WorldWideScience

Sample records for starch polysaccharide dextrination

  1. Prebiotic properties of potato starch dextrins

    Directory of Open Access Journals (Sweden)

    Renata Barczyńska

    2015-09-01

    Full Text Available The objective of the present study was to compare the prebiotic properties of starch dextrins, that is, resistant dextrins obtained from potato starch in the process of simultaneous thermolysis and chemical modification, which were selected based on previous research. Both prepared dextrins met the definition criterion of dietary fiber and also the basic prebiotic criterion – they were not degraded by the digestive enzymes of the initial sections of the gastrointestinal tract. The growth of probiotic lactobacilli and bifidobacteria, as well as Escherichia coli, Enterococcus, Bacteroides, and Clostridium strains isolated from feces of healthy people, showed that both studied dextrins were utilized as a source of assimilable carbon and energy by the strains. Furthermore, better growth (higher numbers of cells counts of probiotic bacteria than those of fecal isolates indicated that the studied resistant dextrins showed a selective effect. Both dextrins might be considered as substances with prebiotic properties due to their chemical and physical properties and selectivity towards the studied probiotic bacterial strains.

  2. DEXTRINIZED SYRUPS OBTAINING THROUGH THE ENZYMATIC HYDROLYSIS OF SORGHUM STARCH

    Directory of Open Access Journals (Sweden)

    Leyanis Rodríguez Rodríguez

    2015-10-01

    Full Text Available The main objective of this work was the production of syrups dextrinized by enzymatic hydrolysis of starch red sorghum CIAPR-132 using α-amylase on solutions at different concentrations, with different concentrations of enzyme and enzyme hydrolysis time. The response variable was the dextrose equivalent in each obtained syrup (ED using the modified Lane-Eynon method. In some of the experiments, we used a full factorial design 23 and in others we worked with intermediate concentration and higher hydrolysis time with different levels of enzyme. The obtained products were syrups dextrinized ED between 10,25 and 33,97% (values we can find within the established ones for these types of syrups, which can be used for their functional properties as intermediates syrups or as raw material for different processes of the food industry. This allows you to set a pattern for the use of sorghum feedstock in unconventional obtaining products from its starch.

  3. Enzyme-resistant dextrins from potato starch for potential application in the beverage industry.

    Science.gov (United States)

    Jochym, Kamila Kapusniak; Nebesny, Ewa

    2017-09-15

    The objective of this study was to produce soluble enzyme-resistant dextrins by microwave heating of potato starch acidified with small amounts of hydrochloric and citric acids and to characterize their properties. Twenty five samples were initially made and their solubility was determined. Three samples with the highest water solubility were selected for physico-chemical (dextrose equivalent, molecular weight distribution, pasting characteristics, retrogradation tendency), total dietary fiber (TDF) analysis, and stability tests. TDF content averaged 25%. Enzyme-resistant dextrins practically did not paste, even at 20% samples concentration, and were characterized by low retrogradation tendency. The stability of the samples, expressed as a percentage increase of initial and final reducing sugar content, at low pH and during heating at low pH averaged 10% and 15% of the initial value, respectively. The results indicate that microwave heating could be an effective and efficient method of producing highly-soluble, low-viscous, and enzyme-resistant potato starch dextrins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Biochemical Aspects of Non-Starch Polysaccharides

    Directory of Open Access Journals (Sweden)

    Rodica Căpriţă

    2010-05-01

    Full Text Available Polysaccharides are macromolecules of monosaccharides linked by glycosidic bonds. Non-starch polysaccharides (NSP are principally non-α-glucan polysaccharides of the plant cell wall. They are a heterogeneous group of polysaccharides with varying degrees of water solubility, size, and structure. The water insoluble fiber fraction include cellulose, galactomannans, xylans, xyloglucans, and lignin, while the water-soluble fibers are the pectins, arabinogalactans, arabinoxylans, and β-(1,3(1,4-D-glucans (β-glucans. Knowledge of the chemical structure of NSP has permitted the development of enzyme technology to overcome their antinutritional effects. The physiological effects of NSP on the digestion and absorption of nutrients in human and monogastric animals have been attributed to their physicochemical properties: hydration properties, viscosity, cation exchange capacity and organic compound absorptive properties. This paper reviews and presents information on NSPs chemistry, physicochemical properties and physiological effects on the nutrient entrapment.

  5. Development of modified starch technology (maltodextrin) from commercial tapioca on semi production scale using oil heater dextrinator

    Science.gov (United States)

    Triyono, Agus; Cecep Erwan Andriansyah, Raden; Luthfiyanti, Rohmah; Rahman, Taufik

    2017-12-01

    One way to improve functional starch is by modification of starch into dextrin or maltodextrin. Maltodextrin is used in the food industry as a food substitution. Development of enzymatically modified starch technology has been performed with the use of α-amylase at optimum pH of 5.5, temperature 75-85 °C, with enzyme activity of 135 KNU/g. The maltodextrin produced from commercial tapioca has the quality requirements for food according to SNI 1992. The yield of maltodextrin obtained is about 80%. The use of the optimum amount of the α-amylase enzyme is 0.07 % v/w and the substrate amount of tapioca starch is 35%. Analysis of the feasibility of modified starch with the assumption of production scale of 300 kg per day, the economic value of 10 years business, the price of starch is IDR 8,350/kg, from tapioca starch (tapioca) IDR 4,000 - IDR 4,500/kg.

  6. Numerical Analysis of the Reaction-diffusion Equation for Soluble Starch and Dextrin as Substrates of Immobilized Amyloglucosidase in a Porous Support by Using Least Square Method

    Directory of Open Access Journals (Sweden)

    Ali Izadi

    2015-10-01

    Full Text Available In this study, substrates concentration profile has been studied in a porous matrix containing immobilized amyloglucosidase for glucose production. This analysis has been performed by using of an analytical method called Least Square Method and results have been compared with numerical solution. Effects of effective diffusivity (, Michael's constant (, maximum reaction rate ( and initial substrate concentration ( are studied on Soluble Starch and Dextrin concentration in the spherical support. Outcomes reveal that Least Square Method has an excellent agreement with numerical solution and in the center of support, substrate concentration is minimum and increasing of effective diffusivity and Michael's constant reduce the Soluble Starch and Dextrin profile gradient.

  7. Development of a strategy to functionalize a dextrin-based hydrogel for animal cell cultures using a starch-binding module fused to RGD sequence

    Directory of Open Access Journals (Sweden)

    Gama Miguel

    2008-10-01

    Full Text Available Abstract Background Several approaches can be used to functionalize biomaterials, such as hydrogels, for biomedical applications. One of the molecules often used to improve cells adhesion is the peptide Arg-Gly-Asp (RGD. The RGD sequence, present in several proteins from the extra-cellular matrix (ECM, is a ligand for integrin-mediated cell adhesion; this sequence was recognized as a major functional group responsible for cellular adhesion. In this work a bi-functional recombinant protein, containing a starch binding module (SBM and RGD sequence was used to functionalize a dextrin-based hydrogel. The SBM, which belongs to an α-amylase from Bacillus sp. TS-23, has starch (and dextrin, depolymerized starch affinity, acting as a binding molecule to adsorb the RGD sequence to the hydrogel surface. Results The recombinant proteins SBM and RGD-SBM were cloned, expressed, purified and tested in in vitro assays. The evaluation of cell attachment, spreading and proliferation on the dextrin-based hydrogel surface activated with recombinant proteins were performed using mouse embryo fibroblasts 3T3. A polystyrene cell culture plate was used as control. The results showed that the RGD-SBM recombinant protein improved, by more than 30%, the adhesion of fibroblasts to dextrin-based hydrogel. In fact, cell spreading on the hydrogel surface was observed only in the presence of the RGD-SBM. Conclusion The fusion protein RGD-SBM provides an efficient way to functionalize the dextrin-based hydrogel. Many proteins in nature that hold a RGD sequence are not cell adhesive, probably due to the conformation/accessibility of the peptide. We therefore emphasise the successful expression of a bi-functional protein with potential for different applications.

  8. Influence of non starch polysaccharide-degrading enzymes on the ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-03-08

    Mar 8, 2010 ... A total of 195 1-d-old male broiler chicks (Ross 308) were allocated to 5 treatment groups ... by reducing the anti-nutritional effects of non-starch polysaccharides ..... mineral density and weights of the head, neck and back.

  9. Afzelia africana , A Novel Non Starch Polysaccharide, Raised ...

    African Journals Online (AJOL)

    The effects o vegetable flour prepared from indigenous plant Afzelia africana, a legume, on the fasting plasma cholesterol and triglyceride levels of rats were investigated. Chemical analysis indicated that Afzelia flour contained significant amount of non-starch polysaccharides (NSP). The flour of Afzelia was incorporated ...

  10. Dextrins from Maize Starch as Substances Activating the Growth of Bacteroidetes and Actinobacteria Simultaneously Inhibiting the Growth of Firmicutes, Responsible for the Occurrence of Obesity.

    Science.gov (United States)

    Barczynska, Renata; Kapusniak, Janusz; Litwin, Mieczyslaw; Slizewska, Katarzyna; Szalecki, Mieczyslaw

    2016-06-01

    Unarguably, diet has a significant impact on human intestinal microbiota. The role of prebiotics as substances supporting the maintenance of appropriate body weight and reducing the demand for energy via stimulation of the growth of beneficial microbiota of the gut and formation products such as short-chain fatty acids, is more and more often highlighted. The objective of this study was to evaluate whether dextrins from maize starch resistant to enzymatic digestion stimulate the growth of Bacteroidetes and Actinobacteria strains representing a majority of the population of colon microbiota in lean individuals and limit the growth of Firmicutes bacterial strains representing a majority of the population of colon microbiota in obese individuals. The study was conducted with the use of in vitro method, using isolates from faeces of children characterized by normal weight, overweight and obesity. It was demonstrated that dextrins from maize starch equally efficient stimulate the growth of the isolates derived from normal-weight, overweight and obese children, and therefore may be added to foods as a beneficial component stimulating growth of strains belonging to Actinobacteria and Bacteroidetes for both overweight, obese and normal-weight children.

  11. [Relativity among starch quantity, polysaccharides content and total alkaloid content of Dendrobium loddigesii].

    Science.gov (United States)

    Zhu, Hua; Teng, Jianbei; Cai, Yi; Liang, Jie; Zhu, Yilin; Wei, Tao

    2011-12-01

    To find out the relativity among starch quantity, polysaccharides content and total alkaloid content of Dendrobium loddigesii. Microscopy-counting process was applied to starch quantity statistics, sulfuric acid-anthrone colorimetry was used to assay polysaccharides content and bromocresol green colorimetry was used to assay alkaloid content. Pearson product moment correlation analysis, Kendall's rank correlation analysis and Spearman's concordance coefficient analysis were applied to study their relativity. Extremely significant positive correlation was found between starch quantity and polysaccharides content, and significant negative correlation between alkaloid content and starch quantity was discovered, as well was between alkaloid content and polysaccharides content.

  12. Viscous polysaccharide and starch synthesis in Rhodella reticulata (Porphyridiales, Rhodophyta)

    International Nuclear Information System (INIS)

    Kroen, W.K.; Ramus, J.

    1990-01-01

    Rhodella reticulata Deason, Butler and Rhyne produces copious amounts of a viscous polysaccharide (VP) during growth in batch cultures. The VPs accumulated on the cell surface and in the culture medium once cells ceased growth; starch concurrently accumulated within the cells. Light-saturated 14 C-uptake declined steadily as the cells aged. Net synthesis rates for starch and mucilage were two- and four-fold lower, respectively, in non-growing cells than in growing cells, while the relative partitioning of newly-fixed carbon into these materials was not different. These data suggest that total photosynthetic loading, rather than partitioning into one specific pool, controls cellular synthesis rates. No preferential synthesis of VPs occurred during the stationary phase. The findings have important implications for the commercial production of VPs

  13. Viscous polysaccharide and starch synthesis in Rhodella reticulata (Porphyridiales, Rhodophyta)

    Energy Technology Data Exchange (ETDEWEB)

    Kroen, W.K.; Ramus, J. (Duke Univ., Beaufort, NC (USA))

    1990-06-01

    Rhodella reticulata Deason, Butler and Rhyne produces copious amounts of a viscous polysaccharide (VP) during growth in batch cultures. The VPs accumulated on the cell surface and in the culture medium once cells ceased growth; starch concurrently accumulated within the cells. Light-saturated {sup 14}C-uptake declined steadily as the cells aged. Net synthesis rates for starch and mucilage were two- and four-fold lower, respectively, in non-growing cells than in growing cells, while the relative partitioning of newly-fixed carbon into these materials was not different. These data suggest that total photosynthetic loading, rather than partitioning into one specific pool, controls cellular synthesis rates. No preferential synthesis of VPs occurred during the stationary phase. The findings have important implications for the commercial production of VPs.

  14. Chemical Methods for the Determination of Soluble and Insoluble Non-Starch Polysaccharides - Review

    OpenAIRE

    Rodica Căpriţă; Adrian Căpriţă

    2011-01-01

    Polysaccharides are macromolecules of monosaccharides linked by glycosidic bonds. Non-starch polysaccharides(NSP) are principally non-α-glucan polysaccharides of the plant cell wall. They are a heterogeneous group ofpolysaccharides with varying degrees of water solubility, size, and structure. The water insoluble fiber fractioninclude cellulose, galactomannans, xylans, xyloglucans, and lignin, while the water-soluble fibers are the pectins,arabinogalactans, arabinoxylans, and β-(1,3)(1,4)-D-g...

  15. Adaptation to the digestion of nutrients of a starch diet or a non-starch polysaccharide diet in group-housed pregnant sows

    NARCIS (Netherlands)

    Peet-Schwering, van der C.M.C.; Kemp, B.; Hartog, den L.A.; Schrama, J.W.; Verstegen, M.W.A.

    2002-01-01

    A trial was conducted with twenty group-housed pregnant sows to study the adaptation in nutrient digestibility to a starch-rich diet or a diet with a high level of fermentable non-starch polysaccharides (NSP) during a time period of 6 weeks. The starch-rich diet was primarily composed of wheat, peas

  16. Chemical Methods for the Determination of Soluble and Insoluble Non-Starch Polysaccharides - Review

    Directory of Open Access Journals (Sweden)

    Rodica Căpriţă

    2011-10-01

    Full Text Available Polysaccharides are macromolecules of monosaccharides linked by glycosidic bonds. Non-starch polysaccharides(NSP are principally non-α-glucan polysaccharides of the plant cell wall. They are a heterogeneous group ofpolysaccharides with varying degrees of water solubility, size, and structure. The water insoluble fiber fractioninclude cellulose, galactomannans, xylans, xyloglucans, and lignin, while the water-soluble fibers are the pectins,arabinogalactans, arabinoxylans, and β-(1,3(1,4-D-glucans (β-glucans. Both the enzymatic-gravimetric andenzymatic-chemical methods used for the determination of soluble and insoluble non-starch polysaccharides haveundergone a number of modifications and improvements, most occurring over the last 20 years.

  17. Long-term performance and behavior of sows fed high levels of non-starch polysaccharides

    NARCIS (Netherlands)

    Peet-Schwering, van der C.M.C.

    2004-01-01

    The main objective of this thesis was to investigate the long-term effects of feeding sows high levels of dietary fermentable non-starch polysaccharides CNSP) (i.e., NSP from sugar beet pulp) restrictedly or ad libitum during gestation or ad libitum during lactation on behavior, reproductive

  18. Development of stereotypic behaviour in sows fed a starch diet or a non-starch polysaccharide diet during gestation and lactation over two parities

    NARCIS (Netherlands)

    Peet-Schwering, van der C.M.C.; Spoolder, H.A.M.; Kemp, B.; Binnendijk, G.P.; Hartog, den L.A.; Verstegen, M.W.A.

    2003-01-01

    The effect of feeding sows a starch diet or a diet with a high level of fermentable non-starch polysaccharides (NSP) during gestation, lactation or both gestation and lactation over the first two parities on the development of stereotypic behaviour was studied in sows housed in groups during

  19. The Effect of Natuzyme in the Diets Containing Non-Starch Polysaccharides on Meat Quality of Native Chicken

    Directory of Open Access Journals (Sweden)

    S Suhermiyati

    2011-05-01

    Full Text Available Abstract. The purpose of this research was to determine the effect of the use of Natuzyme in feed containing non-starch polysaccharides on the quality of chicken meat. Materials used were 71 native hens of 18 week-old. The experiment was conducted using Completely Randomized Design (CRD, 3 x 3 factorial pattern. Each treatment was repeated three times and was tested further with Duncan t test. The first treatment was the use of non-starch polysaccharides (R with the levels of 0, 5 and 10%. The second treatment was the use of Natuzyme (S with the levels of 0, 0.1 and 0.2%. The variables measured were: energy consumption, fat consumption, carcass weight, meat glycogen, meat fat, and cholesterol of meat. The results showed that the treatments did not significantly affect energy consumption, fat consumption, carcass weight and fat content of meat. The use of non-starch polysaccharides did not significantly affect the levels of meat glycogen, while the use of Natuzyme significantly affected the levels of meat cholesterol. The conclusion is that the Natuzyme only works on feedstuffs, not in the chicken digestive tract. The sources of non-starch polysaccharide in feedstuffs can be used as an energy source for chickens until a level of 10%. Key Words: Natuzyme, non-starch polysaccharides, meat quality

  20. Sugarcane starch: quantitative determination and characterization

    Directory of Open Access Journals (Sweden)

    Joelise de Alencar Figueira

    2011-09-01

    Full Text Available Starch is found in sugarcane as a storage polysaccharide. Starch concentrations vary widely depending on the country, variety, developmental stage, and growth conditions. The purpose of this study was to determine the starch content in different varieties of sugarcane, between May and November 2007, and some characteristics of sugarcane starch such as structure and granules size; gelatinization temperature; starch solution filterability; and susceptibility to glucoamylase, pullulanase, and commercial bacterial and fungal α-amylase enzymes. Susceptibility to debranching amylolytic isoamylase enzyme from Flavobacterium sp. was also tested. Sugarcane starch had spherical shape with a diameter of 1-3 µm. Sugarcane starch formed complexes with iodine, which showed greater absorption in the range of 540 to 620 nm. Sugarcane starch showed higher susceptibility to glucoamylase compared to that of waxy maize, cassava, and potato starch. Sugarcane starch also showed susceptibility to debranching amylolytic pullulanases similar to that of waxy rice starch. It also showed susceptibility to α-amylase from Bacillus subtilis, Bacillus licheniformis, and Aspergillus oryzae similar to that of the other tested starches producing glucose, maltose, maltotriose, maltotetraose, maltopentose and limit α- dextrin.

  1. Improved method for measurement of dietary fiber as non-starch polysaccharides in plant foods.

    Science.gov (United States)

    Englyst, H N; Cummings, J H

    1988-01-01

    A method is described that allows rapid estimation of total, soluble, and insoluble dietary fiber as the non-starch polysaccharides (NSP) in plant foods. It is a modification of an earlier, more complex procedure. Starch is completely removed enzymatically, and NSP is measured as the sum of its constituent sugars released by acid hydrolysis. The sugars may, in turn, be measured by gas chromatography (GC), giving values for individual monosaccharides, or more rapidly by colorimetry. Both GC and colorimetry are suitable for routine measurement of total, soluble, and insoluble dietary fiber in cereals, fruits, and vegetables. Values obtained are not affected by food processing so the dietary fiber content of various processed foods and mixed diets can be calculated simply from knowing the amount in the raw materials. The additional information obtained by GC analysis is valuable in the interpretation of physiological studies and in epidemiology where disease is related to type and amount of dietary fiber.

  2. Enzymatic hydrolysis of starch in the presence of cereal soluble fibre polysaccharides.

    Science.gov (United States)

    Dhital, Sushil; Dolan, Grace; Stokes, Jason R; Gidley, Michael J

    2014-03-01

    The in vitro amylolysis of both granular and cooked maize starch and the diffusion of glucose in the presence of 1% and 2% cereal soluble fibre polysaccharides (arabinoxylan and mixed linkage beta-glucan) were studied at various levels of shear mixing in order to identify potential molecular mechanisms underlying observed glycemia-reducing effects of soluble fibres in vivo. The presence of soluble fibres increased viscosity by ca. 10× and 100× for 1% and 2% concentrations respectively. Despite this large difference in viscosity, measured digestion and mass transfer coefficients were only reduced by a factor of 1.5 to 2.5 at the same mixing speed. In contrast, introduction of mixing in the digesting and diffusing medium significantly increased the rate of amylolytic starch digestion and mass transfer of glucose. This effect is such that mixing at high speeds negates the hindering effect of the 100× increased viscosity imparted by the presence of 2% soluble fibre; this is essentially captured by the Reynolds number (the ratio of inertial and viscous forces) that defines the flow kinematics. The modest reduction of in vitro starch hydrolysis and glucose diffusion at increased viscosity suggests that the established benefits of soluble fibres on post-prandial glycaemia, in terms of attenuation of the overall rate and extent of dietary starch conversion to blood glucose, are not primarily due to a direct effect of viscosity. Alternative hypotheses are proposed based on gastric emptying, restriction of turbulent flow, and/or stimulation of mucus turnover.

  3. The effect of type of carbohydrate (starch vs. nonstarch polysaccharides) on nutrients digestibility, energy retention and maintenance requirements in Nile tilapia

    NARCIS (Netherlands)

    Haidar, Mahmoud N.; Petie, Mischa; Heinsbroek, Leon T.N.; Verreth, Johan A.J.; Schrama, Johan W.

    2016-01-01

    For Nile tilapia, the energetic value of non-starch polysaccharides (NSP) was compared to starch. It was assessed if carbohydrate type (NSP vs. starch) affected the energetic utilization for growth (KgDE) and the energy requirements for maintenance (DEm). Eighteen groups of fish were assigned in 2 ×

  4. Some physicochemical properties of dextrin produced by extrusion process

    Directory of Open Access Journals (Sweden)

    Achmat Sarifudin

    2014-06-01

    Full Text Available Dextrinization of corn starch by twin screw extruder was studied. The effect of extruder operating conditions (five different screw speeds: 35, 45, 55, 65, and 70; and three temperatures: 125, 130, and 135 °C on some physicochemical properties of dextrin (total soluble solid, water absorption index, water solubility index, and total color difference was investigated. Results showed that as the screw speed and temperature of extrusion were increased the water absorption index of dextrin tended to drop meanwhile the total soluble solid, water solubility index, and color were inclined to rise. The range of total soluble solid, water absorption index, water solubility index and total color difference was 2.1–4.6 Brix, 159–203%, 20–51%, 3.5–14.1, respectively.

  5. COORDINATION OF CASSAVA STARCH TO METAL IONS AND ...

    African Journals Online (AJOL)

    a

    starch. On the other hand, the decomposition proceeded at a lower rate than the decomposition of ... Metal salts influenced the thermal decomposition of starches [4, 5]. Thus, properly ..... reactions of starch resulting in dextrins. After the ...

  6. Supplementing enzymes to extruded, soybean based diet improves breakdown of non-starch polysaccharides in rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Dalsgaard, Anne Johanne Tang; Knudsen, Knud Erik Bach; Verlhac, Viviane

    2016-01-01

    Plant-based feed ingredients typically contain remnants of dietary fibres [DF; non-starch polysaccharides (NSP) and lignin] that have various antinutritive effects in carnivorous fish. Exogenous enzymes have been shown to improve the apparent digestibility coefficients (ADC) of plant-based diets...... presumably by assisting in the breakdown of NSP. This study examined the effects on NSP degradation when supplementing β-glucanase, xylanase, protease or a mix of the three enzymes to an extruded, juvenile rainbow trout (Oncorhynchus mykiss) diet containing 344 g kg−1 de-hulled, solvent-extracted soybean...... meal (SBM). The NSP content in the non-supplemented control diet and in faecal samples from the dietary treatment groups was analysed to determine the recovery/apparent digestibility of cellulose and total non-cellulosic polysaccharide (T-NCP) sugar monomers. The enzymes had significant, positive...

  7. Fungal lytic polysaccharide monooxygenases bind starch and β-cyclodextrin similarly to amylolytic hydrolases

    DEFF Research Database (Denmark)

    Nekiunaite, Laura; Isaksen, Trine; Vaaje-Kolstad, Gustav

    2016-01-01

    , the clustering of CBM20s from starch-targeting LPMOs and hydrolases was in accord with taxonomy and did not correlate to appended catalytic activity. Altogether, these results demonstrate that the CBM20-binding scaffold is retained in the evolution of hydrolytic and oxidative starch-degrading activities....

  8. Floatability of Fe-bearing silicates in the presence of starch: Adsorption and spectroscopic studies

    International Nuclear Information System (INIS)

    Severov, V V; Filippova, I V; Filippov, L O

    2013-01-01

    Natural polysaccharides such as starch, dextrin, cellulose and their derivatives are promising non-toxic and biodegradable organic flocculants and flotation depressants. This paper presents the investigation of mechanism of adsorption of corn starch on quartz and Fe-bearing amphibole, i.e. pargasite. The direct measurement of starch adsorption on the mineral surfaces shows no difference between quartz and pargasite. However, the starch adsorption on the magnetite is more important. FT-IR spectroscopy studies reports different adsorption mechanism of starch on quartz and pargasite surface. The key changes observed in starch absorption on quartz are the major shifts in C-0 stretching frequencies presumed existence of a hydrogen bond between starch and quartz surface. The similar changes were observed in this region of IR-band for pargasite. The appearance and disappearance of the bands in the region 960-920 cm −1 corresponds probably to formation of a new chemical bond between starch O-H groups and metal atoms on pargasite surface with formation of a surface complex. This result confirms that adsorption of the starch on the pargasite surface is droved by two mechanism. Hence, existence of strong chemical bond between starch and pargasite surface explains decrease of its floatability compared to quartz in process of iron ore flotation and forces to search new conditioning reagent modes.

  9. Floatability of Fe-bearing silicates in the presence of starch: Adsorption and spectroscopic studies

    Science.gov (United States)

    Severov, V. V.; Filippova, I. V.; Filippov, L. O.

    2013-03-01

    Natural polysaccharides such as starch, dextrin, cellulose and their derivatives are promising non-toxic and biodegradable organic flocculants and flotation depressants. This paper presents the investigation of mechanism of adsorption of corn starch on quartz and Fe-bearing amphibole, i.e. pargasite. The direct measurement of starch adsorption on the mineral surfaces shows no difference between quartz and pargasite. However, the starch adsorption on the magnetite is more important. FT-IR spectroscopy studies reports different adsorption mechanism of starch on quartz and pargasite surface. The key changes observed in starch absorption on quartz are the major shifts in C-0 stretching frequencies presumed existence of a hydrogen bond between starch and quartz surface. The similar changes were observed in this region of IR-band for pargasite. The appearance and disappearance of the bands in the region 960-920 cm-1 corresponds probably to formation of a new chemical bond between starch O-H groups and metal atoms on pargasite surface with formation of a surface complex. This result confirms that adsorption of the starch on the pargasite surface is droved by two mechanism. Hence, existence of strong chemical bond between starch and pargasite surface explains decrease of its floatability compared to quartz in process of iron ore flotation and forces to search new conditioning reagent modes.

  10. Comparative analysis of a large panel of non-starch polysaccharides reveals structures with selective regulatory properties in dendritic cells

    DEFF Research Database (Denmark)

    Wismar, René; Pedersen, Susanne Brix; Lærke, Helle Nygaard

    2011-01-01

    -regulate LPS-induced IL-12p70 production. The most potent NSP induced up-regulation of CD86 on DC independently of LPS stimulation. Cereal-based β-glucans showed less potency than β-glucans of microbial origin, but proper molecular weight composition and preparation may improve effectiveness......Scope: Structural-based recognition of foreign molecules is essential for activation of dendritic cells (DCs) that play a key role in regulation of gut mucosal immunity. Orally ingested non-starch polysaccharides (NSP) are ascribed many health-promoting properties, but currently we lack insight...... into the impact of structure and size for their capacity to affect immune responses.Methods and results: This study addresses the importance of chemical structure, size, origin and presence of contaminants for the capacity of both dietary and non-food NSP to modulate DC. Of 28 NSP products, β-glucans of microbial...

  11. Effect of Red Seaweed Polysaccharides Agar (Gracilaria changii) on Thermal Properties and Microstructure of Wheat Starch

    International Nuclear Information System (INIS)

    Faizal, P.K.

    2009-01-01

    This study has been carried out on the mixture of Gracilaria changii agar (0.1 %, 0.2 %, 0.4 % and 0.8 %) with wheat starch. Scanning electron microscopy (SEM) was performed for morphology observation, and starch thermal analysis were carried out to determine the properties of gelatinization and retrogradation. Proximate analysis has been determined for isolated wheat starch and agar. Through SEM, interaction was first observed at 64 degree Celsius for 0.4 % agar but at 0.8 % of agar, a more extensive bridging was formed which enveloped the starch granules. Differential scanning calorimetric (DSC) result shows that as the addition of agar decreased the onset temperature (T o ) of gelatinization significantly (p< 0.05) but increased the gelatinized enthalpy (ΔH gel ), gelatinized temperature range (R g ) and Peak Height Index (PHI) significantly (p < 0.05). Agar lowered the retrogradation enthalpy (ΔH ret ), retrogradation range (R ret ) and retrogradation percentage (% R) of wheat starch significantly (p < 0.05). (author)

  12. THE EFFECT OF NON-STARCH POLYSACCHARIDES DERIVED FROM DIFFERENT GRAINS ON PERFORMANCE AND DIGESTIVE ACTIVITY IN LAYING HENS

    Directory of Open Access Journals (Sweden)

    S. Hartini

    2014-10-01

    Full Text Available An experiment was conducted to observe the effect of non-starch polysaccharides (NSP onperformance and digestive activity of laying hens. Thirty-two ISA Brown hens were individually cagedand offered four diets (wheat-based, millrun-based, barley-based, and barley-enzymes diets for 10weeks. The present experiment was assigned in a completely randomized design with 8 replicates perdietary treatment. Wheat- and barley diets caused significantly higher (P<0.05 viscosity than otherdiets. Increased viscosity caused lower digesta dry matter (DM (P<0.01 and higher excreta moisture(P<0.05. The wheat diet did not cause a negative effect on intestinal starch digestibility, feed intake, andbird performance (P>0.05. Birds fed the barley-based diet had lower weight gain (P<0.05 and highercaecal weight (P<0.05 than those given other diets. Enzyme supplementation on barley dietssignificantly (P<0.05 reduced jejunal digesta viscosity and caecal weight, increased weight gain(P<0.05 and ileal digesta DM (P<0.01, and numerically reduced excreta moisture. The current studydemonstrated that NSP have a profound effect on digesta viscosity, performance, and digestive organs ofbirds; however, the NSP action may be modified by an interaction with each other and with other cellwallcomponents of grains in the gut. Enzyme supplementation reduced the negative effect of digestaviscosity.

  13. Immunostimulatory and anti-metastatic activity of polysaccharides isolated from byproducts of the corn starch industry.

    Science.gov (United States)

    Lee, Sue Jung; Lee, Ho Sung; Kim, Sun Young; Shin, Kwang-Soon

    2018-02-01

    Corn steep liquor (CSL) is a major by-product of the corn steeping process that is utilized in the wet milling industry. To develop new physiologically active polysaccharides from CSL, polysaccharides were isolated and their innate immunostimulatory and anti-metastatic activities were investigated. Corn byproduct polysaccharides (CBP) were preferentially isolated from CSL and further separated into supernatant (CBP1S) and precipitate (CBP1P) fractions. The anti-complementary activity of CBP1S was more potent than CBP1P and CBP. In addition, CBP1S enhanced production of macrophage-stimulating cytokines (e.g., IL-6 and IL-12) and natural killer (NK) cell-activating substances (e.g., granzyme and interferon-γ). Further, CBP1S significantly inhibited lung metastasis at a dose of 1000μg per mouse in an experimental lung metastasis model. These results suggest that CBP1S seems to promote the inhibition of lung metastasis through a mechanism leading to stimulation of the innate immune system, and CBP1S could be used as immunostimulating agents and for industrial applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Xylanase and Protease Increase Solubilization of Non-Starch Polysaccharides and Nutrient Release of Corn- and Wheat Distillers Dried Grains with Solubles

    DEFF Research Database (Denmark)

    Pedersen, Mads Brøgger; Dalsgaard, Søren; Arent, Susan

    2015-01-01

    The use of distiller dried grains with solubles (DDGS) as alternative to conventional animal feed for non-ruminants is challenged by the high content of non-starch polysaccharides and varying protein quality. In this study the enzymatic degradation of corn- and wheat DDGS was evaluated, in vitro...... of this xylanase. The current in vitro results indicate a high potential of xylanase in combination with protease to efficiently degrade DDGS and promote nutrient release in diets for non-ruminant animals....

  15. Differences between easy- and difficult-to-mill chickpea (Cicer arietinum L.) genotypes. Part III: free sugar and non-starch polysaccharide composition.

    Science.gov (United States)

    Wood, Jennifer A; Knights, Edmund J; Campbell, Grant M; Choct, Mingan

    2014-05-01

    Parts I and II of this series of papers identified several associations between the ease of milling and the chemical compositions of different chickpea seed fractions. Non-starch polysaccharides were implicated; hence, this study examines the free sugars and sugar residues. Difficult milling is associated with: (1) lower glucose and xylose residues (less cellulose and xyloglucans) and more arabinose, rhamnose and uronic acid in the seed coat, suggesting a more flexible seed coat that resists cracking and decortication; (2) a higher content of soluble and insoluble non-starch polysaccharide fractions in the cotyledon periphery, supporting a pectic polysaccharide mechanism comprising arabinogalacturonan, homogalacturonan, rhamnogalalcturonan, and glucuronan backbone structures; (3) higher glucose and mannose residues in the cotyledon periphery, supporting a lectin-mediated mechanism of adhesion; and (4) higher arabinose and glucose residues in the cotyledon periphery, supporting a mechanism involving arabinogalactan-proteins. This series has shown that the chemical composition of chickpea does vary in ways that are consistent with physical explanations of how seed structure and properties relate to milling behaviour. Seed coat strength and flexibility, pectic polysaccharide binding, lectins and arabinogalactan-proteins have been implicated. Increased understanding in these mechanisms will allow breeding programmes to optimise milling performance in new cultivars. © 2013 Society of Chemical Industry.

  16. Influence of cereal non-starch polysaccharides on ileo-caecal and rectal microbial populations in growing pigs

    DEFF Research Database (Denmark)

    Høgberg, Ann; Lindberg, Jan; Leser, Thomas

    2004-01-01

    The effect of cereal non-starch polysaccharides (NSP) on the gut microbial populations was studied in 5 growing pigs between 39-116 kg body weight according to a Latin square design. The diets were composed to contain different NSP levels. The control diet had a normal NSP content (139 g/kg dry...... matter (DM)), 2 diets had a low total amount of NSP (95 and 107 g/kg DM) and 2 diets had a high amount of total NSP (191 and 199 g/kg DM). Furthermore, one of the diets within each category had a content of insoluble NSP similar to the control diet and one had a high content of insoluble NSP. Samples...... were collected from the ileum, via intestinal post valve T-caecum (PVTC) cannulas surgically inserted at the ileo-caecal ostium, and from the rectum. The total microbial flora of the ileal samples were analysed for by defining base pair length with terminal restriction fraction length polymorphism (T...

  17. Effects of dietary supplementation of Ulva pertusa and non-starch polysaccharide enzymes on gut microbiota of Siganus canaliculatus

    Science.gov (United States)

    Zhang, Xinxu; Wu, Huijuan; Li, Zhongzhen; Li, Yuanyou; Wang, Shuqi; Zhu, Dashi; Wen, Xiaobo; Li, Shengkang

    2018-03-01

    Fishes represent the highest diversity of vertebrates; however, our understanding of the compositions and functions of their gut microbiota is limited. In this study, we provided the first insight into the gut microbiota of the herbivorous fish Siganus canaliculatus by using three molecular ecology techniques based on the 16S rRNA genes (denaturing gradient gel electrophoresis, clone library construction, and highthroughput Illumina sequencing), and the Illumina sequencing technique is suggested here due to its higher overall coverage of the total 16S rRNA genes. A core gut microbiota of 29 bacterial groups, covering >99.9% of the total bacterial community, was found to be dominated by Proteobacteria and Firmicutes in fish fed three different diets with/without the supplementation of Ulva pertusa and non-starch polysaccharide (NSP) enzymes (cellulase, xylanase, and β-glucanase). Diverse potential NSP-degrading bacteria and probiotics (e.g., Ruminococcus, Clostridium and Lachnospiraceae) were detected in the intestine of the fish fed U. pertusa, suggesting that these microorganisms likely participated in the degradation of NSPs derived from U. pertusa. This study supports our previous conclusion that U. pertusa-based diets are suitable for the production of S. canaliculatus with lower costs without compromising quality.

  18. Short-term digestive tolerance of different doses of NUTRIOSE®FB, a food dextrin, in adult men

    NARCIS (Netherlands)

    Heuvel, E.G.H.M. van den; Wils, D.; Pasman, W.J.; Bakker, M.; Saniez, M.-H.; Kardinaal, A.F.M.

    2004-01-01

    Objective: To determine the tolerance of increasing dosages of an incompletely hydrolysed and/or incompletely absorbed food dextrin coming from wheat starch, NUTRIOSE®FB, at daily levels of 10 and 15 g up to 60 and 80 g, respectively. Design: A randomized, double-blind, multiple dose,

  19. In Vitro Fermentative Production of Plant Lignans from Cereal Products in Relationship with Constituents of Non-Starch Polysaccharides

    Directory of Open Access Journals (Sweden)

    Elena Bartkiene

    2012-01-01

    Full Text Available Recently special attention has been paid to dietary fibre-associated phytoestrogens such as plant lignans, which are related to the prevention of different hormone-dependent diseases. Therefore, phytoestrogens associated with dietary fibre and their metabolites are of interest for investigation. The aim of this work is to investigate the formation of enterolignans: enterolactone (ENL and enterodiol (END from their precursors by the action of intestinal microflora and their relationship with non-starch polysaccharides (NSP in various cereal products from wheat, rye, barley and oats. For the investigation of the bioconversion of plant lignans, a technique of in vitro fermentation was used and the quantitative analysis of their metabolites ENL and END was performed by high-performance liquid chromatography (HPLC with coulometric electrode array detection. The enterolignan formation in various cereal products ranged from 78.3 to 321.9 nmol/g depending on the product type: END from 8.7 to 149.3 nmol/g and ENL from 64.4 to 278.3 nmol/g. The lignan production in bran was about two times higher than that in whole flour of the same kind of cereals. Close correlations were found between the total NSP content and the total amount of enterolignans and ENL; between pentoses and the total amount of enterolignans and ENL; between arabinose or xylose and ENL; and between galactose and END values. Considering the correlations between hexoses and END as well as between pentoses and ENL found in cereals, it can be assumed that pentoses are closely related to the quantities of plant lignans in cereal products and their conversion to enterolignans.

  20. EFFECT OF DIETARY SUPPLEMENTATION OF NON-STARCH POLYSACCHARIDE DEGRADING ENZYMES ON GROWTH PERFORMANCE OF BROILER CHICKS

    Directory of Open Access Journals (Sweden)

    M. A. Nadeem, M. I. Anjum, A. G. Khan and A. Azim

    2005-10-01

    Full Text Available An experiment was conducted to study the performance and carcass parameters of broilers chicks fed diets with and without supplementing non-starch polysaccharide degrading enzymes (NSPDE at the rate of 0.5 g/kg diet. A total of 300 day-old broiler chicks were randomly divided into 12 sets (replicates each comprising 25 chicks and three sets per treatment group, reared on deep litter from 1-42 days post-hatch. Group A was fed diets without NSPDE supplementation, while group B was fed diets supplemented with NSPDE (0.5 g/kg. Group C was fed diets containing 50 kcal/kg less metabolizable energy (ME without NSPDE and group D was fed diets having 50 kcal/kg less ME with NSPDE (0.5 g/kg supplementation. Feed and water were provided ad libitum. Feed intake and feed conversion ratio (FCR from 1-28 days and 1-42 days was significantly (p<0.05 improved in chicks fed NSPDE supplemented diets (groups B and D compared to non-supplemented diets (groups A and C. However, during 29-42 days of growing period enzymes supplementation did not influence feed intake and FCR. Body weight gain, dressing percentage and relative weights of heart, gizzard and shank at 42 days of age was found to be non-significantly different among all groups. However, liver weight reduced significantly (p<0.05 in NSPDE supplemented groups. The study suggested that NSPDE supplementation was beneficial in enhancing feed utilization during the starter phase, while its effects on weight gain, dressing percentage and weights of organs, except liver weight, were found to be non-significant.

  1. The effect of dietary faba bean and non-starch polysaccharide degrading enzymes on the growth performance and gut physiology of young turkeys.

    Science.gov (United States)

    Mikulski, D; Juskiewicz, J; Przybylska-Gornowicz, B; Sosnowska, E; Slominski, B A; Jankowski, J; Zdunczyk, Z

    2017-12-01

    The aim of this study was to investigate the effect of dietary replacement of soya bean meal (SBM) with faba bean (FB) and a blend of non-starch polysaccharide (NSP) degrading enzymes on the gastrointestinal function, growth performance and welfare of young turkeys (1 to 56 days of age). An experiment with a 2×2 factorial design was performed to compare the efficacy of four diets: a SBM-based diet and a diet containing FB, with and without enzyme supplementation (C, FB, CE and FBE, respectively). In comparison with groups C, higher dry matter content and lower viscosity of the small intestinal digesta were noted in groups FB. The content of short-chain fatty acids (SCFAs) in the small intestinal digesta was higher in groups FB, but SCFA concentrations in the caecal digesta were comparable in groups C and FB. In comparison with control groups, similar BW gains, higher feed conversion ratio (FCR), higher dry matter content of excreta and milder symptoms of footpad dermatitis (FPD) were noted in groups FB. Enzyme supplementation increased the concentrations of acetate, butyrate and total SCFAs, but it did not increase the SCFA pool in the caecal digesta. The enzymatic preparation significantly improved FCR, reduced excreta hydration and the severity of FPD in turkeys. It can be concluded that in comparison with the SBM-based diet, the diet containing 30% of FB enables to achieve comparable BW gains accompanied by lower feed efficiency during the first 8 weeks of rearing. Non-starch polysaccharide-degrading enzymes can be used to improve the nutritional value of diets for young turkeys, but more desirable results of enzyme supplementation were noted in the SBM-based diet than in the FB-based diet.

  2. Development of novel monoclonal antibodies against starch and ulvan - Implications for antibody production against polysaccharides with limited immunogenicity

    DEFF Research Database (Denmark)

    Rydahl, Maja Gro; Kračun, Stjepan K.; Fangel, Jonatan U.

    2017-01-01

    Monoclonal antibodies (mAbs) are widely used and powerful research tools, but the generation of mAbs against glycan epitopes is generally more problematic than against proteins. This is especially significant for research on polysaccharide-rich land plants and algae (Viridiplantae). Most antibody...

  3. Studies on the biodistribution of dextrin nanoparticles

    International Nuclear Information System (INIS)

    Goncalves, C; Gama, F M; Ferreira, M F M; Martins, J A; Santos, A C; Prata, M I M; Geraldes, C F G C

    2010-01-01

    The characterization of biodistribution is a central requirement in the development of biomedical applications based on the use of nanoparticles, in particular for controlled drug delivery. The blood circulation time, organ biodistribution and rate of excretion must be well characterized in the process of product development. In this work, the biodistribution of recently developed self-assembled dextrin nanoparticles is addressed. Functionalization of the dextrin nanoparticles with a DOTA-monoamide-type metal chelator, via click chemistry, is described. The metal chelator functionalized nanoparticles were labelled with a γ-emitting 153 Sm 3+ radioisotope and the blood clearance rate and organ biodistribution of the nanoparticles were obtained. The effect of PEG surface coating on the blood clearance rate and organ biodistribution of the nanoparticles was also studied.

  4. Studies on the biodistribution of dextrin nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, C; Gama, F M [IBB-Institute for Biotechnology and Bioengineering, Centre for Biological Engineering, Minho University, Campus de Gualtar, 4710-057 Braga (Portugal); Ferreira, M F M; Martins, J A [Departamento de Quimica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Santos, A C; Prata, M I M [IBILI, Faculty of Medicine of the University of Coimbra, Coimbra (Portugal); Geraldes, C F G C, E-mail: fmgama@deb.uminho.pt [Departamento de Ciencias da Vida, Faculdade de Ciencia e Tecnologia e Centro de Neurociencias e Biologia Celular, Universidade de Coimbra (Portugal)

    2010-07-23

    The characterization of biodistribution is a central requirement in the development of biomedical applications based on the use of nanoparticles, in particular for controlled drug delivery. The blood circulation time, organ biodistribution and rate of excretion must be well characterized in the process of product development. In this work, the biodistribution of recently developed self-assembled dextrin nanoparticles is addressed. Functionalization of the dextrin nanoparticles with a DOTA-monoamide-type metal chelator, via click chemistry, is described. The metal chelator functionalized nanoparticles were labelled with a {gamma}-emitting {sup 153}Sm{sup 3+} radioisotope and the blood clearance rate and organ biodistribution of the nanoparticles were obtained. The effect of PEG surface coating on the blood clearance rate and organ biodistribution of the nanoparticles was also studied.

  5. Two-stage in vitro digestibility assay, a tool for formulating non-starch polysaccharide degrading enzyme combinations for commonly used feed ingredients of poultry rations

    Directory of Open Access Journals (Sweden)

    Y. Ramana Reddy

    2013-05-01

    Full Text Available Aim: An attempt was made to assess the effect of pure enzyme combinations with the objective of formulating customized enzyme mixtures based on sugar release when subjected to two-stage in vitro digestion assay. Materials and Methods: A two-stage in vitro digestibility assay was carried out for commonly used feed ingredients for poultry viz., maize, soy bean meal, sunflower cake, and de-oiled rice bran supplemented with three concentrations of xylanase (5000; 7500 and 10000 IU/kg, cellulase (50; 100 and 400 IU/kg and â-D-glucanase (100; 200 and 400 IU/kg were used to formulate various NSP enzymes combinations. In total 27 NSP enzyme combinations (3x3x3 were formulated and the sugar released due to NSP digestion was quantified by phenol sulphuric acid method. Results: The total sugar release was significantly (P<0.05 higher with supplementation of various enzymes combinations for maize, sunflower cake and de-oiled rice bran where as no significant (P<0.05 interaction of various NSP enzymes combinations was observed for soy bean meal. The NSP digestibility was highest in combination (xylanase-5000, cellulase-50 and â-D-glucanase-400 IU/kg, (xylanase-10000, cellulase-50 and â-D-glucanase-200 IU/kg and (xylanase-7500, cellulase- 100 and â-D-glucanase-100 IU/kg for maize, sunflower cake and de-oiled rice bran respectively. In case of sunflower cake, significant (P<0.01 three way interaction was observed among the xylanase, cellulose, and â-D-glucanase enzymes and the two-way interactions between the enzymes were also significant (P<0.01. Conclusion: It is concluded that 'n' number of non-starch Polysaccharide enzymes combinations can be screened for their efficiency to digest non-starch Polysaccharides present in various feed ingredients commonly used in poultry rations by employing two-stage in vitro digestibility assay as a tool. [Vet World 2013; 6(8.000: 525-529

  6. Compositional profile and variation of Distillers Dried Grains with Solubles from various origins with focus on non-starch polysaccharides

    DEFF Research Database (Denmark)

    Pedersen, Mads Brøgger; Dalsgaard, S.; Knudsen, Knud Erik Bach

    2014-01-01

    nutrients (e.g. protein, fat, fibre and minerals) after fermentation of starch to ethanol. Corn DDGS differentiated from wheat DDGS by a greater content of fat (P≤0.006), insoluble-NSP (Pcellulose (P=0.032), and arabinose/xylose (P....001). Wheat DDGS differentiated from corn DDGS by a greater content of ash (P=0.001), soluble-NSP (Plignin (P...Corn-, wheat- and mixed cereal Distillers' Dried Grains with Solubles (DDGS) were investigated for compositional variability among DDGS origins, ethanol plants, and the relationship between corn and corresponding DDGS. A total of 138 DDGS samples were analyzed by use of Near Infrared Reflectance...

  7. Combined effect of using near-infrared spectroscopy for nutritional evaluation of feed ingredients and non-starch polysaccharide carbohydrase complex on performance of broiler chickens.

    Science.gov (United States)

    Montanhini Neto, Roberto; N'Guetta, Eric; Gady, Cecile; Francesch, Maria; Preynat, Aurélie

    2017-12-01

    This study was carried out to evaluate the combined effect of using near-infrared spectroscopy (NIRS) for nutritional evaluation of feed ingredients and the addition of non-starch polysaccharide carbohydrase complex (NSP enzymes) on the growth performance of broilers fed diets produced with low-quality wheat and soybean meal. A 2 × 2 trial design was performed, with seven replicates of 40 male Ross 308 broilers per treatment, evaluating the effect of the addition of NSP enzymes and the ingredients' nutritional matrix based on table values or NIRS values. Diets without added enzymes were formulated to reach nutritional requirements, whereas diets with enzymes were reformulated, reducing the apparent metabolizable energy (AME) by 85 kcal/kg. In the overall period (days 0-35), broilers fed diets formulated using NIRS values had higher (P nutritional approaches are efficient in improving broilers' performances by themselves and even more so when they are combined. © 2017 Japanese Society of Animal Science.

  8. Effect of Enzyme Preparation with Activity Directed Towards Degradation of Non Starch Polysaccharides on Yellow Lupine Seed Based Diet for Young Broilers

    Directory of Open Access Journals (Sweden)

    Bogusław I Olkowski

    2010-01-01

    Full Text Available This work examined the impact of enzyme preparation with specific activity towards non starch polysaccharides on performance, morphological characteristics of gastrointestinal tract organs, microscopic evaluation of jejunal mucosa, and microbial status of ileum, caeca, and excreta in broilers fed a diet containing a high content of lupine meal. One-day-old chickens (Ross 308, mixed sex were randomly divided into control and experimental groups. Each group consisted of 36 birds, with 6 replications,and with 6 chickens per replication. The control group was fed the basal diet (consisting of maize and 40% of lupine, while the experimental treatment group was fed the basal diet supplemented with 0.06% commercial enzyme (Ronozyme VP. Chickens were fed diets in mash form for 4 weeks. Enzyme preparation significantly (P P P Enterobacteriaceae in caeca and excreta, and coliforms in excreta only (P < 0.01. Appropriate combination of enzyme preparations with activity towards degrading carbohydrates may offer a potential to reduce the deleterious impact of lupine in broilers.

  9. Lytic polysaccharide monooxygenases and other oxidative enzymes are abundantly secreted by Aspergillus nidulans grown on different starches

    DEFF Research Database (Denmark)

    Nekiunaite, Laura; Arntzen, Magnus Ø.; Svensson, Birte

    2016-01-01

    of Aspergillus nidulans grown on cereal starches from wheat and high-amylose (HA) maize, as well as legume starch from pea for 5 days. Aspergillus nidulans grew efficiently on cereal starches, whereas growth on pea starch was poor. The secretomes at days 3-5 were starch-type dependent as also reflected...... by amylolytic activity measurements. Nearly half of the 312 proteins in the secretomes were carbohydrate-active enzymes (CAZymes), mostly glycoside hydrolases (GHs) and oxidative auxiliary activities (AAs). The abundance of the GH13 α-amylase (AmyB) decreased with time, as opposed to other starch...

  10. Effects of indigestible dextrin on glucose tolerance in rats.

    Science.gov (United States)

    Wakabayashi, S; Kishimoto, Y; Matsuoka, A

    1995-03-01

    A recently developed indigestible dextrin (IDex) was studied for its effects on glucose tolerance in male Sprague-Dawley rats. IDex is a low viscosity, water-soluble dietary fibre obtained by heating and enzyme treatment of potato starch. It has an average molecular weight of 1600. An oral glucose tolerance test was conducted with 8-week-old rats to evaluate the effects of IDex on the increase in plasma glucose and insulin levels after a single administration of various sugars (1.5 g/kg body weight). The increase in both plasma glucose and insulin levels following sucrose, maltose and maltodextrin loading was significantly reduced by IDex (0.15 g/kg body weight). This effect was not noted following glucose, high fructose syrup and lactose loading. To evaluate the effects of continual IDex ingestion on glucose tolerance, 5-week-old rats were kept for 8 weeks on a stock diet, a high sucrose diet or an IDex-supplemented high sucrose diet. An oral glucose (1.5 g/kg body weight) tolerance test was conducted in week 8. Increases in both plasma glucose and insulin levels following glucose loading were higher in the rats given a high sucrose diet than in the rats fed a stock diet. However, when IDex was included in the high sucrose diet, the impairment of glucose tolerance was alleviated. Moreover, IDex feeding also significantly reduced accumulation of body fat, regardless of changes in body weight. These findings suggest that IDex not only improves glucose tolerance following sucrose, maltose and maltodextrin loading but also stops progressive decrease in glucose tolerance by preventing a high sucrose diet from causing obesity.

  11. Maltase-glucoamylase modulates gluconeogenesis and sucrase-isomaltase dominates starch digestion glucogenesis

    Science.gov (United States)

    Six enzyme activities are needed to digest starch to absorbable free glucose; 2 luminal alpha-amylases (AMY) and 4 mucosal maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI) subunit activities are involved in the digestion. The AMY activities break down starch to soluble oligomeric dextrins; mu...

  12. Radiation processed polysaccharide products

    International Nuclear Information System (INIS)

    Nguyen, Quoc Hien

    2007-01-01

    Radiation crosslinking, degradation and grafting techniques for modification of polymeric materials including natural polysaccharides have been providing many unique products. In this communication, typical products from radiation processed polysaccharides particularly plant growth promoter from alginate, plant protector and elicitor from chitosan, super water absorbent containing starch, hydrogel sheet containing carrageenan/CM-chitosan as burn wound dressing, metal ion adsorbent from partially deacetylated chitin were described. The procedures for producing those above products were also outlined. Future development works on radiation processing of polysaccharides were briefly presented. (author)

  13. Adsorption of dextrin on hydrophobic minerals.

    Science.gov (United States)

    Beaussart, Audrey; Mierczynska-Vasilev, Agnieszka; Beattie, David A

    2009-09-01

    The adsorption of dextrin on talc, molybdenite, and graphite (three naturally hydrophobic minerals) has been compared. Adsorption isotherms and in situ tapping mode atomic force microscope (TMAFM) imaging have enabled polymer adsorbed amount and morphology of the adsorbed layer (area coverage and polymer domain size) to be determined and also the amount of hydration water in the structure of the adsorbed layer. The effect of the polymer on the mineral contact angles, measured by the captive bubble method on cleaved mineral surfaces, indicates clear correlations between the hydrophobicity reduction of the minerals, the adsorbed amount, and the surface coverage of the adsorbed polymer. Predictions of the flotation recovery of the treated mineral phases have been confirmed by performing batch flotation experiments. The influence of the polymer surface coverage on flotation recovery has highlighted the importance of this key parameter in the predictions of depressant efficiency. The roles of the initial hydrophobicity and the surface structure of the mineral basal plane in determining adsorption parameters and flotation response of the polymer-treated minerals are also discussed.

  14. The role of mineral surface chemistry in modified dextrin adsorption.

    Science.gov (United States)

    Beaussart, Audrey; Mierczynska-Vasilev, Agnieszka M; Harmer, Sarah L; Beattie, David A

    2011-05-15

    The adsorption of two modified dextrins (phenyl succinate dextrin--PS Dextrin; styrene oxide dextrin--SO Dextrin) on four different mineral surfaces has been studied using X-ray photoelectron spectroscopy (XPS), in situ atomic force microscopy (AFM) imaging, and captive bubble contact angle measurements. The four surfaces include highly orientated pyrolytic graphite (HOPG), freshly cleaved synthetic sphalerite (ZnS), and two surfaces produced through surface reactions of sphalerite: one oxidized in alkaline solution (pH 9, 1 h immersion); and one subjected to metal ion exchange between copper and zinc (i.e. copper activation: exposed to 1×10(-3) M CuSO(4) solution for 1 h). XPS measurements indicate that the different sphalerite surfaces contain varying amounts of sulfur, zinc, oxygen, and copper, producing substrates for polymer adsorption with a range of possible binding sites. AFM imaging has shown that the two polymers adsorb to a similar extent on HOPG, and that the two polymers display very different propensities for adsorption on the three sphalerite surface types, with freshly cleaved sphalerite encouraging the least adsorption, and copper activated and oxidized sphalerite encouraging significantly more adsorption. Contact angle measurements of the four surfaces indicate that synthetic sphalerite has a low contact angle upon fracture, and that oxidation on the timescale of one hour substantially alters the hydrophobicity. HOPG and copper-activated sphalerite were the most hydrophobic, as expected due to the carbon and di/poly-sulfide rich surfaces of the two samples, respectively. SO Dextrin is seen to have a significant impact on the wettability of HOPG and the surface reacted sphalerite samples, highlighting the difficulty in selectively separating sphalerite from carbonaceous unwanted minerals in flotation. PS Dextrin has the least effect on the hydrophobicity of the reacted sphalerite surfaces, whilst still significantly increasing the wettability of

  15. Effects of protease and non-starch polysaccharide enzyme on performance, digestive function, activity and gene expression of endogenous enzyme of broilers.

    Directory of Open Access Journals (Sweden)

    Lin Yuan

    Full Text Available Three hundred one-day-old male broiler chickens (Ross-308 were fed corn-soybean basal diets containing non-starch polysaccharide (NSP enzyme and different levels of acid protease from 1 to 42 days of age to investigate the effects of exogenous enzymes on growth performance, digestive function, activity of endogenous digestive enzymes in the pancreas and mRNA expression of pancreatic digestive enzymes. For days 1-42, compared to the control chickens, average daily feed intake (ADFI and average daily gain (ADG were significantly enhanced by the addition of NSP enzyme in combination with protease supplementation at 40 or 80 mg/kg (p<0.05. Feed-to-gain ratio (FGR was significantly improved by supplementation with NSP enzymes or NSP enzyme combined with 40 or 80 mg/kg protease compared to the control diet (p<0.05. Apparent digestibility of crude protein (ADCP was significantly enhanced by the addition of NSP enzyme or NSP enzyme combined with 40 or 80 mg/kg protease (p<0.05. Cholecystokinin (CCK level in serum was reduced by 31.39% with NSP enzyme combined with protease supplementation at 160 mg/kg (p<0.05, but the CCK level in serum was increased by 26.51% with NSP enzyme supplementation alone. After 21 days, supplementation with NSP enzyme and NSP enzyme combined with 40 or 80 mg/kg protease increased the activity of pancreatic trypsin by 74.13%, 70.66% and 42.59% (p<0.05, respectively. After 42 days, supplementation with NSP enzyme and NSP enzyme combined with 40 mg/kg protease increased the activity of pancreatic trypsin by 32.45% and 27.41%, respectively (p<0.05. However, supplementation with NSP enzyme and 80 or 160 mg/kg protease decreased the activity of pancreatic trypsin by 10.75% and 25.88%, respectively (p<0.05. The activities of pancreatic lipase and amylase were significantly higher in treated animals than they were in the control group (p<0.05. Supplementation with NSP enzyme, NSP enzyme combined with 40 or 80 mg/kg protease increased

  16. Pilot plant production of glucose from starch with soluble. cap alpha. -amylase and immobilized glucoamylase

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D D; Reilly, P J; Collins, Jr, E V

    1975-01-01

    Pilot plant studies were conducted on cooking and thinning of corn starch with free ..cap alpha..-amylase and the conversion of the resulting dextrin with immobilized glucoamylase adsorbed on porous SiO/sub 2/. Feeds of intermediate DE values gave maximum yields unless the flow rate of low DE feeds was decreased. Final DE values and glucose concentrations after dextrin treated with Thermamyl 60 ..cap alpha..-amylase had been further hydrolyzed in an immobilized glucoamylase column, were slightly lower than they were when free glucoamylase was used. Similar results were obtained when dextrin, thinned with HT-1000 ..cap alpha..-amylase, was hydrolyzed at 38/sup 0/ and pH 4.4 in the immobilized glucoamylase column. Free glucoamylase yielded values of DE and glucose almost identical with dextrin thinned with Thermamyl 60 ..cap alpha..-amylase. Yields with the free glucoamylase were also slightly higher than they were with SiO/sub 2/-bound enzyme.

  17. Performance, digesta characteristics, nutrient flux, plasma composition and organ weight in pigs as effected by dietary cation anion difference and non starch polysaccharide

    NARCIS (Netherlands)

    Dersjant-Li, Y.; Verstegen, M.W.A.; Schulze, H.; Zandstra, T.; Boer, H.; Schrama, J.W.; Verreth, J.A.J.

    2001-01-01

    Two dietary cation anion difference (CAD) levels (-100 and 200 mEq/kg) and two dietary nonstarch polysaccharide (NSP) levels (10 and 15€were used in a 2 x 2 factorial arrangement in two randomized blocks (trials) to evaluate performance, digesta pH and buffer capacity, apparent digestibility, plasma

  18. Radiochemistry and radiopolymerization of polysaccharides

    International Nuclear Information System (INIS)

    Raffi, J.

    1980-03-01

    The effects of gamma radiation on dry state polysaccharides (example: starch) are presented in an overall manner by order of quantitative importance: recombination of radicals to recover the initial macromolecule (cage effect) or smaller molecules which are chemically identical (radiopolymerization) and evolution of radicals to give secondary reactions (formation of radiolysis products). The effect of the botanical origin of the starch studied is briefly discussed, applications and extensions to the case of radiochemically induced modifications to foodstuffs being envisaged [fr

  19. Characterization of starch nanoparticles

    Science.gov (United States)

    Szymońska, J.; Targosz-Korecka, M.; Krok, F.

    2009-01-01

    Nanomaterials already attract great interest because of their potential applications in technology, food science and medicine. Biomaterials are biodegradable and quite abundant in nature, so they are favoured over synthetic polymer based materials. Starch as a nontoxic, cheap and renewable raw material is particularly suitable for preparation of nanoparticles. In the paper, the structure and some physicochemical properties of potato and cassava starch particles of the size between 50 to 100 nm, obtained by mechanical treatment of native starch, were presented. We demonstrated, with the aim of the Scanning Electron Microscopy (SEM) and the non-contact Atomic Force Microscopy (nc-AFM), that the shape and dimensions of the obtained nanoparticles both potato and cassava starch fit the blocklets - previously proposed as basic structural features of native starch granules. This observation was supported by aqueous solubility and swelling power of the particles as well as their iodine binding capacity similar to those for amylopectin-type short branched polysaccharide species. Obtained results indicated that glycosidic bonds of the branch linkage points in the granule amorphous lamellae might be broken during the applied mechanical treatment. Thus the released amylopectin clusters could escape out of the granules. The starch nanoparticles, for their properties qualitatively different from those of native starch granules, could be utilized in new applications.

