WorldWideScience

Sample records for stardust comet sample

  1. Stardust: Catching a Comet and Bringing it Home

    Science.gov (United States)

    Brownlee, Donald E.

    2007-01-01

    The NASA STARDUST mission collected thousands of particles from Comet Wild 2 that are now being studied by two hundred scientists around the world. The spacecraft captured the samples during a close flyby of the comet in 2004 and returned them to Earth with a dramatic entry into the atmosphere early in 2006. The precious cargo of comet dust is being studied to determine new information about the origin of the Sun and planets. The comet formed at the edge of the solar system, beyond the orbit of Neptune, and is a sample of the material from which the solar system was formed. One of the most dramatic early findings from the mission was that a comet that formed in the coldest place in the solar system contained minerals that formed in the hottest place in the solar system. The comet samples are telling stories of fire and ice and they providing fascinating and unexpected information about our origins.

  2. Carbon Isotopic Ratios of Amino Acids in Stardust-Returned Samples

    Science.gov (United States)

    Elsila, Jamie E.; Glavin, Daniel P.; Dworkin, Jason P.

    2009-01-01

    NASA's Stardust spacecraft returned to Earth samples from comet 81P/Wild 2 in January 2006. Preliminary examinations revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds could not be identified. Here. we present the carbon isotopic ratios of glycine and E-aminocaproic acid (EACH), the two most abundant amino acids observed, in Stardust-returned foil samples measured by gas chromatography-combustion-isotope ratio crass spectrometry coupled with quadrupole mass spectrometry (GC-QMS/IRMS).

  3. Organics Captured from Comet Wild 2 by the Stardust Spacecraft

    Energy Technology Data Exchange (ETDEWEB)

    Stanford, S A; Aleon, J; O' D. Alexander, C M; Araki, T; Bajt, S; Baratta, G A; Borg, J; Brucato, J R; Burchell, M J; Busemann, H; Butterworth, A; Clemett, S J; Cody, G; Colangeli, L; Cooper, G; D' Hendecourt, L; Djouadi, Z; Dworkin, J P; Ferrini, G; Fleckenstein, H; Flynn, G; Franchi, I A; Fries, M; Gilles, M K; Glavin, D P; Gounelle, M; Grossemy, F; Jacobsen, C; Keller, L P; Kilcoyne, A D; Leitner, J; Matrajt, G; Meibom, A; Mennella, V; Mostefaoui, S; Nittler, L R; Palumbo, M E; Robert, F; Rotundi, A; Snead, C J; Spencer, M K; Steele, A; Stephan, T; Tyliszczak, T; Westphal, A J; Wirick, S; Wopenka, B; Yabuta, H; Zare, R N; Zolensky, M

    2006-10-11

    Organics found in Comet Wild 2 samples show a heterogeneous and unequilibrated distribution in abundance and composition. Some organics are similar, but not identical, to those in interplanetary dust particles (IDPs) and carbonaceous meteorites. A class of aromatic-poor organic material is also present. The organics are rich in O and N compared to meteoritic organics. Aromatic compounds are present, but the samples tend to be relatively poorer in aromatics than meteorites and IDPs. D and {sup 15}N suggest that some organics have an interstellar/protostellar heritage. While the variable extent of modification of these materials by impact capture is not yet fully constrained, a remarkably diverse suite of organic compounds is present and identifiable within the returned samples. Comets are small bodies that accreted in the outer Solar System during its formation (1) and thus may consist of preserved samples of the ''starting materials'' from which the Solar System was made. Organic materials are expected to be present in cometary samples (2) and may include molecules made and/or modified in stellar outflows, the interstellar medium, and the protosolar nebula, as well as by parent body processing within the comet. The presence of organic compounds in comets and their ejecta is of astrobiological interest since their delivery to the early Earth may have played an important role in the origin of life on Earth (3). An overview of the Stardust Mission and the collection and recovery of Wild 2 samples is provided elsewhere (4,5). We describe the results obtained from the returned samples by the Stardust Organics Preliminary Examination Team (PET). Samples were studied using a wide range of analytical techniques, including two-step laser desorption laser ionization mass spectrometry (L{sub 2}MS), Liquid Chromatography with UV Fluorescence Detection and Time of Flight Mass Spectrometry (LC-FD/TOF-MS), Scanning Transmission X-ray Microscopy (STXM), X

  4. Detection of cometary amines in samples returned by Stardust

    Science.gov (United States)

    Glavin, D. P.; Dworkin, J. P.; Sandford, S. A.

    2008-02-01

    The abundances of amino acids and amines, as well as their enantiomeric compositions, were measured in samples of Stardust comet-exposed aerogel and foil using liquid chromatography with UV fluorescence detection and time of flight mass spectrometry (LC-FD/ToF-MS). A suite of amino acids and amines including glycine, L-alanine, β-alanine (BALA), γ-amino-n-butyric acid (GABA), ɛ-amino-n-caproic acid (EACA), ethanolamine (MEA), methylamine (MA), and ethylamine (EA) were identified in acid-hydrolyzed, hot-water extracts of these Stardust materials above background levels. With the exception of MA and EA, all other primary amines detected in cometexposed aerogel fragments C2054,4 and C2086,1 were also present in the flight aerogel witness tile that was not exposed to the comet, indicating that most amines are terrestrial in origin. The enhanced relative abundances of MA and EA in comet-exposed aerogel compared to controls, coupled with MA to EA ratios (C2054,4: 1.0 ± 0.2; C2086,1: 1.8 ± 0.2) that are distinct from preflight aerogels (E243-13C and E243-13F: 7 ± 3), suggest that these volatile amines were captured from comet Wild 2. MA and EA were present predominantly in an acid-hydrolyzable bound form in the aerogel, rather than as free primary amines, which is consistent with laboratory analyses of cometary ice analog materials. It is possible that Wild 2 MA and EA were formed on energetically processed icy grains containing ammonia and approximately equal abundances of methane and ethane. The presence of cometary amines in Stardust material supports the hypothesis that comets were an important source of prebiotic organic carbon and nitrogen on the early Earth.

  5. The Stardust spacecraft arrives at KSC

    Science.gov (United States)

    1998-01-01

    After arrival at the Shuttle Landing Facility in the early morning hours, the crated Stardust spacecraft waits to be unloaded from the aircraft. Built by Lockheed Martin Astronautics near Denver, Colo., for the Jet Propulsion Laboratory (JPL) NASA, the spacecraft Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. Stardust will be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, targeted for Feb. 6, 1999. The collected samples will return to Earth in a re- entry capsule to be jettisoned from Stardust as it swings by in January 2006.

  6. The Stardust Interstellar Dust Collector and Stardust@home

    Science.gov (United States)

    Westphal, A. J.; Anderson, D.; Bastien, R.; Butterworth, A.; Frank, D.; Gainsforth, Z.; Kelley, N.; Lettieri, R.; Mendez, B.; Prasad, R.; Tsitrin, S.; von Korff, J.; Warren, J.; Wertheimer, D.; Zhang, A.; Zolensky, M.

    2006-12-01

    The Stardust sample return mission is effectively two missions in one. Stardust brought back to earth for analytical study the first solid samples from a known solar system body beyond the moon, comet Wild2. The first results of the analyses of these samples are reported elsewhere in this session. In a separate aerogel collector, Stardust also captured and has returned the first samples of contemporary interstellar dust. Landgraf et al. [1] has estimated that ~ 50 interstellar dust particles in the micron size range have been captured in the Stardust Interstellar Dust Collector. Their state after capture is unknown. Before analysis of these particles can begin, they must be located in the collector. Here we describe the current status of Stardust@home, the massively distributed public search for these tiny interstellar dust particles. So far more than 13,000 volunteers have collectively performed more than 10,000,000 searches in stacks of digital images of ~10% of the collector. We report new estimates of the flux of interplanetary dust at ~2 AU based on the results of this search, and will compare with extant models[2]. References: [1] Landgraf et al., (1999) Planet. Spac. Sci. 47, 1029. [2] Staubach et al. (2001) in Interplanetary Dust, E. Grün, ed., Astron. &Astro. Library, Springer, 2001.

  7. Catching Stardust and Bringing it Home: The Astronomical Importance of Sample Return

    Science.gov (United States)

    Brownlee, D.

    2002-12-01

    The return of lunar samples by the Apollo program provided the first opportunity to perform detailed laboratory studies of ancient solid materials from a known astronomical body. The highly detailed study of the samples, using the best available laboratory instruments and techniques, revolutionized our understanding of the Moon and provided fundamental insight into the remarkable and violent processes that occur early in the history of moons and terrestrial planets. This type of astronomical paleontology is only possible with samples and yet the last US sample return was made by Apollo 17- over thirty years ago! The NASA Stardust mission, began a new era of sample missions with its 1999 launch to retrieve samples from the short period comet Wild 2. Genesis (a solar wind collector) was launched in 2001, the Japanese MUSES-C asteroid sample return mission will launch in 2003 and Mars sample return missions are under study. All of these missions will use sophisticated ground-based instrumentation to provide types of information that cannot be obtained by astronomical and spacecraft remote sensing methods. In the case of Stardust, the goal is to determine the fundamental nature of the initial solid building blocks of solar systems at atomic-scale spatial resolution. The samples returned by the mission will be samples from the Kuiper Belt region and they are probably composed of submicron silicate and organic materials of both presolar and nebular origin. Unlocking the detailed records contained in the elemental, chemical, isotopic and mineralogical composition of these tiny components can only be appropriately explored with full power, precision and flexibility of laboratory instrumentation. Laboratory instrumentation has the advantage that is state-of-the-art and is not limited by serious considerations of power, mass, cost or even reliability. The comparison of the comet sample, accumulated beyond Neptune, with asteroidal meteorites that accumulated just beyond the

  8. The solar panels of the spacecraft Stardust are deployed before undergoing lighting test in the PHSF

    Science.gov (United States)

    1999-01-01

    In the Payload Hazardous Servicing Facility, workers look over the solar panels on the Stardust spacecraft that are deployed for lighting tests. Stardust is scheduled to be launched aboard a Boeing Delta II rocket from Launch Pad 17A, Cape Canaveral Air Station, on Feb. 6, 1999, for a rendezvous with the comet Wild 2 in January 2004. Stardust will use a substance called aerogel to capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a sample return capsule to be jettisoned as it swings by Earth in January 2006.

  9. Systematic Examination of Stardust Bulbous Track Wall Materials

    Science.gov (United States)

    Nakamura-Messenger, K.; Clemett, S. J.; Nguyen, A. N.; Berger, E. L.; Keller, L. P.; Messenger, S.

    2013-01-01

    Analyses of Comet Wild-2 samples returned by NASA's Stardust spacecraft have focused primarily on terminal particles (TPs) or well-preserved fine-grained materials along the track walls [1,2]. However much of the collected material was melted and mixed intimately with the aerogel by the hypervelocity impact [3,4]. We are performing systematic examinations of entire Stardust tracks to establish the mineralogy and origins of all comet Wild 2 components [7,8]. This report focuses on coordinated analyses of indigenous crystalline and amorphous/melt cometary materials along the aerogel track walls, their interaction with aerogel during collection and comparisons with their TPs.

  10. NM-Scale Anatomy of an Entire Stardust Carrot Track

    Science.gov (United States)

    Nakamura-Messenger, K.; Keller, L. P.; Clemett, S. J.; Messenger, S.

    2009-01-01

    Comet Wild-2 samples collected by NASA s Stardust mission are extremely complex, heterogeneous, and have experienced wide ranges of alteration during the capture process. There are two major types of track morphologies: "carrot" and "bulbous," that reflect different structural/compositional properties of the impactors. Carrot type tracks are typically produced by compact or single mineral grains which survive essentially intact as a single large terminal particle. Bulbous tracks are likely produced by fine-grained or organic-rich impactors [1]. Owing to their challenging nature and especially high value of Stardust samples, we have invested considerable effort in developing both sample preparation and analytical techniques tailored for Stardust sample analyses. Our report focuses on our systematic disassembly and coordinated analysis of Stardust carrot track #112 from the mm to nm-scale.

  11. Cometary Amino Acids from the STARDUST Mission

    Science.gov (United States)

    Cook, Jamie Elsila

    2009-01-01

    NASA's Stardust spacecraft returned samples from comet 81 P/WiId 2 to Earth in January 2006. Examinations of the organic compounds in cometary samples can reveal information about the prebiotic organic inventory present on the early Earth and within the early Solar System, which may have contributed to the origin of life. Preliminary studies of Stardust material revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds (cometary vs. terrestrial contamination) could not be identified. We have recently measured the carbon isotopic ratios of these amino acids to determine their origin, leading to the first detection of a cometary amino acid.

  12. Four Interstellar Dust Candidates from the Stardust Interstellar Dust Collector

    Science.gov (United States)

    Westphal, A. J.; Allen, C.; Bajt, S.; Bechtel, H. A.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; Burchell, M.; Burghammer, M.; hide

    2011-01-01

    In January 2006, the Stardust sample return capsule returned to Earth bearing the first solid samples from a primitive solar system body, Comet 81P/Wild2, and a collector dedicated to the capture and return of contemporary interstellar dust. Both collectors were approx. 0.1 sq m in area and were composed of aerogel tiles (85% of the collecting area) and aluminum foils. The Stardust Interstellar Dust Collector (SIDC) was exposed to the interstellar dust stream for a total exposure factor of 20 sq m/day. The Stardust Interstellar Preliminary Examination (ISPE) is a consortium-based project to characterize the collection using nondestructive techniques. The goals and restrictions of the ISPE are described . A summary of analytical techniques is described.

  13. Maneuver Analysis and Targeting Strategy for the Stardust Re-Entry Capsule

    Science.gov (United States)

    Helfrich, Cliff; Bhat, Ramachand S.; Kangas, Julie A.; Wilson, Roby S.; Wong, Mau C.; Potts, Christopher L.; Williams, Kenneth E.

    2006-01-01

    The Stardust Sample Return Capsule (SRC) returned to Earth on January 15, 2006 after seven years of collecting interstellar and comet particles over three heliocentric revolutions, as shown in Figure 1. The SRC was carried on board the Stardust spacecraft, as shown in Figure 2. Because the spacecraft was built with unbalanced thrusters, turns and attitude control maintenance resulted in undesirable delta-v being imparted to the trajectory. As a result, a carefully planned maneuver strategy was devised to accurately target the Stardust capsule to the Utah Test and Training Range (UTTR). This paper provides an overview of the Stardust spacecraft and mission and describes the maneuver strategy that was employed to achieve the stringent targeting requirements for landing in Utah. In addition, an overview of Stardust maneuver analysis tools and techniques will also be presented.

  14. Abundant Solar Nebula Solids in Comets

    Science.gov (United States)

    Messenger, S.; Keller, L. P.; Nakamura-Messenger, K.; Nguyen, A. N.; Clemett, S.

    2016-01-01

    Comets have been proposed to consist of unprocessed interstellar materials together with a variable amount of thermally annealed interstellar grains. Recent studies of cometary solids in the laboratory have shown that comets instead consist of a wide range of materials from across the protoplanetary disk, in addition to a minor complement of interstellar materials. These advances were made possible by the return of direct samples of comet 81P/Wild 2 coma dust by the NASA Stardust mission and recent advances in microscale analytical techniques. Isotopic studies of 'cometary' chondritic porous interplanetary dust particles (CP-IDPs) and comet 81P/Wild 2 Stardust samples show that preserved interstellar materials are more abundant in comets than in any class of meteorite. Identified interstellar materials include sub-micron-sized presolar silicates, oxides, and SiC dust grains and some fraction of the organic material that binds the samples together. Presolar grain abundances reach 1 weight percentage in the most stardust-rich CP-IDPs, 50 times greater than in meteorites. Yet, order of magnitude variations in presolar grain abundances among CP-IDPs suggest cometary solids experienced significant variations in the degree of processing in the solar nebula. Comets contain a surprisingly high abundance of nebular solids formed or altered at high temperatures. Comet 81P/Wild 2 samples include 10-40 micron-sized, refractory Ca- Al-rich inclusion (CAI)-, chondrule-, and ameboid olivine aggregate (AOA)-like materials. The O isotopic compositions of these refractory materials are remarkably similar to their meteoritic counterparts, ranging from 5 percent enrichments in (sup 16) O to near-terrestrial values. Comet 81P/Wild 2 and CP-IDPs also contain abundant Mg-Fe crystalline and amorphous silicates whose O isotopic compositions are also consistent with Solar System origins. Unlike meteorites, that are dominated by locally-produced materials, comets appear to be composed of

  15. Correlated Microanalysis of Cometary Organic Grains Returned by Stardust

    Energy Technology Data Exchange (ETDEWEB)

    B De Gregorio; R Stroud; G Cody; L Nittler; A Kilcoyne; S Wirick

    2011-12-31

    Carbonaceous matter in Stardust samples returned from comet 81P/Wild 2 is observed to contain a wide variety of organic functional chemistry. However, some of this chemical variety may be due to contamination or alteration during particle capture in aerogel. We investigated six carbonaceous Stardust samples that had been previously analyzed and six new samples from Stardust Track 80 using correlated transmission electron microscopy (TEM), X-ray absorption near-edge structure spectroscopy (XANES), and secondary ion mass spectroscopy (SIMS). TEM revealed that samples from Track 35 containing abundant aliphatic XANES signatures were predominantly composed of cometary organic matter infilling densified silica aerogel. Aliphatic organic matter from Track 16 was also observed to be soluble in the epoxy embedding medium. The nitrogen-rich samples in this study (from Track 22 and Track 80) both contained metal oxide nanoparticles, and are likely contaminants. Only two types of cometary organic matter appear to be relatively unaltered during particle capture. These are (1) polyaromatic carbonyl-containing organic matter, similar to that observed in insoluble organic matter (IOM) from primitive meteorites, interplanetary dust particles (IDPs), and in other carbonaceous Stardust samples, and (2) highly aromatic refractory organic matter, which primarily constitutes nanoglobule-like features. Anomalous isotopic compositions in some of these samples also confirm their cometary heritage. There also appears to be a significant labile aliphatic component of Wild 2 organic matter, but this material could not be clearly distinguished from carbonaceous contaminants known to be present in the Stardust aerogel collector.

  16. Correlated microanalysis of cometary organic grains returned by Stardust

    Science.gov (United States)

    de Gregorio, Bradley T.; Stroud, Rhonda M.; Cody, George D.; Nittler, Larry R.; David Kilcoyne, A. L.; Wirick, Sue

    2011-09-01

    Abstract- Carbonaceous matter in Stardust samples returned from comet 81P/Wild 2 is observed to contain a wide variety of organic functional chemistry. However, some of this chemical variety may be due to contamination or alteration during particle capture in aerogel. We investigated six carbonaceous Stardust samples that had been previously analyzed and six new samples from Stardust Track 80 using correlated transmission electron microscopy (TEM), X-ray absorption near-edge structure spectroscopy (XANES), and secondary ion mass spectroscopy (SIMS). TEM revealed that samples from Track 35 containing abundant aliphatic XANES signatures were predominantly composed of cometary organic matter infilling densified silica aerogel. Aliphatic organic matter from Track 16 was also observed to be soluble in the epoxy embedding medium. The nitrogen-rich samples in this study (from Track 22 and Track 80) both contained metal oxide nanoparticles, and are likely contaminants. Only two types of cometary organic matter appear to be relatively unaltered during particle capture. These are (1) polyaromatic carbonyl-containing organic matter, similar to that observed in insoluble organic matter (IOM) from primitive meteorites, interplanetary dust particles (IDPs), and in other carbonaceous Stardust samples, and (2) highly aromatic refractory organic matter, which primarily constitutes nanoglobule-like features. Anomalous isotopic compositions in some of these samples also confirm their cometary heritage. There also appears to be a significant labile aliphatic component of Wild 2 organic matter, but this material could not be clearly distinguished from carbonaceous contaminants known to be present in the Stardust aerogel collector.

  17. Laboratory Studies of Cometary Materials - Continuity Between Asteroid and Comet

    Science.gov (United States)

    Messenger, Scott; Walker, Robert M.

    2015-01-01

    Laboratory analysis of cometary samples have been enabled by collection of cometary dust in the stratosphere by high altitude aircraft and by the direct sampling of the comet Wild-2 coma by the NASA Stardust spacecraft. Cometary materials are composed of a complex assemblage of highly primitive, unprocessed interstellar and primordial solar system materials as well as a variety of high temperature phases that must have condensed in the inner regions of the protoplanetary disk. These findings support and contradict conclusions of comet properties based solely on astronomical observations. These sample return missions have instead shown that there is a continuity of properties between comets and asteroids, where both types of materials show evidence for primitive and processed materials. Furthermore, these findings underscore the importance and value of direct sample return. There will be great value in comparing the findings of the Stardust cometary coma sample return mission with those of future asteroid surface sample returns OSIRIS-REx and Hayabusa II as well as future comet nucleus sample returns.

  18. Landing and Population Hazard Analysis for Stardust Entry in Operations and Entry Planning

    Science.gov (United States)

    Tooley, Jeffrey; Desai, Prasun N.; Lynos, Daniel T.; Hirst, Edward A.; Wahl, Tom E.; Wawrzyniak, Georffery G.

    2006-01-01

    Stardust is a comet sample return mission that successfully returned to Earth on January 15, 2006. Stardust's targeted landing area was the Utah Test and Training Range in the Northwest corner of Utah. Requirements for the risks associated with landing were levied on Stardust by the Utah Test and Training Range and NASA. This paper describes the analysis to verify that these requirements were met and and includes calculation of debris survivability, generation of landing site selection plots, and identification of keep-out zones, as well as appropriate selection of the landing site. Operationally the risk requirements were all met for both of the GOMO-GO polls, so entry was authorized.

  19. Comet 81P/Wild 2 under a microscope

    Energy Technology Data Exchange (ETDEWEB)

    Brownlee, D; Tsou, P; Aleon, J; Alexander, C; Araki, T; Bajt, S; Baratta, G A; Bastien, R; Bland, P; Bleuet, P; Borg, J; Bradley, J P; Brearley, A; Brenker, F; Brennan, S; Bridges, J C; Browning, N; Brucato, J R; Bullock, E; Burchell, M J; Busemann, H; Butterworth, A; Chaussidon, M; Cheuvront, A; Chi, M; Cintala, M J; Clark, B C; Clemett, S J; Cody, G; Colangeli, L; Cooper, G; Cordier, P; Daghlian, C; Dai, Z R; D' Hendecourt, L; Djouadi, Z; Dominguez, G; Duxbury, T; Dworkin, J P; Ebel, D; Economou, T E; Fairey, S J; Fallon, S; Ferrini, G; Ferroir, T; Fleckenstein, H; Floss, C; Flynn, G; Franchi, I A; Fries, M; Gainsforth, Z; Gallien, J; Genge, M; Gilles, M K; Gillet, P; Gilmour, J; Glavin, D P; Gounelle, M; Grady, M M; Graham, G A; Grant, P G; Green, S F; Grossemy, F; Grossman, L; Grossman, J; Guan, Y; Hagiya, K; Harvey, R; Heck, P; Herzog, G F; Hoppe, P; Horz, F; Huth, J; Hutcheon, I D; Ishii, H; Ito, M; Jacob, D; Jacobsen, C; Jacobsen, S; Joswiak, D; Kearsley, A T; Keller, L; Khodja, H; Kilcoyne, A D; Kissel, J; Krot, A; Langenhorst, F; Lanzirotti, A; Le, L; Leshin, L; Leitner, J; Lemelle, L; Leroux, H; Liu, M; Luening, K; Lyon, I; MacPherson, G; Marcus, M A; Marhas, K; Matrajt, G; Meibom, A; Mennella, V; Messenger, K; Mikouchi, T; Mostefaoui, S; Nakamura, T; Nakano, T; Newville, M; Nittler, L R; Ohnishi, I; Ohsumi, K; Okudaira, K; Papanastassiou, D A; Palma, R; Palumbo, M E; Pepin, R O; Perkins, D; Perronnet, M; Pianetta, P; Rao, W; Rietmeijer, F; Robert, F; Rost, D; Rotundi, A; Ryan, R; Sandford, S A; Schwandt, C S; See, T H; Schlutter, D; Sheffield-Parker, J; Simionovici, A; Simon, S; Sitnitsky, I; Snead, C J; Spencer, M K; Stadermann, F J; Steele, A; Stephan, T; Stroud, R; Susini, J; Sutton, S R; Taheri, M; Taylor, S; Teslich, N; Tomeoka, K; Tomioka, N; Toppani, A; Trigo-Rodriguez, J M; Troadec, D; Tsuchiyama, A; Tuzolino, A J; Tyliszczak, T; Uesugi, K; Velbel, M; Vellenga, J; Vicenzi, E; Vincze, L; Warren, J; Weber, I; Weisberg, M; Westphal, A J; Wirick, S; Wooden, D; Wopenka, B; Wozniakiewicz, P; Wright, I; Yabuta, K; Yano, H; Young, E D; Zare, R N; Zega, T

    2006-10-12

    The Stardust spacecraft collected thousands of particles from comet 81P/Wild 2 and returned them to Earth for laboratory study. The preliminary examination of these samples shows that the nonvolatile portion of the comet is an unequilibrated assortment of materials that have both presolar and solar system origin. The comet contains an abundance of silicate grains that are much larger than predictions of interstellar grain models, and many of these are high-temperature minerals that appear to have formed in the inner regions of the solar nebula. Their presence in a comet proves that the formation of the solar system included mixing on the grandest scales. Stardust was the first mission to return solid samples from a specific astronomical body other than the Moon. The mission, part of the NASA Discovery program, retrieved samples from a comet that is believed to have formed at the outer fringe of the solar nebula, just beyond the most distant planet. The samples, isolated from the planetary region of the solar system for billions of years, provide new insight into the formation of the solar system. The samples provide unprecedented opportunities both to corroborate astronomical (remote sensing) and sample analysis information (ground truth) on a known primitive solar system body and to compare preserved building blocks from the edge of the planetary system with sample-derived and astronomical data for asteroids, small bodies that formed more than an order of magnitude closer to the Sun. The asteroids, parents of most meteorites, formed by accretion of solids in warmer, denser, more collisionally evolved inner regions of the solar nebula where violent nebular events were capable of flash-melting millimeter-sized rocks, whereas comets formed in the coldest, least dense region. The samples collected by Stardust are the first primitive materials from a known body, and as such they provide contextual insight for all primitive meteoritic samples. About 200 investigators

  20. I. T. - R. O. C. K. S. Comet Nuclei Sample Return Mission

    Science.gov (United States)

    Dalcher, N.

    2009-04-01

    Ices, organics and minerals recording the chemical evolution of the outer regions of the early solar nebula are the main constituents of comets. Because comets maintain the nearly pristine nature of the cloud where they formed, the analyses of their composition, structure, thermodynamics and isotope ratios will increase our understanding of the processes that occurred in the early phases of the solar system as well as the Interstellar Medium (ISM) Cloud that predated the formation of the solar nebula [1]. While the deep impact mission aimed at determining the internal structure of comet Temple1's nuclei [e.g. 3], the stardust mission sample return has dramatically increased our understanding of comets. Its first implications indicated that some of the comet material originated in the inner solar system and was later transported outward beyond the freezing line [4]. A wide range of organic compounds identified within different grains of the aerogel collectors has demonstrated the heterogeneity in their assemblages [5]. This suggests either many histories associated with these material or possibly analytical constraints imposed by capture heating of Wild2 material in silica aerogel. The current mission ROSETTA, will further expand our knowledge about comets considerably through rigorous in situ analyses of a Jupiter Family Comet (JFC). As the next generation of comet research post ROSETTA, we present the comet nuclei sample return mission IT - ROCKS (International Team - Return Of Comet's Key Samples) to return several minimally altered samples from various locations of comet 88P/Howell, a typical JFC. The mission scenario includes remote sensing of the comet's nucleus with onboard instruments similar to the ROSETTA instruments [6, 7, 8] (VIS, IR, Thermal IR, X-Ray, Radar) and gas/dust composition measurements including a plasma science package. Additionally two microprobes [9] will further investigate the physical properties of the comet's surface. Retrieving of the

  1. Analysis of "Midnight" Tracks in the Stardust Interstellar Dust Collector: Possible Discovery of a Contemporary Interstellar Dust Grain

    Science.gov (United States)

    Westphal, A. J.; Allen, C.; Bajit, S.; Bastien, R.; Bechtel, H.; Bleuet, P.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; hide

    2010-01-01

    In January 2006, the Stardust sample return capsule returned to Earth bearing the first solid samples from a primitive solar system body, Comet 81P/Wild2, and a collector dedicated to the capture and return of contemporary interstellar dust. Both collectors were approximately 0.1m(exp 2) in area and were composed of aerogel tiles (85% of the collecting area) and aluminum foils. The Stardust Interstellar Dust Collector (SIDC) was exposed to the interstellar dust stream for a total exposure factor of 20 m(exp 2) day. The Stardust Interstellar Preliminary Examination (ISPE) is a three-year effort to characterize the collection using nondestructive techniques.

  2. Supporting online materials for mineralogy and petrology of Comet81P/Wild 2 nucleus samples

    Energy Technology Data Exchange (ETDEWEB)

    Zolensky, Michael E.; Zega, Thomas J.; Yano, Hajime; Wirick, Sue; Westphal, Andrew J.; Weisberg, Mike K.; Weber, Iris; Warren, Jack L.; Velbel, Michael A.; Tsuchiyama, Akira; Tsou, Peter; Toppani, Alice; Tomioka, Naotaka; Tomeoka, Kazushige; Teslich, Nick; Taheri, Mitra; Susini, Jean; Stroud, Rhonda; Stephan, Thomas; Stadermann, Frank J.; Snead, Christopher J.; Simon, Steven B.; Simionovici, Alexandre; See,Thomas H.; Robert Francois; Rietmeijer, Frans J.M.; Rao, William; Perronnet, Murielle C.; Papanastassiou, Dimitri A.; Okudaira, Kyoko; Ohsumi, Kazumasa; Ohnishi, Ichiro; Nakamura-Messenger, Keilo; Nakamura,Tomoki; Mostefaoui, Smail; Mikouchi, Takashi; Meibom, Anders; Matrajt,Graciela; Marcus, Matthew A.; Leroux, Hugues; Lemelle, Laurence; Antonio,Loan Le; Lanzirotti, Antonio; Langenhorst, Falko; Krot, Alexander N.; Keller, Lindsay P.; Kearsley, Anton T.; Joswiak, Davis; Jacob, Damien; Ishii, Hope; Harvey, Ralph; Hagiya, Kenji; Grossman, Lawrence; Grossman,Jeffrey N.; Graham, Giles A.; Gounelle, Matthieu; Gillet, Philippe; Genge, Matthew J.; Flynn, George; Ferroir, Tristan; Fallow, Stewart; Ebel, Denton S.; Dai, Zu Rong; Cordier, Patrick; Clark, Benton; Chi,Miaofang; Butterworth, Anna L.; Brownlee, Donald E.; Bridges, John C.; Brennan, Sean; Brearley, Adrian; Bradley, John P.; Bleuet, Pierre; Bland,Phil A.; Bastien, Ron

    2006-01-01

    The bulk of the comet 81P/Wild 2 (hereafter Wild 2) samples returned to Earth by the Stardust spacecraft appear to be weakly constructed mixtures of nanometer-scale grains, with occasional much larger (over 1 micrometer) ferromagnesian silicates, Fe-Ni sulfides, Fe-Ni metal, and accessory phases. The very wide range of olivine and low-Ca pyroxene compositions in comet Wild 2 requires a wide range of formation conditions, probably reflecting very different formation locations in the protoplanetary disk. The restricted compositional ranges of Fe-Ni sulfides, the wide range for silicates, and the absence of hydrous phases indicate that comet Wild 2 experienced little or no aqueous alteration. Less abundant Wild 2 materials include a refractory particle, whose presence appears to require radial transport in the early protoplanetary disk.

  3. Stardust Entry: Landing and Population Hazards in Mission Planning and Operations

    Science.gov (United States)

    Desai, P.; Wawrzyniak, G.

    2006-01-01

    The 385 kg Stardust mission was launched on Feb 7, 1999 on a mission to collect samples from the tail of comet Wild 2 and from interplanetary space. Stardust returned to Earth in the early morning of January 15, 2006. The sample return capsule landed in the Utah Test and Training Range (UTTR) southwest of Salt Lake City. Because Stardust was landing on Earth, hazard analysis was required by the National Aeronautics and Space Administration, UTTR, and the Stardust Project to ensure the safe return of the landing capsule along with the safety of people, ground assets, and aircraft. This paper focuses on the requirements affecting safe return of the capsule and safety of people on the ground by investigating parameters such as probability of impacting on UTTR, casualty expectation, and probability of casualty. This paper introduces the methods for the calculation of these requirements and shows how they affected mission planning, site selection, and mission operations. By analyzing these requirements before and during entry it allowed for the selection of a robust landing point that met all of the requirements during the actual landing event.

  4. Amino Acids from a Comet

    Science.gov (United States)

    Cook, Jamie Elisla

    2009-01-01

    NASA's Stardust spacecraft returned samples from comet 81P/Wild 2 to Earth in January 2006. Examinations of the organic compounds in cometary samples can reveal information about the prebiotic organic inventory present on the early Earth and within the early Solar System, which may have contributed to the origin of life. Preliminary studies of Stardust material revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds (cometary- vs. terrestrial contamination) could not be identified. We have recently measured the carbon isotopic ratios of these amino acids to determine their origin, leading to the first detection of a coetary amino acid.

  5. Comet Dust: The Diversity of Primitive Particles and Implications

    Science.gov (United States)

    John Bradley; Zolensky, Michael E.

    2016-01-01

    Comet dust is primitive and shows significant diversity. Our knowledge of the properties of primitive particles has expanded significantly through microscale investigations of cosmic dust samples (IDPs and AMMs) and of comet dust samples (Stardust and Rosetta's COSIMA), as well as through remote sensing (spectroscopy and imaging) via Spitzer and via spacecraft encounters with 103P/Hartley 2 and 67P/Churyumov-Gerasimenko. Microscale investigations show that comet dust and cosmic dust are particles of unequilibrated materials, including aggregates of materials unequilibrated at submicron scales. We call unequilibrated materials "primitive" and we deduce they were incorporated into ice-­-rich (H2O-, CO2-, and CO-ice) parent bodies that remained cold, i.e., into comets, because of the lack of aqueous or thermal alteration since particle aggregation; yet some Stardust olivines suggest mild thermal metamorphism. Primitive particles exhibit a diverse range of: structure and typology; size and size distribution of constituents; concentration and form of carbonaceous and organic matter; D-, N-, and O- isotopic enhancements over solar; Mg-, Fe-contentsof thesilicate minerals; the compositions and concentrations of sulfides, and of less abundant mineral species such as chondrules, CAIs and carbonates. The unifomity within a group of samples points to: aerodynamic sorting of particles and/or particle constituents; the inclusion of a limited range of oxygen fugacities; the inclusion or exclusion of chondrules; a selection of organics. The properites of primitive particles imply there were disk processes that resulted in different comets having particular selections of primitive materials. The diversity of primitive particles has implications for the diversity of materials in the protoplanetary disk present at the time and in the region where the comets formed.

  6. Comet Dust: The Diversity of "Primitive" Particles and Implications

    Science.gov (United States)

    Wooden, Diane H.; Ishii, Hope A.; Bradley, John P.; Zolensky, Michael E.

    2016-01-01

    Comet dust is primitive and shows significant diversity. Our knowledge of the properties of primitive particles has expanded significantly through microscale investigations of cosmic dust samples ( IDP's(Interplanetary Dust Particles) and AMM's (Antarctic Micrometeorites)) and of comet dust samples (Stardust and Rosetta's COSIMA), as well as through remote sensing (spectroscopy and imaging) via Spitzer and via spacecraft encounters with 103P/Hartley 2 and 67P/Churyumov-Gerasimenko. Microscale investigations show that comet dust and cosmic dust are particles of unequilibrated materials, including aggregates of materials unequilibrated at submicron scales. We call unequilibrated materials "primitive" and we deduce they were incorporated into ice-rich (H2O-, CO2-, and CO-ice) parent bodies that remained cold, i.e., into comets, because of the lack of aqueous or thermal alteration since particle aggregation; yet some Stardust olivines suggest mild thermal metamorphism. Primitive particles exhibit a diverse range of: structure and typology; size and size distribution of constituents; concentration and form of carbonaceous and organic matter; D-, N-, and O- isotopic enhancements over solar; Mg-, Fe-contents of the silicate minerals; the compositions and concentrations of sulfides, and of less abundant mineral species such as chondrules, CAIs and carbonates. The uniformity within a group of samples points to: aerodynamic sorting of particles and/or particle constituents; the inclusion of a limited range of oxygen fugacities; the inclusion or exclusion of chondrules; a selection of organics. The properties of primitive particles imply there were disk processes that resulted in different comets having particular selections of primitive materials. The diversity of primitive particles has implications for the diversity of materials in the protoplanetary disk present at the time and in the region where the comets formed.

  7. Stardust@home: An Interactive Internet-based Search for Interstellar Dust

    Science.gov (United States)

    Mendez, B. J.; Westphal, A. J.; Butterworth, A. L.; Craig, N.

    2006-12-01

    On January 15, 2006, NASA's Stardust mission returned to Earth after nearly seven years in interplanetary space. During its journey, Stardust encountered comet Wild 2, collecting dust particles from it in a special material called aerogel. At two other times in the mission, aerogel collectors were also opened to collect interstellar dust. The Stardust Interstellar Dust Collector is being scanned by an automated microscope at the Johnson Space Center. There are approximately 700,000 fields of view needed to cover the entire collector, but we expect only a few dozen total grains of interstellar dust were captured within it. Finding these particles is a daunting task. We have recruited many thousands of volunteers from the public to aid in the search for these precious pieces of space dust trapped in the collectors. We call the project Stardust@home. Through Stardust@home, volunteers from the public search fields of view from the Stardust aerogel collector using a web-based Virtual Microscope. Volunteers who discover interstellar dust particles have the privilege of naming them. The interest and response to this project has been extraordinary. Many people from all walks of life are very excited about space science and eager to volunteer their time to contribute to a real research project such as this. We will discuss the progress of the project and the education and outreach activities being carried out for it.

  8. Recovering the Elemental Composition of Comet Wild 2 Dust in Five Stardust Impact Tracks and Terminal Particles in Aerogel

    International Nuclear Information System (INIS)

    Ishii, H A; Brennan, S; Bradley, J P; Luening, K; Ignatyev, K; Pianetta, P

    2007-01-01

    The elemental (non-volatile) composition of five Stardust impact tracks and terminal particles left from capture of Comet 81P/Wild 2 dust were mapped in a synchrotron x-ray scanning microprobe with full fluorescence spectra at each pixel. Because aerogel includes background levels of several elements of interest, we employ a novel 'dual threshold' approach to discriminate against background contaminants: an upper threshold, above which a spectrum contains cometary material plus aerogel and a lower threshold below which it contains only aerogel. The difference between normalized cometary-plus-background and background-only spectra is attributable to cometary material. The few spectra in between are discarded since misallocation is detrimental: cometary material incorrectly placed in the background spectrum is later subtracted from the cometary spectrum, doubling the loss of reportable cometary material. This approach improves precision of composition quantification. We present the refined whole impact track and terminal particle elemental abundances for the five impact tracks. One track shows mass increases in Cr and Mn (1.4x), Cu, As and K (2x), Zn (4x) and total mass (13%) by dual thresholds compared to a single threshold. Major elements Fe and Ni are not significantly affected. The additional Cr arises from cometary material containing little Fe. We exclude Au intermixed with cometary material because it is found to be a localized surface contaminant carried by comet dust into an impact track. The dual threshold technique can be used in other situations where elements of interest in a small sample embedded in a matrix are also present in the matrix itself

  9. Comparison of the oxidation state of Fe in comet 81P/Wild 2 and chondritic-porous interplanetary dust particles

    Energy Technology Data Exchange (ETDEWEB)

    Ogliore, Ryan C.; Butterworth, Anna L.; Fakra, Sirine C.; Gainsforth, Zack; Marcus, Matthew A.; Westphal, Andrew J.

    2010-07-16

    The fragile structure of chondritic-porous interplanetary dust particles (CP-IDPs) and their minimal parent-body alteration have led researchers to believe these particles originate in comets rather than asteroids where aqueous and thermal alterations have occurred. The solar elemental abundances and atmospheric entry speed of CP-IDPs also suggest a cometary origin. With the return of the Stardust samples from Jupiter-family comet 81P/Wild 2, this hypothesis can be tested. We have measured the Fe oxidation state of 15 CP-IDPs and 194 Stardust fragments using a synchrotron-based x-ray microprobe. We analyzed {approx}300 ng of Wild 2 material - three orders of magnitude more material than other analyses comparing Wild 2 and CP-IDPs. The Fe oxidation state of these two samples of material are > 2{sigma} different: the CP-IDPs are more oxidized than the Wild 2 grains. We conclude that comet Wild 2 contains material that formed at a lower oxygen fugacity than the parent-body, or parent bodies, of CP-IDPs. If all Jupiter-family comets are similar, they do not appear to be consistent with the origin of CP-IDPs. However, comets that formed from a different mix of nebular material and are more oxidized than Wild 2 could be the source of CP-IDPs.

  10. Comet 81p/Wild 2: The Updated Stardust Coma Dust Fluence Measurement for Smaller (Sub 10-Micrometre) Particles

    Science.gov (United States)

    Price, M. C.; Kearsley, A. T.; Burchell, M. J.; Horz, Friedrich; Cole, M. J.

    2009-01-01

    Micrometre and smaller scale dust within cometary comae can be observed by telescopic remote sensing spectroscopy [1] and the particle size and abundance can be measured by in situ spacecraft impact detectors [2]. Initial interpretation of the samples returned from comet 81P/Wild 2 by the Stardust spacecraft [3] appears to show that very fine dust contributes not only a small fraction of the solid mass, but is also relatively sparse [4], with a low negative power function describing grain size distribution, contrasting with an apparent abundance indicated by the on-board Dust Flux Monitor Instrument (DFMI) [5] operational during the encounter. For particles above 10 m diameter there is good correspondence between results from the DFMI and the particle size inferred from experimental calibration [6] of measured aerogel track and aluminium foil crater dimensions (as seen in Figure 4 of [4]). However, divergence between data-sets becomes apparent at smaller sizes, especially submicrometre, where the returned sample data are based upon location and measurement of tiny craters found by electron microscopy of Al foils. Here effects of detection efficiency tail-off at each search magnification can be seen in the down-scale flattening of each scale component, but are reliably compensated by sensible extrapolation between segments. There is also no evidence of malfunction in the operation of DFMI during passage through the coma (S. Green, personal comm.), so can the two data sets be reconciled?

  11. Comparison of the Oxidation State of Fe in Comet 81P/Wild 2 and Chondritic-Porous Interplanetary Dust Particles

    OpenAIRE

    Ogliore, R. C.; Butterworth, A. L.; Fakra, S. C.; Gainsforth, Z.; Marcus, M. A.; Westphal, A. J.

    2010-01-01

    The fragile structure of chondritic-porous interplanetary dust particles (CP- IDPs) and their minimal parent-body alteration have led researchers to believe these particles originate in comets rather than asteroids where aqueous and thermal alteration have occurred. The solar elemental abundances and atmospheric entry speed of CP-IDPs also suggest a cometary origin. With the return of the Stardust samples from Jupiter-family comet 81P/Wild 2, this hypothesis can be tested. We have measured th...

  12. Education and Public Outreach for Stardust@home: An Interactive Internet-based Search for Interstellar Dust

    Science.gov (United States)

    Mendez, Bryan J.; Westphal, A. J.; Butterworth, A. L.; Craig, N.

    2006-12-01

    On January 15, 2006, NASA’s Stardust mission returned to Earth after nearly seven years in interplanetary space. During its journey, Stardust encountered comet Wild 2, collecting dust particles from it in a special material called aerogel. At two other times in the mission, aerogel collectors were also opened to collect interstellar dust. The Stardust Interstellar Dust Collector is being scanned by an automated microscope at the Johnson Space Center. There are approximately 700,000 fields of view needed to cover the entire collector, but we expect only a few dozen total grains of interstellar dust were captured within it. Finding these particles is a daunting task. We have recruited many thousands of volunteers from the public to aid in the search for these precious pieces of space dust trapped in the collectors. We call the project Stardust@home. Through Stardust@home, volunteers from the public search fields of view from the Stardust aerogel collector using a web-based Virtual Microscope. Volunteers who discover interstellar dust particles have the privilege of naming them. The interest and response to this project has been extraordinary. Many people from all walks of life are very excited about space science and eager to volunteer their time to contribute to a real research project such as this. We will discuss the progress of the project and the education and outreach activities being carried out for it.

  13. Comet coma sample return instrument

    Science.gov (United States)

    Albee, A. L.; Brownlee, Don E.; Burnett, Donald S.; Tsou, Peter; Uesugi, K. T.

    1994-01-01

    The sample collection technology and instrument concept for the Sample of Comet Coma Earth Return Mission (SOCCER) are described. The scientific goals of this Flyby Sample Return are to return to coma dust and volatile samples from a known comet source, which will permit accurate elemental and isotopic measurements for thousands of individual solid particles and volatiles, detailed analysis of the dust structure, morphology, and mineralogy of the intact samples, and identification of the biogenic elements or compounds in the solid and volatile samples. Having these intact samples, morphologic, petrographic, and phase structural features can be determined. Information on dust particle size, shape, and density can be ascertained by analyzing penetration holes and tracks in the capture medium. Time and spatial data of dust capture will provide understanding of the flux dynamics of the coma and the jets. Additional information will include the identification of cosmic ray tracks in the cometary grains, which can provide a particle's process history and perhaps even the age of the comet. The measurements will be made with the same equipment used for studying micrometeorites for decades past; hence, the results can be directly compared without extrapolation or modification. The data will provide a powerful and direct technique for comparing the cometary samples with all known types of meteorites and interplanetary dust. This sample collection system will provide the first sample return from a specifically identified primitive body and will allow, for the first time, a direct method of matching meteoritic materials captured on Earth with known parent bodies.

  14. TOF-SIMS Analysis of Crater Residues from Wild 2 Cometary on Stardust Aluminum Foil

    Science.gov (United States)

    Leutner, Jan; Stephan, Thomas; Kearsley, T.; Horz, Friedrich; Flynn, George J.; Sandford, Scott A.

    2006-01-01

    Impact residues of cometary particles on aluminum foils from the Stardust mission were investigated with TOF-SIMS for their elemental and organic composition. The residual matter from comet 81P/Wild 2 shows a wide compositional range, from nearly monomineralic grains to polymict aggregates. Despite the comparably small analyzed sample volume, the average element composition of the investigated residues is similar to bulk CI chondritic values. Analysis of organic components in impact residues is complicated, due to fragmentation and alteration of the compounds during the impact process and by the presence of contaminants on the aluminum foils. Nevertheless, polycyclic aromatic hydrocarbons (PAHs) that are unambiguously associated with the impact residues were observed, and thus are most likely of cometary origin.

  15. Catching Comet's Particles in the Earth's Atmosphere by Using Balloons

    Science.gov (United States)

    Potashko, Oleksandr; Viso, Michel

    The project is intended to catch cometary particles in the atmosphere by using balloons. The investigation is based upon knowledge that the Earth crosses the comet’s tails during the year. One can catch these particles at different altitudes in the atmosphere. So, we will be able to gradually advance in the ability to launch balloons from low to high altitudes and try to catch particles from different comet tails. The maximum altitude that we have to reach is 40 km. Both methods - distance observation and cometary samples from mission Stardust testify to the presence of organic components in comet’s particles. It would be useful to know more details about this organic matter for astrobiology; besides, the factor poses danger to the Earth. Moreover, it is important to prove that it is possible to get fundamental scientific results at low cost. In the last 5 years launching balloons has become popular and this movement looks like hackers’ one - as most of them occur without launch permission to airspace. The popularity of ballooning is connected with low cost of balloon, GPS unit, video recording unit. If you use iPhone, you have a light solution with GPS, video, picture and control function in one unit. The price of balloon itself begins from $50; it depends on maximum altitude, payload weight and material. Many university teams realized balloon launching and reached even stratosphere at an altitude of 33 km. But most of them take only video and picture. Meanwhile, it is possible to carry out scientific experiments by ballooning, for example to collect comet particles. There is rich experience at the moment of the use of mineral, chemical and isotopic analysis techniques and data of the comet’s dust after successful landing of StarDust capsule with samples in 2006. Besides, we may use absolutely perfect material to catch particles in the atmosphere, which was used by cosmic missions such as Stardust and Japanese Hayabusa. As to balloon launches, we could use

  16. Stardust Interstellar Preliminary Examination (ISPE)

    Science.gov (United States)

    Westphal, A. J.; Allen, C.; Bajt, S.; Basset, R.; Bastien, R.; Bechtel, H.; Bleuet, P.; Borg, J.; Brenker F.; Bridges, J.

    2009-01-01

    In January 2006 the Stardust sample return capsule returned to Earth bearing the first solid samples from a primitive solar system body, C omet 81P/Wild2, and a collector dedicated to the capture and return o f contemporary interstellar dust. Both collectors were approximately 0.1m(exp 2) in area and were composed of aerogel tiles (85% of the co llecting area) and aluminum foils. The Stardust Interstellar Dust Col lector (SIDC) was exposed to the interstellar dust stream for a total exposure factor of 20 m(exp 2-) day during two periods before the co metary encounter. The Stardust Interstellar Preliminary Examination ( ISPE) is a three-year effort to characterize the collection using no ndestructive techniques. The ISPE consists of six interdependent proj ects: (1) Candidate identification through automated digital microsco py and a massively distributed, calibrated search (2) Candidate extr action and photodocumentation (3) Characterization of candidates thro ugh synchrotronbased FourierTranform Infrared Spectroscopy (FTIR), S canning XRay Fluoresence Microscopy (SXRF), and Scanning Transmission Xray Microscopy (STXM) (4) Search for and analysis of craters in f oils through FESEM scanning, Auger Spectroscopy and synchrotronbased Photoemission Electron Microscopy (PEEM) (5) Modeling of interstell ar dust transport in the solar system (6) Laboratory simulations of h ypervelocity dust impacts into the collecting media

  17. Triple F - A Comet Nucleus Sample Return Mission

    Science.gov (United States)

    Kueppers, Michael; Keller, Horst Uwe; Kuhrt, Ekkehard; A'Hearn, Michael; Altwegg, Kathrin; Betrand, Regis; Busemann, Henner; Capria, Maria Teresa; Colangeli, Luigi

    2008-01-01

    The Triple F (Fresh From the Fridge) mission, a Comet Nucleus Sample Return, has been proposed to ESA s Cosmic Vision program. A sample return from a comet enables us to reach the ultimate goal of cometary research. Since comets are the least processed bodies in the solar system, the proposal goes far beyond cometary science topics (like the explanation of cometary activity) and delivers invaluable information about the formation of the solar system and the interstellar molecular cloud from which it formed. The proposed mission would extract three samples of the upper 50 cm from three locations on a cometary nucleus and return them cooled to Earth for analysis in the laboratory. The simple mission concept with a touch-and-go sampling by a single spacecraft was proposed as an M-class mission in collaboration with the Russian space agency ROSCOSMOS.

  18. Intact Capture, Aerogel, SOCCER, Stardust and LIFE

    Science.gov (United States)

    Tsou, P.

    2013-11-01

    In order to definitively determine many complex exploration curiosities, we must bring samples to terrestrial laboratories for detailed analyses by collaborating laboratories and analysts. We report this endeavor in SOCCER, NEARER, Stardust and LIFE.

  19. Stardust the cosmic seeds of life

    CERN Document Server

    Kwok, Sun

    2013-01-01

    How did life originate on Earth? For over 50 years, scientists believed that life was the result of a chemical reaction involving simple molecules such as methane and ammonia cooking in a primordial soup. Recent space observations have revealed that old stars are capable of making very complex organic compounds. At some point in their evolution, stars eject those organics and spread them all over the Milky Way galaxy. There is evidence that these organic dust particles actually reached the early Solar System. Through bombardments by comets and asteroids, the young Earth inherited significant amounts of stardust. Was the development of life assisted by the arrival of these extraterrestrial materials?   In this book, the author describes stunning discoveries in astronomy and solar system science made over the last 10 years that have yielded a new perspective on the origin of life.   Other interesting topics discussed in this book   The discovery of diamonds and other gemstones in space The origin of oil Neon...

  20. Stardust Blazes MOA Trail

    Science.gov (United States)

    Faris, Grant B.; Bryant, Larry W.

    2010-01-01

    Mission Operations Assurance (MOA) started at the Jet Propulsion Laboratory (JPL) with the Magellan and Galileo missions of the late 80's. It continued to develop and received a significant impetus with the failures of two successive missions to Mars in the late 90's. MOA continued to evolve with each successive project at JPL achieving its current maturity with the Stardust sample return to Earth.

  1. Possible Gems and Ultra-Fine Grained Polyphase Units in Comet Wild 2.

    Science.gov (United States)

    Gainsforth, Z.; Butterworth, A. L.; Jilly-Rehak, C. E.; Westphal, A. J.; Brownlee, D. E.; Joswiak, D.; Ogliore, R. C.; Zolensky, M. E.; Bechtel, H. A.; Ebel, D. S.; hide

    2016-01-01

    GEMS and ultrafine grained polyphase units (UFG-PU) in anhydrous IDPs are probably some of the most primitive materials in the solar system. UFG-PUs contain nanocrystalline silicates, oxides, metals and sulfides. GEMS are rounded approximately 100 nm across amorphous silicates containing embedded iron-nickel metal grains and sulfides. GEMS are one of the most abundant constituents in some anhydrous CPIDPs, often accounting for half the material or more. When NASA's Stardust mission returned with samples from comet Wild 2 in 2006, it was thought that UFG-PUs and GEMS would be among the most abundant materials found. However, possibly because of heating during the capture process in aerogel, neither GEMS nor UFG-PUs have been clearly found.

  2. Systematic random sampling of the comet assay.

    Science.gov (United States)

    McArt, Darragh G; Wasson, Gillian R; McKerr, George; Saetzler, Kurt; Reed, Matt; Howard, C Vyvyan

    2009-07-01

    The comet assay is a technique used to quantify DNA damage and repair at a cellular level. In the assay, cells are embedded in agarose and the cellular content is stripped away leaving only the DNA trapped in an agarose cavity which can then be electrophoresed. The damaged DNA can enter the agarose and migrate while the undamaged DNA cannot and is retained. DNA damage is measured as the proportion of the migratory 'tail' DNA compared to the total DNA in the cell. The fundamental basis of these arbitrary values is obtained in the comet acquisition phase using fluorescence microscopy with a stoichiometric stain in tandem with image analysis software. Current methods deployed in such an acquisition are expected to be both objectively and randomly obtained. In this paper we examine the 'randomness' of the acquisition phase and suggest an alternative method that offers both objective and unbiased comet selection. In order to achieve this, we have adopted a survey sampling approach widely used in stereology, which offers a method of systematic random sampling (SRS). This is desirable as it offers an impartial and reproducible method of comet analysis that can be used both manually or automated. By making use of an unbiased sampling frame and using microscope verniers, we are able to increase the precision of estimates of DNA damage. Results obtained from a multiple-user pooled variation experiment showed that the SRS technique attained a lower variability than that of the traditional approach. The analysis of a single user with repetition experiment showed greater individual variances while not being detrimental to overall averages. This would suggest that the SRS method offers a better reflection of DNA damage for a given slide and also offers better user reproducibility.

  3. Stardust Interstellar Preliminary Examination IV: Scanning Transmission X-Ray Microscopy Analyses of Impact Features in the Stardust Interstellar Dust Collector

    Science.gov (United States)

    Butterworth, Anna L.; Westphal, Andrew J.; Frank, David R.; Allen, Carlton C.; Bechtel, Hans A.; Sandford, Scott A.; Tsou, Peter; Zolensky, Michael E.

    2014-01-01

    We report the quantitative characterization by synchrotron soft X-ray spectroscopy of 31 potential impact features in the aerogel capture medium of the Stardust Interstellar Dust Collector. Samples were analyzed in aerogel by acquiring high spatial resolution maps and high energy-resolution spectra of major rock-forming elements Mg, Al, Si, Fe, and others. We developed diagnostic screening tests to reject spacecraft secondary ejecta and terrestrial contaminants from further consideration as interstellar dust candidates. The results support an extraterrestrial origin for three interstellar candidates: I1043,1,30 (Orion) is a 3 pg particle with Mg-spinel, forsterite, and an iron-bearing phase. I1047,1,34 (Hylabrook) is a 4 pg particle comprising an olivine core surrounded by low-density, amorphous Mg-silicate and amorphous Fe, Cr, and Mn phases. I1003,1,40 (Sorok) has the track morphology of a high-speed impact, but contains no detectable residue that is convincingly distinguishable from the background aerogel. Twenty-two samples with an anthropogenic origin were rejected, including four secondary ejecta from impacts on the Stardust spacecraft aft solar panels, nine ejecta from secondary impacts on the Stardust Sample Return Capsule, and nine contaminants lacking evidence of an impact. Other samples in the collection included I1029,1,6, which contained surviving solar system impactor material. Four samples remained ambiguous: I1006,2,18, I1044,2,32, and I1092,2,38 were too dense for analysis, and we did not detect an intact projectile in I1044,3,33. We detected no radiation effects from the synchrotron soft X-ray analyses; however, we recorded the effects of synchrotron hard X-ray radiation on I1043,1,30 and I1047,1,34.

  4. Dynamic Acquisition and Retrieval Tool (DART) for Comet Sample Return : Session: 2.06.Robotic Mobility and Sample Acquisition Systems

    Science.gov (United States)

    Badescu, Mircea; Bonitz, Robert; Kulczycki, Erick; Aisen, Norman; Dandino, Charles M.; Cantrell, Brett S.; Gallagher, William; Shevin, Jesse; Ganino, Anthony; Haddad, Nicolas; hide

    2013-01-01

    The 2011 Decadal Survey for planetary science released by the National Research Council of the National Academies identified Comet Surface Sample Return (CSSR) as one of five high priority potential New Frontiers-class missions in the next decade. The main objectives of the research described in this publication are: develop a concept for an end-to-end system for collecting and storing a comet sample to be returned to Earth; design, fabricate and test a prototype Dynamic Acquisition and Retrieval Tool (DART) capable of collecting 500 cc sample in a canister and eject the canister with a predetermined speed; identify a set of simulants with physical properties at room temperature that suitably match the physical properties of the comet surface as it would be sampled. We propose the use of a dart that would be launched from the spacecraft to impact and penetrate the comet surface. After collecting the sample, the sample canister would be ejected at a speed greater than the comet's escape velocity and captured by the spacecraft, packaged into a return capsule and returned to Earth. The dart would be composed of an inner tube or sample canister, an outer tube, a decelerator, a means of capturing and retaining the sample, and a mechanism to eject the canister with the sample for later rendezvous with the spacecraft. One of the significant unknowns is the physical properties of the comet surface. Based on new findings from the recent Deep Impact comet encounter mission, we have limited our search of solutions for sampling materials to materials with 10 to 100 kPa shear strength in loose or consolidated form. As the possible range of values for the comet surface temperature is also significantly different than room temperature and testing at conditions other than the room temperature can become resource intensive, we sought sample simulants with physical properties at room temperature similar to the expected physical properties of the comet surface material. The chosen

  5. Unveiling the formation and evolution of comets

    Science.gov (United States)

    Lasue, J.; Levasseur-Regourd, A. C.; Botet, R.; Coradini, A.; Desanctis, M. C.; Kofman, W.

    2007-08-01

    Comet nuclei are considered as the most pristine bodies of the solar system and consequently their study sheds an important light on the processes occurring during the initial stages of the solar system formation. The analysis of the porosity and bulk density of such primordial bodies is especially important to understand their capacity to retain volatile components (organics and ices) present in the early solar nebula. Typical tensile strengths deduced for comet nuclei range from below 102N.m-2 from the Deep Impact mission [1] up to 104N.m-2 from the study of comet C/1999 S4 LINEAR breakup [2] and meteoroids [3]. A bulk density of about 350 kg/m3 has been obtained for 9P/Tempel 1 from the Deep Impact mission [4]. Moreover the properties of dust released from the comets strongly confirm such values. Instruments flying-by comet 1P/Halley had discovered the presence of organics, and pointed out the dust low albedo and extremely low density while analyses of Interplanetary Dust Particles collected in the stratosphere and remote spectroscopic observations have indicated that cometary dust consists of an un-equilibrated heterogeneous mixture of organic refractory materials and of amorphous and crystalline silicate minerals [5], as recently confirmed by Stardust [6]. Observations of the solar scattered light, together with elaborate simulations, give an estimation of the mass ratio between silicates and absorbing organics, the size distribution and the structure of the dust particles, suggesting that a fair amount consists in fluffy aggregates built up from submicronic grains [7,8], as recently confirmed by the analysis of dust craters and aerogel tracks on Stardust collector showing for some large particles (up to 100 μm) an extraordinary fluffy structure [9]. Simulations have been developed in our teams to describe the aspects of comet aggregation and evolution that have not been thoroughly explained yet. Particle aggregation simulations taking into account cohesive

  6. Priority Science Targets for Future Sample Return Missions within the Solar System Out to the Year 2050

    Science.gov (United States)

    McCubbin, F. M.; Allton, J. H.; Barnes, J. J.; Boyce, J. W.; Burton, A. S.; Draper, D. S.; Evans, C. A.; Fries, M. D.; Jones, J. H.; Keller, L. P.; hide

    2017-01-01

    The Astromaterials Acquisition and Curation Office (henceforth referred to herein as NASA Curation Office) at NASA Johnson Space Center (JSC) is responsible for curating all of NASA's extraterrestrial samples. JSC presently curates 9 different astromaterials collections: (1) Apollo samples, (2) LUNA samples, (3) Antarctic meteorites, (4) Cosmic dust particles, (5) Microparticle Impact Collection [formerly called Space Exposed Hardware], (6) Genesis solar wind, (7) Star-dust comet Wild-2 particles, (8) Stardust interstellar particles, and (9) Hayabusa asteroid Itokawa particles. In addition, the next missions bringing carbonaceous asteroid samples to JSC are Hayabusa 2/ asteroid Ryugu and OSIRIS-Rex/ asteroid Bennu, in 2021 and 2023, respectively. The Hayabusa 2 samples are provided as part of an international agreement with JAXA. The NASA Curation Office plans for the requirements of future collections in an "Advanced Curation" program. Advanced Curation is tasked with developing procedures, technology, and data sets necessary for curating new types of collections as envisioned by NASA exploration goals. Here we review the science value and sample curation needs of some potential targets for sample return missions over the next 35 years.

  7. The Oxygen Isotopic Composition (18O/16O) in the Dust of Comet 67P/Churyumov-Gerasimenko Measured by COSIMA On-board Rosetta

    Science.gov (United States)

    Paquette, J. A.; Engrand, C.; Hilchenbach, M.; Fray, N.; Stenzel, O. J.; Silen, J.; Rynö, J.; Kissel, J.

    2018-03-01

    The oxygen isotopic ratio 18O/16O has been measured in cometary gas for a wide variety of comets, but the only measurements in cometary dust were performed by the Stardust cometary sample return mission. Most such measurements find a value of the ratio that is consistent with Vienna Standard Mean Ocean Water (VSMOW) within errors. In this work we present the result of a measurement, using the COSIMA instrument on the Rosetta orbiter, of the oxygen isotopic ratio in dust from Comet 67P/Churyumov-Gerasimenko. Measuring the 18O/16O ratio with COSIMA is challenging for a number of reasons, but it is possible with a reasonable degree of precision. We find a result of 2.00 × 10-3 ± 1.2 × 10-4 which is consistent within errors with VSMOW.

  8. Stardust Interstellar Preliminary Examination VII: Synchrotron X-Ray Fluorescence Analysis of Six Stardust Interstellar Candidates Measured with the Advanced Photon Source 2-ID-D Microprobe

    Science.gov (United States)

    Allen, Carlton C.; Anderson, David; Bastien, Ron K.; Brenker, Frank E.; Flynn, George J.; Frank, David; Gainsforth, Zack; Sandford, Scott A.; Simionovici, Alexandre S.; Zolensky, Michael E.

    2014-01-01

    The NASA Stardust spacecraft exposed an aerogel collector to the interstellar dust passing through the solar system. We performed X-ray fluorescence element mapping and abundance measurements, for elements 19 < or = Z < or = 30, on six "interstellar candidates," potential interstellar impacts identified by Stardust@Home and extracted for analyses in picokeystones. One, I1044,3,33, showed no element hot-spots within the designated search area. However, we identified a nearby surface feature, consistent with the impact of a weak, high-speed particle having an approximately chondritic (CI) element abundance pattern, except for factor-of-ten enrichments in K and Zn and an S depletion. This hot-spot, containing approximately 10 fg of Fe, corresponds to an approximately 350 nm chondritic particle, small enough to be missed by Stardust@Home, indicating that other techniques may be necessary to identify all interstellar candidates. Only one interstellar candidate, I1004,1,2, showed a track. The terminal particle has large enrichments in S, Ti, Cr, Mn, Ni, Cu, and Zn relative to Fe-normalized CI values. It has high Al/Fe, but does not match the Ni/Fe range measured for samples of Al-deck material from the Stardust sample return capsule, which was within the field-of-view of the interstellar collector. A third interstellar candidate, I1075,1,25, showed an Al-rich surface feature that has a composition generally consistent with the Al-deck material, suggesting that it is a secondary particle. The other three interstellar candidates, I1001,1,16, I1001,2,17, and I1044,2,32, showed no impact features or tracks, but allowed assessment of submicron contamination in this aerogel, including Fe hot-spots having CI-like Ni/Fe ratios, complicating the search for CI-like interstellar/interplanetary dust.

  9. Ion Microprobe Measurements of Comet Dust and Implications for Models of Oxygen Isotope Heterogeneity in the Solar System

    Science.gov (United States)

    Snead, C. J.; McKeegan, K. D.; Keller, L. P.; Messenger, S.

    2017-01-01

    The oxygen isotopic compositions of anhydrous minerals in carbonaceous chondrites reflect mixing between a O-16-rich and O-17, O18-rich reservoir. The UV photodissociation of CO (i.e. selfshielding) has been proposed as a mass-independent mechanism for producing these isotopically distinct reservoirs. Self-shielding models predict the composition for the CO gas reservoir to be O-16-rich, and that the accreting primordial dust was in isotopic equilibrium with the gaseous reservoir [1, 2]. Self-shielding also predicts that cometary water, presumed to represent the O-17, O-18-rich reservoir, should be enriched in O-17 and O-18, with compositions of 200 -1000per mille, and that the interaction with this O-17, O-18-rich H2O reservoir altered the compositions of the primordial dust toward planetary values. The bulk composition of the solar nebula, which may be an approximation to the 16O-rich gaseous reservoir, has been constrained by the Genesis results [3]. However, material representing the O-17, O-18-rich end-member is rare [4], and dust representing the original accreting primordial dust has been challenging to conclusively identify in current collections. Anhydrous dust from comets, which accreted in the distal cold regions of the nebula at temperatures below approximately 30K, may provide the best opportunity to measure the oxygen isotope composition of primordial dust. Chondritic porous interplanetary dust particles (CP-IDPs) have been suggested as having cometary origins [5]; however, until direct comparisons with dust from a known comet parent body were made, link between CP-IDPs and comets remained circumstantial. Oxygen isotope analyses of particles from comet 81P/Wild 2 collected by NASA's Stardust mission have revealed surprising similarities to minerals in carbonaceous chondrites which have been interpreted as evidence for large scale radial migration of dust components from the inner solar nebula to the accretion regions of Jupiter- family comets [6

  10. Stardust Final Conference

    CERN Document Server

    Minisci, Edmondo; Summerer, Leopold; McGinty, Peter

    2018-01-01

    Space debris and asteroid impacts pose a very real, very near-term threat to Earth. In order to help study and mitigate these risks, the Stardust program was formed in 2013. This training and research network was devoted to developing and mastering techniques such as removal, deflection, exploitation, and tracking. This book is a collection of many of the topics addressed at the Final Stardust Conference, describing the latest in asteroid monitoring and how engineering efforts can help us reduce space debris. It is a selection of studies bringing together specialists from universities, research institutions, and industry, tasked with the mission of pushing the boundaries of space research with innovative ideas and visionary concepts. Topics covered by the Symposium: Orbital and Attitude Dynamics Modeling Long Term Orbit and Attitude Evolution Particle Cloud Modeling and Simulation Collision and Impact Modelling and Simulation, Re-entry Modeling and Simulation Asteroid Origins and Characterization Orbit and A...

  11. DECODING THE MESSAGE FROM METEORITIC STARDUST SILICON CARBIDE GRAINS

    International Nuclear Information System (INIS)

    Lewis, Karen M.; Lugaro, Maria; Gibson, Brad K.; Pilkington, Kate

    2013-01-01

    Micron-sized stardust grains that originated in ancient stars are recovered from meteorites and analyzed using high-resolution mass spectrometry. The most widely studied type of stardust is silicon carbide (SiC). Thousands of these grains have been analyzed with high precision for their Si isotopic composition. Here we show that the distribution of the Si isotopic composition of the vast majority of stardust SiC grains carries the imprints of a spread in the age-metallicity distribution of their parent stars and of a power-law increase of the relative formation efficiency of SiC dust with the metallicity. This result offers a solution for the long-standing problem of silicon in stardust SiC grains, confirms the necessity of coupling chemistry and dynamics in simulations of the chemical evolution of our Galaxy, and constrains the modeling of dust condensation in stellar winds as a function of the metallicity.

  12. Adaptation of G-TAG Software for Validating Touch-and-Go Comet Surface Sampling Design Methodology

    Science.gov (United States)

    Mandic, Milan; Acikmese, Behcet; Blackmore, Lars

    2011-01-01

    The G-TAG software tool was developed under the R&TD on Integrated Autonomous Guidance, Navigation, and Control for Comet Sample Return, and represents a novel, multi-body dynamics simulation software tool for studying TAG sampling. The G-TAG multi-body simulation tool provides a simulation environment in which a Touch-and-Go (TAG) sampling event can be extensively tested. TAG sampling requires the spacecraft to descend to the surface, contact the surface with a sampling collection device, and then to ascend to a safe altitude. The TAG event lasts only a few seconds but is mission-critical with potentially high risk. Consequently, there is a need for the TAG event to be well characterized and studied by simulation and analysis in order for the proposal teams to converge on a reliable spacecraft design. This adaptation of the G-TAG tool was developed to support the Comet Odyssey proposal effort, and is specifically focused to address comet sample return missions. In this application, the spacecraft descends to and samples from the surface of a comet. Performance of the spacecraft during TAG is assessed based on survivability and sample collection performance. For the adaptation of the G-TAG simulation tool to comet scenarios, models are developed that accurately describe the properties of the spacecraft, approach trajectories, and descent velocities, as well as the models of the external forces and torques acting on the spacecraft. The adapted models of the spacecraft, descent profiles, and external sampling forces/torques were more sophisticated and customized for comets than those available in the basic G-TAG simulation tool. Scenarios implemented include the study of variations in requirements, spacecraft design (size, locations, etc. of the spacecraft components), and the environment (surface properties, slope, disturbances, etc.). The simulations, along with their visual representations using G-View, contributed to the Comet Odyssey New Frontiers proposal

  13. Isotopic anomalies in organic nanoglobules from Comet 81P/Wild 2: Comparison to Murchison nanoglobules and isotopic anomalies induced in terrestrial organics by electron irradiation

    Science.gov (United States)

    De Gregorio, Bradley T.; Stroud, Rhonda M.; Nittler, Larry R.; Alexander, Conel M. O.'D.; Kilcoyne, A. L. David; Zega, Thomas J.

    2010-08-01

    Nanoglobules are a form of organic matter found in interplanetary dust particles and primitive meteorites and are commonly associated with 15N and D isotopic anomalies that are suggestive of interstellar processes. We report the discovery of two isotopically-anomalous organic globules from the Stardust collection of particles from Comet 81P/Wild 2 and compare them with nanoglobules from the Murchison CM2 meteorite. One globule from Stardust Cometary Track 80 contains highly aromatic organic matter and a large 15N anomaly (δ 15N = 1120‰). Associated, non-globular, organic matter from this track is less enriched in 15N and contains a mixture of aromatic and oxidized carbon similar to bulk insoluble organic material (IOM) from primitive meteorites. The second globule, from Cometary Track 2, contains non-aromatic organic matter with abundant nitrile ( sbnd C tbnd N) and carboxyl ( sbnd COOH) functional groups. It is significantly enriched in D (δD = 1000‰) but has a terrestrial 15N/ 14N ratio. Experiments indicate that similar D enrichments, unaccompanied by 15N fractionation, can be reproduced in the laboratory by electron irradiation of epoxy or cyanoacrylate. Thus, a terrestrial origin for this globule cannot be ruled out, and, conversely, exposure to high-energy electron irradiation in space may be an important factor in producing D anomalies in organic materials. For comparison, we report two Murchison globules: one with a large 15N enrichment and highly aromatic chemistry analogous to the Track 80 globule and the other only moderately enriched in 15N with IOM-like chemistry. The observation of organic globules in Comet 81P/Wild 2 indicates that comets likely sampled the same reservoirs of organic matter as did the chondrite parent bodies. The observed isotopic anomalies in the globules are most likely preserved signatures of low temperature (<10 K) chemistry in the interstellar medium or perhaps the outer regions of the solar nebula. In other

  14. Comet Dust: The Story of Planet Formation as Told by the Tiniest of Particles

    Science.gov (United States)

    Wooden, D. H.

