficient, this difference suggests that young galaxies were much more molecular-gas rich. Molecular gas observations in the distant Universe have so far largely been restricted to very luminous, rare objects, including mergers and quasars, and accordingly we do not yet have a clear idea about the gas content of more normal (albeit massive) galaxies. Here we report the results of a survey of molecular gas in samples of typical massive-star-forming galaxies at mean redshifts of about 1.2 and 2.3, when the Universe was respectively 40% and 24% of its current age. Our measurements reveal that distant star forming galaxies were indeed gas rich, and that the star formation efficiency is not strongly dependent on cosmic epoch. The average fraction of cold gas relative to total galaxy baryonic mass at z = 2.3 and z = 1.2 is respectively about 44% and 34%, three to ten times higher than in today's massive spiral galaxies. The slow decrease between z approximately 2 and z approximately 1 probably requires a mechanism of semi-continuous replenishment of fresh gas to the young galaxies.

  18. THE SIZE-STAR FORMATION RELATION OF MASSIVE GALAXIES AT 1.5 < z < 2.5

    International Nuclear Information System (INIS)

    Toft, S.; Franx, M.; Van Dokkum, P.; Foerster Schreiber, N. M.; Labbe, I.; Wuyts, S.; Marchesini, D.

    2009-01-01

    We study the relation between size and star formation activity in a complete sample of 225 massive (M * > 5 x 10 10 M sun ) galaxies at 1.5 PSF ∼ 0.''45) ground-based ISAAC data, we confirm and improve the significance of the relation between star formation activity and compactness found in previous studies, using a large, complete mass-limited sample. At z ∼ 2, massive quiescent galaxies are significantly smaller than massive star-forming galaxies, and a median factor of 0.34 ± 0.02 smaller than galaxies of similar mass in the local universe. Thirteen percent of the quiescent galaxies are unresolved in the ISAAC data, corresponding to sizes <1 kpc, more than five times smaller than galaxies of similar mass locally. The quiescent galaxies span a Kormendy relation which, compared to the relation for local early types, is shifted to smaller sizes and brighter surface brightnesses and is incompatible with passive evolution. The progenitors of the quiescent galaxies were likely dominated by highly concentrated, intense nuclear starbursts at z ∼ 3-4, in contrast to star-forming galaxies at z ∼ 2 which are extended and dominated by distributed star formation.

  19. Young Stars in Old Galaxies - a Cosmic Hide and Seek Game

    Science.gov (United States)

    2002-05-01

    Surprise Discovery with World's Leading Telescopes [1] Summary Combining data from the NASA/ESA Hubble Space Telescope (HST) and the ESO Very Large Telescope (VLT) , a group of European and American astronomers [2] have made an unexpected, major discovery. They have identified a huge number of "young" stellar clusters , only a few billion years old [3], inside an "old" elliptical galaxy (NGC 4365), probably aged some 12 billion years. For the first time, it has been possible to identify several distinct periods of star-formation in a galaxy as old as this one . Elliptical galaxies like NGC 4365 have until now been considered to have undergone one early star-forming period and thereafter to be devoid of any star formation. However, the combination of the best and largest telescopes in space and on the ground has now clearly shown that there is more than meets the eye. This important new information will help to understand the early history of galaxies and the general theory of star formation in the Universe . PR Photo 15a/02 : Combined HST+VLT image of elliptical galaxy NGC 4365 PR Photo 15b/02 : Same image, with "old" and "young" stellar clusters indicated PR Photo 15c/02 : Animated GIF image, showing the three cluster populations observed in NGC 4365 Do elliptical galaxies only contain old stars? One of the challenges of modern astronomy is to understand how galaxies, those large systems of stars, gas and dust, form and evolve. In this connection, a central question has always been to learn when most of the stars in the Universe formed. Did this happen at a very early stage, within a few billion years after the Big Bang? Or were a significant number of the stars we now observe formed much more recently? Spectacular collisions between galaxies take place all the time, triggering the formation of thousands or even millions of stars, cf. ESO PR Photo 29b/99 of the dramatic encounter between NGC 6872 and IC 4970. However, when looking at the Universe as a whole, most

  20. Fermi monitoring of radio-loud narrow-line Seyfert 1 galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Paliya, Vaidehi S.; Stalin, C. S. [Indian Institute of Astrophysics, Block II, Koramangala, Bangalore-560034 (India); Ravikumar, C. D., E-mail: vaidehi@iiap.res.in [Department of Physics, University of Calicut, Malappuram-673635 (India)

    2015-02-01

    We present detailed analysis of the γ-ray flux variability and spectral properties of the five radio-loud narrow line Seyfert 1 (RL-NLSy1) galaxies, detected by the Large Area Telescope on board the Fermi Gamma-Ray Space Telescope, namely 1H 0323+342, SBS 0846+513, PMN J0948+0022, PKS 1502+036, and PKS 2004−447. The first three sources show significant flux variations, including the rapid variability of a few hours by 1H 0323+342. The average γ-ray spectrum of 1H 0323+342 and PMN J0948+0022 shows deviation from a simple power-law (PL) behavior, whereas the PL model gives a better fit for the other three sources. The spectra of 1H 0323+342, SBS 0846+513, and PMN J0948+0022, which are in low, flaring, and moderately active states, respectively, show significant curvature. Such curvature in the γ-ray spectrum of 1H 0323+342 and PMN J0948+0022 could be due to the emission region located inside the broad line region (BLR) where the primary mechanism of the γ-ray emission is inverse-Compton (IC) scattering of BLR photons occurring in the Klein–Nishina regime. The γ-ray emission of SBS 0846+513 is explained by IC scattering of dusty torus photons, which puts the emission region outside the BLR and thus under the Thomson regime. Therefore, the observed curvature of SBS 0846+513 could be intrinsic to the particle energy distribution. The presence of curvature in the γ-ray spectrum and flux variability amplitudes of some of the RL-NLSy1 galaxies suggests that these sources could be akin to low/moderate jet power flat spectrum radio quasars.

  1. Fermi monitoring of radio-loud narrow-line Seyfert 1 galaxies

    International Nuclear Information System (INIS)

    Paliya, Vaidehi S.; Stalin, C. S.; Ravikumar, C. D.

    2015-01-01

    We present detailed analysis of the γ-ray flux variability and spectral properties of the five radio-loud narrow line Seyfert 1 (RL-NLSy1) galaxies, detected by the Large Area Telescope on board the Fermi Gamma-Ray Space Telescope, namely 1H 0323+342, SBS 0846+513, PMN J0948+0022, PKS 1502+036, and PKS 2004−447. The first three sources show significant flux variations, including the rapid variability of a few hours by 1H 0323+342. The average γ-ray spectrum of 1H 0323+342 and PMN J0948+0022 shows deviation from a simple power-law (PL) behavior, whereas the PL model gives a better fit for the other three sources. The spectra of 1H 0323+342, SBS 0846+513, and PMN J0948+0022, which are in low, flaring, and moderately active states, respectively, show significant curvature. Such curvature in the γ-ray spectrum of 1H 0323+342 and PMN J0948+0022 could be due to the emission region located inside the broad line region (BLR) where the primary mechanism of the γ-ray emission is inverse-Compton (IC) scattering of BLR photons occurring in the Klein–Nishina regime. The γ-ray emission of SBS 0846+513 is explained by IC scattering of dusty torus photons, which puts the emission region outside the BLR and thus under the Thomson regime. Therefore, the observed curvature of SBS 0846+513 could be intrinsic to the particle energy distribution. The presence of curvature in the γ-ray spectrum and flux variability amplitudes of some of the RL-NLSy1 galaxies suggests that these sources could be akin to low/moderate jet power flat spectrum radio quasars.

  2. FHILs in Seyferts and Liners in the optical spectra

    Science.gov (United States)

    Vera, R. J. C.; Rodriguez, A. M.; Portilla, J. G.

    2014-10-01

    We present the main results from a selection of optical spectra of Seyfert and LINER galaxies taken from the 9^{th} release of the SDSS with detectable emission of forbidden high ionization lines (FHILs), better known as coronal lines. A catalog of 345 Seyfert 1 (Sy1) and Seyfert 2 (Sy2) galaxies with FHILs emission is presented. By analyzing their spectra and utilizing data from the literature we found the following results: (1) The flux ratios between FHILs suggests anisotropy of emission between Sy1 and Sy2 galaxies, which agrees with the results found by Nagao et al. (2002) and Portilla (2012). Sy1 seems to emit more FHILs than Sy2. (2) This anisotropy suggests the idea that an important, but not the majority, of the emission of FHILs comes from the inner part of the obscuring torus. (3) We present diagnostic diagrams between FHILs lines which indicate clear correlations between the flux ratios. (4) It is observed that the ratio of Ne V/Fe VII is of the order of 3 to 10, while the ratios between iron lines (i.e., Fe VII, Fe X, Fe XI) are roughly around the unity. (5) At least in the optical spectra, the present study continues to support the general idea that LINERs are not energetic enough to present FHILs. A complete version of this study including the catalog with the objects of study, and diagnosis diagrams using only this kind of lines can be found in Vera & Portilla (in prep).

  3. Induced star formation and colors of binary and interacting galaxies

    International Nuclear Information System (INIS)

    Smirnov, M.A.; Komberg, B.V.; Moskovskij Gosudarstvennyj Univ.

    1980-01-01

    The colours of 208 galaxies in pairs and groups are compared (on colour-colour diagram) with those of single galaxies of the same morphological type. Different colours of galaxies in pairs and groups can be explained if one assumes that in some of them the star formation is slowed down, while in others it is speeded up. The latter is the most conspicuous in E, SO, and Ir2 galaxies when they are accompanied by brighter spirals. The relation of abundance rate to the rate of star formation in galaxies and to the activity level of their nuclei is discussed. This relation is particularly conspicuous in the galaxies of early morphological types (E, SO, Sa) and in systems of the type Ir2 where the relative abundance of gas is significantly above the normal. It is noted that such galaxies as well as galaxies with UV excess, Seyfertlike objects, emission-line galaxies and quasars - avoid regions occupied with rich clusters and frequently occur in pairs and small groups

  4. Environmental effects on stellar populations of dwarf galaxies and star clusters

    Science.gov (United States)

    Pasetto, Stefano; Cropper, Mark; fujita, Yutaka; Chiosi, Cesare; Grebel, Eva K.

    2015-08-01

    We investigate the competitive role of the different dissipative phenomena acting on the onset of star formation history of gravitationally bound system in an external environment. Ram pressure, Kelvin-Helmholtz instability, Rayleigh-Taylor, and tidal forces are accounted separately in an analytical framework and compared in their role in influencing the star forming regions. We present an analytical criterion to elucidate the dependence of star formation in a spherical stellar system on its surrounding environment useful in observational applications as well as theoretical interpretations of numerical results.We consider the different signatures of these phenomena in synthetically realized colour-magnitude diagrams (CMDs) of the orbiting system thus investigating the detectability limits of these different effects for future observational projects and their relevance.The theoretical framework developed has direct applications to the cases of dwarf galaxies in galaxy clusters and dwarf galaxies orbiting our Milky Way system, as well as any primordial gas-rich cluster of stars orbiting within its host galaxy.

  5. Cosmic web and star formation activity in galaxies at z ∼ 1

    Energy Technology Data Exchange (ETDEWEB)

    Darvish, B.; Mobasher, B.; Sales, L. V. [University of California, Riverside, 900 University Avenue, Riverside, CA 92521 (United States); Sobral, D. [Instituto de Astrofísica e Ciências do Espaço, Universidade de Lisboa, OAL, Tapada da Ajuda, PT 1349-018 Lisboa (Portugal); Scoville, N. Z. [California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Best, P. [SUPA, Institute for Astronomy, Royal Observatory of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Smail, I., E-mail: bdarv001@ucr.edu [Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE (United Kingdom)

    2014-11-20

    We investigate the role of the delineated cosmic web/filaments on star formation activity by exploring a sample of 425 narrow-band selected Hα emitters, as well as 2846 color-color selected underlying star-forming galaxies for a large-scale structure at z = 0.84 in the COSMOS field from the HiZELS survey. Using the scale-independent Multi-scale Morphology Filter algorithm, we are able to quantitatively describe the density field and disentangle it into its major components: fields, filaments, and clusters. We show that the observed median star formation rate (SFR), stellar mass, specific SFR, the mean SFR-mass relation, and its scatter for both Hα emitters and underlying star-forming galaxies do not strongly depend on different classes of environment, in agreement with previous studies. However, the fraction of Hα emitters varies with environment and is enhanced in filamentary structures at z ∼ 1. We propose mild galaxy-galaxy interactions as the possible physical agent for the elevation of the fraction of Hα star-forming galaxies in filaments. Our results show that filaments are the likely physical environments that are often classed as the 'intermediate' densities and that the cosmic web likely plays a major role in galaxy formation and evolution which has so far been poorly investigated.

  6. FROM BLUE STAR-FORMING TO RED PASSIVE: GALAXIES IN TRANSITION IN DIFFERENT ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Vulcani, Benedetta [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, the University of Tokyo, Kashiwa 277-8582 (Japan); Poggianti, Bianca M.; Fasano, Giovanni; Moretti, Alessia [INAF-Astronomical Observatory of Padova, I-35122 Padova (Italy); Fritz, Jacopo [Sterrenkundig Observatorium Vakgroep Fysica en Sterrenkunde Universiteit Gent, Krijgslaan 281, S9 B-9000 Gent (Belgium); Calvi, Rosa; Paccagnella, Angela [Dipartimento di Fisica e Astronomia, Universitá degli Studi di Padova, vicolo Osservatorio 2, I-35122 Padova (Italy)

    2015-01-01

    Exploiting a mass-complete (M {sub *} > 10{sup 10.25} M {sub ☉}) sample at 0.03 Galaxy Group Catalog, we use the (U – B) {sub rf} color and morphologies to characterize galaxies, in particular those that show signs of an ongoing or recent transformation of their star-formation activity and/or morphology: green galaxies, red passive late types, and blue star-forming early types. Color fractions depend on mass and only for M {sub *} < 10{sup 10.7} M {sub ☉} on environment. The incidence of red galaxies increases with increasing mass, and, for M {sub *} < 10{sup 10.7} M {sub ☉}, decreases toward the group outskirts and in binary and single galaxies. The relative abundance of green and blue galaxies is independent of environment and increases monotonically with galaxy mass. We also inspect galaxy structural parameters, star-formation properties, histories, and ages and propose an evolutionary scenario for the different subpopulations. Color transformations are due to a reduction and suppression of the star-formation rate in both bulges and disks that does not noticeably affect galaxy structure. Morphological transitions are linked to an enhanced bulge-to-disk ratio that is due to the removal of the disk, not to an increase of the bulge. Our modeling suggests that green colors might be due to star-formation histories declining with long timescales, as an alternative scenario to the classical ''quenching'' processes. Our results suggest that galaxy transformations in star-formation activity and morphology depend neither on the environment nor on being a satellite or the most massive galaxy of a halo. The only environmental dependence we find is the higher fast quenching efficiency in groups giving origin to poststarburst signatures.

  7. Chemical composition of extremely metal-poor stars in the Sextans dwarf spheroidal galaxy

    OpenAIRE

    Aoki, W.; Arimoto, N.; Sadakane, K.; Tolstoy, E.; Battaglia, G.; Jablonka, P.; Shetrone, M.; Letarte, B.; Irwin, M.; Hill, V.; Francois, P.; Venn, K.; Primas, F.; Helmi, A.; Kaufer, A.

    2009-01-01

    Context. Individual stars in dwarf spheroidal galaxies around the Milky Way Galaxy have been studied both photometrically and spectroscopically. Extremely metal-poor stars among them are very valuable because they should record the early enrichment in the Local Group. However, our understanding of these stars is very limited because detailed chemical abundance measurements are needed from high resolution spectroscopy. Aims. To constrain the formation and chemical evolution of dwarf galaxi...

  8. WHAT TURNS GALAXIES OFF? THE DIFFERENT MORPHOLOGIES OF STAR-FORMING AND QUIESCENT GALAXIES SINCE z ∼ 2 FROM CANDELS

    International Nuclear Information System (INIS)

    Bell, Eric F.; Herrington, Jessica; Van der Wel, Arjen; Papovich, Casey; Kocevski, Dale; Faber, S. M.; Cheung, Edmond; Koo, David C.; McGrath, Elizabeth J.; Lotz, Jennifer; Ferguson, Harry; Koekemoer, Anton; Grogin, Norman; McIntosh, Daniel H.; Kartaltepe, Jeyhan; Wuyts, Stijn; Conselice, Christopher J.; Dekel, Avishai; Dunlop, James S.; Giavalisco, Mauro

    2012-01-01

    We use HST/WFC3 imaging from the CANDELS Multi-Cycle Treasury Survey, in conjunction with the Sloan Digital Sky Survey, to explore the evolution of galactic structure for galaxies with stellar masses >3 × 10 10 M ☉ from z = 2.2 to the present epoch, a time span of 10 Gyr. We explore the relationship between rest-frame optical color, stellar mass, star formation activity, and galaxy structure. We confirm the dramatic increase from z = 2.2 to the present day in the number density of non-star-forming galaxies above 3 × 10 10 M ☉ reported by others. We further find that the vast majority of these quiescent systems have concentrated light profiles, as parameterized by the Sérsic index, and the population of concentrated galaxies grows similarly rapidly. We examine the joint distribution of star formation activity, Sérsic index, stellar mass, inferred velocity dispersion, and stellar surface density. Quiescence correlates poorly with stellar mass at all z 1.3, and somewhat less well at lower redshifts. Yet, there is significant scatter between quiescence and galaxy structure: while the vast majority of quiescent galaxies have prominent bulges, many of them have significant disks, and a number of bulge-dominated galaxies have significant star formation. Noting the rarity of quiescent galaxies without prominent bulges, we argue that a prominent bulge (and perhaps, by association, a supermassive black hole) is an important condition for quenching star formation on galactic scales over the last 10 Gyr, in qualitative agreement with the active galactic nucleus feedback paradigm.

  9. Ultra-low dispersion spectroscopy of stars and galaxies

    International Nuclear Information System (INIS)

    Bappu, M.K.V.; Parthasarathy, M.

    1977-01-01

    Application of ultra-low dispersion spectroscopy 10,000 A mm - 1 , is described to study the nuclei of elliptical galaxies, the quasi-stellar objects and for the discovery of faint OB stars, reddened stars and red stars. The instrument used is an f/2 slitless spectrograph with a three degree quartz prism at the Cassegrain focus of the 102-cm Ritchey-Chratien reflector at Kavalur. The spectra cover a field of 40 minutes of arc and the dispersion is 10,000 A mm - 1 . Ultra-low dispersion spectra (microspectra) were obtained for fifteen elliptical and three SO galaxies from the list of Ekers and Ekers (1973) who classified them as compact and extended sources from the observations of radio emission at 6 cms. From an analysis of micro-spectra and from direct photographs with graded exposure times, it is found that all compact radio galaxies in the Ekers list also have optically compact nuclei. Some of these elliptical galaxies with compact nuclei show enhancement of intensity in the blue violet region. From an examination of microspectra of forty-three of the known quasi-stellar objects of different redshifts it is found that the most striking characteristic of the spectra is their flat appearance. This characteristic flatness is also noticed in the microspectrum of the large redshift quasi-stellar objects like OH 471 and OQ 172 which do not have UV excess. Because of this characteristic difference in the appearance of the microspectra of the quasi-stellar objects and stellar objects, it is possible to detect new OSO's with this technique. An application of this technique to detect red stars in our galaxy and in the Large Magellanic cloud is discussed. (author)

  10. VLA AND ALMA IMAGING OF INTENSE GALAXY-WIDE STAR FORMATION IN z ∼ 2 GALAXIES

    International Nuclear Information System (INIS)

    Rujopakarn, W.; Silverman, J. D.; Dunlop, J. S.; Ivison, R. J.; McLure, R. J.; Michałowski, M. J.; Rieke, G. H.; Cibinel, A.; Nyland, K.; Jagannathan, P.; Bhatnagar, S.; Alexander, D. M.; Biggs, A. D.; Ballantyne, D. R.; Dickinson, M.; Elbaz, D.; Geach, J. E.; Hayward, C. C.; Kirkpatrick, A.

    2016-01-01

    We present ≃0.″4 resolution extinction-independent distributions of star formation and dust in 11 star-forming galaxies (SFGs) at z  = 1.3–3.0. These galaxies are selected from sensitive blank-field surveys of the 2′ × 2′ Hubble Ultra-Deep Field at λ  = 5 cm and 1.3 mm using the Karl G. Jansky Very Large Array and Atacama Large Millimeter/submillimeter Array. They have star formation rates (SFRs), stellar masses, and dust properties representative of massive main-sequence SFGs at z  ∼ 2. Morphological classification performed on spatially resolved stellar mass maps indicates a mixture of disk and morphologically disturbed systems; half of the sample harbor X-ray active galactic nuclei (AGNs), thereby representing a diversity of z  ∼ 2 SFGs undergoing vigorous mass assembly. We find that their intense star formation most frequently occurs at the location of stellar-mass concentration and extends over an area comparable to their stellar-mass distribution, with a median diameter of 4.2 ± 1.8 kpc. This provides direct evidence of galaxy-wide star formation in distant blank-field-selected main-sequence SFGs. The typical galactic-average SFR surface density is 2.5 M ⊙ yr −1 kpc −2 , sufficiently high to drive outflows. In X-ray-selected AGN where radio emission is enhanced over the level associated with star formation, the radio excess pinpoints the AGNs, which are found to be cospatial with star formation. The median extinction-independent size of main-sequence SFGs is two times larger than those of bright submillimeter galaxies, whose SFRs are 3–8 times larger, providing a constraint on the characteristic SFR (∼300 M ⊙ yr −1 ) above which a significant population of more compact SFGs appears to emerge.

  11. CHARACTERIZING THE STAR FORMATION OF THE LOW-MASS SHIELD GALAXIES FROM HUBBLE SPACE TELESCOPE IMAGING

    Energy Technology Data Exchange (ETDEWEB)

    McQuinn, Kristen B. W.; Skillman, Evan D.; Simones, Jacob E. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, 116 Church Street, S.E., Minneapolis, MN 55455 (United States); Cannon, John M. [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 E. Hermans Road, Tucson, AZ 85756 (United States); Haynes, Martha P.; Giovanelli, Riccardo [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Salzer, John J. [Department of Astronomy, Indiana University, 727 East 3rd Street, Bloomington, IN 47405 (United States); Adams, Elizabeth A. K. [Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7900 AA Dwingeloo (Netherlands); Elson, Ed C. [Astrophysics, Cosmology and Gravity Centre (ACGC), Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa); Ott, Jürgen, E-mail: kmcquinn@astro.umn.edu [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801 (United States)

    2015-03-20

    The Survey of Hi in Extremely Low-mass Dwarfs is an on-going multi-wavelength program to characterize the gas, star formation, and evolution in gas-rich, very low-mass galaxies that populate the faint end of the galaxy luminosity function. The galaxies were selected from the first ∼10% of the Hi Arecibo Legacy Fast ALFA survey based on their low Hi mass and low baryonic mass. Here, we measure the star formation properties from optically resolved stellar populations for 12 galaxies using a color–magnitude diagram fitting technique. We derive lifetime average star formation rates (SFRs), recent SFRs, stellar masses, and gas fractions. Overall, the recent SFRs are comparable to the lifetime SFRs with mean birthrate parameter of 1.4, with a surprisingly narrow standard deviation of 0.7. Two galaxies are classified as dwarf transition galaxies (dTrans). These dTrans systems have star formation and gas properties consistent with the rest of the sample, in agreement with previous results that some dTrans galaxies may simply be low-luminosity dwarf irregulars. We do not find a correlation between the recent star formation activity and the distance to the nearest neighboring galaxy, suggesting that the star formation process is not driven by gravitational interactions, but regulated internally. Further, we find a broadening in the star formation and gas properties (i.e., specific SFRs, stellar masses, and gas fractions) compared to the generally tight correlation found in more massive galaxies. Overall, the star formation and gas properties indicate these very low-mass galaxies host a fluctuating, non-deterministic, and inefficient star formation process.

  12. Correlating The Star Formation Histories Of MaNGA Galaxies With Their Past AGN Activity

    Science.gov (United States)

    Gonzalez Ortiz, Andrea

    2017-01-01

    We investigate active galactic nuclei (AGN) as a primary mechanism affecting star formation in MaNGA galaxies. Using the Pipe3D code, we modeled the stellar population from MaNGA spectra and derived the star formation histories of 53 AGN host galaxies. We seek to compare the star formation histories of the host galaxies of AGN with the ages of their radio lobes to better understand the role of AGN feedback in the star formation histories of MaNGA galaxies. MaNGA (Mapping Nearby Galaxies at APO) is one of the three core programs in the fourth generation Sloan Digital Sky Survey(SDSS). MaNGA will investigate the internal kinematics of nearly 10,000 local galaxies through dithered observations using fiber integral field units (IFUs) that vary in diameter from 12" (19 fibers) to 32" (127 fibers). In this poster, we present initial results on the star formation histories of MaNGA AGN host galaxies. This work was supported by the SDSS Research Experience for Undergraduates program, which is funded by a grant from Sloan Foundation to the Astrophysical Research Consortium.

  13. THE CONTRIBUTION OF TP-AGB STARS TO THE MID-INFRARED COLORS OF NEARBY GALAXIES

    International Nuclear Information System (INIS)

    Chisari, Nora E.; Kelson, Daniel D.

    2012-01-01

    We study the mid-infrared color space of 30 galaxies from the Spitzer Infrared Nearby Galaxies Survey (SINGS) survey for which Sloan Digital Sky Survey data are also available. We construct two-color maps for each galaxy and compare them to results obtained from combining Maraston evolutionary synthesis models, galactic thermally pulsating asymptotic giant branch (TP-AGB) colors, and smooth star formation histories. For most of the SINGS sample, the spatially extended mid-IR emission seen by Spitzer in normal galaxies is consistent with our simple model in which circumstellar dust from TP-AGB stars dominates at 8 and 24 μm. There is a handful of exceptions that we identify as galaxies that have high star formation rates presumably with star formation histories that cannot be assumed to be smooth, or anemic galaxies, which were depleted of their H I at some point during their evolution and have very low ongoing star formation rates.

  14. THE CONTRIBUTION OF TP-AGB STARS TO THE MID-INFRARED COLORS OF NEARBY GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Chisari, Nora E. [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544 (United States); Kelson, Daniel D., E-mail: nchisari@astro.princeton.edu [Observatories of the Carnegie Institution of Science, 813 Santa Barbara St., Pasadena, CA 91101 (United States)

    2012-07-10

    We study the mid-infrared color space of 30 galaxies from the Spitzer Infrared Nearby Galaxies Survey (SINGS) survey for which Sloan Digital Sky Survey data are also available. We construct two-color maps for each galaxy and compare them to results obtained from combining Maraston evolutionary synthesis models, galactic thermally pulsating asymptotic giant branch (TP-AGB) colors, and smooth star formation histories. For most of the SINGS sample, the spatially extended mid-IR emission seen by Spitzer in normal galaxies is consistent with our simple model in which circumstellar dust from TP-AGB stars dominates at 8 and 24 {mu}m. There is a handful of exceptions that we identify as galaxies that have high star formation rates presumably with star formation histories that cannot be assumed to be smooth, or anemic galaxies, which were depleted of their H I at some point during their evolution and have very low ongoing star formation rates.

  15. Metallicity of Young and Old Stars in Irregular Galaxies

    Science.gov (United States)

    Tikhonov, N. A.

    2018-01-01

    Based on archived images obtained with the Hubble Space Telescope, stellar photometry for 105 irregular galaxies has been conducted. We have shown the red supergiant and giant branches in the obtained Hertzsprung-Russel diagrams. Using the TRGB method, distances to galaxies and metallicity of red giants have been determined. The color index ( V - I) of the supergiant branch at the luminosity level M I = -7 was chosen as the metallicity index of red supergiants. For the galaxies under study, the diagrams have been built, in which the correlation can be seen between the luminosity of galaxies ( M B ) and metallicity of red giants and supergiants. The main source of variance of the results in the obtained diagrams is, in our opinion, uncertainty inmeasurements of galaxy luminosities and star-forming outburst. The relation between metallicity of young and old stars shows that main enrichment of galaxies with metals has taken place in the remote past. Deviations of some galaxies in the obtained relation can possibly be explained with the fall of the intergalactic gas on them, although, this inconsiderably affects metallicities of the stellar content.

  16. Star formation in globular clusters and dwarf galaxies and implications for the early evolution of galaxies

    Science.gov (United States)

    Lin, Douglas N. C.; Murray, Stephen D.

    1991-01-01

    Based upon the observed properties of globular clusters and dwarf galaxies in the Local Group, we present important theoretical constraints on star formation in these systems. These constraints indicate that protoglobular cluster clouds had long dormant periods and a brief epoch of violent star formation. Collisions between protocluster clouds triggered fragmentation into individual stars. Most protocluster clouds dispersed into the Galactic halo during the star formation epoch. In contrast, the large spread in stellar metallicity in dwarf galaxies suggests that star formation in their pregenitors was self-regulated: we propose the protocluster clouds formed from thermal instability in the protogalactic clouds and show that a population of massive stars is needed to provide sufficient UV flux to prevent the collapsing protogalactic clouds from fragmenting into individual stars. Based upon these constraints, we propose a unified scenario to describe the early epochs of star formation in the Galactic halo as well as the thick and thin components of the Galactic disk.

  17. RADIO VARIABILITY IN SEYFERT NUCLEI

    International Nuclear Information System (INIS)

    Mundell, C. G.; Ferruit, P.; Nagar, N.; Wilson, A. S.

    2009-01-01

    Comparison of 8.4 GHz radio images of a sample of eleven, early-type Seyfert galaxies with previous observations reveals possible variation in the nuclear radio flux density in five of them over a seven year period. Four Seyferts (NGC 2110, NGC 3081, MCG -6-30-15, and NGC 5273) show a decline in their 8.4 GHz nuclear flux density between 1992 and 1999, while one (NGC 4117) shows an increase; the flux densities of the remaining six Seyferts (Mrk 607, NGC 1386, Mrk 620, NGC 3516, NGC 4968, and NGC 7465) have remained constant over this period. New images of MCG -5-23-16 are also presented. We find no correlation between radio variability and nuclear radio luminosity or Seyfert nuclear type, although the sample is small and dominated by type 2 Seyferts. Instead, a possible correlation between the presence of nuclear radio variability and the absence of hundred parsec-scale radio emission is seen, with four out of five marginally resolved or unresolved nuclei showing a change in nuclear flux density, while five out of six extended sources show no nuclear variability despite having unresolved nuclear sources. NGC 2110 is the only source in our sample with significant extended radio structure and strong nuclear variability (∼38% decline in nuclear flux density over seven years). The observed nuclear flux variability indicates significant changes are likely to have occurred in the structure of the nucleus on scales smaller than the VLA beam size (i.e., within the central ∼0.''1 (15 pc)), between the two epochs, possibly due to the appearance and fading of new components or shocks in the jet, consistent with previous detection of subparsec-scale nuclear structure in this Seyfert. Our results suggest that all Seyferts may exhibit variation in their nuclear radio flux density at 8.4 GHz, but that variability is more easily recognized in compact sources in which emission from the variable nucleus is not diluted by unresolved, constant flux density radio jet emission

  18. Global and radial variations in the efficiency of massive star formation among galaxies

    International Nuclear Information System (INIS)

    Allen, L.E.; Young, J.S.

    1990-01-01

    In order to determine the regions within galaxies which give rise to the most efficient star formation and to test the hypothesis that galaxies with high infrared luminosities per unit molecular mass are efficiently producing high mass stars, researchers have undertaken an H alpha imaging survey in galaxies whose CO distributions have been measured as part of the Five College Radio Astronomy Observatory (FCRAO) Extragalactic CO Survey. From these images researchers have derived global H alpha fluxes and distributions for comparison with far infrared radiation (FIR) fluxes and CO fluxes and distributions. Here, researchers present results on the global massive star formation efficiency (SFE = L sub H sub alpha/M(H2)) as a function of morphological type and environment, and on the radial distribution of the SFE within both peculiar and isolated galaxies. On the basis of comparison of the global L sub H sub alpha/M(H2) and L sub FIR/M(H2) for 111 galaxies, researchers conclude that environment rather than morphological type has the strongest effect on the global efficiency of massive star formation. Based on their study of a small sample, they find that the largest radial gradients are observed in the interacting/peculiar galaxies, indicating that environment affects the star formation efficiency within galaxies as well

  19. FERMI/LAT OBSERVATIONS OF SWIFT/BAT SEYFERT GALAXIES: ON THE CONTRIBUTION OF RADIO-QUIET ACTIVE GALACTIC NUCLEI TO THE EXTRAGALACTIC γ-RAY BACKGROUND

    International Nuclear Information System (INIS)

    Teng, Stacy H.; Mushotzky, Richard F.; Reynolds, Christopher S.; Sambruna, Rita M.; Davis, David S.

    2011-01-01

    We present the analysis of 2.1 years of Fermi Large Area Telescope (LAT) data on 491 Seyfert galaxies detected by the Swift Burst Alert Telescope (BAT) survey. Only the two nearest objects, NGC 1068 and NGC 4945, which were identified in the Fermi first year catalog, are detected. Using Swift/BAT and radio 20 cm fluxes, we define a new radio-loudness parameter R X,BAT where radio-loud objects have log R X,BAT > –4.7. Based on this parameter, only radio-loud sources are detected by Fermi/LAT. An upper limit to the flux of the undetected sources is derived to be ∼2 × 10 –11 photons cm –2 s –1 , approximately seven times lower than the observed flux of NGC 1068. Assuming a median redshift of 0.031, this implies an upper limit to the γ-ray (1-100 GeV) luminosity of ∼ 41 erg s –1 . In addition, we identified 120 new Fermi/LAT sources near the Swift/BAT Seyfert galaxies with significant Fermi/LAT detections. A majority of these objects do not have Swift/BAT counterparts, but their possible optical counterparts include blazars, flat-spectrum radio quasars, and quasars.

  20. star formation rates of z > 1 galaxy clusters in the IRAC shallow cluster survey

    International Nuclear Information System (INIS)

    Zeimann, Gregory R.; Stanford, S. A.; Brodwin, Mark; Gonzalez, Anthony H.; Mancone, Conor; Snyder, Gregory F.; Stern, Daniel; Eisenhardt, Peter; Dey, Arjun; Moustakas, John

    2013-01-01

    We present Hubble Space Telescope near-IR spectroscopy for 18 galaxy clusters at 1.0 galaxy clusters as well as in field galaxies. We find a large cluster-to-cluster scatter in the star formation rates within a projected radius of 500 kpc, and many of our clusters (∼60%) have significant levels of star formation within a projected radius of 200 kpc. A stacking analysis reveals that dust reddening in these star-forming galaxies is positively correlated with stellar mass and may be higher in the field than the cluster at a fixed stellar mass. This may indicate a lower amount of gas in star-forming cluster galaxies than in the field population. Also, Hα equivalent widths of star-forming galaxies in the cluster environment are still suppressed below the level of the field. This suppression is most significant for lower mass galaxies (log M * < 10.0 M ☉ ). We therefore conclude that environmental effects are still important at 1.0 star-forming galaxies in galaxy clusters with log M * ≲ 10.0 M ☉ .

  1. Galaxies

    International Nuclear Information System (INIS)

    1987-01-01

    The size and nature of any large-scale anisotropy in the three-dimensional distribution of galaxies is still little understood. Recent studies have indicated that large fluctuations in the matter distribution on a scale from tens up to several hundreds of megaparsecs may exist. Work at the South African Astronomical Observatory (SAAO) in recent years has made major contributions to studies of the large scale distribution of galaxies, as well as to solving the problems of the galactic and extragalactic distance scale. Other studies of galaxies undertaken at SAAO include: quasars in the fields of nearby galaxies; dwarf irregular galaxies; IRAS galaxies; Seyfert galaxies; 'hot spot' galaxies; supernovae in NGC 5128 and NGC 1559 and superclusters. 4 figs

  2. X-ray Point Source Populations in Spiral and Elliptical Galaxies

    Science.gov (United States)

    Colbert, E.; Heckman, T.; Weaver, K.; Strickland, D.