  20. Carbohydrate composition and in vitro digestibility of dry matter and non-starch polysaccharides in corn, sorghum, and wheat, and co-products from these grains

    DEFF Research Database (Denmark)

    Jaworski, N. A.; Lærke, Helle Nygaard; Knudsen, Knud Erik Bach

    2015-01-01

    The objectives of this work were to determine carbohydrate composition and in vitro digestibility of DM and nonstarch polysaccharides (NSP) in corn, wheat, and sorghum and coproducts from these grains. In the initial part of this work, the carbohydrate composition of 12 feed ingredients was deter......The objectives of this work were to determine carbohydrate composition and in vitro digestibility of DM and nonstarch polysaccharides (NSP) in corn, wheat, and sorghum and coproducts from these grains. In the initial part of this work, the carbohydrate composition of 12 feed ingredients...... was determined. The 12 ingredients included 3 grains (corn, sorghum, and wheat), 3 coproducts from the dry grind industry (corn distillers dried grains with solubles [DDGS] and 2 sources of sorghum DDGS), 4 coproducts from the wet milling industry (corn gluten meal, corn gluten feed, corn germ meal, and corn...... up approximately 22, 49, and 29% (DM basis), respectively, of the NSP in corn and corn coproducts and approximately 25, 43, and 32% (DM basis), respectively, of the NSP in sorghum and sorghum DDGS. Cellulose, arabinoxylans, and other hemicelluloses made up approximately 16, 64, and 20% (DM basis...

  1. Effects of Xylanase Supplementation on Growth Performance, Nutrient Digestibility and Non-starch Polysaccharide Degradation in Different Sections of the Gastrointestinal Tract of Broilers Fed Wheat-based Diets

    Directory of Open Access Journals (Sweden)

    L. Zhang

    2014-06-01

    Full Text Available This experiment was performed to investigate the effects of exogenous xylanase supplementation on performance, nutrient digestibility and the degradation of non-starch polysaccharides (NSP in different sections of the gastrointestinal tract (GIT of broilers fed wheat-based diets. A total of 120 7-day-old Arbor Acres broiler chicks were randomly allotted to two wheat-based experimental diets supplemented with 0 or 1.0 g/kg xylanase. Each treatment was composed of 6 replicates with 10 birds each. Diets were given to the birds from 7 to 21 days of age. The results showed that xylanase supplementation did not affect feed intake, but increased body weight gain of broiler at 21 day of age by 5.8% (pjejunum>duodenum>>gizzard> caecum. The supplementation of xylanse increased ileal isomaltriose concentration (p<0.05, but did not affect the concentrations of isomaltose, panose and 1-kestose in the digesta of all GIT sections. These results suggest that supplementation of xylanase to wheat-based diets cuts the arabinoxylan backbone into small fragments (mainly arabinose and xylose in the ileum, jejunum and duodenum, and enhances digestibilites of nutrients by decreasing digesta viscosity. The release of arabinose and xylose in the small intestine may also be the important contributors to the growth-promoting effect of xylanase in broilers fed wheat-based diets.

  2. All-natural bio-plastics using starch-betaglucan composites

    DEFF Research Database (Denmark)

    Sagnelli, Domenico; Kirkensgaard, Jacob Judas Kain; Giosafatto, Concetta Valeria L.

    2017-01-01

    functionalities chemical modifications or blending with synthetic polymers, such as polycaprolactone are required (e.g. Mater-Bi). As an alternative, all-natural and compostable bio-plastics can be produced by blending starch with other polysaccharides. In this study, we used a maize starch (ST) and an oat β...... BG content. Our data show that the blending of starch with other natural polysaccharides is a noteworthy path to improve the functionality of all-natural polysaccharide bio-plastics systems....

  3. Improved Starch Digestion of Sucrase-deficient Shrews Treated With Oral Glucoamylase Enzyme Supplements.

    Science.gov (United States)

    Nichols, Buford L; Avery, Stephen E; Quezada-Calvillo, Roberto; Kilani, Shadi B; Lin, Amy Hui-Mei; Burrin, Douglas G; Hodges, Benjamin E; Chacko, Shaji K; Opekun, Antone R; Hindawy, Marwa El; Hamaker, Bruce R; Oda, Sen-Ichi

    2017-08-01

    Although named because of its sucrose hydrolytic activity, this mucosal enzyme plays a leading role in starch digestion because of its maltase and glucoamylase activities. Sucrase-deficient mutant shrews, Suncus murinus, were used as a model to investigate starch digestion in patients with congenital sucrase-isomaltase deficiency.Starch digestion is much more complex than sucrose digestion. Six enzyme activities, 2 α-amylases (Amy), and 4 mucosal α-glucosidases (maltases), including maltase-glucoamylase (Mgam) and sucrase-isomaltase (Si) subunit activities, are needed to digest starch to absorbable free glucose. Amy breaks down insoluble starch to soluble dextrins; mucosal Mgam and Si can either directly digest starch to glucose or convert the post-α-amylolytic dextrins to glucose. Starch digestion is reduced because of sucrase deficiency and oral glucoamylase enzyme supplement can correct the starch maldigestion. The aim of the present study was to measure glucogenesis in suc/suc shrews after feeding of starch and improvement of glucogenesis by oral glucoamylase supplements. Sucrase mutant (suc/suc) and heterozygous (+/suc) shrews were fed with C-enriched starch diets. Glucogenesis derived from starch was measured as blood C-glucose enrichment and oral recombinant C-terminal Mgam glucoamylase (M20) was supplemented to improve starch digestion. After feedings, suc/suc and +/suc shrews had different starch digestions as shown by blood glucose enrichment and the suc/suc had lower total glucose concentrations. Oral supplements of glucoamylase increased suc/suc total blood glucose and quantitative starch digestion to glucose. Sucrase deficiency, in this model of congenital sucrase-isomaltase deficiency, reduces blood glucose response to starch feeding. Supplementing the diet with oral recombinant glucoamylase significantly improved starch digestion in the sucrase-deficient shrew.

  4. Next-generation non-starch polysaccharide-degrading, multi-carbohydrase complex rich in xylanase and arabinofuranosidase to enhance broiler feed digestibility.

    Science.gov (United States)

    Cozannet, Pierre; Kidd, Michael T; Montanhini Neto, Roberto; Geraert, Pierre-André

    2017-08-01

    This study was carried out to evaluate the effect of a multi-carbohydrase complex (MCC) rich in xylanase (Xyl) and arabinofuranosidase (Abf) on overall broiler feed digestibility in broilers. Energy utilization and digestibility of dry matter (DM), organic matter (OM), protein, starch, fat, and insoluble and soluble fibers were measured using the mass-balance method. The experiment was carried out on 120 broilers (3-week-old chickens). Broilers were distributed over 8 treatments to evaluate the effect of the dietary arabinoxylan content and nutrient density with and without MCC (Rovabio® Advance). The graded content of arabinoxylan (AX) was obtained using different raw materials (wheat, rye, barley, and dried distillers' wheat). Diet-energy density was modified with added fat. Measurements indicated that nutrient density and AX content had a significant effect on most digestibility parameters. Apparent metabolizable energy (AME) was significantly increased (265 kcal kg-1) by MCC. The addition of MCC also resulted in significant improvement in the digestibility of all evaluated nutrients, with average improvements of 3.0, 3.3, 3.2, 3.0, 6.2, 2.9, 5.8, and 3.8% units for DM, OM, protein, starch, fat, insoluble and soluble fibers, and energy utilization, respectively. The interaction between MCC and diet composition was significant for the digestibility of OM, fat, protein, and energy. Nutrient digestibility and diet AME were negatively correlated with AX content (P digestible nutrient (i.e., starch, protein, fat, insoluble and soluble fibers) content with and without MCC (R2 = 0.87; RSD = 78 kcal kg-1). This study confirms that the presence of AX in wheat-based diets and wheat-based diets with other cereals and cereal by-products reduces nutrient digestibility in broiler chickens. Furthermore, the dietary addition of MCC, which is rich in Xyn and Abf, reduced deleterious effect of fiber and improved overall nutrient digestibility in broiler diets. © 2017 Poultry

  5. Radiation processing of starch

    International Nuclear Information System (INIS)

    Kamaruddin Hashim

    2008-01-01

    Starch is a polysaccharide material and generally, it is non-toxic, biocompatible and biodegradable. It mainly use as foodstuff, food additives, production of sugar and flavouring. Sago palm with scientific name Genus Metroxylon belonging to family Palmae is an important resource in the production of sago starch in Malaysia. Nearly 90% of sago planting areas is found in Sarawak State of Malaysia. It can easily grow under the harsh swampy environment. The sago starch content 4% polyphenol, which is an active compound with antioxidant property that has potential benefit in health and skin care applications. Renewal resources and environmental friendly of natural polymer reason for the researcher to explore the potential of this material in order to improve our quality of live. (author)

  6. Structure of potato starch

    DEFF Research Database (Denmark)

    Bertoft, Eric; Blennow, Andreas

    2016-01-01

    Potato starch granules consist primarily of two tightly packed polysaccharides, amylose and amylopectin. Amylose, which amount for 20-30%, is the principal linear component, but a fraction is in fact slightly branched. Amylopectin is typically the major component and is extensively branched...... chains extending from the clusters. A range of enzymes is involved in the biosynthesis of the cluster structures and linear segments. These are required for sugar activation, chain elongation, branching, and trimming of the final branching pattern. As an interesting feature, potato amylopectin...... is substituted with low amounts of phosphate groups monoesterified to the C-3 and the C-6 carbons of the glucose units. They seem to align well in the granular structure and have tremendous effects on starch degradation in the potato and functionality of the refined starch. A specific dikinase catalyzes...

  7. A REVIEW ON BIODEGRADABLE STARCH BASED FILM

    Directory of Open Access Journals (Sweden)

    Hooman Molavi

    2015-04-01

    Full Text Available In recent years, biodegradable edible films have become very important in research related to food, due to their compatibility with the environment and their use in the food packaging industry. Various sources can be used in the production of biopolymers as biodegradable films that include polysaccharides, proteins and lipids. Among the various polysaccharides, starch due to its low price and its abundance in nature is of significant importance. Several factors affect the properties of starch films; such as the source which starch is obtained from, as well as the ratio of constituents of the starch. Starch films have advantages such as low thickness, flexibility and transparency though; there are some downsides to mention, such as the poor mechanical properties and water vapor permeability. Thus, using starch alone to produce the film will led to restrictions on its use. To improve the mechanical properties of starch films and also increases resistance against humidity, several methods can be used; including the starch modifying techniques such as cross linking of starch and combining starch with other natural polymers. Other methods such as the use of lipid in formulations of films to increase the resistance to moisture are possible, but lipids are susceptible to oxidation. Therefore, new approaches are based on the integration of different biopolymers in food packaging.

  8. Sixth taste – starch taste?

    Directory of Open Access Journals (Sweden)

    Zygmunt Zdrojewicz

    2017-06-01

    Full Text Available Scientists from Oregon State University, USA, came up with the newest theory of the sixth taste – starch taste that might soon join the basic five tastes. This argument is supported by studies done on both animals and humans, the results of which seem to indicate the existence of separate receptors for starch taste, others than for sweet taste. Starch is a glucose homopolymer that forms an α-glucoside chain called glucosan or glucan. This polysaccharide constitutes the most important source of carbohydrates in food. It can be found in groats, potatoes, legumes, grains, manioc and corn. Apart from its presence in food, starch is also used in textile, pharmaceutical, cosmetic and stationery industries as well as in glue production. This polysaccharide is made of an unbranched helical structure – amylose (15–20%, and a structure that forms branched chains – amylopectin (80–85%. The starch structure, degree of its crystallisation or hydration as well as its availability determine the speed of food-contained starch hydrolysis by amylase. So far, starch has been considered tasteless, but the newest report shows that for people of different origins it is associated with various aliments specific for each culture. Apart from a number of scientific experiments using sweet taste inhibitors, the existence of the sixth taste is also confirmed by molecular studies. However, in order to officially include starch taste to the basic human tastes, it must fulfil certain criteria. The aim of the study is to present contemporary views on starch.

  9. Effects of thermo-resistant non-starch polysaccharide degrading multi-enzyme on growth performance, meat quality, relative weights of body organs and blood profile in broiler chickens.

    Science.gov (United States)

    Mohammadi Gheisar, M; Hosseindoust, A; Kim, I H

    2016-06-01

    This research was conducted to study the performance and carcass parameters of broiler chickens fed diets supplemented with heat-treated non-starch polysaccharide degrading enzyme. A total of 432 one-day old Ross 308 broiler chickens were allocated to five treatments: (i) CON (basal diet), (ii) E1: CON + 0.05% multi-enzyme, (iii) E2: CON + 0.1% multi-enzyme, (iv) E3: CON + 0.05% thermo-resistant multi-enzyme and (v) E4: CON + 0.1% thermo-resistant multi-enzyme, each treatment consisted of six replications and 12 chickens in each replication. The chickens were housed in three floor battery cages during 28-day experimental period. On days 1-7, gain in body weight (BWG) improved by feeding the diets supplemented with thermo-resistant multi-enzyme. On days 7-21 and 1-28, chickens fed the diets containing thermo-resistant multi-enzyme showed improved (p thermo-resistant multi-enzyme affected the percentage of drip loss on d 1 (p thermo-resistant multi-enzyme did not affect the relative weights of organs but compared to CON group, relative weight of breast muscle increased and abdominal fat decreased (p thermo-resistant multi-enzyme showed higher (p thermo-resistant multi-enzyme improved performance of broiler chickens. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  10. The future of starch bioengineering: GM microorganisms or GM plants?

    DEFF Research Database (Denmark)

    Hebelstrup, Kim; Sagnelli, Domenico; Blennow, Andreas

    2015-01-01

    , tubers and cereal grains to provide a GM crop as an alternative to the use of enzymes from GM microorganisms. We here discuss these techniques in relation to important structural features and modifications of starches such as: starch phosphorylation, starch hydrolysis, chain transfer/branching and novel...... concepts of hybrid starch-based polysaccharides. In planta starch bioengineering is generally challenged by yield penalties and inefficient production of the desired product. However, in some situations, GM crops for starch bioengineering without deleterious effects have been achieved....

  11. Starch bioengineering

    DEFF Research Database (Denmark)

    Blennow, Andreas

    2018-01-01

    Application of starch in industry frequently requires extensive modification. This is usually achieved by chemical and/or physical modification that is time-consuming and often expensive and polluting. To impart functionality as early as possible in the starch production chain, modification can...... be achieved directly as part of the developing starch storage roots, tubers, and seeds and grains of the crop. Starch has been a strong driver for human development and is now the most important energy provider in the diet forcing the development of novel and valuable starch qualities for specific...... applications. Among the most important structures that can be targeted include starch phosphorylation chain transfer/branching generating chemically substituted and chain length-modified starches such as resistant and health-promoting high-amylose starch. Starch bioengineering has been employed for more than...

  12. Production of heterologous storage polysaccharides in potato plants

    NARCIS (Netherlands)

    Huang, X.; Vincken, J.P.; Visser, R.G.F.; Trindade, L.M.

    2011-01-01

    Starch is the most important storage polysaccharide in higher plants. This polysaccharide is used in many industrial applications as it is abundant, renewable and biodegradable and it can be modified into a wide range of products used in food, animal feed, pharmaceuticals and industry. With the

  13. Plant-crafted starches for bioplastics production

    DEFF Research Database (Denmark)

    Sagnelli, Domenico; Hebelstrup, Kim H.; Leroy, Eric

    2016-01-01

    Transgenically-produced amylose-only (AO) starch was used to manufacture bioplastic prototypes. Extruded starch samples were tested for crystal residues, elasticity, glass transition temperature, mechanical properties, molecular mass and microstructure. The AO starch granule crystallinity was both...... in the storage modulus (E') for AO samples compared to the control. The data support the use of pure starch-based bioplastics devoid of non-polysaccharide fillers....... of the B- and Vh-type, while the isogenic control starch was mainly A-type. The first of three endothermic transitions was attributed to gelatinization at about 60°C. The second and third peaks were identified as melting of the starch and amylose-lipid complexes, respectively. After extrusion, the AO...

  14. Adsorption of modified dextrins on molybdenite: AFM imaging, contact angle, and flotation studies.

    Science.gov (United States)

    Beaussart, Audrey; Parkinson, Luke; Mierczynska-Vasilev, Agnieszka; Beattie, David A

    2012-02-15

    The adsorption of three dextrins (a regular wheat dextrin, Dextrin TY, carboxymethyl (CM) Dextrin, and hydroxypropyl (HP) Dextrin) on molybdenite has been investigated using adsorption isotherms, tapping mode atomic force microscopy (TMAFM), contact angle measurements, and dynamic bubble-surface collisions. In addition, the effect of the polymers on the flotation recovery of molybdenite has been determined. The isotherms revealed the importance of molecular weight in determining the adsorbed amounts of the polymers on molybdenite at plateau coverage. TMAFM revealed the morphology of the three polymers, which consisted of randomly dispersed domains with a higher area fraction of surface coverage for the substituted dextrins. The contact angle of polymer-treated molybdenite indicated that polymer layer coverage and hydration influenced the mineral surface hydrophobicity. Bubble-surface collisions indicated that the polymers affected thin film rupture and dewetting rate differently, correlating with differences in the adsorbed layer morphology. Direct correlations were found between the surface coverage of the adsorbed layers, their impact on thin film rupture time, and their impact on flotation recovery, highlighting the paramount role of the polymer morphology in the bubble/particle attachment process and subsequent flotation. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. The effect of a non-starch polysaccharide-hydrolysing enzyme (Rovabio® Excel) on feed intake and body condition of sows during lactation and on progeny growth performance.

    Science.gov (United States)

    Walsh, M C; Geraert, P A; Maillard, R; Kluess, J; Lawlor, P G

    2012-10-01

    A total of 200 (Large White × Landrace) sows were used in a 39-day study to evaluate the effects of feeding a non-starch polysaccharide (NSP)-hydrolysing enzyme multicomplex (Rovabio(®) Excel) in conjunction with a high- or reduced nutrient-density diet during lactation on sow body condition, feed intake and progeny performance. Eight sows were selected each week for 25 weeks, blocked by parity and BW into groups of four, and within the block randomly assigned to one of the four treatments (n = 50/treatment). Treatments were: (1) LND: low energy (13.14 MJ of DE/kg), low CP (15%) diet; (2) LND + RE: LND with 50 mg/kg NSP-hydrolysing enzyme; (3) HND: high energy (14.5 MJ of DE/kg), high CP (16.5%) diet; and (4) HND + RE: HND with 50 mg/kg NSP-hydrolysing enzyme. Sows were fed treatment diets from day 109 of gestation until the day of subsequent service. Between weaning and re-service, Rovabio(®) Excel addition to LND diets resulted in an increase in energy intake; however, a reduction was observed when supplemented to the HND diet (P Excel increased feed and energy intake during week 3 (days 15 to 21) of lactation (P Excel had greater back-fat depth at weaning and service (P < 0.05); however, the magnitude of change in back-fat depth during lactation and from farrowing to service was not different between treatments. Feeding the HND diet increased energy intake before farrowing, throughout lactation and during the weaning to service interval (P < 0.01); however, overall, average daily feed intake tended to be reduced (P < 0.10). At service, sows fed the HND diet were heavier than sows fed the LND diet (P < 0.05); however, the magnitude of change in BW between treatments was not different. Feeding the HND diet to sows resulted in a tendency for heavier piglets at birth (P = 0.10) that tended to grow at a faster rate and be heavier at weaning than piglets from sows fed the LND diet (P = 0.06). These results indicate that NSP-degrading enzymes offer minimal benefit

  16. Design starch: stochastic modeling of starch granule biogenesis.

    Science.gov (United States)

    Raguin, Adélaïde; Ebenhöh, Oliver

    2017-08-15

    Starch is the most widespread and abundant storage carbohydrate in plants and the main source of carbohydrate in the human diet. Owing to its remarkable properties and commercial applications, starch is still of growing interest. Its unique granular structure made of intercalated layers of amylopectin and amylose has been unraveled thanks to recent progress in microscopic imaging, but the origin of such periodicity is still under debate. Both amylose and amylopectin are made of linear chains of α-1,4-bound glucose residues, with branch points formed by α-1,6 linkages. The net difference in the distribution of chain lengths and the branching pattern of amylose (mainly linear), compared with amylopectin (racemose structure), leads to different physico-chemical properties. Amylose is an amorphous and soluble polysaccharide, whereas amylopectin is insoluble and exhibits a highly organized structure of densely packed double helices formed between neighboring linear chains. Contrarily to starch degradation that has been investigated since the early 20th century, starch production is still poorly understood. Most enzymes involved in starch growth (elongation, branching, debranching, and partial hydrolysis) are now identified. However, their specific action, their interplay (cooperative or competitive), and their kinetic properties are still largely unknown. After reviewing recent results on starch structure and starch growth and degradation enzymatic activity, we discuss recent results and current challenges for growing polysaccharides on granular surface. Finally, we highlight the importance of novel stochastic models to support the analysis of recent and complex experimental results, and to address how macroscopic properties emerge from enzymatic activity and structural rearrangements. © 2017 The Author(s).

  17. Design starch: stochastic modeling of starch granule biogenesis

    Science.gov (United States)

    Ebenhöh, Oliver

    2017-01-01

    Starch is the most widespread and abundant storage carbohydrate in plants and the main source of carbohydrate in the human diet. Owing to its remarkable properties and commercial applications, starch is still of growing interest. Its unique granular structure made of intercalated layers of amylopectin and amylose has been unraveled thanks to recent progress in microscopic imaging, but the origin of such periodicity is still under debate. Both amylose and amylopectin are made of linear chains of α-1,4-bound glucose residues, with branch points formed by α-1,6 linkages. The net difference in the distribution of chain lengths and the branching pattern of amylose (mainly linear), compared with amylopectin (racemose structure), leads to different physico-chemical properties. Amylose is an amorphous and soluble polysaccharide, whereas amylopectin is insoluble and exhibits a highly organized structure of densely packed double helices formed between neighboring linear chains. Contrarily to starch degradation that has been investigated since the early 20th century, starch production is still poorly understood. Most enzymes involved in starch growth (elongation, branching, debranching, and partial hydrolysis) are now identified. However, their specific action, their interplay (cooperative or competitive), and their kinetic properties are still largely unknown. After reviewing recent results on starch structure and starch growth and degradation enzymatic activity, we discuss recent results and current challenges for growing polysaccharides on granular surface. Finally, we highlight the importance of novel stochastic models to support the analysis of recent and complex experimental results, and to address how macroscopic properties emerge from enzymatic activity and structural rearrangements. PMID:28673938

  18. Cytochemical Localization of Polysaccharides in Dendrobium officinale and the Involvement of DoCSLA6 in the Synthesis of Mannan Polysaccharides

    OpenAIRE

    He, Chunmei; Wu, Kunlin; Zhang, Jianxia; Liu, Xuncheng; Zeng, Songjun; Yu, Zhenming; Zhang, Xinghua; Teixeira da Silva, Jaime A.; Deng, Rufang; Tan, Jianwen; Luo, Jianping; Duan, Jun

    2017-01-01

    Dendrobium officinale is a precious traditional Chinese medicinal plant because of its abundant polysaccharides found in stems. We determined the composition of water-soluble polysaccharides and starch content in D. officinale stems. The extracted water-soluble polysaccharide content was as high as 35% (w/w). Analysis of the composition of monosaccharides showed that the water-soluble polysaccharides were dominated by mannose, to a lesser extent glucose, and a small amount of galactose, in a ...

  19. Short-term digestive tolerance of different doses of NUTRIOSE FB, a food dextrin, in adult men.

    Science.gov (United States)

    van den Heuvel, E G H M; Wils, D; Pasman, W J; Bakker, M; Saniez, M-H; Kardinaal, A F M

    2004-07-01

    To determine the tolerance of increasing dosages of an incompletely hydrolysed and/or incompletely absorbed food dextrin coming from wheat starch, NUTRIOSE FB, at daily levels of 10 and 15 g up to 60 and 80 g, respectively. A randomized, double-blind, multiple dose, placebo-controlled, combined crossover and parallel trial. The metabolic ward of TNO Nutrition and Food Research. A total of 20 healthy men (age 31.7 +/- 9.1 y; BMI 24.5 +/- 2.9 kg/m2). One group of 10 subjects consumed on top of their diet 10, 30 and 60 g of NUTRIOSE FB or maltodextrin (placebo) daily. The other group of 10 subjects consumed 15, 45 and 80 g daily. Each dose was consumed for 7 days. Compared with placebo, flatulence occurred more frequently over the last 6 days on 30, 60 or 80 g/day of NUTRIOSE FB (P FB, the frequency of flatulence was even higher (P FB, the frequency of defecation decreased (P FB (P FB resulted in diarrhoea. Compared to baseline levels, breath H2 excretion, which was only measured after a week with 10 and 15 g of NUTRIOSE FB daily, increased (P FB is a fermentable carbohydrate and is well tolerated up to a dose of 45 g daily. Higher daily dosages (60 and 80 g) may result in flatulence, but does not result in diarrhoea. TNO Nutrition and Food Research was assigned by Roquette Frères to perform the study.

  20. The Distribution Features of Polysaccharides and Lipids in the Development of Tomato Anthers

    Directory of Open Access Journals (Sweden)

    Zhu Yun

    2015-07-01

    Full Text Available The regulation of nutrient transportation and transformation in developing anthers is very complex. We analyzed the distribution and features of polysaccharides and lipids in the developing anthers of tomatoes using histochemical methods. Some starches appeared in the connective somatic tissue of anthers during the sporogenous cell stage. Before meiosis of the microspore mother cell, a thick polysaccharide callose wall was formed, accompanied by a reduction in the connective tissue starches. During the tetrad stage after meiosis, the polysaccharide material in the anther did not change. At the early microspore stage, the starches in the connective cells again increased, and polysaccharide material appeared in the partial intine of pollen. At the late microspore stage, a large vacuole formed that did not contain lipids or starches, and only the pollen wall contained red polysaccharides. At this stage, the connective somatic cell starch amounts decreased, and the tapetal cells changed shape and degenerated. After microspore division, abundant lipids appeared in the bicellular pollen, and starches accumulated following pollen development. As the anthers matured, many lipids and some starches accumulated in the epidermal cells. Nutrient metabolism within the tomato pollen characteristically accumulated lipids first and then starches, while the mature pollen accumulated starches and lipids simultaneously. This characteristic pattern of nutrient metabolism in tomato pollen shows species specificity among plants.

  1. Indigestible dextrin is an excellent inducer for α-amylase, α-glucosidase and glucoamylase production in a submerged culture of Aspergillus oryzae.

    Science.gov (United States)

    Sugimoto, Toshikazu; Shoji, Hiroshi

    2012-02-01

    α-Amylase activities of Aspergillus oryzae grown on dextrin or indigestible dextrin were 7·8 and 27·7 U ml(-1), respectively. Glucoamylase activities of the cultures grown on dextrin or indigestible dextrin were 5·4 and 301 mU ml(-1), respectively. The specific glucoamylase production rate in indigestible dextrin batch culture reached 1·35 U g DW(-1) h(-1). In contrast, biomass concentration of A. oryzae in indigestible dextrin culture was 35% of that in dextrin culture. Thus, the culture method using indigestible dextrin has the potential to improve amylolytic enzyme production and fungal fermentation broth rheology.

  2. Wheat B-starch based polymeric materials

    Czech Academy of Sciences Publication Activity Database

    Kotek, Jiří; Kruliš, Zdeněk; Šárka, E.

    2011-01-01

    Roč. 105, č. 9 (2011), s. 731 ISSN 0009-2770. [International Conference on Polysaccharides-Glycoscience /7./. 02.11.2011-04.11.2011, Prague] R&D Projects: GA ČR GA525/09/0607 Institutional research plan: CEZ:AV0Z40500505 Keywords : biodegradable plastic * polycaprolactone * B- starch Subject RIV: JI - Composite Materials

  3. Synthesis of dextrin-stabilized colloidal silver nanoparticles and their application as modifiers of cement mortar.

    Science.gov (United States)

    Konował, Emilia; Sybis, Marta; Modrzejewska-Sikorska, Anna; Milczarek, Grzegorz

    2017-11-01

    Various commercial dextrins were used as reducing and stabilizing agents for a novel one-step synthesis of silver nanoparticles from ammonia complexes of silver ions. As a result, stable colloids of silver were formed during the reaction with the particle size being the function of the dextrin type. The obtained colloids were characterized by UV-vis spectrophotometry, size distribution (using Non-Invasive Backscatter optics) and transmission electron microscopy (TEM). The achieved results clearly indicate the possibility of low-cost production of large quantities of colloidal silver nanoparticles using materials derived from renewable sources. The resulting silver colloids can be used for different purposes, e.g. as bactericidal agents. Combination of the aforementioned properties of nanosilver particles with plasticizing properties of dextrin enables to obtain cement mortars with increased workability and enhanced compressive strength. Moreover, the obtained material is also characterized by increased immunity to adverse impact of microorganisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Effect of ionizing radiation on starch and cellulose

    International Nuclear Information System (INIS)

    Klenha, J.; Bockova, J.

    1973-09-01

    The investigation is reported of the effects of ionizing radiation both on macromolecular systems generally and on polysaccharides, starch and cellulose. Attention is focused on changes in the physical and physico-chemical properties of starch and cellulose, such as starch swelling, gelation, viscosity, solubility, reaction with iodine, UV, IR and ESR spectra, chemical changes resulting from radiolysis and from the effect of amylases on irradiated starch, changes in cellulose fibre strength, water absorption, stain affinity, and also the degradation of cellulose by radiation and the effect of cellulases on irradiated cellulose. Practical applications of the findings concerning cellulose degradation are discussed. (author)

  5. DEVELOPMENT OF ADHESIVE TO THE BASIS OF CORN AND CASSAVA STARCH

    Directory of Open Access Journals (Sweden)

    Rosane Furtado Fabrício

    2014-05-01

    Full Text Available Corn and native cassava starch were modified by oxidation and acid hydrolysis, aiming to develop paper and paperboard stickers. The oxidation was made with Sodium hypochlorite (NaOCl in two distinct concentrations of active chloride which is present on oxidizing agent solution. The synthesis resulting products were used to make stickers and they were compared to corn and cassava starch based stickers without any modification, as well as commercial stickers based on polyvinyl acetate (PVA. Two different methodologies were tested using acid hydrolysis to modify corn and cassava starch, both using phosphoric acid (H3PO4 in order to obtain dextrin and subsequently use it in the production of stickers and also comparing them to petrochemical-based commercial stickers. Considering the different starch modifications methods (oxidation and acid hydrolysis, stickers based on renewable raw material were obtained, which combine biodegradability, low costs and availability.

  6. A novel approach to enhancement of surface properties of CdO films by using surfactant: dextrin

    Science.gov (United States)

    Sahin, Bünyamin; Bayansal, Fatih; Yüksel, Mustafa

    2015-12-01

    We studied the effect of an organic surfactant, dextrin, concentration on structural, morphological and optical properties of nanostructured CdO films deposited on glass substrates by using an easy and low-cost SILAR method. Microstructures of the nanostructured CdO films were optimized by adjusting dextrin concentration. XRD, SEM and UV-Vis Spectroscopy were used to study phase structure, surface morphology and optical properties of CdO films. Furthermore, effects of dextrin concentration on the surface roughness characteristics of CdO samples were reported. The results showed that the presence of organic surfactant highly affected the physical properties of CdO nanomaterials.

  7. Electrospinning of food proteins and polysaccharides

    DEFF Research Database (Denmark)

    Mendes, Ana Carina Loureiro; Boutrup Stephansen, Karen; Chronakis, Ioannis S.

    2017-01-01

    Nano-microfibrous structures of biopolymers with a wide range of compositions, morphologies, mechanical properties and bioactivities could be developed using electrospinning technology. This review focuses on the processing, properties, functionalization and potential applications of electrospun ...... biopolymers. Biopolymers include proteins (gelatin, collagen, elastin, silk, soy zein, gliadin, hordein, amaranth, casein, wheat, whey, marine sources proteins), and polysaccharides (chitosan, starch, alginate, cellulose and cellulose derivatives, pullulan, dextran, cyclodextrins)....

  8. Analytical Aspects of Total Starch Polarimetric Determination in Some Cereals

    Directory of Open Access Journals (Sweden)

    Rodica Caprita

    2016-10-01

    Full Text Available Starch is the most important digestible polysaccharide present in foods and feeds. The starch concentration in cereals cannot be determined directly, because the starch is contained within a structurally and chemically complex matrix. Fine grinding and boiling in dilute HCl are preparative steps necessary for complete release of the starch granules from the protein matrix. Starch can be determined using simple and inexpensive physical methods, such as density, refractive index or optical rotation assessment. The polarimetric method allows the determination even of small starch contents due to its extremely high specific rotation. For more accurate results, the contribution of free sugars is eliminated by dissolution in 40% (V/V ethanol. The influence of other optically active substances, which might interfere, is removed by filtration/clarification prior to the optical rotation measurement.

  9. Plant-crafted starches for bioplastics production.

    Science.gov (United States)

    Sagnelli, Domenico; Hebelstrup, Kim H; Leroy, Eric; Rolland-Sabaté, Agnès; Guilois, Sophie; Kirkensgaard, Jacob J K; Mortensen, Kell; Lourdin, Denis; Blennow, Andreas

    2016-11-05

    Transgenically-produced amylose-only (AO) starch was used to manufacture bioplastic prototypes. Extruded starch samples were tested for crystal residues, elasticity, glass transition temperature, mechanical properties, molecular mass and microstructure. The AO starch granule crystallinity was both of the B- and Vh-type, while the isogenic control starch was mainly A-type. The first of three endothermic transitions was attributed to gelatinization at about 60°C. The second and third peaks were identified as melting of the starch and amylose-lipid complexes, respectively. After extrusion, the AO samples displayed Vh- and B-type crystalline structures, the B-type polymorph being the dominant one. The AO prototypes demonstrated a 6-fold higher mechanical stress at break and 2.5-fold higher strain at break compared to control starch. Dynamic mechanical analysis showed a significant increase in the storage modulus (E') for AO samples compared to the control. The data support the use of pure starch-based bioplastics devoid of non-polysaccharide fillers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Melting properties and Lintnerisation of potato starch with different degrees of phosphorylation

    DEFF Research Database (Denmark)

    Wischmann, Bente; Adler-Nissen, Jens

    2002-01-01

    Lintner dextrins were prepared from size fractionated potato starch granules from two potato varieties (90BKG22 and Lady Rosetta) that contain high or low natural content of esterified phosphate, respectively. The time course of hydrolysis showed the typical two-phase kinetics, with a maximal...... degree of hydrolysis of between 74% and 81% after 30 days of hydrolysis, except for the fraction of smallest granules of the low phosphorylated variety (low P), which was hydrolysed to 98%. The relative amount of retained glucose-6-P in the Lintner dextrins was 18.6% for the low P variety and 46...... peak became low and broad during the time course of hydrolysis, with rise in enthalpy change, indicating a strong dependency on the amorphous region of the granules, After annealing the same fractions showed the typical raise in gelatinisation temperature and narrowing of gelatinisation peak...

  11. Digestion and Interaction of Starches with α-Amylases: I. Mutational analysis of Carbohydrate Binding Sites in barley. II. In Vitro Starch Digestion of Legumes

    DEFF Research Database (Denmark)

    Nielsen, Morten Munch

    2006-01-01

    the hydrolysis of internal 1,4-α-D-glucosidic bonds in starch and related polysaccharides. The present thesis concerns studies of two α-amylases: 1) secondary substrate binding sites in barley α-amylase 1 (AMY1), and 2) the involvement of anti-nutrients in in vitro digestion of starch in legumes by porcine...... in morphology between high amylose starch granules and normal starch granules. Legumes (beans, peas, and lentils) are characterised by low blood glucose raising potential, which is proportional to the in vitro starch digestion rates. The high amount of anti-nutritional factors (phytate, proteinaceous inhibitors......, tannins, and lectins) in legumes has been associated with the slow starch digestion. However, it is still debated in literature to which extent the legume starch digestibility is affected by anti-nutritional factors. The in vitro starch digestion (hydrolytic index, HI) of pea (Pisum sativum) and mixtures...

  12. UTILIZATION OF CASSAVA WASTE IN THE PRODUCTION OF PLYWOOD ADHESIVE EKSTENDER WITH DEXTRIN (WITH ACID CATALYST

    Directory of Open Access Journals (Sweden)

    Piyantina Rukmini

    2017-10-01

    Full Text Available Abstract- Require of manihot Esculinta Crantz in Indonesia rises in every year as growth of Indonesian people, bioethanol industry,and animal food. Raw material that use in this research is cassava wastes. This research aimed to know the utilization of cassava waste, the optimum condition process of dextrin, and to know the variable that influent the utilization of cassava waste in the production of adhesive ekstender ( catalyst concentration and time. The dekstrin process need beaker glass, stirrer, electric stove with oilbatch heater, thermometer, screening 80 mesh. Cassava wastes that keep on several days is burned without water at 800 C for 1 hours. Then drops acid catalyst ion the beaker glass with different concentration. Then the temperature is raised until 1100C for 1 hour. After the drying process, make it cool then screen it in to screener 80 mesh. The results show that on the higher concentration of acid, dextrin will get on the higher concentration. At the certain concentration of acid, dekstrin will not get in the high concentration. Maximum efficiency of the concentration of acid is 0,8 N. Keeping long day for cassava waste can make lower the concentration of dextrin. The best keeping day is the first day until four day.

  13. UTILIZATION OF CASSAVA WASTE IN THE PRODUCTION OF PLYWOOD ADHESIVE EKSTENDER WITH DEXTRIN (WITH ACID CATALYST

    Directory of Open Access Journals (Sweden)

    Piyantina Rukmini

    2017-10-01

    Full Text Available Require of manihot Esculinta Crantz in Indonesia rises in every year as growth of Indonesian people, bioethanol industry,and animal food. Raw material that use in this research is cassava wastes. This research aimed to know the utilization of cassava waste, the optimum condition process of dextrin, and to know the variable that influent the utilization of cassava waste in the production of adhesive ekstender ( catalyst concentration and time. The dekstrin process need beaker glass, stirrer, electric stove with oilbatch heater, thermometer, screening 80 mesh. Cassava wastes that keep on several days is burned without water at 800 C for 1 hours. Then drops acid catalyst ion the beaker glass with different concentration. Then the temperature is raised until 1100C for 1 hour. After the drying process, make it cool then screen it in to screener 80 mesh. The results show that on the higher concentration of acid, dextrin will get on the higher concentration. At the certain concentration of acid, dekstrin will not get in the high concentration. Maximum efficiency of the concentration of acid is 0,8 N. Keeping long day for cassava waste can make lower the concentration of dextrin. The best keeping day is the first day until four day.

  14. Modified polysaccharides as alternative binders for foundry industry

    Directory of Open Access Journals (Sweden)

    K. Kaczmarska

    2016-10-01

    Full Text Available Polysaccharides constitute a wide group of important polymers with many commercial applications, for example food packaging, fibres, coatings, adhesives etc. This review is devoted to the presentation of polysaccharide application in foundry industry. In this paper the selected properties of foundry moulding sand and core sand containing modified polysaccharides as binders are presented according to foreign literature data. Also, author’s own research about effect of using moulding sand binder consisting of modified polysaccharide (modified starch or its composition with non-toxic synthetic polymers are discussed. Based on technologies taken under consideration in this paper, it could be concluded that polysaccharides are suitable as an alternative for use as binder in foundry moulding applications.

  15. The future of starch bioengineering: GM microorganisms or GM plants?

    Directory of Open Access Journals (Sweden)

    Kim Henrik eHebelstrup

    2015-04-01

    Full Text Available Plant starches regularly require extensive modification to permit subsequent applications. Such processing is usually done by the use of chemical and/or physical treatments. The use of recombinant enzymes produced by large-scale fermentation of GM microorganisms is increasingly used in starch processing and modification, sometimes as an alternative to chemical or physical treatments. However, as a means to impart the modifications as early as possible in the starch production chain, similar recombinant enzymes may also be expressed in planta in the developing starch storage organ such as in roots, tubers and cereal grains to provide a GM crop as an alternative to the use of enzymes from GM microorganisms. We here discuss these techniques in relation to important structural features and modifications of starches such as: starch phosphorylation, starch hydrolysis, chain transfer/branching and novel concepts of hybrid starch-based polysaccharides. In planta starch bioengineering is generally challenged by yield penalties and inefficient production of the desired product. However in some situations, GM crops for starch bioengineering without deleterious effects have been achieved.

  16. Hyperphosphorylation of cereal starch

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Shaik, Shahnoor Sultana; Jensen, Susanne Langgård

    2011-01-01

    Plant starch is naturally phosphorylated at a fraction of the C6 and the C3 hydroxyl groups during its biosynthesis in plastids. Starch phosphate esters are important in starch metabolism and they also generate specific industrial functionality. Cereal grains starch contains little starch bound...... phosphate compared with potato tuber starch and in order to investigate the effect of increased endosperm starch phosphate, the potato starch phosphorylating enzyme glucan water dikinase (StGWD) was overexpressed specifically in the developing barley endosperm. StGWD overexpressors showed wild......-type phenotype. Transgenic cereal grains synthesized starch with higher starch bound phosphate content (7.5 (±0.67) nmol/mg) compared to control lines (0.8 (±0.05) nmol/mg) with starch granules showing altered morphology and lower melting enthalpy. Our data indicate specific action of GWD during starch...

  17. Functional and structural characterization of plastidic starch phosphorylase during barley endosperm development

    DEFF Research Database (Denmark)

    Cuesta-Seijo, Jose A.; Ruzanski, Christian; Krucewicz, Katarzyna

    2017-01-01

    The production of starch is essential for human nutrition and represents a major metabolic flux in the biosphere. The biosynthesis of starch in storage organs like barley endosperm operates via two main pathways using different substrates: starch synthases use ADP-glucose to produce amylose......,4-glucans using HvPho1 from G1P as the sole substrate. The structural properties of HvPho1 provide insights into the low affinity of HvPho1 for large polysaccharides like starch or amylopectin. Our results suggest that HvPho1 may play a role during the initiation of starch biosynthesis in barley....... and amylopectin, the two major components of starch, whereas starch phosphorylase (Pho1) uses glucose-1-phosphate (G1P), a precursor for ADP-glucose production, to produce α-1,4 glucans. The significance of the Pho1 pathway in starch biosynthesis has remained unclear. To elucidate the importance of barley Pho1...

  18. Extraction, purification and antioxidant activities of the polysaccharides from maca (Lepidium meyenii).

    Science.gov (United States)

    Zha, Shenghua; Zhao, Qingsheng; Chen, Jinjin; Wang, Liwei; Zhang, Guifeng; Zhang, Hong; Zhao, Bing

    2014-10-13

    Water-soluble polysaccharides were separated from maca (Lepidium meyenii) aqueous extract (MAE). The crude polysaccharides were deproteinized by Sevag method. During the preparation process of maca polysaccharides, amylase and glucoamylase effectively removed starch in maca polysaccharides. Four Lepidium meyenii polysaccharides (LMPs) were obtained by changing the concentration of ethanol in the process of polysaccharide precipitation. All of the LMPs were composed of rhamnose, arabinose, glucose and galactose. Antioxidant activity tests revealed that LMP-60 showed good capability of scavenging hydroxyl free radical and superoxide radical at 2.0mg/mL, the scavenging rate was 52.9% and 85.8%, respectively. Therefore, the results showed that maca polysaccharides had a high antioxidant activity and could be explored as the source of bioactive compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Aroma interactions with starch

    DEFF Research Database (Denmark)

    Jørgensen, Anders Dysted

    Starches are used to enhance aroma perception in low-fat foods. Aroma compounds can bind physically to the starch in grooves on the surface or they can form complexes inside amylose helices. This study has been divided into two parts: one part regarding binding of aromas to starches and their aroma......-release, and another part regarding stimulation of a fungal secretome using different carbohydrates. In the first part, nine aromas and one aroma-mixture were mixed with nine different starches, including genetically modified starches. The objective of this sub-project was to bind aromas to the starches to 15 weight......-percent. Aroma binding was tested on both amorphous starches and on native starch granules. A series of aldehydes and alcohols were also tested for binding to the starches. The aromas with the highest volatility were positively retained by starch, whereas for aromas with a lower volatility the starch had...

  20. The effect of indigestible dextrin and phytosterol on serum LDL-cholesterol level on hypercholesterolemic subjects

    Directory of Open Access Journals (Sweden)

    Anna H. Then

    2009-06-01

    Full Text Available Aim To investigate the effects of indigestible dextrin 2x2.3g/day and phytosterol 2x0.6g/day provided for 6 weeks in lowering serum LDL-cholesterol levels amongs hypercholesterolemic subjects.Methods A randomized clinical trial, two pararel groups, double blinded and randomly assigned to each different group was done in 16 subjects per-group.Results Before the, intervention the level of LDL cholesterol of both ID and FS group were 158.81 ± 17.74 mg/dL and 176.18 ± 25.31 mg/dL, respectively. After the intervention there was a significant reduction in LDL cholesterol level in both groups, i.e. among the ID group by 20.93 ± 12.65 mg/dL (13.24% with p value of <0.001, while the reduction of LDL cholesterol level among the PS group was 21.87 ± 28.76 mg/dL (11.21% with p value of 0.008. However, the reduction of cholesterol level between the two groups did not show any significant difference.Conclusion Consuming indigestible dextrin 2x2.3g/day and 2x0.6g/day phytosterol (PS for 6 weeks will have the same ability to decrease the serum cholesterol level in hypercholesterolemic subjects. (Med J Indones 2009; 18: 114-9Key words: indigestible dextrin, phytosterol, cholesterol

  1. Radiation processing of polysaccharides

    International Nuclear Information System (INIS)

    2004-11-01

    Radiation processing is a very convenient tool for imparting desirable effects in polymeric materials and it has been an area of enormous interest in the last few decades. The success of radiation technology for processing of synthetic polymers can be attributed to two reasons namely, their ease of processing in various shapes and sizes, and secondly, most of these polymers undergo crosslinking reaction upon exposure to radiation. In recent years, natural polymers are being looked at with renewed interest because of their unique characteristics, such as inherent biocompatibility, biodegradability and easy availability. Traditionally, the commercial exploitation of natural polymers like carrageenans, alginates or starch etc. has been based, to a large extent, on empirical knowledge. But now, the applications of natural polymers are being sought in knowledge - demanding areas such as pharmacy and biotechnology, which is acting as a locomotive for further scientific research in their structure-function relationship. Selected success stories concerning radiation processed natural polymers and application of their derivatives in the health care products industries and agriculture are reported. This publication will be of interest to individuals at nuclear institutions worldwide that have programmes of R and D and applications in radiation processing technologies. New developments in radiation processing of polymers and other natural raw materials give insight into converting them into useful products for every day life, human health and environmental remediation. The book will also be of interest to other field specialists, readers including managers and decision makers in industry (health care, food and agriculture) helping them to understand the important role of radiation processing technology in polysaccharides

  2. Starch and starch hydrolysates are favorable carbon sources for bifidobacteria in the human gut.

    Science.gov (United States)

    Liu, Songling; Ren, Fazheng; Zhao, Liang; Jiang, Lu; Hao, Yanling; Jin, Junhua; Zhang, Ming; Guo, Huiyuan; Lei, Xingen; Sun, Erna; Liu, Hongna

    2015-03-01

    Bifidobacteria are key commensals in human gut, and their abundance is associated with the health of their hosts. Although they are dominant in infant gut, their number becomes lower in adult gut. The changes of the diet are considered to be main reason for this difference. Large amounts of whole-genomic sequence data of bifidobacteria make it possible to elucidate the genetic interpretation of their adaptation to the nutrient environment. Among the nutrients in human gut, starch is a highly fermentable substrate and can exert beneficial effects by increasing bifidobacteria and/or being fermented to short chain fatty acids. In order to determine the potential substrate preference of bifidobacteria, we compared the glycoside hydrolase (GH) profiles of a pooled-bifidobacterial genome (PBG) with a representative microbiome (RM) of the human gut. In bifidobacterial genomes, only 15% of GHs contained signal peptides, suggesting their weakness in utilization of complex carbohydrate, such as plant cell wall polysaccharides. However, compared with other intestinal bacteria, bifidobacteiral genomes encoded more GH genes for degrading starch and starch hydrolysates, indicating that they have genetic advantages in utilizing these substrates. Bifidobacterium longum subsp. longum BBMN68 isolated from centenarian's faeces was used as a model strain to further investigate the carbohydrate utilization. The pathway for degrading starch and starch hydrolysates was the only complete pathway for complex carbohydrates in human gut. It is noteworthy that all of the GH genes for degrading starch and starch hydrolysates in the BBMN68 genome were conserved in all studied bifidobacterial strains. The in silico analyses of BBMN68 were further confirmed by growth experiments, proteomic and real-time quantitative PCR (RT-PCR) analyses. Our results demonstrated that starch and starch hydrolysates were the most universal and favorable carbon sources for bifidobacteria. The low amount of these

  3. Radiation-chemical destruction of cellulose and other polysaccharides

    International Nuclear Information System (INIS)

    Ershov, B.G.

    1998-01-01

    The studies concerning the radiation-chemical destruction of cellulose, its ethers and some polysaccharides (xylan, starch, decstrans, chitin, chitosan and geparin) are discussed. Ionising irradiation causes the destruction of these compounds with the decay of pyranose ring, accompanied by the formation of compounds containing carbonyl or carboxyl groups, as well as hydrogen, carbon dioxide, and carbon oxide. The efficiency of radiation degradation increases with increasing the temperature and depends on the structure of polysaccharides and the nature of substituents. The mechanism of radiation-chemical transformations of cellulose and others polysaccharides is proposed. Prospects of the application of radiation-chemical methods of treatment of cellulose and other polysaccharides in industry and agriculture considered [ru

  4. Enriched glucose and dextrin mannitol-based media modulates fibroblast behavior on bacterial cellulose membranes

    International Nuclear Information System (INIS)

    Stumpf, Taisa R.; Pértile, Renata A.N.; Rambo, Carlos R.; Porto, Luismar M.

    2013-01-01

    Bacterial cellulose (BC) produced by Gluconacetobacter hansenii is a suitable biopolymer for biomedical applications. In order to modulate the properties of BC and expand its use as substrate for tissue engineering mainly in the form of biomembranes, glucose or dextrin were added into a BC fermentation mannitol-based medium (BCGl and BCDe, respectively) under static culture conditions. SEM images showed effects on fiber density and porosity on both sides of the BC membranes. Both enriched media decreased the BET surface area, water holding capacity, and rehydration rate. Fourier transform infrared (attenuated total reflectance mode) spectroscopy (FTIR-ATR) analysis revealed no change in the chemical structure of BC. L929 fibroblast cells were seeded on all BC-based membranes and evaluated in aspects of cell adhesion, proliferation and morphology. BCG1 membranes showed the highest biological performance and hold promise for the use in tissue engineering applications. - Highlights: • Glucose and dextrin were used to modify culture media for BC production. • Microarchitecture of BC was different depending on the enriching agent. • Fibroblasts adhered on the surface of BC modified microarchitectures. • Fibroblasts adhered on glucose modified BC exhibited healthy cell morphology

  5. Enriched glucose and dextrin mannitol-based media modulates fibroblast behavior on bacterial cellulose membranes

    Energy Technology Data Exchange (ETDEWEB)

    Stumpf, Taisa R.; Pértile, Renata A.N. [Integrated Technologies Laboratory, Department of Chemical and Food Engineering (Brazil); Rambo, Carlos R., E-mail: rambo@intelab.ufsc.br [Department of Electrical Engineering, Federal University of Santa Catarina, Florianópolis 88040-900 (Brazil); Porto, Luismar M. [Integrated Technologies Laboratory, Department of Chemical and Food Engineering (Brazil)

    2013-12-01

    Bacterial cellulose (BC) produced by Gluconacetobacter hansenii is a suitable biopolymer for biomedical applications. In order to modulate the properties of BC and expand its use as substrate for tissue engineering mainly in the form of biomembranes, glucose or dextrin were added into a BC fermentation mannitol-based medium (BCGl and BCDe, respectively) under static culture conditions. SEM images showed effects on fiber density and porosity on both sides of the BC membranes. Both enriched media decreased the BET surface area, water holding capacity, and rehydration rate. Fourier transform infrared (attenuated total reflectance mode) spectroscopy (FTIR-ATR) analysis revealed no change in the chemical structure of BC. L929 fibroblast cells were seeded on all BC-based membranes and evaluated in aspects of cell adhesion, proliferation and morphology. BCG1 membranes showed the highest biological performance and hold promise for the use in tissue engineering applications. - Highlights: • Glucose and dextrin were used to modify culture media for BC production. • Microarchitecture of BC was different depending on the enriching agent. • Fibroblasts adhered on the surface of BC modified microarchitectures. • Fibroblasts adhered on glucose modified BC exhibited healthy cell morphology.

  6. In Vitro Biochemical Characterization of All Barley Endosperm Starch Synthases

    Directory of Open Access Journals (Sweden)

    Jose Antonio Cuesta-Seijo

    2016-01-01

    Full Text Available Starch is the main storage polysaccharide in cereals and the major source of calories in the human diet. It is synthesized by a panel of enzymes including five classes of starch synthases (SSs. While the overall starch synthase (SS reaction is known, the functional differences between the five SS classes are poorly understood. Much of our knowledge comes from analyzing mutant plants with altered SS activities, but the resulting data are often difficult to interpret as a result of pleitropic effects, competition between enzymes, overlaps in enzyme activity and disruption of multi-enzyme complexes. Here we provide a detailed biochemical study of the activity of all five classes of SSs in barley endosperm. Each enzyme was produced recombinantly in E. coli and the properties and modes of action in vitro were studied in isolation from other SSs and other substrate modifying activities. Our results define the mode of action of each SS class in unprecedented detail; we analyze their substrate selection, temperature dependence and stability, substrate affinity and temporal abundance during barley development. Our results are at variance with some generally accepted ideas about starch biosynthesis and might lead to the reinterpretation of results obtained in planta. In particular, they indicate that granule bound SS is capable of processive action even in the absence of a starch matrix, that SSI has no elongation limit, and that SSIV, believed to be critical for the initiation of starch granules, has maltoligosaccharides and not polysaccharides as its preferred substrates.

  7. 基于 iTRAQ定量蛋白质组学技术分析日粮中添加非淀粉多糖酶对生长猪背最长肌中蛋白表达影响%iTRAQ-based quantitative proteomic analysis of longissimus muscle from growing pigs with dietary supplementation of non-starch polysaccharide enzymes

    Institute of Scientific and Technical Information of China (English)

    Ji-ze ZHANG; Yang GAO; Qing-ping LU; Ren-na SA; Hong-fu ZHANG

    2015-01-01

    Non-starch polysaccharide enzymes (NSPEs) have long been used in the feed production of monogastric animals to degrade non-starch polysaccharide to oligosaccharides and promote growth performance. However, few studies have been conducted on the effect of such enzymes on skeletal muscle in monogastric animals. To elucidate the mechanism of the effect of NSPEs on skeletal muscle, an isobaric tag for relative and absolute quantification (iTRAQ) for differential proteomic quantitation was applied to investigate alterations in the proteome in the longissimus muscle (LM) of growing pigs after a 50-d period of supplementation with 0.6% NSPEs in the diet. A total of 51 proteins were found to be differentialy expressed in the LM between a control group and the NSPE group. Functional analysis of the differentialy expressed protein species showed an increased abundance of proteins related to energy produc-tion, protein synthesis, muscular differentiation, immunity, oxidation resistance and detoxification, and a decreased abundance of proteins related to inflammation in the LM of the pigs fed NSPEs. These findings have important im-plications for understanding the mechanisms whereby dietary supplementation with NSPEs enzymes can promote growth performance and improve muscular metabolism in growing pigs.%目 的:通过日粮中添加非淀粉多糖酶,运用同位素标记相对和绝对定量技术(iTRAQ技术)分析非淀粉多糖酶对生长猪背最长肌蛋白质表达有何影响,为饲料中添加非淀粉多糖酶提供理论基础.创新点:采用 iTRAQ 定量蛋白质组学技术,通过对生长猪背最长肌蛋白质表达进行高通量分析,发现日粮中添加非淀粉多糖酶可影响许多功能蛋白表达,从分子水平阐述了其发挥作用的机理.方法:将体重约39 kg生长猪(48头)随机分为两个处理,每个处理4个重复,每个重复6头猪.对照组饲喂基础日粮,试验组在基础日粮中添加0.6%非淀粉多糖酶.50天

  8. PREPARATION, CHARACTERIZATION AND PHARMACEUTICAL APPLICATION OF LINEAR DEXTRINS .4. DRUG-RELEASE FROM CAPSULES AND TABLETS CONTAINING AMYLODEXTRIN

    NARCIS (Netherlands)

    WIERIK, GHPT; EISSENS, AC; LERK, CF

    1993-01-01

    Linear dextrin (amylodextrin) and its soluble fraction were investigated for their suitability to enhance diazepam release from capsules and tablets. Drug release was analyzed in the USP XXI paddle apparatus and performed in phosphate buffer pH 6.8, with and without alpha-amylase, and in 0.1 N HCl

  9. Processing of Polymer Nanocomposites Reinforced with Polysaccharide Nanocrystals

    Directory of Open Access Journals (Sweden)

    Alain Dufresne

    2010-06-01

    Full Text Available Aqueous suspensions of polysaccharide (cellulose, chitin or starch nanocrystals can be prepared by acid hydrolysis of biomass. The main problem with their practical use is related to the homogeneous dispersion of these nanoparticles within a polymeric matrix. Water is the preferred processing medium. A new and interesting way for the processing of polysaccharide nanocrystals-based nanocomposites is their transformation into a co-continuous material through long chain surface chemical modification. It involves the surface chemical modification of the nanoparticles based on the use of grafting agents bearing a reactive end group and a long compatibilizing tail.

  10. Preparation and characterization of polymeric nanoparticles from Gadong starch

    Science.gov (United States)

    Sisika, Regina; Ahmad, Wan Yaacob Wan; Fazry, Shazrul; Lazim, Azwan Mat

    2015-09-01

    Dioscorea hispida (Gadong tuber) was seldom used and forgotten as a food source due to their toxicity. In contrast to that, the Gadong tuber can be a source of polysaccharides which can be manipulated as an alternative source for industrial applications. This research reported on how to synthesize starch nanoparticles from Gadong tuber by using a simple acid hydrolysis process. The yield of starch nanoparticles obtained from seven days of acid hydrolysis was reduced to 13%. The X-ray diffraction measurements showed that the native Gadong starch particle is of the C-crystalline type, and that the synthesized nanoparticles showed an increase in crystallinity compared to the native particles. Transmission electron microscopy results demonstrated that the starch particle morphologies were either round or irregular shape, with diameters ranging from 96-110 nm.

  11. Preparation and characterization of polymeric nanoparticles from Gadong starch

    International Nuclear Information System (INIS)

    Sisika, Regina; Ahmad, Wan Yaacob Wan; Lazim, Azwan Mat; Fazry, Shazrul

    2015-01-01

    Dioscorea hispida (Gadong tuber) was seldom used and forgotten as a food source due to their toxicity. In contrast to that, the Gadong tuber can be a source of polysaccharides which can be manipulated as an alternative source for industrial applications. This research reported on how to synthesize starch nanoparticles from Gadong tuber by using a simple acid hydrolysis process. The yield of starch nanoparticles obtained from seven days of acid hydrolysis was reduced to 13%. The X-ray diffraction measurements showed that the native Gadong starch particle is of the C-crystalline type, and that the synthesized nanoparticles showed an increase in crystallinity compared to the native particles. Transmission electron microscopy results demonstrated that the starch particle morphologies were either round or irregular shape, with diameters ranging from 96-110 nm

  12. In vitro biochemical characterization of all barley endosperm starch synthases

    DEFF Research Database (Denmark)

    Cuesta-Seijo, Jose A.; Nielsen, Morten M.; Ruzanski, Christian

    2016-01-01

    Starch is the main storage polysaccharide in cereals and the major source of calories in the human diet. It is synthesized by a panel of enzymes including five classes of starch synthases (SSs). While the overall starch synthase (SS) reaction is known, the functional differences between the five SS....... Here we provide a detailed biochemical study of the activity of all five classes of SSs in barley endosperm. Each enzyme was produced recombinantly in E. coli and the properties and modes of action in vitro were studied in isolation from other SSs and other substrate modifying activities. Our results...... define the mode of action of each SS class in unprecedented detail; we analyze their substrate selection, temperature dependence and stability, substrate affinity and temporal abundance during barley development. Our results are at variance with some generally accepted ideas about starch biosynthesis...

  13. Preparation and characterization of polymeric nanoparticles from Gadong starch

    Energy Technology Data Exchange (ETDEWEB)

    Sisika, Regina; Ahmad, Wan Yaacob Wan; Lazim, Azwan Mat [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi, Selangor (Malaysia); Fazry, Shazrul [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi, Selangor (Malaysia)

    2015-09-25

    Dioscorea hispida (Gadong tuber) was seldom used and forgotten as a food source due to their toxicity. In contrast to that, the Gadong tuber can be a source of polysaccharides which can be manipulated as an alternative source for industrial applications. This research reported on how to synthesize starch nanoparticles from Gadong tuber by using a simple acid hydrolysis process. The yield of starch nanoparticles obtained from seven days of acid hydrolysis was reduced to 13%. The X-ray diffraction measurements showed that the native Gadong starch particle is of the C-crystalline type, and that the synthesized nanoparticles showed an increase in crystallinity compared to the native particles. Transmission electron microscopy results demonstrated that the starch particle morphologies were either round or irregular shape, with diameters ranging from 96-110 nm.

  14. Structural modification in the formation of starch – silver nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Begum, S. N. Suraiya; Ramasamy, Radha Perumal, E-mail: perumal.ramasamy@gmail.com [Department of Applied Science and Technology, A.C.Tech. Campus, Anna University, Chennai – 600 025 (India); Aswal, V. K. [Solid State Physics Division, Bhabha Atomic Research Center, Trombay, Mumbai (India)

    2016-05-23

    Polymer based nanocomposites have gained wide applications in field of battery technology. Starch is a naturally occurring polysaccharide with sustainable properties such as biodegradable, non toxic, excellent film forming capacity and it also act as reducing agent for the metal nanoparticles. In our research various concentration of silver nitrate (AgNO{sub 3}) was added to the starch solution and films were obtained using solution casting method. Surface electron microscope (SEM) of the films shows modifications depending upon the concentration of AgNO{sub 3}. Small angle neutron scattering (SANS) analysis showed that addition of silver nitrate modifies the starch to disc like structures and with increasing the AgNO{sub 3} concentration leads to the formation of fractals. This research could benefit battery technology where solid polymer membranes using starch is used.