    2005-01-01

    Our planetary system formed out of a gas-rich disk-shaped nebula with the early Sun at its center. Many small icy bodies were consumed by the formation of the giant planets. However, many km-size icy bodies were tossed out of the giant-planet region to the cold, distant reaches of our solar system. Comets remained in their places of cold storage until perturbed into orbits that carry them into the inner solar system where they pass relatively close to the Sun. Comets are warmed by the Sun and shed material from their outer layers. The ices and gases shed by comets reveal simple and complex organic molecules were present at the time and in the region of the formation of the giant planets. Where the Earth was forming was too hot and had too intense sunlight for many of these ices and molecules to survive. The dust shed by comets tells us that some stardust survived unaltered but much of the dust was heated and crystallized before becoming part of the comet. Therefore, comet dust grains tell of large radial migrations from the cold outer reaches near Neptune into the hot regions near the forming Sun, and then back out to the cold regions where icy comets were accreting and forming. On 2005 July 4, the NASA Deep Impact Mission hit a comet and ejected primitive materials fiom its interior. These materials were not released into the comet s coma during normal activity. Despite the many passages of this comet close to the Sun, these primitive volatile gases and dust grains survived in its interior. Comet dust grains show that cold and hot materials were mixed into the same tiny particle very early in the formation of the solar system, and these aggregate dust grains never saw high temperatures again. The survival of primitive materials in comet nuclei suggests comets could have delivered organic molecules and primitive dust grains to early Earth.

  15. Interpretation of Wild 2 Dust Fine Structure: Comparison of Stardust Aluminium Foil Craters to the Three-Dimensional Shape of Experimental Impacts by Artificial Aggregate Particles and Meteorite Powders

    Energy Technology Data Exchange (ETDEWEB)

    Kearsley, A T; Burchell, M J; Price, M C; Graham, G A; Wozniakiewicz, P J; Cole, M J; Foster, N J; Teslich, N

    2009-12-10

    New experimental results show that Stardust crater morphology is consistent with interpretation of many larger Wild 2 dust grains being aggregates, albeit most of low porosity and therefore relatively high density. The majority of large Stardust grains (i.e. those carrying most of the cometary dust mass) probably had density of 2.4 g cm{sup -3} (similar to soda-lime glass used in earlier calibration experiments) or greater, and porosity of 25% or less, akin to consolidated carbonaceous chondrite meteorites, and much lower than the 80% suggested for fractal dust aggregates. Although better size calibration is required for interpretation of the very smallest impacting grains, we suggest that aggregates could have dense components dominated by {micro}m-scale and smaller sub-grains. If porosity of the Wild 2 nucleus is high, with similar bulk density to other comets, much of the pore-space may be at a scale of tens of micrometers, between coarser, denser grains. Successful demonstration of aggregate projectile impacts in the laboratory now opens the possibility of experiments to further constrain the conditions for creation of bulbous (Type C) tracks in aerogel, which we have observed in recent shots. We are also using mixed mineral aggregates to document differential survival of pristine composition and crystalline structure in diverse fine-grained components of aggregate cometary dust analogues, impacted onto both foil and aerogel under Stardust encounter conditions.

  16. Improving the Discoverability and Availability of Sample Data and Imagery in NASA's Astromaterials Curation Digital Repository Using a New Common Architecture for Sample Databases

    Science.gov (United States)

    Todd, N. S.; Evans, C.

    2015-01-01

    The Astromaterials Acquisition and Curation Office at NASA's Johnson Space Center (JSC) is the designated facility for curating all of NASA's extraterrestrial samples. The suite of collections includes the lunar samples from the Apollo missions, cosmic dust particles falling into the Earth's atmosphere, meteorites collected in Antarctica, comet and interstellar dust particles from the Stardust mission, asteroid particles from the Japanese Hayabusa mission, and solar wind atoms collected during the Genesis mission. To support planetary science research on these samples, NASA's Astromaterials Curation Office hosts the Astromaterials Curation Digital Repository, which provides descriptions of the missions and collections, and critical information about each individual sample. Our office is implementing several informatics initiatives with the goal of better serving the planetary research community. One of these initiatives aims to increase the availability and discoverability of sample data and images through the use of a newly designed common architecture for Astromaterials Curation databases.

  17. Nondestructive 3D confocal laser imaging with deconvolution of seven whole stardust tracks with complementary XRF and quantitative analysis

    International Nuclear Information System (INIS)

    Greenberg, M.; Ebel, D.S.

    2009-01-01

    We present a nondestructive 3D system for analysis of whole Stardust tracks, using a combination of Laser Confocal Scanning Microscopy and synchrotron XRF. 3D deconvolution is used for optical corrections, and results of quantitative analyses of several tracks are presented. The Stardust mission to comet Wild 2 trapped many cometary and ISM particles in aerogel, leaving behind 'tracks' of melted silica aerogel on both sides of the collector. Collected particles and their tracks range in size from submicron to millimeter scale. Interstellar dust collected on the obverse of the aerogel collector is thought to have an average track length of ∼15 (micro)m. It has been our goal to perform a total non-destructive 3D textural and XRF chemical analysis on both types of tracks. To that end, we use a combination of Laser Confocal Scanning Microscopy (LCSM) and X Ray Florescence (XRF) spectrometry. Utilized properly, the combination of 3D optical data and chemical data provides total nondestructive characterization of full tracks, prior to flattening or other destructive analysis methods. Our LCSM techniques allow imaging at 0.075 (micro)m/pixel, without the use of oil-based lenses. A full textural analysis on track No.82 is presented here as well as analysis of 6 additional tracks contained within 3 keystones (No.128, No.129 and No.140). We present a method of removing the axial distortion inherent in LCSM images, by means of a computational 3D Deconvolution algorithm, and present some preliminary experiments with computed point spread functions. The combination of 3D LCSM data and XRF data provides invaluable information, while preserving the integrity of the samples for further analysis. It is imperative that these samples, the first extraterrestrial solids returned since the Apollo era, be fully mapped nondestructively in 3D, to preserve the maximum amount of information prior to other, destructive analysis.

  18. Isotopic Anomalies in Organic Nanoglobules from Comet 81P/Wild 2: Comparison to Murchison Nanoglobules and Isotopic Anomalies Induced in Terrestrial Organics by Electron Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    De Gregorio, B.; Stroud, R; Nittler, L; Alexander, C; Kilcoyne, A; Zega, T

    2010-01-01

    Nanoglobules are a form of organic matter found in interplanetary dust particles and primitive meteorites and are commonly associated with {sup 15}N and D isotopic anomalies that are suggestive of interstellar processes. We report the discovery of two isotopically-anomalous organic globules from the Stardust collection of particles from Comet 81P/Wild 2 and compare them with nanoglobules from the Murchison CM2 meteorite. One globule from Stardust Cometary Track 80 contains highly aromatic organic matter and a large {sup 15}N anomaly ({delta}{sup 15}N = 1120{per_thousand}). Associated, non-globular, organic matter from this track is less enriched in {sup 15}N and contains a mixture of aromatic and oxidized carbon similar to bulk insoluble organic material (IOM) from primitive meteorites. The second globule, from Cometary Track 2, contains non-aromatic organic matter with abundant nitrile ({single_bond}C{triple_bond}N) and carboxyl ({single_bond}COOH) functional groups. It is significantly enriched in D ({delta}D = 1000{per_thousand}) but has a terrestrial {sup 15}N/{sup 14}N ratio. Experiments indicate that similar D enrichments, unaccompanied by {sup 15}N fractionation, can be reproduced in the laboratory by electron irradiation of epoxy or cyanoacrylate. Thus, a terrestrial origin for this globule cannot be ruled out, and, conversely, exposure to high-energy electron irradiation in space may be an important factor in producing D anomalies in organic materials. For comparison, we report two Murchison globules: one with a large {sup 15}N enrichment and highly aromatic chemistry analogous to the Track 80 globule and the other only moderately enriched in {sup 15}N with IOM-like chemistry. The observation of organic globules in Comet 81P/Wild 2 indicates that comets likely sampled the same reservoirs of organic matter as did the chondrite parent bodies. The observed isotopic anomalies in the globules are most likely preserved signatures of low temperature (<10 K

  19. Detecting active comets with SDSS

    Energy Technology Data Exchange (ETDEWEB)

    Solontoi, Michael; Ivezic, Zeljko; /Washington U., Seattle, Astron. Dept.; West, Andrew A.; /MIT, MKI; Claire, Mark; /Washington U., Seattle, Astron. Dept.; Juric, Mario; /Princeton U. Observ.; Becker, Andrew; Jones, Lynne; /Washington U., Seattle, Astron. Dept.; Hall, Patrick B.; /York U., Canada; Kent, Steve; /Fermilab; Lupton, Robert H.; /Princeton U. Observ.; Quinn, Tom; /Washington U., Seattle, Astron. Dept. /Princeton U. Observ.

    2010-12-01

    Using a sample of serendipitously discovered active comets in the Sloan Digital Sky Survey (SDSS), we develop well-controlled selection criteria for greatly increasing the efficiency of comet identification in the SDSS catalogs. After follow-up visual inspection of images to reject remaining false positives, the total sample of SDSS comets presented here contains 19 objects, roughly one comet per 10 million other SDSS objects. The good understanding of selection effects allows a study of the population statistics, and we estimate the apparent magnitude distribution to r {approx} 18, the ecliptic latitude distribution, and the comet distribution in SDSS color space. The most surprising results are the extremely narrow range of colors for comets in our sample (e.g. root-mean-square scatter of only {approx}0.06 mag for the g-r color), and the similarity of comet colors to those of jovian Trojans. We discuss the relevance of our results for upcoming deep multi-epoch optical surveys such as the Dark Energy Survey, Pan-STARRS, and the Large Synoptic Survey Telescope (LSST), and estimate that LSST may produce a sample of about 10,000 comets over its 10-year lifetime.

  20. Electron Spin Resonance (ESR) studies of returned comet nucleus samples

    International Nuclear Information System (INIS)

    Tsay, Fundow; Kim, S.S.; Liang, R.H.

    1989-01-01

    The most important objective of the Comet Nucleus Sample Returm Mission is to return samples which could reflect formation conditions and evolutionary processes in the early solar nebula. It is expected that the returned samples will consist of fine-grained silicate materials mixed with ices composed of simple molecules such as H 2 O, NH 3 , CH 4 as well as organics and/or more complex compounds. Because of the exposure to ionizing radiation from cosmic-ray, gamma-ray, and solar wind protons at low temperature, free radicals are expected to be formed and trapped in the solid ice matrices. The kind of trapped radical species together with their concentration and thermal stability can be used as a dosimeter as well as a geothermometer to determine thermal and radiation histories as well as outgassing and other possible alternation effects since the nucleus material was formed. Since free radicals that are known to contain unpaired electrons are all paramagnetic in nature, they can be readily detected and characterized in their native form by the Electron Spin Resonance (ESR) method. In fact, ESR has been shown to be a non-destructive, highly sensitive tool for the detection and characterization of paramagnetic, ferromagnetic, and radiation damage centers in terrestrial and extraterrestrial geological samples. The potential use of ESR as an effective method in the study of returned comet nucleus samples, in particular, in the analysis of fine-grained solid state icy samples is discussed

  1. Stardust: An overview of the tracks in the aerogel (calibration, classification and particle size distribution)

    Science.gov (United States)

    Burchell, M. J.; Fairey, S. J.; Hörz, F.; Wozniakiewicz, P. J.; Kearsley, A. T.; Brownlee, D. E.; See, T. H.; Westphal, A.; Green, S. F.; Trigo-Rodríguez, J. M.

    2007-08-01

    The NASA Stardust mission (1) to comet P/Wild-2 returned to Earth in January 2006 carrying a cargo of dust captured in aerogel and residue rich craters in aluminium foils (2). Aerogel is a low density, highly porous material (3, 4). The aerogel that was carried by Stardust in the cometary dust collector trays was a SiO2 aerogel, arranged in blocks 4 cm x 2 cm (front face) and 3 cm deep, with density which varied smoothly from 5 mg/cc at the front surface to 50 mg/cc at the rear surface (5). A first look at the whole cometary dust tray at NASA showed that there were many impact features in the aerogel. During the Preliminary Examination period about 15% of the aerogel blocks were removed and studied in detail. The tracks observed in these blocks were classified into three groups: Type A were long relatively narrow tracks of "carrot shape", Type B tracks were again fairly long but had a large bulbous region at the top and appear like the bowl and stem of a flute champagne glass, Type C were purely bulbous tracks with no stem emerging beneath them. Data on the sizes and relative populations of these tracks will be given (also see (6)) along with a discussion of their implications for impactor composition. Laboratory calibrations of the impacts in aerogel have been carried out using glass beads and these permit an estimate of the size of the impactor based on the measured track properties (6). When applied to the tracks measured in the Stardust aerogel, a cumulative particle size distribution was obtained (7) which will be discussed. References (1) Brownlee D.E. et al., J. Geophys. Res. 108, E10, 8111, 2003. (2) Brownlee D.E. et al., Science 314, 1711 - 1716. 2006. (3) Kistler S.S., Nature 127, 741, 1931. (4) Burchell M.J. et al., Ann. Rev. Earth. Planet. Sci. 34, 385 - 418, 2006. (5) Tsou P. et al., J. Geophys. Res. 108(E10), 8113, 2003. (6) Burchell et al., submitted to MAPS, 2006. (7) Hörz F. et al., Science 314, 1716 - 1719, 2006.

  2. Searching for Amino Acids in Meteorites and Comet Samples

    Science.gov (United States)

    Cook, Jamie Elsila

    2010-01-01

    Chemistry plays an important role in the interdisciplinary field of astrobiology, which strives to understand the origin, distribution, and evolution of life throughout the universe. Chemical techniques are used to search for and characterize the basic ingredients for life, from the elements through simple molecules and up to the more complex compounds that may serve as the ingredients for life. The Astrobiology Analytical Laboratory at NASA Goddard uses state-of-the-art laboratory analytical instrumentation in unconventional ways to examine extraterrestrial materials and tackle some of the big questions in astrobiology. This talk will discuss some of the instrumentation and techniques used for these unique samples, as well as some of our most interesting results. The talk will present two areas of particular interest in our laboratory: (1) the search for chiral excesses in meteoritic amino acids, which may help to explain the origin of homochirality in life on Earth; and (2) the detection of amino acids and amines in material returned by NASA's Stardust mission, which rendevouzed with a cornet and brought back cometary particles to the Earth.

  3. Isotopically Anomalous Carbonaceous Nanoglobules in Meteorites and Comets

    Science.gov (United States)

    de Gregorio, B. T.; Alexander, C.; Bassim, N. D.; Cody, G. D.; Kilcoyne, D.; Nittler, L.; Stroud, R.; Zega, T. J.

    2009-12-01

    Sub-micron, spherical, organic globules are prevalent in primitive meteorites and interplanetary dust particles. Many of these globules are significantly enriched in 15N and/or D, relative to solar values, which suggest that they or their precursors formed in cold regions of the solar nebula or in interstellar molecular clouds. We have used correlated transmission electron microscopy (TEM), synchrotron-based X-ray absorption near-edge structure spectroscopy (XANES), and secondary ion mass spectrometry (SIMS) to determine the elemental and isotopic composition and organic functional group chemistry of individual carbonaceous nanoglobules in a suite of insoluble organic matter (IOM) residues prepared from carbonaceous and ordinary chondrites, and two additional organic globules from the Stardust comet 81P/Wild 2 sample collection. The majority of the meteoritic nanoglobules have a similar chemistry to the bulk IOM, with, on average, a small but significant enrichment in aromatic ketone (-C=O) and carboxyl (-COOH) functional groups. However, some of the meteoritic nanoglobules and one of the Stardust nanoglobules contain highly aromatic organic matter with no significant oxygen functionality. Preliminary measurements indicate that the highest 15N enrichments are associated with the highly aromatic nanoglobules and that aromatic nanoglobules are more prevalent in IOM from more primitive meteorites (e.g. Bells contains more aromatic globules than Murchison). For example, of two adjacent nanoglobules with nearly identical hollow morphologies from Murchison, one contains highly aromatic organic matter and the other contains oxidized IOM-like organic matter. SIMS analysis of these two globules reveals that the highly aromatic globule has the greatest 15N enrichment (δ15N ~ +500‰) of all meteoritic globules in which both XANES and SIMS was performed, whereas the adjacent IOM-like globule has a smaller 15N enrichment (δ15N ~ +300‰) but still greater than bulk IOM (δ15

  4. OpenComet: An automated tool for comet assay image analysis

    Directory of Open Access Journals (Sweden)

    Benjamin M. Gyori

    2014-01-01

    Full Text Available Reactive species such as free radicals are constantly generated in vivo and DNA is the most important target of oxidative stress. Oxidative DNA damage is used as a predictive biomarker to monitor the risk of development of many diseases. The comet assay is widely used for measuring oxidative DNA damage at a single cell level. The analysis of comet assay output images, however, poses considerable challenges. Commercial software is costly and restrictive, while free software generally requires laborious manual tagging of cells. This paper presents OpenComet, an open-source software tool providing automated analysis of comet assay images. It uses a novel and robust method for finding comets based on geometric shape attributes and segmenting the comet heads through image intensity profile analysis. Due to automation, OpenComet is more accurate, less prone to human bias, and faster than manual analysis. A live analysis functionality also allows users to analyze images captured directly from a microscope. We have validated OpenComet on both alkaline and neutral comet assay images as well as sample images from existing software packages. Our results show that OpenComet achieves high accuracy with significantly reduced analysis time.

  5. Simulating STARDUST: Reproducing Impacts of Interstellar Dust in the Laboratory

    Science.gov (United States)

    Postberg, F.; Srama, R.; Hillier, J. K.; Sestak, S.; Green, S. F.; Trieloff, M.; Grün, E.

    2008-09-01

    Our experiments are carried out to support the analysis of interstellar dust grains, ISDGs, brought to earth by the STARDUST mission. Since the very first investigations, it has turned out that the major problem of STARDUST particle analysis is the modification (partly even the destruction) during capture when particles impact the spacecraft collectors with a velocity of up to 20 km/s. While it is possible to identify, extract, and analyse cometary grains larger than a few microns in aerogel and on metal collector plates, the STARDUST team is not yet ready for the identification, extraction, and analysis of sub-micron sized ISDGs with impact speeds of up to 20 km/s. Reconstructing the original particle properties requires a simulation of this impact capture process. Moreover, due to the lack of laboratory studies of high speed impacts of micron scale dust into interstellar STARDUST flight spares, the selection of criteria for the identification of track candidates is entirely subjective. Simulation of such impact processes is attempted with funds of the FRONTIER program within the framework of the Heidelberg University initiative of excellence. The dust accelerator at the MPI Kernphysik is a facility unique in the world to perform such experiments. A critical point is the production of cometary and interstellar dust analogue material and its acceleration to very high speeds of 20 km/s, which has never before been performed in laboratory experiments. Up to now only conductive material was successfully accelerated by the 2 MV Van de Graaf generator of the dust accelerator facility. Typical projectile materials are Iron, Aluminium, Carbon, Copper, Silver, and the conducting hydrocarbon Latex. Ongoing research now enables the acceleration of any kind of rocky planetary and interstellar dust analogues (Hillier et al. 2008, in prep.). The first batch of dust samples produced with the new method consists of micron and submicron SiO2 grains. Those were successfully

  6. Organic chemistry of cosmic dusts for understanding an intra-relationship between meteorites and comets: Toward a new frontier of astromaterial science

    Science.gov (United States)

    Yabuta, Hikaru

    2012-07-01

    Organic matter in primitive solar system small bodies, such as meteorites, asteroids, and comets, provides us significant information on the origin and evolution of the early solar system. The achievements of the Stardust comet sample return mission [1] have enabled the comparable small body organic chemistry between comet 81P/Wild 2 and chondritic meteorites [2, 3]. The study of organic matter in interplanetary dust particles (IDPs) will play an important role for our further understanding of an intra-relationship among meteorites and comets, as some IDPs are of cometary origin. Historically, a number of isotopic and molecular compositions of organic matter in IDPs collected in stratosphere have been studied [4-7]. Recent new insights in the study of IDP organics is that, Ultracarbonaceous Antarctic micrometeorites (UCAMMs), unique extraterrestrial materials that represent large sizes of high carbon contents, have been first discovered by [8]. The mineralogical and isotopic investigations of UCAMMs by [9] have revealed the association of extreme deuterium-rich organic matter with both crystalline and amorphous silicates, which appears to be compatible to cometary origin. Yabuta et al. (2012) [10] has identified a highly nitrogen-rich but isotopically normal organic material from a UCAMM by X-ray absorption near edge structure (XANES) spectroscopy using a scanning transmission X-ray microscope (STXM). Such N-rich compositions have not been generally observed from chondritic organics and stratosphere IDPs, and are rather similar to those observed from several particles of Comet 81P/Wild 2. Aiming to investigate the intact compositions of organic matter in IDPs which those collected from stratosphere and Antarctica might have lost, the Japanese Astrobiology working group, Tanpopo, will be planning to collect the IDPs on the International Space Station from 2013. The mission has great advantages that collection of the pristine IDPs without atmospheric entry heating

  7. Comet Grains: Their IR Emission and Their Relation to ISM Grains

    Science.gov (United States)

    Wooden, Diane H.; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    Comets and the chodritic, porous interplanetary dust particles (CP IDPs) that they shed in their comae are reservoirs of primitive solar nebula materials. The high porosity and fragility of cometary grains and CP IDPs, and anomalously high deuterium contents of highly fragile, pyroxene-rich Cluster IDPs imply these aggregate particles contain significant abundances of grains from the interstellar medium (ISM). IR spectra of comets (3 - 40 micron) reveal the presence of a warm (nearIR) featureless emission modeled by amorphous carbon grains. Broad and narrow resonances near 10 and 20 microns are modeled by warm chondritic (50% Fe and 50% Mg) amorphous silicates and cooler Mg-rich crystalline silicate minerals, respectively. Cometary amorphous silicates resonances are well matched by IR spectra of CP IDPs dominated by GEMS (0.1 micron silicate spherules) that are thought to be the interstellar Fe-bearing amorphous silicates produced in AGB stars. Acid-etched ultramicrotomed CP IDP samples, however, show that both the carbon phase (amorphous and aliphatic) and the Mg-rich amorphous silicate phase in GEMS are not optically absorbing. Rather, it is Fe and FeS nanoparticles embedded in the GEMS that makes the CP IDPs dark. Therefore, CP IDPs suggest significant processing has occurred in the ISM. ISM processing probably includes in He' ion bombardment in supernovae shocks. Laboratory experiments show He+ ion bombardment amorphizes crystalline silicates, increases porosity, and reduces Fe into nanoparticles. Cometary crystalline silicate resonances are well matched by IR spectra of laboratory submicron Mg-rich olivine crystals and pyroxene crystals. Discovery of a Mg-pure olivine crystal in a Cluster IDP with isotopically anomalous oxygen indicates that a small fraction of crystalline silicates may have survived their journey from AGB stars through the ISM to the early solar nebula. The ISM does not have enough crystalline silicates (ISM Mg-rich crystals leads to the

  8. STARDUST-U experiments on fluid-dynamic conditions affecting dust mobilization during LOVAs

    International Nuclear Information System (INIS)

    Poggi, L.A.; Malizia, A.; Ciparisse, J.F.; Gelfusa, M.; Papa, C. Del; Giovannangeli, I.; Gaudio, P.; Tieri, F.; Murari, A.

    2016-01-01

    Since 2006 the Quantum Electronics and Plasma Physics (QEP) Research Group together with ENEA FusTech of Frascati have been working on dust re-suspension inside tokamaks and its potential capability to jeopardize the integrity of future fusion nuclear plants (i.e. ITER or DEMO) and to be a risk for the health of the operators. Actually, this team is working with the improved version of the 'STARDUST' facility, i.e. 'STARDUST-Upgrade'. STARDUST-U facility has four new air inlet ports that allow the experimental replication of Loss of Vacuum Accidents (LOVAs). The experimental campaign to detect the different pressurization rates, local air velocity, temperature, have been carried out from all the ports in different accident conditions and the principal results will be analyzed and compared with the numerical simulations obtained through a CFD (Computational Fluid Dynamic) code. This preliminary thermo fluid-dynamic analysis of the accident is crucial for numerical model development and validation, and for the incoming experimental campaign of dust resuspension inside STARDUST-U due to well-defined accidents presented in this paper.

  9. SIMS Studies of Allende Projectiles Fired into Stardust-type Aluminum Foils at 6 km/s

    Science.gov (United States)

    Hoppe, Peter; Stadermann, Frank J.; Stephan, Thomas; Floss, Christine; Leitner, Jan; Marhas, Kuljeet; Horz, Friedrich

    2006-01-01

    We have explored the feasibility of C-, N-, and O-isotopic measurements by NanoSIMS and of elemental abundance determinations by TOF-SIMS on residues of Allende projectiles that impacted Stardust-type aluminum foils in the laboratory at 6 km/s. These investigations are part of a consortium study aimed at providing the foundation for the characterization of matter associated with micro-craters that were produced during the encounter of the Stardust space probe with comet 81P/Wild 2. Eleven experimental impact craters were studied by NanoSIMS and eighteen by TOF-SIMS. Crater sizes were between 3 and 190 microns. The NanoSIMS measurements have shown that the crater morphology has only a minor effect on spatial resolution and on instrumental mass fractionation. The achievable spatial resolution is always better than 200 nm, and C- and O-isotopic ratios can be measured with a precision of several percent at a scale of several 100 nm, the typical size of presolar grains. This clearly demonstrates that presolar matter, provided it survives the impact into the aluminum foil partly intact, is recognizable even if embedded in material of Solar System origin. TOF-SIMS studies are restricted to materials from the crater rim. The element ratios of the major rockforming elements in the Allende projectiles are well characterized by the TOF-SIMS measurements, indicating that fractionation of those elements during impact can be expected to be negligible. This permits information on the type of impactor material to be obtained. For any more detailed assignments to specific chondrite groups, however, information on the abundances of the light elements, especially C, is crucial.

  10. Reincarnation of Stardust

    Science.gov (United States)

    Talyansky, Vitaly

    2010-03-01

    During the industrious 90s both government agencies and brand owners faced a growing threat: rapid advances in the computer graphics technology allowed criminal syndicates to reach high sophistication levels in forging documents and branded products resulting in global losses of billions of dollars. Having studied various means to combat counterfeiting, we recognized the promise of IR luminescent ceramics and founded Stardust Materials. With little start-up capital, as novice entrepreneurs we truly believed that IR luminescence would stem the flow of fakes and ``save the world''. Within two years after inception we won a coveted contract to provide security to US tobacco tax stamps. A group of investors became interested in our initial success and suggested forming a new entity. Lacking business experience, we made costly mistakes starting with drafting a technology licensing agreement. Pitching our technology, the new corporation managed to raise 12 million in the investment-averse climate of post 9-11. However, its fortunes went downhill from then on. Soon we were forced to resign from the corporation leaving behind our technology, equipment, and high salaries. From scratch we commenced development of a new range of products. It would be surprising, if we did not get chased with an expensive IP law suit. Having successfully defended our new portfolio, we expanded the field of applications and began a steady growth. The story of Stardust sheds light on some of the tricky turns a scientist-entrepreneur may need to take to start and operate a company of his dreams.

  11. SEM-EDS Analyses of Small Craters in Stardust Aluminum Foils: Implications for the Wild-2 Dust Distribution

    Science.gov (United States)

    Borg, J.; Horz, F.; Bridges, J. C.; Burchell, M. J.; Djouadi, Z.; Floss, C.; Graham, G. A.; Green, S. F.; Heck, P. R.; Hoppe, P.; hide

    2007-01-01

    Aluminium foils were used on Stardust to stabilize the aerogel specimens in the modular collector tray. Part of these foils were fully exposed to the flux of cometary grains emanating from Wild 2. Because the exposed part of these foils had to be harvested before extraction of the aerogel, numerous foil strips some 1.7 mm wide and 13 or 33 mm long were generated during Stardusts's Preliminary Examination (PE). These strips are readily accommodated in their entirety in the sample chambers of modern SEMs, thus providing the opportunity to characterize in situ the size distribution and residue composition - employing EDS methods - of statistically more significant numbers of cometary dust particles compared to aerogel, the latter mandating extensive sample preparation. We describe here the analysis of nearly 300 impact craters and their implications for Wild 2 dust.

  12. Coordinated Analyses of Diverse Components in Whole Stardust Cometary Tracks

    Science.gov (United States)

    Nakamura-Messenger, K.; Keller, L. P.; Messenger, S. R.; Clemett, S. J.; Nguyen, L. N.; Frank, D.

    2011-12-01

    Analyses of samples returned from Comet 81P/Wild-2 by the Stardust spacecraft have resulted in a number of surprising findings that show the origins of comets are more complex than previously suspected. However, these samples pose new experimental challenges because they are diverse and suffered fragmentation, thermal alteration, and fine scale mixing with aerogel. Questions remain about the nature of Wild-2 materials, such as the abundances of organic matter, crystalline materials, and presolar grains. To overcome these challenges, we have developed new sample preparation and analytical techniques tailored for entire aerogel tracks [Nakamura-Messenger et al. 2011]. We have successfully ultramicrotomed entire "carrot" and "bulbous" type tracks along their axis while preserving their original shapes. This innovation allowed us to examine the distribution of fragments along the track from the entrance hole all the way to the terminal particle (TP). We will present results of our coordinated analysis of the "carrot" type aerogel tracks #112 and #148, and the "bulbous" type aerogel tracks #113, #147 and #168 from the nanometer to the millimeter scale. Scanning TEM (STEM) was used for elemental and detailed mineralogy characterization, NanoSIMS was used for isotopic analyses, and ultrafast two-step laser mass spectrometry (ultra L2MS) was used to investigate the nature and distribution of organic phases. The isotopic measurements were performed following detailed TEM characterization for coordinated mineralogy. This approach also enabled spatially resolving the target sample from fine-scale mixtures of compressed aerogel and melt. Eight of the TPs of track #113 are dominated by coarse-grained enstatite (En90) that is largely orthoenstatite with minor, isolated clinoenstatite lamellae. One TP contains minor forsterite (Fo88) and small inclusions of diopside with % levels of Al, Cr and Fe. Two of the TPs contain angular regions of fine-grained nepheline surrounded by

  13. Laboratory Astronomy Needs for the Study of Dust in Comets in the Next Decade

    Science.gov (United States)

    Lisse, Carey M.

    2009-05-01

    The Spitzer Space Telescope observed the mid-IR ( 5-40 µm) spectra of ejecta from the hypervelocity impact of the Deep Impact projectile with comet 9P/Tempel-1. Spectral modeling demonstrates that there are abundant minerals present in the ejecta including Ca/Fe/Mg-rich silicates, carbonates, phyllosilicates, water ice, amorphous carbon, and sulfides (Lisse et al. 2006). Other Infrared Space Observatory (ISO), Spitzer, and Akari observations provide evidence for large reservoirs of these dusty species not only in comets, but in related reservoirs: Centaurs, Kuiper Belt objects, and exo-solar Kuiper Belts. In the next 5 years, we can expect SOFIA, ASTRO-H and JWST measurements to build on these results in the mid-IR. Consistency with STARDUST sample return findings has bolstered confidence in these remote sensing results (Flynn et al. 2008). However, precise mineralogical identifications are hampered by the lack of detailed spectral measurements, particularly of transmission and of the associated derived absorption coefficient, for astrophysically relevant materials in the 3 - 40 µm range over which Spitzer, etc. sensitive. The upcoming Herschel Space Observatory mission will open up a new wavelength range, collecting mineralogically-characteristic far-IR emission spectra of comet dust populations in the range of 57 - 210 µm using its Photodetector Array Camera and Spectrometer (PACS), and out to 650 um using its Spectral and Photometric Imaging Receiver (SPIRE). Many astrophysically important minerals (e.g., pyroxenes, carbonates, phyllosilicates, water ice) have potentially distinctive, but poorly quantified, PACS-range emission features that are sensitive to chemical composition and crystal structure. Mineral identifications have often been based on a single strong mid-IR feature lack confidence [Molster & Waters 2003], which can be bolstered by measuring multiple complementary far-IR features. Full laboratory spectroscopic knowledge of candidate materials, as

  14. On the relationship between visual magnitudes and gas and dust production rates in target comets to space missions

    Science.gov (United States)

    de Almeida, A. A.; Sanzovo, G. C.; Singh, P. D.; Misra, A.; Miguel Torres, R.; Boice, D. C.; Huebner, W. F.

    In this paper, we report the results of a cometary research, developed during the last 10 years by us, involving a criterious analysis of gas and dust production rates in comets directly associated to recent space missions. For the determination of the water release rates we use the framework of the semi-empirical model of observed visual magnitudes [Newburn Jr., R.L. A semi-empirical photometric theory of cometary gas and dust production. Application to P/Halley's production rates, ESA-SP 174, 3, 1981; de Almeida, A.A., Singh, P.D., Huebner, W.F. Water release rates, active areas, and minimum nuclear radius derived from visual magnitudes of comets - an application to Comet 46P/Wirtanen, Planet. Space Sci. 45, 681-692, 1997; Sanzovo, G.C., de Almeida, A.A., Misra, A. et al. Mass-loss rates, dust particle sizes, nuclear active areas and minimum nuclear radii of target comets for missions STARDUST and CONTOUR, MNRAS 326, 852-868, 2001.], which once obtained, were directly converted into gas production rates. In turn, the dust release rates were obtained using the photometric model for dust particles [Newburn Jr., R.L., Spinrad, H. Spectrophotometry of seventeen comets. II - the continuum, AJ 90, 2591-2608, 1985; de Freitas Pacheco, J.A., Landaberry, S.J.C., Singh, P.D. Spectrophotometric observations of the Comet Halley during the 1985-86 apparition, MNRAS 235, 457-464, 1988; Sanzovo, G.C., Singh, P.D., Huebner, W.F. Dust colors, dust release rates, and dust-to-gas ratios in the comae of six comets, A&AS 120, 301-311, 1996.]. We applied these models to seven target comets, chosen for space missions of "fly-by"/impact and rendezvous/landing.

  15. Meteorites and cosmic dust: Interstellar heritage and nebular processes in the early solar system

    Directory of Open Access Journals (Sweden)

    Engrand C.

    2012-01-01

    Full Text Available Small solar system bodies like asteroids and comets have escaped planetary accretion. They are the oldest and best preserved witnesses of the formation of the solar system. Samples of these celestial bodies fall on Earth as meteorites and interplanetary dust. The STARDUST mission also recently returned to Earth cometary dust from comet 81P/Wild 2, a Jupiter Family Comet (JFC. These samples provide unique insights on the physico-chemical conditions and early processes of the solar system. They also contain some minute amount of materials inherited from the local interstellar medium that have survived the accretion processes in the solar system.

  16. Application of the CometChip platform to assess DNA damage in field-collected blood samples from turtles.

    Science.gov (United States)

    Sykora, Peter; Chiari, Ylenia; Heaton, Andrew; Moreno, Nickolas; Glaberman, Scott; Sobol, Robert W

    2018-05-01

    DNA damage has been linked to genomic instability and the progressive breakdown of cellular and organismal homeostasis, leading to the onset of disease and reduced longevity. Insults to DNA from endogenous sources include base deamination, base hydrolysis, base alkylation, and metabolism-induced oxidative damage that can lead to single-strand and double-strand DNA breaks. Alternatively, exposure to environmental pollutants, radiation or ultra-violet light, can also contribute to exogenously derived DNA damage. We previously validated a novel, high through-put approach to measure levels of DNA damage in cultured mammalian cells. This new CometChip Platform builds on the classical single cell gel electrophoresis or comet methodology used extensively in environmental toxicology and molecular biology. We asked whether the CometChip Platform could be used to measure DNA damage in samples derived from environmental field studies. To this end, we determined that nucleated erythrocytes from multiple species of turtle could be successfully evaluated in the CometChip Platform to quantify levels of DNA damage. In total, we compared levels of DNA damage in 40 animals from two species: the box turtle (Terrapene carolina) and the red-eared slider (Trachemys scripta elegans). Endogenous levels of DNA damage were identical between the two species, yet we did discover some sex-linked differences and changes in DNA damage accumulation. Based on these results, we confirm that the CometChip Platform allows for the measurement of DNA damage in a large number of samples quickly and accurately, and is particularly adaptable to environmental studies using field-collected samples. Environ. Mol. Mutagen. 59:322-333, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  17. Rebuttal to “Comment on the paper “Comparison of the composition of the Tempel 1 ejecta to the dust in Comet C/Hale Bopp 1995 O1 and YSO HD 100546” by C.M. Lisse, K.E. Kraemer, J.A. Nuth III, A. Li, and D. Joswiak"

    Science.gov (United States)

    Lisse, C. M.

    2008-06-01

    This response is to address the comments made by Drs. J. Crovisier and D. Bockelee-Morvan concerning the spectral analysis of Lisse et al. [Lisse, C.M., Kraemer, K.E., Nuth, J.A., Li, A., Joswiak, D., 2007. Icarus 187, 69-86] of the mid-IR ISO SWS spectrum of Comet Hale-Bopp 1995 O1 taken on October 6, 1996, and to support the conclusions made in Lisse et al. concerning the positive detection of PAHs in this comet. We also present some additional information determined from the Deep Impact and STARDUST missions, demonstrating the presence of PAHs in other comets, to support the plausibility of the Hale-Bopp PAH detection.

  18. Postencounter view of comets

    International Nuclear Information System (INIS)

    Mendis, D.A.

    1988-01-01

    Ground-based and space observations of Comet Halley during its 1986 perihelion passage are reviewed, with an emphasis on their implications for theoretical models. Consideration is given to the shape, surface morphology, and composition of the comet nucleus; the shape, dynamics, and composition of the dust tail; neutral and ionic gas species in the head and plasma tail; and the comet/solar-wind interaction. Extensive diagrams, graphs, and sample images are provided, and the potential value of the new kinds of data to be obtained with the NASA Comet-Rendezvous/Asteroid-Flyby spacecraft is discussed. 139 references

  19. Stardust Interstellar Preliminary Examination X: Impact Speeds and Directions of Interstellar Grains on the Stardust Dust Collector

    Science.gov (United States)

    Sterken, Veerle J.; Westphal, Andrew J.; Altobelli, Nicolas; Grun, Eberhard; Hillier, Jon K.; Postberg, Frank; Allen, Carlton; Stroud, Rhonda M.; Sandford, S. A.; Zolensky, Michael E.

    2014-01-01

    On the basis of an interstellar dust model compatible with Ulysses and Galileo observations, we calculate and predict the trajectories of interstellar dust (ISD) in the solar system and the distribution of the impact speeds, directions, and flux of ISD particles on the Stardust Interstellar Dust Collector during the two collection periods of the mission. We find that the expected impact velocities are generally low (less than 10 km per second) for particles with the ratio of the solar radiation pressure force to the solar gravitational force beta greater than 1, and that some of the particles will impact on the cometary side of the collector. If we assume astronomical silicates for particle material and a density of 2 grams per cubic centimeter, and use the Ulysses measurements and the ISD trajectory simulations, we conclude that the total number of (detectable) captured ISD particles may be on the order of 50. In companion papers in this volume, we report the discovery of three interstellar dust candidates in the Stardust aerogel tiles. The impact directions and speeds of these candidates are consistent with those calculated from our ISD propagation model, within the uncertainties of the model and of the observations.

  20. Oxygen Isotopes in Chondritic Interplanetary Dust: Parent-Bodies and Nebular Oxygen Reservoirs

    International Nuclear Information System (INIS)

    Aleon, J; McKeegan, K D; Leshin, L

    2006-01-01

    Planetary objects have preserved various amounts of oxygen issued from isotopically different oxygen reservoirs reflecting their origin and physico-chemical history. An 16 O-rich component is preserved in refractory inclusions (CAIs) whereas meteorites matrices are enriched in an 16 O-poor component. The origin of these components is still unclear. The most recent models are based on isotope selective photodissociation of CO in a 16 O-rich nebula/presolr cloud resulting in a 16 O-poor gas in the outer part of the nebula. However because most meteorite components are thought to be formed in the inner 3AU of the solar nebula, the precise isotopic composition of outer solar system components is yet unknown. In that respect, the oxygen isotopic composition of cometary dust is a key to understand the origin of the solar system. The Stardust mission will bring back to the Earth dust samples from comet Wild2, a short period comet from the Jupiter family. A precise determination of the oxygen isotope composition of Wild2 dust grains is essential to decipher the oxygen reservoirs of the outer solar system. However, Stardust samples may be extremely fragmented upon impact in the collector. In addition, interplanetary dust particles (IDPs) collected in the stratosphere are likely to contain comet samples. Therefore, they started to investigate the oxygen isotopic composition of a suite of chondritic interplanetary dust particles that includes IDPs of potential cometary origin using a refined procedure to increase the lateral resolution for the analysis of Stardust grains or IDP subcomponents down to ∼ 3 (micro)m. High precision data for 4 IDPs were previously reported, here they have measured 6 additional IDPs

  1. Advances in Astromaterials Curation: Supporting Future Sample Return Missions

    Science.gov (United States)

    Evans, C. A.; Zeigler, R. A.; Fries, M. D..; Righter, K.; Allton, J. H.; Zolensky, M. E.; Calaway, M. J.; Bell, M. S.

    2015-01-01

    NASA's Astromaterials, curated at the Johnson Space Center in Houston, are the most extensive, best-documented, and leastcontaminated extraterrestrial samples that are provided to the worldwide research community. These samples include lunar samples from the Apollo missions, meteorites collected over nearly 40 years of expeditions to Antarctica (providing samples of dozens of asteroid bodies, the Moon, and Mars), Genesis solar wind samples, cosmic dust collected by NASA's high altitude airplanes, Comet Wild 2 and interstellar dust samples from the Stardust mission, and asteroid samples from JAXA's Hayabusa mission. A full account of NASA's curation efforts for these collections is provided by Allen, et al [1]. On average, we annually allocate about 1500 individual samples from NASA's astromaterials collections to hundreds of researchers from around the world, including graduate students and post-doctoral scientists; our allocation rate has roughly doubled over the past 10 years. The curation protocols developed for the lunar samples returned from the Apollo missions remain relevant and are adapted to new and future missions. Several lessons from the Apollo missions, including the need for early involvement of curation scientists in mission planning [1], have been applied to all subsequent sample return campaigns. From the 2013 National Academy of Sciences report [2]: "Curation is the critical interface between sample return missions and laboratory research. Proper curation has maintained the scientific integrity and utility of the Apollo, Antarctic meteorite, and cosmic dust collections for decades. Each of these collections continues to yield important new science. In the past decade, new state-of-the-art curatorial facilities for the Genesis and Stardust missions were key to the scientific breakthroughs provided by these missions." The results speak for themselves: research on NASA's astromaterials result in hundreds of papers annually, yield fundamental

  2. In search of stardust amazing micrometeorites and their terrestrial imposters

    CERN Document Server

    Larsen, Jon

    2017-01-01

    In Search of Stardust is the first comprehensive popular science book about micrometeorites. It's illustrated with 1,500 previously unpublished images from high-resolution color microscopes and scanning electron microscopes.

  3. Amino Acids in Asteroids and Comets: Implications for the Origin of Life on Earth and Possibly Elsewhere

    Science.gov (United States)

    Glavin, Daniel

    2012-01-01

    Meteorites provide a record of the chemical processes that occurred in the early solar system before life began on Earth. The delivery of organic matter by asteroids, comets, and their fragments to the Earth and other planetary bodies in our solar system could have been an important source of the prebiotic organic inventory needed for the emergence of life. Amino acids are essential components of proteins and enzymes in life on Earth and these prebiotic organic compounds have been detected in a wide variety of carbon-rich meteorites, the majority of which have been determined to be extraterrestrial in origin. In addition, many amino acids are structurally chiral (they possess handedness) and with a few very rare exceptions, only left handed (L) amino acids are found in biology, while all known abiotic syntheses of amino acids result in equal mixtures of left and right handed (LD) amino acids. The discovery of a significant left handed amino acid imbalance of up to 20% in several different carbonaceous meteorites, could point toward a possible prebiotic contribution to the origin of biological homochirality by the exogenous delivery of extraterrestrial organic material to the early Earth. In this talk, I will focus on recent state-of-the-art measurements of the distribution, chirality, and isotopic composition of amino acids in meteorites and cometary samples carried out at the Goddard Astrobiology Analytical Laboratory. Results from the analyses of a variety of Antarctic meteorites, samples from comet Wild 2 returned by the STARDUST mission, and meteorite fragments of asteroid 2008 TC3 called Almahata Sitta recovered from northern Sudan will be discussed

  4. The Contrasting Soundscapes of Hull and London in David Bowie’s Ziggy Stardust and the Spiders from Mars

    OpenAIRE

    Atkinson, Peter James

    2017-01-01

    In this article I apply the concept of the urban soundscape as developed by Long and Collins (2012) in an analysis of the impact musicians from Hull had on the evolution of David Bowie’s seminal 1972 work The Rise and Fall of Ziggy Stardust and the Spiders from Mars. I argue that the performance of Ziggy Stardust, both on record and on stage, is doubly coded in relation to place and space. The 'concept' of The Rise and Fall of Ziggy Stardust as a musical, a fictional story with songs performe...

  5. Analysis of the Touch-And-Go Surface Sampling Concept for Comet Sample Return Missions

    Science.gov (United States)

    Mandic, Milan; Acikmese, Behcet; Bayard, David S.; Blackmore, Lars

    2012-01-01

    This paper studies the Touch-and-Go (TAG) concept for enabling a spacecraft to take a sample from the surface of a small primitive body, such as an asteroid or comet. The idea behind the TAG concept is to let the spacecraft descend to the surface, make contact with the surface for several seconds, and then ascend to a safe location. Sampling would be accomplished by an end-effector that is active during the few seconds of surface contact. The TAG event is one of the most critical events in a primitive body sample-return mission. The purpose of this study is to evaluate the dynamic behavior of a representative spacecraft during the TAG event, i.e., immediately prior, during, and after surface contact of the sampler. The study evaluates the sample-collection performance of the proposed sampling end-effector, in this case a brushwheel sampler, while acquiring material from the surface during the contact. A main result of the study is a guidance and control (G&C) validation of the overall TAG concept, in addition to specific contributions to demonstrating the effectiveness of using nonlinear clutch mechanisms in the sampling arm joints, and increasing the length of the sampling arms to improve robustness.

  6. Post-Flight Evaluation of PICA and PICA-X - Comparisons of the Stardust SRC and Space-X Dragon 1 Forebody Heatshield Materials

    Science.gov (United States)

    Stackpoole, M.; Kao, D.; Qu, V.; Gonzales, G.

    2013-01-01

    Phenolic Impregnated Carbon Ablator (PICA) was developed at NASA Ames Research Center. As a thermal protection material, PICA has the advantages of being able to withstand high heat fluxes with a relatively low density. This ablative material was used as the forebody heat shield material for the Stardust sample return capsule, which re-entered the Earths atmosphere in 2006. Based on PICA, SpaceX developed a variant, PICA-X, and used it as the heat shield material for its Dragon spacecraft, which successfully orbited the Earth and re-entered the atmosphere during the COTS Demo Flight 1 in 2010. Post-flight analysis was previously performed on the Stardust PICA heat shield material. Similarly, a near-stagnation core was obtained from the post-flight Dragon 1 heat shield, which was retrieved from the Pacific Ocean. Materials testing and analyses were performed on the core to evaluate its ablation performance and post-flight properties. Comparisons between PICA and PICA-X are made where applicable. Stardust and Dragon offer rare opportunities to evaluate materials post-flight - this data is beneficial in understanding material performance and also improves modeling capabilities.

  7. Comet Halley and interstellar chemistry

    International Nuclear Information System (INIS)

    Snyder, L.E.

    1989-01-01

    How complex is the chemistry of the interstellar medium? How far does it evolve and how has it interacted with the chemistry of the solar system? Are the galactic chemical processes destroyed, preserved, or even enhanced in comets? Are biogenic molecules formed in space and have the formation mechanisms interacted in any way with prebiotic organic chemical processes on the early earth? Radio molecular studies of comets are important for probing deep into the coma and nuclear region and thus may help answer these questions. Comets are believed to be pristine samples of the debris left from the formation of the solar system and may have been the carrier between interstellar and terrestrial prebiotic chemistries. Recent observations of Comet Halley and subsequent comets have given the author an excellent opportunity to study the relationship between interstellar molecular chemistry and cometary chemistry

  8. Hummingbird Comet Nucleus Analysis Mission

    Science.gov (United States)

    Kojiro, Daniel; Carle, Glenn C.; Lasher, Larry E.

    2000-01-01

    Hummingbird is a highly focused scientific mission, proposed to NASA s Discovery Program, designed to address the highest priority questions in cometary science-that of the chemical composition of the cometary nucleus. After rendezvous with the comet, Hummingbird would first methodically image and map the comet, then collect and analyze dust, ice and gases from the cometary atmosphere to enrich characterization of the comet and support landing site selection. Then, like its namesake, Hummingbird would carefully descend to a pre-selected surface site obtaining a high-resolution image, gather a surface material sample, acquire surface temperature and then immediately return to orbit for detailed chemical and elemental analyses followed by a high resolution post-sampling image of the site. Hummingbird s analytical laboratory contains instrumentation for a comprehensive molecular and elemental analysis of the cometary nucleus as well as an innovative surface sample acquisition device.

  9. Autonomous Onboard Science Data Analysis for Comet Missions

    Science.gov (United States)

    Thompson, David R.; Tran, Daniel Q.; McLaren, David; Chien, Steve A.; Bergman, Larry; Castano, Rebecca; Doyle, Richard; Estlin, Tara; Lenda, Matthew

    2012-01-01

    Coming years will bring several comet rendezvous missions. The Rosetta spacecraft arrives at Comet 67P/Churyumov-Gerasimenko in 2014. Subsequent rendezvous might include a mission such as the proposed Comet Hopper with multiple surface landings, as well as Comet Nucleus Sample Return (CNSR) and Coma Rendezvous and Sample Return (CRSR). These encounters will begin to shed light on a population that, despite several previous flybys, remains mysterious and poorly understood. Scientists still have little direct knowledge of interactions between the nucleus and coma, their variation across different comets or their evolution over time. Activity may change on short timescales so it is challenging to characterize with scripted data acquisition. Here we investigate automatic onboard image analysis that could act faster than round-trip light time to capture unexpected outbursts and plume activity. We describe one edge-based method for detect comet nuclei and plumes, and test the approach on an existing catalog of comet images. Finally, we quantify benefits to specific measurement objectives by simulating a basic plume monitoring campaign.

  10. Detection of irradiation treatment of foods using DNA 'comet assay'

    International Nuclear Information System (INIS)

    Khan, Hasan M.; Delincee, Henry

    1998-01-01

    Microgel electrophoresis of single cells (DNA comet assay) has been investigated to detect irradiation treatment of some food samples. These samples of fresh and frozen rainbow trout, red lentil, gram and sliced almonds were irradiated to 1 or 2 kGy using 10 MeV electron beam from a linear accelerator. Rainbow trout samples yielded good results with samples irradiated to 1 or 2 kGy showing fragmentation of DNA and, therefore, longer comets with no intact cells. Unirradiated samples showed shorter comets with a significant number of intact cells. For rainbow trout stored in a freezer for 11 days the irradiated samples can still be discerned by electrophoresis from unirradiated samples, however, the unirradiated trouts also showed some longer comets besides some intact cells. Radiation treatment of red lentils can also be detected by this method, i.e. no intact cells in 1 or 2 kGy irradiated samples and shorter comets and some intact cells in unirradiated samples. However, the results for gram and sliced almond samples were not satisfactory since some intact DNA cells were observed in irradiated samples as well. Probably, incomplete lysis has led to these deviating results

  11. Detection of garlic gamma-irradiated by assay comet

    International Nuclear Information System (INIS)

    Moreno Alvarez, Damaris L.; Miranda, Enrique F. Prieto; Carro, Sandra; Iglesias Enrique, Isora; Matos, Wilberto

    2009-01-01

    The garlic samples were irradiated in a facility with 60 Co sources, at absorbed dose values of 0-0,15 kGy. The detection method utilized for the identification of the irradiated garlic was biological comet assay. The samples were classified post-irradiation several times. The irradiated samples showed high strand breaks of DNA exhibiting comets of several forms, while the not irradiated and lower dose samples showed a behavior like round shape and light comets. Significant differences were found for higher absorbed dose values at 0.06 kGy, this absorbed dose value is corresponding with the applied dose value at this food in order to avoid the germination. (author)

  12. Observing comets

    CERN Document Server

    James, Nick

    2003-01-01

    Since comet Shoemaker-Levy collided with the planet Jupiter with stupendous force in 1994 there has been an upsurge of amateur interest in comets Most comets are first discovered by amateur astronomers because there are so many amateurs looking for them, and techniques and instruments have improved dramatically in the past few years After a short but detailed introduction to the comets themselves Nick James and Gerald North describe comet hunting, photographing and imaging comets, and digital image processing The use of computers for orbital calculations and even helping to discover new comets is given a full chapter, as are advanced techniques including comet photometry and spectroscopy This comprehensive book has an accompanying CD-ROM and is at once a "primer" for comet hunters and a reference text for more advanced amateur astronomers

  13. Detection of garlic gamma-irradiated by assay comet

    Energy Technology Data Exchange (ETDEWEB)

    Moreno Alvarez, Damaris L.; Miranda, Enrique F. Prieto; Carro, Sandra; Iglesias Enrique, Isora; Matos, Wilberto [Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), Ciudad de La Habana (Cuba)], e-mail: damaris@ceaden.edu.cu

    2009-07-01

    The garlic samples were irradiated in a facility with {sup 60}Co sources, at absorbed dose values of 0-0,15 kGy. The detection method utilized for the identification of the irradiated garlic was biological comet assay. The samples were classified post-irradiation several times. The irradiated samples showed high strand breaks of DNA exhibiting comets of several forms, while the not irradiated and lower dose samples showed a behavior like round shape and light comets. Significant differences were found for higher absorbed dose values at 0.06 kGy, this absorbed dose value is corresponding with the applied dose value at this food in order to avoid the germination. (author)

  14. Ensemble Properties of Comets in the Sloan Digital Sky Survey

    Energy Technology Data Exchange (ETDEWEB)

    Solontoi, Michael; /Adler Planetarium, Chicago; Ivezic, Zeljko; /Washington U., Seattle, Astron. Dept.; Juric, Mario; /Harvard Coll. Observ.; Becker, Andrew C.; /Washington U., Seattle, Astron. Dept.; Jones, Lynne; /Washington U., Seattle, Astron. Dept.; West, Andrew A.; /Boston U.; Kent, Steve; /Fermilab; Lupton, Robert H.; /Princeton U. Observ.; Claire, Mark; /Washington U., Seattle, Astron. Dept.; Knapp, Gillian R.; /Princeton U. Observ.; Quinn, Tom; /Washington U., Seattle, Astron. Dept. /Princeton U. Observ.

    2012-02-01

    We present the ensemble properties of 31 comets (27 resolved and 4 unresolved) observed by the Sloan Digital Sky Survey (SDSS). This sample of comets represents about 1 comet per 10 million SDSS photometric objects. Five-band (u, g, r, i, z) photometry is used to determine the comets colors, sizes, surface brightness profiles, and rates of dust production in terms of the Afp formalism. We find that the cumulative luminosity function for the Jupiter Family Comets in our sample is well fit by a power law of the form N(comets. The resolved comets show an extremely narrow distribution of colors (0.57 {+-} 0.05 in g - r for example), which are statistically indistinguishable from that of the Jupiter Trojans. Further, there is no evidence of correlation between color and physical, dynamical, or observational parameters for the observed comets.

  15. How to best freeze liver samples to perform the in vivo mammalian alkaline comet assay

    Directory of Open Access Journals (Sweden)

    José Manuel Enciso Gadea

    2015-06-01

    None of the different methods used was capable of giving good results, except immersing the liver samples in liquid nitrogen, followed by Jackson’s et al. (2013 thawing protocol, suggesting that the thawing process may be as critical as the freezing process. To sum up, these results highlight the importance of deepening the possibility to perform the comet assay with frozen tissue.

  16. Rosetta - a comet ride to solve planetary mysteries

    Science.gov (United States)

    2003-01-01

    kilometres of Halley). It sent back wonderful pictures and data that showed that comets contain complex organic molecules. These kinds of compounds are rich in carbon, hydrogen, oxygen, and nitrogen. Intriguingly, these are the elements which make up nucleic acids and amino acids, which are essential ingredients for life as we know it. Giotto continued its successful journey and flew by Comet Grigg-Skjellerup in 1992 within about 200 km distance. Now scientists will be eagerly waiting to be able to answer some of the new intriguing questions that arose from analysing the exciting results from Giotto. Other past missions that have flown by a comet were: NASA’s ICE mission in 1985, the two Russian VEGA spacecraft and the two Japanese spacecraft Suisei and Sakigake that were part of the armada that visited comet Halley in 1986; NASA’s Deep Space 1 flew-by comet Borelly in 2001 and NASA’s Stardust will fly-by comet Wild 2 in early 2004 and will return samples of the comet’s coma in 2006. Unfortunately NASA’s Contour launched in Summer 2002 failed when it was inserted onto its interplanetary trajectory. In 2004 we will see the launch of Deep Impact, a spacecraft that will shoot a massive block of copper into a comet nucleus.

  17. A Chemical Comparison of STARDUST Organics with Insoluble Organic Matter in Chondritic Meteorites

    Science.gov (United States)

    Cody, G. D.; Yabuta, H.; Alexander, C. M.; Araki, T.; Kilcoyne, D.

    2006-12-01

    We have analyzed 15 organic rich particles extracted from the aerogel capture device flown on the STARDUST mission spacecraft to comet Wild 2 using C-, N-, and O-X-ray Absorption Near Edge Structure (XANES) spectroscopy. Data were acquired with the Scanning Transmission X-ray Microscopy (STXM) beam line 5.3.2 at the Advanced Light Source, Lawrence Berkeley Laboratory. XANES can provide both quantitative molecular functional group information and atomic N/C and O/C data. We use these data to place the organic matter extracted from the Aerogel Capture device in context with a large database of C-, N-, and O-XANES spectra obtained on meteoritic Insoluble Organic Matter (IOM) obtained from type 1, 2, and 3 chondrites. We find that the organic chemistry of the particles extracted from aerogel varies in functional group abundances, but is universally very rich in heteroatoms (N and O). In several cases the organic carbon is closely associated with silica (possibly derived from the aerogel), but at a concentration far in excess of the intrinsic carbon abundance of synthesized (and flown) aerogel. Independently, 29-Si, 13-C, and 1-H solid state NMR was applied to analyze the nature of organic carbon present in the aerogel as byproduct of the synthesis. The intrinsic aerogel carbon is very simple in its functional group chemistry, very low in abundance, and differs completely from that detected in the extracted organic particles.

  18. Using Paraffin PCM, Cryogel and TEC to Maintain Comet Surface Sample Cold from Earth Approach Through Retrieval

    Science.gov (United States)

    Choi, Michael K.

    2017-01-01

    An innovative thermal design concept to maintain comet surface samples cold (for example, 263 degrees Kelvin, 243 degrees Kelvin or 223 degrees Kelvin) from Earth approach through retrieval is presented. It uses paraffin phase change material (PCM), Cryogel insulation and thermoelectric cooler (TEC), which are commercially available.

  19. Comets

    International Nuclear Information System (INIS)

    Hughes, D.W.

    1982-01-01

    Comets are objects of considerable fascination and this paper reviews the present knowledge of the physical structure of the cometary nucleus, coma and tail, the orbits of comets in the Solar System, the proposed mechanisms of cometary origin, the decay processes suffered by comets, and the ways in which they can be observed from Earth and by spacecraft. (author)

  20. Finding Interstellar Particle Impacts on Stardust Aluminium Foils: The Safe Handling, Imaging, and Analysis of Samples Containing Femtogram Residues

    Science.gov (United States)

    Kearsley, A. T.; Westphal, A. J.; Stadermann, F. J.; Armes, S. P.; Ball, A. D.; Borg, J.; Bridges, J. C.; Brownlee, D. E.; Burchell, M. J.; Chater, R. J.; hide

    2010-01-01

    Impact ionisation detectors on a suite of spacecraft have shown the direction, velocity, flux and mass distribution of smaller ISP entering the Solar System. During the aphelion segments of the Stardust flight, a dedicated collector surface was oriented to intercept ISP of beta = 1, and returned to Earth in January 2006. In this paper we describe the probable appeareance and size of IS particle craters from initial results of experimental impacts and numerical simulation, explain how foils are being prepared and mounted for crater searching by automated acquisition of high magnification electron images (whilst avoiding contamination of the foils) and comment on appropriate analytical techniques for Preliminary Examination (PE).

  1. Comet Mineralogy as Inferred from Infrared Spectra of Comets

    Science.gov (United States)

    Wooden, Diane H.

    2006-01-01

    For most comets, infrared (IR) spectroscopy (remote sensing) is the method through which we diagnose the mineralogy and size distribution of dust in their comae. The shape and contrast of the IR spectral features depend on the particle size: optically active minerals (absorbing of visible and near-IR solar photons) and submicron solid grains or highly porous (> 90% vacuum) grains primarily contribute to the shapes of the observed resonances. Comet mineralogies typically are determined by fitting thermal emission models of ensembles of discrete mineral grains to observed IR spectral energy distributions. The absorptivities (Q-abs) and scattering efficiencies (Q-scat) of the discrete mineral grains are computed using Mie scattering, Maxwell-Garnet mixing, Discrete Dipole Approximation, and Multi-Layered Sphere codes. These techniques when applied to crystalline minerals, specifically olivine (Mg_x, Fe_1-x)2 Si04, x>0.9, require the use of ellipsoidal shaped particles with elongated axial ratios or hollow spheres to produce the shapes of the resonances observed both from comet comae and laboratory samples. The wavelength positions of the distinct resonances from submicron-radii crystalline silicates, as well as their thermal equilibrium temperatures, constrain the crystalline olivine to have a relatively high Mg-content (x>0.9, or Fo>90). Only resonances computed for submicron Mg-rich crystalline olivine and crystalline orthopyroxene match the observed IR spectral features. However, this has led to the interpretation that micron-radii and larger crystals are absent from comet comae. Furthermore, the mass fraction of silicate crystals is dependent upon whether just the submicron portion of the size distribution is being compared or the submicron crystals compare to the aggregates of porous amorphous silicates that are computationally tractable as porous spheres. We will discuss the Deep Impact results as examples of these challenges to interpreting mid-IR spectra of

  2. Detection of irradiation treatment of foods using DNA 'comet assay'

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Hasan M.; Delincee, Henry

    1998-06-01

    Microgel electrophoresis of single cells (DNA comet assay) has been investigated to detect irradiation treatment of some food samples. These samples of fresh and frozen rainbow trout, red lentil, gram and sliced almonds were irradiated to 1 or 2 kGy using 10 MeV electron beam from a linear accelerator. Rainbow trout samples yielded good results with samples irradiated to 1 or 2 kGy showing fragmentation of DNA and, therefore, longer comets with no intact cells. Unirradiated samples showed shorter comets with a significant number of intact cells. For rainbow trout stored in a freezer for 11 days the irradiated samples can still be discerned by electrophoresis from unirradiated samples, however, the unirradiated trouts also showed some longer comets besides some intact cells. Radiation treatment of red lentils can also be detected by this method, i.e. no intact cells in 1 or 2 kGy irradiated samples and shorter comets and some intact cells in unirradiated samples. However, the results for gram and sliced almond samples were not satisfactory since some intact DNA cells were observed in irradiated samples as well. Probably, incomplete lysis has led to these deviating results.

  3. Photochemistry of comets

    International Nuclear Information System (INIS)

    Huebner, W.F.

    1985-01-01

    The classification of comets, chemically rich mixtures of volatile materials and refractory grains, is described. The developments of coma and tails, and the composition and structure of coma, plasma tails, dust, and nucleus are examined. The differences between comets and planetary atmospheres are investigated. Three hypotheses on the origin of comets are proposed; one states that comets formed in the region of the giant planets, the second theory has the development of comets occuring in the outer parts of the solar nebula, and the third states that comets formed in a companion fragment of the nebula. The use of radar, photometric, spectral, and laboratory measurements for modeling comets is discussed. The physics and main photolytic and chemical reaction processes of a collision-dominated coma are analyzed; the influence of the solar wind on the coma is studied. A comparison of the model with observed data is presented; good correlation of data is observed. The features of Halley's Comet and other comets with distinctive characteristics are examined. Future comet exploration missions and the need to improve comet models are discussed. 31 references

  4. Visually observing comets

    CERN Document Server

    Seargent, David A J

    2017-01-01

    In these days of computers and CCD cameras, visual comet observers can still contribute scientifically useful data with the help of this handy reference for use in the field. Comets are one of the principal areas for productive pro-amateur collaboration in astronomy, but finding comets requires a different approach than the observing of more predictable targets. Principally directed toward amateur astronomers who prefer visual observing or who are interested in discovering a new comet or visually monitoring the behavior of known comets, it includes all the advice needed to thrive as a comet observer. After presenting a brief overview of the nature of comets and how we came to the modern understanding of comets, this book details the various types of observations that can usefully be carried out at the eyepiece of a telescope. Subjects range from how to search for new comets to visually estimating the brightness of comets and the length and orientation of tails, in addition to what to look for in comet heads a...

  5. Comet C2012 S1 (ISON)s Carbon-rich and Micron-size-dominated Coma Dust

    Science.gov (United States)

    Wooden, D.; De Buizer, J.; Kelley, M.; Sitko, M.; Woodward, C.; Harker, D.; Reach, W.; Russell, R.; Kim, D.; Yanamadra-Fisher, P.; hide

    2014-01-01

    (= 20 AU) is easier for smaller grains (=1 micron) than for larger grains (approx. 20 microns like Stardust terminal particles). The presence of predominantly micron-sized and smaller grains suggests comet ISON may have formed either earlier in disk evolution whereby larger grains did not have the time to be transported to distances beyond Neptune, or the comet formed so far out in the disk that larger grains did not traverse such large radial distances. The high carbon-content of ISON's refractory dust appears to be complimented by the presence of limitedlifetime organic (CHON-like) grain materials: preliminary analyses of near-IR and high-resolution optical spectra indicate that gas-phase daughter molecules C2, CN, and CH were more abundant than their parent molecules (C2H2, C2H6, measured in the near- IR). Dust composition as well as grain size distribution parameters (slope, peak grain size, and porosity) give clues to comet origins.

  6. Curating NASA's Past, Present, and Future Astromaterial Sample Collections

    Science.gov (United States)

    Zeigler, R. A.; Allton, J. H.; Evans, C. A.; Fries, M. D.; McCubbin, F. M.; Nakamura-Messenger, K.; Righter, K.; Zolensky, M.; Stansbery, E. K.

    2016-01-01

    The Astromaterials Acquisition and Curation Office at NASA Johnson Space Center (hereafter JSC curation) is responsible for curating all of NASA's extraterrestrial samples. JSC presently curates 9 different astromaterials collections in seven different clean-room suites: (1) Apollo Samples (ISO (International Standards Organization) class 6 + 7); (2) Antarctic Meteorites (ISO 6 + 7); (3) Cosmic Dust Particles (ISO 5); (4) Microparticle Impact Collection (ISO 7; formerly called Space-Exposed Hardware); (5) Genesis Solar Wind Atoms (ISO 4); (6) Stardust Comet Particles (ISO 5); (7) Stardust Interstellar Particles (ISO 5); (8) Hayabusa Asteroid Particles (ISO 5); (9) OSIRIS-REx Spacecraft Coupons and Witness Plates (ISO 7). Additional cleanrooms are currently being planned to house samples from two new collections, Hayabusa 2 (2021) and OSIRIS-REx (2023). In addition to the labs that house the samples, we maintain a wide variety of infra-structure facilities required to support the clean rooms: HEPA-filtered air-handling systems, ultrapure dry gaseous nitrogen systems, an ultrapure water system, and cleaning facilities to provide clean tools and equipment for the labs. We also have sample preparation facilities for making thin sections, microtome sections, and even focused ion-beam sections. We routinely monitor the cleanliness of our clean rooms and infrastructure systems, including measurements of inorganic or organic contamination, weekly airborne particle counts, compositional and isotopic monitoring of liquid N2 deliveries, and daily UPW system monitoring. In addition to the physical maintenance of the samples, we track within our databases the current and ever changing characteristics (weight, location, etc.) of more than 250,000 individually numbered samples across our various collections, as well as more than 100,000 images, and countless "analog" records that record the sample processing records of each individual sample. JSC Curation is co-located with JSC

  7. On the observed excess of retrograde orbits among long-period comets

    International Nuclear Information System (INIS)

    Fernandez, J.A.

    1981-01-01

    The distribution of orbital inclinations of the observed long-period comets is analysed. An excess of retrograde orbits is found which increases with the perihelion distance, except for the range 1.1 10 3 A U) has the same behaviour as the total sample. It is thus suggested that the excess of retrograde orbits among long-period comets is related to an already existent excess among the incoming new comets (i.e. comets driven into the planetary region by stellar perturbations). Using theoretical considerations and a numerical model it is proposed that an important fraction of the so-called new comets are actually repeating passages through the planetary region. Nearly a half of the new comets with q > 2 A U may be repeating passages. An important consequence of the presence of comets repeating passages among the new ones is the production of an excess of retrograde orbits in the whole sample. (author)

  8. Modeling and Simulation of a Tethered Harpoon for Comet Sampling

    Science.gov (United States)

    Quadrelli, Marco B.

    2014-01-01

    This paper describes the development of a dynamic model and simulation results of a tethered harpoon for comet sampling. This model and simulation was done in order to carry out an initial sensitivity analysis for key design parameters of the tethered system. The harpoon would contain a canister which would collect a sample of soil from a cometary surface. Both a spring ejected canister and a tethered canister are considered. To arrive in close proximity of the spacecraft at the end of its trajectory so it could be captured, the free-flying canister would need to be ejected at the right time and with the proper impulse, while the tethered canister must be recovered by properly retrieving the tether at a rate that would avoid an excessive amplitude of oscillatory behavior during the retrieval. The paper describes the model of the tether dynamics and harpoon penetration physics. The simulations indicate that, without the tether, the canister would still reach the spacecraft for collection, that the tether retrieval of the canister would be achievable with reasonable fuel consumption, and that the canister amplitude upon retrieval would be insensitive to variations in vertical velocity dispersion.

  9. The Composition of Comet C/2012 K1 (PanSTARRS) and the Distribution of Primary Volatile Abundances Among Comets

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Nathan X.; Gibb, Erika L. [Department of Physics and Astronomy, University of Missouri-St. Louis, 503 Benton Hall, One University Blvd., St. Louis, MO 63121 (United States); Bonev, Boncho P.; DiSanti, Michael A.; Mumma, Michael J.; Villanueva, Geronimo L.; Paganini, Lucas, E-mail: nxrq67@mail.umsl.edu [Goddard Center for Astrobiology, NASA Goddard Space Flight Center, Mail Stop 690, Greenbelt, MD 20771 (United States)

    2017-04-01

    On 2014 May 22 and 24 we characterized the volatile composition of the dynamically new Oort cloud comet C/2012 K1 (PanSTARRS) using the long-slit, high resolution ( λ /Δ λ  ≈ 25,000) near-infrared echelle spectrograph (NIRSPEC) at the 10 m Keck II telescope on Maunakea, Hawaii. We detected fluorescent emission from six primary volatiles (H{sub 2}O, HCN, CH{sub 4}, C{sub 2}H{sub 6}, CH{sub 3}OH, and CO). Upper limits were derived for C{sub 2}H{sub 2}, NH{sub 3}, and H{sub 2}CO. We report rotational temperatures, production rates, and mixing ratios (relative to water). Compared with median abundance ratios for primary volatiles in other sampled Oort cloud comets, trace gas abundance ratios in C/2012 K1 (PanSTARRS) for CO and HCN are consistent, but CH{sub 3}OH and C{sub 2}H{sub 6} are enriched while H{sub 2}CO, CH{sub 4}, and possibly C{sub 2}H{sub 2} are depleted. When placed in context with comets observed in the near-infrared to date, the data suggest a continuous distribution of abundances of some organic volatiles (HCN, C{sub 2}H{sub 6}, CH{sub 3}OH, CH{sub 4}) among the comet population. The level of “enrichment” or “depletion” in a given comet does not necessarily correlate across all molecules sampled, suggesting that chemical diversity among comets may be more complex than the simple organics-enriched, organics-normal, and organics-depleted framework.

  10. Comet assay on mice testicular cells

    Directory of Open Access Journals (Sweden)

    Anoop Kumar Sharma

    2015-05-01

    Full Text Available Heritable mutations may result in a variety of adverse outcomes including genetic disease in the offspring. In recent years the focus on germ cell mutagenicity has increased and the “Globally Harmonized System of Classification and Labelling of Chemicals (GHS” has published classification criteria for germ cell mutagens (Speit et al., 2009. The in vivo Comet assay is considered a useful tool for investigating germ cell genotoxicity. In the present study DNA strand breaks in testicular cells of mice were investigated. Different classes of chemicals were tested in order to evaluate the sensitivity of the comet assay in testicular cells. The chemicals included environmentally relevant substances such as Bisphenol A, PFOS and Tetrabrombisphenol A. Statistical power calculations will be presented to aid in the design of future Comet assay studies on testicular cells. Power curves were provided with different fold changes in % tail DNA, different number of cells scored and different number of gels (Hansen et al., 2014. An example is shown in Figure 1. A high throughput version of the Comet assay was used. Samples were scored with a fully automatic comet assay scoring system that provided faster scoring of randomly selected cells.