    2002-01-01

    The hard-X-ray luminosity of non-active galaxies has been known to be fairly well correlated with the total blue luminosity since the days of the Einstein satellite. However, the origin of this hard component was not well understood. Some possibilities that were considered included X-ray binaries, extended upscattered far-infrared light via the inverse-Compton process, extended hot 107 K gas (especially in ellipitical galaxies), or even an active nucleus. Chandra images of normal, elliptical and starburst galaxies now show that a significant amount of the total hard X-ray emission comes from individual point sources. We present here spatial and spectral analyses of the point sources in a small sample of Chandra obervations of starburst galaxies, and compare with Chandra point source analyses from comparison galaxies (elliptical, Seyfert and normal galaxies). We discuss possible relationships between the number and total hard luminosity of the X-ray point sources and various measures of the galaxy star formation rate, and discuss possible options for the numerous compact sources that are observed.

  3. STAR FORMATION AT Z = 2.481 IN THE LENSED GALAXY SDSS J1110+6459: STAR FORMATION DOWN TO 30 PARSEC SCALES.

    Science.gov (United States)

    Johnson, Traci L; Rigby, Jane R; Sharon, Keren; Gladders, Michael D; Florian, Michael; Bayliss, Matthew B; Wuyts, Eva; Whitaker, Katherine E; Livermore, Rachael; Murray, Katherine T

    2017-07-10

    We present measurements of the surface density of star formation, the star-forming clump luminosity function, and the clump size distribution function, for the lensed galaxy SGAS J111020.0+645950.8 at a redshift of z =2.481. The physical size scales that we probe, radii r = 30-50 pc, are considerably smaller scales than have yet been studied at these redshifts. The star formation surface density we find within these small clumps is consistent with surface densities measured previously for other lensed galaxies at similar redshift. Twenty-two percent of the rest-frame ultraviolet light in this lensed galaxy arises from small clumps, with r star-forming regions smaller than 100 pc-physical scales not usually resolved at these redshifts by current telescopes-are important locations of star formation in the distant universe. If this galaxy is representative, this may contradict the theoretical picture in which the critical size scale for star formation in the distant universe is of order 1 kiloparsec. Instead, our results suggest that current telescopes have not yet resolved the critical size scales of star-forming activity in galaxies over most of cosmic time.

  4. A mathematical model of star formation in the Galaxy

    Directory of Open Access Journals (Sweden)

    M.A. Sharaf

    2012-06-01

    Full Text Available This paper is generally concerned with star formation in the Galaxy, especially blue stars. Blue stars are the most luminous, massive and the largest in radius. A simple mathematical model of the formation of the stars is established and put in computational algorithm. This algorithm enables us to know more about the formation of the star. Some real and artificial examples had been used to justify this model.

  5. The different star formation histories of blue and red spiral and elliptical galaxies

    Science.gov (United States)

    Tojeiro, Rita; Masters, Karen L.; Richards, Joshua; Percival, Will J.; Bamford, Steven P.; Maraston, Claudia; Nichol, Robert C.; Skibba, Ramin; Thomas, Daniel

    2013-06-01

    We study the spectral properties of intermediate mass galaxies (M* ˜ 1010.7 M⊙) as a function of colour and morphology. We use Galaxy Zoo to define three morphological classes of galaxies, namely early types (ellipticals), late-type (disc-dominated) face-on spirals and early-type (bulge-dominated) face-on spirals. We classify these galaxies as blue or red according to their Sloan Digital Sky Survey (SDSS) g - r colour and use the spectral fitting code Versatile Spectral Analyses to calculate time-resolved star formation histories, metallicity and total starlight dust extinction from their SDSS fibre spectra. We find that red late-type spirals show less star formation in the last 500 Myr than blue late-type spirals by up to a factor of 3, but share similar star formation histories at earlier times. This decline in recent star formation explains their redder colour: their chemical and dust content are the same. We postulate that red late-type spirals are recent descendants of blue late-type spirals, with their star formation curtailed in the last 500 Myr. The red late-type spirals are however still forming stars ≃17 times faster than red ellipticals over the same period. Red early-type spirals lie between red late-type spirals and red ellipticals in terms of recent-to-intermediate star formation and dust content. Therefore, it is plausible that these galaxies represent an evolutionary link between these two populations. They are more likely to evolve directly into red ellipticals than red late-type spirals, which show star formation histories and dust content closer to blue late-type spirals. Blue ellipticals show similar star formation histories as blue spirals (regardless of type), except that they have formed less stars in the last 100 Myr. However, blue ellipticals have different dust content, which peaks at lower extinction values than all spiral galaxies. Therefore, many blue ellipticals are unlikely to be descendants of blue spirals, suggesting there may

  6. Star formation in the outskirts of disk galaxies

    NARCIS (Netherlands)

    Ferguson, AMN

    2002-01-01

    The far outer regions of galactic disks allow an important probe of both star formation and galaxy formation. I discuss how observations of HII regions in these low gas density, low metallicity environments can shed light on the physical processes which drive galactic star formation. The history of

  7. A Polarimetric Search for Hidden Quasars in Three Radio-selected Ultraluminous Infrared Galaxies

    International Nuclear Information System (INIS)

    Tran, H.D.; Brotherton, M.S.; Stanford, S.A.; Breugel, W. van; Dey, A.; Stern, D.; Antonucci, R.

    1999-01-01

    We have carried out a spectropolarimetric search for hidden broad-line quasars in three ultraluminous infrared galaxies (ULIRGs) discovered in the positional correlations between sources detected in deep radio surveys and the IRAS Faint Source Catalog. Only the high-ionization Seyfert 2 galaxy TF J1736+1122 is highly polarized, displaying a broad-line spectrum visible in polarized light. The other two objects, TF J1020+6436 and FF J1614+3234, display spectra dominated by a population of young (A type) stars similar to those of open-quotes E+Aclose quotes galaxies. They are unpolarized, showing no sign of hidden broad-line regions. The presence of young starburst components in all three galaxies indicates that the ULIRG phenomenon encompasses both active galactic nuclei (AGNs) and starburst activity, but the most energetic ULIRGs do not necessarily harbor open-quotes buried quasars.close quotes We find that a luminous infrared galaxy is most likely to host an obscured quasar if it exhibits a high-ionization ([O iii] λ5007/Hβ approx-gt 5) spectrum typical of a 'classic' Seyfert 2 galaxy with little or no Balmer absorption lines, is 'ultraluminous' (L IR approx-gt 10 12 L circle-dot ), and has a 'warm' IR color (f 25 /f 60 approx-gt 0.25). The detection of hidden quasars in this group but not in the low-ionization, starburst-dominated ULIRGs (classified as LINERs or H ii galaxies) may indicate an evolutionary connection, with the latter being found in younger systems. copyright copyright 1999. The American Astronomical Society

  8. Topics in Galaxy Evolution: Early Star Formation and Quenching

    Science.gov (United States)

    Goncalves, Thiago Signorini

    In this thesis, we present three projects designed to shed light on yet unanswered questions on galaxy formation and evolution. The first two concern a sample of UV-bright starburst galaxies in the local universe (z ˜0.2). These objects are remarkably similar to star-forming galaxies that were abundant at high redshifts (2 manipulating our observations to mimic our objects at greater distances, we show how low resolution and signal-to-noise ratios can lead to erroneous conclusions, in particular when attempting to diagnose mergers as the origin of the starburst. Then, we present results from a pilot survey to study the cold, molecular gas reservoir in such objects. Again, we show that the observed properties are analogous to those observed at high redshift, in particular with respect to baryonic gas fractions in the galaxy, higher than normally found in low-extinction objects in the local universe. Furthermore, we show how gas surface density and star-formation surface density follow the same relation as local galaxies, albeit at much higher values. Finally, we discuss an observational project designed to measure the mass flux density from the blue sequence to the red sequence across the so-called green valley. We obtain the deepest spectra ever observed of green valley galaxies at intermediate redshifts (z˜0.8) in order to measure spectral features from which we can measure the star formation histories of individual galaxies. We measure a mass flux ratio that is higher than observed in the local universe, indicating the red sequence was growing faster when the universe was half its present age than today.

  9. Modeling tracers of young stellar population age in star-forming galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Levesque, Emily M. [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado 389-UCB, Boulder, CO 80309 (United States); Leitherer, Claus, E-mail: Emily.Levesque@colorado.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2013-12-20

    The young stellar population of a star-forming galaxy is the primary engine driving its radiative properties. As a result, the age of a galaxy's youngest generation of stars is critical for a detailed understanding of its star formation history, stellar content, and evolutionary state. Here we present predicted equivalent widths for the Hβ, Hα, and Brγ recombination lines as a function of stellar population age. The equivalent widths are produced by the latest generations of stellar evolutionary tracks and the Starburst99 stellar population synthesis code, and are the first to fully account for the combined effects of both nebular emission and continuum absorption produced by the synthetic stellar population. Our grid of model stellar populations spans six metallicities (0.001 < Z < 0.04), two treatments of star formation history (a 10{sup 6} M {sub ☉} instantaneous burst and a continuous star formation rate of 1 M {sub ☉} yr{sup –1}), and two different treatments of initial rotation rate (v {sub rot} = 0.0v {sub crit} and 0.4v {sub crit}). We also investigate the effects of varying the initial mass function. Given constraints on galaxy metallicity, our predicted equivalent widths can be applied to observations of star-forming galaxies to approximate the age of their young stellar populations.

  10. ON THE STAR FORMATION LAW FOR SPIRAL AND IRREGULAR GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Elmegreen, Bruce G., E-mail: bge@us.ibm.com [IBM Research Division, T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States)

    2015-12-01

    A dynamical model for star formation on a galactic scale is proposed in which the interstellar medium is constantly condensing to star-forming clouds on the dynamical time of the average midplane density, and the clouds are constantly being disrupted on the dynamical timescale appropriate for their higher density. In this model, the areal star formation rate scales with the 1.5 power of the total gas column density throughout the main regions of spiral galaxies, and with a steeper power, 2, in the far outer regions and in dwarf irregular galaxies because of the flaring disks. At the same time, there is a molecular star formation law that is linear in the main and outer parts of disks and in dIrrs because the duration of individual structures in the molecular phase is also the dynamical timescale, canceling the additional 0.5 power of surface density. The total gas consumption time scales directly with the midplane dynamical time, quenching star formation in the inner regions if there is no accretion, and sustaining star formation for ∼100 Gyr or more in the outer regions with no qualitative change in gas stability or molecular cloud properties. The ULIRG track follows from high densities in galaxy collisions.

  11. Powerful Radio Galaxies with Simbol-X: the Nuclear Environment

    Science.gov (United States)

    Torresi, E.; Grandi, P.; Malaguti, G.; Palumbo, G. G. C.; Bianchin, V.

    2009-05-01

    Fanaroff & Riley type II radio galaxies (FRII) are complex objects. In particular FRII Narrow Line Radio Galaxies (NLRG), optically classified as High Excitation Galaxies (HEG) show X-ray spectra very similar to their radio-quiet counterparts, the Seyfert 2 galaxies. They show 2-10 keV continua heavily obscured (NH~1023-24 cm-2) and intense FeKα lines, typical cold matter reprocessing features. Moreover recent Chandra and XMM-Newton observations suggest that the soft X-ray emission of HEG and Seyfert 2 have a common origin from photoionized gas, reinforcing the idea that not only their nuclear engine but also the circumnuclear gas (at least the warm phase) are similar. On the contrary, our knowledge of NLRG HEG above 10 keV is very poor when compared to brighter Seyfert 2. As a consequence, the physical properties of the cold phase of the circumnuclear gas (possibly linked to a dusty torus) are largely unknown. Thanks to its high sensitivity up to 80 keV, Simbol-X will provide very accurate spectra and will allow a direct comparison between the NLRG and Seyfert 2 cold environments.

  12. Rapidly star-forming galaxies adjacent to quasars at redshifts exceeding 6.

    Science.gov (United States)

    Decarli, R; Walter, F; Venemans, B P; Bañados, E; Bertoldi, F; Carilli, C; Fan, X; Farina, E P; Mazzucchelli, C; Riechers, D; Rix, H-W; Strauss, M A; Wang, R; Yang, Y

    2017-05-24

    The existence of massive (10 11 solar masses) elliptical galaxies by redshift z ≈ 4 (refs 1, 2, 3; when the Universe was 1.5 billion years old) necessitates the presence of galaxies with star-formation rates exceeding 100 solar masses per year at z > 6 (corresponding to an age of the Universe of less than 1 billion years). Surveys have discovered hundreds of galaxies at these early cosmic epochs, but their star-formation rates are more than an order of magnitude lower. The only known galaxies with very high star-formation rates at z > 6 are, with one exception, the host galaxies of quasars, but these galaxies also host accreting supermassive (more than 10 9 solar masses) black holes, which probably affect the properties of the galaxies. Here we report observations of an emission line of singly ionized carbon ([C ii] at a wavelength of 158 micrometres) in four galaxies at z > 6 that are companions of quasars, with velocity offsets of less than 600 kilometres per second and linear offsets of less than 100 kiloparsecs. The discovery of these four galaxies was serendipitous; they are close to their companion quasars and appear bright in the far-infrared. On the basis of the [C ii] measurements, we estimate star-formation rates in the companions of more than 100 solar masses per year. These sources are similar to the host galaxies of the quasars in [C ii] brightness, linewidth and implied dynamical mass, but do not show evidence for accreting supermassive black holes. Similar systems have previously been found at lower redshift. We find such close companions in four out of the twenty-five z > 6 quasars surveyed, a fraction that needs to be accounted for in simulations. If they are representative of the bright end of the [C ii] luminosity function, then they can account for the population of massive elliptical galaxies at z ≈ 4 in terms of the density of cosmic space.

  13. Suppressing star formation in quiescent galaxies with supermassive black hole winds.

    Science.gov (United States)

    Cheung, Edmond; Bundy, Kevin; Cappellari, Michele; Peirani, Sébastien; Rujopakarn, Wiphu; Westfall, Kyle; Yan, Renbin; Bershady, Matthew; Greene, Jenny E; Heckman, Timothy M; Drory, Niv; Law, David R; Masters, Karen L; Thomas, Daniel; Wake, David A; Weijmans, Anne-Marie; Rubin, Kate; Belfiore, Francesco; Vulcani, Benedetta; Chen, Yan-mei; Zhang, Kai; Gelfand, Joseph D; Bizyaev, Dmitry; Roman-Lopes, A; Schneider, Donald P

    2016-05-26

    Quiescent galaxies with little or no ongoing star formation dominate the population of galaxies with masses above 2 × 10(10) times that of the Sun; the number of quiescent galaxies has increased by a factor of about 25 over the past ten billion years (refs 1-4). Once star formation has been shut down, perhaps during the quasar phase of rapid accretion onto a supermassive black hole, an unknown mechanism must remove or heat the gas that is subsequently accreted from either stellar mass loss or mergers and that would otherwise cool to form stars. Energy output from a black hole accreting at a low rate has been proposed, but observational evidence for this in the form of expanding hot gas shells is indirect and limited to radio galaxies at the centres of clusters, which are too rare to explain the vast majority of the quiescent population. Here we report bisymmetric emission features co-aligned with strong ionized-gas velocity gradients from which we infer the presence of centrally driven winds in typical quiescent galaxies that host low-luminosity active nuclei. These galaxies are surprisingly common, accounting for as much as ten per cent of the quiescent population with masses around 2 × 10(10) times that of the Sun. In a prototypical example, we calculate that the energy input from the galaxy's low-level active supermassive black hole is capable of driving the observed wind, which contains sufficient mechanical energy to heat ambient, cooler gas (also detected) and thereby suppress star formation.

  14. WHAT TURNS GALAXIES OFF? THE DIFFERENT MORPHOLOGIES OF STAR-FORMING AND QUIESCENT GALAXIES SINCE z {approx} 2 FROM CANDELS

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Eric F.; Herrington, Jessica [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Van der Wel, Arjen [Max-Planck Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Papovich, Casey [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, and Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843-4242 (United States); Kocevski, Dale; Faber, S. M.; Cheung, Edmond; Koo, David C.; McGrath, Elizabeth J. [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Lotz, Jennifer; Ferguson, Harry; Koekemoer, Anton; Grogin, Norman [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); McIntosh, Daniel H. [Department of Physics, University of Missouri-Kansas City, Kansas City, MO 64110 (United States); Kartaltepe, Jeyhan [NOAO-Tucson, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Wuyts, Stijn [Max-Planck-Institut fuer Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Conselice, Christopher J. [University of Nottingham, School of Physics and Astronomy, Nottingham NG7 2RD (United Kingdom); Dekel, Avishai [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Dunlop, James S. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Giavalisco, Mauro, E-mail: ericbell@umich.edu [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); and others

    2012-07-10

    We use HST/WFC3 imaging from the CANDELS Multi-Cycle Treasury Survey, in conjunction with the Sloan Digital Sky Survey, to explore the evolution of galactic structure for galaxies with stellar masses >3 Multiplication-Sign 10{sup 10} M{sub Sun} from z = 2.2 to the present epoch, a time span of 10 Gyr. We explore the relationship between rest-frame optical color, stellar mass, star formation activity, and galaxy structure. We confirm the dramatic increase from z = 2.2 to the present day in the number density of non-star-forming galaxies above 3 Multiplication-Sign 10{sup 10} M{sub Sun} reported by others. We further find that the vast majority of these quiescent systems have concentrated light profiles, as parameterized by the Sersic index, and the population of concentrated galaxies grows similarly rapidly. We examine the joint distribution of star formation activity, Sersic index, stellar mass, inferred velocity dispersion, and stellar surface density. Quiescence correlates poorly with stellar mass at all z < 2.2. Quiescence correlates well with Sersic index at all redshifts. Quiescence correlates well with 'velocity dispersion' and stellar surface density at z > 1.3, and somewhat less well at lower redshifts. Yet, there is significant scatter between quiescence and galaxy structure: while the vast majority of quiescent galaxies have prominent bulges, many of them have significant disks, and a number of bulge-dominated galaxies have significant star formation. Noting the rarity of quiescent galaxies without prominent bulges, we argue that a prominent bulge (and perhaps, by association, a supermassive black hole) is an important condition for quenching star formation on galactic scales over the last 10 Gyr, in qualitative agreement with the active galactic nucleus feedback paradigm.

  15. Host Galaxy Properties of the Swift BAT Ultra Hard X-Ray Selected AGN

    Science.gov (United States)

    Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain; Winter, Lisa M.; Baumgartner, Wayne; Tueller, Jack; Gehrels, Neil; Valencic, Lynne

    2011-01-01

    We have assembled the largest sample of ultra hard X-ray selected (14-195 keV) AGN with host galaxy optical data to date, with 185 nearby (zBAT) sample. The BAT AGN host galaxies have intermediate optical colors (u -- r and g -- r) that are bluer than a comparison sample of inactive galaxies and optically selected AGN from the Sloan Digital Sky Survey (SDSS) which are chosen to have the same stellar mass. Based on morphological classifications from the RC3 and the Galaxy Zoo, the bluer colors of BAT AGN are mainly due to a higher fraction of mergers and massive spirals than in the comparison samples. BAT AGN in massive galaxies (log Stellar Mass >10.5) have a 5 to 10 times higher rate of spiral morphologies than in SDSS AGN or inactive galaxies. We also see enhanced far-IR emission in BAT AGN suggestive of higher levels of star formation compared to the comparison samples. BAT AGN are preferentially found in the most massive host galaxies with high concentration indexes indicative of large bulge-to-disk ratios and large supermassive black holes. The narrow-line (NL) BAT AGN have similar intrinsic luminosities as the SDSS NL Seyferts based on measurements of [O III] Lambda 5007. There is also a correlation between the stellar mass and X-ray emission. The BAT AGN in mergers have bluer colors and greater ultra hard X-ray emission compared to the BAT sample as whole. In agreement with the Unified Model of AGN, and the relatively unbiased nature of the BAT sources, the host galaxy colors and morphologies are independent of measures of obscuration such as X-ray column density or Seyfert type. The high fraction of massive spiral galaxies and galaxy mergers in BAT AGN suggest that host galaxy morphology is related to the activation and fueling of local AGN.

  16. A HIGHER EFFICIENCY OF CONVERTING GAS TO STARS PUSHES GALAXIES AT z ∼ 1.6 WELL ABOVE THE STAR-FORMING MAIN SEQUENCE

    Energy Technology Data Exchange (ETDEWEB)

    Silverman, J. D.; Rujopakarn, W. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Daddi, E.; Liu, D. [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, Irfu/Service d’Astrophysique, CEA Saclay (France); Rodighiero, G. [Dipartimento di Fisica e Astronomia, Universita di Padova, vicolo Osservatorio, 3, I-35122 Padova (Italy); Sargent, M. [Astronomy Centre, Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH (United Kingdom); Renzini, A. [Instituto Nazionale de Astrofisica, Osservatorio Astronomico di Padova, v.co dell’Osservatorio 5, I-35122 Padova (Italy); Feruglio, C. [IRAM—Institut de RadioAstronomie Millimétrique, 300 rue de la Piscine, F-38406 Saint Martin d’Hères (France); Kashino, D. [Division of Particle and Astrophysical Science, Graduate School of Science, Nagoya University, Nagoya 464-8602 (Japan); Sanders, D. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Kartaltepe, J. [National Optical Astronomy Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States); Nagao, T. [Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577 (Japan); Arimoto, N. [Subaru Telescope, 650 North A’ohoku Place, Hilo, HI-96720 (United States); Berta, S.; Lutz, D. [Max-Planck-Institut für extraterrestrische Physik, D-84571 Garching (Germany); Béthermin, M. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Koekemoer, A., E-mail: john.silverman@ipmu.jp [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218 (United States); and others

    2015-10-20

    Local starbursts have a higher efficiency of converting gas into stars, as compared to typical star-forming galaxies at a given stellar mass, possibly indicative of different modes of star formation. With the peak epoch of galaxy formation occurring at z > 1, it remains to be established whether such an efficient mode of star formation is occurring at high redshift. To address this issue, we measure the molecular gas content of seven high-redshift (z ∼ 1.6) starburst galaxies with the Atacama Large Millimeter/submillimeter Array and IRAM/Plateau de Bure Interferometer. Our targets are selected from the sample of Herschel far-infrared-detected galaxies having star formation rates (∼300–800 M{sub ⊙} yr{sup −1}) elevated (≳4×) above the star-forming main sequence (MS) and included in the FMOS-COSMOS near-infrared spectroscopic survey of star-forming galaxies at z ∼ 1.6 with Subaru. We detect CO emission in all cases at high levels of significance, indicative of high gas fractions (∼30%–50%). Even more compelling, we firmly establish with a clean and systematic selection that starbursts, identified as MS outliers, at high redshift generally have a lower ratio of CO to total infrared luminosity as compared to typical MS star-forming galaxies, although with a smaller offset than expected based on past studies of local starbursts. We put forward a hypothesis that there exists a continuous increase in star formation efficiency with elevation from the MS with galaxy mergers as a possible physical driver. Along with a heightened star formation efficiency, our high-redshift sample is similar in other respects to local starbursts, such as being metal rich and having a higher ionization state of the interstellar medium.

  17. VLA AND ALMA IMAGING OF INTENSE GALAXY-WIDE STAR FORMATION IN z ∼ 2 GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Rujopakarn, W.; Silverman, J. D. [Kavli Institute for the Physics and Mathematics of the universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Dunlop, J. S.; Ivison, R. J.; McLure, R. J.; Michałowski, M. J. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Rieke, G. H. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Cibinel, A. [Astronomy Centre, Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9QH (United Kingdom); Nyland, K. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Jagannathan, P.; Bhatnagar, S. [National Radio Astronomy Observatory, Socorro, NM 87801 (United States); Alexander, D. M. [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Biggs, A. D. [European Southern Observatory, Karl-Schwarzschild-Straße 2, Garching (Germany); Ballantyne, D. R. [Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Dickinson, M. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Elbaz, D. [CEA Saclay, DSM/Irfu/Service d’Astrophysique, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex (France); Geach, J. E. [Center for Astrophysics Research, Science and Technology Research Institute, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Hayward, C. C. [Center for Computational Astrophysics, 160 Fifth Avenue, New York, NY 10010 (United States); Kirkpatrick, A., E-mail: wiphu.rujopakarn@ipmu.jp [Yale Center for Astronomy and Astrophysics, Physics Department, P.O. Box 208120, New Haven, CT 06520 (United States); and others

    2016-12-10

    We present ≃0.″4 resolution extinction-independent distributions of star formation and dust in 11 star-forming galaxies (SFGs) at z  = 1.3–3.0. These galaxies are selected from sensitive blank-field surveys of the 2′ × 2′ Hubble Ultra-Deep Field at λ  = 5 cm and 1.3 mm using the Karl G. Jansky Very Large Array and Atacama Large Millimeter/submillimeter Array. They have star formation rates (SFRs), stellar masses, and dust properties representative of massive main-sequence SFGs at z  ∼ 2. Morphological classification performed on spatially resolved stellar mass maps indicates a mixture of disk and morphologically disturbed systems; half of the sample harbor X-ray active galactic nuclei (AGNs), thereby representing a diversity of z  ∼ 2 SFGs undergoing vigorous mass assembly. We find that their intense star formation most frequently occurs at the location of stellar-mass concentration and extends over an area comparable to their stellar-mass distribution, with a median diameter of 4.2 ± 1.8 kpc. This provides direct evidence of galaxy-wide star formation in distant blank-field-selected main-sequence SFGs. The typical galactic-average SFR surface density is 2.5 M {sub ⊙} yr{sup −1} kpc{sup −2}, sufficiently high to drive outflows. In X-ray-selected AGN where radio emission is enhanced over the level associated with star formation, the radio excess pinpoints the AGNs, which are found to be cospatial with star formation. The median extinction-independent size of main-sequence SFGs is two times larger than those of bright submillimeter galaxies, whose SFRs are 3–8 times larger, providing a constraint on the characteristic SFR (∼300 M {sub ⊙} yr{sup −1}) above which a significant population of more compact SFGs appears to emerge.

  18. Physical Conditions of the Interstellar Medium in Star-forming Galaxies at z1.5

    Science.gov (United States)

    Hayashi, Masao; Ly, Chun; Shimasaku, Kazuhiro; Motohara, Kentaro; Malkan, Matthew A.; Nagao, Tohru; Kashikawa, Nobunari; Goto, Ryosuke; Naito, Yoshiaki

    2015-01-01

    We present results from Subaru/FMOS near-infrared (NIR) spectroscopy of 118 star-forming galaxies at z approximately equal to 1.5 in the Subaru Deep Field. These galaxies are selected as [O II] lambda 3727 emitters at z approximately equal to 1.47 and 1.62 from narrow-band imaging. We detect H alpha emission line in 115 galaxies, [O III] lambda 5007 emission line in 45 galaxies, and H Beta, [N II] lambda 6584, and [S II]lambda lambda 6716, 6731 in 13, 16, and 6 galaxies, respectively. Including the [O II] emission line, we use the six strong nebular emission lines in the individual and composite rest-frame optical spectra to investigate physical conditions of the interstellar medium in star-forming galaxies at z approximately equal to 1.5. We find a tight correlation between H alpha and [O II], which suggests that [O II] can be a good star formation rate (SFR) indicator for galaxies at z approximately equal to 1.5. The line ratios of H alpha / [O II] are consistent with those of local galaxies. We also find that [O II] emitters have strong [O III] emission lines. The [O III]/[O II] ratios are larger than normal star-forming galaxies in the local Universe, suggesting a higher ionization parameter. Less massive galaxies have larger [O III]/[O II] ratios. With evidence that the electron density is consistent with local galaxies, the high ionization of galaxies at high redshifts may be attributed to a harder radiation field by a young stellar population and/or an increase in the number of ionizing photons from each massive star.

  19. DETERMINING STAR FORMATION RATES FOR INFRARED GALAXIES

    International Nuclear Information System (INIS)

    Rieke, G. H.; Weiner, B. J.; Perez-Gonzalez, P. G.; Donley, J. L.; Alonso-Herrero, A.; Blaylock, M.; Marcillac, D.

    2009-01-01

    We show that measures of star formation rates (SFRs) for infrared galaxies using either single-band 24 μm or extinction-corrected Paα luminosities are consistent in the total infrared luminosity = L(TIR) ∼ 10 10 L sun range. MIPS 24 μm photometry can yield SFRs accurately from this luminosity upward: SFR(M sun yr -1 ) = 7.8 x 10 -10 L(24 μm, L sun ) from L(TIR) = 5x 10 9 L sun to 10 11 L sun and SFR = 7.8 x 10 -10 L(24 μm, L sun )(7.76 x 10 -11 L(24)) 0.048 for higher L(TIR). For galaxies with L(TIR) ≥ 10 10 L sun , these new expressions should provide SFRs to within 0.2 dex. For L(TIR) ≥ 10 11 L sun , we find that the SFR of infrared galaxies is significantly underestimated using extinction-corrected Paα (and presumably using any other optical or near-infrared recombination lines). As a part of this work, we constructed spectral energy distribution templates for eleven luminous and ultraluminous purely star forming infrared galaxies and over the spectral range 0.4 μm to 30 cm. We use these templates and the SINGS data to construct average templates from 5 μm to 30 cm for infrared galaxies with L(TIR) = 5x 10 9 to 10 13 L sun . All of these templates are made available online.

  20. PRECIPITATION-REGULATED STAR FORMATION IN GALAXIES

    International Nuclear Information System (INIS)

    Voit, G. Mark; O’Shea, Brian W.; Donahue, Megan; Bryan, Greg L.

    2015-01-01

    Galaxy growth depends critically on the interplay between radiative cooling of cosmic gas and the resulting energetic feedback that cooling triggers. This interplay has proven exceedingly difficult to model, even with large supercomputer simulations, because of its complexity. Nevertheless, real galaxies are observed to obey simple scaling relations among their primary observable characteristics. Here we show that a generic emergent property of the interplay between cooling and feedback can explain the observed scaling relationships between a galaxy's stellar mass, its total mass, and its chemical enrichment level, as well as the relationship between the average orbital velocity of its stars and the mass of its central black hole. These relationships naturally result from any feedback mechanism that strongly heats a galaxy's circumgalactic gas in response to precipitation of colder clouds out of that gas, because feedback then suspends the gas in a marginally precipitating state

  1. X-ray evidence for ultra-fast outflows in Seyfert galaxies

    Science.gov (United States)

    Tombesi, Francesco; Braito, Valentina; Reeves, James; Cappi, Massimo; Dadina, Mauro

    2012-07-01

    X-ray evidence for massive, highly ionized, ultra-fast outflows (UFOs) has been recently reported in a number of AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42 local Seyferts observed with XMM-Newton. Similar results are also obtained from a Suzaku analysis of 5 radio galaxies. We find that UFOs are common phenomena, being present in >40% of the sources. Their outflow velocity distribution is in the range ˜0.03--0.3c, with mean value of ˜0.14c. The ionization parameter is very high, in the range logξ˜3--6 erg~s^{-1}~cm, and the associated column densities are also large, in the range ˜10^{22}--10^{24} cm^{-2}. Their location is constrained at ˜0.0003--0.03pc (˜10^2--10^4 r_s) from the central black hole, consistent with what is expected for accretion disk winds/outflows. The mass outflow rates are in the interval ˜0.01--1M_{⊙}~yr^{-1}. The associated mechanical power is also high, in the range ˜10^{43}--10^{45} erg/s, which indicates that UFOs are capable to provide a significant contribution to the AGN cosmological feedback.

  2. ULTRA-FAINT DWARF GALAXIES AS A TEST OF EARLY ENRICHMENT AND METALLICITY-DEPENDENT STAR FORMATION

    International Nuclear Information System (INIS)

    Tassis, Konstantinos; Gnedin, Nickolay Y.; Kravtsov, Andrey V.

    2012-01-01

    The close relation of star formation with molecular gas indicated by observations and assumed in recent models implies that the efficiency with which galaxies convert their gas into stars depends on gas metallicity. This is because abundance of molecular hydrogen is sensitive to abundance of dust, which catalyzes formation of H 2 and helps to shield it from dissociating radiation. In this study, we point out that in the absence of significant pre-enrichment by Population III stars forming out of zero metallicity gas, such H 2 -based star formation is expected to leave an imprint in the form of bi-modality in the metallicity distribution among dwarf galaxies and in the metallicity distribution of stars within individual galaxies. The bi-modality arises because when gas metallicity (and dust abundance) is low, formation of molecular gas is inefficient, the gas consumption timescale is long, and star formation and metal enrichment proceed slowly. When metallicity reaches a critical threshold value star formation and enrichment accelerate, which leads to rapid increase in both stellar mass and metallicity of galaxies. We demonstrate this process both using a simple analytical model and full cosmological simulations. In contrast, the observed metallicity distributions of dwarf galaxies or stars within them are not bi-modal. We argue that this discrepancy points to substantial early stochastic pre-enrichment by Population III stars to levels Z ∼ 10 –2 Z ☉ in dense, star-forming regions of early galaxies.

  3. Bimodal star formation - constraints from galaxy colors at high redshift

    International Nuclear Information System (INIS)

    Wyse, R.F.G.; Silk, J.

    1987-01-01

    The possibility that at early epochs the light from elliptical galaxies is dominated by stars with an initial mass function (IMF) which is deficient in low-mass stars, relative to the solar neighborhood is investigated. V-R colors for the optical counterparts of 3CR radio sources offer the most severe constraints on the models. Reasonable fits are obtained to both the blue, high-redshift colors and the redder, low-redshift colors with a model galaxy which forms with initially equal star formation rates in each of two IMF modes: one lacking low-mass stars, and one with stars of all masses. The net effect is that the time-integrated IMF has twice as many high-mass stars as the solar neighborhood IMF, relative to low mass stars. A conventional solar neighborhood IMF does not simultaneously account for both the range in colors at high redshift and the redness of nearby ellipticals, with any single star formation epoch. Models with a standard IMF require half the stellar population to be formed in a burst at low redshift z of about 1. 38 references

  4. The extreme behavior of the radio-loud narrow-line Seyfert 1 galaxy J0849+5108

    International Nuclear Information System (INIS)

    Maune, Jeremy D.; Eggen, Joseph R.; Miller, H. Richard; Marshall, Kevin; Readhead, Anthony C. S.; Hovatta, Talvikki; King, Oliver

    2014-01-01

    Simultaneous radio, optical (both photometry and polarimetry), X-ray, and γ-ray observations of the radio-loud narrow-line Seyfert 1 (RL-NLSy1) galaxy J0849+5108 are presented. A massive three-magnitude optical flare across five nights in 2013 April is detected, along with associated flux increases in the γ-ray, infrared, and radio regimes; no comparable event was detected in the X-rays, though this may be due to poor coverage. A spectral energy distribution (SED) for the object using quasi-simultaneous data centered on the optical flare is compared to the previously published SEDs for the object by D'Ammando et al. The flare event coincided with a high degree of optical polarization. High amplitude optical microvariability is clearly detected, and is found to be of comparable amplitude when the object is observed in both faint and bright states. The object is also seen to undergo rapid shifts in polarization in both degree and electric vector position angle within a single night. J0849+5108 appears to show even more extreme variability than that previously reported for the similar object J0948+0022. These observations appear to support the growing claim that some RL-NLSy1 galaxies constitute a sub-class of blazar-like active galactic nuclei.

  5. The extreme behavior of the radio-loud narrow-line Seyfert 1 galaxy J0849+5108

    Energy Technology Data Exchange (ETDEWEB)

    Maune, Jeremy D.; Eggen, Joseph R.; Miller, H. Richard [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303-3083 (United States); Marshall, Kevin [Department of Physics and Astronomy, Widener University, Chester, PA 19013 (United States); Readhead, Anthony C. S.; Hovatta, Talvikki; King, Oliver, E-mail: maune@chara.gsu.edu [Cahill Laboratory of Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States)

    2014-10-10

    Simultaneous radio, optical (both photometry and polarimetry), X-ray, and γ-ray observations of the radio-loud narrow-line Seyfert 1 (RL-NLSy1) galaxy J0849+5108 are presented. A massive three-magnitude optical flare across five nights in 2013 April is detected, along with associated flux increases in the γ-ray, infrared, and radio regimes; no comparable event was detected in the X-rays, though this may be due to poor coverage. A spectral energy distribution (SED) for the object using quasi-simultaneous data centered on the optical flare is compared to the previously published SEDs for the object by D'Ammando et al. The flare event coincided with a high degree of optical polarization. High amplitude optical microvariability is clearly detected, and is found to be of comparable amplitude when the object is observed in both faint and bright states. The object is also seen to undergo rapid shifts in polarization in both degree and electric vector position angle within a single night. J0849+5108 appears to show even more extreme variability than that previously reported for the similar object J0948+0022. These observations appear to support the growing claim that some RL-NLSy1 galaxies constitute a sub-class of blazar-like active galactic nuclei.