  15. Structural modification in the formation of starch – silver nanocomposites

    International Nuclear Information System (INIS)

    Begum, S. N. Suraiya; Ramasamy, Radha Perumal; Aswal, V. K.

    2016-01-01

    Polymer based nanocomposites have gained wide applications in field of battery technology. Starch is a naturally occurring polysaccharide with sustainable properties such as biodegradable, non toxic, excellent film forming capacity and it also act as reducing agent for the metal nanoparticles. In our research various concentration of silver nitrate (AgNO_3) was added to the starch solution and films were obtained using solution casting method. Surface electron microscope (SEM) of the films shows modifications depending upon the concentration of AgNO_3. Small angle neutron scattering (SANS) analysis showed that addition of silver nitrate modifies the starch to disc like structures and with increasing the AgNO_3 concentration leads to the formation of fractals. This research could benefit battery technology where solid polymer membranes using starch is used.

  16. Structural modification in the formation of starch - silver nanocomposites

    Science.gov (United States)

    Begum, S. N. Suraiya; Aswal, V. K.; Ramasamy, Radha Perumal

    2016-05-01

    Polymer based nanocomposites have gained wide applications in field of battery technology. Starch is a naturally occurring polysaccharide with sustainable properties such as biodegradable, non toxic, excellent film forming capacity and it also act as reducing agent for the metal nanoparticles. In our research various concentration of silver nitrate (AgNO3) was added to the starch solution and films were obtained using solution casting method. Surface electron microscope (SEM) of the films shows modifications depending upon the concentration of AgNO3. Small angle neutron scattering (SANS) analysis showed that addition of silver nitrate modifies the starch to disc like structures and with increasing the AgNO3 concentration leads to the formation of fractals. This research could benefit battery technology where solid polymer membranes using starch is used.

  17. Polysaccharide-producing microalgae

    Energy Technology Data Exchange (ETDEWEB)

    Braud, J.P.; Chaumont, D.; Gudin, C.; Thepenier, C.; Chassin, P.; Lemaire, C.

    1982-11-01

    The production of extracellular polysaccharides is studied with Nostoc sp (cyanophycus), Porphiridium cruentum, Rhodosorus marinus, Rhodella maculata (rhodophyci) and Chlamydomonas mexicana (chlorophycus). The polysaccharides produced are separated by centrifugation of the culture then precipitation with alcohol. Their chemical structure was studied by infrared spectrometry and acid hydrolysis. By their rheological properties and especially their insensitivity to temperatrure and pH variations the polysaccharides produced by Porphryridium cruentum and Rhodella maculata appear as suitable candidates for industrial applications.

  18. Self-assembled nanogel of hydrophobized dendritic dextrin for protein delivery.

    Science.gov (United States)

    Ozawa, Yayoi; Sawada, Shin-Ichi; Morimoto, Nobuyuki; Akiyoshi, Kazunari

    2009-07-07

    Highly branched cyclic dextrin derivatives (CH-CDex) that are partly substituted with cholesterol groups have been synthesized. The CH-CDex forms monodisperse and stable nanogels with a hydrodynamic radii of approximately 10 nm by the self-assembly of 4-6 CH-CDex macromolecules in water. The CH-CDex nanogels spontaneously trap 10-16 molecules of fluorescein isothiocyanate-labeled insulin (FITC-Ins). The complex shows high colloidal stability: no dissociation of trapped insulin is observed after at least 1 month in phosphate buffer (0.1 M, pH 8.0). In the presence of bovine serum albumin (BSA, 50 mg . mL(-1)), which is a model blood system, the FITC-Ins trapped in the nanogels is continuously released ( approximately 20% at 12 h) without burst release. The high-density nanogel structure derived from the highly branched CDex significantly affects the stability of the nanogel-protein complex.

  19. Investigations on the Maillard reaction of dextrins during aging of Pilsner type beer.

    Science.gov (United States)

    Rakete, Stefan; Klaus, Alexander; Glomb, Marcus A

    2014-10-08

    Although Maillard reaction plays a pivotal role during preparation of food, only few investigations concerning the role of carbohydrate degradation in beer aging have been carried out. The formation of Maillard specific precursor structures and their follow-up products during degradation of low molecular carbohydrate dextrins in the presence of proline and lysine was studied in model incubations and in beer. Twenty-one α-dicarbonyl compounds were identified and quantitated as reactive intermediates. The oxidative formation of 3-deoxypentosone as the precursor of furfural from oligosaccharides was verified. N-Carboxymethylproline and N-formylproline were established as novel proline derived Maillard advanced glycation end products. Formation of N-carboxymethylproline and furfural responded considerably to the presence of oxygen and was positively correlated to aging of Pilsner type beer. The present study delivers an in-depth view on the mechanisms behind the formation of beer relevant aging parameters.

  20. Tritium enrichment from aqueous solutions using cryosublimation of mono- and polysaccharides

    International Nuclear Information System (INIS)

    Wierczinski, B.; Muellen, G.; Rosenhauer, S.

    2008-01-01

    Cryosublimation is one technique, which allows the accumulation of tritium from aqueous solutions using certain chemical compounds. After studying several inorganic compounds such as zeolites and metal salts, as well as some humic substances, we have now investigated several mono- and polysaccharides, such as glucose, maltose, galactose, starch, agar, and gelatine. Except for starch all of the above mentioned compounds showed a clear enrichment of tritium. The highest value was reached for Agartine, which gave an enrichment factor of 6.2. Since mono- and polysaccharides form weak hydrogen bonds, these results prove again our theory that tritium is preferably accumulated in exchangeable hydrogen bonds. (author)

  1. Degradation of the starch components amylopectin and amylose by barley α-amylase 1: Role of surface binding site 2

    DEFF Research Database (Denmark)

    Nielsen, Jonas Willum; Kramhøft, Birte; Bozonnet, Sophie

    2012-01-01

    Barley α-amylase isozyme 1 (AMY1, EC 3.2.1.1) contains two surface binding sites, SBS1 and SBS2, involved in the degradation of starch granules. The distinct role of SBS1 and SBS2 remains to be fully understood. Mutational analysis of Tyr-380 situated at SBS2 previously revealed that Tyr-380...... is required for binding of the amylose helix mimic, β-cyclodextrin. Also, mutant enzymes altered at position 380 displayed reduced binding to starch granules. Similarly, binding of wild type AMY1 to starch granules was suppressed in the presence of β-cyclodextrin. We investigated the role of SBS2 by comparing...... kinetic properties of the wild type AMY1 and the Y380A mutant enzyme in hydrolysis of amylopectin, amylose and β-limit dextrin, and the inhibition by β-cyclodextrin. Progress curves of the release of reducing ends revealed a bi-exponential hydrolysis of amylopectin and β-limit dextrin, whereas hydrolysis...

  2. Starch degradation by irradiation

    International Nuclear Information System (INIS)

    Pruzinec, J.; Hola, O.

    1987-01-01

    The effect of high energy irradiation on various starch samples was studied. The radiation dose varied between 43 and 200.9 kGy. The viscosity of starch samples were determined by Hoeppler's method. The percentual solubility of the matter in dry starch was evaluated. The viscosity and solubility values are presented. (author) 14 refs

  3. Thermomechanical treatment of starch

    NARCIS (Netherlands)

    Goot, van der A.J.; Einde, van den R.M.

    2006-01-01

    Starch is used as a major component in many food and nonfood applications and determines the overall product properties to a large extent. It is therefore important to understand the effect of processing on starch. Many starch-based products are produced using a thermal as well as a mechanical

  4. Irradiated gelatin-potato starch blends: evaluation of physicochemical properties

    International Nuclear Information System (INIS)

    Inamura, Patricia Y.; Regis, Wellington; Mastro, Nelida L.

    2015-01-01

    Macromolecular polysaccharides of large chains as starch can interlace with gelatin modifying their mechanical resistance. In this work, biodegradable bovine gelatin-potato starch blends films were developed using glycerol as plasticizer. Three formulations of gelatin/starch proportions (w/w) were used (1:0; 3:1; 1:1) and casting was the chosen method. The dried samples were then submitted to ionizing radiation coming from an electron beam (EB) accelerator with doses of 20 and 40 kGy, at room temperature, in the presence of air. Mechanical properties such as puncture strength and elongation at break were measured. Color measurements, water absorption, moisture, and film solubility were assessed. The results showed that starch addition to films based on gelatin as well as irradiation affected physical and structural properties of the films. Although the increase of starch content in the mixture led to decrease of the puncture force even in samples irradiated with the higher dose, there was a decrease of water absorption of films with the increase of the dose, and also by the higher starch content. Samples irradiated at 20 kGy presented higher moisture and film solubility. The methodology developed in this paper can be applied to other composite systems to establish the best protein:starch ratio, and the contribution of the radiation crosslinking in each specific case. (author)

  5. Irradiated gelatin-potato starch blends: evaluation of physicochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Inamura, Patricia Y.; Regis, Wellington; Mastro, Nelida L., E-mail: nlmastro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Macromolecular polysaccharides of large chains as starch can interlace with gelatin modifying their mechanical resistance. In this work, biodegradable bovine gelatin-potato starch blends films were developed using glycerol as plasticizer. Three formulations of gelatin/starch proportions (w/w) were used (1:0; 3:1; 1:1) and casting was the chosen method. The dried samples were then submitted to ionizing radiation coming from an electron beam (EB) accelerator with doses of 20 and 40 kGy, at room temperature, in the presence of air. Mechanical properties such as puncture strength and elongation at break were measured. Color measurements, water absorption, moisture, and film solubility were assessed. The results showed that starch addition to films based on gelatin as well as irradiation affected physical and structural properties of the films. Although the increase of starch content in the mixture led to decrease of the puncture force even in samples irradiated with the higher dose, there was a decrease of water absorption of films with the increase of the dose, and also by the higher starch content. Samples irradiated at 20 kGy presented higher moisture and film solubility. The methodology developed in this paper can be applied to other composite systems to establish the best protein:starch ratio, and the contribution of the radiation crosslinking in each specific case. (author)

  6. Studies on rye starch properties and modification. Pt. 1. Composition and properties of rye starch granules

    Energy Technology Data Exchange (ETDEWEB)

    Schierbaum, F; Radosta, S; Richter, M; Kettlitz, B [Zentralinstitut fuer Ernaehrung, Potsdam (Germany); Gernat, C [Zentralinstitut fuer Molekularbiologie, Berlin (Germany)

    1991-09-01

    Rye is considered as a potential raw material for starch industry. Starting from a survey of technical procedures of isolating starches from rye-flour and -grits investigations will be reported, which were performed on pilot plant- and laboratory-isolated rye starches. The present paper deals with its granule appearance and composition. A distribution of granule size between small granules ({<=} 10 {mu}m - 15%) and large granules ({>=} 11 ... {<=} 40 {mu}m = 85%) is typical for the totality of the starches. Differing distributions depend on the conditions of isolation: The entity of starch containing samples resulted from the latoratory procedures under investigation. Large-granule starch preparations were isolated in the pilot plant: The centrifuge-overflow contains the small-granule fraction which is high in impurities. Granule crystallinity amounts to 16%. The crystalline component - like in wheat and triticale starches - consists predominantly of A-polymorph - with up to 9% of the B-type. The isotherms of water exchange are of the cereal type. The contents of minor constituents largely relate to the small granule fraction which assembles the majority of crude protein, pentosans and lipids, which are difficult to remove. Lipid components in all fractions influence the results of linear chain-iodine interactions and they must be removed to proceed from apparent to absolute polysaccharide indices. The absolute amylose contents amount to {approx equal} 25% for large granule samples and to 20-21% for small granule samples. The average chain-length of iodine binding helical regions was determined with 220-240 AGU. (orig.).

  7. Inducing mechanism of dextrins with different de values on production of alpha-amylase by B. subtilis zjf-1A5

    International Nuclear Information System (INIS)

    Sun, J.; Zhao, R.; Liu, B.

    2014-01-01

    Alpha-amylase was widely used in food industries, textile technology, paper manufacturing and so on. In this paper, the inducing mechanism of corn dextrins with different DE values (dextrose equivalent value) on production of a-amylase by Bacillus subtilis (B.subtilis) ZJF-1A5 was investigated. The results showed that the yield of a-amylase by B.subtilis ZJF-1A5 was increased by using dextrin with a certain DE value range as carbon source, which could be attributed to the presence of oligosaccharide in dextrins. By ordinary fermentation with oligosaccharide as carbon source, it was found that the inducing activity of maltopentaose was the strongest. It could be confirmed that the dextrins played important roles during the process of production of a-amylase by B.subtilis ZJF-1A5. (author)

  8. All-natural bio-plastics using starch-betaglucan composites.

    Science.gov (United States)

    Sagnelli, Domenico; Kirkensgaard, Jacob J K; Giosafatto, Concetta Valeria L; Ogrodowicz, Natalia; Kruczała, Krzysztof; Mikkelsen, Mette S; Maigret, Jean-Eudes; Lourdin, Denis; Mortensen, Kell; Blennow, Andreas

    2017-09-15

    Grain polysaccharides represent potential valuable raw materials for next-generation advanced and environmentally friendly plastics. Thermoplastic starch (TPS) is processed using conventional plastic technology, such as casting, extrusion, and molding. However, to adapt the starch to specific functionalities chemical modifications or blending with synthetic polymers, such as polycaprolactone are required (e.g. Mater-Bi). As an alternative, all-natural and compostable bio-plastics can be produced by blending starch with other polysaccharides. In this study, we used a maize starch (ST) and an oat β-glucan (BG) composite system to produce bio-plastic prototype films. To optimize performing conditions, we investigated the full range of ST:BG ratios for the casting (100:0, 75:25, 50:50, 25:75 and 0:100 BG). The plasticizer used was glycerol. Electron Paramagnetic Resonance (EPR), using TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) as a spin probe, showed that the composite films with high BG content had a flexible chemical environment. They showed decreased brittleness and improved cohesiveness with high stress and strain values at the break. Wide-angle X-ray diffraction displayed a decrease in crystallinity at high BG content. Our data show that the blending of starch with other natural polysaccharides is a noteworthy path to improve the functionality of all-natural polysaccharide bio-plastics systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Thermoplastic starch materials prepared from rice starch

    International Nuclear Information System (INIS)

    Pontes, Barbara R.B.; Curvelo, Antonio A.S.

    2009-01-01

    Rice starch is a source still little studied for the preparation of thermoplastic materials. However, its characteristics, such as the presence of proteins, fats and fibers may turn into thermoplastics with a better performance. The present study intends the evaluation of the viability of making starch thermoplastic from rice starch and glycerol as plasticizer. The results of X-ray diffraction and scanning electronic microscopy demonstrate the thermoplastic acquisition. The increase of plasticizer content brings on more hydrophilic thermoplastics with less resistance to tension and elongation at break. (author)

  10. Screening of polysaccharides from tamarind, fenugreek and jackfruit seeds as pharmaceutical excipients.

    Science.gov (United States)

    Nayak, Amit Kumar; Pal, Dilipkumar; Santra, Kousik

    2015-08-01

    The paper describes the isolation and screening of plant polysaccharides namely tamarind seed polysaccharide (TSP), fenugreek seed mucilage (FSM) and jackfruit seed starch (JFSS) from tamarind (Tamarindus indica L.) seeds, fenugreek (Trigonella foenum-graecum L.) seeds and jackfruit (Artocarpus heterophyllus L.) seeds, respectively. The yields of isolated dried TSP, FSM and JFSS were 47.00%, 17.36% and 18.86%, respectively. Various physicochemical properties like colour, odour, taste, solubility in water, pH and viscosity of these isolated plant polysaccharides were assessed. Isolated polysaccharide samples were subjected to some phytochemical identification tests. FTIR and (1)H NMR analyses of isolated polysaccharides were performed, which suggest the presence of sugar residues. Isolated TSP, FSM and JFSS can be used as pharmaceutical excipients in various pharmaceutical formulations. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Rheological behavior of gamma-irradiated cassava (Manihot esculenta crantz) starch

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Orelio L.; Uehara, Vanessa B.; Mastro, Nelida L. del, E-mail: nlmastro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Cassava starch is the by-product of the process of pressing water out of cassava to make cassava meal. The juice has a fine starch, similar to rice or potato starch that, when dried, yields polvilho doce (sweet manioc starch); from the fermented juice comes polvilho azedo (sour manioc starch). Cassava starch can perform most of the functions where maize, rice and wheat starch are currently used. The aim of the present work was to determine the influence or ionizing radiation on the rheological behavior of aqueous preparations of gamma-irradiated cassava starch at different concentrations. Samples of polvilho doce and polvilho azedo were obtained at the local market and irradiated in plastic bags in a Gammacell 220 with doses of 1, 3 e 5 kGy, dose rate ∼ 1.2 kGy h-1. A Brooksfield viscometer was employed for the viscosity measurements. The results showed a strong dependence of the viscosity with the concentration of the starch solutions. In most of the cases there was a decrease of viscosity with the increase of the radiation dose usually seen in irradiated polysaccharides. Nevertheless, the dose response relation of the two kind of starch was different. (author)

  12. Rheological behavior of gamma-irradiated cassava (Manihot esculenta crantz) starch

    International Nuclear Information System (INIS)

    Silva, Orelio L.; Uehara, Vanessa B.; Mastro, Nelida L. del

    2013-01-01

    Cassava starch is the by-product of the process of pressing water out of cassava to make cassava meal. The juice has a fine starch, similar to rice or potato starch that, when dried, yields polvilho doce (sweet manioc starch); from the fermented juice comes polvilho azedo (sour manioc starch). Cassava starch can perform most of the functions where maize, rice and wheat starch are currently used. The aim of the present work was to determine the influence or ionizing radiation on the rheological behavior of aqueous preparations of gamma-irradiated cassava starch at different concentrations. Samples of polvilho doce and polvilho azedo were obtained at the local market and irradiated in plastic bags in a Gammacell 220 with doses of 1, 3 e 5 kGy, dose rate ∼ 1.2 kGy h-1. A Brooksfield viscometer was employed for the viscosity measurements. The results showed a strong dependence of the viscosity with the concentration of the starch solutions. In most of the cases there was a decrease of viscosity with the increase of the radiation dose usually seen in irradiated polysaccharides. Nevertheless, the dose response relation of the two kind of starch was different. (author)

  13. Water-holding capacity of soluble and insoluble polysaccharides in pressed potato fibre

    NARCIS (Netherlands)

    Ramasamy, U.; Gruppen, H.; Kabel, M.A.

    2015-01-01

    Pressed potato fibres (PPF), a by-product of starch production, has a high water-holding capacity (WHC).In this study, it is shown that the WHC is caused by a network of mainly insoluble, non-cellulosic cellwall polysaccharides (CWPs). Despite the solubilization of one-fourth of the CWPs from PPF,

  14. Direct colorimetric detection of unamplified pathogen DNA by dextrin-capped gold nanoparticles.

    Science.gov (United States)

    Baetsen-Young, Amy M; Vasher, Matthew; Matta, Leann L; Colgan, Phil; Alocilja, Evangelyn C; Day, Brad

    2018-03-15

    The interaction between gold nanoparticles (AuNPs) and nucleic acids has facilitated a variety of diagnostic applications, with further diversification of synthesis match bio-applications while reducing biotoxicity. However, DNA interactions with unique surface capping agents have not been fully defined. Using dextrin-capped AuNPs (d-AuNPs), we have developed a novel unamplified genomic DNA (gDNA) nanosensor, exploiting dispersion and aggregation characteristics of d-AuNPs, in the presence of gDNA, for sequence-specific detection. We demonstrate that d-AuNPs are stable in a five-fold greater salt concentration than citrate-capped AuNPs and the d-AuNPs were stabilized by single stranded DNA probe (ssDNAp). However, in the elevated salt concentrations of the DNA detection assay, the target reactions were surprisingly further stabilized by the formation of a ssDNAp-target gDNA complex. The results presented herein lead us to propose a mechanism whereby genomic ssDNA secondary structure formation during ssDNAp-to-target gDNA binding enables d-AuNP stabilization in elevated ionic environments. Using the assay described herein, we were successful in detecting as little as 2.94 fM of pathogen DNA, and using crude extractions of a pathogen matrix, as few as 18 spores/µL. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Synthesis of modified cyclic and acyclic dextrins and comparison of their complexation ability

    Directory of Open Access Journals (Sweden)

    Kata Tuza

    2014-12-01

    Full Text Available We compared the complex forming ability of α-, β- and γ-cyclodextrins (α-CD, β-CD and γ-CD with their open ring analogs. In addition to the native cyclodextrins also modified cyclodextrins and the corresponding maltooligomers, functionalized with neutral 2-hydroxypropyl moieties, were synthesized. A new synthetic route was worked out via bromination, benzylation, deacetylation and debenzylation to obtain the 2-hydroxypropyl maltooligomer counterparts. The complexation properties of non-modified and modified cyclic and acyclic dextrins were studied and compared by photon correlation spectroscopy (PCS and capillary electrophoresis (CE using model guest compounds. In some cases cyclodextrins and their open-ring analogs (acyclodextrins show similar complexation abilities, while with other guests considerably different behavior was observed depending on the molecular dimensions and chemical characteristics of the guests. This was explained by the enhanced flexibility of the non-closed rings. Even the signs of enantiorecognition were observed for the chloropheniramine/hydroxypropyl maltohexaose system. Further studies are planned to help the deeper understanding of the interactions.

  16. Using polysaccharides against cancer

    Directory of Open Access Journals (Sweden)

    E. Azarnoosh

    2017-11-01

    Full Text Available Background and objectives: Nowadays cancer is one of the most important concerns of the society. The adverse effects of common therapeutics and resistance of some cancerous cells to treatment have brought the necessity of new approaches towards the issue. Polysaccharides are a group of carbohydrates found in natural sources. In the present article, our goal was to show the positive effects of carbohydrates (especially polysaccharides in cancer treatment, based on literature review. Methods: The literature review was carried out between 1990 and 2017 inclusive using the following search terms: cancer, carbohydrate and polysaccharide and was performed with use of Google scholar, Medline, Scopus, PubMed, Elsevier and other similar data banks, related to medicine and pharmaceutical fields. Results: Plants like Lyceum barbarum, Astragalus membrannceous, Panax ginseng, and Antrodia camphorate have been studied with promising effects in combating cancerous cells. The polysaccharides from these plants have benefits with numerous mechanisms such as apoptosis, inhibition of angiogenesis, anti-proliferation, immunomodulation, tumor suppression, and increase in macrophage activity. Other studies showed over 200 mushrooms with anticancer effects, especially basidiomycetes (e.g. Ganoderma lucidum. Sulfated polysaccharides found in sea and animals or even a few bacteria like E. coli showed to be useful in cancer. Conclusion: Scientists are realizing the importance of natural drugs and polysaccharide as good and available sources that could give a bright future for prevention, cure and palliative therapy in cancer.

  17. Influence of non starch polysaccharide-degrading enzymes on the ...

    African Journals Online (AJOL)

    enzymes on the performance, meat yield, water intake, litter moisture and jejunal digesta viscosity of chicks fed wheat/barley based diet. A total of 195 1-d-old male broiler chicks (Ross 308) were allocated to 5 treatment groups, with 3 replicates per ...

  18. Strength of biodegradable polypropylene tapes filled with a modified starch

    Science.gov (United States)

    Vinidiktova, N. S.; Ermolovich, O. A.; Goldade, V. A.; Pinchuk, L. S.

    2006-05-01

    The possibility of creating composite materials with high deformation and strength characteristics based on polypropylene (PP) and a natural polysaccharide in the form of a modified starch (MS) has been studied. The modified starch is shown to interact chemically with functional groups of PP, thereby positively affecting the physicomechanical properties, structure, and water absorption properties of films and oriented flat fibers based on starch-filled PP. The strength characteristics of both oriented and unoriented composites are 1.5-2.0 times as high as those of the initial PP. The water absorption ability of the materials varies symbatically with content of MS, which points to the dominant contribution of interactions at the PP-MS interface. The introduction of MS into synthetic polymers offers a possibility of producing new ecologically safe materials with high strength characteristics.

  19. Polysaccharide composition of raw and cooked chayote (Sechium edule Sw.) fruits and tuberous roots.

    Science.gov (United States)

    Shiga, Tânia M; Peroni-Okita, Fernanda Helena Gonçalves; Carpita, Nicholas C; Lajolo, Franco Maria; Cordenunsi, Beatriz Rosana

    2015-10-05

    Chayote is a multipurpose table vegetable widely consumed in Latin America countries. Chayote fruits, leaves and tuberous roots contain complex carbohydrates as dietary fiber and starch, vitamins and minerals. The complex polysaccharides (cell walls and starch) were analyzed in the black and green varieties of chayote fruits as well as in green chayote tuberous root before and after a controlled cooking process to assess changes in their composition and structure. The monosaccharide composition and linkage analysis indicated pectins homogalacturonans and rhamnogalacturonan I backbones constitute about 15-20% of the wall mass, but are heavily substituted with, up to 60% neutral arabinans, galactans, arabinogalactans. The remainder is composed of xyloglucan, glucomannans and galactoglucomannans. Chayote cell-wall polysaccharides are highly stable under normal cooking conditions, as confirmed by the optical microscopy of wall structure. We found also that tuberous roots constitute a valuable additional source of quality starch and fiber. Published by Elsevier Ltd.

  20. Potato starch synthases

    NARCIS (Netherlands)

    Nazarian-Firouzabadi, Farhad; Visser, Richard G.F.

    2017-01-01

    Starch, a very compact form of glucose units, is the most abundant form of storage polyglucan in nature. The starch synthesis pathway is among the central biochemical pathways, however, our understanding of this important pathway regarding genetic elements controlling this pathway, is still

  1. Effect of physico-chemical starch properties on bread quality and ageing (model study)

    International Nuclear Information System (INIS)

    Gambus, H.

    1997-01-01

    fractions during baking as well as by redistribution of water content between those constituents during bread storage. Moreover, it was ascertained, that during ageing redistribution of water content occurs in bread crumb from gluten phase to starch and its migration to crust. A supplement of starch depolymerized by medium doses of gamma irradiation to model pup loaves showed a significant role of dextrins in controlling starch swelling both during baking time and in the process of bread ageing. A partial replacement of wheat flour by large triticale starch granules as well as rye starch depolymerized with gamma irradiation at dose of 3 kGy, decidedly improved the quality of wheat bread and, moreover, caused retardation of crumb hardening process. (author)

  2. Starch Bioengineering in Barley

    DEFF Research Database (Denmark)

    Shaik, Shahnoor Sultana

    , the effects of engineering high levels of phosphate and amylose content on starch physico-chemical properties were evaluated by various biochemical and morphological studies. As a result, a substantial increase of 10-fold phosphate content and ~99% amylose content with high-resistant starch was observed...... in storage reserve accumulation, metabolite accumulation in AO but no significant differences were observed in HP compared to WT. Scanning electron microscopy and confocal microscopy revealed the details in topography and internal structures of the starch granules in these lines. The results demonstrated......Starch represents the most important carbohydrate used for food and feed purposes. Increasingly, it is also used as a renewable raw material, as a source of biofuel, and for many different industrial applications. Progress in understanding starch biosynthesis, and investigations of the genes...

  3. Future cereal starch bioengineering

    DEFF Research Database (Denmark)

    Blennow, Andreas; Jensen, Susanne Langgård; Shaik, Shahnoor Sultana

    2013-01-01

    The importance of cereal starch production worldwide cannot be overrated. However, the qualities and resulting values of existing raw and processed starch do not fully meet future demands for environmentally friendly production of renewable, advanced biomaterials, functional foods, and biomedical...... additives. New approaches for starch bioengineering are needed. In this review, we discuss cereal starch from a combined universal bioresource point of view. The combination of new biotechniques and clean technology methods can be implemented to replace, for example, chemical modification. The recently...... released cereal genomes and the exploding advancement in whole genome sequencing now pave the road for identifying new genes to be exploited to generate a multitude of completely new starch functionalities directly in the cereal grain, converting cereal crops to production plants. Newly released genome...

  4. Interaction between amylose and 1-butanol during 1-butanol-hydrochloric acid hydrolysis of normal rice starch.

    Science.gov (United States)

    Hu, Xiuting; Wei, Benxi; Zhang, Bao; Li, Hongyan; Xu, Xueming; Jin, Zhengyu; Tian, Yaoqi

    2013-10-01

    The aim of this study was to examine the interaction between amylose and 1-butanol during the 1-butanol-hydrochloric acid (1-butanol-HCl) hydrolysis of normal rice starch. The interaction model between amylose and 1-butanol was proposed using gas chromatography-mass spectrometry (GC-MS), (13)C cross polarization and magic angle spinning NMR analysis ((13)C CP/MAS NMR), differential scanning calorimetry (DSC), and thermalgravimetric analysis (TGA). GC-MS data showed that another form of 1-butanol existed in 1-butanol-HCl-hydrolyzed normal rice starch, except in the form of free molecules absorbed on the starch granules. The signal of 1-butanol-HCl-hydrolyzed starch at 100.1 ppm appeared in the (13)C CP/MAS NMR spectrum, indicating that the amylose-1-butanol complex was formed. DSC and TGA data also demonstrated the formation of the complex, which significantly affected the thermal properties of normal rice starch. These findings revealed that less dextrin with low molecular weight formed might be attributed to resistance of this complex to acid during 1-butanol-HCl hydrolysis. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  5. Characterization of Function of the GlgA2 Glycogen/Starch Synthase in Cyanobacterium sp. Clg1 Highlights Convergent Evolution of Glycogen Metabolism into Starch Granule Aggregation.

    Science.gov (United States)

    Kadouche, Derifa; Ducatez, Mathieu; Cenci, Ugo; Tirtiaux, Catherine; Suzuki, Eiji; Nakamura, Yasunori; Putaux, Jean-Luc; Terrasson, Amandine Durand; Diaz-Troya, Sandra; Florencio, Francisco Javier; Arias, Maria Cecilia; Striebeck, Alexander; Palcic, Monica; Ball, Steven G; Colleoni, Christophe

    2016-07-01

    At variance with the starch-accumulating plants and most of the glycogen-accumulating cyanobacteria, Cyanobacterium sp. CLg1 synthesizes both glycogen and starch. We now report the selection of a starchless mutant of this cyanobacterium that retains wild-type amounts of glycogen. Unlike other mutants of this type found in plants and cyanobacteria, this mutant proved to be selectively defective for one of the two types of glycogen/starch synthase: GlgA2. This enzyme is phylogenetically related to the previously reported SSIII/SSIV starch synthase that is thought to be involved in starch granule seeding in plants. This suggests that, in addition to the selective polysaccharide debranching demonstrated to be responsible for starch rather than glycogen synthesis, the nature and properties of the elongation enzyme define a novel determinant of starch versus glycogen accumulation. We show that the phylogenies of GlgA2 and of 16S ribosomal RNA display significant congruence. This suggests that this enzyme evolved together with cyanobacteria when they diversified over 2 billion years ago. However, cyanobacteria can be ruled out as direct progenitors of the SSIII/SSIV ancestral gene found in Archaeplastida. Hence, both cyanobacteria and plants recruited similar enzymes independently to perform analogous tasks, further emphasizing the importance of convergent evolution in the appearance of starch from a preexisting glycogen metabolism network. © 2016 American Society of Plant Biologists. All Rights Reserved.

  6. High-etch-rate bottom-antireflective coating and gap-fill materials using dextrin derivatives in via first dual-Damascene lithography process

    Science.gov (United States)

    Takei, Satoshi; Sakaida, Yasushi; Shinjo, Tetsuya; Hashimoto, Keisuke; Nakajima, Yasuyuki

    2008-03-01

    The present paper describes a novel class of bottom antireflective coating (BARC) and gap fill materials using dextrin derivatives. The general trend of interconnect fabrication for such a high performance LSI is to apply cupper (Cu)/ low-dielectric-constant (low-k) interconnect to reduce RC delay. A via-first dual damascene process is one of the most promising processes to fabricate Cu/ low-k interconnect due to its wide miss-alignment margin. The sacrificial materials containing dextrin derivatives under resist for lithography were developed in via-first dual damascene process. The dextrin derivatives in this study was obtained by the esterification of the hydroxyl groups of dextrin resulting in improved solubility in the resist solvents such as propylene glycol monomethylether, propylene glycol monomethylether acetate, and ethyl lactate due to avoid the issue of defects that were caused by incompatability. The etch rate of our developed BARC and gap fill materials using dextrin derivatives was more than two times faster than one of the ArF resists evaluated in a CF4 gas condition using reactive ion etching. The improved etch performance was also verified by comparison with poly(hydroxystyrene), acrylate-type materials and latest low-k materials as a reference. In addition to superior etch performance, these materials showed good resist profiles and via filling performance without voids in via holes.

  7. Production of bacterial polysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Ellwood, D C; Evans, C G.T.; Yeo, R G

    1978-06-01

    A process for the biochemical synthesis of polysaccharides comprises growing polysaccharide-producing bacteria of the genus Xanthomonas in a single stage continuous culture in a chemically-defined medium. The term chemically-defined medium denotes a culture medium wherein nutrients other than carbon are provided as inorganic salts or single organic compounds of known molecular structure rather than as complex naturally-derived mixtures. Normally the only organic component of the chemically-defined medium will be a conventional carbon source such as a carbohydrate, especially glucose, or glycerol. Preferably the medium should contain only one nitrogen source, since the use of multiple nitrogen sources, as present in complex media, appears to promote changes in the nature of the culture resulting in loss of polysaccharide production. 22 claims.

  8. Characterization of Nanoencapsulated Centella asiatica and Zingiber officinale Extract Using Combination of Malto Dextrin and Gum Arabic as Matrix

    Science.gov (United States)

    Meliana, Y.; Harmami, S. B.; Restu, W. K.

    2017-02-01

    This research investigated nanoencapsulation of Centella asiatica and Zingiber officinale extract. The encapsulated extract was used as a complex matrix of multi-layered interfacial membranes between malto dextrin and gum Arabic. Characterization of nanoencapsulation using Transmission Electron Microscope (TEM), Fourier Transform Infrared Spectroscopy (FTIR) and BET surface area (SA) showed the morphology, functional group and cumulative adsorption in the surface area of pores. The TEM image of the nanoencapsulated powders of Centella asiatica and Zingiber officinale extract showed a nearly spherical shape with the particle size of 664 nm from its average radius.

  9. Structure of polysaccharide antibiotics

    International Nuclear Information System (INIS)

    Matutano, L.

    1966-01-01

    Study of the structure of antibiotics having two or several sugars in their molecule. One may distinguish: the polysaccharide antibiotics themselves, made up of two or several sugars either with or without nitrogen, such as streptomycin, neomycins, paromomycine, kanamycin, chalcomycin; the hetero-polysaccharide antibiotics made up of one saccharide part linked to an aglycone of various type through a glucoside: macrolide, pigment, pyrimidine purine. Amongst these latter are: erythromycin, magnamycin, spiramycin, oleandomycin, cinerubin and amicetin. The sugars can either play a direct role in biochemical reactions or act as a dissolving agent, as far as the anti-microbe power of these antibiotics is concerned. (author) [fr

  10. Enzymatic modification of starch

    DEFF Research Database (Denmark)

    Jensen, Susanne Langgård

    In the food industry approaches for using bioengineering are investigated as alternatives to conventional chemical and physical starch modification techniques in development of starches with specific properties. Enzyme-assisted post-harvest modification is an interesting approach to this, since...... it is considered a clean and energy saving technology. This thesis aimed to investigate the effect of using reaction conditions, simulating an industrial process, for enzymatic treatment of starch with branching enzyme (BE) from Rhodothermus obamensis. Thus treatements were conducted at 70°C using very high...... substrate concentration (30-40% dry matter (DM)) and high enzyme activity (750-2250 BE units (BEU)/g sample). Starches from various botanical sources, representing a broad range of properties, were used as substrates. The effects of the used conditions on the BE-reaction were evaluated by characterization...

  11. Environmental impact assessment of six starch plastics focusing on wastewater-derived starch and additives

    NARCIS (Netherlands)

    Broeren, Martijn L.M.; Kuling, Lody; Worrell, Ernst; Shen, Li

    2017-01-01

    Starch plastics are developed for their biobased origin and potential biodegradability. To assist the development of sustainable starch plastics, this paper quantifies the environmental impacts of starch plastics produced from either virgin starch or starch reclaimed from wastewater. A

  12. Effect of cellulose reinforcement on the properties of organic acid modified starch microparticles/plasticized starch bio-composite films.

    Science.gov (United States)

    Teacă, Carmen-Alice; Bodîrlău, Ruxanda; Spiridon, Iuliana

    2013-03-01

    The present paper describes the preparation and characterization of polysaccharides-based bio-composite films obtained by the incorporation of 10, 20 and 30 wt% birch cellulose (BC) within a glycerol plasticized matrix constituted by the corn starch (S) and chemical modified starch microparticles (MS). The obtained materials (coded as MS/S, respectively MS/S/BC) were further characterized. FTIR spectroscopy and X-ray diffraction were used to evidence structural and crystallinity changes in starch based films. Morphological, thermal, mechanical, and water resistance properties were also investigated. Addition of cellulose alongside modified starch microparticles determined a slightly improvement of the starch-based films water resistance. Some reduction of water uptake for any given time was observed mainly for samples containing 30% BC. Some compatibility occurred between MS and BC fillers, as evidenced by mechanical properties. Tensile strength increased from 5.9 to 15.1 MPa when BC content varied from 0 to 30%, while elongation at break decreased significantly. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Enzymes in biogenesis of plant cell wall polysaccharides. Enzyme characterization using tracer techniques

    International Nuclear Information System (INIS)

    Dickinson, D.B.

    1975-01-01

    Enzymes and metabolic pathways, by which starch and cell wall polysaccharides are formed, were investigated in order to learn how these processes are regulated and to identify the enzymatic regulatory mechanisms involved. Germinating lily pollen was used for studies of cell wall formation, and pollen and maize endosperm for studies of starch biosynthesis. Hexokinase being the first step in conversion of hexoses to starch, wall polysaccharides and respiratory substrates, maize endosperm enzyme was assayed by its conversion of 14 C-hexose to 14 C-hexose-6-P, and rapid separation of the two labelled compounds on anion-exchange paper. This enzyme did not appear to be under tight regulation by feed-back inhibition or activation, nor to be severely inhibited by glucose-6-P or activated by citrate. ADP-glucose pyrophosphorylase and other pyrophosphorylases were assayed radiochemically with 14 C-glucose-1-P (forward direction) or 32-PPsub(i) (reverse direction). They showed that the maize endosperm enzyme was activated by the glycolytic intermediates fructose-6-P and 3-phosphoglycerate, and that low levels of the enzyme were present in the high sucrose-low starch mutant named shrunken-2. Under optimal in-vitro assay conditions, the pollen enzyme reacted four times faster than the observed in-vivo rate of starch accumulation. Biogenesis of plant cell wall polysaccharides requires the conversion of hexose phosphates to various sugar nucleotides and utilization of the latter by the appropriate polysaccharide synthetases. Lily pollen possesses a β-1,3-glucan synthetase which is activated up to six-fold by β-linked oligosaccharides. Hence, the in-vivo activity of this enzyme may be modulated by such effector molecules

  14. In-vitro starch hydrolysis of chitosan incorporating whey protein and wheat starch composite gels

    Directory of Open Access Journals (Sweden)

    Natasha Yang

    2017-10-01

    Full Text Available The study examined the influence of chitosan, incorporated into whey protein and wheat starch thermo gels, on the in-vitro hydrolysis of the polysaccharide. Gels were subjected to the following external conditions containing α-amylase at constant incubation temperature of 37 °C: In the first procedure, they were immersed in phosphate buffer (0.05 M and maintained at pH 6.9 throughout the entire digestion. In the second instance, they were introduced into a salt solution, with pH and total volume adjusted at times in sync with the human gastrointestinal tract. Results indicate that low and medium molecular weight chitosan, in combination with whey protein, were effective at enhancing the protective barrier against starch degradation. Less maltose was liberated from gels containing medium molecular weight chitosan, as opposed to the low molecular weight counterpart, and results compare favorably with the outcome of the in-vitro digestion of binary whey protein and wheat starch composites. Keywords: Food science

  15. In vitro digestibility of banana starch cookies.

    Science.gov (United States)

    Bello-Pérez, Luis A; Sáyago-Ayerdi, Sonia G; Méndez-Montealvo, Guadalupe; Tovar, Juscelino

    2004-01-01

    Banana starch was isolated and used for preparation of two types of cookies. Chemical composition and digestibility tests were carried out on banana starch and the food products, and these results were compared with corn starch. Ash, protein, and fat levels in banana starch were higher than in corn starch. The high ash amount in banana starch could be due to the potassium content present in this fruit. Proximal analysis was similar between products prepared with banana starch and those based on corn starch. The available starch content of the banana starch preparation was 60% (dmb). The cookies had lower available starch than the starches while banana starch had lower susceptibility to the in vitro alpha-amylolysis reaction. Banana starch and its products had higher resistant starch levels than those made with corn starch.

  16. IDENTIFICATION OF PHARMACEUTICAL EXCIPIENT BEHAVIOR OF CHICKPEA (CICER ARIETINUM) STARCH IN GLICLAZIDE IMMEDIATE RELEASE TABLETS.

    Science.gov (United States)

    Meka, Venkata Srikanth; Yee, Phung; Sheshala, Ravi

    2016-01-01

    In the past few years, there are number of researchers carrying out their research on the excipients derived from polysaccharides and some of these researches show that natural excipients are comparable and can serve as an alternative to the synthetic excipients. Hence, the objectives of this research are to characterize the naturally sourced chickpea starch powder and to study the pharmaceutical excipient behavior of chickpea starch in gliclazide immediate release (IR) tablets. In this research, the binding properties of chickpea starch were compared to that of povidone, whereas the disintegrant properties of chickpea starch were compared to those of crospovidone, croscarmellose sodium and sodium starch glycolate. Flow property of chickpea starch was assessed with the measurement of bulk density, tapped density, compressibility index and angle of repose. Calibration curve for gliclazide in phosphate buffer pH 7.4 was developed. Gliclazide IR tablets were then produced with direct compression method. Physicochemical characteristics of the tablets, including thickness, tablet weight uniformity, hardness, disintegration time and friability were evaluated. Then, in vitro dissolution studies were performed by following United States Pharmacopeia (USP) dissolution method. The dissolution results were analyzed and compared with t30, t50, dissolution efficiency (DE). Lastly, drug-excipient compatibility studies, including Fourier transform infrared (FTIR) spectroscopic analysis and differential scanning calorimetric (DSC) analysis were carried out. Fair flow property was observed in the chickpea starch powder. Furthermore, the tablets produced passed all the tests in physicochemical characteristics evaluation except hardness and disintegration test. Additionally, in vitro dissolution studies show that chickpea starch acted as a disintegrant instead of a binder in gliclazide IR tablets and its disintegrant properties were comparable to those of crospovidone, croscarmellose

  17. Investigating the Mechanisms of Amylolysis of Starch Granules by Solution-State NMR

    Science.gov (United States)

    2015-01-01

    Starch is a prominent component of the human diet and is hydrolyzed by α-amylase post-ingestion. Probing the mechanism of this process has proven challenging, due to the intrinsic heterogeneity of individual starch granules. By means of solution-state NMR, we demonstrate that flexible polysaccharide chains protruding from the solvent-exposed surfaces of waxy rice starch granules are highly mobile and that during hydrothermal treatment, when the granules swell, the number of flexible residues on the exposed surfaces increases by a factor of 15. Moreover, we show that these flexible chains are the primary substrates for α-amylase, being cleaved in the initial stages of hydrolysis. These findings allow us to conclude that the quantity of flexible α-glucan chains protruding from the granule surface will greatly influence the rate of energy acquisition from digestion of starch. PMID:25815624

  18. Newly-fixed carbon preferentially flows through starch in the unicellular alga Rhodella

    International Nuclear Information System (INIS)

    Kroen, W.K.; Ramus, J.S.

    1989-01-01

    Cells of the unicellular red alga Rhodella reticulata produce copious amounts of anionic extracellular polysaccharides. Previous experiments, comparing growing and non-growing cells, showed little difference in the pattern of initial 14 C partitioning, with a high percentage of label in starch. Short labelling periods, followed by chasing in unlabelled medium, showed rapid movement of carbon through the starch pool within the first 6 hrs, with an accompanying increase in both the protein and mucilage fractions. The overall pattern of carbon metabolism appears fixed throughout growth of the cells, with total carbon input changing with changing growth phase. As starch is extrachloroplastic in the red algae, input of fixed carbon directly into the starch pool may serve as a routing mechanism to direct subsequent carbon metabolism within the cell

  19. Definition and characterization of enzymes for maximal biocatalytic solubilization of prebiotic polysaccharides from potato pulp

    DEFF Research Database (Denmark)

    Thomassen, Lise Vestergaard; Larsen, Dorte Møller; Mikkelsen, Jørn Dalgaard

    2011-01-01

    of these polysaccharides from the potato pulp. The pH and temperature optima of two selected pectin lyases from Emericella nidulans (formerly known as Aspergillus nidulans) and Aspergillus niger were determined to 8.6 and 4.0, respectively, at ≥100°C within 1min of reaction. The optima for the two selected......Potato pulp is a high-volume co-processing product resulting from industrial potato starch manufacturing. Potato pulp is particularly rich in pectin, notably galactan branched rhamnogalacturonan I polysaccharides, which are highly bifidogenic when solubilized. The objective of the present study...

  20. Enzyme-Catalyzed Modifications of Polysaccharides and Poly(ethylene glycol

    Directory of Open Access Journals (Sweden)

    H. N. Cheng

    2012-06-01

    Full Text Available Polysaccharides are used extensively in various industrial applications, such as food, adhesives, coatings, construction, paper, pharmaceuticals, and personal care. Many polysaccharide structures need to be modified in order to improve their end-use properties; this is mostly done through chemical reactions. In the past 20 years many enzyme-catalyzed modifications have been developed to supplement chemical derivatization methods. Typical reactions include enzymatic oxidation, ester formation, amidation, glycosylation, and molecular weight reduction. These reactions are reviewed in this paper, with emphasis placed on the work done by the authors. The polymers covered in this review include cellulosic derivatives, starch, guar, pectin, and poly(ethylene glycol.

  1. Starch phosphorylation plays an important role in starch biosynthesis

    NARCIS (Netherlands)

    Xu, Xuan; Dees, Dianka; Dechesne, Annemarie; Huang, Xing Feng; Visser, Richard G.F.; Trindade, Luisa M.

    2017-01-01

    Starch phosphate esters are crucial in starch metabolism and render valuable functionality to starches for various industrial applications. A potato glucan, water dikinase (GWD1) was introduced in tubers of two different potato genetic backgrounds: an amylose-containing line Kardal and the

  2. Examination of some protective conditions on technological properties of irradiated food grade polysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Adeil Pietranera, M.S. E-mail: pietrane@cae.cnea.gov.ar; Narvaiz, P. E-mail: narvaiz@cae.cnea.gov.ar

    2001-02-01

    Corn and cassava starches, agar-agar and kappa carrageenan, polysaccharides used as food additives, were gamma irradiated with doses suitable for microbial decontamination. Starches were analysed in paste and pudding viscosity and paper chromatography; agar and carrageenan, in viscosity and compression tests on gels and custards. Afterwards, substances were added to verify whether they could prevent irradiation technological impairment. Results revealed significant differences between control and irradiated samples in most determinations. No added substance was able to protect the functional properties of these additives. (author)

  3. Vliv podmínek sladování na obsah dextrinů v meziproduktech výroby piva

    Czech Academy of Sciences Publication Activity Database

    Psota, V.; Čmelík, Richard; Sachambula, L.

    2011-01-01

    Roč. 57, 7-8 (2011), 253-259 ISSN 0023-5830 R&D Projects: GA MŠk 2B06037 Institutional research plan: CEZ:AV0Z40310501 Keywords : malting * dextrin * beer Subject RIV: CB - Analytical Chemistry, Separation

  4. Novel Polysaccharide Based Polymers and Nanoparticles for Controlled Drug Delivery and Biomedical Imaging

    Science.gov (United States)

    Shalviri, Alireza

    The use of polysaccharides as building blocks in the development of drugs and contrast agents delivery systems is rapidly growing. This can be attributed to the outstanding virtues of polysaccharides such as biocompatibility, biodegradability, upgradability, multiple reacting groups and low cost. The focus of this thesis was to develop and characterize novel starch based hydrogels and nanoparticles for delivery of drugs and imaging agents. To this end, two different systems were developed. The first system includes polymer and nanoparticles prepared by graft polymerization of polymethacrylic acid and polysorbate 80 onto starch. This starch based platform nanotechnology was developed using the design principles based on the pathophysiology of breast cancer, with applications in both medical imaging and breast cancer chemotherapy. The nanoparticles exhibited a high degree of doxorubicin loading as well as sustained pH dependent release of the drug. The drug loaded nanoparticles were significantly more effective against multidrug resistant human breast cancer cells compared to free doxorubicin. Systemic administration of the starch based nanoparticles co-loaded with doxorubicin and a near infrared fluorescent probe allowed for non-invasive real time monitoring of the nanoparticles biodistribution, tumor accumulation, and clearance. Systemic administration of the clinically relevant doses of the drug loaded particles to a mouse model of breast cancer significantly enhanced therapeutic efficacy while minimizing side effects compared to free doxorubicin. A novel, starch based magnetic resonance imaging (MRI) contrast agent with good in vitro and in vivo tolerability was formulated which exhibited superior signal enhancement in tumor and vasculature. The second system is a co-polymeric hydrogel of starch and xanthan gum with adjustable swelling and permeation properties. The hydrogels exhibited excellent film forming capability, and appeared to be particularly useful in

  5. Safety and efficacy of coffee enriched with inulin and dextrin on satiety and hunger in normal volunteers.

    Science.gov (United States)

    Singer, Joelle; Grinev, Milana; Silva, Veronica; Cohen, Jonathan; Singer, Pierre

    2016-01-01

    This study assessed the safety and efficacy of a new beverage on suppressing hunger and improving feelings of satiety in healthy volunteers. In the safety study, participants (n = 269) received either 1) a control beverage-coffee alone (group C); 2) the study beverage-coffee, whey protein, inulin, and dextrin (group S); or 3) an inulin-enriched beverage (I group). The study was held over a 7-d period during which participants were required to consume 2 cups of coffee a day. There were no significant differences between the groups in any reported adverse effects, apart from more abdominal pain after the first cup in group I versus S (P hunger and satiety 2 h after ingestion. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Heterologous expression of two Arabidopsis starch dikinases in potato

    NARCIS (Netherlands)

    Xu, Xuan; Dees, Dianka; Huang, Xing Feng; Visser, Richard G.F.; Trindade, Luisa M.

    2018-01-01

    Starch phosphate esters influence physiochemical properties of starch granules that are essential both for starch metabolism and industrial use of starches. To modify properties of potato starch and understand the effect of starch phosphorylation on starch metabolism in storage starch, the starch

  7. Biocompatible nanogel derived from functionalized dextrin for targeted delivery of doxorubicin hydrochloride to MG 63 cancer cells.

    Science.gov (United States)

    Das, Dipankar; Rameshbabu, Arun Prabhu; Ghosh, Paulomi; Patra, Priyapratim; Dhara, Santanu; Pal, Sagar

    2017-09-01

    The present article demonstrates the targeted delivery of doxorubicin hydrochloride to human osteosarcoma cancer cell lines (MG 63) using functionalized dextrin based crosslinked, pH responsive and biocompatible nanogel. The nanogel has been prepared through Michael-type addition reaction using dextrin (Dxt), N, N'-methylene bisacrylamide (MBA, as crosslinker), acrylic acid (AA, as monomer) and potassium persulfate (KPS, as initiator). The structure, composition, morphology of the nanogel have been explored using FTIR and 1 H NMR spectroscopy, XRD, TGA, DSC, CHN and AFM analyses. The TEM analysis confirmed that the size of nanogel appeared within 100nm, while DLS study indicates that the diameter of the nanogel remained between 113 and 126nm. The AFM study implied the porous morphology of the synthesized nanogel. The rheological study suggests the gel behaviour of the synthesized nanogel at 37±0.1°C. Difference in% swelling at pH 5.5 and 7.4 indicates pH-responsiveness of the nanogel. The in vitro cytocompatibility results ascertained that the nanogel is non-toxic to human mesenchymal stem cells (hMSCs). In vitro cellular uptake study confirmed that FITC-loaded nanogel can cross the cellular membrane and be well uptake by the cell cytoplasm. The nanogel could efficiently encapsulate doxorubicin hydrochloride (Dox) with the loading efficiency of 27±0.2% after 72h. The Dox-loaded nanogel demonstrates anti-cancer activity towards MG 63 cancer cells and release the encapsulated drug in a controlled way. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Hydroxyethyl starch for resuscitation

    DEFF Research Database (Denmark)

    Haase, Nicolai; Perner, Anders

    2013-01-01

    PURPOSE OF REVIEW: Resuscitation with hydroxyethyl starch (HES) is controversial. In this review, we will present the current evidence for the use of HES solutions including data from recent high-quality randomized clinical trials. RECENT FINDINGS: Meta-analyses of HES vs. control fluids show clear...

  9. Resistant starch in cassava products

    Directory of Open Access Journals (Sweden)

    Bruna Letícia Buzati Pereira

    2014-06-01

    Full Text Available Found in different foods, starch is the most important source of carbohydrates in the diet. Some factors present in starchy foods influence the rate at which the starch is hydrolyzed and absorbed in vivo. Due the importance of cassava products in Brazilian diet, the objective of this study was to analyze total starch, resistant starch, and digestible starch contents in commercial cassava products. Thirty three commercial cassava products from different brands, classifications, and origin were analyzed. The method used for determination of resistant starch consisted of an enzymatic process to calculate the final content of resistant starch considering the concentration of glucose released and analyzed. The results showed significant differences between the products. Among the flours and seasoned flours analyzed, the highest levels of resistant starch were observed in the flour from Bahia state (2.21% and the seasoned flour from Paraná state (1.93%. Starch, tapioca, and sago showed levels of resistant starch ranging from 0.56 to 1.1%. The cassava products analyzed can be considered good sources of resistant starch; which make them beneficial products to the gastrointestinal tract.

  10. Electrospinning of Xanthan Polysaccharide

    DEFF Research Database (Denmark)

    Shekarforoush, Elhamalsadat; Faralli, Adele; Ndoni, Sokol

    2017-01-01

    .5 to 2.5 wt/vol%). The correlation between the concentration and the rheological properties of xanthan solutions, with the morphology of the nanofibers is investigated. At the polysaccharide concentrations where nanofiber formation is observed, an increase of the elastic modulus and first normal stress...... differences is observed. The typical “weak gel-like” and thixotropic properties known for aqueous xanthan solutions, are not observed for the xanthan solutions in formic acid. The Fourier transform infrared spectroscopic and circular dichroism studies verify that an esterification reaction takes place, where...

  11. Novel polymer blends with thermoplastic starch

    Science.gov (United States)

    Taghizadeh, Ata

    A new class of polymers known as "bioplastics" has emerged and is expanding rapidly. This class consists of polymers that are either bio-based or biodegradable, or both. Among these, polysaccharides, namely starch, are of great interest for several reasons. By gelatinizing starch via plasticizers, it can be processed in the same way as thermoplastic polymers with conventional processing equipment. Hence, these bio-based and biodegradable plastics, with their low source and refinery costs, as well as relatively easy processability, have made them ideal candidates for incorporation into various current plastic products. Four different plasticizers have been chosen here for gelatinization of thermoplastic starch (TPS): glycerol, sorbitol, diglycerol and polyglycerol, with the latter two being used for the first time in such a process. Two methodological categories are used. The first involves a calorimetric method (Differential Scanning Calorimetry) as well as optical microscopy; these are "static" methods where no shear is applied A wide range of starch/water/plasticizer compositions were prepared to explore the gelatinization regime for each plasticizer. The onset and conclusion gelatinization temperatures for sorbitol and glycerol were found to be in the same vicinity, while diglycerol and polyglycerol showed significantly higher transition temperatures. The higher molecular weight and viscosity of polyglycerol allow this transition to occur at an even higher temperature than with diglycerol. This is due to the increase in molecular weight and viscosity of the two new plasticizers, as well as their significant decrease in water solubility. It is demonstrated that the water/plasticizer ratio has a pronounced effect on gelatinization temperatures. When plasticizer content was held constant and water content was increased, it was found that the gelatinization temperature decreased for all the plasticizers. Meanwhile, when the water content was held constant and the

  12. Polysaccharides from Extremophilic Microorganisms

    Science.gov (United States)

    Nicolaus, B.; Moriello, V. Schiano; Lama, L.; Poli, A.; Gambacorta, A.

    2004-02-01

    Several marine thermophilic strains were analyzed for exopolysaccharide production. The screening process revealed that a significant number of thermophilic microorganisms were able to produce biopolymers, and some of them also revealed interesting chemical compositions. We have identified four new polysaccharides from thermophilic marine bacteria, with complex primary structures and with different repetitive units: a galacto-mannane type from strain number 4004 and mannane type for the other strains. The thermophilic Bacillus thermantarcticus produces two exocellular polysaccharides (EPS 1, EPS 2) that give the colonies a typical mucous character. The exopolysaccharide fraction was produced with all substrates assayed, although a higher yield 400 mg liter-1 was obtained with mannose as carbon and energy source. NMR spectra confirmed that EPS 1 was a heteropolysaccharide of which the repeating unit was constituted by four different α-D-mannoses and three different β-D-glucoses. It seems to be close to some xantan polymers. EPS 2 was a mannan. Four different α-D-mannoses were found as the repeating unit. Production and chemical studies of biopolymers produced by halophilic archaea, Haloarcula species were also reported.

  13. Why Were Polysaccharides Necessary?

    Science.gov (United States)

    Tolstoguzov, Vladimir

    2004-12-01

    The main idea of this paper is that the primordial soup may be modelled by food systems whose structure-property relationship is based on non-specific interactions between denatured biopolymers. According to the proposed hypothesis, polysaccharides were the first biopolymers that decreased concentration of salts in the primordial soup, `compatibilised' and drove the joint evolution of proto-biopolymers. Synthesis of macromolecules within the polysaccharide-rich medium could have resulted in phase separation of the primordial soup and concentration of the polypeptides and nucleic acids in the dispersed phase particles. The concentration of proto-biopolymer mixtures favoured their cross-linking in hybrid supermacromolecules of conjugates. The cross-linking of proto-biopolymers could occur by hydrophobic, electrostatic interactions, H-bonds due to freezing aqueous mixed biopolymer dispersions and/or by covalent bonds due to the Maillard reaction. Cross-linking could have increased the local concentration of chemically different proto-biopolymers, fixed their relative positions and made their interactions reproducible. Attractive-repulsive interactions between cross-linked proto-biopolymer chains could develop pairing of the monomer units, improved chemical stability (against hydrolysis) and led to their mutual catalytic activity and coding. Conjugates could probably evolve to the first self-reproduced entities and then to specialized cellular organelles. Phase separation of the primordial soup with concentration of conjugates in the dispersed particles has probably resulted in proto-cells.

  14. The enzymatic determination of starch in food, feed and raw materials of the starch industry

    NARCIS (Netherlands)

    Brunt, K.; Sanders, P.; Rozema, T.

    1998-01-01

    An enzymatic starch determination which can be used for the analysis of starch in a very broad range of different samples is evaluated, ranging from starch in plants, feed and food to industrial applications as starch in starch. The method is based on a complete enzymatic conversion of the starch

  15. Characterization of Function of the GlgA2 Glycogen/Starch Synthase in Cyanobacterium sp. Clg1 Highlights Convergent Evolution of Glycogen Metabolism into Starch Granule Aggregation1

    Science.gov (United States)

    Kadouche, Derifa; Arias, Maria Cecilia

    2016-01-01

    At variance with the starch-accumulating plants and most of the glycogen-accumulating cyanobacteria, Cyanobacterium sp. CLg1 synthesizes both glycogen and starch. We now report the selection of a starchless mutant of this cyanobacterium that retains wild-type amounts of glycogen. Unlike other mutants of this type found in plants and cyanobacteria, this mutant proved to be selectively defective for one of the two types of glycogen/starch synthase: GlgA2. This enzyme is phylogenetically related to the previously reported SSIII/SSIV starch synthase that is thought to be involved in starch granule seeding in plants. This suggests that, in addition to the selective polysaccharide debranching demonstrated to be responsible for starch rather than glycogen synthesis, the nature and properties of the elongation enzyme define a novel determinant of starch versus glycogen accumulation. We show that the phylogenies of GlgA2 and of 16S ribosomal RNA display significant congruence. This suggests that this enzyme evolved together with cyanobacteria when they diversified over 2 billion years ago. However, cyanobacteria can be ruled out as direct progenitors of the SSIII/SSIV ancestral gene found in Archaeplastida. Hence, both cyanobacteria and plants recruited similar enzymes independently to perform analogous tasks, further emphasizing the importance of convergent evolution in the appearance of starch from a preexisting glycogen metabolism network. PMID:27208262

  16. Hydroxyethyl starch in sepsis

    DEFF Research Database (Denmark)

    Haase, Nicolai Rosenkrantz Segelcke

    2014-01-01

    BACKGROUND: Hydroxyethyl starch (HES) is a colloid that has been widely used for fluid resuscitation for decades. The newest generation of HES, tetrastarch, was believed to provide an efficient volume expansion without causing the side effects observed with former HES solutions. However, this bel......BACKGROUND: Hydroxyethyl starch (HES) is a colloid that has been widely used for fluid resuscitation for decades. The newest generation of HES, tetrastarch, was believed to provide an efficient volume expansion without causing the side effects observed with former HES solutions. However...... types of patients is unclear, but so far no group of patients with an overall benefit of HES beyond surrogate markers has been identified. In line with this, the European Medicines Agency's Pharmacovigilance Risk Assessment Committee now recommends that the marketing authorisations of all HES solutions...