  11. Comet radar explorer

    Science.gov (United States)

    Farnham, Tony; Asphaug, Erik; Barucci, Antonella; Belton, Mike; Bockelee-Morvan, Dominique; Brownlee, Donald; Capria, Maria Teresa; Carter, Lynn; Chesley, Steve; Farnham, Tony; Gaskell, Robert; Gim, Young; Heggy, Essam; Herique, Alain; Klaasen, Ken; Kofman, Wlodek; Kreslavsky, Misha; Lisse, Casey; Orosei, Roberto; Plaut, Jeff; Scheeres, Dan

    The Comet Radar Explorer (CORE) is designed to perform a comprehensive and detailed exploration of the interior, surface, and inner coma structures of a scientifically impor-tant Jupiter family comet. These structures will be used to investigate the origins of cometary nuclei, their physical and geological evolution, and the mechanisms driving their spectacular activity. CORE is a high heritage spacecraft, injected by solar electric propulsion into orbit around a comet. It is capable of coherent deep radar imaging at decameter wavelengths, high resolution stereo color imaging, and near-IR imaging spectroscopy. Its primary objective is to obtain a high-resolution map of the interior structure of a comet nucleus at a resolution of ¿100 elements across the diameter. This structure shall be related to the surface geology and morphology, and to the structural details of the coma proximal to the nucleus. This is an ideal complement to the science from recent comet missions, providing insight into how comets work. Knowing the structure of the interior of a comet-what's inside-and how cometary activity works, is required before we can understand the requirements for a cryogenic sample return mission. But more than that, CORE is fundamental to understanding the origin of comets and their evolution in time. The mission is made feasible at low cost by the use of now-standard MARSIS-SHARAD reflec-tion radar imaging hardware and data processing, together with proven flight heritage of solar electric propulsion. Radar flight heritage has been demonstrated by the MARSIS radar on Mars Express (Picardi et al., Science 2005; Plaut et al., Science 2007), the SHARAD radar onboard the Mars Reconnaissance Orbiter (Seu et al., JGR 2007), and the LRS radar onboard Kaguya (Ono et al, EPS 2007). These instruments have discovered detailed subsurface structure to depths of several kilometers in a variety of terrains on Mars and the Moon. A reflection radar deployed in orbit about a comet

  12. Organic Nano-Grains in Comet 103P/Hartley 2: The Organic Glue of Porous Aggregate Grains?

    Science.gov (United States)

    Wooden, D. H.; Russo, N.Dello; Li, A.; Woodward, C. E.; Kelley, M. S.; Harker, D. E.; Cook, J. C.; Vervack, R. J.; Geballe, T. R.

    2013-01-01

    The GNIRS instrument on the Gemini 8-­-m telescope observed comet 103P/Hartley on 2010-­- Dec-­-04UT, a month after the EPOXI Mission encounter, and detected the 3.3 and 3.4 um bands in emission. The 3.3/3.4 ratio and the broad band widths are consistent with experiments of heated (approximately 600 K) aliphatic carbon (-CH3, -CH2) thin films. For the 3.4 micron band to be in emission, the aliphatic bonds must be attached to a carrier possessing the strongly UV-­-absorbing C=C aromatic rings, and these rings have to be less than 50-­-100 carbon atoms (4-6 Angstrom) for attached -CH bonds to also generate a 3.3 micron-band in emission. Slightly larger (=10Å) Very Small Grains (VSGs) can absorb single UV photons comparable to or exceeding their heat capacity, thermally fluctuate and release IR photon(s). The 3.3 micron and 3.4 micron bands observed by GNIRS suggest that organic macromolecules/ nano-­-grains with both aliphatic and aromatic bonds are fluorescing/thermally fluctuating in the coma. Aliphatic and aromatic materials have been seen in Stardust samples and the primitive carbonaceous chondrite 'Tagish Lake'. The larger the ratio of the -CH2/-CH3 components of the aliphatic 3.4 micron band, the more 'primitive' the organic material. In a Stardust organic globule, some aliphatic bonds were transformed into aromatic bonds during the low dosage of Transmission Electron Microscope imaging. Conversely, lab experiments show irradiation of ices containing small PAHs generates aliphatic organics. Photo-­-processing of ices also likely forms the ubiquitous aliphatic coatings that appear on the surfaces of all silicate subgrains constituting nine cometary interplanetary dust particles. The aliphatic coatings, dominated by -CH2, likely were important in sticking the aggregates together, and existed prior to incorporation of dust aggregates into comet nuclei. These comet aliphatics may be some of the sought-­-after precursors to the more robust and complex

  13. Cryopreservation of human blood for alkaline and Fpg-modified comet assay.

    Science.gov (United States)

    Pu, Xinzhu; Wang, Zemin; Klaunig, James E

    2016-01-01

    The Comet assay is a reproducible and sensitive assay for the detection of DNA damage in eukaryotic cells and tissues. Incorporation of lesion specific, oxidative DNA damage repair enzymes (for example, Fpg, OGG1 and EndoIII) in the standard alkaline Comet assay procedure allows for the detection and measurement of oxidative DNA damage. The Comet assay using white blood cells (WBC) has proven useful in monitoring DNA damage from environmental agents in humans. However, it is often impractical to performance Comet assay immediately after blood sampling. Thus, storage of blood sample is required. In this study, we developed and tested a simple storage method for very small amount of whole blood for standard and Fpg-modified modified Comet assay. Whole blood was stored in RPMI 1640 media containing 10% FBS, 10% DMSO and 1 mM deferoxamine at a sample to media ratio of 1:50. Samples were stored at -20 °C and -80 °C for 1, 7, 14 and 28 days. Isolated lymphocytes from the same subjects were also stored under the same conditions for comparison. Direct DNA strand breakage and oxidative DNA damage in WBC and lymphocytes were analyzed using standard and Fpg-modified alkaline Comet assay and compared with freshly analyzed samples. No significant changes in either direct DNA strand breakage or oxidative DNA damage was seen in WBC and lymphocytes stored at -20 °C for 1 and 7 days compared to fresh samples. However, significant increases in both direct and oxidative DNA damage were seen in samples stored at -20 °C for 14 and 28 days. No changes in direct and oxidative DNA damage were observed in WBC and lymphocytes stored at -80 °C for up to 28 days. These results identified the proper storage conditions for storing whole blood or isolated lymphocytes to evaluate direct and oxidative DNA damage using standard and Fpg-modified alkaline Comet assay.

  14. ACTIVITY OF 50 LONG-PERIOD COMETS BEYOND 5.2 au

    Energy Technology Data Exchange (ETDEWEB)

    Sárneczky, K.; Szabó, Gy. M.; Csák, B.; Kelemen, J.; Pál, A.; Szakáts, R.; Szegedi-Elek, E.; Vida, K.; Vinkó, J.; Kiss, L. L. [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, H-1121 Budapest, Konkoly Thege Miklós út 15-17 (Hungary); Marschalkó, G. [Eötvös Loránd Tudományegyetem, H-1117 Pázmány Péter sétány 1/A, Budapest (Hungary); Szalai, T. [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dóm tér 9 (Hungary); Székely, P. [Department of Experimental Physics, University of Szeged, Szeged H-6720, Dóm tér 9 (Hungary)

    2016-12-01

    Remote investigations of ancient matter in the solar system have traditionally been carried out through observations of long-period (LP) comets, which are less affected by solar irradiation than their short-period counterparts orbiting much closer to the Sun. Here we summarize the results of our decade-long survey of the distant activity of LP comets. We found that the most important separation in the data set is based on the dynamical nature of the objects. Dynamically new comets are characterized by a higher level of activity on average: the most active new comets in our sample can be characterized by Afρ values >3–4, higher than those for our most active returning comets. New comets develop more symmetric comae, suggesting a generally isotropic outflow. In contrast to this, the comae of recurrent comets can be less symmetrical, ocassionally exhibiting negative slope parameters, which suggest sudden variations in matter production. The morphological appearance of the observed comets is rather diverse. A surprisingly large fraction of the comets have long, tenuous tails, but the presence of impressive tails does not show a clear correlation with the brightness of the comets.

  15. ACTIVITY OF 50 LONG-PERIOD COMETS BEYOND 5.2 au

    International Nuclear Information System (INIS)

    Sárneczky, K.; Szabó, Gy. M.; Csák, B.; Kelemen, J.; Pál, A.; Szakáts, R.; Szegedi-Elek, E.; Vida, K.; Vinkó, J.; Kiss, L. L.; Marschalkó, G.; Szalai, T.; Székely, P.

    2016-01-01

    Remote investigations of ancient matter in the solar system have traditionally been carried out through observations of long-period (LP) comets, which are less affected by solar irradiation than their short-period counterparts orbiting much closer to the Sun. Here we summarize the results of our decade-long survey of the distant activity of LP comets. We found that the most important separation in the data set is based on the dynamical nature of the objects. Dynamically new comets are characterized by a higher level of activity on average: the most active new comets in our sample can be characterized by Afρ values >3–4, higher than those for our most active returning comets. New comets develop more symmetric comae, suggesting a generally isotropic outflow. In contrast to this, the comae of recurrent comets can be less symmetrical, ocassionally exhibiting negative slope parameters, which suggest sudden variations in matter production. The morphological appearance of the observed comets is rather diverse. A surprisingly large fraction of the comets have long, tenuous tails, but the presence of impressive tails does not show a clear correlation with the brightness of the comets.

  16. An analysis of the BVRI colors of 22 active comets

    Science.gov (United States)

    Betzler, A. S.; Almeida, R. S.; Cerqueira, W. J.; Araujo, L. A.; Prazeres, C. J. M.; Jesus, J. N.; Bispo, P. A. S.; Andrade, V. B.; Freitas, Y. A. S.; Betzler, L. B. S.

    2017-08-01

    Our aim was to analyze the variation of Johnson-Kron-Cousins BVRI color indexes of a sample with 22 active comets of various dynamic groups with the time, geometrical, observational and dynamical parameters. We performed photometric observations of 16 comets between 2010 and 2014, using robotic telescopes in three continents. In addition to the sample, we used data of six comets available in the literature. A statistical comparison between the distributions of color indexes was performed using the Kruskal-Wallis H-test. The color indexes of active comets can vary a few tenths up to a magnitude on time scales that range from hours to weeks. Using the B-V colors of the observed comets, we generated a relationship that correlates the cometary visual and CCD magnitudes. We did not identify any relationship between B-V and V-R colors with heliocentric distance and phase angle. The color B-V is correlated with the photometric aperture that can be described by a logarithmic function. We did not identify any differences in the distribution of B-V color among the comets analyzed at a confidence level equal to or greater than 95%. The mean color of active comets are B-R = 1.20 ± 0.24 , B-V = 0.76 ± 0.16 and V-R = 0.42 ± 0.16 . Active comets with V-R colors outside the three standard deviation interval can be considered objects with unusual physical characteristics.

  17. Mystery of comets

    International Nuclear Information System (INIS)

    Whipple, F.L.

    1985-01-01

    An account is given of the growth of human understanding of comets with emphasis initially placed on theories developed before the twentieth century and subsequently on information regarding the nature of comets, their origin and possible relation to life on earth. Special consideration is given to a description of how the author arrived at his own model of the origin and nature of comets, the dirty snowball theory. The significance of comets (i.e. the hazards they may represent) is assessed and space missions to Halley's comet together with the first landing on a comet (tentatively planned for 1995) are described. It is noted that this growth of cometary understanding is presented as an integral part of the growth of science and technology. 14 references

  18. Planetary perturbations and the origins of short-period comets

    International Nuclear Information System (INIS)

    Quinn, T.; Tremaine, S.; Duncan, M.

    1990-01-01

    To investigate the dynamical plausibility of possible sources for the short-period comets, a representative sample of comet orbits in the field of the sun and the giant planets was integrated, with the aim to determine whether the distribution of orbits from a proposed source that reach observable perihelia (q less than 2.5 AU) matches the observed distribution of short-period orbits. It is found that the majority of the short-period comets, those with orbital period P less than 20 yr (the Jupiter family), cannot arise from isotropic orbits with perihelia near Jupiter's orbit, because the resulting observable comet orbits have the wrong distribution in period, inclination, and argument of perihelion. The simulations also show that Jupiter-family comets cannot arise from isotropic orbits with perihelia in the Uranus-Neptune region. On the other hand, a source of low-inclination Neptune-crossing orbits yields a distribution of observable Jupiter-family comets that is consistent with the data in all respects. These results imply that the Jupiter-family comets arise from a disk source in the outer solar system rather than from the Oort comet cloud. 30 refs

  19. Physics of comets

    CERN Document Server

    Krishna Swamy, K S

    1997-01-01

    The study of Comet Halley in 1986 was a tremendous success for cometary science. In March of that year, six spacecrafts passed through Comet Halley as close as 600 km from the nucleus and made the in situ measurements of various kinds. These space missions to Comet Halley and that of the ICE spacecraft to Comet Giacobini-Zinner combined with studies, both ground-based and above the atmosphere, have increased our knowledge of cometary science in a dramatic way.This new edition of Physics of Comets incorporates these new and exciting findings. The emphasis of the book is on the physical processe

  20. Evaluation of irradiation in foods using DNA comet assay

    International Nuclear Information System (INIS)

    Khawar, Affaf; Bhatti, Ijaz Ahmad; Khan, Q.M.; Ali, T.; Khan, A.I.; Asi, M.R.

    2011-01-01

    Comet assay is a rapid, inexpensive and sensitive biological technique to detect DNA damage in food stuffs by irradiation. In this study the Comet assay is applied on foods of plant and animal origins. Samples were irradiated by using 60 Co gamma-radiation source. The applied doses were 2, 6 and 10 kGy for food of plant origin and 0.5, 1 and 2 kGy for meat items. The un-irradiated and irradiated samples were clearly differentiated on the basis of DNA fragmentation. During the electrophoresis study, it was found that in un-irradiated cells DNA remained intact and appeared as Comets without tail whereas in irradiated cells Comets with tails were visible due to stretching of fragmented DNA. Moreover, it was also revealed that the DNA tail length was dose dependent. Dry food stuffs (seeds) showed good results as compared to moist foods (meat, fruits and vegetables) due to the absence of background damage. (author)

  1. Comparison of Carbon XANES Spectra from an Iron Sulfide from Comet Wild 2 with an Iron Sulfide Interplanetary Dust Particle

    Science.gov (United States)

    Wirick, S.; Flynn, G. J.; Keller, L. P.; Sanford, S. A.; Zolensky, M. E.; Messenger, Nakamura K.; Jacobsen, C.

    2008-01-01

    Among one of the first particles removed from the aerogel collector from the Stardust sample return mission was an approx. 5 micron sized iron sulfide. The majority of the spectra from 5 different sections of this particle suggests the presence of aliphatic compounds. Due to the heat of capture in the aerogel we initially assumed these aliphatic compounds were not cometary but after comparing these results to a heated iron sulfide interplanetary dust particle (IDP) we believe our initial interpretation of these spectra was not correct. It has been suggested that ice coating on iron sulfides leads to aqueous alteration in IDP clusters which can then lead to the formation of complex organic compounds from unprocessed organics in the IDPs similar to unprocessed organics found in comets [1]. Iron sulfides have been demonstrated to not only transform halogenated aliphatic hydrocarbons but also enhance the bonding of rubber to steel [2,3]. Bromfield and Coville (1997) demonstrated using Xray photoelectron spectroscopy that "the surface enhancement of segregated sulfur to the surface of sulfided precipitated iron catalysts facilitates the formation of a low-dimensional structure of extraordinary properties" [4]. It may be that the iron sulfide acts in some way to protect aliphatic compounds from alteration due to heat.

  2. Reservoirs for Comets: Compositional Differences Based on Infrared Observations

    Science.gov (United States)

    Disanti, Michael A.; Mumma, Michael J.

    Tracing measured compositions of comets to their origins continues to be of keen interest to cometary scientists and to dynamical modelers of Solar System formation and evolution. This requires building a taxonomy of comets from both present-day dynamical reservoirs: the Kuiper Belt (hereafter KB), sampled through observation of ecliptic comets (primarily Jupiter Family comets, or JFCs), and the Oort cloud (OC), represented observationally by the long-period comets and by Halley Family comets (HFCs). Because of their short orbital periods, JFCs are subjected to more frequent exposure to solar radiation compared with OC comets. The recent apparitions of the JFCs 9P/Tempel 1 and 73P/Schwassmann-Wachmann 3 permitted detailed observations of material issuing from below their surfaces—these comets added significantly to the compositional database on this dynamical class, which is under-represented in studies of cometary parent volatiles. This chapter reviews the latest techniques developed for analysis of high-resolution spectral observations from ˜2-5 μm, and compares measured abundances of native ices among comets. While no clear compositional delineation can be drawn along dynamical lines, interesting comparisons can be made. The sub-surface composition of comet 9P, as revealed by the Deep Impact ejecta, was similar to the majority of OC comets studied. Meanwhile, 73P was depleted in all native ices except HCN, similar to the disintegrated OC comet C/1999 S4 (LINEAR). These results suggest that 73P may have formed in the inner giant planets' region while 9P formed farther out or, alternatively, that both JFCs formed farther from the Sun but with 73P forming later in time.

  3. Comets and their origin the tools to decipher a comet

    CERN Document Server

    Meierhenrich, Uwe

    2014-01-01

    Divided into two parts, the first four chapters of Comets and their Origin refer to comets and their formation in general, describing cometary missions, comet remote observations, astrochemistry, artificial comets, and the chirality phenomenon.The second part covers the cometary Rosetta mission, its launch, journey, scientific objectives, and instrumentations, as well as the landing scenario on a cometary nucleus. Along the way, the author presents general questions concerning the origin of terrestrial water and the molecular beginnings of lifeon Earth, as well as how the instruments used on

  4. The development and validation of EpiComet-Chip, a modified high-throughput comet assay for the assessment of DNA methylation status.

    Science.gov (United States)

    Townsend, Todd A; Parrish, Marcus C; Engelward, Bevin P; Manjanatha, Mugimane G

    2017-08-01

    DNA damage and alterations in global DNA methylation status are associated with multiple human diseases and are frequently correlated with clinically relevant information. Therefore, assessing DNA damage and epigenetic modifications, including DNA methylation, is critical for predicting human exposure risk of pharmacological and biological agents. We previously developed a higher-throughput platform for the single cell gel electrophoresis (comet) assay, CometChip, to assess DNA damage and genotoxic potential. Here, we utilized the methylation-dependent endonuclease, McrBC, to develop a modified alkaline comet assay, "EpiComet," which allows single platform evaluation of genotoxicity and global DNA methylation [5-methylcytosine (5-mC)] status of single-cell populations under user-defined conditions. Further, we leveraged the CometChip platform to create an EpiComet-Chip system capable of performing quantification across simultaneous exposure protocols to enable unprecedented speed and simplicity. This system detected global methylation alterations in response to exposures which included chemotherapeutic and environmental agents. Using EpiComet-Chip on 63 matched samples, we correctly identified single-sample hypermethylation (≥1.5-fold) at 87% (20/23), hypomethylation (≥1.25-fold) at 100% (9/9), with a 4% (2/54) false-negative rate (FNR), and 10% (4/40) false-positive rate (FPR). Using a more stringent threshold to define hypermethylation (≥1.75-fold) allowed us to correctly identify 94% of hypermethylation (17/18), but increased our FPR to 16% (7/45). The successful application of this novel technology will aid hazard identification and risk characterization of FDA-regulated products, while providing utility for investigating epigenetic modes of action of agents in target organs, as the assay is amenable to cultured cells or nucleated cells from any tissue. Environ. Mol. Mutagen. 58:508-521, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Recommendations for safety testing with the in vivo comet assay.

    Science.gov (United States)

    Vasquez, Marie Z

    2012-08-30

    While the in vivo comet assay increases its role in regulatory safety testing, deliberations about the interpretation of comet data continue. Concerns can arise regarding comet assay publications with limited data from non-blind testing of positive control compounds and using protocols (e.g. dose concentrations, sample times, and tissues) known to give an expected effect. There may be a tendency towards bias when the validation or interpretation of comet assay data is based on results generated by widely accepted but non-validated assays. The greatest advantages of the comet assay are its sensitivity and its ability to detect genotoxicity in tissues and at sample times that could not previously be evaluated. Guidelines for its use and interpretation in safety testing should take these factors into account. Guidelines should be derived from objective review of data generated by blind testing of unknown compounds dosed at non-toxic concentrations and evaluated in a true safety-testing environment, where the experimental design and conclusions must be defensible. However, positive in vivo comet findings with such compounds are rarely submitted to regulatory agencies and this data is typically unavailable for publication due to its proprietary nature. To enhance the development of guidelines for safety testing with the comet assay, and with the permission of several sponsors, this paper presents and discusses relevant data from multiple GLP comet studies conducted blind, with unknown pharmaceuticals and consumer products. Based on these data and the lessons we have learned through the course of conducting these studies, I suggest significant adjustments to the current conventions, and I provide recommendations for interpreting in vivo comet assay results in situations where risk must be evaluated in the absence of carcinogenicity or clinical data. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Wild 2 grains characterized combining MIR/FIR/Raman micro-spectroscopy and FE-SEM/EDS analyses

    Science.gov (United States)

    Ferrari, M.; Rotundi, A.; Rietmeijer, F. J. M.; Della Corte, V.; Baratta, G. A.; Brunetto, R.; Dartois, E.; Djouadi, Z.; Merouane, S.; Borg, J.; Brucato, J. R.; Le Sergeant d'Hendecourt, L.; Mennella, V.; Palumbo, M. E.; Palumbo, P.

    and, if so, which fraction of the dust in these comets is truly represented by non-processed silicates and organic material. The work done for Stardust samples is important to understand the similarities and differences among comets. In fact, the results of this study are relevant also for the ROSETTA mission that encountered the Jupiter-Family (J-F) comet 67P/Churyumov-Gerasimenko in August, 2014. At the time this mission was launched, our ideas of comet dust were biased by the findings of the Halley missions. The Stardust mission showed an unexpected richness of dust that originated from the inner solar system. Rosetta is confirming these results but also adding information, in particular on the presence of a primitive and unprocessed dust component \\cite{Fulle15}. The work was supported by PRIN2008/MIUR (Ministero dell'Istruzione dell'Università e della Ricerca), the Italian Space Agency (ASI), and MAE (Ministero degli Affari Esteri). The IAS team is grateful to the French space agency CNES for funding and supporting this work as well as to the CNRS PNP planetology program. FJMR was supported by grant NNX11AC36G through the NASA LARS Program. We thank the NASA Johnson Space Center/Astromaterials Curation laboratory for providing the samples.

  7. Comet Giacobini-Zinner - a normal comet?

    International Nuclear Information System (INIS)

    Cochran, A.L.; Barker, E.S.

    1987-01-01

    Observations of Comet Giacobini-Zinner were obtained during its 1985 apparition using an IDS spectrograph at McDonald Observatory. Column densities and production rates were computed. The production rates were compared to observations of other normal comets. Giacobini-Zinner is shown to be depleted in C2 and C3 relative to CN. These production rates are down by a factor of 5. 12 references

  8. Asteroid-comet continuum objects in the solar system.

    Science.gov (United States)

    Hsieh, Henry H

    2017-07-13

    In this review presented at the Royal Society meeting, 'Cometary science after Rosetta', I present an overview of studies of small solar system objects that exhibit properties of both asteroids and comets (with a focus on so-called active asteroids). Sometimes referred to as 'transition objects', these bodies are perhaps more appropriately described as 'continuum objects', to reflect the notion that rather than necessarily representing actual transitional evolutionary states between asteroids and comets, they simply belong to the general population of small solar system bodies that happen to exhibit a continuous range of observational, physical and dynamical properties. Continuum objects are intriguing because they possess many of the properties that make classical comets interesting to study (e.g. relatively primitive compositions, ejection of surface and subsurface material into space where it can be more easily studied, and orbital properties that allow us to sample material from distant parts of the solar system that would otherwise be inaccessible), while allowing us to study regions of the solar system that are not sampled by classical comets.This article is part of the themed issue 'Cometary science after Rosetta'. © 2017 The Author(s).

  9. Origin and development of comets

    International Nuclear Information System (INIS)

    Kresak, L.

    1989-01-01

    The comets are the most primitive and probably also the oldest members of the solar system. Comet cores are brittle bodies of an irregular shape and of a size of 1 to 10 km whose main component is ice. Around 130 comets move along short-period paths whose aphelia are concentrated in the area of Jupiter. They are in the last stage of development. About 20 comets have periods of 20 to 200 years and feature higher motion stability. Roughly 180 comets have elliptical orbits of a period exceeding 200 years, 200 comets have parabolic and 120 comets have hyperbolic orbits. The most distant comets form the Oort cloud around the solar system consisting of about one billion comets. Comets originated roughly 4.6 thousand million years ago together with planets, probably inside the Oort cloud. (M.D.). 11 figs

  10. Spectrophotometry of 25 comets - Post-Halley updates for 17 comets plus new observations for eight additional comets

    Science.gov (United States)

    Newburn, Ray L., Jr.; Spinrad, Hyron

    1989-01-01

    The best possible production figures within the current post-Halley framework and available observations are given for H2O, O(1D), CN, C3, C2 and dust in 25 comets. Of these, the three objects with the smallest mixing ratios of all minor species have moderate to little or no dust and appear 'old'. Comets with large amounts of CN are very dusty, and there is a clear correlation of CN with dust, although comets with little or no dust still have some CN. Thus, CN appears to have at least two sources, dust and one or more parent gases. Also, the C2/CN production ratio changes continuously with heliocentric distance in every comet considered, suggesting that C2 production may be a function of coma density as well as parental abundance. Dust production ranges from essentially zero in Comet Sugano-Saigusa-Fujikawa up to 67,000 kg/s for Halley on March 14, 1986.

  11. Spectrophotometry of 25 comets - Post-Halley updates for 17 comets plus new observations for eight additional comets

    International Nuclear Information System (INIS)

    Newburn, R.L. Jr.; Spinrad, H.

    1989-01-01

    The best possible production figures within the current post-Halley framework and available observations are given for H2O, O(1D), CN, C3, C2 and dust in 25 comets. Of these, the three objects with the smallest mixing ratios of all minor species have moderate to little or no dust and appear 'old'. Comets with large amounts of CN are very dusty, and there is a clear correlation of CN with dust, although comets with little or no dust still have some CN. Thus, CN appears to have at least two sources, dust and one or more parent gases. Also, the C2/CN production ratio changes continuously with heliocentric distance in every comet considered, suggesting that C2 production may be a function of coma density as well as parental abundance. Dust production ranges from essentially zero in Comet Sugano-Saigusa-Fujikawa up to 67,000 kg/s for Halley on March 14, 1986. 61 references

  12. Standardizing electrophoresis conditions: how to eliminate a major source of error in the comet assay.

    Directory of Open Access Journals (Sweden)

    Gunnar Brunborg

    2015-06-01

    Full Text Available In the alkaline comet assay, cells are embedded in agarose, lysed, and then subjected to further processing including electrophoresis at high pH (>13. We observed very large variations of mean comet tail lengths of cell samples from the same population when spread on a glass or plastic substrate and subjected to electrophoresis. These variations might be cancelled out if comets are scored randomly over a large surface, or if all the comets are scored. The mean tail length may then be representative of the population, although its standard error is large. However, the scoring process often involves selection of 50 – 100 comets in areas selected in an unsystematic way from a large gel on a glass slide. When using our 96-sample minigel format (1, neighbouring sample variations are easily detected. We have used this system to study the cause of the comet assay variations during electrophoresis and we have defined experimental conditions which reduce the variations to a minimum. We studied the importance of various physical parameters during electrophoresis: (i voltage; (ii duration of electrophoresis; (iii electric current; (iv temperature; and (v agarose concentration. We observed that the voltage (V/cm varied substantially during electrophoresis, even within a few millimetres of distance between gel samples. Not unexpectedly, both the potential ( V/cm and the time were linearly related to the mean comet tail, whereas the current was not. By measuring the local voltage with microelectrodes a few millimetres apart, we observed substantial local variations in V/cm, and they increased with time. This explains the large variations in neighbouring sample comet tails of 25% or more. By introducing simple technology (circulation of the solution during electrophoresis, and temperature control, these variations in mean comet tail were largely abolished, as were the V/cm variations. Circulation was shown to be particularly important and optimal conditions

  13. Numerical simulations of comets - predictions for Comet Giacobini-Zinner

    International Nuclear Information System (INIS)

    Fedder, J.A.; Lyon, J.G.; Giuliani, J.L. Jr.

    1986-01-01

    Simulations of Comet Giacobini-Zinner's interaction with solar wind are described and results are presented. The simulations are carried out via the numerical solution of the ideal MHD equations as an initial value problem in a uniform solar wind. The calculations are performed on a Cartesian mesh centered at the comet. Results reveal that the first significant modifications of the solar wind along the ISEE/ICE trajectory will occur 100,000 km from the solar wind comet axis. 6 references

  14. Mission to the comets

    International Nuclear Information System (INIS)

    Hughes, D.

    1980-01-01

    The plans of space agencies in the United States and Europe for an exploratory comet mission including a one year rendezvous with comet Temple-2 and a fast fly-by of comet Halley are discussed. The mission provides an opportunity to make comparative measurements on the two different types of comets and also satisfies the three major scientific objectives of cometary missions namely: (1) To determine the chemical nature and the physical structure of cometary nuclei, and the changes that occur with time and orbital position. (2) To study the chemical and physical nature of the atmospheres and ionospheres of comets, the processes that occur in them, and their development with time and orbital position. (3) To determine the nature of the tails of comets and the processes by which they are formed, and to characterise the interaction of comets with solar wind. (UK)

  15. Ammonia abundances in comets

    Science.gov (United States)

    Wyckoff, S.; Tegler, S.; Engel, L.

    The emission band strengths of the NH2 bands of Comets Halley, Hartley-Good, Thiele, and Borrelly were measured to determine the NH2 column densities for the comets. Production rates obtained using the Haser and vectorial models are in agreement within the observational errors, suggesting that a simple two-step decay model may be used to approximate the NH2 distribution in a comet's coma. Ammonia-to-water abundance ratios from 0.01 to 0.4 percent were found for the four comets. The ratio in Comet Halley is found to be Q(NH3)/Q(H2O) = 0.002 + or - 0.001. No significant difference in the ammonia abundance was found before or after perihelion in Comet Halley.

  16. Identification of radiation treatment of foods using novel technique of 'DNA comet assay'

    International Nuclear Information System (INIS)

    Khan, A.A.; Khan, H.M.; Wasim, M.A.

    2005-01-01

    Treatment of food using ionizing radiation is being progressively used in many countries to inactivate food pathogens, to eradicate pests and to extend shelf life thereby contributing to safer and more plentiful food supply. Food control agencies throughout the world need some reliable, simple and rapid methods for the detection foods to ensure free choice of consumer and to enforce labeling. The DNA comet assay offers great potential as a rapid tool to screen irradiated and unirradiated samples of several kinds of foods. In the present study samples of fresh and frozen beef has investigated for the detection of irradiation treatment. The samples were subjected to radiation doses of 0,4.5 and 7 KGy and were stored in freezer before analysis. The cells were extracted into cold PBS solutions, embedded into agarose gel on microscope slides, lysed and eletrophoressed at a voltage of 2V/cm for 2 minutes. The fragmented DNA as a irradiation treatment was stretched in the gel producing the dose dependent comets. These comets were visible using a simple transmission microscope after silver staining. The controlled and irradiation samples of meat were clearly distinguishable on the basis of the stained patterns of DNA in from of round or conical intact cells for unirradiated samples or in from of comets for irradiated samples. It is therefore concluded that DNA comet Assay offers a potential to screen unirradiated and irradiated meat samples. (author)

  17. Irradiation detection of food by DNA Comet Assay

    International Nuclear Information System (INIS)

    Khan, A.A.; Delincee, H.

    1999-01-01

    Microgel electrophoresis of single cells or nuclei (DNA Comet Assay) has been investigated to detect irradiation treatment of more than 50 food commodities e.g. meats, seafood, cereals, pulses, nuts, fruits and vegetables, and spices. The foodstuffs have been exposed to radiation doses covering the range of potential commercial irradiation for inactivation of pathogenic and spoilage micro-organisms, for insect disinfestation and for shelf-life extension. The Comet Assay is based on detection of DNA fragments presumptive to irradiation. For most of the food items investigated, the assay can be applied successfully for irradiation detection by working out different conditions of the assay. However, with some of the foods difficulties arose due to - lack of discrimination between the irradiated and unirradiated food samples due to the presence of the same kinds of comets in both cases and the total absence of the typical intact cells in unirradiated samples. - Sufficient DNA material was not available from some of the foods. - Insufficient lysis of the cell walls in case of some plant foods. In conclusion, the DNA Comet Assay can help to detect the irradiation treatment of several varieties of foods using low-cost equipment in a short time of analysis. (orig.)

  18. Comets in Australian Aboriginal Astronomy

    Science.gov (United States)

    Hamacher, Duane W.; Norris, Ray P.

    2011-03-01

    We present 25 accounts of comets from 40 Australian Aboriginal communities, citing both supernatural perceptions of comets and historical accounts of historically bright comets. Historical and ethnographic descriptions include the Great Comets of 1843, 1861, 1901, 1910, and 1927. We describe the perceptions of comets in Aboriginal societies and show that they are typically associated with fear, death, omens, malevolent spirits, and evil magic, consistent with many cultures around the world. We also provide a list of words for comets in 16 different Aboriginal languages.

  19. p-process xenon isotope anomalies in stardust grains from meteorites

    International Nuclear Information System (INIS)

    Ott, U.

    2013-01-01

    Full text: In measurements on 'bulk' samples of meteorites isotopic variations due to the p-process usually have taken a backseat compared to such in s- or r-isotopes, and, in the best case, can be qualitatively attributed to the p-process, with little to no inferences concerning detailed isotopic yields. The situation is different for grains of stardust that survived in primitive meteorites. In fact, isotopically strange xenon was the key feature that led to the first identification of a stardust mineral, nanodiamonds containing xenon with overabundances of up to a factor of ∼2 in both the r-only (≡H-Xe) and p-only (≡L-Xe) isotopes. Relative excesses of the two r-only isotopes ( 134 Xe, 136 Xe) as well as of the two p-only isotopes ( 124 Xe, 126 Xe) are not equal, hence the processes responsible for HL-xenon must differ from the 'average' r- and p-processes as reflected in solar system abundances. However, while considerable effort has been put into explaining H-Xe, there has been little work on the p-side (L-Xe). Relying on scarce nuclear data, Heymann and Dziczkaniec have studied photodisintegration reactions of Xe and Ba seeds in intermediate zones of supernovae and found that the relative production of the p-Xe isotopes depends sensitively on the yield of the (γ, α) reaction on 128 Ba. Another suggestion - applicable to both the r- and p-anomalies in diamond xenon - is that of a 'rapid separation' between stable Xe isotopes and radioactive precursors produced in the 'standard' p- (as well as r-) process. For the p-isotopes to work, this would require the bulk (87%) of 126 Xe to be produced via the 126 Ba precursor, with a half live of ∼100 minutes, in order to explain the high 124 Xe/ 126 Xe. In contrast to diamond xenon, xenon in silicon carbide contains - besides the component from the s-process in their parent AGB stars - 'almost normal' Xe, with indications for 124 Xe/ 126 Xe being few (∼8)% lower than in solar Xe.

  20. Micropatterned comet assay enables high throughput and sensitive DNA damage quantification.

    Science.gov (United States)

    Ge, Jing; Chow, Danielle N; Fessler, Jessica L; Weingeist, David M; Wood, David K; Engelward, Bevin P

    2015-01-01

    The single cell gel electrophoresis assay, also known as the comet assay, is a versatile method for measuring many classes of DNA damage, including base damage, abasic sites, single strand breaks and double strand breaks. However, limited throughput and difficulties with reproducibility have limited its utility, particularly for clinical and epidemiological studies. To address these limitations, we created a microarray comet assay. The use of a micrometer scale array of cells increases the number of analysable comets per square centimetre and enables automated imaging and analysis. In addition, the platform is compatible with standard 24- and 96-well plate formats. Here, we have assessed the consistency and sensitivity of the microarray comet assay. We showed that the linear detection range for H2O2-induced DNA damage in human lymphoblastoid cells is between 30 and 100 μM, and that within this range, inter-sample coefficient of variance was between 5 and 10%. Importantly, only 20 comets were required to detect a statistically significant induction of DNA damage for doses within the linear range. We also evaluated sample-to-sample and experiment-to-experiment variation and found that for both conditions, the coefficient of variation was lower than what has been reported for the traditional comet assay. Finally, we also show that the assay can be performed using a 4× objective (rather than the standard 10× objective for the traditional assay). This adjustment combined with the microarray format makes it possible to capture more than 50 analysable comets in a single image, which can then be automatically analysed using in-house software. Overall, throughput is increased more than 100-fold compared to the traditional assay. Together, the results presented here demonstrate key advances in comet assay technology that improve the throughput, sensitivity, and robustness, thus enabling larger scale clinical and epidemiological studies. © The Author 2014. Published by

  1. Comet showers and the steady-state infall of comets from the Oort cloud

    International Nuclear Information System (INIS)

    Hills, J.G.

    1981-01-01

    The appearance of an inner edge to the Oort comet cloud at a semimajor axis of a = (1--2) x 10 4 AU is an observational artifact. Stellar perturbations are frequent enough and strong enough to assure that a constant fraction of the comets with semimajor axes greater than this are in orbits which bring them within the planetary region. Only infrequent, close stellar encounters are able to repopulate the planet-crossing orbits of comets with smaller semimajor axes. Owing to their relatively short orbital periods which return them frequently to the planetary system, the comets in these more tightly bound orbits will be deflected by Jupiter into drastically different orbits or be destroyed by solar heating before another close stellar passage repopulates their numbers. Comets with semimajor axes less than 2 x 10 4 AU appear in the inner solar system only in intense bursts or showers which last for a few orbital periods after the close passage of a star to the Sun. This is followed by a much longer span of time during which only comets with a>2 x 10 4 AU enter the planetary system. The theoretically determined location of the boundary between the semimajor axes of those comets which enter the planetary system only in bursts or showers and those which arrive in a steady stream is very abrupt and falls at the observed inner edge of the Oort cloud. We propose that the comets formed in the outer parts of the collapsing protosun, which had a radius of less than 5 x 10 3 AU. If this produced a first-generation comet cloud with a radius of 10 3 AU or greater, the coupled dynamical perturbations of passing stars and Jupiter will, of necessity, lead to the formation of a comet cloud similar that of the observed Oort comet cloud

  2. A catalog of observed nuclear magnitudes of Jupiter family comets

    Science.gov (United States)

    Tancredi, G.; Fernández, J. A.; Rickman, H.; Licandro, J.

    2000-10-01

    A catalog of a sample of 105 Jupiter family (JF) comets (defined as those with Tisserand constants T > 2 and orbital periods P International Comet Quarterly Archive of Cometary Photometric Data, the Minor Planet Center (MPC) data base, IAU Circulars, International Comet Quarterly, and a few papers devoted to some particular comets, together with our own observations. Photometric data previous to 1990 have mainly been taken from the Comet Light Curve Catalogue (CLICC) compiled by Kamél (\\cite{kamel}). We discuss the reliability of the reported nuclear magnitudes in relation to the inherent sources of errors and uncertainties, in particular the coma contamination often present even at large heliocentric distances. A large fraction of the JF comets of our sample indeed shows various degrees of activity at large heliocentric distances, which is correlated with recent downward jumps in their perihelion distances. The reliability of coma subtraction methods to compute the nuclear magnitude is also discussed. Most absolute nuclear magnitudes are found in the range 15 - 18, with no magnitudes fainter than H_N ~ 19.5. The catalog can be found at: http://www.fisica.edu.uy/ ~ gonzalo/catalog/. Table 2 and Appendix B are only available in electronic form at http://www.edpsciences.org Table 5 is also available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

  3. Ammonia abundances in four comets

    International Nuclear Information System (INIS)

    Wickoff, S.; Tegler, S.C.; Engel, L.

    1991-01-01

    NH2 emission band strengths were measured in four comets and the NH2 column densities were determined in order to measure the ammonia content of the comets. The mean ammonia/water abundance ratio derived for the four comets is found to be 0.13 + or - 0.06 percent, with no significant variation among the comets. The uniformity of this abundance attests to a remarkable degree of chemical homogeneity over large scales in the comet-forming region of the primordial solar nebula, and contrasts with the CO abundance variations found previously in comets. The N2 and NH3 abundances indicate a condensation temperature in the range 20-160 K, consistent with virtually all comet formation hypotheses. 64 refs

  4. The comet rendezvous asteroid flyby mission

    International Nuclear Information System (INIS)

    Morrison, D.; Neugebauer, M.; Weissman, P.R.

    1989-01-01

    The Comet Rendezvous Asteroid Flyby (CRAF) mission is designed to answer the many questions raised by the Halley missions by exploring a cometary nucleus in detail, following it around its orbit and studying its changing activity as it moves closer to and then away from the Sun. In addition, on its way to rendezvous with the comet, CRAF will fly by a large, primitive class main belt asteroid and will return valuable data for comparison with the comet results. The selected asteroid is 449 Hamburga with a diameter of 88 km and a surface composition of carbonaceous chondrite meteorites. The expected flyby date is January, 1998. The CRAF spacecraft will continue to make measurements in orbit around the cometary nucleus as they both move closer to the Sun, until the dust and gas hazard becomes unsafe. At that point the spacecraft will move in and out between 50 and 2,500 kilometers to study the inner coma and the cometary ionosphere, and to collect dust and gas samples for onboard analysis. Following perihelion, the spacecraft will make a 50,000 km excursion down the comet's tail, further investigating the solar wind interaction with the cometary atmosphere. The spacecraft will return to the vicinity of the nucleus about four months after perihelion to observe the changes that have taken place. If the spacecraft remains healthy and adequate fuel is still onboard, an extended mission to follow the comet nucleus out to aphelion is anticipated

  5. Backward Planetary Protection Issues and Possible Solutions for Icy Plume Sample Return Missions from Astrobiological Targets

    Science.gov (United States)

    Yano, Hajime; McKay, Christopher P.; Anbar, Ariel; Tsou, Peter

    The recent report of possible water vapor plumes at Europa and Ceres, together with the well-known Enceladus plume containing water vapor, salt, ammonia, and organic molecules, suggests that sample return missions could evolve into a generic approach for outer Solar System exploration in the near future, especially for the benefit of astrobiology research. Sampling such plumes can be accomplished via fly-through mission designs, modeled after the successful Stardust mission to capture and return material from Comet Wild-2 and multiple, precise trajectory controls of the Cassini mission to fly through Enceladus’ plume. The proposed LIFE (Life Investigation For Enceladus) mission to Enceladus, which would sample organic molecules from the plume of that apparently habitable world, provides one example of the appealing scientific return of such missions. Beyond plumes, the upper atmosphere of Titan could also be sampled in this manner. The SCIM mission to Mars, also inspired by Stardust, would sample and return aerosol dust in the upper atmosphere of Mars and thus extends this concept even to other planetary bodies. Such missions share common design needs. In particular, they require large exposed sampler areas (or sampler arrays) that can be contained to the standards called for by international planetary protection protocols that COSPAR Planetary Protection Policy (PPP) recommends. Containment is also needed because these missions are driven by astrobiologically relevant science - including interest in organic molecules - which argues against heat sterilization that could destroy scientific value of samples. Sample containment is a daunting engineering challenge. Containment systems must be carefully designed to appropriate levels to satisfy the two top requirements: planetary protection policy and the preserving the scientific value of samples. Planning for Mars sample return tends to center on a hermetic seal specification (i.e., gas-tight against helium escape

  6. Realm of the comets

    International Nuclear Information System (INIS)

    Weissman, P.R.

    1987-01-01

    Studies of Jovian perturbations of the orbits of long-period comets led to the concept of the Oort cloud of 180 billion comets at 50,000-150,000 AU from the sun. Several comets are induced to move toward the sun every million years by the passage of a star at a distance of a few light years. The location of the cloud has since been revised to 20,000-100,000 AU, and comets are now accepted as remnant material fron the proto-solar system epoch. The galactic disk and random, close-passing stars may also cause rare, large perturbations in the orbits of the cloud comets, sending large numbers of comets through the inner solar system. The resulting cometary storm is a candidate cause for the wholesale extinction of dinosaurs in the Cretaceous-Terniary transition due to large number of planetesimals, or one large comet, striking the earth, in a short period of time. The IRAS instruments have detected similar clouds of material around other stars

  7. Detection of radiation treatment of meat by novel techniques of DNA comet assay

    International Nuclear Information System (INIS)

    Khan, A.A.; Khan, H.M.

    2002-01-01

    Treatment of food to ionizing radiation is being progressively used in many countries to inactivate food pathogens, to eradicate pests and to extend shelf life; thereby contributing to safer and more plentiful food supply. Food control agencies throughout the world need some reliable, simple and rapid methods for detection of irradiated foods to ensure free choice of consumer and to enforce labeling. The DNA comet assay offers great potential as a rapid tool to screen irradiated and unirradiated samples of several kinds of foods. In the present study, frozen beef has been investigated for detection of irradiation treatment. The samples were subjected to radiation doses of 0,4,5 and 7.0 kGy and were stored in freezer before analysis. The cells were extracted into cold PBS solutions, embedded into the agarose gel on microscope slides, lysed and electrophoressed at a voltage of 2v/cm for 2 min. The fragmented DNA as a result of irradiation treatment was stretched in the gel producing the dose dependent comets. These comets were visible using a simple transmission microscope after silver staining. The controlled and irradiated samples of meat were clearly distinguishable on the basis of the stained patterns of DNA in form of round or conical intact cells for unirradiated samples or in form of comets for irradiated samples. It is therefore, concluded that 'DNA Comet Assay' offers a potential to screen unirradiated and irradiated meat samples. (author)

  8. Comet thermal modeling

    International Nuclear Information System (INIS)

    Weissman, P.R.; Kieffer, H.H.

    1987-01-01

    The past year was one of tremendous activity because of the appearance of Halley's Comet. Observations of the comet were collected from a number of sources and compared with the detailed predictions of the comet thermal modeling program. Spacecraft observations of key physical parameters for cometary nucleus were incorporated into the thermal model and new cases run. These results have led to a much better understanding of physical processes on the nucleus and have pointed the way for further improvements to the modeling program. A model for the large-scale structure of cometary nuclei was proposed in which comets were envisioned as loosely bound agglomerations of smaller icy planetesimals, essentially a rubble pile of primordial dirty snowballs. In addition, a study of the physical history of comets was begun, concentrating on processes during formation and in the Oort cloud which would alter the volatile and nonvolatile materials in cometary nuclei from their pristine state before formation

  9. Novel method for the high-throughput processing of slides for the comet assay.

    Science.gov (United States)

    Karbaschi, Mahsa; Cooke, Marcus S

    2014-11-26

    Single cell gel electrophoresis (the comet assay), continues to gain popularity as a means of assessing DNA damage. However, the assay's low sample throughput and laborious sample workup procedure are limiting factors to its application. "Scoring", or individually determining DNA damage levels in 50 cells per treatment, is time-consuming, but with the advent of high-throughput scoring, the limitation is now the ability to process significant numbers of comet slides. We have developed a novel method by which multiple slides may be manipulated, and undergo electrophoresis, in batches of 25 rather than individually and, importantly, retains the use of standard microscope comet slides, which are the assay convention. This decreases assay time by 60%, and benefits from an electrophoresis tank with a substantially smaller footprint, and more uniform orientation of gels during electrophoresis. Our high-throughput variant of the comet assay greatly increases the number of samples analysed, decreases assay time, number of individual slide manipulations, reagent requirements and risk of damage to slides. The compact nature of the electrophoresis tank is of particular benefit to laboratories where bench space is at a premium. This novel approach is a significant advance on the current comet assay procedure.

  10. DNA Comet Assay. A simple screening technique for identification of some irradiated foods

    International Nuclear Information System (INIS)

    Khan, A.A.; Khan, H.M.

    2008-01-01

    DNA Comet Assay method was carried out to detect irradiation treatment of some foods like meat, spices, beans and lentils. The fresh meat of cow and duck were irradiated up to radiation doses of 3 kGy, the spices (cardamoms and cumin black) were irradiated to radiation doses of 5, 10, 15 and 20 kGy while the beans (black beans and white beans) and lentils (red and green lentils) were irradiated to 0.5 and 1 kGy. All the foods were then analyzed for radiation treatment using simple microgel electrophoresis of single cells or nuclei (DNA Comet Assay). Sedimentation, lysis and staining times were adjusted to get optimized conditions for correct and easy analysis of each food. Using these optimized conditions, it was found out that radiation damaged DNA showed comets in case of irradiated food samples, whereas in non-treated food samples, round or conical spots of stained DNA were visible. Shape, length and intensity of these comets were also radiation dose dependent. Screening of unirradiated and irradiated samples by Comet Assay was successful in the case of all the foods under consideration under the optimized conditions of assay. Therefore, for different kinds of irradiated foods studied in the present study, the DNA Comet Assay can be used as a rapid, simple and inexpensive screening test. (author)

  11. Collecting Comet Samples by ER-2 Aircraft: Cosmic Dust Collection During the Draconid Meteor Shower in October 2012

    Science.gov (United States)

    Bastien, Ron; Burkett, P. J.; Rodriquez, M.; Frank, D.; Gonzalez, C.; Robinson, G.-A.; Zolensky, M.; Brown, P.; Campbell-Brown, M.; Broce, S.; hide

    2014-01-01

    Many tons of dust grains, including samples of asteroids and comets, fall from space into the Earth's atmosphere each day. NASA periodically collects some of these particles from the Earth's stratosphere using sticky collectors mounted on NASA's high-flying aircraft. Sometimes, especially when the Earth experiences a known meteor shower, a special opportunity is presented to associate cosmic dust particles with a known source. NASA JSC's Cosmic Dust Collection Program has made special attempts to collect dust from particular meteor showers and asteroid families when flights can be planned well in advance. However, it has rarely been possible to make collections on very short notice. In 2012, the Draconid meteor shower presented that opportunity. The Draconid meteor shower, originating from Comet 21P/Giacobini-Zinner, has produced both outbursts and storms several times during the last century, but the 2012 event was not predicted to be much of a show. Because of these predictions, the Cosmic Dust team had not targeted a stratospheric collection effort for the Draconids, despite the fact that they have one of the slowest atmospheric entry velocities (23 km/s) of any comet shower, and thus offer significant possibilities of successful dust capture. However, radar measurements obtained by the Canadian Meteor Orbit Radar during the 2012 Draconids shower indicated a meteor storm did occur October 8 with a peak at 16:38 (+/-5 min) UTC for a total duration of approximately 2 hours.

  12. The McDonald Observatory Faint Comet Survey - Gas production in 17 comets

    Science.gov (United States)

    Cochran, Anita L.; Barker, Edwin S.; Ramseyer, Tod F.; Storrs, Alex D.

    1992-01-01

    The complete Intensified Dissector Scanner data set on 17 comets is presented, and production rates are derived and analyzed. It is shown that there is a strong degree of homogenization in the production rate ratios of many comets. It also appears that the ratio of the production rates of the various species has no heliocentric distance dependence, except for the case of NH2. When speaking of the gas in the coma of a comet, it appears that comets must have been formed under remarkably uniform conditions, and that they must have evolved and formed their comae in a similar manner. The data presented here constitute strong evidence that the minor species must be bound up in a lattice and that the interior of a comet must be reasonably uniform.

  13. Disintegration of comet nuclei

    International Nuclear Information System (INIS)

    Ksanfomality, Leonid V

    2012-01-01

    The breaking up of comets into separate pieces, each with its own tail, was seen many times by astronomers of the past. The phenomenon was in sharp contrast to the idea of the eternal and unchangeable celestial firmament and was commonly believed to be an omen of impending disaster, especially for comets with tails stretching across half the sky. It is only now that we have efficient enough space exploration tools to see comet nuclei and even - in the particular case of small comet Hartley-2 in 2010 - to watch their disintegration stage. There are also other suspected candidates for disintegration in the vast family of comet nuclei and other Solar System bodies. (physics of our days)

  14. Disintegration of comet nuclei

    Science.gov (United States)

    Ksanfomality, Leonid V.

    2012-02-01

    The breaking up of comets into separate pieces, each with its own tail, was seen many times by astronomers of the past. The phenomenon was in sharp contrast to the idea of the eternal and unchangeable celestial firmament and was commonly believed to be an omen of impending disaster, especially for comets with tails stretching across half the sky. It is only now that we have efficient enough space exploration tools to see comet nuclei and even - in the particular case of small comet Hartley-2 in 2010 - to watch their disintegration stage. There are also other suspected candidates for disintegration in the vast family of comet nuclei and other Solar System bodies.

  15. Optical observation of comets

    International Nuclear Information System (INIS)

    Tanabe, Hiroyoshi

    1974-01-01

    The observation of comets is proposed to study the state of interplanetary space. The behavior of the tails of comets shows the state of solar wind. On July 4, 1964, large bending was seen in the tail of the Tomita-Gerber-Handa comet. Then, on July 7, 1964, geomagnetic disturbance was observed. Disturbance in the tail of Kohoutek comet was seen on Jan. 19, 1974, and Ksub(p)--5 on the ground on Jan. 25. The effort for the quantitative measurement of the parameters of solar wind has been continued in various countries. Recently, the large scale observation of the Kohoutek comet was carried out in the world. Preliminary report is presented in this paper. Waving in the type 1 tail of the comet was seen, and this phenomenon may show some instability due to the interaction between the tail and the solar wind. Periodic variation of the direction of the tail has been reported. The present result also confirmed this report. In case of small comets, flare-up occurs and original luminous intensity is regained after several days. Measurement of the spectrum at the time of flare-up may show information concerning temporary variation of the state of interplanetary space. For the tracking of time variation of comets, cooperation of a number of stations at different positions is required. (Kato, T.)

  16. Disappearance and disintegration of comets

    Science.gov (United States)

    Sekanina, Z.

    1984-01-01

    The present investigation has the objective to provide a summary of the existing evidence on the disappearance of comets and to draw conclusions regarding the physical processes involved in the disappearance. Information concerning the classification of evidence and the causes of apparent disappearance of comets is presented in a table. Attention is given to the dissipating comets, the headless sungrazing comet 1887 I, and the physical behavior of the dissipating comets and the related phenomena. It is found that all comets confined to the planetary region of the solar system decay on astronomically short time scales. However, only some of them appear to perish catastrophically. Some of the observed phenomena could be successfully interpreted. But little insight has been obtained into the character of the processes which the dissipating comets experience.

  17. Physical processes in comets

    International Nuclear Information System (INIS)

    Newburn, R.L. Jr.

    1988-01-01

    When this program began in 1975 only limited photometry had been carried out on comets at any wavelength. Program goals were to observe many comets, including faint periodic comets, at a range of heliocentric distances in order to begin to understand the range of behavior among comets and in a given comet during its approach and departure from the sun. Then a study of the continuum of scattered light from dust was added. More recently the value of joint team observations in visible and infrared light has been recognized and utilized as often as possible. All 1978 to 1982 data was reanalyzed and 1983 to 1986 data analyzed in the framwork of the post-Halley paradigm, covering 25 comets in all. Four observing runs (June, July, Sept., and Jan.) with Hanner produced excellent results on Wilson, Bradfield, P/Klemola, and P/Borrelly and lesser data on other objects, including the last reported IR photometry of P/Halley. The Wilson and Halley data have been reduced

  18. CO2 Orbital Trends in Comets

    Science.gov (United States)

    Kelley, Michael; Feaga, Lori; Bodewits, Dennis; McKay, Adam; Snodgrass, Colin; Wooden, Diane

    2014-12-01

    Spacecraft missions to comets return a treasure trove of details of their targets, e.g., the Rosetta mission to comet 67P/Churyumov-Gerasimenko, the Deep Impact experiment at comet 9P/Tempel 1, or even the flyby of C/2013 A1 (Siding Spring) at Mars. Yet, missions are rare, the diversity of comets is large, few comets are easily accessible, and comet flybys essentially return snapshots of their target nuclei. Thus, telescopic observations are necessary to place the mission data within the context of each comet's long-term behavior, and to further connect mission results to the comet population as a whole. We propose a large Cycle 11 project to study the long-term activity of past and potential future mission targets, and select bright Oort cloud comets to infer comet nucleus properties, which would otherwise require flyby missions. In the classical comet model, cometary mass loss is driven by the sublimation of water ice. However, recent discoveries suggest that the more volatile CO and CO2 ices are the likely drivers of some comet active regions. Surprisingly, CO2 drove most of the activity of comet Hartley 2 at only 1 AU from the Sun where vigorous water ice sublimation would be expected to dominate. Currently, little is known about the role of CO2 in comet activity because telluric absorptions prohibit monitoring from the ground. In our Cycle 11 project, we will study the CO2 activity of our targets through IRAC photometry. In conjunction with prior observations of CO2 and CO, as well as future data sets (JWST) and ongoing Earth-based projects led by members of our team, we will investigate both long-term activity trends in our target comets, with a particular goal to ascertain the connections between each comet's coma and nucleus.

  19. Application of the DNA comet assay for detection of irradiated meat

    International Nuclear Information System (INIS)

    Kruszewski, M.; Iwanenko, T.; Wojewodzka, M.; Malec-Czechowska, K.; Dancewicz, A. M.; Szot, Z.

    1998-01-01

    Radiation induces damage to the DNA. This damage (fragmentation) can be assessed in the irradiated food using Single Cell Gel Electrophoresis (SCGE), known as DNA comet assay. Fragmentation of DNA may also be caused by improper storage of meat and repeated freezing and thawing. This makes identification of irradiated meat by this assay not reliable enough. In order to know the scale of the processes imitating radiation effects in DNA of the comets, their shape and lengths were examined in both irradiated and unirradiated fresh meat (D = 1.5 or 3.0 kGy) stored at 4 o C or frozen (-21 o ) up to 5 months. Comets formed upon SCGE were stained with DAPI or silver and examined in fluorescent or light microscope. They were divided arbitrarily into 4 classes. Comets of IV class were found quite often in fresh meat stored at 4 o C. In meat samples that were irradiated and stored frozen, comets of class I, II and III were observed. The negative comet test is univocal. Positive comet test, however, needs confirmation. The meat should be subjected to further analysis with other validated methods. (author)

  20. Cometography a catalog of comets

    CERN Document Server

    Kronk, Gary W; Seargent, David A J

    2017-01-01

    Cometography is a multi-volume catalog of every comet observed from ancient times up to the 1990s, when the internet took off as a medium of scientific record. It uses the most reliable orbits known to determine the distances from the Earth and Sun at the time of discovery and last observation, as well as the largest and smallest angular distance to the Sun, most northerly and southerly declination, closest distance to the Earth, and other details, to enable the reader to understand each comet's physical appearance. Volume 6, the final volume in the catalog, covers the observations and pertinent calculations for every comet seen between 1983 and 1993. The comets are listed in chronological order, with complete references to publications relating to each comet and physical descriptions of each comet's development throughout its apparition. Cometography is the definitive reference on comets through the ages, for astronomers and historians of science.

  1. CometQ: An automated tool for the detection and quantification of DNA damage using comet assay image analysis.

    Science.gov (United States)

    Ganapathy, Sreelatha; Muraleedharan, Aparna; Sathidevi, Puthumangalathu Savithri; Chand, Parkash; Rajkumar, Ravi Philip

    2016-09-01

    DNA damage analysis plays an important role in determining the approaches for treatment and prevention of various diseases like cancer, schizophrenia and other heritable diseases. Comet assay is a sensitive and versatile method for DNA damage analysis. The main objective of this work is to implement a fully automated tool for the detection and quantification of DNA damage by analysing comet assay images. The comet assay image analysis consists of four stages: (1) classifier (2) comet segmentation (3) comet partitioning and (4) comet quantification. Main features of the proposed software are the design and development of four comet segmentation methods, and the automatic routing of the input comet assay image to the most suitable one among these methods depending on the type of the image (silver stained or fluorescent stained) as well as the level of DNA damage (heavily damaged or lightly/moderately damaged). A classifier stage, based on support vector machine (SVM) is designed and implemented at the front end, to categorise the input image into one of the above four groups to ensure proper routing. Comet segmentation is followed by comet partitioning which is implemented using a novel technique coined as modified fuzzy clustering. Comet parameters are calculated in the comet quantification stage and are saved in an excel file. Our dataset consists of 600 silver stained images obtained from 40 Schizophrenia patients with different levels of severity, admitted to a tertiary hospital in South India and 56 fluorescent stained images obtained from different internet sources. The performance of "CometQ", the proposed standalone application for automated analysis of comet assay images, is evaluated by a clinical expert and is also compared with that of a most recent and related software-OpenComet. CometQ gave 90.26% positive predictive value (PPV) and 93.34% sensitivity which are much higher than those of OpenComet, especially in the case of silver stained images. The

  2. [Use of comet assay for the risk assessment of oil- and chemical-industry workers].

    Science.gov (United States)

    Megyesi, János; Biró, Anna; Wigmond, László; Major, Jenő; Tompa, Anna

    2014-11-23

    The comet assay is a fluorescent microscopic method that is able to detect DNA strand-breaks even in non-proliferative cells in samples with low cell counts. The aim of the authors was to measure genotoxic DNA damage and assess oxidative DNA damage caused by occupational exposure in groups exposed to benzene, polycyclic aromatic carbohydrates and styrene at the workplace in order to clarify whether the comet assay can be used as an effect marker tool in genotoxicology monitoring. In addition to the basic steps of the comet assay, one sample was treated with formamido-pirimidine-DNA-glycolase restriction-enzyme that measures oxidative DNA damage. An increase was observed in tail moments in each group of untreated and Fpg-treated samples compared to the control. It can be concluded that occupational exposure can be detected with the method. The comet assay may prove to be an excellent effect marker and a supplementary technique for monitoring the presence or absence of genotoxic effects.

  3. Composition of faint comets

    International Nuclear Information System (INIS)

    Brown, L.W.

    1986-01-01

    The study uses an emission line, differential imaging camera built by the Science Operations Branch. This instrument allows photometric data to be obtained over a large area of a comet in a large number of resolution elements. The detector is a 100x100 Reticon array which with interchangeable optics can give resolutions from 2'' to 30'' over a field of 1' to 15'. The camera through its controlling computer can simultaneously take images in on-line and continuum filters and through computer subtraction and calibration present a photometric image of the comet produced by only the emission of the molecule under study. Initial work has shown two significant problems. First the auxiliary equipment of the telescope has not allowed the unambiguous location of faint comets so that systematic observations could be made, and secondly initial data has not shown much molecular emission from the faint comets which were located. Work last year on a software and hardware display system and this year on additional guide motors on the 36-inch telescope has allowed the differential camera to act as its own finder and guide scope. Comet IRAS was observed in C2 and CO+, as well as an occultation by the comet of SAO029103. The perodic comet Giacobini-Zinner was also observed in C2

  4. ISO's analysis of Comet Hale-Bopp

    Science.gov (United States)

    1997-03-01

    The European Space Agency's Infrared Space Observatory ISO inspected Comet Hall-Bopp during the spring and autumn of 1996. The need to keep ISO's telescope extremely cold restricts the spacecraft's pointing in relation to the Sun and the Earth and it ruled out observations at other times. The analyses of the 1996 observations are not yet complete, but already they give new insight into the nature of comets. Comet Hale-Bopp is believed to be a large comet with a nucleus up to 40 kilometres wide. It was discovered in July 1995 by two American astronomers working independently, Alan Hale and Thomas Bopp. At that time, the comet was a billion kilometres away from the Sun, but 200 times brighter than Halley's Comet was, when at a comparable distance. Comet Hale-Bopp will make its closest approach to the Earth on 22 March, and its closest approach to the Sun (perihelion) on 1 April 1997. Some scientific results from ISO The discovery of Comet Hale-Bopp occurred before ISO's launch in November 1995. When first observed by ISO in March and April 1996, the comet was still 700 million kilometres from the Sun, and almost as far from the Earth and ISO. With its privileged view of infrared wavebands inaccessible from the Earth's surface, ISO's photometer ISOPHOT discovered that carbon dioxide was an important constituent of the comet's emissions of vapour.ISOPHOT measured the temperature of the dust cloud around Comet Hale-Bopp. In March 1996, when the comet was still more than 700 million kilometres from the Sun, the dust cloud was at minus 120 degrees C. When ISOPHOT made similar observations in October 1996, the comet was 420 million kilometres from the Sun, and the dust cloud had warmed to about minus 50 degrees C. Intensive observations of Comet Hale-Bopp were also made by ISO's Short-Wave Spectrometer SWS, the Long-Wave Spectrometer LWS, and the ISOPHOT spectrometer PHOT-S. Results are due for publication at the end of March. They will give details about the composition

  5. Physics of comets

    CERN Document Server

    Krishna Swamy, K S

    2010-01-01

    This revised edition places a unique emphasis on all the new results from ground-based, satellites and space missions - detection of molecule H2 and prompt emission lines of OH for the first time; discovery of X-rays in comets; observed diversity in chemical composition among comets; the puzzle of the constancy of spin temperature; the well-established mineralogy of cometary dust; extensive theoretical modeling carried out for understanding the observed effects; and, the similarity in the mineralogy of dust in circumstellar shell of stars, comets, meteorites, asteroids and IDPs, thus indicatin

  6. Comets in UV

    Science.gov (United States)

    Shustov, B.; Sachkov, M.; Gómez de Castro, A. I.; Vallejo, J. C.; Kanev, E.; Dorofeeva, V.

    2018-04-01

    Comets are important "eyewitnesses" of Solar System formation and evolution. Important tests to determine the chemical composition and to study the physical processes in cometary nuclei and coma need data in the UV range of the electromagnetic spectrum. Comprehensive and complete studies require additional ground-based observations and in situ experiments. We briefly review observations of comets in the ultraviolet (UV) and discuss the prospects of UV observations of comets and exocomets with space-borne instruments. A special reference is made to the World Space Observatory-Ultraviolet (WSO-UV) project.

  7. Periodic Comet Machholz and its idiosyncrasies

    International Nuclear Information System (INIS)

    Sekanina, Z.

    1990-01-01

    The dynamics and physical characteristics of Comet P/Machholz are analyzed. The discovery of the comet (Machholz, 1986) is discussed, including the observational conditions and the theory that the comet is inactive over extensive periods of time. Consideration is given to observations of the two tails of Comet P/Machholz (Emerson, 1986), the brightness variations and light curve of the comet, and nuclear photometry of the comet (Green, 1987). It is suggested that the increase in activity beginning one day after perihelion was triggered by a discrete source within 15 deg of the rotation pole that became sunlit after perihelion. Also, the possibility that Comet P/Machholz is associated with a meteor stream is examined. 45 refs

  8. Molecular ions in comet tails

    International Nuclear Information System (INIS)

    Wyckoff, S.; Wehinger, P.A.

    1976-01-01

    Band intensities of the molecular ions CH + , CO + , N 2 + , and H 2 O + have been determined on an absolute scale from tail spectra of comet Kohoutek (1973f) and comet Bradfield (1974b). Photoionization and photodissociation rates have been computed for CH, CO, and N 2 . Also emission rate excitation g-factors for (1) photoionization plus excitation and (2) resonance fluorescence have been computed for the observed ions. It is shown that resonance fluorescence is the dominant excitation mechanism for observed comet tail ions at rapprox. =1 AU. Band system luminosities and molecular ion abundances within a projected nuclear distance rho 4 km have been determined for CH + , CO + , N 2 + , and H 2 O + in comet Kohoutek, and for H 2 O + in comet Bradfield. Estimates are also given for column densities of all observed ions at rhoapprox. =10 4 km on the tailward side of the coma. The observed H 2 O + column densities were found to be roughly the same in comet Kohoutek and comet Bradfield et equal heliocentric distances, while CO + was found to be approximately 100 times more abundant than H 2 O + , N 2 + , and CH + at rhoapprox. =10 4 km in comet Kohoutek. Finally, the relative abundances of the observed ions and of the presumed parent neutral species are briefly discussed

  9. Comets and their composition

    International Nuclear Information System (INIS)

    Spinrad, H.

    1987-01-01

    Recent theoretical and observational studies of comets are reviewed, with an emphasis on in situ data from spacecraft encounters with P/Giacobini-Zinner (September 1985) and P/Halley (March 1986). Topics addressed include clues on the origin and permanence of the Oort cometary cloud, observations of cometary nuclei far from the sun, the Halley nucleus, compositional and physical data from comae studies, and the parent molecules in comet ices. Also discussed are quantitative analyses of coma production; special features in the tail of P/Giacobini-Zinner; and proposals for (1) observations to detect distant giant comets, (2) high-resolution spectroscopic studies of comae, and (3) additional spacecraft missions such as the NASA Comet Rendezvous and Asteroid Flyby. 121 references

  10. Reasonable threshold value used to segment the individual comet from the comet assay image

    International Nuclear Information System (INIS)

    Yan Xuekun; Chen Ying; Du Jie; Zhang Xueqing; Luo Yisheng

    2009-01-01

    Reasonable segmentation of the individual comet contour from the Comet Assay (CA) images is the precondition for all of parameters analysis during the automatic analyzing for the CA. The Otsu method and several arithmetic operators for image segmentation, such as Sobel, Prewitt, Roberts and Canny were used to segment the comet contour, and characters of the CA images were analyzed firstly. And then the segmentation methods which had been adopted in the software for CA automatic analysis, such as the CASP, the TriTek CometScore TM , were put for-ward and compared. At last, a two-step procedure for threshold calculation based on image-content analysis is adopted to segment the individual comet from the CA images, and several principles for the segmentation are put forward too.(authors)

  11. Influence of experimental conditions on data variability in the liver comet assay.

    Science.gov (United States)

    Guérard, M; Marchand, C; Plappert-Helbig, U

    2014-03-01

    The in vivo comet assay has increasingly been used for regulatory genotoxicity testing in recent years. While it has been demonstrated that the experimental execution of the assay, for example, electrophoresis or scoring, can have a strong impact on the results; little is known on how initial steps, that is, from tissue sampling during necropsy up to slide preparation, can influence the comet assay results. Therefore, we investigated which of the multitude of steps in processing the liver for the comet assay are most critical. All together eight parameters were assessed by using liver samples of untreated animals. In addition, two of those parameters (temperature and storage time of liver before embedding into agarose) were further investigated in animals given a single oral dose of ethyl methanesulfonate at dose levels of 50, 100, and 200 mg/kg, 3 hr prior to necropsy. The results showed that sample cooling emerged as the predominant influence factor, whereas variations in other elements of the procedure (e.g., size of the liver piece sampled, time needed to process the liver tissue post-mortem, agarose temperature, or time of lysis) seem to be of little relevance. Storing of liver samples of up to 6 hr under cooled conditions did not cause an increase in tail intensity. In contrast, storing the tissue at room temperature, resulted in a considerable time-dependent increase in comet parameters. Copyright © 2013 Wiley Periodicals, Inc.

  12. DIRBE Comet Trails

    Science.gov (United States)

    Arendt, Richard G.

    2015-01-01

    Re-examination of the COBE DIRBE data reveals the thermal emission of several comet dust trails.The dust trails of 1P/Halley, 169P/NEAT, and 3200 Phaethon have not been previously reported.The known trails of 2P/Encke, and 73P/Schwassmann-Wachmann 3 are also seen. The dust trails have 12 and 25 microns surface brightnesses of trails are very difficult to see in any single daily image of the sky, but are evident as rapidly moving linear features in movies of the DIRBE data. Some trails are clearest when crossing through the orbital plane of the parent comet, but others are best seen at high ecliptic latitudes as the Earth passes over or under the dust trail. All these comets have known associations with meteor showers. This re-examination also reveals one additional comet and 13 additional asteroids that had not previously been recognized in the DIRBE data.

  13. Singing comet changes its song

    Science.gov (United States)

    Volwerk, M.; Goetz, C.; Delva, M.; Richter, I.; Tsurutani, B. T.; Eriksson, A.; Odelstad, E.; Meier, P.; Nilsson, H.; Glassmeier, K.-H.

    2017-09-01

    The singing comet was discovered at the beginning of the Rosetta mission around comet 67P/Churyumov-Gerasimenko. Large amplitude compressional waves with frequencies between 10 and 100 mHz were observed. When the comet became more active this signal was no longer measured. During the so-called tail excursion, late in the mission after perihelion, with again a less active comet, the singing was observed again and interestingly, going from 26 March to 27 March 2016 the character of the singing changed.

  14. Comet assay as a cold chain control tool

    International Nuclear Information System (INIS)

    Duarte, Renato Cesar

    2009-01-01

    Bearing in mind an ever more demanding market regarding the quality of food, it has been necessary to develop processes that meet the demands of consumers. Within the existing processes the cold chain and irradiation stand out. The cold chain comprises all the stages of conserving food from production, cooling, freezing, storing and transportation to the final consumer. Irradiation, as a means of conserving food, prolongs the shelf life, inhibits budding and reduces pathogenic contamination among other benefits. Is very important the identification of food degradation in function of failure on the processes which they were subjected. The comet assay is a screening test widely studied, considerate fast and with low cost. By the fact of the test identify breaks on the DNA, may be possible use the comet test on the control of cold chain failures that degrade de food. The labels and stamp, do not consider the previous food situation and indicate failures from the moment where they be placed in contact with the product. With the comet assay is possible to check the degradation that has occurred in liver chicken samples until the moment of comet's test realization. (author)

  15. Thermal evolution of Comet P/Tempel 1 - Representing the group of targets for the CRAF and CNSR missions

    International Nuclear Information System (INIS)

    Bar-nun, A.; Heifet, E.; Prialnik, D.

    1989-01-01

    A numerical definition of the thermal evolution of spherically symmetric models of the nucleus in the orbit of Comet P/Tempel-1 is presently used to ascertain the properties of the outer layers of comets under consideration for the future Comet Rendezvous and Asteroid Flyby and the Comet Nucleus Sample Return missions. Evolutionary sequences are computed for different values of density, dust/ice mass ratio, and the dust fraction not lost with ice sublimation. It is found that inner and outer surface temperatures of the dust mantle are comparatively insensitive to parameter changes, and that the total thickness of the crystalline ice layer between the dust mantle and the amorphous ice core will make it difficult for the comet-mission probes to sample pristine ice. 23 refs

  16. Nature and origin of comets

    International Nuclear Information System (INIS)

    Fernandez, J.A.; Jockers, K.