  6. Constraining the Stellar Populations and Star Formation Histories of Blue Compact Dwarf Galaxies with SED Fits

    Energy Technology Data Exchange (ETDEWEB)

    Janowiecki, Steven [International Center for Radio Astronomy Research, M468, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009 (Australia); Salzer, John J.; Zee, Liese van [Department of Astronomy, Indiana University, 727 East Third Street, Bloomington, IN 47405 (United States); Rosenberg, Jessica L. [Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030 (United States); Skillman, Evan, E-mail: steven.janowiecki@uwa.edu.au [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street, SE Minneapolis, MN, 55455 (United States)

    2017-02-10

    We discuss and test possible evolutionary connections between blue compact dwarf galaxies (BCDs) and other types of dwarf galaxies. BCDs provide ideal laboratories to study intense star formation episodes in low-mass dwarf galaxies, and have sometimes been considered a short-lived evolutionary stage between types of dwarf galaxies. To test these connections, we consider a sample of BCDs as well as a comparison sample of nearby galaxies from the Local Volume Legacy (LVL) survey for context. We fit the multi-wavelength spectral energy distributions (SED, far-ultra-violet to far-infrared) of each galaxy with a grid of theoretical models to determine their stellar masses and star formation properties. We compare our results for BCDs with the LVL galaxies to put BCDs in the context of normal galaxy evolution. The SED fits demonstrate that the star formation events currently underway in BCDs are at the extreme of the continuum of normal dwarf galaxies, both in terms of the relative mass involved and in the relative increase over previous star formation rates. Today’s BCDs are distinctive objects in a state of extreme star formation that is rapidly transforming them. This study also suggests ways to identify former BCDs whose star formation episodes have since faded.

  7. Comparative study of dust and young stars in three small galaxies

    International Nuclear Information System (INIS)

    Price, J.S.

    1984-01-01

    A comparative study is presented of dust and young stars in the central regions of the three small galaxies NGC 205, NGC 185, and NGC 3077 in the U, B, V, and K filters, and at six additional optical wavelengths. All three program galaxies have been successfully modeled with the empirical models of Oemler (1976); NGC 205 and NGC 3077 were also modeled with unsharp mask models. Subtracting model galaxies from the data enabled the authors to isolate clusters of young stars and dust clouds in the central regions of each galaxy. A comparison of the colors of the young clusters in NGC 3077 and those in NGC 205 reveals that the colors of the clusters in these two small galaxies are different. In NGC 185, diffuse emission after subtracting an Oemler model was discovered. NGC 205 also showed this remnant emission, with very similar colors to those of the remnant in NGC 185, but NGC 3077 did not. The colors of this diffuse remnant emission in NGC 205 and NGC 185 are interpreted as being due to previous episodes of star formation in the two dwarf ellipticals. A comparison of the author's data with that of Caldwell (1983) on a sample of 33 dwarf elliptical galaxies in Virgo indicates that star formation in dwarf elliptical galaxies is a common phenomenon. The study of dust in NGC 185 and NGC 205 at optical wavelengths shows that the properties of dust in NGC 205 are very similar to those of galactic dust, while the dust in NGC 185 is distinctly different. The optical and 2.2 micron centers of NGC 3077 are found to be different. From comparison of the three galaxies studied here, the author concludes that it is unlikely that NGC 205 and NGC 185 tidally interacted with M31

  8. Evolution of star systems supplied by external stars: a model for Galaxy nuclei

    International Nuclear Information System (INIS)

    Dokuchaev, V.I.; Ozernoj, L.M.; AN SSSR, Moscow. Inst. Yadernykh Issledovanij)

    1985-01-01

    Extended rarefied environments around the core of a non-isothermic galaxy nucleus can supply the core by both energies and masses of external stars due to relaxation mechanisms. These factors can influence considerably the secular evolution of the core when competing with usual star evaporation from it. Conditions are found under which external environments influence the core evolution much more than star evaporation. This results in expansion of the core instead of its collapse

  9. What Turns Galaxies Off? the Different Morphologies of Star-Forming and Quiescent Galaxies Since z Approximates 2 from CANDELS

    Science.gov (United States)

    Bell, Eric F.; VanDerWel, Arjen; Papovich, Casey; Kocevski, Dale; Lotz, Jennifer; McIntosh, Daniel H.; Kartaltepe, Jeyhan; Faber, S. M.; Ferguson, Harry; Koekemoer, Anton; hide

    2011-01-01

    We use HST/WFC3 imaging from the CANDELS multicyc1e treasury survey, in conjunction with the Sloan Digital Sky Survey, to explore the evolution of galactic structure for galaxies with stellar masses > 3 x 10(exp 10) Solar Mass from Z= 2.2 to the present epoch, a time span of 10 Gyr. We explore the relationship between rest-frame optical color, stellar mass, star formation activity and the structural parameters of galaxies as determined from parametric fits to the surface brightness profiles of galaxies. We confirm the dramatic evolution from z= 2.2 to the present day in the number density of non-star-forming galaxies above 3 x 10(exp 10) Solar Mass reported by other authors. We find that the vast majority of these quiescent systems have concentrated light profiles, as parameterized by the Sersic index, and the population of concentrated galaxies grows similarly rapidly. We examine the joint distribution of star formation activity, Sersic index, stellar mass, mass divided by radius (a proxy for velocity dispersion), and stellar surface density. Quiescence correlates poorly with stellar mass at all z < 2.2 (given the approx < 0.2 dex scatter between halo mass and stellar mass at z approximates 0 inferred by More et al, this argues against halo mass being the only factor determining quiescence). Quiescence correlates better with Sersic index, 'velocity dispersion' and stellar surface density, where Sersic index correlates the best (increasingly so at lower redshift). Yet, there is significant scatter between quiescence and galaxy structure: while the vast majority of quiescent galaxies have prominent bulges, many of them have significant disks, and a number of bulge-dominated galaxies have significant star formation. Noting the rarity of quiescent galaxies without prominent bulges, we argue that a prominent bulge (and, perhaps by association, a supermassive black hole) is a necessary but not sufficient condition for quenching star formation on galactic scales over the

  10. Star formation rates in isolated galaxies selected from the Two-Micron All-Sky Survey

    Science.gov (United States)

    Melnyk, O.; Karachentseva, V.; Karachentsev, I.

    2015-08-01

    We have considered the star formation properties of 1616 isolated galaxies from the 2MASS XSC (Extended Source Catalog) selected sample (2MIG) with the far-ultraviolet GALEX magnitudes. This sample was then compared with corresponding properties of isolated galaxies from the Local Orphan Galaxies (LOG) catalogue and paired galaxies. We found that different selection algorithms define different populations of isolated galaxies. The population of the LOG catalogue, selected from non-clustered galaxies in the Local Supercluster volume, mostly consists of low-mass spiral and late-type galaxies. The specific star formation rate (SSFR) upper limit in isolated and paired galaxies does not exceed the value of ˜dex(-9.4). This is probably common for galaxies of differing activity and environment (at least at z processes is the galaxy mass. However, the environmental influence is notable: paired massive galaxies with logM* > 11.5 have higher (S)SFR than isolated galaxies. Our results suggest that the environment helps to trigger the star formation in the highest mass galaxies. We found that the fraction of AGN in the paired sample is only a little higher than in our isolated galaxy sample. We assume that AGN phenomenon is probably defined by secular galaxy evolution.

  11. PREDICTIONS FOR ULTRA-DEEP RADIO COUNTS OF STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Mancuso, Claudia; Lapi, Andrea; De Zotti, Gianfranco; Bressan, Alessandro; Perrotta, Francesca; Danese, Luigi [Astrophysics Sector, SISSA, Via Bonomea 265, I-34136 Trieste (Italy); Cai, Zhen-Yi [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China); Negrello, Mattia; Bonato, Matteo, E-mail: cmancuso@sissa.it [INAF—Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy)

    2015-09-01

    We have worked outty predictions for the radio counts of star-forming galaxies down to nJy levels, along with redshift distributions down to the detection limits of the phase 1 Square Kilometer Array MID telescope (SKA1-MID) and of its precursors. Such predictions were obtained by coupling epoch-dependent star formation rate (SFR) functions with relations between SFR and radio (synchrotron and free–free) emission. The SFR functions were derived taking into account both the dust-obscured and the unobscured star formation, by combining far-infrared, ultraviolet, and Hα luminosity functions up to high redshifts. We have also revisited the South Pole Telescope counts of dusty galaxies at 95 GHz, performing a detailed analysis of the Spectral Energy Distributions. Our results show that the deepest SKA1-MID surveys will detect high-z galaxies with SFRs two orders of magnitude lower compared to Herschel surveys. The highest redshift tails of the distributions at the detection limits of planned SKA1-MID surveys comprise a substantial fraction of strongly lensed galaxies. We predict that a survey down to 0.25 μJy at 1.4 GHz will detect about 1200 strongly lensed galaxies per square degree, at redshifts of up to 10. For about 30% of them the SKA1-MID will detect at least 2 images. The SKA1-MID will thus provide a comprehensive view of the star formation history throughout the re-ionization epoch, unaffected by dust extinction. We have also provided specific predictions for the EMU/ASKAP and MIGHTEE/MeerKAT surveys.

  12. EXTENDED STAR CLUSTERS IN THE REMOTE HALO OF THE INTRIGUING DWARF GALAXY NGC 6822

    International Nuclear Information System (INIS)

    Hwang, Narae; Lee, Myung Gyoon; Lee, Jong Chul; Park, Hong Soo; Park, Won-Kee; Kim, Sang Chul; Park, Jang-Hyun

    2011-01-01

    We present a study on four new star clusters discovered in the halo of the intriguing dwarf irregular galaxy NGC 6822 from a wide-field survey covering 3 0 x 3 0 area carried out with MegaCam at the Canada-France-Hawaii Telescope. The star clusters have extended structures with half-light radii R h ∼ 7.5-14.0 pc, larger than typical Galactic globular clusters and other known globular clusters in NGC 6822. The integrated colors and color-magnitude diagrams of resolved stars suggest that the new star clusters are 2-10 Gyr old and relatively metal poor with Z = 0.0001-0.004 based on the comparison with theoretical models. The projected distance of each star cluster from the galaxy center ranges from 10.'7 (∼1.5 kpc) to 77' (∼11 kpc), far beyond the optical body of the galaxy. Interestingly, the new star clusters are aligned along the elongated old stellar halo of NGC 6822, which is almost perpendicular to the H I gas distribution where young stellar populations exist. We also find that the colors and half-light radii of the new clusters are correlated with the galactocentric distance: clusters farther from the galaxy center are larger and bluer than those closer to the galaxy center. We discuss the stellar structure and evolution of NGC 6822 implied by these new extended star clusters in the halo. We also discuss the current status of observational and theoretical understandings regarding the origin of extended star clusters in NGC 6822 and other galaxies.

  13. An intermediate-mass black hole in the darf galaxy Pox 52

    Science.gov (United States)

    Barth, Aaron

    2005-01-01

    Do dwarf elliptical and dwarf spiral galaxies contain central black holes with masses below 106 solar masses? Beyond the Local Group dynamical searches for black holes in this mass range are very difficult but the detection of accretion-powered nuclear activity could be used to infer the presence of a black hole. The nearby dwarf spiral galaxy NGC 4395 hosts a faint Seyfert 1 nucleus with a likely black hole mass in the range 104-105 solar masses and for more than a decade it has been the only known example of a Seyfert 1 nucleus in a dwarf galaxy. I will present new Keck spectra of the dwarf galaxy POX 52 which demonstrate that it has a Seyfert 1 spectrum nearly identical to that of NGC 4395. Its velocity dispersion is 37 km/s suggesting a possible black hole mass of order 105 solar masses. I will discuss the prospects for systematic searches for nuclear activity in dwarf galaxies and the implications for black hole demographics.

  14. An Intermediate-Mass Black Hole in the Dwarf Galaxy Pox 52

    Science.gov (United States)

    Barth, Aaron

    Do dwarf elliptical and dwarf spiral galaxies contain central black holes with masses below 106 solar masses? Beyond the Local Group dynamical searches for black holes in this mass range are very difficult but the detection of accretion-powered nuclear activity could be used to infer the presence of a black hole. The nearby dwarf spiral galaxy NGC 4395 hosts a faint Seyfert 1 nucleus with a likely black hole mass in the range 104-105 solar masses and for more than a decade it has been the only known example of a Seyfert 1 nucleus in a dwarf galaxy. I will present new Keck spectra of the dwarf galaxy POX 52 which demonstrate that it has a Seyfert 1 spectrum nearly identical to that of NGC 4395. Its velocity dispersion is 37 km/s suggesting a possible black hole mass of order 105 solar masses. I will discuss the prospects for systematic searches for nuclear activity in dwarf galaxies and the implications for black hole demographics.

  15. Chemical composition of extremely metal-poor stars in the Sextans dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Aoki, W.; Arimoto, N.; Sadakane, K.; Tolstoy, E.; Battaglia, G.; Jablonka, P.; Shetrone, M.; Letarte, B.; Irwin, M.; Hill, V.; Francois, P.; Venn, K.; Primas, F.; Helmi, A.; Kaufer, A.; Tafelmeyer, M.; Szeifert, T.; Babusiaux, C.

    Context. Individual stars in dwarf spheroidal galaxies around the Milky Way Galaxy have been studied both photometrically and spectroscopically. Extremely metal-poor stars among them are very valuable because they should record the early enrichment in the Local Group. However, our understanding of

  16. Unification of X-ray Winds in Seyfert Galaxies: From Ultra-fast Outflows to Warm Absorbers

    Science.gov (United States)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Nemmen, R. S.; Braito, V.; Gaspari, M.; Reynolds, C. S.

    2013-01-01

    The existence of ionized X-ray absorbing layers of gas along the line of sight to the nuclei of Seyfert galaxies is a well established observational fact. This material is systematically outflowing and shows a large range in parameters. However, its actual nature and dynamics are still not clear. In order to gain insights into these important issues we performed a literature search for papers reporting the parameters of the soft X-ray warm absorbers (WAs) in 35 type 1 Seyferts and compared their properties to those of the ultra-fast outflows (UFOs) detected in the same sample. The fraction of sources with WAs is >60 per cent, consistent with previous studies. The fraction of sources with UFOs is >34 per cent, >67 per cent of which also show WAs. The large dynamic range obtained when considering all the absorbers together, spanning several orders of magnitude in ionization, column, velocity and distance allows us, for the first time, to investigate general relations among them. In particular, we find significant correlations indicating that the closer the absorber is to the central black hole, the higher the ionization, column, outflow velocity and consequently the mechanical power. In all the cases, the absorbers continuously populate the whole parameter space, with the WAs and the UFOs lying always at the two ends of the distribution. These evidence strongly suggest that these absorbers, often considered of different types, could actually represent parts of a single large-scale stratified outflow observed at different locations from the black hole. The UFOs are likely launched from the inner accretion disc and the WAs at larger distances, such as the outer disc and/or torus. We argue that the observed parameters and correlations are, to date, consistent with both radiation pressure through Compton scattering and magnetohydrodynamic processes contributing to the outflow acceleration, the latter playing a major role. Most of the absorbers, especially the UFOs, show

  17. An Expanded Rossi X-Ray Timing Explorer Survey of X-Ray Variability in Seyfert 1 Galaxies

    Science.gov (United States)

    Markowitz, A.; Edelson, R.

    2004-12-01

    The first seven years of RXTE monitoring of Seyfert 1 active galactic nuclei have been systematically analyzed to yield five homogeneous samples of 2-12 keV light curves, probing hard X-ray variability on successively longer durations from ~1 day to ~3.5 yr. The 2-10 keV variability on timescales of ~1 day, as probed by ASCA, is included. All sources exhibit stronger X-ray variability toward longer timescales, but the increase is greater for relatively higher luminosity sources. Variability amplitudes are anticorrelated with X-ray luminosity and black hole mass, but amplitudes saturate and become independent of luminosity or black hole mass toward the longest timescales. The data are consistent with the models of power spectral density (PSD) movement described by Markowitz and coworkers and McHardy and coworkers, whereby Seyfert 1 galaxies' variability can be described by a single, universal PSD shape whose break frequency scales with black hole mass. The best-fitting scaling relations between variability timescale, black hole mass, and X-ray luminosity imply an average accretion rate of ~5% of the Eddington limit for the sample. Nearly all sources exhibit stronger variability in the relatively soft 2-4 keV band compared to the 7-12 keV band on all timescales. There are indications that relatively less luminous or less massive sources exhibit a greater degree of spectral variability for a given increase in overall flux.

  18. SDSS J211852.96-073227.5: a new γ-ray flaring narrow-line Seyfert 1 galaxy

    Science.gov (United States)

    Yang, Hui; Yuan, Weimin; Yao, Su; Li, Ye; Zhang, Jin; Zhou, Hongyan; Komossa, S.; Liu, He-Yang; Jin, Chichuan

    2018-04-01

    We report on the identification of a new γ-ray-emitting narrow-line Seyfert 1 (NLS1) galaxy, SDSS J211852.96-073227.5 (hereafter J2118-0732). The galaxy, at a redshift of 0.26, is associated with a radio source of flat/inverted spectrum at high radio frequencies. The analysis of its optical spectrum obtained in the Sloan Digital Sky Survey revealed a small linewidth of the broad component of the Hβ line (FWHM = 1585 km s-1), making it a radio-loud NLS1 galaxy - an intriguing class of active galactic nuclei with exceptional multi-wavelength properties. A new γ-ray source centred at J2118-0732 was sporadically detected during 2009-2013 in form of flares by the Fermi-LAT. Our XMM-Newton observations revealed a flat X-ray spectrum described by a simple power law, and a flux variation by a factor of ˜2.5 in 5 months. The source also shows intraday variability in the infrared band. Its broad-band spectral energy distribution can be modelled by emission from a simple one-zone leptonic jet model, and the flux drop from infrared to X-rays in five months can be explained by changes of the jet parameters, though the exact values may be subject to relatively large uncertainties. With the NLS1-blazar composite nucleus, the clear detection of the host galaxy and the synchronous variations in the multi-wavelength fluxes, J2118-0732 provides a new perspective on the formation and evolution of relativistic jets under the regime of relatively small black hole masses and high accretion rates.

  19. Variability of the soft excess in the Seyfert I galaxy Mkn 335

    International Nuclear Information System (INIS)

    Turner, T.J.; Pounds, K.A.

    1988-01-01

    The luminous Seyfert 1 galaxy Mkn 335 was observed by EXOSAT on six occasions between 1983 November 5 and 1985 December 24. A previous analysis of the 1984 December 6 observation revealed a two-component spectrum, with a hard power law dominant above ∼ 2 keV on which was superimposed a strong soft X-ray excess in the 0.1-2 keV band of the EXOSAT low-energy (LE) detectors. The hard X-ray component was seen to vary strongly over time-scales of 1-2 hr in this 1984 observation. The more recent observations of Mkn 335, reported here, have shown the soft spectral excess to be a persistent feature, and the continuing presence of rapid variability in the hard X-ray component. An extended observation on 1985 July 21-22 has also revealed a strong variation in the LE band on a time-scale of ∼ 10 hr. This is the first report of distinctive short-term variability in the soft X-ray excess of an AGN, strengthening its proposed identification with the thermal emission from an accretion disc. (author)

  20. On the Relationship between Star Formation and Activity in Galaxies

    Science.gov (United States)

    Gonzalez Delgado, Rosa M.

    1995-11-01

    This thesis is made of three main parts. In the first one a sample of 55 galaxies with an active nucleus (Seyfert 1, Seyfert2 and LINERs) is analysed; these were observed with the 4.2m WHT and 1m JKT in CCD narrow band H-alpha +[NII] and [OIII] to map the distribution of HII regions and the morphology of the circumnuclear extended emission associated with the active nucleus. The analysis of the extended emission and HII regions is carried out, as a function of the level of activity and of the Hubble type. One third of the sample shows circumnuclear HII regions, but only 9% of these are S1. The number surface density of the star forming sites and the location of the brightest HII region, indicates that in S2 the star formation is more important in the inner disk; however, in S1 the distribution of the star forming sites is more uniform with distance, and the brighest HII regions are farther away from the nucleus than in S2. The luminosity function, size distribution, the relationship between the Ha flux and the size, the emission measure, and the radial distribution of the HII regions in 27 out of the 55 galaxies of the sample are studied. This comprises a statistical analysis of more than 2000 HII regions. In the second part of this thesis the giant extragalactic HII region NGC 2363 and the starburst galaxy NGC 7714 are studied; they were observed in narrow band CCD H-alpha image with the JKT and spectroscopically from 3700 to 9600 A with the WHT. Both objects are experiencing intense star formation activity. Evidence of this comes from the detection of WC and WN emission features in NGC 2363 and in NGC 7714 respectively; this suggests an age of the present burst between 3 and 5 Myr. However, evidence for the existence of a previous burst in NGC 7714 comes from the detection of the infrared CaII triplet in absorption. The physical conditions and chemical composition of the gas are derived. In both cases, the metallicity is low (12+log O/H=7.89 for NGC 2363) and

  1. THE IMACS CLUSTER BUILDING SURVEY. III. THE STAR FORMATION HISTORIES OF FIELD GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Oemler, Augustus Jr.; Dressler, Alan [Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101-1292 (United States); Gladders, Michael G.; Abramson, Louis [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Fritz, Jacopo [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Poggianti, Bianca M.; Vulcani, Benedetta [INAF-Osservatorio Astronomico di Padova, vicolo dell' Osservatorio 5, I-35122 Padova (Italy)

    2013-06-10

    Using data from the IMACS Cluster Building Survey and from nearby galaxy surveys, we examine the evolution of the rate of star formation in field galaxies from z = 0.60 to the present. Fitting the luminosity function to a standard Schechter form, we find a rapid evolution of M{sub B}{sup *} consistent with that found in other deep surveys; at the present epoch M{sub B}{sup *} is evolving at the rate of 0.38 Gyr{sup -1}, several times faster than the predictions of simple models for the evolution of old, coeval galaxies. The evolution of the distribution of specific star formation rates (SSFRs) is also too rapid to explain by such models. We demonstrate that starbursts cannot, even in principle, explain the evolution of the SSFR distribution. However, the rapid evolution of both M{sub B}{sup *} and the SSFR distribution can be explained if some fraction of galaxies have star formation rates characterized by both short rise and fall times and by an epoch of peak star formation more recent than the majority of galaxies. Although galaxies of every stellar mass up to 1.4 Multiplication-Sign 10{sup 11} M{sub Sun} show a range of epochs of peak star formation, the fraction of ''younger'' galaxies falls from about 40% at a mass of 4 Multiplication-Sign 10{sup 10} M{sub Sun} to zero at a mass of 1.4 Multiplication-Sign 10{sup 11} M{sub Sun }. The incidence of younger galaxies appears to be insensitive to the density of the local environment; but does depend on group membership: relatively isolated galaxies are much more likely to be young than are group members.

  2. Cosmic dawn the search for the first stars and galaxies

    CERN Document Server

    Rhee, George

    2013-01-01

    The visible universe consists of stars and galaxies. One of the challenges of astronomy is to understand how galaxies and stars first came into existence over thirteen billion years ago. This book tells the story of our quest to solve this problem. Four hundred years after Galileo used his telescope to discover the  moons of Jupiter, we are using new telescopes and instruments to search for the first galaxies to form after the Big Bang. This book brings the reader to the current frontier of this subject and lays out some of the exciting developments we can expect in the years to come.

  3. HOW THE FIRST STARS SHAPED THE FAINTEST GAS-DOMINATED DWARF GALAXIES

    International Nuclear Information System (INIS)

    Verbeke, R.; Vandenbroucke, B.; Rijcke, S. De

    2015-01-01

    Low-mass dwarf galaxies are very sensitive test-beds for theories of cosmic structure formation since their weak gravitational fields allow the effects of the relevant physical processes to clearly stand out. Up to now, no unified account has existed of the sometimes seemingly conflicting properties of the faintest isolated dwarfs in and around the Local Group, such as Leo T and the recently discovered Leo P and Pisces A systems. Using new numerical simulations, we show that this serious challenge to our understanding of galaxy formation can be effectively resolved by taking into account the regulating influence of the ultraviolet radiation of the first population of stars on a dwarf’s star formation rate while otherwise staying within the standard cosmological paradigm for structure formation. These simulations produce faint, gas-dominated, star-forming dwarf galaxies that lie on the baryonic Tully–Fisher relation and that successfully reproduce a broad range of chemical, kinematical, and structural observables of real late-type dwarf galaxies. Furthermore, we stress the importance of obtaining properties of simulated galaxies in a manner as close as possible to the typically employed observational techniques

  4. HOW THE FIRST STARS SHAPED THE FAINTEST GAS-DOMINATED DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Verbeke, R.; Vandenbroucke, B.; Rijcke, S. De, E-mail: robbert.verbeke@UGent.be [Sterrenkundig Observatorium, Ghent University, Krijgslaan 281, S9, 9000 Gent (Belgium)

    2015-12-20

    Low-mass dwarf galaxies are very sensitive test-beds for theories of cosmic structure formation since their weak gravitational fields allow the effects of the relevant physical processes to clearly stand out. Up to now, no unified account has existed of the sometimes seemingly conflicting properties of the faintest isolated dwarfs in and around the Local Group, such as Leo T and the recently discovered Leo P and Pisces A systems. Using new numerical simulations, we show that this serious challenge to our understanding of galaxy formation can be effectively resolved by taking into account the regulating influence of the ultraviolet radiation of the first population of stars on a dwarf’s star formation rate while otherwise staying within the standard cosmological paradigm for structure formation. These simulations produce faint, gas-dominated, star-forming dwarf galaxies that lie on the baryonic Tully–Fisher relation and that successfully reproduce a broad range of chemical, kinematical, and structural observables of real late-type dwarf galaxies. Furthermore, we stress the importance of obtaining properties of simulated galaxies in a manner as close as possible to the typically employed observational techniques.

  5. Dwarf Galaxies with Gentle Star Formation and the Counts of Galaxies in the Hubble Deep Field

    OpenAIRE

    Campos, Ana

    1997-01-01

    In this paper the counts and colors of the faint galaxies observed in the Hubble Deep Field are fitted by means of simple luminosity evolution models that incorporate a numerous population of fading dwarfs. The observed color distribution of the very faint galaxies now allows us to put constraints on the star formation history in dwarfs. It is shown that the star-forming activity in these small systems has to proceed in a gentle way, i.e., through episodes where each one lasts much longer tha...

  6. Modeling the Broad-Band Emission from the Gamma-Ray Emitting Narrow-Line Seyfert-1 Galaxies 1H 0323+342 and B2 0954+25A

    International Nuclear Information System (INIS)

    Arrieta-Lobo, Maialen; Boisson, Catherine; Zech, Andreas

    2017-01-01

    Prior to the Fermi-LAT era, only two classes of Active Galactic Nuclei (AGN) were thought to harbor relativistic jets that radiate up to gamma-ray energies: blazars and radio galaxies. The detection of variable gamma-ray emission from Narrow Line Seyfert 1 (NLSy1) galaxies has put them on the spotlight as a new class of gamma-ray emitting AGN. In this respect, gamma-ray emitting NLSy1s seem to be situated between blazars (dominated by non-thermal emission) and Seyferts (accretion disc dominated). In this work, we model the Spectral Energy Distribution (SED) of two gamma-loud NLSy1s, 1H 0323+342 and B2 0954+25A, during quiescent and flaring episodes via a multi-component radiative model that features a relativistic jet and external photon fields from the torus, disc, corona and Broad Line Region (BLR). We find that the interpretation of the high-energy emission of jetted NLSy1s requires taking into account Inverse Compton emission from particles in the relativistic jet that interact with external photon fields. Minimal changes are applied to the model parameters to transition from average to flaring states. In this scenario, the observed variability is explained mainly by means of changes in the jet density and Doppler factor.

  7. Modeling the Broad-Band Emission from the Gamma-Ray Emitting Narrow-Line Seyfert-1 Galaxies 1H 0323+342 and B2 0954+25A

    Energy Technology Data Exchange (ETDEWEB)

    Arrieta-Lobo, Maialen; Boisson, Catherine; Zech, Andreas, E-mail: maialen.arrieta@obspm.fr [Laboratoire Univers et Theories, Observatoire de Paris, CNRS, Université Paris-Diderot, PSL Research University, Meudon (France)

    2017-12-08

    Prior to the Fermi-LAT era, only two classes of Active Galactic Nuclei (AGN) were thought to harbor relativistic jets that radiate up to gamma-ray energies: blazars and radio galaxies. The detection of variable gamma-ray emission from Narrow Line Seyfert 1 (NLSy1) galaxies has put them on the spotlight as a new class of gamma-ray emitting AGN. In this respect, gamma-ray emitting NLSy1s seem to be situated between blazars (dominated by non-thermal emission) and Seyferts (accretion disc dominated). In this work, we model the Spectral Energy Distribution (SED) of two gamma-loud NLSy1s, 1H 0323+342 and B2 0954+25A, during quiescent and flaring episodes via a multi-component radiative model that features a relativistic jet and external photon fields from the torus, disc, corona and Broad Line Region (BLR). We find that the interpretation of the high-energy emission of jetted NLSy1s requires taking into account Inverse Compton emission from particles in the relativistic jet that interact with external photon fields. Minimal changes are applied to the model parameters to transition from average to flaring states. In this scenario, the observed variability is explained mainly by means of changes in the jet density and Doppler factor.

  8. Formation and evolution of star clusters and their host galaxies

    NARCIS (Netherlands)

    Kruijssen, J.M.D.

    2011-01-01

    The vast majority of galaxies contains large populations of stellar clusters, which are bound groups of a few tens to millions of stars. A cluster is formed from a single giant molecular cloud and therefore its stars share the same age and chemical composition. The formation and evolution of star

  9. INTERGALACTIC 'PIPELINE' FUNNELS MATTER BETWEEN COLLIDING GALAXIES

    Science.gov (United States)

    2002-01-01

    in NGC 1409, either. The glancing blow between the galaxies was enough, however, to toss stars deep into space and ignite a rash of star birth in NGC 1410. The arms of NGC 1410, an active, gas-rich spiral galaxy classified as a Seyfert, are awash in blue, the signature color of star-forming regions. The bar of material bisecting the center of NGC 1409 also is a typical byproduct of galaxy collisions. Astronomers expect more fireworks to come. The galaxies are doomed to continue their game of 'bumper cars,' hitting each other and moving apart several times until finally merging in another 200 million years. The galaxies' centers are only 23,000 light-years apart, which is slightly less than Earth's distance from the center of the Milky Way. They are bound together by gravity, orbiting each other at 670,000 miles an hour (1 million kilometers an hour). The galaxies reside about 300 million light-years from Earth in the constellation Taurus. The Hubble picture was taken Oct. 25, 1999. Credits: NASA, William C. Keel (University of Alabama, Tuscaloosa)

  10. Star/galaxy separation at faint magnitudes: Application to a simulated Dark Energy Survey

    Energy Technology Data Exchange (ETDEWEB)

    Soumagnac, M.T.; et al.

    2013-06-21

    We address the problem of separating stars from galaxies in future large photometric surveys. We focus our analysis on simulations of the Dark Energy Survey (DES). In the first part of the paper, we derive the science requirements on star/galaxy separation, for measurement of the cosmological parameters with the Gravitational Weak Lensing and Large Scale Structure probes. These requirements are dictated by the need to control both the statistical and systematic errors on the cosmological parameters, and by Point Spread Function calibration. We formulate the requirements in terms of the completeness and purity provided by a given star/galaxy classifier. In order to achieve these requirements at faint magnitudes, we propose a new method for star/galaxy separation in the second part of the paper. We first use Principal Component Analysis to outline the correlations between the objects parameters and extract from it the most relevant information. We then use the reduced set of parameters as input to an Artificial Neural Network. This multi-parameter approach improves upon purely morphometric classifiers (such as the classifier implemented in SExtractor), especially at faint magnitudes: it increases the purity by up to 20% for stars and by up to 12% for galaxies, at i-magnitude fainter than 23.

  11. Star/galaxy separation at faint magnitudes: application to a simulated Dark Energy Survey

    Energy Technology Data Exchange (ETDEWEB)

    Soumagnac, M. T.; Abdalla, F. B.; Lahav, O.; Kirk, D.; Sevilla, I.; Bertin, E.; Rowe, B. T. P.; Annis, J.; Busha, M. T.; Da Costa, L. N.; Frieman, J. A.; Gaztanaga, E.; Jarvis, M.; Lin, H.; Percival, W. J.; Santiago, B. X.; Sabiu, C. G.; Wechsler, R. H.; Wolz, L.; Yanny, B.

    2015-04-14

    We address the problem of separating stars from galaxies in future large photometric surveys. We focus our analysis on simulations of the Dark Energy Survey (DES). In the first part of the paper, we derive the science requirements on star/galaxy separation, for measurement of the cosmological parameters with the gravitational weak lensing and large-scale structure probes. These requirements are dictated by the need to control both the statistical and systematic errors on the cosmological parameters, and by point spread function calibration. We formulate the requirements in terms of the completeness and purity provided by a given star/galaxy classifier. In order to achieve these requirements at faint magnitudes, we propose a new method for star/galaxy separation in the second part of the paper. We first use principal component analysis to outline the correlations between the objects parameters and extract from it the most relevant information. We then use the reduced set of parameters as input to an Artificial Neural Network. This multiparameter approach improves upon purely morphometric classifiers (such as the classifier implemented in SExtractor), especially at faint magnitudes: it increases the purity by up to 20 per cent for stars and by up to 12 per cent for galaxies, at i-magnitude fainter than 23.

  12. Integral Field Spectroscopy of Markarian 273: Mapping High-Velocity Gas Flows and an Off-Nucleus Seyfert 2 Nebula.

    Science.gov (United States)

    Colina; Arribas; Borne

    1999-12-10

    Integral field optical spectroscopy with the INTEGRAL fiber-based system is used to map the extended ionized regions and gas flows in Mrk 273, one of the closest ultraluminous infrared galaxies. The Hbeta and [O iii] lambda5007 maps show the presence of two distinct regions separated by 4&arcsec; (3.1 kpc) along position angle (P.A.) 240 degrees. The northeastern region coincides with the optical nucleus of the galaxy and shows the spectral characteristics of LINERs. The southwestern region is dominated by [O iii] emission and is classified as a Seyfert 2. Therefore, in the optical, Mrk 273 is an ultraluminous infrared galaxy with a LINER nucleus and an extended off-nucleus Seyfert 2 nebula. The kinematics of the [O iii] ionized gas shows (1) the presence of highly disturbed gas in the regions around the LINER nucleus, (2) a high-velocity gas flow with a peak-to-peak amplitude of 2.4x103 km s-1, and (3) quiescent gas in the outer regions (at 3 kpc). We hypothesize that the high-velocity flow is the starburst-driven superwind generated in an optically obscured nuclear starburst and that the quiescent gas is directly ionized by a nuclear source, similar to the ionization cones typically seen in Seyfert galaxies.