  17. Enamel and dentine demineralization by a combination of starch and sucrose in a biofilm – caries model

    Directory of Open Access Journals (Sweden)

    Juliana Nunes BOTELHO

    2016-01-01

    Full Text Available Abstract Sucrose is the most cariogenic dietary carbohydrate and starch is considered non-cariogenic for enamel and moderately cariogenic for dentine. However, the cariogenicity of the combination of starch and sucrose remains unclear. The aim of this study was to evaluate the effect of this combination on Streptococcus mutans biofilm composition and enamel and dentine demineralization. Biofilms of S. mutans UA159 were grown on saliva-coated enamel and dentine slabs in culture medium containing 10% saliva. They were exposed (8 times/day to one of the following treatments: 0.9% NaCl (negative control, 1% starch, 10% sucrose, or 1% starch and 10% sucrose (starch + sucrose. To simulate the effect of human salivary amylase on the starch metabolization, the biofilms were pretreated with saliva before each treatment and saliva was also added to the culture medium. Acidogenicity of the biofilm was estimated by evaluating (2 times/day the culture medium pH. After 4 (dentine or 5 (enamel days of growth, biofilms (n = 9 were individually collected, and the biomass, viable microorganism count, and polysaccharide content were quantified. Dentine and enamel demineralization was assessed by determining the percentage of surface hardness loss. Biofilms exposed to starch + sucrose were more acidogenic and caused higher demineralization (p < 0.0001 on either enamel or dentine than those exposed to each carbohydrate alone. The findings suggest that starch increases the cariogenic potential of sucrose.

  18. Engineering the chloroplast targeted malarial vaccine antigens in Chlamydomonas starch granules.

    Directory of Open Access Journals (Sweden)

    David Dauvillée

    2010-12-01

    Full Text Available Malaria, an Anopheles-borne parasitic disease, remains a major global health problem causing illness and death that disproportionately affects developing countries. Despite the incidence of malaria, which remains one of the most severe infections of human populations, there is no licensed vaccine against this life-threatening disease. In this context, we decided to explore the expression of Plasmodium vaccine antigens fused to the granule bound starch synthase (GBSS, the major protein associated to the starch matrix in all starch-accumulating plants and algae such as Chlamydomonas reinhardtii.We describe the development of genetically engineered starch granules containing plasmodial vaccine candidate antigens produced in the unicellular green algae Chlamydomonas reinhardtii. We show that the C-terminal domains of proteins from the rodent Plasmodium species, Plasmodium berghei Apical Major Antigen AMA1, or Major Surface Protein MSP1 fused to the algal granule bound starch synthase (GBSS are efficiently expressed and bound to the polysaccharide matrix. Mice were either immunized intraperitoneally with the engineered starch particles and Freund adjuvant, or fed with the engineered particles co-delivered with the mucosal adjuvant, and challenged intraperitoneally with a lethal inoculum of P. Berghei. Both experimental strategies led to a significantly reduced parasitemia with an extension of life span including complete cure for intraperitoneal delivery as assessed by negative blood thin smears. In the case of the starch bound P. falciparum GBSS-MSP1 fusion protein, the immune sera or purified immunoglobulin G of mice immunized with the corresponding starch strongly inhibited in vitro the intra-erythrocytic asexual development of the most human deadly plasmodial species.This novel system paves the way for the production of clinically relevant plasmodial antigens as algal starch-based particles designated herein as amylosomes, demonstrating that

  19. Engineering the chloroplast targeted malarial vaccine antigens in Chlamydomonas starch granules.

    Science.gov (United States)

    Dauvillée, David; Delhaye, Stéphane; Gruyer, Sébastien; Slomianny, Christian; Moretz, Samuel E; d'Hulst, Christophe; Long, Carole A; Ball, Steven G; Tomavo, Stanislas

    2010-12-15

    Malaria, an Anopheles-borne parasitic disease, remains a major global health problem causing illness and death that disproportionately affects developing countries. Despite the incidence of malaria, which remains one of the most severe infections of human populations, there is no licensed vaccine against this life-threatening disease. In this context, we decided to explore the expression of Plasmodium vaccine antigens fused to the granule bound starch synthase (GBSS), the major protein associated to the starch matrix in all starch-accumulating plants and algae such as Chlamydomonas reinhardtii. We describe the development of genetically engineered starch granules containing plasmodial vaccine candidate antigens produced in the unicellular green algae Chlamydomonas reinhardtii. We show that the C-terminal domains of proteins from the rodent Plasmodium species, Plasmodium berghei Apical Major Antigen AMA1, or Major Surface Protein MSP1 fused to the algal granule bound starch synthase (GBSS) are efficiently expressed and bound to the polysaccharide matrix. Mice were either immunized intraperitoneally with the engineered starch particles and Freund adjuvant, or fed with the engineered particles co-delivered with the mucosal adjuvant, and challenged intraperitoneally with a lethal inoculum of P. Berghei. Both experimental strategies led to a significantly reduced parasitemia with an extension of life span including complete cure for intraperitoneal delivery as assessed by negative blood thin smears. In the case of the starch bound P. falciparum GBSS-MSP1 fusion protein, the immune sera or purified immunoglobulin G of mice immunized with the corresponding starch strongly inhibited in vitro the intra-erythrocytic asexual development of the most human deadly plasmodial species. This novel system paves the way for the production of clinically relevant plasmodial antigens as algal starch-based particles designated herein as amylosomes, demonstrating that efficient production

  20. Radiolysis of starch

    International Nuclear Information System (INIS)

    Raffi, J.; Saint-Lebe, L.; Berger, G.

    1978-01-01

    In the first part of the paper the results of work on the identification and determination of the gamma ( 60 Co) radiolysis products of maize starch are brought together and, wherever possible, a balance drawn up by chemical class. The second part of the paper deals with the main parameters governing radiolysis: dose, irradiation temperature and atmosphere, water content and the conditions under which the irradiated starch is stored. The third part, devoted to the mechanisms believed to be involved, contains the following conclusions: (a) the formation of radiation-induced products with a carbon skeleton probably results from a breaking of the -C-O-C- chains with rearrangement of the radicals and/or a reaction involving the water and the oxygen - the oxygen has an activating effect which does not fundamentally modify the mechanism, whereas the effect of the water is more complex and varies according to the product; (b) the formation of hydrogen peroxide probably implies the addition of atmospheric oxygen to the radiation-induced hydrogen atoms in the water or to the organic radicals obtained by abstraction of a hydrogen from the starch. Lastly, the different methods envisaged for confirming or improving the mechanistic hypotheses are discussed. (author)

  1. Nanostructures Derived from Starch and Chitosan for Fluorescence Bio-Imaging

    Science.gov (United States)

    Zu, Yinxue; Bi, Jingran; Yan, Huiping; Wang, Haitao; Song, Yukun; Zhu, Bei-Wei; Tan, Mingqian

    2016-01-01

    Fluorescent nanostructures (NSs) derived from polysaccharides have drawn great attention as novel fluorescent probes for potential bio-imaging applications. Herein, we reported a facile alkali-assisted hydrothermal method to fabricate polysaccharide NSs using starch and chitosan as raw materials. Transmission electron microscopy (TEM) demonstrated that the average particle sizes are 14 nm and 75 nm for starch and chitosan NSs, respectively. Fourier transform infrared (FT-IR) spectroscopy analysis showed that there are a large number of hydroxyl or amino groups on the surface of these polysaccharide-based NSs. Strong fluorescence with an excitation-dependent emission behaviour was observed under ultraviolet excitation. Interestingly, the photostability of the NSs was found to be superior to fluorescein and rhodamine B. The quantum yield of starch NSs could reach 11.12% under the excitation of 360 nm. The oxidative metal ions including Cu(II), Hg(II)and Fe(III) exhibited a quench effect on the fluorescence intensity of the prepared NSs. Both of the two kinds of the multicoloured NSs showed a maximum fluorescence intensity at pH 7, while the fluorescence intensity decreased dramatically when they were put in an either acidic or basic environment (at pH 3 or 11). The cytotoxicity study of starch NSs showed that low cell cytotoxicity and 80% viability was found after 24 h incubation, when their concentration was less than 10 mg/mL. The study also showed the possibility of using the multicoloured starch NSs for mouse melanoma cells and guppy fish imaging. PMID:28335258

  2. Functional properties of irradiated starch

    International Nuclear Information System (INIS)

    Laouini, Wissal

    2011-01-01

    Irradiation is an effective method capable of modifying the functional properties of starches. Its effect depends on the specific structural and molecular organization of starch granules from different botanical sources. In this study, we have studied the effect of gamma irradiation (3, 5, 10, 20, 35, 50 kGy) on the rheological properties of some varieties of starch (potato, cassava and wheat). First, we were interested in determining dry matter content; the results showed that the variation in dry matter compared to the control (native starch) is almost zero. So it does not depend on the dose of irradiation. Contrariwise, it differs from a botanical species to another. The viscometer has shown that these starches develop different behaviors during shearing. The native potato starch gave the highest viscosity followed by wheat and cassava which have almost similar viscosities. For all varieties, the viscosity of starch decreases dramatically with an increasing dose of irradiation. At high doses (35 and 50 kGy) the behavior of different starch is similar to that of a viscous pure liquid. The textural analysis via the back-extrusion test showed that increasing the dose of radiation causes a decrease in extrusion force and the energy spent of the different starch throughout the test. Indeed, the extrusion resistance decreases with increasing dose.

  3. Dietary supplementation of different doses of NUTRIOSE FB, a fermentable dextrin, alters the activity of faecal enzymes in healthy men.

    Science.gov (United States)

    van den Heuvel, Ellen G H M; Wils, Daniel; Pasman, Wilrike J; Saniez, Marie-Hélène; Kardinaal, Alwine F M

    2005-10-01

    It is well documented that fermentation of carbohydrates that escape digestion exert several effects supposed to be beneficial for (colonic) health, including an increase in stool volume, a shorter intestinal transit time, production of short chain fatty acids and a decrease of colonic pH (Kritchevsky 1988). NUTRIOSE FB is a dextrin that is not completely hydrolysed and absorbed in the small intestine, due to many alpha-1.6 linkages and the presence of non-digestible glucoside linkages (e. g. alpha-1.2 and alpha-1.3). To be beneficial for 'colonic' health effective NUTRIOSE FB must reach the cecum in some form. To estimate how much non digested NUTRIOSE FB is fermented and to determine the fibre-like effect of the wheat dextrin NUTRIOSE((R))FB by analysing enzymatic activity in faeces. In a randomized, double-blind,multiple dose, placebo-controlled, combined cross-over and parallel trial, 20 healthy men (age 31.7 +/- 9.1 yrs; BMI 24.5 +/- 2.9 kg.m(-2) received different treatments. One group of ten subjects consumed on top of their diet 10, 30 and 60 g daily of NUTRIOSE FB or maltodextrin (placebo). The other group of 10 subjects consumed 15, 45 and 80 g daily. Each dose was consumed for 7 days. On the last two days of each of the 7-day period, faeces were collected in which the enzymatic activity and NUTRIOSE FB residue were analysed. As expected, the faecal residue of NUTRIOSE FB non-linearly increased with the dose of NUTRIOSE FB to approximately 13% of 80 g/d. Compared with the placebo, 30, 45, 60 and 80 g/d of NUTRIOSE FB increased the concentration of alpha-glucosidase significantly. All daily doses of NUTRIOSE FB (10 g/d to 80 g/d) led to significant changes in concentration of beta-glucosidase. The small amount of the residue of NUTRIOSE FB in the faeces suggests that approximately 87% or more of NUTRIOSE FB is digested or fermented in the gastrointestinal tract. Fermentation of NUTRIOSE FB led to an increased faecal concentration of alpha- and beta-glucosidase.

  4. Synthesis, characterization and biocompatibility of cadmium sulfide nanoparticles capped with dextrin for in vivo and in vitro imaging application.

    Science.gov (United States)

    Reyes-Esparza, Jorge; Martínez-Mena, Alberto; Gutiérrez-Sancha, Ivonne; Rodríguez-Fragoso, Patricia; de la Cruz, Gerardo Gonzalez; Mondragón, R; Rodríguez-Fragoso, Lourdes

    2015-11-17

    The safe use in biomedicine of semiconductor nanoparticles, also known as quantum dots (QDs), requires a detailed understanding of the biocompatibility and toxicity of QDs in human beings. The biological characteristics and physicochemical properties of QDs entail new challenges regarding the management of potential adverse health effects following exposure. At certain concentrations, the synthesis of semiconductor nanoparticles of CdS using dextrin as capping agent, at certain concentration, to reduce their toxicity and improves their biocompatibility. This study successfully synthesized and characterized biocompatible dextrin-coated cadmium sulfide nanoparticles (CdS-Dx/QDs). The results show that CdS-Dx/QDs are cytotoxic at high concentrations (>2 μg/mL) in HepG2 and HEK293 cells. At low concentrations (nanoparticles only induced cell death by apoptosis in HEK293 cells at 1 μg/mL concentrations. The in vitro results showed that the cells efficiently took up the CdS-Dx/QDs and this resulted in strong fluorescence. The subcellular localization of CdS-Dx/QDs were usually small and apparently unique in the cytoplasm in HeLa cells but, in the case of HEK293 cells it were more abundant and found in cytoplasm and the nucleus. Animals treated with 100 μg/kg of CdS-Dx/QDs and sacrificed at 3, 7 and 18 h showed a differential distribution in their organs. Intense fluorescence was detected in lung and kidney, with moderate fluorescence detected in liver, spleen and brain. The biocompatibility and toxicity of CdS-Dx/QDs in animals treated daily with 100 μg/kg for 1 week showed the highest level of fluorescence in kidney, liver and brain. Less fluorescence was detected in lung and spleen. There was also evident presence of fluorescence in testis. The histopathological and biochemical analyses showed that CdS-Dx/QDs were non-toxic for rodents. The in vitro and in vivo studies confirmed the effective cellular uptake and even distribution pattern of CdS-Dx/QDs in tissues

  5. Chemical and rheological properties of a starch-rich fraction from the pulp of the fruit cupuassu (Theobroma grandiflorum)

    International Nuclear Information System (INIS)

    Vriesmann, Lucia C.; Silveira, Joana L.M.; Petkowicz, Carmen L. de O

    2009-01-01

    The pulp obtained from the fruit of cupuassu (Theobroma grandiflorum) was extracted with hot aqueous 0.1% citric acid to give fraction 0.1CA-2 in 15% yield. This was the predominant component polysaccharide, 91% of which was composed of starch, by an iodine test and monosaccharide composition, and its 13 C NMR spectrum was consistent with that of a high amylose starch. The content of amylose found in fraction 0.1CA-2 was 71%. This value is higher than those of common starches of cereal grains, tubers, roots, and other fruits. The fraction was submitted to rheological examination, gels being prepared on heating with concentrations of 4 to 7% (w/w). A non-Newtonian behavior was observed, and gel viscosity and strength depended on the concentration. The presence of starch, as well as the presence of previously investigated pectin, conferred the high viscosity and gelling capability of the pulp

  6. Chemical and rheological properties of a starch-rich fraction from the pulp of the fruit cupuassu (Theobroma grandiflorum)

    Energy Technology Data Exchange (ETDEWEB)

    Vriesmann, Lucia C.; Silveira, Joana L.M. [Universidade Federal do Parana, Departamento de Bioquimica e Biologia Molecular, CP 19046, CEP 81531-990, Curitiba-PR (Brazil); Petkowicz, Carmen L. de O [Universidade Federal do Parana, Departamento de Bioquimica e Biologia Molecular, CP 19046, CEP 81531-990, Curitiba-PR (Brazil)], E-mail: clop@ufpr.br

    2009-03-01

    The pulp obtained from the fruit of cupuassu (Theobroma grandiflorum) was extracted with hot aqueous 0.1% citric acid to give fraction 0.1CA-2 in 15% yield. This was the predominant component polysaccharide, 91% of which was composed of starch, by an iodine test and monosaccharide composition, and its {sup 13}C NMR spectrum was consistent with that of a high amylose starch. The content of amylose found in fraction 0.1CA-2 was 71%. This value is higher than those of common starches of cereal grains, tubers, roots, and other fruits. The fraction was submitted to rheological examination, gels being prepared on heating with concentrations of 4 to 7% (w/w). A non-Newtonian behavior was observed, and gel viscosity and strength depended on the concentration. The presence of starch, as well as the presence of previously investigated pectin, conferred the high viscosity and gelling capability of the pulp.

  7. The Effect of Three Gums on the Retrogradation of Indica Rice Starch

    Directory of Open Access Journals (Sweden)

    Bin Li

    2012-05-01

    Full Text Available Retrograded starch (RS3 was produced from indica rice starch with three kinds of gums (konjac glucomannan, KGM; carrageenan, CA, USA; and gellan, GA, USA by autoclaving, respectively, and the effect of the gums on the retrogradation behavior of starch was estimated. The influences of polysaccharide concentration, sodium chloride concentration, autoclaving time, refrigerated time, and pH value on RS3 formation were discussed. Except for sodium chloride’s persistent restraint on RS3, the others all forced RS3 yields higher at first, but lowered it after the peak value. The influencing sequence of these impact factors was: sodium chloride concentration > polysaccharide concentration > autoclaving time > refrigerated time > pH value. The results also proved that in the three gums, KGM plays the most significant role in RS3 changing. It was concluded that the incorporation of each of these three gums into starch, especially KGM, results in an increase or decrease of RS3 under different conditions. This phenomenon could be taken into consideration when developing starchy food with appropriate amount of RS3.

  8. Preparation of Polysaccharide-Based Microspheres by a Water-in-Oil Emulsion Solvent Diffusion Method for Drug Carriers

    Directory of Open Access Journals (Sweden)

    Yodthong Baimark

    2013-01-01

    Full Text Available Polysaccharide-based microspheres of chitosan, starch, and alginate were prepared by the water-in-oil emulsion solvent diffusion method for use as drug carriers. Blue dextran was used as a water-soluble biomacromolecular drug model. Scanning electron microscopy showed sizes of the resultant microspheres that were approximately 100 μm or less. They were spherical in shape with a rough surface and good dispersibility. Microsphere matrices were shown as a sponge. Drug loading efficiencies of all the microspheres were higher than 80%, which suggested that this method has potential to prepare polysaccharide-based microspheres containing a biomacromolecular drug model for drug delivery applications.

  9. Effects of dietary fiber preparations made from maize starch on the growth and activity of selected bacteria from the Firmicutes, Bacteroidetes, and Actinobacteria phyla in fecal samples from obese children.

    Science.gov (United States)

    Barczynska, Renata; Slizewska, Katarzyna; Litwin, Mieczyslaw; Szalecki, Mieczyslaw; Kapusniak, Janusz

    2016-01-01

    Currently, there is a search for substances that would be very well tolerated by an organism and which could contribute to the activation of the growth of Bacteroidetes and Actinobacteria strains, with simultaneous inhibition of the growth of Firmicutes. High expectations in this regard are raised with the use of fiber preparations from starch - resistant corn dextrins, branched dextrins, resistant maltodextrins and soluble corn fiber. In this paper, the influence of fiber preparations made from corn starch was evaluated on growth and activity of Bacteroidetes, Actinobacteria and Firmicutes strains isolated from obese children. It was demonstrated that in the stool of obese children Firmicutes strains predominate, while Bacteroidetes and Actinobacteria strains were in the minority. A supplementation of fecal culture with fiber preparations did not cause any significant changes in the number of strains of Bacteroidetes and Firmicutes. Addition of fiber preparations to the fecal samples of obese children increased the amount of short-chain fatty acids, especially acetic (p < 0.01), propionic, butyric (p = 0.05) and lactic acid (p < 0.01).

  10. Computer simulation and experimental study of the polysaccharide-polysaccharide interaction in the bacteria Azospirillum brasilense Sp245

    Science.gov (United States)

    Arefeva, Oksana A.; Kuznetsov, Pavel E.; Tolmachev, Sergey A.; Kupadze, Machammad S.; Khlebtsov, Boris N.; Rogacheva, Svetlana M.

    2003-09-01

    We have studied the conformational properties and molecular dynamics of polysaccharides by using molecular modeling methods. Theoretical and experimental results of polysaccharide-polysaccharide interactions are described.

  11. Starch Biosynthesis in Crop Plants

    Directory of Open Access Journals (Sweden)

    Ian J. Tetlow

    2018-05-01

    Full Text Available Starch is a water-insoluble polyglucan synthesized inside the plastids of plant tissues to provide a store of carbohydrate. Starch harvested from plant storage organs has probably represented the major source of calories for the human diet since before the dawn of civilization. Following the advent of agriculture and the building of complex societies, humans have maintained their dependence on high-yielding domesticated starch-forming crops such as cereals to meet food demands, livestock production, and many non-food applications. The top three crops in terms of acreage are cereals, grown primarily for the harvestable storage starch in the endosperm, although many starchy tuberous crops also provide an important source of calories for various communities around the world. Despite conservation in the core structure of the starch granule, starches from different botanical sources show a high degree of variability, which is exploited in many food and non-food applications. Understanding the factors underpinning starch production and its final structure are of critical importance in guiding future crop improvement endeavours. This special issue contains reviews on these topics and is intended to be a useful resource for researchers involved in improvement of starch-storing crops.

  12. Physicochemical properties of maca starch.

    Science.gov (United States)

    Zhang, Ling; Li, Guantian; Wang, Sunan; Yao, Weirong; Zhu, Fan

    2017-03-01

    Maca (Lepidium meyenii Walpers) is gaining research attention due to its unique bioactive properties. Starch is a major component of maca roots, thus representing a novel starch source. In this study, the properties of three maca starches (yellow, purple and black) were compared with commercially maize, cassava, and potato starches. The starch granule sizes ranged from 9.0 to 9.6μm, and the granules were irregularly oval. All the maca starches presented B-type X-ray diffraction patterns, with the relative degree of crystallinity ranging from 22.2 to 24.3%. The apparent amylose contents ranged from 21.0 to 21.3%. The onset gelatinization temperatures ranged from 47.1 to 47.5°C as indicated by differential scanning calorimetry. Significant differences were observed in the pasting properties and textural parameters among all of the studied starches. These characteristics suggest the utility of native maca starch in products subjected to low temperatures during food processing and other industrial applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Characterisation and enzymic degradation of non-starch polysccharides in lignocellulosic by-products : a study on sunflower meal and palm-kernel meal

    NARCIS (Netherlands)

    Duesterhoeft, E.M.

    1993-01-01

    Non-starch polysaccharides (NSP) constitute a potentially valuable part of plant by- products deriving from the food and agricultural industries. Their use for various applications (fuel, feed, food) requires the degradation and modification of the complex plant materials. This can be

  14. The starch from Solanum lycocarpum St. Hill. fruit is not a hypoglycemic agent

    Directory of Open Access Journals (Sweden)

    A.C.P. Oliveira

    2003-04-01

    Full Text Available We have investigated the hypoglycemic effect induced by the starch obtained from the unripe fruits of Solanum lycocarpum (Solanaceae. Per os administration of the starch (1000 or 2000 mg/kg, twice daily for 7 days, N = 6 did not change glycemia levels of nondiabetic female Swiss mice weighing 25-30 g. In streptozotocin-induced diabetic mice, similar treatment with the starch did not change the elevated glycemia 3 h after the last dose (diabetic treated with saline = 288 ± 17/309 ± 18; starch 1000 mg/kg = 295 ± 33; starch 2000 mg/kg = 258 ± 37; N = 5. In animals fasted for 15 h, per os administration of glucose (600 mg/kg significantly increased glycemia 1 h later. Previous (-30 min treatment of the animals with the starch (1000 or 2000 mg/kg; N = 5 did not change the increase of glycemia. Per os administration of the starch (1000 or 2000 mg kg-1 day-1, twice daily for 7 days did not induce body weight gain or loss. The chemical analysis of the starch indicated the presence of glycoalkaloids, a finding that represents a reason for concern since many of these substances are generally toxic. In interviews with 56 diabetic patients, 29 medicinal plants were reported as useful in their treatment of diabetes and S. lycocarpum was the sixth most frequently mentioned. All patients interviewed reported that they also used insulin or oral hypoglycemic drugs. The results of the present study do not provide evidence for a hypoglycemic effect associated with the polysaccharide fraction of S. lycocarpum in either normal or hyperglycemic mice. These data demonstrate the need for adequate pharmacological investigation of the natural products widely used in folk medicine.

  15. The Effects of Treatments on Batu Banana Flour and Percentage of Wheat Substitution on The Resistant Starch, In Vitro Starch Digestibility Content and Palatability of Cookies Made with Banana (Musa balbisiana Colla) Flour

    Science.gov (United States)

    Ratnasari, D.; Rustanti, N.; Arifan, F.; Afifah, DN

    2018-02-01

    Diabetes mellitus (DM) is the most common endocrine disease worldwide. Resistant starch is polysaccharide that is recommended for DM patient diets. One of the staple crops containing resistant starch is banana. It is the fourth most important staple crop in the world and critical for food security, best suited plant in warm, frost-free, and coastal climates area. Among banana varieties, Batu bananas (Musa balbisiana Colla) had the highest content of resistant starch (~39%), but its use as a food ingredient is limited. Inclusion of Batu banana flour into cookies manufacturing would both increase the economic value of Batu bananas and provide alternative snacks for DM patients. Here we sought to examine whether cookies made with modified Batu banana flour would be a suitable snack for DM patients. This study used a completely randomized design with two factors: substitution of Batu banana flour (25%, 50%,75%) for wheat-based flour and Batu banana flour treatment methods (no treatment, autoclaving-cooling, autoclaving-cooling-spontaneous fermentation). The resistant starch and in vitro starch digestibility levels were analyzed using two-way ANOVA and Tukey test, whereas the acceptance level was analyzed by Friedman and Wilcoxon tests. The content of resistant starch and in vitro starch digestibility of the different treatments ranged from 3.10 to 15.79% and 16.03 to 52.59%, respectively. Both factors differed significantly (p0.05). Meanwhile, palatability in terms of color, aroma, texture, and flavor differed significantly among the different treatments and starch contents (ppatients. Keywords: Batu banana, cookies, resistant starch, in vitro starch digestibility

  16. Starches, Sugars and Obesity

    Directory of Open Access Journals (Sweden)

    Erik E. J. G. Aller

    2011-03-01

    Full Text Available The rising prevalence of obesity, not only in adults but also in children and adolescents, is one of the most important public health problems in developed and developing countries. As one possible way to tackle obesity, a great interest has been stimulated in understanding the relationship between different types of dietary carbohydrate and appetite regulation, body weight and body composition. The present article reviews the conclusions from recent reviews and meta-analyses on the effects of different starches and sugars on body weight management and metabolic disturbances, and provides an update of the most recent studies on this topic. From the literature reviewed in this paper, potential beneficial effects of intake of starchy foods, especially those containing slowly-digestible and resistant starches, and potential detrimental effects of high intakes of fructose become apparent. This supports the intake of whole grains, legumes and vegetables, which contain more appropriate sources of carbohydrates associated with reduced risk of cardiovascular and other chronic diseases, rather than foods rich in sugars, especially in the form of sugar-sweetened beverages.

  17. Biochemical And Genetic Modification Of Polysaccharides

    Science.gov (United States)

    Kern, Roger G.; Petersen, Gene R.; Richards, Gil F.

    1993-01-01

    Bacteriophages producing endopolysaccharase-type enzymes used to produce, isolate, and purify high yields of modified polysaccharides from polysaccharides produced by, and incorporated into capsules of, certain bacteria. Bacteriophages used in conversion of native polysaccharide materials into polymers of nearly uniform high molecular weight or, alternatively, into highly pure oligosaccharides. Also used in genetic selection of families of polysaccharides structurally related to native polysaccharide materials, but having altered properties. Resulting new polysaccharides and oligosaccharides prove useful in variety of products, including pharmaceutical chemicals, coating materials, biologically active carbohydrates, and drag-reducing additives for fluids.

  18. Lipase-catalysed acylation of starch and determination of the degree of substitution by methanolysis and GC

    Science.gov (United States)

    2010-01-01

    Background Natural polysaccharides such as starch are becoming increasingly interesting as renewable starting materials for the synthesis of biodegradable polymers using chemical or enzymatic methods. Given the complexity of polysaccharides, the analysis of reaction products is challenging. Results Esterification of starch with fatty acids has traditionally been monitored by saponification and back-titration, but in our experience this method is unreliable. Here we report a novel GC-based method for the fast and reliable quantitative determination of esterification. The method was used to monitor the enzymatic esterification of different starches with decanoic acid, using lipase from Thermomyces lanuginosus. The reaction showed a pronounced optimal water content of 1.25 mL per g starch, where a degree of substitution (DS) of 0.018 was obtained. Incomplete gelatinization probably accounts for lower conversion with less water. Conclusions Lipase-catalysed esterification of starch is feasible in aqueous gel systems, but attention to analytical methods is important to obtain correct DS values. PMID:21114817

  19. Lipase-catalysed acylation of starch and determination of the degree of substitution by methanolysis and GC

    Directory of Open Access Journals (Sweden)

    Hauer Bernhard

    2010-11-01

    Full Text Available Abstract Background Natural polysaccharides such as starch are becoming increasingly interesting as renewable starting materials for the synthesis of biodegradable polymers using chemical or enzymatic methods. Given the complexity of polysaccharides, the analysis of reaction products is challenging. Results Esterification of starch with fatty acids has traditionally been monitored by saponification and back-titration, but in our experience this method is unreliable. Here we report a novel GC-based method for the fast and reliable quantitative determination of esterification. The method was used to monitor the enzymatic esterification of different starches with decanoic acid, using lipase from Thermomyces lanuginosus. The reaction showed a pronounced optimal water content of 1.25 mL per g starch, where a degree of substitution (DS of 0.018 was obtained. Incomplete gelatinization probably accounts for lower conversion with less water. Conclusions Lipase-catalysed esterification of starch is feasible in aqueous gel systems, but attention to analytical methods is important to obtain correct DS values.

  20. Substituent distribution within cross-linked and hydroxypropylated sweet potato starch and potato starch

    NARCIS (Netherlands)

    Zhao, J.; Schols, H.A.; Chen Zenghong,; Jin Zhengyu,; Buwalda, P.L.; Gruppen, H.

    2012-01-01

    Revealing the substituents distribution within starch can help to understand the changes of starch properties after modification. The distribution of substituents over cross-linked and hydroxypropylated sweet potato starch was investigated and compared with modified potato starch. The starches were

  1. Fixation of soil surface contamination using natural polysaccharides

    International Nuclear Information System (INIS)

    Sackschewsky, M.R.

    1993-09-01

    Natural polysaccharides were evaluated as alternatives to commercially available dust-control agents for application in buried-waste and contaminated-soil remediation situations. Materials were identified and evaluated with specific criteria in mind: the materials must be environmentally benign and must not introduce any additional hazardous materials; they must be effective for at least 2 or 3 days, but they do not necessarily have to be effective for more than 2 to 3 weeks; they should be relatively resistant to light traffic; they must not interfere with subsequent soil treatment techniques, especially soil washing; and they must be relatively inexpensive. Two products, a pregelled potato starch and a mixture of carbohydrates derived from sugar beets, were selected for evaluation. Testing included small- and large-scale field demonstrations, laboratory physical property analyses, and wind-tunnel evaluations

  2. Fresh pasta quality as affected by enrichment of nonstarch polysaccharides.

    Science.gov (United States)

    Brennan, C S; Tudorica, C M

    2007-11-01

    Nonstarch polysaccharides (NSPs), both soluble and insoluble, were added to pasta doughs at levels of 2.5%, 5%, 7.5%, and 10% levels. The cooking and textural characteristics of the pastas were evaluated using a range of analytical techniques. Generally, NSP addition was found to increase the cooking losses, and reduce the protein and starch contents of the pasta. This effect was dependent on the level of NSP added and also the type (soluble or insoluble). Pasta firmness was generally reduced in relation to the level of NSP addition, although some gel-forming NSPs resulted in higher firmness values. Pasta stickiness, adhesiveness, and elasticity were also affected. The results indicate that careful selection of NSP addition is needed to ensure optimum textural and cooking characteristics in NSP enriched pasta products.

  3. Powder and compaction characteristics of pregelatinized starches.

    Science.gov (United States)

    Rojas, J; Uribe, Y; Zuluaga, A

    2012-06-01

    Pregelatinized starch is widely used as a pharmaceutical aid, especially as a filler-binder. It is known that the tableting performance of excipients could be affected by their source. The aim of this study was to evaluate the powder and tableting properties of pregelatinized starches obtained from yucca, corn and rice and compare those properties with those of Starch 1500. This material had the lowest particle size, and porosity and largest density and best flow. However, yucca starch and corn starch showed an irregular granule morphology, better compactibility and compressibility than Starch 1500. Their onset of plastic deformation and their strain rate sensitivity was comparable to that of Starch 1500. These two materials showed compact disintegration slower that Starch 1500. Conversely, rice starch showed a high elasticity, and friability, low compactibility, which are undesirable for direct compression. This study demonstrated the potential use of pregelatinized starches, especially those obtained from yucca and corn as direct compression filler-binders.

  4. Chemical Modifications of Starch: Microwave Effect

    OpenAIRE

    Lewicka, Kamila; Siemion, Przemysław; Kurcok, Piotr

    2015-01-01

    This paper presents basic methods of starch chemical modification, the effect of microwave radiation on the modification process, and the physicochemical properties of starch. It has been shown that the modifications contribute to improvement of the material performance and likewise to significant improvement of its mechanical properties. As a result, more and more extensive use of starch is possible in various industries. In addition, methods of oxidized starch and starch esters preparation ...

  5. Tailoring the structure and properties of amorphous starch blending and EB-radiation processing

    International Nuclear Information System (INIS)

    Khandal, D.; Bliard, C.; Coqueret, X.; Mikus, P.Y.; Dole, P.; Baumberger, S.

    2011-01-01

    Complete text of publication follows. Starch can be used alone and in combination with other compounds to make biodegradable articles from renewable resources. Lignins and their derivatives are good candidates for limiting the water sensitivity of starch-based materials, but they exhibit poor compatibility in blends with polysaccharides. Electron beam (EB) processing is proposed as an efficient method for inducing covalent linkages between the two constituents. Compared to unirradiated starting materials, the surface and bulk properties of EB-irradiated starch - lignin blends submitted to EB irradiation showed an interesting reduction in hydrophilicity. Radiation induced grafting of lignin models onto starch was shown to impede long-term retrogradation, with limited loss of mechanical properties. The reactivity under radiation of model blends was examined by several analytical methods. Maldi-T of mass spectrometry allowed us to propose reasonable free radical mechanisms that account for the grafting of various benzyl and cinnamyl alcohols onto maltodextrins. The presence of cinnamyl derivatives was found not only to limit degradation, but also modify the properties of the formulations (improved hydrophobicity, mechanical properties). Size exclusion chromatography and gel fraction measurements confirmed unambiguously the attachment of UV-absorbing chromophores onto the maltodextrin main chain. The combination of the obtained results demonstrates the possibility of altering in a favourable way the tensile properties of plasticized starch by applying high energy radiation to properly formulated blends including aromatic compounds like cinnamyl alcohol.

  6. Preparation of poly(vinyl alcohol)/chitosan/starch blends and studies on thermal and surface properties

    Science.gov (United States)

    Nasalapure, Anand V.; Chalannavar, Raju K.; Malabadi, Ravindra B.

    2018-05-01

    Biopolymers are abundantly available from its natural sources of extraction. Chitosan(CH) is one of the widely used natural polymer which is perspective natural polysaccharide. Natural polymer blend with synthetic polymer enhances property of the material such as polyvinyl alcohol (PVA). PVA is nontoxic degradable synthetic polymer and very good film forming polymer. In this study prepared hybrid based film by adding starch into Chitosan/PVA which slighlty increased the surface and thermal property of ternary blend film.

  7. L-lactic acid production from starch by simultaneous saccharification and fermentation in a genetically engineered Aspergillus oryzae pure culture.

    Science.gov (United States)

    Wakai, Satoshi; Yoshie, Toshihide; Asai-Nakashima, Nanami; Yamada, Ryosuke; Ogino, Chiaki; Tsutsumi, Hiroko; Hata, Yoji; Kondo, Akihiko

    2014-12-01

    Lactic acid is a commodity chemical that can be produced biologically. Lactic acid-producing Aspergillus oryzae strains were constructed by genetic engineering. The A. oryzae LDH strain with the bovine L-lactate dehydrogenase gene produced 38 g/L of lactate from 100g/L of glucose. Disruption of the wild-type lactate dehydrogenase gene in A. oryzae LDH improved lactate production. The resulting strain A. oryzae LDHΔ871 produced 49 g/L of lactate from 100g/L of glucose. Because A. oryzae strains innately secrete amylases, A. oryzae LDHΔ871 produced approximately 30 g/L of lactate from various starches, dextrin, or maltose (all at 100 g/L). To our knowledge, this is the first report describing the simultaneous saccharification and fermentation of lactate from starch using a pure culture of transgenic A. oryzae. Our results indicate that A. oryzae could be a promising host for the bioproduction of useful compounds such as lactic acid. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Polysaccharides in Human Health Care

    NARCIS (Netherlands)

    Dam, van J.E.G.; Broek, van den L.A.M.; Boeriu, C.G.

    2016-01-01

    Polysaccharides are abundant natural polymers found in plants, animals and microorganisms with exceptional properties and essential roles to sustain life. They are well known for their high nutritive value and the positive effects on our immune and digestive functions and detoxification system. The

  9. Functional properties of edible agar-based and starch-based films for food quality preservation.

    Science.gov (United States)

    Phan, The D; Debeaufort, F; Luu, D; Voilley, A

    2005-02-23

    Edible films made of agar (AG), cassava starch (CAS), normal rice starch (NRS), and waxy (glutinous) rice starch (WRS) were elaborated and tested for a potential use as edible packaging or coating. Their water vapor permeabilities (WVP) were comparable with those of most of the polysaccharide-based films and with some protein-based films. Depending on the environmental moisture pressure, the WVP of the films varies and remains constant when the relative humidity (RH) is >84%. Equilibrium sorption isotherms of these films have been measured; the Guggenheim-Anderson-de Boer (GAB) model was used to describe the sorption isotherm and contributed to a better knowledge of hydration properties. Surface hydrophobicity and wettability of these films were also investigated using the sessile drop contact angle method. The results obtained suggested the migration of the lipid fraction toward evaporation surface during film drying. Among these polysaccharide-based films, AG-based film and CAS-based film displayed more interesting mechanical properties: they are transparent, clear, homogeneous, flexible, and easily handled. NRS- and WRS-based films were relatively brittle and have a low tension resistance. Microstructure of film cross section was observed by environmental scanning electron microscopy to better understand the effect of the structure on the functional properties. The results suggest that AG-based film and CAS-based films, which show better functional properties, are promising systems to be used as food packaging or coating instead of NRS- and WRS-based films.

  10. Phosphorylated alpha(1 leads to 4) glucans as substrate for potato starch-branching enzyme I

    International Nuclear Information System (INIS)

    Vikso-Nielsen, A.; Blennow, A.; Nielsen, T.H.; Moller, B.L.

    1998-01-01

    The possible involvement of potato (Solanum tuberosum L.) starch-branching enzyme I (PSBE-I) in the in vivo synthesis of phosphorylated amylopectin was investigated in in vitro experiments with isolated PSBE-I using 33P-labeled phosphorylated and 3H end-labeled nonphosphorylated alpha(1 leads to 4) glucans as the substrates. From these radiolabeled substrates PSBE-I was shown to catalyze the formation of dual-labeled (3H/33P) phosphorylated branched polysaccharides with an average degree of polymerization of 80 to 85. The relatively high molecular mass indicated that the product was the result of multiple chain-transfer reactions. The presence of alpha(1 leads to 6) branch points was documented by isoamylase treatment and anion-exchange chromatography. Although the initial steps of the in vivo mechanism responsible for phosphorylation of potato starch remains elusive, the present study demonstrates that the enzyme machinery available in potato has the ability to incorporate phosphorylated alpha(1 leads to 4) glucans into neutral polysaccharides in an interchain catalytic reaction. Potato mini tubers synthesized phosphorylated starch from exogenously supplied 33PO4(3-) and [U-14C]Glc at rates 4 times higher than those previously obtained using tubers from fully grown potato plants. This system was more reproducible compared with soil-grown tubers and was therefore used for preparation of 33P-labeled phosphorylated alpha(1 leads to 4) glucan chains

  11. Starch and chitosan oligosaccharides as interpenetrating phases in poly(N-isopropylacrylamide) injectable gels

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Jacquelin N.; Posada, James J. [Chemistry Department, B" 5IDA Research Group, Universidad Simón Bolívar, Caracas (Venezuela, Bolivarian Republic of); Rezende, Rodrigo A. [Divisão de Tecnologias Tridimensionais–Centro de Tecnologia da Informação Renato Archer, Campinas, SP (Brazil); Sabino, Marcos A., E-mail: msabino@usb.ve [Chemistry Department, B" 5IDA Research Group, Universidad Simón Bolívar, Caracas (Venezuela, Bolivarian Republic of); Divisão de Tecnologias Tridimensionais–Centro de Tecnologia da Informação Renato Archer, Campinas, SP (Brazil)

    2014-04-01

    Thermosensitive interpenetrating gels were prepared by physically blending poly(N-isopropylacrylamide) (PNIPA) as the matrix and the following polysaccharides as interpenetrating phases: chitosan oligosaccharides (identified as QNAD and QNED) and soluble starch (STARCH). The molecular weight of the dispersed phase, the free water/bound water ratio and the thermosensitivity (transition temperature: LCST) of the gels were determined. It was found that these gels are pseudoplastic and that their viscosity depends on the molecular weight of the dispersed phase. LCST transition occurred around 35–37 °C. The morphology of the porosity of the freeze-dried samples was studied by Scanning Electron Microscopy (SEM). An in vitro test of cell hemolysis on blood agar showed that these gels are noncytotoxic. According to the results obtained, these interpenetrating gels show characteristics of an injectable material, and have a transition LCST at body temperature, which reinforces their potential to be used in the surgical field and as scaffolds for tissue engineering. - Highlights: • Physical blends were prepared to obtain thermosensitive gels PNIPA/polysaccharides. • Rheological test allowed verifying the injectability of the gels. • Gels showed a LCST ∼ 37 °C, which makes them interesting for biomedical applications. • Porosity is a function of hydrophobicity/hydrophilicity/molecular weight of phases. • The PNIPA/starch gel showed better morphology as scaffold for tissue engineering.

  12. β-Glucans and Resistant Starch Alter the Fermentation of Recalcitrant Fibers in Growing Pigs.

    Directory of Open Access Journals (Sweden)

    Sonja de Vries

    Full Text Available Interactions among dietary ingredients are often assumed non-existent when evaluating the nutritive value and health effects of dietary fiber. Specific fibers can distinctly affect digestive processes; therefore, digestibility and fermentability of the complete diet may depend on fiber types present. This study aimed to evaluate the effects of readily fermentable fibers (β-glucans and resistant starch on the degradation of feed ingredients containing more persistent, recalcitrant, fibers. Six semi-synthetic diets with recalcitrant fibers from rapeseed meal (pectic polysaccharides, xyloglucans, and cellulose or corn distillers dried grain with solubles (DDGS; (glucuronoarabinoxylans and cellulose with or without inclusion of β-glucans (6% or retrograded tapioca (40% substituted for corn starch were formulated. Six ileal-cannulated pigs (BW 28±1.4 kg were assigned to the diets according to a 6×6 Latin square. β-glucan-extract increased apparent total tract digestibility (ATTD of non-glucosyl polysaccharides (accounting for ~40% of the fiber-fraction from rapeseed meal (6%-units, P10%-units, P<0.001, indicating that the large amount of resistant starch entering the hindgut was preferentially degraded over recalcitrant fibers from rapeseed meal and DDGS, possibly related to reduced hindgut-retention time following the increased intestinal bulk. Fermentation of fiber sources was not only dependent on fiber characteristics, but also on the presence of other fibers in the diet. Hence, interactions in the gastrointestinal tract among fibrous feed ingredients should be considered when evaluating their nutritive value.

  13. Chemical Modifications of Starch: Microwave Effect

    Directory of Open Access Journals (Sweden)

    Kamila Lewicka

    2015-01-01

    Full Text Available This paper presents basic methods of starch chemical modification, the effect of microwave radiation on the modification process, and the physicochemical properties of starch. It has been shown that the modifications contribute to improvement of the material performance and likewise to significant improvement of its mechanical properties. As a result, more and more extensive use of starch is possible in various industries. In addition, methods of oxidized starch and starch esters preparation are discussed. Properties of microwave radiation and its impact on starch (with particular regard to modifications described in literature are characterized.

  14. Starch as a source, starch as a sink: the bifunctional role of starch in carbon allocation.

    Science.gov (United States)

    MacNeill, Gregory J; Mehrpouyan, Sahar; Minow, Mark A A; Patterson, Jenelle A; Tetlow, Ian J; Emes, Michael J

    2017-07-20

    Starch commands a central role in the carbon budget of the majority of plants on earth, and its biological role changes during development and in response to the environment. Throughout the life of a plant, starch plays a dual role in carbon allocation, acting as both a source, releasing carbon reserves in leaves for growth and development, and as a sink, either as a dedicated starch store in its own right (in seeds and tubers), or as a temporary reserve of carbon contributing to sink strength, in organs such as flowers, fruits, and developing non-starchy seeds. The presence of starch in tissues and organs thus has a profound impact on the physiology of the growing plant as its synthesis and degradation governs the availability of free sugars, which in turn control various growth and developmental processes. This review attempts to summarize the large body of information currently available on starch metabolism and its relationship to wider aspects of carbon metabolism and plant nutrition. It highlights gaps in our knowledge and points to research areas that show promise for bioengineering and manipulation of starch metabolism in order to achieve more desirable phenotypes such as increased yield or plant biomass. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Photochemistry of Fe(Iii)-Carboxylates in Polysaccharide-Based Materials with Tunable Mechanical Properties

    Science.gov (United States)

    Giammanco, Giuseppe E.

    We present the formulation and study of light-responsive materials based on carboxylate-containing polysaccharides. The functional groups in these natural polymers allow for strong interactions with transition metal ions such as Fe(III). The known photochemistry of hydroxycarboxylic acids in natural waters inspired us in exploring the visible light induced photochemistry of the carboxylates in these polysaccharides when coordinated to Fe(III) ions. Described in this dissertation are the design and characterization of the Fe(III)-polysaccharide materials, specifically the mechanistic aspects of the photochemistry and the effects that these reactions have on the structure of the polymer materials. We present a study of the quantitative photochemistry of different polysaccharide systems, where the presence of uronic acids was important for the photoreaction to take place. Alginate (Alg), pectate (Pec), hyaluronic acid (Hya), xanthan gum (Xan), and a polysaccharide extracted from the Noni fruit (NoniPs), were among the natural uronic acid-containing polysaccharide (UCPS) systems we analyzed. Potato starch, lacking of uronate groups, did not present any photochemistry in the presence of Fe(III); however, we were able to induce a photochemical response in this polysaccharide upon chemical manipulation of its functional groups. Important structure-function relationships were drawn from this study. The uronate moiety present in these polysaccharides is then envisioned as a tool to induce response to light in a variety of materials. Following this approach, we report the formulation of materials for controlled drug release, able to encapsulate and release different drug models only upon illumination with visible light. Furthermore, hybrid hydrogels were prepared from UPCS and non-responsive polymers. Different properties of these materials could be tuned by controlling the irradiation time, intensity and location. These hybrid gels were evaluated as scaffolds for tissue

  16. Effect of grapevine latent buds (Vitis vinifera L., cv. Merlot chilling on their starch content: biochimical and cytological approachs

    Directory of Open Access Journals (Sweden)

    Tayeb Koussa

    2001-12-01

    Full Text Available Biochimical analysis and photonic microscopy observations of starch were investigated in latent buds of Vitis vinifera L. (cv. Merlot collected during their dormancy phase and during their cold storage at 2°C. Biochimical analysis showed that starch levels of grapevine latent buds was high (70 mg/g DW. Microscopical observations confirmed this result and showed a gradient of starch content in different regions of bud in which the foliars primordiums and scales were the starch richer. Buds conservation at 2°C reduced their starch content but this decrease begun only after 9 days of chilling corresponding to the time necessary for budbreak and for the beginning of increase the bud burst ability. The hydrolysis of starch seems begun at the first in apex and then propaged to the other regions of bud. In the scales, the most exposed region to cold, storage at 2°C during 56 days induced an increase of cellular tannins content and cell walls polysaccharides. These results were discuted in relation to the increase of bud burst ability and to their cold acclimatation.

  17. Mechanical and barrier properties of starch-based films plasticized with two- or three component deep eutectic solvents.

    Science.gov (United States)

    Zdanowicz, Magdalena; Johansson, Caisa

    2016-10-20

    The aim of this work was to prepare two- and three-components deep eutectic solvents (DES) and investigate their potential as starch plasticizers. Starch/DES films were prepared via casting method. Mechanical properties, water vapor- and oxygen transmission rates were measured; additionally contact angle and moisture sorption were determined and FTIR analysis was applied on the films. Native potato starch and hydroxypropylated and oxidized starch (HOPS) with common plasticizers (e.g. polyols, urea) and DES were studied. Moreover, influence of three methods of DES introduction and concentration of plasticizer on the films properties were compared. HOPS films were prepared by two methods: as non-cured and cured samples. Some of DESs containing citrate anion exhibited crosslinking ability of polysaccharide matrix. Non-cured HOPS/DES films exhibited more favourable mechanical and barrier properties than cured analogue films. Samples prepared with unmodified potato starch had higher mechanical and barrier properties than films made with HOPS. Starch-based films plasticized with novel DESs with parallel crosslinking activity exhibited satisfactory mechanical and barrier properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Extrusion of polysaccharide nanocrystal reinforced polymer nanocomposites through compatibilization with poly(ethylene oxide).

    Science.gov (United States)

    Pereda, Mariana; El Kissi, Nadia; Dufresne, Alain

    2014-06-25

    Polysaccharide nanocrystals with a rodlike shape but with different dimensions and specific surface area were prepared from cotton and capim dourado cellulose, and with a plateletlike morphology from waxy maize starch granules. The rheological behavior of aqueous solutions of poly(ethylene oxide) (PEO) with different molecular weights when adding these nanoparticles was investigated evidencing specific interactions between PEO chains and nanocrystals. Because PEO also bears hydrophobic moieties, it was employed as a compatibilizing agent for the melt processing of polymer nanocomposites. The freeze-dried mixtures were used to prepare nanocomposite materials with a low density polyethylene matrix by extrusion. The thermal and mechanical behavior of ensuing nanocomposites was studied.

  19. Cultural condition for the formation of starchlike polysaccharide from glucose by Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Usami, S; Wang, P.Y, Taketomi, N.

    1964-01-01

    A starch like polysaccharide (I) was produced in the culture medium of A. niger during the process of citric acid fermentation from glucose under certain conditions. I could be produced in high aerobic conditions in the presence of (NH/sub 4/) SO/sub 4/ as a N source. The use of NH/sub 4/NO/sub 3/, urea, or NaNO/sub 3/ as the N sources or the addition of 2% MeOH reduced the production of I.

  20. Increasing stringiness of low-fat mozzarella string cheese using polysaccharides.

    Science.gov (United States)

    Oberg, E N; Oberg, C J; Motawee, M M; Martini, S; McMahon, D J

    2015-07-01

    When fat content of pasta filata cheese is lowered, a loss of fibrous texture occurs and low-fat (LF) mozzarella cheese loses stringiness, making it unsuitable for the manufacture of string cheese. We investigated the use of various polysaccharides that could act as fat mimetics during the stretching and extruding process to aid in protein strand formation and increase stringiness. Low-fat mozzarella cheese curd was made, salted, and then 3.6-kg batches were heated in hot (80°) 5% brine, stretched, and formed into a homogeneous mass. Hot (80°C) slurries of various polysaccharides were then mixed with the hot cheese and formed into LF string cheese using a small piston-driven extruder. Polysaccharides used included waxy corn starch, waxy rice starch, instant tapioca starch, polydextrose, xanthan gum, and guar gum. Adding starch slurries increased cheese moisture content by up to 1.6% but was not effective at increasing stringiness. Xanthan gum functioned best as a fat mimetic and produced LF string cheese that most closely visually resembled commercial string cheese made using low-moisture part skim (LMPS) mozzarella cheese without any increase in moisture content. Extent of stringiness was determined by pulling apart the cheese longitudinally and observing size, length, and appearance of individual cheese strings. Hardness was determined using a modified Warner-Bratzler shear test. When LF string cheese was made using a 10% xanthan gum slurry added at ~1%, increased consumer flavor liking was observed, with scores after 2wk of storage of 6.44 and 6.24 compared with 5.89 for the LF control cheese; although this was lower than an LMPS string cheese that scored 7.27. The 2-wk-old LF string cheeses containing xanthan gum were considered still slightly too firm using a just-about-right (JAR) test, whereas the LMPS string cheese was considered as JAR for texture. With further storage up to 8wk, all of the LF string cheeses softened (JAR score was closer to 3

  1. Research and Development of Radiation Processing of Polysaccharide for Agricultural Sector in Myanmar

    International Nuclear Information System (INIS)

    Lay, K. K.

    2015-01-01

    Myanmar is an agricultural-based country in which rice is the main staple food and present agricultural systems still follow the traditional methods that utilise the available natural resources combined with improved cultural practices. To fulfil the major needs for improving safety agricultural productivity in the country, and to apply radiation technology for useful products in agriculture, current research is based on radiation processing of polysaccharide for production of super water absorbents and plant growth promoter (liquid fertilizer) using Gamma Radiation. Corn starch, Brown seaweed and Rice straw cellulose were used as polysaccharide in this research work. Morphological structures of products super water absorbents from corn starch and rice straw cellulose were analyzed by Scanning Electron Microscope (SEM). Fourier Transfer Infrared (FTIR) was used to analyze the changes of chemical structure of the original polysaccharides and products (super water absorbents and plant growth promoter). The effect of radiation dose and monomer concentration on grafting efficiency, gel fraction, crosslink density, and swelling degree were studied for two types of super water absorbent. It was found that the grafting efficiency and gel fraction increased with increasing in radiation dose as well as the higher in crosslink density, which is directly proportional to increasing in radiation dose, led to decreasing in swelling degree. Decreasing molecular weights of the irradiated seaweed liquid fertilizer (SLF) were generally found with increasing radiation doses. To study the water retention properties of super water absorbents and growth promotion effect of seaweed liquid fertilizer (SLF), field tests were done. This research showed that radiation technology is very useful not only for agriculture sector but also for environmental monitoring since the agricultural waste such as rice straw was used as polysaccharide in this research work. (author)

  2. Preparation and characterization of dialdehyde starch urea (DASU ...

    African Journals Online (AJOL)

    Dialdehyde starch urea (DASU) was prepared by the reaction of dialdehyde starch (DAS) from periodate oxidized cassava starch with urea, which was then used to adsorb Co(II), Pb(II) and Zn(II) ions from aqueous solution. Starch modified starches and starch complexes were characterized by Fourier transform infrared ...

  3. Physicochemical characterization of starches from seven improved ...

    African Journals Online (AJOL)

    SARAH

    2014-01-31

    Jan 31, 2014 ... Key words: Cassava, starch, functional properties, industrial utilization. ... in demand for starch (Davis et al., 2002). Potato, maize, wheat and cassava are the major ... ambient temperature and stored at 4 °C for 4 weeks.

  4. Rheological and microstructural properties of Irradiated starch

    International Nuclear Information System (INIS)

    Atrous Turki, Hager

    2011-01-01

    Gamma irradiation ia s fast and efficient method to improve the functional properties of straches. Wheat and potato starches were submitted, in the present study, at 3,5,10 and 20 kGy radiation dose. The changes induced by irradiation on the rheological properties of these starches showed a decrease in the viscosity with increasing radiation dose. Chemicals bond's hydrolysis has been induced by free radicals that have been identified by EPR. Wheat starch presents five EPR signals after irradiation, whiles potato starch has a weak EPR signal. On the other hand, irradiation caused decrease in amylose content. This decrease is more pronounced in potato starch. Dry irradiated starch's MEB revealed no change in the shape, size and distribution of the granules. While, the observation of wheat starch allowed the complete disappearance of the granular structure and the dissolution of its macromolecules after irradiation which justifies the significant decrease in wheat starch's viscosity irradiated at 20 kGy.

  5. Effect of starch isolation method on properties of sweet potato starch

    Directory of Open Access Journals (Sweden)

    A. SURENDRA BABU

    2014-08-01

    Full Text Available Isolation method of starch with different agents influences starch properties, which provide attention for studying the most appropriate method for isolation of starch. In the present study sweet potato starch was isolated by Sodium metabisulphate (M1, Sodium chloride (M2, and Distilled water (M3 methods and these were assessed for functional, chemical, pasting and structural properties. M3 yielded the greatest recovery of starch (10.20%. Isolation methods significantly changed swelling power and pasting properties but starches exhibited similar chemical properties. Sweet potato starches possessed C-type diffraction pattern. Small size granules of 2.90 μm were noticed in SEM of M3 starch. A high degree positive correlation was found between ash, amylose, and total starch content. The study concluded that isolation methods brought changes in yield, pasting and structural properties of sweet potato starch.

  6. Diagnostic radio labelled polysaccharide derivatives

    International Nuclear Information System (INIS)

    Milbrath, D.S.; Ferber, R.H.; Barnett, W.E.

    1982-01-01

    A radiopharmaceutical compound for diagnosing blood clots is claimed. It is the reaction product of a compound characterized by a water-soluble polysaccharide moiety having an average of at least 0.25 anionic group per monosaccharide unit, and at least one chelating group derived from the group consisting of amino acids, substituted cyclic acid anhydrides, and carbon disulfide; and a radioactive tracer metal compound selected from In-111, Tc-99m, Cr-51, Ga-68, and a reduced pertechnetate compound

  7. ( Phaseolus lunatus ) starch as a tablet disintegrant

    African Journals Online (AJOL)

    ) was evaluated. The starch from the seeds was extracted and its disintegrant ability was compared with that of maize starch BP in paracetamol based tablets at concentrations of 0, 2.5, 5, 7.5 and 10 %w/w. The following properties of the starch ...

  8. Kinetic modelling of enzymatic starch hydrolysis

    NARCIS (Netherlands)

    Bednarska, K.A.

    2015-01-01

    Kinetic modelling of enzymatic starch hydrolysis – a summary

    K.A. Bednarska

    The dissertation entitled ‘Kinetic modelling of enzymatic starch hydrolysis’ describes the enzymatic hydrolysis and kinetic modelling of liquefaction and saccharification of wheat starch.

  9. Properties of retrograded and acetylated starch produced via starch extrusion or starch hydrolysis with pullulanase.

    Science.gov (United States)

    Kapelko, M; Zięba, T; Gryszkin, A; Styczyńska, M; Wilczak, A

    2013-09-12

    The aim of the present study was to determine the impact of serial modifications of starch, including firstly starch extrusion or hydrolysis with pullulanase, followed by retrogradation (through freezing and defrosting of pastes) and acetylation (under industrial conditions), on its susceptibility to amylolysis. The method of production had a significant effect on properties of the resultant preparations, whilst the direction and extent of changes depended on the type of modification applied. In the produced starch esters, the degree of substitution, expressed by the per cent of acetylation, ranged from 3.1 to 4.4 g/100 g. The acetylation had a significant impact on contents of elements determined with the atomic emission spectrometry, as it contributed to an increased Na content and decreased contents of Ca and K. The DSC thermal characteristics enabled concluding that the modifications caused an increase in temperatures and a decrease in heat of transition (or its lack). The acetylation of retrograded starch preparations increased their solubility in water and water absorbability. The modifications were found to exert various effects on the rheological properties of pastes determined based on the Brabender's pasting characteristics and flow curves determined with the use of an oscillatory-rotating viscosimeter. All starch acetates produced were characterized by ca. 40% resistance to amylolysis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Starch Catabolism by a Prominent Human Gut Symbiont Is Directed by the Recognition of Amylose Helices

    Energy Technology Data Exchange (ETDEWEB)

    Koropatkin, Nicole M.; Martens, Eric C.; Gordon, Jeffrey I.; Smith, Thomas J. (WU); (Danforth)

    2009-01-12

    The human gut microbiota performs functions that are not encoded in our Homo sapiens genome, including the processing of otherwise undigestible dietary polysaccharides. Defining the structures of proteins involved in the import and degradation of specific glycans by saccharolytic bacteria complements genomic analysis of the nutrient-processing capabilities of gut communities. Here, we describe the atomic structure of one such protein, SusD, required for starch binding and utilization by Bacteroides thetaiotaomicron, a prominent adaptive forager of glycans in the distal human gut microbiota. The binding pocket of this unique {alpha}-helical protein contains an arc of aromatic residues that complements the natural helical structure of starch and imposes this conformation on bound maltoheptaose. Furthermore, SusD binds cyclic oligosaccharides with higher affinity than linear forms. The structures of several SusD/oligosaccharide complexes reveal an inherent ligand recognition plasticity dominated by the three-dimensional conformation of the oligosaccharides rather than specific interactions with the composite sugars.

  11. Botanical polysaccharides: macrophage immunomodulation and therapeutic potential.

    Science.gov (United States)

    Schepetkin, Igor A; Quinn, Mark T

    2006-03-01

    Botanical polysaccharides exhibit a number of beneficial therapeutic properties, and it is thought that the mechanisms involved in these effects are due to the modulation of innate immunity and, more specifically, macrophage function. In this review, we summarize our current state of understanding of the macrophage modulatory effects of botanical polysaccharides isolated from a wide array of different species of flora, including higher plants, mushrooms, lichens and algae. Overall, the primary effect of botanical polysaccharides is to enhance and/or activate macrophage immune responses, leading to immunomodulation, anti-tumor activity, wound-healing and other therapeutic effects. Furthermore, botanical and microbial polysaccharides bind to common surface receptors and induce similar immunomodulatory responses in macrophages, suggesting that evolutionarily conserved polysaccharide structural features are shared between these organisms. Thus, the evaluation of botanical polysaccharides provides a unique opportunity for the discovery of novel therapeutic agents and adjuvants that exhibit beneficial immunomodulatory properties.

  12. Polysaccharide-Based Micelles for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Nan Zhang

    2013-05-01

    Full Text Available Delivery of hydrophobic molecules and proteins has been an issue due to poor bioavailability following administration. Thus, micelle carrier systems are being investigated to improve drug solubility and stability. Due to problems with toxicity and immunogenicity, natural polysaccharides are being explored as substitutes for synthetic polymers in the development of new micelle systems. By grafting hydrophobic moieties to the polysaccharide backbone, self-assembled micelles can be readily formed in aqueous solution. Many polysaccharides also possess inherent bioactivity that can facilitate mucoadhesion, enhanced targeting of specific tissues, and a reduction in the inflammatory response. Furthermore, the hydrophilic nature of some polysaccharides can be exploited to enhance circulatory stability. This review will highlight the advantages of polysaccharide use in the development of drug delivery systems and will provide an overview of the polysaccharide-based micelles that have been developed to date.