    1983-01-01

    The review examines basic history and morphology, motion, dynamic evolution, physical properties of neutral gaseous matter, vaporization of gases and outflow from the nucleus, chemistry of the coma gases, the comet nucleus, dust particles, solar wind-comet interactions and tail formation and the origin of comets. (U.K.)

  17. A New Orbit for Comet C/1865 B1 (Great Southern Comet of 1865)

    Science.gov (United States)

    Branham, Richard L., Jr.

    2018-04-01

    Comet C/1865 B1 (Great southern comet of 1865), observed only in the southern hemisphere, is one of a large number of comets with parabolic orbits. Given that there are 202 observations in right ascension and 165 in declination it proves possible to calculate a better orbit than that Körber published in 1887, the orbit used in various catalogs and data bases. C/1865 B1's orbit is hyperbolic and statistically distinguishable from a parabola. This object, therefore, cannot be considered an NEO. The comet has a small perihelion distance of 0.026 AU.

  18. Halley comet, implication on the origin

    International Nuclear Information System (INIS)

    Festou, M.C.

    1990-01-01

    One will first give a rapid description of the different parts that compose a comet coma. Then one will describe the spectrum of comets from the UV to the IR regions with special emphasis on how information relative to the physico-chemistry of comet atmospheres can be retrieved. Our basic knowledge about the composition of comets before 1985 will be summarized and the input of the 1985-86 observing campaign of comet Halley will be shown (in situ, ground-based and space borne observations). One will see then that the chemical composition of comets appears as of today completely compatible with a formation from pre-solar matter that condensed inside the solar system [fr

  19. A Comet Engulfs Mars: MAVEN Observations of Comet Siding Spring's Influence on the Martian Magnetosphere

    Science.gov (United States)

    Espley, Jared R.; Dibraccio, Gina A.; Connerney, John E. P.; Brain, David; Gruesbeck, Jacob; Soobiah, Yasir; Halekas, Jasper S.; Combi, Michael; Luhmann, Janet; Ma, Yingjuan

    2015-01-01

    The nucleus of comet C/2013 A1 (Siding Spring) passed within 141,000?km of Mars on 19 October 2014. Thus, the cometary coma and the plasma it produces washed over Mars for several hours producing significant effects in the Martian magnetosphere and upper atmosphere. We present observations from Mars Atmosphere and Volatile EvolutioN's (MAVEN's) particles and field's instruments that show the Martian magnetosphere was severely distorted during the comet's passage. We note four specific major effects: (1) a variable induced magnetospheric boundary, (2) a strong rotation of the magnetic field as the comet approached, (3) severely distorted and disordered ionospheric magnetic fields during the comet's closest approach, and (4) unusually strong magnetosheath turbulence lasting hours after the comet left. We argue that the comet produced effects comparable to that of a large solar storm (in terms of incident energy) and that our results are therefore important for future studies of atmospheric escape, MAVEN's primary science objective.

  20. COMETARY VOLATILES AND THE ORIGIN OF COMETS

    International Nuclear Information System (INIS)

    A'Hearn, Michael F.; Feaga, Lori M.; Sunshine, Jessica M.; Besse, Sebastien; Bodewits, Dennis; Farnham, Tony L.; Kelley, Michael S.; Keller, H. Uwe; Kawakita, Hideyo; Hampton, Donald L.; Kissel, Jochen; Klaasen, Kenneth P.; Yeomans, Donald K.; McFadden, Lucy A.; Meech, Karen J.; Schultz, Peter H.; Thomas, Peter C.; Veverka, Joseph; Groussin, Olivier; Lisse, Carey M.

    2012-01-01

    We describe recent results on the CO/CO 2 /H 2 O composition of comets together with a survey of older literature (primarily for CO/H 2 O) and compare these with models of the protoplanetary disk. Even with the currently small sample, there is a wide dispersion in abundance ratios and little if any systematic difference between Jupiter-family comets (JFCs) and long-period and Halley-type comets (LPCs and HTCs). We argue that the cometary observations require reactions on grain surfaces to convert CO to CO 2 and also require formation of all types of comets in largely, but not entirely, overlapping regions, probably between the CO and CO 2 snow lines. Any difference in the regions of formation is in the opposite direction from the classical picture with the JFCs having formed closer to the Sun than the LPCs. In the classical picture, the LPCs formed in the region of the giant planets and the JFCs formed in the Kuiper Belt. However, these data suggest, consistent with suggestions on dynamical grounds, that the JFCs and LPCs formed in largely overlapping regions where the giant planets are today and with JFCs on average forming slightly closer to the Sun than did the LPCs. Presumably at least the JFCs passed through the scattered disk on their way to their present dynamical family.

  1. COMETARY VOLATILES AND THE ORIGIN OF COMETS

    Energy Technology Data Exchange (ETDEWEB)

    A' Hearn, Michael F.; Feaga, Lori M.; Sunshine, Jessica M.; Besse, Sebastien; Bodewits, Dennis; Farnham, Tony L.; Kelley, Michael S. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Keller, H. Uwe [Institute for Geophysics and Extraterrestrial Physics, Technische Universitaet Braunschweig, D-38106 Braunschweig (Germany); Kawakita, Hideyo [Department of Physics, Kyoto Sangyo University, Kamigamo JP Kita-ku, Kyoto 603-8555 (Japan); Hampton, Donald L. [Geophysical Institute, University of Alaska Fairbanks, 903 Koyukuk Drive, Fairbanks, AK 99775 (United States); Kissel, Jochen [Max-Planck-Institut for Solar System Research, Max-Planck-Strasse 2, D-37191 Katlenburg-Lindau (Germany); Klaasen, Kenneth P.; Yeomans, Donald K. [Jet Propulsion Laboratory/Caltech, Pasadena, CA 91109 (United States); McFadden, Lucy A. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Meech, Karen J. [Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Schultz, Peter H. [Department of Geological Sciences, Brown University, Providence, RI 02912 (United States); Thomas, Peter C.; Veverka, Joseph [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States); Groussin, Olivier [Laboratoire d' Astrophysique de Marseille, Universite d' Aix-Marseille and CNRS, UMR7326, 38 rue F. Joliot-Curie, F-13388 Marseille Cedex 13 (France); Lisse, Carey M., E-mail: ma@astro.umd.edu [Space Department, JHU-APL, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); and others

    2012-10-10

    We describe recent results on the CO/CO{sub 2}/H{sub 2}O composition of comets together with a survey of older literature (primarily for CO/H{sub 2}O) and compare these with models of the protoplanetary disk. Even with the currently small sample, there is a wide dispersion in abundance ratios and little if any systematic difference between Jupiter-family comets (JFCs) and long-period and Halley-type comets (LPCs and HTCs). We argue that the cometary observations require reactions on grain surfaces to convert CO to CO{sub 2} and also require formation of all types of comets in largely, but not entirely, overlapping regions, probably between the CO and CO{sub 2} snow lines. Any difference in the regions of formation is in the opposite direction from the classical picture with the JFCs having formed closer to the Sun than the LPCs. In the classical picture, the LPCs formed in the region of the giant planets and the JFCs formed in the Kuiper Belt. However, these data suggest, consistent with suggestions on dynamical grounds, that the JFCs and LPCs formed in largely overlapping regions where the giant planets are today and with JFCs on average forming slightly closer to the Sun than did the LPCs. Presumably at least the JFCs passed through the scattered disk on their way to their present dynamical family.

  2. DRBE comet trails

    International Nuclear Information System (INIS)

    Arendt, Richard G.

    2014-01-01

    Re-examination of the Cosmic Background Explorer Diffuse Infrared Background Experiment (DIRBE) data reveals the thermal emission of several comet dust trails. The dust trails of 1P/Halley, 169P/NEAT, and 3200 Phaethon have not been previously reported. The known trails of 2P/Encke and 73P/Schwassmann–Wachmann 3 are also seen. The dust trails have 12 and 25 μm surface brightnesses of <0.1 and <0.15 MJy sr −1 , respectively, which is <1% of the zodiacal light intensity. The trails are very difficult to see in any single daily image of the sky, but are evident as rapidly moving linear features in movies of the DIRBE data. Some trails are clearest when crossing through the orbital plane of the parent comet, but others are best seen at high ecliptic latitudes as the Earth passes over or under the dust trail. All these comets have known associations with meteor showers. This re-examination also reveals 1 additional comet and 13 additional asteroids that had not previously been recognized in the DIRBE data.

  3. DRBE comet trails

    Energy Technology Data Exchange (ETDEWEB)

    Arendt, Richard G., E-mail: Richard.G.Arendt@nasa.gov [CREST/UMBC, Code 665, NASA/GSFC, Greenbelt, MD 20771 (United States)

    2014-12-01

    Re-examination of the Cosmic Background Explorer Diffuse Infrared Background Experiment (DIRBE) data reveals the thermal emission of several comet dust trails. The dust trails of 1P/Halley, 169P/NEAT, and 3200 Phaethon have not been previously reported. The known trails of 2P/Encke and 73P/Schwassmann–Wachmann 3 are also seen. The dust trails have 12 and 25 μm surface brightnesses of <0.1 and <0.15 MJy sr{sup −1}, respectively, which is <1% of the zodiacal light intensity. The trails are very difficult to see in any single daily image of the sky, but are evident as rapidly moving linear features in movies of the DIRBE data. Some trails are clearest when crossing through the orbital plane of the parent comet, but others are best seen at high ecliptic latitudes as the Earth passes over or under the dust trail. All these comets have known associations with meteor showers. This re-examination also reveals 1 additional comet and 13 additional asteroids that had not previously been recognized in the DIRBE data.

  4. Studying Short-Period Comets and Long-Period Comets Detected by WISE/NEOWISE

    Science.gov (United States)

    Kramer, Emily A.; Fernández, Yanga R.; Bauer, James M.; Stevenson, Rachel; Mainzer, Amy K.; Grav, Tommy; Masiero, Joseph; Walker, Russell G.; Lisse, Carey M.

    2014-11-01

    The Wide-field Infrared Survey Explorer (WISE) mission surveyed the sky in four infrared wavelength bands (3.4, 4.6, 12 and 22-micron) between January 2010 and February 2011 [1, 2]. During the mission, WISE serendipitously observed 160 comets, including 21 newly discovered objects. About 89 of the comets observed by WISE displayed a significant dust tail in the 12 and 22-micron (thermal emission) bands, showing a wide range of activity levels and dust morphology. Since the observed objects are a mix of both long-period comets (LPCs) and short-period comets (SPCs), differences in their activity can be used to better understand the thermal evolution that each of these populations has undergone. For the comets that displayed a significant dust tail, we have estimated the sizes and ages of the particles using dynamical models based on the Finson-Probstein method [3, 4]. For a selection of 40 comets, we have then compared these models to the data using a novel tail-fitting method that allows the best-fit model to be chosen analytically rather than subjectively. For comets that were observed multiple times by WISE, the dust tail particle properties were estimated separately, and then compared. We find that the dust tails of both LPCs and SPCs are primarily comprised of ~mm to cm sized particles, which were the result of emission that occurred several months to several years prior to the observations. The LPCs nearly all have strong dust emission close to the comet's perihelion distance, and the SPCs mostly have strong dust emission close to perihelion, but some have strong dust emission well before perihelion. Acknowledgments: This publication makes use of data products from (1) WISE, which is a joint project of UCLA and JPL/Caltech, funded by NASA; and (2) NEOWISE, which is a project of JPL/Caltech, funded by the Planetary Science Division of NASA. EK was supported by a NASA Earth and Space Sciences Fellowship. RS gratefully acknowledges support from the NASA

  5. Inside look at Halley's comet

    International Nuclear Information System (INIS)

    Beatty, J.K.

    1986-01-01

    The 1985-1986 emergence of Halley's comet, the first since the advent of the space age, was explored by a variety of spacecraft. The Vega 1, launched by the USSR together with the Eastern-block alliance, passed 5523 miles from the comet's nucleus at 7:20:06 Universal time. It indicated that the comet was about 300 miles closer to the sun than had been predicted. The Japanese spacecraft, Suisei, was created to map the distribution of neutral hydrogen atoms outside Halley's visible coma. Its pictures indicated that the comet's output of water varied between 25 and 60 tons per second. Five days after the Vega 2's passage through the comet, the Giotto (sponsored by the European Space Agency) probe appeared. Giotto's close approach took place 3.1 minutes after midnight UT on March 14th; the craft had passed 376 miles from its target. Giotto's data indicated that the nucleus was bigger than expected, and that the comet was composed primarily of water, CO2 and N2. The Vegas and Giotto found that as the solar wind approaches Halley, it slows gradually and the solar magnetic lines embedded in the wind begin to pile up. Pick-up ions, from the comet's halo of neutral hydrogen, were found in this solar wind. Sensors on the Vega spacecraft found a variety of plasma waves propagating inside the bow wave. In order to synthesize all the results, a conference on the exploration of Halley's comet will be held this October

  6. Epithelial cells as alternative human biomatrices for comet assay.

    Science.gov (United States)

    Rojas, Emilio; Lorenzo, Yolanda; Haug, Kristiane; Nicolaissen, Bjørn; Valverde, Mahara

    2014-01-01

    The comet assay is a valuable experimental tool aimed at mapping DNA damage in human cells in vivo for environmental and occupational monitoring, as well as for therapeutic purposes, such as storage prior to transplant, during tissue engineering, and in experimental ex vivo assays. Furthermore, due to its great versatility, the comet assay allows to explore the use of alternative cell types to assess DNA damage, such as epithelial cells. Epithelial cells, as specialized components of many organs, have the potential to serve as biomatrices that can be used to evaluate genotoxicity and may also serve as early effect biomarkers. Furthermore, 80% of solid cancers are of epithelial origin, which points to the importance of studying DNA damage in these tissues. Indeed, studies including comet assay in epithelial cells have either clear clinical applications (lens and corneal epithelial cells) or examine genotoxicity within human biomonitoring and in vitro studies. We here review improvements in determining DNA damage using the comet assay by employing lens, corneal, tear duct, buccal, and nasal epithelial cells. For some of these tissues invasive sampling procedures are needed. Desquamated epithelial cells must be obtained and dissociated prior to examination using the comet assay, and such procedures may induce varying amounts of DNA damage. Buccal epithelial cells require lysis enriched with proteinase K to obtain free nucleosomes. Over a 30 year period, the comet assay in epithelial cells has been little employed, however its use indicates that it could be an extraordinary tool not only for risk assessment, but also for diagnosis, prognosis of treatments and diseases.

  7. Origin of Short-Perihelion Comets

    Science.gov (United States)

    Guliyev, A. S.

    2011-01-01

    New regularities for short-perihelion comets are found. Distant nodes of cometary orbits of Kreutz family are concentrated in a plane with ascending node 76 and inclination 267 at the distance from 2 up to 3 a.u. and in a very narrow interval of longitudes. There is a correlation dependence between q and cos I concerning the found plane (coefficient of correlation 0.41). Similar results are received regarding to cometary families of Meyer, Kracht and Marsden. Distant nodes of these comets are concentrated close three planes (their parameters are discussed in the article) and at distances 1.4; 0.5; 6 a.u. accordingly. It is concluded that these comet groups were formed as a result of collision of parent bodies with meteoric streams. One more group, consisting of 7 comets is identified. 5 comet pairs are selected among sungrazers.

  8. X-rays from comets - a surprising discovery

    CERN Document Server

    CERN. Geneva

    2000-01-01

    Comets are kilometre-size aggregates of ice and dust, which remained from the formation of the solar system. It was not obvious to expect X-ray emission from such objects. Nevertheless, when comet Hyakutake (C/1996 B2) was observed with the ROSAT X-ray satellite during its close approach to Earth in March 1996, bright X-ray emission from this comet was discovered. This finding triggered a search in archival ROSAT data for comets, which might have accidentally crossed the field of view during observations of unrelated targets. To increase the surprise even more, X-ray emission was detected from four additional comets, which were optically 300 to 30 000 times fainter than Hyakutake. For one of them, comet Arai (C/1991 A2), X-ray emission was even found in data which were taken six weeks before the comet was optically discovered. These findings showed that comets represent a new class of celestial X-ray sources. The subsequent detection of X-ray emission from several other comets in dedicated observations confir...

  9. Groundbased investigation of comet 67p/churyumov- gerasimenko, target of the spacecraft Mission Rosetta

    Science.gov (United States)

    de Almeida, A. A.; Trevisan Sanzovo, D.; Sanzovo, G. C.; Boczko, R.; Miguel Torres, R.

    In this work, we make a comparative study of Comet 67P/Churyumov-Gerasimenko, target of Mission Rosetta, with Comets 1P/Halley and Hyakutake(C/1996 B2). Water and gas) release rates are derived from visual magnitudes (mv), determined mostly by amateur astronomers, and listed in several issues of International Comet Quarterly(ICQ). We make a systematic and uniform analysis of continuum fluxes obtained at visual wavelengths and, using the framework of photometric theory of Newburn & Spinrad (1985, 1989), we estimate dust release rates, qd (in g/s), effective particle sizes, a (in micron), and dust-to-gas mass ratios, for this important sample of comets. We also determine the color excess of the dust particles, CE, relative to the Sun at wavelength ranges 477.0-524.0 nm in the 1996 return of Comet 67P/Churyumov-Gerasimenko, and 365.0-484.5 nm for Comets 1P/Halley and C/1996 B2.

  10. The Halley comet

    International Nuclear Information System (INIS)

    Encrenaz, T.; Festou, M.

    1985-01-01

    The conspicuous part of a comet, made of tenuous gas and dusts, represents only a tiny part of its mass. The main information is hidden in the central part: a solid nucleus, ice and rock blocks with a radius less than 10 km, completely invisible from the Earth. The knowledge of the nucleus structure and its composition could give the key of the planet creation mechanisms. That is a reason why it has been decided to send an automatic device to penetrate the Halley comet atmosphere and that two Soviet probes, Vega 1 and 2, one European probe Giotto, and two Japanese, Planet-A and MS-TS, will explore in-situ in March 1986, for the first time, a comet at atmosphere [fr

  11. Pieces of Other Worlds - Enhance YSS Education and Public Outreach Events with Extraterrestrial Samples

    Science.gov (United States)

    Allen, C.

    2010-12-01

    During the Year of the Solar System spacecraft will encounter two comets; orbit the asteroid Vesta, continue to explore Mars with rovers, and launch robotic explorers to the Moon and Mars. We have pieces of all these worlds in our laboratories. Extensive information about these unique materials, as well as actual lunar samples and meteorites, is available for display and education. The Johnson Space Center (JSC) curates NASA's extraterrestrial samples to support research, education, and public outreach. At the current time JSC curates five types of extraterrestrial samples: Moon rocks and soils collected by the Apollo astronauts Meteorites collected on US expeditions to Antarctica (including rocks from the Moon, Mars, and many asteroids including Vesta) “Cosmic dust” (asteroid and comet particles) collected by high-altitude aircraft Solar wind atoms collected by the Genesis spacecraft Comet and interstellar dust particles collected by the Stardust spacecraft These rocks, soils, dust particles, and atoms continue to be studied intensively by scientists around the world. Descriptions of the samples, research results, thousands of photographs, and information on how to request research samples are on the JSC Curation website: http://curator.jsc.nasa.gov/ NASA is eager for scientists and the public to have access to these exciting samples through our various loan procedures. NASA provides a limited number of Moon rock samples for either short-term or long-term displays at museums, planetariums, expositions, and professional events that are open to the public. The JSC Public Affairs Office handles requests for such display samples. Requestors should apply in writing to Mr. Louis Parker, JSC Exhibits Manager. He will advise successful applicants regarding provisions for receipt, display, and return of the samples. All loans will be preceded by a signed loan agreement executed between NASA and the requestor's organization. Email address: louis.a.parker@nasa.gov Sets

  12. Extension of the comet method to 2-D hexagonal geometry

    International Nuclear Information System (INIS)

    Connolly, Kevin John; Rahnema, Farzad; Zhang, Dingkang

    2011-01-01

    The capability of the heterogeneous coarse mesh radiation transport (COMET) method developed at Georgia Tech has been expanded. COMET is now able to treat hexagonal geometry in two dimensions, allowing reactor problems to be solved for those next-generation reactors which utilize prismatic block structure and hexagonal lattice geometry in their designs. The COMET method is used to solve whole core reactor analysis problems without resorting to homogenization or low-order transport approximations. The eigenvalue and fission density distribution of the reactor are determined iteratively using response functions. The method has previously proven accurate in solving PWR, BWR, and CANDU eigenvalue problems. In this paper, three simple test cases inspired by high temperature test reactor material cross sections and fuel block geometry are presented. These cases are given not in an attempt to model realistic nuclear power systems, but in order to test the ability of the improved method. Solutions determined by the new hexagonal version of COMET, COMET-Hex, are compared with solutions determined by MCNP5, and the results show the accuracy and efficiency of the improved COMET-Hex method in calculating the eigenvalue and fuel pin fission density in sample full-core problems. COMETHex determines the eigenvalues of these simple problems to an order of within 50 pcm of the reference solutions and all pin fission densities to an average error of 0.2%, and it requires fewer than three minutes to produce these results. (author)

  13. Comet prospects for 2004

    Science.gov (United States)

    Shanklin, J. D.

    2003-12-01

    2004 sees the return of 18 periodic comets. None are particularly bright and the best are likely to be 78P/Gehrels and 88P/Howell. Three new long period comets are likely to put on a good show: 2001 Q4 (NEAT) reaches perihelion in May, when it could make at least 3rd magnitude. Northern hemisphere observers will first pick it up just after perihelion as it rapidly moves north. 2002 T7 (LINEAR) could also reach 3rd magnitude at closest approach in May, however northern hemisphere observers will have lost it as a binocular object in mid-March. Observers at far southern latitudes may be able to see these two naked eye comets at the same time. 2003 K4 (LINEAR) could reach 6th magnitude as it brightens on its way to perihelion. Several other long period comets discovered in previous years are also still visible.

  14. Cometary dust: the diversity of primitive refractory grains.

    Science.gov (United States)

    Wooden, D H; Ishii, H A; Zolensky, M E

    2017-07-13

    Comet dust is primitive and shows significant diversity. Our knowledge of the properties of primitive cometary particles has expanded significantly through microscale investigations of cosmic dust samples (anhydrous interplanetary dust particles (IDPs), chondritic porous (CP) IDPs and UltraCarbonaceous Antarctic micrometeorites, Stardust and Rosetta ), as well as through remote sensing ( Spitzer IR spectroscopy). Comet dust are aggregate particles of materials unequilibrated at submicrometre scales. We discuss the properties and processes experienced by primitive matter in comets. Primitive particles exhibit a diverse range of: structure and typology; distribution of constituents; concentration and form of carbonaceous and refractory organic matter; Mg- and Fe-contents of the silicate minerals; sulfides; existence/abundance of type II chondrule fragments; high-temperature calcium-aluminium inclusions and ameboid-olivine aggregates; and rarely occurring Mg-carbonates and magnetite, whose explanation requires aqueous alteration on parent bodies. The properties of refractory materials imply there were disc processes that resulted in different comets having particular selections of primitive materials. The diversity of primitive particles has implications for the diversity of materials in the protoplanetary disc present at the time and in the region where the comets formed.This article is part of the themed issue 'Cometary science after Rosetta'. © 2017 The Authors.

  15. Meteoroid Streams from Sunskirter Comet Breakup

    Science.gov (United States)

    Jenniskens, P. M.

    2012-12-01

    In its first year of operations, the CAMS project (Cameras for Allsky Meteor Surveillance) has measured 47,000 meteoroid orbits at Earth, including some that pass the Sun as close as 0.008 AU. The population density increases significantly above perihelion distance q = 0.037 AU. Meteoroid streams are known with q about 0.1 AU. The Sun has a profound effect on comets that pass at 0.04-0.16 AU distance, called the sunskirter comets. SOHO and STEREO see families of small comets called the Marsden and Kracht groups. Sunlight is efficiently scattered by small 10-m sized fragments, making those fragments visible even when far from Earth. These comet groups are associated with meteor showers on Earth, in particular the Daytime Arietids and Delta Aquariids. All are related to 96P/Machholz, a highly inclined short-period (5.2 year) Jupiter family comet that comes to within 0.12 AU from the Sun, the smallest perihelion distance known among numbered comets. The proximity of the Sun speeds up the disintegration process, providing us a unique window on this important decay mechanism of Jupiter family comets and creating meteoroid streams. These are not the only sunskirting comets, however. In this presentation, we will present CAMS observations of the complete low-q meteoroid population at Earth and review their association with known parent bodies.

  16. X-ray emission from comets

    International Nuclear Information System (INIS)

    Dennerl, Konrad

    1999-01-01

    When comet Hyakutake (C/1996 B2) encountered Earth in March 1996 at a minimum distance of only 15 million kilometers (40 times the distance of the moon), x-ray and extreme ultraviolet emission was discovered for the first time from a comet. The observations were performed with the astronomy satellites ROSAT and EUVE. A systematic search for x-rays from comets in archival data, obtained during the ROSAT all-sky survey in 1990/91, resulted in the discovery of x-ray emission from four additional comets. They were detected at seven occasions in total, when they were optically 300 to 30 000 times fainter than Hyakutake. These findings indicated that comets represent a new class of celestial x-ray sources. Subsequent detections of x-ray emission from additional comets with the satellites ROSAT, EUVE, and BeppoSAX confirmed this conclusion. The x-ray observations have obviously revealed the presence of a process in comets which had escaped attention until recently. This process is most likely charge exchange between highly charged heavy ions in the solar wind and cometary neutrals. The solar wind, a stream of particles continuously emitted from the sun with ≅ 400 km s -1 , consists predominantly of protons, electrons, and alpha particles, but contains also a small fraction (≅0.1%) of highly charged heavier ions, such as C 6+ ,O 6+ ,Ne 8+ ,Si 9+ ,Fe 11+ . When these ions capture electrons from the cometary gas, they attain highly excited states and radiate a large fraction of their excitation energy in the extreme ultraviolet and x-ray part of the spectrum. Charge exchange reproduces the intensity, the morphology and the spectrum of the observed x-ray emission from comets very well

  17. Implications of the Small Spin Changes Measured for Large Jupiter-Family Comet Nuclei

    Science.gov (United States)

    Kokotanekova, R.; Snodgrass, C.; Lacerda, P.; Green, S. F.; Nikolov, P.; Bonev, T.

    2018-06-01

    Rotational spin-up due to outgassing of comet nuclei has been identified as a possible mechanism for considerable mass-loss and splitting. We report a search for spin changes for three large Jupiter-family comets (JFCs): 14P/Wolf, 143P/Kowal-Mrkos, and 162P/Siding Spring. None of the three comets has detectable period changes, and we set conservative upper limits of 4.2 (14P), 6.6 (143P) and 25 (162P) minutes per orbit. Comparing these results with all eight other JFCs with measured rotational changes, we deduce that none of the observed large JFCs experiences significant spin changes. This suggests that large comet nuclei are less likely to undergo rotationally-driven splitting, and therefore more likely to survive more perihelion passages than smaller nuclei. We find supporting evidence for this hypothesis in the cumulative size distributions of JFCs and dormant comets, as well as in recent numerical studies of cometary orbital dynamics. We added 143P to the sample of 13 other JFCs with known albedos and phase-function slopes. This sample shows a possible correlation of increasing phase-function slopes for larger geometric albedos. Partly based on findings from recent space missions to JFCs, we hypothesise that this correlation corresponds to an evolutionary trend for JFCs. We propose that newly activated JFCs have larger albedos and steeper phase functions, which gradually decrease due to sublimation-driven erosion. If confirmed, this could be used to analyse surface erosion from ground and to distinguish between dormant comets and asteroids.

  18. Direct Characterization of Comets and Asteroids via Cosmic Dust Analysis from the Deep Space Gateway

    Science.gov (United States)

    Fries, M.; Fisher, K.

    2018-01-01

    The Deep Space Gateway (DSG) may provide a platform for direct sampling of a large number of comets and asteroids, through employment of an instrument for characterizing dust from these bodies. Every year, the Earth traverses through debris streams of dust and small particles from comets and asteroids in Earth-crossing orbits, generating short-lived outbursts of meteor activity commonly known as "meteor showers" (Figure 1). The material in each debris stream originates from a distinct parent body, many of which have been identified. By sampling this material, it is possible to quantitatively analyze the composition of a dozen or more comets and asteroids (See Figure 2, following page) without leaving cislunar space.

  19. The Diversity of Carbon in Cometary Refractory Dust Particles

    Science.gov (United States)

    Wooden, D. H.

    2018-01-01

    When comparing the dark icy surfaces of outer solar system small bodies and the composition of carbonaceous chondrites derived from dark asteroids we find a significant discrepancy in the assessed amounts of elemental carbon: up to 80% amorphous carbon is used to model the dark surfaces of Kuiper Belt Objects and Centaurs whereas at most 5% of elemental carbon is found in carbonaceous chondrites. If we presume that regimes of comet nuclei formation are analogous to disk regimes where other outer solar system ice-rich bodies formed then we can turn to comet dust to gain insights into the diversity in the concentration and forms of carbon available in the outer disk. Comet dust offers important insights into the diversity in the amounts and forms of carbon that were incorporated into aggregate dust particles in the colder parts of the protoplanetary disk out of which comet nuclei accreted. Comet nuclei are amongst the most primitive bodies because they have remained cold and unequilibrated. Comet dust particles reveal the presence of forms of elemental carbon and of soluble and insoluble organic matter, and in a great diversity of concentrations from very little, e.g., Stardust samples of comet 81P/Wild 2, to 80% by volume for Ultra Carbonaceous Antarctic Micro Meteorites (UCAMMs). Cometary outbursts and/or jet activity also demonstrate variations in the concentration of carbon in the grains at different grain sizes within a single comet. We review the diversity of carbon-bearing dust grains in cometary samples, flyby measurements and deduced from remote-sensing to enrich the discussion about the diversity of carbonaceous matter available in the outer ice-rich disk at the time of comet nuclei formation.

  20. OpenComet: An automated tool for comet assay image analysis

    OpenAIRE

    Gyori, Benjamin M.; Venkatachalam, Gireedhar; Thiagarajan, P.S.; Hsu, David; Clement, Marie-Veronique

    2014-01-01

    Reactive species such as free radicals are constantly generated in vivo and DNA is the most important target of oxidative stress. Oxidative DNA damage is used as a predictive biomarker to monitor the risk of development of many diseases. The comet assay is widely used for measuring oxidative DNA damage at a single cell level. The analysis of comet assay output images, however, poses considerable challenges. Commercial software is costly and restrictive, while free software generally requires ...

  1. Comets and How to Observe Them

    CERN Document Server

    Schmude, Richard

    2010-01-01

    Comets have inspired wonder, excitement and even fear ever since they were first observed. They contain material from early in the life of the Solar System, held in deep-freeze. This makes them key in our understanding of the formation and evolution of many Solar System bodies. Recent ground- and space-based observations have changed much in our understanding of comets. Comets and How to Observe Them gives a summary of our current knowledge and describes how amateur astronomers can contribute to the body of scientific knowledge of comets. This book contains many practical examples of how to construct comet light-curves, measure how fast a comet’s coma expands, and determine the rotation period of the nucleus. All these examples are illustrated with drawings and photographs.

  2. Outward transport of high-temperature materials around the midplane of the solar nebula.

    Science.gov (United States)

    Ciesla, Fred J

    2007-10-26

    The Stardust samples collected from Comet 81P/Wild 2 indicate that large-scale mixing occurred in the solar nebula, carrying materials from the hot inner regions to cooler environments far from the Sun. Similar transport has been inferred from telescopic observations of protoplanetary disks around young stars. Models for protoplanetary disks, however, have difficulty explaining the observed levels of transport. Here I report the results of a new two-dimensional model that shows that outward transport of high-temperature materials in protoplanetary disks is a natural outcome of disk formation and evolution. This outward transport occurs around the midplane of the disk.

  3. Infrared Spectroscopy of Parent Volatiles in Comets: Implications for Astrobiology

    Science.gov (United States)

    DiSanti, Michael A.

    2010-01-01

    Current cometary orbits provide information on their recent dynamical history. However, determining a given comet's formation region from its current dynamical state alone is complicated by radial migration in the proto-planetary disk and by dynamical interactions with the growing giant planets. Because comets reside for long periods of time in the outer Solar System, the ices contained in their nuclei (native ices) retain a relatively well-preserved footprint of when and where they formed, and this in turn can provide clues to conditions in the formation epoch. As a comet approaches the Sun, sublimation of its native ices releases parent volatiles into the coma where they can be measured spectroscopically. The past to - 15 years have seen the advent of infrared spectrometers with high sensitivity between about 2.8 and 5.0 micron, enabling a taxonomy among comets based on abundances of parent volatiles (e.g., H2O, CO, CH4, C2H6, HCN, CH30H, H2CO, NH3). Such molecules are of keen interest to Astrobiology, as they include important pre-biotic species that likely were required for the emergence of life on Earth and perhaps elsewhere. Approximately 20 comets have thus far been characterized, beginning with C/1996 82 (Hyakutake) in 1996. Molecular production rates are established through comparison of observed emission line intensities with those predicted by quantum mechanical fluorescence models. Abundances of parent volatiles (relative to H2O) vary among even the relatively small number of comets sampled, with the most volatile species (CO and CH4) displaying the largest variations. Techniques developed for measuring parent volatile abundances in comets will be discussed, as will possible implications for their formation.

  4. The comet assay: assessment of in vitro and in vivo DNA damage.

    Science.gov (United States)

    Bajpayee, Mahima; Kumar, Ashutosh; Dhawan, Alok

    2013-01-01

    Rapid industrialization and pursuance of a better life have led to an increase in the amount of chemicals in the environment, which are deleterious to human health. Pesticides, automobile exhausts, and new chemical entities all add to air pollution and have an adverse effect on all living organisms including humans. Sensitive test systems are thus required for accurate hazard identification and risk assessment. The Comet assay has been used widely as a simple, rapid, and sensitive tool for assessment of DNA damage in single cells from both in vitro and in vivo sources as well as in humans. Already, the in vivo comet assay has gained importance as the preferred test for assessing DNA damage in animals for some international regulatory guidelines. The advantages of the in vivo comet assay are its ability to detect DNA damage in any tissue, despite having non-proliferating cells, and its sensitivity to detect genotoxicity. The recommendations from the international workshops held for the comet assay have resulted in establishment of guidelines. The in vitro comet assay conducted in cultured cells and cell lines can be used for screening large number of compounds and at very low concentrations. The in vitro assay has also been automated to provide a high-throughput screening method for new chemical entities, as well as environmental samples. This chapter details the in vitro comet assay using the 96-well plate and in vivo comet assay in multiple organs of the mouse.

  5. Can the comet assay be used reliably to detect nanoparticle-induced genotoxicity?

    Science.gov (United States)

    Karlsson, Hanna L; Di Bucchianico, Sebastiano; Collins, Andrew R; Dusinska, Maria

    2015-03-01

    The comet assay is a sensitive method to detect DNA strand breaks as well as oxidatively damaged DNA at the level of single cells. Today the assay is commonly used in nano-genotoxicology. In this review we critically discuss possible interactions between nanoparticles (NPs) and the comet assay. Concerns for such interactions have arisen from the occasional observation of NPs in the "comet head", which implies that NPs may be present while the assay is being performed. This could give rise to false positive or false negative results, depending on the type of comet assay endpoint and NP. For most NPs, an interaction that substantially impacts the comet assay results is unlikely. For photocatalytically active NPs such as TiO2 , on the other hand, exposure to light containing UV can lead to increased DNA damage. Samples should therefore not be exposed to such light. By comparing studies in which both the comet assay and the micronucleus assay have been used, a good consistency between the assays was found in general (69%); consistency was even higher when excluding studies on TiO2 NPs (81%). The strong consistency between the comet and micronucleus assays for a range of different NPs-even though the two tests measure different endpoints-implies that both can be trusted in assessing the genotoxicity of NPs, and that both could be useful in a standard battery of test methods. © 2014 Wiley Periodicals, Inc.

  6. Stardust from meteorites an introduction to presolar grains

    CERN Document Server

    Lugaro, Maria

    2005-01-01

    The study of presolar meteoritic grains is a new inter-disciplinary field that brings together topics from nuclear physics to astronomy and chemistry. Traditionally, most of the information about the cosmos has been gathered by observing light through telescopes. However, with the recent discovery that some dust grains extracted from primitive meteorites were produced in stellar environments, we now have the opportunity to gather information about stars and our Galaxy from the laboratory analysis of tiny pieces of stardust. Stellar grains represent a unique and fascinating subject of study. Their analysis is a breakthrough in research on stellar nucleosynthesis and the origin of the elements. While a number of specialized reviews exist on the topic, this book is the first work that brings together in a unified and accessible manner the background knowledge necessary for the study of presolar grains together with up-to-date discoveries in the field. The book includes exercise questions and answers, an extensiv...

  7. Astrobiology of Comets

    Science.gov (United States)

    Hoover, Richard B.; Wickramasinghe, Nalin C.; Wallis, Max K.; Sheldon, Robert B.

    2004-01-01

    We review the current state of knowledge concerning microbial extremophiles and comets and the potential significance of comets to Astrobiology. We model the thermal history of a cometary body, regarded as an assemblage of boulders, dust, ices and organics, as it approaches a perihelion distance of - IAU. The transfer of incident energy from sunlight into the interior leads to the melting of near surface ices, some under stable porous crust, providing possible habitats for a wide range of microorganisms. We provide data concerning new evidence for indigenous microfossils in CI meteorites, which may be the remains of extinct cometary cores. We discuss the dominant microbial communities of polar sea-ice, Antarctic ice sheet, and cryoconite environments as possible analogs for microbial ecosystems that may grow in sub-crustal pools or in ice/water films in comets.

  8. Volatiles (H, C, N, O, noble gases) in comets as tracers of early solar system events (Invited)

    Science.gov (United States)

    Marty, B.

    2013-12-01

    Volatiles (H, C, N, O, noble gases) present the largest variations in their relative abundances and, importantly, in their isotopic ratios, among solar system elements. The original composition of the protosolar nebula has been investigated through the measurements of primitive meteorites and of in-situ (e.g. Galileo probe analysis of the Jupiter's atmosphere) and sample-return (Genesis, recovery and analysis of solar wind) missions. The protosolar gas was poor in deuterium, in 15N and in 17,18O. Variations among solar system reservoir reach several hundreds of percents for the D/H and 15N/14N ratios. These variations are possibly : (i) due to interactions between XUV photons of the proto-Sun and the-dust, (ii) result from low temperature ion-molecule reactions, or (iii) constitute an heritage on interstellar volatiles trapped in dust (e.g., organics). Likewise, noble gases are elementally and isotopically (1% per amu for xenon) fractionated with respect to the composition of the solar wind (our best proxy for the protosolar nebula composition). Cometary matter directly measured on coma, or in Stardust material, or in IDPs, seems to present among the largest heterogeneities in their stable isotope compositions but knowledge on their precise compositions of the different phases and species is partial and mosty lacking. Among the several important issues requiring a better knowledge of cometary volatiles are the origin(s) of volatile elements on Earth and Moon, on Mars and on Venus, understanding large scale circulation of matter between hot and frozen zones, and the possibility of interstellar heritage for organics. Critical measurements to be made by the next cometary missions include the value of the D/H ratio in water ice, in NH3 and organics. Nitrogen is particularly interesting as cometary HCN and CN are rich in 15N, but an isotoppe mass balance will require to measure the main host species (N2 ?). Noble gases are excellent tracers of physical processes

  9. Application of MCM image construction to IRAS comet observations

    Science.gov (United States)

    Schlapfer, Martin F.; Walker, Russell G.

    1994-01-01

    There is a wealth of IRAS comet data, obtained in both the survey and pointed observations modes. However, these measurements have remained largely untouched due to difficulties in removing instrumental effects from the data. We have developed a version of the Maximum Correlation Method for Image Construction algorithm (MCM) which operates in the moving coordinate system of the comet and properly treats both real cometary motion and apparent motion due to spacecraft parallax. This algorithm has been implemented on a 486/33 PC in FORTRAN and IDL codes. Preprocessing of the IRAS CRDD includes baseline removal, deglitching, and removal of long tails due to dielectric time constants of the detectors. The resulting images are virtually free from instrumental effects and have the highest possible spatial resolution consistent with the data sampling. We present examples of high resolution IRAS images constructed from survey observations of Comets P/Tempel 1 and P/Tempel 2, and pointed observations of IRAS-Araki-Alcock.

  10. COMET concept; COMET-Konzept

    Energy Technology Data Exchange (ETDEWEB)

    Alsmeyer, H.; Tromm, W.

    1995-08-01

    Studies of the COMET core catcher concept developed for a future PWR have been continued. The concept is based on the spreading of a core melt on a sacrificial layer and its erosion, until a subsequent addition of water from below causes a fragmentation of the melt. A porous solidification of the melt would then admit a complete flooding within a short period. (orig.)

  11. The DNA comet assay and the germination test in detection of food treated by ionizing radiation

    International Nuclear Information System (INIS)

    Huachaca, Nelida Simona Marin

    2002-01-01

    Two methods of irradiated food detection, one biochemical, the comet assay and, other biological, the germination test, were applied in bovine meat and fruit samples. The comet assay detects the damage on DNA caused by ionizing radiation. The germination test evaluates the sensitivity to radiation of seeds as for germination ability, shooting and, rooting. The samples were irradiated in gamma font and electron accelerator. For bovine meat samples, the doses were 0.0; 2.5; 4.5 e 7.0 kGy at chilled condition and, 0.0; 2.5; 4.5; 7.0 e 8.5 kGy at frozen conditions. For fruit samples such as melon, watermelon, apple, orange, papaya and, tomato, the doses were: 0.0; 0.5; 0.75; 1.0; 2.0 e 4.0 kGy. The differences between the gamma rays and the electron beam effects on extent of DNA migration and, on shooting and rooting, showed to be similar. The comet assay, under neutral conditions, permitted to discriminate between irradiated and unirradiated bovine meat samples, until one month of storage. Also, it was possible to distinguish, by the comet assay, the control sample with regard to irradiated fruit, at doses as low as 0,5 kGy. In the germination test, the root length was the best parameter to discriminate irradiated and unirradiated samples of melon, watermelon and tomato, while the germination percent was the best parameter for apple and orange. (author)

  12. ESA Unveils Its New Comet Chaser.

    Science.gov (United States)

    1999-07-01

    into the surface immediately on impact. By this time, the warmth of the Sun will probably have begun to vapourise parts of the nucleus, initiating some form of surface outgassing. For a period of about a month, data from the lander's eight experiments will be relayed to Earth via the orbiter. They will send back unique information on the nature and composition of the nucleus. Samples for chemical analysis will be taken of the organic crust and ices to a depth of at least 20 cm. Other instruments will measure characteristics such as near-surface strength, density, texture, porosity and thermal properties. Meanwhile, as Comet Wirtanen approaches the Sun, the Rosetta orbiter will fly alongside it, mapping its surface and studying changes in its activity. As its icy nucleus evaporates, 12 experiments on the orbiter will map its surface and study the dust and gas particles it ejects. For the first time, scientists will be able to monitor at close quarters the dramatic changes which take place as a comet plunges sunwards at a speed of 46,000 kph. The stream of data will include a mass of new information about the comet's changes in behaviour as it approaches the Sun, including: * variations in the temperature of the nucleus, * changing intensity and location of gas and dust jets on the nucleus, * the amount of gas and dust emitted from the nucleus, * the size, composition and impact velocity of dust particles, * the nature of the comet's interaction with the charged particles of the solar wind. By mission's end in July 2013, Rosetta will have spent almost two years chasing the comet for millions of kilometres through space. It will also have returned a treasure trove of data, which will enable us to learn more about how the planets formed and where we came from. Why Rosetta? Space exploration is all about discovering the unknown. Just as, 200 years ago, the discovery of the Rosetta Stone eventually enabled Champollion to unravel the mysteries of ancient Egyptian

  13. Comets in Indian Scriptures

    Science.gov (United States)

    Das Gupta, P.

    2016-01-01

    The Indo-Aryans of ancient India observed stars and constellations for ascertaining auspicious times in order to conduct sacrificial rites ordained by the Vedas. Naturally, they would have sighted comets and referred to them in the Vedic texts. In Rigveda (circa 1700-1500 BC) and Atharvaveda (circa 1150 BC), there are references to dhumaketus and ketus, which stand for comets in Sanskrit. Rigveda speaks of a fig tree whose aerial roots spread out in the sky (Parpola 2010). Had this imagery been inspired by the resemblance of a comet's tail with long and linear roots of a banyan tree (ficus benghalensis)? Varahamihira (AD 550) and Ballal Sena (circa AD 1100-1200) described a large number of comets recorded by ancient seers, such as Parashara, Vriddha Garga, Narada, and Garga, to name a few. In this article, we propose that an episode in Mahabharata in which a radiant king, Nahusha, who rules the heavens and later turns into a serpent after he kicked the seer Agastya (also the star Canopus), is a mythological retelling of a cometary event.

  14. Jupiter Laser Facility - COMET Laser

    Data.gov (United States)

    Federal Laboratory Consortium — COMET has 4 beam configurations with uncompressed pulse lengths from 500 ps to 6 ns, compressed pulses to 0.5 ps, and beam energies up to 20 J. COMET can fire every...

  15. Comet-Narval acquisition notice

    International Nuclear Information System (INIS)

    Le Bris, J.; Sellem, R.; Artiges, J.C.; Clavelin, J.F.; Du, S.; Grave, X.; Hubert, O.; Sauvage, J.; Roussiere, B.

    2006-01-01

    The COMET cards (encoding and time marking) serve to determine the energies and the time correlations of radiations detected during a multiparameter experiment while avoiding any extra specific module like coincidence circuits or delays) to set this time correlation. For each detected radiation, the arrival time information as well as the amplitude of the detected signal, are encoded. The results of these amplitude and time coding are associated to create an event. In this way, each detector is an independent source which provides a building block of the general information obtained by all the detectors. The COMET cards are associated with a NARVAL data acquisition system. This document is the instruction booklet of the COMET-NARVAL acquisition system

  16. Comet: Multifunction VOEvent broker

    Science.gov (United States)

    Swinbank, John

    2014-04-01

    Comet is a Python implementation of the VOEvent Transport Protocol (VTP). VOEvent is the IVOA system for describing transient celestial events. Details of transients detected by many projects, including Fermi, Swift, and the Catalina Sky Survey, are currently made available as VOEvents, which is also the standard alert format by future facilities such as LSST and SKA. The core of Comet is a multifunction VOEvent broker, capable of receiving events either by subscribing to one or more remote brokers or by direct connection from authors; it can then both process those events locally and forward them to its own subscribers. In addition, Comet provides a tool for publishing VOEvents to the global VOEvent backbone.

  17. Comets in the space age

    International Nuclear Information System (INIS)

    Whipple, F.L.

    1989-01-01

    The historical development of the study of the nature of comets and their origin is discussed, emphasizing the use of aerospace technology in cometary science. The use of satellites to study the Comet Kohoutek 1973 XII, advances between Kohoutek and P/Halley, and studies of P/Halley during its 1986 return are examined. Consideration is given to data from ground, air, and space sensors, and from the Giotto and Vega spacecraft missions. Also, the physical structure of the nucleus of Comet Halley is described. 136 refs

  18. On Presolar Stardust Grains from CO Classical Novae

    Science.gov (United States)

    Iliadis, Christian; Downen, Lori N.; José, Jordi; Nittler, Larry R.; Starrfield, Sumner

    2018-03-01

    About 30%–40% of classical novae produce dust 20–100 days after the outburst, but no presolar stardust grains from classical novae have been unambiguously identified yet. Although several studies claimed a nova paternity for certain grains, the measured and simulated isotopic ratios could only be reconciled, assuming that the grains condensed after the nova ejecta mixed with a much larger amount of close-to-solar matter. However, the source and mechanism of this potential post-explosion dilution of the ejecta remains a mystery. A major problem with previous studies is the small number of simulations performed and the implied poor exploration of the large nova parameter space. We report the results of a different strategy, based on a Monte Carlo technique, that involves the random sampling over the most important nova model parameters: the white dwarf composition; the mixing of the outer white dwarf layers with the accreted material before the explosion; the peak temperature and density; the explosion timescales; and the possible dilution of the ejecta after the outburst. We discuss and take into account the systematic uncertainties for both the presolar grain measurements and the simulation results. Only those simulations that are consistent with all measured isotopic ratios of a given grain are accepted for further analysis. We also present the numerical results of the model parameters. We identify 18 presolar grains with measured isotopic signatures consistent with a CO nova origin, without assuming any dilution of the ejecta. Among these, the grains G270_2, M11-334-2, G278, M11-347-4, M11-151-4, and Ag26 have the highest probability of a CO nova paternity.

  19. Report of Some Comets: The Discovery of Uranus and Comets by William, Caroline, and John Herschel

    Science.gov (United States)

    Pasachoff, Jay M.; Olson, R. J. M.

    2011-01-01

    We report on the discovery and drawings of comets by William, Caroline, and John Herschel. The first discovery, by William Herschel, in 1781 from Bath, published in the Philosophical Transactions of the Royal Society with the title "Report of a Comet," turned out to be Uranus, the first planet ever discovered, Mercury through Saturn having been known since antiquity. William's sister Caroline was given duties of sweeping the skies and turned out to be a discoverer of 8 comets in her own right, in addition to keeping William's notes. Caroline's comets were discovered from Slough between 1786 and 1797. In the process, we also discuss original documents from the archives of the Royal Society and of the Royal Astronomical Society. We conclude by showing comet drawings that we have recently attributed to John Herschel, including Halley's Comet from 1836, recently located in the Ransom Center of the University of Texas at Austin. Acknowledgments: Planetary astronomy at Williams College is supported in part by grant NNX08AO50G from NASA Planetary Astronomy. We thank Peter Hingley of the Royal Astronomical Society and Richard Oram of the Harry Ransom Center of The University of Texas at Austin for their assistance.

  20. Nucleus of Comet IRAS-Araki-Alcock (1983 VII)

    International Nuclear Information System (INIS)

    Sekanina, Z.

    1988-01-01

    Optical, radar, infrared, UV, and microwave-continuum observations of Comet IRAS-Araki-Alcok were obtained in May 1983, the week of the comet's close approach to earth. The comet has a nucleus dimension and a rotation period which are similar to those of Comet Halley, but a different morphological signature (a persisting sunward fan-shaped coma). Time variations are noted in the projected nucleus cross section. Results suggest significant limb-darkening effects in the relevant domains of radio waves, and that the comet's interior must be extremely cold. It is found that the thermal-infrared fluxes from the inner coma of the comet are dominated by the nucleus. 63 references

  1. EPOXI at comet Hartley 2.

    Science.gov (United States)

    A'Hearn, Michael F; Belton, Michael J S; Delamere, W Alan; Feaga, Lori M; Hampton, Donald; Kissel, Jochen; Klaasen, Kenneth P; McFadden, Lucy A; Meech, Karen J; Melosh, H Jay; Schultz, Peter H; Sunshine, Jessica M; Thomas, Peter C; Veverka, Joseph; Wellnitz, Dennis D; Yeomans, Donald K; Besse, Sebastien; Bodewits, Dennis; Bowling, Timothy J; Carcich, Brian T; Collins, Steven M; Farnham, Tony L; Groussin, Olivier; Hermalyn, Brendan; Kelley, Michael S; Kelley, Michael S; Li, Jian-Yang; Lindler, Don J; Lisse, Carey M; McLaughlin, Stephanie A; Merlin, Frédéric; Protopapa, Silvia; Richardson, James E; Williams, Jade L

    2011-06-17

    Understanding how comets work--what drives their activity--is crucial to the use of comets in studying the early solar system. EPOXI (Extrasolar Planet Observation and Deep Impact Extended Investigation) flew past comet 103P/Hartley 2, one with an unusually small but very active nucleus, taking both images and spectra. Unlike large, relatively inactive nuclei, this nucleus is outgassing primarily because of CO(2), which drags chunks of ice out of the nucleus. It also shows substantial differences in the relative abundance of volatiles from various parts of the nucleus.

  2. Meteoritic Stardust and the Presolar History of the Solar Neighborhood

    Science.gov (United States)

    Nittler, Larry R.

    Presolar stardust is present at low levels in meteorites and cometary dust and identified as ancient stellar matter by unusual isotopic compositions reflecting nuclear processes in stellar interiors and galactic chemical evolution. Most grains originated in winds from asymptotic giant branch (AGB) stars and supernova and their isotopic compositions provide important constraints on models of evolution and nucleosynthesis in these environments. The presolar grains from AGB stars appear to have formed in a lower-mass population of stars than predicted by GCE models. A merger of the Milky Way with a dwarf galaxy some 1 Gyr before the birth of the Solar System may explain this and other grain observations and the data thus can provide a unique window into the presolar history of the solar neighborhood.

  3. In vivo Comet assay--statistical analysis and power calculations of mice testicular cells.

    Science.gov (United States)

    Hansen, Merete Kjær; Sharma, Anoop Kumar; Dybdahl, Marianne; Boberg, Julie; Kulahci, Murat

    2014-11-01

    The in vivo Comet assay is a sensitive method for evaluating DNA damage. A recurrent concern is how to analyze the data appropriately and efficiently. A popular approach is to summarize the raw data into a summary statistic prior to the statistical analysis. However, consensus on which summary statistic to use has yet to be reached. Another important consideration concerns the assessment of proper sample sizes in the design of Comet assay studies. This study aims to identify a statistic suitably summarizing the % tail DNA of mice testicular samples in Comet assay studies. A second aim is to provide curves for this statistic outlining the number of animals and gels to use. The current study was based on 11 compounds administered via oral gavage in three doses to male mice: CAS no. 110-26-9, CAS no. 512-56-1, CAS no. 111873-33-7, CAS no. 79-94-7, CAS no. 115-96-8, CAS no. 598-55-0, CAS no. 636-97-5, CAS no. 85-28-9, CAS no. 13674-87-8, CAS no. 43100-38-5 and CAS no. 60965-26-6. Testicular cells were examined using the alkaline version of the Comet assay and the DNA damage was quantified as % tail DNA using a fully automatic scoring system. From the raw data 23 summary statistics were examined. A linear mixed-effects model was fitted to the summarized data and the estimated variance components were used to generate power curves as a function of sample size. The statistic that most appropriately summarized the within-sample distributions was the median of the log-transformed data, as it most consistently conformed to the assumptions of the statistical model. Power curves for 1.5-, 2-, and 2.5-fold changes of the highest dose group compared to the control group when 50 and 100 cells were scored per gel are provided to aid in the design of future Comet assay studies on testicular cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Comet formation

    Science.gov (United States)

    Blum, J.

    2014-07-01

    There has been vast progress in our understanding of planetesimal formation over the past decades, owing to a number of laboratory experiments as well as to refined models of dust and ice agglomeration in protoplanetary disks. Coagulation rapidly forms cm-sized ''pebbles'' by direct sticking in collisions at low velocities (Güttler et al. 2010; Zsom et al. 2010). For the further growth, two model approaches are currently being discussed: (1) Local concentration of pebbles in nebular instabilities until gravitational instability occurs (Johansen et al. 2007). (2) A competition between fragmentation and mass transfer in collisions among the dusty bodies, in which a few ''lucky winners'' make it to planetesimal sizes (Windmark et al. 2012a,b; Garaud et al. 2013). Predictions of the physical properties of the resulting bodies in both models allow a distinction of the two formation scenarios of planetesimals. In particular, the tensile strength (i.e, the inner cohesion) of the planetesimals differ widely between the two models (Skorov & Blum 2012; Blum et al. 2014). While model (1) predicts tensile strengths on the order of ˜ 1 Pa, model (2) results in rather compactified dusty bodies with tensile strengths in the kPa regime. If comets are km-sized survivors of the planetesimal-formation era, they should in principle hold the secret of their formation process. Water ice is the prime volatile responsible for the activity of comets. Thermophysical models of the heat and mass transport close to the comet-nucleus surface predict water-ice sublimation temperatures that relate to maximum sublimation pressures well below the kPa regime predicted for formation scenario (2). Model (1), however, is in agreement with the observed dust and gas activity of comets. Thus, a formation scenario for cometesimals involving gravitational instability is favored (Blum et al. 2014).

  5. Comet Halley Returns. A Teacher's Guide, 1985-1986.

    Science.gov (United States)

    Chapman, Robert D.; Bondurant, R. Lynn, Jr.

    This booklet was designed as an aid for elementary and secondary school teachers. It is divided into two distinct parts. Part I is a brief tutorial which introduces some of the most important concepts about comets. Areas addressed include: the historical importance of Comet Halley; how comets are found and names; cometary orbits; what Comet Halley…

  6. Comets and the origin and evolution of life

    CERN Document Server

    McKay, Christopher P

    2006-01-01

    Nine years after the publication of Comets and the Origin and Evolution of Life, one of the pioneering books in Astrobiology, this second edition revisits the role comets may have played in the origins and evolution of life. Recent analyses of Antarctic micrometeorites and ancient rocks in Australia and South Africa, the continuing progress in discovering complex organic macromolecules in comets, protostars and interstellar clouds, new insights into organic synthesis in comets, and numerical simulations of comet impacts on the Earth and other members of the solar system yield a spectacular wea

  7. High Resolution 3D Radar Imaging of Comet Interiors

    Science.gov (United States)

    Asphaug, E. I.; Gim, Y.; Belton, M.; Brophy, J.; Weissman, P. R.; Heggy, E.

    2012-12-01

    Knowing the interiors of comets and other primitive bodies is fundamental to our understanding of how planets formed. We have developed a Discovery-class mission formulation, Comet Radar Explorer (CORE), based on the use of previously flown planetary radar sounding techniques, with the goal of obtaining high resolution 3D images of the interior of a small primitive body. We focus on the Jupiter-Family Comets (JFCs) as these are among the most primitive bodies reachable by spacecraft. Scattered in from far beyond Neptune, they are ultimate targets of a cryogenic sample return mission according to the Decadal Survey. Other suitable targets include primitive NEOs, Main Belt Comets, and Jupiter Trojans. The approach is optimal for small icy bodies ~3-20 km diameter with spin periods faster than about 12 hours, since (a) navigation is relatively easy, (b) radar penetration is global for decameter wavelengths, and (c) repeated overlapping ground tracks are obtained. The science mission can be as short as ~1 month for a fast-rotating JFC. Bodies smaller than ~1 km can be globally imaged, but the navigation solutions are less accurate and the relative resolution is coarse. Larger comets are more interesting, but radar signal is unlikely to be reflected from depths greater than ~10 km. So, JFCs are excellent targets for a variety of reasons. We furthermore focus on the use of Solar Electric Propulsion (SEP) to rendezvous shortly after the comet's perihelion. This approach leaves us with ample power for science operations under dormant conditions beyond ~2-3 AU. This leads to a natural mission approach of distant observation, followed by closer inspection, terminated by a dedicated radar mapping orbit. Radar reflections are obtained from a polar orbit about the icy nucleus, which spins underneath. Echoes are obtained from a sounder operating at dual frequencies 5 and 15 MHz, with 1 and 10 MHz bandwidths respectively. The dense network of echoes is used to obtain global 3D

  8. Detection of radiation-induced apoptosis using the comet assay

    International Nuclear Information System (INIS)

    Wada, Seiichi; Kobayashi, Yasuhiko; Funayama, Tomoo; Yamamoto, Kazuo; Khoa, Tran Van; Natsuhori, Masahiro; Ito, Nobuhiko

    2003-01-01

    The electrophoresis pattern of apoptotic cells detected by the comet assay has a characteristic small head and spread tail. This image has been referred to as an apoptotic comet, but it has not been previously proven to be apoptotic cells by any direct method. In order to identify this image obtained by the comet assay as corresponding to an apoptotic cell, the frequency of appearance of apoptosis was examined using CHO-K1 and L5178Y cells which were exposed to gamma irradiation. As a method for detecting apoptosis, the terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) assay was used. When the frequency of appearance of apoptotic cells following gamma irradiation was observed over a period of time, there was a significant increase in appearance of apoptosis when using the TUNEL assay. However, there was only a slight increase when using the comet assay. In order to verify the low frequency of appearance of apoptosis when using the comet assay, we attempted to use the TUNEL assay to satin the apoptotic comets detected in the comet assay. The apoptotic comets were TUNEL positive and the normal comets were TUNEL negative. This indicates that the apoptotic comets were formed from DNA fragments with 3'-hydroxy ends that are generated as cells undergo apoptosis. Therefore, it was understood that the characteristic pattern of apoptotic comets detected by the comet assay corresponds to cells undergoing apoptosis. (author)

  9. Comets - cosmic 'snowballs'

    International Nuclear Information System (INIS)

    Luest, R.

    1979-01-01

    Non-periodic comets come from regions at the limit of our solar system and have conserved their original structure and composition since they have originated from a pre-solar nebuly together with the sun and the planets about 4.5 x 10 9 years ago. They are icy bodies of kilometer size whose structure and chemical composition is of great interest also with respect to the origin of the solar system. It is hoped to send a space craft to comet Halley in 1986 to get more detailed informations. (orig.) [de

  10. Thermal alteration in carbonaceous chondrites and implications for sublimation in rock comets

    Science.gov (United States)

    Springmann, Alessondra; Lauretta, Dante S.; Steckloff, Jordan K.

    2015-11-01

    Rock comets are small solar system bodies in Sun-skirting orbits (perihelion q CO2, etc.). B-class asteroid (3200) Phaethon, considered to be the parent body of the Geminid meteor shower, is the only rock comet currently known to periodically eject dust and form a coma. Thermal fracturing or thermal decomposition of surface materials may be driving Phaethon’s cometary activity (Li & Jewitt, 2013). Phaethon-like asteroids have dynamically unstable orbits, and their perihelia can change rapidly over their ~10 Myr lifetimes (de León et al., 2010), raising the possibility that other asteroids may have been rock comets in the past. Here, we propose using spectroscopic observations of mercury (Hg) as a tracer of an asteroid’s thermal metamorphic history, and therefore as a constraint on its minimum achieved perihelion distance.B-class asteroids such as Phaethon have an initial composition similar to aqueously altered primitive meteorites such as CI- or CM-type meteorites (Clark et al., 2010). Laboratory heating experiments of ~mm sized samples of carbonaceous chondrite meteorites from 300K to 1200K at a rate of 15K/minute show mobilization and volatilization of various labile elements at temperatures that could be reached by Mercury-crossing asteroids. Samples became rapidly depleted in labile elements and, in particular, lost ~75% of their Hg content when heated from ~500-700 K, which corresponds to heliocentric distances of ~0.15-0.3 au, consistent with our thermal models. Mercury has strong emission lines in the UV (~ 185 nm) and thus its presence (or absence) relative to carbonaceous chondrite abundances would indicate if these bodies had perihelia in their dynamical histories inside of 0.15 AU, and therefore may have previously been Phaethon-like rock comets. Future space telescopes or balloon-borne observing platforms equipped with a UV spectrometer could potentially detect the presence or absence of strong ultraviolet mercury lines on rock comets or rock

  11. Nitrogen abundance in Comet Halley

    International Nuclear Information System (INIS)

    Wyckoff, S.; Tegler, S.C.; Engel, L.

    1991-01-01

    Data on the nitrogen-containing compounds that observed spectroscopically in the coma of Comet Halley are summarized, and the elemental abundance of nitrogen in the Comet Halley nucleus is derived. It is found that 90 percent of elemental nitrogen is in the dust fraction of the coma, while in the gas fraction, most of the nitrogen is contained in NH3 and CN. The elemental nitrogen abundance in the ice component of the nucleus was found to be deficient by a factor of about 75, relative to the solar photosphere, indicating that the chemical partitioning of N2 into NH3 and other nitrogen compounds during the evolution of the solar nebula cannot account completely for the low abundance ratio N2/NH3 = 0.1, observed in the comet. It is suggested that the low N2/NH3 ratio in Comet Halley may be explained simply by physical fractionation and/or thermal diffusion. 88 refs

  12. Comet nuclei and Trojan asteroids - A new link and a possible mechanism for comet splittings

    International Nuclear Information System (INIS)

    Hartmann, W.K.; Tholen, D.J.

    1990-01-01

    Relatively elongated shapes, implied by recent evidence of a greater incidence of high amplitude lightcurves for comet nuclei and Trojan asteroids than for similarly scaled main belt asteroids, are suggested to have evolved among comet nuclei and Trojans due to volatile loss. It is further suggested that such an evolutionary course may account for observed comet splitting; rotational splitting may specifically occur as a result of evolution in the direction of an elongated shape through sublimation. Supporting these hypotheses, the few m/sec separation velocities projected for rotationally splitting elongated nuclei are precisely in the observed range. 40 refs

  13. HT-COMET: a novel automated approach for high throughput assessment of human sperm chromatin quality

    Science.gov (United States)

    Albert, Océane; Reintsch, Wolfgang E.; Chan, Peter; Robaire, Bernard

    2016-01-01

    STUDY QUESTION Can we make the comet assay (single-cell gel electrophoresis) for human sperm a more accurate and informative high throughput assay? SUMMARY ANSWER We developed a standardized automated high throughput comet (HT-COMET) assay for human sperm that improves its accuracy and efficiency, and could be of prognostic value to patients in the fertility clinic. WHAT IS KNOWN ALREADY The comet assay involves the collection of data on sperm DNA damage at the level of the single cell, allowing the use of samples from severe oligozoospermic patients. However, this makes comet scoring a low throughput procedure that renders large cohort analyses tedious. Furthermore, the comet assay comes with an inherent vulnerability to variability. Our objective is to develop an automated high throughput comet assay for human sperm that will increase both its accuracy and efficiency. STUDY DESIGN, SIZE, DURATION The study comprised two distinct components: a HT-COMET technical optimization section based on control versus DNAse treatment analyses (n = 3–5), and a cross-sectional study on 123 men presenting to a reproductive center with sperm concentrations categorized as severe oligozoospermia, oligozoospermia or normozoospermia. PARTICIPANTS/MATERIALS, SETTING, METHODS Sperm chromatin quality was measured using the comet assay: on classic 2-well slides for software comparison; on 96-well slides for HT-COMET optimization; after exposure to various concentrations of a damage-inducing agent, DNAse, using HT-COMET; on 123 subjects with different sperm concentrations using HT-COMET. Data from the 123 subjects were correlated to classic semen quality parameters and plotted as single-cell data in individual DNA damage profiles. MAIN RESULTS AND THE ROLE OF CHANCE We have developed a standard automated HT-COMET procedure for human sperm. It includes automated scoring of comets by a fully integrated high content screening setup that compares well with the most commonly used semi

  14. Solar wind interaction with type-1 comet tails

    International Nuclear Information System (INIS)

    Ershkovich, A.I.

    1977-01-01

    A comet tail is considered as a plasma cylinder separated by a tangential discontinuity surface from the solar wind. Under typical conditions a comet tail boundary is shown to undergo the Kelvin-Helmholtz instability. With infinite amplitude the stabilizing effect of the magnetic field increases, and waves become stable. The proposed model supplies the detailed quantitative description of helical waves observed in type-1 comet tails. This theory enables the evaluation of the comet tail magnetic field by means of the observations of helical waves. The magnetic field in the comet tail turns out to be of the order of the interplanetary field. This conclusion seems to be in accordance with Alfven's idea that the magnetic field in type-1 comet tails is a captured interplanetary field. (Auth.)

  15. Where are the mini Kreutz-family comets?

    International Nuclear Information System (INIS)

    Ye, Quan-Zhi; Wiegert, Paul A.; Hui, Man-To; Kracht, Rainer

    2014-01-01

    The Kreutz family of sungrazing comets contains over 2000 known members, many of which are believed to be under ∼100 m sizes (mini comets) and have only been studied at small heliocentric distances (r H ) with space-based SOHO/STEREO spacecraft. To understand the brightening process of mini Kreutz comets, we conducted a survey using CFHT/MegaCam at moderate r H guided by SOHO/STEREO observations. We identify two comets that should be in our search area but are not detected, indicating that the comets have either followed a steeper brightening rate within the previously reported rapid brightening stage (the brightening burst), or the brightening burst starts earlier than expected. We present a composite analysis of the pre-perihelion light curves of five Kreutz comets that cover to ∼1 AU. We observe significant diversity in the light curves that can be used to grossly classify them into two types: C/Ikeya-Seki and C/SWAN follow the canonical r H −4 while the others follow r H −7 . In particular, C/SWAN seems to have undergone an outburst (Δm > 5 mag) or a rapid brightening (n ≳ 11) between r H = 1.06 AU and 0.52 AU, and shows hints of structural/compositional differences compared to other bright Kreutz comets. We also find evidence that the Kreutz comets as a population lose their mass less efficiently than the dynamically new comet, C/ISON, and are relatively devoid of species that drive C/ISON's activity at large r H . Concurrent observations of C/STEREO in different wavelengths also suggest that a blueward species such as CN may be the main driver for brightening bursts, instead of sodium as previously thought

  16. COLOR SYSTEMATICS OF COMETS AND RELATED BODIES

    Energy Technology Data Exchange (ETDEWEB)

    Jewitt, David, E-mail: jewitt@ucla.edu [Department of Earth, Planetary and Space Sciences, UCLA, 595 Charles Young Drive East, Los Angeles, CA 90095-1567 (United States)

    2015-12-15

    Most comets are volatile-rich bodies that have recently entered the inner solar system following long-term storage in the Kuiper belt and the Oort cloud reservoirs. These reservoirs feed several distinct, short-lived “small body” populations. Here, we present new measurements of the optical colors of cometary and comet-related bodies including long-period (Oort cloud) comets, Damocloids (probable inactive nuclei of long-period comets) and Centaurs (recent escapees from the Kuiper belt and precursors to the Jupiter family comets). We combine the new measurements with published data on short-period comets, Jovian Trojans and Kuiper belt objects to examine the color systematics of the comet-related populations. We find that the mean optical colors of the dust in short-period and long-period comets are identical within the uncertainties of measurement, as are the colors of the dust and of the underlying nuclei. These populations show no evidence for scattering by optically small particles or for compositional gradients, even at the largest distances from the Sun, and no evidence for ultrared matter. Consistent with earlier work, ultrared surfaces are common in the Kuiper belt and on the Centaurs, but not in other small body populations, suggesting that this material is hidden or destroyed upon entry to the inner solar system. The onset of activity in the Centaurs and the disappearance of the ultrared matter in this population begin at about the same perihelion distance (∼10 AU), suggesting that the two are related. Blanketing of primordial surface materials by the fallback of sub-orbital ejecta, for which we calculate a very short timescale, is the likely mechanism. The same process should operate on any mass-losing body, explaining the absence of ultrared surface material in the entire comet population.

  17. Theories of comets to the age of Laplace

    Science.gov (United States)

    Heidarzadeh, Tofigh

    Although the development of ideas about cometary motion has been investigated in several projects, a comprehensive and detailed survey of physical theories of comets has not been conducted. The available works either illustrate relatively short periods in the history of physical cometology or portray a landscape view without adequate details. The present study is an attempt to depict the details of the major physical theories of comets from Aristotle to the age of Laplace. The basic question from which this project originated was simple: how did natural philosophers and astronomers define the nature and place of a new category of celestial objects--the comets--after Brahe's estimation of cometary distances? However, a study starting merely from Brahe without covering classical and medieval thought about comets would be incomplete. Thus, based on the fundamental physical characteristics attributed to comets, the history of cometology may be divided into three periods: from Aristotle to Brahe, in which comets were assumed to be meteorological phenomena; from Brahe to Newton, when comets were admitted as celestial bodies but with unknown trajectories; and from Newton to Laplace, in which they were treated as members of the solar system having more or less the same properties of the planets. By estimating the mass of comets in the 1800s, Laplace diverted cometology into a different direction wherein they were considered among the smallest bodies in the solar system and deprived of the most important properties that had been used to explain their physical constitution during the previous two millennia. Ideas about the astrological aspects of comets are not considered in this study. Also, topics concerning the motion of comets are explained to the extent that is helpful in illustrating their physical properties. The main objective is to demonstrate the foundations of physical theories of comets, and the interaction between observational and mathematical astronomy, and

  18. THE PLASMA ENVIRONMENT IN COMETS OVER A WIDE RANGE OF HELIOCENTRIC DISTANCES: APPLICATION TO COMET C/2006 P1 (MCNAUGHT)

    Energy Technology Data Exchange (ETDEWEB)

    Shou, Y.; Combi, M.; Gombosi, T.; Toth, G. [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI (United States); Jia, Y.-D. [IGPP, and EPSS, University of California, Los Angeles, CA 90095 (United States); Rubin, M. [Physikalisches Institut, University of Bern, Sidlerstrasse. 5, CH-3012 Bern (Switzerland)

    2015-08-20

    On 2007 January 12, comet C/2006 P1 (McNaught) passed its perihelion at 0.17 AU. Abundant remote observations offer plenty of information on the neutral composition and neutral velocities within 1 million kilometers of the comet nucleus. In early February, the Ulysses spacecraft made an in situ measurement of the ion composition, plasma velocity, and magnetic field when passing through the distant ion tail and the ambient solar wind. The measurement by Ulysses was made when the comet was at around 0.8 AU. With the constraints provided by remote and in situ observations, we simulated the plasma environment of Comet C/2006 P1 (McNaught) using a multi-species comet MHD model over a wide range of heliocentric distances from 0.17 to 1.75 AU. The solar wind interaction of the comet at various locations is characterized and typical subsolar standoff distances of the bow shock and contact surface are presented and compared to analytic solutions. We find the variation in the bow shock standoff distances at different heliocentric distances is smaller than the contact surface. In addition, we modified the multi-species model for the case when the comet was at 0.7 AU and achieved comparable water group ion abundances, proton densities, plasma velocities, and plasma temperatures to the Ulysses/SWICS and SWOOPS observations. We discuss the dominating chemical reactions throughout the comet-solar wind interaction region and demonstrate the link between the ion composition near the comet and in the distant tail as measured by Ulysses.