  13. Star Formation, Quenching And Chemical Enrichment In Local Galaxies From Integral Field Spectroscopy

    Science.gov (United States)

    Belfiore, Francesco

    2017-08-01

    Within the currently well-established ΛCDM cosmological framework we still lack a satisfactory understanding of the processes that trigger, regulate and eventually quench star formation on galactic scales. Gas flows (including inflows from the cosmic web and supernovae-driven outflows) are considered to act as self-regulatory mechanisms, generating the scaling relations between stellar mass, star formation rate and metallicity observed in the local Universe by large spectroscopic surveys. These surveys, however, have so far been limited by the availability of only one spectrum per galaxy. The aim of this dissertation is to expand the study of star formation and chemical abundances to resolved scales within galaxies by using integral field spectroscopy (IFS) data, mostly from the ongoing SDSS-IV MaNGA survey. In the first part of this thesis I demonstrate the ubiquitous presence of extended low ionisation emission-line regions (LIERs) in both late- and early-type galaxies. By studying the Hα equivalent width and diagnostic line ratios radial profiles, together with tracers of the underlying stellar population, I show that LIERs are not due to a central point source but to hot evolved (post-asymptotic giant branch) stars. In light of this, I suggest a new classification scheme for galaxies based on their line emission. By analysing the colours, star formation rates, morphologies, gas and stellar kinematics and environmental properties of galaxies with substantial LIER emission, I identify two distinct populations. Galaxies where the central regions are LIER-like, but show star formation at larger radii are late types in which star formation is slowly quenched inside-out. This transformation is associated with massive bulges. Galaxies dominated by LIER emission at all radii, on the other hand, are red-sequence galaxies harbouring a residual cold gas component, acquired mostly via external accretion. Quiescent galaxies devoid of line emission reside in denser

  14. Multicolor photometry of the merging galaxy cluster A2319: Dynamics and star formation properties

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Peng-Fei; Yuan, Qi-Rong [Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023 (China); Zhang, Li [QuFu Education Bureau, QuFu 273100 (China); Zhou, Xu, E-mail: pfyan0822@sina.com, E-mail: yuanqirong@njnu.edu.cn [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2014-05-01

    Asymmetric X-ray emission and a powerful cluster-scale radio halo indicate that A2319 is a merging cluster of galaxies. This paper presents our multicolor photometry for A2319 with 15 optical intermediate filters in the Beijing-Arizona-Taiwan-Connecticut (BATC) system. There are 142 galaxies with known spectroscopic redshifts within the viewing field of 58' × 58' centered on this rich cluster, including 128 member galaxies (called sample I). A large velocity dispersion in the rest frame, 1622{sub −70}{sup +91} km s{sup –1}, suggests merger dynamics in A2319. The contour map of projected density and localized velocity structure confirm the so-called A2319B substructure, at ∼10' northwest to the main concentration A2319A. The spectral energy distributions (SEDs) of more than 30,000 sources are obtained in our BATC photometry down to V ∼ 20 mag. A u-band (∼3551 Å) image with better seeing and spatial resolution, obtained with the Bok 2.3 m telescope at Kitt Peak, is taken to make star-galaxy separation and distinguish the overlapping contamination in the BATC aperture photometry. With color-color diagrams and photometric redshift technique, 233 galaxies brighter than h {sub BATC} = 19.0 are newly selected as member candidates after an exclusion of false candidates with contaminated BATC SEDs by eyeball-checking the u-band Bok image. The early-type galaxies are found to follow a tight color-magnitude correlation. Based on sample I and the enlarged sample of member galaxies (called sample II), subcluster A2319B is confirmed. The star formation properties of cluster galaxies are derived with the evolutionary synthesis model, PEGASE, assuming a Salpeter initial mass function and an exponentially decreasing star formation rate (SFR). A strong environmental effect on star formation histories is found in the manner that galaxies in the sparse regions have various star formation histories, while galaxies in the dense regions are found to have

  15. A UNIVERSAL, LOCAL STAR FORMATION LAW IN GALACTIC CLOUDS, NEARBY GALAXIES, HIGH-REDSHIFT DISKS, AND STARBURSTS

    International Nuclear Information System (INIS)

    Krumholz, Mark R.; Dekel, Avishai; McKee, Christopher F.

    2012-01-01

    Star formation laws are rules that relate the rate of star formation in a particular region, either an entire galaxy or some portion of it, to the properties of the gas, or other galactic properties, in that region. While observations of Local Group galaxies show a very simple, local star formation law in which the star formation rate per unit area in each patch of a galaxy scales linearly with the molecular gas surface density in that patch, recent observations of both Milky Way molecular clouds and high-redshift galaxies apparently show a more complicated relationship in which regions of equal molecular gas surface density can form stars at quite different rates. These data have been interpreted as implying either that different star formation laws may apply in different circumstances, that the star formation law is sensitive to large-scale galaxy properties rather than local properties, or that there are high-density thresholds for star formation. Here we collate observations of the relationship between gas and star formation rate from resolved observations of Milky Way molecular clouds, from kpc-scale observations of Local Group galaxies, and from unresolved observations of both disk and starburst galaxies in the local universe and at high redshift. We show that all of these data are in fact consistent with a simple, local, volumetric star formation law. The apparent variations stem from the fact that the observed objects have a wide variety of three-dimensional size scales and degrees of internal clumping, so even at fixed gas column density the regions being observed can have wildly varying volume densities. We provide a simple theoretical framework to remove this projection effect, and we use it to show that all the data, from small solar neighborhood clouds with masses ∼10 3 M ☉ to submillimeter galaxies with masses ∼10 11 M ☉ , fall on a single star formation law in which the star formation rate is simply ∼1% of the molecular gas mass per local

  16. The Star-forming Main Sequence of Dwarf Low Surface Brightness Galaxies

    Science.gov (United States)

    McGaugh, Stacy S.; Schombert, James M.; Lelli, Federico

    2017-12-01

    We explore the star-forming properties of late-type, low surface brightness (LSB) galaxies. The star-forming main sequence ({SFR}-{M}* ) of LSB dwarfs has a steep slope, indistinguishable from unity (1.04 ± 0.06). They form a distinct sequence from more massive spirals, which exhibit a shallower slope. The break occurs around {M}* ≈ {10}10 {M}⊙ , and can also be seen in the gas mass—stellar mass plane. The global Kennicutt-Schmidt law ({SFR}-{M}g) has a slope of 1.47 ± 0.11 without the break seen in the main sequence. There is an ample supply of gas in LSB galaxies, which have gas depletion times well in excess of a Hubble time, and often tens of Hubble times. Only ˜ 3 % of this cold gas needs be in the form of molecular gas to sustain the observed star formation. In analogy with the faint, long-lived stars of the lower stellar main sequence, it may be appropriate to consider the main sequence of star-forming galaxies to be defined by thriving dwarfs (with {M}* {10}10 {M}⊙ ) are weary giants that constitute more of a turn-off population.

  17. Scaling Relations between Gas and Star Formation in Nearby Galaxies

    Science.gov (United States)

    Bigiel, Frank; Leroy, Adam; Walter, Fabian

    2011-04-01

    High resolution, multi-wavelength maps of a sizeable set of nearby galaxies have made it possible to study how the surface densities of H i, H2 and star formation rate (ΣHI, ΣH2, ΣSFR) relate on scales of a few hundred parsecs. At these scales, individual galaxy disks are comfortably resolved, making it possible to assess gas-SFR relations with respect to environment within galaxies. ΣH2, traced by CO intensity, shows a strong correlation with ΣSFR and the ratio between these two quantities, the molecular gas depletion time, appears to be constant at about 2 Gyr in large spiral galaxies. Within the star-forming disks of galaxies, ΣSFR shows almost no correlation with ΣHI. In the outer parts of galaxies, however, ΣSFR does scale with ΣHI, though with large scatter. Combining data from these different environments yields a distribution with multiple regimes in Σgas - ΣSFR space. If the underlying assumptions to convert observables to physical quantities are matched, even combined datasets based on different SFR tracers, methodologies and spatial scales occupy a well define locus in Σgas - ΣSFR space.

  18. Undergraduate ALFALFA Team: Analysis of Spatially-Resolved Star-Formation in Nearby Galaxy Groups and Clusters

    Science.gov (United States)

    Finn, Rose; Collova, Natasha; Spicer, Sandy; Whalen, Kelly; Koopmann, Rebecca A.; Durbala, Adriana; Haynes, Martha P.; Undergraduate ALFALFA Team

    2017-01-01

    As part of the Undergraduate ALFALFA Team, we are conducting a survey of the gas and star-formation properties of galaxies in 36 groups and clusters in the local universe. The galaxies in our sample span a large range of galactic environments, from the centers of galaxy groups and clusters to the surrounding infall regions. One goal of the project is to map the spatial distribution of star-formation; the relative extent of the star-forming and stellar disks provides important information about the internal and external processes that deplete gas and thus drive galaxy evolution. We obtained wide-field H-alpha observations with the WIYN 0.9m telescope at Kitt Peak National Observatory for galaxies in the vicinity of the MKW11 and NRGb004 galaxy groups and the Abell 1367 cluster. We present a preliminary analysis of the relative size of the star-forming and stellar disks as a function of galaxy morphology and local galaxy density, and we calculate gas depletion times using star-formation rates and HI gas mass. We will combine these results with those from other UAT members to determine if and how environmentally-driven gas depletion varies with the mass and X-ray properties of the host group or cluster. This work has supported by NSF grants AST-0847430, AST-1211005 and AST-1637339.

  19. INSIGHTS INTO PRE-ENRICHMENT OF STAR CLUSTERS AND SELF-ENRICHMENT OF DWARF GALAXIES FROM THEIR INTRINSIC METALLICITY DISPERSIONS

    International Nuclear Information System (INIS)

    Leaman, Ryan

    2012-01-01

    Star clusters are known to have smaller intrinsic metallicity spreads than dwarf galaxies due to their shorter star formation timescales. Here we use individual spectroscopic [Fe/H] measurements of stars in 19 Local Group dwarf galaxies, 13 Galactic open clusters, and 49 globular clusters to show that star cluster and dwarf galaxy linear metallicity distributions are binomial in form, with all objects showing strong correlations between their mean linear metallicity Z-bar and intrinsic spread in metallicity σ(Z) 2 . A plot of σ(Z) 2 versus Z-bar shows that the correlated relationships are offset for the dwarf galaxies from the star clusters. The common binomial nature of these linear metallicity distributions can be explained with a simple inhomogeneous chemical evolution model, where the star cluster and dwarf galaxy behavior in the σ(Z) 2 - Z-bar diagram is reproduced in terms of the number of enrichment events, covering fraction, and intrinsic size of the enriched regions. The inhomogeneity of the self-enrichment sets the slope for the observed dwarf galaxy σ(Z) 2 - Z-bar correlation. The offset of the star cluster sequence from that of the dwarf galaxies is due to pre-enrichment, and the slope of the star cluster sequence represents the remnant signature of the self-enriched history of their host galaxies. The offset can be used to separate star clusters from dwarf galaxies without a priori knowledge of their luminosity or dynamical mass. The application of the inhomogeneous model to the σ(Z) 2 - Z-bar relationship provides a numerical formalism to connect the self-enrichment and pre-enrichment between star clusters and dwarf galaxies using physically motivated chemical enrichment parameters. Therefore we suggest that the σ(Z) 2 - Z-bar relationship can provide insight into what drives the efficiency of star formation and chemical evolution in galaxies, and is an important prediction for galaxy simulation models to reproduce.

  20. Tracing the first stars and galaxies of the Milky Way

    Science.gov (United States)

    Griffen, Brendan F.; Dooley, Gregory A.; Ji, Alexander P.; O'Shea, Brian W.; Gómez, Facundo A.; Frebel, Anna

    2018-02-01

    We use 30 high-resolution dark matter haloes of the Caterpillar simulation suite to probe the first stars and galaxies of Milky Way-mass systems. We quantify the environment of the high-z progenitors of the Milky Way and connect them to the properties of the host and satellites today. We identify the formation sites of the first generation of Population III (Pop III) stars (z ˜ 25) and first galaxies (z ˜ 22) with several different models based on a minimum halo mass. This includes a simple model for radiative feedback, the primary limitation of the model. Through this method we find approximately 23 000 ± 5000 Pop III potentially star-forming sites per Milky Way-mass host, though this number is drastically reduced to ˜550 star-forming sites if feedback is included. The majority of these haloes identified form in isolation (96 per cent at z = 15) and are not subject to external enrichment by neighbouring haloes (median separation ˜1 kpc at z = 15), though half merge with a system larger than themselves within 1.5 Gyr. Using particle tagging, we additionally trace the Pop III remnant population to z = 0 and find an order of magnitude scatter in their number density at small (i.e. r 50 kpc) galactocentric radii. We provide fitting functions for determining the number of progenitor minihalo and atomic cooling halo systems that present-day satellite galaxies might have accreted since their formation. We determine that observed dwarf galaxies with stellar masses below 104.6 M⊙ are unlikely to have merged with any other star-forming systems.

  1. The Rise and Fall of Star Formation Histories of Blue Galaxies at Redshifts 0.2 < z < 1.4

    Science.gov (United States)

    Pacifici, Camilla; Kassin, Susan A.; Weiner, Benjamin; Charlot, Stephane; Gardner, Jonathan P.

    2012-01-01

    Popular cosmological scenarios predict that galaxies form hierarchically from the merger of many progenitor, each with their own unique star formation history (SFH). We use the approach recently developed by Pacifici et al. to constrain the SFHs of 4517 blue (presumably star-forming) galaxies with spectroscopic redshifts in the range O.2 galaxies rise and fall in a roughly symmetric bell-shaped manner, while those of low-mass galaxies rise progressively in time, consistent with the typically stronger activity of star formation in low-mass compared to high-mass galaxies. For galaxies of all masses, the star formation activity rises more rapidly at high than at low redshift. These findings imply that the standard approximation of exponentially declining SFHs wIdely used to interpret observed galaxy spectral energy distributions is not appropriate to constrain the physical parameters of star-forming galaxies at intermediate redshifts.

  2. Collateral Damage: the Implications of Utrecht Star Cluster Astrophysics for Galaxy Evolution

    Science.gov (United States)

    Kruijssen, J. M. D.

    2013-01-01

    Until the early 2000s, the research portfolio of the Astronomical Institute in Utrecht (SIU) did not include galaxy evolution. Somewhat serendipitously, this changed with the advent of the star cluster group. In only a few years, a simple framework was developed to describe and quantify the properties of dynamically evolving star cluster populations. Since then, the ‘Utrecht cluster disruption model’ has shown that the galactic environment plays an important role in setting the evolution of stellar clusters. From this simple result, it follows that cluster populations bear some imprint of the characteristics and histories of their host galaxies, and that star clusters can be used to trace galaxy evolution—an aim for which the Utrecht star cluster models were never designed, but which they are well-capable of fulfilling. I review some of the work in this direction, with a strong emphasis on the contributions from the SIU.

  3. The Origin of the Relation between Metallicity and Size in Star-forming Galaxies

    Science.gov (United States)

    Sánchez Almeida, J.; Dalla Vecchia, C.

    2018-06-01

    For the same stellar mass, physically smaller star-forming galaxies are also metal richer. What causes the relation remains unclear. The central star-forming galaxies in the EAGLE cosmological numerical simulation reproduce the observed trend. We use them to explore the origin of the relation assuming that the physical mechanism responsible for the anticorrelation between size and gas-phase metallicity is the same in the simulated and the observed galaxies. We consider the three most likely causes: (1) metal-poor gas inflows feeding the star formation (SF) process, (2) metal-rich gas outflows particularly efficient in shallow gravitational potentials, and (3) enhanced efficiency of the SF process in compact galaxies. Outflows (cause 2) and enhanced SF efficiency (cause 3) can be discarded. Metal-poor gas inflows (cause 1) produce the correlation in the simulated galaxies. Galaxies grow in size with time, so those that receive gas later are both metal poorer and larger, giving rise to the observed anticorrelation. As expected within this explanation, larger galaxies have younger stellar populations. We explore the variation with redshift of the relation, which is maintained up to, at least, redshift 8.

  4. DETECTION OF MOLECULAR GAS IN VOID GALAXIES: IMPLICATIONS FOR STAR FORMATION IN ISOLATED ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Das, M.; Honey, M. [Indian Institute of Astrophysics, Bangalore (India); Saito, T. [Department of Astronomy, Graduate school of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 133-0033 (Japan); Iono, D. [Chile Observatory, NAOJ (Japan); Ramya, S., E-mail: mousumi@iiap.res.in [Shanghai Astronomical Observatory, Shanghai (China)

    2015-12-10

    We present the detection of molecular gas from galaxies located in nearby voids using the CO(1–0) line emission as a tracer. The observations were performed using the 45 m single dish radio telescope of the Nobeyama Radio Observatory. Void galaxies lie in the most underdense parts of our universe and a significant fraction of them are gas rich, late-type spiral galaxies. Although isolated, they have ongoing star formation but appear to be slowly evolving compared to galaxies in denser environments. Not much is known about their star formation properties or cold gas content. In this study, we searched for molecular gas in five void galaxies. The galaxies were selected based on their relatively high IRAS fluxes or Hα line luminosities, both of which signify ongoing star formation. All five galaxies appear to be isolated and two lie within the Bootes void. We detected CO(1–0) emission from four of the five galaxies in our sample and their molecular gas masses lie between 10{sup 8} and 10{sup 9} M{sub ⊙}. We conducted follow-up Hα imaging observations of three detected galaxies using the Himalayan Chandra Telescope and determined their star formation rates (SFRs) from their Hα fluxes. The SFR varies from 0.2 to 1 M{sub ⊙} yr{sup −1}; which is similar to that observed in local galaxies. Our study indicates that although void galaxies reside in underdense regions, their disks contain molecular gas and have SFRs similar to galaxies in denser environments. We discuss the implications of our results.

  5. THE AVERAGE PHYSICAL PROPERTIES AND STAR FORMATION HISTORIES OF THE UV-BRIGHTEST STAR-FORMING GALAXIES AT z ∼ 3.7

    International Nuclear Information System (INIS)

    Lee, Kyoung-Soo; Glikman, Eilat; Dey, Arjun; Reddy, Naveen; Jannuzi, Buell T.; Brown, Michael J. I.; Gonzalez, Anthony H.; Cooper, Michael C.; Fan Xiaohui; Bian Fuyan; Stern, Daniel; Brodwin, Mark; Cooray, Asantha

    2011-01-01

    We investigate the average physical properties and star formation histories (SFHs) of the most UV-luminous star-forming galaxies at z ∼ 3.7. Our results are based on the average spectral energy distributions (SEDs), constructed from stacked optical-to-infrared photometry, of a sample of the 1913 most UV-luminous star-forming galaxies found in 5.3 deg 2 of the NOAO Deep Wide-Field Survey. We find that the shape of the average SED in the rest optical and infrared is fairly constant with UV luminosity, i.e., more UV-luminous galaxies are, on average, also more luminous at longer wavelengths. In the rest UV, however, the spectral slope β (≡ dlogF λ /dlogλ; measured at 0.13 μm rest UV and thus star formation rates (SFRs) scale closely with stellar mass such that more UV-luminous galaxies are also more massive, (2) the median ages indicate that the stellar populations are relatively young (200-400 Myr) and show little correlation with UV luminosity, and (3) more UV-luminous galaxies are dustier than their less-luminous counterparts, such that L ∼ 4-5L* galaxies are extincted up to A(1600) = 2 mag while L ∼ L* galaxies have A(1600) = 0.7-1.5 mag. We argue that the average SFHs of UV-luminous galaxies are better described by models in which SFR increases with time in order to simultaneously reproduce the tight correlation between the UV-derived SFR and stellar mass and their universally young ages. We demonstrate the potential of measurements of the SFR-M * relation at multiple redshifts to discriminate between simple models of SFHs. Finally, we discuss the fate of these UV-brightest galaxies in the next 1-2 Gyr and their possible connection to the most massive galaxies at z ∼ 2.

  6. Cool carbon stars in the halo and in dwarf galaxies: Hα, colours, and variability

    Science.gov (United States)

    Mauron, N.; Gigoyan, K. S.; Berlioz-Arthaud, P.; Klotz, A.

    2014-02-01

    The population of cool carbon (C) stars located far from the galactic plane is probably made of debris of small galaxies such as the Sagittarius dwarf spheroidal galaxy (Sgr), which are disrupted by the gravitational field of the Galaxy. We aim to know this population better through spectroscopy, 2MASS photometric colours, and variability data. When possible, we compared the halo results to C star populations in the Fornax dwarf spheroidal galaxy, Sgr, and the solar neighbourhood. We first present a few new discoveries of C stars in the halo and in Fornax. The number of spectra of halo C stars is now 125. Forty percent show Hα in emission. The narrow location in the JHK diagram of the halo C stars is found to differ from that of similar C stars in the above galaxies. The light curves of the Catalina and LINEAR variability databases were exploited to derive the pulsation periods of 66 halo C stars. A few supplementary periods were obtained with the TAROT telescopes. We confirm that the period distribution of the halo strongly resembles that of Fornax, and we found that it is very different from the C stars in the solar neighbourhood. There is a larger proportion of short-period Mira/SRa variables in the halo than in Sgr, but the survey for C stars in this dwarf galaxy is not complete, and the study of their variability needs to be continued to investigate the link between Sgr and the cool halo C stars. Based on observations made with the NTT and 3.6 m telescope at the European Southern Observatory (La Silla, Chile; programs 084.D-0302 and 070.D-0203), with the TAROT telescopes at La Silla and at Observatoire de la Côte d'Azur (France), and on the exploitation of the Catalina Sky Survey and the LINEAR variability databases.Appendix A is available in electronic form at http://www.aanda.org

  7. Decision trees and decision committee applied to star/galaxy separation problem

    Science.gov (United States)

    Vasconcellos, Eduardo Charles

    Vasconcellos et al [1] study the efficiency of 13 diferente decision tree algorithms applied to photometric data in the Sloan Digital Sky Digital Survey Data Release Seven (SDSS-DR7) to perform star/galaxy separation. Each algorithm is defined by a set fo parameters which, when varied, produce diferente final classifications trees. In that work we extensively explore the parameter space of each algorithm, using the set of 884,126 SDSS objects with spectroscopic data as the training set. We find that Functional Tree algorithm (FT) yields the best results by the mean completeness function (galaxy true positive rate) in two magnitude intervals:14=19 (82.1%). We compare FT classification to the SDSS parametric, 2DPHOT and Ball et al (2006) classifications. At the faintest magnitudes (r > 19), our classifier is the only one that maintains high completeness (>80%) while simultaneously achieving low contamination ( 2.5%). We also examine the SDSS parametric classifier (psfMag - modelMag) to see if the dividing line between stars and galaxies can be adjusted to improve the classifier. We find that currently stars in close pairs are often misclassified as galaxies, and suggest a new cut to improve the classifier. Finally, we apply our FT classifier to separate stars from galaxies in the full set of 69,545,326 SDSS photometric objects in the magnitude range 14 train six FT classifiers with random selected objects from the same 884,126 SDSS-DR7 objects with spectroscopic data that we use before. Both, the decision commitee and our previous single FT classifier will be applied to the new ojects from SDSS data releses eight, nine and ten. Finally we will compare peformances of both methods in this new data set. [1] Vasconcellos, E. C.; de Carvalho, R. R.; Gal, R. R.; LaBarbera, F. L.; Capelato, H. V.; Fraga Campos Velho, H.; Trevisan, M.; Ruiz, R. S. R.. Decision Tree Classifiers for Star/Galaxy Separation. The Astronomical Journal, Volume 141, Issue 6, 2011.

  8. SPITZER IMAGING OF STRONGLY LENSED HERSCHEL-SELECTED DUSTY STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Brian; Cooray, Asantha; Calanog, J. A.; Nayyeri, H.; Timmons, N.; Casey, C. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Baes, M. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Chapman, S. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, B3H 4R2 (Canada); Dannerbauer, H. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu-CNRS-Université Paris Diderot, CE-Saclay, pt courrier 131, F-91191 Gif-sur-Yvette (France); Da Cunha, E. [Center for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn VIC 3122 (Australia); De Zotti, G. [INAF-Osservatorio Astronomico di Padova, Vicolo Osservatorio 5, I-35122 Padova (Italy); Dunne, L.; Michałowski, M. J.; Oteo, I. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom); Farrah, D. [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Fu, Hai [Department of Physics and Astronomy, University of Iowa, Van Allen Hall, Iowa City, IA 52242 (United States); Gonzalez-Nuevo, J. [Departamento de Fisica, Universidad de Oviedo C/ Calvo Sotelo, s/n, E-33007 Oviedo (Spain); Magdis, G. [Department of Astrophysics, Denys Wilkinson Building, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Riechers, D. A. [Department of Astronomy, Cornell University, 220 Space Sciences Building, Ithaca, NY 14853 (United States); Scott, D. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); and others

    2015-11-20

    We present the rest-frame optical spectral energy distribution (SED) and stellar masses of six Herschel-selected gravitationally lensed dusty, star-forming galaxies (DSFGs) at 1 < z < 3. These galaxies were first identified with Herschel/SPIRE imaging data from the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) and the Herschel Multi-tiered Extragalactic Survey (HerMES). The targets were observed with Spitzer/IRAC at 3.6 and 4.5 μm. Due to the spatial resolution of the IRAC observations at the level of 2″, the lensing features of a background DSFG in the near-infrared are blended with the flux from the foreground lensing galaxy in the IRAC imaging data. We make use of higher resolution Hubble/WFC3 or Keck/NIRC2 Adaptive Optics imaging data to fit light profiles of the foreground lensing galaxy (or galaxies) as a way to model the foreground components, in order to successfully disentangle the foreground lens and background source flux densities in the IRAC images. The flux density measurements at 3.6 and 4.5 μm, once combined with Hubble/WFC3 and Keck/NIRC2 data, provide important constraints on the rest-frame optical SED of the Herschel-selected lensed DSFGs. We model the combined UV- to millimeter-wavelength SEDs to establish the stellar mass, dust mass, star formation rate, visual extinction, and other parameters for each of these Herschel-selected DSFGs. These systems have inferred stellar masses in the range 8 × 10{sup 10}–4 × 10{sup 11} M{sub ⊙} and star formation rates of around 100 M{sub ⊙} yr{sup −1}. This puts these lensed submillimeter systems well above the SFR-M* relation observed for normal star-forming galaxies at similar redshifts. The high values of SFR inferred for these systems are consistent with a major merger-driven scenario for star formation.

  9. The X-ray Power Density Spectrum of the Seyfert 2 Galaxy NGC 4945: Analysis and Application of the Method of Light Curve Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Martin; /SLAC

    2010-12-16

    The study of the power density spectrum (PDS) of fluctuations in the X-ray flux from active galactic nuclei (AGN) complements spectral studies in giving us a view into the processes operating in accreting compact objects. An important line of investigation is the comparison of the PDS from AGN with those from galactic black hole binaries; a related area of focus is the scaling relation between time scales for the variability and the black hole mass. The PDS of AGN is traditionally modeled using segments of power laws joined together at so-called break frequencies; associations of the break time scales, i.e., the inverses of the break frequencies, with time scales of physical processes thought to operate in these sources are then sought. I analyze the Method of Light Curve Simulations that is commonly used to characterize the PDS in AGN with a view to making the method as sensitive as possible to the shape of the PDS. I identify several weaknesses in the current implementation of the method and propose alternatives that can substitute for some of the key steps in the method. I focus on the complications introduced by uneven sampling in the light curve, the development of a fit statistic that is better matched to the distributions of power in the PDS, and the statistical evaluation of the fit between the observed data and the model for the PDS. Using archival data on one AGN, NGC 3516, I validate my changes against previously reported results. I also report new results on the PDS in NGC 4945, a Seyfert 2 galaxy with a well-determined black hole mass. This source provides an opportunity to investigate whether the PDS of Seyfert 1 and Seyfert 2 galaxies differ. It is also an attractive object for placement on the black hole mass-break time scale relation. Unfortunately, with the available data on NGC 4945, significant uncertainties on the break frequency in its PDS remain.

  10. AN OBJECTIVE DEFINITION FOR THE MAIN SEQUENCE OF STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Renzini, Alvio [INAF—Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Peng, Ying-jie, E-mail: alvio.renzini@oapd.inaf.it, E-mail: y.peng@mrao.cam.ac.uk [Cavendish Laboratory, University of Cambridge, 19 J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2015-03-10

    The main sequence (MS) of star-forming (SF) galaxies plays a fundamental role in driving galaxy evolution and our efforts to understand it. However, different studies find significant differences in the normalization, slope, and shape of the MS. These discrepancies arise mainly from the different selection criteria adopted to isolate SF galaxies, which may include or exclude galaxies with a specific star formation rate (SFR) substantially below the MS value. To obviate this limitation of all current criteria, we propose an objective definition of the MS that does not rely at all on a pre-selection of SF galaxies. Constructing the 3D SFR–mass–number plot, the MS is then defined as the ridge line of the SF peak, as illustrated with various figures. The advantages of such a definition are manifold. If generally adopted, it will facilitate the inter-comparison of results from different groups using the same SFR and stellar mass diagnostics, or it will highlight the relative systematics of different diagnostics. All of this could help to understand MS galaxies as systems in a quasi-steady state equilibrium and would also provide a more objective criterion for identifying quenching galaxies.

  11. AN OBJECTIVE DEFINITION FOR THE MAIN SEQUENCE OF STAR-FORMING GALAXIES

    International Nuclear Information System (INIS)

    Renzini, Alvio; Peng, Ying-jie

    2015-01-01

    The main sequence (MS) of star-forming (SF) galaxies plays a fundamental role in driving galaxy evolution and our efforts to understand it. However, different studies find significant differences in the normalization, slope, and shape of the MS. These discrepancies arise mainly from the different selection criteria adopted to isolate SF galaxies, which may include or exclude galaxies with a specific star formation rate (SFR) substantially below the MS value. To obviate this limitation of all current criteria, we propose an objective definition of the MS that does not rely at all on a pre-selection of SF galaxies. Constructing the 3D SFR–mass–number plot, the MS is then defined as the ridge line of the SF peak, as illustrated with various figures. The advantages of such a definition are manifold. If generally adopted, it will facilitate the inter-comparison of results from different groups using the same SFR and stellar mass diagnostics, or it will highlight the relative systematics of different diagnostics. All of this could help to understand MS galaxies as systems in a quasi-steady state equilibrium and would also provide a more objective criterion for identifying quenching galaxies

  12. Star formation and galactic evolution. I. General expressions and applications to our galaxy

    International Nuclear Information System (INIS)

    Kaufman, M.

    1979-01-01

    The study of galactic evolution involves three mechanisms for triggering star formation in interstellar clouds: (i) star formation triggered by a galactic spiral density wave, (ii) star formation triggered by shock waves from supernovae, and (iii) star formation triggered by an expanding H II region. Useful analytic approximations to the birthrate per unit mass are obtained by treating the efficiencies of these various mechanisms as time independent. In situations where shock waves from high-mass stars (either expanding H II regions or supernova explosions) are the only important star-forming mechanisms, the birthrate is exponential in time. This case is appropriate for the past evolution of an elliptical galaxy, nuclear bulge, or galactic halo. In the disk of a spiral galaxy where all three mechanisms operate, the birthrate consists of an exponential term plus a time-independent term. In both situations, the value of the time constant T in the exponential term is directly related to the efficiency of the shock waves from massive stars in initiating star formation.For our Galaxy, this simplified model is used to compute the radial distributions of young objects and low-mass stars in the disk, and the past and present birthrates in the solar-neighborhood shell

  13. THE LEO IV DWARF SPHEROIDAL GALAXY: COLOR-MAGNITUDE DIAGRAM AND PULSATING STARS

    International Nuclear Information System (INIS)

    Moretti, Maria Ida; Dall'Ora, Massimo; Ripepi, Vincenzo

    2009-01-01

    We present the first V, B - V color-magnitude diagram of the Leo IV dwarf spheroidal galaxy, a faint Milky Way satellite recently discovered by the Sloan Digital Sky Survey. We have obtained B, V time-series photometry reaching about half a magnitude below the Leo IV turnoff, which we detect at V = 24.7 mag, and have performed the first study of the variable star population. We have identified three RR Lyrae stars (all fundamental-mode pulsators, RRab) and one SX Phoenicis variable in the galaxy. In the period-amplitude diagram the Leo IV RR Lyrae stars are located close to the loci of Oosterhoff type I systems and the evolved fundamental-mode RR Lyrae stars in the Galactic globular cluster M3. However, their mean pulsation period, (Pab) = 0.655 days, would suggest an Oosterhoff type II classification for this galaxy. The RR Lyrae stars trace very well the galaxy's horizontal branch, setting its average magnitude at (V RR ) = 21.48 ± 0.03 mag (standard deviation of the mean). This leads to a distance modulus of μ 0 = 20.94 ± 0.07 mag, corresponding to a distance of 154 ± 5 kpc, by adopting for the Leo IV dSph a reddening E(B - V) = 0.04 ± 0.01 mag and a metallicity of [Fe/H] = -2.31 ± 0.10.

  14. Chemical Abundances of New Member Stars in the Tucana II Dwarf Galaxy

    Science.gov (United States)

    Chiti, Anirudh; Frebel, Anna; Ji, Alexander P.; Jerjen, Helmut; Kim, Dongwon; Norris, John E.

    2018-04-01

    We present chemical abundance measurements for seven stars with metallicities ranging from Fe/H] = ‑3.3 to [Fe/H] = ‑2.4 in the Tucana II ultra-faint dwarf galaxy (UFD), based on high-resolution spectra obtained with the MIKE spectrograph on the 6.5 m Magellan-Clay Telescope. For three stars, we present detailed chemical abundances for the first time. Of those, two stars are newly discovered members of Tucana II and were selected as probable members from deep narrowband photometry of the Tucana II UFD taken with the SkyMapper telescope. This result demonstrates the potential for photometrically identifying members of dwarf galaxy systems based on chemical composition. One new star was selected from the membership catalog of Walker et al. The other four stars in our sample have been reanalyzed, following additional observations. Overall, six stars have chemical abundances that are characteristic of the UFD stellar population. The seventh star shows chemical abundances that are discrepant from the other Tucana II members and an atypical, higher strontium abundance than what is expected for typical UFD stars. While unlikely, its strontium abundance raises the possibility that it may be a foreground metal-poor halo star with the same systemic velocity as Tucana II. If we were to exclude this star, Tucana II would satisfy the criteria to be a surviving first galaxy. Otherwise, this star implies that Tucana II has likely experienced somewhat extended chemical evolution. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  15. Supermassive Black Holes as the Regulators of Star Formation in Central Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Terrazas, Bryan A.; Bell, Eric F. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Woo, Joanna; Henriques, Bruno M. B. [Department of Physics, Institute for Astronomy, ETH Zurich, 8093 Zurich (Switzerland)

    2017-08-01

    We present the relationship between the black hole mass, stellar mass, and star formation rate (SFR) of a diverse group of 91 galaxies with dynamically measured black hole masses. For our sample of galaxies with a variety of morphologies and other galactic properties, we find that the specific SFR is a smoothly decreasing function of the ratio between black hole mass and stellar mass, or what we call the specific black hole mass. In order to explain this relation, we propose a physical framework where the gradual suppression of a galaxy’s star formation activity results from the adjustment to an increase in specific black hole mass, and accordingly, an increase in the amount of heating. From this framework, it follows that at least some galaxies with intermediate specific black hole masses are in a steady state of partial quiescence with intermediate specific SFRs, implying that both transitioning and steady-state galaxies live within this region that is known as the “green valley.” With respect to galaxy formation models, our results present an important diagnostic with which to test various prescriptions of black hole feedback and its effects on star formation activity.

  16. Supermassive Black Holes as the Regulators of Star Formation in Central Galaxies

    International Nuclear Information System (INIS)

    Terrazas, Bryan A.; Bell, Eric F.; Woo, Joanna; Henriques, Bruno M. B.

    2017-01-01

    We present the relationship between the black hole mass, stellar mass, and star formation rate (SFR) of a diverse group of 91 galaxies with dynamically measured black hole masses. For our sample of galaxies with a variety of morphologies and other galactic properties, we find that the specific SFR is a smoothly decreasing function of the ratio between black hole mass and stellar mass, or what we call the specific black hole mass. In order to explain this relation, we propose a physical framework where the gradual suppression of a galaxy’s star formation activity results from the adjustment to an increase in specific black hole mass, and accordingly, an increase in the amount of heating. From this framework, it follows that at least some galaxies with intermediate specific black hole masses are in a steady state of partial quiescence with intermediate specific SFRs, implying that both transitioning and steady-state galaxies live within this region that is known as the “green valley.” With respect to galaxy formation models, our results present an important diagnostic with which to test various prescriptions of black hole feedback and its effects on star formation activity.

  17. The broad-band X-ray spectrum of IC 4329A from a joint NuSTAR/Suzaku observation

    DEFF Research Database (Denmark)

    Brenneman, L. W.; Madejski, G.; Fuerst, F.

    2014-01-01

    We have obtained a deep, simultaneous observation of the bright, nearby Seyfert galaxy IC 4329A with Suzaku andNuSTAR. Through a detailed spectral analysis, we are able to robustly separate the continuum, absorption, and distant reflection components in the spectrum. The absorbing column is found...... also updated our previously reported measurement of the high-energy cutoff of the hard X-ray emission using both observatories rather than justNuSTAR alone: Ecut = 186±14 keV. This high-energy cutoff acts as a proxy for the temperature of the coronal electron plasma, enabling us to further separate...

  18. Tidal interaction, star formation and chemical evolution in blue compact dwarf galaxy Mrk 22

    Science.gov (United States)

    Paswan, A.; Omar, A.; Jaiswal, S.

    2018-02-01

    The optical spectroscopic and radio interferometric H I 21 cm-line observations of the blue compact dwarf galaxy Mrk 22 are presented. The Wolf-Rayet (WR) emission-line features corresponding to high ionization lines of He II λ4686 and C IV λ5808 from young massive stars are detected. The ages of two prominent star-forming regions in the galaxy are estimated as ∼10 and ∼ 4 Myr. The galaxy has non-thermal radio deficiency, which also indicates a young starburst and lack of supernovae events from the current star formation activities, consistent with the detection of WR emission-line features. A significant N/O enrichment is seen in the fainter star-forming region. The gas-phase metallicities [12 + log(O/H)] for the bright and faint regions are estimated as 7.98±0.07 and 7.46±0.09, respectively. The galaxy has a large diffuse H I envelop. The H I images reveal disturbed gas kinematics and H I clouds outside the optical extent of the galaxy, indicating recent tidal interaction or merger in the system. The results strongly indicate that Mrk 22 is undergoing a chemical and morphological evolution due to ongoing star formation, most likely triggered by a merger.