  13. Physicochemical properties of starches isolated from pumpkin compared with potato and corn starches.

    Science.gov (United States)

    Przetaczek-Rożnowska, Izabela

    2017-08-01

    The aim of the study was to characterize the selected physicochemical, thermal and rheological properties of pumpkin starches and compared with the properties of potato and corn starches used as control samples. Pumpkin starches could be used in the food industry as a free gluten starch. Better thermal and rheological properties could contribute to reduce the costs of food production. The syneresis of pumpkin starches was similar to that of potato starch but much lower than that for corn starch. Pasting temperatures of pumpkin starches were lower by 17-21.7°C and their final viscosities were over 1000cP higher than corn paste, but were close to the values obtained for potato starch. The thermodynamic characteristic showed that the transformation temperatures of pumpkin starches were lower than those measured for control starches. A level of retrogradation was much lower in pumpkin starch pastes (32-48%) than was in the case of corn (59%) or potato (77%) starches. The pumpkin starches gels were characterized by a much greater hardness, cohesiveness and chewiness, than potato or corn starches gels. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Physical Stability of Octenyl Succinate-Modified Polysaccharides and Whey Proteins for Potential Use as Bioactive Carriers in Food Systems.

    Science.gov (United States)

    Puerta-Gomez, Alex F; Castell-Perez, M Elena

    2015-06-01

    The high cost and potential toxicity of biodegradable polymers like poly(lactic-co-glycolic)acid (PLGA) has increased the interest in natural and modified biopolymers as bioactive carriers. This study characterized the physical stability (water sorption and state transition behavior) of selected starch and proteins: octenyl succinate-modified depolymerized waxy corn starch (DWxCn), waxy rice starch (DWxRc), phytoglycogen, whey protein concentrate (80%, WPC), whey protein isolate (WPI), and α-lactalbumin (α-L) to determine their potential as carriers of bioactive compounds under different environmental conditions. After enzyme modification and particle size characterization, glass transition temperature and moisture isotherms were used to characterize the systems. DWxCn and DWxRc had increased water sorption compared to native starch. The level of octenyl succinate anhydrate (OSA) modification (3% and 7%) did not reduce the water sorption of the DWxCn and phytoglycogen samples. The Guggenheim-Andersen-de Boer model indicated that native waxy corn had significantly (P whey proteins had higher glass transition temperature (Tg) values. On the other hand, depolymerized waxy starches at 7%-OSA modification had a "melted" appearance when exposed to environments with high relative humidity (above 70%) after 10 days at 23 °C. The use of depolymerized and OSA-modified polysaccharides blended with proteins created more stable blends of biopolymers. Hence, this biopolymer would be suitable for materials exposed to high humidity environments in food applications. © 2015 Institute of Food Technologists®

  15. Preparation and physicochemistry properties of smart edible films based on gelatin-starch nanoparticles.

    Science.gov (United States)

    Tao, Furong; Shi, Chengmei; Cui, Yuezhi

    2018-04-24

    Among the natural polymers able to form edible films, starch and gelatin (Gel) are potential sources. Corn starch is a polysaccharide widely produced around the world, and gelatin differs from other hydrocolloids as a fully digestible protein, containing nearly all the essential amino acids, except tryptophan. Based on this, with advantages such as abundance, relatively low cost, biodegradability, and edibility, studies considering alternative systems for food protection that utilize biopolymers have increased significantly in the recent years. A novel macromolecular crosslinker Starch-BTCAD-NHS (starch - butanetetracarboxylic acid dianhydride - N-hydroxysuccinimide, SBN) was successfully prepared to modify gelatin film. Compared with the blank gelatin films, the resulting SBN-Gel films exhibited the improved surface hydrophobicity, the higher tense strength and elongation-at-break, the lower Young's modulus values, the greater opacity, the poorer water vapor uptake properties and better anti-degradation capacity. The modified gelatin film material with advanced properties obtained in this work was safe, stable eco-friendly and biorefractory, and was an ideal choice to form a packaging in food industry. Also, the crosslinking SBN-gelatin coating was effective in reducing the corruption and extending the shelf life for the peeled apple substantially. This article is protected by copyright. All rights reserved.

  16. Advances on Bioactive Polysaccharides from Medicinal Plants.

    Science.gov (United States)

    Xie, Jian-Hua; Jin, Ming-Liang; Morris, Gordon A; Zha, Xue-Qiang; Chen, Han-Qing; Yi, Yang; Li, Jing-En; Wang, Zhi-Jun; Gao, Jie; Nie, Shao-Ping; Shang, Peng; Xie, Ming-Yong

    2016-07-29

    In recent decades, the polysaccharides from the medicinal plants have attracted a lot of attention due to their significant bioactivities, such as anti-tumor activity, antioxidant activity, anticoagulant activity, antidiabetic activity, radioprotection effect, anti-viral activity, hypolipidemic and immunomodulatory activities, which make them suitable for medicinal applications. Previous studies have also shown that medicinal plant polysaccharides are non-toxic and show no side effects. Based on these encouraging observations, most researches have been focusing on the isolation and identification of polysaccharides, as well as their bioactivities. A large number of bioactive polysaccharides with different structural features and biological effects from medicinal plants have been purified and characterized. This review provides a comprehensive summary of the most recent developments in physiochemical, structural features and biological activities of bioactive polysaccharides from a number of important medicinal plants, such as polysaccharides from Astragalus membranaceus, Dendrobium plants, Bupleurum, Cactus fruits, Acanthopanax senticosus, Angelica sinensis (Oliv.) Diels, Aloe barbadensis Miller, and Dimocarpus longan Lour. Moreover, the paper has also been focused on the applications of bioactive polysaccharides for medicinal applications. Recent studies have provided evidence that polysaccharides from medicinal plants can play a vital role in bioactivities. The contents and data will serve as a useful reference material for further investigation, production, and application of these polysaccharides in functional foods and therapeutic agents.

  17. Maize starch biphasic pasting curves

    CSIR Research Space (South Africa)

    Nelles, EM

    2000-05-01

    Full Text Available (150–500 rev/min). The second pasting peak is attributed to the formation of complexes between amylose and low levels of lipid present in maize starch. When lipid was partially removed by extraction with methanol-chloroform (1: 3 v/v), the second...

  18. Resistant starch: promise for improving human health.

    Science.gov (United States)

    Birt, Diane F; Boylston, Terri; Hendrich, Suzanne; Jane, Jay-Lin; Hollis, James; Li, Li; McClelland, John; Moore, Samuel; Phillips, Gregory J; Rowling, Matthew; Schalinske, Kevin; Scott, M Paul; Whitley, Elizabeth M

    2013-11-01

    Ongoing research to develop digestion-resistant starch for human health promotion integrates the disciplines of starch chemistry, agronomy, analytical chemistry, food science, nutrition, pathology, and microbiology. The objectives of this research include identifying components of starch structure that confer digestion resistance, developing novel plants and starches, and modifying foods to incorporate these starches. Furthermore, recent and ongoing studies address the impact of digestion-resistant starches on the prevention and control of chronic human diseases, including diabetes, colon cancer, and obesity. This review provides a transdisciplinary overview of this field, including a description of types of resistant starches; factors in plants that affect digestion resistance; methods for starch analysis; challenges in developing food products with resistant starches; mammalian intestinal and gut bacterial metabolism; potential effects on gut microbiota; and impacts and mechanisms for the prevention and control of colon cancer, diabetes, and obesity. Although this has been an active area of research and considerable progress has been made, many questions regarding how to best use digestion-resistant starches in human diets for disease prevention must be answered before the full potential of resistant starches can be realized.

  19. Preparation, characterization and utilization of starch nanoparticles.

    Science.gov (United States)

    Kim, Hee-Young; Park, Sung Soo; Lim, Seung-Taik

    2015-02-01

    Starch is one of the most abundant biopolymers in nature and is typically isolated from plants in the form of micro-scale granules. Recent studies reported that nano-scale starch particles could be readily prepared from starch granules, which have unique physical properties. Because starch is environmentally friendly, starch nanoparticles are suggested as one of the promising biomaterials for novel utilization in foods, cosmetics, medicines as well as various composites. An overview of the most up-to-date information regarding the starch nanoparticles including the preparation processes and physicochemical characterization will be presented in this review. Additionally, the prospects and outlooks for the industrial utilization of starch nanoparticles will be discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Cassava starch in the Brazilian food industry

    Directory of Open Access Journals (Sweden)

    Ivo Mottin Demiate

    2011-06-01

    Full Text Available Cassava starch is a valued raw material for producing many kinds of modified starches for food applications. Its physicochemical properties, as well as its availability, have made it an interesting and challenging ingredient for the food industry. In the present work, food grade modified cassava starches were purchased from producers and analyzed for selected physicochemical characteristics. Samples of sour cassava starch were included, as well as one sample of native cassava starch. Results showed that almost all modified starches were resistant to syneresis, produced pastes more stable to stirred cooking, and some of them were difficult to cook. The sour cassava starches presented high acidity and resulted in clear and unstable pastes during stirred cooking, susceptible to syneresis.

  1. Structure, function and regulation of the enzymes in the starch biosynthetic pathway.

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, Jim

    2013-11-30

    Starch is the major reserve polysaccharide in nature and accounts for the majority of the caloric intact of humans. It is also gaining importance as a renewable and biodegradable industrial material. There is burgeoning interest in increasing the amount and altering the properties of the plant starches by plant genetic modification. A rational approach to this effort will require a detailed, atomic-level understanding of the enzymatic processes that produce the starch granule. The starch granule is a complex particle made up of alternating layers of crystalline and amorphous lamellae. It consists of two types of polymer, amylose, a polymer of relatively long chains of α-1,4-linked glucans that contain virtually no branches, and amylopectin, which is highly branched and contains much shorter chains. This complex structure is synthesized by the coordinate activities of the starch synthases (SS), which elongate the polysaccharide chain by addition of glucose units via α-1,4 linkages using ADP- glucose as a donor, and branching enzymes (BE), which branch the polysaccharide chain by cleavage of α₋1,4 linkages and subsequent re-attachment via α₋1,6 linkages. Several isoforms of both starch synthase (SS) and branching enzyme (BE) are found in plants, including SSI, SSII, SSIII and granule- bound SS (GBSS), and SBEI, SBEIIa and SBEIIb. These isoforms have different activities and substrate and product specificities and play different roles in creating the granule and determining the properties of the resulting starch. The overarching goal of this proposal is to begin to understand the regulation and specificities of these enzymes at the atomic level. High-resolution X-ray structures of these enzymes bound to substrates and products will be determined to visualize the molecular interactions responsible for the properties of the enzymes. Hypotheses regarding these issues will then be tested using mutagenesis and enzyme assays. To date, we have determined the

  2. Mechanical, barrier and morphological properties of starch nanocrystals-reinforced pea starch films.

    Science.gov (United States)

    Li, Xiaojing; Qiu, Chao; Ji, Na; Sun, Cuixia; Xiong, Liu; Sun, Qingjie

    2015-05-05

    To characterize the pea starch films reinforced with waxy maize starch nanocrystals, the mechanical, water vapor barrier and morphological properties of the composite films were investigated. The addition of starch nanocrystals increased the tensile strength of the composite films, and the value of tensile strength of the composite films was highest when starch nanocrystals content was 5% (w/w). The moisture content (%), water vapor permeability, and water-vapor transmission rate of the composite films significantly decreased as starch nanocrystals content increased. When their starch nanocrystals content was 1-5%, the starch nanocrystals dispersed homogeneously in the composite films, resulting in a relatively smooth and compact film surface and better thermal stability. However, when starch nanocrystals content was more than 7%, the starch nanocrystals began to aggregate, which resulted in the surface of the composite films developing a longitudinal fibrous structure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Physicochemical properties of starches and proteins in alkali-treated mungbean and cassava starch granules.

    Science.gov (United States)

    Israkarn, Kamolwan; Na Nakornpanom, Nantarat; Hongsprabhas, Parichat

    2014-05-25

    This study explored the influences of envelope integrity of cooked starch granules on physicochemical and thermophysical properties of mungbean and cassava starches. Alkali treatment was used to selectively leach amylose from the amorphous region of both starches and partially fragmented starch molecules into lower-molecular-weight polymers. It was found that despite the loss of 40% of the original content of amylose, both mungbean and cassava starches retained similar crystallinities, gelatinization temperature ranges, and pasting profiles compared to the native starches. However, the loss of granule-bound starch synthases during alkali treatment and subsequent alkali cooking in excess water played significant roles in determining granular disintegration. The alterations in envelope integrity due to the negative charge repulsion among polymers within the envelope of swollen granules, and the fragmentation of starch molecules, were responsible for the alterations in thermophysical properties of mungbean and cassava starches cooked under alkaline conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Mechanical properties and solubility in water of corn starch-collagen composite films: Effect of starch type and concentrations.

    Science.gov (United States)

    Wang, Kun; Wang, Wenhang; Ye, Ran; Liu, Anjun; Xiao, Jingdong; Liu, Yaowei; Zhao, Yana

    2017-02-01

    This study investigated the possibility of enhancing the properties of collagen with three different maize starches: waxy maize starch, normal starch, and high amylose starch. Scanning electron microscopy images revealed that starch-collagen films had a rougher surface compared to pure collagen films which became smoother upon heating. Amylose starch and normal starch increased the tensile strength of unheated collagen films in both dry and wet states, while all starches increased tensile strength of collagen film by heating. Depending upon the amylose content and starch concentrations, film solubility in water decreased with the addition of starch. DSC thermograms demonstrated that addition of all starches improved the thermal stability of the collagen film. Moreover, X-ray diffraction results indicated that except for high amylose starch, the crystallinity of both starch and collagen was significantly decreased when subject to heating. FTIR spectra indicated that intermolecular interactions between starch and collagen were enhanced upon heating. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. ENZYME RESISTANCE OF GENETICALLY MODIFIED STARCH POTATOES

    Directory of Open Access Journals (Sweden)

    A. Sh. Mannapova

    2015-01-01

    Full Text Available Here in this article the justification of expediency of enzyme resistant starch use in therapeutic food products is presented . Enzyme resistant starch is capable to resist to enzymatic hydrolysis in a small intestine of a person, has a low glycemic index, leads to decrease of postprandial concentration of glucose, cholesterol, triglycerides in blood and insulin reaction, to improvement of sensitivity of all organism to insulin, to increase in sense of fulness and to reduction of adjournment of fats. Resistant starch makes bifidogenшс impact on microflora of a intestine of the person, leads to increase of a quantity of lactobacillus and bifidobacterium and to increased production of butyric acid in a large intestine. In this regard the enzyme resistant starch is an important component in food for prevention and curing of human diseases such as diabetes, obesity, colitis, a cancer of large and direct intestine. One method is specified by authors for imitation of starch digestion in a human body. This method is based on the definition of an enzyme resistance of starch in vitro by its hydrolysis to glucose with application of a glucoamylase and digestive enzyme preparation Pancreatin. This method is used in researches of an enzyme resistance of starch, of genetically modified potato, high amylose corn starch Hi-Maize 1043 and HYLON VII (National Starch Food Innovation, USA, amylopectin and amylose. It is shown that the enzyme resistance of the starch emitted from genetically modified potatoes conforms to the enzyme resistance of the high amylose corn starch “Hi-Maize 1043 and HYLON VII starch”, (National Starch Food Innovation, the USA relating to the II type of enzyme resistant starch. It is established that amylopectin doesn't have the enzyme resistant properties. The results of researches are presented. They allow us to make the following conclusion: amylose in comparison with amylopectin possesses higher enzyme resistance and gives to

  6. Barley grain constituents, starch composition, and structure affect starch in vitro enzymatic hydrolysis.

    Science.gov (United States)

    Asare, Eric K; Jaiswal, Sarita; Maley, Jason; Båga, Monica; Sammynaiken, Ramaswami; Rossnagel, Brian G; Chibbar, Ravindra N

    2011-05-11

    The relationship between starch physical properties and enzymatic hydrolysis was determined using ten different hulless barley genotypes with variable carbohydrate composition. The ten barley genotypes included one normal starch (CDC McGwire), three increased amylose starches (SH99250, SH99073, and SB94893), and six waxy starches (CDC Alamo, CDC Fibar, CDC Candle, Waxy Betzes, CDC Rattan, and SB94912). Total starch concentration positively influenced thousand grain weight (TGW) (r(2) = 0.70, p starch concentration (r(2) = -0.80, p hydrolysis of pure starch (r(2) = -0.67, p starch concentration (r(2) = 0.46, p starch (RS) in meal and pure starch samples. The rate of starch hydrolysis was high in pure starch samples as compared to meal samples. Enzymatic hydrolysis rate both in meal and pure starch samples followed the order waxy > normal > increased amylose. Rapidly digestible starch (RDS) increased with a decrease in amylose concentration. Atomic force microscopy (AFM) analysis revealed a higher polydispersity index of amylose in CDC McGwire and increased amylose genotypes which could contribute to their reduced enzymatic hydrolysis, compared to waxy starch genotypes. Increased β-glucan and dietary fiber concentration also reduced the enzymatic hydrolysis of meal samples. An average linkage cluster analysis dendrogram revealed that variation in amylose concentration significantly (p starch concentration in meal and pure starch samples. RS is also associated with B-type granules (5-15 μm) and the amylopectin F-III (19-36 DP) fraction. In conclusion, the results suggest that barley genotype SH99250 with less decrease in grain weight in comparison to that of other increased amylose genotypes (SH99073 and SH94893) could be a promising genotype to develop cultivars with increased amylose grain starch without compromising grain weight and yield.

  7. Influence of cultivar, cooking, and storage on cell-wall polysaccharide composition of winter squash (Cucurbita maxima).

    Science.gov (United States)

    Ratnayake, R M Sunil; Melton, Laurence D; Hurst, Paul L

    2003-03-26

    Changes in the cell-wall polysaccharides (CWP) of the edible tissues of four winter squash cultivars during storage and after cooking were investigated. A procedure for isolating cell walls of tissues containing high levels of starch was used. The starch-free CWP were sequentially fractionated using CDTA, dilute Na(2)CO(3), and 4 M KOH. Cellulose made up 40-42% of the total CWP for three cultivars (Delica, CF 2, and CF 4) at harvest but was 35% in the softer Red Warren. The pectic polysaccharides of Delica, CF 2, and CF 4 cell walls are more branched than those from Red Warren squash. The higher proportion of uronic acid in the pectic polysaccharides of Red Warren squash correlates with its lower firmness. Cooking resulted in an increase in the water-soluble pectins and a decrease in the pectins associated with cellulose. The total CWP content of the squash cultivars remained unchanged for up to 2 months of storage and then markedly decreased between 2 and 3 months of storage. The galactose content of Delica and Red Warren cell walls remained relatively constant from harvest to 2 months of storage and then decreased markedly during 2-3 months of storage.

  8. Leucine, starch and bicarbonate utilization by specific bacterial groups in surface shelf waters off Galicia (NW Spain).

    Science.gov (United States)

    Teira, E; Hernando-Morales, V; Guerrero-Feijóo, E; Varela, M M

    2017-06-01

    The capability of different bacterial populations to degrade abundant polymers, such as algal-derived polysaccharides, or to utilize preferentially polymers over monomers, remains largely unknown. In this study, microautoradiography was combined with fluorescence in situ hybridization (MAR-FISH) to evaluate the ability of Bacteroidetes, SAR11, Roseobacter spp., Gammaproteobacteria and SAR86 cells to use bicarbonate, leucine and starch under natural light conditions at two locations in shelf surface waters off NW Spain. The percentage of cells incorporating bicarbonate was relatively high (mean 32% ± 4%) and was positively correlated with the intensity of solar radiation. The proportion of cells using starch (mean 56% ± 4%) or leucine (mean 47% ± 4%) was significantly higher than that using bicarbonate. On average, SAR11, Roseobacter spp. and Gammaproteobacteria showed a similarly high percentage of cells using leucine (47%-65% of hybridized cells) than using starch (51%-64% of hybridized cells), while Bacteroidetes and SAR86 cells preferentially used starch (53% of hybridized cells) over leucine (34%-40% of hybridized cells). We suggest that the great percentage of bacteria using starch is related to a high ambient availability of polymers associated to algal cell lysis, which, in turn, weakens the short-term coupling between phytoplankton release and bacterial production. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Structural basis for the roles of starch and sucrose in homo-exopolysaccharide formation by Lactobacillus reuteri 35-5.

    Science.gov (United States)

    Bai, Yuxiang; Dobruchowska, Justyna M; van der Kaaij, Rachel M; Gerwig, Gerrit J; Dijkhuizen, Lubbert

    2016-10-20

    Lactic acid bacteria (LAB) produce exopolysaccharides (EPS) that are important for biofilm formation in the mammalian oral cavity and gastrointestinal tract. Sucrose is a well-known substrate for homo-EPS formation by Lactobacillus reuteri glucansucrases (GS). Starch is the main fermentable carbohydrate in the human diet, and often consumed simultaneously with sucrose. Recently we have characterized L. reuteri strains that also possess 4,6-α-glucanotransferases (4,6-α-GTases) that act on starch yielding isomalto-/malto-polysaccharides. In this study we have characterized the EPS formed by L. reuteri 35-5 cells and enzymes from sucrose plus starch. The data show that both in vivo and in vitro the L. reuteri 35-5 GS and 4,6-α-GTase enzymes, incubated with sucrose plus starch, cross-react and contribute to synthesis of the final hybrid EPS products. This may have strong effects on the EPS functional properties, influence biofilm formation, and affect the relationship between dietary intake of sucrose and starch, and dental caries formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Bioactive polysaccharides and gut microbiome (abstract)

    Science.gov (United States)

    Many polysaccharides have shown the ability to reduce plasma cholesterol or postprandial glycemia. Viscosity in the small intestine seems to be required to slow glucose uptake. Cereal mixed linkage beta-glucans, psyllium, glucomannans, and other polysaccharides also seem to require higher molecula...

  11. Two dimensional NMR studies of polysaccharides

    International Nuclear Information System (INIS)

    Byrd, R.A.; Egan, W.; Summers, M.F.

    1987-01-01

    Polysaccharides are very important components in the immune response system. Capsular polysaccharides and lipopolysaccharides occupy cell surface sites of bacteria, play key roles in recognition and some have been used to develop vaccines. Consequently, the ability to determine chemical structures of these systems is vital to an understanding of their immunogenic action. The authors have been utilizing recently developed two-dimensional homonuclear and heteronuclear correlation spectroscopy for unambiguous assignment and structure determination of a number of polysaccharides. In particular, the 1 H-detected heteronuclear correlation experiments are essential to the rapid and sensitive determination of these structures. Linkage sites are determined by independent polarization transfer experiments and multiple quantum correlation experiments. These methods permit the complete structure determination on very small amounts of the polysaccharides. They present the results of a number of structural determinations and discuss the limits of these experiments in terms of their applications to polysaccharides

  12. In vitro prebiotic effects of seaweed polysaccharides

    Science.gov (United States)

    Chen, Xiaolin; Sun, Yuhao; Hu, Linfeng; Liu, Song; Yu, Huahua; Xing, Rong'e.; Li, Rongfeng; Wang, Xueqin; Li, Pengcheng

    2017-09-01

    Although prebiotic activities of alginate and agar oligosaccharides isolated from seaweeds have been reported, it remains unknown whether seaweed polysaccharides have prebiotic activity. In this study, we isolated polysaccharides from four species of seaweeds, such as Grateloupia filicina (GFP), Eucheuma spinosum (ESP), Ulva pertusa (UPP), and Ascophyllum nodosum (ANP), and characterized their structures and prebiotic effects in vitro. The results showed that these polysaccharides were different in total sugar and sulfate contents as well as monosaccharide composition. GFP and ESP significantly promoted bifidobacterium proliferation and 0.1% ESP and 0.4% GFP resulted in the highest proliferation rates of beneficial bacteria, whereas UPP and ANP inhibited the growth of beneficial bacteria at all tested concentrations (0.1%-0.5%). The different behaviors of the four seaweed-originated polysaccharides might be reflected by differences in monosaccharide composition and structure. Therefore, polysaccharides isolated from GFP and ESP could be utilized as prebiotics. However, more studies must be carried out in vivo.

  13. Tracking polysaccharides through the brewing process

    NARCIS (Netherlands)

    Fangel, Jonatan U.; Eiken, Jens; Sierksma, Aafje; Schols, Henk A.; Willats, William G.T.; Harholt, Jesper

    2018-01-01

    Brewing is a highly complex stepwise process that starts with a mashing step during which starch is gelatinized and converted into oligo- and/or monosaccharides by enzymes and heat. The starch is mostly degraded and utilised during the fermentation process, but grains and hops both contain

  14. Microbial production of raw starch digesting enzymes | Sun | African ...

    African Journals Online (AJOL)

    Raw starch digesting enzymes refer to enzymes that can act directly on raw starch granules below the gelatinization temperature of starch. With the view of energy-saving, a worldwide interest has been focused on raw starch digesting enzymes in recent years, especially since the oil crisis of 1973. Raw starch digesting ...

  15. A broader role for AmyR in Aspergillus niger: regulation of the utilisation of D-glucose or D-galactose containing oligo- and polysaccharides.

    Science.gov (United States)

    vanKuyk, Patricia A; Benen, Jaques A E; Wösten, Han A B; Visser, Jaap; de Vries, Ronald P

    2012-01-01

    AmyR is commonly considered a regulator of starch degradation whose activity is induced by the presence of maltose, the disaccharide building block of starch. In this study, we demonstrate that the role of AmyR extends beyond starch degradation. Enzyme activity assays, genes expression analysis and growth profiling on D-glucose- and D-galactose-containing oligo- and polysaccharides showed that AmyR regulates the expression of some of the Aspergillus niger genes encoding α- and β-glucosidases, α- and β- galactosidases, as well as genes encoding α-amlyases and glucoamylases. In addition, we provide evidence that D-glucose or a metabolic product thereof may be the inducer of the AmyR system in A. niger and not maltose, as is commonly assumed.

  16. Application of radiation technology in starch modification

    International Nuclear Information System (INIS)

    Chen Huiyuan; Peng Zhigang; Ding Zhongmin; Lu Jiajiu

    2007-01-01

    In order to commercialize the radiation modification of starch, corn starch was irradiated with different dose of 60 Co gamma radiations. Some basic physical and chemical properties of the resulted modified starch paste were measured with emphasis on the viscosity stability and tensile strength. The results indicate that irradiation of corn starch with a dose of 4-10 kGy can decrease its viscosity to 5-14 mPa·s, and the tensile strength can meet the standard set up for textile paste. In comparison with chemical modification for starch, radiation modification is simpler in technology, more convenient in operation, more stable in modification quality, and easier to control. The mechanism of radiation modification of starch was also discussed. (authors)

  17. Potential of Starch Nanocomposites for Biomedical Applications

    Science.gov (United States)

    Zakaria, N. H.; Muhammad, N.; Abdullah, M. M. A. B.

    2017-06-01

    In recent years, the development of biodegradable materials from renewable sources based on polymeric biomaterials have grown rapidly due to increase environmental concerns and the shortage of petroleum sources. In this regard, naturally renewable polymers such as starch has shown great potential as environmental friendly materials. Besides, the unique properties of starch such as biodegradable and non-toxic, biocompatible and solubility make them useful for a various biomedical applications. Regardless of their unique properties, starch materials are known to have limitations in term of poor processability, low mechanical properties, poor long term stability and high water sensitivity. In order to overcome these limitations, the incorporation of nano size fillers into starch materials (nanocomposites) has been introduced. This review aims to give an overview about structure and characteristics of starch, modification of starch by nanocomposites and their potential for biomedical applications.

  18. DISINTEGRATION EFFICIENCY OF SODIUM STARCH GLYCOLATES, PREPARED FROM DIFFERENT NATIVE STARCHES

    NARCIS (Netherlands)

    BOLHUIS, GK; ARENDSCHOLTE, AW; STUUT, GJ; DEVRIES, JA

    1994-01-01

    In a comparative evaluation, the disintegration efficiency of sodium starch glycolates prepared from seven different native starches (potato, maize, waxy maize, wheat, rice, sago and tapioca) were compared. All the sodium starch glycolates tested had a high swelling capacity, but the rate of water

  19. The influence of extruded starch molecular mass on the properties of extruded thermoplastic starch

    NARCIS (Netherlands)

    Soest, van J.J.G.; Benes, K.; Wit, de D.; Vliegenthart, J.F.G.

    1996-01-01

    The mechanical properties of a low and a high molecular mass thermoplastic starch (TPS) were monitored at water contents in the range of 5-30% (w/w). The granular starches were plasticized by extrusion processing with glycerol and water. The low molecular mass starch was prepared by partial acid

  20. The influence of starch molecular mass on the properties of extruded thermoplastic starch

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Soest, J.J.G. van; Benes, K.; Wit, D. de

    1996-01-01

    The mechanical properties of a low and a high molecular mass thermoplastic starch (TPS) were monitored at water contents in the range of 5–30% (w/w). The granular starches were plasticized by extrusion processing with glycerol and water. The low molecular mass starch was prepared by partial acid

  1. Starch meets biotechnology : in planta modification of starch composition and functionalities

    NARCIS (Netherlands)

    Xu, Xuan

    2016-01-01

    Storage starch is an energy reservoir for plants and the major source of calories in the human diet. Starch is used in a broad range of industrial applications, as a cheap, abundant, renewable and biodegradable biopolymer. However, starch needs to be modified before it can fulfill the required

  2. Chemically Modified Starch; Allyl- and Epoxy-Starch Derivatives: Their Synthesis and Characterization

    NARCIS (Netherlands)

    Franssen, M.C.R.; Boeriu, C.

    2014-01-01

    Both native and modified starches, such as starch that is pregelatinized, extruded, acid-converted, cross-linked, and substituted, are widely used in industry. This chapter describes a mild two-step process for the synthesis of novel, highly reactive granular epoxy-starch derivatives. Via this

  3. Inducing PLA/starch compatibility through butyl-etherification of waxy and high amylose starch.

    Science.gov (United States)

    Wokadala, Obiro Cuthbert; Emmambux, Naushad Mohammad; Ray, Suprakas Sinha

    2014-11-04

    In this study, waxy and high amylose starches were modified through butyl-etherification to facilitate compatibility with polylactide (PLA). Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy and wettability tests showed that hydrophobic butyl-etherified waxy and high amylose starches were obtained with degree of substitution values of 2.0 and 2.1, respectively. Differential scanning calorimetry, tensile testing, and scanning electron microscopy (SEM) demonstrated improved PLA/starch compatibility for both waxy and high amylose starch after butyl-etherification. The PLA/butyl-etherified waxy and high amylose starch composite films had higher tensile strength and elongation at break compared to PLA/non-butyl-etherified composite films. The morphological study using SEM showed that PLA/butyl-etherified waxy starch composites had a more homogenous microstructure compared to PLA/butyl-etherified high amylose starch composites. Thermogravimetric analysis showed that PLA/starch composite thermal stability decreased with starch butyl-etherification for both waxy and high amylose starches. This study mainly demonstrates that PLA/starch compatibility can be improved through starch butyl-etherification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. An exocellular polysaccharide and its interactions with proteins

    NARCIS (Netherlands)

    Tuinier, R.

    1999-01-01

    In the food industry polysaccharides are used as thickening or gelling agents. Polysaccharides are usually extracted from plants. Micro-organisms are also capable of excreting polysaccharides: exocellular polysaccharides (EPSs). In some cases EPSs are produced in-situ in food products,

  5. Defining Starch Binding by Glucan Phosphatases

    DEFF Research Database (Denmark)

    Auger, Kyle; Raththagala, Madushi; Wilkens, Casper

    2015-01-01

    Starch is a vital energy molecule in plants that has a wide variety of uses in industry, such as feedstock for biomaterial processing and biofuel production. Plants employ a three enzyme cyclic process utilizing kinases, amylases, and phosphatases to degrade starch in a diurnal manner. Starch...... is comprised of the branched glucan amylopectin and the more linear glucan amylose. Our lab has determined the first structures of these glucan phosphatases and we have defined their enzymatic action. Despite this progress, we lacked a means to quickly and efficiently quantify starch binding to glucan...

  6. Atomic force microscopy of starch systems.

    Science.gov (United States)

    Zhu, Fan

    2017-09-22

    Atomic force microscopy (AFM) generates information on topography, adhesion, and elasticity of sample surface by touching with a tip. Under suitable experimental settings, AFM can image biopolymers of few nanometers. Starch is a major food and industrial component. AFM has been used to probe the morphology, properties, modifications, and interactions of starches from diverse botanical origins at both micro- and nano-structural levels. The structural information obtained by AFM supports the blocklet structure of the granules, and provides qualitative and quantitative basis for some physicochemical properties of diverse starch systems. It becomes evident that AFM can complement other microscopic techniques to provide novel structural insights for starch systems.

  7. Characterization of Native and Modified Starches by Potentiometric Titration

    OpenAIRE

    Soto, Diana; Urdaneta, Jose; Pernia, Kelly

    2014-01-01

    The use of potentiometric titration for the analysis and characterization of native and modified starches is highlighted. The polyelectrolytic behavior of oxidized starches (thermal and thermal-chemical oxidation), a graft copolymer of itaconic acid (IA) onto starch, and starch esters (mono- and diester itaconate) was compared with the behavior of native starch, the homopolymer, and the acid employed as a graft monomer and substituent. Starch esters showed higher percentages of acidity, follo...

  8. Near infrared spectra indicate specific mutant endosperm genes and reveal a new mechanism for substituting starch with (1-->3,1-->4)-[beta]-glucan in barley

    DEFF Research Database (Denmark)

    Munck, L.; Møller, B.; Jacobsen, Susanne

    2004-01-01

    -->3,1-->4)-[beta]-glucan (up to 15-20%), thus, maintaining a constant production of polysaccharides at 50-55%, within the range of normal barley.The spectral tool was tested by an independent data set with six mutants with unknown polysaccharide composition. Spectral data from four of these were classified within...... the high (1-->3,1-->4)-[beta]-glucan BG lys5 cluster in a PCA. Their high (1-->3,1-->4)-[beta]-glucan and low starch content was verified. It is concluded that genetic diversity such as from gene regulated polysaccharide and storage protein pathways in the endosperm tissue can be discovered directly from...... the phenotype by chemometric classification of a spectral library, representing the digitised phenome from a barley gene bank....

  9. Structural and molecular basis of starch viscosity in hexaploid wheat.

    Science.gov (United States)

    Ral, J-P; Cavanagh, C R; Larroque, O; Regina, A; Morell, M K

    2008-06-11

    Wheat starch is considered to have a low paste viscosity relative to other starches. Consequently, wheat starch is not preferred for many applications as compared to other high paste viscosity starches. Increasing the viscosity of wheat starch is expected to increase the functionality of a range of wheat flour-based products in which the texture is an important aspect of consumer acceptance (e.g., pasta, and instant and yellow alkaline noodles). To understand the molecular basis of starch viscosity, we have undertaken a comprehensive structural and rheological analysis of starches from a genetically diverse set of wheat genotypes, which revealed significant variation in starch traits including starch granule protein content, starch-associated lipid content and composition, phosphate content, and the structures of the amylose and amylopectin fractions. Statistical analysis highlighted the association between amylopectin chains of 18-25 glucose residues and starch pasting properties. Principal component analysis also identified an association between monoesterified phosphate and starch pasting properties in wheat despite the low starch-phosphate level in wheat as compared to tuber starches. We also found a strong negative correlation between the phosphate ester content and the starch content in flour. Previously observed associations between internal starch granule fatty acids and the swelling peak time and pasting temperature have been confirmed. This study has highlighted a range of parameters associated with increased starch viscosity that could be used in prebreeding/breeding programs to modify wheat starch pasting properties.

  10. The Effect of a Brief Salivary α-Amylase Exposure During Chewing on Subsequent in Vitro Starch Digestion Curve Profiles

    Directory of Open Access Journals (Sweden)

    Charles S. Brennan

    2010-07-01

    Full Text Available There is inconsistency between current in vitro digestion methods with regard to accommodation of a (salivary α-amylase exposure during the oral phase. The effect of a salivary α-amylase pre-exposure on subsequent in vitro starch digestion curve profiles for various foods was investigated. Foods were chewed, expectorated and the boluses left to rest for 0–15 min. During pancreatic digestion, aliquots were taken and hydrolysis curves constructed for comparison against those of the same foods comminuted with a manually-operated chopper, hence spared exposure to saliva. Hydrolysate aliquots taken at T0 (time zero of the digestion of chewed samples contained higher levels of glucose and dextrins compared with chopped samples. Pancreatin activity immediately overwhelmed differences in sugar released due to salivary amylase activity. Within 10 min no differences were detectable between hydrolysis curves for chewed and chopped foods. Salivary amylase pretreatment does not contribute to the robustness or relative accuracy of in vitro methods.

  11. PENGARUH DEKSTRIN DAN GUM ARAB TERHADAP SIFAT KIMIA DAN FISIK BUBUK SARI JAGUNG MANIS (Zeamays saccharata [The Effects of Dextrin and Arabic Gum on Chemical and Physical Properties of Sweet Corn (Zeamays saccharata Milk-like Powder

    Directory of Open Access Journals (Sweden)

    Sutardi*

    2010-12-01

    Full Text Available The aim of this research was to determine the effects of type and amount of binder on the chemical and physical properties of sweet corn milk-like powder. Sweet corn milk-like powder was prepared from sweet corn kernel extracted with water with ratio of water and kernel of 2:1 (v/w, then dehydrated by spray dryer. Dextrin and arabic gum in various amount i.e. 2.5; 5.0; and 7.5% (w/v, respectively were added to the sweet corn milk-like before drying, and control was also made. The reducing sugar and total sugar, protein, fat, and moisture content, and as well as bulk density, colour, and solubility of the powder were then analyzed. The chemical and physical properties of sweet corn milk-like powder with addition of dextrin and arabic gum in the amount of 2.5; 5.0; and 7.5% (w/v were significantly different (p > 0.05. According to all aspects studied, sweet corn milk-like powder with addition of dextrin in the amount of 2.5% was the best product of all, which had reducing sugar of 5.00% (db; total sugar 17.01% (db; protein13.67% (db; fat 5.97% (db; moisture 5.38%; bulk density 0.47 g/cm3; and solubility of 93.70%.

  12. Interaction between gut immunity and polysaccharides.

    Science.gov (United States)

    Huang, Xiaojun; Nie, Shaoping; Xie, Mingyong

    2017-09-22

    The human gut is colonized with a vast and diverse microbial ecosystem, and these bacteria play fundamental roles in the well being of our bodies. Gut-associated lymphoid tissues, the largest mucosal immune system, should never be overlooked for their profound effect in maintaining the host immunity. Therefore, we discussed the relationship between gut immunity and host health, primarily from two aspects: the homeostasis of gut microbiota, and the function of gut-associated lymphoid tissues. Polysaccharides, widely concerned as bioactive macromolecules in recent centuries, have been proved to benefit the intestinal health. Dietary polysaccharides can improve the ratio of probiotics, regulate the intestinal microenvironment like decreasing the gut pH, and stimulate the macrophages or lymphocytes in gut tissues to fight against diseases like cancer. Based on various experimental and clinical evidence, the impacts of dietary polysaccharides on intestinal health are summarized, in order to reveal the possible immunomodulatory mechanisms of polysaccharides.

  13. Extraction optimization and characterization of polysaccharide ...

    African Journals Online (AJOL)

    Keywords: Pinellia rhizoma, Polysaccharides Optimization extraction, Monosaccharide composition,. Antioxidant ..... mean yield of PRP was 2.47 %. Therefore ... Table 3: Analysis of variance (ANOVA) for the fitted quadratic polynomial model.

  14. APPLICATION OF A POLYSACCHARIDE DERIVED FROM ...

    African Journals Online (AJOL)

    While Tragacanth was superior to Treculia gum, the latter performed better than sodium carboxymethylcellulose (SCMC) as a sustained release hydrophilic matrix for theophylline hydrate. Key Words: Polysaccharide, Treculia africana, Moreaceae, Hydrophilic matrix, theophylline hydrate and dissolution rate. Nig. J. Nat.

  15. Isomalto/Malto-polysaccharide, a novel soluble dietary fiber made via enzymatic conversion of starch

    NARCIS (Netherlands)

    Leemhuis, Hans; Dobruchowska, Justyna M.; Ebbelaar, Monique; Faber, Folkert; Buwalda, Pieter L; van der Maarel, Marc J.E.C.; Kamerling, Johannis P; Dijkhuizen, Lubbert

    2014-01-01

    Dietary fibers are at the forefront of nutritional research because they positively contribute to human health. Much of our processed foods contain, however, only small quantities of dietary fiber, because their addition often negatively affects the taste, texture, and mouth feel. There is thus an

  16. Isomalto/Malto-Polysaccharide, A Novel Soluble Dietary Fiber Made Via Enzymatic Conversion of Starch

    NARCIS (Netherlands)

    Leemhuis, H.; Dobruchowska, J.M.; Ebbelaar, M.; Faber, F.; Buwalda, P.L.; Maarel, M.J.E.J.; Kamerling, J.P.; Dijkhuizen, L.

    2014-01-01

    Dietary fibers are at the forefront of nutritional research because they positively contribute to human health. Much of our processed foods contain, however, only small quantities of dietary fiber, because their addition often negatively affects the taste, texture, and mouth feel. There is thus an

  17. Development of starch-based materials

    NARCIS (Netherlands)

    Habeych Narvaez, E.A.

    2009-01-01

    Starch-based materials show potential as fully degradable plastics. However, the current
    applicability of these materials is limited due to their poor moisture tolerance and
    mechanical properties. Starch is therefore frequently blended with other polymers to make
    the material more

  18. Antimicrobial nanostructured starch based films for packaging.

    Science.gov (United States)

    Abreu, Ana S; Oliveira, M; de Sá, Arsénio; Rodrigues, Rui M; Cerqueira, Miguel A; Vicente, António A; Machado, A V

    2015-09-20

    Montmorillonite modified with a quaternary ammonium salt C30B/starch nanocomposite (C30B/ST-NC), silver nanoparticles/starch nanocomposite (Ag-NPs/ST-NC) and both silver nanoparticles/C30B/starch nanocomposites (Ag-NPs/C30B/ST-NC) films were produced. The nanoclay (C30B) was dispersed in a starch solution using an ultrasonic probe. Different concentrations of Ag-NPs (0.3, 0.5, 0.8 and 1.0mM) were synthesized directly in starch and in clay/starch solutions via chemical reduction method. Dispersion of C30B silicate layers and Ag-NPs in ST films characterized by X-ray and scanning electron microscopy showed that the presence of Ag-NPs enhanced clay dispersion. Color and opacity measurements, barrier properties (water vapor and oxygen permeabilities), dynamic mechanical analysis and contact angle were evaluated and related with the incorporation of C30B and Ag-NPs. Films presented antimicrobial activity against Staphylococcus aureus, Escherichia coli and Candida albicans without significant differences between Ag-NPs concentrations. The migration of components from the nanostructured starch films, assessed by food contact tests, was minor and under the legal limits. These results indicated that the starch films incorporated with C30B and Ag-NPs have potential to be used as packaging nanostructured material. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Semicontinuous saccharification of starch in alcohol production

    Energy Technology Data Exchange (ETDEWEB)

    Danilyak, N.I.; Kaminskil, R.S.; Shvedov, A.D.

    1959-05-21

    The saccharification is accomplished with an enzyme preparation of Aspergillus oryzae. In the first stage, the starch is treated at 57 to 59/sup 0/ with a fermenting solution containing 1% enzyme based on the starch content. The second step is carried out in the fermenting solution containing 2.5% enzyme.

  20. Starch and cellulose nanocrystals together into thermoplastic starch bionanocomposites.

    Science.gov (United States)

    González, Kizkitza; Retegi, Aloña; González, Alba; Eceiza, Arantxa; Gabilondo, Nagore

    2015-03-06

    In the present work, thermoplastic maize starch based bionanocomposites were prepared as transparent films, plasticized with 35% of glycerol and reinforced with both waxy starch (WSNC) and cellulose nanocrystals (CNC), previously extracted by acidic hydrolysis. The influence of the nanofiller content was evaluated at 1 wt.%, 2.5 wt.% and 5 wt.% of WSNC. The effect of adding the two different nanoparticles at 1 wt.% was also investigated. As determined by tensile measurements, mechanical properties were improved at any composition of WSNC. Water vapour permeance values maintained constant, whereas barrier properties to oxygen reduced in a 70%, indicating the effectiveness of hydrogen bonding at the interphase. The use of CNC or CNC and WSNC upgraded mechanical results, but no significant differences in barrier properties were obtained. A homogeneous distribution of the nanofillers was demonstrated by atomic force microscopy, and a shift of the two relaxation peaks to higher temperatures was detected by dynamic mechanical analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Acetylation and characterization of banana (Musa paradisiaca) starch.

    Science.gov (United States)

    Bello-Pérez, L A; Contreras-Ramos, S M; Jìmenez-Aparicio, A; Paredes-López, O

    2000-01-01

    Banana native starch was acetylated and some of its functional properties were evaluated and compared to corn starch. In general, acetylated banana starch presented higher values in ash, protein and fat than corn acetylated starch. The modified starches had minor tendency to retrogradation assessed as % transmittance of starch pastes. At high temperature acetylated starches presented a water retention capacity similar to their native counterpart. The acetylation considerably increased the solubility of starches, and a similar behavior was found for swelling power. When freeze-thaw stability was studied, acetyl banana starch drained approximately 60% of water in the first and second cycles, but in the third and fourth cycles the percentage of separated water was low. However, acetyl corn starch showed lower freeze-thaw stability than the untreated sample. The modification increased the viscosity of banana starch pastes.

  2. Effects of ionic conduction on hydrothermal hydrolysis of corn starch and crystalline cellulose induced by microwave irradiation.

    Science.gov (United States)

    Tsubaki, Shuntaro; Oono, Kiriyo; Onda, Ayumu; Yanagisawa, Kazumichi; Mitani, Tomohiko; Azuma, Jun-Ichi

    2016-02-10

    This study investigated the effects of ionic conduction of electrolytes under microwave field to facilitate hydrothermal hydrolysis of corn starch and crystalline cellulose (Avicel), typical model biomass substrates. Addition of 0.1M NaCl was effective to improve reducing sugar yield by 1.61-fold at unit energy (kJ) level. Although Avicel cellulose was highly recalcitrant to hydrothermal hydrolysis, addition of 0.1M MgCl2 improved reducing sugar yield by 6.94-fold at unit energy (kJ). Dielectric measurement of the mixture of corn starch/water/electrolyte revealed that ionic conduction of electrolytes were strongly involved in facilitating hydrothermal hydrolysis of polysaccharides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Radiation processing of indigenous natural polymers. Properties of radiation modified blends from sago-starch for biodegradable composite

    International Nuclear Information System (INIS)

    Ghazali, Z.; Dahlan, K.Z.; Wongsuban, B.; Idris, S.; Muhammad, K.

    2001-01-01

    Research and development on biodegradable polymer blends and composites have gained wider interest to offer alternative eco-friendly products. Natural polysaccharide such as sago-starch offers the most promising raw material for the production of biodegradable composites. The potential of sago, which is so abundant in Malaysia, to produce blends for subsequent applications in composite material, was evaluated and explored. Blends with various formulations of sago starch and polyvinyl alcohol (PVA), and polyvinyl pyrrolidone (PVP) polymers were prepared and subjected to radiation modification using electron beam irradiation. The effect of irradiation on the sago and its blends was evaluated and their properties were characterized. The potential of producing composite from sago blends was explored. Foams from these blends were produced using microwave oven while films were produced through casting method. The properties such as mechanical, water absorption, expansion ratio, and biodegradability were characterized and reported in this paper. (author)

  4. Radiation processing of indigenous natural polymers. Properties of radiation modified blends from sago-starch for biodegradable composite

    Energy Technology Data Exchange (ETDEWEB)

    Ghazali, Z.; Dahlan, K.Z. [Malaysian Institute for Nuclear and Technology Research (MINT), Bangi, Kajang (Malaysia); Wongsuban, B.; Idris, S.; Muhammad, K. [Universiti Putra Malaysia, Faculty of Food Science and Biotechnology, Department of Food Science, Serdang (Malaysia)

    2001-03-01

    Research and development on biodegradable polymer blends and composites have gained wider interest to offer alternative eco-friendly products. Natural polysaccharide such as sago-starch offers the most promising raw material for the production of biodegradable composites. The potential of sago, which is so abundant in Malaysia, to produce blends for subsequent applications in composite material, was evaluated and explored. Blends with various formulations of sago starch and polyvinyl alcohol (PVA), and polyvinyl pyrrolidone (PVP) polymers were prepared and subjected to radiation modification using electron beam irradiation. The effect of irradiation on the sago and its blends was evaluated and their properties were characterized. The potential of producing composite from sago blends was explored. Foams from these blends were produced using microwave oven while films were produced through casting method. The properties such as mechanical, water absorption, expansion ratio, and biodegradability were characterized and reported in this paper. (author)

  5. Antioxidant effects of polysaccharides from traditional Chinese medicines.

    Science.gov (United States)

    Liu, Yang; Huang, Gangliang

    2017-12-07

    Polysaccharides are a kind of biological macromolecules with immune regulation, anti-tumor, anti-radiation, anti-inflammation, anti-fatigue and anti-aging effects. These effects are related to their antioxidant properties. The action mechanisms of antioxidation and scavenging free radicals for polysaccharides were reviewed. The polysaccharides contain plant polysaccharides, animal polysaccharides and microbial polysaccharides. The recent research progresses and our work on antioxidant properties of polysaccharides and their derivatives were summarized. At last, the existing problems of antioxidant polysaccharides were analyzed, and the development prospects were also presented. It is important to study the antioxidant activities of polysaccharides and their derivatives for the development of natural antioxidants. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Soluble Fiber Dextrin and Soluble Corn Fiber Supplementation Modify Indices of Health in Cecum and Colon of Sprague-Dawley Rats

    Directory of Open Access Journals (Sweden)

    Maria R. C. de Godoy

    2013-02-01

    Full Text Available The objective of this study was to evaluate health outcomes resulting from dietary supplementation of novel, low-digestible carbohydrates in the cecum and colon of Sprague-Dawley rats randomly assigned to one of four treatment groups for 21 days: 5% cellulose (Control, Pectin, soluble fiber dextrin (SFD, or soluble corn fiber (SCF. Rats fed Pectin had a higher average daily food intake, but no differences in final body weights or rates of weight gain among treatments were observed. No differences were observed in total short-chain fatty acid (SCFA or branched-chain fatty acid (BCFA concentrations in the cecum and colon of rats fed either SFD or SCF. The SFD and SCF treatments increased cecal propionate and decreased butyrate concentrations compared to Control or Pectin. Pectin resulted in increased BCFA in the cecum and colon. Supplementation of SFD and SCF had no effect on cecal microbial populations compared to Control. Consumption of SFD and SCF increased total and empty cecal weight but not colon weight. Gut histomorphology was positively affected by SFD and SCF. Increased crypt depth, goblet cell numbers, and acidic mucin were observed in both the cecum and colon of rats supplemented with SFD, SCF, and Pectin. These novel, low-digestible carbohydrates appear to be beneficial in modulating indices of hindgut morphology when supplemented in the diet of the rat.

  7. Comparison of gamma radiation effects on natural corn and potato starches and modified cassava starch

    Science.gov (United States)

    Teixeira, Bruna S.; Garcia, Rafael H. L.; Takinami, Patricia Y. I.; del Mastro, Nelida L.

    2018-01-01

    The objective of this work was to evaluate the effect of irradiation treatment on physicochemical properties of three natural polymers, i.e. native potato and corn starches and a typical Brazilian product, cassava starch modified through fermentation -sour cassava- and also to prepare composite hydrocolloid films based on them. Starches were irradiated in a 60Co irradiation chamber in doses up to 15 kGy, dose rate about 1 kGy/h. Differences were found in granule size distribution upon irradiation, mainly for corn and cassava starch but radiation did not cause significant changes in granule morphology. The viscosity of the potato, corn and cassava starches hydrogels decreased as a function of absorbed dose. Comparing non-irradiated and irradiated starches, changes in the Fourier transform infrared (FTIR) spectra in the 2000-1500 cm-1 region for potato and corn starches were observed but not for the cassava starch. Maximum rupture force of the starch-based films was affected differently for each starch type; color analysis showed that doses of 15 kGy promoted a slight rise in the parameter b* (yellow color) while the parameter L* (lightness) was not significantly affected; X-ray diffraction patterns remained almost unchanged by irradiation.

  8. Starch Origin and Thermal Processing Affect Starch Digestion in a Minipig Model of Pancreatic Exocrine Insufficiency.

    Science.gov (United States)

    Mößeler, Anne; Vagt, Sandra; Beyerbach, Martin; Kamphues, Josef

    2015-01-01

    Although steatorrhea is the most obvious symptom of pancreatic exocrine insufficiency (PEI), enzymatic digestion of protein and starch is also impaired. Low praecaecal digestibility of starch causes a forced microbial fermentation accounting for energy losses and meteorism. To optimise dietetic measures, knowledge of praecaecal digestibility of starch is needed but such information from PEI patients is rare. Minipigs fitted with an ileocaecal fistula with (n = 3) or without (n = 3) pancreatic duct ligation (PL) were used to estimate the rate of praecaecal disappearance (pcD) of starch. Different botanical sources of starch (rice, amaranth, potato, and pea) were fed either raw or cooked. In the controls (C), there was an almost complete pcD (>92%) except for potato starch (61.5%) which was significantly lower. In PL pcD of raw starch was significantly lower for all sources of starch except for amaranth (87.9%). Thermal processing increased pcD in PL, reaching values of C for starch from rice, potato, and pea. This study clearly underlines the need for precise specification of starch used for patients with specific dietetic needs like PEI. Data should be generated in suitable animal models or patients as tests in healthy individuals would not have given similar conclusions.

  9. Starch Origin and Thermal Processing Affect Starch Digestion in a Minipig Model of Pancreatic Exocrine Insufficiency

    Directory of Open Access Journals (Sweden)

    Anne Mößeler

    2015-01-01

    Full Text Available Although steatorrhea is the most obvious symptom of pancreatic exocrine insufficiency (PEI, enzymatic digestion of protein and starch is also impaired. Low praecaecal digestibility of starch causes a forced microbial fermentation accounting for energy losses and meteorism. To optimise dietetic measures, knowledge of praecaecal digestibility of starch is needed but such information from PEI patients is rare. Minipigs fitted with an ileocaecal fistula with (n=3 or without (n=3 pancreatic duct ligation (PL were used to estimate the rate of praecaecal disappearance (pcD of starch. Different botanical sources of starch (rice, amaranth, potato, and pea were fed either raw or cooked. In the controls (C, there was an almost complete pcD (>92% except for potato starch (61.5% which was significantly lower. In PL pcD of raw starch was significantly lower for all sources of starch except for amaranth (87.9%. Thermal processing increased pcD in PL, reaching values of C for starch from rice, potato, and pea. This study clearly underlines the need for precise specification of starch used for patients with specific dietetic needs like PEI. Data should be generated in suitable animal models or patients as tests in healthy individuals would not have given similar conclusions.

  10. Polysaccharides as Bacterial Antiadhesive Agents and "Smart" Constituents for Improved Drug Delivery Systems Against Helicobacter pylori Infection.

    Science.gov (United States)

    Menchicchi, Bianca; Hensel, Andreas; Goycoolea, Francisco M

    2015-01-01

    The standard eradication treatment of the hostile Helicobacter pylori (H. pylori) stomach infection is facing increasing alarming antibiotic resistance worldwide and calls for alternative strategies to the use of antibiotics. One new perspective in this direction is cytoprotective compounds for targeted prevention of the adhesion of the bacteria to the stomach host cell and to inhibit the bacterial cell-cell communication via quorum sensing by specific inhibitors. Bacterial adhesion of H. pylori to the host cells is mainly mediated by carbohydrate-protein interactions. Therefore, the use of polyvalent carbohydrates, (e.g. plant-derived polysaccharides), as potential antiadhesive compounds, seems to be a promising tool to prevent the initial docking of the bacterium to the stomach cells. Polysaccharides are common constituents of daily food, either as starch or as dietary fiber and often also function as excipients for galenic drug-delivery formulations. In addition, polysaccharides with defined pharmacodynamics action against bacterial outer membrane proteins can have potential as therapeutic tools in the treatment of bacterial infections. Some polysaccharides are known to possess antibacterial properties against gram-positive bacteria, others to inhibit bacterial colonization by blocking specific carbohydrate receptors involved in host-bacteria interaction. This mode of action is advocated as alternative antiadhesion therapy. Ongoing research is also seeking for polysaccharide-based nanoformulations with potential for local drug delivery at the stomach as novel H. pylori therapies. These approaches pose challenges concerned with the stability of the nanomaterials in the harsh conditions of the gastric environment and their capacity to adhere to the stomach mucosa. In a global scenario, geographical diversity and social habits, namely lifestyle and dietary factors, influence the prevalence of the H. pylori-associated diseases and their severity. In this context

  11. A comparative study of the physicochemical properties of starches ...

    African Journals Online (AJOL)

    Some properties of starches from cassava, potato and sweet potato were compared with cereal starches from maize, wheat, millet and sorghum. The aim was to determine the properties of tuber and root crop starches and compare them with cereal starches in addition to unravelling the potential of commonly grown ...

  12. Extraction, characterisation and antioxidant activity of Allium sativum polysaccharide.

    Science.gov (United States)

    Cheng, Hao; Huang, Gangliang

    2018-07-15

    Extraction and antioxidant activity of polysaccharide from Allium sativum were investigated. The crude polysaccharide was obtained by the hot-water extraction method. The molecular weight of polysaccharide deproteinized with CaCl 2 was 7.35×10 3 . It indicated that polysaccharide from Allium sativum consisted of three monosaccharides, namely fructose, glucose, and galactose by HPLC. The polysaccharide had the β-glycosidic bond. Moreover, it was proved that the polysaccharide had the potential scavenging ability to superoxide anions and hydroxyl radicals. So, it should be a potential antioxidant. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Structural analysis of cell wall polysaccharides using PACE

    Energy Technology Data Exchange (ETDEWEB)

    Mortimer, Jennifer C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint BioEnergy Institute

    2017-01-01

    The plant cell wall is composed of many complex polysaccharides. The composition and structure of the polysaccharides affect various cell properties including cell shape, cell function and cell adhesion. Many techniques to characterize polysaccharide structure are complicated, requiring expensive equipment and specialized operators e.g. NMR, MALDI-MS. PACE (Polysaccharide Analysis using Carbohydrate gel Electrophoresis) uses a simple, rapid technique to analyze polysaccharide quantity and structure (Goubet et al. 2002). Whilst the method here describes xylan analysis, it can be applied (by use of the appropriate glycosyl hydrolase) to any cell wall polysaccharide.

  14. Gelatin- and starch-based hydrogels. Part A: Hydrogel development, characterization and coating.

    Science.gov (United States)

    Van Nieuwenhove, Ine; Salamon, Achim; Peters, Kirsten; Graulus, Geert-Jan; Martins, José C; Frankel, Daniel; Kersemans, Ken; De Vos, Filip; Van Vlierberghe, Sandra; Dubruel, Peter

    2016-11-05

    The present work aims at constructing the ideal scaffold matrix of which the physico-chemical properties can be altered according to the targeted tissue regeneration application. Ideally, this scaffold should resemble the natural extracellular matrix (ECM) as close as possible both in terms of chemical composition and mechanical properties. Therefore, hydrogel films were developed consisting of methacrylamide-modified gelatin and starch-pentenoate building blocks because the ECM can be considered as a crosslinked hydrogel network consisting of both polysaccharides and structural, signaling and cell-adhesive proteins. For the gelatin hydrogels, three different substitution degrees were evaluated including 31%, 72% and 95%. A substitution degree of 32% was applied for the starch-pentenoate building block. Pure gelatin hydrogels films as well as interpenetrating networks with gelatin and starch were developed. Subsequently, these films were characterized using gel fraction and swelling experiments, high resolution-magic angle spinning (1)H NMR spectroscopy, rheology, infrared mapping and atomic force microscopy. The results indicate that both the mechanical properties and the swelling extent of the developed hydrogel films can be controlled by varying the chemical composition and the degree of substitution of the methacrylamide-modified gelatin applied. The storage moduli of the developed materials ranged between 14 and 63kPa. Phase separation was observed for the IPNs for which separated starch domains could be distinguished located in the surrounding gelatin matrix. Furthermore, we evaluated the affinity of aggrecan for gelatin by atomic force microscopy and radiolabeling experiments. We found that aggrecan can be applied as a bioactive coating for gelatin hydrogels by a straightforward physisorption procedure. Thus, we achieved distinct fine-tuning of the physico-chemical properties of these hydrogels which render them promising candidates for tissue engineering

  15. Reduced starch granule number per chloroplast in the dpe2/phs1 mutant is dependent on initiation of starch degradation.

    Science.gov (United States)

    Malinova, Irina; Fettke, Joerg

    2017-01-01

    An Arabidopsis double knock-out mutant lacking cytosolic disproportionating enzyme 2 (DPE2) and the plastidial phosphorylase (PHS1) revealed a dwarf-growth phenotype, reduced starch content, an uneven distribution of starch within the plant rosette, and a reduced number of starch granules per chloroplast under standard growth conditions. In contrast, the wild type contained 5-7 starch granules per chloroplast. Mature and old leaves of the double mutant were essentially starch free and showed plastidial disintegration. Several analyses revealed that the number of starch granules per chloroplast was affected by the dark phase. So far, it was unclear if it was the dark phase per se or starch degradation in the dark that was connected to the observed decrease in the number of starch granules per chloroplast. Therefore, in the background of the double mutant dpe2/phs1, a triple mutant was generated lacking the initial starch degrading enzyme glucan, water dikinase (GWD). The triple mutant showed improved plant growth, a starch-excess phenotype, and a homogeneous starch distribution. Furthermore, the number of starch granules per chloroplast was increased and was similar to wild type. However, starch granule morphology was only slightly affected by the lack of GWD as in the triple mutant and, like in dpe2/phs1, more spherical starch granules were observed. The characterized triple mutant was discussed in the context of the generation of starch granules and the formation of starch granule morphology.

  16. Method for saccharification and fermentation of mashes containing polysaccharides for alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Beubler, A.; Giang, B.; Dempwolf, M.; Dickscheit, R.; Lietz, P.; Nielebock, C.; Peglow, K.; Sattelberg, K.