  19. THE PLASMA ENVIRONMENT IN COMETS OVER A WIDE RANGE OF HELIOCENTRIC DISTANCES: APPLICATION TO COMET C/2006 P1 (MCNAUGHT)

    International Nuclear Information System (INIS)

    Shou, Y.; Combi, M.; Gombosi, T.; Toth, G.; Jia, Y.-D.; Rubin, M.

    2015-01-01

    On 2007 January 12, comet C/2006 P1 (McNaught) passed its perihelion at 0.17 AU. Abundant remote observations offer plenty of information on the neutral composition and neutral velocities within 1 million kilometers of the comet nucleus. In early February, the Ulysses spacecraft made an in situ measurement of the ion composition, plasma velocity, and magnetic field when passing through the distant ion tail and the ambient solar wind. The measurement by Ulysses was made when the comet was at around 0.8 AU. With the constraints provided by remote and in situ observations, we simulated the plasma environment of Comet C/2006 P1 (McNaught) using a multi-species comet MHD model over a wide range of heliocentric distances from 0.17 to 1.75 AU. The solar wind interaction of the comet at various locations is characterized and typical subsolar standoff distances of the bow shock and contact surface are presented and compared to analytic solutions. We find the variation in the bow shock standoff distances at different heliocentric distances is smaller than the contact surface. In addition, we modified the multi-species model for the case when the comet was at 0.7 AU and achieved comparable water group ion abundances, proton densities, plasma velocities, and plasma temperatures to the Ulysses/SWICS and SWOOPS observations. We discuss the dominating chemical reactions throughout the comet-solar wind interaction region and demonstrate the link between the ion composition near the comet and in the distant tail as measured by Ulysses

  20. To Catch A Comet...Learning From Halley's.

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC.

    Comet chronicles and stories extend back over thousands of years. A common theme has been that comets are a major cause of catastrophe and tragedy here on earth. In addition, both Aristotle and Ptolemy believed that comets were phenomena within the earth's atmosphere, and it wasn't until the 16th century, when Danish astronomer Tycho Brache…

  1. Critical issues with the in vivo comet assay: A report of the comet assay working group in the 6th International Workshop on Genotoxicity Testing (IWGT).

    Science.gov (United States)

    Speit, Günter; Kojima, Hajime; Burlinson, Brian; Collins, Andrew R; Kasper, Peter; Plappert-Helbig, Ulla; Uno, Yoshifumi; Vasquez, Marie; Beevers, Carol; De Boeck, Marlies; Escobar, Patricia A; Kitamoto, Sachiko; Pant, Kamala; Pfuhler, Stefan; Tanaka, Jin; Levy, Dan D

    2015-05-01

    As a part of the 6th IWGT, an expert working group on the comet assay evaluated critical topics related to the use of the in vivo comet assay in regulatory genotoxicity testing. The areas covered were: identification of the domain of applicability and regulatory acceptance, identification of critical parameters of the protocol and attempts to standardize the assay, experience with combination and integration with other in vivo studies, demonstration of laboratory proficiency, sensitivity and power of the protocol used, use of different tissues, freezing of samples, and choice of appropriate measures of cytotoxicity. The standard protocol detects various types of DNA lesions but it does not detect all types of DNA damage. Modifications of the standard protocol may be used to detect additional types of specific DNA damage (e.g., cross-links, bulky adducts, oxidized bases). In addition, the working group identified critical parameters that should be carefully controlled and described in detail in every published study protocol. In vivo comet assay results are more reliable if they were obtained in laboratories that have demonstrated proficiency. This includes demonstration of adequate response to vehicle controls and an adequate response to a positive control for each tissue being examined. There was a general agreement that freezing of samples is an option but more data are needed in order to establish generally accepted protocols. With regard to tissue toxicity, the working group concluded that cytotoxicity could be a confounder of comet results. It is recommended to look at multiple parameters such as histopathological observations, organ-specific clinical chemistry as well as indicators of tissue inflammation to decide whether compound-specific toxicity might influence the result. The expert working group concluded that the alkaline in vivo comet assay is a mature test for the evaluation of genotoxicity and can be recommended to regulatory agencies for use

  2. What's Causing the Activity on Comet 67P?

    Science.gov (United States)

    Kohler, Susanna

    2015-09-01

    Comet 67P/ChuryumovGerasimenko made famous by the explorations of the Rosetta mission has been displaying puzzling activity as it hurtles toward the Sun. However, recent modeling of the comet by a group of scientists from the Cte dAzur University may now explain whats causing 67Ps activity.Shadowed ActivityA model of comet 67P, with the colors indicating the rate of change of the temperature on the comets surface. The most rapid temperature changes are seen at the comets neck, in the same locations as the early activity seen in the Rosetta images. [Al-Lagoa et al. 2015] Between June and September of 2014, Rosetta observed comet 67P displaying early activity in the form of jets of dust emitted from near the neck of the comet (its narrowest point). Such activity is usually driven by the sublimation of volatiles from the comets surface as a result of sun exposure. But the neck of the comet is frequently shadowed as the comet rotates, and it receives significantly less sunlight than the rest of the comet. So why would the early activity originate from the comets neck?The authors of a recent study, led by Victor Al-Lagoa, hypothesize that its precisely because the neck is receiving alternating sunlight/shadows that its displaying activity. They suggest that thermal cracking of the surface of the comet is happening faster in this region, due to the rapid changes in temperature that result from the shadows cast by the surrounding terrain. The cracking exposes subsurface ices in the neck faster than in other regions, and the ensuing sublimation of that ice is what creates the activity were seeing.Temperature Models: To test their hypothesis, the authors study the surface temperatures on comet 67P by means of a thermophysical model a model used to calculate the temperatures on an airless body, both on and below the surface. The model takes into account factors like thermal inertia (how quickly the bodys temperature responds to changes in the incident energy), shadowing, and

  3. Perihelion asymmetry in the photometric parameters of long-period comets at large heliocentric distances

    International Nuclear Information System (INIS)

    Svoren, J.

    1982-01-01

    The present statistical analysis is based on a sample of long-period comets selected according to two criteria: (1) availability of photometric observations made at large distances from the Sun and covering an orbital arc long enough for a reliable determination of the photometric parameters, and (2) availability of a well determined orbit making it possible to classify the comet as new or old in Oort's (1950) sense. The selection was confined to comets with nearly parabolic orbits. 67 objects were found to satisfy the selection criteria. Photometric data referring to heliocentric distances of r > 2.5 AU were only used, yielding a total of 2,842 individual estimates and measurements. (Auth.)

  4. Modeling Formaldehyde Emission in Comets

    Science.gov (United States)

    Disanti, M. A.; Reuter, D. C.; Bonev, B. P.; Mumma, M. J.; Villanueva, G. L.

    Modeling fluorescent emission from monomeric formaldehyde (H2CO) forms an integral part of our overall comprehensive program of measuring the volatile composition of comets through high-resolution (RP ~ 25,000) infrared spectroscopy using CSHELL at the IRTF and NIRSPEC at Keck II. The H2CO spectra contain lines from both the nu1 (symmetric CH2 stretch) and nu5 (asymmetric CH2 stretch) bands near 3.6 microns. We have acquired high-quality spectra of twelve Oort cloud comets, and at least six of these show clear emission from H2CO. We also detected H2CO with NIRSPEC in one Jupiter Family comet, 9P/Tempel 1, during Deep Impact observations. Our H2CO model, originally developed to interpret low-resolution spectra of comets Halley and Wilson (Reuter et al. 1989 Ap J 341:1045), predicts individual line intensities (g-factors) as a function of rotational temperature for approximately 1300 lines having energies up to approximately 400 cm^-1 above the ground state. Recently, it was validated through comparison with CSHELL spectra of C/2002 T7 (LINEAR), where newly developed analyses were applied to obtain robust determinations of both the rotational temperature and abundance of H2CO (DiSanti et al. 2006 Ap J 650:470). We are currently in the process of extending the model to higher rotational energy (i.e., higher rotational quantum number) in an attempt to improve the fit to high-J lines in our spectra of C/T7 and other comets. Results will be presented, and implications discussed.Modeling fluorescent emission from monomeric formaldehyde (H2CO) forms an integral part of our overall comprehensive program of measuring the volatile composition of comets through high-resolution (RP ~ 25,000) infrared spectroscopy using CSHELL at the IRTF and NIRSPEC at Keck II. The H2CO spectra contain lines from both the nu1 (symmetric CH2 stretch) and nu5 (asymmetric CH2 stretch) bands near 3.6 microns. We have acquired high-quality spectra of twelve Oort cloud comets, and at least six of

  5. The COMET Sleep Research Platform.

    Science.gov (United States)

    Nichols, Deborah A; DeSalvo, Steven; Miller, Richard A; Jónsson, Darrell; Griffin, Kara S; Hyde, Pamela R; Walsh, James K; Kushida, Clete A

    2014-01-01

    The Comparative Outcomes Management with Electronic Data Technology (COMET) platform is extensible and designed for facilitating multicenter electronic clinical research. Our research goals were the following: (1) to conduct a comparative effectiveness trial (CET) for two obstructive sleep apnea treatments-positive airway pressure versus oral appliance therapy; and (2) to establish a new electronic network infrastructure that would support this study and other clinical research studies. The COMET platform was created to satisfy the needs of CET with a focus on creating a platform that provides comprehensive toolsets, multisite collaboration, and end-to-end data management. The platform also provides medical researchers the ability to visualize and interpret data using business intelligence (BI) tools. COMET is a research platform that is scalable and extensible, and which, in a future version, can accommodate big data sets and enable efficient and effective research across multiple studies and medical specialties. The COMET platform components were designed for an eventual move to a cloud computing infrastructure that enhances sustainability, overall cost effectiveness, and return on investment.

  6. Comet Halley and its historic passages during the past millennium

    International Nuclear Information System (INIS)

    Legrand, J.P.

    1986-01-01

    The March 12, 1759 return of Comet Halley verified Halley's hypothesis on the existence of periodic comets and supported Newton's principle of universal attraction. Comet Halley's appearances before the 16th century are traced and it is noted that the length of the comet's tail has varied greatly. The comet's rendezvous with ESA's satellite Giotto is discussed briefly

  7. The Comet Halley Handbook: An Observer's Guide. Second Edition.

    Science.gov (United States)

    Yeomans, Donald K.

    This handbook contains information on: (1) the orbit of comet Halley; (2) the expected physical behavior of comet Halley in 1985-1986, considering brightness estimates, coma diameters, and tail lengths; (3) observing conditions for comet Halley in 1985-1986; and (4) observing conditions for the dust tail of comet Halley in 1985-1986. Additional…

  8. 67P, Singing Comet

    Science.gov (United States)

    Smirnova, Ekaterina

    2017-04-01

    I would like to propose to present a short science-art-music collaboration film called "67P, Singing Comet" (5:27 min). If time of the session will allow, prior to the film I would like to make a slide show introduction to this project, highlighting the inspiration - the mission Rosetta by the European Space Agency (ESA) - and the artistic collaboration that took place in creating this piece. Inspired by the ESA Rosetta mission to the comet 67P, Ekaterina Smirnova (artist and project director, New York), Lee Mottram (clarinetist, Wales), Takuto Fukuda (composer, Japan) and Brian Hekker (video editor, New York) collaborated to create a unique atmospheric piece. Water and the origins of life throughout the Universe (specifically the Earth) is an element of the mission and the focus of Ekaterina's artistic vision. Ekaterina literally and figuratively paints a sensory assemblage using a combination of synthetic and natural elements to shape this artistic creation. To paint her watercolor works she is using a replica of the water found on the comet and implementing her own heartbeat into the music to create a recognizable inward sound of life. The Electro-Acoustic composition by Takuto Fukuda features an electronically manipulated performance by clarinetist Lee Mottram. The piece ceremoniously begins with reverberant bursts of low-register atonal bells transporting the listener to their ethereal inner origins of body and mind. The imagination takes the experience to an unknown destination as it gains speed gliding through the visual and audible textures of space and time. The comet's water similarly reacts with an ebb and flow thawing ice to potentially give life a chance as it is thrust along an orbit around the Sun. Near then far from the heat the comet forms frozen particles from vapors as it reaches it's furthest stretches creating an aerodynamic tail of icicles that slowly dissipate in a cycle that repeats itself until the comet's ultimate collision with an

  9. Study of Comets Composition and Structure

    Science.gov (United States)

    Khalaf, S. Z.; Selman, A. A.; Ali, H. S.

    2008-12-01

    The present paper focuses on the nature of the different interactions between cometary nucleus and tail with solar wind. The dynamics of the comet will impose many features that provide unique behavior of the comet when entering the solar system. These features are reviewed in this paper and few investigations are made. The calculations made in this work represent the analysis and interpretation of the different features of the comet, such as perihelion and eccentricity dependence on the gas production rate, and the dependence of the latter on the composition of the comet nucleus. The dependences of the heliocentric, bow shock, contact surface, and stand-off distances with gas production rate for many types of comets that cover linear and non-linear types are studied in this work. Important results are obtained which indicated the different physical interactions between cometary ions and solar wind. Furthermore, the important relation between mean molecular weight and gas production rate are analyzed and studied in this work and a conclusion is made that, as the gas production rate increases, the mean molecular weight will decrease exponentially. A detailed discussion for this unique relation is given.

  10. A GREAT search for Deuterium in Comets

    Science.gov (United States)

    Mumma, Michael

    2013-10-01

    Comets are understood to be the most pristine bodies in the Solar System. Their compositions reflect the chemical state of materials at the very earliest evolutionary stages of the protosolar nebula and, as such, they provide detailed insight into the physical and chemical processes operating in planet-forming disks. Isotopic fractionation ratios of the molecular ices in the nucleus are regarded as signatures of formation processes. These ratios provide unique information on the natal heritage of those ices, and can also test the proposal that Earth's water and other volatiles were delivered by cometary bombardment. Measurement of deuterium fractionation ratios is thus a major goal in contemporary cometary science and the D/H ratio of water - the dominant volatile in comets - holds great promise for testing the formation history of cometary matter. The D/H ratio in cometary water has been measured in only eight comets. Seven were from the Oort Cloud reservoir and the D/H ratio was about twice that of the Earth's oceans. However, the recent Herschel measurement of HDO/H2O in 103P/Hartley-2 (the first from the Kuiper Belt) was consistent with exogenous delivery of Earth's water by comets. Outstanding questions remain: are cometary HDO/H2O ratios consistent with current theories of nebular chemical evolution or with an interstellar origin? Does the HDO/H2O ratio vary substantially among comet populations? Hartley-2 is the only Kuiper Belt comet with measured HDO/H2O, are there comets with similar ratios in the Oort cloud? These questions can only be addressed by measuring HDO/H2O ratios in many more suitable bright comets. We therefore propose to measure the D/H ratio in water in a suitable target-of-opportunity comet by performing observations of HDO and OH with the GREAT spectrometer on SOFIA. A multi-wavelength, ground-based observing campaign will also be conducted in support of the airborne observations.

  11. A quantitative comet infection assay for influenza virus

    Science.gov (United States)

    Lindsay, Stephen M.; Timm, Andrea; Yin, John

    2011-01-01

    Summary The virus comet assay is a cell-based virulence assay used to evaluate an antiviral drug or antibody against a target virus. The comet assay differs from the plaque assay in allowing spontaneous flows in 6-well plates to spread virus. When implemented quantitatively the comet assay has been shown to have an order-of-magnitude greater sensitivity to antivirals than the plaque assay. In this study, a quantitative comet assay for influenza virus is demonstrated, and is shown to have a 13-fold increase in sensitivity to ribavirin. AX4 cells (MDCK cells with increased surface concentration of α2–6 sialic acid, the influenza virus receptor) have reduced the comet size variability relative to MDCK cells, making them a better host cell for use in this assay. Because of enhanced antiviral sensitivity in flow-based assays, less drug is required, which could lead to lower reagent costs, reduced cytotoxicity, and fewer false-negative drug screen results. The comet assay also serves as a readout of flow conditions in the well. Observations from comets formed at varying humidity levels indicate a role for evaporation in the mechanism of spontaneous fluid flow in wells. PMID:22155578

  12. CLATHRATE HYDRATES FORMATION IN SHORT-PERIOD COMETS

    International Nuclear Information System (INIS)

    Marboeuf, Ulysse; Mousis, Olivier; Petit, Jean-Marc; Schmitt, Bernard

    2010-01-01

    The initial composition of current models of cometary nuclei is only based on two forms of ice: crystalline ice for long-period comets and amorphous ice for short-period comets. A third form of ice, i.e., clathrate hydrate, could exist within the short-period cometary nuclei, but the area of formation of this crystalline structure in these objects has never been studied. Here, we show that the thermodynamic conditions in the interior of short-period comets allow the existence of clathrate hydrates in Halley-type comets. We show that their existence is viable in the Jupiter family comets only when the equilibrium pressure of CO clathrate hydrate is at least 1 order of magnitude lower than the usually assumed theoretical value. We calculate that the amount of volatiles that could be trapped in the clathrate hydrate layer may be orders of magnitude greater than the daily amount of gas released at the surface of the nucleus at perihelion. The formation and the destruction of the clathrate hydrate cages could then explain the diversity of composition of volatiles observed in comets, as well as some pre-perihelion outbursts. We finally show that the potential clathrate hydrate layer in comet 67P/Churyumov-Gerasimenko would, unfortunately, be deep inside the nucleus, out of reach of the Rosetta lander. However, such a clathrate hydrate layer would show up by the gas composition of the coma.

  13. DNA Comet Assay and Changes in Microflora Load as Screening Methods to Detect Irradiated Food in Egypt

    International Nuclear Information System (INIS)

    Hammad, A.A.; Abo El Nour, S.A.; Ibrahim, H.M.; Osman, M.E.; Abo El- Nasr, A.

    2014-01-01

    In the present study the microgel electrophoresis of single cells (DNA Comet Assay), and changes in microflora load were applied to detect irradiation treatment of strawberries and fresh-deboned chicken produced in Egypt. Strawberry samples were irradiated at 1.0, 2.0, 3.0 and 4.0 kGy, stored at 4 degree C±1 and analyzed at 0 and 7 days post.-irradiation. Fresh- deboned chicken meat samples were exposed to 2.0, 3.0, 4.0 and 5.0 kGy, stored at 4 degree C±1 and analyzed at 0, 7, 14 and 21 days post-irradiation. After electrophoresis performance, the accridine orange stain slides were seen under fluorescent microscope and the DNA comets were evaluated by photographic and image analysis. Changes in microflora load of irradiated samples were also evaluated. In all irradiated samples, the DNA fragments stretched or migrated out of the cells towards the anode of the agrose gel and appeared as a “comets” with tail. Whereas, DNA comets of all non-irradiated samples were almost intact, round without tail or had very short tail. Values of DNA % in tails and the tail length increased with increasing irradiation dose and storage times. The DNA comet assay could successfully be used to detect radiation treatment of strawberry and deboned-chicken meat samples up to 7 and 21 days post-irradiation, respectively. The absence of gram-negative bacteria and enterobacteriaceae group as well as the very low count of fungi (mostly yeasts) might be considered another evidence of radiation treatment of strawberries and fresh-deboned chicken.

  14. The "silent world" of Comet 15P/Finlay

    CERN Document Server

    Beech, M; Jones, J

    1999-01-01

    Comet 15P/Finlay is unusual in that, contrary to ab initio expectations, it demonstrates no apparent linkage to any known meteor shower. Using data contained within the Electronic Atlas of Dynamical Evolutions of Short-Period Comets, the authors evaluate theoretical shower radiants for Comet 15P/Finlay, but find no evidence to link it to any meteoric anomalies in recorded antiquity. This result, however, must be tempered by the fact that any Comet 15P/Finlay- derived meteoroids will have a low, 16 km s/sup -1/, encounter velocity with Earth's atmosphere. Typically, therefore, one would expect mostly faint meteors to be produced during an encounter with a Comet 15P/Finlay-derived meteoroid stream. they have conducted a D- criterion survey of meteoroid orbits derived from three southern hemisphere meteor radar surveys conducted during the 1960s, and again they find no evidence for any Comet 15P/Finlay-related activity. Numerical calculations following the orbital evolution of hypothetical meteoroids ejected fro...

  15. 3D numerical simulations of a LOVA reproduction inside the new facility STARDUST-UPGRADE

    International Nuclear Information System (INIS)

    Ciparisse, J.F.; Malizia, A.; Poggi, L.A.; Gelfusa, M.; Papa, C. Del; Giovannangeli, I.; Gaudio, P.; Tieri, F.; Murari, A.

    2017-01-01

    A loss of vacuum in a vessel, containing or not dust, is the typical case study considered in the STARDUST-UPGRADE facility of the Quantum Electronics and Plasma Group of the university of Rome Tor Vergata. This kind of accident was simulated numerically, without including the presence of dust, for two mass flow rates and three different inlet ports (C, E and F). Numerical settings are explained and the results obtained in each case are shown and discussed. At the end of the work, conclusions about what seen and further foreseen developments of this research are presented.

  16. Comets, Asteroids, and the Origin of the Biosphere

    Science.gov (United States)

    Hoover, Richard B.

    2006-01-01

    During the past few decades, the role of comets in the delivery of water, organics, and prebiotic chemicals to the Biosphere of Earth during the Hadean (4.5-3.8 Ga) period of heavy bombardment has become more widely accepted. However comets are still largely regarded as frigid, pristine bodies of protosolar nebula material that are entirely devoid of liquid water and consequently unsuitable for life in any form. Complex organic compounds have been observed comets and on the water rich asteroid 1998 KY26, which has color and radar reflectivity similar to the carbonaceous meteorites. Near infrared observations have indicated the presence of crystalline water ice and ammonia hydrate on the large Kuiper Belt object (50000) Quaoar with resurfacing that may indicate cryovolcanic outgassing and the Cassini spacecraft has detected water-ice geysers on Saturn s moon Enceladus. Spacecraft observations of the chemical compositions and characteristics of the nuclei of several comets (Halley, Borrelly, Wild 2, and Tempel 1) have now firmly established that comets contain a suite of complex organic chemicals; water is the predominant volatile; and that extremely high temperatures (approx.350-400 K) can be reached on the surface of the very black (albedo-0.03) nuclei when the comets are with 1.5 AU from the Sun. Impact craters and pinnacles observed on comet Wild 2 suggest a thick crust and episodic outbursts and jets observed on the nuclei of several comets are interpreted as indications that localized regimes of liquid water and water vapor can periodically exist beneath the crust of some comets. The Deep Impact observations indicate that the temperature on the nucleus of of comet Tempel 1 at 1.5 AU varied from 330K on the sunlit side to a minimum of 280+/-8 K. It is interesting that even the coldest region of the comet surface was slightly above the ice/liquid water phase transition temperature. These results suggest that pools and films of liquid water can exist in a wide

  17. Giacobini-Zinner comet: polarimetric and physical observations

    International Nuclear Information System (INIS)

    Martel, M.T.; Maines, P.; Grudzinska, S.; Stawikowski, A.

    1984-10-01

    The results of observations of the Giacobini-Zinner comet on 25 and 31 October 1959 are presented. The magnitude of the comet was measured photoelectrically in two spectral regions. The radius is on the order of one kilometer. The photoelectric measurements of comets 1959b and 1957c were used to measure the abundances of the CN and C2 radicals and of solid particles in the heads

  18. Constraints on Comet 332P/Ikeya-Murakami

    Science.gov (United States)

    Hui, Man-To; Ye, Quan-Zhi; Wiegert, Paul

    2017-01-01

    Encke-type comet 332P/Ikeya-Murakami is experiencing cascading fragmentation events during its 2016 apparition. It is likely the first splitting Encke-type comet ever observed. A nongravitational solution to the astrometry reveals a statistical detection of the radial and transverse nongravitational parameters, {A}1=(1.54+/- 0.39)× {10}-8 au day‑2 and {A}2=(7.19+/- 1.92)× {10}-9 au day‑2, respectively, which implies a nucleus erosion rate of (9.1+/- 1.7)‰ per orbital revolution. The mass-loss rate likely has to be supported by a much larger fraction of an active surface area than known cases of short-period comets; it may be relevant to the ongoing fragmentation. We failed to detect any serendipitous pre-discovery observations of the comet in archival data from major sky surveys, whereby we infer that 332P used to be largely inactive, and is perhaps among the few short-period comets that have been reactivated from weakly active or dormant states. We therefore constrain an upper limit to the nucleus size as 2.0 ± 0.2 km in radius. A search for small bodies in similar orbits to that of 332P reveals comet P/2010 B2 (WISE) to be the best candidate. From an empirical generalized Jupiter-family (Encke-type included) comet population model, we estimate the likelihood of a chance alignment of the 332P–P/2010 B2 pair to be 1 in 33, a small number indicative of a genetic linkage between the two comets on a statistical basis. The pair possibly originated from a common progenitor, which underwent a disintegration event well before the twentieth century.

  19. On the origin of comets

    Science.gov (United States)

    Mendis, A.; Alfven, H.

    1976-01-01

    Physico-chemical processes leading to the dynamic formation and physical evolution of comets are reviewed in relationship to the various theories that propose solar origins, protoplanetary origins, planetary origins and interstellar origins. Evidence points to the origins of comets by the growth and agglomeration of small particles from gas and dust at very low temperatures at undetermined regions in space.

  20. Comet Tempel 1 Went Back to Sleep

    Science.gov (United States)

    2005-07-01

    Astronomers Having Used ESO Telescopes Start Analysing Unique Dataset on the Comet Following the Deep Impact Mission Ten days after part of the Deep Impact spacecraft plunged onto Comet Tempel 1 with the aim to create a crater and expose pristine material from beneath the surface, astronomers are back in the ESO Offices in Santiago, after more than a week of observing at the ESO La Silla Paranal Observatory. In this unprecedented observing campaign - among the most ambitious ever conducted by a single observatory - the astronomers have collected a large amount of invaluable data on this comet. The astronomers have now started the lengthy process of data reduction and analysis. Being all together in a single place, and in close contacts with the space mission' scientific team, they will try to assemble a clear picture of the comet and of the impact. The ESO observations were part of a worldwide campaign to observe this unique experiment. During the campaign, ESO was connected by phone, email, and videoconference with colleagues in all major observatories worldwide, and data were freely exchanged between the different groups. This unique collaborative spirit provides astronomers with data taken almost around the clock during several days and this, with the largest variety of instruments, making the Deep Impact observing campaign one of the most successful of its kind, and thereby, ensuring the greatest scientific outcome. From the current analysis, it appears most likely that the impactor did not create a large new zone of activity and may have failed to liberate a large quantity of pristine material from beneath the surface. ESO PR Photo 22/05 ESO PR Photo 22/05 Evolution of Comet Tempel 1 (FORS2/VLT) [Preview - JPEG: 400 x 701 pix - 128k] [Normal - JPEG: 800 x 1401 pix - 357k] ESO PR Photo 22/05 Animated Gif Caption: ESO PR Photo 22/05 shows the evolution of Comet Tempel 1 as observed with the FORS2 instrument on Antu (VLT). The images obtained at the VLT show that

  1. Random, double- and single-strand DNA breaks can be differentiated in the method of Comet assay by the shape of the comet image.

    Science.gov (United States)

    Georgieva, Milena; Zagorchev, Plamen; Miloshev, George

    2015-10-01

    Comet assay is an invaluable tool in DNA research. It is widely used to detect DNA damage as an indicator of exposure to genotoxic stress. A canonical set of parameters and specialized software programs exist for Comet assay data quantification and analysis. None of them so far has proven its potential to employ a computer-based algorithm for assessment of the shape of the comet as an indicator of the exact mechanism by which the studied genotoxins cut in the molecule of DNA. Here, we present 14 unique measurements of the comet image based on the comet morphology. Their mathematical derivation and statistical analysis allowed precise description of the shape of the comet image which in turn discriminated the cause of genotoxic stress. This algorithm led to the development of the "CometShape" software which allowed easy discrimination among different genotoxins depending on the type of DNA damage they induce. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A dynamical study on extrasolar comets

    Science.gov (United States)

    Loibnegger, B.; Dvorak, R.

    2017-09-01

    Since the detection of absorption features in spectra of beta Pictoris varying on short time scales it is known that comets exist in other stellar systems. We investigate the dynamics of comets in two differently build systems (HD 10180 and HIP 14810). The outcomes of the scattering process, as there are collisions with the planets, captures and ejections from the systems are analysed statistically. Collisions and close encounters with the planets are investigated in more detail in order to conclude about transport of water and organic material. We will also investigate the possibility of detection of comets in other planetary systems.

  3. Vaporization of comet nuclei: Light curves and life times

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, J J [Harvard Univ., Cambridge, MA (USA). Center for Astrophysics; A' Hearn, M F [Maryland Univ., College Park (USA)

    1979-10-01

    The authors have examined the effects of vaporization from the nucleus of a comet and show that a latitude dependence of vaporization can, in some cases, explain asymmetries in commetary light curves. They also find that a non-uniform distribution of solar radiation over a comet can considerably shorten the vaporization lifetime compared to the results normally obtained by assuming that the nuclear surface is isothermal. Independent of any latitude effects, comets with CO/sub 2/-dominated nuclei and with periherlion distances less than 0.5 AU have vaporization lifetimes less than or comparable to their dynamical ejection times. This may explain the observed deficit of comets with small perihelion distances. Similarly comets with CO/sub 2/-dominated nuclei and perihelia near Jupiter's orbit have vaporization lifetimes that are shorter than the time for capture into short-period orbits. They suggest, therefore, that at least some new comets are composed in large part of CO/sub 2/, while only H/sub 2/O-dominated comets, with lower vaporization rates, can survive to be captured into short-period orbits.

  4. Catastrophic Disruption of Comet ISON

    Science.gov (United States)

    Keane, Jacqueline V.; Milam, Stefanie N.; Coulson, Iain M.; Kleyna, Jan T.; Sekanina, Zdenek; Kracht, Rainer; Riesen, Timm-Emmanuel; Meech, Karen J.; Charnley, Steven B.

    2016-01-01

    We report submillimeter 450 and 850 microns dust continuum observations for comet C/2012 S1 (ISON) obtained at heliocentric distances 0.31-0.08 au prior to perihelion on 2013 November 28 (rh?=?0.0125 au). These observations reveal a rapidly varying dust environment in which the dust emission was initially point-like. As ISON approached perihelion, the continuum emission became an elongated dust column spread out over as much as 60? (greater than 10(exp 5) km in the anti-solar direction. Deconvolution of the November 28.04 850 microns image reveals numerous distinct clumps consistent with the catastrophic disruption of comet ISON, producing approximately 5.2?×?10(exp 10) kg of submillimeter-sized dust. Orbital computations suggest that the SCUBA-2 emission peak coincides with the comet's residual nucleus.

  5. Hyakutake, Hale-Bopp and the chemistry of comets

    International Nuclear Information System (INIS)

    Bachiller, R.; Planesas, P.

    1997-01-01

    Comets can be regarded as messengers from the primitive solar system which can provide precious pieces of information on the composition of the protosolar nebula. Physical and chemical phenomena within comets (shock waves, photodissociation caused by solar radiation, some endothermic chemical reactions, etc) are of the highest interest and cannot be reproduced at terrestrial laboratories in many cases. The passage of Hyakutake in 1996 and that of Hale-Bopp in 1997 are allowing remarkable progress in the understanding of the physico-chemistry of comets. Observations of such comets can be crucial in the study of the origin of life on Earth. (Author)

  6. First application of comet assay in blood cells of Mediterranean loggerhead sea turtle (Caretta caretta).

    Science.gov (United States)

    Caliani, Ilaria; Campani, Tommaso; Giannetti, Matteo; Marsili, Letizia; Casini, Silvia; Fossi, Maria Cristina

    2014-05-01

    The aim of this study was to validate the comet assay in erythrocytes of Caretta caretta, a species never investigated for genotoxicity. We studied 31 loggerhead sea turtles from three Italian marine rescue centres. Peripheral blood samples were collected from all the animals and the comet assay applied. All comet cells were analysed using two methods: visual scoring and computer image analysis. The % DNA in tail mean value ± SD and Damage Index were 21.56 ± 15.41 and 134.83 ± 94.12, respectively. A strong and statistically significant statistically correlation between the two analytical methods was observed (r = 0.95; p comet assay is a useful method to detect the possible effects of genotoxic agents in loggerhead sea turtle and to increase the knowledge about the ecotoxicological health status of this threatened species. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Optical Detection of Anomalous Nitrogen in Comets

    Science.gov (United States)

    2003-12-01

    VLT Opens New Window towards Our Origins Summary A team of European astronomers [1] has used the UVES spectrograph on the 8.2-m VLT KUEYEN telescope to perform a uniquely detailed study of Comet LINEAR (C/2000 WM1) . This is the first time that this powerful instrument has been employed to obtain high-resolution spectra of a comet. At the time of the observations in mid-March 2002, Comet LINEAR was about 180 million km from the Sun, moving outwards after its perihelion passage in January. As comets are believed to carry "pristine" material - left-overs from the formation of the solar system, about 4,600 million years ago - studies of these objects are important to obtain clues about the origins of the solar system and the Earth in particular. The high quality of the data obtained of this moving 9th-magnitude object has permitted a determination of the cometary abundance of various elements and their isotopes [2]. Of particular interest is the unambiguous detection and measurement of the nitrogen-15 isotope. The only other comet in which this isotope has been observed is famous Comet Hale-Bopp - this was during the passage in 1997, when it was much brighter than Comet LINEAR. Most interestingly, Comet LINEAR and Comet Hale-Bopp display the same isotopic abundance ratio, about 1 nitrogen-15 atom for each 140 nitrogen-14 atoms ( 14 N/ 15 N = 140 ± 30) . That is about half of the terrestrial value (272). It is also very different from the result obtained by means of radio measurements of Comet Hale-Bopp ( 14 N/ 15 N = 330 ± 75). Optical and radio measurements concern different molecules (CN and HCN, respectively), and this isotopic anomaly must be explained by some differentiation mechanism. The astronomers conclude that part of the cometary nitrogen is trapped in macromolecules attached to dust particles . The successful entry of UVES into cometary research now opens eagerly awaited opportunities for similiar observations in other, comparatively faint comets. These

  8. The spacecraft encounters of Comet Halley

    Science.gov (United States)

    Asoka Mendis, D.; Tsurutani, Bruce T.

    1986-01-01

    The characteristics of the Comet Halley spacecraft 'fleet' (VEGA 1 and VEGA 2, Giotto, Suisei, and Sakigake) are presented. The major aims of these missions were (1) to discover and characterize the nucleus, (2) to characterize the atmosphere and ionosphere, (3) to characterize the dust, and (4) to characterize the nature of the large-scale comet-solar wind interaction. While the VEGA and Giotto missions were designed to study all four areas, Suisei addressed the second and fourth. Sakigake was designed to study the solar wind conditions upstream of the comet. It is noted that NASA's Deep Space Network played an important role in spacecraft tracking.

  9. Comet 67P Through the Lens of Art

    Science.gov (United States)

    Smirnova, Ekaterina

    2017-04-01

    My proposal is to share my artistic exploration of a comet through the bodily senses, while finding inspiration in scientific data. I will present my artwork as a slideshow, showcasing: large scale paintings, ceramic sculptures, music and interactive augmented reality. The Rosetta mission of the European Space Agency (ESA) to comet 67P/ Churyumov-Gerasimenko is remarkable. The scientific investigation of the comet's composition, atmosphere, dust, vapor, surface and internal structure are crucial to help researchers understand the origin of the solar system and our own planet. Sight: Paintings Rosetta mission discovered that the water on the comet is different from the water on Earth; as measured with the ROSINA-DFMS instrument on Rosetta, water on 67P contains approximately 3 times more hydrogen­deuterium oxide - HDO, than found in Earth's oceans. In the art studio I re-create water that is close in composition to the water on the comet, by concentrating the level of HDO. With this water I paint large scale watermedia paintings, based on the photographs by Rosetta (OSIRIS, Nav. Cam.). Touch: Sculptures While exploring the comet's three-dimensional form, I focus more deeply on the composition of the comet. Stoneware clay and my choice of a glaze both include iron oxide, a common constituent of meteorites and comets. Hearing: Music An audio piece "A Singing Comet", by Manuel Senfft, based on the Rosetta Plasma Consortium data, inspired me to make a musical piece. In collaboration with clarinetist Lee Mottram (Wales) and composer Takuto Fukuda (Japan) we created an electro­acoustic composition in which we tell the story of comets visiting our Solar System, repeating their cycle, curving around the sun and releasing water, carrying away dust to form their tails. Smell In collaboration with The Open University, UK, postcards with a smell of the comet were created, introducing the chemical components of the comet. The smell was recreated by combining several molecules

  10. Identification of irradiated refrigerated pork with the DNA comet assay

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, M.M. E-mail: villavic@net.ipen.br; Marin-Huachaca, N.S.; Mancini-Filho, J. E-mail: jmancini@usp.br; Delincee, H.; Villavicencio, A.L.C.H. E-mail: henry.delincee@bfe.uni-karlsruhe.de

    2004-10-01

    Food irradiation can contribute to a safer and more plentiful food supply by inactivating pathogens, eradicating pests and by extending shelf-life. Particularly in the case of pork meat, this process could be a useful way to inactivate harmful parasites such as Trichinella and Taenia solium. Ionizing radiation causes damage to the DNA of the cells (e.g. strand breaks), which can be used to detect irradiated food. Microelectrophoresis of single cells ('Comet Assay') is a simple and rapid test for DNA damage and can be used over a wide dose range and for a variety of products. Refrigerated pork meat was irradiated with a {sup 60}Co source, Gammacell 220 (A.E.C.L.) installed in IPEN (Sao Paulo, Brazil). The doses given were 0, 1.5, 3.0 and 4.5 kGy for refrigerated samples. Immediately after irradiation the samples were returned to the refrigerator (6 deg. C). Samples were kept in the refrigerator after irradiation. Pork meat was analyzed 1, 8 and 10 days after irradiation using the DNA 'Comet Assay'. This method showed to be an inexpensive and rapid technique for qualitative detection of irradiation treatment.

  11. Identification of irradiated refrigerated pork with the DNA comet assay

    Science.gov (United States)

    Araújo, M. M.; Marin-Huachaca, N. S.; Mancini-Filho, J.; Delincée, H.; Villavicencio, A. L. C. H.

    2004-09-01

    Food irradiation can contribute to a safer and more plentiful food supply by inactivating pathogens, eradicating pests and by extending shelf-life. Particularly in the case of pork meat, this process could be a useful way to inactivate harmful parasites such as Trichinella and Taenia solium. Ionizing radiation causes damage to the DNA of the cells (e.g. strand breaks), which can be used to detect irradiated food. Microelectrophoresis of single cells (``Comet Assay'') is a simple and rapid test for DNA damage and can be used over a wide dose range and for a variety of products. Refrigerated pork meat was irradiated with a 60Co source, Gammacell 220 (A.E.C.L.) installed in IPEN (Sa~o Paulo, Brazil). The doses given were 0, 1.5, 3.0 and 4.5kGy for refrigerated samples. Immediately after irradiation the samples were returned to the refrigerator (6°C). Samples were kept in the refrigerator after irradiation. Pork meat was analyzed 1, 8 and 10 days after irradiation using the DNA ``Comet Assay''. This method showed to be an inexpensive and rapid technique for qualitative detection of irradiation treatment.

  12. Migration of Interplanetary Dust and Comets

    Science.gov (United States)

    Ipatov, S. I.; Mather, J. C.

    Our studies of migration of interplanetary dust and comets were based on the results of integration of the orbital evolution of 15,000 dust particles and 30,000 Jupiter-family comets (JFCs) [1-3]. For asteroidal and cometary particles, the values of the ratio β between the radiation pressure force and the gravitational force varied from 1000 and 1 microns. The probability of a collision of a dust particle started from an asteroid or JFC with the Earth during a lifetime of the particle was maximum at diameter d ˜100 microns. For particles started from asteroids and comet 10P, this maximum probability was ˜0.01. Different studies of migration of dust particles and small bodies testify that the fraction of cometary dust particles of the overall dust population inside Saturn's orbit is considerable and can be dominant: (1) Cometary dust particles produced both inside and outside Jupiter's orbit are needed to explain the observed constant number density of dust particles at 3-18 AU. The number density of migrating trans-Neptunian particles near Jupiter's orbit is smaller by a factor of several than that beyond Saturn's orbit. Only a small fraction of asteroidal particles can get outside Jupiter's orbit. (2) Some (less than 0.1%) JFCs can reach typical near-Earth object orbits and remain there for millions of years. Dynamical lifetimes of most of the former JFCs that have typical near-Earth object orbits are about 106 -109 yr, so during most of these times they were extinct comets. Such former comets could disintegrate and produce a lot of mini-comets and dust. (3) Comparison of the velocities of zodiacal dust particles (velocities of MgI line) based on the distributions of particles over their orbital elements obtained in our runs [3-4] with the velocities obtained at the WHAM observations shows that only asteroidal dust particles cannot explain these observations, and particles produced by comets, including high-eccentricity comets, are needed for such explanation

  13. On the existence of a comet belt beyond Neptune

    International Nuclear Information System (INIS)

    Fernandez, J.A.

    1980-01-01

    The possible existence of a comet belt in connection with the origin of the short-period comets is analysed. It is noted that the current theory - that these comets originate as near-parabolic comets captured by Jupiter and the other giant planets - implies an excessive wastage of comets lost in hyperbolic orbits, which is avoided in the present model. The following picture is predicted. Solid conglomerates up to approximately 10 18 g were formed by gravitational instabilities in the belt region (about 35 to 50 AU). A further fragmentation-accretion process led to a power-law mass distribution similar to that observed in the asteroids. Since then, close encounters between members of the belt have provoked the diffusion of some of them with the effect that they have become subject to the strong perturbations of Neptune. Of these a small number pass from one planet to the next inside and end as short-period comets. By means of a Monte Carlo method, the influence of close encounters between belt comets is then studied in relation to the diffusion of their orbits. It is concluded that if such a belt contains members with masses equal to or greater than that of Ceres, the orbital diffusion could proceed fast enough to maintain the number of observed short-period comets in a steady state. (author)

  14. CATASTROPHIC DISRUPTION OF COMET ISON

    Energy Technology Data Exchange (ETDEWEB)

    Keane, Jacqueline V.; Kleyna, Jan T.; Riesen, Timm-Emmanuel; Meech, Karen J. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Milam, Stefanie N.; Charnley, Steven B. [Astrochemistry Laboratory, NASA GSFC, MS 690, Greenbelt, MD 20771 (United States); Coulson, Iain M. [Joint Astronomy Center, 660 North Aohoku Place, Hilo, HI 96720 (United States); Sekanina, Zdenek [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Kracht, Rainer, E-mail: keane@ifa.hawaii.edu [Ostlandring 53, D-25335 Elmshorn, Schleswig-Holstein (Germany)

    2016-11-10

    We report submillimeter 450 and 850 μ m dust continuum observations for comet C/2012 S1 (ISON) obtained at heliocentric distances 0.31–0.08 au prior to perihelion on 2013 November 28 ( r {sub h} = 0.0125 au). These observations reveal a rapidly varying dust environment in which the dust emission was initially point-like. As ISON approached perihelion, the continuum emission became an elongated dust column spread out over as much as 60″ (>10{sup 5} km) in the anti-solar direction. Deconvolution of the November 28.04 850 μ m image reveals numerous distinct clumps consistent with the catastrophic disruption of comet ISON, producing ∼5.2 × 10{sup 10} kg of submillimeter-sized dust. Orbital computations suggest that the SCUBA-2 emission peak coincides with the comet's residual nucleus.

  15. Evolution of comets into asteroids

    International Nuclear Information System (INIS)

    Weissman, P.R.; A'hearn, M.F.; Rickman, H.; Mcfadden, L.A.

    1989-01-01

    This paper presents observational evidence, together with recent theoretical developments, supporting the hypothesis that at least some asteroids might be extinct or dormant cometary nuclei. The observations include the discovery of a number of apparent asteroids in chaotic Jupiter-crossing orbits; the IRAS discovery of 1983 TB, an asteroid in the same orbit as the Geminid meteor shower; the apparent low activity levels determined for several short-period comet nuclei including Comet Halley; and observations of possible cometary activity in some earth-crossing asteroids. Theoretical developments include explorations of dynamical mechanisms capable of delivering main-belt asteroids into earth-crossing orbits, and an understanding of possible processes which may affect comets during their long residence in the Oort cloud and lead to the formation of nonvolatile crusts before and after they enter the planetary system. 143 refs

  16. Validation of freezing tissues and cells for analysis of DNA strand break levels by comet assay

    Science.gov (United States)

    Jackson, Petra

    2013-01-01

    The comet analysis of DNA strand break levels in tissues and cells has become a common method of screening for genotoxicity. The large majority of published studies have used fresh tissues and cells processed immediately after collection. However, we have used frozen tissues and cells for more than 10 years, and we believe that freezing samples improve efficiency of the method. We compared DNA strand break levels measured in fresh and frozen bronchoalveolar cells, and lung and liver tissues from mice exposed to the known mutagen methyl methanesulphonate (0, 25, 75, 112.5mg/kg). We used a high-throughput comet protocol with fully automated scoring of DNA strand break levels. The overall results from fresh and frozen samples were in agreement [R 2 = 0.93 for %DNA in tail (%TDNA) and R 2 = 0.78 for tail length (TL)]. A slightly increased %TDNA was observed in lung and liver tissue from vehicle controls; and TL was slightly reduced in bronchoalveolar lavage cells from the high-dose group. In our comet protocol, a small block of tissue designated for comet analysis is frozen immediately at tissue collection and kept deep frozen until rapidly homogenised and embedded in agarose. To demonstrate the feasibility of long-term freezing of samples, we analysed the day-to-day variation of our internal historical negative and positive comet assay controls collected over a 10-year period (1128 observations, 11 batches of frozen untreated and H2O2-treated A549 lung epithelial cells). The H2O2 treatment explained most of the variation 57–77% and the day-to-day variation was only 2–12%. The presented protocol allows analysis of samples collected over longer time span, at different locations, with reduced variation by reducing number of electrophoreses and is suitable for both toxicological and epidemiological studies. The use of frozen tissues; however, requires great care during preparation before analysis, with handling as a major risk factor. PMID:24136994

  17. Robotic exploration of the solar system

    CERN Document Server

    Ulivi, Paolo

    In Robotic Exploration of the Solar System, Paolo Ulivi and David Harland provide a comprehensive account of the design and managment of deep-space missions, the spacecraft involved - some flown, others not - their instruments, and their scientific results. This third volume in the series covers launches in the period 1997 to 2003 and features: - a chapter entirely devoted to the Cassini-Huygens mission to Saturn; - coverage of planetary missions of the period, including the Deep Space 1 mission and the Stardust and Hayabusa sample returns from comets and asteroids; - extensive coverage of Mars exploration, the failed 1999 missions, Mars Odyssey, Mars Express, and the twin rovers Spirit and Opportunity. The story will continue in Part 4.

  18. Comet showers and Nemesis, the death star

    International Nuclear Information System (INIS)

    Hills, J.G.

    1984-01-01

    The recently proposed hypothesis that the periodic extinctions of terrestrial species are the result of comet showers catalyzed by a hypothetical distant solar companion, Nemesis, a tale of global death by comet bombardment of the earth, is discussed

  19. Comments on comet shapes and aggregation processes

    International Nuclear Information System (INIS)

    Hartmann, W.K.

    1989-01-01

    An important question for a comet mission is whether comet nuclei preserve information clarifying aggregation processes of planetary matter. New observational evidence shows that Trojan asteroids, as a group, display a higher fraction of highly-elongated objects than the belt. More recently evidence has accumulated that comet nuclei, as a group, also display highly-elongated shapes at macro-scale. This evidence comes from the several comets whose nuclear lightcurves or shapes have been well studied. Trojans and comet nuclei share other properties. Both groups have extremely low albedos and reddish-to neutral-black colors typical of asteroids of spectral class D, P, and C. Both groups may have had relatively low collision frequencies. An important problem to resolve with spacecraft imaging is whether these elongated shapes are primordial, or due to evolution of the objects. Two hypotheses that might be tested by a combination of global-scale and close-up imaging from various directions are: (1) The irregular shapes are primordial and related to the fact that these bodies have had lower collision frequencies than belt asteroids; or (2) The irregular shapes may be due to volatile loss

  20. COMET SHOWERS ARE NOT INDUCED BY INTERSTELLAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Morris, D.E.

    1985-11-01

    Encounters with interstellar clouds (IC) have been proposed by Rampino and Stothers as a cause of quasi-periodic intense comet showers leading to earth impacts, in order to explain the periodicity in marine mass extinctions found by Raup and Sepkoski. The model was described further, criticized and defended. The debate has centered on the question of whether the scale height of the clouds is small enough (in comparison to the amplitude of the oscillation of the solar system about the plane of the Galaxy) to produce a modulation in the rate of encounters. We wish to point out another serious, we believe fatal, defect in this model - the tidal fields of ICs are not strong enough to produce intense comet showers leading to earth impacts by bringing comets of the postulated inner Oort cloud into earth crossing orbits, except possibly during very rare encounters with very dense clouds. We will show that encounters with abundant clouds of low density cannot produce comet showers; cloud density N > 10{sup 3} atoms cm{sup -3} is needed to produce an intense comet shower leading to earth impacts. Furthermore, the tidal field of a dense cloud during a distant encounter is too weak to produce such showers. As a consequence, comet showers induced by ICs will be far less frequent than showers caused by passing stars. This conclusion is independent of assumptions about the radial distribution of comets in the inner Oort cloud.

  1. In Vivo Alkaline Comet Assay and Enzyme-modified Alkaline Comet Assay for Measuring DNA Strand Breaks and Oxidative DNA Damage in Rat Liver.

    Science.gov (United States)

    Ding, Wei; Bishop, Michelle E; Lyn-Cook, Lascelles E; Davis, Kelly J; Manjanatha, Mugimane G

    2016-05-04

    Unrepaired DNA damage can lead to genetic instability, which in turn may enhance cancer development. Therefore, identifying potential DNA damaging agents is important for protecting public health. The in vivo alkaline comet assay, which detects DNA damage as strand breaks, is especially relevant for assessing the genotoxic hazards of xenobiotics, as its responses reflect the in vivo absorption, tissue distribution, metabolism and excretion (ADME) of chemicals, as well as DNA repair process. Compared to other in vivo DNA damage assays, the assay is rapid, sensitive, visual and inexpensive, and, by converting oxidative DNA damage into strand breaks using specific repair enzymes, the assay can measure oxidative DNA damage in an efficient and relatively artifact-free manner. Measurement of DNA damage with the comet assay can be performed using both acute and subchronic toxicology study designs, and by integrating the comet assay with other toxicological assessments, the assay addresses animal welfare requirements by making maximum use of animal resources. Another major advantage of the assays is that they only require a small amount of cells, and the cells do not have to be derived from proliferating cell populations. The assays also can be performed with a variety of human samples obtained from clinically or occupationally exposed individuals.

  2. New Application of the Comet Assay

    Science.gov (United States)

    Cortés-Gutiérrez, Elva I.; Dávila-Rodríguez, Martha I.; Fernández, José Luís; López-Fernández, Carmen; Gosálbez, Altea; Gosálvez, Jaime

    2011-01-01

    The comet assay is a well-established, simple, versatile, visual, rapid, and sensitive tool used extensively to assess DNA damage and DNA repair quantitatively and qualitatively in single cells. The comet assay is most frequently used to analyze white blood cells or lymphocytes in human biomonitoring studies, although other cell types have been examined, including buccal, nasal, epithelial, and placental cells and even spermatozoa. This study was conducted to design a protocol that can be used to generate comets in subnuclear units, such as chromosomes. The new technique is based on the chromosome isolation protocols currently used for whole chromosome mounting in electron microscopy, coupled to the alkaline variant of the comet assay, to detect DNA damage. The results show that migrant DNA fragments can be visualized in whole nuclei and isolated chromosomes and that they exhibit patterns of DNA migration that depend on the level of DNA damage produced. This protocol has great potential for the highly reproducible study of DNA damage and repair in specific chromosomal domains. PMID:21540337

  3. Comet LINEAR C/1999 S4 - an absolutely well-behaved comet before breakup

    Science.gov (United States)

    Peschke, S. B.; Lisse, C. M.; Fernandez, Y. R.; Ressler, M.; Stickel, M.; Kaminski, C.; Golish, B.

    2000-10-01

    We present results from infrared imaging of comet LINEAR C/1999 S4 on June 17 - 19, 2000 (pre-breakup), using the near-IR camera NSFCAM and the mid-IR camera MIRLIN at the 3m NASA/IRTF. Images and multi-wavelength spectroscopy were obtained in the zJHK'L'MNQ bands, and were used to create a 1.0 - 25 μ m SED of the comet's dust and nucleus. The coma's contribution at each wavelength was modeled using spatial fitting (Fernandez 1999, PhD thesis; Lisse et al. 1999, Icarus 140, 189). The resulting comatic and nuclear SEDs were then modeled using modified Mie theory (Lisse et al. 1998, ApJ 496, 971) and the standard nuclear thermal models (Lebofsky and Spencer 1989, Asteroids II, 128), respectively. We report the resulting dust PSD, mass loss rate, and albedo, as well as the nuclear radius, and we compare these results to those obtained by others from optical data both before and after the comet's breakup in late July 2000.

  4. The shortage of long-period comets in elliptical orbits

    International Nuclear Information System (INIS)

    Everhart, E.

    1979-01-01

    Based on the number of 'new' comets seen on near-parabolic orbits, one can predict the number of comets that should be found on definitely elliptical orbits on their subsequent returns. The author shows that about three out of four of these returning comets are not observed. (Auth.)

  5. Assessment and reduction of comet assay variation in relation to DNA damage: studies from the European Comet Assay Validation Group

    DEFF Research Database (Denmark)

    Møller, Peter; Möller, Lennart; Godschalk, Roger W L

    2010-01-01

    The alkaline single cell gel electrophoresis (comet) assay has become a widely used method for the detection of DNA damage and repair in cells and tissues. Still, it has been difficult to compare results from different investigators because of differences in assay conditions and because the data...... are reported in different units. The European Comet Assay Validation Group (ECVAG) was established for the purpose of validation of the comet assay with respect to measures of DNA damage formation and its repair. The results from this inter-laboratory validation trail showed a large variation in measured level...... reliability for the measurement of DNA damage by the comet assay but there is still a need for further validation to reduce both assay and inter-laboratory variation....

  6. Comet Shoemaker-Levy 9 meets Jupiter.

    Science.gov (United States)

    Levy, D. H.; Shoemaker, E. M.; Shoemaker, C. S.

    1995-08-01

    The impact of comet D/1993 F2 (Shoemaker-Levy 9) with Jupiter was unforgettable, an event probably not to be repeated for millennia to come. One year later the astronomers who first spotted the comet reflect on their discovery, on the anxious months of anticipation before the collision and on what has been learned since.

  7. Comet West: a view from the HELIOS zodiacal light photometers

    International Nuclear Information System (INIS)

    Benensohn, R.M.; Jackson, B.V.

    1987-01-01

    Comet West passed through perihelion on February 25, 1976. The comet crossed the HELIOS A and B spacecraft zodiacal light photometer fields of view as the spacecraft orbited the Sun, allowing them to record the brightness, polarization, and color of the comet and its surrounding interplanetary medium. Data from the U, B, and V photometers across the tail shows a distinct bluing followed by a slight reddening corresponding to the ion and dust tails, respectively, entering the field of view. The non-Earth perspective of the HELIOS photometers allows a comparison of the tail with Earth observations at the same time. Precise location of the nucleus and tail allow the photometer data to be searched for evidence of the comet bow shock and orbital dust. A brightness bump present in the data before the comet reaches some photometer positions, can be shown to approximately form a parabolic shape Sunward and ahead of the orbital motion of the Comet West nucleus. If this is the comet bow shock or bow compression, then it corresponds to a density enhancement of the ambient medium by 1.5 to 2 times in the vicinity of the comet. The distance of the brightness increase from the nucleus by comparison with Comet Halley implies a neutral gas production rate of approximately 3 times that of Halley

  8. Assessment of radiation induced cytogenetic damage in human keratinocytes by comet assay

    International Nuclear Information System (INIS)

    Joseph, Praveen; Sanjeev Ganesh; Narayana, Y.; Puthali, Abhay; Bhat, N.N.

    2010-01-01

    In the present study the effect of gamma radiation on normal human keratinocytes (HaCaT) cells has been analyzed using alkaline comet assay and a comparative study over the sensitivity of different comet parameters such as tail length (TL), olive tail moment (OTM) and percentage tail DNA (TDNA) has also been made. Human keratinocytes (HaCaT) cells were grown in Dulbecco's modified essential medium (DMEM) (10% FCS) at 37 °C in a humidified atmosphere containing 5% CO 2 . Cultured cells were harvested with 0.025 % trypsin EDTA. The sample (2 X 10 cells/ml) was exposed to gamma radiation of different dose using a 60 Co gamma source at dose rate of 2 Gy min -1 and the dosimetry has been carried out using Fricke and FBX dosimeters. After irradiation, to quantify the DNA damage the comet assay (single cell gel electrophoresis) was carried out under alkaline conditions, by the methods outlined by Singh et al. The quantification of the DNA strand breaks in each cells were performed using CASP software. The DNA damage quantification can be accomplished by measuring those comet parameters which exhibit a linear dependence on the amount of DNA damage. In the present study, comet parameters such as OTM, TL and TDNA were recorded and the variation of these parameters and their correlation coefficients for different doses of gamma radiation is plotted. The OTM value is normalized with control value and control for TL and TDNA is adjusted to zero to avoid initial variations in different experiments

  9. Organic and volatile elements in the solar system

    Directory of Open Access Journals (Sweden)

    Remusat L.

    2012-01-01

    Full Text Available Chondrites and comets have accreted primitive materials from the early solar system. Those materials include organics, water and other volatile components. The most primitive chondrites and comets have undergone few modifications on their respective parent bodies and can deliver to laboratories components that were present at the origin of the protosolar nebula. Here I present a review of the organic material and volatile components that have been studied in the most primitive chondrites, and the last data from the stardust mission about the cometary record. This paper focuses on materials that can be studied in laboratories, by mass spectrometry, ion probes or organic chemistry techniques.

  10. The Rosetta Mission to Comet 67P/ Churyumov-Gerasimenko

    Science.gov (United States)

    Buratti, Bonnie J.

    2017-06-01

    As remnant bodies left over from the formation of the Solar System, comets offer clues to the physical conditions and architecture of the protosolar nebula. The Rosetta spacecraft, which included an orbiter and a lander that were built and managed by the European Space Agency with NASA contributing four instruments and scientific expertise, was the first mission to orbit and study a comet through a perihelion passage. The targeted Jupiter-family comet 67P/ Churyumov-Gerasimenko, is seemingly two distinct planetesimals stuck together. The comet has not melted or been processed substantially, except for its outer layers, which consist of reaccreted dust and a crust of heated, devolatized, and annealed refractory materials and organics. The exceptionally low density (0.53 gm/cc) of 67P/ implies it is a rubble pile. The comet also appears to contain a hierarchy of building blocks: smaller spherically shaped meter-sized bodies can be seen in its interior, and even smaller cm-sized pebbles were imaged by the camera as the spacecraft made a soft crash landing on the comet’s surface on 30 September 2016. The unexpected discovery of molecular oxygen, nitrogen, and hydrogen imply that 67P/ was formed under cold conditions not exceeding 30K. The discovery of many organic compounds, including the amino acid glycine, lends support to the idea that comets, which originate in the Kuiper Belt and the Oort Cloud, brought the building blocks of life to Earth. More laboratory data on organic compounds would help to identify additional organic compounds on the comet. The differences between cometary and terrestrial D/H ratios suggest that comets are not the primary source of terrestrial water, although data on more comets is needed to confirm this result.Besides being primordial objects offering a window into the formation of solar systems, comets are astrophysical laboratories, ejecting dust and charged particles into the plasma comprising the solar wind. Several unusual phenomena

  11. Rocket Detection of Argon in Comet Hale-Bopp

    Science.gov (United States)

    Stern, S. A.; Festou, M. C.; Parker, J. Wm.; Slater, D. C.; Gladstone, G. R.; A'Hearn, M. F.

    1998-12-01

    The EUVS planetary sounding rocket spectrograph was flown on 30.2 March 1997 (UT) from White Sands, New Mexico to observe comet Hale-Bopp in the bandpass from 830--1120 A. At the time of launch the comet was near perihelion, 0.915 AU from the Sun, 1.340 AU from Earth, and traveling at a heliocentric radial velocity of +0.70 km/s. EUVS obtained its primary spectra of the comet at resolution near 12 A, collecting 9340 counts over approximately 330 seconds of integration time. To our knowledge, the resulting dataset is both the most sensitive and the highest spectral resolution probe of a comet in the UV below 1200 A as yet achieved, and contains signatures of both the 1048.2 A and 1066.7 A Ar I resonance lines. These features represent the first-ever detections of any noble gas in a comet. The spectrum also includes significant detections which we tentatively attribute to due to 834 A 0 II, 972 A Lyman gamma, 989 A O I, the 1026 A H I Lyman beta/O I. We will discuss the Ar features, retrieve the Ar column in the coma, and discuss the implications of the total Ar/O abundance ratio in Hale-Bopp for the comet's origin.

  12. 100 and counting : SOHO's score as the world's top comet finder

    Science.gov (United States)

    2000-02-01

    Like nearly all of SOHO's discoveries, the 100th comet showed up in images from the LASCO instrument. This is a set of coronagraphs that view the space around the Sun out to 20 million kilometres, while blotting out the bright solar disk with masks. Developed for SOHO by a multinational team led by the US Naval Research Laboratory, LASCO watches for mass ejections from the Sun that threaten to disturb the Earth's space environment. The comet discoveries are a big bonus. SOHO's experts spot many of the comets as soon as the images come in. But still pictures and movies from LASCO are freely available on the Internet to astronomers around the world, who can discover less obvious comets without leaving their desks. This was the case when Kazimieras Cernis of the Institute of Theoretical Physics and Astronomy in Vilnius, Lithuania, found SOHO-100. "On 4 February I saw the comet as a small speck of light in the previous day's LASCO images," Cernis explained. "It had no visible tail, but it was too fuzzy to be an asteroid. By the time I had seen the object moving steadily across the sky in six successive images, I was convinced it was a comet and I sent the details to the SOHO scientists for verification." The competition to find SOHO's 100th comet was keen. An amateur astronomer, Maik Meyer of Frauenstein, Germany, discovered SOHO-98 and 99. On 5 February, less than 24 hours after Cernis reported the candidate SOHO-100, Meyer found the candidate SOHO-101. On the same day and in the same LASCO images Douglas Biesecker, a member of the SOHO science team, spotted the candidate SOHO-102 travelling ahead of 101. Computations have now validated the orbits for all three candidates, and shown them to be bona fide comet discoveries. Other amateur astronomers have used the LASCO images to find comets. In the summer of 1999 Terry Lovejoy in Australia found five, and since September 1999 an amateur in England, Jonathan Shanklin, has spotted three more. "SOHO is a special chance for

  13. Outbursting comet P/2010 V1 (Ikeya-Murakami): A miniature comet Holmes

    Energy Technology Data Exchange (ETDEWEB)

    Ishiguro, Masateru [Department of Physics and Astronomy, Seoul National University, Gwanak, Seoul 151-742 (Korea, Republic of); Jewitt, David [Department of Earth, Planetary and Space Sciences, University of California at Los Angeles, 595 Charles Young Drive East, Los Angeles, CA 90095-1567 (United States); Hanayama, Hidekazu; Miyaji, Takeshi; Fukushima, Hideo; Watanabe, Jun-ichi [Ishigakijima Astronomical Observatory, National Astronomical Observatory of Japan, Ishigaki, Okinawa 907-0024 (Japan); Usui, Fumihiko [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Sekiguchi, Tomohiko [Department of Teacher Training, Hokkaido University of Education, 9 Hokumon, Asahikawa 070-8621 (Japan); Yanagisawa, Kenshi; Kuroda, Daisuke [Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, Asaguchi, Okayama 719-0232 (Japan); Yoshida, Michitoshi [Hiroshima Astrophysical Science Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Ohta, Kouji [Department of Astronomy, Kyoto University, Kyoto 606-8502 (Japan); Kawai, Nobuyuki [Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan)

    2014-05-20

    The short-period comet P/2010 V1 (Ikeya-Murakami, hereafter {sup V}1{sup )} was discovered visually by two amateur astronomers. The appearance of the comet was peculiar, consisting of an envelope, a spherical coma near the nucleus and a tail extending in the anti-solar direction. We investigated the brightness and the morphological development of the comet by taking optical images with ground-based telescopes. Our observations show that V1 experienced a large-scale explosion between UT 2010 October 31 and November 3. The color of the comet was consistent with the Sun (g' – R {sub C} = 0.61 ± 0.20, R {sub C} – I {sub C} = 0.20 ± 0.20, and B – R {sub C} = 0.93 ± 0.25), suggesting that dust particles were responsible for the brightening. We used a dynamical model to understand the peculiar morphology, and found that the envelope consisted of small grains (0.3-1 μm) expanding at a maximum speed of 500 ± 40 m s{sup –1}, while the tail and coma were composed of a wider range of dust particle sizes (0.4-570 μm) and expansion speeds 7-390 m s{sup –1}. The total mass of ejecta is ∼5 × 10{sup 8} kg and kinetic energy ∼5 × 10{sup 12} J. These values are much smaller than in the historic outburst of 17P/Holmes in 2007, but the energy per unit mass (1 × 10{sup 4} J kg{sup –1}) is comparable. The energy per unit mass is about 10% of the energy released during the crystallization of amorphous water ice suggesting that crystallization of buried amorphous ice can supply the mass and energy of the outburst ejecta.

  14. The Comet Assay: Tails of the (Unexpected. Use of the comet assay in pharmaceutical development.

    Directory of Open Access Journals (Sweden)

    Bas-jan Van Der Leede

    2015-08-01

    Full Text Available In genotoxicity testing of pharmaceuticals the rodent alkaline comet assay is being increasingly used as a second in vivo assay in addition to the in vivo micronucleus assay to mitigate in vitro positive results as recommended by regulatory guidance. In this presentation we want to give insight into the circumstances in vivo comet assay is deployed in a Genetic Toxicology Department of a pharmaceutical company. As the in vivo comet assay is a salvage assay, it means that some events have occurred in an in vitro assay and that the compound (or metabolite responsible for this signal is potentially deselected for further development. More than often the decision to perform an in vivo comet assay is at a very early stage in development and the first time that the compound will be tested in vivo at high/toxic dose levels. As almost no toxicokinetic data and tissue distribution data are available a careful design with maximizes the chances for successful mitigation is necessary. Decisions on acute or repeated dosing need to be made and arrangements for combining the in vivo comet assay with the in vivo micronucleus assay are to be considered. Often synthesis methods need to be scaled up fast to provide the required amount of compound and information on suitable formulations needs to be in place. As exposure data is crucial for interpretation of results, analytical methods need to be brought in place rapidly. An experienced multi skilled and communicative team needs to be available to deploy successfully this kind of assays at an early stage of development. We will present a few scenarios on study conduct and demonstrate how this assay can make a difference for the further development of a new drug.

  15. Time-dependent injection of Oort Cloud comets into earth-crossing orbits

    International Nuclear Information System (INIS)

    Fernandez, J.A.; Ip, W.H.; Max-Planck-Institut fuer Aeronomie, Katlenburg-Lindau, West Germany)

    1987-01-01

    The present consideration of close stellar encounter-induced modulations of the influx rate of Oort Cloud comets notes that comet showers sufficiently intense for emergence in cratering statistics are produced at 80-Myr intervals, on the assumption of an Oort Cloud heavy comet core. Numerical simulations of the time evolution of comet showers or bursts indicate that a long tail of residual shower comets follows the major event with an intensity of about 0.01 of the peak rate after 20-30 Myr, thereby suggesting that residual comet showers are primarily clustered in certain areas of the sky, rendering them observable at virtually any time. 33 references

  16. Dynamical evolution and disintegration of comets

    Science.gov (United States)

    Kresak, L.

    Current concepts of the origin and evolution of comets are reviewed. The place of their formation from which they have been delivered into the Oort reservoir is still an open problem, but the region of the outermost planets appears most probable. The interplay of stellar and planetary perturbations can be traced by model computations which reveal both the general trends and the variety of individual evolutionary paths. The present structure of the system of comets is controlled by the dynamical evolution of its individual members, limited by their physical aging by disintegration. Where the lifetimes are short, as in the Jupiter family of short-period comets, an equilibrium between elimination and replenishment is established. The role of different destructive processes and the resulting survival times are discussed.

  17. Observations of faint comets at McDonald Observatory: 1978-1980

    Science.gov (United States)

    Barker, E. S.; Cochran, A. L.; Rybski, P. M.

    1981-01-01

    Modern observational techniques, developed for spectroscopy and photometry of faint galaxies and quasars, successfully applied to faint comets on the 2.7 m telescope. The periodic comets Van Biesbrock, Ashbrook-Jackson, Schwassmann-Wachmann 1, Tempel 2, Encke, Forbes, Brooks 2, Stephan-Oterma and the new comets Bradfield (19791), Bowell (1980b), Chernis-Petrauskas (1980k) were observed. The comets ranged in magnitude from 10th to 20th magnitude. For comets fainter than 19th magnitude, reflectance spectra at 100A resolution and area photometry were obtained. On comets of 17th or 18th magnitude, spectrometric scans (6A resolution) of the nucleus or inner coma region. On those comets which are brighter than 16th magnitude spatial spectrophotometric (6A resolution) studies of the inner and extended comae were done. An extensive spatial study of the comae of P/Encke and P/Stephen-Oterma, correlated with heliocentric distance is taking place. The observing process used is described and examples of the results obtained to date are discussed.

  18. Comets, Asteroids, Meteorites, and the Origin of the Biosphere

    Science.gov (United States)

    Hoover, Richard B.

    2006-01-01

    During the past few decades, the delivery of water, organics, and prebiotic chemicals to the Biosphere of Earth during the Hadean (4.5-3.8 Ga) period of heavy bombardment by comets and asteroids has become more widely accepted. Comets are still largely regarded as frigid, pristine bodies of protosolar nebula material that are devoid of liquid water and therefore unsuitable for life. Complex organic compounds have been observed in comets and on the water-rich asteroid 1998 KY26 and near IR observations have indicated the presence of crystalline water ice and ammonia hydrate on the large Kuiper Belt object (50000) Quaoar that has resurfacing suggesting cryovolcanic outgassing. Spacecraft observations of the chemical compositions and characteristics of the nuclei of several comets (Halley, Borrelly, Wild 2, and Tempel 1) have shown that comets contain complex organic chemicals; that water is the predominant volatile; and that extremely high temperatures (approx. 350-400 K) can be reached on the surfae of the very black (albedo approx. 0.03) nuclei of comets when they approach the Sun. Impact craters and pinnacles observed on comet Wild 2 suggest a thick crust. Episodic outbursts and jets from the nuclei of several comets indicate that localized regimes of liquid water and water vapor can periodically exist beneath the comet crust. The Deep Impact mission found the temperature of the nucleus of comet Tempel 1 at 1.5 AU varied from a minimum of 280 plus or minus 8 K the 330K (57 C) on the sunlit side. In this paper it is argued that that pools and films of liquid water exist (within a wide range of temperatures) in cavities and voids just beneath the hot, black crust. The possibility of liquid water existing over a wide range of temperatures significantly enhances the possibility that comets might contain niches suitable for the growth of microbial communities and ecosystems. These regimes would be ideal for the growth of psychrophilic, mesophilic, and thermophilic

  19. Disintegration phenomena in Comet West

    Science.gov (United States)

    Sekanina, Z.

    1976-01-01

    Two peculiarities of Comet West, the multiple splitting of the nucleus as seen in telescope observations and the complex structure of the dust tail, are discussed. A method of analysis based on the premise that the observed rate of separation of a fragment from the principal nucleus is determined by the difference in effective solar attraction acting on the bodies is applied to investigate the motion of the four fragments that separated from the nucleus of Comet West. The predicted motion of the fragments is in good agreement with available observations. It is suggested that the 'synchronic' bands of the dust tail consist of tiny fragments from relatively large particles that burst after release from the comet. The unusual orientation of these bands and their high surface brightness relative to the diffuse tail are explained by a sudden increase in the particle acceleration and in the total scattering surface as the result of the disintegration of the larger particles.

  20. Origin of comets - implications for planetary formation

    International Nuclear Information System (INIS)

    Weissman, P.R.; Arizona Univ., Tucson)

    1985-01-01

    Primordial and episodic theories for the origin of comets are discussed. The implications of the former type for the origin of the solar system are considered. Candidate sites for the formation of comets are compared. The possible existence of a massive inner Oort cloud is discussed

  1. Asteroid Family Associations of Main-Belt Comets

    Science.gov (United States)

    Hsieh, Henry H.; Novakovic, Bojan; Kim, Yoonyoung; Brasser, Ramon

    2016-10-01

    We present a population-level analysis of the asteroid family associations of known main-belt comets or main-belt comet candidates (which, to date, have largely just been analyzed on individual bases as they have been discovered). In addition to family associations that have already been reported in the literature, we have identified dynamical relationships between 324P/La Sagra and the Alauda family, P/2015 X6 (PANSTARRS) and the Aeolia family, and P/2016 G1 (PANSTARRS) and the Adeona family. We will discuss the overall implications of these family associations, particularly as they pertain to the hypothesis that members of primitive asteroid family members may be more susceptible to producing observable sublimation-driven dust emission activity, and thus becoming main-belt comets. We will also discuss the significance of other dynamical and physical properties of a family or sub-family as they relate to the likelihood of that family containing one or more currently active main-belt comets.