  19. Cannibal Stars Cause Giant Explosions in Fornax Cluster Galaxy

    Science.gov (United States)

    2000-07-01

    The VLT Observes Most Remote Novae Ever Seen About 70 million years ago, when dinosaurs were still walking on the Earth, a series of violent thermo-nuclear explosions took place in a distant galaxy. After a very long travel across vast reaches of virtually empty space (70 million light-years, or ~ 7 x 10 20 km), dim light carrying the message about these events has finally reached us. It was recorded by the ESO Very Large Telescope (VLT) at the Paranal Observatory (Chile) during an observing programme by a group of Italian astronomers [1]. The subsequent analysis has shown that the observers witnessed the most distant nova outbursts ever seen . They were caused by "stellar cannibalism" in binary systems in which one relatively cool star loses matter to its smaller and hotter companion. An instability results that leads to the ignition of a "hydrogen bomb" on the surface of the receiving star. The "Stella Nova" Phenomenon A stellar outburst of the type now observed with the VLT is referred to as a "Stella Nova" ("new star" in Latin), or just "Nova" . Novae caused by explosions in binary stars in our home galaxy, the Milky Way system, are relatively frequent and about every second or third year one of them is bright enough to be easily visible with the naked eye. For our ancestors, who had no means to see the faint binary star before the explosion, it looked as if a new star had been born in the sky, hence the name. The most common nova explosion occurs in a binary stellar system in which a white dwarf (a very dense and hot, compact star with a mass comparable to that of the Sun and a size like the Earth) accretes hydrogen from a cooler and larger red dwarf star [2]. As the hydrogen collects on the surface of the white dwarf star, it becomes progressively hotter until a thermonuclear explosion is ignited at the bottom of the collected gas. A huge amount of energy is released and causes a million-fold increase in the brightness of the binary system within a few hours

  20. Density wave induced star formation: The optical surface brightness of galaxies

    International Nuclear Information System (INIS)

    Bash, F.N.

    1979-01-01

    A model for the galactic orbits of molecular clouds has been devised. The molecular clouds are assumed to be launched from the two-armed spiral-shock wave, to orbit in the Galaxy like ballistic particles with gravitational perturbations due to the density-wave spiral-potential, and each cloud is assumed to produce a cluster of stars. Each cloud radiates detectable 12 C 16 O (J=0→1) spectral line radiation from birth for 40 million years. Stars are seen in the cloud about 25 million years after birth, and the star cluster is assumed to continue in ballistic orbit around the Galaxy.The model has been tested by comparing its predicted velocity-longitude diagram for CO against that observed for the Galaxy and by comparing the model's predicted distribution of light in the UBV photometric bands against observed surface photometry for Sb and SC galaxies. The interpolation of the initial velocities in the model was corrected, and the model was examined to see whether preshock or postshock initial velocities better fit the observations. The model gives very good general agreement and reproduces many of the features observed in the CO velocity-longitude diagram

  1. COSMIC EVOLUTION OF STAR FORMATION ENHANCEMENT IN CLOSE MAJOR-MERGER GALAXY PAIRS SINCE z = 1

    International Nuclear Information System (INIS)

    Xu, C. K.; Shupe, D. L.; Bock, J.; Bridge, C.; Cooray, A.; Lu, N.; Schulz, B.; Béthermin, M.; Aussel, H.; Elbaz, D.; Le Floc'h, E.; Riguccini, L.; Berta, S.; Lutz, D.; Magnelli, B.; Conley, A.; Franceschini, A.; Marsden, G.; Oliver, S. J.; Pozzi, F.

    2012-01-01

    The infrared (IR) emission of 'M * galaxies' (10 10.4 ≤ M star ≤ 10 11.0 M ☉ ) in galaxy pairs, derived using data obtained in Herschel (PEP/HerMES) and Spitzer (S-COSMOS) surveys, is compared to that of single-disk galaxies in well-matched control samples to study the cosmic evolution of the star formation enhancement induced by galaxy-galaxy interaction. Both the mean IR spectral energy distribution and mean IR luminosity of star-forming galaxies (SFGs) in SFG+SFG (S+S) pairs in the redshift bin of 0.6 < z < 1 are consistent with no star formation enhancement. SFGs in S+S pairs in a lower redshift bin of 0.2 < z < 0.6 show marginal evidence for a weak star formation enhancement. Together with the significant and strong sSFR enhancement shown by SFGs in a local sample of S+S pairs (obtained using previously published Spitzer observations), our results reveal a trend for the star formation enhancement in S+S pairs to decrease with increasing redshift. Between z = 0 and z = 1, this decline of interaction-induced star formation enhancement occurs in parallel with the dramatic increase (by a factor of ∼10) of the sSFR of single SFGs, both of which can be explained by the higher gas fraction in higher-z disks. SFGs in mixed pairs (S+E pairs) do not show any significant star formation enhancement at any redshift. The difference between SFGs in S+S pairs and in S+E pairs suggests a modulation of the sSFR by the intergalactic medium (IGM) in the dark matter halos hosting these pairs.

  2. STAR FORMATION AND RELAXATION IN 379 NEARBY GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Cohen, Seth A.; Hickox, Ryan C.; Wegner, Gary A.

    2015-01-01

    We investigate the relationship between star formation (SF) and level of relaxation in a sample of 379 galaxy clusters at z < 0.2. We use data from the Sloan Digital Sky Survey to measure cluster membership and level of relaxation, and to select star-forming galaxies based on mid-infrared emission detected with the Wide-Field Infrared Survey Explorer. For galaxies with absolute magnitudes M r < −19.5, we find an inverse correlation between SF fraction and cluster relaxation: as a cluster becomes less relaxed, its SF fraction increases. Furthermore, in general, the subtracted SF fraction in all unrelaxed clusters (0.117 ± 0.003) is higher than that in all relaxed clusters (0.097 ± 0.005). We verify the validity of our SF calculation methods and membership criteria through analysis of previous work. Our results agree with previous findings that a weak correlation exists between cluster SF and dynamical state, possibly because unrelaxed clusters are less evolved relative to relaxed clusters

  3. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Star formation history of passive red galaxies

    Science.gov (United States)

    Siudek, M.; Małek, K.; Scodeggio, M.; Garilli, B.; Pollo, A.; Haines, C. P.; Fritz, A.; Bolzonella, M.; de la Torre, S.; Granett, B. R.; Guzzo, L.; Abbas, U.; Adami, C.; Bottini, D.; Cappi, A.; Cucciati, O.; De Lucia, G.; Davidzon, I.; Franzetti, P.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Marchetti, A.; Marulli, F.; Polletta, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Arnouts, S.; Bel, J.; Branchini, E.; Ilbert, O.; Gargiulo, A.; Moscardini, L.; Takeuchi, T. T.; Zamorani, G.

    2017-01-01

    Aims: We trace the evolution and the star formation history of passive red galaxies, using a subset of the VIMOS Public Extragalactic Redshift Survey (VIPERS). The detailed spectral analysis of stellar populations of intermediate-redshift passive red galaxies allows the build up of their stellar content to be followed over the last 8 billion years. Methods: We extracted a sample of passive red galaxies in the redshift range 0.4 quality. The spectra of passive red galaxies were stacked in narrow bins of stellar mass and redshift. We use the stacked spectra to measure the 4000 Å break (D4000) and the Hδ Lick index (HδA) with high precision. These spectral features are used as indicators of the star formation history of passive red galaxies. We compare the results with a grid of synthetic spectra to constrain the star formation epochs of these galaxies. We characterize the formation redshift-stellar mass relation for intermediate-redshift passive red galaxies. Results: We find that at z 1 stellar populations in low-mass passive red galaxies are younger than in high-mass passive red galaxies, similar to what is observed at the present epoch. Over the full analyzed redshift range 0.4 web site is http://www.vipers.inaf.it/

  4. Stellar Absorption Line Analysis of Local Star-forming Galaxies: The Relation between Stellar Mass, Metallicity, Dust Attenuation, and Star Formation Rate

    Energy Technology Data Exchange (ETDEWEB)

    Jabran Zahid, H. [Smithsonian Astrophysical Observatory, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kudritzki, Rolf-Peter; Ho, I-Ting [University of Hawaii at Manoa, Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Conroy, Charlie [Department of Astronomy, Harvard University, Cambridge, MA, 02138 (United States); Andrews, Brett, E-mail: zahid@cfa.harvard.edu [PITT PACC, Department of Physics and Astronomy, University of Pittsburgh, 3941 O’Hara Street, Pittsburgh, PA 15260 (United States)

    2017-09-20

    We analyze the optical continuum of star-forming galaxies in the Sloan Digital Sky Survey by fitting stacked spectra with stellar population synthesis models to investigate the relation between stellar mass, stellar metallicity, dust attenuation, and star formation rate. We fit models calculated with star formation and chemical evolution histories that are derived empirically from multi-epoch observations of the stellar mass–star formation rate and the stellar mass–gas-phase metallicity relations, respectively. We also fit linear combinations of single-burst models with a range of metallicities and ages. Star formation and chemical evolution histories are unconstrained for these models. The stellar mass–stellar metallicity relations obtained from the two methods agree with the relation measured from individual supergiant stars in nearby galaxies. These relations are also consistent with the relation obtained from emission-line analysis of gas-phase metallicity after accounting for systematic offsets in the gas-phase metallicity. We measure dust attenuation of the stellar continuum and show that its dependence on stellar mass and star formation rate is consistent with previously reported results derived from nebular emission lines. However, stellar continuum attenuation is smaller than nebular emission line attenuation. The continuum-to-nebular attenuation ratio depends on stellar mass and is smaller in more massive galaxies. Our consistent analysis of stellar continuum and nebular emission lines paves the way for a comprehensive investigation of stellar metallicities of star-forming and quiescent galaxies.

  5. Stellar Absorption Line Analysis of Local Star-forming Galaxies: The Relation between Stellar Mass, Metallicity, Dust Attenuation, and Star Formation Rate

    International Nuclear Information System (INIS)

    Jabran Zahid, H.; Kudritzki, Rolf-Peter; Ho, I-Ting; Conroy, Charlie; Andrews, Brett

    2017-01-01

    We analyze the optical continuum of star-forming galaxies in the Sloan Digital Sky Survey by fitting stacked spectra with stellar population synthesis models to investigate the relation between stellar mass, stellar metallicity, dust attenuation, and star formation rate. We fit models calculated with star formation and chemical evolution histories that are derived empirically from multi-epoch observations of the stellar mass–star formation rate and the stellar mass–gas-phase metallicity relations, respectively. We also fit linear combinations of single-burst models with a range of metallicities and ages. Star formation and chemical evolution histories are unconstrained for these models. The stellar mass–stellar metallicity relations obtained from the two methods agree with the relation measured from individual supergiant stars in nearby galaxies. These relations are also consistent with the relation obtained from emission-line analysis of gas-phase metallicity after accounting for systematic offsets in the gas-phase metallicity. We measure dust attenuation of the stellar continuum and show that its dependence on stellar mass and star formation rate is consistent with previously reported results derived from nebular emission lines. However, stellar continuum attenuation is smaller than nebular emission line attenuation. The continuum-to-nebular attenuation ratio depends on stellar mass and is smaller in more massive galaxies. Our consistent analysis of stellar continuum and nebular emission lines paves the way for a comprehensive investigation of stellar metallicities of star-forming and quiescent galaxies.

  6. Elevation or Suppression? The Resolved Star Formation Main Sequence of Galaxies with Two Different Assembly Modes

    Science.gov (United States)

    Liu, Qing; Wang, Enci; Lin, Zesen; Gao, Yulong; Liu, Haiyang; Berhane Teklu, Berzaf; Kong, Xu

    2018-04-01

    We investigate the spatially resolved star formation main sequence in star-forming galaxies using Integral Field Spectroscopic observations from the Mapping Nearby Galaxies at the Apache Point Observatory survey. We demonstrate that the correlation between the stellar mass surface density (Σ*) and star formation rate surface density (ΣSFR) holds down to the sub-galactic scale, leading to the sub-galactic main sequence (SGMS). By dividing galaxies into two populations based on their recent mass assembly modes, we find the resolved main sequence in galaxies with the “outside-in” mode is steeper than that in galaxies with the “inside-out” mode. This is also confirmed on a galaxy-by-galaxy level, where we find the distributions of SGMS slopes for individual galaxies are clearly separated for the two populations. When normalizing and stacking the SGMS of individual galaxies on one panel for the two populations, we find that the inner regions of galaxies with the “inside-out” mode statistically exhibit a suppression in star formation, with a less significant trend in the outer regions of galaxies with the “outside-in” mode. In contrast, the inner regions of galaxies with “outside-in” mode and the outer regions of galaxies with “inside-out” mode follow a slightly sublinear scaling relation with a slope ∼0.9, which is in good agreement with previous findings, suggesting that they are experiencing a universal regulation without influences of additional physical processes.

  7. Multi-wavelength study of the Seyfert 1 galaxy NGC 3783 with XMM-Newton

    CERN Document Server

    Blustin, A J; Behar, E; Kaastra, J S; Kahn, S M; Page, M J; Sako, M; Steenbrugge, K C

    2002-01-01

    We present the analysis of multi-wavelength XMM-Newton data from the Seyfert galaxy NGC 3783, including UV imaging, X-ray and UV lightcurves, the 0.2-10 keV X-ray continuum, the iron K-alpha emission line, and high-resolution spectroscopy and modelling of the soft X-ray warm absorber. The 0.2-10 keV spectral continuum can be well reproduced by a power-law at higher energies; we detect a prominent Fe K-alpha emission line, with both broad and narrow components, and a weaker emission line at 6.9 keV which is probably a combination of Fe K-beta and Fe XXVI. We interpret the significant deficit of counts in the soft X-ray region as being due to absorption by ionised gas in the line of sight. This is demonstrated by the large number of narrow absorption lines in the RGS spectrum from iron, oxygen, nitrogen, carbon, neon, argon, magnesium, silicon and sulphur. The wide range of iron states present in the spectrum enables us to deduce the ionisation structure of the absorbing medium. We find that our spectrum contai...

  8. Star Formation Histories of Local Group Dwarf Galaxies. (Ludwig Biermann Award Lecture 1996)

    Science.gov (United States)

    Grebel, E. K.

    The star formation histories of dwarf galaxies in the Local Group are reviewed. First the question of Local Group membership is considered based on various criteria. The properties of 31 (36) galaxies are consistent with likely (potential) Local Group membership. To study the star formation histories of these galaxies, a multi-parameter problem needs to be solved: Ages, metallicities, population fractions, and spatial variations must be determined, which depend crucially on the knowledge of reddening and distance. The basic methods for studying resolvable stellar populations are summarized. One method is demonstrated using the Fornax dwarf spheroidal galaxy. A comprehensive compilation of the star formation histories of dwarf irregulars, dwarf ellipticals, and dwarf spheroidals in the Local Group is presented and visualized through Hodge's population boxes. All galaxies appear to have differing fractions of old and intermediate-age populations, and those sufficiently massive and undisturbed to retain and recycle their gas are still forming stars today. Star formation has occurred either in distinct episodes or continuously over long periods of time. Metallicities and enrichment vary widely. Constraints on merger and remnant scenarios are discussed, and a unified picture based on the current knowledge is presented. Primary goals for future observations are: accurate age determinations based on turnoff photometry, detection of subpopulations distinct in age, metallicity, and/or spatial distribution; improved distances; and astrometric studies to derive orbits and constrain past and future interactions.

  9. GALAXY EVOLUTION. An over-massive black hole in a typical star-forming galaxy, 2 billion years after the Big Bang.

    Science.gov (United States)

    Trakhtenbrot, Benny; Urry, C Megan; Civano, Francesca; Rosario, David J; Elvis, Martin; Schawinski, Kevin; Suh, Hyewon; Bongiorno, Angela; Simmons, Brooke D

    2015-07-10

    Supermassive black holes (SMBHs) and their host galaxies are generally thought to coevolve, so that the SMBH achieves up to about 0.2 to 0.5% of the host galaxy mass in the present day. The radiation emitted from the growing SMBH is expected to affect star formation throughout the host galaxy. The relevance of this scenario at early cosmic epochs is not yet established. We present spectroscopic observations of a galaxy at redshift z = 3.328, which hosts an actively accreting, extremely massive BH, in its final stages of growth. The SMBH mass is roughly one-tenth the mass of the entire host galaxy, suggesting that it has grown much more efficiently than the host, contrary to models of synchronized coevolution. The host galaxy is forming stars at an intense rate, despite the presence of a SMBH-driven gas outflow. Copyright © 2015, American Association for the Advancement of Science.

  10. Direct Measurement of Dust Attenuation in z approx. 1.5 Star-Forming Galaxies from 3D-HST: Implications for Dust Geometry and Star Formation Rates

    Science.gov (United States)

    Price, Sedona H.; Kriek, Mariska; Brammer, Gabriel B; Conroy, Charlie; Schreiber, Natascha M. Foerster; Franx, Marijn; Fumagalli, Mattia; Lundren, Britt; Momcheva, Ivelina; Nelson, Erica J.; hide

    2013-01-01

    The nature of dust in distant galaxies is not well understood, and until recently few direct dust measurements have been possible. We investigate dust in distant star-forming galaxies using near-infrared grism spectra of the 3D-HST survey combined with archival multi-wavelength photometry. These data allow us to make a direct comparison between dust towards star-forming regions (measured using Balmer decrements) and the integrated dust properties (derived by comparing spectral energy distributions [SEDs] with stellar population and dust models) for a statistically significant sample of distant galaxies. We select a sample of 163 galaxies between 1.36 or = 5 and measure Balmer decrements from stacked spectra. First, we stack spectra in bins of integrated stellar dust attenuation, and find that there is extra dust extinction towards star-forming regions (AV,HII is 1.81 times the integrated AV, star), though slightly lower than found for low-redshift starburst galaxies. Next, we stack spectra in bins of specific star formation rate (log sSFR), star formation rate (log SFR), and stellar mass (logM*). We find that on average AV,HII increases with SFR and mass, but decreases with increasing sSFR. The amount of extra extinction also decreases with increasing sSFR and decreasing stellar mass. Our results are consistent with the two-phase dust model - in which galaxies contain both a diffuse and a stellar birth cloud dust component - as the extra extinction will increase once older stars outside the star-forming regions become more dominant. Finally, using our Balmer decrements we derive dust-corrected H(alpha) SFRs, and find evidence that SED fitting produces incorrect SFRs if very rapidly declining SFHs are included in the explored parameter space. Subject headings: dust, extinction- galaxies: evolution- galaxies: high-redshift

  11. Complete Element Abundances of Nine Stars in the r-process Galaxy Reticulum II

    Science.gov (United States)

    Ji, Alexander P.; Frebel, Anna; Simon, Joshua D.; Chiti, Anirudh

    2016-10-01

    We present chemical abundances derived from high-resolution Magellan/Magellan Inamori Kyocera Echelle spectra of the nine brightest known red giant members of the ultra-faint dwarf galaxy Reticulum II (Ret II). These stars span the full metallicity range of Ret II (-3.5 contaminated known r-process pattern. The abundances of lighter elements up to the iron peak are otherwise similar to abundances of stars in the halo and in other ultra-faint dwarf galaxies. However, the scatter in abundance ratios is large enough to suggest that inhomogeneous metal mixing is required to explain the chemical evolution of this galaxy. The presence of low amounts of neutron-capture elements in other ultra-faint dwarf galaxies may imply the existence of additional r-process sites besides the source of r-process elements in Ret II. Galaxies like Ret II may be the original birth sites of r-process enhanced stars now found in the halo. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  12. A combined optical, infrared and radio study of the megamaser galaxy III Zw 35

    International Nuclear Information System (INIS)

    Chapman, J.M.; Axon, D.J.; Cohen, R.J.; Pedlar, A.; Davies, R.D.; Unger, S.W.

    1990-01-01

    III Zw 35 is a pair of galaxies characterized by powerful radio continuum, far-infrared and OH maser radiation. We have made a multi-frequency study of the galaxy pair based on optical, infrared and radio observations. The brighter northern component is identified as an early-type LINER or Seyfert galaxy containing an active nuclear region from which radio continuum, OH maser and thermal dust emission are detected. We propose that the northern component has a compact active nucleus deeply embedded in a highly obscured region of diameter ∼ 210 pc, within which enhanced star-formation occurs. The lower luminosity southern component is of low mass and is undergoing starburst activity over an extended region of diameter ∼ 5.5 kpc. The origin of the starburst and non-thermal activity appears to be an interaction between the two components. (author)

  13. 'Death Star' Galaxy Black Hole Fires at Neighboring Galaxy

    Science.gov (United States)

    2008-12-01

    This "death star" galaxy was discovered through the combined efforts of both space and ground-based telescopes. NASA's Chandra X-ray Observatory, Hubble Space Telescope, and Spitzer Space Telescope were part of the effort. The Very Large Array telescope, Socorro, N.M., and the Multi-Element Radio Linked Interferometer Network (MERLIN) telescopes in the United Kingdom also were needed for the finding. Illustration of Jet Striking Galaxy (unlabeled) Illustration of Jet Striking Galaxy (unlabeled) "We've seen many jets produced by black holes, but this is the first time we've seen one punch into another galaxy like we're seeing here," said Dan Evans, a scientist at the Harvard-Smithsonian Center for Astrophysics and leader of the study. "This jet could be causing all sorts of problems for the smaller galaxy it is pummeling." Jets from super massive black holes produce high amounts of radiation, especially high-energy X-rays and gamma-rays, which can be lethal in large quantities. The combined effects of this radiation and particles traveling at almost the speed of light could severely damage the atmospheres of planets lying in the path of the jet. For example, protective layers of ozone in the upper atmosphere of planets could be destroyed. X-ray & Radio Full Field Image of 3C321 X-ray & Radio Full Field Image of 3C321 Jets produced by super massive black holes transport enormous amounts of energy far from black holes and enable them to affect matter on scales vastly larger than the size of the black hole. Learning more about jets is a key goal for astrophysical research. "We see jets all over the Universe, but we're still struggling to understand some of their basic properties," said co-investigator Martin Hardcastle of the University of Hertfordshire, United Kingdom. "This system of 3C321 gives us a chance to learn how they're affected when they slam into something - like a galaxy - and what they do after that." Optical Image of 3C321 Optical Image of 3C321 The

  14. The peculiar radio-loud narrow line Seyfert 1 galaxy 1H 0323+342

    Energy Technology Data Exchange (ETDEWEB)

    Paliya, Vaidehi S.; Stalin, C. S. [Indian Institute of Astrophysics, Block-II, Koramangala, Bangalore-560034 (India); Sahayanathan, S. [Astrophysical Science Division, Bhabha Atomic Research Center, Mumbai-400085 (India); Parker, M. L.; Fabian, A. C. [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom); Anjum, Ayesha [Department of Physics, Christ University, Bangalore-560029 (India); Pandey, S. B., E-mail: vaidehi@iiap.res.in [Aryabhatta Research Institute of Observational Sciences, Manora peak, Nainital-263129 (India)

    2014-07-10

    We present a multiwavelength study of the radio-loud narrow-line Seyfert 1 galaxy (NLSy1) 1H 0323+342, detected by the Fermi Gamma-Ray Space Telescope. Multiband light curves show many orphan X-ray and optical flares having no corresponding γ-ray counterparts. Such anomalous variability behavior can be due to different locations of the emission region from the central source. During a large flare, a γ-ray flux doubling timescale as small as ∼3 hr is noticed. We built spectral energy distributions (SEDs) during different activity states and modeled them using a one-zone leptonic model. The shape of the optical/UV component of the SEDs is dominated by accretion disk emission in all the activity states. In the X-ray band, significant thermal emission from the hot corona is inferred during quiescent and first flaring states; however, during subsequent flares, the nonthermal jet component dominates. The γ-ray emission in all the states can be well explained by inverse-Compton scattering of accretion disk photons reprocessed by the broad-line region. The source showed violent intra-night optical variability, coinciding with one of the high γ-ray activity states. An analysis of the overall X-ray spectrum fitted with an absorbed power-law plus relativistic reflection component hints at the presence of an Fe Kα line and returns a high black hole spin value of a = 0.96 ± 0.14. We argue that 1H 0323+342 possesses dual characteristics, akin to both flat-spectrum radio quasars (FSRQs) and radio-quiet NLSy1 galaxies, though at a low jet power regime compared to powerful FSRQs.

  15. Distant galaxy formed stars only 250 million years after the Big Bang

    Science.gov (United States)

    Bouwens, Rychard

    2018-05-01

    Little is known about the star-birth activity of the earliest galaxies. Observations of a particularly distant galaxy provide evidence for such activity when the Universe was just 2% of its current age.

  16. SDSS-IV MaNGA: constraints on the conditions for star formation in galaxy discs

    Science.gov (United States)

    Stark, David V.; Bundy, Kevin A.; Orr, Matthew E.; Hopkins, Philip F.; Westfall, Kyle; Bershady, Matthew; Li, Cheng; Bizyaev, Dmitry; Masters, Karen L.; Weijmans, Anne-Marie; Lacerna, Ivan; Thomas, Daniel; Drory, Niv; Yan, Renbin; Zhang, Kai

    2018-02-01

    Regions of disc galaxies with widespread star formation tend to be both gravitationally unstable and self-shielded against ionizing radiation, whereas extended outer discs with little or no star formation tend to be stable and unshielded on average. We explore what drives the transition between these two regimes, specifically whether discs first meet the conditions for self-shielding (parametrized by dust optical depth, τ) or gravitational instability (parametrized by a modified version of Toomre's instability parameters, Qthermal, which quantifies the stability of a gas disc that is thermally supported at T = 104 K). We first introduce a new metric formed by the product of these quantities, Qthermalτ, which indicates whether the conditions for disc instability or self-shielding are easier to meet in a given region of a galaxy, and we discuss how Qthermalτ can be constrained even in the absence of direct gas information. We then analyse a sample of 13 galaxies with resolved gas measurements and find that on average galaxies will reach the threshold for disc instabilities (Qthermal 1). Using integral field spectroscopic observations of a sample of 236 galaxies from the Mapping Nearby Galaxies at APO (MaNGA) survey, we find that the value of Qthermalτ in star-forming discs is consistent with similar behaviour. These results support a scenario where disc fragmentation and collapse occurs before self-shielding, suggesting that gravitational instabilities are the primary condition for widespread star formation in galaxy discs. Our results support similar conclusions based on recent galaxy simulations.

  17. SHIELD: The Star Formation Law in Extremely Low-mass Galaxies

    Science.gov (United States)

    Teich, Yaron; McNichols, Andrew; Cannon, John M.; SHIELD Team

    2016-01-01

    The "Survey of HI in Extremely Low-mass Dwarfs" (SHIELD) is a multiwavelength, legacy-class observational study of 12 low-mass dwarf galaxies discovered in Arecibo Legacy Fast ALFA (ALFALFA) survey data products. Here we analyze the relationships between HI and star formation in these systems using multi-configuration, high spatial (~300 pc) and spectral (0.82 - 2.46 km s-1 ch-1) resolution HI observations from the Karl G. Jansky Very Large Array, Hα imaging from the WIYN 3.5m telescope, and archival GALEX far-ultraviolet imaging. We compare the locations and intensities of star formation with the properties of the neutral ISM. We quantify the degree of local co-spatiality between star forming regions and regions of high HI column densities using the Kennicutt-Schmidt (K-S) relation. The values of the K-S index N vary considerably from system to system; because no single galaxy is representative of the sample, we instead focus on the narratives of the individual galaxies and their complex distribution of gaseous and stellar components. At the extremely faint end of the HI mass function, these systems are dominated by stochastic fluctuations in their interstellar media, which governs whether or not they show signs of recent star formation.Support for this work was provided by NSF grant AST-1211683 to JMC at Macalester College.

  18. THE RISE AND FALL OF THE STAR FORMATION HISTORIES OF BLUE GALAXIES AT REDSHIFTS 0.2 < z < 1.4

    International Nuclear Information System (INIS)

    Pacifici, Camilla; Kassin, Susan A.; Gardner, Jonathan P.; Weiner, Benjamin; Charlot, Stéphane

    2013-01-01

    Popular cosmological scenarios predict that galaxies form hierarchically from the merger of many progenitors, each with their own unique star formation history (SFH). We use a sophisticated approach to constrain the SFHs of 4517 blue (presumably star-forming) galaxies with spectroscopic redshifts in the range 0.2 s bands and rest-frame optical emission-line luminosities with those of one million model spectral energy distributions. We explore the dependence of the resulting SFHs on galaxy stellar mass and redshift. We find that the average SFHs of high-mass galaxies rise and fall in a roughly symmetric bell-shaped manner, while those of low-mass galaxies rise progressively in time, consistent with the typically stronger activity of star formation in low-mass compared to high-mass galaxies. For galaxies of all masses, the star formation activity rises more rapidly at high than at low redshift. These findings imply that the standard approximation of exponentially declining SFHs widely used to interpret observed galaxy spectral energy distributions may not be appropriate to constrain the physical parameters of star-forming galaxies at intermediate redshifts.

  19. LoCuSS: THE SLOW QUENCHING OF STAR FORMATION IN CLUSTER GALAXIES AND THE NEED FOR PRE-PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    Haines, C. P. [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Correo Central, Santiago (Chile); Pereira, M. J.; Egami, E.; Rawle, T. D. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Smith, G. P.; Ziparo, F.; McGee, S. L. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Babul, A. [Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 1A1 (Canada); Finoguenov, A. [Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2a, FI-0014 Helsinki (Finland); Okabe, N. [Academia Sinica Institute of Astronomy and Astrophysics (ASIAA), P.O. Box 23-141, Taipei 10617, Taiwan (China); Moran, S. M., E-mail: cphaines@das.uchile.cl [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2015-06-10

    We present a study of the spatial distribution and kinematics of star-forming galaxies in 30 massive clusters at 0.15 < z < 0.30, combining wide-field Spitzer 24 μm and GALEX near-ultraviolet imaging with highly complete spectroscopy of cluster members. The fraction (f{sub SF}) of star-forming cluster galaxies rises steadily with cluster-centric radius, increasing fivefold by 2r{sub 200}, but remains well below field values even at 3r{sub 200}. This suppression of star formation at large radii cannot be reproduced by models in which star formation is quenched in infalling field galaxies only once they pass within r{sub 200} of the cluster, but is consistent with some of them being first pre-processed within galaxy groups. Despite the increasing f{sub SF}-radius trend, the surface density of star-forming galaxies actually declines steadily with radius, falling ∼15× from the core to 2r{sub 200}. This requires star formation to survive within recently accreted spirals for 2–3 Gyr to build up the apparent over-density of star-forming galaxies within clusters. The velocity dispersion profile of the star-forming galaxy population shows a sharp peak of 1.44 σ{sub ν} at 0.3r{sub 500}, and is 10%–35% higher than that of the inactive cluster members at all cluster-centric radii, while their velocity distribution shows a flat, top-hat profile within r{sub 500}. All of these results are consistent with star-forming cluster galaxies being an infalling population, but one that must also survive ∼0.5–2 Gyr beyond passing within r{sub 200}. By comparing the observed distribution of star-forming galaxies in the stacked caustic diagram with predictions from the Millennium simulation, we obtain a best-fit model in which star formation rates decline exponentially on quenching timescales of 1.73 ± 0.25 Gyr upon accretion into the cluster.

  20. A possible formation scenario for dwarf spheroidal galaxies - III. Adding star formation histories to the fiducial model

    Science.gov (United States)

    Alarcón Jara, A. G.; Fellhauer, M.; Matus Carrillo, D. R.; Assmann, P.; Urrutia Zapata, F.; Hazeldine, J.; Aravena, C. A.

    2018-02-01

    Dwarf spheroidal galaxies are regarded as the basic building blocks in the formation of larger galaxies and are the most dark matter dominated systems in the Universe, known so far. There are several models that attempt to explain their formation and evolution, but they have problems modelling the formation of isolated dwarf spheroidal galaxies. Here, we will explain a possible formation scenario in which star clusters form inside the dark matter halo of a dwarf spheroidal galaxy. These star clusters suffer from low star formation efficiency and dissolve while orbiting inside the dark matter halo. Thereby, they build the faint luminous components that we observe in dwarf spheroidal galaxies. In this paper, we study this model by adding different star formation histories to the simulations and compare the results with our previous work and observational data to show that we can explain the formation of dwarf spheroidal galaxies.

  1. Direct Detection of The Lyman Continuum of Star-forming Galaxies at z~3

    Science.gov (United States)

    Vasei, Kaveh; Siana, Brian; Shapley, Alice; Alavi, Anahita; Rafelski, Marc

    2018-01-01

    Star-forming galaxies are widely believed to be responsible for the reionization of the Universe and much of the ionizing background at z>3. Therefore, there has been much interest in quantifying the escape fraction of the Lyman continuum (LyC) radiation of the star-forming galaxies. Yet direct detection of LyC has proven to be exceptionally challenging. Despite numerous efforts only 7 galaxies at z2 have been robustly confirmed as LyC leakers. To avoid these challenges many studies use indirect methods to infer the LyC escape fraction. We tested these indirect methods by attempting to detect escaping LyC with a 10-orbit Hubble near-UV (F275W) image that is just below the Lyman limit at the redshift of the Cosmic Horseshoe (a lensed galaxy at z=2.4). We concluded that the measured escape fraction is lower, by more than a factor of five, than the expected escape fraction based on the indirect methods. This emphasizes that indirect determinations should only be interpreted as upper-limits. We also investigated the deepest near-UV Hubble images of the SSA22 field to detect LyC leakage from a large sample of candidate star-forming galaxies at z~3.1, whose redshift was obtained by deep Keck/LRIS spectroscopy and for which Keck narrow-band imaging was showing possible LyC leakage. The high spatial resolution of Hubble images is crucial to confirm our detections are clean from foreground contaminating galaxies, and also to ascertain the escape fraction of our final candidates. We identify five clean LyC emitting star-forming galaxies. The follow up investigation of these galaxies will significantly increase our knowledge of the LyC escape fraction and the mechanisms allowing for LyC escape.

  2. Macho project photometry of RR Lyrae stars in the Sagittarius dwarf galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Alcock, C. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)]|[Center for Particle Astrophysics, University of California, Berkeley, California 94720 (United States); Allsman, R.A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)]|[Mount Stromlo and Siding Spring Observatories, Australian National University, Weston, ACT 2611 (Australia); Alves, D.R. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)]|[Department of Physics, University of California, Davis, California 95616 (United States); Axelrod, T.S. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)]|[Mount Stromlo and Siding Spring Observatories, Australian National University, Weston, ACT 2611 (Australia); Becker, A.C. [Center for Particle Astrophysics, University of California, Berkeley, California 94720 (United States)]|[Department of Astronomy, University of Washington, Seattle, Washington 98195 (United States); Bennett, D.P.; Cook, K.H. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)]|[Center for Particle Astrophysics, University of California, Berkeley, California 94720 (United States); Freeman, K.C. [Mount Stromlo and Siding Spring Observatories, Australian National University, Weston, ACT 2611 (Australia); Griest, K. [Center for Particle Astrophysics, University of California, Berkeley, California 94720 (United States)]|[Department of Physics, University of California, San Diego, California 92093 (United States); Guern, J.A.; Lehner, M.J. [Department of Physics, University of California, San Diego, California 92093 (United States); Marshall, S.L.; Minniti, D. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Peterson, B.A. [Mount Stromlo and Siding Spring Observatories, Australian National University, Weston, ACT 2611 (Australia); Pratt, M.R.