    1970-01-01

    Twenty-five g comminuted grain are steeped in 200 ml water. At 5/sup 0/C, 0.02% (in terms of grain mass) ..cap alpha..-amylase preparation is added at 5/sup 0/C, and the mash then treated by conventional methods so that the starch, cellulose, hemicellulose and other polysaccharides are ready for enzymatic digestion. The mash is then brought to 65/sup 0/C and saccharified with 1% ..cap alpha..-amylase and 0.2% amyloglucosidase for 45 minutes. The saccharified mash is freed from its solids, fermentation is induced after sterilization by addition of yeast, and fermentation is completed in < 36 hours by discontinuous, continuous or agitated methods. A part of the enzyme preparation can be replaced by malt.

  17. Ice nucleation activity of polysaccharides

    Science.gov (United States)

    Bichler, Magdalena; Felgitsch, Laura; Haeusler, Thomas; Seidl-Seiboth, Verena; Grothe, Hinrich

    2015-04-01

    Heterogeneous ice nucleation is an important process in the atmosphere. It shows direct impact on our climate by triggering ice cloud formation and therefore it has much influence on the radiation balance of our planet (Lohmann et al. 2002; Mishchenko et al. 1996). The process itself is not completely understood so far and many questions remain open. Different substances have been found to exhibit ice nucleation activity (INA). Due to their vast differences in chemistry and morphology it is difficult to predict what substance will make good ice nuclei and which will not. Hence simple model substances must be found and be tested regarding INA. Our work aims at gaining to a deeper understanding of heterogeneous ice nucleation. We intend to find some reference standards with defined chemistry, which may explain the mechanisms of heterogeneous ice nucleation. A particular focus lies on biological carbohydrates in regards to their INA. Biological carbohydrates are widely distributed in all kingdoms of life. Mostly they are specific for certain organisms and have well defined purposes, e.g. structural polysaccharides like chitin (in fungi and insects) and pectin (in plants), which has also water-binding properties. Since they are widely distributed throughout our biosphere and mostly safe to use for nutrition purposes, they are well studied and easily accessible, rendering them ideal candidates as proxies. In our experiments we examined various carbohydrates, like the already mentioned chitin and pectin, as well as their chemical modifications. Lohmann U.; A Glaciation Indirect Aerosol Effect Caused by Soot Aerosols; J. Geoph. Res.; Vol. 24 No.4; pp 11-1 - 11-4; 2002 Mishchenko M.I., Rossow W.B., Macke A., Lacis A. A.; Sensitivity of Cirrus Cloud Albedo, Bidirectional Reflectance and Optical Thickness Retrieval Accuracy to Ice Particle Shape, J. Geoph. Res.; Vol. 101, No D12; pp. 16,973 - 16,985; 1996

  18. TECHNOLOGY OF THERMOPLASTIC STARCH PRODUCTION

    Directory of Open Access Journals (Sweden)

    N. D. Lukin

    2015-01-01

    Full Text Available In recent years, the manufacturing of bio-recyclable polymer products, which production and consumption has become an efficient way to protect environment from solid wastes in different countries of the world. The issue of environmental protection becomes global and the rapid growth of synthetic plastics application in many industries is a serious concern. There is a important task to improve the quality, safety and durability of products as well as their utilization after the expiration period. One of the most acceptable ways to solve these issues is to produce biodegradable materials based on natural materials, which are not harmful for environment and human health. A very common and effective method to give biological degradability to synthetic polymers is to insert starch into polymer composition in combination with other ingredients.

  19. Process for the production of starch and alcohol from substances containing starch

    Energy Technology Data Exchange (ETDEWEB)

    Smith, N B; McFate, H A; Eubanks, E M

    1969-01-01

    Almost complete extraction of starch from wheat, rice, maize, etc., is achieved more economically then by conventional processes. Starch-containing cereal is soaked, the magma is broken and the seed removed. The magma is then drained and separated into a liquid filtrate consisting of starch, gluten and fine fibers, and a solid residue made up of coarse fibers, husks and grit. The liquid filtrate is sieved to remove the fine fibers, and then centrifuged to obtain pure, gluten-free starch. The solid residue is treated with a mineral acid in a converter to give sugar, thus forming a material which is fermented and distilled to give alcohol.

  20. Starch Digestibility and Functional Properties of Rice Starch Subjected to Gamma Radiation

    Directory of Open Access Journals (Sweden)

    Luís Fernando Polesi

    2018-01-01

    Full Text Available This study investigated the effect of gamma radiation on the digestibility and functional properties of rice starch. Rice cultivars IRGA417 and IAC202 were used for isolation of starch by the alkaline method. Starch samples were irradiated with 1, 2 and 5 kGy doses of 60Co at a rate of 0.4 kGy/h. A control sample, which was not irradiated, was used for comparison. Irradiated and control starches were characterized by in vitro starch digestibility, total dietary fiber, color, water absorption index, water solubility index, syneresis, swelling factor, amylose leaching, pasting properties and gel firmness. Irradiations changed starch digestibility differently in either cultivar. Increasing radiation doses promoted increase in the color parameter b* (yellow, elevation in the capacity to absorb water, and solubility in water as well as the amylose leached from granules for both cultivars. Pasting properties showed a decrease that was proportional to the dose applied, caused by the depolymerization of starch molecules. Gel firmness of the starch from IAC202 was inversely proportional to the radiation dose applied, whereas for IRGA417, there was a reduction at 5 kGy dose. Rice starches can be modified by irradiation to exhibit different functional characteristics and they can be used by the food industries in products such as soups, desserts, flans, puddings and others.

  1. Dilute solution properties of canary seed (Phalaris canariensis) starch in comparison to wheat starch.

    Science.gov (United States)

    Irani, Mahdi; Razavi, Seyed M A; Abdel-Aal, El-Sayed M; Hucl, Pierre; Patterson, Carol Ann

    2016-06-01

    Dilute solution properties of an unknown starch are important to understand its performance and applications in food and non-food industries. In this paper, rheological and molecular properties (intrinsic viscosity, molecular weight, shape factor, voluminosity, conformation and coil overlap parameters) of the starches from two hairless canary seed varieties (CO5041 & CDC Maria) developed for food use were evaluated in the dilute regime (Starch dispersions in DMSO (0.5g/dl)) and compared with wheat starch (WS). The results showed that Higiro model is the best among five applied models for intrinsic viscosity determination of canary seed starch (CSS) and WS on the basis of coefficient of determination (R(2)) and root mean square error (RMSE). WS sample showed higher intrinsic viscosity value (1.670dl/g) in comparison to CSS samples (1.325-1.397dl/g). Berry number and the slope of master curve demonstrated that CSS and WS samples were in dilute domain without entanglement occurrence. The shape factor suggested spherical and ellipsoidal structure for CO5041 starch and ellipsoidal for CDC Maria starch and WS. The molecular weight, coil radius and coil volume of CSSs were smaller than WS. The behavior and molecular characterization of canary seed starch showed its unique properties compared with wheat starch. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Polysaccharides and paramagnetic ions as a model for the relaxation behavior of hypointense cysts of the head and neck in MR imaging

    International Nuclear Information System (INIS)

    Gibby, W.A.; Hackney, D.B.; Bilaniuk, L.T.; Zimmerman, R.A.; Bogdan, A.R.

    1988-01-01

    Marked hypointensity on the second echo of long repetition time (TR) pulse sequences at 1.5 T has been noted in colloid cysts of the third ventricle and mucous retention cysts of the sinuses. Both are lesions containing a large quantity of material that stains positive for polysaccharide. In an attempt to explain these findings, polysaccharide materials (potato starch) were prepared at 1%, 3%, and 7% (liquid) and 10% (gel) concentrations in distilled deionized water, .01 and .1m mM FeCl3. Imaging at 1.5 T and measurements of T1 and T2 at 1.9 T were performed. Relaxation rates of 10% dextran solutions with average molecular weights of 17,000, 40,000, 70,000, 150,000 and 450,0000 were measured at 1.9 T. The addition of 1% - 10% starch to water shortened T1 and increased the brightness of images obtained at short TR/TE. The addition of FeCl3 increased T1 shortening and image brightness with T1 weighting. T2 was minimally affected by the soluble polysaccharide, but somewhat more decreased in the gelatinous material

  3. Inhibitory Effects of Various Ratios of Polysaccharides/Alkaloids from ...

    African Journals Online (AJOL)

    and increases survival in endotoxemic mice. Acta. Pharmacol Sin ... secretion in hyperthyroid diarrheic rats. Regul Peptides ... effect of Coptis chinensis polysaccharide in high-fat diet ... polysaccharides decrease blood sugar by inhibition of α-.

  4. Three-Dimensional Structural Aspects of Protein–Polysaccharide Interactions

    Directory of Open Access Journals (Sweden)

    Masamichi Nagae

    2014-03-01

    Full Text Available Linear polysaccharides are typically composed of repeating mono- or disaccharide units and are ubiquitous among living organisms. Polysaccharide diversity arises from chain-length variation, branching, and additional modifications. Structural diversity is associated with various physiological functions, which are often regulated by cognate polysaccharide-binding proteins. Proteins that interact with linear polysaccharides have been identified or developed, such as galectins and polysaccharide-specific antibodies, respectively. Currently, data is accumulating on the three-dimensional structure of polysaccharide-binding proteins. These proteins are classified into two types: exo-type and endo-type. The former group specifically interacts with the terminal units of polysaccharides, whereas the latter with internal units. In this review, we describe the structural aspects of exo-type and endo-type protein-polysaccharide interactions. Further, we discuss the structural basis for affinity and specificity enhancement in the face of inherently weak binding interactions.

  5. Lytic polysaccharide monooxygenases from Myceliophthora thermophila C1

    NARCIS (Netherlands)

    Frommhagen, Matthias

    2017-01-01

    Current developments aim at the effective enzymatic degradation of plant biomass polysaccharides into fermentable monosaccharides for biofuels and biochemicals. Recently discovered lytic polysaccharide monooxgygenases (LPMOs) boost the hydrolytic breakdown of lignocellulosic biomass, especially

  6. Neisseria meningitidis serogroup A capsular polysaccharide acetyltransferase, methods and compositions

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, David S [Stone Mountain, GA; Gudlavalleti, Seshu K [Kensington, MD; Tzeng, Yih-Ling [Atlanta, GA; Datta, Anup K [San Diego, CA; Carlson, Russell W [Athens, GA

    2011-02-08

    Provided are methods for recombinant production of an O-acetyltransferase and methods for acetylating capsular polysaccharides, especially those of a Serogroup A Neisseria meningitidis using the recombinant O-acetyltransferase, and immunogenic compositions comprising the acetylated capsular polysaccharide.

  7. Identification of interstellar polysaccharides and related hydrocarbons

    International Nuclear Information System (INIS)

    Hoyle, F.; Olavesen, A.H.; Wickramasinghe, N.C.

    1978-01-01

    A discussion is presented on the infrared transmittance spectra of several polysaccharides that may be of interest as possible interstellar candidates. It is stated that a 2.5 to 15 μm spectrum computed from the author's measurements is remarkably close to that required to explain a wide range of astronomical data, except for two points. First the required relative opacity at the 3 μm absorption dip is a factor of about 1.5 lower than was found in laboratory measurements; this difference may arise from the presence of water in terrestrial polysaccharide samples. Secondly, in the 9.5 to 12 μm waveband an additional source of opacity appears to be necessary. Close agreement between the spectrum of this additional opacity and the absorption spectrum of propene, C 3 H 6 , points strongly to the presence of hydrocarbons of this type, which may be associated with polysaccharide grains in interstellar space. (U.K.)

  8. Capsular Polysaccharide Expression in Commensal Streptococcus Species

    DEFF Research Database (Denmark)

    Skov Sørensen, Uffe B; Yao, Kaihu; Yang, Yonghong

    2016-01-01

    Expression of a capsular polysaccharide is considered a hallmark of most invasive species of bacteria, including Streptococcus pneumoniae, in which the capsule is among the principal virulence factors and is the basis for successful vaccines. Consequently, it was previously assumed that capsule....... pneumoniae evolved by import of cps fragments from commensal Streptococcus species, resulting in a mosaic of genes of different origins. The demonstrated antigenic identity of at least eight of the numerous capsular polysaccharide structures expressed by commensal streptococci with recognized serotypes of S...... of Streptococcus pneumoniae and is the basis for successful vaccines against infections caused by this important pathogen. Contrasting with previous assumptions, this study showed that expression of capsular polysaccharides by the same genetic mechanisms is a general property of closely related species...

  9. Production of modified starches by gamma irradiation

    International Nuclear Information System (INIS)

    Kang, Il-Jun; Byun, Myung-Woo; Yook, Hong-Sun; Bae, Chun-Ho; Lee, Hyun-Soo; Kwon, Joong-Ho; Chung, Cha-Kwon

    1999-01-01

    As a new processing method for the production of modified starch, gamma irradiation and four kinds of inorganic peroxides were applied to commercial corn starch. The addition of inorganic peroxides without gamma irradiation or gamma irradiation without the addition of inorganic peroxides effectively decreased initial viscosity, but did not sufficiently keep viscosity stable. The combination of adding ammonium persulfate (APS) and gamma irradiation showed the lowest initial viscosity and the best stability out of the tested four kinds of inorganic peroxides. Among the tested mixing methods of APS, soaking was found to be more effective than dry blending or spraying. Therefore, the production of modified starch with low viscosity as well as with sufficient viscosity stability became feasible by the control of gamma irradiation dose levels and the amount of added APS to starch

  10. Utilisation of sago starch for wound dressing

    International Nuclear Information System (INIS)

    Kamaruddin Hashim; Khairul Zaman Mohd Dahlan; Kamarudin Bahari

    2000-01-01

    Sago starch is utilized in Malaysia mainly for the purpose of food production. The purpose of the research is to diversify the use of sago starch for medical application particularly in development of hydrogel wound dressing. The sago starch is blending with water-soluble polymer such as polyvinyl pyrrolidone, polyvinyl alcohol and polyethylene oxide and irradiated with electron beam accelerator to form hydrogel. The parameters such gel strength, elasticity, swelling, gel fraction and tackiness have to be consider for this type of application. We also study the effect of adding additive such as carboxymethyl cellulose and polypropylene glycol into the system to enhance the property of sago starch hydrogel. Works on the use of chitosan in the blend have been performed, in order to prevent microbiological growth such as bacteria and fungi on the hydrogel. (author)

  11. Characterization of Digestion Resistance Sweet Potato Starch ...

    African Journals Online (AJOL)

    Purpose: To analyze the physicochemical properties and in vitro digestibility of sweet potato starchphosphodiester prepared using sodium trimetaphosphate. Methods: The physicochemical properties of sweet potato starch phosphodiester were analyzed by using infrared spectrometry (IR), differential scanning calorimetry ...

  12. Up-Scaling Production of Carboxymethyl Starch

    International Nuclear Information System (INIS)

    Mohd Hafiz Abdul Nasir; Zainon Othman; Kamaruddin Hashim; Siti Khadijah Abu Hadin; Nurul Nadia Shaaban

    2015-01-01

    Carboxymethyl starch (CMS) is a starch derivative formed by its reaction with sodium monochloroacetate which consist of OH-groups that are partially or completely replaced by ether substitution. Characteristic of CMSS defined by the degree of substitution (DS). DS is defined as the average number of substituents per anhydro glucose unit (AGU), the monomer unit of starch. The upgrading of CMSS production from 10L to 30L requires several experiments with different variable such as amount NaOH, amount of Sago Starch and reaction time. Each will give different DS. Quality control for the product cover moisture, viscosity and paste clarity. Therefore, SOP has been established to control the quality final product. (author)

  13. Fermentation Profiles of Wheat Dextrin, Inulin and Partially Hydrolyzed Guar Gum Using an in Vitro Digestion Pretreatment and in Vitro Batch Fermentation System Model

    Directory of Open Access Journals (Sweden)

    Joanne Slavin

    2013-05-01

    Full Text Available This study investigated the fermentation and microbiota profiles of three fibers, wheat dextrin (WD, partially hydrolyzed guar gum (PHGG, and inulin, since little is known about the effects of WD and PHGG on gut microbiota. A treatment of salivary amylase, pepsin, and pancreatin was used to better physiologic digestion. Fibers (0.5 g were fermented in triplicate including a control group without fiber for 0, 4, 8, 12, and 24 h. Analysis of pH, gas volume, hydrogen and methane gases, and short chain fatty acid (SCFA concentrations were completed at each time point. Quantitative polymerase chain reaction (qPCR was used to measure Bifidobacteria and Lactobacillus CFUs at 24 h. WD produced the least gas during fermentation at 8, 12, and 24 h (P < 0.0001, while inulin produced the most by 8 h (P < 0.0001. Each fiber reached its lowest pH value at different time points with inulin at 8 h (mean ± SE (5.94 ± 0.03, PHGG at 12 h (5.98 ± 0.01, and WD at 24 h (6.17 ± 0.03. All fibers had higher total SCFA concentrations compared to the negative control (P < 0.05 at 24 h. At 24 h, inulin produced significantly (P = 0.0016 more butyrate than WD with PHGG being similar to both. An exploratory microbial analysis (log10 CFU/µL showed WD had CFU for Bifidobacteria (6.12 and Lactobacillus (7.15 compared with the control (4.92 and 6.35, respectively. Rate of gas production is influenced by fiber source and may affect tolerance in vivo. Exploratory microbiota data hint at high levels of Bifidobacteria for WD, but require more robust investigation to corroborate these findings.

  14. Ion chromatography characterization of polysaccharides in ancient wall paintings.

    Science.gov (United States)

    Colombin, Maria Perla; Ceccarini, Alessio; Carmignani, Alessia

    2002-08-30

    An analytical procedure for the characterisation of polysaccharides and the identification of plant gums in old polychrome samples is described. The procedure is based on hydrolysis with 2 M trifluoroacetic acid assisted by microwaves (20 min, 120 degrees C, 500 W), clean-up of the hydrolysate by an ion-exchange resin, and analysis by high-performance anion-exchange chromatography with pulsed amperometric detection. Using this method the hydrolysis time was reduced to 20 min and the chromatographic separation of seven monosaccharides (fucose, rhamnose, arabinose, galactose, glucose, mannose, xylose) and two uronic acids (galacturonic and glucuronic) was achieved in 40 min. The whole analytical procedure allows sugar determination in plant gums at picomole levels, with an average recovery of 72% with an RSD of 8% as tested on arabic gum. The analytical procedure was tested with several raw gums, watercolour samples and reference painting specimens prepared according to old recipes at the Opificio delle Pietre Dure of Florence (Italian Ministry of Cultural Heritage, Italy). All the data collected expressed in relative sugar percentage contents were submitted to principal components analysis for gum identification: five groups were spatially separated and this enabled the identification of arabic, tragacanth, karaya, cherry+ghatty, and guar+locust bean gum. Wall painting samples from Macedonian tombs (Greece) of the 4th-3rd Centuries B.C., processed by the suggested method, showed the presence of a complex paint media mainly consisting of tragacanth and fruit tree gums. Moreover, starch had probably been added to plaster as highlighted by the presence of a huge amount of glucose.

  15. Radiation sterilization of potato starch and Sedonik

    International Nuclear Information System (INIS)

    Tashmetov, M.Yu.; Ismatov, N.B.; Saidov, R.P. et al.

    2016-01-01

    The raw material of pharmaceutical preparations potato starch and sedative means of Sedonik are sterilized at the electron's accelerator Electronics U-003. It is established that at 20.3 kGy absorbed dose and electron's energy 3 - 5 MeV the results of microbiological analysis showed sterility of potato starch and Sedonik and correspondence of their physical-optical properties to the requirements of normative documents. (authors)

  16. Resistant starch: an indigestible fraction of foods

    Directory of Open Access Journals (Sweden)

    Saura Calixto, F.

    1991-06-01

    Full Text Available Resistant starch (RS, the dietary starch that scape digestion in the small intestine, can yields up to 20% of the starch in cereal and legume products. Several fractions contribute to the total RS of foods: retrograded amylose, starch inaccessible to digestive enzymes because of mechanical barriers, chemically modified starch fragments, undigested starch due to α-amylase inhibitors and starch complexed with other food components. RS is formed in products processed following heat treatments (baking, extrusion, autoclaving, etc.. RS produces significant fecal bulking and is partially fermentable by anaerobic bacteria of the colon. On the other hand, the relation of resistant starch with the glucose and insulin response in human subjects is an important nutritional effect. RS analytical methods are reported.

    El almidón resistente (RS, fracción de almidón de la dieta que no es digerido en el intestino delgado, puede alcanzar hasta un 20% del almidón en productos derivados de cereales y legumbres. Varias fracciones contribuyen al contenido total de almidón resistente: amilosa retrogradada, almidón inaccesible físicamente a los enzimas digestivos, almidón indigestible debido a inhibición de α-amilasas y almidón complejado con otros constituyentes de los alimentos. El almidón resistente se forma en productos que han sufrido tratamientos térmicos (panificación, extrusión, autoclave, etc. El RS aumenta el volumen de heces y es fermentado parcialmente en el colon por bacterias anaeróbicas. Igualmente, está relacionado con los niveles de glucosa en sangre y la respuesta de insulina en humanos. Se describen los métodos analíticos para su determinación.

  17. Biodegradable starch-based polymeric materials

    Science.gov (United States)

    Suvorova, Anna I.; Tyukova, Irina S.; Trufanova, Elena I.

    2000-05-01

    The effects of low-molecular-weight additives, temperature and mechanical action on the structure and properties of starch are discussed. Special attention is given to mixtures of starch with synthetic polymers, e.g., co-polymers of ethylene with vinyl acetate, vinyl alcohol, acrylic acid, cellulose derivatives and other natural polymers. These mixtures can be used in the development of novel environmentally safe materials (films, coatings, packaging materials) and various articles for short-term use. The bibliography includes 105 references.

  18. Tailoring the properties of thermoplastic starch by blending with cinnamyl alcohol and radiation processing: An insight into the competitive grafting and scission reactions

    International Nuclear Information System (INIS)

    Khandal, Dhriti; Mikus, Pierre-Yves; Dole, Patrice; Bliard, Christophe; Soulestin, Jérémie; Lacrampe, Marie-France; Baumberger, Stéphanie; Coqueret, Xavier

    2012-01-01

    The present paper focuses on the effects of electron beam (EB) irradiation on thermoplastic materials based on destructurized starch including glycerol and water as plasticizers to assess the potentiality of cinnamyl alcohol as reactive additive capable of counterbalancing the degradation of the polysaccharide by inducing interchain covalent linkages. The tensile properties at break of test specimens of controlled composition submitted to EB irradiation at doses ranging from 50 to 200 kGy revealed the presence of competitive chain scission and bridging in samples containing cinnamyl alcohol at a relative concentration of 2.5% with regard to dry starch. The occurrence of crosslinking under particular conditions was evidenced by gel fraction measurements. The treatment under radiation was also applied to model blends including maltodextrin as a model for starch and the other ingredients to gain an insight into the radiation induced mechanisms at the molecular level. The presence of cinnamyl alcohol is found to limit degradation. Size exclusion chromatography and gel fraction allowed to monitor the effects and confirmed unambiguously the attachment of UV-absorbing chromophores onto the maltodextrin main chain. The combination of the obtained results demonstrates the possibility of altering in a favorable way the tensile properties of plasticized starch by applying high energy radiation to properly formulated blends including aromatic compounds like cinnamyl alcohol. - Highlights: ► Assessment of the potentiality of cinnamyl alcohol as an additive capable of counterbalancing the degradation of the polysaccharide. ► Tensile properties of test specimens of controlled composition submitted to EB irradiation revealed the presence of competitive chain scission and bridging in samples containing 2.5 wt% cinnamyl alcohol. ► Gel fraction measurements confirmed that grafting was overcoming chain scission. ► Possibility of altering in a favorable way the tensile

  19. Regulation and diversity of plant polysaccharide utilisation in fungi

    NARCIS (Netherlands)

    Battaglia, E.

    2011-01-01

    Filamentous fungi obtain their nutrients by degrading dead or living plant material. Plant material consists of different cell wall and storage polysaccharides. Due to the complex structure and the variety of plant polysaccharides, filamentous fungi secrete a wide range of plant polysaccharide

  20. Influence of phosphate esters on the annealing properties of starch

    DEFF Research Database (Denmark)

    Wischmann, Bente; Muhrbeck, Per

    1998-01-01

    The effects of annealing on native potato, waxy maize, and phosphorylated waxy maize starches were compared. Phosphorylated waxy maize starch responded to annealing in a manner between that of the naturally phosphorylated potato starch and that of the native waxy maize starch. The gelatinisation...... end-point temperature was increased, whereas in the native waxy maize it was decreased. On the other hand, the onset temperature change was much larger in potato starch than in the two waxy maize starches. Steeping also yielded intermediate effects on the phosphorylated waxy maize starch....... It was concluded that the phosphate groups have similar effects as they do in the native, naturally phosphorylated potato starch, although the substitution pattern is not entirely the same in the artificially phosphorylated starch....

  1. Engineering Potato Starch with a Higher Phosphate Content.

    Directory of Open Access Journals (Sweden)

    Xuan Xu

    Full Text Available Phosphate esters are responsible for valuable and unique functionalities of starch for industrial applications. Also in the cell phosphate esters play a role in starch metabolism, which so far has not been well characterized in storage starch. Laforin, a human enzyme composed of a carbohydrate-binding module and a dual-specificity phosphatase domain, is involved in the dephosphorylation of glycogen. To modify phosphate content and better understand starch (dephosphorylation in storage starch, laforin was engineered and introduced into potato (cultivar Kardal. Interestingly, expression of an (engineered laforin in potato resulted in significantly higher phosphate content of starch, and this result was confirmed in amylose-free potato genetic background (amf. Modified starches exhibited altered granule morphology and size compared to the control. About 20-30% of the transgenic lines of each series showed red-staining granules upon incubation with iodine, and contained higher phosphate content than the blue-stained starch granules. Moreover, low amylose content and altered gelatinization properties were observed in these red-stained starches. Principle component and correlation analysis disclosed a complex correlation between starch composition and starch physico-chemical properties. Ultimately, the expression level of endogenous genes involved in starch metabolism was analysed, revealing a compensatory response to the decrease of phosphate content in potato starch. This study provides a new perspective for engineering starch phosphate content in planta by making use of the compensatory mechanism in the plant itself.

  2. Polysaccharide charge density regulating protein adsorption to air/water interfaces by protein/polysaccharide complex formation

    NARCIS (Netherlands)

    Ganzevles, R.A.; Kosters, H.; Vliet, T. van; Stuart, M.A.C.; Jongh, H.H.J. de

    2007-01-01

    Because the formation of protein/polysaccharide complexes is dominated by electrostatic interaction, polysaccharide charge density is expected to play a major role in the adsorption behavior of the complexes. In this study, pullulan (a non-charged polysaccharide) carboxylated to four different

  3. Starch Spherulites Prepared by a Combination of Enzymatic and Acid Hydrolysis of Normal Corn Starch.

    Science.gov (United States)

    Shang, Yaqian; Chao, Chen; Yu, Jinglin; Copeland, Les; Wang, Shuo; Wang, Shujun

    2018-06-13

    This paper describes a new method to prepare spherulites from normal corn starch by a combination of enzymatic (mixtures of α-amylase and amyloglucosidase) and acid hydrolysis followed by recrystallization of the hydrolyzed products. The resulting spherulites contained a higher proportion of chains with a degree of polymerization (DP) of 6-12 and a lower proportion of chains with DP of 25-36, compared to those of native starch. The spherulites had an even particle size of about 2 μm and a typical B-type crystallinity. The amounts of long- and short-range molecular order of double helices in starch spherulites were larger, but the quality of starch crystallites was poorer, compared to that of native starch. This study showed an efficient method for preparing starch spherulites with uniform granule morphology and small particle size from normal corn starch. The ratios of α-amylase and amyloglucosidase in enzymatic hydrolysis had little effect on the structure of the starch spherulites.

  4. Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Blennow, Andreas; Jensen, Susanne L

    2012-01-01

    to glucose and rapidly absorbed in the small intestine. But a portion of dietary starch, termed "resistant starch" (RS) escapes digestion and reaches the large intestine, where it is fermented by colonic bacteria producing short chain fatty acids (SCFA) which are linked to several health benefits. The RS...

  5. In vitro starch digestion correlates well with rate and extent of starch digestion in broiler chickens

    NARCIS (Netherlands)

    Weurding, R.E.; Veldman, R.; Veen, W.A.G.; Aar, van der P.J.; Verstegen, M.W.A.

    2001-01-01

    Current feed evaluation systems for poultry are based on digested components (fat, protein and nitrogen-free extracts). Digestible starch is the most important energy source in broiler chicken feeds and is part of the nitrogen-free extract fraction. Digestible starch may be predicted using an in

  6. Green starch conversions : Studies on starch acetylation in densified CO2

    NARCIS (Netherlands)

    Muljana, Henky; Picchioni, Francesco; Heeres, Hero J.; Janssen, Leon P. B. M.

    2010-01-01

    The acetylation of potato starch with acetic anhydride (AAH) and sodium acetate (NaOAc) as catalyst in densified CO2 was explored in a batch reactor setup. The effects of process variables such as pressure (6-9.8 MPa), temperature (40-90 degrees C), AAH to starch ratio (2-5 mol/mol AGU), NaOAc to

  7. Characterization of starch films containing starch nanoparticles: part 1: physical and mechanical properties.

    Science.gov (United States)

    Shi, Ai-Min; Wang, Li-Jun; Li, Dong; Adhikari, Benu

    2013-07-25

    We report, for the first time, the preparation method and characteristics of starch films incorporating spray dried and vacuum freeze dried starch nanoparticles. Physical properties of these films such as morphology, crystallinity, water vapor permeability (WVP), opacity, and glass transition temperature (Tg) and mechanical properties (strain versus temperature, strain versus stress, Young's modulus and toughness) were measured. Addition of both starch nanoparticles in starch films increased roughness of surface, lowered degree of crystallinity by 23.5%, WVP by 44% and Tg by 4.3°C, respectively compared to those of starch-only films. Drying method used in preparation of starch nanoparticles only affected opacity of films. The incorporation of nanoparticles in starch films resulted into denser films due to which the extent of variation of strain with temperature was much lower. The toughness and Young's modulus of films containing both types of starch nanoparticles were lower than those of control films especially at <100°C. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Effect of gamma irradiation on thermophysical properties of plasticized starch and starch surfactant films

    Science.gov (United States)

    Cieśla, Krystyna; Watzeels, Nick; Rahier, Hubert

    2014-06-01

    In this work the influence of gamma irradiation on the thermomechanical properties of the films formed in potato starch-glycerol and potato starch-glycerol-surfactant systems were examined by Dynamic Mechanical Analysis, DMA, and Differential Scanning Calorimetry, DSC, and the results were correlated to the amount of the volatile fraction in the films.

  9. Effect of starch types on properties of biodegradable polymer based on thermoplastic starch process by injection molding technique

    Directory of Open Access Journals (Sweden)

    Yossathorn Tanetrungroj

    2015-04-01

    Full Text Available In this study effects of different starch types on the properties of biodegradable polymer based on thermoplastic starch (TPS were investigated. Different types of starch containing different contents of amylose and amylopectin were used, i.e. cassava starch, mungbean starch, and arrowroot starch. The TPS polymers were compounded and shaped using an internal mixer and an injection molding machine, respectively. It was found that the amount of amylose and amylopectin contents on native starch influence the properties of the TPS polymer. A high amylose starch of TPMS led to higher strength, hardness, degree of crystallization than the high amylopectin starch of TPCS. In addition, function group analysis by Fourier transforms infrared spectrophotometer, water absorption, and biodegradation by soil burial test were also examined.

  10. Effect of waxy rice flour and cassava starch on freeze-thaw stability of rice starch gels.

    Science.gov (United States)

    Charoenrein, Sanguansri; Preechathammawong, Nutsuda

    2012-10-01

    Repeatedly frozen and thawed rice starch gel affects quality. This study investigated how incorporating waxy rice flour (WF) and cassava starch (CS) in rice starch gel affects factors used to measure quality. When rice starch gels containing 0-2% WF and CS were subjected to 5 freeze-thaw cycles, both WF and CS reduced the syneresis in first few cycles. However CS was more effective in reducing syneresis than WF. The different composite arrangement of rice starch with WF or CS caused different mechanisms associated with the rice starch gel retardation of retrogradation, reduced the spongy structure and lowered syneresis. Both swollen granules of rice starch and CS caused an increase in the hardness of the unfrozen and freeze-thawed starch gel while highly swollen WF granules caused softer gels. These results suggested that WF and CS were effective in preserving quality in frozen rice starch based products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Retrogradation of Maize Starch after High Hydrostatic Pressure Gelation: Effect of Amylose Content and Depressurization Rate

    KAUST Repository

    Yang, Zhi; Swedlund, Peter; Gu, Qinfen; Hemar, Yacine; Chaieb, Saharoui

    2016-01-01

    High hydrostatic pressure (HHP) has been employed to gelatinize or physically modify starch dispersions. In this study, waxy maize starch, normal maize starch, and two high amylose content starch were processed by a HHP of the order of 600 MPa

  12. High surface area starch products as filler-binder in direct compression tablets

    NARCIS (Netherlands)

    te Wierik, G.HP; Ramaker, J.S; Eissens, A.C; Bergsma, J; Arends-Scholte, A.W.; Lerk, C.F

    Amylodextrin and modified starch products were prepared from amylose-free starches and from (amylose containing) potato starch by enzymatic degradation, followed by precipitation and filtration. The intermediate retrograded starch products were dehydrated by drying at room temperature or washing

  13. Physicochemical Properties of Gamma-Irradiated Corn Starch

    International Nuclear Information System (INIS)

    Lee, Y.J.; Lim, S.T.; Kim, S.Y.; Han, S.M.; Kim, H.M.; Kang, I.J.

    2006-01-01

    Structural modification of corn starch by gamma irradiation was evaluated for under dry conditions at varied intensities from 0 to 40 kGy. Under scanning electron microscopy, the granule shape of corn starch was not significantly affected by the irradiation up to 40 kGy. In addition, X-ray diffraction and melting patterns of the irradiated starches were similar to those of the native starch, indicating that crystalline regions in the starch granules were not changed by irradiation. However, the pattern of gel permeation column chromatography showed a significant increase in partial hydrolysis of gamma irradiated starch samples

  14. Degradation of corn starch under the influence of gamma irradiation

    International Nuclear Information System (INIS)

    El Saadany, R.M.A.; El Saadany, F.M.; Foda, Y.H.

    1976-01-01

    Irradiation of corn (maize) starch with different doses of gamma irradiation ranging from 1 x 10 5 rad to 1 x 10 6 rad resulted in the increase of starch acidity and reducing power. Molecular degradation was observed as a result of marked decrease in starch viscosity and intinsic viscosity as well as swelling capacity. The gelatinization time and temperature of the irradiated starch became shorter than in the control sample. Internal changes in the irradiated starch occured as a result of lowering the number of glucose unit per segment in the irradiated starch molecules. All changes were proportional to the doses of gamma irradiation used. (orig.) [de

  15. Impact of pressure on physicochemical properties of starch dispersions

    KAUST Repository

    Yang, Zhi; Chaib, Sahraoui; Gu, Qinfen; Hemar, Yacine

    2016-01-01

    High hydrostatic pressure (HHP) can be employed as a non-thermal sterilization technique in the food industry while inducing structure and physicochemical changes of the food macromolecules like starch. The effect of HHP on starch depends on various factors including starch type and concentration, pressurization temperature, time, and suspending media. In this review, we summarize the influence of HHP on the structure, gelatinization, retrogradation, and modification of starches from different botanical origins. Suggestions for future research are provided to better understand the mechanism of HHP on starch, and on how HHP can be used in the starch industry. © 2016 Elsevier Ltd.

  16. Degradation of corn starch under the influence of gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    El Saadany, R M.A.; El Saadany, F M; Foda, Y H

    1976-01-01

    Irradiation of corn (maize) starch with different doses of gamma irradiation ranging from 1 x 10/sup 5/ rad to 1 x 10/sup 6/ rad resulted in the increase of starch acidity and reducing power. Molecular degradation was observed as a result of marked decrease in starch viscosity and intinsic viscosity as well as swelling capacity. The gelatinization time and temperature of the irradiated starch became shorter than in the control sample. Internal changes in the irradiated starch occured as a result of lowering the number of glucose unit per segment in the irradiated starch molecules. All changes were proportional to the doses of gamma irradiation used.

  17. Impact of pressure on physicochemical properties of starch dispersions

    KAUST Repository

    Yang, Zhi

    2016-09-02

    High hydrostatic pressure (HHP) can be employed as a non-thermal sterilization technique in the food industry while inducing structure and physicochemical changes of the food macromolecules like starch. The effect of HHP on starch depends on various factors including starch type and concentration, pressurization temperature, time, and suspending media. In this review, we summarize the influence of HHP on the structure, gelatinization, retrogradation, and modification of starches from different botanical origins. Suggestions for future research are provided to better understand the mechanism of HHP on starch, and on how HHP can be used in the starch industry. © 2016 Elsevier Ltd.

  18. Polysaccharide coating of human corneal endothelium

    DEFF Research Database (Denmark)

    Schroder, H D; Sperling, S

    1977-01-01

    Electron microscopy revealed the presence of a 600-1500 A thick layer of polysaccharide on the surface of human corneal endothelial cells. The surface layer was visualized by combined fixation and staining in a mixture of ruthenium red and osmium tetroxide. The coating material was stable for at ...... for at least 39 h post mortem and was retained on disintegrating cells....

  19. Bacillus subtilis biofilm induction by plant polysaccharides.

    Science.gov (United States)

    Beauregard, Pascale B; Chai, Yunrong; Vlamakis, Hera; Losick, Richard; Kolter, Roberto

    2013-04-23

    Bacillus subtilis is a plant-beneficial Gram-positive bacterium widely used as a biofertilizer. However, relatively little is known regarding the molecular processes underlying this bacterium's ability to colonize roots. In contrast, much is known about how this bacterium forms matrix-enclosed multicellular communities (biofilms) in vitro. Here, we show that, when B. subtilis colonizes Arabidopsis thaliana roots it forms biofilms that depend on the same matrix genes required in vitro. B. subtilis biofilm formation was triggered by certain plant polysaccharides. These polysaccharides served as a signal for biofilm formation transduced via the kinases controlling the phosphorylation state of the master regulator Spo0A. In addition, plant polysaccharides are used as a source of sugars for the synthesis of the matrix exopolysaccharide. The bacterium's response to plant polysaccharides was observed across several different strains of the species, some of which are known to have beneficial effects on plants. These observations provide evidence that biofilm genes are crucial for Arabidopsis root colonization by B. subtilis and provide insights into how matrix synthesis may be triggered by this plant.

  20. Therapeutic role of glucogalactan polysaccharide extracted from ...

    African Journals Online (AJOL)

    RACHEL

    2015-06-17

    Jun 17, 2015 ... Neurotransmitters and nitric oxide were significantly increased in the group given GA treatment compared to TMT .... Fractionation was performed by precipitating with ammonium sulfate. ..... deleterious effects of nitrogen reactive species accumula- .... Studies on the production of sulfated polysaccharide by.

  1. Preparation and antidiabetic activity of polysaccharide from ...

    African Journals Online (AJOL)

    Extraction parameters of polysaccharide from Portulaca oleracea L. (POP) and antidiabetic activity of POP on alloxan induced diabetic mice were studied. Better extraction parameters of POP were obtained by the single factor test, as follows: extraction temperature 95°C, extraction time 5 h, and ratio of solvent to raw ...

  2. Extraction optimization and characterization of polysaccharide ...

    African Journals Online (AJOL)

    Purpose: To investigate the optimum extraction conditions of polysaccharides from Pinellia Rhizoma (PRP) and their antioxidant activities. Methods: Response surface methodology (RSM) was applied to optimize the water extraction conditions of PRP by Box-Benhnken design (BBD). A high performance liquid ...

  3. Enzymatic production of polysaccharides from gum tragacanth

    DEFF Research Database (Denmark)

    2014-01-01

    Plant polysaccharides, relating to the field of natural probiotic components, can comprise structures similar to human milk oligosaccharides. A method for enzymatic hydrolysis of gum tragacanth from the bush-like legumes of the genus Astragalus, using a combination of pectin hydrolases...

  4. Modulation of Porphyridium aerugineum polysaccharide rheology ...

    African Journals Online (AJOL)

    A stock (0.5% w/v) aqueous solution of the polysaccharide of the microalga Porphyridium aerugineum was further diluted using (i) deionized water and (ii) an aqueous (0.2% w/v) solution of a new, garden soil extract. The viscosity of the resultant solution was higher by about 23% (5 samples) where the soil extract was used ...

  5. Plant-Polysaccharide-Degrading Enzymes from Basidiomycetes

    Science.gov (United States)

    Rytioja, Johanna; Hildén, Kristiina; Yuzon, Jennifer; Hatakka, Annele; de Vries, Ronald P.

    2014-01-01

    SUMMARY Basidiomycete fungi subsist on various types of plant material in diverse environments, from living and dead trees and forest litter to crops and grasses and to decaying plant matter in soils. Due to the variation in their natural carbon sources, basidiomycetes have highly varied plant-polysaccharide-degrading capabilities. This topic is not as well studied for basidiomycetes as for ascomycete fungi, which are the main sources of knowledge on fungal plant polysaccharide degradation. Research on plant-biomass-decaying fungi has focused on isolating enzymes for current and future applications, such as for the production of fuels, the food industry, and waste treatment. More recently, genomic studies of basidiomycete fungi have provided a profound view of the plant-biomass-degrading potential of wood-rotting, litter-decomposing, plant-pathogenic, and ectomycorrhizal (ECM) basidiomycetes. This review summarizes the current knowledge on plant polysaccharide depolymerization by basidiomycete species from diverse habitats. In addition, these data are compared to those for the most broadly studied ascomycete genus, Aspergillus, to provide insight into specific features of basidiomycetes with respect to plant polysaccharide degradation. PMID:25428937

  6. Enzymatic production of hyaluronan oligo- and polysaccharides

    NARCIS (Netherlands)

    Kooy, F.K.

    2010-01-01

    Hyaluronan oligo- and polysaccharides are abundant in the human body. Depending on the chain length, hyaluronan is an important structural component or is involved in influencing cell responses during embryonic development, healing processes, inflammation and cancer. Due to these diverse roles of

  7. Radiation degradation of marine polysaccharides by low energy electron beam

    International Nuclear Information System (INIS)

    Yoshii, Fumio; Nagasawa, Naotsugu; Kume, Tamikazu

    2003-01-01

    The radiation degradations of marine polysaccharides by both gamma Co-60 and electron beam irradiations are investigated. Polysaccharides and oligosaccharides can be produced by degradation of corresponding polysaccharides including marine polysaccharides such as alginates, chitin chitosan and carrageenan. The viscosity of alginate, chitosan and carrageenan solution decreases markedly with increase of the low energy electron beam irradiation time and the beam current. Furthermore, the viscosity is reduced sharply in short time for polysaccharide solution with low concentration, for instance carrageenan solution of 1%. (author)

  8. Improved coupling of bacterial polysaccharides to macromolecules and solid supports

    DEFF Research Database (Denmark)

    2013-01-01

    The invention relates to a method of producing a polysaccharide-carrier conjugate comprising coupling a polysaccharide to a carrier, said polysaccharide comprising at least one monosaccharide unit comprising a keto-carboxy group according to the formula -C(=O)COOR, where R is either hydrogen or C1......-alkoxyamine group of the carrier with a keto-carboxy group of said polysaccharide to form a covalent amide bond between the carrier and the polysaccharide. Another aspect of the present invention relates to a compound or solid surface obtained when performing the method of the present invention. A third aspect...

  9. Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Blennow, Per Gunnar Andreas; Jensen, Susanne Langgård

    2012-01-01

    is preferentially derived from amylose, which can be increased by suppressing amylopectin synthesis by silencing of starch branching enzymes (SBEs). However all the previous works attempting the production of high RS crops resulted in only partly increased amylose-content and/or significant yield loss. Results...... In this study we invented a new method for silencing of multiple genes. Using a chimeric RNAi hairpin we simultaneously suppressed all genes coding for starch branching enzymes (SBE I, SBE IIa, SBE IIb) in barley (Hordeum vulgare L.), resulting in production of amylose-only starch granules in the endosperm...... yield in a living organism. This was achieved by a new method of simultaneous suppression of the entire complement of genes encoding starch branching enzymes. We demonstrate that amylopectin is not essential for starch granule crystallinity and integrity. However the slower initial growth of shoots from...

  10. Effects of water on starch-g-polystyrene and starch-g-poly(methyl acrylate) extrudates

    International Nuclear Information System (INIS)

    Henderson, A.M.; Rudin, A.

    1982-01-01

    Polystyrene and poly(methyl acrylate) were grafted onto wheat starch by gamma radiation and chemical initiation, respectively. The respective percent add-on values were 46 and 45; 68% of the polystyrene formed was grafted to starch, and corresponding proportion of poly(methyl acrylate) was 41%. The molecular weight distributions of the homopolymer and graft portions were characterized, and extrusion conditions were established for production of ribbon samples of starch-g-PS and starch-g-PMA. Both copolymer types were considerably weakened by soaking in water, and this effect was more immediate and drastic for starch-g-poly(methyl acrylate). Both graft copolymers regained their original tensile strengths on drying, but the poly(methyl acrylate) specimens did not recover their original unswollen dimensions and retained high breaking elongations characteristic of soaked specimens. Tensile and dynamic mechanical properties of extruded and molded samples of both graft polymers are reported, and plasticizing effects of water are summarized

  11. Swelling Kinetics of Waxy Maize Starch

    Science.gov (United States)

    Desam, Gnana Prasuna Reddy

    Starch pasting behavior greatly influences the texture of a variety of food products such as canned soup, sauces, baby foods, batter mixes etc. The annual consumption of starch in the U.S. is 3 million metric tons. It is important to characterize the relationship between the structure, composition and architecture of the starch granules with its pasting behavior in order to arrive at a rational methodology to design modified starch of desirable digestion rate and texture. In this research, polymer solution theory was applied to predict the evolution of average granule size of starch at different heating temperatures in terms of its molecular weight, second virial coefficient and extent of cross-link. Evolution of granule size distribution of waxy native maize starch when subjected to heating at constant temperatures of 65, 70, 75, 80, 85 and 90 C was characterized using static laser light scattering. As expected, granule swelling was more pronounced at higher temperatures and resulted in a shift of granule size distribution to larger sizes with a corresponding increase in the average size by 100 to 120% from 13 mum to 25-28 mum. Most of the swelling occurred within the first 10 min of heating. Pasting behavior of waxy maize at different temperatures was also characterized from the measurements of G' and G" for different heating times. G' was found to increase with temperature at holding time of 2 min followed by its decrease at larger holding times. This behavior is believed to be due to the predominant effect of swelling at small times. However, G" was insensitive to temperature and holding times. The structure of waxy maize starch was characterized by cryoscanning electron microscopy. Experimental data of average granule size vs time at different temperatures were compared with model predictions. Also the Experimental data of particle size distribution vs particle size at different times and temperatures were compared with model predictions.

  12. Effects of cooking methods and starch structures on starch hydrolysis rates of rice.

    Science.gov (United States)

    Reed, Michael O; Ai, Yongfeng; Leutcher, Josh L; Jane, Jay-lin

    2013-07-01

    This study aimed to understand effects of different cooking methods, including steamed, pilaf, and traditional stir-fried, on starch hydrolysis rates of rice. Rice grains of 3 varieties, japonica, indica, and waxy, were used for the study. Rice starch was isolated from the grain and characterized. Amylose contents of starches from japonica, indica, and waxy rice were 13.5%, 18.0%, and 0.9%, respectively. The onset gelatinization temperature of indica starch (71.6 °C) was higher than that of the japonica and waxy starch (56.0 and 56.8 °C, respectively). The difference was attributed to longer amylopectin branch chains of the indica starch. Starch hydrolysis rates and resistant starch (RS) contents of the rice varieties differed after they were cooked using different methods. Stir-fried rice displayed the least starch hydrolysis rate followed by pilaf rice and steamed rice for each rice variety. RS contents of freshly steamed japonica, indica, and waxy rice were 0.7%, 6.6%, and 1.3%, respectively; those of rice pilaf were 12.1%, 13.2%, and 3.4%, respectively; and the stir-fried rice displayed the largest RS contents of 15.8%, 16.6%, and 12.1%, respectively. Mechanisms of the large RS contents of the stir-fried rice were studied. With the least starch hydrolysis rate and the largest RS content, stir-fried rice would be a desirable way of preparing rice for food to reduce postprandial blood glucose and insulin responses and to improve colon health of humans. © 2013 Institute of Food Technologists®

  13. Effects of starch synthase IIa gene dosage on grain, protein and starch in endosperm of wheat.

    Science.gov (United States)

    Konik-Rose, Christine; Thistleton, Jenny; Chanvrier, Helene; Tan, Ihwa; Halley, Peter; Gidley, Michael; Kosar-Hashemi, Behjat; Wang, Hong; Larroque, Oscar; Ikea, Joseph; McMaugh, Steve; Regina, Ahmed; Rahman, Sadequr; Morell, Matthew; Li, Zhongyi

    2007-11-01

    Starch synthases (SS) are responsible for elongating the alpha-1,4 glucan chains of starch. A doubled haploid population was generated by crossing a line of wheat, which lacks functional ssIIa genes on each genome (abd), and an Australian wheat cultivar, Sunco, with wild type ssIIa alleles on each genome (ABD). Evidence has been presented previously indicating that the SGP-1 (starch granule protein-1) proteins present in the starch granule in wheat are products of the ssIIa genes. Analysis of 100 progeny lines demonstrated co-segregation of the ssIIa alleles from the three genomes with the SGP-1 proteins, providing further evidence that the SGP-1 proteins are the products of the ssIIa genes. From the progeny lines, 40 doubled haploid lines representing the eight possible genotypes for SSIIa (ABD, aBD, AbD, ABd, abD, aBd, Abd, abd) were characterized for their grain weight, protein content, total starch content and starch properties. For some properties (chain length distribution, pasting properties, swelling power, and gelatinization properties), a progressive change was observed across the four classes of genotypes (wild type, single nulls, double nulls and triple nulls). However, for other grain properties (seed weight and protein content) and starch properties (total starch content, granule morphology and crystallinity, granule size distribution, amylose content, amylose-lipid dissociation properties), a statistically significant change only occurred for the triple nulls, indicating that all three genes had to be missing or inactive for a change to occur. These results illustrate the importance of SSIIa in controlling grain and starch properties and the importance of amylopectin fine structure in controlling starch granule properties in wheat.

  14. Biodegradation of bacterial polysaccharides adsorbed on montmorillonite

    International Nuclear Information System (INIS)

    Guckert, A.; Tok, H.H.; Jacquin, F.

    1977-01-01

    In this research, by means of a model, a study was made of the biodegradation of microbial organic compounds adsorbed on clays, with a parallel experiment on Fontainebleau sand serving as the control. During incubation the three classes of organic matter ( 14 C-labelled glucose, 14 C-labelled polysaccharides and 14 C-labelled microbial cells) mineralize more actively in the presence of sand than in the presence of clay, since the latter provides protection against biodegradation. Mineralization of the adsorbed organic compounds, however, is marked by clear-cut differences after three weeks - glucose (55%)>polysaccharides (43%)>microbial organisms (7.3%). After incubation, chemical extraction of the organo-mineral complexes by alkaline solvents shows only water-soluble and alkali-soluble products in the case of sand; conversely, in that of montmorillonite the bulk of the 14 C was found in the non-extractable fraction or humin (18.1% of the initial 14 C for glucose, 27.3% for the polysaccharides, and 67.6% for the microbial organisms). A second incubation carried out after a phase in which there was drying and remoistening of the organo-mineral complexes, brings to light the important part played by climatic alternations during the biodegradation process. A new mineralization phase is observed, affecting more the bacterial organisms (14.1%) than the polysaccharides (6.3%), with the glucose-base complexes occupying an intermediate position (11.2%). The chemical fractioning of the organo-mineral complexes following re-incubation shows the stability of 14 C in humin very clearly, especially in the case of polysaccharides, where the mineralization phase relates primarily to the products extractable with alkalis. (author)

  15. Starch Granule Re-Structuring by Starch Branching Enzyme and Glucan Water Dikinase Modulation Affects Caryopsis Physiology and Metabolism

    DEFF Research Database (Denmark)

    Shaik, Shahnoor S.; Obata, Toshihiro; Hebelstrup, Kim H

    2016-01-01

    in starch granule morphology at maturity. The results demonstrate that decreasing the storage starch branching resulted in metabolic adjustments and re-directions, tuning to evade deleterious effects on caryopsis physiology and plant performance while only little effect was evident by increasing starch......Starch is of fundamental importance for plant development and reproduction and its optimized molecular assembly is potentially necessary for correct starch metabolism. Re-structuring of starch granules in-planta can therefore potentially affect plant metabolism. Modulation of granule micro...

  16. Starch Granule Re-Structuring by Starch Branching Enzyme and Glucan Water Dikinase Modulation Affects Caryopsis Physiology and Metabolism

    DEFF Research Database (Denmark)

    Shaik, Shahnoor S.; Obata, Toshihiro; Hebelstrup, Kim H

    2016-01-01

    Starch is of fundamental importance for plant development and reproduction and its optimized molecular assembly is potentially necessary for correct starch metabolism. Re-structuring of starch granules in-planta can therefore potentially affect plant metabolism. Modulation of granule micro...... in starch granule morphology at maturity. The results demonstrate that decreasing the storage starch branching resulted in metabolic adjustments and re-directions, tuning to evade deleterious effects on caryopsis physiology and plant performance while only little effect was evident by increasing starch...

  17. Physicochemical properties of black pepper (Piper nigrum) starch.

    Science.gov (United States)

    Zhu, Fan; Mojel, Reuben; Li, Guantian

    2018-02-01

    Black pepper (Piper nigrum) is among the most popular spices around the world. Starch is the major component of black pepper. However, little is known about functional properties of this starch. In this study, swelling, solubility, thermal properties, rheology, and enzyme susceptibility of 2 black pepper starches were studied and compared with those of maize starch. Pepper starch had lower water solubility and swelling power than maize starch. It had higher viscosity during pasting event. In dynamic oscillatory analysis, pepper starch had lower storage modulus. Thermal analysis showed that pepper starch had much higher gelatinization temperatures (e.g., conclusion temperature of 94°C) than maize starch. The susceptibility to α-amylolysis of pepper starch was not very different from that of maize starch. Overall, the differences in the physicochemical properties of the 2 pepper starches are non-significant. The relationships between structure (especially amylopectin internal molecular structure) and properties of starch components are highlighted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Enzymic conversion of starch to glucose

    Energy Technology Data Exchange (ETDEWEB)

    1964-08-19

    Corn is steeped in a SO/sub 2/ solution for 30 to 40 hours, coarsely ground, separated from the germ, and filtered. A 35% suspension of the germ-free corn, still containing fibers, hull, and gluten, is treated with Ca(OH)/sub 2/ to raise the pH to 6.5 to 7.0. A starch-liquifying enzyme is added and after a 2 hours treatment at 85/sup 0/ the liquefied starch is cooled to 60/sup 0/ and the pH is adjusted to 4.5 to 5.0 with H/sub 2/SO/sub 4/. A saccharifying enzyme is now added. After 40 to 81 hours, a raw glucose solution is obtained and is freed from fibers and gluten by filtration. The commercial starch-liquifying enzymes are designated HT-1000 and Neozyme 3 LC (liquid). The saccharifying enzymes are Diazyme or Diazyme L 30 (liquid). The solid enzymes are used at a level up to 0.1% by weight of the starch. Up to 100% conversion of starch into glucose is achieved.

  19. All Green Composites from Fully Renewable Biopolymers: Chitosan-Starch Reinforced with Keratin from Feathers

    Directory of Open Access Journals (Sweden)

    Cynthia G. Flores-Hernández

    2014-03-01

    Full Text Available The performance as reinforcement of a fibrillar protein such as feather keratin fiber over a biopolymeric matrix composed of polysaccharides was evaluated in this paper. Three different kinds of keratin reinforcement were used: short and long biofibers and rachis particles. These were added separately at 5, 10, 15 and 20 wt% to the chitosan-starch matrix and the composites were processed by a casting/solvent evaporation method. The morphological characteristics, mechanical and thermal properties of the matrix and composites were studied by scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry and dynamic mechanical analysis. The thermal results indicated that the addition of keratin enhanced the thermal stability of the composites compared to pure matrix. This was corroborated with dynamic mechanical analysis as the results revealed that the storage modulus of the composites increased with respect to the pure matrix. The morphology, evaluated by scanning electron microscopy, indicated a uniform dispersion of keratin in the chitosan-starch matrix as a result of good compatibility between these biopolymers, also corroborated by FTIR. These results demonstrate that chicken feathers can be useful to obtain novel keratin reinforcements and develop new green composites providing better properties, than the original biopolymer matrix.

  20. Chitosan-Starch Films with Natural Extracts: Physical, Chemical, Morphological and Thermal Properties

    Directory of Open Access Journals (Sweden)

    Jessica I. Lozano-Navarro

    2018-01-01

    Full Text Available The aim of this study is to analyze the properties of a series of polysaccharide composite films, such as apparent density, color, the presence of functional groups, morphology, and thermal stability, as well as the correlation between them and their antimicrobial and optical properties. Natural antioxidants such as anthocyanins (from cranberry; blueberry and pomegranate; betalains (from beetroot and pitaya; resveratrol (from grape; and thymol and carvacrol (from oregano were added to the films. Few changes in the position and intensity of the FTIR spectra bands were observed despite the low content of extract added to the films. Due to this fact, the antioxidants were extracted and identified by spectroscopic analysis; and they were also quantified using the Folin-Denis method and a gallic acid calibration curve, which confirmed the presence of natural antioxidants in the films. According to the SEM analysis, the presence of natural antioxidants has no influence on the film morphology because the stretch marks and white points that were observed were related to starch presence. On the other hand, the TGA analysis showed that the type of extract influences the total weight loss. The overall interpretation of the results suggests that the use of natural antioxidants as additives for chitosan-starch film preparation has a prominent impact on most of the critical properties that are decisive in making them suitable for food-packing applications.

  1. Chitosan-Starch Films with Natural Extracts: Physical, Chemical, Morphological and Thermal Properties

    Science.gov (United States)

    Díaz-Zavala, Nancy P.; Melo-Banda, José A.; García-Alamilla, Ricardo; Martínez-Hernández, Ana L.; Zapién-Castillo, Samuel

    2018-01-01

    The aim of this study is to analyze the properties of a series of polysaccharide composite films, such as apparent density, color, the presence of functional groups, morphology, and thermal stability, as well as the correlation between them and their antimicrobial and optical properties. Natural antioxidants such as anthocyanins (from cranberry; blueberry and pomegranate); betalains (from beetroot and pitaya); resveratrol (from grape); and thymol and carvacrol (from oregano) were added to the films. Few changes in the position and intensity of the FTIR spectra bands were observed despite the low content of extract added to the films. Due to this fact, the antioxidants were extracted and identified by spectroscopic analysis; and they were also quantified using the Folin-Denis method and a gallic acid calibration curve, which confirmed the presence of natural antioxidants in the films. According to the SEM analysis, the presence of natural antioxidants has no influence on the film morphology because the stretch marks and white points that were observed were related to starch presence. On the other hand, the TGA analysis showed that the type of extract influences the total weight loss. The overall interpretation of the results suggests that the use of natural antioxidants as additives for chitosan-starch film preparation has a prominent impact on most of the critical properties that are decisive in making them suitable for food-packing applications. PMID:29329275

  2. Molecular structure, functionality and applications of oxidized starches: A review.

    Science.gov (United States)

    Vanier, Nathan Levien; El Halal, Shanise Lisie Mello; Dias, Alvaro Renato Guerra; da Rosa Zavareze, Elessandra

    2017-04-15

    During oxidation, the hydroxyl groups of starch molecules are first oxidized to carbonyl groups, then to carboxyl groups. The contents of the carbonyl and carboxyl groups in a starch molecule therefore indicate the extent of starch oxidation. The mechanisms of starch oxidation with different oxidizing agents, including sodium hypochlorite, hydrogen peroxide, ozone and sodium periodate, are described in this review. The effects of these oxidizing agents on the molecular, physicochemical, thermal, pasting and morphological properties of starch are described as well. In addition, the main industrial applications of oxidized starches are presented. The present review is important for understanding the effects of oxidation on starch properties, and this information may facilitate the development of novel oxidized starches for both food and non-food applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Starch bioengineering affects cereal grain germination and seedling establishment

    DEFF Research Database (Denmark)

    Shaik, Shahnoor Sultana; Carciofi, Massimiliano; Martens, Helle Juel

    2014-01-01

    Cereal grain germination is central for plant early development, and efficient germination has a major role in crop propagation and malting. Endosperm starch is the prime energy reserve in germination and seedling establishment. In this study, it was hypothesized that optimized starch granule...... structure, and not only the endosperm starch content per se, is important for germination and seedling establishment. For that purpose, wild-type (WT), and specifically engineered degradable hyperphosphorylated (HP) starch and more resistant amylose-only (AO) starch barley lines were used. The transgenics...... showed no severe phenotypes and the WT and HP lines degraded the starch similarly, having 30% residual starch after 12 d of germination. However, the AO line showed significant resistance to degradation, having 57% residual starch. Interestingly, protein and β-glucan (BG) degradation was stimulated...

  4. Effects of processing conditions on hydrolysis of cassava starch ...

    African Journals Online (AJOL)

    amyloglucosidase using 30% initial cassava starch concentration, which produced 152 g/l reducing sugar concentration and DE of 50.9. The total effective operating time was 60 h. Keywords:Cassava starch, hydrolysis, enzyme, dextrose equivalent.

  5. Comparative studies of starch susceptibilities to α-amylase ...

    African Journals Online (AJOL)

    ayoade

    of the four starch samples varied; amylose content of starch from maize varieties was higher than ... plants as an energy store. ... staple foods as potatoes, wheat, maize (corn), rice and ... of its various chemical and physical properties, can be.

  6. High throughput screening of starch structures using carbohydrate microarrays

    DEFF Research Database (Denmark)

    Tanackovic, Vanja; Rydahl, Maja Gro; Pedersen, Henriette Lodberg

    2016-01-01

    In this study we introduce the starch-recognising carbohydrate binding module family 20 (CBM20) from Aspergillus niger for screening biological variations in starch molecular structure using high throughput carbohydrate microarray technology. Defined linear, branched and phosphorylated...

  7. Evaluation of Starch Biodegradable Plastics Derived from Cassava ...

    African Journals Online (AJOL)

    BSN

    bioplastics produced from cassava does not depend on the level of amylose and amylopectin in the starch per se ... cassava starch is a pure, natural biopolymer that is suitable for ... enzymatic action of microorganisms when disposed, is thus ...