  2. Learned modesty and the first lady's comet: a commentary on Caroline Herschel (1787) 'An account of a new comet'.

    Science.gov (United States)

    Winterburn, Emily

    2015-04-13

    Long before women were allowed to become Fellows of the Royal Society, or obtain university degrees, one woman managed to get her voice heard, her discovery verified and her achievement celebrated. That woman was Caroline Herschel, who, as this paper will discuss, managed to find ways to fit comet discoveries into her domestic life, and present them in ways that were socially acceptable. Caroline lived in a time when strict rules dictated how women (and men) should behave and present themselves and their work. Caroline understood these rules, and used them carefully as she announced each discovery, starting with this comet which she found in 1786. Caroline discovered her comets at a time when astronomers were mainly concerned with position, identifying where things were and how they were moving. Since her discoveries, research has moved on, as astronomers, using techniques from other fields, and most recently sending experiments into space, have learned more about what comets are and what they can tell us about our solar system. Caroline's paper marks one small, early step in this much bigger journey to understand comets. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.

  3. How pristine is the interior of the comet 67P/Churyumov-Gerasimenko?

    Science.gov (United States)

    Capria, Maria Teresa; Capaccioni, Fabrizio; Filacchione, Gianrico; Tosi, Federico; De Sanctis, Maria Cristina; Mottola, Stefano; Ciarniello, Mauro; Formisano, Michelangelo; Longobardo, Andrea; Migliorini, Alessandra; Palomba, Ernesto; Raponi, Andrea; Kührt, Ekkehard; Bockelée-Morvan, Dominique; Erard, Stéphane; Leyrat, Cedric; Zinzi, Angelo

    2017-07-01

    Comets are usually considered to be the most primitive bodies in the Solar System. The level of truth of this paradigm, however, is a matter of debate, especially if by primitive we mean that they represent a sample of intact, unprocessed material. We now have the possibility of analysing the comet 67P/Churyumov-Gerasimenko with an unprecedented level of detail, but its interior remains largely unprobed and unknown. The questions we address in this paper concern the depth of the processed layers, and whether the comet nucleus, under these processed layers, is really representative of the original material. We applied the Rome model for the thermal evolution and differentiation of nuclei to give an estimation of the evolution and depth of the active layers and of the interplay between the erosion process and the penetration of the heat wave. In order to characterize the illumination regime and the activity on the nucleus, two locations with very different illumination histories were chosen for the simulation. For both locations, the bulk of the activity tends to be concentrated around the perihelion time, giving rise to a high erosion rate. As a consequence, the active layers tend to remain close to the surface, and the interior of the comet, below a layer of few tens of centimetres, can be considered as pristine.

  4. The C-12/C-13 abundance ratio in Comet Halley

    International Nuclear Information System (INIS)

    Wyckoff, S.; Lindholm, E.; Wehinger, P.A.; Peterson, B.A.; Zucconi, J.M.

    1989-01-01

    The individual (C-13)N rotational lines in Comet Halley are resolved using high-resolution spectra of the CN B2Sigma(+)-X2Sigma(+) (0,0) band. The observe C-12/C-13 abundance ratio excludes a site of origin for the comet near Uranus and Neptune and suggests a condensation environment quite distinct from other solar system bodies. Two theories are presented for the origin of Comet Halley. One theory suggest that the comet originated 4.5 Gyr ago in an inner Oort cloud at a heliocentric distance greater than 100 AU where chemical fractionation led to the C-13 enrichment in the CN parent molecule prior to condensation of the comet nucleus. According to the other, more plausible theory, the comet nucleus condensed relatively recently from the interstellar medium which has become enriches in C-13 and was subsequently gravitationally captured by the solar system. 107 refs

  5. On the nature of the Halley comet

    International Nuclear Information System (INIS)

    Dobrovol'skij, O.V.; Ioffe, Z.M.

    1987-01-01

    The results of study of the Halley comet by means of the ''Vega'', ''Suisej'', ''Sakigaki'' and ''Jotton'' space probes are presented in the popular form. The form and composition of the comet nucleus, its atmosphere and processes ocurring when moving in the near-the-solar space are described

  6. The exploration of Halley's comet - An example of international cooperation

    Science.gov (United States)

    Rahe, Jurgen H.; Newburn, Ray L., Jr.

    1987-01-01

    The history of international cooperation in studies of comets started with observations in 1577 and 1680, when Tycho Brahe and Newton, respectively, collected position measurements made in different countries to determine the paths of the comets observed. In the fall of 1979, a worldwide Comet Halley watch was proposed. As a result of international cooperation, Comet Halley was explored during its recent appearance from the ground, earth orbit, Venus orbit, interplanetary space, and from within the comet itself. The various activities in space were coordinated by the ESA, the USSR Intercosmos, the Japanese ISAS, and NASA, through the Inter-Agency Consultative Group. The activities of the ground-based observers were coordinated by the International Halley Watch.

  7. Dynamical evolution and disintegration of comets

    International Nuclear Information System (INIS)

    Kresak, L.

    1982-01-01

    Current concepts of the origin and evolution of comets are reviewed. The place of their formation from which they have been delivered into the Oort reservoir is still an open problem, but the region of the outermost planets appears most probable. The interplay of stellar and planetary perturbations can be traced by model computations which reveal both the general trends and the variety of individual evolutionary paths. The present structure of the system of comets is controlled by the dynamical evolution of its individual members limited by their physical aging by disintegration. Where the lifetimes are short, as in the Jupiter family of short-period comets, an equilibrium between elimination and replenishment is established. The role of different destructive processes and the resulting survival times are discussed. (Auth.)

  8. Internal gravity, self-energy, and disruption of comets and asteroids

    Science.gov (United States)

    Dobrovolskis, Anthony R.; Korycansky, D. G.

    2018-03-01

    The internal gravity and self-gravitational energy of a comet, asteroid, or small moon have applications to their geophysics, including their formation, evolution, cratering, and disruption, the stresses and strains inside such objects, sample return, eventual asteroid mining, and planetary defense strategies for potentially hazardous objects. This paper describes the relation of an object's self-energy to its collisional disruption energy, and shows how to determine an object's self-energy from its internal gravitational potential. Any solid object can be approximated to any desired accuracy by a polyhedron of sufficient complexity. An analytic formula is known for the gravitational potential of any homogeneous polyhedron, but it is widely believed that this formula applies only on the surface or outside of the object. Here we show instead that this formula applies equally well inside the object. We have used these formulae to develop a numerical code which evaluates the self-energy of any homogeneous polyhedron, along with the gravitational potential and attraction both inside and outside of the object, as well as the slope of its surface. Then we use our code to find the internal, external, and surface gravitational fields of the Platonic solids, asteroid (216) Kleopatra, and comet 67P/Churyumov-Gerasimenko, as well as their surface slopes and their self-gravitational energies. We also present simple spherical, ellipsoidal, cuboidal, and duplex models of Kleopatra and comet 67P, and show how to generalize our methods to inhomogeneous objects and magnetic fields. At present, only the self-energies of spheres, ellipsoids, and cuboids (boxes) are known analytically (or semi-analytically). The Supplementary Material contours the central potential and self-energy of homogeneous ellipsoids and cuboids of all aspect ratios, and also analytically the self-gravitational energy of a "duplex" consisting of two coupled spheres. The duplex is a good model for "contact binary

  9. Large eddy simulation of Loss of Vacuum Accident in STARDUST facility

    International Nuclear Information System (INIS)

    Benedetti, Miriam; Gaudio, Pasquale; Lupelli, Ivan; Malizia, Andrea; Porfiri, Maria Teresa; Richetta, Maria

    2013-01-01

    Highlights: ► Fusion safety, plasma material interaction. ► Numerical and experimental data comparison to analyze the consequences of Loss of Vacuum Accident that can provoke dust mobilization inside the Vacuum Vessel of the Nuclear Fusion Reactor ITER-like. -- Abstract: The development of computational fluid dynamic (CFD) models of air ingress into the vacuum vessel (VV) represents an important issue concerning the safety analysis of nuclear fusion devices, in particular in the field of dust mobilization. The present work deals with the large eddy simulations (LES) of fluid dynamic fields during a vessel filling at near vacuum conditions to support the safety study of Loss of Vacuum Accidents (LOVA) events triggered by air income. The model's results are compared to the experimental data provided by STARDUST facility at different pressurization rates (100 Pa/s, 300 Pa/s and 500 Pa/s). Simulation's results compare favorably with experimental data, demonstrating the possibility of implementing LES in large vacuum systems as tokamaks

  10. AKARI NEAR-INFRARED SPECTROSCOPIC SURVEY FOR CO2 IN 18 COMETS

    International Nuclear Information System (INIS)

    Ootsubo, Takafumi; Kawakita, Hideyo; Hamada, Saki; Kobayashi, Hitomi; Yamaguchi, Mitsuru; Usui, Fumihiko; Nakagawa, Takao; Ueno, Munetaka; Ishiguro, Masateru; Sekiguchi, Tomohiko; Watanabe, Jun-ichi; Sakon, Itsuki; Shimonishi, Takashi; Onaka, Takashi

    2012-01-01

    We conducted a spectroscopic survey of cometary volatiles with the Infrared Camera on board the Japanese infrared satellite AKARI in the wavelength range from 2.5 to 5 μm. In our survey, 18 comets, including both the Oort cloud comets and the Jupiter-family comets, were observed in the period from 2008 June to 2010 January, most of which were observed at least twice. The prominent emission bands in the observed spectra are the fundamental vibrational bands of water (H 2 O) at 2.7 μm and carbon dioxide (CO 2 ) at 4.3 μm. The fundamental vibrational band of carbon monoxide (CO) around 4.7 μm and the broad emission feature, probably related to carbon-hydrogen-bearing molecules, can also be recognized around the 3.3-3.5-μm region in some of the comets. With respect to H 2 O, gas production rate ratios of CO 2 have been derived in 17 comets, except for the comet 29P/Schwassmann-Wachmann 1. Our data set provides the largest homogeneous database of CO 2 /H 2 O production rate ratios in comets obtained so far. The CO 2 /H 2 O production rate ratios are considered to reflect the composition of cometary ice when a comet is observed at a heliocentric distance within ∼2.5 AU, since H 2 O ice fully sublimates there. The CO 2 /H 2 O ratio in cometary ice spans from several to ∼30% among the comets observed at 2 in the comets seems to be smaller than unity based on our observations, although we only obtain upper limits for CO in most of the comets.

  11. MOLECULAR OXYGEN IN OORT CLOUD COMET 1P/HALLEY

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, M.; Altwegg, K. [Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Dishoeck, E. F. van [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Schwehm, G. [ESA (retired) Science Operations Department, ESTEC, Keplerlaan 1, 2201 AZ Noordwijk (Netherlands)

    2015-12-10

    Recently, the ROSINA mass spectrometer suite on board the European Space Agency's Rosetta spacecraft discovered an abundant amount of molecular oxygen, O{sub 2}, in the coma of Jupiter family comet 67P/Churyumov–Gerasimenko of O{sub 2}/H{sub 2}O = 3.80 ± 0.85%. It could be shown that O{sub 2} is indeed a parent species and that the derived abundances point to a primordial origin. Crucial questions are whether the O{sub 2} abundance is peculiar to comet 67P/Churyumov–Gerasimenko or Jupiter family comets in general, and also whether Oort cloud comets such as comet 1P/Halley contain similar amounts of molecular oxygen. We investigated mass spectra obtained by the Neutral Mass Spectrometer instrument during the flyby by the European Space Agency's Giotto probe of comet 1P/Halley. Our investigation indicates that a production rate of O{sub 2} of 3.7 ± 1.7% with respect to water is indeed compatible with the obtained Halley data and therefore that O{sub 2} might be a rather common and abundant parent species.

  12. Effect of low dose tritium on mouse lymphocyte DNA estimated by comet assay

    International Nuclear Information System (INIS)

    Ichimasa, Yusuke; Otsuka, Kensuke; Maruyama, Satoko; Tauchi, Hiroshi; Ichimasa, Michiko; Uda, Tatsuhiko

    2003-01-01

    This paper deals with low dose effect of HTO on mouse lymphocytes DNA (in vitro irradiation) estimated by the comet assay using ICR male mouse of 20 to 23 weeks old. Lymphocytes were isolated by centrifugation of whole blood sample on Ficoll-Paque solution and embedded in agarose gel just after mixed with HTO. After lymphocytes were exposed to 17-50 mGy of HTO, the agarose gel slides were washed to remove HTO and cell lysis treatment on the slides was conducted before electrophoresis. The individual comets on stained slides after electrophoresis were analyzed using imaging software. No significant DNA damages were observed. (author)

  13. Trajectories for spacecraft encounters with Comet Honda-Mrkos-Pajdusakova in 1996

    Science.gov (United States)

    Dunham, David W.; Jen, Shao-Chiang; Farquhar, Robert W.

    1989-01-01

    Early in 1996, the relatively bright short-period Comet Honda-Mrkos-Pajdusakova (HMP) will pass only 0.17 astronomical unit from the earth, providing both an unusually favorable apparition for ground-based observers and an opportunity for a spacecraft to reach Comet HMP on relatively low-energy trajectories. The Japanense Institute of Space and Astronautical Sciences Sakigake spacecraft is expected to fly by Comet HMP on February 3, 1996, after utilizing four earth swingbys to modify its orbit. If the camera on the ESA Giotto spacecraft is inoperable, Giotto may also be sent to Comet HMP. In addition, 1-year earth-return trajectories to Comet HMP are described, along with some that can be extended to encounter Comet Giacobini-Zinner in 1998.

  14. A Multi-Wavelength Study of Parent Volatile Abundances in Comet C/2006 M4 (SWAN)

    Science.gov (United States)

    DiSanti, Michael A.; Villanueva, Geronimo L.; Milam, Stefanie N.; Zack, Lindsay N.; Bonev, Boncho P.; Mumma, Michael; Ziurys, Lucy M.; Anderson, William M.

    2009-01-01

    Volatile organic emissions were detected post-perihelion in the long period comet C/2006 M4 (SWAN) in October and November 2006. Our study combines target-of-opportunity, observations using the infrared Cryogenic Echelle Spectrometer (CSHELL) at the NASA-IRTF 3-m telescope, and millimeter wavelength observations using the Arizona Radio Observatory (ARO) 12-m telescope. Five parent volatiles were measured with CSHELL (H2O, CO, CH3OH, CH4, and C2H6), and two additional species (HCN and CS) were measured with the ARID 12-m. These revealed highly depleted CO and somewhat enriched CH3OH compared with abundances observed in the dominant group of long-period (Oort cloud) comets in our sample and similar to those observed recently in Comet 8P/Tuttle. This may indicate highly efficient H-atom addition to CO at very low temperature (approx.10-20 K) on the surfaces of interstellar (pre-cometary) grains. Comet C12006 M4 had nearly "normal" C2H6, and CH4, suggesting a processing history similar to that experienced by the dominant group. When compared with estimated water production at the time of the millimeter observations, HCN was slightly depleted compared with the normal abundance in comets based on 1R observations but was consistent with the majority of values from the millimeter. The ratio CS/HCN in C/2006 M4 was within the range measured in ten comets at millimeter wavelengths. The higher apparent H-atom conversion efficiency compared with most comets may indicate that the icy grains incorporated into C/2006 M4 were exposed to higher H-atom densities, or alternatively to similar densities but for a longer period of time.

  15. Cometary Dust

    Science.gov (United States)

    Levasseur-Regourd, Anny-Chantal; Agarwal, Jessica; Cottin, Hervé; Engrand, Cécile; Flynn, George; Fulle, Marco; Gombosi, Tamas; Langevin, Yves; Lasue, Jérémie; Mannel, Thurid; Merouane, Sihane; Poch, Olivier; Thomas, Nicolas; Westphal, Andrew

    2018-04-01

    This review presents our understanding of cometary dust at the end of 2017. For decades, insight about the dust ejected by nuclei of comets had stemmed from remote observations from Earth or Earth's orbit, and from flybys, including the samples of dust returned to Earth for laboratory studies by the Stardust return capsule. The long-duration Rosetta mission has recently provided a huge and unique amount of data, obtained using numerous instruments, including innovative dust instruments, over a wide range of distances from the Sun and from the nucleus. The diverse approaches available to study dust in comets, together with the related theoretical and experimental studies, provide evidence of the composition and physical properties of dust particles, e.g., the presence of a large fraction of carbon in macromolecules, and of aggregates on a wide range of scales. The results have opened vivid discussions on the variety of dust-release processes and on the diversity of dust properties in comets, as well as on the formation of cometary dust, and on its presence in the near-Earth interplanetary medium. These discussions stress the significance of future explorations as a way to decipher the formation and evolution of our Solar System.

  16. On the relationship between gas and dust in 15 comets: an application to Comet 103P/Hartley 2 target of the NASA EPOXI mission of opportunity

    Science.gov (United States)

    Sanzovo, G. C.; Sanzovo, D. Trevisan; de Almeida, A. A.

    After the success of Deep Impact mission to hit the nucleus of Comet 9P/Tempel 1 with an impactor, the concerns are turned now to the possible reutilization of this dormant flyby spacecraft in the study of another comet, for only about 10% of the cost of the original mission. Comet 103P/Hartley 2 on UT 2010 October 11 is the most attractive target in terms of available fuel at rendezvous and arrival time at the comet. In addition, the comet has a low inclination so that major orbital plane changes in the spacecraft trajectory are unnecessary. In an effort to provide information concerning the planning of this new NASA EPOXI space mission of opportunity, we use in this work, visual magnitudes measurements available from International Comet Quarterly (ICQ) to obtain, applying the Semi-Empirical Method of Visual Magnitudes - SEMVM (de Almeida, Singh, & Huebner 1997), the water production rates (in molecules/s) related to its perihelion passage of 1997. When associated to the water vaporization theory of Delsemme (1982), these rates allowed the acquisition of the minimum dimension for the effective nuclear radius of the comet. The water production rates were then converted into gas production rates (in g/s) so that, with the help of the strong correlation between gas and dust found for 12 periodic comets and 3 non-period comets (Trevisan Sanzovo 2006), we obtained the dust loss rates (in g/s), its behavior with the heliocentric distance and the dust-to-gas ratios in this physically attractive rendezvous target-comet to Deep Impact spacecraft at a closest approach of 700 km.

  17. Halley comet position in structure of the comet origin general scheme

    International Nuclear Information System (INIS)

    Davydov, V.D.

    1988-01-01

    Attempt to explain data on the Halley comet nucleus figure by photographes received from space probes in 1986 was undertaken. Peanut-like nucleus might be formed from two bodies former system under specific conditions. This hypothesis preliminary development is made; solution way for the problem about quantitative characteristics of collision and destruction is found. Quantitative assessments confirm retention possibility of two space icebergs original form after their ''docking'' within relative velocity range up to a few meters per second. Then complex with visible saddle point between two jointed fragments is formed. The hypothesis suggested is well inscribed in the origin general scheme of comets with nucleus different types, and from general scheme one may draw up the most important details to this hypothesis (for example, power mechanism of binary system formation and reasons of its destabilization)

  18. The comet assay: ready for 30 more years.

    Science.gov (United States)

    Møller, Peter

    2018-02-24

    During the last 30 years, the comet assay has become widely used for the measurement of DNA damage and repair in cells and tissues. A landmark achievement was reached in 2016 when the Organization for Economic Co-operation and Development adopted a comet assay guideline for in vivo testing of DNA strand breaks in animals. However, the comet assay has much more to offer than being an assay for testing DNA strand breaks in animal organs. The use of repair enzymes increases the range of DNA lesions that can be detected with the assay. It can also be modified to measure DNA repair activity. Still, despite the long-term use of the assay, there is a need for studies that assess the impact of variation in specific steps of the procedure. This is particularly important for the on-going efforts to decrease the variation between experiments and laboratories. The articles in this Special Issue of Mutagenesis cover important technical issues of the comet assay procedure, nanogenotoxicity and ionising radiation sensitivity on plant cells. The included biomonitoring studies have assessed seasonal variation and certain predictors for the basal level of DNA damage in white blood cells. Lastly, the comet assay has been used in studies on genotoxicity of environmental and occupational exposures in human biomonitoring studies and animal models. Overall, the articles in this Special Issue demonstrate the versatility of the comet assay and they hold promise that the assay is ready for the next 30 years.

  19. Comet Kohoutek, 1973-1974, A Teachers' Guide with Student Activities.

    Science.gov (United States)

    Chapman, Robert D.

    This teacher's guide provides background information, curriculum source materials, and suggested class activities for class discussion and study. Information related to the discovery of the comet is presented as well as photographic and schematic pictures showing the sky through which the comet travels. Historical data regarding comets of the past…

  20. The Rotation Temperature of Methanol in Comet 103P/Hartley 2

    Science.gov (United States)

    Chuang, Yo-Ling; Kuan, Yi-Jehng; Milam, Stefanie; Charnley, Steven B.; Coulson, Iain M.

    2012-01-01

    Considered to be relics from Solar System formation, comets may provide the vital information connecting Solar Nebula and its parent molecular cloud. Study of chemical and physical properties of comets is thus important for our better understanding of the formation of Solar System. In addition, observing organic molecules in comets may provide clues fundamental to our knowledge on the formation of prebiotically important organic molecules in interstellar space, hence, may shed light on the origin of life on the early Earth. Comet 103PIHartley 2 was fIrst discovered in 1986 and had gone through apparitions in 1991, 1997, and 2004 with an orbital period of about 6 years, before its latest return in 2010. 2010 was also a special year for Comet 103PIHartley 2 because of the NASA EPOXI comet-flyby mission.

  1. Silicate emission feature in the spectrum of comet Mueller 1993a

    Science.gov (United States)

    Hanner, Martha S.; Hackwell, John A.; Russell, Ray W.; Lynch, David K.

    1994-01-01

    An 8- to 13-micron spectrum of comet Mueller 1993a, a dynamically new comet, was acquired when the comet was at R = 2 AU. Strong, structured silicate emission is present, closely resembling that seen in Comet P/Halley at smaller R. For the first time in a new comet, the 11.2-micron peak of crystalline olivine was detected, demonstrating that crystalline olivine particles were widespread in the solar nebula. Crystalline olivine particles could have formed in the inner protosolar nebula at temperatures greater than 1200 K; extensive radial mixing would have been required to transport these grains to the region of comet formation. Either there was more radial mixing in the solar nebula than some current theories predict or the olivine grains have a presolar origin.

  2. The persistent coma of Comet P/Schwassmann-Wachmann 1

    International Nuclear Information System (INIS)

    Jewitt, D.

    1990-01-01

    Time-series photometry of Comet P/Schwassmann-Wachmann 1 in both 1987 and 1988 shows that this comet is continually active despite its large heliocentric distance. The observed activity, upon which the famous outbursts of this comet are superposed, may be driven by the sublimation of crystalline water ice at the nucleus surface. A simple model which accounts for both the continuous activity and the sporadic outbursts is suggested. 34 refs

  3. The mass disruption of Jupiter Family comets

    Science.gov (United States)

    Belton, Michael J. S.

    2015-01-01

    I show that the size-distribution of small scattered-disk trans-neptunian objects when derived from the observed size-distribution of Jupiter Family comets (JFCs) and other observational constraints implies that a large percentage (94-97%) of newly arrived active comets within a range of 0.2-15.4 km effective radius must physically disrupt, i.e., macroscopically disintegrate, within their median dynamical lifetime. Additional observational constraints include the numbers of dormant and active nuclei in the near-Earth object (NEO) population and the slope of their size distributions. I show that the cumulative power-law slope (-2.86 to -3.15) of the scattered-disk TNO hot population between 0.2 and 15.4 km effective radius is only weakly dependent on the size-dependence of the otherwise unknown disruption mechanism. Evidently, as JFC nuclei from the scattered disk evolve into the inner Solar System only a fraction achieve dormancy while the vast majority of small nuclei (e.g., primarily those with effective radius <2 km) break-up. The percentage disruption rate appears to be comparable with that of the dynamically distinct Oort cloud and Halley type comets (Levison, H.F., Morbidelli, A., Dones, L., Jedicke, R., Wiegert, P.A., Bottke Jr., W.F. [2002]. Science 296, 2212-2215) suggesting that all types of comet nuclei may have similar structural characteristics even though they may have different source regions and thermal histories. The typical disruption rate for a 1 km radius active nucleus is ∼5 × 10-5 disruptions/year and the dormancy rate is typically 3 times less. We also estimate that average fragmentation rates range from 0.01 to 0.04 events/year/comet, somewhat above the lower limit of 0.01 events/year/comet observed by Chen and Jewitt (Chen, J., Jewitt, D.C. [1994]. Icarus 108, 265-271).

  4. Comet P/Machholtz and the Quadrantid meteor stream

    International Nuclear Information System (INIS)

    Mcintosh, B.A.

    1990-01-01

    Attention is drawn to the suggestive similarities between the calculated perturbation behavior of Comet P/Machholtz 1986 VIII, on the one hand, and on the other those of the Quadrantid, Delta Aquarid, and Arietid meteor streams. There appears to be adequate evidence for the formation by the Comets P/Machholtz and 1491-I, together with the three meteor streams, of a related complex controlled by Jupiter's gravitational perturbations; there is no comparably compelling information, however, bearing on the questions of parent-offspring or sibling relationships among these comets and meteor streams. 13 refs

  5. Detection of DNA damage in mussels and sea urchins exposed to crude oil using comet assay

    International Nuclear Information System (INIS)

    Taban, I.C.; Bechmann, R.K.; Torgrimsen, S.; Baussant, T.; Sanni, S.

    2004-01-01

    The single-cell microgel electrophoresis assay or the comet assay was used to evaluate DNA damage of dispersed crude oil on sea urchins (Strongylocentrotus droebachiensis) and mussels (Mytilus edulis L.). Sea urchins were exposed to 0.06 and 0.25 mg/L dispersed crude oil in a continuous flow system, while the mussels were exposed to 0.015, 0.06 and 0.25 mg/L dispersed crude oil. Sea urchin coelomocytes and mussel haemocytes were sampled after 4 and 5 weeks exposure, respectively. In the sea urchin coelomocytes, there was a significant concentration-related increase in the percentage of DNA in comet tail. In mussel haemocytes, there was a significantly higher percentage of DNA in comet tail for all treatments compared to the control. The responses were concentration-related up to 0.06 mg/L oil. The two highest exposure concentrations of mussels were not significantly different from each other. These results indicate that the comet assay can be used for biomonitoring of DNA damage in marine invertebrates following oil contamination. (author)

  6. Plasma Waves Associated with Mass-Loaded Comets

    Science.gov (United States)

    Tsurutani, Bruce; Glassmeier, Karl-Heinz

    2015-01-01

    Plasma waves and instabilities are integrally involved with the plasma "pickup" process and the mass loading of the solar wind (thus the formation of ion tails and the magnetic tails). Anisotropic plasmas generated by solar wind-comet interactions (the bow shock, magnetic field pileup) cause the generation of plasma waves which in turn "smooth out" these discontinuities. The plasma waves evolve and form plasma turbulence. Comets are perhaps the best "laboratories" to study waves and turbulence because over time (and distance) one can identify the waves and their evolution. We will argue that comets in some ways are better laboratories than magnetospheres, interplanetary space and fusion devices to study nonlinear waves and their evolution.

  7. The comet assay as a rapid test in biomonitoring occupational exposure to DNA-damaging agents and effect of confounding factors

    DEFF Research Database (Denmark)

    Møller, P; Knudsen, Lisbeth E.; Loft, S

    2000-01-01

    appeared to have less power than the positive studies. Also, there were poor dose-response relationships in many of the biomonitoring studies. Many factors have been reported to produce effects by the comet assay, e.g., age, air pollution exposure, diet, exercise, gender, infection, residential radon...... be used as criteria for the selection of populations and that data on exercise, diet, and recent infections be registered before blood sampling. Samples from exposed and unexposed populations should be collected at the same time to avoid seasonal variation. In general, the comet assay is considered...... exposure, smoking, and season. Until now, the use of the comet assay has been hampered by the uncertainty of the influence of confounding factors. We argue that none of the confounding factors are unequivocally positive in the majority of the studies. We recommend that age, gender, and smoking status...

  8. New Image of Comet Halley in the Cold

    Science.gov (United States)

    2003-09-01

    VLT Observes Famous Traveller at Record Distance Summary Seventeen years after the last passage of Comet Halley , the ESO Very Large Telescope at Paranal (Chile) has captured a unique image of this famous object as it cruises through the outer solar system. It is completely inactive in this cold environment. No other comet has ever been observed this far - 4200 million km from the Sun - or that faint - nearly 1000 million times fainter than what can be perceived with the unaided eye. This observation is a byproduct of a dedicated search [1] for small Trans-Neptunian Objects, a population of icy bodies of which more than 600 have been found during the past decade. PR Photo 27a/03 : VLT image (cleaned) of Comet Halley PR Photo 27b/03 : Sky field in which Comet Halley was observed PR Photo 27c/03 : Combined VLT image with star trails and Comet Halley The Halley image ESO PR Photo 27a/03 ESO PR Photo 27a/03 [Preview - JPEG: 546 x 400 pix - 207k] [Normal - JPEG: 1092 x 800 pix - 614k] [FullRes - JPEG: 1502 x 1100 pix - 1.1M] Caption : PR Photo 27a/03 shows the faint, star-like image of Comet Halley (centre), observed with the ESO Very Large Telescope (VLT) at the Paranal Observatory on March 6-8, 2003. 81 individual exposures from three of the four 8.2-m VLT telescopes with a total exposure time of about 9 hours were combined to show the magnitude 28.2 object. At this time, Comet Halley was about 4200 million km from the Sun (28.06 AU) and 4080 million km (27.26 AU) from the Earth. All images of stars and galaxies in the field were removed during the extensive image processing needed to produce this unique image. Due to the remaining, unavoidable "background noise", it is best to view the comet image from some distance. The field measures 60 x 40 arcsec 2 ; North is up and East is left. Remember Comet Halley - the famous "haired star" that has been observed with great regularity - about once every 76 years - during more than two millennia? Which was visited by an

  9. Advances in Small Particle Handling of Astromaterials in Preparation for OSIRIS-REx and Hayabusa2: Initial Developments

    Science.gov (United States)

    Snead, C. J.; McCubbin, F. M.; Nakamura-Messenger, K.; Righter, K.

    2018-01-01

    The Astromaterials Acquisition and Curation office at NASA Johnson Space Center has established an Advanced Curation program that is tasked with developing procedures, technologies, and data sets necessary for the curation of future astromaterials collections as envisioned by NASA exploration goals. One particular objective of the Advanced Curation program is the development of new methods for the collection, storage, handling and characterization of small (less than 100 micrometer) particles. Astromaterials Curation currently maintains four small particle collections: Cosmic Dust that has been collected in Earth's stratosphere by ER2 and WB-57 aircraft, Comet 81P/Wild 2 dust returned by NASA's Stardust spacecraft, interstellar dust that was returned by Stardust, and asteroid Itokawa particles that were returned by the JAXA's Hayabusa spacecraft. NASA Curation is currently preparing for the anticipated return of two new astromaterials collections - asteroid Ryugu regolith to be collected by Hayabusa2 spacecraft in 2021 (samples will be provided by JAXA as part of an international agreement), and asteroid Bennu regolith to be collected by the OSIRIS-REx spacecraft and returned in 2023. A substantial portion of these returned samples are expected to consist of small particle components, and mission requirements necessitate the development of new processing tools and methods in order to maximize the scientific yield from these valuable acquisitions. Here we describe initial progress towards the development of applicable sample handling methods for the successful curation of future small particle collections.

  10. Results from the UMD physical properties of comets survey

    Science.gov (United States)

    Lisse, Carey M.; A'Hearn, Michael F.; Fernandez, Yanga R.

    2005-01-01

    We report on an ongoing statistical study of the emitted dust and exposed nuclei of a survey of the brightest near-Earth comets over the last 13 years. Combined thermal infrared and optical observations are analyzed using dynamical spectral and morphological coma models [123] to update and improve dust emission rates [4] and nucleus size estimates [5]. Using these results we show that 1) there is more than enough dust emitted from short period comets into bound solar system orbits to create and support the current interplanetary dust cloud (IPD); 2) that a population of dormant or extinct comets in the solar system is quite plausible; and 3) that the lifetime versus sublimation for the short period comets is much longer than their dynamical lifetime. [1] C.M. Lisse et al. (1998) Ap J 496 971. [2] C.M. Lisse et al. (1999) Icarus 140 189. [3] Y.R. Fernandez et al. (2000) Icarus 147 145 [4] L. Kresak and M. Kresakova (1987) in Symposium on Diversity and Similarity of Comets ESA SP-278 739 [5] D.C.Jewitt (1991) in Comets in the Post-Halley Era (R.L. Newburn M. Neugebauer and J. Rahe Eds.) Kluwer Academic Dordecht 19.

  11. Physical Mechanism of Comet Outbursts: The Movie

    Science.gov (United States)

    Hartmann, William K.

    2014-11-01

    During experiments conducted in 1976 at the NASA Ames Research Center’s Vertical Gun Facility (VGF), the author studied low velocity impacts into simulated regolith powders and gravels, in order to examine physics of low-velocity collisions during early solar system planetesimal formation. In one “accidental” experiment, the bucket of powder remained gas-charged during evacuation of the VGF vacuum chamber. The impactor, moving at 5.5 m/s, disturbed the surface, initiating eruptions of dust-charged gas, shooting in jets from multiple vents at speeds up to about 3 m/s, with sporadic venting until 17 seconds after the impact. This experiment was described in [1], which concluded that it simulated comet eruption phenomena. In this hypothesis, a comet nucleus develops a lag deposit of regolith in at least some regions. At a certain distance from the sun, the thermal wave penetrates to an ice-rich depth, causing sublimation. Gas rises into the regolith, collects in pore spaces, and creates a gas-charged powder, as in our experiment. Any surface disturbance, such as a meteoroid, may initiate a temporary eruption, or eventually the gas pressure becomes sufficient to blow off the overburden. Our observed ejection speed would be sufficient to launch dust off of a kilometer-scale comet nucleus.Film (100 frames/s) of the event was obtained, but was partially torn up in a projector. It has recently been reconstituted (Centric Photo Labs, Tucson) and dramatically illustrates various cometary phenomena. Parabolic curtains of erupted material resemble curtains of material photographed from earth in real comet comas, “falling back” under solar wind forces. In retrospect, the mechanism photographed here helps explain:*sporadic eruptions in Comet P/Schwassmann-Wachmann 1 (near-circular orbit at ~6 A.U., where repeated recharge may occur).*sporadic eruptions on “asteroid” 2060 Chiron (which stays beyond 8.5 A.U.). *the thicker dust curtain (and longer eruption?) than

  12. Competitive Memory Training (COMET) for OCD: a self-treatment approach to obsessions.

    Science.gov (United States)

    Schneider, Brooke C; Wittekind, Charlotte E; Talhof, Alina; Korrelboom, Kees; Moritz, Steffen

    2015-01-01

    Competitive Memory Training (COMET) is a cognitive intervention that aims to change the maladaptive cognitive-emotional networks underlying obsessive-compulsive disorder (OCD). COMET has not been previously tried as a self-help intervention. The present study tested the preliminary feasibility, acceptability, and effectiveness of COMET for OCD implemented as a self-help intervention. Sixty-five participants with OCD recruited through online OCD self-help fora completed an online baseline assessment including measures of OCD symptoms, self-esteem, and depression. Participants were randomly assigned to either COMET or a wait-list control group. All participants were approached 4 weeks later to complete an online post-assessment. There was no evidence for a greater decline of OCD symptoms or depression under COMET. When analyses were limited to only those participants who reported reading the entire manual at least once, self-esteem was higher at post-assessment in the COMET group. Although 78.1% of patients in the COMET group rated it as appropriate for self-administration, only 56.5% performed COMET exercises regularly and 26.4% read the entire manual at least once. The feasibility and effectiveness of COMET as a self-help internet intervention for OCD was not supported in this study. Further work is needed to better understand if modifications to our implementation of COMET may yield improved outcomes.

  13. Non-destructive analyses of cometary nucleus samples using synchrotron radiation

    International Nuclear Information System (INIS)

    Flynn, G.J.; Sutton, S.R.; Rivers, M.L.

    1989-01-01

    Trace element abundances and abundance patterns in meteorites have proven to be diagnostic indicators of nebular and parent body fractionations, formation temperature, thermal metamorphism and, co-genesis. If comets are more primitive samples of the solar nebula than the meteorites, then trace element abundances in the returned comet nucleus samples should be better indicators of primitive solar nebula conditions than those of meteorites. Comet nucleus samples are likely to consist of a mixture of ices and mineral grains. To provide a complete picture of the elemental distributions, trace element abundance data on the bulk material, as well as separated mineral grains and ices, will be required. This paper discusses the present and future analytical capabilities. 22 refs., 2 figs

  14. Comet assay to determine genetic damage by the use of ivermectin in zebu cows (Bos taurus indicus

    Directory of Open Access Journals (Sweden)

    Donicer Montes-Vergara

    2017-05-01

    Full Text Available Objective. The objective of the work was evaluate the damage genetic caused by the use of ivermectin (IVM in cows zebu to concentrations of 1% and 3.15% through the test comet. Material and methods. 15 cows, were taken with age between 3 and 4 years old, average weight of 350 kg, body condition between 3 and 3.5. Three experimental groups with five animals per group, which were exposed to the concentration of IVM to 1% to 3.15% more group control (without application of IVM were used. Animal blood sample was performed by venipuncture jugular or medial flow with vacutainer® needle, extracting 8 ml of blood. The blood samples it was collected at 9, 18 and 27 days post-treatment. Results. The display of the comets is made by using fluorescence microscope, the cells were evaluated by means of visual log and the Comet image software. Evidenced the presence of nuclei with DNA migration in all analyzed plates. The values of classification of comets indicate cells with high levels of damage (grade 3: cells with high damage. The rate of DNA damage of the treatment to 1% to 3.15% was significant, to relate to the control group. Conclusions. The results obtained in this study demonstrate the likely genotoxic potential of the use of IVM in cattle.

  15. Improved orbits of two periodic comets: Tsuchinshan 1 and Tsuchinshan 2

    International Nuclear Information System (INIS)

    Szutowicz, S.

    1986-01-01

    The observations made during four apparitions of two comets were collected and the orbits of the comets were improved; 86 observations of Comet Tsuchinshan 1 and 50 observations of Comet Tsuchinshan 2 made in the period 1965-1985 were used. The orbit of Comet Tsuchinshan 1 was improved taking into account nongravitational effects in its motion as well as a displacement of the photometric center from the center of mass. The following values of nongravitational parameters and of observational parameter D were obtained: A 1 = 0.75953 x 10 -8 , A 2 0.00375 x 10 -8 , D = 0.34698 x 10 -3 . To link all observations of Comet Tsuchinshan 2 by one system of elements it was sufficient to add observational effects as a displacement of the photometric center from the center of mass. The following value of parameter D was obtained: D = 1.00200 x 10 -3 . The equations of motion of both comets were integrated backwards and forwards till 1992. Ephemerides for their next returns were computed. 6 refs., 5 tabs. (author)

  16. Controlling variation in the comet assay

    Directory of Open Access Journals (Sweden)

    Andrew Richard Collins

    2014-10-01

    Full Text Available Variability of the comet assay is a serious issue, whether it occurs from experiment to experiment in the same laboratory, or between different laboratories analysing identical samples. Do we have to live with high variability, just because the comet assay is a biological assay rather than analytical chemistry? Numerous attempts have been made to limit variability by standardising the assay protocol, and the critical steps in the assay have been identified; agarose concentration, duration of alkaline incubation, and electrophoresis conditions (time, temperature and voltage gradient are particularly important. Even when these are controlled, variation seems to be inevitable. It is helpful to include in experiments reference standards, i.e. cells with a known amount of specific damage to the DNA. They can be aliquots frozen from a single large batch of cells, either untreated (negative controls or treated with, for example, H2O2 or X-rays to induce strand breaks (positive control for the basic assay, or photosensitiser plus light to oxidise guanine (positive control for Fpg- or OGG1-sensitive sites. Reference standards are especially valuable when performing a series of experiments over a long period - for example, analysing samples of white blood cells from a large human biomonitoring trial - to check that the assay is performing consistently, and to identify anomalous results necessitating a repeat experiment. The reference values of tail intensity can also be used to iron out small variations occurring from day to day. We present examples of the use of reference standards in human trials, both within one laboratory and between different laboratories, and describe procedures that can be used to control variation.

  17. Comets Nature, Dynamics, Origin, and their Cosmogonical Relevance

    CERN Document Server

    Fernández, Julio Angel

    2005-01-01

    The book covers the most recent ideas about the nature and dynamics of comets, including a thorough discussion on Oort cloud dynamics which has not received due attention in other books on the subject. It also discusses the most relevant aspects of the physics and chemistry of comet nuclei, highlighting their importance as relics of the protoplanetary disk and, perhaps, as carriers of water and organics that permitted the development of life on Earth. The book contains several tables with useful data, and an ample bibliography covering the most recent work as well as some historical key contributions to the subject. It may be suitable as a textbook for graduate students with some basic knowledge of celestial mechanics and astrophysics, as well as a consult book for comet researchers, or researchers from other related fields willing to start working on comets, or get an updated view of the subject.

  18. AKARI NEAR-INFRARED SPECTROSCOPIC SURVEY FOR CO{sub 2} IN 18 COMETS

    Energy Technology Data Exchange (ETDEWEB)

    Ootsubo, Takafumi [Astronomical Institute, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578 (Japan); Kawakita, Hideyo; Hamada, Saki; Kobayashi, Hitomi; Yamaguchi, Mitsuru [Koyama Astronomical Observatory, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555 (Japan); Usui, Fumihiko; Nakagawa, Takao; Ueno, Munetaka [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Ishiguro, Masateru [Department of Physics and Astronomy, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Sekiguchi, Tomohiko [Department of Teacher Training, Hokkaido University of Education, Asahikawa Campus, Hokumon 9, Asahikawa, Hokkaido 070-8621 (Japan); Watanabe, Jun-ichi [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Sakon, Itsuki; Shimonishi, Takashi; Onaka, Takashi, E-mail: ootsubo@astr.tohoku.ac.jp [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2012-06-10

    We conducted a spectroscopic survey of cometary volatiles with the Infrared Camera on board the Japanese infrared satellite AKARI in the wavelength range from 2.5 to 5 {mu}m. In our survey, 18 comets, including both the Oort cloud comets and the Jupiter-family comets, were observed in the period from 2008 June to 2010 January, most of which were observed at least twice. The prominent emission bands in the observed spectra are the fundamental vibrational bands of water (H{sub 2}O) at 2.7 {mu}m and carbon dioxide (CO{sub 2}) at 4.3 {mu}m. The fundamental vibrational band of carbon monoxide (CO) around 4.7 {mu}m and the broad emission feature, probably related to carbon-hydrogen-bearing molecules, can also be recognized around the 3.3-3.5-{mu}m region in some of the comets. With respect to H{sub 2}O, gas production rate ratios of CO{sub 2} have been derived in 17 comets, except for the comet 29P/Schwassmann-Wachmann 1. Our data set provides the largest homogeneous database of CO{sub 2}/H{sub 2}O production rate ratios in comets obtained so far. The CO{sub 2}/H{sub 2}O production rate ratios are considered to reflect the composition of cometary ice when a comet is observed at a heliocentric distance within {approx}2.5 AU, since H{sub 2}O ice fully sublimates there. The CO{sub 2}/H{sub 2}O ratio in cometary ice spans from several to {approx}30% among the comets observed at <2.5 AU (13 out of the 17 comets). Alternatively, the ratio of CO/CO{sub 2} in the comets seems to be smaller than unity based on our observations, although we only obtain upper limits for CO in most of the comets.

  19. CINE: Comet INfrared Excitation

    Science.gov (United States)

    de Val-Borro, Miguel; Cordiner, Martin A.; Milam, Stefanie N.; Charnley, Steven B.

    2017-08-01

    CINE calculates infrared pumping efficiencies that can be applied to the most common molecules found in cometary comae such as water, hydrogen cyanide or methanol. One of the main mechanisms for molecular excitation in comets is the fluorescence by the solar radiation followed by radiative decay to the ground vibrational state. This command-line tool calculates the effective pumping rates for rotational levels in the ground vibrational state scaled by the heliocentric distance of the comet. Fluorescence coefficients are useful for modeling rotational emission lines observed in cometary spectra at sub-millimeter wavelengths. Combined with computational methods to solve the radiative transfer equations based, e.g., on the Monte Carlo algorithm, this model can retrieve production rates and rotational temperatures from the observed emission spectrum.

  20. Spiral arms, comets and terrestrial catastrophism

    International Nuclear Information System (INIS)

    Clube, S.V.M.; Napier, W.M.

    1982-01-01

    A review is presented of an hypothesis of terrestrial catastrophism in which comets grow in molecular clouds and are captured by the Sun as it passes through the spiral arms of the Galaxy. Assuming that comets are a major supplier of the Earth-crossing (Appollo) asteroid population, the latter fluctuates correspondingly and leads to episodes of terrestrial bombardment. Changes in the rotational momentum of core and mantle, generated by impacts, lead to episodes of magnetic field reversal and tectonic activity, while surface phenomena lead to ice-ages and mass extinctions. An episodic geophysical history with an interstellar connection is thus implied. If comets in spiral arms are necessary intermediaries in the process of star formation, the theory also has implications relating to early solar system history and galactic chemistry. These aspects are briefly discussed with special reference to the nature of spiral arms. (author)

  1. Mission to a comet that could save earth

    CERN Multimedia

    Utton, T

    2003-01-01

    Scientists are going to attempt to land a probe on the comet Wirtanen. The GBP640million unmanned craft will travel four billion miles before catching up with the comet Wirtanen and launching a robotic lander called Rosetta, on to its surface (1/2 page).

  2. Application of the microbiological method DEFT/APC and DNA comet assay to detect ionizing radiation processing of minimally processed vegetables

    International Nuclear Information System (INIS)

    Araujo, Michel Mozeika

    2008-01-01

    Marketing of minimally processed vegetables (MPV) are gaining impetus due to its convenience, freshness and apparent healthy. However, minimal processing does not reduce pathogenic microorganisms to safe levels. Food irradiation is used to extend the shelf life and inactivation of food-borne pathogens, Its combination with minimal processing could improve the safety and quality of MPV. Two different food irradiation detection methods, a biological, the DEFT/APC, and another biochemical, the DNA Comet Assay were applied to MPV in order to test its applicability to detect irradiation treatment. DEFT/APC is a microbiological screening method based on the use of the direct epi fluorescent filter technique (DEFT) and the aerobic plate count (APC). DNA Comet Assay detects DNA damage due to ionizing radiation. Samples of lettuce, chard, watercress, dandelion, kale, chicory, spinach, cabbage from retail market were irradiated O.5 kGy and 1.0 kGy using a 60 Co facility. Irradiation treatment guaranteed at least 2 log cycle reduction for aerobic and psychotropic microorganisms. In general, with increasing radiation doses, DEFT counts remained similar independent of irradiation processing while APC counts decreased gradually. The difference of the two counts gradually increased with dose increment in all samples. It could be suggested that a DEFT/APC difference over 2.0 log would be a criteria to judge if a MPV was treated by irradiation. DNA Comet Assay allowed distinguishing non-irradiated samples from irradiated ones, which showed different types of comets owing to DNA fragmentation. Both DEFT/APC method and DNA Comet Assay would be satisfactorily used as a screening method for indicating irradiation processing. (author)

  3. Terrestrial cometary tail and lunar corona induced by small comets: Predictions for Galileo

    International Nuclear Information System (INIS)

    Dessler, A.J.; Sandel, B.R.; Vasyliunas, V.M.

    1990-01-01

    A search for small comets near 1 AU is an objective of the Galileo mission. If small comets are as numerous and behave as has been proposed, two near-Earth signatures of small comets should be observable by the UVS experiment on the Earth flybys of Galileo; (1) a comet-like tail of Earth created by small comets that come close to Earth, break up and vaporize, but just miss the atmosphere and proceed back into interplanetary space, and (2) a corona surrounding the Moon induced by lunar impact of small comets

  4. Infrared imaging and photometry of Comet Giacobini-Zinner

    International Nuclear Information System (INIS)

    Campins, H.

    1986-01-01

    Infrared images and photometry were obtained to determine the spatial distribution and physical characteristics (temperature, albedo, size distribution, total mass, etc.) of the grains in the coma of Comet GZ. A 10.8 m image of Comet GZ obtained on August 4 represents the first ground-based thermal-infrared image of a Comet. Among the most significant results are: (1) an estimate of the number of grains that the ICE spacecraft must have encountered, which led the plasma wave team to conclude that they could only detect impacts on the antennae and not on the whole body of the ICE spacecraft; (2) the discovery of a population of large grains (radius > 100 micrometer), not observed in most other comets, which formed a curved tail near the nucleus (within 80 arcsec or 34,000 km); and (3) the detection of structure in the spatial distribution in the coma of the particle albedo, which was tentatively attributed to the presence of very fluffy grains which are likely to have multiple internal scattering of incident sunlight. The albedo map of Comet GZ was obtained by combining the 10.8 micrometer image shown with a simultaneous image taken at 0.68 micrometer, a bandpass which isolates the scattered continuum

  5. Catastrophic disruptions as the origin of bilobate comets

    Science.gov (United States)

    Schwartz, Stephen R.; Michel, Patrick; Jutzi, Martin; Marchi, Simone; Zhang, Yun; Richardson, Derek C.

    2018-05-01

    Several comets observed at close range have bilobate shapes1, including comet 67P/Churyumov-Gerasimenko (67P/C-G), which was imaged by the European Space Agency's Rosetta mission2,3. Bilobate comets are thought to be primordial because they are rich in supervolatiles (for example, N2 and CO) and have a low bulk density, which implies that their formation requires a very low-speed accretion of two bodies. However, slow accretion does not only occur during the primordial phase of the Solar System; it can also occur at later epochs as part of the reaccumulation process resulting from the collisional disruption of a larger body4, so this cannot directly constrain the age of bilobate comets. Here, we show by numerical simulation that 67P/C-G and other elongated or bilobate comets can be formed in the wake of catastrophic collisional disruptions of larger bodies while maintaining their volatiles and low density throughout the process. Since this process can occur at any epoch of our Solar System's history, from early on through to the present day5, there is no need for these objects to be formed primordially. These findings indicate that observed prominent geological features, such as pits and stratified surface layers4,5, may not be primordial.

  6. Comet mission hopes to uncover Earth's origins

    CERN Multimedia

    Henderson, M

    2004-01-01

    "A European spacecraft that will hunt down a comet in search of clues to the origin of life on Earth will blast off tomorrow from the Kourou spaceport in French Guiana. The Rosetta probe will take 12 years to catch up with Churyumov-Gerasimenko before becoming the first spacecraft to make a soft, controlled landing on a comet's nucleus" (1 page).

  7. The effect of different methods and image analyzers on the results of the in vivo comet assay.

    Science.gov (United States)

    Kyoya, Takahiro; Iwamoto, Rika; Shimanura, Yuko; Terada, Megumi; Masuda, Shuichi

    2018-01-01

    The in vivo comet assay is a widely used genotoxicity test that can detect DNA damage in a range of organs. It is included in the Organisation for Economic Co-operation and Development Guidelines for the Testing of Chemicals. However, various protocols are still used for this assay, and several different image analyzers are used routinely to evaluate the results. Here, we verified a protocol that largely contributes to the equivalence of results, and we assessed the effect on the results when slides made from the same sample were analyzed using two different image analyzers (Comet Assay IV vs Comet Analyzer). Standardizing the agarose concentrations and DNA unwinding and electrophoresis times had a large impact on the equivalence of the results between the different methods used for the in vivo comet assay. In addition, there was some variation in the sensitivity of the two different image analyzers tested; however this variation was considered to be minor and became negligible when the test conditions were standardized between the two different methods. By standardizing the concentrations of low melting agarose and DNA unwinding and electrophoresis times between both methods used in the current study, the sensitivity to detect the genotoxicity of a positive control substance in the in vivo comet assay became generally comparable, independently of the image analyzer used. However, there may still be the possibility that other conditions, except for the three described here, could affect the reproducibility of the in vivo comet assay.

  8. Dynamics of comets: their origin and evolution

    International Nuclear Information System (INIS)

    Carusi, A.; Valsecchi, G.B.

    1985-01-01

    Comets can be considered as remnants of the original population of planetesimals and the study of their origin and dynamical histories can provide insight into the accretion phenomena; the original mass, energy and angular momentum distribution across the solar system; the collisional fragmentation of minor bodies; the impact rates on planets and the nature of impacting bodies. The interaction of comets with other solar system bodies certainly provides one of the best possibilities for a deeper understanding of the dynamics of the whole system, and a challenging test for all theories of celestial mechanics dealing with the gravitational behaviour of multiple-body systems. Comets could also be considered as the last footprints left by the interaction of the protosun and its original galactic environment. (orig.)

  9. Comet Hyakutake to Approach the Earth in Late March 1996

    Science.gov (United States)

    1996-03-01

    Astronomers Prepare for a Rare Event In the early morning of January 31, 1996, Japanese amateur astronomer Yuji Hyakutake made his second comet discovery within five weeks. He found the new comet near the border between the southern constellations of Hydra (The Water-Snake) and Libra (The Scales), amazingly just three degrees from the position where he detected another comet on December 26, 1995. After two weeks of hectic activity among amateur and professional astronomers all over the world, much interesting information has now been gathered about the new comet which has been designated C/1996 B2 (Hyakutake) . In particular, it has been found to move in a near-parabolic orbit that will bring it unusually close to the Earth next month. It is then expected to become bright enough to be seen with the unaided eye and to remain so during several weeks thereafter. Preparations are now made to observe the celestial visitor with a large number of telescopes, on the ground and in space. This event offers a rare opportunity to study the immediate surroundings of a cometary nucleus in detail and the specialists intend to make the most of it. Discovery and orbit Yuji Hyakutake, of profession photoengraver and a well-known amateur astronomer, announced his new discovery without delay, and within 24 hours, it had been sighted by several other observers in Japan and Australia. Experienced comet-watchers described its appearance as `diffuse with central condensation and of magnitude 11-12', i.e. a little more than 100 times fainter than what can be seen with the unaided eye. This brightness is not unusual for a comet discovered by an amateur, although it would probably have been missed, had it been just a little fainter. In the present case, the decisive factors for Hyakutake's success were undoubtedly his very powerful equipment (25 x 150 binoculars) and the advantageous combination of the comet's southern position in the sky and his location in Kagoshima, the southernmost

  10. The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets

    Science.gov (United States)

    Jones, Geraint H.; Knight, Matthew M.; Battams, Karl; Boice, Daniel C.; Brown, John; Giordano, Silvio; Raymond, John; Snodgrass, Colin; Steckloff, Jordan K.; Weissman, Paul; Fitzsimmons, Alan; Lisse, Carey; Opitom, Cyrielle; Birkett, Kimberley S.; Bzowski, Maciej; Decock, Alice; Mann, Ingrid; Ramanjooloo, Yudish; McCauley, Patrick

    2018-02-01

    This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sun's centre, equal to half of Mercury's perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and

  11. Detection of the 3.4 micron emission feature in Comets P/Brorsen-Metcalf and Okazaki-Levy-Rudenko (1989r) and an observational summary

    International Nuclear Information System (INIS)

    Brooke, T.Y.; Tokunaga, A.T.; Knacke, R.F.

    1991-01-01

    The 3.4 micron emission feature due to cometary organics was detected in Comets P/Brorsen-Metcalf and Okazaki-Levy-Rudenko (1989r). Features-to-continuum ratios in these two comets were higher than those expected from the trend seen in other comets to date. Three micron spectra of eight comets are reviewed. The 3.4 micron band flux is better correlated with the water production rate than with the dust production rate in this sample of comets. High feature-to-continuum ratios in P/Brorsen-Metcalf and Okazaki-Levy-Rudenko can be explained by the low dust-to-gas ratios of these two comets. The observations to date are consistent with cometary organics being present in all comets (even those for which no 3.4 micron feature was evident) at comparable abundances with respect to water. The emission mechanism and absolute abundance of the organics are not well determined; either gas-phase fluorescence or thermal emission from hot grains is consistent with the heliocentric distance dependence of the 3.4 micron band flux. There is an overall similarity in the spectral profiles of the 3.4 micron feature in comets; however, there are some potentially significant differences in the details of the spectra. 30 refs

  12. On the asymmetric evolution of the perihelion distances of near-Earth Jupiter family comets around the discovery time

    Science.gov (United States)

    Sosa, A.; Fernández, J. A.; Pais, P.

    2012-12-01

    We study the dynamical evolution of the near-Earth Jupiter family comets (NEJFCs) that came close to or crossed the Earth's orbit at the epoch of their discovery (perihelion distances qdisc time evolution of the mean perihelion distance bar{q} of the NEJFCs at the discovery time of each comet (taken as t = 0) and a past-future asymmetry of bar{q} in an interval -1000 yr, +1000 yr centred on t = 0, confirming previous results. The asymmetry indicates that there are more comets with greater q in the past than in the future. For comparison purposes, we also analysed the population of near-Earth asteroids in cometary orbits (defined as those with aphelion distances Q > 4.5 AU) and with absolute magnitudes H time a large sample of fictitious comets, cloned from the observed NEJFCs, over a 20 000 yr time interval and started the integration before the comet's discovery time, when it had a perihelion distance q > 2 AU. By assuming that NEJFCs are mostly discovered when they decrease their perihelion distances below a certain threshold qthre = 1.05 AU for the first time during their evolution, we were able to reproduce the main features of the observed bar{q} evolution in the interval [-1000, 1000] yr with respect to the discovery time. Our best fits indicate that 40% of the population of NEJFCs would be composed of young, fresh comets that entered the region q spending at least 3000 yr in the q family comets (JFCs).

  13. COMET concept

    International Nuclear Information System (INIS)

    Alsmeyer, H.; Tromm, W.

    1995-01-01

    Studies of the COMET core catcher concept developed for a future PWR have been continued. The concept is based on the spreading of a core melt on a sacrificial layer and its erosion, until a subsequent addition of water from below causes a fragmentation of the melt. A porous solidification of the melt would then admit a complete flooding within a short period. (orig.)

  14. Kelvin-Helmholtz instability in type-1 comet tails and associated phenomena

    International Nuclear Information System (INIS)

    Ershkovich, A.I.

    1980-01-01

    Selected problems of the solar wind - comet tail coupling that are currently accessible to quantitative analysis are reviewed. The model of a comet tail as a plasma cylinder separated by a tangential discontinuity surface from the solar wind is discussed in detail. This model is compatible with the well-known Alfven mechanism of formation of the comet tail. The stability problem of the comet tail boundary (considered as a discontinuity surface) is solved. Under typical conditions a comet tail boundary can undergo the Kelvin-Helmholtz instability. With finite amplitude the stabilizing effect of the magnetic field increases, and waves become stabilized. This model supplies a detailed quantitative description of helical waves observed in type-1 comet tails. A more general model of the tail boundary as a transition layer with a continuous change of the plasma parameters within it is also considered. This theory, in principle, enables us to solve one of the fundamental problems of cometary physics: the magnetic field of the comet tail can be derived from the observations of helical waves. This field turns out to be of the order of the interplanetary field. Various other considerations, discussed in this review also support this conclusion. (orig.)

  15. On the formation of meteor showers of comet Halley

    International Nuclear Information System (INIS)

    Babadzhanov, P.B.; Obrubov, J.V.; Pushkarev, A.N.; Hajduk, A.

    1987-01-01

    The orbits of test particles ejected from the nucleus of Halley comet at its perihelion passage in 1910 with different velocities are studied for the next three passages of the comet up to 2134 taking into consideration perturbations from all planets. Some characteristics of the stream formation are presented. The calculations show that the return of the comet to its perihelion cannot produce an immediate influence on the activity of its meteor showers. (author). 2 figs., 1 tab., 13 refs

  16. Prediction of the return of Comet P/Grigg-Skjellerup in 1987

    International Nuclear Information System (INIS)

    Sitarski, G.

    1986-01-01

    Using 82 observations made in the period 1966-1982 during the last four apparitions of the comet, the corrections of orbital elements were determined together with nongravitational parameters A 1 , A 2 and with a parameter D of a displacement of the photometric center from the center of mass of the comet. It was found that a value of the secular acceleration diminished in comparison with such a value before the close approach of the comet Jupiter in 1964; the nongravitational parameters of Style 2 in Marsden's notation now are: A 1 = +0.0371, A 2 = +0.008. To make the best prediction of the comet's return in 1987, the orbit was improved using 67 observations from the last two apparitions of the comet in 1977 and 1982, and taking the constant values of A 1 , A 2 as determined earlier; basing on the latter orbit the ephemeris of the comet for 1987 was computed. 3 refs., 2 tabs. (author)

  17. COMET Multimedia modules and objects in the digital library system

    Science.gov (United States)

    Spangler, T. C.; Lamos, J. P.

    2003-12-01

    Over the past ten years of developing Web- and CD-ROM-based training materials, the Cooperative Program for Operational Meteorology, Education and Training (COMET) has created a unique archive of almost 10,000 multimedia objects and some 50 web based interactive multimedia modules on various aspects of weather and weather forecasting. These objects and modules, containing illustrations, photographs, animations,video sequences, audio files, are potentially a valuable resource for university faculty and students, forecasters, emergency managers, public school educators, and other individuals and groups needing such materials for educational use. The COMET Modules are available on the COMET educational web site http://www.meted.ucar.edu, and the COMET Multimedia Database (MMDB) makes a collection of the multimedia objects available in a searchable online database for viewing and download over the Internet. Some 3200 objects are already available at the MMDB Website: http://archive.comet.ucar.edu/moria/

  18. Strategies for Distinguishing Abiotic Chemistry from Martian Biochemistry in Samples Returned from Mars

    Science.gov (United States)

    Glavin, D. P.; Burton, A. S.; Callahan, M. P.; Elsila, J. E.; Stern, J. C.; Dworkin, J. P.

    2012-01-01

    A key goal in the search for evidence of extinct or extant life on Mars will be the identification of chemical biosignatures including complex organic molecules common to all life on Earth. These include amino acids, the monomer building blocks of proteins and enzymes, and nucleobases, which serve as the structural basis of information storage in DNA and RNA. However, many of these organic compounds can also be formed abiotically as demonstrated by their prevalence in carbonaceous meteorites [1]. Therefore, an important challenge in the search for evidence of life on Mars will be distinguishing between abiotic chemistry of either meteoritic or martian origin from any chemical biosignatures from an extinct or extant martian biota. Although current robotic missions to Mars, including the 2011 Mars Science Laboratory (MSL) and the planned 2018 ExoMars rovers, will have the analytical capability needed to identify these key classes of organic molecules if present [2,3], return of a diverse suite of martian samples to Earth would allow for much more intensive laboratory studies using a broad array of extraction protocols and state-of-theart analytical techniques for bulk and spatially resolved characterization, molecular detection, and isotopic and enantiomeric compositions that may be required for unambiguous confirmation of martian life. Here we will describe current state-of-the-art laboratory analytical techniques that have been used to characterize the abundance and distribution of amino acids and nucleobases in meteorites, Apollo samples, and comet- exposed materials returned by the Stardust mission with an emphasis on their molecular characteristics that can be used to distinguish abiotic chemistry from biochemistry as we know it. The study of organic compounds in carbonaceous meteorites is highly relevant to Mars sample return analysis, since exogenous organic matter should have accumulated in the martian regolith over the last several billion years and the

  19. Characterizing Outbursts and Nucleus Properties of Comet 29P/Schwassmann-Wachmann 1

    Science.gov (United States)

    Fernandez, Yanga

    2015-10-01

    Today's comets are remnant bodies leftover from the era of planet formation in our own Solar System. Therefore characterizing cometary structure and composition can give clues to the thermal, physical, and chemical environment of the protoplanetary disk. However before this long-term 'holy grail' of planetary astronomy can be achieved, we must understand cometary evolution so that we can know how comets have changed since their formation. The phenomenon of cometary activity, where a porous matrix of icy and rocky material turns into the gases and the dust grains we see in a comet's coma, remains a poorly-understood puzzle of short-term cometary evolution. We are in the midst of an ongoing project to understand cometary activity in a particular comet, 29P/Schwassmann-Wachmann 1, by taking advantage of existing imaging datasets that show the comet in outburst. Outbursts are useful for constraining the nucleus's spin state and the location of active areas. We propose here to analyze archival WFPC2 images of comet 29P obtained in March 1996 (Cycle 5, Project 5829), spanning 21 hours, that show the comet in outburst. These data are the highest-resolution imaging of this comet ever obtained while it was in outburst. We will analyze the morphology of the comet's dust coma to constrain properties of the nucleus and of the dust grains themselves. Additionally, we will analyze images taken in May 2000 (Cycle 8, Project 8274) that show the comet at its steady-state level of activity but may also allow us to place further constraints on the nucleus's active regions.

  20. Comet or Asteroid?

    Science.gov (United States)

    1997-11-01

    When is a minor object in the solar system a comet? And when is it an asteroid? Until recently, there was little doubt. Any object that was found to display a tail or appeared diffuse was a comet of ice and dust grains, and any that didn't, was an asteroid of solid rock. Moreover, comets normally move in rather elongated orbits, while most asteroids follow near-circular orbits close to the main plane of the solar system in which the major planets move. However, astronomers have recently discovered some `intermediate' objects which seem to possess properties that are typical for both categories. For instance, a strange object (P/1996 N2 - Elst-Pizarro) was found last year at ESO ( ESO Press Photo 36/96 ) which showed a cometary tail, while moving in a typical asteroidal orbit. At about the same time, American scientists found another (1996 PW) that moved in a very elongated comet-type orbit but was completely devoid of a tail. Now, a group of European scientists, by means of observations carried out at the ESO La Silla observatory, have found yet another object that at first appeared to be one more comet/asteroid example. However, continued and more detailed observations aimed at revealing its true nature have shown that it is most probably a comet . Consequently, it has received the provisional cometary designation P/1997 T3 . The Uppsala-DLR Trojan Survey Some time ago, Claes-Ingvar Lagerkvist (Astronomical Observatory, Uppsala, Sweden), in collaboration with Gerhard Hahn, Stefano Mottola, Magnus Lundström and Uri Carsenty (DLR, Institute of Planetary Exploration, Berlin, Germany), started to study the distribution of asteroids near Jupiter. They were particularly interested in those that move in orbits similar to that of Jupiter and which are located `ahead' of Jupiter in the so-called `Jovian L4 Lagrangian point'. Together with those `behind' Jupiter, these asteroids have been given the names of Greek and Trojan Heroes who participated in the famous Trojan war

  1. Comets As Objects of High Energy Astrophysics

    Science.gov (United States)

    Ibadov, S.

    2000-10-01

    Strong soft X-ray emission from comet Hyakutake C/1996 B2 was discovered with ROSAT in March 27, 1996 (Lisse et al. 1996, Science 274, 205-209) and the results of a theoretical approach (Ibadov 1990, Icarus 86, 283-288) served as a motive for that observations (Dennerl, Lisse and Truemper 1998, Private Communications). It is now well established that comets emit EUV and X-rays regularly (Dennerl, Englhauser and Truemper 1997, Science 277, 1625-1630; Dennerl 1998, Proc. 16th Int. Conf. Atomic Physics, Windsor, Ontario, Canada). To explain this phenomenon different theoretical models were proposed (Krasnopolsky 1997, Icarus 128, 365-385; Ibadov 1998, Proc. First XMM Workshop, Noordwijk, The Netherlands, and references therein). In the paper the problem of identifying X-ray generation mechanisms in comets will be considered.

  2. DNA Damage among Wood Workers Assessed with the Comet Assay

    Science.gov (United States)

    Bruschweiler, Evin Danisman; Wild, Pascal; Huynh, Cong Khanh; Savova-Bianchi, Dessislava; Danuser, Brigitta; Hopf, Nancy B.

    2016-01-01

    Exposure to wood dust, a human carcinogen, is common in wood-related industries, and millions of workers are occupationally exposed to wood dust worldwide. The comet assay is a rapid, simple, and sensitive method for determining DNA damage. The objective of this study was to investigate the DNA damage associated with occupational exposure to wood dust using the comet assay (peripheral blood samples) among nonsmoking wood workers (n = 31, furniture and construction workers) and controls (n = 19). DNA damage was greater in the group exposed to composite wood products compared to the group exposed to natural woods and controls (P < 0.001). No difference in DNA damage was observed between workers exposed to natural woods and controls (P = 0.13). Duration of exposure and current dust concentrations had no effect on DNA damage. In future studies, workers’ exposures should include cumulative dust concentrations and exposures originating from the binders used in composite wood products. PMID:27398027

  3. Autonomous Navigation Performance During The Hartley 2 Comet Flyby

    Science.gov (United States)

    Abrahamson, Matthew J; Kennedy, Brian A.; Bhaskaran, Shyam

    2012-01-01

    On November 4, 2010, the EPOXI spacecraft performed a 700-km flyby of the comet Hartley 2 as follow-on to the successful 2005 Deep Impact prime mission. EPOXI, an extended mission for the Deep Impact Flyby spacecraft, returned a wealth of visual and infrared data from Hartley 2, marking the fifth time that high-resolution images of a cometary nucleus have been captured by a spacecraft. The highest resolution science return, captured at closest approach to the comet nucleus, was enabled by use of an onboard autonomous navigation system called AutoNav. AutoNav estimates the comet-relative spacecraft trajectory using optical measurements from the Medium Resolution Imager (MRI) and provides this relative position information to the Attitude Determination and Control System (ADCS) for maintaining instrument pointing on the comet. For the EPOXI mission, AutoNav was tasked to enable continuous tracking of a smaller, more active Hartley 2, as compared to Tempel 1, through the full encounter while traveling at a higher velocity. To meet the mission goal of capturing the comet in all MRI science images, position knowledge accuracies of +/- 3.5 km (3-?) cross track and +/- 0.3 seconds (3-?) time of flight were required. A flight-code-in-the-loop Monte Carlo simulation assessed AutoNav's statistical performance under the Hartley 2 flyby dynamics and determined optimal configuration. The AutoNav performance at Hartley 2 was successful, capturing the comet in all of the MRI images. The maximum residual between observed and predicted comet locations was 20 MRI pixels, primarily influenced by the center of brightness offset from the center of mass in the observations and attitude knowledge errors. This paper discusses the Monte Carlo-based analysis that led to the final AutoNav configuration and a comparison of the predicted performance with the flyby performance.

  4. Isotopic ratios in outbursting comet C/2015 ER61

    Science.gov (United States)

    Yang, Bin; Hutsemékers, Damien; Shinnaka, Yoshiharu; Opitom, Cyrielle; Manfroid, Jean; Jehin, Emmanuël; Meech, Karen J.; Hainaut, Olivier R.; Keane, Jacqueline V.; Gillon, Michaël

    2018-02-01

    Isotopic ratios in comets are critical to understanding the origin of cometary material and the physical and chemical conditions in the early solar nebula. Comet C/2015 ER61 (PANSTARRS) underwent an outburst with a total brightness increase of 2 magnitudes on the night of 2017 April 4. The sharp increase in brightness offered a rare opportunity to measure the isotopic ratios of the light elements in the coma of this comet. We obtained two high-resolution spectra of C/2015 ER61 with UVES/VLT on the nights of 2017 April 13 and 17. At the time of our observations, the comet was fading gradually following the outburst. We measured the nitrogen and carbon isotopic ratios from the CN violet (0, 0) band and found that 12C/13C = 100 ± 15, 14N/15N = 130 ± 15. In addition, we determined the 14N/15N ratio from four pairs of NH2 isotopolog lines and measured 14N/15N = 140 ± 28. The measured isotopic ratios of C/2015 ER61 do not deviate significantly from those of other comets.

  5. Comet Halley - Chapter I in cometary exploration

    International Nuclear Information System (INIS)

    Newburn, R.L. Jr.

    1986-01-01

    The information gained on the Comet Halley by the international probe studies is presented. The new information includes data on the true size and shape of the cometary nucleus and the mass of its dust grains, the chemical composition of the nucleus, and the characteristics of the bow wave of the comet. The requirements of future missions for solving the many questions that are still open are discussed

  6. Disequilibrium Chemistry in the Solar Nebula and Early Solar System: Implications for the Chemistry of Comets

    Science.gov (United States)

    Fegley, Bruce, Jr.

    1997-12-01

    that polyoxymethylene (polymerized formaldehyde or POM) is a constituent of the C- H-O-N particles emitted from comet P/Halley (e.g., Huebner 1987; Huebner et aL 1987; Mitchell et al. 1987). If actually present in the C-H-O-N particles, POM is also a product of disequilibrating processes which took place in the solar nebula and/or in a presolar environment. Taken together, the observations listed above indicate that a variety of disequilibrating processes such as the kinetic inhibition of thermochemical reactions, grain catalyzed chemistry, lightning induced shock chemistry, and photochemistry played an important role in establishing the chemistry and molecular composition of comet P/Halley in particular and presumably cometary material in general. However, the observational data do not by themselves constrain the timing and/or location of these various processes. This paper reviews the relevant observational data and attempts to quantify as far as possible by using current theoretical models and experimental data the relative importance of equilibrium and disequilibrium processes for the chemistry of comets. "Key" experimental and observational measurements which are important for better constraints on cometary origins are proposed. Finally, important measurements to be made by a comet nucleus sample return mission such as Rosetta are also suggested.