    1997-01-01

    We report the discovery of 30 type a, b RR Lyrae (RRab) stars that are likely members of the Sagittarius dwarf galaxy (Sgr). Accurate positions, periods, amplitudes, and magnitudes are presented. Their distances are determined with respect to RRab stars in the Galactic bulge found also in the MACHO 1993 data. For R{sub {circle_dot}}=8kpc, the mean distance to these stars is D=22{plus_minus}1kpc, smaller than previous determinations for this galaxy. This indicates that Sgr has an elongated main body extending for more than 10 kpc, which is inclined along the line of sight, with its northern part (in Galactic coordinates) closer to us. The size and shape of Sgr give clues about the past history of this galaxy. If the shape of Sgr follows the direction of its orbit, the observed spatial orientation suggests that Sgr is moving away from the Galactic plane. Also, Sgr stars may be the sources of some of the microlensing events seen toward the bulge. {copyright} {ital 1997} {ital The American Astronomical Society}

  3. Ultrafaint dwarfs—star formation and chemical evolution in the smallest galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Webster, David; Bland-Hawthorn, Joss [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Sutherland, Ralph, E-mail: d.webster@physics.usyd.edu.au [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston, ACT 2611 (Australia)

    2014-11-20

    In earlier work, we showed that a dark matter halo with a virial mass of 10{sup 7} M {sub ☉} can retain a major part of its baryons in the face of the pre-ionization phase and supernova (SN) explosion from a 25 M {sub ☉} star. Here, we expand on the results of that work, investigating the star formation and chemical evolution of the system beyond the first SN. In a galaxy with a mass M {sub vir} = 10{sup 7} M {sub ☉}, sufficient gas is retained by the potential for a second period of star formation to occur. The impact of a central explosion is found to be much stronger than that of an off-center explosion both in blowing out the gas and in enriching it, as in the off-center case most of the SN energy and metals escape into the intergalactic medium. We model the star formation and metallicity, given the assumption that stars form for 100, 200, 400, and 600 Myr, and discuss the results in the context of recent observations of very low-mass galaxies. We show that we can account for most features of the observed relationship between [α/Fe] and [Fe/H] in ultra-faint dwarf galaxies with the assumption that the systems formed at a low mass, rather than being remnants of much larger systems.

  4. The Universe's Most Extreme Star-forming Galaxies

    Science.gov (United States)

    Casey, Caitlin

    2017-06-01

    Dusty star-forming galaxies host the most intense stellar nurseries in the Universe. Their unusual characteristics (SFRs=200-2000Msun/yr, Mstar>1010 Msun) pose a unique challenge for cosmological simulations and galaxy formation theory, particularly at early times. Although rare today, they were factors of 1000 times more prevalent at z~2-5, contributing significantly to the buildup of the Universe's stellar mass and the formation of high-mass galaxies. At even earlier times (within 1Gyr post Big Bang) they could have played a pivotal role in enriching the IGM. However, an ongoing debate lingers as to their evolutionary origins at high-redshift, whether or not they are triggered by major mergers of gas-rich disk galaxies, or if they are solitary galaxies continually fed pristine gas from the intergalactic medium. Furthermore, their presence in early protoclusters, only revealed quite recently, pose intriguing questions regarding the collapse of large scale structure. I will discuss some of the latest observational programs dedicated to understanding dust-obscuration in and gas content of the early Universe, their context in the cosmic web, and future long-term observing campaigns that may reveal their relationship to `normal’ galaxies, thus teaching us valuable lessons on the physical mechanisms of galaxy growth and the collapse of large scale structure in an evolving Universe.

  5. CEMP Stars in the Halo and Their Origin in Ultra-Faint Dwarf Galaxies

    Science.gov (United States)

    Beers, Timothy C.

    2018-06-01

    The very metal-poor (VMP; [Fe/H] 3.0) stars provide a direct view of Galactic chemical and dynamical evolution; detailed spectroscopic studies of these objects are the best way to identify and distinguish between various scenarios for the enrichment of early star-forming gas clouds soon after the Big Bang. It has been recognized that a large fraction of VMP (15-20%) and EMP stars (30-40%) possess significant over-abundances of carbon relative to iron, [C/Fe] > +0.7. This fraction rises to at least 80% for stars with [Fe/H] 3.0 belong to the CEMP-no sub-class, characterized by the lack of strong enhancements in the neutron-capture elements (e.g., [Ba/Fe] < 0.0). The CEMP-no abundance signature is commonly observed among stars ultra-faint dwarf spheroidal galaxies such as SEGUE-1. In addition, kinematic studies of CEMP-no stars strongly suggest an association with the outer-halo population of the Galaxy, which was likely formed from the accretion of low-mass mini-halos. These observations, and other lines of evidence, indicate that the CEMP-no stars of the Milky Way were born in low-mass dwarf galaxies, and later subsumed into the halo.

  6. Further candidates of supermassive stars in other galaxies

    International Nuclear Information System (INIS)

    Schmidt-Kaler, Th.; Feitzinger, J.V.

    1984-01-01

    To look for other supermassive stars in other galaxies means to answer the question: what is the spectroscopic and morphological signature of such objects. The interpretation of WR sources found in other supergiant HII complexes depends basically on our picture of 30 Dor and in particular of R136a. The authors have undertaken a search of possible sites of such supermassive stars on the basis of the morphology of 30 Dor and NGC 604. (Auth.)

  7. Galaxies

    International Nuclear Information System (INIS)

    1989-01-01

    In studies of the large scale structure of the universe there is a continuing need for extensive galaxy redshift determinations. Optically selected redshift surveys are of particular importance, since flux-limited samples record much higher space densities of galaxies than samples of similar size selected in other wavebands. A considerable amount of the South African Astronomical Observatory (SAAO) observing time is currently being devoted to carrying out a large southern galaxy redshift survey. A recently completed study, the Durham-SAAO redshift survey suggests that the mean density of matter is well below the critical limit for a closed universe and also that the universe may be homogenous at very large scales. Other research conducted by the SAAO include studies on: the distribution of galaxies; Seyfert galaxies; starburst and IRAS galaxies; interacting and compact galaxies; a re-evaluation of the Cepheid distance to NGC 300, and a search for quasars behind galaxies. 1 fig

  8. Clues on the hot star content and the ultraviolet output of elliptical galaxies

    International Nuclear Information System (INIS)

    Greggio, L.; Renzini, A.

    1990-01-01

    Purely energetic arguments are used here to investigate the conditions under which old, low-mass stars could be responsible for the UV rising branch of elliptical galaxies. It is argued that presently available observational data are insufficient to unambiguously decide which of various candidates provide the dominant contribution. It is found that the possibility for metal-rich, low-mass stars to evolve through sufficiently hot stages, provide enough UV photons, and produce the observed UV-metallicity correlation is primarily controlled by two poorly known trends with increasing metallicity: helium enrichment and mass-loss rate during the red giant phases. The classical hydrogen-burning post-AGB stars do not appear able to burn enough fuel to account for the most UV-powerful galaxies. Other hot star candidates which appear more promising are identified. It is shown that a very important role is played by the actual metallicity distribution within individual galaxies. 154 refs

  9. Contribution of parsec-scale material onto the polarized X-ray spectrum of type-1 Seyfert galaxies

    Science.gov (United States)

    Marin, F.; Dovčiak, M.; Kammoun, E. S.

    2018-04-01

    Type-1 radio-quiet active galactic nuclei (AGN) are seen from the polar direction and offer a direct view of their central X-ray engine. If most of X-ray photons have traveled from the primary source to the observer with minimum light-matter interaction, a fraction of radiation is emitted at different directions and is reprocessed by the parsec-scale equatorial circumnuclear region or the polar outflows. It is still unclear how much the polarization expected from type-1 AGN is affected by radiation that have scattered on the distant AGN components. In this paper, we examine the contribution of remote material onto the polarized X-ray spectrum of type-1 Seyfert galaxies using radiative transfer Monte Carlo codes. We find that the observed X-ray polarization strongly depends on the initial polarization emerging from the disk-corona system. For unpolarized and parallelly polarized photons (parallel to the disk), the contribution is negligible below 3 keV and tends to increase the polarization degree by up to one percentage points at higher energies, smoothing out the energy-dependent variations of the polarization angle. For perpendicularly polarized corona photons, the addition of the circumnuclear scattered (parallel) component adds to the polarization above 10keV, decreases polarization below 10 keV and shifts the expected 90° rotation of the polarization angle to lower energies. In conclusion, we found that simulations of Seyfert-1s that do not account for reprocessing on the parsec-scale equatorial and polar material are under- or over-estimating the X-ray polarization by 0.1 - 1 percentage points.

  10. The shortest-known-period star orbiting our Galaxy's supermassive black hole.

    Science.gov (United States)

    Meyer, L; Ghez, A M; Schödel, R; Yelda, S; Boehle, A; Lu, J R; Do, T; Morris, M R; Becklin, E E; Matthews, K

    2012-10-05

    Stars with short orbital periods at the center of our Galaxy offer a powerful probe of a supermassive black hole. Over the past 17 years, the W. M. Keck Observatory has been used to image the galactic center at the highest angular resolution possible today. By adding to this data set and advancing methodologies, we have detected S0-102, a star orbiting our Galaxy's supermassive black hole with a period of just 11.5 years. S0-102 doubles the number of known stars with full phase coverage and periods of less than 20 years. It thereby provides the opportunity, with future measurements, to resolve degeneracies in the parameters describing the central gravitational potential and to test Einstein's theory of general relativity in an unexplored regime.

  11. Direct Measurements of Dust Attenuation in z ~ 1.5 Star-forming Galaxies from 3D-HST: Implications for Dust Geometry and Star Formation Rates

    Science.gov (United States)

    Price, Sedona H.; Kriek, Mariska; Brammer, Gabriel B.; Conroy, Charlie; Förster Schreiber, Natascha M.; Franx, Marijn; Fumagalli, Mattia; Lundgren, Britt; Momcheva, Ivelina; Nelson, Erica J.; Skelton, Rosalind E.; van Dokkum, Pieter G.; Whitaker, Katherine E.; Wuyts, Stijn

    2014-06-01

    The nature of dust in distant galaxies is not well understood, and until recently few direct dust measurements have been possible. We investigate dust in distant star-forming galaxies using near-infrared grism spectra of the 3D-HST survey combined with archival multi-wavelength photometry. These data allow us to make a direct comparison between dust around star-forming regions (A V, H II ) and the integrated dust content (A V, star). We select a sample of 163 galaxies between 1.36 =5 and measure Balmer decrements from stacked spectra to calculate A V, H II . First, we stack spectra in bins of A V, star, and find that A V, H II = 1.86 A V, star, with a significance of σ = 1.7. Our result is consistent with the two-component dust model, in which galaxies contain both diffuse and stellar birth cloud dust. Next, we stack spectra in bins of specific star formation rate (log SSFR), star formation rate (log SFR), and stellar mass (log M *). We find that on average A V, H II increases with SFR and mass, but decreases with increasing SSFR. Interestingly, the data hint that the amount of extra attenuation decreases with increasing SSFR. This trend is expected from the two-component model, as the extra attenuation will increase once older stars outside the star-forming regions become more dominant in the galaxy spectrum. Finally, using Balmer decrements we derive dust-corrected Hα SFRs, and find that stellar population modeling produces incorrect SFRs if rapidly declining star formation histories are included in the explored parameter space.

  12. Variable Stars in (Not Only) Dwarf Galaxies : Key Tools to Constrain Distances and Stellar Content

    NARCIS (Netherlands)

    Fiorentino, G.; Koleva, M; Prugniel, P; Vauglin,

    2011-01-01

    The important role of Cepheid and RR Lyrae variable stars and what they teach us about dwarf galaxies is discussed. Despite ever improving star formation histories of Local Group dwarf galaxies uncertainties remain, in particular in the identification and characterisation of the oldest stellar

  13. Simulating neutron star mergers as r-process sources in ultrafaint dwarf galaxies

    Science.gov (United States)

    Safarzadeh, Mohammadtaher; Scannapieco, Evan

    2017-10-01

    To explain the high observed abundances of r-process elements in local ultrafaint dwarf (UFD) galaxies, we perform cosmological zoom simulations that include r-process production from neutron star mergers (NSMs). We model star formation stochastically and simulate two different haloes with total masses ≈108 M⊙ at z = 6. We find that the final distribution of [Eu/H] versus [Fe/H] is relatively insensitive to the energy by which the r-process material is ejected into the interstellar medium, but strongly sensitive to the environment in which the NSM event occurs. In one halo, the NSM event takes place at the centre of the stellar distribution, leading to high levels of r-process enrichment such as seen in a local UFD, Reticulum II (Ret II). In a second halo, the NSM event takes place outside of the densest part of the galaxy, leading to a more extended r-process distribution. The subsequent star formation occurs in an interstellar medium with shallow levels of r-process enrichment that results in stars with low levels of [Eu/H] compared to Ret II stars even when the maximum possible r-process mass is assumed to be ejected. This suggests that the natal kicks of neutron stars may also play an important role in determining the r-process abundances in UFD galaxies, a topic that warrants further theoretical investigation.

  14. Surface density: a new parameter in the fundamental metallicity relation of star-forming galaxies

    Science.gov (United States)

    Hashimoto, Tetsuya; Goto, Tomotsugu; Momose, Rieko

    2018-04-01

    Star-forming galaxies display a close relation among stellar mass, metallicity, and star formation rate (or molecular-gas mass). This is known as the fundamental metallicity relation (FMR) (or molecular-gas FMR), and it has a profound implication on models of galaxy evolution. However, there still remains a significant residual scatter around the FMR. We show here that a fourth parameter, the surface density of stellar mass, reduces the dispersion around the molecular-gas FMR. In a principal component analysis of 29 physical parameters of 41 338 star-forming galaxies, the surface density of stellar mass is found to be the fourth most important parameter. The new 4D fundamental relation forms a tighter hypersurface that reduces the metallicity dispersion to 50 per cent of that of the molecular-gas FMR. We suggest that future analyses and models of galaxy evolution should consider the FMR in a 4D space that includes surface density. The dilution time-scale of gas inflow and the star-formation efficiency could explain the observational dependence on surface density of stellar mass.

  15. Using photometrically selected metal-poor stars to study dwarf galaxies and the Galactic stellar halo

    Science.gov (United States)

    Youakim, Kris; Starkenburg, Else; Martin, Nicolas; Pristine Team

    2018-06-01

    The Pristine survey is a narrow-band photometric survey designed to efficiently search for extremely metal-poor (EMP) stars. In the first three years of the survey, it has demonstrated great efficiency at finding EMP stars, and also great promise for increasing the current, small sample of the most metal-poor stars. The present sky coverage is ~2500 square degrees in the Northern Galactic Halo, including several individual fields targeting dwarf galaxies. By efficiently identifying member stars in the outskirts of known faint dwarf galaxies, the dynamical histories and chemical abundance patterns of these systems can be understood in greater detail. Additionally, with reliable photometric metallicities over a large sky coverage it is possible to perform a large scale clustering analysis in the Milky Way halo, and investigate the characteristic scale of substructure at different metallicities. This can reveal important details about the process of building up the halo through dwarf galaxy accretion, and offer insight into the connection between dwarf galaxies and the Milky Way halo. In this talk I will outline our results on the search for the most pristine stars, with a focus on how we are using this information to advance our understanding of dwarf galaxies and their contribution to the formation of the Galactic stellar halo.

  16. Population III Stars and Remnants in High-redshift Galaxies

    Science.gov (United States)

    Xu, Hao; Wise, John H.; Norman, Michael L.

    2013-08-01

    Recent simulations of Population III star formation have suggested that some fraction form in binary systems, in addition to having a characteristic mass of tens of solar masses. The deaths of metal-free stars result in the initial chemical enrichment of the universe and the production of the first stellar-mass black holes. Here we present a cosmological adaptive mesh refinement simulation of an overdense region that forms a few 109 M ⊙ dark matter halos and over 13,000 Population III stars by redshift 15. We find that most halos do not form Population III stars until they reach M vir ~ 107 M ⊙ because this biased region is quickly enriched from both Population III and galaxies, which also produce high levels of ultraviolet radiation that suppress H2 formation. Nevertheless, Population III stars continue to form, albeit in more massive halos, at a rate of ~10-4 M ⊙ yr-1 Mpc-3 at redshift 15. The most massive starless halo has a mass of 7 × 107 M ⊙, which could host massive black hole formation through the direct gaseous collapse scenario. We show that the multiplicity of the Population III remnants grows with halo mass above 108 M ⊙, culminating in 50 remnants located in 109 M ⊙ halos on average. This has implications that high-mass X-ray binaries and intermediate-mass black holes that originate from metal-free stars may be abundant in high-redshift galaxies.

  17. Detection of a Population of Carbon-enhanced Metal-poor Stars in the Sculptor Dwarf Spheroidal Galaxy

    Science.gov (United States)

    Chiti, Anirudh; Simon, Joshua D.; Frebel, Anna; Thompson, Ian B.; Shectman, Stephen A.; Mateo, Mario; Bailey, John I., III; Crane, Jeffrey D.; Walker, Matthew

    2018-04-01

    The study of the chemical abundances of metal-poor stars in dwarf galaxies provides a venue to constrain paradigms of chemical enrichment and galaxy formation. Here we present metallicity and carbon abundance measurements of 100 stars in Sculptor from medium-resolution (R ∼ 2000) spectra taken with the Magellan/Michigan Fiber System mounted on the Magellan-Clay 6.5 m telescope at Las Campanas Observatory. We identify 24 extremely metal-poor star candidates ([Fe/H] 1.0). The existence of a large number of CEMP stars both in the halo and in Sculptor suggests that some halo CEMP stars may have originated from accreted early analogs of dwarf galaxies. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  18. Comparison of some properties of star forming galaxies and active galactic nuclei between two BOSS galaxy samples from SDSS DR9

    International Nuclear Information System (INIS)

    Deng Xin-Fa

    2014-01-01

    Using the LOWZ and CMASS samples of the ninth data release (DR9) from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), I investigate properties of star forming galaxies and active galactic nuclei (AGNs). The CMASS sample seriously suffers from the radial selection effect, even within the redshift 0.44 ≤ z ≤ 0.6, which will likely lead to statistical conclusions in the CMASS sample being less robust. In the LOWZ sample, the fraction of star-forming galaxies is nearly constant from the least dense regime to the densest regime; the AGN fraction is also insensitive to the local environment. In addition, I note that in the LOWZ sample, the distributions of stellar mass and stellar velocity dispersion for star forming galaxies and AGNs are nearly the same

  19. Analysis of the star formation histories of galaxies in different environments: from low to high density

    Science.gov (United States)

    Ortega-Minakata, René A.

    2015-11-01

    In this thesis, a value-added cataloge of 403,372 SDSS-DR7 galaxies is presented. This catalogue incorporates information on their stellar populations, including their star formation histories, their dominant emission-line activity type, inferred morphology and a measurement of their environmental density. The sample that formed this catalogue was selected from the SDSS-DR7 (Legacy) spectroscopic catalogue of galaxies in the Northern Galactic Cap, selecting only galaxies with high-quality spectra and redshift determination, and photometric measurements with small errors. Also, galaxies near the edge of the photometric survey footprint were excluded to avoid errors in the determination of their environment. Only galaxies in the 0.03-0.30 redshift range were considered. Starlight fits of the spectra of these galaxies were used to obtain information on their star formation history and stellar mass, velocity dispersion and mean age. From the fit residuals, emission-line fluxes were measured and used to obtain the dominant activity type of these galaxies using the BPT diagnostic diagram. A neighbour search code was written and applied to the catalogue to measure the local environmental density of these galaxies. This code counts the number of neighbours within a fixed search radius and a radial velocity range centered at each galaxy's radial velocity. A projected radius of 1.5 Mpc and a range of ± 2,500 km/s, both centered at the redshift of the target galaxy, were used to search and count all the neighbours of each galaxy in the catalogue. The neighbours were counted from the photometric catalogue of the SDSS-DR7 using photometric redshifts, to avoid incompleteness of the spectroscopic catalogue. The morphology of the galaxies in the catalogue was inferred by inverting previously found relations between subsamples of galaxies with visual morphology classification and their optical colours and concentration of light. The galaxies in the catalogue were matched to six

  20. Profiles of the stochastic star formation process in spiral galaxies

    International Nuclear Information System (INIS)

    Comins, N.

    1981-01-01

    The formation of spiral arms in disc galaxies is generally attributed to the effects of spiral density waves. These relatively small (i.e. 5 per cent) non-axisymmetric perturbations of the interstellar medium cause spiral arms highlighted by O and B type stars to be created. In this paper another mechanism for spiral arm formation, the stochastic self-propagating star formation (SSPSF) process is examined. The SSPSF process combines the theory that shock waves from supernovae will compress the interstellar medium to create new stars, some of which will be massive enough to also supernova, with a disc galaxy's differential rotation to create spiral arms. The present work extends this process to the case where the probability of star formation from supernova shocks decreases with galactic radius. Where this work and previous investigations overlap (namely the uniform probability case), the agreement is very good, pretty spirals with various numbers of arms are generated. The decreasing probability cases, taken to vary as rsup(-j), still form spiral arms for 0 1.5 the spiral structure is essentially non-existent. (author)

  1. Variable stars in the Pegasus dwarf galaxy (DDO 216)

    Energy Technology Data Exchange (ETDEWEB)

    Hoessel, J.G.; Abbott, M.J.; Saha, A.; Mossman, A.E.; Danielson, G.E. (Washburn Observatory, Madison, WI (USA) Space Telescope Science Institute, Baltimore, MD (USA) Palomar Observatory, Pasadena, CA (USA))

    1990-10-01

    Observations obtained over a period of five years of the resolved stars in the Pegasus dwarf irregular galaxy (DDO 216) have been searched for variable stars. Thirty-one variables were found, and periods established for 12. Two of these variable stars are clearly eclipsing variables, seven are very likely Cepheid variables, and the remaining three are probable Cepheids. The period-luminosity relation for the Cepheids indicates a distance modulus for Pegasus of m - M = 26.22 + or - 0.20. This places Pegasus very near the zero-velocity surface of the Local Group. 25 refs.

  2. An Infrared Method for Discovering AGN: Lick Spectroscopy of New Seyfert I’s in the Kepler Fields

    Science.gov (United States)

    Tsan, Tran; Edelson, Rick; Smith, Krista Lynne; Malkan, Matthew Arnold

    2016-06-01

    Spectra of Active Galactic Nuclei (AGN) candidates in the Kepler fields were observed at Lick Observatory. We used the Shane 3.0-meter telescope with the Kast double spectrograph, covering from 0.35-0.8 μm. Using IRAF, we extracted 1D spectra from the original 2D long-slit images of the candidates. Our main goals are to determine the redshift of the candidates and identify any new AGN. The wavelength and flux calibration are fairly accurate, and most spectra have a good signal-to-noise ratio. Twenty- seven nights of data (consisting of 106 candidates) have been analyzed. For 89% of them, we have determined the redshifts to a precision of δz = 0.0005 in most cases. The rest give inconclusive results. 19 of the candidates turn out to be galactic stars. The most commonly identified emission lines are Hα+[NII], the [OIII] doublet, and Hβ. 44 of the candidates show a Broad Line Region, meaning that their wide permitted lines classify them as either Seyfert I’s or quasars. 6 of these have redshifts above 0.5, indicating that they are highly luminous quasars. One candidate appears to be a bl-lac object. We are now analyzing the Kepler light curves of these Seyfert galaxies.

  3. The radio structure of the peculiar narrow-line Seyfert 1 galaxy candidate J1100+4421

    Science.gov (United States)

    Gabányi, K. É.; Frey, S.; Paragi, Z.; Järvelä, E.; Morokuma, T.; An, T.; Tanaka, M.; Tar, I.

    2018-01-01

    Narrow-line Seyfert 1 galaxies (NLS1) are an intriguing subclass of active galactic nuclei. Their observed properties indicate low central black hole mass and high accretion rate. The extremely radio-loud NLS1 sources often show relativistic beaming and are usually regarded as younger counterparts of blazars. Recently, the object SDSS J110006.07+442144.3 was reported as a candidate NLS1 source. The characteristics of its dramatic optical flare indicated its jet-related origin. The spectral energy distribution of the object was similar to that of the γ-ray detected radio-loud NLS1, PMN J0948+0022. Our high-resolution European very long baseline interferometry network observations at 1.7 and 5 GHz revealed a compact core feature with a brightness temperature of ≳1010 K. Using the lowest brightness temperature value and assuming a moderate Lorentz factor of ∼9, the jet viewing angle is ≲26°. Archival Very Large Array data show a large-scale radio structure with a projected linear size of ∼150 kpc reminiscent of double-sided morphology.

  4. The Origin of the Extra-nuclear X-ray Emission in the Seyfert Galaxy NGC 2992

    Science.gov (United States)

    Colbert, E. J. M.; Strickland, D. K.; Veilleux, S.; Weaver, K. A.

    2004-12-01

    We present an analysis of a Chandra ACIS observation of the edge-on Seyfert galaxy NGC 2992. We find extended X-ray emission with Lx(total) in excess of 10**40 erg/s. The brightest nebula is positioned a few 100 pc from the X-ray core, and is spatially coincident with optical line and radio emission. This emission nebula may be energized by the AGN, as opposed to a nuclear starburst. The expected kpc-scale X-ray emission due to a starburst-driven wind is larger than a few 10**39 erg/s, and we present large-scale X-ray emission that may be associated with such an outflow. The extra-nuclear emission has a very soft spectrum. Chandra and XMM spectra of the total nuclear region show a very prominent ``soft excess'' below 2-3 keV. We shall discuss the spectral properties of this soft excess, and will compare with the results from the spatial analysis, and with AGN and starburst models for extranuclear X-ray nebulae.

  5. The luminosity function of star clusters in 20 star-forming galaxies based on Hubble legacy archive photometry

    International Nuclear Information System (INIS)

    Whitmore, Bradley C.; Bowers, Ariel S.; Lindsay, Kevin; Ansari, Asna; Evans, Jessica; Chandar, Rupali; Larsen, Soeren

    2014-01-01

    Luminosity functions (LFs) have been determined for star cluster populations in 20 nearby (4-30 Mpc), star-forming galaxies based on Advanced Camera for Surveys source lists generated by the Hubble Legacy Archive (HLA). These cluster catalogs provide one of the largest sets of uniform, automatically generated cluster candidates available in the literature at present. Comparisons are made with other recently generated cluster catalogs demonstrating that the HLA-generated catalogs are of similar quality, but in general do not go as deep. A typical cluster LF can be approximated by a power law, dN/dL∝L α , with an average value for α of –2.37 and rms scatter = 0.18 when using the F814W ('I') band. A comparison of fitting results based on methods that use binned and unbinned data shows good agreement, although there may be a systematic tendency for the unbinned (maximum likelihood) method to give slightly more negative values of α for galaxies with steeper LFs. We find that galaxies with high rates of star formation (or equivalently, with the brightest or largest numbers of clusters) have a slight tendency to have shallower values of α. In particular, the Antennae galaxy (NGC 4038/39), a merging system with a relatively high star formation rate (SFR), has the second flattest LF in the sample. A tentative correlation may also be present between Hubble type and values of α, in the sense that later type galaxies (i.e., Sd and Sm) appear to have flatter LFs. Hence, while there do appear to be some weak correlations, the relative similarity in the values of α for a large number of star-forming galaxies suggests that, to first order, the LFs are fairly universal. We examine the bright end of the LFs and find evidence for a downturn, although it only pertains to about 1% of the clusters. Our uniform database results in a small scatter (≈0.4 to 0.5 mag) in the correlation between the magnitude of the brightest cluster (M brightest ) and log of the number

  6. The Ultraviolet and Infrared Star Formation Rates of Compact Group Galaxies: An Expanded Sample

    Science.gov (United States)

    Lenkic, Laura; Tzanavaris, Panayiotis; Gallagher, Sarah C.; Desjardins, Tyler D.; Walker, Lisa May; Johnson, Kelsey E.; Fedotov, Konstantin; Charlton, Jane; Cardiff, Ann H.; Durell, Pat R.

    2016-01-01

    Compact groups of galaxies provide insight into the role of low-mass, dense environments in galaxy evolution because the low velocity dispersions and close proximity of galaxy members result in frequent interactions that take place over extended time-scales. We expand the census of star formation in compact group galaxies by Tzanavaris et al. (2010) and collaborators with Swift UVOT, Spitzer IRAC and MIPS 24 m photometry of a sample of 183 galaxies in 46 compact groups. After correcting luminosities for the contribution from old stellar populations, we estimate the dust-unobscured star formation rate (SFRUV) using the UVOT uvw2 photometry. Similarly, we use the MIPS 24 m photometry to estimate the component of the SFR that is obscured by dust (SFRIR). We find that galaxies which are MIR-active (MIR-red), also have bluer UV colours, higher specific SFRs, and tend to lie in Hi-rich groups, while galaxies that are MIR-inactive (MIR-blue) have redder UV colours, lower specific SFRs, and tend to lie in Hi-poor groups. We find the SFRs to be continuously distributed with a peak at about 1 M yr1, indicating this might be the most common value in compact groups. In contrast, the specific SFR distribution is bimodal, and there is a clear distinction between star-forming and quiescent galaxies. Overall, our results suggest that the specific SFR is the best tracer of gas depletion and galaxy evolution in compact groups.

  7. NGC2403: a flocculent galaxy with two principal centres of star formation

    International Nuclear Information System (INIS)

    Beckman, J.; Cepa, J.; Prieto, M.; Munoz Tunon, C.

    1987-01-01

    We have mapped the nearby flocculent spiral galaxy in the visible U, B and V bands, as well as in the near infrared J, H and K bands, with a linear resolution of 900 pc. The galaxy, which does not show marked spiral structure in visible photographs (Tammann and Sandage, 1968) nor in the 21 cm line of HI (Wevers, 1984) is found to have two principal current centres of large-scale star formation, signposted by centres of ultraviolet and blue flux. One is in the nucleus, defined by the geometrical centre of the HI emission, and the other at some 1.5 kpc radial distance away. The outer star-forming region is the more intense and the younger of the two, and corresponds to a local peak in the HI surface density. We use the colours of the star-forming regions and of the integrated galaxy to make a first order estimate of the stellar population distribution. (Author)

  8. MORPHOLOGICAL QUENCHING OF STAR FORMATION: MAKING EARLY-TYPE GALAXIES RED

    International Nuclear Information System (INIS)

    Martig, Marie; Bournaud, Frederic; Teyssier, Romain; Dekel, Avishai

    2009-01-01

    We point out a natural mechanism for quenching of star formation in early-type galaxies (ETGs). It automatically links the color of a galaxy with its morphology and does not require gas consumption, removal or termination of gas supply. Given that star formation takes place in gravitationally unstable gas disks, it can be quenched when a disk becomes stable against fragmentation to bound clumps. This can result from the growth of a stellar spheroid, for instance by mergers. We present the concept of morphological quenching (MQ) using standard disk instability analysis, and demonstrate its natural occurrence in a cosmological simulation using an efficient zoom-in technique. We show that the transition from a stellar disk to a spheroid can be sufficient to stabilize the gas disk, quench star formation, and turn an ETG red and dead while gas accretion continues. The turbulence necessary for disk stability can be stirred up by sheared perturbations within the disk in the absence of bound star-forming clumps. While other quenching mechanisms, such as gas stripping, active galactic nucleus feedback, virial shock heating, and gravitational heating are limited to massive halos, MQ can explain the appearance of red ETGs also in halos less massive than ∼10 12 M sun . The dense gas disks observed in some of today's red ellipticals may be the relics of this mechanism, whereas red galaxies with quenched gas disks could be more frequent at high redshift.

  9. A Young Star Cluster in the Leo a Galaxy

    Directory of Open Access Journals (Sweden)

    Stonkutė R.

    2015-09-01

    Full Text Available We report a serendipitous discovery of a star cluster in the dwarf irregular galaxy Leo A. Young age (~28 Myr and low mass (~510 M⊙ estimates are based on the isochrone fit assuming a metallicity derived for HII regions (Z = 0.0007. The color-magnitude diagrams of the stars, located in and around the cluster area, and the results of aperture photometry of the cluster itself are presented.

  10. CANDELS: THE CORRELATION BETWEEN GALAXY MORPHOLOGY AND STAR FORMATION ACTIVITY AT z ∼ 2

    International Nuclear Information System (INIS)

    Lee, Bomee; Giavalisco, Mauro; Williams, Christina C.; Guo Yicheng; Faber, S. M.; Lotz, Jennifer; Ferguson, Henry C.; Koekemoer, Anton; Grogin, Norman; Van der Wel, Arjen; Kocevski, Dale; Conselice, Christopher J.; Wuyts, Stijn; Dekel, Avishai; Kartaltepe, Jeyhan; Bell, Eric F.

    2013-01-01

    We discuss the state of the assembly of the Hubble sequence in the mix of bright galaxies at redshift 1.4 AB ∼ 26, selected from the HST/ACS and WFC3 images of the GOODS-South field obtained as part of the GOODS and CANDELS observations. We investigate the relationship between the star formation properties and morphology using various parametric diagnostics, such as the Sérsic light profile, Gini (G), M 20 , concentration (C), asymmetry (A), and multiplicity (Ψ) parameters. Our sample clearly separates into massive, red, and passive galaxies versus less massive, blue, and star-forming ones, and this dichotomy correlates very well with the galaxies' morphological properties. Star-forming galaxies show a broad variety of morphological features, including clumpy structures and bulges mixed with faint low surface brightness features, generally characterized by disky-type light profiles. Passively evolving galaxies, on the other hand, very often have compact light distribution and morphology typical of today's spheroidal systems. We also find that artificially redshifted local galaxies have a similar distribution with z ∼ 2 galaxies in a G-M 20 plane. Visual inspection between the rest-frame optical and UV images show that there is a generally weak morphological k-correction for galaxies at z ∼ 2, but the comparison with non-parametric measures show that galaxies in the rest-frame UV are somewhat clumpier than rest-frame optical. Similar general trends are observed in the local universe among massive galaxies, suggesting that the backbone of the Hubble sequence was already in place at z ∼ 2

  11. Carbon-enhanced metal-poor stars in dwarf galaxies

    NARCIS (Netherlands)

    Salvadori, Stefania; Skúladóttir, Ása; Tolstoy, Eline

    2015-01-01

    We investigate the frequency and origin of carbon-enhanced metal-poor (CEMP) stars in Local Group dwarf galaxies by means of a statistical, data-calibrated cosmological model for the hierarchical build-up of the Milky Way and its dwarf satellites. The model self-consistently explains the variation

  12. THE RISE AND FALL OF THE STAR FORMATION HISTORIES OF BLUE GALAXIES AT REDSHIFTS 0.2 < z < 1.4

    Energy Technology Data Exchange (ETDEWEB)

    Pacifici, Camilla [Yonsei University Observatory, Yonsei University, Seoul 120-749 (Korea, Republic of); Kassin, Susan A.; Gardner, Jonathan P. [Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Weiner, Benjamin [Steward Observatory, 933 North Cherry Street, University of Arizona, Tucson, AZ 85721 (United States); Charlot, Stephane [UPMC-CNRS, UMR7095, Institut d' Astrophysique de Paris, F-75014 Paris (France)

    2013-01-01

    Popular cosmological scenarios predict that galaxies form hierarchically from the merger of many progenitors, each with their own unique star formation history (SFH). We use a sophisticated approach to constrain the SFHs of 4517 blue (presumably star-forming) galaxies with spectroscopic redshifts in the range 0.2 < z < 1.4 from the All-Wavelength Extended Groth Strip International Survey. This consists in the Bayesian analysis of the observed galaxy spectral energy distributions with a comprehensive library of synthetic spectra assembled using realistic, hierarchical star formation, and chemical enrichment histories from cosmological simulations. We constrain the SFH of each galaxy in our sample by comparing the observed fluxes in the B, R, I, and K{sub s} bands and rest-frame optical emission-line luminosities with those of one million model spectral energy distributions. We explore the dependence of the resulting SFHs on galaxy stellar mass and redshift. We find that the average SFHs of high-mass galaxies rise and fall in a roughly symmetric bell-shaped manner, while those of low-mass galaxies rise progressively in time, consistent with the typically stronger activity of star formation in low-mass compared to high-mass galaxies. For galaxies of all masses, the star formation activity rises more rapidly at high than at low redshift. These findings imply that the standard approximation of exponentially declining SFHs widely used to interpret observed galaxy spectral energy distributions may not be appropriate to constrain the physical parameters of star-forming galaxies at intermediate redshifts.

  13. Direct measurements of dust attenuation in z ∼ 1.5 star-forming galaxies from 3D-HST: Implications for dust geometry and star formation rates

    International Nuclear Information System (INIS)

    Price, Sedona H.; Kriek, Mariska; Brammer, Gabriel B.; Conroy, Charlie; Schreiber, Natascha M. Förster; Wuyts, Stijn; Franx, Marijn; Fumagalli, Mattia; Lundgren, Britt; Momcheva, Ivelina; Nelson, Erica J.; Van Dokkum, Pieter G.; Skelton, Rosalind E.; Whitaker, Katherine E.