  8. composition and physicochemical properties of starch from christ

    African Journals Online (AJOL)

    Thompson O. Izuagie

    and physicochemical properties of the extracted starch were determined using standard methods. ... water, decorticated to remove skin, dried and ground .... Starches of oval shape have been reported by Hoover et al. ... Figure 2 shows values.

  9. Preparation of Edible Corn Starch Phosphate with Highly Reactive ...

    African Journals Online (AJOL)

    1Food & Bioengineering Department, Henan University of Science and Technology, Luoyang, Henan 471003 ... Purpose: To prepare edible corn starch phosphate under optimized experimental conditions. ... In food industry, starch phosphate.

  10. Slowing the Starch Digestion by Structural Modification through Preparing Zein/Pectin Particle Stabilized Water-in-Water Emulsion.

    Science.gov (United States)

    Chen, Jia-Feng; Guo, Jian; Zhang, Tao; Wan, Zhi-Li; Yang, Juan; Yang, Xiao-Quan

    2018-04-25

    Slowing the digestion of starch is one of the dominant concerns in the food industry. A colloidal structural modification strategy for solving this problem was proposed in this work. Due to thermodynamic incompatibility between two biopolymers, water/water emulsion of waxy corn starch (WCS) droplets dispersed in a continuous aqueous guar gum (GG) was prepared, and zein particles (ZPs), obtained by antisolvent precipitation and pectin modification, were used as stabilizer. As the ratio of zein to pectin in the particles was 1:1, their wetting properties in the two polysaccharides were similar, which made them accumulate at the interface and cover the WCS-rich droplets. The analysis of digestibility curves indicated that a rapid (rate constant k 1 : 0.145 min -1 ) and a slow phase ( k 2 : 0.022 min -1 ) existed during WCS digestion. However, only one slow phase ( k 2 : 0.019 min -1 ) was found in the WCS/GG emulsion, suggesting that this structure was effective in slowing starch digestion.

  11. Comparison of starch granule development and physicochemical properties of starches in wheat pericarp and endosperm.

    Science.gov (United States)

    Yu, Xurun; Zhou, Liang; Zhang, Jing; Yu, Heng; Xiong, Fei; Wang, Zhong

    2015-01-01

    The objectives of this study were: (i) to characterize structural development of starch granule in pericarp and endosperm during wheat caryopsis growth; (ii) to compare physicochemical properties of starches in pericarp and endosperm; (iii) to further discover the relationships between pericarp starches and endosperm starches. Wheat pericarp and endosperm at different development stages were observed by light microscopy and scanning electron microscopy, respectively. Structural properties of starches were determined using X-ray power diffraction and (13) C solid nuclear magnetic resonance. Pericarp starch granules (PSG) accumulated in amyloplasts and chloroplasts, and showed a typical accumulation peak at 5 days after fertilization (DAF), and then gradually decomposed during 5-22 DAF. PSG in the abdominal region showed a higher rate of decomposition compared to the dorsal region of pericarp. Endosperm starch granules (ESG) accumulated in amyloplasts, and occurred in endosperm cells at 5 DAF, then rapidly enriched the endosperm cells until 22 DAF. Compared with ESG, PSG were compound granules of irregular shape and small size distribution. The results also suggested lower amylose content and V-type single-helix content and higher proportions of double helices for PSG compared to ESG. Based on the structural development of PSG and ESG, we speculated that the saccharides resulting from decomposition of PSG, on one hand, enabled the pericarp to survive before maturity of wheat caryopsis and, on the other hand, provided extra nutrition for the growth of ESG. © 2014 Society of Chemical Industry.

  12. Starch behaviors and mechanical properties of starch blend films with different plasticizers.

    Science.gov (United States)

    Nguyen Vu, Hoang Phuong; Lumdubwong, Namfone

    2016-12-10

    The main objective of the study was to gain insight into structural and mechanical starch behaviors of the plasticized starch blend films. Mechanical properties and starch behaviors of cassava (CS)/and mungbean (MB) (50/50, w/w) starch blend films containing glycerol (Gly) or sorbitol (Sor) at 33% weight content were investigated. It was found that tensile strength TS and %E of the Gly-CSMB films were similar to those of MB films; but%E of all Sor-films was identical. TS of plasticized films increased when AM content and crystallinity increased. When Sor was substituted for Gly, crystallinity of starch films and their TS increased. The CSMB and MB films had somewhat a similar molecular profile and comparable mechanical properties. Therefore, it was proposed the starch molecular profile containing amylopectin with high M¯w, low M¯w of amylose, and the small size of intermediates may impart the high TS and%E of starch films. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Sensory evaluation of aromatic foods packed in developed starch based films using fuzzy logic

    Directory of Open Access Journals (Sweden)

    Tanima Chowdhury

    2015-04-01

    Full Text Available The last two decades have seen attempts to replace non biodegradable, synthetic food packaging films with alternatives made from biopolymers. The objective of the present work was to evaluate sensory quality of tea leaf and culinary tastemaker powder when sealed in pouches based on starch films.Films were developed from corn starch and a functional polysaccharide (FP from amylose (AM, methylcellulose (MC, and hydroxypropylmethylcellulose (HPMC, using a casting technique. Pouches were stored inside a secondary package (plastic jar under ambient condition for 90 days. Sensory attributes of the stored food samples were evaluated (tea in liquor form and the scores analysed by fuzzy logic. Results were compared with similarly stored foods but using market available poly-pouches as packaging material.For tea and tastemaker in general, the relative importance of the sensory attributes under consideration was assessed as:  aroma (Highly important >taste (Highly important>colour (Highly important > strength (Important for tea, and taste (Highly important>aroma (Highly important>colour (Important>appearance (Important for tastemaker. Among the three films that were developed, the highly important sensory attributes of aroma and taste were maintained as ‘Very good’ when the foods were packed in starch–HPMC/AM film. When the products were packed in market-available poly-pouches they exhibited similar attributes. With the exception of ‘Very good’ maintenance of the colour of tastemaker by the commercial pouch, irrespective of film and food, the colour and strength/appearance were retained in the ‘Good’-‘Satisfactory’ range. The overall sensory score of tea was also maintained as ‘Very good’ in starch-HPMC film.

  14. Retention of Cationic Starch onto Cellulose Fibres

    Science.gov (United States)

    Missaoui, Mohamed; Mauret, Evelyne; Belgacem, Mohamed Naceur

    2008-08-01

    Three methods of cationic starch titration were used to quantify its retention on cellulose fibres, namely: (i) the complexation of CS with iodine and measurement of the absorbency of the ensuing blue solution by UV-vis spectroscopy; (ii) hydrolysis of the starch macromolecules followed by the conversion of the resulting sugars to furan-based molecules and quantifying the ensuing mixture by measuring their absorbance at a Ι of 490 nm, using the same technique as previous one and; finally (iii) hydrolysis of starch macromolecules by trifluoro-acetic acid and quantification of the sugars in the resulting hydrolysates by high performance liquid chromatography. The three methods were found to give similar results within the range of CS addition from 0 to 50 mg per g of cellulose fibres.

  15. Examination of injection moulded thermoplastic maize starch

    Directory of Open Access Journals (Sweden)

    2007-12-01

    Full Text Available This paper focuses on the effect of the different injection moulding parameters and storing methods on injection moulded thermoplastic maize starch (TPS. The glycerol and water plasticized starch was processed in a twin screw extruder and then with an injection moulding machine to produce TPS dumbbell specimens. Different injection moulding set-ups and storing conditions were used to analyse the effects on the properties of thermoplastic starch. Investigated parameters were injection moulding pressure, holding pressure, and for the storage: storage at 50% relative humidity, and under ambient conditions. After processing the mechanical and shrinkage properties of the manufactured TPS were determined as a function of the ageing time. While conditioning, the characteristics of the TPS changed from a soft material to a rigid material. Although this main behaviour remained, the different injection moulding parameters changed the characteristics of TPS. Scanning electron microscope observations revealed the changes in the material on ageing.

  16. Fragrant starch-based films with limonene

    Directory of Open Access Journals (Sweden)

    Adrian K. Antosik

    2017-02-01

    Full Text Available Novel fragrant starch-based films with limonene were successfully prepared. Biodegradable materials of natural origin were used and the process was relatively simple and inexpensive. The effect of limonene on physicochemical properties of starch-based films (moisture absorption, solubility in water, wettability, mechanical properties were compared to glycerol plasticized system. Taking into consideration that the obtained materials could also exhibit bactericidal and fungicidal properties, the studies with Escherichia coli, Candida albicans and Aspergillus niger were performed. Such a material could potentially find application in food packaging (e.g. masking unpleasant odors, hydrophilic starch film would prevent food drying, or in agriculture (e.g. for seed encapsulated tapes.

  17. Starch deposits in Themeda triandra Forsk | WRE | African Journal of ...

    African Journals Online (AJOL)

    Themeda triandra tillers were examined microscopically at one to two-weekly intervals to determine where starch was deposited. Large numbers of starch grains were always present but the position of these deposits varied according to growth activity and flowering time of the plant. Starch deposits in the roots were usually ...

  18. Mechanical Properties of Potato- Starch Linear Low Density ...

    African Journals Online (AJOL)

    The mechanical properties of potato-starch filled LLDPE such as Young's Modulus, tensile strength and elongation at break were studied. Apart from the Young's Modulus, the tensile strength and elongation at break reduced with increased starch content. This is attributed to poor adhesion between starch and the polymer ...

  19. Composition and Physicochemical Properties of Starch from Christ ...

    African Journals Online (AJOL)

    Starch was extracted from seeds of Christ Thorn by hot water extraction method. The composition and physicochemical properties of the extracted starch were determined using standard methods. The results obtained from the analyses revealed that the % yield of starch was 43.2%, while moisture content, ash content, ...

  20. Coordination of cassava starch to metal ions and thermolysis of ...

    African Journals Online (AJOL)

    Cassava starch formed Werner-type complexes with ions of metals from the transition groups. This was proven by conductivity and electron paramagnetic resonance measurements. The coordination of starch to central metal ions influenced the thermal decomposition of starch. As a rule complexes started to decompose at ...

  1. Evaluation and Optimization of Godare Starch as a Binder and ...

    African Journals Online (AJOL)

    The binding and disintegrating properties of Godare (Colcosia esculenta) starch in paracetamol tablet formulations were evaluated in comparison with potato starch. Tablet crushing strengths (Hs), friabilities Frs), disintegration times (DTs) and porosities were determined. The results showed that Godare starch has a better ...

  2. Mechanochemical degradation of potato starch paste under ultrasonic irradiation

    Institute of Scientific and Technical Information of China (English)

    LI Jian-bin; LI Lin; LI Bing; CHEN Ling; GUI Lin

    2006-01-01

    In the paper, changes in the molecular weight, the intrinsic viscosity and the polydispersity (molecular mass distribution) of treated potato starch paste were studied under different ultrasonic conditions which include irradiation time, ultrasonic intensity, potato starch paste concentration, and distance from probe tip on the degradation of potato starch paste. Intrinsic viscosity of potato starch paste was determined following the ASTM (American Society for Testing and Materials) standard practice for dilute solution viscosity of polymers. Molecular mass and polydispersity of potato starch paste were measured on GPC (Gel Permeation Chromatography). The results showed that the average molecular mass and the intrinsic viscosity of starch strongly depended on irradiation time. Degradation increased with prolonged ultrasonic irradiation time, and the increase of ultrasonic intensity could accelerate the degradation, resulting in a faster degradation rate, a lower limiting value and a higher degradation extent. Starch samples were degraded faster in dilute solutions than in concentrated solutions. The molecular mass and the intrinsic viscosity of starch increased with the increase of distance from probe tip. Our results also showed that the polydispersity decreased with ultrasonic irradiation under all ultrasonic conditions. Ultrasonic degradation of potato starch paste occured based on the mechanism of molecular relaxation of starch paste. In the initial stage, ultrasonic degradation of potato starch paste was a random process, and the molecular mass distribution was broad. After that, ultrasonic degradation of potato starch paste changed to a nonrandom process, and the molecular mass distribution became narrower. Finally, molecular mass distribution tended toward a saturation value.

  3. Engineering potato starch with a higher phosphate content

    NARCIS (Netherlands)

    Xu, Xuan; Huang, Xing Feng; Visser, Richard G.F.; Trindade, Luisa M.

    2017-01-01

    Phosphate esters are responsible for valuable and unique functionalities of starch for industrial applications. Also in the cell phosphate esters play a role in starch metabolism, which so far has not been well characterized in storage starch. Laforin, a human enzyme composed of a

  4. The oxidation of the aldehyde groups in dialdehyde starch

    NARCIS (Netherlands)

    Haaksman, I.K.; Besemer, A.C.; Jetten, J.M.; Timmermans, J.W.; Slaghek, T.M.

    2006-01-01

    This paper describes the difference in relative reactivity of the aldehyde groups present in dialdehyde starch towards different oxidising agents. The oxidation of dialdehyde starch with peracetic acid and sodium bromide leads to only partial oxidation to give mono-aldehyde-carboxy starch, while

  5. Starch-based Foam Composite Materials: processing and bioproducts

    Science.gov (United States)

    Starch is an abundant, biodegradable, renewable and low-cost commodity that has been explored as a replacement for petroleum-based plastics. By itself, starch is a poor replacement for plastics because of its moisture sensitivity and brittle properties. Efforts to improve starch properties and funct...

  6. Isolation and Characterization of Starches from eight Dioscorea ...

    African Journals Online (AJOL)

    AJB SERVER

    2006-09-04

    Sep 4, 2006 ... temperature, with Moonshine (895.551 ± 1.051%) having the highest swelling power ... The properties of the different Dioscorea alata starches may prove useful in nutritional applications. ..... coating. Starch/Starke 44: 393-398. Ayensu ES, Coursey DG (1972). ... World production and marketing of starch. In:.

  7. Kinetics of starch digestion and performance of broiler chickens

    NARCIS (Netherlands)

    Weurding, R.E.

    2002-01-01

    Keywords: starch, digestion rate, broiler chickens, peas, tapioca

    Starch is stored in amyloplasts of various plants like cereals and legumes and seeds of these plants are used as feedstuffs for farm animals. Starch is the major energy

  8. Production of amorphous starch powders by solution spray drying

    NARCIS (Netherlands)

    Niazi, Muhammad B. K.; Broekhuis, Antonius A.

    2012-01-01

    The spray drying of starch/maltodextrin formulations was evaluated as a potential technology for the manufacturing of amorphous thermoplastic starches. Mixtures of starches with high to low amylose (Am)amylopectin (Ap) ratios were spray-dried from water-based solutions and granular dispersions. The

  9. Evaluation of the effect of ginger modified cassava starch as ...

    African Journals Online (AJOL)

    Raw cassava starch has been used as thickener and binder in the formulation of water based paint, but with a problem of loss of viscosity in a very short period. This study evaluates the modification of cassava starch using active component of ginger extract and its use as a water- based paint thickener. 150 g of starch in ...

  10. Control of starch content in potato

    International Nuclear Information System (INIS)

    Korshunov, A.V.; Filippova, G.I.; Gaitova, N.A.; Kutovenko, L.N.

    2010-01-01

    The physiological and biochemical changes and connections defining the starch accumulation in potato tubers are showed. Using the radioisotope C14O2 are analysed data on carbohydrates accumulation in leaves, speed of their movement in tubers, synthetic and decomposing enzyme activities in plant organs, the content of starch in tubers depending on the combination of fertilizers. The necessity for dose phosphorus application level not lower than nitrogen is reasoned. Recommendations on the optimal combination of macrofertilizers, ensuring compromise between yield and tuber starchiness for sod-podzoil sandy-loam and loamy, grey forest, peat, chernozem soils in dry-farming and irrigation are given [ru

  11. Methylation analysis of polysaccharides: Technical advice.

    Science.gov (United States)

    Sims, Ian M; Carnachan, Susan M; Bell, Tracey J; Hinkley, Simon F R

    2018-05-15

    Glycosyl linkage (methylation) analysis is used widely for the structural determination of oligo- and poly-saccharides. The procedure involves derivatisation of the individual component sugars of a polysaccharide to partially methylated alditol acetates which are analysed and quantified by gas chromatography-mass spectrometry. The linkage positions for each component sugar can be determined by correctly identifying the partially methylated alditol acetates. Although the methods are well established, there are many technical aspects to this procedure and both careful attention to detail and considerable experience are required to achieve a successful methylation analysis and to correctly interpret the data generated. The aim of this article is to provide the technical details and critical procedural steps necessary for a successful methylation analysis and to assist researchers (a) with interpreting data correctly and (b) in providing the comprehensive data required for reviewers to fully assess the work. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Biodegradability of polyurethane/polysaccharide blends

    International Nuclear Information System (INIS)

    Mothe, Cheila G.; Leite, Selma G.

    2001-01-01

    Biodegradable polymers for use in environmental waste-management has been the subject of much discussion over the last few years. Polyurethane mixtures with polysaccharide (80/20 and 90/10 w/w ) have been prepared and films obtained. These films were inoculated, according to ASTM G22-76 rule and analysed by thermogravimetry and scanning electronic microscopy (SEM). The results are discussed in terms of thermal degradation and biodegradability. (author)

  13. Immune receptors for polysaccharides from Ganoderma lucidum

    International Nuclear Information System (INIS)

    Shao Baomei; Dai Hui; Xu Wen; Lin Zhibin; Gao Xiaoming

    2004-01-01

    This study was designed to identify and characterize the immune receptors for polysaccharides from Ganoderma lucidum, a Chinese medicinal fungus that exhibits anti-tumor activities via enhancing host immunity. We herein demonstrate that G. lucidum polysaccharides (GLPS) activated BALB/c mouse B cells and macrophages, but not T cells, in vitro. However, GLPS was unable to activate splenic B cells from C3H/HeJ mice that have a mutated TLR4 molecule (incapable of signal transduction) in proliferation assays. Rat anti-mouse TLR4 monoclonal antibody (Ab) inhibited the proliferation of BALB/c mouse B cells under GLPS stimulation. Combination of Abs against mouse TLR4 and immunoglobulin (Ig) achieved almost complete inhibition of GLPS-induced B cell proliferation, implying that both membrane Ig and TLR4 are required for GLPS-mediated B cell activation. In addition, GLPS significantly inhibited the binding of mouse peritoneal macrophages with polysaccharides from Astragalus membranaceus, which is known to bind directly with TLR4 on macrophage surface. Moreover, GLPS induced IL-1β production by peritoneal macrophages from BALB/c, but not C3H/HeJ, mice, suggesting that TLR4 is also involved in GLPS-mediated macrophage activation. We Further identified a unique 31 kDa serum protein and two intracellular proteins (ribosomal protein S7 and a transcriptional coactivator) capable of binding with GLPS in co-precipitation experiments. Our results may have important implications for our understanding on the molecular mechanisms of immunopotentiating polysaccharides from traditional Chinese medicine

  14. Iron oxyhydroxide mineralization on microbial extracellular polysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Clara S.; Fakra, Sirine C.; Edwards, David C.; Emerson, David; Banfield, Jillian F.

    2010-06-22

    Iron biominerals can form in neutral pH microaerophilic environments where microbes both catalyze iron oxidation and create polymers that localize mineral precipitation. In order to classify the microbial polymers that influence FeOOH mineralogy, we studied the organic and mineral components of biominerals using scanning transmission X-ray microscopy (STXM), micro X-ray fluorescence ({mu}XRF) microscopy, and high-resolution transmission electron microscopy (HRTEM). We focused on iron microbial mat samples from a creek and abandoned mine; these samples are dominated by iron oxyhydroxide-coated structures with sheath, stalk, and filament morphologies. In addition, we characterized the mineralized products of an iron-oxidizing, stalk-forming bacterial culture isolated from the mine. In both natural and cultured samples, microbial polymers were found to be acidic polysaccharides with carboxyl functional groups, strongly spatially correlated with iron oxyhydroxide distribution patterns. Organic fibrils collect FeOOH and control its recrystallization, in some cases resulting in oriented crystals with high aspect ratios. The impact of polymers is particularly pronounced as the materials age. Synthesis experiments designed to mimic the biomineralization processes show that the polysaccharide carboxyl groups bind dissolved iron strongly but release it as mineralization proceeds. Our results suggest that carboxyl groups of acidic polysaccharides are produced by different microorganisms to create a wide range of iron oxyhydroxide biomineral structures. The intimate and potentially long-term association controls the crystal growth, phase, and reactivity of iron oxyhydroxide nanoparticles in natural systems.

  15. Marine Origin Polysaccharides in Drug Delivery Systems.

    Science.gov (United States)

    Cardoso, Matias J; Costa, Rui R; Mano, João F

    2016-02-05

    Oceans are a vast source of natural substances. In them, we find various compounds with wide biotechnological and biomedical applicabilities. The exploitation of the sea as a renewable source of biocompounds can have a positive impact on the development of new systems and devices for biomedical applications. Marine polysaccharides are among the most abundant materials in the seas, which contributes to a decrease of the extraction costs, besides their solubility behavior in aqueous solvents and extraction media, and their interaction with other biocompounds. Polysaccharides such as alginate, carrageenan and fucoidan can be extracted from algae, whereas chitosan and hyaluronan can be obtained from animal sources. Most marine polysaccharides have important biological properties such as biocompatibility, biodegradability, and anti-inflammatory activity, as well as adhesive and antimicrobial actions. Moreover, they can be modified in order to allow processing them into various shapes and sizes and may exhibit response dependence to external stimuli, such as pH and temperature. Due to these properties, these biomaterials have been studied as raw material for the construction of carrier devices for drugs, including particles, capsules and hydrogels. The devices are designed to achieve a controlled release of therapeutic agents in an attempt to fight against serious diseases, and to be used in advanced therapies, such as gene delivery or regenerative medicine.

  16. The diversity of Klebsiella pneumoniae surface polysaccharides.

    Science.gov (United States)

    Follador, Rainer; Heinz, Eva; Wyres, Kelly L; Ellington, Matthew J; Kowarik, Michael; Holt, Kathryn E; Thomson, Nicholas R

    2016-08-01

    Klebsiella pneumoniae is considered an urgent health concern due to the emergence of multi-drug-resistant strains for which vaccination offers a potential remedy. Vaccines based on surface polysaccharides are highly promising but need to address the high diversity of surface-exposed polysaccharides, synthesized as O-antigens (lipopolysaccharide, LPS) and K-antigens (capsule polysaccharide, CPS), present in K. pneumoniae . We present a comprehensive and clinically relevant study of the diversity of O- and K-antigen biosynthesis gene clusters across a global collection of over 500 K. pneumoniae whole-genome sequences and the seroepidemiology of human isolates from different infection types. Our study defines the genetic diversity of O- and K-antigen biosynthesis cluster sequences across this collection, identifying sequences for known serotypes as well as identifying novel LPS and CPS gene clusters found in circulating contemporary isolates. Serotypes O1, O2 and O3 were most prevalent in our sample set, accounting for approximately 80 % of all infections. In contrast, K serotypes showed an order of magnitude higher diversity and differ among infection types. In addition we investigated a potential association of O or K serotypes with phylogenetic lineage, infection type and the presence of known virulence genes. K1 and K2 serotypes, which are associated with hypervirulent K. pneumoniae , were associated with a higher abundance of virulence genes and more diverse O serotypes compared to other common K serotypes.

  17. Immunoregulatory activities of polysaccharides from mung bean.

    Science.gov (United States)

    Yao, Yang; Zhu, Yingying; Ren, Guixing

    2016-03-30

    Ultrasonic treatment was performed on water-extractable polysaccharides from the seed of mung beans. Purified by anion-exchange and gel filtration chromatography, MWP-1' and MWP-2' were obtained. Average molecular weights (Mws) of MWP-1' and MWP-2' were 68.4 kDa, and 52.4 kDa, respectively. Monosaccharides components analysis indicated that MWP-1' was composed of Rha, Ara, Man and Gal in a molar percent of 0.4:2.6:5.3:0.7. MWP-2' was composed of Ara, Man, Gal and Glc in a molar percent of 0.5:1.4:2.1:0.4. In vitro study showed that both polysaccharides samples were able to stimulate the production of secretory molecules (NO, TNF-α and IL-6) of RAW264.7 murine macrophages in a dosage dependent manner. MWP-2' seemed to be the most potent and induced significantly higher the NO production. These findings suggest that the ultrasonic treatment polysaccharides isolated in our study have immune potentiation effects on macrophages. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Marine Origin Polysaccharides in Drug Delivery Systems

    Science.gov (United States)

    Cardoso, Matias J.; Costa, Rui R.; Mano, João F.

    2016-01-01

    Oceans are a vast source of natural substances. In them, we find various compounds with wide biotechnological and biomedical applicabilities. The exploitation of the sea as a renewable source of biocompounds can have a positive impact on the development of new systems and devices for biomedical applications. Marine polysaccharides are among the most abundant materials in the seas, which contributes to a decrease of the extraction costs, besides their solubility behavior in aqueous solvents and extraction media, and their interaction with other biocompounds. Polysaccharides such as alginate, carrageenan and fucoidan can be extracted from algae, whereas chitosan and hyaluronan can be obtained from animal sources. Most marine polysaccharides have important biological properties such as biocompatibility, biodegradability, and anti-inflammatory activity, as well as adhesive and antimicrobial actions. Moreover, they can be modified in order to allow processing them into various shapes and sizes and may exhibit response dependence to external stimuli, such as pH and temperature. Due to these properties, these biomaterials have been studied as raw material for the construction of carrier devices for drugs, including particles, capsules and hydrogels. The devices are designed to achieve a controlled release of therapeutic agents in an attempt to fight against serious diseases, and to be used in advanced therapies, such as gene delivery or regenerative medicine. PMID:26861358

  19. Marine Origin Polysaccharides in Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Matias J. Cardoso

    2016-02-01

    Full Text Available Oceans are a vast source of natural substances. In them, we find various compounds with wide biotechnological and biomedical applicabilities. The exploitation of the sea as a renewable source of biocompounds can have a positive impact on the development of new systems and devices for biomedical applications. Marine polysaccharides are among the most abundant materials in the seas, which contributes to a decrease of the extraction costs, besides their solubility behavior in aqueous solvents and extraction media, and their interaction with other biocompounds. Polysaccharides such as alginate, carrageenan and fucoidan can be extracted from algae, whereas chitosan and hyaluronan can be obtained from animal sources. Most marine polysaccharides have important biological properties such as biocompatibility, biodegradability, and anti-inflammatory activity, as well as adhesive and antimicrobial actions. Moreover, they can be modified in order to allow processing them into various shapes and sizes and may exhibit response dependence to external stimuli, such as pH and temperature. Due to these properties, these biomaterials have been studied as raw material for the construction of carrier devices for drugs, including particles, capsules and hydrogels. The devices are designed to achieve a controlled release of therapeutic agents in an attempt to fight against serious diseases, and to be used in advanced therapies, such as gene delivery or regenerative medicine.

  20. Modification of potato starch granule structure and morphology in planta by expression of starch binding domain fusion proteins

    NARCIS (Netherlands)

    Huang, X.

    2010-01-01

    Producing starches with altered composition, structure and novel physico-chemical properties in planta by manipulating the enzymes which are involved in starch metabolism or (over)expressing heterologous enzymes has huge advantages such as broadening the range of starch applications and reducing the

  1. Characterization and antioxidant activities of polysaccharides from thirteen boletus mushrooms.

    Science.gov (United States)

    Zhang, Lan; Hu, Yu; Duan, Xiaoyu; Tang, Tingting; Shen, Yingbin; Hu, Bin; Liu, Aiping; Chen, Hong; Li, Cheng; Liu, Yuntao

    2018-07-01

    Water-soluble polysaccharides were extracted from the caps and stipes of thirteen boletus mushrooms representing five different species collected in Southwest China. Investigations of their structures and antioxidant activities allowed an evaluation of structure-function relationships. The polysaccharides were composed mainly of the monosaccharides arabinose, xylose, mannose, glucose and galactose. Most samples displayed a broad molecular weight range, with significant differences observed between the molecular weight ranges of the polysaccharides from the caps and the stipes. FT-IR spectral analysis of the polysaccharides revealed that most of polysaccharides from boletus mushrooms (except Boletus edulis) contained a pyranose ring. The antioxidant activities of the polysaccharides in stipes showed a significant correlation with their monosaccharide composition, and were also related to their molecular weight and anomeric configuration. Suillellus luridus collected in Pingwu, Mianyang, Sichuan, China had remarkably superior antioxidant activity and might be developed as a natural antioxidant. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Inducing PLA/starch compatibility through butyl-etherification of waxy and high amylose starch

    CSIR Research Space (South Africa)

    Wokadala, OC

    2014-06-01

    Full Text Available In this study, waxy and high amylose starches were modified through butyl-etherification to facilitatecompatibility with polylactide (PLA). Fourier transform infrared spectroscopy, proton nuclear magneticresonance spectroscopy and wettability tests...

  3. Mechanical Properties of Isotactic Polypropylene Modified with Thermoplastic Potato Starch

    Science.gov (United States)

    Knitter, M.; Dobrzyńska-Mizera, M.

    2015-05-01

    In this paper selected mechanical properties of isotactic polypropylene (iPP) modified with potato starch have been presented. Thermoplastic starch (TPS) used as a modifier in the study was produced from potato starch modified with glycerol. Isotactic polypropylene/thermoplastic potato starch composites (iPP/TPS) that contained 10, 30, 50 wt.% of modified starch were examined using dynamic mechanical-thermal analysis, static tensile, Brinell hardness, and Charpy impact test. The studies indicated a distinct influence of a filler content on the mechanical properties of composites in comparison with non-modified polypropylene.

  4. Comparison of Polysaccharides from Two Species of Ganoderma

    OpenAIRE

    Xie, Jing; Zhao, Jing; Hu, De-Jun; Duan, Jin-Ao; Tang, Yu-Ping; Li, Shao-Ping

    2012-01-01

    Ganoderma lucidum and Ganoderma sinense, known as Lingzhi in Chinese, are commonly used Chinese medicines with excellent beneficial health effects. Triterpenes and polysaccharides are usually considered as their main active components. However, the content of triterpenes differs significantly between the two species of Ganoderma. To date, a careful comparison of polysaccharides from the two species of Ganoderma has not been performed. In this study, polysaccharides from fruiting bodies of two...

  5. The effect of starch amylose content on the morphology andproperties of melt-processed butyl-etherified starch/poly[(butylenesuccinate)-co-adipate] blends

    CSIR Research Space (South Africa)

    Maubane, Lesego T

    2017-01-01

    Full Text Available structures. Thermogravimetric analysis revealed that the thermal stability of the blends decreased with increasing starch loading for all starch types with varying amylose content; however, the nature of the starch controlled the mechanical properties...

  6. Starch: chemistry, microstructure, processing and enzymatic degradation

    Science.gov (United States)

    Starch is recognized as one of the most abundant and important commodities containing value added attributes for a vast number of industrial applications. Its chemistry, structure, property and susceptibility to various chemical, physical and enzymatic modifications offer a high technological value ...

  7. Starch facilitates enzymatic wheat gluten hydrolysis

    NARCIS (Netherlands)

    Hardt, N.A.; Boom, R.M.; Goot, van der A.J.

    2015-01-01

    Wheat gluten can be hydrolyzed by either using (vital) wheat gluten or directly from wheat flour. This study investigates the influence of the presence of starch, the main component of wheat, on enzymatic wheat gluten hydrolysis. Wheat gluten present in wheat flour (WFG) and vital wheat gluten (VWG)

  8. Maca polysaccharides: A review of compositions, isolation, therapeutics and prospects.

    Science.gov (United States)

    Li, Yujuan; Xu, Fangxue; Zheng, Mengmeng; Xi, Xiaozhi; Cui, Xiaowei; Han, Chunchao

    2018-05-01

    Maca polysaccharides, some of the major bioactive substances in Lepidium meyenii (Walp.) (Maca), have various biological properties, including anti-oxidant, anti-fatigue, anti-tumor, and immunomodulatory effects, as well as hepatoprotective activity and regulation function. Although many therapeutics depend on multiple structures of maca polysaccharides in addition to providing sufficient foundations for maca polysaccharide products in industrial applications, the relationships between the pharmacological effects and structures have not been established. Therefore, this article summarizes the extraction and purification methods, compositions, pharmacological effects, prospects and industrial applications of maca polysaccharides. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Some rheological properties of sodium caseinate-starch gels.

    Science.gov (United States)

    Bertolini, Andrea C; Creamer, Lawrence K; Eppink, Mieke; Boland, Mike

    2005-03-23

    The influence of sodium caseinate on the thermal and rheological properties of starch gels at different concentrations and from different botanical sources was evaluated. In sodium caseinate-starch gels, for all starches with the exception of potato starch, the sodium caseinate promoted an increase in the storage modulus and in the viscosity of the composite gel when compared with starch gels. The addition of sodium caseinate resulted in an increase in the onset temperature, the gelatinization temperature, and the end temperature, and there was a significant interaction between starch and sodium caseinate for the onset temperature, the peak temperature, and the end temperature. Microscopy results suggested that sodium caseinate promoted an increase in the homogeneity in the matrix of cereal starch gels.

  10. Barley starch bioengineering for high phosphate and amylose

    DEFF Research Database (Denmark)

    Blennow, Per Gunnar Andreas; Carciofi, Massimiliano; Shaik, Shahnoor Sultana

    2011-01-01

    Starch is a biological polymer that can be industrially produced in massive amounts in a very pure form. Cereals is the main source for starch production and any improvement of the starch fraction can have a tremendous impact in food and feed applications. Barley ranks number four among cereal...... crops and barley is a genetically very well characterized. Aiming at producing new starch qualities in the cereal system, we used RNAi and overexpression strategies to produce pure amylose and high-phosphate starch, respectively, using the barley kernel as a polymer factory. By simultaneous silencing...... of the three genes encoding the starch-branching enzymes SBEI, SBEIIa, and SBEIIb using a triple RNAi chimeric hairpin construct we generated a virtually amylopectin-free barley. The grains of the transgenic lines were shrunken and had a yield of around 80% of the control line. The starch granules were...

  11. Biodegradability and mechanical properties of starch films from Andean crops.

    Science.gov (United States)

    Torres, F G; Troncoso, O P; Torres, C; Díaz, D A; Amaya, E

    2011-05-01

    Different Andean crops were used to obtain starches not previously reported in literature as raw material for the production of biodegradable polymers. The twelve starches obtained were used to prepare biodegradable films by casting. Water and glycerol were used as plasticizers. The mechanical properties of the starch based films were assessed by means of tensile tests. Compost tests and FTIR tests were carried out to assess biodegradability of films. The results show that the mechanical properties (UTS, Young's modulus and elongation at break) of starch based films strongly depend on the starch source used for their production. We found that all the starch films prepared biodegrade following a three stage process and that the weight loss rate of all the starch based films tested was higher than the weight loss rate of the cellulose film used as control. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. PROTEIN TARGETING TO STARCH is required for localising GRANULE-BOUND STARCH SYNTHASE to starch granules and for normal amylose synthesis in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    David Seung

    2015-02-01

    Full Text Available The domestication of starch crops underpinned the development of human civilisation, yet we still do not fully understand how plants make starch. Starch is composed of glucose polymers that are branched (amylopectin or linear (amylose. The amount of amylose strongly influences the physico-chemical behaviour of starchy foods during cooking and of starch mixtures in non-food manufacturing processes. The GRANULE-BOUND STARCH SYNTHASE (GBSS is the glucosyltransferase specifically responsible for elongating amylose polymers and was the only protein known to be required for its biosynthesis. Here, we demonstrate that PROTEIN TARGETING TO STARCH (PTST is also specifically required for amylose synthesis in Arabidopsis. PTST is a plastidial protein possessing an N-terminal coiled coil domain and a C-terminal carbohydrate binding module (CBM. We discovered that Arabidopsis ptst mutants synthesise amylose-free starch and are phenotypically similar to mutants lacking GBSS. Analysis of granule-bound proteins showed a dramatic reduction of GBSS protein in ptst mutant starch granules. Pull-down assays with recombinant proteins in vitro, as well as immunoprecipitation assays in planta, revealed that GBSS physically interacts with PTST via a coiled coil. Furthermore, we show that the CBM domain of PTST, which mediates its interaction with starch granules, is also required for correct GBSS localisation. Fluorescently tagged Arabidopsis GBSS, expressed either in tobacco or Arabidopsis leaves, required the presence of Arabidopsis PTST to localise to starch granules. Mutation of the CBM of PTST caused GBSS to remain in the plastid stroma. PTST fulfils a previously unknown function in targeting GBSS to starch. This sheds new light on the importance of targeting biosynthetic enzymes to sub-cellular sites where their action is required. Importantly, PTST represents a promising new gene target for the biotechnological modification of starch composition, as it is

  13. Modification of rice starch by gamma irradiation to produce soluble starch of low viscosity for industrial purposes

    International Nuclear Information System (INIS)

    El Saadany, R.M.A.; El Saadany, F.M.; Foda, Y.H.

    1974-01-01

    Because starch of low viscosity is important for industrial purposes this research was carried out to study the possibility of producing this sort of starch by treating rice starch with γ-irradiation. Results indicated than when rice starch was modified by γ-irradiation, the reducing power increased and degradation as well as molecular breakdown occured followed by sharp decrease of its viscosity, specific viscosity and intrisinc viscosity. Results showed that starch became more soluble by treating with γ-irradiation and lost its resistance to water as its swelling capacity decreased. All these changes were proportional to the doses of γ-irradiation. (orig.) [de

  14. Hydrolysis of native and heat-treated starches at sub-gelatinization temperature using granular starch hydrolyzing enzyme.

    Science.gov (United States)

    Uthumporn, U; Shariffa, Y N; Karim, A A

    2012-03-01

    The effect of heat treatment below the gelatinization temperature on the susceptibility of corn, mung bean, sago, and potato starches towards granular starch hydrolysis (35°C) was investigated. Starches were hydrolyzed in granular state and after heat treatment (50°C for 30 min) by using granular starch hydrolyzing enzyme for 24 h. Hydrolyzed heat-treated starches showed a significant increase in the percentage of dextrose equivalent compared to native starches, respectively, with corn 53% to 56%, mung bean 36% to 47%, sago 15% to 26%, and potato 12% to 15%. Scanning electron microscopy micrographs showed the presence of more porous granules and surface erosion in heat-treated starch compared to native starch. X-ray analysis showed no changes but with sharper peaks for all the starches, suggested that hydrolysis occurred on the amorphous region. The amylose content and swelling power of heat-treated starches was markedly altered after hydrolysis. Evidently, this enzyme was able to hydrolyze granular starches and heat treatment before hydrolysis significantly increased the degree of hydrolysis.

  15. Immunomodulatory dietary polysaccharides: a systematic review of the literature

    Directory of Open Access Journals (Sweden)

    Nelson Erika D

    2010-11-01

    Full Text Available Abstract Background A large body of literature suggests that certain polysaccharides affect immune system function. Much of this literature, however, consists of in vitro studies or studies in which polysaccharides were injected. Their immunologic effects following oral administration is less clear. The purpose of this systematic review was to consolidate and evaluate the available data regarding the specific immunologic effects of dietary polysaccharides. Methods Studies were identified by conducting PubMed and Google Scholar electronic searches and through reviews of polysaccharide article bibliographies. Only articles published in English were included in this review. Two researchers reviewed data on study design, control, sample size, results, and nature of outcome measures. Subsequent searches were conducted to gather information about polysaccharide safety, structure and composition, and disposition. Results We found 62 publications reporting statistically significant effects of orally ingested glucans, pectins, heteroglycans, glucomannans, fucoidans, galactomannans, arabinogalactans and mixed polysaccharide products in rodents. Fifteen controlled human studies reported that oral glucans, arabinogalactans, heteroglycans, and fucoidans exerted significant effects. Although some studies investigated anti-inflammatory effects, most studies investigated the ability of oral polysaccharides to stimulate the immune system. These studies, as well as safety and toxicity studies, suggest that these polysaccharide products appear to be largely well-tolerated. Conclusions Taken as a whole, the oral polysaccharide literature is highly heterogenous and is not sufficient to support broad product structure/function generalizations. Numerous dietary polysaccharides, particularly glucans, appear to elicit diverse immunomodulatory effects in numerous animal tissues, including the blood, GI tract and spleen. Glucan extracts from the Trametes versicolor

  16. Effect of maize starch concentration in the diet on starch and cell wall digestion in the dairy cow.

    Science.gov (United States)

    van Vuuren, A M; Hindle, V A; Klop, A; Cone, J W

    2010-06-01

    An in vivo experiment was performed to determine the effect of level of maize starch in the diet on digestion and site of digestion of organic matter, starch and neutral detergent fibre (NDF). In a repeated change-over design experiment, three cows fitted with a rumen cannula and T-piece cannulae in duodenum and ileum received a low-starch (12% of ration dry matter) and a high-starch (33% of ration dry matter) diet. Starch level was increased by exchanging dried sugar beet pulp by ground maize. After a 2-week adaptation period, feed intake, rumen fermentation parameters (in vivo and in situ), intestinal flows, faecal excretion of organic matter, starch and NDF were estimated. When the high-starch diet was fed, dry matter intake was higher (19.0 kg/day vs. 17.8 kg/day), and total tract digestibility of organic matter, starch and NDF was lower when the low-starch diet was fed. Maize starch concentration had no significant effect on rumen pH and volatile fatty acid concentration nor on the site of digestion of organic matter and starch and rate of passage of ytterbium-labelled forage. On the high-starch diet, an extra 1.3 kg of maize starch was supplied at the duodenum in relation to the low-starch diet, but only an extra 0.3 kg of starch was digested in the small intestine. Digestion of NDF was only apparent in the rumen and was lower on the high-starch diet than on the low-starch diet, mainly attributed to the reduction in sugar beet pulp in the high-starch diet. It was concluded that without the correction for the reduction in NDF digestion in the rumen, the extra supply of glucogenic (glucose and propionic acid) and ketogenic nutrients (acetic and butyric acid) by supplemented starch will be overestimated. The mechanisms responsible for these effects need to be addressed in feed evaluation.

  17. Development of oxidised and heat-moisture treated potato starch film.

    Science.gov (United States)

    Zavareze, Elessandra da Rosa; Pinto, Vânia Zanella; Klein, Bruna; El Halal, Shanise Lisie Mello; Elias, Moacir Cardoso; Prentice-Hernández, Carlos; Dias, Alvaro Renato Guerra

    2012-05-01

    This study investigated the effects of sodium hypochlorite oxidation and a heat-moisture treatment of potato starch on the physicochemical, pasting and textural properties of potato starches in addition to the water vapour permeability (WVP) and mechanical properties of potato starch films produced from these starches. The carbonyl contents, carboxyl contents, swelling power, solubility, pasting properties and gel texture of the native, oxidised and heat-moisture treated (HMT) starches were evaluated. The films made of native, oxidised and HMT starches were characterised by thickness, water solubility, colour, opacity, mechanical properties and WVP. The oxidised and HMT starches had lower viscosity and swelling power compared to the native starch. The films produced from oxidised potato starch had decreased solubility, elongation and WVP values in addition to increased tensile strength compared to the native starch films. The HMT starch increased the tensile strength and WVP of the starch films compared to the native starch. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Graft polymerization of vinyl acetate onto starch. Saponification to starch-g-poly(vinyl alcohol)

    International Nuclear Information System (INIS)

    Fanta, G.F.; Burr, R.C.; Doane, W.M.; Russell, C.R.

    1979-01-01

    Graft polymerizations of vinyl acetate onto granular cornstarch were initiated by cobalt-60 irradiation of starch-monomer-water mixtures, and ungrafted poly(vinyl acetate) was separated from the graft copolymer by benzene extraction. Conversions of monomer to polymer were quantitative at a radiation dose of 1.0 Mrad. Over half of the polymer was present as ungrafted poly(vinyl acetate) (grafting efficiency less than 50%), and the graft copolymer contained only 34% grafted synthetic polymer (34% add-on). Lower irradiation doses produced lower conversions of monomer to polymer and gave graft copolymers with lower % add-on. Addition of minor amounts of acrylamide, methyl acrylate, and methacrylic acid as comonomers produced only small increases in % add-on and grafting efficency. Grafting efficiency was increased to 70% when a monomer mixture containing about 10% methyl methacrylate was used. Grafting efficiency could be increased to over 90% if the graft polymerization of vinyl acetate--methyl methacrylate was carried out near 0 0 C; although conversion of monomers to polymer was low and grafted polymer contained 40 to 50% poly(methyl methacrylate). Selected graft copolymers were treated with methanolic sodium hydroxide to convert starch-g-poly(vinyl acetate) to starch-g-poly(vinyl alcohol). The molecular weight of the poly(vinyl alcohol) moiety was about 30,000. The solubility of starch-g-poly(vinyl alcohol) in hot water was less than 50; however, solubility could be increased by substituting either acid-modified or hypochlorite-oxidized for unmodified starch in the graft polymerization reaction. Vinyl acetate was also graft polymerized onto acid-modified starch which had been dispersed and partially solubilized by heating in water. A total irradiation dose of either 1.0 or 0.5 Mrad gave starch-g-poly

  19. Constant current chronopotentiometric stripping of sulphated polysaccharides

    Czech Academy of Sciences Publication Activity Database

    Strmečki, S.; Plavšić, M.; Ćosović, B.; Ostatná, Veronika; Paleček, Emil

    2009-01-01

    Roč. 11, č. 10 (2009), s. 2032-2035 ISSN 1388-2481 R&D Projects: GA ČR(CZ) GA301/07/0490; GA ČR(CZ) GP202/07/P497; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : sulphated polysaccharides * ióta-carrageenan * catalysis of hydrogen evolution Subject RIV: BO - Biophysics Impact factor: 4.243, year: 2009

  20. Methods of saccharification of polysaccharides in plants

    Science.gov (United States)

    Howard, John; Fake, Gina

    2014-04-29

    Saccharification of polysaccharides of plants is provided, where release of fermentable sugars from cellulose is obtained by adding plant tissue composition. Production of glucose is obtained without the need to add additional .beta.-glucosidase. Adding plant tissue composition to a process using a cellulose degrading composition to degrade cellulose results in an increase in the production of fermentable sugars compared to a process in which plant tissue composition is not added. Using plant tissue composition in a process using a cellulose degrading enzyme composition to degrade cellulose results in decrease in the amount of cellulose degrading enzyme composition or exogenously applied cellulase required to produce fermentable sugars.

  1. Voltammetry of Os(VI)-modified polysaccharides

    Czech Academy of Sciences Publication Activity Database

    Trefulka, Mojmír; Paleček, Emil

    2010-01-01

    Roč. 22, č. 16 (2010), s. 1837-1845 ISSN 1040-0397 R&D Projects: GA AV ČR(CZ) GPP301/10/P548; GA MŠk(CZ) LC06035 Grant - others:GA AV ČR(CZ) KAN400310651 Program:KA Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : chemical modification of polysaccharides * electroactive labels * osmium(VI) complexes Subject RIV: BO - Biophysics Impact factor: 2.721, year: 2010

  2. Structure, morphology and functionality of acetylated and oxidised barley starches.

    Science.gov (United States)

    El Halal, Shanise Lisie Mello; Colussi, Rosana; Pinto, Vânia Zanella; Bartz, Josiane; Radunz, Marjana; Carreño, Neftali Lenin Villarreal; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2015-02-01

    Acetylation and oxidation are chemical modifications which alter the properties of starch. The degree of modification of acetylated and oxidized starches is dependent on the catalyst and active chlorine concentrations, respectively. The objective of this study was to evaluate the effect of acetylation and oxidation on the structural, morphological, physical-chemical, thermal and pasting properties of barley starch. Barley starches were acetylated at different catalyst levels (11%, 17%, and 23% of NaOH solution) and oxidized at different sodium hypochlorite concentrations (1.0%, 1.5%, and 2.0% of active chlorine). Fourier-transformed infrared spectroscopy (FTIR), X-ray diffractograms, thermal, morphological, and pasting properties, swelling power and solubility of starches were evaluated. The degree of substitution (DS) of the acetylated starches increased with the rise in catalyst concentration. The percentage of carbonyl (CO) and carboxyl (COOH) groups in oxidized starches also increased with the rise of active chlorine level. The presence of hydrophobic acetyl groups, carbonyl and carboxyl groups caused a partial disorganization and depolymerization of starch granules. The structural, morphological and functional changes in acetylated and oxidized starches varied according to reaction conditions. Acetylation makes barley starch more hydrophobic by the insertion of acetyl groups. Also the oxidation promotes low retrogradation and viscosity. All these characteristics are important for biodegradable film production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Microstructure, thermal properties and crystallinity of amadumbe starch nanocrystals.

    Science.gov (United States)

    Mukurumbira, Agnes; Mariano, Marcos; Dufresne, Alain; Mellem, John J; Amonsou, Eric O

    2017-09-01

    Amadumbe (Colocasia esculenta), commonly known as taro is a tropical tuber that produces starch-rich underground corms. In this study, the physicochemical properties of starch nanocrystals (SNC) prepared by acid hydrolysis of amadumbe starches were investigated. Two varieties of amadumbe corms were used for starch extraction. Amadumbe starches produced substantially high yield (25%) of SNC's. These nanocrystals appeared as aggregated and individual particles and possessed square-like platelet morphology with size: 50-100nm. FTIR revealed high peak intensities corresponding to OH stretch, CH stretch and H 2 O bending vibrations for SNCs compared to their native starch counterparts. Both the native starch and SNC exhibited the A-type crystalline pattern. However, amadumbe SNCs showed higher degree of crystallinity and slightly reduced melting temperatures than their native starches. Amadumbe SNCs presented similar thermal decomposition property as their native starches. Amadumbe starch nanocrystals may have potential application in biocomposite films due to their square-like platelet morphology. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Starch Characteristics Linked to Gluten-Free Products

    Directory of Open Access Journals (Sweden)

    Stefan W. Horstmann

    2017-04-01

    Full Text Available The increasing prevalence of coeliac disease (CD and gluten-related disorders has led to increasing consumer demand for gluten-free products with quality characteristics similar to wheat bread. The replacement of gluten in cereal-based products remains a challenge for scientists, due to its unique role in network formation, which entraps air bubbles. When gluten is removed from a flour, starch is the main component left. Starch is used as gelling, thickening, adhesion, moisture-retention, stabilizing, film forming, texturizing and anti-staling ingredient. The extent of these properties varies depending on the starch source. The starches can additionally be modified increasing or decreasing certain properties of the starch, depending on the application. Starch plays an important role in the formulation of bakery products and has an even more important role in gluten-free products. In gluten-free products, starch is incorporated into the food formulation to improve baking characteristics such as the specific volume, colour and crumb structure and texture. This review covers a number of topics relating to starch; including; an overview of common and lesser researched starches; chemical composition; morphology; digestibility; functionality and methods of modification. The emphasis of this review is on starch and its properties with respect to the quality of gluten-free products.

  5. Starch Characteristics Linked to Gluten-Free Products.

    Science.gov (United States)

    Horstmann, Stefan W; Lynch, Kieran M; Arendt, Elke K

    2017-04-06

    The increasing prevalence of coeliac disease (CD) and gluten-related disorders has led to increasing consumer demand for gluten-free products with quality characteristics similar to wheat bread. The replacement of gluten in cereal-based products remains a challenge for scientists, due to its unique role in network formation, which entraps air bubbles. When gluten is removed from a flour, starch is the main component left. Starch is used as gelling, thickening, adhesion, moisture-retention, stabilizing, film forming, texturizing and anti-staling ingredient. The extent of these properties varies depending on the starch source. The starches can additionally be modified increasing or decreasing certain properties of the starch, depending on the application. Starch plays an important role in the formulation of bakery products and has an even more important role in gluten-free products. In gluten-free products, starch is incorporated into the food formulation to improve baking characteristics such as the specific volume, colour and crumb structure and texture. This review covers a number of topics relating to starch; including; an overview of common and lesser researched starches; chemical composition; morphology; digestibility; functionality and methods of modification. The emphasis of this review is on starch and its properties with respect to the quality of gluten-free products.

  6. Cell wall polysaccharides hydrolysis of malting barley (Hordeum vulgare L.: a review

    Directory of Open Access Journals (Sweden)

    Jamar, C.

    2011-01-01

    Full Text Available Malting quality results from the different steps of the malting process. Malting uses internal changes of the seed occurring during germination, such as enzymes synthesis, to obtain a good hydrolysis process and the components required. Among the three main hydrolytic events observed, that are namely starch degradation, cell wall breakdown and protein hydrolysis, an efficient cell wall polysaccharides hydrolysis is an essential condition for a final product of quality. Indeed, because of the physical barrier of the cell wall, cell wall polysaccharides hydrolysis is one of the first steps expected from the process to gain access to the cell components. Moreover, viscosity problem and haze formation in malting industry are related to their presence during the process when inefficient degradation occurs, leading to increased production time and cost. Understanding the key elements in cell wall degradation is important for a better control. (1-3,1-4-β-glucans and arabinoxylans are the main constituents of cell wall. (1-3,1-4-β-glucans are unbranched chains of β-D-glucopyranose residues with β-(1,3 linkages and β-(1,4 linkages. Arabinoxylan consists in a backbone of D-xylanopyranosyl units linked by β-(1-4 bonds connected to single L-arabinofuranose by α-(1→2 or α-(1→3-linkages. Degradation of (1-3,1-4-β-glucans is processed by the (1-3,1-4-β-glucanases, the β-glucosidases and the β-glucane exohydrolases. It seems that the (1-3-β-glucanases are also involved. Arabinoxylans are mainly decomposed by (1-4-β-xylan endohydrolase, arabinofuranosidase and β-xylosidase.

  7. Application of oxidized starch in bake-only chicken nuggets.

    Science.gov (United States)

    Purcell, Sarah; Wang, Ya-Jane; Seo, Han-Seok

    2014-05-01

    There is a need to reduce the fat content in fried foods because of increasing health concerns from consumers. Oxidized starches have been utilized in many coating applications for their adhesion ability. However, it is not known if they perform similarly in bake-only products. This study investigated the application of oxidized starch in bake-only chicken nuggets. Oxidized starches were prepared from 7 starches and analyzed for gelatinization and pasting properties. Chicken nuggets were prepared using batter containing wheat flour, oxidized starch, salt, and leavening agents prior to steaming, oven baking, freezing, and final oven baking for sensory evaluation. All nuggets were analyzed for hardness by a textural analyzer, crispness by an acoustic sound, and sensory characteristics by a trained panel. The oxidation level used in the study did not alter the gelatinization temperature of most starches, but increased the peak pasting viscosity of both types of corn and rice starches and decreased that of tapioca and potato starches. There were slight differences in peak force and acoustic reading between some treatments; however, the differences were not consistent with starch type or amylose content. There was no difference among the treatments as well as between the control with wheat flour and the treatments partially replaced with oxidized starches in all sensory attributes of bake-only nuggets evaluated by the trained panel. There is a need to reduce the fat content in fried food, such as chicken nuggets, because of increasing childhood obesity. Oxidized starches are widely used in coating applications for their adhesion ability. This study investigated the source of oxidized starches in steam-baked coated nuggets for their textural and sensorial properties. The findings from this research will provide an understanding of the contributions of starch source and oxidation to the texture and sensory attributes of bake-only nuggets, and future directions to improve

  8. Preparation and Characterization of Some Polyethylene Modified- Starch Biodegradable Films

    International Nuclear Information System (INIS)

    Badrana, A.S.; Ramadanb, A.M.; Ibrahim, N.A.; Kahild, T.; Hussienc, H.A.

    2005-01-01

    Blends of LDPE with soluble starch, wheat flour and commercial starch were prepared by mixing starch (or flour) with styrene then blending the mixture with LDPE, The starch percents vary between 5 and 50% of the total weight. Their physical and mechanical properties were recorded and compared with pure LDPE. It was observed that the increase in starch or wheat flour contents of the mixture was reversibly proportional to the tensile strength and % elongation. Samples were tested for water absorption. All of the samples were insoluble in cold and boiling water. Moisture uptake increased with immersion time and increasing starch content. The changes in the tensile strength of LDPE/starch (or wheat flour) after the course of thermal oxidation was measured. These results show negligible changes in the tensile strength of the control sample as compared to that of the samples containing the additives. Oxidation processes take advantage of the high temperatures (40-50 degree C) and the time. It was also observed that after 10 weeks of soil burial, the mechanical properties of the films decrease, mainly, due to starch removal from the films. Also, for the weight loss a drastic decrease was observed after 10 weeks of soil burial thereafter it preceded slowly. The LDPE/ starch strips showed weight loss after treating with a-amylase this due to hydrolysis and leaching of the starch. The rate of starch hydrolysis increases with the increase in starch content of the sample. The influence of addition of starch on the overall migration of these films, with different food simulant, was studied, at different temperatures (-4 degree. 25 degree and 40 degree C). All values were significantly lower than the upper limit for overall migration set by the EU (10 mg/dirf) for food grade plastics packaging materials

  9. Properties of foam and composite materials made o starch and cellulose fiber

    Science.gov (United States)

    Composite materials were made of starch and cellulose fibers. Pre-gelatinized starch was effective in dispersing pulp fiber in a starch matrix to form a viscous starch/fiber dough. The starch/fiber dough was a useful feedstock for various composite foam and plastic materials. Viscous blends of star...

  10. Bio-inspired materials engineering using polysaccharide based biotemplates

    International Nuclear Information System (INIS)

    Zollfrank, C.

    2007-01-01

    Nano-structured materials with a controlled microstructure and tailored properties at a scale below 100 nm are of interest for applications in micro-mechanical, sensor and biomedical devices. In contrast to top-down manufacturing processes the formation of solid matter structures in nature is templated and directed by biomacromolecules such as polysaccharides and polypeptides. A promising biomimetic route for the directed deposition of ceramic materials is the application of anisotropically structured biomacromolecules as patterned templates. The polysaccharides exhibit a hierarchical multi scale order as well as self-assembly properties. The bio-inspired deposition and formation of ceramic phases on biomolecular polysaccharide templates was investigated. The polysaccharides were used at various structural levels from the molecular scale up to three-dimensional parts in the millimetre range. The versatility of polysaccharide shaping capabilities was explored using dissolved polysaccharide molecules as well as thin films for the or simultaneous or successive formation of inorganic mineral phases. Microalgae with a spherical appearance of 5 micro-m were applied in mineralisation studies. The extracellular polysaccharide (EPS) layers on the microalgae were used as biotemplates for manufacturing of functional ceramics. The obtained results on the mineralisation of inorganic phases on polysaccharides are adapted for novel biomimetic routes used in the fabrication for functional and biomedical ceramics. (author)

  11. Iodophilic polysaccharide synthesis, acid production and growth in oral streptococci

    NARCIS (Netherlands)

    Houte, J. van; Winkler, K.C.; Jansen, H.M.

    The relation between iodophilic polysaccharide formation, acid production and growth in α-haemolytic streptococci, isolated from human dental plaque, was studied. In experiments with resting cell suspensions, or with cells growing at a low rate, all strains synthesizing iodophilic polysaccharide

  12. In vitro antioxidant activity of polysaccharide from Gardenia jasminoides ellis

    Science.gov (United States)

    Fan, Y.; Ge, Z.; Luo, A.

    2011-01-01

    A water-soluble polysaccharide, GP, was isolated from Gardenia jasminoides Ellis through hot water extraction followed by ethanol precipitation. The in vitro free radicals scavenging tests exhibited that GP has significant scavenging abilities especially for ABTS, DPPH, and hydroxyl radicals, which suggests that the polysaccharide GP is a novel antioxidant. ?? 2011 Academic Journals.

  13. Structural modification of polysaccharides: A biochemical-genetic approach

    Science.gov (United States)

    Kern, Roger G.; Petersen, Gene R.

    1991-01-01

    Polysaccharides have a wide range of industrial and biomedical applications. An industry trend is underway towards the increased use of bacteria to produce polysaccharides. Long term goals of this work are the adaptation and enhancement of saccharide properties for electronic and optic applications. In this report we illustrate the application of enzyme-bearing bacteriophage on strains of the enteric bacterium Klebsiella pneumoniae, which produces a polysaccharide with the relatively rare rheological property of drag-reduction. This has resulted in the production of new polysaccharides with enhanced rheological properties. Our laboratory is developing techniques for processing and structurally modifying bacterial polysaccharides and oligosaccharides which comprise their basic polymeric repeat units. Our research has focused on bacteriophage which produce specific polysaccharide degrading enzymes. This has lead to the development of enzymes generated by bacteriophage as tools for polysaccharide modification and purification. These enzymes were used to efficiently convert the native material to uniform-sized high molecular weight polymers, or alternatively into high-purity oligosaccharides. Enzyme-bearing bacteriophage also serve as genetic selection tools for bacteria that produce new families of polysaccharides with modified structures.

  14. Life cycle assessment of polysaccharide materials: a review

    NARCIS (Netherlands)

    Shen, L.|info:eu-repo/dai/nl/310872022; Patel, M.K.|info:eu-repo/dai/nl/18988097X

    2008-01-01

    Apart from conventional uses of polysaccharide materials, such as food, clothing, paper packaging and construction, new polysaccharide products and materials have been developed. This paper reviews life cycle assessment (LCA) studies in order to gain insight of the environmental profiles of

  15. Modulating surface rheology by electrostatic protein/polysaccharide interactions

    NARCIS (Netherlands)

    Ganzevles, R.A.; Zinoviadou, K.; Vliet, van T.; Cohen Stuart, M.A.; Jongh, de H.H.J.

    2006-01-01

    There is a large interest in mixed protein/polysaccharide layers at air-water and oil-water interfaces because of their ability to stabilize foams and emulsions. Mixed protein/polysaccharide adsorbed layers at air-water interfaces can be prepared either by adsorption of soluble protein/

  16. Recent Advances in Marine Algae Polysaccharides: Isolation, Structure, and Activities.

    Science.gov (United States)

    Xu, Shu-Ying; Huang, Xuesong; Cheong, Kit-Leong

    2017-12-13

    Marine algae have attracted a great deal of interest as excellent sources of nutrients. Polysaccharides are the main components in marine algae, hence a great deal of attention has been directed at isolation and characterization of marine algae polysaccharides because of their numerous health benefits. In this review, extraction and purification approaches and chemico-physical properties of marine algae polysaccharides (MAPs) are summarized. The biological activities, which include immunomodulatory, antitumor, antiviral, antioxidant, and hypolipidemic, are also discussed. Additionally, structure-function relationships are analyzed and summarized. MAPs' biological activities are closely correlated with their monosaccharide composition, molecular weights, linkage types, and chain conformation. In order to promote further exploitation and utilization of polysaccharides from marine algae for functional food and pharmaceutical areas, high efficiency, and low-cost polysaccharide extraction and purification methods, quality control, structure-function activity relationships, and specific mechanisms of MAPs activation need to be extensively investigated.