  7. THE NEOWISE-DISCOVERED COMET POPULATION AND THE CO + CO{sub 2} PRODUCTION RATES

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, James M.; Stevenson, Rachel; Kramer, Emily; Mainzer, A. K.; Masiero, Joseph R.; Weissman, Paul R.; Nugent, Carrie R.; Sonnett, Sarah [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, MS 183-401, Pasadena, CA 91109 (United States); Grav, Tommy [Planetary Science Institute, 1700 East Fort Lowell, Suite 106, Tucson, AZ 85719-2395 (United States); Fernández, Yan R. [Department of Physics, University of Central Florida, 4000 Central Florida Blvd., P.S. Building, Orlando, FL 32816-2385 (United States); Cutri, Roc M.; Dailey, John W.; Masci, Frank J.; Blair, Nathan; Lucas, Andrew [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Meech, Karen J. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Dr., Manoa, HI 96822 (United States); Walker, Russel [Monterey Institute for Research in Astronomy, 200 Eighth Street, Marina, CA 93933 (United States); Lisse, C. M. [Applied Physics Laboratory, Johns Hopkins University, 11100 Johns Hopkins Road Laurel, MD 20723-6099 (United States); McMillan, Robert S. [Lunar and Planetary Laboratory, University of Arizona, 1629 East University Blvd., Kuiper Space Science Bldg. 92, Tucson, AZ 85721-0092 (United States); Wright, Edward L., E-mail: bauer@scn.jpl.nasa.gov [Department of Physics and Astronomy, University of California, P.O. Box 91547, Los Angeles, CA 90095-1547 (United States); Collaboration: WISE and NEOWISE Teams

    2015-12-01

    The 163 comets observed during the WISE/NEOWISE prime mission represent the largest infrared survey to date of comets, providing constraints on dust, nucleus size, and CO + CO{sub 2} production. We present detailed analyses of the WISE/NEOWISE comet discoveries, and discuss observations of the active comets showing 4.6 μm band excess. We find a possible relation between dust and CO + CO{sub 2} production, as well as possible differences in the sizes of long and short period comet nuclei.

  8. The Meteoroid Fluence at Mars Due to Comet Siding Spring

    Science.gov (United States)

    Moorhead, Althea V.

    2014-01-01

    Long-period comet C/2013 A1 (Siding Spring) is headed for a close encounter with Mars on 2014 Oct 19. A collision between the comet and the planet has been ruled out, but the comets coma may envelop Mars and its man-made satellites. We present an analytic model of the dust component of cometary comae that describes the spatial distribution of cometary dust and meteoroids and their size distribution. If the coma reaches Mars, we estimate a total incident particle fluence on the planet and its satellites of 0.01 particles per square meter. We compare our model with numerical simulations, data from past comet missions, and recent Siding Spring observations.

  9. Comet assay optimization for assessment of DNA damage due to radiation exposure

    International Nuclear Information System (INIS)

    Dwi Ramadhani; Devita Tetriana; Viria Agesti Suvifan

    2016-01-01

    Comet assay can be used to measure the deoxyribonucleic acid (DNA) damage level caused by ionizing radiation exposure in peripheral blood lymphocytes. The principle of the comet assay is based on the amount of denatured DNA fragments that migrated out of the cell nucleus during electrophoresis. There are several aspects that must be concerned when doing the comet assay. For example the agarose concentration, duration of alkaline incubation, electrophoresis conditions (time, temperature, and voltage gradient), and the measurement parameters that used in analyze the comet. Percentage of DNA in the comet tail (% tail DNA) is strongly recommended as a parameter when analyze the comet because it can be converted to lesions per 106 base pairs (bp) using calibration curve that show relationship between the dose of ionizing radiation and % tail DNA. To obtain an accurate result, the calibration curve must be made and comet should be analyzing using image processing analysis software since it can be increase the precision and reduce the subjectivity of the measurement process. (author)

  10. Comet 2001 Q2

    Czech Academy of Sciences Publication Activity Database

    Pravec, Petr; Kušnirák, Peter; Bouma, R. J.; Raymundo, P. M.

    č. 7687 (2001), s. 1 ISSN 0081-0304 R&D Projects: GA ČR GA205/99/0255 Institutional research plan: CEZ:AV0Z1003909 Keywords : comet s * astrometry Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  11. High-Resolution Infrared Spectroscopic Measurements of Comet 2PlEncke: Unusual Organic Composition and Low Rotational Temperatures

    Science.gov (United States)

    Radeva, Yana L.; Mumma, Michael J.; Villanueva, Geronimo L.; Bonev, Boncho P.; DiSanti, Michael A.; A'Hearn, Michael F.; Dello Russo, Neil

    2013-01-01

    We present high-resolution infrared spectroscopic measurements of the ecliptic comet 2P/Encke, observed on 4-6 Nov. 2003 during its close approach to the Earth, using the Near Infrared Echelle Spectrograph on the Keck II telescope. We present flux-calibrated spectra, production rates, and mixing ratios for H2O, CH3OH, HCN, H2CO, C2H2, C2H6, CH4 and CO. Comet 2P/Encke is a dynamical end-member among comets because of its short period of 3.3 years. Relative to "organics-normal" comets, we determined that 2PlEncke is depleted in HCN, H2CO, C2H2, C2H6, CH4 and CO, but it is enriched in CH3OH. We compared mixing ratios of these organic species measured on separate dates, and we see no evidence of macroscopic chemical heterogeneity in the nucleus of 2P/Encke, however, this conclusion is limited by sparse temporal sampling. The depleted abundances of most measured species suggest that 2P/Encke may have formed closer to the young Sun, before its insertion to the Kuiper belt, compared with "organics-normal" comets - as was previously suggested for other depleted comets (e.g. C/1999 S4 (LINEAR)). We measured very low rotational temperatures of 20 - 30 K for H2O, CH3OH and HCN in the near nucleus region of 2P/Encke, which correlate with one of the lowest cometary gas production rates (approx. 2.6 x 10(exp 27) molecules/s) measured thus far in the infrared. This suggests that we are seeing the effects of more efficient radiative cooling, insufficient collisional excitation, and/or inefficient heating by fast H-atoms (and icy grains) in the observed region of the coma. Its extremely short orbital period, very low gas production rate, and classification as an ecliptic comet, make 2PlEncke an important addition to our growing database, and contribute significantly to the establishment of a chemical taxonomy of comets.

  12. Weird comets and asteroids the strange little worlds of the sun's family

    CERN Document Server

    Seargent, David A J

    2017-01-01

    This book concentrates on some of the odd aspects of comets and asteroids. Strange behavior of comets, such as outbursts and schisms, and how asteroids can temporally act as comets are discussed, together with the possible threat of Centaurs-class objects like the Taurid complex. Recent years have seen the distinction between comets and asteroids become less prominent. Comets in "asteroid" orbits and vice versa have become almost commonplace and a clearer view of the role of small bodies in the formation of the Solar System and their effect on Earth has become apparent. Seargent covers this development in detail by including new data and information from space probes. .

  13. Comet assay for rapid detection of base damage in foods

    International Nuclear Information System (INIS)

    Al-Zubaidi, I. A.; Abdullah, T. S.; Qasim, S. R.

    2012-12-01

    Single cell gel electrophoresis (SCGE) or comet assay technique a sensitive, reliable and rapid method for DNA double and single strand break, alkali- labile site and delayed repair site detection in individual cells. In recent years, this method has been widely used for studies of DNA repair, genetic toxicology, and environmental biomontoring, however, this technique serves as an important tool for detection of DNA damage in living organism and is increasing being used in genetic testing of industrial chemicals, environmental agent's contaminations. This research paper helps to evaluate the oxidant agent's effects of exposure to organic pollutants by using comet assay techniques. This study used five samples of each food sample (Meat, Chicken, Rice, Fruits, Vegetables and Tea) to evaluate the genotoxic effects of exposure, to environmental agent's pollutants. The experimental data suggest that the DNA damage parameters ( Tail length, Tail width 1 ) were found higher value in exposed population when compared with the ratio of the length to width that cells exhibiting no migration having a ratio of 1. The percentage and distribution of cells in exposed population of cells also increases with the increase in values. This study demonstrates that, using sensitive techniques, it is possible to detect environmental agent's risks at an early stage. (Author)

  14. Properties of comet Halley derived from thermal models and astrometric data

    International Nuclear Information System (INIS)

    Hechler, F.W.; Morley, T.A.; Mahr, P.

    1986-01-01

    The motion of a comet nucleus is influenced by outgassing forces. The orbit determination from astrometric data of comet Halley using empiric force and observation bias models and the incorporation of thermal models developed at ESOC into the orbit determination allows to draw some conclusions on the comet Halley dynamics and physics. 21 references

  15. Encounters between degenerate stars and extrasolar comet clouds

    International Nuclear Information System (INIS)

    Pineault, S.; Poisson, E.

    1989-01-01

    Under the assumption that the presence of comet clouds around otherwise normal stars is a common occurrence in the Galaxy, the observational consequences of random penetration encounters between the general Galactic population of degenerate stars and these comet clouds is considered. The only case considered is where the compact stars is a single star. For this scenario, encounters involving neutron stars (NSs) result in impact rates 1000-10,000 times slower than in the model of Tremaine and Zytkow (1986). The rate for white dwarfs (WDs) is larger than the one for NSs by a factor of about 30 times the ratio of the degenerate star number densities. The mean impact rate is significantly increased if the number of comets in a cloud is nearly independent of the mass of the central star. It is concluded that some of the observed gamma-ray bursts may be caused by accretion of comets onto NSs and that this scenario, but with a WD as the accretor, probably contributes to the optical flash background rate. 38 refs

  16. Detectability of Sungrazing Comet Soft X-ray Irradiance

    Directory of Open Access Journals (Sweden)

    Su Yeon Oh

    2007-12-01

    Full Text Available Originating from the Oort cloud, some comets disappear to impact against the Sun or to split up by strong gravitational force. Then they don't go back to the Oort cloud. They are called sungrazing comets. The comets are detected by sublimation of ices and ejection of gas and dust through solar heat close to the Sun. There exists the charge transfer from heavy ions in the solar wind to neutral atoms in the cometary atmosphere by interaction with the solar wind. Cometary atoms would be excited to high electronic levels and their de-excitation would result in X-ray emission, or it would be scattering of solar X-ray emission by very small cometary grains. We calculated the X-ray emission applying the model suggested by Mendis & Flammer (1984 and Cravens (1997. In our estimation, the sungrazing comet whose nucleus size is about 1 km in radius might be detectable within a distance of 3 solar radius from the sun on soft X-ray solar camera.

  17. Comet assay as a procedure for detecting possible genotoxicity induced by non-ionizing radiation

    Directory of Open Access Journals (Sweden)

    Zsuzsanna Nemeth

    2015-05-01

    In our laboratory we use comet assay for testing genotoxicity of non-ionizing radiation for more than ten years. In the experiments we use whole blood samples (human or dog, cell lines (e.g. H295R cell line or 3 dimensional in vitro skin tissue (epidermis models. In our protocol a slightly modified alkaline Comet assay method of Singh et al. (1988 is used. On our poster there will be presented a brief summary of our experiments with exposure to different types of radiation (ELF, RF, and intermediate frequency. In our protocols the non-ionizing radiation was often combined with ionizing radiation to see whether the non-ionizing radiation can influence the repair of the DNA damage induced by ionizing radiation. For the evaluation of the slides mainly Komet 4.0 image analysis system software (Kinetic Imaging, Liverpool, UK was used, but as we got familiarized with other methods for slide evaluation like grading the comets by visual scoring into 5 categories or the CaspLab software, the comparison of these three methods will be also presented.

  18. Inverting Comet Acoustic Surface Sounding Experiment (CASSE) touchdown signals to measure the elastic modulus of comet material

    Science.gov (United States)

    Arnold, W.; Faber, C.; Knapmeyer, M.; Witte, L.; Schröder, S.; Tune, J.; Möhlmann, D.; Roll, R.; Chares, B.; Fischer, H.; Seidensticker, K.

    2014-07-01

    The landing of Philae on comet 67P/Churyumov-Gerasimenko is scheduled for November 11, 2014. Each of the three landing feet of Philae house a triaxial acceleration sensor of CASSE, which will thus be the first sensors to be in mechanical contact with the cometary surface. CASSE will be in listening mode to record the deceleration of the lander, when it impacts with the comet at a velocity of approx. 0.5 m/s. The analysis of this data yields information on the reduced elastic modulus and the yield stress of the comet's surface material. We describe a series of controlled landings of a lander model. The tests were conducted in the Landing & Mobility Test Facility (LAMA) of the DLR Institute of Space Systems in Bremen, Germany, where an industrial robot can be programmed to move landers or rovers along predefined paths, allowing to adapt landing procedures with predefined velocities. The qualification model of the Philae landing gear was used in the tests. It consists of three legs manufactured of carbon fiber and metal joints. A dead mass of the size and mass of the lander housing is attached via a damper above the landing gear to represent the lander structure as a whole. Attached to each leg is a foot with two soles and a mechanically driven fixation screw (''ice screw'') to secure the lander on the comet. The right soles, if viewed from the outside towards the lander body, house a Brüel & Kjaer DeltaTron 4506 triaxial piezoelectric accelerometer as used on the spacecraft. Orientation of the three axes was such that one of the axes, here the X-axis of the accelerometer, points downwards, while the Y- and Z-axes are horizontal. Data were recorded at a sampling rate of 8.2 kHz within a time gate of 2 s. In parallel, a video sequence was taken, in order to monitor the touchdown on the sand and the movement of the ice screws. Touchdown measurements were conducted on three types of ground with landing velocities between 0.1 to 1.1 m/s. Landings with low velocities were

  19. Rationalization of Comet Halley's periods

    Science.gov (United States)

    Belton, Michael J. S.

    1990-01-01

    The sense of long axis orientation of Comet Halley during the Vega 1 encounter must be reversed from that deduced by Sagdeev et al. (1986) in order to harmonize the comet nucleus' Vega/Giotto-observed orientations with periodicities extracted from time-series brightness data. It is also demonstrated that Vega/Giotto observations can be satisfied by either a 2.2- or 3.7-day long-axis free precession period. A novel Fourier algorithm is used to reanalyze five independent data sets; strong evidence is adduced for periods harmonically related to a 7.4-day period. The preferred candidate models for Halley's nuclear rotation are characterized by a long-axis precession period of 3.7 days.

  20. Comet Assay in Cancer Chemoprevention.

    Science.gov (United States)

    Santoro, Raffaela; Ferraiuolo, Maria; Morgano, Gian Paolo; Muti, Paola; Strano, Sabrina

    2016-01-01

    The comet assay can be useful in monitoring DNA damage in single cells caused by exposure to genotoxic agents, such as those causing air, water, and soil pollution (e.g., pesticides, dioxins, electromagnetic fields) and chemo- and radiotherapy in cancer patients, or in the assessment of genoprotective effects of chemopreventive molecules. Therefore, it has particular importance in the fields of pharmacology and toxicology, and in both environmental and human biomonitoring. It allows the detection of single strand breaks as well as double-strand breaks and can be used in both normal and cancer cells. Here we describe the alkali method for comet assay, which allows to detect both single- and double-strand DNA breaks.

  1. Radar observations of Comet Halley

    International Nuclear Information System (INIS)

    Campbell, D.B.; Harmon, J.K.; Shapiro, I.I.

    1989-01-01

    Five nights of Arecibo radar observations of Comet Halley are reported which reveal a feature in the overall average spectrum which, though weak, seems consistent with being an echo from the comet. The large radar cross section and large bandwidth of the feature suggest that the echo is predominantly from large grains which have been ejected from the nucleus. Extrapolation of the dust particle size distribution to large grain sizes gives a sufficient number of grains to account for the echo. The lack of a detectable echo from the nucleus, combined with estimates of its size and rotation rate from spacecraft encounters and other data, indicate that the nucleus has a surface of relatively high porosity. 33 references

  2. Introducing a true internal standard for the Comet assay to minimize intra- and inter-experiment variability in measures of DNA damage and repair

    Science.gov (United States)

    Zainol, Murizal; Stoute, Julia; Almeida, Gabriela M.; Rapp, Alexander; Bowman, Karen J.; Jones, George D. D.

    2009-01-01

    The Comet assay (CA) is a sensitive/simple measure of genotoxicity. However, many features of CA contribute variability. To minimize these, we have introduced internal standard materials consisting of ‘reference’ cells which have their DNA substituted with BrdU. Using a fluorescent anti-BrdU antibody, plus an additional barrier filter, comets derived from these cells could be readily distinguished from the ‘test’-cell comets, present in the same gel. In experiments to evaluate the reference cell comets as external and internal standards, the reference and test cells were present in separate gels on the same slide or mixed together in the same gel, respectively, before their co-exposure to X-irradiation. Using the reference cell comets as internal standards led to substantial reductions in the coefficient of variation (CoV) for intra- and inter-experimental measures of comet formation and DNA damage repair; only minor reductions in CoV were noted when the reference and test cell comets were in separate gels. These studies indicate that differences between individual gels appreciably contribute to CA variation. Further studies using the reference cells as internal standards allowed greater significance to be obtained between groups of replicate samples. Ultimately, we anticipate that development will deliver robust quality assurance materials for CA. PMID:19828597

  3. How the modified method of orbit quality assessment works for Oort spike comets?

    Science.gov (United States)

    Królikowska, Małgorzata; Dybczyński, Piotr A.

    2018-03-01

    We present a brief overview of the effectiveness of the modified method of a quality of orbit estimation proposed by us a few years ago. Having now a complete sample of 100 Oort spike comets with large-perihelion distances, we show that it was justified to introduce more restricted conditions separating the individual quality classes as well as introducing a new quality class containing orbits of the excellent quality, marked by us as 1a+. To enrich the perception, we provided a complete collection of visual time-distributions of positional data sets used by us for an orbit determination (see Appendix). We show that modern positional measurements of large-perihelion Oort spike comets should be carried out for at least three years around perihelion (three-four oppositions) to be almost certain that the derived orbit will be of the highest quality (1a+ class). Our results strongly support an expectation that in a near future it will be possible to study a shape of 1/aori-distribution of the Oort spike comets in a great detail basing only on the highest quality orbits, having 1/aori-uncertainties well below 5 . 10-6 au-1.

  4. Localized irradiations, evaluation through 'Comet Assay'

    International Nuclear Information System (INIS)

    Di Giorgio, Marina; Taja, Maria R.; Nasazzi, Nora B.; Bustos, N.; Cavalieri, H.; Bolgiani, A.

    2000-01-01

    cells. The advantages of the technique include: 1) Collection of data at the level of individual cells, making it possible to identify different populations of cells within the same sample; 2) The need for small numbers of cells per sample; 3) Its sensitivity for detecting DNA damage; and 4) That virtually any eukaryote cell population is amenable to analysis. The objective of this work is to apply 'Comet Assay' method to evaluate the effect of radiation on skin tissues, to test its use as a biological marker for differentiation of irradiated from unirradiated body areas. It could provide a useful tool to estimate the extension and the dose in the irradiated region, contributing with the current techniques. (author)

  5. Comets: Role and importance to exobiology

    Science.gov (United States)

    Delsemme, Armand H.

    1992-01-01

    The transfer of organic compounds from interstellar space to the outskirts of a protoplanetary disk, their accretion into cometary objects, and the transport of the latter into the inner solar system by orbital diffusion throw a new light on the central problem of exobiology. It suggests the existence of a cosmic mechanism, working everywhere, that can supply prebiotic compounds to ubiquitous rocky planets, in search of the proper environment to start life in many places in the Universe. Under the heading of chemistry of the cometary nucleus, the following topics are covered: radial homogeneity of the nucleus; the dust-to-ice ratio; nature of the dust grains; origin of the dust in comets; nature of the volatile fraction; the CO distribution in comet Halley; dust contribution to the volatile fraction; elemental balance sheet of comet Halley; quantitative molecular analysis of the volatile fraction; and isotopic ratios. Under the heading of exogenous origin of carbon on terrestrial planets the following topics are covered: evidence for a high-temperature phase; from planetesimals to planets; a veneer of volatile and organic material; and cometary contribution.

  6. Asteroids, meteorites, and comets

    CERN Document Server

    Elkins-Tanton, Linda T

    2010-01-01

    Asteroids, Comets, and Meteorites provides students, researchers, and general readers with the most up-to-date information on this fascinating field. From the days of the dinosaurs to our modern environment, this book explores all aspects of these cosmic invaders.

  7. Death of a comet

    CERN Multimedia

    Hawkes, N

    2000-01-01

    The comet Linear dissolved as it made its closest approach to the sun on July 25th. The first stages of its breakup had been witnessed by the Hubble telescope when it threw off a piece of its crust (3 paragraphs).

  8. To the Planets, Comets, and Beyond: A Vision of Sustained Collaboration

    Science.gov (United States)

    Gaboardi, M.; Grauer, M.; Humayun, M.; Dixon, P.

    2007-12-01

    Our NASA-funded, E/PO partnership, the Student-Teacher Astronomy Resource (STAR) Program, has been successful in integrating current space science knowledge, scientific inquiry, and educational practices. With our focus on the recent NASA Stardust Mission, we engage teachers, students, and the general public in timely, research-based inquiry into space science. One such component of our program is "The Solar System: To the Planets, Comets, and Beyond," a new curricula that is accessible to, and comfortable for, primary educators, many of whom were previously uncomfortable teaching space science. This achievement is the result of ongoing collaboration between a formal primary educator (Grauer), the director of educational outreach for the National High Magnetic Field Laboratory (Dixon), a cosmochemist (Humayun) and a graduate student (Gaboardi), both researchers in the geochemistry program within the NHMFL. Indicators of success in our outreach program include the following: 1- Increased public awareness of research as evidenced by local television, newspaper, and radio coverage, 2- Requests from individual teachers, schools, and school districts for workshops specific to our program, 3- Overwhelmingly positive formal and informal responses from teachers, students, and parents participating in our program, 4- Requests from high-school students for advice involving science fair projects, 5- High level of performance of Grauer's primary students in space science curricula developed as a result of collaboration, and 6- Integration of a space science component into the sustained outreach program provided by the NHMFL. We are currently collecting formal questionnaires from teachers who have participated in our 2007 workshops to explore the following further indicators of success: 1- teachers' use of our curricula, 2- teachers' comfort levels in teaching space science both before and after attending our workshop, and 3- teachers' evaluation of their own space science

  9. Nonlinear low frequency (LF) waves - Comets and foreshock phenomena

    Science.gov (United States)

    Tsurutani, Bruce T.

    1991-01-01

    A review is conducted of LF wave nonlinear properties at comets and in the earth's foreshock, engaging such compelling questions as why there are no cometary cyclotron waves, the physical mechanism responsible for 'dispersive whiskers', and the character of a general description of linear waves. Attention is given to the nonlinear properties of LF waves, whose development is illustrated by examples of waves and their features at different distances from the comet, as well as by computer simulation results. Also discussed is a curious wave mode detected from Comet Giacobini-Zinner, both at and upstream of the bow shock/wave.

  10. Advanced SEM/EDS Analysis using Stage Control and an annular Silicon Drift Detector: Applications in Impact Studies from Centimetre below Micrometre Scale

    Science.gov (United States)

    Salge, Tobias; Berlin, Jana; Terborg, Ralf; Howard, Kieren; Newsom, Horton; Wozniakiewicz, Penny; Price, Mark; Burchell, Mark; Cole, Mike; Kearsley, Anton

    2013-04-01

    Introduction: Imaging of ever smaller structures, in situ within large samples, requires low electron beam energy (HV300°C) hydrothermal event [2]. (C) In experimental hypervelocity impact craters, spectrum images readily find locations of projectile residue throughout all the complex topography. The very high count rate at even low beam energy and current reveals inhomogeneous compositions and textures below micrometre scale [3]. These results help us understand preservation and modification of structure and composition in the fine-grained cometary dust aggregates which made aluminium foil craters on the Stardust spacecraft during its encounter with comet Wild 2. Acknowledgements: International Continental Scientific Drilling Program and the Museum of Natural History Berlin for providing samples. References: [1] K.T. Howard 2011. Geological Society of London: 573-591. [2] M. Nelson et al. 2012. GCA 86: 1-20. [3] A. T. Kearsley et al. 2013. Submitted to LPSC #1910.

  11. High throughput sample processing and automated scoring

    Directory of Open Access Journals (Sweden)

    Gunnar eBrunborg

    2014-10-01

    Full Text Available The comet assay is a sensitive and versatile method for assessing DNA damage in cells. In the traditional version of the assay, there are many manual steps involved and few samples can be treated in one experiment. High throughput modifications have been developed during recent years, and they are reviewed and discussed. These modifications include accelerated scoring of comets; other important elements that have been studied and adapted to high throughput are cultivation and manipulation of cells or tissues before and after exposure, and freezing of treated samples until comet analysis and scoring. High throughput methods save time and money but they are useful also for other reasons: large-scale experiments may be performed which are otherwise not practicable (e.g., analysis of many organs from exposed animals, and human biomonitoring studies, and automation gives more uniform sample treatment and less dependence on operator performance. The high throughput modifications now available vary largely in their versatility, capacity, complexity and costs. The bottleneck for further increase of throughput appears to be the scoring.

  12. DNA comet assay for rice seeds treated with low energy electrons ('soft-electrons')

    International Nuclear Information System (INIS)

    Todoriki, Setsuko; Hayashi, Toru

    1999-01-01

    As rice seeds are sometimes contaminated with phytopathogenic organisms such as blast disease fungi and nematodes, a novel non-chemical disinfection method for rice seeds is highly required. In order to develop a disinfection method, the effect of low energy electron ('soft-electrons') on seed DNA was examined by using the neutral comet assay. Rice seeds (whole grain) were treated with electrons of different acceleration voltages (180 kV to 1 MV) at a dose of 5 kGy. Nucleus suspensions were prepared from whole brown rice and subjected to electrophoresis. DNA from un-irradiated (control) seeds relaxed and produced comets with a short tail, most of the comets distributed within the range of comet length between 30 μm to 70 μm. In the case of seeds treated with electrons at acceleration voltages up to 190 kV, cells without seed coats were not damaged and the frequency histograms of comet length showed almost the same pattern as that for control. At acceleration voltages higher than 200 kV, the cells were distributed into two categories; DNA comets with a short tail (with little DNA damages, less than 70 μm in the comet length) and DNA comets with long tails (with sever strand breaks, more than 130 μm in the comet length). The ratios of damaged cells increased with increasing acceleration voltage. The growths of rice seedlings were not affected by the treatment with electrons at up to 200 kV. On the contrary, the cells of gamma-irradiated seed showed small variations in the comet length, and which were depending on radiation dose. The individual cells of gamma-irradiated seeds at 1 kGy showed shorter comet than the damaged cells with soft electron, seed treated with gamma rays (1-5 kGy) did not shoot nor root. (author)

  13. Measurement of plasma and energetic charged particles in the proximity of Halley's comet

    International Nuclear Information System (INIS)

    Erdoes, Geza; Gombosi, Tamas; Kecskemety, Karoly; Somogyi, Antal; Tatrallyay, Mariella; Varga, Andras

    1987-01-01

    The instrumentation aboard the space probe VEGA for the exploration of Halley's comet contained the particle analyzers PLAZMAG and TUENDE-M. PLAZMAG was used for the measurement of the interaction between the low-energy solar plasma and the heavy ions from the comet. From the energy spectra measured near the nucleus of the comet the density distribution of ion groups can also be determined. TUENDE-M recorded the distribution of energetic heavy ions from the comet. The properties of various plasma regions within the 10 million km range from the comet's nucleus are discussed in detail. (R.P.)

  14. Disruption of microtubule network rescues aberrant actin comets in dynamin2-depleted cells.

    Directory of Open Access Journals (Sweden)

    Yuji Henmi

    Full Text Available A large GTPase dynamin, which is required for endocytic vesicle formation, regulates the actin cytoskeleton through its interaction with cortactin. Dynamin2 mutants impair the formation of actin comets, which are induced by Listeria monocytogenes or phosphatidylinositol-4-phosphate 5-kinase. However, the role of dynamin2 in the regulation of the actin comet is still unclear. Here we show that aberrant actin comets in dynamin2-depleted cells were rescued by disrupting of microtubule networks. Depletion of dynamin2, but not cortactin, significantly reduced the length and the speed of actin comets induced by Listeria. This implies that dynamin2 may regulate the actin comet in a cortactin-independent manner. As dynamin regulates microtubules, we investigated whether perturbation of microtubules would rescue actin comet formation in dynamin2-depleted cells. Treatment with taxol or colchicine created a microtubule-free space in the cytoplasm, and made no difference between control and dynamin2 siRNA cells. This suggests that the alteration of microtubules by dynamin2 depletion reduced the length and the speed of the actin comet.

  15. Spectroscopic Profiles of Comets Garradd and McNaught

    Science.gov (United States)

    Harris, Ien; Pierce, Donna M.; Cochran, Anita L.

    2017-10-01

    We have used the integral-field unit spectrograph (the George and Cynthia Mitchell Spectrograph) on the 2.7m Harlan J. Smith telescope at McDonald Observatory to obtain spectroscopic images of the comae of several comets. The images were obtained for various radical species (C2, C3, CN, NH2). Radial and azimuthal average profiles of the radical species were created to enhance any observed cometary coma morphological features. We compare the observed coma features across the observed species and over the different observation periods in order to constrain possible rotational states of the observed comets, as well as determine possible source differences in the coma between the observed radical species. We will present results for several comets, including C/2009 P1 (Garradd) and 260P (McNaught).

  16. Dynamics of landslides on comets of irregular shape

    Science.gov (United States)

    Czechowski, Leszek

    2017-04-01

    Landslides were observed on a few comet's nuclei, e.g. [1], [2]. The mechanism of their origin is not obvious because of very low gravity. According to [2] fluidization and multiphase transport of cometary material could be an explanation. We investigate here motion of the mass on a comet of irregular shape. The mechanism responsible for the low friction is not considered here. In fact, mass motion often occurs without contact with the surface. The motion could be triggered by meteoroids impacts or by the tidal forces. Comets nuclei are believed to be built of soft materials like snow and dust. The landing of Philae on the comet 67P/Czuriumow-Gierasimienko indicates a different situation. According to [1]: "thermal probe did not fully penetrate the near-surface layers, suggesting a local resistance of the ground to penetration of >4 megapascals, equivalent to >2 megapascal uniaxial compressive strength". Here we assume that elastic properties of comet's nuclei could be similar to elastic properties of dry snow, namely Young modulus is assumed to be 1 - 100 MPa, see [3] and [4]. We consider nucleus of the shape of 67P/Churyumov-Gerasimenko with density 470 kg/m3. The impact or tidal forces result in changing of rotation of the comet. In general, the vector of angular velocity will be a subject to nutation that results in changing of centrifugal force, and consequently could be a factor triggering landslides. Note that nucleus' shape does not resemble the shape of surface of constant value of gravitational potential (i.e. 'geoid'). Our numerical models indicate the parts of the nucleus where landslides start and other parts where landslides stop. Of course, the regolith from the first type of regions would be removed to the regions of the second class. The motion of the mass is often complicated because of complicated distribution of the gravity and complicated shape of the nucleus. Acknowledgement: The research is partly supported by Polish National Science Centre

  17. Remote comets and related bodies - VJHK colorimetry and surface materials

    Science.gov (United States)

    Hartmann, W. K.; Cruikshank, D. P.; Degewij, J.

    1982-01-01

    VJHK colors for a number of asteroids and eight comets at various solar distances and levels of activity were obtained, and the observations are interpreted in terms of a two-component mixing model in which outer solar system interplanetary bodies are viewed as mixtures of ice and dark carbonaceous-type (RD and C) dirt. It is inferred that the observed comets have comae, and perhaps surfaces, of dirty ice or ice dirt grains colored by an RD-dirt component. This inference is supported by systematics of an 'alpha index' based on VJHK colors and empirically correlated with albedo and ice/dirt ratio. Among comets the alpha index correlates with solar distance in a way that suggests comets emit dirty ice grains which are stable at large solar distance but from which the ice component sublimes and leaves dirt grains at small solar distance.

  18. Outbursts and diamagnetic cavities in comet 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Voelzke, M. R.

    2018-03-01

    On 2014 August 06 the Rosetta spacecraft arrived at comet 67P/Churyumov-Gerasimenko. Since then, the spacecraft accompanied the comet on its journey around the Sun (Glassmeier et al. 2007), until the end of the mission on 2016 September 30. This work tries to understand the possible connections between the 665 reported diamagnetic regions (Goetz et al. 2016), detected from April 2015 to February 2016 around the comet 67P/Churyumov-Gerasimenko, with the fluxgate magnetometer of the Rosetta Plasma Consortium (RPC-MAG), when the heliocentric distance of the comet from the sun varied from 1.8 to 2.4 AU and the 34 reported outbursts (Vincent et al. 2016), detected from July to September 2015, with the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) cameras, when the ESA's Rosetta spacecraft changed the cometocentric distance from 155 to 817 km.

  19. MULTI-WAVELENGTH OBSERVATIONS OF COMET C/2011 L4 (PAN-STARRS)

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bin; Keane, Jacqueline; Meech, Karen [NASA Astrobiology Institute, University of Hawaii, Honolulu, HI 96822 (United States); Owen, Tobias; Wainscoat, Richard, E-mail: yangbin@ifa.hawaii.edu [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States)

    2014-04-01

    The dynamically new comet C/2011 L4 (Pan-STARRS) is one of the brightest comets observed since the great comet C/1995 O1 (Hale-Bopp). Here, we present our multi-wavelength observations of C/2011 L4 during its in-bound passage to the inner solar system. A strong absorption band of water ice at 2.0 μm was detected in the near-infrared spectra, obtained with the 8 m Gemini-North and 3 m Infrared Telescope Facility Telescopes. The companion 1.5 μm band of water ice, however, was not observed. Spectral modeling shows that the absence of the 1.5 μm feature can be explained by the presence of sub-micron-sized fine ice grains. No gas lines (i.e., CN, HCN, or CO) were observed pre-perihelion in either the optical or the submillimeter. We derived 3σ upper limits for the CN and CO production rates. The comet exhibited a very strong continuum in the optical and its slope seemed to become redder as the comet approached the Sun. Our observations suggest that C/2011 L4 is an unusually dust-rich comet with a dust-to-gas mass ratio >4.

  20. ORTHO-TO-PARA ABUNDANCE RATIO (OPR) OF AMMONIA IN 15 COMETS: OPRs OF AMMONIA VERSUS 14N/15N RATIOS IN CN

    International Nuclear Information System (INIS)

    Shinnaka, Yoshiharu; Kawakita, Hideyo; Kobayashi, Hitomi; Jehin, Emmanuel; Manfroid, Jean; Hutsemekers, Damien; Arpigny, Claude

    2011-01-01

    The ortho-to-para abundance ratio (OPR) of cometary molecules is considered to be one of the primordial characteristics of cometary ices. We present OPRs of ammonia (NH 3 ) in 15 comets based on optical high-dispersion spectroscopic observations of NH 2 , which is a photodissociation product of ammonia in the gaseous coma. The observations were mainly carried out with the VLT/UVES. The OPR of ammonia is estimated from the OPR of NH 2 based on the observations of the NH 2 (0, 9, 0) vibronic band. The absorption lines by the telluric atmosphere are corrected and the cometary C 2 emission lines blended with NH 2 lines are removed in our analysis. The ammonia OPRs show a cluster between 1.1 and 1.2 (this corresponds to a nuclear spin temperature of ∼30 K) for all comets in our sample except for 73P/Schwassmann-Wachmann 3 (73P/SW3). Comet 73P/SW3 (both B- and C-fragments) shows the OPR of ammonia consistent with nuclear spin statistical weight ratio (1.0) that indicates a high-temperature limit as nuclear spin temperature. We compared the ammonia OPRs with other properties ( 14 N/ 15 N ratios in CN, D/H ratios of water, and mixing ratios of volatiles). Comet 73P/SW3 is clearly different from the other comets in the plot of ammonia OPRs versus 14 N/ 15 N ratios in CN. The ammonia OPRs of 1.0 and lower 15 N-fractionation of CN in comet 73P/SW3 imply that icy materials in this comet formed under warmer conditions than other comets. Comets may be classified into two groups in the plot of ammonia OPRs against 14 N/ 15 N ratios in CN.

  1. IUE observations of the evolution of Comet Wilson (1986l) - comparison with P/Halley

    International Nuclear Information System (INIS)

    Roettger, E.E.; Feldman, P.D.; A'hearn, M.F.; Festou, M.C.; Mcfadden, L.A.

    1989-01-01

    IUE observations of Comet Wilson from September 1986 to November 1987, through perihelion, allow a comparison to be conducted between this 'new' comet and the highly evolved P/Halley, at comparable heliocentric distances. The temporal decreases of both OH and dust in Comet Wilson near perihelion were monotonic and slow, by contrast to Comet Halley's rapid fluctuations. Despite these differences, relative gas abundances were similar within a factor of about 2 for comparable heliocentric and geocentric distances; this indicates that P/Halley's in situ gas measurements may be typical of comets generally. 33 refs

  2. Spectrophotometry of Dust in Comet Hale-Bopp

    Science.gov (United States)

    Witteborn, Fred C. (Technical Monitor)

    1997-01-01

    Comets, such as Hale-Bopp (C/1995 O1), are frozen reservoirs of primitive solar nebula dust grains and ices. Analysis of the composition of cometary dust grains from infrared spectroscopic techniques permits an estimation of the types of organic and inorganic materials that constituted the early primitive solar nebula. In addition, the cometary bombardment of the Earth (approximately 3.5 Gy ago) supplied the water for the oceans and brought organic materials to Earth which may have been biogenic. Spectroscopic observations of comet Hale-Bopp suggest the possible presence of organic hydrocarbon species, silicate and olivine dust grains, and water ice. Spectroscopy near 3 microns obtained in Nov 1996 r=2.393 AU, delta=3.034 AU) shows a feature which we attribute to PAH emission. The spatial morphology of the 3.28 microns PAH feature is also presented. Optical and infrared spectrophotometric observations of comets convey valuable information about the spatial distribution and properties of dust and gas within the inner coma. In the optical and NIR shortward of 2 microns, the observed light is primarily scattered sunlight from the dust grains. At longer wavelengths, particularly in the 10 gm window, thermal emission from these grains dominates the radiation allowing an accurate estimate of grain sizes and chemical composition. Here we present an initial analysis of spectra taken with the NASA HIFOGS at 7-14 microns as part of a multiwavelength temporal study of the "comet of the century".

  3. Use of statistical analysis to validate ecogenotoxicology findings arising from various comet assay components.

    Science.gov (United States)

    Hussain, Bilal; Sultana, Tayyaba; Sultana, Salma; Al-Ghanim, Khalid Abdullah; Masoud, Muhammad Shahreef; Mahboob, Shahid

    2018-04-01

    Cirrhinus mrigala, Labeo rohita, and Catla catla are economically important fish for human consumption in Pakistan, but industrial and sewage pollution has drastically reduced their population in the River Chenab. Statistics are an important tool to analyze and interpret comet assay results. The specific aims of the study were to determine the DNA damage in Cirrhinus mrigala, Labeo rohita, and Catla catla due to chemical pollution and to assess the validity of statistical analyses to determine the viability of the comet assay for a possible use with these freshwater fish species as a good indicator of pollution load and habitat degradation. Comet assay results indicated a significant (P comet head diameter, comet tail length, and % DNA damage. Regression analysis and correlation matrices conducted among the parameters of the comet assay affirmed the precision and the legitimacy of the results. The present study, therefore, strongly recommends that genotoxicological studies conduct appropriate analysis of the various components of comet assays to offer better interpretation of the assay data.

  4. Direct imaging and spectrophotometry of Comet P/Tempel 2

    International Nuclear Information System (INIS)

    Boehnhardt, H.; Beisser, K.; Vanysek, V.; Mueller, B.E.A.; Weiss, M.

    1990-01-01

    Both direct imaging and spectrophotometry of Comet P/Tempel 2 during May-November 1988 have led to a nuclear diameter determination of the order of about 10 km. Sekanina's (1987) spin-vector model for this comet is judged capable of qualitatively accounting for both the visual light curve of the comet during this period, which exhibited a steep increase perihelion despite the normal, moderate-decrease perihelion, and an asymmetric extension of the fanlike coma in the solar direction. The late activity onset, the possible constant visual brightness immediately afterward, and the deviation of the fan axis orientation from the predicted value in May 1988, may all furnish additional constraints for P/Tempel 2 nucleus modeling. 24 refs

  5. Blazing a ghostly trail ISON and great comets of the past and future

    CERN Document Server

    Grego, Peter

    2014-01-01

    A special celestial event climaxes towards the end of 2013, the arrival, fresh from the Oort Cloud, of Comet C/2012 S1 (ISON). By all predictions, this comet was set to be one of the most dazzling comets seen in modern history.   Sky watchers will have already been primed for C/2012 (ISON) earlier in 2013 with the apparition of another naked-eye comet, C/2011 L4 (PanSTARRS), and following C/2012 S1 (ISON) there is the prospect of 2012 K1 (PanSTARRS) reaching naked-eye visibility in August 2014. And there will be other bright cometary prospects in the near future, if we take into account the latest predictions.   This book sets the scene for the arrival of Comet C/2012 S1 and those comets following it over the next few years. It explains how sky watchers and amateur astronomers can practically follow comets, observe them, and record them. This is also a guide on how to keep abreast of the latest cometary discoveries and how to use publications, websites, programs, and apps to visualize and plan observations....

  6. Dose-Response Assessment of Four Genotoxic Chemicals in a Combined Mouse and Rat Micronucleus and Comet Assay Protocol

    Science.gov (United States)

    Recio, Leslie; Hobbs, Cheryl; Caspary, William; Witt, Kristine L.

    2012-01-01

    The in vivo micronucleus (MN) assay has proven to be an effective measure of genotoxicity potential. However, sampling a single tissue (bone marrow) for a single indicator of genetic damage using the MN assay provides a limited genotoxicity profile. The in vivo alkaline (pH>13) Comet assay, which detects a broad spectrum of DNA damage, can be applied to a variety of rodent tissues following administration of test agents. To determine if the Comet assay is a useful supplement to the in vivo MN assay, a combined test protocol (MN/Comet assay) was conducted in male B6C3F1 mice and F344/N rats using four model genotoxicants: ethyl methanesulfonate (EMS), acrylamide (ACM), cyclophosphamide (CP), and vincristine sulfate (VS). Test compounds were administered on 4 consecutive days at 24-hour intervals (VS was administered to rats for 3 days); animals were euthanized 4 hours after the last administration. All compounds induced significant increases in micronucleated reticulocytes (MN-RET) in the peripheral blood of mice, and all but ACM induced MN-RET in rats. EMS and ACM induced significant increases in DNA damage, measured by the Comet assay, in multiple tissues of mice and rats. CP-induced DNA damage was detected in leukocytes and duodenum cells. VS, a spindle fiber disrupting agent, was negative in the Comet assay. Based on these results, the MN/Comet assay holds promise for providing more comprehensive assessments of potential genotoxicants, and the National Toxicology Program is presently using this combined protocol in its overall evaluation of the genotoxicity of substances of public health concern. PMID:20371966

  7. Survival of Glycolaldehyde and Production of Sugar Compounds via Comet Impact Delivery

    Science.gov (United States)

    Zellner, N.; McCaffrey, V.; Crake, C.; Butler, J.; Robbins, J.; Fodor, A.

    2017-12-01

    Impact experiments using glycolaldehyde (GLA), a two-carbon sugar precursor that has been detected in regions of the interstellar medium and on comets, have been conducted at the Experimental Impact Laboratory at NASA's Johnson Space Center. Samples of GLA and GLA mixed with montmorillonite clays were subjected to the pressure conditions that are found during impact delivery of biomolecules by comets, asteroids, or meteors; pressures ranged from 4.5 GPa to 25 GPa. Results show that large amounts of GLA survived the impacts and moderate amounts of threose, erythrose, and glycolic acid were produced in these impacts. Total amounts are dependent on impact pressure. Ethylene glycol, a reduced variant of GLA that has also been detected in the interstellar medium and on comets, was also produced. The results of these experimental impacts provide evidence that large amounts of GLA, EG, and other biomolecules were available on habitable moons or planets, especially during the era of late heavy bombardment ( 4.2 to 3.7 billion years ago) when life may have been developing on Earth. The presence and availability of these biomolecules, under appropriate conditions, may be important for understanding the origin of life as we know it. Glycolaldehyde in particular, may be an important molecule in the production of ribose, the five-carbon sugar in RNA.

  8. Extreme Environment Sampling System Deployment Mechanism, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future Venus or Comet mission architectures may feature robotic sampling systems comprised of a Sampling Tool and Deployment Mechanism. Since 2005, Honeybee has been...

  9. Physical activity of the selected nearly isotropic comets with perihelia at large heliocentric distance

    Science.gov (United States)

    Kulyk, I.; Rousselot, P.; Korsun, P. P.; Afanasiev, V. L.; Sergeev, A. V.; Velichko, S. F.

    2018-03-01

    Context. The systematic investigation of comets in a wide range of heliocentric distances can contribute to a better understanding of the physical mechanisms that trigger activity at large distances from the Sun and reveals possible differences in the composition of outer solar system bodies belonging to various dynamical groups. Aims: We seek to analyze the dust environment of the selected nearly isotropic comets with a perihelion distance between 4.5 and 9.1 au, where sublimation of water ice is considered to be negligible. Methods: We present results of multicolor broadband photometric observations for 14 distant active objects conducted between 2008 and 2015 with various telescopes. Images obtained with broadband filters were used to investigate optical colors of the cometary comae and to quantify physical activity of the comet nuclei. Results: The activity level was estimated with Afρ parameters ranging between 95 ± 10 cm and 9600 ± 300 cm. Three returning comets were less active than the dynamically new comets. Dust production rates of the comet nuclei were estimated between 1 and 100 kg s-1 based on some assumptions about the physical properties of dust particles populating comae. The measured colors point out reddening of the continuum for all the comets. The mean values of a normalized reflectivity gradient within the group of the comets amount to 14 ± 2% per 1000 Å and 3 ± 2% per 1000 Å in the BV and VR spectral domains, respectively. The comae of the dynamically new comets, which were observed on their inbound legs, may be slightly redder in the blue spectral interval than comae of the comets observed after the perihelion passages. The dynamically new comets observed both pre- and post-perihelion, seem to have higher production rates post-perihelion than pre-perihelion for similar heliocentric distances.

  10. Assessment of Genotoxicity of Ionizing radiation using Tradescantia-Comet assay

    Energy Technology Data Exchange (ETDEWEB)

    Han, Min; Ryu, Tae Ho; Hyun, Kyung Man; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Wilhelmova, Nad [Institute of Experimental Botany, Prague (Czech Republic)

    2010-05-15

    Over the last two decades, several new methodologies for the detection of DNA damage have been developed. The comet assay is currently used in different areas of biological sciences to detect DNA damage. The comet assay, also called the single cell gel electrophoresis (SCGE) was first introduced by Ostling and Johanson as a microelectrophoretic technique for the direct visualization of DNA damage in individual cells. The comet assay, due to its simplicity, sensitivity and need of a few cells, is ideal as a short-term genotoxicity test. The comet assay can theoretically be applied to every type of eukaryotic cell, including plant cells. Plants are very useful as monitors of genetic effects caused by pollution in the atmosphere, water and soil. Although the genotoxic effects detected by Tradescantia tests cannot be associated with mutagenesis or even carcinogenesis in humans, these bioassays are very useful tools for screening the mutagenic potential in the environment. Experiments were conducted to study the genotoxic effects of ionizing radiations on the genome integrity, particularly of Tradescantia. The increasingly frequent use of Tradescantia as a sensitive environmental bioindicator of genotoxic effects. This study was designed to assess the genotoxicity of ionizing radiation using Tradescnatia-comet assay

  11. Comet C/2001 J1

    Czech Academy of Sciences Publication Activity Database

    Pravec, Petr; Helin, E.; Lawrence, K.; Kotková, Lenka; Tichá, J.; Tichý, M.

    č. 7623 (2001), s. 1 ISSN 0081-0304 R&D Projects: GA ČR GA205/99/0255 Institutional research plan: CEZ:AV0Z1003909 Keywords : comet s * astrometry Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  12. COMET- co-ordination and implementation of a pan-European instrument for radioecology - COMET- co-ordination and implementation of a pan-European project for radioecology

    Energy Technology Data Exchange (ETDEWEB)

    Vandenhove, Hildegarde [SCK.CEN, Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol (Belgium); Muikku, Maarit [STUK, Radiation and Nuclear Safety Authority, P.O. Box 14, FI-00881 Helsinki (Finland); Liland, Astrid [NRPA, Norwegian Radiation Protection Authority, Grini Naeringspark 13, Oesteraas, 1332 (Norway); Adam-Guillermin, Christelle [IRSN-Institut de Radioprotection et de Surete Nucleaire, 31, Avenue de la Division Leclerc, 92260 Fontenay-Aux-Roses (France); Howard, Brenda [NERC Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Av., Bailrigg, Lancaster, LA1 4AP (United Kingdom)

    2014-07-01

    The EC-FP7 project COMET (June 2013 - May 2017) intends to strengthen the pan-European research initiative on the impact of radiation on man and the environment by facilitating the integration of 'radioecological' research. The COMET consortium currently has thirteen partners; eight from EU member states, two from Norway, two from Ukraine and one from Japan. COMET operates in close association with the FP7-STAR Network of Excellence[1]and the Radioecology Alliance[2], COMET will develop initiatives to encourage organisations from the European (and larger) radioecological research community to join the Radioecology Alliance to help address the priorities identified in the Strategic Research Agenda (SRA) for radioecological research. Capacity, competence and skills in radioecology will thus be strengthened at a pan-European level. Mechanisms for knowledge exchange, dissemination and training will be established to enhance and maintain European capacity, competence and skills in radioecology, partially through an open access web site, topical workshops and training activities. COMET will develop innovative mechanisms for joint programming and implementation of radioecological research. Mechanisms for planning and carrying out joint research activities in radioecology will be developed based on the scientific requirements identified in the SRA and via interaction with a wide range of stakeholders. COMET will strengthen the bridge with other radiation protection and ecological communities. A roadmap and associated implementation plan is being developed in collaboration with the Radioecology Alliance and the allied platforms on low dose risk research (MELODI[3]), and emergency management research (NERIS[4]) and the radioecology community at large who is invited to become associated to the development of roadmap and implementation plan. COMET will initiate innovative research on key needs identified by the radioecology community, the (post) emergency management

  13. First in-situ measurements of a highly fragmented comet: ACE SWICS and WIND STICS measurements

    Science.gov (United States)

    Lepri, S. T.; Gilbert, J. A.; Rubin, M.; Zurbuchen, T.; Combi, M. R.

    2011-12-01

    While many of the characteristics of comets and their local plasma environment are obtained using remote sensing via spectroscopic methods, space-based mass spectrometers allow a unique opportunity to directly sample cometary material in situ. To date there have been only a handful of in-situ spacecraft encounters with comets, such as 1P/Halley, 103P/Hartley, 81P/Wild and others. Comet 73P/Schwassmann-Wachmann started to disintegrate in 1995, two major components B and C were recovered in 2001, and it burst into more than 36 pieces during its passage near the Earth in 2006. Serendipitously, some very distant fragmentation members, well-separated from the major identified fragments, passed between the Earth and Sun. Cometary pickup ions and possibly recombined solar wind minor ions convected past the Earth in late May 2006 and were observed by both the ACE/SWICS and WIND/STICS mass spectrometers, which are located in halo orbits around the Earth-Sun L1 Lagrange point. Most of these observations took place a few days after the main comet fragments passed through the ecliptic, when their orbits crossed the spacecraft-Sun line, suggesting additional pieces lagging far behind the main fragments. In this paper, we present the first in-situ observation of these pieces that passed very close to the spacecraft (<0.07AU) and conduct a comparative analysis of composition and characteristics of pick-up ions originating from a number of the cometary fragments. We find that the pick-up ion trail related to the comet fragments is much longer than expected. We constrain the C+/O+ and He+/He++ ratio and discuss the implications for the production rates of different fragments.

  14. Alkaline Comet Assay for Assessing DNA Damage in Individual Cells.

    Science.gov (United States)

    Pu, Xinzhu; Wang, Zemin; Klaunig, James E

    2015-08-06

    Single-cell gel electrophoresis, commonly called a comet assay, is a simple and sensitive method for assessing DNA damage at the single-cell level. It is an important technique in genetic toxicological studies. The comet assay performed under alkaline conditions (pH >13) is considered the optimal version for identifying agents with genotoxic activity. The alkaline comet assay is capable of detecting DNA double-strand breaks, single-strand breaks, alkali-labile sites, DNA-DNA/DNA-protein cross-linking, and incomplete excision repair sites. The inclusion of digestion of lesion-specific DNA repair enzymes in the procedure allows the detection of various DNA base alterations, such as oxidative base damage. This unit describes alkaline comet assay procedures for assessing DNA strand breaks and oxidative base alterations. These methods can be applied in a variety of cells from in vitro and in vivo experiments, as well as human studies. Copyright © 2015 John Wiley & Sons, Inc.

  15. Comet assay in the detection of irradiated garlic

    International Nuclear Information System (INIS)

    Villavicencio, Anna Lucia C.H.; Marin-Huachaca, Nelida Simona; Romanelli, Maria Fernanda; Delincee, Henry

    2002-01-01

    The increased claim for fresh produce has forced a consensus between nations to pay more attention to the phytosanitary regulations. Inhibition of sprouting of bulbs and tubers by applying ionising radiation is authorised by the National Food Codes in Brazil. The availability of methods for detection of irradiated food will contribute to increase consumers' confidence. A quick and simple screening test to indicate whether a food product has been irradiated or not was utilised in this study. The DNA comet assay was applied to verify whether garlic imported from China had been irradiated or not. This test has already been adopted as a European Standard (EN 13784), for detection of irradiated food. Non-irradiated control samples of garlic and garlic treated with maleic hydrazide were compared with garlic samples irradiated in our department. The unirradiated samples exhibited only limited DNA migration. If samples were irradiated, an increased DNA fragmentation was observed which permitted the discrimination between non-irradiated and irradiated samples. Since the garlic samples from China showed only very limited DNA fragmentation, they were deemed non-irradiated. Thus, this simple screening test was shown to be successful for identification of an irradiation treatment. (author)

  16. Halley's Comet: A Bibliography.

    Science.gov (United States)

    Freitag, Ruth S., Comp.

    Included in this bibliography are over 3,200 references to publications on Halley's Comet, its history, orbital motion, and physical characteristics, meteor streams associated with it, preparations for space missions to study it in 1986, and popular reaction to its appearances. Also cited are a few papers that, although they devote little…

  17. The Disruption and Demise of Periodic Comet Shoemaker-Levy 9

    Science.gov (United States)

    Asphaug, Erik; Benz, Willy; Cuzzi, Jeffrey (Technical Monitor)

    1994-01-01

    The impact of the fragmented comet Shoemaker-Levy 9 (SL9) into Jupiter this July promises to change our understanding of the outer solar system. More than twenty mountain-sized conglomerates of ice and rock will hit the atmosphere at approx. 50 km/s over the course of a week beginning July 16, releasing approx. 10(exp 4) to 10(exp8) megatons of energy per burst, and providing unique and perhaps pivotal clues to the properties of comets and the physics of massive atmospheres. Because the fragments will strike the far side of Jupiter, data acquisition, analysis and interpretation will be quite sensitive to the actual size and energy of the fragments. We therefore examine an event which took place two summers ago, unnoticed and unobserved: the disruption of SL9 into a "string of pearls' as it passed within the Roche limit at perijove. We first demonstrate, on the basis of timescales of tidal interaction, that the comet could not have broken into 20+ fragments through a hierarchy of brittle fracture events. Next, noting that the tidal stress was too weak to have even fragmented an uncompressed mass of freshly fallen snow, we run models for a strengthless comet held together only by self-gravity. We explore the initial size, density, and rotation. We conclude that a 4 km diameter comet (smaller if a prograde rotator) of density approx. 0.5 g/cu cm disrupts and disperses into a chain of fragments similar to Shoemaker-Levy 9, whether we begin with 21, 85, 169, 700 or 2000 sub-grains. Gravitational reaccumulation is evidently the answer, and there is no need to invoke the presence of 21 "cometesimals" as the subscale of the comet. To explain how a comet can be weaker than uncompacted snow, we show that the ring-plane crossing prior to perijove could have caused total damage. Finally, we compute the tidal stress on impactors as they approach Jupiter this July. Objects of various density are moderately distorted but not disrupted by the time they strike the planet.

  18. Comet assay as a human biomonitoring tool: application in occupational exposure to antineoplastic drugs

    Directory of Open Access Journals (Sweden)

    Carina Ladeira

    2015-05-01

    Occupational exposure to antineoplastic drugs is associated with genotoxic effects, although comet assay analyzed parameters were higher in exposed comparing with controls, were not significant. Also the study of the susceptibility biomarkers did not show statistical significant differences, the small size of our sample hampered the finding of a possible association, let alone a causality relationship.

  19. Colour, albedo and nucleus size of Halley's comet

    Science.gov (United States)

    Cruikshank, D. P.; Tholen, D. J.; Hartmann, W. K.

    1985-01-01

    Photometry of Halley's comet in the B, J, V, and K broadband filters during a time when the coma was very weak and presumed to contribute negligibly to the broadband photometry is reported. The V-J and J-K colors suggest that the color of the nucleus of Halley's comet is similar to that of the D-type asteroids, which in turn suggests that the surface of the nucleus has an albedo less than 0.1.

  20. The Importance of Meteorite Collections to Sample Return Missions: Past, Present, and Future Considerations

    Science.gov (United States)

    Welzenbach, L. C.; McCoy, T. J.; Glavin, D. P.; Dworkin, J. P.; Abell, P. A.

    2012-01-01

    While much of the scientific community s current attention is drawn to sample return missions, it is the existing meteorite and cosmic dust collections that both provide the paradigms to be tested by these missions and the context for interpreting the results. Recent sample returns from the Stardust and Hayabusa missions provided us with new materials and insights about our Solar System history and processes. As an example, Stardust sampled CAIs among the population of cometary grains, requiring extensive and unexpected radial mixing in the early solar nebula. This finding would not have been possible, however, without extensive studies of meteoritic CAIs that established their high-temperature, inner Solar System formation. Samples returned by Stardust also revealed the first evidence of a cometary amino acid, a discovery that would not have been possible with current in situ flight instrument technology. The Hayabusa mission provided the final evidence linking ordinary chondrites and S asteroids, a hypothesis that developed from centuries of collection and laboratory and ground-based telescopic studies. In addition to these scientific findings, studies of existing meteorite collections have defined and refined the analytical techniques essential to studying returned samples. As an example, the fortuitous fall of the Allende CV3 and Murchison CM2 chondrites within months before the return of Apollo samples allowed testing of new state-of-the-art analytical facilities. The results of those studies not only prepared us to better study lunar materials, but unanticipated discoveries changed many of our concepts about the earliest history and processes of the solar nebula. This synergy between existing collections and future space exploration is certainly not limited to sample return missions. Laboratory studies confirmed the existence of meteorites from Mars and raised the provocative possibility of preservation of ancient microbial life. The laboratory studies in

  1. Reference cells and ploidy in the comet assay

    Directory of Open Access Journals (Sweden)

    Gunnar eBrunborg

    2015-02-01

    Full Text Available In the comet assay, single cells are analyzed with respect to their level of DNA damage. Discrimination of the individual cell or cell type based on DNA content, with concomitant scoring of the DNA damage, is useful since this may allow analysis of mixtures of cells. Different cells can then be characterized based on their ploidy, cell cycle stage, or genome size. We here describe two applications of such a cell type-specific comet assay: (i Testicular cell suspensions, analyzed on the basis of their ploidy during spermatogenesis; and (ii reference cells in the form of fish erythrocytes which can be included as internal standards to correct for inter-assay variations. With standard fluorochromes used in the comet assay, the total staining signal from each cell – whether damaged or undamaged – was found to be associated with the cell’s DNA content. Analysis of the fluorescence intensity of single cells is straightforward since these data are available in scoring systems based on image analysis. The analysis of testicular cell suspensions provides information on cell type specific composition, susceptibility to genotoxicants, and DNA repair. Internal reference cells, either untreated or carrying defined numbers of lesions induced by ionizing radiation, are useful for investigation of experimental factors that can cause variation in comet assay results, and for routine inclusion in experiments to facilitate standardization of methods and comparison of comet assay data obtained in different experiments or in different laboratories. They can also be used - in combination with a reference curve - to quantify the DNA lesions induced by a certain treatment. Fish cells of a range of genome sizes, both greater and smaller than human, are suitable for this purpose and they are inexpensive.

  2. Comet Dust After Deep Impact

    Science.gov (United States)

    Wooden, Diane H.; Harker, David E.; Woodward, Charles E.

    2006-01-01

    When the Deep Impact Mission hit Jupiter Family comet 9P/Tempel 1, an ejecta crater was formed and an pocket of volatile gases and ices from 10-30 m below the surface was exposed (A Hearn et aI. 2005). This resulted in a gas geyser that persisted for a few hours (Sugita et al, 2005). The gas geyser pushed dust grains into the coma (Sugita et a1. 2005), as well as ice grains (Schulz et al. 2006). The smaller of the dust grains were submicron in radii (0-25.3 micron), and were primarily composed of highly refractory minerals including amorphous (non-graphitic) carbon, and silicate minerals including amorphous (disordered) olivine (Fe,Mg)2SiO4 and pyroxene (Fe,Mg)SiO3 and crystalline Mg-rich olivine. The smaller grains moved faster, as expected from the size-dependent velocity law produced by gas-drag on grains. The mineralogy evolved with time: progressively larger grains persisted in the near nuclear region, having been imparted with slower velocities, and the mineralogies of these larger grains appeared simpler and without crystals. The smaller 0.2-0.3 micron grains reached the coma in about 1.5 hours (1 arc sec = 740 km), were more diverse in mineralogy than the larger grains and contained crystals, and appeared to travel through the coma together. No smaller grains appeared at larger coma distances later (with slower velocities), implying that if grain fragmentation occurred, it happened within the gas acceleration zone. These results of the high spatial resolution spectroscopy (GEMINI+Michelle: Harker et 4. 2005, 2006; Subaru+COMICS: Sugita et al. 2005) revealed that the grains released from the interior were different from the nominally active areas of this comet by their: (a) crystalline content, (b) smaller size, (c) more diverse mineralogy. The temporal changes in the spectra, recorded by GEMIM+Michelle every 7 minutes, indicated that the dust mineralogy is inhomogeneous and, unexpectedly, the portion of the size distribution dominated by smaller grains has

  3. Detection of irradiated onion by means of the comet assay

    International Nuclear Information System (INIS)

    Moreno Alvarez, Damaris L.; Prieto Miranda, Enrique Fco.; Carro Palacio, Sandra; Iglesia Enriquez, Isora

    2007-01-01

    The ionizing radiations are used as a harmless alternative treatment that it substitutes the employment of chemical treatments, which after their application in the food products can remain residuals not desired that they come to be carcinogenic. With the food irradiation is eliminated microorganisms and the storage time is prolonged, which produces benefits for the Food Industry and the consumers. In many countries the search of sensitive detecting methods of irradiated foods is promoted by the necessity of the assurance of the consumption of foods with nutritional quality and to test directly the radiation processing, for which several techniques have been developed, these are based on the changes that induce the ionizing radiations in the food products. A recommended method is the Comet Assay of DNA, it is approved by the European Committee of Standardization (EN 13784). The DNA molecule is very sensitive to gamma radiations even at low radiation dose, where the modifications produced in the molecule can be monitored for this analytical technique well-known as Comet Assay of DNA or Single Cell Gel Electrophoresis. The objective of the present paper was to evaluate the modifications of the DNA molecule of irradiated onions with the Comet Assay for several dose values, the onions were conserved at environment and refrigeration temperatures. The samples were irradiated in a self-shielding irradiator with 60 Co source, dose rate of 20.45 Gy/min and absorbed dose values of 0.5; 0.6; 0.8 and 1.0 kGy. This detection method demonstrates to be one sensitive and quick technique for the qualitative detection of irradiated onions. (author)

  4. Hyperactivity and Dust Composition of Comet 103P/Hartley 2 During the EPOXI Encounter

    Science.gov (United States)

    Harker, David E.; Woodward, Charles E.; Kelley, Michael S. P.; Wooden, Diane H.

    2018-05-01

    Short-period comet 103P/Hartley 2 (103P) was the flyby target of the Deep Impact eXtended Investigation on 2010 November 4 UT. This comet has a small hyperactive nucleus, i.e., it has a high water production rate for its surface area. The underlying cause of the hyperactivity is unknown; the relative abundances of volatiles in the coma of 103P are not unusual. However, the dust properties of this comet have not been fully explored. We present four epochs of mid-infrared spectra and images of comet 103P observed from Gemini-South +T-ReCS on 2010 November 5, 7, 21 and December 13 UT, near and after the spacecraft encounter. Comet 103P exhibited a weak 10 μm emission feature ≃1.14 ± 0.01 above the underlying local 10 μm continuum. Thermal dust grain modeling of the spectra shows the grain composition (mineralogy) was dominated by amorphous carbon and amorphous pyroxene with evidence for Mg-rich crystalline olivine. The grain size has a peak grain radius range of a peak ∼ 0.5–0.9 μm. On average, the crystalline silicate mass fraction is ≃0.24, fairly typical of other short-period comets. In contrast, the silicate-to-carbon ratio of ≃0.48–0.64 is lower compared to other short-period comets, which indicates that the flux measured in the 10 μm region of 103P was dominated by amorphous carbon grains. We conclude that the hyperactivity in comet 103P is not revealing dust properties similar to the small grains seen with the Deep Impact experiment on comet 9P/Tempel 1 or from comet C/1995 O1 (Hale–Bopp).

  5. Comets, Charisma, and Celebrity: Reflections on Their Deep Impact

    Science.gov (United States)

    Olson, R. J. M.; Pasachoff, J. M.

    In celebration of the Deep Impact Mission, this essay explores the influence of comets on the arts and sciences since the beginning of recorded time. Through images, ranging from the sublime to the humorous, it probes the reasons why comets are among the most charismatic visual spectacles in the universe and why, even as scientific missions unmask their mysteries, they remain iconic symbols and harbingers of change.

  6. Comets, Carbonaceous Meteorites, and the Origin of the Biosphere

    Science.gov (United States)

    Hoover, Richard B.

    2007-01-01

    Evidence for indigenous microfossils in carbonaceous meteorites suggests that the paradigm of the endogenous origin of life on Earth should be reconsidered. It is now widely accepted that comets and carbonaceous meteorites played an important role in the delivery of water, organics and life critical biogenic elements to the early Earth and facilitated the origin and evolution of the Earth's Biosphere. However; the detection of embedded microfossils and mats in carbonaceous meteorites implies that comets and meteorites may have played a direct role in the delivery of intact microorganisms and that the Biosphere may extend far into the Cosmos. Recent space observations have found the nuclei of comets to have very low albedos (approx.0.03) and. these jet-black surfaces become very hot (T approx. 400 K) near perihelion. This paper reviews recent observational data-on comets and suggests that liquid water pools could exist in cavities and fissures between the internal ices and rocks and the exterior carbonaceous crust. The presence of light and liquid water near the surface of the nucleus enhances the possibility that comets could harbor prokaryotic extremophiles (e.g., cyanobacteria) capable of growth over a wide range of temperatures. The hypothesis that comets are the parent bodies of the CI1 and the CM2 carbonaceous meteorites is advanced. Electron microscopy images will be presented showing forms interpreted as indigenous-microfossils embedded' in freshly. fractured interior surfaces of the Orgueil (CI1) and Murchison (CM2) meteorites. These forms are consistent in size and morphologies with known morphotypes of all five orders of Cyanobacteriaceae: Energy Dispersive X-ray Spectroscopy (EDS) elemental data shows that the meteoritic forms have anomalous C/O; C/N; and C/S as compared with modern extremophiles and cyanobacteria. These images and spectral data indicate that the clearly biogenic and embedded remains cannot be interpreted as recent biological

  7. Localized irradiations, Evaluation through ''comet assay''

    International Nuclear Information System (INIS)

    Giorgio, M.D.; Taja, M.R.; Nasazzi, N.B.; Bustos, N.; Cavalieri, H.; Bolgiani, A.

    2000-01-01

    During the last 50 years various radiation accidents involving localized irradiations occurred, resulting mainly from improper handling of sealed sources Co 60 , Cs 137 or Ir 192 at workplaces for industrial gammagraphy. Severe skin reaction may develop at the contact sites. Such inhomogeneous irradiations lead to a differential exposure of lymphocytes in lymphatic tissues or other organs that may recirculate into the peripheral blood producing a mixed irradiated and unirradiated population of lymphocytes. Applying the mathematical models ''Contaminated Poisson'' of Dolphin and Qdr method of Sasaki, a mean dose in the irradiated body area and its size can be estimated from unstable chromosome aberration scoring. This give an indication of the proportion of haemopoietic stem cell compartment involved in the overexposure. There are also different biophysical techniques that can give responses in biological dosimetry. The ''Comet Assay'' (single cell gel electrophoresis) is a sensitive and rapid method for DNA strand break detection in individual cells. The advantages of the technique include: collection of data at the level of individual cell; the need for small numbers of cells per sample; its sensitivity for detecting DNA damage and that virtually any eukaryote cell population is amenable to analysis. The objective of this work is to apply ''Comet Assay'' method to evaluate the effect of radiation on skin and subcutaneous tissues, differentiating irradiated from unirradiated body areas. It could provide a useful tool to estimate the extension and the dose in the irradiated region, contributing with the current techniques. In this first study, we evaluate the alkaline comet assay as a method for detection of DNA radiation induced damage in keratinocytes from primary culture obtained from full thickness skin biopsies of patients requiring grafts. Skin and, particularly, keratinocytes were selected as an appropriate cellular system due to: Skin, the first barrier

  8. Evaluating In Vitro DNA Damage Using Comet Assay.

    Science.gov (United States)

    Lu, Yanxin; Liu, Yang; Yang, Chunzhang

    2017-10-11

    DNA damage is a common phenomenon for each cell during its lifespan, and is defined as an alteration of the chemical structure of genomic DNA. Cancer therapies, such as radio- and chemotherapy, introduce enormous amount of additional DNA damage, leading to cell cycle arrest and apoptosis to limit cancer progression. Quantitative assessment of DNA damage during experimental cancer therapy is a key step to justify the effectiveness of a genotoxic agent. In this study, we focus on a single cell electrophoresis assay, also known as the comet assay, which can quantify single and double-strand DNA breaks in vitro. The comet assay is a DNA damage quantification method that is efficient and easy to perform, and has low time/budget demands and high reproducibility. Here, we highlight the utility of the comet assay for a preclinical study by evaluating the genotoxic effect of olaparib/temozolomide combination therapy to U251 glioma cells.

  9. Evaluation of environmental genotoxicity by comet assay in Columba livia.

    Science.gov (United States)

    González-Acevedo, Anahi; García-Salas, Juan A; Gosálvez, Jaime; Fernández, José Luis; Dávila-Rodríguez, Martha I; Cerda-Flores, Ricardo M; Méndez-López, Luis F; Cortés-Gutiérrez, Elva I

    2016-01-01

    The concentrations of recognized or suspected genotoxic and carcinogenic agents found in the air of large cities and, in particular, developing countries, have raised concerns about the potential for chronic health effects in the populations exposed to them. The biomonitoring of environmental genotoxicity requires the selection of representative organisms as "sentinels," as well as the development of suitable and sensitive assays, such as those aimed at assessing DNA damage. The aim of this study was to evaluate DNA damage levels in erythrocytes from Columba livia living in the metropolitan area of Monterrey, Mexico, compared with control animals via comet assay, and to confirm the results via Micronuclei test (MN) and DNA breakage detection-fluorescence in situ hybridization (DBD-FISH). Our results showed a significant increase in DNA migration in animals from the area assayed compared with that observed in control animals sampled in non-contaminated areas. These results were confirmed by MN test and DBD-FISH. In conclusion, these observations confirm that the examination of erythrocytes from Columba livia via alkaline comet assay provides a sensitive and reliable end point for the detection of environmental genotoxicants.

  10. The cyanogen band of Comet Halley

    Science.gov (United States)

    Tatum, J. B.; Campbell, E. C.

    The results of improved whole disk solar irradiance spectrum calculations performed for projected Halley's Comet heliocentric radial velocity and distance are provided. The computations were carried out to account for Doppler effects in the Fraunhofer lines of rotational excitation bands of violet CN emissions from the comet in its encounters with solar radiation. The calculations spanned every half-day for 200 days before and after perihelion. The 801 computer images of the expected intensities were photographed in sequence to form an animated film paced by background music from Liszt's Second Hungarian Rhapsody. The results are intended for accounting for spectral changes observed due to Doppler effects induced by changing velocity and distance, rather than physical mechanisms of the emitting processes.

  11. Science & Technology Review April 2007

    Energy Technology Data Exchange (ETDEWEB)

    Radousky, H B

    2007-02-27

    This month's issue has the following articles: (1) Shaking the Foundations of Solar-System Science--Commentary by William H. Goldstein; (2) Stardust Results Challenge Astronomical Convention--The first samples retrieved from a comet are a treasure trove of surprises to Laboratory researchers; (3) Fire in the Hole--Underground coal gasification may help to meet future energy supply challenges with a production process from the past; (4) Big Physics in Small Spaces--A newly developed computer model successfully simulates particle-laden fluids flowing through complex microfluidic systems; (5) A New Block on the Periodic Table--Livermore and Russian scientists add a new block to the periodic table with the creation of element 118; and (6) A Search for Patterns and Connections--Throughout his career, Edward Teller searched for mathematical solutions to explain the physical world.