    2014-01-01

    The nature of dust in distant galaxies is not well understood, and until recently few direct dust measurements have been possible. We investigate dust in distant star-forming galaxies using near-infrared grism spectra of the 3D-HST survey combined with archival multi-wavelength photometry. These data allow us to make a direct comparison between dust around star-forming regions (A V, H II ) and the integrated dust content (A V, star ). We select a sample of 163 galaxies between 1.36 ≤ z ≤ 1.5 with Hα signal-to-noise ratio ≥5 and measure Balmer decrements from stacked spectra to calculate A V, H II . First, we stack spectra in bins of A V, star , and find that A V, H II = 1.86 A V, star , with a significance of σ = 1.7. Our result is consistent with the two-component dust model, in which galaxies contain both diffuse and stellar birth cloud dust. Next, we stack spectra in bins of specific star formation rate (log SSFR), star formation rate (log SFR), and stellar mass (log M * ). We find that on average A V, H II increases with SFR and mass, but decreases with increasing SSFR. Interestingly, the data hint that the amount of extra attenuation decreases with increasing SSFR. This trend is expected from the two-component model, as the extra attenuation will increase once older stars outside the star-forming regions become more dominant in the galaxy spectrum. Finally, using Balmer decrements we derive dust-corrected Hα SFRs, and find that stellar population modeling produces incorrect SFRs if rapidly declining star formation histories are included in the explored parameter space.

  14. STAR FORMATION AND DUST OBSCURATION AT z ∼ 2: GALAXIES AT THE DAWN OF DOWNSIZING

    International Nuclear Information System (INIS)

    Pannella, M.; Carilli, C. L.; Owen, F. N.; Strazzullo, V.; Daddi, E.; Aussel, H.; McCracken, H. J.; Mellier, Y.; Renzini, A.; Civano, F.; Koekemoer, A. M.; Schinnerer, E.; Scoville, N.; Smolcic, V.; Salvato, M.; Taniguchi, Y.; Kneib, J. P.; Ilbert, O.; Thompson, D.; Willott, C. J.

    2009-01-01

    We present first results of a study aimed to constrain the star formation rate (SFR) and dust content of galaxies at z ∼ 2. We use a sample of BzK-selected star-forming galaxies, drawn from the Cosmic Evolution Survey, to perform a stacking analysis of their 1.4 GHz radio continuum as a function of different stellar population properties, after cleaning the sample from contamination by active galactic nuclei. Dust unbiased SFRs are derived from radio fluxes assuming the local radio-IR correlation. The main results of this work are: (1) specific star formation rate (SSFR)s are constant over about 1 dex in stellar mass and up to the highest stellar mass probed, (2) the dust attenuation is a strong function of galaxy stellar mass with more massive galaxies being more obscured than lower mass objects, (3) a single value of the UV extinction applied to all galaxies would lead to a gross underestimate of the SFR in massive galaxies, (4) correcting the observed UV luminosities for dust attenuation based on the Calzetti recipe provides results in very good agreement with the radio derived ones, (5) the mean SSFR of our sample steadily decreases by a factor of ∼4 with decreasing redshift from z = 2.3 to 1.4 and a factor of ∼40 down the local universe. These empirical SFRs would cause galaxies to dramatically overgrow in mass if maintained all the way to low redshifts; we suggest that this does not happen because star formation is progressively quenched, likely starting from the most massive galaxies.

  15. Chemical analysis of carbon stars in the local group - l.  The small magnetic cloud and the Sagittarius Dwarf Spheroidal galaxy

    DEFF Research Database (Denmark)

    de Laverny...[], P.; Abia, C.; Dominguez, I

    2006-01-01

    Stars: abundances, stars: carbon, nuclear reactions, nucleosynthesis, abundances, galaxies: Local Group Udgivelsesdato: Feb.......Stars: abundances, stars: carbon, nuclear reactions, nucleosynthesis, abundances, galaxies: Local Group Udgivelsesdato: Feb....

  16. Emission line galaxies and active galactic nuclei in WINGS clusters

    Science.gov (United States)

    Marziani, P.; D'Onofrio, M.; Bettoni, D.; Poggianti, B. M.; Moretti, A.; Fasano, G.; Fritz, J.; Cava, A.; Varela, J.; Omizzolo, A.

    2017-03-01

    We present the analysis of the emission line galaxies members of 46 low-redshift (0.04 employing diagnostic diagrams. We examined the emission line properties and frequencies of star-forming galaxies, transition objects, and active galactic nuclei (AGNs: LINERs and Seyferts), unclassified galaxies with emission lines, and quiescent galaxies with no detectable line emission. A deficit of emission line galaxies in the cluster environment is indicated by both a lower frequency, and a systematically lower Balmer emission line equivalent width and luminosity with respect to control samples; this implies a lower amount of ionized gas per unit mass and a lower star formation rate if the source is classified as Hii region. A sizable population of transition objects and of low-luminosity LINERs (≈ 10-20% of all emission line galaxies) are detected among WINGS cluster galaxies. These sources are a factor of ≈1.5 more frequent, or at least as frequent, as in control samples with respect to Hii sources. Transition objects and LINERs in clusters are most affected in terms ofline equivalent width by the environment and appear predominantly consistent with so-called retired galaxies. Shock heating can be a possible gas excitation mechanism that is able to account for observed line ratios. Specific to the cluster environment, we suggest interaction between atomic and molecular gas and the intracluster medium as a possible physical cause of line-emitting shocks. The data whose description is provided in Table B.1, and emission line catalog of the WINGS database are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A83

  17. GAS REGULATION OF GALAXIES: THE EVOLUTION OF THE COSMIC SPECIFIC STAR FORMATION RATE, THE METALLICITY-MASS-STAR-FORMATION RATE RELATION, AND THE STELLAR CONTENT OF HALOS

    Energy Technology Data Exchange (ETDEWEB)

    Lilly, Simon J.; Carollo, C. Marcella; Pipino, Antonio; Peng Yingjie [Institute for Astronomy, Department of Physics, ETH Zurich, CH-8093 Zurich (Switzerland); Renzini, Alvio [Department of Physics and Astronomy Galileo Galilei, Universita degli Studi di Padova, via Marzolo 8, I-35131 Padova (Italy)

    2013-08-01

    A very simple physical model of galaxies is one in which the formation of stars is instantaneously regulated by the mass of gas in a reservoir with mass loss scaling with the star-formation rate (SFR). This model links together three different aspects of the evolving galaxy population: (1) the cosmic time evolution of the specific star-formation rate (sSFR) relative to the growth of halos, (2) the gas-phase metallicities across the galaxy population and over cosmic time, and (3) the ratio of the stellar to dark matter mass of halos. The gas regulator is defined by the gas consumption timescale ({epsilon}{sup -1}) and the mass loading {lambda} of the wind outflow {lambda}{center_dot}SFR. The simplest regulator, in which {epsilon} and {lambda} are constant, sets the sSFR equal to exactly the specific accretion rate of the galaxy; more realistic situations lead to an sSFR that is perturbed from this precise relation. Because the gas consumption timescale is shorter than the timescale on which the system evolves, the metallicity Z is set primarily by the instantaneous operation of the regulator system rather than by the past history of the system. The metallicity of the gas reservoir depends on {epsilon}, {lambda}, and sSFR, and the regulator system therefore naturally produces a Z(m{sub star}, SFR) relation if {epsilon} and {lambda} depend on the stellar mass m{sub star}. Furthermore, this relation will be the same at all epochs unless the parameters {epsilon} and {lambda} themselves change with time. A so-called fundamental metallicity relation is naturally produced by these conditions. The overall mass-metallicity relation Z(m{sub star}) directly provides the fraction f{sub star}(m{sub star}) of incoming baryons that are being transformed into stars. The observed Z(m{sub star}) relation of Sloan Digital Sky Survey (SDSS) galaxies implies a strong dependence of stellar mass on halo mass that reconciles the different faint-end slopes of the stellar and halo mass

  18. Linking dwarf galaxies to halo building blocks with the most metal-poor star in Sculptor.

    Science.gov (United States)

    Frebel, Anna; Kirby, Evan N; Simon, Joshua D

    2010-03-04

    Current cosmological models indicate that the Milky Way's stellar halo was assembled from many smaller systems. On the basis of the apparent absence of the most metal-poor stars in present-day dwarf galaxies, recent studies claimed that the true Galactic building blocks must have been vastly different from the surviving dwarfs. The discovery of an extremely iron-poor star (S1020549) in the Sculptor dwarf galaxy based on a medium-resolution spectrum cast some doubt on this conclusion. Verification of the iron-deficiency, however, and measurements of additional elements, such as the alpha-element Mg, are necessary to demonstrate that the same type of stars produced the metals found in dwarf galaxies and the Galactic halo. Only then can dwarf galaxy stars be conclusively linked to early stellar halo assembly. Here we report high-resolution spectroscopic abundances for 11 elements in S1020549, confirming its iron abundance of less than 1/4,000th that of the Sun, and showing that the overall abundance pattern follows that seen in low-metallicity halo stars, including the alpha-elements. Such chemical similarity indicates that the systems destroyed to form the halo billions of years ago were not fundamentally different from the progenitors of present-day dwarfs, and suggests that the early chemical enrichment of all galaxies may be nearly identical.

  19. GOODS-HERSCHEL: STAR FORMATION, DUST ATTENUATION, AND THE FIR–RADIO CORRELATION ON THE MAIN SEQUENCE OF STAR-FORMING GALAXIES UP TO z ≃ 4

    Energy Technology Data Exchange (ETDEWEB)

    Pannella, M.; Elbaz, D.; Daddi, E.; Hwang, H. S.; Schreiber, C.; Strazzullo, V.; Aussel, H.; Bethermin, M.; Cibinel, A.; Juneau, S.; Floc’h, E. Le; Leiton, R. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu—CNRS—Université Paris Diderot, CEA-Saclay, F-91191 Gif-sur-Yvette (France); Dickinson, M. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Buat, V. [Aix-Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR7326, F-13388, Marseille (France); Charmandaris, V.; Magdis, G. [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, 15236, Penteli (Greece); Ivison, R. J. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Borgne, D. Le [Institut d’Astrophysique de Paris, UMR 7095, CNRS, 98bis boulevard Arago, F-75005 Paris (France); Lin, L. [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 106, Taiwan (China); Morrison, G. E. [Institute for Astronomy, University of Hawaii, Honolulu, Hawaii, HI-96822 (United States); and others

    2015-07-10

    We use deep panchromatic data sets in the GOODS-N field, from GALEX to the deepest Herschel far-infrared (FIR) and VLA radio continuum imaging, to explore the evolution of star-formation activity and dust attenuation properties of star-forming galaxies to z ≃ 4, using mass-complete samples. Our main results can be summarized as follows: (i) the slope of the star-formation rate–M{sub *} correlation is consistent with being constant ≃0.8 up to z ≃ 1.5, while its normalization keeps increasing with redshift; (ii) for the first time we are able to explore the FIR–radio correlation for a mass-selected sample of star-forming galaxies: the correlation does not evolve up to z ≃ 4; (iii) we confirm that galaxy stellar mass is a robust proxy for UV dust attenuation in star-forming galaxies, with more massive galaxies being more dust attenuated. Strikingly, we find that this attenuation relation evolves very weakly with redshift, with the amount of dust attenuation increasing by less than 0.3 mag over the redshift range [0.5–4] for a fixed stellar mass; (iv) the correlation between dust attenuation and the UV spectral slope evolves with redshift, with the median UV slope becoming bluer with redshift. By z ≃ 3, typical UV slopes are inconsistent, given the measured dust attenuations, with the predictions of commonly used empirical laws. (v) Finally, building on existing results, we show that gas reddening is marginally larger (by a factor of around 1.3) than the stellar reddening at all redshifts probed. Our results support a scenario where the ISM conditions of typical star-forming galaxies evolve with redshift, such that at z ≥ 1.5 Main Sequence galaxies have ISM conditions moving closer to those of local starbursts.

  20. THE RADIO PROPERTIES OF RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXIES ON PARSEC SCALES

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Minfeng; Chen, Yongjun; Shen, Zhiqiang [Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030 (China); Komossa, S.; Zensus, J. A. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Yuan, Weimin [Key Lab for Space Astronomy and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Wajima, Kiyoaki [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong, Daejeon 305-348 (Korea, Republic of); Zhou, Hongyan, E-mail: gumf@shao.ac.cn [Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136 (China)

    2015-11-15

    We present the detection of the compact radio structures of 14 radio-loud narrow-line Seyfert 1 (NLS1) galaxies from Very Long Baseline Array (VLBA) observations at 5 GHz performed in 2013. While 50% of the sources of our sample show a compact core only, the remaining 50% exhibit a core-jet structure. The measured brightness temperatures of the cores range from 10{sup 8.4} to 10{sup 11.4} K with a median value of 10{sup 10.1} K, indicating that the radio emission is from non-thermal jets, and that, likely, most sources are not strongly beamed, thus implying a low jet speed in these radio-loud NLS1 galaxies. In combination with archival data taken at multiple frequencies, we find that seven sources show flat or even inverted radio spectra, while steep spectra are revealed in the remaining seven objects. Although all of these sources are very radio-loud with R > 100, their jet properties are diverse in terms of their milliarcsecond (mas) scale (parsec scale) morphology and their overall radio spectral shape. The evidence for slow jet speeds (i.e., less relativistic jets), in combination with the low kinetic/radio power, may offer an explanation for the compact VLBA radio structure in most sources. The mildly relativistic jets in these high accretion rate systems are consistent with a scenario where jets are accelerated from the hot corona above the disk by the magnetic field and the radiation force of the accretion disk. Alternatively, a low jet bulk velocity can be explained by low spin in the Blandford–Znajek mechanism.

  1. Semi-Analytic Galaxies - I. Synthesis of environmental and star-forming regulation mechanisms

    Science.gov (United States)

    Cora, Sofía A.; Vega-Martínez, Cristian A.; Hough, Tomás; Ruiz, Andrés N.; Orsi, Álvaro; Muñoz Arancibia, Alejandra M.; Gargiulo, Ignacio D.; Collacchioni, Florencia; Padilla, Nelson D.; Gottlöber, Stefan; Yepes, Gustavo

    2018-05-01

    We present results from the semi-analytic model of galaxy formation SAG applied on the MULTIDARK simulation MDPL2. SAG features an updated supernova (SN) feedback scheme and a robust modelling of the environmental effects on satellite galaxies. This incorporates a gradual starvation of the hot gas halo driven by the action of ram pressure stripping (RPS), that can affect the cold gas disc, and tidal stripping (TS), which can act on all baryonic components. Galaxy orbits of orphan satellites are integrated providing adequate positions and velocities for the estimation of RPS and TS. The star formation history and stellar mass assembly of galaxies are sensitive to the redshift dependence implemented in the SN feedback model. We discuss a variant of our model that allows to reconcile the predicted star formation rate density at z ≳ 3 with the observed one, at the expense of an excess in the faint end of the stellar mass function at z = 2. The fractions of passive galaxies as a function of stellar mass, halo mass and the halo-centric distances are consistent with observational measurements. The model also reproduces the evolution of the main sequence of star forming central and satellite galaxies. The similarity between them is a result of the gradual starvation of the hot gas halo suffered by satellites, in which RPS plays a dominant role. RPS of the cold gas does not affect the fraction of quenched satellites but it contributes to reach the right atomic hydrogen gas content for more massive satellites (M⋆ ≳ 1010 M⊙).

  2. 150 southern compact and bright-nucleus galaxies

    International Nuclear Information System (INIS)

    Fairall, A.P.

    1977-01-01

    Galaxies having regions of exceptionally high surface brightness have been selected from the ESO Quick Blue Survey and investigated by 'grating photography' -direct photography plus low-dispersion slitless spectroscopy. Two new Seyfert galaxies and a peculiar multiple system have been discovered. Differences in red continua are also noted. (author)

  3. The formation of Dwarf Spheroidal galaxies by the dissolving star cluster model.

    Science.gov (United States)

    Alarcon, Alex; Theory and Star Formation Group

    2018-01-01

    Dwarf spheroidal (dSph) galaxies are regarded as key object in the formation of larger galaxies and are believed to be the most dark matter dominated systems known. There are several model that attempt to explain their formation, but they have problems to model the formation of isolated dSph. Here we will explain a possible formation scenario in which star clusters form in the dark matter halo of a dSph. these cluster suffer from low star formation efficiency and dissolve while orbiting inside the halo. Thereby they build the faint luminous components that we observe in dSph galaxies. Here we will show the main results of this simulations and how they would be corroborated using observational data.

  4. Chandra Sees Wealth Of Black Holes In Star-Forming Galaxies

    Science.gov (United States)

    2001-06-01

    NASA's Chandra X-ray Observatory has found new populations of suspected mid-mass black holes in several starburst galaxies, where stars form and explode at an unusually high rate. Although a few of these objects had been found previously, this is the first time they have been detected in such large numbers and could help explain their relationship to star formation and the production of even more massive black holes. At the 198th meeting of the American Astronomical Society in Pasadena, California, three independent teams of scientists reported finding dozens of X-ray sources in galaxies aglow with star formation. These X-ray objects appear point-like and are ten to a thousand times more luminous in X-rays than similar sources found in our Milky Way and the M81 galaxy. "Chandra gives us the ability to study the populations of individual bright X-ray sources in nearby galaxies in extraordinary detail," said Andreas Zezas, lead author from the Harvard-Smithsonian Center for Astrophysics team that observed The Antennae, a pair of colliding galaxies, and M82, a well-known starburst galaxy. "This allows us to build on earlier detections of these objects and better understand their relationship to starburst galaxies." Antennae-True Color Image True Color Image of Antennae Credit: NASA/SAO/G.Fabbiano et al. Press Image and Caption Kimberly Weaver, of NASA's Goddard Space Flight Center in Greenbelt, MD, lead scientist of the team that studied the starburst galaxy NGC 253, discussed the importance of the unusual concentration of these very luminous X-ray sources near the center of that galaxy. Four sources, which are tens to thousands of times more massive than the Sun, are located within 3,000 light years of the galaxy core. "This may imply that these black holes are gravitating toward the center of the galaxy where they could coalesce to form a single supermassive black hole," Weaver suggested. "It could be that this starburst galaxy is transforming itself into a quasar

  5. P-MaNGA: GRADIENTS IN RECENT STAR FORMATION HISTORIES AS DIAGNOSTICS FOR GALAXY GROWTH AND DEATH

    International Nuclear Information System (INIS)

    Li, Cheng; Wang, Enci; Lin, Lin; Xiao, Ting; Bershady, Matthew A.; Tremonti, Christy A.; Bundy, Kevin; Cheung, Edmond; Yan, Renbin; Bizyaev, Dmitry; Blanton, Michael; Gelfand, Joseph; Cales, Sabrina; Cherinka, Brian; Law, David R.; Drory, Niv; Emsellem, Eric; Fu, Hai; Lin, Lihwai; MacDonald, Nick

    2015-01-01

    We present an analysis of the data produced by the MaNGA prototype run (P-MaNGA), aiming to test how the radial gradients in recent star formation histories, as indicated by the 4000 Å break (D n (4000)), Hδ absorption (EW(Hδ A )), and Hα emission (EW(Hα)) indices, can be useful for understanding disk growth and star formation cessation in local galaxies. We classify 12 galaxies observed on two P-MaNGA plates as either centrally quiescent (CQ) or centrally star-forming (CSF), according to whether D n (4000) measured in the central spaxel of each datacube exceeds 1.6. For each spaxel we generate both 2D maps and radial profiles of D n (4000), EW(Hδ A ), and EW(Hα). We find that CSF galaxies generally show very weak or no radial variation in these diagnostics. In contrast, CQ galaxies present significant radial gradients, in the sense that D n (4000) decreases, while both EW(Hδ A ) and EW(Hα) increase from the galactic center outward. The outer regions of the galaxies show greater scatter on diagrams relating the three parameters than their central parts. In particular, the clear separation between centrally measured quiescent and star-forming galaxies in these diagnostic planes is largely filled in by the outer parts of galaxies whose global colors place them in the green valley, supporting the idea that the green valley represents a transition between blue-cloud and red-sequence phases, at least in our small sample. These results are consistent with a picture in which the cessation of star formation propagates from the center of a galaxy outward as it moves to the red sequence

  6. STAR CLUSTER FORMATION AND DESTRUCTION IN THE MERGING GALAXY NGC 3256

    Energy Technology Data Exchange (ETDEWEB)

    Mulia, A. J.; Chandar, R. [Physics and Astronomy Department, University of Toledo, Toledo, OH 43606-3390 (United States); Whitmore, B. C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2016-07-20

    We use the Advanced Camera for Surveys on the Hubble Space Telescope to study the rich population of young massive star clusters in the main body of NGC 3256, a merging pair of galaxies with a high star formation rate (SFR) and SFR per unit area (Σ{sub SFR}). These clusters have luminosity and mass functions that follow power laws, dN / dL ∝ L{sup α} with α = 2.23 ± 0.07, and dN / dM ∝ M{sup β} with β = 1.86 ± 0.34 for τ < 10 Myr clusters, similar to those found in more quiescent galaxies. The age distribution can be described by dN / dτ ∝ τ{sup γ}, with γ ≈ 0.67 ± 0.08 for clusters younger than about a few hundred million years, with no obvious dependence on cluster mass. This is consistent with a picture where ∼80% of the clusters are disrupted each decade in time. We investigate the claim that galaxies with high Σ{sub SFR} form clusters more efficiently than quiescent systems by determining the fraction of stars in bound clusters (Γ) and the CMF/SFR statistic (CMF is the cluster mass function) for NGC 3256 and comparing the results with those for other galaxies. We find that the CMF/SFR statistic for NGC 3256 agrees well with that found for galaxies with Σ{sub SFR} and SFRs that are lower by 1–3 orders of magnitude, but that estimates for Γ are only robust when the same sets of assumptions are applied. Currently, Γ values available in the literature have used different sets of assumptions, making it more difficult to compare the results between galaxies.

  7. POPULATION III STARS AND REMNANTS IN HIGH-REDSHIFT GALAXIES

    International Nuclear Information System (INIS)

    Xu Hao; Norman, Michael L.; Wise, John H.

    2013-01-01

    Recent simulations of Population III star formation have suggested that some fraction form in binary systems, in addition to having a characteristic mass of tens of solar masses. The deaths of metal-free stars result in the initial chemical enrichment of the universe and the production of the first stellar-mass black holes. Here we present a cosmological adaptive mesh refinement simulation of an overdense region that forms a few 10 9 M ☉ dark matter halos and over 13,000 Population III stars by redshift 15. We find that most halos do not form Population III stars until they reach M vir ∼ 10 7 M ☉ because this biased region is quickly enriched from both Population III and galaxies, which also produce high levels of ultraviolet radiation that suppress H 2 formation. Nevertheless, Population III stars continue to form, albeit in more massive halos, at a rate of ∼10 –4 M ☉ yr –1 Mpc –3 at redshift 15. The most massive starless halo has a mass of 7 × 10 7 M ☉ , which could host massive black hole formation through the direct gaseous collapse scenario. We show that the multiplicity of the Population III remnants grows with halo mass above 10 8 M ☉ , culminating in 50 remnants located in 10 9 M ☉ halos on average. This has implications that high-mass X-ray binaries and intermediate-mass black holes that originate from metal-free stars may be abundant in high-redshift galaxies

  8. EVOLUTION OF QUIESCENT AND STAR-FORMING GALAXIES SINCE z ∼ 1.5 AS A FUNCTION OF THEIR VELOCITY DISPERSIONS

    International Nuclear Information System (INIS)

    Bezanson, Rachel; Van Dokkum, Pieter; Franx, Marijn

    2012-01-01

    We measure stellar masses and structural parameters for 5500 quiescent and 20,000 star-forming galaxies at 0.3 < z ≤ 1.5 in the Newfirm Medium Band Survey COSMOS and UKIDSS UDS fields. We combine these measurements to infer velocity dispersions and determine how the number density of galaxies at fixed inferred dispersion, or the velocity dispersion function (VDF), evolves with time for each population. We show that the number of galaxies with high velocity dispersions appears to be surprisingly stable with time, regardless of their star formation history. Furthermore, the overall VDF for star-forming galaxies is constant with redshift, extending down to the lowest velocity dispersions probed by this study. The only galaxy population showing strong evolution are quiescent galaxies with low inferred dispersions, whose number density increases by a factor of ∼4 since z = 1.5. This buildup leads to an evolution in the quiescent fraction of galaxies such that the threshold dispersion above which quiescent galaxies dominate the counts moves to lower velocity dispersion with time. We show that our results are qualitatively consistent with a simple model in which star-forming galaxies quench and are added to the quiescent population. In order to compensate for the migration into the quiescent population, the velocity dispersions of star-forming galaxies must increase, with a rate that increases with dispersion.

  9. Recent Results from the SAFIR Project

    Directory of Open Access Journals (Sweden)

    M. Sánchez-Portal

    2014-12-01

    Full Text Available The "Seyfert and star formation Activity in the Far-Infrared" (SAFIR project is aimed at studying the physical nature of the nuclear IR emission and star formation properties of a small sample of nearby Seyfert galaxies observed with the PACS and SPIRE instruments on board the Herschel space observatory. In this paper, we review the achieved results, that reveal the importance of the far-IR range to improve the quality and reliability of the estimates of basic AGN torus parameters, and describe some preliminary outcome from the on-going work on the dust properties of resolved AGN host galaxies.

  10. Star Formation Activity in CLASH Brightest Cluster Galaxies

    Science.gov (United States)

    Fogarty, Kevin; Postman, Marc; Connor, Thomas; Donahue, Megan; Moustakas, John

    2015-11-01

    The CLASH X-ray selected sample of 20 galaxy clusters contains 10 brightest cluster galaxies (BCGs) that exhibit significant (>5σ) extinction-corrected star formation rates (SFRs). Star formation activity is inferred from photometric estimates of UV and Hα+[N ii] emission in knots and filaments detected in CLASH Hubble Space Telescope ACS and WFC3 observations. UV-derived SFRs in these BCGs span two orders of magnitude, including two with a SFR ≳ 100 M⊙ yr-1. These measurements are supplemented with [O ii], [O iii], and Hβ fluxes measured from spectra obtained with the SOAR telescope. We confirm that photoionization from ongoing star formation powers the line emission nebulae in these BCGs, although in many BCGs there is also evidence of a LINER-like contribution to the line emission. Coupling these data with Chandra X-ray measurements, we infer that the star formation occurs exclusively in low-entropy cluster cores and exhibits a correlation with gas properties related to cooling. We also perform an in-depth study of the starburst history of the BCG in the cluster RXJ1532.9+3021, and create 2D maps of stellar properties on scales down to ˜350 pc. These maps reveal evidence for an ongoing burst occurring in elongated filaments, generally on ˜0.5-1.0 Gyr timescales, although some filaments are consistent with much younger (≲100 Myr) burst timescales and may be correlated with recent activity from the active galactic nucleus. The relationship between BCG SFRs and the surrounding intracluster medium gas properties provide new support for the process of feedback-regulated cooling in galaxy clusters and is consistent with recent theoretical predictions. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel

  11. On the relationship between optical and radio emission from active galaxy nuclei

    International Nuclear Information System (INIS)

    Zentsova, A.S.; Fedorenko, V.N.

    1991-01-01

    Model in which the radio emission of nuclei of Seyfert galaxies emerges in the regions of formation of their narrow emission lines, R∼100 pc is developed. Gaseous clouds, producing this emission, are moving in the surrounding hot gas and induce shock waves. The shock waves accelerate electrons, which produce radio emission via synchrotron mechanism. The model explains an observational correlation between the radio and optical properties of Seyfert galaxies and makes some predictions on the parameters of the region R∼100 pc

  12. Computer experiments on the effect of retrograde stars in disk galaxies

    International Nuclear Information System (INIS)

    Zang, T.A.; Hohl, F.

    1978-01-01

    Using large-scale N-body calculations for flat disk galaxies, we examine the effect of reversing the angular momentum for various fractions of the stars upon the global bar-forming mode. The initial conditions for these simulations are based on stationary states of two classes of models: the isochrones studied recently by Kalnajs by means of linear theory, and a model resembling the Schmidt model of our own Galaxy. In both cases, as the fraction of retrograde stars is increased, the growth of the bar-forming mode is inhibited (although not eliminated). These N-body results for the isochrones agree with the predictions of linear theory, quantitatively as well as qualitatively

  13. The changing source of X-ray reflection in the radio-intermediate Seyfert 1 galaxy III Zw 2

    Science.gov (United States)

    Gonzalez, A. G.; Waddell, S. G. H.; Gallo, L. C.

    2018-03-01

    We report on X-ray observations of the radio-intermediate, X-ray bright Seyfert 1 galaxy, III Zw 2, obtained with XMM-Newton, Suzaku, and Swift over the past 17 yr. The source brightness varies significantly over yearly time-scales, but more modestly over periods of days. Pointed observations with XMM-Newton in 2000 and Suzaku in 2011 show spectral differences despite comparable X-ray fluxes. The Suzaku spectra are consistent with a power-law continuum and a narrow Gaussian emission feature at ˜6.4 keV, whereas the earlier XMM-Newton spectrum requires a broader Gaussian profile and soft-excess below ˜2 keV. A potential interpretation is that the primary power-law emission, perhaps from a jet base, preferentially illuminates the inner accretion disc in 2000, but the distant torus in 2011. The interpretation could be consistent with the hypothesized precessing radio jet in III Zw 2 that may have originated from disc instabilities due to an ongoing merging event.

  14. The E-MOSAICS project: simulating the formation and co-evolution of galaxies and their star cluster populations

    Science.gov (United States)

    Pfeffer, Joel; Kruijssen, J. M. Diederik; Crain, Robert A.; Bastian, Nate

    2018-04-01

    We introduce the MOdelling Star cluster population Assembly In Cosmological Simulations within EAGLE (E-MOSAICS) project. E-MOSAICS incorporates models describing the formation, evolution, and disruption of star clusters into the EAGLE galaxy formation simulations, enabling the examination of the co-evolution of star clusters and their host galaxies in a fully cosmological context. A fraction of the star formation rate of dense gas is assumed to yield a cluster population; this fraction and the population's initial properties are governed by the physical properties of the natal gas. The subsequent evolution and disruption of the entire cluster population are followed accounting for two-body relaxation, stellar evolution, and gravitational shocks induced by the local tidal field. This introductory paper presents a detailed description of the model and initial results from a suite of 10 simulations of ˜L⋆ galaxies with disc-like morphologies at z = 0. The simulations broadly reproduce key observed characteristics of young star clusters and globular clusters (GCs), without invoking separate formation mechanisms for each population. The simulated GCs are the surviving population of massive clusters formed at early epochs (z ≳ 1-2), when the characteristic pressures and surface densities of star-forming gas were significantly higher than observed in local galaxies. We examine the influence of the star formation and assembly histories of galaxies on their cluster populations, finding that (at similar present-day mass) earlier-forming galaxies foster a more massive and disruption-resilient cluster population, while galaxies with late mergers are capable of forming massive clusters even at late cosmic epochs. We find that the phenomenological treatment of interstellar gas in EAGLE precludes the accurate modelling of cluster disruption in low-density environments, but infer that simulations incorporating an explicitly modelled cold interstellar gas phase will overcome

  15. Black Hole Growth Is Mainly Linked to Host-galaxy Stellar Mass Rather Than Star Formation Rate

    Science.gov (United States)

    Yang, G.; Chen, C.-T. J.; Vito, F.; Brandt, W. N.; Alexander, D. M.; Luo, B.; Sun, M. Y.; Xue, Y. Q.; Bauer, F. E.; Koekemoer, A. M.; Lehmer, B. D.; Liu, T.; Schneider, D. P.; Shemmer, O.; Trump, J. R.; Vignali, C.; Wang, J.-X.

    2017-06-01

    We investigate the dependence of black hole accretion rate (BHAR) on host-galaxy star formation rate (SFR) and stellar mass (M *) in the CANDELS/GOODS-South field in the redshift range of 0.5≤slant zteam through spectral energy distribution fitting. The average BHAR is correlated positively with both SFR and M *, and the BHAR-SFR and BHAR-M * relations can both be described acceptably by linear models with a slope of unity. However, BHAR appears to be correlated more strongly with M * than SFR. This result indicates that M * is the primary host-galaxy property related to supermassive black hole (SMBH) growth, and the apparent BHAR-SFR relation is largely a secondary effect due to the star-forming main sequence. Among our sources, massive galaxies ({M}* ≳ {10}10{M}⊙ ) have significantly higher BHAR/SFR ratios than less massive galaxies, indicating that the former have higher SMBH fueling efficiency and/or higher SMBH occupation fraction than the latter. Our results can naturally explain the observed proportionality between {M}{BH} and M * for local giant ellipticals and suggest that their {M}{BH}/{M}* is higher than that of local star-forming galaxies. Among local star-forming galaxies, massive systems might have higher {M}{BH}/{M}* compared to dwarfs.

  16. Galaxy interactions and star formation: Results of a survey of global H-alpha emission in spiral galaxies in 8 clusters

    Science.gov (United States)

    Moss, C.

    1990-01-01

    Kennicutt and Kent (1983) have shown that the global H alpha emission from a spiral galaxy is an indicator of the formation rate of massive stars. Moss, Whittle and Irwin (1988) have surveyed two clusters (Abell 347 and 1367) for galaxies with H alpha emission using a high dispersion objective prism technique. The purpose of the survey is to investigate environmental effects on star formation in spiral galaxies, and in particular to ascertain whether star formation is enhanced in cluster spirals. Approximately 20 percent of CGCG galaxies were detected in emission. Two plates of excellent quality were obtained for each of the two clusters, and galaxies were only identified to have emission if this was detected on both plates of a plate pair. In this way, plate flaws and other spurious identifications of emission could be rejected, and weak emission confirmed. The results of this survey have been discussed by Moss (1987). The detected galaxies are of types SO-a and later. The frequency with which galaxies are detected in emission increases towards later morphological type as expected (cf. Kennicutt and Kent 1983). There is no evidence of any dependence of the frequency of detected emission on the absolute magnitude of the galaxy (cf. Moss and Whittle 1990), but there is a strong correlation between a disturbed morphological appearance of the galaxy and the detection of emission. Furthermore it is found that the emission is more centrally concentrated in those galaxies which show a disturbed morphology. It may be noted that the objective prism plate gives a spectrum of a 400 A region around rest wavelength H alpha, but superposed on this is the H alpha emission from the galaxy which, because the light is essentially monochromatic, results in a true two-dimensional image of the H alpha distribution. The visual appearance of the emission on the prism plates was classified according to its diffuseness on a 5 point scale (very diffuse, diffuse, intermediate, compact, and

  17. THE OBSERVED RELATION BETWEEN STELLAR MASS, DUST EXTINCTION, AND STAR FORMATION RATE IN LOCAL GALAXIES

    International Nuclear Information System (INIS)

    Zahid, H. J.; Kewley, L. J.; Kudritzki, R. P.; Yates, R. M.

    2013-01-01

    In this study, we investigate the relation between stellar mass, dust extinction, and star formation rate (SFR) using ∼150,000 star-forming galaxies from SDSS DR7. We show that the relation between dust extinction and SFR changes with stellar mass. For galaxies at the same stellar mass, dust extinction is anti-correlated with the SFR at stellar masses 10 M ☉ . There is a sharp transition in the relation at a stellar mass of 10 10 M ☉ . At larger stellar masses, dust extinction is positively correlated with the SFR for galaxies at the same stellar mass. The observed relation between stellar mass, dust extinction, and SFR presented in this study helps to confirm similar trends observed in the relation between stellar mass, metallicity, and SFR. The relation reported in this study provides important new constraints on the physical processes governing the chemical evolution of galaxies. The correlation between SFR and dust extinction for galaxies with stellar masses >10 10 M ☉ is shown to extend to the population of quiescent galaxies suggesting that the physical processes responsible for the observed relation between stellar mass, dust extinction, and SFR may be related to the processes leading to the shutdown of star formation in galaxies.

  18. THE OBSERVED RELATION BETWEEN STELLAR MASS, DUST EXTINCTION, AND STAR FORMATION RATE IN LOCAL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Zahid, H. J.; Kewley, L. J.; Kudritzki, R. P. [Institute for Astronomy, University of Hawaii at Manoa, 2680 Woodlawn Dr., Honolulu, HI 96822 (United States); Yates, R. M. [Max-Planck-Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85741 Garching (Germany)

    2013-02-15

    In this study, we investigate the relation between stellar mass, dust extinction, and star formation rate (SFR) using {approx}150,000 star-forming galaxies from SDSS DR7. We show that the relation between dust extinction and SFR changes with stellar mass. For galaxies at the same stellar mass, dust extinction is anti-correlated with the SFR at stellar masses <10{sup 10} M {sub Sun }. There is a sharp transition in the relation at a stellar mass of 10{sup 10} M {sub Sun }. At larger stellar masses, dust extinction is positively correlated with the SFR for galaxies at the same stellar mass. The observed relation between stellar mass, dust extinction, and SFR presented in this study helps to confirm similar trends observed in the relation between stellar mass, metallicity, and SFR. The relation reported in this study provides important new constraints on the physical processes governing the chemical evolution of galaxies. The correlation between SFR and dust extinction for galaxies with stellar masses >10{sup 10} M {sub Sun} is shown to extend to the population of quiescent galaxies suggesting that the physical processes responsible for the observed relation between stellar mass, dust extinction, and SFR may be related to the processes leading to the shutdown of star formation in galaxies.

  19. A MATURE DUSTY STAR-FORMING GALAXY HOSTING GRB 080607 AT z = 3.036

    International Nuclear Information System (INIS)

    Chen, Hsiao-Wen; Perley, Daniel A.; Cenko, S. Bradley; Bloom, Joshua S.; Wilson, Christine D.; Levan, Andrew J.; Prochaska, Jason X.; Tanvir, Nial R.; Dessauges-Zavadsky, Miroslava; Pettini, Max

    2010-01-01

    We report the discovery of the host galaxy of Swift dark burst GRB 080607 at z GRB = 3.036. GRB 080607 is a unique case of a highly extinguished (A V ∼ 3 mag) afterglow that was yet sufficiently bright for high-quality absorption-line spectroscopy. The host galaxy is clearly resolved in deep Hubble Space Telescope (HST) WF3/IR F160W images and well detected in the Spitzer IRAC 3.5 μm and 4.5 μm channels, while displaying little/no fluxes in deep optical images from Keck and Magellan. The extremely red optical-infrared colors are consistent with the large extinction seen in the afterglow light, suggesting that the large amount of dust and gas surface mass density seen along the afterglow sight line is not merely local but likely reflects the global dust content across the entire host galaxy. Adopting the dust properties and metallicity of the host interstellar medium derived from studies of early-time afterglow light and absorption-line spectroscopy, we perform a stellar population synthesis analysis of the observed spectral energy distribution to constrain the intrinsic luminosity and stellar population of this dark burst host. The host galaxy is best described by an exponentially declining star formation rate of e-folding time τ = 2 Gyr and an age of ∼2 Gyr. We also derive an extinction-corrected star formation rate of SFR ∼ 125 h -2 M sun yr -1 and a total stellar mass of M * ∼ 4 x 10 11 h -2 M sun . Our study provides an example of massive, dusty star-forming galaxies contributing to the γ-ray burst (GRB) host galaxy population, supporting the notion that long-duration GRBs trace the bulk of cosmic star formation.

  20. Star formation history of the galaxy merger Mrk848 with SDSS-IV MaNGA

    Science.gov (United States)

    Yuan, Fang-Ting; Shen, Shiyin; Hao, Lei; Fernandez, Maria Argudo

    2017-03-01

    With the 3D data of SDSS-IV MaNGA (Bundy et al. 2015) spectra and multi-wavelength SED modeling, we expect to have a better understanding of the distribution of dust, gas and star formation of galaxy mergers. For a case study of the merging galaxy Mrk848, we use both UV-to-IR broadband SED and the MaNGA integral field spectroscopy to obtain its star formation histories at the tail and core regions. From the SED fitting and full spectral fitting, we find that the star formation in the tail regions are affected by the interaction earlier than the core regions. The core regions show apparently two times of star formation and a strong burst within 500Myr, indicating the recent star formation is triggered by the interaction. The star formation histories derived from these two methods are basically consistent.

  1. Which observational differences are still left between Seyfert 1 and Seyfert 2 nuclei?

    CERN Document Server

    Alloin, D

    1979-01-01

    Reviews the different observational properties used, up to now, to discriminate between Seyfert 1 and Seyfert 2: emission lines widths, Fe II lines, intensity ration (OIII) 500.7 nm/H beta , radio, infrared, visible, UV and X-emission. Most of these parameters exhibit a more or less continuous distribution from the less powerful Seyfert 2 up to the Seyfert 1 nuclei (except in the radio range). (0 refs).

  2. Star Formation History of Dwarf Galaxies in Cosmological Hydrodynamic Simulations

    Directory of Open Access Journals (Sweden)

    Kentaro Nagamine

    2010-01-01

    Full Text Available We examine the past and current work on the star formation (SF histories of dwarf galaxies in cosmological hydrodynamic simulations. The results obtained from different numerical methods are still somewhat mixed, but the differences are understandable if we consider the numerical and resolution effects. It remains a challenge to simulate the episodic nature of SF history in dwarf galaxies at late times within the cosmological context of a cold dark matter model. More work is needed to solve the mysteries of SF history of dwarf galaxies employing large-scale hydrodynamic simulations on the next generation of supercomputers.

  3. Examining the Center: Positions, Dominance, and Star Formation Rates of Most Massive Group Galaxies at Intermediate Redshift

    Science.gov (United States)

    Connelly, Jennifer L.; Parker, Laura C.; McGee, Sean; Mulchaey, John S.; Finoguenov, Alexis; Balogh, Michael; Wilman, David; Group Environment Evolution Collaboration

    2015-01-01

    The group environment is believed to be the stage for many galaxy transformations, helping evolve blue star-forming galaxies to red passive ones. In local studies of galaxy clusters, the central member is usually a single dominant giant galaxy at the center of the potential with little star formation thought to be the result of galaxy mergers. In nearby groups, a range of morphologies and star formation rates are observed and the formation history is less clear. Further, the position and dominance of the central galaxy cannot be assumed in groups, which are less massive and evolved than clusters. To understand the connections between global group properties and properties of the central group galaxy at intermediate redshift, we examine galaxy groups from the Group Environment and Evolution Collaboration (GEEC) catalog, including both optically- and X-ray-selected groups at redshift z~0.4. The sample is diverse, containing a range in overall mass and evolutionary state. The number of groups is significant, membership is notably complete, and measurements span the IR to the UV allowing the properties of the members to be connected to those of the host groups. Having investigated trends in the global group properties previously, including mass and velocity substructure, we turn our attention now to the galaxy populations, focusing on the central regions of these systems. The most massive and second most massive group galaxies are identified by their stellar mass. The positions of the most massive galaxies (MMGs) are determined with respect to both the luminosity-weighted and X-ray center. Star formation rates are used to explore the fraction of passive/quiescent versus star-forming MMGs and the dominance of the MMGs in our group sample is also tested. Determinations of these characteristics and trends constitute the important first steps toward a detailed understanding of the relationships between the properties of host groups and their most massive galaxies and the

  4. P-MaNGA: GRADIENTS IN RECENT STAR FORMATION HISTORIES AS DIAGNOSTICS FOR GALAXY GROWTH AND DEATH

    Energy Technology Data Exchange (ETDEWEB)

    Li, Cheng; Wang, Enci; Lin, Lin; Xiao, Ting [Partner Group of Max-Planck Institute for Astrophysics, Shanghai Astronomical Observatory, Nandan Road 80, Shanghai 200030 (China); Bershady, Matthew A.; Tremonti, Christy A. [Department of Astronomy, University of Wisconsin–Madison, Madison, WI 53706 (United States); Bundy, Kevin; Cheung, Edmond [Kavli Institute for the Physics and Mathematics of the universe (Kavli IPMU, WPI), Todai Institutes for Advanced Study, the University of Tokyo, Kashiwa 277-8583 (Japan); Yan, Renbin [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States); Bizyaev, Dmitry [Apache Point Observatory and New Mexico State University, P.O. Box 59, Sunspot, NM, 88349-0059 (United States); Blanton, Michael; Gelfand, Joseph [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Cales, Sabrina [Yale Center for Astronomy and Astrophysics, Physics Department, Yale University, P.O. Box 208120, New Haven, CT 06520-8120 (United States); Cherinka, Brian; Law, David R. [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Drory, Niv [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Emsellem, Eric [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Fu, Hai [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); Lin, Lihwai [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 106, Taiwan (China); MacDonald, Nick, E-mail: leech@shao.ac.cn [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); and others

    2015-05-10

    We present an analysis of the data produced by the MaNGA prototype run (P-MaNGA), aiming to test how the radial gradients in recent star formation histories, as indicated by the 4000 Å break (D{sub n}(4000)), Hδ absorption (EW(Hδ{sub A})), and Hα emission (EW(Hα)) indices, can be useful for understanding disk growth and star formation cessation in local galaxies. We classify 12 galaxies observed on two P-MaNGA plates as either centrally quiescent (CQ) or centrally star-forming (CSF), according to whether D{sub n}(4000) measured in the central spaxel of each datacube exceeds 1.6. For each spaxel we generate both 2D maps and radial profiles of D{sub n}(4000), EW(Hδ{sub A}), and EW(Hα). We find that CSF galaxies generally show very weak or no radial variation in these diagnostics. In contrast, CQ galaxies present significant radial gradients, in the sense that D{sub n}(4000) decreases, while both EW(Hδ{sub A}) and EW(Hα) increase from the galactic center outward. The outer regions of the galaxies show greater scatter on diagrams relating the three parameters than their central parts. In particular, the clear separation between centrally measured quiescent and star-forming galaxies in these diagnostic planes is largely filled in by the outer parts of galaxies whose global colors place them in the green valley, supporting the idea that the green valley represents a transition between blue-cloud and red-sequence phases, at least in our small sample. These results are consistent with a picture in which the cessation of star formation propagates from the center of a galaxy outward as it moves to the red sequence.

  5. Diagnostics for mechanical heating in star-forming galaxies

    NARCIS (Netherlands)

    Kazandjian, Mher V.

    2015-01-01

    In this thesis the molecular emission of species such as CO, HCN and HNC and HCO+ are used to probe and quantify mechanical heating in star-forming galaxies. In the first part of the thesis photo-dissociation models are used to find a diagnostic of mechanical heating at the level of molecular

  6. Einstein Observatory SSS and MPC observations of the complex X-ray spectra of Seyfert galaxies. [Solid State Spectrometer and Monitor Proportional Counter

    Science.gov (United States)

    Turner, T. J.; Weaver, K. A.; Mushotzky, R. F.; Holt, S. S.; Madejski, G. M.

    1991-01-01

    The X-ray spectra of 25 Seyfert galaxies measured with the Solid State Spectrometer on the Einstein Observatory have been investigated. This new investigation utilizes simultaneous data from the Monitor Proportional Counter, and automatic correction for systematic effects in the Solid State Spectrometer which were previously handled subjectively. It is found that the best-fit single-power-law indices generally agree with those previously reported, but that soft excesses of some form are inferred for about 48 percent of the sources. One possible explanation of the soft excess emission is a blend of soft X-ray lines, centered around 0.8 keV. The implications of these results for accretion disk models are discussed.

  7. A tale of two feedbacks: Star formation in the host galaxies of radio AGNs

    Energy Technology Data Exchange (ETDEWEB)

    Karouzos, Marios; Im, Myungshin; Jeon, Yiseul; Kim, Ji Hoon [CEOU-Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul (Korea, Republic of); Trichas, Markos [Airbus Defence and Space, Gunnels Wood Road, Stevenage SG1 2AS (United Kingdom); Goto, Tomo [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Malkan, Matt [Division of Astronomy and Astrophysics, 3-714 UCLA, CA 90095-1547 (United States); Ruiz, Angel [Inter-University Centre for Astronomy and Astrophysics (IUCAA), Post Bag 4, Ganeshkhind, 411 007 Pune (India); Lee, Hyung Mok; Kim, Seong Jin [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul (Korea, Republic of); Oi, Nagisa; Matsuhara, Hideo; Takagi, Toshinobu; Murata, K.; Wada, Takehiko; Wada, Kensuke [Institute of Space and Astronautical Science, JAXA, Yoshino-dai 3-1-1, Sagamihara, Kanagawa 229-8510 (Japan); Shim, Hyunjin [Department of Earth Science Education, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Hanami, Hitoshi [Physics Section, Faculty of Humanities, Iwate University, Ueda 3 chome, 18-34 Morioka, Morioka, Iwate 020-8550 (Japan); Serjeant, Stephen; White, Glenn J., E-mail: mkarouzos@astro.snu.ac.kr [Department of Physics and Astronomy, The Open University, Walton Hall, Milton Keynes (United Kingdom); and others

    2014-04-01

    Several lines of argument support the existence of a link between activity at the nuclei of galaxies, in the form of an accreting supermassive black hole, and star formation activity in these galaxies. Radio jets have long been argued to be an ideal mechanism that allows active galactic nuclei (AGNs) to interact with their host galaxies and affect star formation. We use a sample of radio sources in the North Ecliptic Pole (NEP) field to study the nature of this putative link, by means of spectral energy distribution (SED) fitting. We employ the excellent spectral coverage of the AKARI infrared space telescope and the rich ancillary data available in the NEP to build SEDs extending from UV to far-IR wavelengths. We find a significant AGN component in our sample of relatively faint radio sources (star formation in the host galaxy, independent of the radio luminosity. In contrast, for narrow redshift and AGN luminosity ranges, we find that increasing radio luminosity leads to a decrease in the specific star formation rate. The most radio-loud AGNs are found to lie on the main sequence of star formation for their respective redshifts. For the first time, we potentially see such a two-sided feedback process in the same sample. We discuss the possible suppression of star formation, but not total quenching, in systems with strong radio jets, that supports the maintenance nature of feedback from radio AGN jets.

  8. Evidence for dwarf stars at D of about 100 kiloparsecs near the Sextans dwarf spheroidal galaxy

    Science.gov (United States)

    Gould, Andrew; Guhathakurta, Puragra; Richstone, Douglas; Flynn, Chris

    1992-01-01

    A method is presented for detecting individual, metal-poor, dwarf stars at distances less than about 150 kpc - a method specifically designed to filter out stars from among the much more numerous faint background field galaxies on the basis of broad-band colors. This technique is applied to two fields at high Galactic latitude, for which there are deep CCD data in four bands ranging from 3600 to 9000 A. The field in Sextans probably contains more than about five dwarf stars with BJ not greater than 25.5. These are consistent with being at a common distance about 100 kpc and lie about 1.7 deg from the newly discovered dwarf galaxy in Sextans whose distance is about 85 +/- 10 kpc. The stars lie near the major axis of the galaxy and are near or beyond the tidal radius. The second field, toward the south Galactic pole, may contain up to about five extra-Galactic stars, but these show no evidence for being at a common distance. Possible applications of this type technique are discussed, and it is shown that even very low surface brightness star clusters or dwarf galaxies may be detected at distances less than about 1 Mpc.

  9. Extreme Emission Line Galaxies in CANDELS: Broad-Band Selected, Star-Bursting Dwarf Galaxies at Z greater than 1

    Science.gov (United States)

    vanderWel, A.; Straughn, A. N.; Rix, H.-W.; Finkelstein, S. L.; Koekemoer, A. M.; Weiner, B. J.; Wuyts, S.; Bell, E. F.; Faber, S. M.; Trump, J. R.; hide

    2012-01-01

    We identify an abundant population of extreme emission line galaxies (EELGs) at redshift z approx. 1.7 in the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) imaging from Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3). 69 EELG candidates are selected by the large contribution of exceptionally bright emission lines to their near-infrared broad-band magnitudes. Supported by spectroscopic confirmation of strong [OIII] emission lines . with rest-frame equivalent widths approx. 1000A in the four candidates that have HST/WFC3 grism observations, we conclude that these objects are galaxies with approx.10(exp 8) Solar Mass in stellar mass, undergoing an enormous starburst phase with M*/M* of only approx. 15 Myr. These bursts may cause outflows that are strong enough to produce cored dark matter profiles in low-mass galaxies. The individual star formation rates and the co-moving number density (3.7x10(exp -4) Mpc(sup -3) can produce in approx.4 Gyr much of the stellar mass density that is presently contained in 10(exp 8) - 10(exp 9) Solar Mass dwarf galaxies. Therefore, our observations provide a strong indication that many or even most of the stars in present-day dwarf galaxies formed in strong, short-lived bursts, mostly at z > 1.

  10. THE SLOW DEATH (OR REBIRTH?) OF EXTENDED STAR FORMATION IN z ∼ 0.1 GREEN VALLEY EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Fang, Jerome J.; Faber, S. M.; Salim, Samir; Graves, Genevieve J.; Rich, R. Michael

    2012-01-01

    UV observations in the local universe have uncovered a population of early-type galaxies with UV flux consistent with low-level recent or ongoing star formation. Understanding the origin of such star formation remains an open issue. We present resolved UV-optical photometry of a sample of 19 Sloan Digital Sky Survey (SDSS) early-type galaxies at z ∼ 0.1 drawn from the sample originally selected by Salim and Rich to lie in the bluer part of the green valley in the UV-optical color-magnitude diagram as measured by the Galaxy Evolution Explorer (GALEX). Utilizing high-resolution Hubble Space Telescope (HST) far-UV imaging provides unique insight into the distribution of UV light in these galaxies, which we call ''extended star-forming early-type galaxies'' (ESF-ETGs) because of extended UV emission that is indicative of recent star formation. The UV-optical color profiles of all ESF-ETGs show red centers and blue outer parts. Their outer colors require the existence of a significant underlying population of older stars in the UV-bright regions. An analysis of stacked SDSS spectra reveals weak LINER-like emission in their centers. Using a cross-matched SDSS DR7/GALEX GR6 catalog, we search for other green valley galaxies with similar properties to these ESF-ETGs and estimate that ≈13% of dust-corrected green valley galaxies of similar stellar mass and UV-optical color are likely ESF-candidates, i.e., ESF-ETGs are not rare. Our results are consistent with star formation that is gradually declining in existing disks, i.e., the ESF-ETGs are evolving onto the red sequence for the first time, or with rejuvenated star formation due to accreted gas in older disks provided that the gas does not disrupt the structure of the galaxy and the resulting star formation is not too recent and bursty. ESF-ETGs may typify an important subpopulation of galaxies that can linger in the green valley for up to several Gyrs, based on their resemblance to nearby gas-rich green valley

  11. Chandra and ALMA observations of the nuclear activity in two strongly lensed star-forming galaxies

    Science.gov (United States)

    Massardi, M.; Enia, A. F. M.; Negrello, M.; Mancuso, C.; Lapi, A.; Vignali, C.; Gilli, R.; Burkutean, S.; Danese, L.; Zotti, G. De

    2018-02-01

    Aim. According to coevolutionary scenarios, nuclear activity and star formation play relevant roles in the early stages of galaxy formation. We aim at identifying them in high-redshift galaxies by exploiting high-resolution and high-sensitivity X-ray and millimeter-wavelength data to confirm the presence or absence of star formation and nuclear activity and describe their relative roles in shaping the spectral energy distributions and in contributing to the energy budgets of the galaxies. Methods: We present the data, model, and analysis in the X-ray and millimeter (mm) bands for two strongly lensed galaxies, SDP.9 (HATLAS J090740.0-004200) and SDP.11 (HATLAS J091043.1-000322), which we selected in the Herschel-ATLAS catalogs for their excess emission in the mid-IR regime at redshift ≳1.5. This emission suggests nuclear activity in the early stages of galaxy formation. We observed both of them with Chandra ACIS-S in the X-ray regime and analyzed the high-resolution mm data that are available in the ALMA Science Archive for SDP.9. By combining the information available in mm, optical, and X-ray bands, we reconstructed the source morphology. Results: Both targets were detected in the X-ray, which strongly indicates highly obscured nuclear activity. ALMA observations for SDP.9 for the continuum and CO(6-5) spectral line with high resolution (0.02 arcsec corresponding to 65 pc at the distance of the galaxy) allowed us to estimate the lensed galaxy redshift to a better accuracy than pre-ALMA estimates (1.5753 ± 0.0003) and to model the emission of the optical, millimetric, and X-ray band for this galaxy. We demonstrate that the X-ray emission is generated in the nuclear environment, which strongly supports that this object has nuclear activity. On the basis of the X-ray data, we attempt an estimate of the black hole properties in these galaxies. Conclusions: By taking advantage of the lensing magnification, we identify weak nuclear activity associated with high

  12. The dynamics of z = 0.8 Hα-selected star-forming galaxies from KMOS/CF-HiZELS

    International Nuclear Information System (INIS)

    Sobral, D.; Matthee, J.; Swinbank, A. M.; Stott, J. P.; Bower, R. G.; Smail, Ian; Sharples, R. M.; Best, P.; Geach, J. E.

    2013-01-01

    We present the spatially resolved Hα dynamics of 16 star-forming galaxies at z ∼ 0.81 using the new KMOS multi-object integral field spectrograph on the ESO Very Large Telescope. These galaxies, selected using 1.18 μm narrowband imaging from the 10 deg 2 CFHT-HiZELS survey of the SA 22 hr field, are found in a ∼4 Mpc overdensity of Hα emitters and likely reside in a group/intermediate environment, but not a cluster. We confirm and identify a rich group of star-forming galaxies at z = 0.813 ± 0.003, with 13 galaxies within 1000 km s –1 of each other, and seven within a diameter of 3 Mpc. All of our galaxies are 'typical' star-forming galaxies at their redshift, 0.8 ± 0.4 SFR z=0.8 ∗ , spanning a range of specific star formation rates (sSFRs) of 0.2-1.1 Gyr –1 and have a median metallicity very close to solar of 12 + log(O/H) = 8.62 ± 0.06. We measure the spatially resolved Hα dynamics of the galaxies in our sample and show that 13 out of 16 galaxies can be described by rotating disks and use the data to derive inclination corrected rotation speeds of 50-275 km s –1 . The fraction of disks within our sample is 75% ± 8%, consistent with previous results based on Hubble Space Telescope morphologies of Hα-selected galaxies at z ∼ 1 and confirming that disks dominate the SFR density at z ∼ 1. Our Hα galaxies are well fitted by the z ∼ 1-2 Tully-Fisher (TF) relation, confirming the evolution seen in the zero point. Apart from having, on average, higher stellar masses and lower sSFRs, our group galaxies at z = 0.81 present the same mass-metallicity and TF relation as z ∼ 1 field galaxies and are all disk galaxies.

  13. Radio continuum observations of local star-forming galaxies using the Caltech Continuum Backend on the green bank telescope

    International Nuclear Information System (INIS)

    Rabidoux, Katie; Pisano, D. J.; Kepley, Amanda A.; Johnson, Kelsey E.; Balser, Dana S.

    2014-01-01

    We observed radio continuum emission in 27 local (D < 70 Mpc) star-forming galaxies with the Robert C. Byrd Green Bank Telescope between 26 GHz and 40 GHz using the Caltech Continuum Backend. We obtained detections for 22 of these galaxies at all four sub-bands and four more marginal detections by taking the average flux across the entire bandwidth. This is the first detection (full or marginal) at these frequencies for 22 of these galaxies. We fit spectral energy distributions (SEDs) for all of the four sub-band detections. For 14 of the galaxies, SEDs were best fit by a combination of thermal free-free and nonthermal synchrotron components. Eight galaxies with four sub-band detections had steep spectra that were only fit by a single nonthermal component. Using these fits, we calculated supernova rates, total number of equivalent O stars, and star formation rates within each ∼23'' beam. For unresolved galaxies, these physical properties characterize the galaxies' recent star formation on a global scale. We confirm that the radio-far-infrared correlation holds for the unresolved galaxies' total 33 GHz flux regardless of their thermal fractions, though the scatter on this correlation is larger than that at 1.4 GHz. In addition, we found that for the unresolved galaxies, there is an inverse relationship between the ratio of 33 GHz flux to total far-infrared flux and the steepness of the galaxy's spectral index between 1.4 GHz and 33 GHz. This relationship could be an indicator of the timescale of the observed episode of star formation.

  14. Modelling ultraviolet-line diagnostics of stars, the ionized and the neutral interstellar medium in star-forming galaxies

    Science.gov (United States)

    Vidal-García, A.; Charlot, S.; Bruzual, G.; Hubeny, I.

    2017-09-01

    We combine state-of-the-art models for the production of stellar radiation and its transfer through the interstellar medium (ISM) to investigate ultraviolet-line diagnostics of stars, the ionized and the neutral ISM in star-forming galaxies. We start by assessing the reliability of our stellar population synthesis modelling by fitting absorption-line indices in the ISM-free ultraviolet spectra of 10 Large Magellanic Cloud clusters. In doing so, we find that neglecting stochastic sampling of the stellar initial mass function in these young (∼10-100 Myr), low-mass clusters affects negligibly ultraviolet-based age and metallicity estimates but can lead to significant overestimates of stellar mass. Then, we proceed and develop a simple approach, based on an idealized description of the main features of the ISM, to compute in a physically consistent way the combined influence of nebular emission and interstellar absorption on ultraviolet spectra of star-forming galaxies. Our model accounts for the transfer of radiation through the ionized interiors and outer neutral envelopes of short-lived stellar birth clouds, as well as for radiative transfer through a diffuse intercloud medium. We use this approach to explore the entangled signatures of stars, the ionized and the neutral ISM in ultraviolet spectra of star-forming galaxies. We find that, aside from a few notable exceptions, most standard ultraviolet indices defined in the spectra of ISM-free stellar populations are prone to significant contamination by the ISM, which increases with metallicity. We also identify several nebular-emission and interstellar-absorption features, which stand out as particularly clean tracers of the different phases of the ISM.

  15. The disk averaged star formation relation for Local Volume dwarf galaxies

    Science.gov (United States)

    López-Sánchez, Á. R.; Lagos, C. D. P.; Young, T.; Jerjen, H.

    2018-05-01

    Spatially resolved H I studies of dwarf galaxies have provided a wealth of precision data. However these high-quality, resolved observations are only possible for handful of dwarf galaxies in the Local Volume. Future H I surveys are unlikely to improve the current situation. We therefore explore a method for estimating the surface density of the atomic gas from global H I parameters, which are conversely widely available. We perform empirical tests using galaxies with resolved H I maps, and find that our approximation produces values for the surface density of atomic hydrogen within typically 0.5 dex of the true value. We apply this method to a sample of 147 galaxies drawn from modern near-infrared stellar photometric surveys. With this sample we confirm a strict correlation between the atomic gas surface density and the star formation rate surface density, that is vertically offset from the Kennicutt-Schmidt relation by a factor of 10 - 30, and significantly steeper than the classical N = 1.4 of Kennicutt (1998). We further infer the molecular fraction in the sample of low surface brightness, predominantly dwarf galaxies by assuming that the star formation relationship with molecular gas observed for spiral galaxies also holds in these galaxies, finding a molecular-to-atomic gas mass fraction within the range of 5-15%. Comparison of the data to available models shows that a model in which the thermal pressure balances the vertical gravitational field captures better the shape of the ΣSFR-Σgas relationship. However, such models fail to reproduce the data completely, suggesting that thermal pressure plays an important role in the disks of dwarf galaxies.

  16. SPECTRAL OPTICAL MONITORING OF THE NARROW-LINE SEYFERT 1 GALAXY Ark 564

    International Nuclear Information System (INIS)

    Shapovalova, A. I.; Burenkov, A. N.; Popović, L. Č.; Kovačević, J.; Chavushyan, V. H.; Valdes, J. R.; Torrealba, J.; Carrasco, L.; Ilić, D.; Kovačević, A.; Kollatschny, W.; Bochkarev, N. G.; León-Tavares, J.; Mercado, A.; Benítez, E.; Dultzin, D.; De la Fuente, E.

    2012-01-01

    We present the results of a long-term (1999-2010) spectral optical monitoring campaign of the active galactic nucleus (AGN) Ark 564, which shows a strong Fe II line emission in the optical. This AGN is a narrow-line Seyfert 1 (NLS1) galaxy, a group of AGNs with specific spectral characteristics. We analyze the light curves of the permitted Hα, Hβ, optical Fe II line fluxes, and the continuum flux in order to search for a time lag between them. Additionally, in order to estimate the contribution of iron lines from different multiplets, we fit the Hβ and Fe II lines with a sum of Gaussian components. We find that during the monitoring period the spectral variation (F max /F min ) of Ark 564 is between 1.5 for Hα and 1.8 for the Fe II lines. The correlation between the Fe II and Hβ flux variations is of higher significance than that of Hα and Hβ (whose correlation is almost absent). The permitted-line profiles are Lorentzian-like and do not change shape during the monitoring period. We investigate, in detail, the optical Fe II emission and find different degrees of correlation between the Fe II emission arising from different spectral multiplets and the continuum flux. The relatively weak and different degrees of correlations between permitted lines and continuum fluxes indicate a rather complex source of ionization of the broad-line emission region.

  17. SPECTRAL OPTICAL MONITORING OF THE NARROW-LINE SEYFERT 1 GALAXY Ark 564

    Energy Technology Data Exchange (ETDEWEB)

    Shapovalova, A. I.; Burenkov, A. N. [Special Astrophysical Observatory of the Russian AS, Nizhnij Arkhyz, Karachaevo-Cherkesia 369167 (Russian Federation); Popovic, L. C.; Kovacevic, J. [Astronomical Observatory, Volgina 7, 11160 Belgrade 74 (Serbia); Chavushyan, V. H.; Valdes, J. R.; Torrealba, J.; Carrasco, L. [Instituto Nacional de Astrofisica, Optica y Electronica, Apartado Postal 51-216, 72000 Puebla (Mexico); Ilic, D.; Kovacevic, A. [Isaac Newton Institute of Chile, Yugoslavia Branch, Belgrade (Serbia); Kollatschny, W. [Institut fuer Astrophysik, Georg-August-Universitaet, Goettingen (Germany); Bochkarev, N. G. [Sternberg Astronomical Institute, Moscow (Russian Federation); Leon-Tavares, J. [Aalto University Metsaehovi Radio Observatory, Metsaehovintie 114, FIN-02540 Kylmaelae (Finland); Mercado, A. [Universidad Politecnica de Baja California, Av. de la Industria 291, 21010 Mexicali, B.C. (Mexico); Benitez, E.; Dultzin, D. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-264, Mexico, D.F. 04510 (Mexico); De la Fuente, E., E-mail: ashap@sao.ru [Instituto de Astronomia y Meteorologia, Dpto. de Fisica CUCEI, Universidad de Guadalajara, Av. Vallarta 2602, 44130 Guadalajara, Jalisco (Mexico)

    2012-09-15

    We present the results of a long-term (1999-2010) spectral optical monitoring campaign of the active galactic nucleus (AGN) Ark 564, which shows a strong Fe II line emission in the optical. This AGN is a narrow-line Seyfert 1 (NLS1) galaxy, a group of AGNs with specific spectral characteristics. We analyze the light curves of the permitted H{alpha}, H{beta}, optical Fe II line fluxes, and the continuum flux in order to search for a time lag between them. Additionally, in order to estimate the contribution of iron lines from different multiplets, we fit the H{beta} and Fe II lines with a sum of Gaussian components. We find that during the monitoring period the spectral variation (F{sub max}/F{sub min}) of Ark 564 is between 1.5 for H{alpha} and 1.8 for the Fe II lines. The correlation between the Fe II and H{beta} flux variations is of higher significance than that of H{alpha} and H{beta} (whose correlation is almost absent). The permitted-line profiles are Lorentzian-like and do not change shape during the monitoring period. We investigate, in detail, the optical Fe II emission and find different degrees of correlation between the Fe II emission arising from different spectral multiplets and the continuum flux. The relatively weak and different degrees of correlations between permitted lines and continuum fluxes indicate a rather complex source of ionization of the broad-line emission region.

  18. HE I triplet line emission in class 1 Seyfert galaxies

    International Nuclear Information System (INIS)

    Feldman, F.R.

    1979-01-01

    The equation of statistical equilibrium were solved for an 11-level helium atom, including all important radiative and collisional transitions and allowing for self-absorption from any level. Gas physical conditions considered are 5 x 10 8 cm -3 less than or equal to N less than or equal to 5 x 10 10 cm -3 , 5000 K less than or equal to T less than or equal to 20,000 K and a range of optical depth in the lambda 10830 line (10 less than or equal to tau(lambda 10830) less than or equal to 500) as a free parameter. For a photoionized, optically thick cloud, tau(lambda 10830) is shown to be nearly proportional to a measure of the ratio of photoionizing flux to cloud density (U 1 ), provided that photoionization from excited He 0 levels can be neglected. Calculated triplet line intensities as a function of tau(lambda 10830) are presented in graphical form, illustrating the significance of collisional excitation from 2 3 S and 2 3 P as well as self-absorption in lines terminating on 2 3 P. The possible importance of photoionization from the n = 2 levels by continuum and resonance-line radiation was investigated. This process may significantly influence triplet line strengths for small photoionizing-source/cloud separations (high U 1 ), unless most scattered hydrogen Lα and C IV lambda 1549 photons are destroyed by dust grains (or by some other mechanism). New spectrophotometric observations of 3C 120, Mrk 618, NGC 7469, and Mrk 335 are compared to the theoretical results. It appears that class 1 Seyfert galaxies with strong helium lines may be characterized by N approx. = 5 x 10 9 cm -3 , T approx. = 15,000 K and tau(lambda 10830) approx. = 100, assuming no photoionization from n = 2

  19. The Radial Distribution of Star Formation in Galaxies at z ~ 1 from the 3D-HST Survey

    Science.gov (United States)

    Nelson, Erica June; van Dokkum, Pieter G.; Momcheva, Ivelina; Brammer, Gabriel; Lundgren, Britt; Skelton, Rosalind E.; Whitaker, Katherine E.; Da Cunha, Elisabete; Förster Schreiber, Natascha; Franx, Marijn; Fumagalli, Mattia; Kriek, Mariska; Labbe, Ivo; Leja, Joel; Patel, Shannon; Rix, Hans-Walter; Schmidt, Kasper B.; van der Wel, Arjen; Wuyts, Stijn

    2013-01-01

    The assembly of galaxies can be described by the distribution of their star formation as a function of cosmic time. Thanks to the WFC3 grism on the Hubble Space Telescope (HST) it is now possible to measure this beyond the local Universe. Here we present the spatial distribution of Hα emission for a sample of 54 strongly star-forming galaxies at z ~ 1 in the 3D-HST Treasury survey. By stacking the Hα emission, we find that star formation occurred in approximately exponential distributions at z ~ 1, with a median Sérsic index of n = 1.0 ± 0.2. The stacks are elongated with median axis ratios of b/a = 0.58 ± 0.09 in Hα consistent with (possibly thick) disks at random orientation angles. Keck spectra obtained for a subset of eight of the galaxies show clear evidence for rotation, with inclination corrected velocities of 90-330 km s-1. The most straightforward interpretation of our results is that star formation in strongly star-forming galaxies at z ~ 1 generally occurred in disks. The disks appear to be "scaled-up" versions of nearby spiral galaxies: they have EW(Hα) ~ 100 Å out to the solar orbit and they have star formation surface densities above the threshold for driving galactic scale winds.

  20. GLOBAL STAR FORMATION RATES AND DUST EMISSION OVER THE GALAXY INTERACTION SEQUENCE

    Energy Technology Data Exchange (ETDEWEB)

    Lanz, Lauranne; Zezas, Andreas; Smith, Howard A.; Ashby, Matthew L. N.; Fazio, Giovanni G.; Hernquist, Lars [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Brassington, Nicola [School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield, AL10 9AB (United Kingdom); Da Cunha, Elisabete [Max Planck Institute for Astronomy (MPIA), Koenigstuhl 17, D-69117, Heidelberg (Germany); Hayward, Christopher C. [Heidelberger Institut fuer Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118, Heidelberg (Germany); Jonsson, Patrik, E-mail: llanz@head.cfa.harvard.edu [Space Exploration Technologies, 1 Rocket Road, Hawthorne, CA 90250 (United States)

    2013-05-01

    We measured and modeled spectral energy distributions (SEDs) in 28 bands from the ultraviolet to the far-infrared (FIR) for 31 interacting galaxies in 14 systems. The sample is drawn from the Spitzer Interacting Galaxy Survey, which probes a range of galaxy interaction parameters at multiple wavelengths with an emphasis on the infrared bands. The subset presented in this paper consists of all galaxies for which FIR Herschel SPIRE observations are publicly available. Our SEDs combine the Herschel photometry with multi-wavelength data from Spitzer, GALEX, Swift UVOT, and 2MASS. While the shapes of the SEDs are broadly similar across our sample, strongly interacting galaxies typically have more mid-infrared emission relative to their near-infrared and FIR emission than weakly or moderately interacting galaxies. We modeled the full SEDs to derive host galaxy star formation rates (SFRs), specific star formation rates (sSFRs), stellar masses, dust temperatures, dust luminosities, and dust masses. We find increases in the dust luminosity and mass, SFR, and cold (15-25 K) dust temperature as the interaction progresses from moderately to strongly interacting and between non-interacting and strongly interacting galaxies. We also find increases in the SFR between weakly and strongly interacting galaxies. In contrast, the sSFR remains unchanged across all the interaction stages. The ultraviolet photometry is crucial for constraining the age of the stellar population and the SFR, while dust mass is primarily determined by SPIRE photometry. The SFR derived from the SED modeling agrees well with rates estimated by proportionality relations that depend on infrared emission.