  12. Melt cooling by bottom flooding. The COMET core-catcher concept

    International Nuclear Information System (INIS)

    Foit, Jerzy Jan; Alsmeyer, Hans; Tromm, Walter; Buerger, Manfred; Journeau, Christophe

    2009-01-01

    The COMET concept has been developed to cool an ex-vessel corium melt in case of a hypothetical severe accident leading to vessel melt-through. After erosion of a sacrificial concrete layer the melt is passively flooded by bottom injection of coolant water. The open porosities and large surface that are generated during melt solidification form a porous permeable structure that is permanently filled with the evaporating water and thus allows an efficient short-term as well as long-term removal of the decay heat. The advantages of this concept are the fast cool-down and complete solidification of the melt within less than one hour typically. This stops further release of fission products from the corium. A drawback may be the fast release of steam during the quenching process. Several experimental series have been performed by FZK (Germany) to test and optimise the functionality of the different variants of the COMET concept. Thermite generated melts of iron and aluminium oxide were used. The large scale COMET-H test series with sustained inductive heating includes nine experiments performed with an array of water injection channels embedded in a sacrificial concrete layer. Variation of the water inlet pressure and melt height showed that melts up to 50 cm height can be safely cooled with an overpressure of the coolant water of 0.2 bar. The CometPC concept is based on cooling by flooding the melt from the bottom through layers of porous, water filled concrete. The third variant of the COMET design, CometPCA, uses a layer of porous, water filled concrete CometPCA from which flow channels protrude into the layer of sacrificial concrete. This modified concept combines the advantages of the original COMET concept with flow channels and the high resistance of a water-filled porous concrete layer against downward melt attack. Four large scale CometPCA experiments (FZK, Germany) have demonstrated an efficient cooling of melts up to 50 cm height using the recommended water

  13. Preliminary results of the Vega-1 and Vega-2 space probes rendezvous with the Halley comet

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Preliminary results of the Halley comet investigation using the Vega-1 and Vega-2 space probes which passed on the 6th and 9th of March, 1986 the comet nucleus at a distance of 9000 and 8200 respectively, are presented. The comet nucleus appeared to be one of the darkest bodies of the Solar system: its albedo is just about 4%. The IR spectrum analysis has shown, that water and carbon dioxide appear to be the main components of the comet material. Mass analysis points out to the presence in the comet dust of iron, oxygen and silicon. It is ascertained, that about 30 t of water vapors and about 5-10 t of dust are evaporated from the comet nucleus surface in one second. Solar wind interaction with the comet streched atmosphere was investigated

  14. SPITZER OBSERVATIONS OF COMET 67P/CHURYUMOV-GERASIMENKO AT 5.5-4.3 AU FROM THE SUN

    International Nuclear Information System (INIS)

    Kelley, Michael S.; Wooden, Diane H.; Tubiana, Cecilia; Boehnhardt, Hermann; Woodward, Charles E.; Harker, David E.

    2009-01-01

    We report Spitzer Space Telescope observations of comet 67P/Churyumov-Gerasimenko at 5.5 and 4.3 AU from the Sun, post-aphelion. Comet 67P is the primary target of the European Space Agency's Rosetta mission. The Rosetta spacecraft will rendezvous with the nucleus at heliocentric distances similar to our observations. Rotationally resolved observations at 8 and 24 μm (at a heliocentric distance, r h , of 4.8 AU) that sample the size and color-temperature of the nucleus are combined with aphelion R-band light curves observed at the Very Large Telescope (VLT) and yield a mean effective radius of 2.04 ± 0.11 km, and an R-band geometric albedo of 0.054 ± 0.006. The amplitudes of the R-band and mid-infrared light curves agree, which suggests that the variability is dominated by the shape of the nucleus. We also detect the dust trail of the comet at 4.8 and 5.5 AU, constrain the grain sizes to be ∼ h = 4 AU in 2014.

  15. Further characterization of benzo[a]pyrene diol-epoxide (BPDE)-induced comet assay effects.

    Science.gov (United States)

    Bausinger, Julia; Schütz, Petra; Piberger, Ann Liza; Speit, Günter

    2016-03-01

    The present study aims to further characterize benzo[a]pyrene diol-epoxide (BPDE)-induced comet assay effects. Therefore, we measured DNA effects by the comet assay and adduct levels by high-performance liquid chromatography (HPLC) in human lymphocytes and A549 cells exposed to (±)-anti-benzo[a]pyrene-7,8-diol 9,10-epoxide [(±)-anti-BPDE] or (+)-anti-benzo[a]pyrene-7,8-diol 9,10-epoxide [(+)-anti-BPDE]. Both, the racemic form and (+)-anti-BPDE, which is the most relevant metabolite with regard to mutagenicity and carcinogenicity, induced DNA migration in cultured lymphocytes in the same range of concentrations to a similar extent in the alkaline comet assay after exposure for 2h. Nevertheless, (+)-anti-BPDE induced significantly enhanced DNA migration after 16 and 18h post-cultivation which was not seen in response to (±)-anti-BPDE. Combination of the comet assay with the Fpg (formamidopyrimidine-DNA glycosylase) protein did not enhance BPDE-induced effects and thus indicated the absence of Fpg-sensitive sites (oxidized purines, N7-guanine adducts, AP-sites). The aphidicolin (APC)-modified comet assay suggested significant excision repair activity of cultured lymphocytes during the first 18h of culture after a 2 h-exposure to BPDE. In contrast to these repair-related effects measured by the comet assay, HPLC analysis of stable adducts did not reveal any significant removal of (+)-anti-BPDE-induced adducts from lymphocytes during the first 22h of culture. On the other hand, HPLC measurements indicated that A549 cells repaired about 70% of (+)-anti-BPDE-induced DNA-adducts within 22h of release. However, various experiments with the APC-modified comet assay did not indicate significant repair activity during this period in A549 cells. The conflicting results obtained with the comet assay and the HPLC-based adduct analysis question the real cause for BPDE-induced DNA migration in the comet assay and the reliability of the APC-modified comet assay for the

  16. Comet C/2017 K2 (PANSTARRS): Dynamically Old or New?

    Science.gov (United States)

    de la Fuente Marcos, Raúl; de la Fuente Marcos, Carlos

    2018-04-01

    At discovery time, C/2017 K2 (PANSTARRS) was the second most distant inbound active comet ever observed. It has been argued that this object is in the process of crossing the inner Solar System for the first time, but other authors have concluded that it is dynamically old. We have performed full N-body simulations for 3 Myr into the past using the latest public orbit determination for this object and most of them, 67%, are consistent with a bound and dynamically old Oort cloud comet, but about 29% of the studied orbits are compatible with an interstellar origin. Our independent calculations strongly suggest that C/2017 K2 is not a dynamically new Oort cloud comet.

  17. Encounter of the Ulysses Spacecraft with the Ion Tail of Comet McNaught

    Science.gov (United States)

    Neugebauer, M.; Gloeckler, G.; Gosling, J. T.; Rees, A.; Skoug, R.; Goldstein, B. E.; Armstrong, T. P.; Combi, M. R.; Makinen, T.; McComas, D. J.; hide

    2007-01-01

    Comet McNaught was the brightest comet observed from Earth in the last 40 years. For a period of five days in early 2007 February, four instruments on the Ulysses spacecraft directly measured cometary ions and key properties of the interaction of the comet's ion tail with the high-speed solar wind from the polar regions of the Sun. Because of the record-breaking duration of the encounter, the data are unusually comprehensive. O3(+) ions were detected for the first time in a comet tail, coexisting with singly charged molecular ions with masses in the range 28-35 amu. The presence of magnetic turbulence and of ions with energies up to approximately 200 keV indicate that at a distance of approximately 1.6 AU from the comet nucleus, the ion tail McNaught had not yet reached equilibrium with the surrounding solar wind.

  18. Model for the coma of Comet Halley, based on the Astron ultraviolet spectrophotometry

    International Nuclear Information System (INIS)

    Boiarchuk, A.A.; Grinin, V.P.; Petrov, P.P.; Sheikhet, A.I.; Zvereva, A.M.

    1986-01-01

    The development of a model of the Comet Halley coma from spectral and photometric data is described. Spectra in the 1500-3500 A range and photometric scans at the 3085 A and 2190 A in the (0-0) band of the OH and CO(+) molecules were obtained by the UV telescope of the satellite Astron on December 3, 13, and 23, 1985. Surface-brightness profiles of the coma in the (0-0) band of OH, NH, and CS molecules are derived. The source and formation of these molecules, the lifetime of their radicals, the radial velocity of their parent molecules, and the water-molecule sublimation rate are computed and examined. The basic characteristics of the comet observed from the UV data are compared to the properties of other comets. It is observed that Comet Halley is similar to other large short-period comets. 29 references

  19. A note on the possible origin of comets in an interstellar gas cloud

    International Nuclear Information System (INIS)

    Yabushita, S.; Hasegawa, I.

    1978-01-01

    A possible origin of comets in an interstellar gas cloud is discussed in relation to the two recent results on cometary research. First, among 200 long-period comets whose original incoming orbits were recently calculated, seven have definitely and 14 have probably negative values of 1/a, where 1/a is twice the binding energy (positive a corresponds to an elliptic orbit) with respect to the solar system barycentre. Second, it has been shown how an aggregate of dust grains embedded in an icy matrix of gaseous compounds could form in an interstellar gas cloud, which could be identified with the icy nucleus of a comet. Again, of about 20 comets whose original 1/a values are negative, seven are transformed into future elliptic orbits by planetary perturbation. Thus, a comet which originated in an interstellar cloud could be captured by the solar system

  20. The global morphology of the solar wind interaction with comet Churyumov-Gerasimenko

    International Nuclear Information System (INIS)

    Mendis, D. A.; Horányi, M.

    2014-01-01

    The forthcoming Rosetta-Philae mission to comet 67P/Churyumov-Gerasimenko provides a novel opportunity to observe the variable nature of the solar wind interaction with a comet over an extended range of heliocentric distance. We use a simple analytical one-dimensional MHD model to estimate the sizes of the two most prominent features in the global structure of the solar wind interaction with a comet. When the heliocentric distance of the comet reaches d ≤ 1.51 AU, we expect a sharp shock to be observed, whose size would increase monotonically as the comet approaches the Sun, reaching a value ≅ 15, 000 km at perihelion (d ≅ 1.29 AU). Upstream of the shock, we expect the velocity-space distribution of the picked up cometary ions to be essentially gyrotropic. A well-defined ionopause is predicted when d ≤1.61 AU, though its size is expected to be only ≅25 km at perihelion, and it is expected to be susceptible to the 'flute' instability due to its small size. Consequently, we expect the magnetic field to penetrate all the way to the surface of the nucleus. We conclude with a brief discussion of the response of the comet's plasma environment to fast temporal variations in the solar wind.

  1. Spectrophotometry of seventeen comets. II - The continuum

    Science.gov (United States)

    Newburn, R. L., Jr.; Spinrad, H.

    1985-01-01

    One-hundred-twenty IDS scans of the continua in 17 comets are analyzed to determine dust production rates and color as a function of heliocentric distance. Improved theory indicates that the dust loading of gas typically varies between 0.05 and 0.3 by mass (assuming a geometric albedo of 0.05 and oxygen expansion at 1 km/s) except during outbursts, when it rises much higher. P/Encke near perihelion falls much lower yet, to 0.004 or less. Dust loading is not always constant as a function of time in a given comet. Dust color is typically reddish, as has often been noted before.

  2. Assessment of gamma ray-induced DNA damage in Lasioderma serricorne using the comet assay

    International Nuclear Information System (INIS)

    Kameya, Hiromi; Miyanoshita, Akihiro; Imamura, Taro; Todoriki, Setsuko

    2012-01-01

    We attempted a DNA comet assay under alkaline conditions to verify the irradiation treatment of pests. Lasioderma serricorne (Fabricius) were chosen as test insects and irradiated with gamma rays from a 60 Co source at 1 kGy. We conducted the comet assay immediately after irradiation and over time for 7 day. Severe DNA fragmentation in L. serricorne cells was observed just after irradiation and the damage was repaired during the post-irradiation period in a time-dependent manner. The parameters of the comet image analysis were calculated, and the degree of DNA damage and repair were evaluated. Values for the Ratio (a percentage determined by fluorescence in the damaged area to overall luminance, including intact DNA and the damaged area of a comet image) of individual cells showed that no cells in the irradiated group were included in the Ratio<0.1 category, the lowest grade. This finding was observed consistently throughout the 7-day post-irradiation period. We suggest that the Ratio values of individual cells can be used as an index of irradiation history and conclude that the DNA comet assay under alkaline conditions, combined with comet image analysis, can be used to identify irradiation history. - Highlights: ► We investigated the DNA comet assay to verify the irradiation of pests. ► Ratio and Tail Moment were higher in irradiated groups than in the control group. ► The DNA comet assay can be used to identify irradiation history.

  3. Detection of the 3.4- and 2.8-micron emission features in Comet Bradfield (1987s)

    International Nuclear Information System (INIS)

    Brooke, T.Y.; Tokunaga, A.T.; Knacke, R.F.; Owen, T.C.; Mumma, M.J.

    1990-01-01

    Comet Bradfield's 3.4-micron C-H emission feature at 3.4 microns, as well as the emission feature near 2.8 microns, exhibit spectral shapes similar to those noted in Comets Halley and Wilson; the derived abundances of the C-H bonds in all three comets are also comparable (within water production rate uncertainties). These data support the hypothesis that the species responsible for the 3.4- and 2.8-micron features may be common to all comets. Beyond this, the widely differing ages of the three comets suggest that the 3.4-micron feature-emitting organics are not the product of surface irradiation processes after the comets' formation. 25 refs

  4. Comet 169P/NEAT(=2002EX12): More Dead Than Alive

    Science.gov (United States)

    Kasuga, T.; Balam, D. D.; Wiegert, P. A.

    2011-10-01

    The Jupiter family comet 169P/NEAT (previously known as asteroid 2002 EX12) has a dynamical association with the ?-Capriconid meteoroid stream. In this paper, we present photometric observations of comet 169P/NEAT to further investigate the physical characters of its disintegration state related to the stream. The comet shows a point-like surface brightness profile limiting contamination due to coma emission at ˜ 4% at most, indicating no evidence of outgassing. An upper limit on the fraction of the surface that could be sublimating water ice of disintegration of the parent at every return.

  5. The use of comet assay in plant toxicology: recent advances

    Directory of Open Access Journals (Sweden)

    Conceição LV Santos

    2015-06-01

    Full Text Available The systematic study of genotoxicity in plants induced by contaminants and other stress agents has been hindered to date by the lack of reliable and robust biomarkers. The comet assay is a versatile and sensitive method for the evaluation of DNA damages and DNA repair capacity at single-cell level. Due to its simplicity and sensitivity, and the small number of cells required to obtain robust results, the use of plant comet assay has drastically increased in the last decade. For years its use was restricted to a few model species, e.g. Allium cepa, Nicotiana tabacum, Vicia faba, or Arabidopsis thaliana but this number largely increased in the last years. Plant comet assay has been used to study the genotoxic impact of radiation, chemicals including pesticides, phytocompounds, heavy metals, nanoparticles or contaminated complex matrices. Here we will review the most recent data on the use of this technique as a standard approach for studying the genotoxic effects of different stress conditions on plants. Also, we will discuss the integration of information provided by the comet assay with other DNA-damage indicators, and with cellular responses including oxidative stress, cell division or cell death. Finally, we will focus on putative relations between transcripts related with DNA damage pathways, DNA replication and repair, oxidative stress and cell cycle progression that have been identified in plant cells with comet assays demonstrating DNA damage.

  6. The use of comet assay in plant toxicology: recent advances

    Science.gov (United States)

    Santos, Conceição L. V.; Pourrut, Bertrand; Ferreira de Oliveira, José M. P.

    2015-01-01

    The systematic study of genotoxicity in plants induced by contaminants and other stress agents has been hindered to date by the lack of reliable and robust biomarkers. The comet assay is a versatile and sensitive method for the evaluation of DNA damages and DNA repair capacity at single-cell level. Due to its simplicity and sensitivity, and the small number of cells required to obtain robust results, the use of plant comet assay has drastically increased in the last decade. For years its use was restricted to a few model species, e.g., Allium cepa, Nicotiana tabacum, Vicia faba, or Arabidopsis thaliana but this number largely increased in the last years. Plant comet assay has been used to study the genotoxic impact of radiation, chemicals including pesticides, phytocompounds, heavy metals, nanoparticles or contaminated complex matrices. Here we will review the most recent data on the use of this technique as a standard approach for studying the genotoxic effects of different stress conditions on plants. Also, we will discuss the integration of information provided by the comet assay with other DNA-damage indicators, and with cellular responses including oxidative stress, cell division or cell death. Finally, we will focus on putative relations between transcripts related with DNA damage pathways, DNA replication and repair, oxidative stress and cell cycle progression that have been identified in plant cells with comet assays demonstrating DNA damage. PMID:26175750

  7. Global moedeling of comets: nucleus, neutral and ionized coma of comets 67P/Churyumov-Gerasimenko and 46P/Wirtanen. Preparations for the ROSETTA radio science investigations

    International Nuclear Information System (INIS)

    Oertzen, J. von

    2003-01-01

    Models of the thermal behaviour of a cometary nucleus, the evolution of the neutral gas coma, the ionized cometary coma and of the interaction of the cometary plasma with the solar wind are studied in this work. The general aim is to develop a global model of the comet and its environment in order to characterize the physical conditions around comets 67P/Churyumov-Gerasimenko and 46P/Wirtanen with respect to the heliocentric distance. The model of the heat diffusion within the cometary nucleus is one-dimensional. A grid of one-dimensional models is distributed over the nucleus in order to determine the temperature distribution and the sublimation characteristics of the comet on the whole surface of the comet. A heat balance equation is applied as boundary condition on the surface. Many parameters that have to be accounted for in a heat diffusion model are not precisely known to date. The variation of these parameters within reasonable limits yields a wide range of possible results. The heat diffusion within the cometary nucleus is derived from an energy conservation equation that includes heat conduction through the porous cometary material and heat convection due to the transport of latent heat by the gas phase within the nucleus. Model results are evaluated by a comparison of modeled and observed global gas production rates. Exemplary maps of the local temperature distribution and local sublimation rates at particular heliocentric distances are also provided. The neutral gas coma of the comet is modeled with a hydrodynamic approximation. The acceleration of the spacecraft due to the gas mass flux is evaluated with the model results. The ionized coma of a comet can also have an effect on the carrier signal. A one-dimensional model of the plasma density at the comet-sun axis is developed. The assumption of photochemical equilibrium is not necessarily justified within the coma of weak outgassing comets. The continuity equation of the plasma density has to be solved

  8. Fluorescence Excitation Models of Ammonia and Amidogen Radical (NH2) in Comets: Application to Comet C/2004 Q2 (Machholz)

    Science.gov (United States)

    Kawakita, Hideyo; Mumma, Michael J.

    2011-01-01

    Ammonia is a major reservoir of nitrogen atoms in cometary materials. However, detections of ammonia in comets are rare, with several achieved at radio wavelengths. A few more detections were obtained through near-infrared observations (around the 3 m wavelength region), but moderate relative velocity shifts are required to separate emission lines of cometary ammonia from telluric absorption lines in the 3 micron wavelength region. On the other hand, the amidogen radical (NH2 -- a photodissociation product of ammonia in the coma) also shows rovibrational emission lines in the 3 micron wavelength region. Thus, gas production rates for ammonia can be determined from the rovibrational emission lines of ammonia (directly) and amidogen radical (indirectly) simultaneously in the near-infrared. In this article, we present new fluorescence excitation models for cometary ammonia and amidogen radical in the near-infrared, and we apply these models to the near-infrared high-dispersion spectra of comet C/2004 Q2 (Machholz) to determine the mixing ratio of ammonia to water in the comet. Based on direct detection of NH3 lines, the mixing ratio of NH3/H2O is 0.46% +/- 0.03% in C/2004 Q2 (Machholz), in agreement with other results. The mixing ratio of ammonia determined from the NH2 observations (0.31% -- 0.79%) is consistent but has relatively larger error, owing to uncertainty in the photodissociation rates of ammonia. At the present level of accuracy, we confirm that NH3 could be the sole parent of NH2 in this comet.

  9. FLUORESCENCE EXCITATION MODELS OF AMMONIA AND AMIDOGEN RADICAL (NH2) IN COMETS: APPLICATION TO COMET C/2004 Q2 (MACHHOLZ)

    International Nuclear Information System (INIS)

    Kawakita, Hideyo; Mumma, Michael J.

    2011-01-01

    Ammonia is a major reservoir of nitrogen atoms in cometary materials. However, detections of ammonia in comets are rare, with several achieved at radio wavelengths. A few more detections were obtained through near-infrared observations (around the 3 μm wavelength region), but moderate relative velocity shifts are required to separate emission lines of cometary ammonia from telluric absorption lines in the 3 μm wavelength region. On the other hand, the amidogen radical (NH 2 -a photodissociation product of ammonia in the coma) also shows rovibrational emission lines in the 3 μm wavelength region. Thus, gas production rates for ammonia can be determined from the rovibrational emission lines of ammonia (directly) and amidogen radical (indirectly) simultaneously in the near-infrared. In this article, we present new fluorescence excitation models for cometary ammonia and amidogen radical in the near-infrared, and we apply these models to the near-infrared high-dispersion spectra of comet C/2004 Q2 (Machholz) to determine the mixing ratio of ammonia to water in the comet. Based on direct detection of NH 3 lines, the mixing ratio of NH 3 /H 2 O is 0.46% ± 0.03% in C/2004 Q2 (Machholz), in agreement with other results. The mixing ratio of ammonia determined from the NH 2 observations (0.31%-0.79%) is consistent but has relatively larger error, owing to uncertainty in the photodissociation rates of ammonia. At the present level of accuracy, we confirm that NH 3 could be the sole parent of NH 2 in this comet.

  10. DNA damage in leukocytes from fanconi anemia patients and heterozygotes induced by mitomycin C and ionizing radiation as assessed by the comet and comet - FISH assay

    International Nuclear Information System (INIS)

    Mohseni Meybodi, A.; Mozdarani, H.

    2009-01-01

    Lymphocytes of Fanconi anemia (FA) show an increased sensitivity to the alkylating agents such as mitomycin C (MMC), but their responses to gamma-irradiation is controversial. The extent of DNA damage in leukocytes of FA patients following irradiation and MMC treatment was studied at cellular and single chromosome level. Methods: DNA damage induced by gamma-rays and MMC was measured in leukocytes of FA patients and carriers at whole genome level using the comet assay. Also, at the DNA level of specific chromosome involved in this disease using a modified comet-FISH protocol with whole chromosome painting probes (chromosomes 16 and 13), DNA damage in leukocytes of FA patients and heterozygotes were compared to healthy individuals. Results: Baseline DNA damage in leukocytes of patients and heterozygotes was higher than in controls. Net induced DNA damage by gamma-rays in leukocytes of FA cases was not significantly different from that of healthy donors and heterozygotes. Net induced DNA damage by MMC was statistically higher and significantly different (P<0.05) in patients than other groups. Hybridization of chromosome 16 reveals more signals in the tail but the number of spots in the tail was not significantly higher than the hybridization spots for chromosome 13 in both gamma-irradiated and MMC treated samples. Conclusion: Results indicate that DNA damage induced by MMC could be a better index for diagnosis of FA patients compared to gamma-rays. Results of comet-FISH showed no difference between the sensitivity of chromosome 16 and 13 to MMC and radiation. It may indicate that, although the FA-A gene is located on chromosome 16, this chromosome might have a similar sensitivity as other chromosomes

  11. Comet Halley, parameter study I

    International Nuclear Information System (INIS)

    Huebner, W.F.; Fikani, M.M.

    1982-06-01

    To aid in defining a mission to comet P/Halley, its inner coma is simulated by a computer program that models time-dependent chemical reactions in a radially and isentropically expanding gas, taking into account attenuation of solar ultraviolet radiation in the subsolar direction. Column density predictions are based on intelligently selected combinations of poorly known values for nucleus parameters that include size, visual albedo, and infrared emissivity. Only one chemical composition and a minor modification of it are considered here; the dust-to-gas ratio in this model is zero. Although the somewhat optimistically volatile composition chosen here favors a smaller nucleus, a mean nuclear radius of only 0.5 km is unlikely. No significant increase of molecular column density is predicted by this model as a spacecraft approaches, once it is less than a few 10 4 km from the nucleus. Predictions are made for various heliocentric distances of interest for comet missions and for ground observations

  12. Comet Halley: nucleus and jets

    International Nuclear Information System (INIS)

    Sagdeev, R.Z.; Avanesov, G.A.; Barinov, I.V.

    1986-06-01

    The VEGA-1 and VEGA-2 spacecrafts made their closest approach to Comet Halley on 6 and 9 March, respectively. In this paper results of the onboard imaging experiment are discussed. The nucleus of the comet was clearly identifyable as an irregularly shaped object with overall dimensions of (16+-1)x(8+-1)x(8+-1) km. The nucleus rotates around its axis which is nearly perpendicular to the orbital plane, with a period of 53+-2 hours. Its albedo is only 0.04+-002. Most of the jet features observed during the second fly-by were spatially reconstructed. These sources form a quasi-linear structure on the surface. The dust above the surface is shown to be optically thin except certain specific dust jets. Brightness features on the surface are clearly seen. Correlating the data with other measurements it is concluded that the dirty snow-ball model probably has to be revised. (author)

  13. EPOXI: Comet 103p/Hartley 2 Observations from a Worldwide Campaign

    Science.gov (United States)

    Meech, K. J.; Hearn, M. F. A.; Bauer, J. M.; Bonev, B. P.; Charnley, S. B.; DiSanti, M. A.; Gersch, A.; Immler, S. M.; Kaluna, H. M.; Keane, J. V.; hide

    2011-01-01

    Earth- and space-based observations provide synergistic information for space mission encounters by providing data over longer timescales. at different wavelengths and using techniques that are impossible with an in situ flyby. We report here such observations in support of the EPOXI spacecraft flyby of comet 103P (Hartley 2. The nucleus is small and dark, and exhibited a very rapidly changing rotation period. Prior to the onset of activity, the period was approximately 16.4 hr. Starting in 2010 August the period changed from 16.6 hr to near 19 hr in December. With respect to dust composition, most volatiles and carbon and nitrogen isotope ratios, the comet is similar to other Jupiter-family comets. What is unusual is the dominance of CO2-driven activity near perihelion, which likely persists out to aphelion. Near perihelion the comet nucleus was surrounded by a large halo of water-ice grains that contributed significantly to the total water production.

  14. EPOXI: COMET 103P/HARTLEY 2 OBSERVATIONS FROM A WORLDWIDE CAMPAIGN

    International Nuclear Information System (INIS)

    Meech, K. J.; A'Hearn, M. F.; Bodewits, D.; Adams, J. A.; Bacci, P.; Bai, J.; Barrera, L.; Battelino, M.; Bauer, J. M.; Becklin, E.; Bhatt, B.; Biver, N.; Bockelee-Morvan, D.; Boehnhardt, H.; Boissier, J.; Bonev, B. P.; Borghini, W.; Brucato, J. R.; Bryssinck, E.; Buie, M. W.

    2011-01-01

    Earth- and space-based observations provide synergistic information for space mission encounters by providing data over longer timescales, at different wavelengths and using techniques that are impossible with an in situ flyby. We report here such observations in support of the EPOXI spacecraft flyby of comet 103P/Hartley 2. The nucleus is small and dark, and exhibited a very rapidly changing rotation period. Prior to the onset of activity, the period was ∼16.4 hr. Starting in 2010 August the period changed from 16.6 hr to near 19 hr in December. With respect to dust composition, most volatiles and carbon and nitrogen isotope ratios, the comet is similar to other Jupiter-family comets. What is unusual is the dominance of CO 2 -driven activity near perihelion, which likely persists out to aphelion. Near perihelion the comet nucleus was surrounded by a large halo of water-ice grains that contributed significantly to the total water production.

  15. The Photometric lightcurve of Comet 1P/Halley

    Science.gov (United States)

    Bair, Allison N.; Schleicher, David G.

    2014-11-01

    Comet 1P/Halley is considered an important object for a number of reasons. Not only is it the first-identified and brightest periodic comet, being the only periodic comet visible to the naked eye at every apparition, but in 1986 Halley became the first comet to be imaged by fly-by spacecraft. The NASA-funded International Halley Watch (IHW) directly supported the spacecraft by providing narrowband filters for groundbased photometric observations, and until the arrival of Hale-Bopp (1995 O1), Halley was the subject of the largest groundbased observational campaign in history. Following considerable controversy regarding its rotation period, it was eventually determined to be in complex rotation -- the first comet to be so identified. While the overall brightness variations of the coma repeated with a period of about 7.4 days, the detailed period and shape of the lightcurve constantly evolved. The determination of the specific characteristics of each of the two components of its non-principal axis rotational state has remained elusive.To resolve this situation we have now incorporated all of the narrowband photometry, taken by 21 telescopes from around the world and submitted to the IHW archive, to create the most complete homogeneous lightcurve possible. Using measurements of three gas species and the dust, the lightcurve was investigated and found to alternate between a double- and triple-peaked shape, with no single feature being present throughout the entire duration of our dataset (316 days). The apparent period as a function of time was extracted and seen to vary in a step-wise manner between 7.27 and 7.60 days. Taken together, these results were used to produce a synthetic lightcurve revealing Halley's behavior even when no data were available. Details of this and other results, to be used to constrain future detailed modeling, will be presented. This research is supported by NASA's Planetary Atmospheres Program.

  16. Hydrogen addition reactions of aliphatic hydrocarbons in comets

    Science.gov (United States)

    Kobayashi, Hitomi; Watanabe, N.; Watanabe, Y.; Fukushima, T.; Kawakita, H.

    2013-10-01

    Comets are thought as remnants of early solar nebula. Their chemical compositions are precious clue to chemical and physical evolution of the proto-planetary disk. Some hydrocarbons such as C2H6, C2H2 and CH4 in comets have been observed by using near-infrared spectroscopy. Although the compositions of C2H6 were about 1% relative to the water in normal comets, there are few reports on the detection of C2H6 in ISM. Some formation mechanisms of C2H6 in ISM have been proposed, and there are two leading hypotheses; one is the dimerizations of CH3 and another is the hydrogen addition reactions of C2H2 on cold icy grains. To evaluate these formation mechanisms for cometary C2H6 quantitatively, it is important to search the C2H4 in comets, which is the intermediate product of the hydrogen addition reactions toward C2H6. However, it is very difficult to detect the C2H4 in comets in NIR (3 microns) regions because of observing circumstances. The hydrogen addition reactions of C2H2 at low temperature conditions are not well characterized both theoretically and experimentally. For example, there are no reports on the reaction rate coefficients of those reaction system. To determine the production rates of those hydrogen addition reactions, we performed the laboratory experiments of the hydrogenation of C2H2 and C2H4. We used four types of the initial composition of the ices: pure C2H4, pure C2H2, C2H2 on amorphous solid water (ASW) and C2H4 on ASW at three different temperatures of 10, 20, and 30K. We found 1) reactions are more efficient when there are ASW in the initial compositions of the ice; 2) hydrogenation of C2H4 occur more rapid than that of C2H2.

  17. Comet P/2004 F3 (NEAT)

    Czech Academy of Sciences Publication Activity Database

    Tichá, J.; Tichý, M.; Kušnirák, Peter

    -, č. 8313 (2004), s. 1 ISSN 0081-0304 R&D Projects: GA AV ČR IAA3003204 Institutional research plan: CEZ:AV0Z1003909 Keywords : comet * astrometry Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  18. Using a medium-throughput comet assay to evaluate the global DNA methylation status of single cells

    Science.gov (United States)

    Lewies, Angélique; Van Dyk, Etresia; Wentzel, Johannes F.; Pretorius, Pieter J.

    2014-01-01

    The comet assay is a simple and cost effective technique, commonly used to analyze and quantify DNA damage in individual cells. The versatility of the comet assay allows introduction of various modifications to the basic technique. The difference in the methylation sensitivity of the isoschizomeric restriction enzymes HpaII and MspI are used to demonstrate the ability of the comet assay to measure the global DNA methylation level of individual cells when using cell cultures. In the experiments described here, a medium-throughput comet assay and methylation sensitive comet assay are combined to produce a methylation sensitive medium-throughput comet assay to measure changes in the global DNA methylation pattern in individual cells under various growth conditions. PMID:25071840

  19. 3 micron spectrophotometry of Comet Halley - Evidence for water ice

    Science.gov (United States)

    Bregman, Jesse D.; Tielens, A. G. G. M.; Witteborn, Fred C.; Rank, David M.; Wooden, Diane

    1988-01-01

    Structure has been observed in the 3-3.6 micron preperihelion spectrum of Comet Halley consistent with either an absorption band near 3.1 microns or emission near 3.3 microns. The results suggest that a large fraction of the water molecules lost by the comet are initially ejected in the form of small ice particles rather than in the gas phase.

  20. A HERSCHEL STUDY OF D/H IN WATER IN THE JUPITER-FAMILY COMET 45P/HONDA-MRKOS-PAJDUŠÁKOVÁ AND PROSPECTS FOR D/H MEASUREMENTS WITH CCAT

    International Nuclear Information System (INIS)

    Lis, D. C.; Blake, G. A.; Biver, N.; Bockelée-Morvan, D.; Crovisier, J.; Moreno, R.

    2013-01-01

    We present Herschel observations of water isotopologues in the atmosphere of the Jupiter-family comet 45P/Honda-Mrkos-Pajdušáková. No HDO emission is detected, with a 3σ upper limit of 2.0 × 10 –4 for the D/H ratio. This value is consistent with the earlier Herschel measurement in the Jupiter-family comet 103P/Hartley 2. The canonical value of 3 × 10 –4 measured pre-Herschel in a sample of Oort-cloud comets can be excluded at a 4.5σ level. The observations presented here further confirm that a diversity of D/H ratios exists in the comet population and emphasize the need for additional measurements with future ground-based facilities, such as CCAT, in the post-Herschel era

  1. Gamma ray bursts from comet neutron star magnetosphere interaction, field twisting and Eparallel formation

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1990-01-01

    Consider the problem of a comet in a collision trajectory with a magnetized neutron star. The question addressed in this paper is whether the comet interacts strongly enough with a magnetic field such as to capture at a large radius or whether in general the comet will escape a magnetized neutron star. 6 refs., 4 figs

  2. Comet C/2004 P1 (NEAT)

    Czech Academy of Sciences Publication Activity Database

    Tichá, J.; Tichý, M.; Kušnirák, Peter

    -, č. 8383 (2004), s. 1 ISSN 0081-0304 R&D Projects: GA AV ČR IAA3003204 Institutional research plan: CEZ:AV0Z1003909 Keywords : new comet * astrometry Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  3. The Comet assay in insects--Status, prospects and benefits for science.

    Science.gov (United States)

    Augustyniak, Maria; Gladysz, Marcin; Dziewięcka, Marta

    2016-01-01

    The Comet assay has been recently adapted to investigate DNA damage in insects. The first reports of its use in Drosophila melanogaster appeared in 2002. Since then, the interest in the application of the Comet assay to studies of insects has been rapidly increasing. Many authors see substantial potential in the use of the Comet assay in D. melanogaster for medical toxicology studies. This application could allow the testing of drugs and result in an understanding of the mechanisms of action of toxins, which could significantly influence the limited research that has been performed on vertebrates. The possible perspectives and benefits for science are considered in this review. In the last decade, the use of the Comet assay has been described in insects other than D. melanogaster. Specifically, methods to prepare a cell suspension from insect tissues, which is a difficult task, were analyzed and compared in detail. Furthermore, attention was paid to any differences and modifications in the research protocols, such as the buffer composition and electrophoresis conditions. Various scientific fields in addition to toxicological and ecotoxicological research were considered. We expect the Comet assay to be used in environmental risk assessments and to improve our understanding of many important phenomena of insect life, such as metamorphosis, molting, diapause and quiescence. The use of this method to study species that are of key importance to humans, such as pests and beneficial insects, appears to be highly probable and very promising. The use of the Comet assay for DNA stability testing in insects will most likely rapidly increase in the future. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. The DNA comet assay and the germination test in detection of food treated by ionizing radiation; Teste do cometa e teste de germinacao na deteccao do tratamento de alimentos com a radiacao ionizante

    Energy Technology Data Exchange (ETDEWEB)

    Huachaca, Nelida Simona Marin

    2002-07-01

    Two methods of irradiated food detection, one biochemical, the comet assay and, other biological, the germination test, were applied in bovine meat and fruit samples. The comet assay detects the damage on DNA caused by ionizing radiation. The germination test evaluates the sensitivity to radiation of seeds as for germination ability, shooting and, rooting. The samples were irradiated in gamma font and electron accelerator. For bovine meat samples, the doses were 0.0; 2.5; 4.5 e 7.0 kGy at chilled condition and, 0.0; 2.5; 4.5; 7.0 e 8.5 kGy at frozen conditions. For fruit samples such as melon, watermelon, apple, orange, papaya and, tomato, the doses were: 0.0; 0.5; 0.75; 1.0; 2.0 e 4.0 kGy. The differences between the gamma rays and the electron beam effects on extent of DNA migration and, on shooting and rooting, showed to be similar. The comet assay, under neutral conditions, permitted to discriminate between irradiated and unirradiated bovine meat samples, until one month of storage. Also, it was possible to distinguish, by the comet assay, the control sample with regard to irradiated fruit, at doses as low as 0,5 kGy. In the germination test, the root length was the best parameter to discriminate irradiated and unirradiated samples of melon, watermelon and tomato, while the germination percent was the best parameter for apple and orange. (author)

  5. X-ray and extreme ultraviolet emission from comets

    Science.gov (United States)

    Lisse, C. M.; Cravens, T. E.; Dennerl, K.

    The discovery of high energy X-ray emission in 1996 from C/1996 B2 (Hyakutake) has created a surprising new class of X-ray emitting objects. The original discovery (Lisse et al., 1996) and subsequent detection of X-rays from 17 other comets (Table 1) have shown that the very soft (E < 1 keV) emission is due to an interaction between the solar wind and the comet's atmosphere, and that X-ray emission is a fundamental property of comets. Theoretical and observational work has demonstrated that charge exchange collisions of highly charged solar wind ions with cometary neutral species is the best explanation for the emission. Now a rapidly changing and expanding field, the study of cometary X-ray emission appears to be able to lead us to a better understanding of a number of physical phenomena: the nature of the cometary coma, other sources of X-ray emission in the solar system, the structure of the solar wind in the heliosphere, and the source of the local soft X-ray background.

  6. The evolution of comets and the detectability of Extra-Solar Oort Clouds

    International Nuclear Information System (INIS)

    Stern, S.A.

    1989-01-01

    According the standard theory, comets are natural products of solar system formation, ejected to the Oort Cloud by gravitational scattering events during the epoch of giant planet formation. Stored far from the Sun for billions of years, comets almost certainly contain a record of the events which occurred during (and perhaps even before) the epoch of planetary formation. Two themes are examined of the evolutionary processes that affect comets in the Oort Cloud, and a search for evidence of Extra-Solar Oort Clouds (ESOCs). With regard to cometary evolution in the Oort Cloud, it was found that luminous O stars and supernovae have heated the surface layers of all comets on numerous occasions to 20 to 30 K and perhaps once to 50 K. Interstellar medium (ISM) interactions blow small grains out of the Oort Clouds, and erode the upper few hundred g/cu cm of material from cometary surfaces. The findings presented contradict the standard view that comets do not undergo physical change in the Oort Cloud. A logical consequence of the intimate connection between the Oort Cloud and our planetary system is that the detection of comet clouds around other stars would strongly indicate the sites of extant extra-solar planetary systems. A search was conducted for infrared IR emission from debris in ESOCs. After examining 17 stars using the Infrared Astronomical Satellite data base, only upper limits on ESOC emission could be set

  7. Encounter with comet Halley

    International Nuclear Information System (INIS)

    Sagdeev, R.Z.

    1989-01-01

    This paper reports on an international armada of six spacecraft which encountered the comet Halley and performed in-situ measurements. These encounters led to the discovery of a number of cometary plasma physics phenomena. Another important result was that a value for the average density of the cometary nucleus could be estimated, which is found to be compatible with snow ball models for the nucleus

  8. Comet C/2001 A1 (Linear)

    Czech Academy of Sciences Publication Activity Database

    Blythe, M.; Dawson, M.; Kornos, L.; Koleny, P.; Kotková, Lenka; Tichá, J.; Tichý, M.

    č. 7561 (2001), s. 1 ISSN 0081-0304 R&D Projects: GA ČR GA205/99/0255 Institutional research plan: CEZ:AV0Z1003909 Keywords : comet s * astrometry Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  9. Comet C/2001 Q1 (Neat)

    Czech Academy of Sciences Publication Activity Database

    Lawrence, K. J.; Helin, E. F.; Pravdo, S. H.; Pravec, Petr; Kušnirák, Peter; Kočer, M.; Spahr, T. B.

    č. 7685 (2001), s. 1 ISSN 0081-0304 R&D Projects: GA ČR GA205/99/0255 Institutional research plan: CEZ:AV0Z1003909 Keywords : comet s * astrometry Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  10. Comet P/2001 T3 (Neat)

    Czech Academy of Sciences Publication Activity Database

    Lawrence, K. J.; Pravdo, S. H.; Helin, E. F.; Pravec, Petr; Kušnirák, Peter; Tichá, J.; Tichý, M.; Jelínek, P.

    č. 7733 (2001), s. 1 ISSN 0081-0304 R&D Projects: GA ČR GA205/99/0255 Institutional research plan: CEZ:AV0Z1003909 Keywords : comet s * astrometry Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  11. Comet P/2001 MD 7 (Linear)

    Czech Academy of Sciences Publication Activity Database

    Blythe, M.; Kotková, Lenka; Marsden, B. G.

    č. 7660 (2001), s. 1 ISSN 0081-0304 R&D Projects: GA ČR GA205/99/0255 Institutional research plan: CEZ:AV0Z1003909 Keywords : comet s * astrometry Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  12. Comet C/2001 A2 (Linear)

    Czech Academy of Sciences Publication Activity Database

    Pravec, Petr; Kotková, Lenka; Tichý, M.; Kočer, M.

    č. 7564 (2001), s. 1 ISSN 0081-0304 R&D Projects: GA ČR GA205/99/0255 Institutional research plan: CEZ:AV0Z1003909 Keywords : comet s * astrometry Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  13. Comet C/2001 Q6 (Neat)

    Czech Academy of Sciences Publication Activity Database

    Pravdo, S. H.; Helin, E. F.; Lawrence, K. J.; Tichý, M.; Kotková, Lenka; Wolf, M.; Balam, D.; Shelus, P. J.

    č. 7698 (2001), s. 1 ISSN 0081-0304 R&D Projects: GA ČR GA205/99/0255 Institutional research plan: CEZ:AV0Z1003909 Keywords : comet s * astrometry Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  14. Candidate sample acquisition systems for the Rosetta

    International Nuclear Information System (INIS)

    Magnani, P.G.; Gerli, C.; Colombina, G.; Vielmo, P.

    1989-01-01

    The Comet Nucleus Sample Return (CNSR) mission, one of the four cornerstones of the ESA scientific program, is one of the most complex space ventures within the next century, both from technological and deep space exploration point of view. In the Rosetta scenario the sample acquisition phase represents the most critical point for the global mission's success. The proposed paper illustrates the main results obtained in the context of the CNSR-SAS ongoing activity. The main areas covered are related to: (1) sample properties characterization (comet soil model, physical/chemical properties, reference material for testing); (2) concepts identification for coring, shovelling, harpooning and anchoring; (3) preferred concept (trade off among concepts, identification of the preferred configuration); and (4) proposed development activity for gaining the necessary confidence before finalizing the CNSR mission. Particular emphasis will be given to the robotic and flexibility aspects of the identified sample acquisition systems (SAS) configuration, intended as a means for the overall system performance enhancement

  15. On the probability of the discovery of comets and the reality of the concentration of perihelia

    International Nuclear Information System (INIS)

    Radzievskij, V.V.

    1979-01-01

    A high probability of the discovery of comets is discussed from the point of view of Golechek visibility conditions. The Golechek function is calculated for 482 comets with the period P > 1000 years, selected from the Marcden catalogue. A new empiric formula is obtained for the probability of comet discovery depending on the Golechek function and on the bending of orbits. It is shown that the observed concentration of (lambdasub(π)) perihelia longitudes of comet orbits at lambdasub(π)=270 deg can not be a consequence of selection effect. A conclusion is made that the observed concentration of perihelia of comet orbits is real and it may be considered as the most important cosmogonal characteristic. A hypothesis of comet origin can not be perfectly considered without the explanation of this characteristic

  16. Reduction and analysis of photometric data on Comet Halley

    International Nuclear Information System (INIS)

    Belton, M.J.S.; Fink, U.; Wehinger, P.; Spinrad, H.; Meech, K.

    1988-01-01

    The discovery that periodic variations in the brightness of Comet Halley were characterized by two unrelated frequencies implies that the nucleus is in a complex state of rotation. It either nutates as a result of the random addition of small torque perturbations accumulated over many perihelion passages, or the jet activity torques are so strong that it precesses wildly at each perihelion passage. To diagnose the state of nuclear rotation, researchers began a program to acquire photometric time series of the comet as it recedes from the sun. The intention is to observe the decay of the comet's atmosphere and then, when it is unemcumbered by the light of the coma, follow the light variation of the nucleus itself. The latter will be compared with preperihelion time series and the orientation of the nucleus at the time of Vega and Giotto flybys and an accurate rotational ephemeris constructed. Halley was observed on 38 nights during 1987 and approximately 21 nights in 1988. The comet moved from 5 AU to 8.5 AU during this time. The brightness of the coma was found to rapidly decrease in 1988 as the coma and cometary activity collapses. The magnitude in April 1988 was 19 mag (visual) and it is predicted that the nucleus itself will be the major contributor to the brightness in the 1988 and 1989 season

  17. New Observations of Comet Hale-Bopp from La Silla

    Science.gov (United States)

    1998-10-01

    Methanol and Hydrogen Cyanide Detected at Record Distance Observations of famous Comet Hale-Bopp continue with the 15-m Swedish-ESO Submillimetre Telescope (SEST) at the La Silla Observatory. They show amazingly strong activity of this unusual object, also at the present, very large distance from the Sun. The radio observations document in detail the release of various molecules from the comet's icy nucleus. Of particular interest is the observed emission from methanol ( CH 3 OH ) and hydrogen cyanide ( HCN ) molecules, never before detected in any comet this far away. Comet Hale-Bopp still going strong Just over 18 months after its perihelion passage on April 1, 1997, Comet Hale-Bopp (official designation C/1995 O1 ) is continuing its outward journey through the Solar System. It is now about 1,000 million kilometres (6.7 AU) from the Sun and the Earth, i.e. almost at the same distance as when it was first discovered in July 1995. After having traversed the northern sky in 1996 and 1997, the comet passed the celestial equator in late June 1997 and is now seen in the southern constellation Volans (The Flying Fish), i.e. just east of the Large Magellanic Cloud. It can only be observed from southern latitudes. The comet's brightness has decreased by a factor of more than 10,000 since it was at its brightest in March 1997, just before perihelion. However, the magnitude is still around 9 - 10, or only about 20-40 times fainter than what can be seen with the unaided eye. Hale-Bopp is therefore visible in binoculars to southern observers as a fuzzy object with a diameter of a few arcminutes. New observations from La Silla Several telescopes at La Silla are following the evolution of the activity of Comet Hale-Bopp as it recedes from the Sun. In particular, the comet is observed monthly with SEST , a 15-m diameter submillimetre telescope operated jointly by the Onsala Space Observatory (OSO, Chalmers University of Technology, Gothenburg, Sweden) and ESO; it is the only

  18. The split comets: gravitational interaction between the fragments

    International Nuclear Information System (INIS)

    Sekanina, Z.

    1979-01-01

    The n-body computer program by Schubart and Stumpff (1966) has been slightly modified to study the gravitational interaction between two fragments of a split comet nucleus in the sun's gravitational field. All calculations refer to the orbit of Comet West (1976 VI), the velocity of separation of the fragments is assumed to be equal in magnitude to the velocity of escape from the parent nucleus, and the numerical integration of the relative motion of one fragment (called the companion) with respect to the other (principal fragment) is carried over the period of 200 days from separation. (Auth.)

  19. THE INNER COMA OF COMET C/2012 S1 (ISON) AT 0.53 AU AND 0.35 AU FROM THE SUN

    Energy Technology Data Exchange (ETDEWEB)

    Bonev, Boncho P.; Villanueva, Geronimo L.; Paganini, Lucas [Department of Physics, Catholic University of America, Washington, DC 20061 (United States); DiSanti, Michal A.; Gibb, Erika L.; Mumma, Michael J., E-mail: bonev@cua.edu [Goddard Center For Astrobiology, NASA GSFC, Mail Stop 690, Greenbelt, MD 20771 (United States)

    2014-11-20

    Using long-slit spectroscopy at the NASA Infrared Telescope Facility, we extracted H{sub 2}O production rates and spatial profiles of gas rotational temperature and molecular column abundance in comet C/2012 S1 ISON, observed at heliocentric distances of 0.53 and 0.35 AU. These measurements uniquely probed the physical environment in the inner collisional coma of this comet during its first (and last) approach to the Sun since being emplaced in the Oort Cloud some 4.5 billion years ago. Our observations revealed a comet evolving on various timescales, both over hours and days. At 0.35 AU, ISON showed a considerable decrease in water production rate in less than 2 hr, likely declining from a major outburst. Our measured temperature spatial distributions reflect the competition between the processes that cause heating and cooling in the coma, and also provide insight about the prevalent mechanism(s) of releasing gas-phase H{sub 2}O. The observed temperatures suggest that the comet was likely ejecting icy material continuously, which sublimated in the coma and heated the ambient gas, augmenting fast H-atoms produced by H{sub 2}O photolysis. ISON adds to the very limited sample of comets for which spatial-spectral studies of water temperatures have been conducted. These studies are now feasible and can be extended to comets having a variety of gas production rates. Continued synergy of such observations with both space missions like Rosetta and with physical models is strongly encouraged in order to gain a deeper understanding of the processes in the inner collisional zone of the cometary coma.

  20. Porosity Gradient at the Surface of Comet 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Christou, C.; Dadzie, S. K.; Thomas, N.; Hartogh, P.; Jorda, L.; Kuhrt, E.; Wright, I.; Zarnecki, J.

    2017-12-01

    The Rosetta mission has provided invaluable and unexpected information about our knowledge and understanding of comets until now. The on-board instruments, ROSINA and VIRTIS showed the non-uniformly outgassing of H2O over the surface of the nucleus. After Philae landing in a small lobe and the attempt to intrude MUPUS into the surface led to estimate the minimum compressive strength of material > 4MPa. This high strength of material (at least locally) along with different porosity ranges that have been presented for the 67P/Churyumov-Gerasimenko (67P) challenge our understanding of the surface and outgassing processes. Here we used the micro computed tomography (micro-CT) technology to represent 3D Earth rock samples with different porosity to investigate outgassing in the near surface boundary layer. The Direct Simulation of Monte Carlo (DSMC) method is used to simulate the rarefied cometary atmosphere. We presented results with H2O outgassing at a maximum production rate near perihelion. We show that an existence of a possible porosity gradient at the surface of the comet may explain some of the structures observed on 67P.

  1. Mid-IR Spectra of Refractory Minerals Relevant to Comets

    Science.gov (United States)

    Jauhari, Shekeab

    2008-09-01

    On 4 July 2005 the Spitzer Space Telescope obtained mid-IR ( 5-40 µm) spectra of the ejecta from the hypervelocity impact of the Deep Impact projectile with comet 9P/Tempel 1. Spectral modeling demonstrates that there are abundant minerals present in the ejecta including Ca/Fe/Mg-rich silicates, carbonates, phyllosilicates, water ice, amorphous carbon, and sulfides [1]. However, precise mineralogical identifications are hampered by the lack of comprehensive 5 - 40 µm spectral measurements of the emissivity for a broad compositional range of these materials. Here, we present our initial results for 2 - 50 µm transmission spectra and absorption constants for materials relevant to comets, including pyrrhotite, pyrite, and several phyllosilicate (clay) minerals. Measuring the transmission of materials over the full spectral range sensitive by Spitzer requires grinding the minerals into submicron powders and then mixing them with KBr (for the 1-25 um region) and polyethylene (16-50 um region) to form pellets. Transmission measurements of sub-micron sulfides are particularly difficult to obtain because the minerals oxidize rapidly upon grinding and subsequent handling unless special care is taken. A detailed description of our sample preparation and measurement technique will be provided to assist other researchers in their attempts to acquire similar spectra. References: [1] Lisse, C.M. et al., Science 313, 635 - 640 (2006)

  2. Comparison of Wave Energy Transport at the Comets p/Halley and p/Giacobini-Zinner

    Science.gov (United States)

    Sding, A.; Glassmeir, K. H.; Fuselier, S. A.; Neubauer, Fritz M.; Tsurutani, B. T.

    1995-01-01

    Using magnetic field, plasma density and flow observations from spacecraft flybys of two comets, Eler variables are determined in order to study wave propogation directions. We investigate the inbound path of the Giotto spacecraft flyby of comet p/Halley outside the bow shock, and the inbound and outbound path of the ICE spacecraft flyby of comet p/Giacobini-Zinner outsinde of the bow wave.

  3. Destruction of Sun-Grazing Comet C-2011 N3 (SOHO) Within the Low Solar Corona

    Science.gov (United States)

    Schrijver, C. J.; Brown, J. C.; Battams, K.; Saint-Hilaire, P.; Liu, W.; Hudson, H.; Pesnell, W. D.

    2012-01-01

    Observations of comets in Sun-grazing orbits that survive solar insolation long enough to penetrate into the Suns inner corona provide information on the solar atmosphere and magnetic field as well as on the makeup of the comet. On 6 July 2011, the Solar Dynamics Observatory (SDO) observed the demise of comet C2011 N3 (SOHO) within the low solar corona in five wavelength bands in the extreme ultraviolet (EUV). The comet penetrated to within 0.146 solarradius (100,000 kilometers) of the solar surface before its EUV signal disappeared.

  4. Comet C/2013 US10 (CATALINA) - Dust in the Infrared with SOFIA

    Science.gov (United States)

    Woodward, Charles E.; Kelley, Michael S. P.; Harker, David E.; Russell, Ray W.; Kim, Daryl L.; Sitko, Michael L.; Wooden, Diane H.

    2018-01-01

    One of the major goals of modern astronomy is the "search for origins'' from the big bang to the development of intelligence. A key process in developing our understanding of these origins is how planetary systems are created from dusty disks around stars and evolve into planets with water and other molecules. Traces of primordial materials, and their least-processed products, are found in the outermost regions of the solar system -- the realm of comets -- in the form of ices of volatile materials (H2O, NH3, CO, CH4, and other more rare species), and more refractory dust grains. There is considerable evidence that in the cold regions where cometary material formed, existing comet bodies were mixed with refractory material processed at much higher temperatures. Remote sensing observation of comets provides a means to study the properties of this dust material to characterize the nature of refactory comet grains. These include observations of both the re-radiated thermal (spectrophotometric) and scattered light (spectrophotometric and polarimetric). The former technique provides our most direct link to the composition (mineral content) of the grains.Here we report our post-perihelion (TP = 2015 Nov 15.721 UT) infrared 2 to 31 micron spectrophotometric observations and dust thermal model analyses of comet C/2013 US10 (Catalina), a dynamically new Oort Cloud comet -- 1/aorg [reciprocal original semimajor axis ] = 0.00005339 -- conducted at two contemporaneous observational epochs near close Earth approach (Δ ≈ 0.93 AU) with NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) complemented by observations from the NASA Infrared Telescope Facility (IRTF).

  5. PHOTOMETRIC STUDY OF THE KREUTZ COMETS OBSERVED BY SOHO FROM 1996 TO 2005

    International Nuclear Information System (INIS)

    Knight, Matthew M.; A'Hearn, Michael F.; Hamilton, Douglas P.; Biesecker, Douglas A.; Faury, Guillaume; Lamy, Philippe; Llebaria, Antoine

    2010-01-01

    We present analysis of the photometry of more than 900 Kreutz comets observed by SOHO from 1996 to 2005. The Kreutz comets have 'sungrazing' orbits with q∼ 1-2 R sun , high inclinations (i ∼ 143 deg.), and periods of 500-1000 years. We find that they do not have a bimodal distance of peak brightness as previously reported, but instead peak from 10.5 R sun to 14 R sun (prior to perihelion), suggesting there is a continuum of compositions rather than two distinct subpopulations. The light curves have two rates of brightening, typically ∝ r -7.3±2.0 when first observed by SOHO (at distances of 30-35 R sun ) then rapidly transitioning to ∝ r -3.8±0.7 between 20 R sun and 30 R sun . It is unclear at what distance the steeper slope begins, but it likely does not extend much beyond the SOHO field of view. We derive nuclear sizes up to ∼50 m in radius for the SOHO-observed comets, with a cumulative size distribution of N(>R) ∝ R -2.2 for comets larger than 5 m in radius. This size distribution cannot explain the largest members of the family seen from the ground, suggesting that either the size distribution does not extend to the largest sizes or that the distribution is not uniform around the orbit. The total mass of the distribution up to the largest expected size (∼500 m) is ∼4 x 10 14 g, much less than the estimated masses of the largest ground-observed members. After correcting for the changing discovery circumstances, the flux of comets reaching perihelion has increased since 1996, and the increase is seen in comets of all sizes. Comparison of the SOHO comets with the Solwind and Solar Maximum Mission discoveries suggests there may have been an overabundance of bright comets arriving from 1979 to 1989, possibly indicative of a changing distribution around the Kreutz orbit.

  6. Scientists Revise Thinking on Comets, Planet Jupiter

    Science.gov (United States)

    Chemical and Engineering News, 1974

    1974-01-01

    Discusses scientific information obtained from Pioneer 10's Jupiter flyby and the comet Kohoutek's first trip around the sun, including the high hydrogen emission of Jupiter's principal moon, Io. (CC)

  7. comets in the STIP context

    International Nuclear Information System (INIS)

    Wallis, M.K.

    1977-01-01

    Fluid descriptions of plasma motion through a cometary coma are briefly sketched, distinguishing the bow shock and ionizing flow region mainly within it, the tail region and ray structure, and the 'ionosphere' coupled closely to the expanding cometary gas. Whether there is a contact discontinuity or continuous transition between the incoming flow and the ionosphere depends on solar fluxes rather than comet size. A discontinuity as observed requires much faster ionization in the inner coma or severe collisional cooling of incoming plasma. Changes in structure and brightness may reflect solar UV and solar plasma variations, but may also be evidence of intrinsic instabilities of hydrodynamic/MHD or chemically-reactive flow. Molecular ionization and dissociation processes strongly influence the stagnation region ahead of the comet, and make it particularly susceptible to flow instabilities. Solar UV variations are energetically dominant within the ionosphere, changing the evaporation and chemical reaction rates, and probably stimulate dust halos. Shocked changes in the solar wind propagating through the head can trigger structural and intensity fluctuations in the plasma, notably disruptions of the plasma tail. (Auth.)

  8. Some discussion on the acceleration mechanism of particles in the type-I plasma comet

    International Nuclear Information System (INIS)

    Li Zhongyuan; Guo Sheyu.

    1991-07-01

    Earlier, the large acceleration of plasma (300 cm/s 2 ) were already observed in type-I tail. Recently, the direct measurements for comet G-Z showed that the energy of particle reaches 2x10 5 eV, an energy much higher than the initial energy of comet particles (≤ 2x10 4 eV). So there should be an accelerated process in the comet. 14 refs, 3 figs

  9. Asteroids, Comets, Meteors 2014

    Science.gov (United States)

    Muinonen, K.; Penttilä, A.; Granvik, M.; Virkki, A.; Fedorets, G.; Wilkman, O.; Kohout, T.

    2014-08-01

    Asteroids, Comets, Meteors focuses on the research of small Solar System bodies. Small bodies are the key to understanding the formation and evolution of the Solar System, carrying signals from pre-solar times. Understanding the evolution of the Solar System helps unveil the evolution of extrasolar planetary systems. Societally, small bodies will be important future resources of minerals. The near-Earth population of small bodies continues to pose an impact hazard, whether it be small pieces of falling meteorites or larger asteroids or cometary nuclei capable of causing global environmental effects. The conference series entitled ''Asteroids, Comets, Meteors'' constitutes the leading international series in the field of small Solar System bodies. The first three conferences took place in Uppsala, Sweden in 1983, 1985, and 1989. The conference is now returning to Nordic countries after a quarter of a century. After the Uppsala conferences, the conference has taken place in Flagstaff, Arizona, U.S.A. in 1991, Belgirate, Italy in 1993, Paris, France in 1996, Ithaca, New York, U.S.A. in 1999, in Berlin, Germany in 2002, in Rio de Janeiro, Brazil in 2005, in Baltimore, Maryland, U.S.A. in 2008, and in Niigata, Japan in 2012. ACM in Helsinki, Finland in 2014 will be the 12th conference in the series.

  10. A Spitzer Search for Activity in Dormant Comets

    Science.gov (United States)

    Mommert, Michael; Trilling, David; Hora, Joseph; Smith, Howard

    2018-05-01

    Dormant comets are inactive cometary nuclei hiding in the asteroid populations. Due to their cometary origin, it is possible that volatiles are still retained in their interiors. This hypothesis is supported by the case of near-Earth asteroid Don Quixote, which had been known as an asteroid for 30 yr before activity was discovered in this team's prior Spitzer observations. Interestingly, Don Quixote showed outgassing of CO or CO2, but no dust activity. This significant observation was repeated in 2017 with the same result, suggesting that Don Quixote is continuously outgassing - and still an active comet. Don Quixote's case suggests that other dormant comets might be outgassing with low dust production rates, concealing their activity to optical surveys. The implication of this scenario is that the volatile inventory of the asteroid populations might be significantly larger than currently assumed. We propose 48.8 hr of deep IRAC observations of eight dormant comets in search of faint activity in them. For each target, we will (1) measure (or provide upper limits on) gas and dust production rates from our IRAC CH1 and CH2 observations, (2) derive the diameters and albedos of five of our targets using asteroid thermal modeling, (3) measure the near-infrared spectral slope between CH1 and CH2 for three of our targets, and (4) obtain lightcurve observations of the nuclei of all of our targets. Our observations, which are combined with ground-based observations as part of a NASA-funded program, will provide important constraints on the volatile content of the asteroid population, as well as the origin, evolution, and physical properties of cometary nuclei.

  11. Assessment of the predictive capacity of the optimized in vitro comet assay using HepG2 cells.

    Science.gov (United States)

    Hong, Yoon-Hee; Jeon, Hye Lyun; Ko, Kyung Yuk; Kim, Joohwan; Yi, Jung-Sun; Ahn, Ilyoung; Kim, Tae Sung; Lee, Jong Kwon

    2018-03-01

    Evaluation of DNA damage is critical during the development of new drugs because it is closely associated with genotoxicity and carcinogenicity. The in vivo comet assay to assess DNA damage is globally harmonized as OECD TG 489. However, a comet test guideline that evaluates DNA damage without sacrificing animals does not yet exist. The goal of this study was to select an appropriate cell line for optimization of the in vitro comet assay to assess DNA damage. We then evaluated the predictivity of the in vitro comet assay using the selected cell line. In addition, the effect of adding S9 was evaluated using 12 test chemicals. For cell line selection, HepG2, Chinese hamster lung (CHL/IU), and TK6 cell lines were evaluated. We employed a method for the in vitro comet assay based on that for the in vivo comet assay. The most appropriate cell line was determined by% tail DNA increase after performing in vitro comet assays with 6 test chemicals. The predictivity of the in vitro comet assay using the selected cell line was measured with 10 test chemicals (8 genotoxins and 2 non-genotoxic chemicals). The HepG2 cell line was found to be the most appropriate, and in vitro comet assays using HepG2 cells exhibited a high accuracy of 90% (9/10). This study suggests that HepG2 is an optimal cell line for the in vitro comet assay to assess DNA damage. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. A CCD portrait of Comet P/Tempel 2

    International Nuclear Information System (INIS)

    Jewitt, D.; Luu, J.

    1989-01-01

    The development of activity in Comet P/Tempel 2 is studied from aphelion (R = 4 AU) to perihelion (R = 1.4 AU) using extensive time-series CCD photometry and CCD spectra. The comet undergoes a profound morphological change at R of about 2-2.5 AU, from a bare nucleus at larger distances to an active comet supporting a coma of gas and dust. Cyclic photometric variations with the period T = 8.95 + or - 0.01 hr. are present at all R, and are attributed to the rotation of the nucleus at this period. The nucleus is prolate (axes a:b:c = 1.9:1:1), a property shared with other nuclei studied using CCD photometry. Novel results include a limit on the bulk density of the nucleus, rho above 300 kg/cu m, and a 20-A-resolution CCD spectrum of the nucleus. Spatially and temporally resolved photometry is used to study the effects of nucleus rotation on the coma. The coma does not share the dramatic photometric variations shown by the nucleus. It possesses a steep surface-brightness distribution, which is attributable to progressive destruction of the coma grains with increasing space exposure. 41 refs

  13. A Herschel Study of D/H in Water in the Jupiter-family Comet 45P/Honda-Mrkos-Pajdušáková and Prospects for D/H Measurements with CCAT

    Science.gov (United States)

    Lis, D. C.; Biver, N.; Bockelée-Morvan, D.; Hartogh, P.; Bergin, E. A.; Blake, G. A.; Crovisier, J.; de Val-Borro, M.; Jehin, E.; Küppers, M.; Manfroid, J.; Moreno, R.; Rengel, M.; Szutowicz, S.

    2013-09-01

    We present Herschel observations of water isotopologues in the atmosphere of the Jupiter-family comet 45P/Honda-Mrkos-Pajdušáková. No HDO emission is detected, with a 3σ upper limit of 2.0 × 10-4 for the D/H ratio. This value is consistent with the earlier Herschel measurement in the Jupiter-family comet 103P/Hartley 2. The canonical value of 3 × 10-4 measured pre-Herschel in a sample of Oort-cloud comets can be excluded at a 4.5σ level. The observations presented here further confirm that a diversity of D/H ratios exists in the comet population and emphasize the need for additional measurements with future ground-based facilities, such as CCAT, in the post-Herschel era.

  14. CoMET: A Mesquite package for comparing models of continuous character evolution on phylogenies

    Directory of Open Access Journals (Sweden)

    Chunghau Lee

    2006-01-01

    Full Text Available Continuously varying traits such as body size or gene expression level evolve during the history of species or gene lineages. To test hypotheses about the evolution of such traits, the maximum likelihood (ML method is often used. Here we introduce CoMET (Continuous-character Model Evaluation and Testing, which is module for Mesquite that automates likelihood computations for nine different models of trait evolution. Due to its few restrictions on input data, CoMET is applicable to testing a wide range of character evolution hypotheses. The CoMET homepage, which links to freely available software and more detailed usage instructions, is located at http://www.lifesci.ucsb.edu/eemb/labs/oakley/software/comet.htm.

  15. Comet Halley: An optical continuum study

    International Nuclear Information System (INIS)

    Hoban, S.M.

    1989-01-01

    From an analysis of narrowband CCD images of Comet Halley from 1986 January, March, and April, certain dust structures which are redder than the remainder of the dust coma have become apparent. Mie calculations suggest that this reddening is due to an enhancement of particles with sizes comparable to the observing wavelengths. Although the mass range derived from the calculations presented here is somewhat uncertain as a result of the limitations of Mie theory, these values are in the expected range derived from the calculations presented here is somewhat uncertain as a result of particle sizes which would be both sensitive to radiation pressure and significantly reddened with respect to the solar spectrum at the observing wavelengths. Thus, the red envelopes are plausibly the result of size sorting by solar radiation pressure. The red jets observed on 1986 January 10, March 1 and March 9 can then be explained by the enhanced dust flux at the jet sources, and the subsequent trapping of a relative excess of intermediate mass (i.e. red) particles into the jets which are visible in the continuum images. Analysis of narrowband photometry of the optical continuum of Comet Halley reveals no correlation between the color of the dust and heliocentric distance, phase angle, strength of the continuum or gas-to-dust ratio. The photometric data are thus consistent with a post-ejection sorting mechanism. Chemical inhomogeneities of the nucleus are therefore not necessary to explain the observed structure in the color of the dust in Comet Halley

  16. Observations of Comets and Eclipses in the Andes

    Science.gov (United States)

    Ziółkowski, Mariusz

    There is no doubt that the Incas possessed a system for observing and interpreting unusual astronomical phenomena, such as eclipses or comets. References to it, however, are scarce, often of anecdotal nature and are not collected into any coherent "Inca observation catalog". The best documented of such events is the "Ataw Wallpa's comet", seen in Cajamarca in July of 1533 and the solar eclipse, that in 1543, prevented conquistador Lucas Martínez from discovering the rich silver mines in northern Chile. Archived descriptions of the Andean population's reaction to these phenomena indicate that they were treated as extremely important omens, that should not, under any circumstances, be ignored.

  17. Guide to the universe asteroids, comets, and dwarf planets

    CERN Document Server

    Rivkin, Andrew

    2009-01-01

    This volume in the Greenwood Guides to the Universe series covers asteroids, comets, and dwarf planets-those small bodies that revolve the Sun-and provides readers with the most up-to-date understanding of the current state of scientific knowledge about them. Scientifically sound, but written with the student in mind, Asteroids, Comets, and Dwarf Planets is an excellent first step for researching the exciting scientific discoveries of the smallest celestial bodies in the solar system.||The book will introduce students to all of the areas of research surrounding the subject, answering many intr

  18. Organic Chemistry in Interstellar Ices: Connection to the Comet Halley Results

    Science.gov (United States)

    Schutte, W. A.; Agarwal, V. K.; deGroot, M. S.; Greenberg, J. M.; McCain, P.; Ferris, J. P.; Briggs, R.

    1997-01-01

    Mass spectroscopic measurements on the gas and dust in the coma of Comet Halley revealed the presence of considerable amounts of organic species. Greenberg (1973) proposed that prior to the formation of the comet UV processing of the ice mantles on grains in dense clouds could lead to the formation of complex organic molecules. Theoretical predictions of the internal UV field in dense clouds as well as the discovery in interstellar ices of species like OCS and OCN- which have been formed in simulation experiments by photoprocessing of interstellar ice analogues point to the importance of such processing. We undertook a laboratory simulation study of the formation of organic molecules in interstellar ices and their possible relevance to the Comet Halley results.

  19. Comet 17P/Holmes: Possibility of a CO driven explosion

    Science.gov (United States)

    Kossacki, Konrad J.; Szutowicz, Slawomira

    2011-04-01

    This work is a continuation of our previous paper about brightening of Comet 17P/Holmes (Kossacki, K.J., Szutowicz, S. [2010]. Icarus 207, 320-340). In that paper we presented results of simulations indicating that the nonuniform crystallization of amorphous water ice itself is probably not sufficient for an explosion. In the present work we investigate the possibility that the explosion is caused by a rapid sublimation of the CO ice leading to the rise of gas pressure above the tensile strength of the nucleus. We simulated evolution of a model nucleus in the orbit of Comet 17P/Holmes. The nucleus is composed of water ice, carbon monoxide ice and dust and has the shape of an elongated ellipsoid. The simulations include crystallization of amorphous ice in the nucleus, changes of the dust mantle thickness, and sublimation of the CO ice. In our model CO is mantling grains composed of dust and amorphous water ice. Orientation of the nuclear spin axis in space is the same as derived in Moreno et al. (Moreno, F., Ortiz, J.L., Santos-Sanz, P., Morales, N., Vidal-Nunez, M.J., Lara, L.M., Gutierrez, P.J. [2008]. Astrophys. J. 677, L63-L66) for Comet Holmes during recent brightening event. Hence, the angle between the orbital and the equatorial planes of the comet is I = 95°, and the cometocentric solar longitude at perihelion is Φ = 210°. The calculations are performed for the south pole being the sub-solar point close to time of the outburst. Our computations indicate, that the CO pressure within the comet nucleus can rise to high values. When the layer between the dust mantle and the crystallization front of the amorphous water ice is very fine grained, few microns in radius, the CO pressure within the nucleus can exceed 10 kPa. This value is the lowest estimate for the tensile strength of the nucleus of Comet Holmes (Reach, W.T., Vaubaillon, J., Lisse, C.M., Holloway, M., Rho, J. [2010]. Icarus 208, 276-292). Hence, when the gas pressure reaches this value the nucleus

  20. Modeling the Thermodynamic Properties of the Inner Comae of Comets

    Science.gov (United States)

    Boice, Daniel C.

    2017-10-01

    Introduction: Modeling is central to understand the important properties of the cometary environment. We have developed a comet model, SUISEI, that self-consistently includes the relevant physicochemical processes within a global modeling framework, from the porous subsurface layers of the nucleus to the interaction with the solar wind. Our goal is to gain valuable insights into the intrinsic properties of cometary nuclei so we can better understand observations and in situ measurements. SUISEI includes a multifluid, reactive gas dynamics simulation of the dusty coma (ComChem) and a suite of other coupled numerical simulations. This model has been successfully applied to a variety of comets in previous studies over the past three decades. We present results from a quantitative study of the thermodynamic properties and chemistry of cometary comae as a function of cometocentric and heliocentric distance to aid in interpretation of observations and in situ measurements of comets.Results and Discussion: ComChem solves the fluid dynamic equations for the mass, momentum, and energy of three neutral fluids (H, H2, and the heavier bulk fluid), ions, and electrons. In the inner coma, the gas expands, cools, accelerates, and undergoes many photolytic and gas-phase chemical reactions tracking hundreds of sibling species. The code handles the transition to free molecular flow and describes the spatial distribution of species in the coma of a comet. Variations of neutral gas temperature and velocity with cometocentric distance and heliocentric distance for a comet approaching the Sun from 2.5 to 0.3 AU are presented. Large increases in the gas temperatures (>400 K) due to photolytic heating in the coma within ~0.5 AU are noted, with dramatic effects on the chemistry, optical depth, and other coma properties. Results are compared to observations when available.Conclusions: SUISEI has proven to be a unique and valuable model to understand the relevant physical processes and