  17. Visualization of bacterial polysaccharides by scanning transmission electron microscopy.

    Science.gov (United States)

    Wolanski, B S; McAleer, W J; Hilleman, M R

    1983-04-01

    Highly purified capsular polysaccharides of Neisseria meningitidis groups A, B, and C have been visualized by high resolution Scanning Transmission Electron Microscopy (STEM). Spheroidal macromolecules approximately 200 A in diameter are characteristic of the Meningococcus A and C polysaccharides whereas filaments that are 400-600 A in length are found in Meningococcus B polysaccharide preparations. Filaments are occasionally found associated with the spheroidal Meningococcus A and C polysaccharides and it is proposed that these structures are composed of a long (1-4 microns) filament or filaments that are arranged in spheroidal molecules or micelles of high molecular weight. The Meningococcus B polysaccharide, by contrast, is a short flexuous filament or strand of relatively low molecular weight. A relationship between morphology and antigenicity is proposed.

  18. Chromatography in characterization of polysaccharides from medicinal plants and fungi.

    Science.gov (United States)

    Hu, De-jun; Cheong, Kit-leong; Zhao, Jing; Li, Shao-ping

    2013-01-01

    Polysaccharides isolated from medicinal plants and fungi exhibit multiple pharmacological activities. The biological activities of polysaccharides depend on their chemical characteristics. However, characterization of polysaccahrides is a challenge because of their complicated structure and macromolecular mass. In this review, chromatography in characterization of polysaccharides, including physicochemical characterization (purity, molecular mass, and distribution), structural characterization (constituent monosaccharide composition and the ratio, the features of glycosidic linkages), and fingerprint of polysaccharides (acidic and enzymatic hydrolysates), from medicinal plants and fungi were reviewed and discussed according to the publications collected in Web of Science since 2007. The perspective for characterization of polysaccharides has also been described. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Comparison of polysaccharides from two species of Ganoderma.

    Science.gov (United States)

    Xie, Jing; Zhao, Jing; Hu, De-Jun; Duan, Jin-Ao; Tang, Yu-Ping; Li, Shao-Ping

    2012-01-13

    Ganoderma lucidum and Ganoderma sinense, known as Lingzhi in Chinese, are commonly used Chinese medicines with excellent beneficial health effects. Triterpenes and polysaccharides are usually considered as their main active components. However, the content of triterpenes differs significantly between the two species of Ganoderma. To date, a careful comparison of polysaccharides from the two species of Ganoderma has not been performed. In this study, polysaccharides from fruiting bodies of two species of Lingzhi collected from different regions of China were analyzed and compared based on HPSEC-ELSD and HPSEC-MALLS-RI analyses, as well as enzymatic digestion and HPTLC of acid hydrolysates. The results indicated that both the HPSEC-ELSD profiles and the molecular weights of the polysaccharides were similar. Enzymatic digestion showed that polysaccharides from all samples of Lingzhi could be hydrolyzed by pectinase and dextranase. HPTLC profiles of their TFA hydrolysates colored with different reagents and their monosaccharides composition were also similar.

  20. Characterization of polysaccharides from Ganoderma spp. using saccharide mapping.

    Science.gov (United States)

    Wu, Ding-Tao; Xie, Jing; Hu, De-Jun; Zhao, Jing; Li, Shao-Ping

    2013-09-12

    Polysaccharides from Ganoderma spp. and their adulterants were firstly investigated and compared using saccharide mapping, enzymatic (endo-1,3-β-D-glucanase and pectinase) digestion followed by polysaccharide analysis using carbohydrate gel electrophoresis analysis. The results showed that both 1,3-β-D-glucosidic and 1,4-α-D-galactosiduronic linkages were existed in Lingzhi (Ganoderma lucidum and Ganoderma sinense), and the similarity of polysaccharides from G. lucidum and G. sinense was high, which may contribute to rational use of Lingzhi. Different species of Ganoderma and their adulterants can be differentiated based on the saccharide mapping, which is helpful to well understand the structural characters of polysaccharides from different species of Ganoderma and to improve the quality control of polysaccharides in Lingzhi. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Structural Features and Healthy Properties of Polysaccharides Occurring in Mushrooms

    Directory of Open Access Journals (Sweden)

    Eva Guillamón

    2012-12-01

    Full Text Available Polysaccharides from mushrooms have attracted a great deal of attention due to the many healthy benefits they have demonstrated, such as immunomodulation, anticancer activity, prevention and treatment of cardiovascular diseases, antiviral and antimicrobial effects, among others. Isolation and purification of polysaccharides commonly involve several steps, and different techniques are actually available in order to increase extraction yield and purity. Studies have demonstrated that the molecular structure and arrangement significantly influence the biological activity; therefore, there is a wide range of analytical techniques for the elucidation of chemical structures. Different polysaccharides have been isolated from mushrooms, most of them consisting of β-linked glucans, such as lentinan from Lentinus edodes, pleuran from Pleurotus species, schizophyllan from Schizophyllum commune, calocyban from Calocybe indica, or ganoderan and ganopoly from Ganoderma lucidum. This article reviews the main methods of polysaccharide isolation and structural characterization, as well as some of the most important polysaccharides isolated from mushrooms and the healthy benefits they provide.

  2. Characterisation of hydroxypropylated crosslinked sago starch as compared to commercial modified starches

    Directory of Open Access Journals (Sweden)

    Saowakon Wattanachant

    2002-07-01

    Full Text Available The characteristics of hydroxypropylated crosslinked sago starch (HPST were determined and compared with five types of commercial modified starches (CMST in order to evaluate its quality for further applications. The HPST was prepared on a large scale having molar substitution (MS and degree substitution (DS values in the range of 0.038 to 0.045 and 0.004 to 0.005, respectively. The properties of HPST in terms of sediment volume, swelling power, solubility and paste clarity were 15.75%, 16.7, 8.62% and 5.18%T650 , respectively. The MS value, phosphorus content, paste clarity, swelling power and syneresis after six freeze-thaw cycles of HPST when compared to that of commercially available modified starches which are normally used or incorporated in acidic, frozen and canned foods did not differ significantly. The pasting characteristic of HPST exhibited thin to thick viscosity which was similar (P>0.05 to that of commercial hydroxypropylated crosslinked tapioca starch (NAT 8. The acid stability, solubility and freeze-thaw stability of both starches were also similar (P>0.05 but the swelling power of HPST was slightly lower (P<0.05 than that of NAT 8 .

  3. Characteristics of cassava starch fermentation wastewater based on structural degradation of starch granules

    Directory of Open Access Journals (Sweden)

    Juliane Mascarenhas Pereira

    2016-01-01

    Full Text Available ABSTRACT: Sour cassava starch is a naturally modified starch produced by fermentation and sun drying, achieving the property of expansion upon baking. Sour cassava starch' bakery products can be prepared without the addition of yeast and it is gluten free. The fermentation process associated with this product has been well studied, but the wastewater, with high acidity and richness in other organic compounds derived from starch degradation, requires further investigation. In this study, the structure of solids present in this residue was studied, seeking to future applications for new materials. The solids of the wastewater were spray dried with maltodextrin (MD with dextrose equivalent (DE of 5 and 15 and the structure of the powder was evaluated by scanning electron microscopy. A regular structure with a network arrangement was observed for the dried material with MD of 5 DE, in contrast to the original and fermented starches structure, which suggests a regular organization of this new material, to be studied in future applications.

  4. The effect of starch-garlic powder ratio on degradation rate of Gadung starch bioplastic

    Science.gov (United States)

    Mairiza, L.; Mariana; Ramadhany, M.; Feviyussa, C. A.

    2018-03-01

    Bioplastic is one of the solutions for environmental problems caused by plastics waste. Utilization of toxic gadung starch in the manufacturing of bioplastic would be as an alternative, due to gadung bulb has high starch content, and it is still not used optimally. This research aimed to learn about the using of gadung starch-mixed with garlic powder of making biodegradable plastic packaging. Also, to observe the duration of degradation, as a level of biodegradability of plastic film produced. The method used making this bioplastic was casting method. The variables used in this study were the ratios of starch and powdered garlic, were 10:0; 8:2; 6:4, and the concentration of garlic powder were 2%; 4%; 6%; and 8 %. The degradation test was done by soil burial test. The results of the soil burial test shown that the film was more rapidly degraded at ratio of 6: 4 compared to the ratio of 8: 2 and 10: 0. The results shown that bioplastic at the starch-garlic powder ratio of 10: 0 was decomposed in 21 days, at the the ratio of 8:2 was 15 days, while at the ratio of 6:4, the plastic film was degraded in the 11 days.

  5. Cassava starch films containing acetylated starch nanoparticles as reinforcement: Physical and mechanical characterization.

    Science.gov (United States)

    Teodoro, Ana Paula; Mali, Suzana; Romero, Natália; de Carvalho, Gizilene Maria

    2015-08-01

    This paper reports the use of acetylated starch nanoparticles (NPAac) as reinforcement in thermoplastic starch films. NPAac with an average size of approximately 500 nm were obtained by nanoprecipitation. Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA) indicated that NPAac are more thermally stable and essentially amorphous when compared with acetylated starch. Thermoplastic starch films with different proportions of NPAac (0.5, 1.0, 1.5, 10.0%, w/w) were obtained and characterized by scanning electron microscopy (SEM), water vapor permeability (WVP), adsorption isotherms, TGA and mechanical tests. The inclusion of reinforcement caused changes in film properties: WVP was lowered by 41% for film with 1.5% (w/w) of NPAac and moisture adsorption by 33% for film with 10% (w/w) of NPAac; and the Young's modulus and thermal stability were increased by 162% and 15%, respectively, for film with 0.5% (w/w) of NPAac compared to the starch film without the addition of NPAac. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Partial characterization of chayotextle starch-based films added with ascorbic acid encapsulated in resistant starch.

    Science.gov (United States)

    Martínez-Ortiz, Miguel A; Vargas-Torres, Apolonio; Román-Gutiérrez, Alma D; Chavarría-Hernández, Norberto; Zamudio-Flores, Paul B; Meza-Nieto, Martín; Palma-Rodríguez, Heidi M

    2017-05-01

    Chayotextle starch was modified by subjecting it to a dual treatment with acid and heating-cooling cycles. This caused a decrease in the content of amylose, which showed values of 30.22%, 4.80%, 3.27% and 3.57% for native chayotextle starch (NCS), starch modified by acid hydrolysis (CMS), and CMS with one (CMS1AC) and three autoclave cycles (CMS3AC), respectively. The percentage of crystallinity showed an increase of 36.9%-62% for NCS and CMS3AC. The highest content of resistant starch (RS) was observed in CMS3AC (37.05%). The microcapsules were made with CMS3AC due to its higher RS content; the total content of ascorbic acid of the microcapsules was 82.3%. The addition of different concentrations of CMS3AC microcapsules (0%, 2.5%, 6.255% and 12.5%) to chayotextle starch-based films (CSF) increased their tensile strength and elastic modulus. The content of ascorbic acid and RS in CSF was ranged from 0% to 59.4% and from 4.84% to 37.05% in the control film and in the film mixed with CMS3AC microcapsules, respectively. Water vapor permeability (WVP) values decreased with increasing concentrations of microcapsules in the films. Microscopy observations showed that higher concentrations of microcapsules caused agglomerations due their poor distribution in the matrix of the films. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Mixture design of rice flour, maize starch and wheat starch for optimization of gluten free bread quality.

    Science.gov (United States)

    Mancebo, Camino M; Merino, Cristina; Martínez, Mario M; Gómez, Manuel

    2015-10-01

    Gluten-free bread production requires gluten-free flours or starches. Rice flour and maize starch are two of the most commonly used raw materials. Over recent years, gluten-free wheat starch is available on the market. The aim of this research was to optimize mixtures of rice flour, maize starch and wheat starch using an experimental mixture design. For this purpose, dough rheology and its fermentation behaviour were studied. Quality bread parameters such as specific volume, texture, cell structure, colour and acceptability were also analysed. Generally, starch incorporation reduced G* and increased the bread specific volume and cell density, but the breads obtained were paler than the rice flour breads. Comparing the starches, wheat starch breads had better overall acceptability and had a greater volume than maize-starch bread. The highest value for sensorial acceptability corresponded to the bread produced with a mixture of rice flour (59 g/100 g) and wheat starch (41 g/100 g).

  8. Characterization of chestnut (Castanea sativa, mill starch for industrial utilization

    Directory of Open Access Journals (Sweden)

    Demiate Ivo Mottin

    2001-01-01

    Full Text Available Studies were conducted to characterize the chestnut and its starch. Chemical composition of the chestnuts showed high level of starch. Moisture level in the raw nuts was around 50g/100g in wet basis and starch content, around 80g/100g in dry basis; other nut flour components were protein (5.58 g/100g, lipid (5.39 g/100g, crude fiber (2.34 g/100g and ash (2.14 g/100g. Starch fraction was chemically characterized in order to identify the granule quality as compared with those of cassava and corn. This fraction showed more lipids and proteins than the other starches. Chestnut starch granules showed peculiar shape, smaller than the control starches and low amount of damaged units. Chemical composition concerning amylose : amylopectin ratio was intermediate to that presented by cassava and corn starch granules. Water absorption at different temperatures as well as solubility were also intermediate but closer to that presented by cassava granules. The same behavior was observed in the interaction with dimethyl-sulfoxide. Native starch granules and those submitted to enzymatic treatment with commercial alpha-amylase and also with enzymes from germinated wheat were observed by scanning electronic microscopy. Water suspensions of chestnut starch granules were heated to form pastes that were studied comparatively to those obtained with cassava and corn starches. Viscographic pattern of chestnut starch pastes showed a characteristic profile with high initial viscosity but peak absence, high resistance to mechanical stirring under hot conditions and high final viscosity. There was no way to compare it with the paste viscographic profiles obtained with the control starches. Chestnut starch pastes were stable down to pH 4 but unstable at pH 3. The water losses observed in the chestnut starch pastes after freeze-thaw cycles showed more similarity to the pattern observed in corn starch pastes as well as clarity and strength of the gel. In general the results

  9. Computational modeling of biodegradable starch based polymer composites

    Science.gov (United States)

    Joshi, Sachin Sudhakar

    2007-12-01

    Purpose. The goal of this study is to improve the favorable molecular interactions between starch and PPC by addition of grafting monomers MA and ROM as compatibilizers, which would advance the mechanical properties of starch/PPC composites. Methodology. DFT and semi-empirical methods based calculations were performed on three systems: (a) starch/PPC, (b) starch/PPC-MA, and (c) starch-ROM/PPC. Theoretical computations involved the determination of optimal geometries, binding-energies and vibrational frequencies of the blended polymers. Findings. Calculations performed on five starch/PPC composites revealed hydrogen bond formation as the driving force behind stable composite formation, also confirmed by the negative relative energies of the composites indicating the existence of binding forces between the constituent co-polymers. The interaction between starch and PPC is also confirmed by the computed decrease in stretching CO and OH group frequencies participating in hydrogen bond formation, which agree qualitatively with the experimental values. A three-step mechanism of grafting MA on PPC was proposed to improve the compatibility of PPC with starch. Nine types of 'blends' produced by covalent bond formation between starch and MA-grafted PPC were found to be energetically stable, with blends involving MA grafted at the 'B' and 'C' positions of PPC indicating a binding-energy increase of 6.8 and 6.2 kcal/mol, respectively, as compared to the non-grafted starch/PPC composites. A similar increase in binding-energies was also observed for three types of 'composites' formed by hydrogen bond formation between starch and MA-grafted PPC. Next, grafting of ROM on starch and subsequent blend formation with PPC was studied. All four types of blends formed by the reaction of ROM-grafted starch with PPC were found to be more energetically stable as compared to the starch/PPC composite and starch/PPC-MA composites and blends. A blend of PPC and ROM grafted at the '

  10. Improvement of rice starch by gamma irradiation

    International Nuclear Information System (INIS)

    Duan Zhiying; Wu Dianxing; Shen Shengquan; Han Juanying; Xia Yingwu

    2003-01-01

    Three types of rice cultivars, Indica, Japonica and hybrid rice, with similar intermediate apparent amylose content (AAC) as well as early Indica rice cultivars with different amounts of AAC were selected for studying the effects of gamma irradiation on starch viscosity, physico-chemical properties and starch granule structure. Four major parameters of RVA profile, peak viscosity (PKV), hot paste viscosity (HPV), cool paste viscosity (CPV), setback viscosity (SBV) and consistence viscosity (CSV) were considerably decreased with increasing dose levels. Gamma irradiation reduced the amylose contents in the cultivars with low AAC, intermediate AAC, and glutinous rice, but had no effects on the high AAC cultivar. No visible changes in alkali spreading value (ASV) were detected after irradiation, but the peak time (PKT) were reduced with the dose level. Gel consistency (GC) were significantly increased in the tested cultivars, especially in the high AAC Indica rice, suggesting that it is promising to use gamma irradiation to improve eating and cooking quality of rice

  11. Organized polysaccharide fibers as stable drug carriers

    Science.gov (United States)

    Janaswamy, Srinivas; Gill, Kristin L.; Campanella, Osvaldo H.; Pinal, Rodolfo

    2013-01-01

    Many challenges arise during the development of new drug carrier systems, and paramount among them are safety, solubility and controlled release requirements. Although synthetic polymers are effective, the possibility of side effects imposes restrictions on their acceptable use and dose limits. Thus, a new drug carrier system that is safe to handle and free from side effects is very much in need and food grade polysaccharides stand tall as worthy alternatives. Herein, we demonstrate for the first time the feasibility of sodium iota-carrageenan fibers and their distinctive water pockets to embed and release a wide variety of drug molecules. Structural analysis has revealed the existence of crystalline network in the fibers even after encapsulating the drug molecules, and iota-carrageenan maintains its characteristic and reproducible double helical structure suggesting that the composites thus produced are reminiscent of cocrystals. The melting properties of iota-carrageenan:drug complexes are distinctly different from those of either drug or iota-carrageenan fiber. The encapsulated drugs are released in a sustained manner from the fiber matrix. Overall, our research provides an elegant opportunity for developing effective drug carriers with stable network toward enhancing and/or controlling bioavailability and extending shelf-life of drug molecules using GRAS excipients, food polysaccharides, that are inexpensive and non–toxic. PMID:23544530

  12. Nanoengineering of vaccines using natural polysaccharides.

    Science.gov (United States)

    Cordeiro, Ana Sara; Alonso, María José; de la Fuente, María

    2015-11-01

    Currently, there are over 70 licensed vaccines, which prevent the pathogenesis of around 30 viruses and bacteria. Nevertheless, there are still important challenges in this area, which include the development of more active, non-invasive, and thermo-resistant vaccines. Important biotechnological advances have led to safer subunit antigens, such as proteins, peptides, and nucleic acids. However, their limited immunogenicity has demanded potent adjuvants that can strengthen the immune response. Particulate nanocarriers hold a high potential as adjuvants in vaccination. Due to their pathogen-like size and structure, they can enhance immune responses by mimicking the natural infection process. Additionally, they can be tailored for non-invasive mucosal administration (needle-free vaccination), and control the delivery of the associated antigens to a specific location and for prolonged times, opening room for single-dose vaccination. Moreover, they allow co-association of immunostimulatory molecules to improve the overall adjuvant capacity. The natural and ubiquitous character of polysaccharides, together with their intrinsic immunomodulating properties, their biocompatibility, and biodegradability, justify their interest in the engineering of nanovaccines. In this review, we aim to provide a state-of-the-art overview regarding the application of nanotechnology in vaccine delivery, with a focus on the most recent advances in the development and application of polysaccharide-based antigen nanocarriers. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Bacterial Extracellular Polysaccharides Involved in Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Elena P. Ivanova

    2009-07-01

    Full Text Available Extracellular polymeric substances (EPS produced by microorganisms are a complex mixture of biopolymers primarily consisting of polysaccharides, as well as proteins, nucleic acids, lipids and humic substances. EPS make up the intercellular space of microbial aggregates and form the structure and architecture of the biofilm matrix. The key functions of EPS comprise the mediation of the initial attachment of cells to different substrata and protection against environmental stress and dehydration. The aim of this review is to present a summary of the current status of the research into the role of EPS in bacterial attachment followed by biofilm formation. The latter has a profound impact on an array of biomedical, biotechnology and industrial fields including pharmaceutical and surgical applications, food engineering, bioremediation and biohydrometallurgy. The diverse structural variations of EPS produced by bacteria of different taxonomic lineages, together with examples of biotechnological applications, are discussed. Finally, a range of novel techniques that can be used in studies involving biofilm-specific polysaccharides is discussed.

  14. Research of polysaccharide complexes from asteraceae family plants

    Directory of Open Access Journals (Sweden)

    Світлана Михайлівна Марчишин

    2015-10-01

    Full Text Available Aim of research. Depth study of polysaccharides in some little-known plant species of Asteraceae family is pressing question, considering that polysaccharides are important biologically active compounds widely used in pharmaceutical and medical practice as remedies and preventive medications. The aim of research was to determinate both quantitative content and monomeric composition of polysaccharide complexes from Asteraceae family plant species – Tagetes genus, Arnica genus, and Bellis genus.Materials and methods. Determination of polysaccharides was carried out by the precipitation reaction, using 96 % ethyl alcohol P and Fehling's solution after acid hydrolysis; quantitative content of this group of compounds was determined by gravimetric analysis. On purpose to identify the monomeric composition hydrolysis under sulfuric acid conditions was conducted. Qualitative monomeric composition of polysaccharides after hydrolysis was carried out by paper chromatography method in n-Butanol – Pyridine – Distilled water P (6:4:3 system along with saccharides reference samples.Results. Polysaccharide complexes from Tagetes erecta, Tagetes patula, Tagetes tenuifolia, Arnica montana, Arnica foliosa, wild and cultivated Bellis perennis herbs were studied. Water-soluble polysaccharides and pectin fractions were isolated from studied objects; their quantitative content and monomeric composition were determined.Conclusion. The highest amount of water-soluble polysaccharides was found in cultivated Bellis perennis herb (10,13 %, the highest amount of pectin compounds – in Tagetes tenuifolia herb (13,62 %; the lowest amount of water-soluble polysaccharides and pectin compounds was found in Arnica montana herb (4,61 % and Tagetes patula herb (3,62 %, respectively. It was found that polysaccharide complexes from all studied species include glucose and arabinose

  15. Synthesis of supermacroporous cryogel for bioreactors continuous starch hydrolysis.

    Science.gov (United States)

    Guilherme, Ederson Paulo Xavier; de Oliveira, Jocilane Pereira; de Carvalho, Lorendane Millena; Brandi, Igor Viana; Santos, Sérgio Henrique Sousa; de Carvalho, Gleidson Giordano Pinto; Cota, Junio; Mara Aparecida de Carvalho, Bruna

    2017-11-01

    A bioreactor was built by means of immobilizing alpha-amylase from Aspergillus oryzae by encapsulation, through cryopolymerization of acrylamide monomers for the continuous starch hydrolysis. The starch hydrolysis was evaluated regarding pH, the concentration of immobilized amylase on cryogel, the concentration of starch solution and temperature. The maximum value for starch hydrolysis was achieved at pH 5.0, concentration of immobilized enzyme 111.44 mg amylase /g cryogel , concentration of starch solution 45 g/L and temperature of 35°C. The immobilized enzyme showed a conversion ratio ranging from 68.2 to 97.37%, depending on the pH and temperature employed. Thus, our results suggest that the alpha-amylase from A. oryzae immobilized on cryogel monoliths represents a potential process for industrial production of maltose from starch hydrolysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Reduction of acrylamide content in bread crust by starch coating.

    Science.gov (United States)

    Liu, Jie; Liu, Xiaojie; Man, Yong; Liu, Yawei

    2018-01-01

    A technique of starch coating to reduce acrylamide content in bread crust was proposed. Bread was prepared in accordance with a conventional procedure and corn or potato starch coating was brushed on the surface of the fermented dough prior to baking. Corn starch coating caused a decrease in acrylamide of 66.7% and 77.1% for the outer and inner crust, respectively. The decrease caused by the potato starch coating was 68.4% and 77.4%, respectively. Starch coating reduced asparagine content significantly (43.4-82.9%; P coating, which effectively shortened the time span (4-8 min) over which acrylamide could form and accumulate. The present study demonstrates that starch coating could be a simple, effective and practical application for reducing acrylamide levels in bread crust without changing the texture and crust color of bread. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. Preparation and Properties of Cassava Starch-based Wood Adhesives

    Directory of Open Access Journals (Sweden)

    Qing Xu

    2016-06-01

    Full Text Available A biodegradable, environmentally friendly starch-based wood adhesive with cassava starch as a raw material and butyl acrylate (BA as a co-monomer was synthesized. Results revealed that this cassava starch-based wood adhesive (SWA was more stable than corn starch-based wood adhesive, and its bonding performance was close to that of commercial PVAc emulsion, even after 90 days of storage. Further analysis found that the improved stability of the adhesive could be attributed to its low minimum film forming temperature (MFFT and glass transition temperature (Tg of cassava starch. Moreover, the amount of total volatile organic compounds (TVOCs emitted by the cassava starch-based wood adhesive were much lower than the Chinese national standard control criteria. Therefore, cassava SWA might be a potential alternative to traditional petrochemical-based wood adhesives.

  18. Rheological properties of concentrated solutions of carboxymethyl starch

    Directory of Open Access Journals (Sweden)

    Stojanović Željko

    2003-01-01

    Full Text Available Carboxymethyl starch was synthesized by the esterification of starch with monochloroacetic acid in ethanol as a reaction medium. Three samples of carboxymethyl starch having different degrees of substitution were prepared. The influence of temperature on the viscosity of concentrated carboxymethyl starch solutions, as well as the dynamic-mechanical properties of the concentrated solutions were investigated. The activation energy of viscous flow was determined and it was found that it decreased with increasing degree of substitution. The results of the dynamic-mechanical measurements showed that solutions of starch and carboxymethyl starches with higher degrees of substitution behave as gels. Values of the storage modulus in the rubbery plateau were used to calculate the molar masses between two points of physical crosslinking, the density of crosslinking and the distance between two points of crosslinking.

  19. Development of highly-transparent protein/starch-based bioplastics.

    Science.gov (United States)

    Gonzalez-Gutierrez, J; Partal, P; Garcia-Morales, M; Gallegos, C

    2010-03-01

    Striving to achieve cost-competitive biomass-derived materials for the plastics industry, the incorporation of starch (corn and potato) to a base formulation of albumen and glycerol was considered. To study the effects of formulation and processing, albumen/starch-based bioplastics containing 0-30 wt.% starch were prepared by thermo-plastic and thermo-mechanical processing. Transmittance measurements, DSC, DMTA and tensile tests were performed on the resulting bioplastics. Optical and tensile properties were strongly affected by starch concentration. However, DMTA at low deformation proved to be insensitive to starch addition. Thermo-mechanical processing led to transparent albumen/starch materials with values of strength at low deformation comparable to commodity plastics. Consequently, albumen biopolymers may become a biodegradable alternative to oil-derived plastics for manufacturing transparent packaging and other plastic stuffs. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  20. Natural-Synthetic Hybrid Polymers Developed via Electrospinning: The Effect of PET in Chitosan/Starch System

    Science.gov (United States)

    Espíndola-González, Adolfo; Martínez-Hernández, Ana Laura; Fernández-Escobar, Francisco; Castaño, Victor Manuel; Brostow, Witold; Datashvili, Tea; Velasco-Santos, Carlos

    2011-01-01

    Chitosan is an amino polysaccharide found in nature, which is biodegradable, nontoxic and biocompatible. It has versatile features and can be used in a variety of applications including films, packaging, and also in medical surgery. Recently a possibility to diversify chitosan properties has emerged by combining it with synthetic materials to produce novel natural-synthetic hybrid polymers. We have studied structural and thermophysical properties of chitosan + starch + poly(ethylene terephthalate) (Ch + S + PET) fibers developed via electrospinning. Properties of these hybrids polymers are compared with extant chitosan containing hybrids synthesized by electrospinning. Molecular interactions and orientation in the fibers are analyzed by infrared and Raman spectroscopies respectively, morphology by scanning electron microscopy and thermophysical properties by thermogravimetric analysis and differential scanning calorimetry. Addition of PET to Ch + S systems results in improved thermal stability at elevated temperatures. PMID:21673930

  1. Development of nanocomposites based on potato starch

    International Nuclear Information System (INIS)

    Brito, Luciana Macedo; Tavares, Maria Ines Bruno

    2013-01-01

    Nanocomposites of potato starch were prepared by the solution intercalation method with the addition of organically modified montmorillonite clay (Viscogel B and unmodified sodic clay (NT25) as well as modified and unmodified silica (R972 and A200, respectively), using water as the solvent. The nanocomposites were characterized by conventional techniques of X-ray diffraction and thermogravimetric analysis. They were also characterized using the non-conventional low-field nuclear magnetic resonance, which is an effective alternative technique for characterizing nanocomposites. This technique allows one to investigate dispersion of nanofillers by the degree of intercalation and/or exfoliation, in addition to determine the distribution of nanoparticles in the polymer matrix and modifications of the molecular mobility of these fillers. The nanostructured materials obtained with the clays presented good dispersion and formation of mixed nanomaterials, with different degrees of intercalation and exfoliation. The mobility of the material decreased upon adding silica in the starch matrix, which applied to both types of silica. From the TGA technique, a slight increase in thermal stability of the nanocomposite was noted in relation to the starch matrix. (author)

  2. Enzymatic transformation of nonfood biomass to starch

    Science.gov (United States)

    You, Chun; Chen, Hongge; Myung, Suwan; Sathitsuksanoh, Noppadon; Ma, Hui; Zhang, Xiao-Zhou; Li, Jianyong; Zhang, Y.-H. Percival

    2013-01-01

    The global demand for food could double in another 40 y owing to growth in the population and food consumption per capita. To meet the world’s future food and sustainability needs for biofuels and renewable materials, the production of starch-rich cereals and cellulose-rich bioenergy plants must grow substantially while minimizing agriculture’s environmental footprint and conserving biodiversity. Here we demonstrate one-pot enzymatic conversion of pretreated biomass to starch through a nonnatural synthetic enzymatic pathway composed of endoglucanase, cellobiohydrolyase, cellobiose phosphorylase, and alpha-glucan phosphorylase originating from bacterial, fungal, and plant sources. A special polypeptide cap in potato alpha-glucan phosphorylase was essential to push a partially hydrolyzed intermediate of cellulose forward to the synthesis of amylose. Up to 30% of the anhydroglucose units in cellulose were converted to starch; the remaining cellulose was hydrolyzed to glucose suitable for ethanol production by yeast in the same bioreactor. Next-generation biorefineries based on simultaneous enzymatic biotransformation and microbial fermentation could address the food, biofuels, and environment trilemma. PMID:23589840

  3. Transfer action of cyclodextrin glycosyltransferase on starch

    Energy Technology Data Exchange (ETDEWEB)

    Kitahata, S; Okada, S [Osaka City Technical Research Inst. (Japan)

    1975-11-01

    The transglycosylation reaction of the cyclodextrin glycosyltransferase from Bacillus megaterium (No. 5 enzyme) and Bacillus macerans (BMA) were examined. No.5 enzyme was more efficient in transglycosylation reaction than BMA in the every acceptor employed in the present study. The order of the efficient acceptors for No. 5 enzyme was maltose (G2), glucose (G1), maltotriose (G3) and sucrose (GF). On the other hand, that found for BMA was G1, G2, GF and G3. The transglycosylation products to glucose formed by the action of No. 5 enzyme on starch were G2, G3, maltotetraose (G4), maltopentaose (G5), maltohexaose (G6) and maltoheptaose (G7) in the order of their quantities, while, in the case of BMA, they were G2, G3, G5, G7 = G4 and G6. The larger transglycosylation products to sucrose formed by the action of No. 5 enzyme on starch were maltosylfructose. On the other hand, that formed by the action of BMA was maltoheptaosylfructose. It was suggested that cyclodextrin glycosyltransferase could transfer the glucosyl residues to an acceptor directly from starch, as well as through cyclodextrin.

  4. Polysaccharide components from the scape of Musa paradisiaca: main structural features of water-soluble polysaccharide component.

    Science.gov (United States)

    Anjaneyalu, Y V; Jagadish, R L; Raju, T S

    1997-06-01

    Polysaccharide components present in the pseudo-stem (scape) of M. paradisiaca were purified from acetone powder of the scape by delignification followed by extraction with aqueous solvents into water soluble polysaccharide (WSP), EDTA-soluble polysaccharide (EDTA-SP), alkali-soluble polysaccharide (ASP) and alkali-insoluble polysaccharide (AISP) fractions. Sugar compositional analysis showed that WSP and EDTA-SP contained only D-Glc whereas ASP contained D-Glc, L-Ara and D-Xyl in approximately 1:1:10 ratio, respectively, and AISP contained D-Glc, L-Ara and D-Xyl in approximately 10:1:2 ratio, respectively. WSP was further purified by complexation with iso-amylalcohol and characterized by specific rotation, IR spectroscopy, Iodine affinity, ferricyanide number, blue value, hydrolysis with alpha-amylase and glucoamylase, and methylation linkage analysis, and shown to be a amylopectin type alpha-D-glucan.

  5. Effect of Drying Method and Variety on Quality of Cassava Starch ...

    African Journals Online (AJOL)

    Effect of Drying Method and Variety on Quality of Cassava Starch Extracts. ... Cassava starch is one of the main industrial products of cassava processing. ... Also, cassava starch samples dried at lower temperature have better functional and ...

  6. Effects of citric acid esterification on digestibility, structural and physicochemical properties of cassava starch.

    Science.gov (United States)

    Mei, Ji-Qiang; Zhou, Da-Nian; Jin, Zheng-Yu; Xu, Xue-Ming; Chen, Han-Qing

    2015-11-15

    In this study, citric acid was used to react with cassava starch in order to compare the digestibility, structural and physicochemical properties of citrate starch samples. The results indicated that citric acid esterification treatment significantly increased the content of resistant starch (RS) in starch samples. The swelling power and solubility of citrate starch samples were lower than those of native starch. Compared with native starch, a new peak at 1724 cm(-1) was appeared in all citrate starch samples, and crystalline peaks of all starch citrates became much smaller or even disappeared. Differential scanning calorimetry results indicated that the endothermic peak of citrate starches gradually shrank or even disappeared. Moreover, the citrate starch gels exhibited better freeze-thaw stability. These results suggested that citric acid esterification induced structural changes in cassava starch significantly affected its digestibility and it could be a potential method for the preparation of RS with thermal stability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. 40 CFR 427.30 - Applicability; description of the asbestos paper (starch binder) subcategory.

    Science.gov (United States)

    2010-07-01

    ... asbestos paper (starch binder) subcategory. 427.30 Section 427.30 Protection of Environment ENVIRONMENTAL... Asbestos Paper (Starch Binder) Subcategory § 427.30 Applicability; description of the asbestos paper... asbestos paper (starch binder). ...

  8. Starch bioengineering in Brachypodium distachyon

    DEFF Research Database (Denmark)

    Tanackovic, Vanja; Svensson, Jan Tommy; Buleon, A

    2011-01-01

    Brachypodium distachyon was recently introduced as a model plant for temperate cereals (Opanowicz et al., 2008). We aim to establish Brachypodium as a model for cereal starch metabolism. Grain starch from two lines: Bd21 and Bd21-3 are being characterized. Microscopic, chemical and structural data...... including amylopectin chain length distribution, phosphate content and amylose content provided further evidence for the close relationship to temperate cereals even though starch content and starch granule size were considerably lower than that for barley (Hordeum vulgare). Bioinformatics analyses...... in temperate cereals....

  9. Supply of avocado starch (Persea americana mill) as bioplastic material

    Science.gov (United States)

    Ginting, M. H. S.; Hasibuan, R.; Lubis, M.; Alanjani, F.; Winoto, F. A.; Siregar, R. C.

    2018-02-01

    The purpose of this study was to determine the effect of time precipitation of avocado slurry seed to yield of starch. Starch analysis included starch content, moisture content, amylose content, amylopectin content, ash content, protein content, fat content, Fourier transform infra red analysis and rapid visco analyzer. Supply of starch from avocado seeds was used by extraction method. Every one hundred grams of avocado slurry was precipitated by gravity with variations for 4 hours, 8 hours, 12 hours, 16 hours, 20 hours and 24 hours. The Starch yield was washed, and dried using oven at 70°C for 30 minutes. Starch yield was the highest as 24.20 gram at 24 hours. The result of starch characterization was 73.62%, water content 16.6%, amylose 0.07%, amylopectin 73.55%, ash content 0.23%, protein content 2.16%, fat content 1.09%. Rapid visco analyzer obtained at 91.33°C of gelatinization temperature. Scanning electron microscopy analyzes obtained 20 μm oval-shaped starch granules. Fourier Transform Infra Red analysis of starch obtained the peak spectrum of O-H group of alcohols, C-H alkanes and C-O ether.

  10. Size Controlled Synthesis of Starch Nanoparticles by a Microemulsion Method

    Directory of Open Access Journals (Sweden)

    Suk Fun Chin

    2014-01-01

    Full Text Available Controllable particles sizes of starch nanoparticles were synthesized via a precipitation in water-in-oil microemulsion approach. Microemulsion method offers the advantages of ultralow interfacial tension, large interfacial area, and being thermodynamically stable and affords monodispersed nanoparticles. The synthesis parameters such as stirring rates, ratios of oil/cosurfactant, oil phases, cosurfactants, and ratios of water/oil were found to affect the mean particle size of starch nanoparticles. Starch nanoparticles with mean particles sizes of 109 nm were synthesized by direct nanoprecipitation method, whereas by using precipitation in microemulsion approach, starch nanoparticles with smaller mean particles sizes of 83 nm were obtained.

  11. Composite wheat-plantain starch salted noodles: Preparation, proximal composition and in vitro starch digestibility

    OpenAIRE

    Rendón-Villalobos, Rodolfo; Osorio-Díaz, Perla; Agama-Acevedo, Edith; Tovar, Juscelino; Bello-Pérez, Luis A

    2008-01-01

    Salted noodles were prepared with different contents of wheat grits and plantain starch (PS). The blends were hydrated with 2% NaCl (w/v), homogenized, and the resulting doughs were sheeted through a pasta machine, cut into strips ~30cm in length, cooked, and their composition and in vitro starch digestibility was assessed. Moisture (6.43-7.60%) and ash contents (2.08-3.12%) increased by the addition of PS. Fat level decreased from 0.41 to 0.31% as the substitution of wheat grits increased. R...

  12. 13CO2 breath test to measure the hydrolysis of various starch formulations in healthy subjects.

    OpenAIRE

    Hiele, M; Ghoos, Y; Rutgeerts, P; Vantrappen, G; de Buyser, K

    1990-01-01

    13CO2 starch breath test was used to study the effect of physicochemical characteristics of starch digestion. As starch is hydrolysed to glucose, which is subsequently oxidised to CO2, differences in 13CO2 excretion after ingestion of different starch products must be caused by differences in hydrolysis rate. To study the effect of the degree of chain branching, waxy starch, containing 98% amylopectin, was compared with high amylose starch, containing 30% amylopectin, and normal crystalline s...

  13. New polysaccharide-based polymer electrolytes; Nouveaux electrolytes polymeres a base de polysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez-Morales, P.; Le Nest, J.F.; Gandini, A. [Ecole Francaise de Papeterie et des Industries Graphique, 38 - Saint Martin d`Heres (France)

    1996-12-31

    Polysaccharides like cellulose and chitosan are known for their filmic properties. This paper concerns the synthesis and the study of chitosan-based polymer electrolytes. A preliminary work concerns the study of glucosamine reactivity. The poly-condensation of chitosan ethers (obtained by reaction with ethylene oxide or propylene oxide) with bifunctional and monofunctional oligo-ethers leads to the formation of thin lattices (10 {mu}m) having excellent mechanical properties. The presence of grafted polyether chains along the polysaccharide skeleton allows to modify the vitreous transition temperature and the molecular disorder of the system. Two type of polymer electrolytes have been synthesized: electrolytes carrying a dissolved alkaline metal salt and ionomers. The analysis of their thermal, dynamical mechanical, nuclear magnetic relaxation, electrical, and electrochemical properties shows that this new class of polymer electrolytes has the same performances as ethylene poly-oxide based amorphous lattices plus the advantage of having good filmic properties. Abstract only. (J.S.)

  14. New polysaccharide-based polymer electrolytes; Nouveaux electrolytes polymeres a base de polysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez-Morales, P; Le Nest, J F; Gandini, A [Ecole Francaise de Papeterie et des Industries Graphique, 38 - Saint Martin d` Heres (France)

    1997-12-31

    Polysaccharides like cellulose and chitosan are known for their filmic properties. This paper concerns the synthesis and the study of chitosan-based polymer electrolytes. A preliminary work concerns the study of glucosamine reactivity. The poly-condensation of chitosan ethers (obtained by reaction with ethylene oxide or propylene oxide) with bifunctional and monofunctional oligo-ethers leads to the formation of thin lattices (10 {mu}m) having excellent mechanical properties. The presence of grafted polyether chains along the polysaccharide skeleton allows to modify the vitreous transition temperature and the molecular disorder of the system. Two type of polymer electrolytes have been synthesized: electrolytes carrying a dissolved alkaline metal salt and ionomers. The analysis of their thermal, dynamical mechanical, nuclear magnetic relaxation, electrical, and electrochemical properties shows that this new class of polymer electrolytes has the same performances as ethylene poly-oxide based amorphous lattices plus the advantage of having good filmic properties. Abstract only. (J.S.)

  15. Antibiofilm activity of Actinobacillus pleuropneumoniae serotype 5 capsular polysaccharide.

    Directory of Open Access Journals (Sweden)

    Michael T Karwacki

    Full Text Available Cell-free extracts isolated from colony biofilms of Actinobacillus pleuropneumoniae serotype 5 were found to inhibit biofilm formation by Staphylococcus aureus, S. epidermidis and Aggregatibacter actinomycetemcomitans, but not by A. pleuropneumoniae serotype 5 itself, in a 96-well microtiter plate assay. Physical and chemical analyses indicated that the antibiofilm activity in the extract was due to high-molecular-weight polysaccharide. Extracts isolated from a mutant strain deficient in the production of serotype 5 capsular polysaccharide did not exhibit antibiofilm activity. A plasmid harboring the serotype 5 capsule genes restored the antibiofilm activity in the mutant extract. Purified serotype 5 capsular polysaccharide also exhibited antibiofilm activity against S. aureus. A. pleuropneumoniae wild-type extracts did not inhibit S. aureus growth, but did inhibit S. aureus intercellular adhesion and binding of S. aureus cells to stainless steel surfaces. Furthermore, polystyrene surfaces coated with A. pleuropneumoniae wild-type extracts, but not with capsule-mutant extracts, resisted S. aureus biofilm formation. Our findings suggest that the A. pleuropneumoniae serotype 5 capsule inhibits cell-to-cell and cell-to-surface interactions of other bacteria. A. pleuropneumoniae serotype 5 capsular polysaccharide is one of a growing number of bacterial polysaccharides that exhibit broad-spectrum, nonbiocidal antibiofilm activity. Future studies on these antibiofilm polysaccharides may uncover novel functions for bacterial polysaccharides in nature, and may lead to the development of new classes of antibiofilm agents for industrial and clinical applications.

  16. The immunostimulating role of lichen polysaccharides: a review.

    Science.gov (United States)

    Shrestha, Gajendra; St Clair, Larry L; O'Neill, Kim L

    2015-03-01

    The immune system has capacity to suppress the development or progression of various malignancies including cancer. Research on the immunomodulating properties of polysaccharides obtained from plants, microorganisms, marine organisms, and fungi is growing rapidly. Among the various potential sources, lichens, symbiotic systems involving a fungus and an alga and/or a cyanobacterium, show promise as a potential source of immunomodulating compounds. It is well known that lichens produce an abundance of structurally diverse polysaccharides. However, only a limited number of studies have explored the immunostimulating properties of lichen polysaccharides. Published studies have shown that some lichen polysaccharides enhance production of nitrous oxide (NO) by macrophages and also alter the production levels of various proinflammatory and antiinflammatory cytokines (IL-10, IL-12, IL-1β, TNF-α, and IFN-α/β) by macrophages and dendritic cells. Although there are only a limited number of studies examining the role of lichen polysaccharides, all results suggest that lichen polysaccharides can induce immunomodulatory responses in macrophages and dendritic cells. Thus, a detailed evaluation of immunomodulatory capacity of lichen polysaccharides could provide a unique opportunity for the discovery of novel therapeutic agents. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Radiation processing of thermoplastic starch by blending aromatic additives: Effect of blend composition and radiation parameters

    Science.gov (United States)

    Khandal, Dhriti; Mikus, Pierre-Yves; Dole, Patrice; Coqueret, Xavier

    2013-03-01

    This paper reports on the effects of electron beam (EB) irradiation on poly α-1,4-glucose oligomers (maltodextrins) in the presence of water and of various aromatic additives, as model blends for gaining a better understanding at a molecular level the modifications occurring in amorphous starch-lignin blends submitted to ionizing irradiation for improving the properties of this type of bio-based thermoplastic material. A series of aromatic compounds, namely p-methoxy benzyl alcohol, benzene dimethanol, cinnamyl alcohol and some related carboxylic acids namely cinnamic acid, coumaric acid, and ferulic acid, was thus studied for assessing the ability of each additive to counteract chain scission of the polysaccharide and induce interchain covalent linkages. Gel formation in EB-irradiated blends comprising of maltodextrin was shown to be dependent on three main factors: the type of aromatic additive, presence of glycerol, and irradiation dose. The chain scission versus grafting phenomenon as a function of blend composition and dose were studied using Size Exclusion Chromatography by determining the changes in molecular weight distribution (MWD) from Refractive Index (RI) chromatograms and the presence of aromatic grafts onto the maltodextrin chains from UV chromatograms. The occurrence of crosslinking was quantified by gel fraction measurements allowing for ranking the cross-linking efficiency of the additives. When applying the method to destructurized starch blends, gel formation was also shown to be strongly affected by the moisture content of the sample submitted to irradiation. The results demonstrate the possibility to tune the reactivity of tailored blend for minimizing chain degradation and control the degree of cross-linking.

  18. Identification of polysaccharide hydrolases involved in autolytic degradation of Zea cell walls

    International Nuclear Information System (INIS)

    Nock, L.P.; Smith, C.J.

    1987-01-01

    Cell walls of Zea mays (cv L.G.11) seedlings labeled with 14 C were treated with α-amylase from Bacillus subtilis to remove starch and mixed linkage glucans. These walls released arabinose, xylose, galactose, and galacturonic acid in addition to glucose when they were allowed to autolyze. Methylation analysis was performed on samples of wall which had been incubated autolytically and the results indicated that degradation of the major polymer of the wall, the glucoarabinoxylan, had occurred. A number of glycanases could be dissociated from the wall by use of 3 M LiCL. The proteins which were released were found to contain a number of exoglycosidase activities in addition to being effective in degrading the polysaccharide substrates, araban, xylan, galactan, laminarin, mannan, and polygalacturonic acid. The effects of these enzymes on the wall during autolysis appear to result from endo-activity in addition to exo-activity. The structural changes that occurred in the cell walls during autolysis were found to be related to the changes previously found to occur in cell walls during auxin induced extension

  19. Photocatalytic studies of electrochemically synthesized polysaccharide-functionalized ZnO nanoparticles

    Science.gov (United States)

    Kaur, Simranjeet; Kaur, Harpreet

    2018-05-01

    The present work reports the electrochemical synthesis of polysaccharide-functionalized ZnO nanoparticles using sodium hydroxide, starch, and zinc electrodes for the degradation of cationic dye (Rhodamine-B) under sunlight. Physiochemical properties of synthesized sample have been characterized by different techniques such as XRD, TEM, FESEM, EDS, IR, and UV-visible spectroscopic techniques. The influence of various factors such as effect of dye concentration, contact time, amount of photocatalyst, and pH has been studied. The results obtained from the photodegradation study showed that degradation rate of Rhodamine-B dye has been increased with increase of amount of photocatalyst and decreased with increase in initial dye concentration. Furthermore, the kinetics of the degradation has been investigated. It has been found that the photodegradation of Rhodamine-B dye follows pseudo-first-order kinetics and prepared photocatalyst can effectively degrade the cationic dye. Thus, this ecofriendly and efficient photocatalyst can be used for the treatment of dye-contaminated water. This catalyst also showed the antibacterial activity against Bacillus pumilus and Escherichia coli bacterial strains, so the synthesized nanoparticles also have the pharmaceutical properties.

  20. Replacement of eggs with soybean protein isolates and polysaccharides to prepare yellow cakes suitable for vegetarians.

    Science.gov (United States)

    Lin, Muyang; Tay, Siang Hong; Yang, Hongshun; Yang, Bao; Li, Hongliang

    2017-08-15

    To evaluate the feasibility of substituting eggs in yellow cake by a mixture of soybean proteins, plant polysaccharides, and emulsifiers, the batter properties, including specific gravity and viscosity; cake properties, including specific volume, texture, colour, moisture, microstructures, and structural properties of starch and glutens of the replaced cake and traditional cake containing egg, were evaluated. Replacing eggs with a soy protein isolate and 1% mono-, di-glycerides yielded a similar specific volume, specific gravity, firmness and moisture content (1.92 vs. 2.08cm 3 /g, 0.95 vs. 1.03, 319.8 vs. 376.1g, and 28.03% vs. 29.01%, respectively) compared with the traditional cakes baked with eggs. Structurally, this formulation comprised dominant gliadin aggregates in the size range of 100-200nm and glutenin networking structures containing fewer but larger porosities. The results suggest that a mixture of soybean proteins and emulsifier is a promising substitute for eggs in cakes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The cereal starch endosperm development and its relationship with other endosperm tissues and embryo.

    Science.gov (United States)

    Zheng, Yankun; Wang, Zhong

    2015-01-01

    The cereal starch endosperm is the central part of endosperm, and it is rich in starch and protein which are the important resources for human food. The starch and protein are separately accumulated in starch granules and protein bodies. Content and configuration of starch granules and protein bodies affect the quality of the starch endosperm. The development of starch endosperm is mediated by genes, enzymes, and hormones, and it also has a close relationship with other endosperm tissues and embryo. This paper reviews the latest investigations on the starch endosperm and will provide some useful information for the future researches on the development of cereal endosperm.

  2. Enzymatic method for improving the injectability of polysaccharides. [US Patent Application

    Science.gov (United States)

    Griffith, W.L.; Compere, A.L.; Holleman, J.W.

    A method for enhancing the ability of polysaccharides in aqueous solution to flow through a porous medium comprises contacting the polysaccharides with an endoenzyme capable of hydrolyzing at least one of the linkages of the sugar units of the polysaccharides and maintaining the polysaccharides in contact with the enzyme under hydrolysis conditions for a time sufficient to decrease the tendency of the polysaccharides to plug the porous medium yet insufficient to decrease the viscosity of the aqueous polysaccharides by more than 25%. The partially hydrolyzed polysaccharides are useful as thickening agents for flooding water used to recover oil from oil-containing subterranean formations.

  3. Enzymatic Modification of Plant Cell Wall Polysaccharides

    DEFF Research Database (Denmark)

    Øbro, Jens; Hayashi, Takahisa; Mikkelsen, Jørn Dalgaard

    2011-01-01

    Plant cell walls are intricate structures with remarkable properties, widely used in almost every aspect of our life. Cell walls consist largely of complex polysaccharides and there is often a need for chemical and biochemical processing before industrial use. There is an increasing demand...... for sustainable processes that replace chemical treatments with white biotechnology. Plants can contribute significantly to this sustainable process by producing plant or microbialenzymes in planta that are necessary for plant cell wall modification or total degradation. This will give rise to superior food...... fibres, hydrocolloids, paper,textile, animal feeds or biofuels. Classical microbial-based fermentation systems could in the future face serious competition from plant-based expression systems for enzyme production. Plant expressed enzymes can either be targeted to specific cellular compartments...

  4. Unusual monosaccharides: components of O-antigenic polysaccharides of microorganisms

    Science.gov (United States)

    Kochetkov, Nikolai K.

    1996-09-01

    The data on new monosaccharides detected in O-antigenic polysaccharides of Gram-negative bacteria have been surveyed. The results of isolation and structure determination of these unusual monosaccharides have been arranged and described systematically. The NMR spectroscopy techniques are shown to be promising for the O-antigenic polysaccharides structure determination. The information about fine structure of monosaccharides which constitute the base of important class of microbial polysaccharides, is of great significance for applied studies, first of all, the design and synthesis of biologically active substances. The bibliography includes 216 references.

  5. Chemical Structures and Bioactivities of Sulfated Polysaccharides from Marine Algae

    Directory of Open Access Journals (Sweden)

    H. Stephen Ewart

    2011-02-01

    Full Text Available Sulfated polysaccharides and their lower molecular weight oligosaccharide derivatives from marine macroalgae have been shown to possess a variety of biological activities. The present paper will review the recent progress in research on the structural chemistry and the bioactivities of these marine algal biomaterials. In particular, it will provide an update on the structural chemistry of the major sulfated polysaccharides synthesized by seaweeds including the galactans (e.g., agarans and carrageenans, ulvans, and fucans. It will then review the recent findings on the anticoagulant/antithrombotic, antiviral, immuno-inflammatory, antilipidemic and antioxidant activities of sulfated polysaccharides and their potential for therapeutic application.

  6. VAPOR MIXER FOR GELATINIZATION OF STARCH IN LIQUEFYING STATION

    Directory of Open Access Journals (Sweden)

    V. V. Ananskikh

    2015-01-01

    Full Text Available Starch hydrolysis is main technological process in production of starch sweeteners. Acid hydrolysis of starch using hydrochloric acid is carried out very fast but it does not allow to carry out full hydrolysis and to produce products with given carbohydrate composition. Bioconversion of starch allows to eliminate these limitations. At production of starch sweeteners from starch using enzymes starch hydrolysis is carried out in two stages At first starchstarch liquefaction the rapid increase of viscosity takes place which requires intensive mixing. Liquefying station consists of jet-cooker, holder, pressure regulator and evaporator. Jet-cooker of starch is its main part, starch is quickly turns into soluble (gelatinized state and it is partially liquefied by injection of starch suspension by flow of water vapor under pressure not less than 0,8 MPa. Heat and hydraulic calculation were carried out in order to determine constructive sizes of mixer for cooking of starch. The main hydraulic definable parameters are pressure drop in mixer, vapor pressure at mixer inlet, daily capacity of station by glucose syrup M, product consumption (starch suspension, diameter of inlet section of vapor nozzle. The goal of calculation was to determine vapor consumption M1, diameter d2 of outlet section of confuser injector, length l2 of gelatinization section. For heat calculation there was used Shukhov’s formula along with heat balance equation for gelatinization process. The numerical solution obtained with adopted assumptions given in applied mathematical package MATHCAD, for M = 50 t/day gives required daily vapor consumption M1 = 14,446 т. At hydraulic calculation of pressure drop in mixer there was used Bernoulli’s theorem. Solving obtained equations using MATHCAD found diameter of outlet section of consufer d2 = 0,023 м, vapor pressure inside of mixer p2 = 3,966·105 Па, l2 = 0,128 м. Developed method of calculation is used to determine

  7. Enhancement of photoassimilate utilization by manipulation of starch regulatory enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Okita, Thomas W. [Washington State Univ., Pullman, WA (United States)

    2016-05-11

    ADPglucose pyrophosphorylase (AGPase) and the plastidial starch phosphorylase1 (Pho1) are two regulatory enzymes whose catalytic activities are essential for starch granule synthesis. Conversion of the pre-starch granule to the mature form is dependent on AGPase, which produces ADPglucose, the substrate used by starch synthases. The catalytic activity of AGPase is controlled by small effector molecules and a prime goal of this project was to decipher the role of the two subunit types that comprise the heterotetrameric enzyme structure. Extensive genetic and biochemical studies showed that catalysis was contributed mainly by the small subunit although the large subunit was required for maximum activity. Both subunits were needed for allosteric regulatory properties. We had also demonstrated that the AGPase catalyzed reaction limits the amount of starch accumulation in developing rice seeds and that carbon flux into rice seed starch can be increased by expression of a cytoplasmic-localized, up-regulated bacterial AGPase enzyme form. Results of subsequent physiological and metabolite studies showed that the AGPase reaction is no longer limiting in the AGPase transgenic rice lines and that one or more downstream processes prevent further increases in starch biosynthesis. Further studies showed that over-production of ADPglucose dramatically alters the gene program during rice seed development. Although the expression of nearly all of the genes are down-regulated, levels of a starch binding domain containing protein (SBDCP) are elevated. This SBDCP was found to bind to and inhibit the catalytic activity of starch synthase III and, thereby preventing maximum starch synthesis from occurring. Surprisingly, repression of SBDCP elevated expression of starch synthase III resulting in increasing rice grain weight. A second phase of this project examined the structure-function of Pho1, the enzyme required during the initial phase of pre-starch granule formation and its

  8. Utilization of polysaccharides by radiation processing

    Energy Technology Data Exchange (ETDEWEB)

    Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2000-03-01

    Radiation treatment has been applied for improvement or pasteurization of agro-resources to recycle the resources and to reduce the pollution of environment. By using the radiation effect for pasteurization, upgrading of cellulosic wastes of oil palm to animal feeds and mushroom has been studied under the bilateral research cooperation between JAERI and MINT (Malaysian Institute for Nuclear Technology Research). The necessary dose for pasteurization of oil palm empty fruit bunch (EFB), which is a main cellulosic by-product of palm oil industry, was determined as 10 kGy. After pasteurization, the EFB substrate was inoculated with Pleurotus sajor-caju and fermented for 1 month. The digestibility and nutritional value of fermented products were evaluated as ruminant feeds and the mushroom can be produced as by-product. For the improvement of resources, radiation effects on polysaccharides such as chitosan, sodium alginate, carrageenan, cellulose, pectin have been investigated to induce the biological activities. These carbohydrates were easily degraded by irradiation and induced various kinds of biological activities. The anti-bacterial activity and elicitor activity of chitosan were induced by irradiation. The induction of phytoalexins was also observed by irradiated pectin but the higher elicitor activity for pisatin was obtained by chitosan than pectin. For the plant growth promotion, alginate derived from brown marine algae, chitosan and ligno-cellulosic extracts show a strong activity. carrageenan derived from red marine algae can promote growth of rice and the highest effect was obtained with kappa carrageenan irradiated at 100 kGy. Furthermore, some radiation degraded polysaccharides suppressed the damage of environmental stress on plants. (author)

  9. Utilization of polysaccharides by radiation processing

    International Nuclear Information System (INIS)

    Kume, Tamikazu

    2000-01-01

    Radiation treatment has been applied for improvement or pasteurization of agro-resources to recycle the resources and to reduce the pollution of environment. By using the radiation effect for pasteurization, upgrading of cellulosic wastes of oil palm to animal feeds and mushroom has been studied under the bilateral research cooperation between JAERI and MINT (Malaysian Institute for Nuclear Technology Research). The necessary dose for pasteurization of oil palm empty fruit bunch (EFB), which is a main cellulosic by-product of palm oil industry, was determined as 10 kGy. After pasteurization, the EFB substrate was inoculated with Pleurotus sajor-caju and fermented for 1 month. The digestibility and nutritional value of fermented products were evaluated as ruminant feeds and the mushroom can be produced as by-product. For the improvement of resources, radiation effects on polysaccharides such as chitosan, sodium alginate, carrageenan, cellulose, pectin have been investigated to induce the biological activities. These carbohydrates were easily degraded by irradiation and induced various kinds of biological activities. The anti-bacterial activity and elicitor activity of chitosan were induced by irradiation. The induction of phytoalexins was also observed by irradiated pectin but the higher elicitor activity for pisatin was obtained by chitosan than pectin. For the plant growth promotion, alginate derived from brown marine algae, chitosan and ligno-cellulosic extracts show a strong activity. carrageenan derived from red marine algae can promote growth of rice and the highest effect was obtained with kappa carrageenan irradiated at 100 kGy. Furthermore, some radiation degraded polysaccharides suppressed the damage of environmental stress on plants. (author)

  10. Silver nanoparticle-loaded chitosan-starch based films: Fabrication and evaluation of tensile, barrier and antimicrobial properties

    International Nuclear Information System (INIS)

    Yoksan, Rangrong; Chirachanchai, Suwabun

    2010-01-01

    The fabrication of silver nanoparticles was accomplished by γ-ray irradiation reduction of silver nitrate in a chitosan solution. The obtained nanoparticles were stable in the solution for more than six months, and showed the characteristic surface plasmon band at 411 nm as well as a positively charged surface with 40.4 ± 2.0 mV. The silver nanoparticles presented a spherical shape with an average size of 20-25 nm, as observed by TEM. Minimum inhibitory concentration (MIC) against E. coli, S. aureus and B. cereus of the silver nanoparticles dispersed in the γ-ray irradiated chitosan solution was 5.64 μg/mL. The silver nanoparticle-loaded chitosan-starch based films were prepared by a solution casting method. The incorporation of silver nanoparticles led to a slight improvement of the tensile and oxygen gas barrier properties of the polysaccharide-based films, with diminished water vapor/moisture barrier properties. In addition, silver nanoparticle-loaded films exhibited enhanced antimicrobial activity against E. coli, S. aureus and B. cereus. The results suggest that silver nanoparticle-loaded chitosan-starch based films can be feasibly used as antimicrobial materials for food packaging and/or biomedical applications.

  11. Functional Characterization of Bean Zaragoza Starch (Phaseolus Lunatus L. and Quantification of the Resistant Starch

    Directory of Open Access Journals (Sweden)

    Piedad M. Montero-Castillo

    2013-06-01

    Full Text Available Legumes are a potential source of starch, representing between 30 and 50% of its dry weight, this is an essential energy source for humans. Currently its use is widespread in the food industry as an additive or raw material in food compounds, due to its nutritional, functional properties as a thickening agent and stabilizer of suspensions and dispersions. We evaluated several functional properties of starch variety zaragoza red bean, was obtained initial gelatinization temperature and final (71°C (81°C respectively, the solubility was 8.3% at 90°C, swelling power was 6.6% at 80°C, and water retention capacity was 4.4% at 80°C. The apparent viscosity was evaluated between 20 and 75 °C giving as results viscosities between 1.096 and 0.98 Cp respectively. The results showed that the tested temperatures significantly affect the solubility, swelling power, water holding capacity and viscosity of the starch. The amylose and amylopectin content was 21.1% and 78.19%. Finally, was obtained 9,24% resistant starch and compared with other conventional non starchy sources in order to acquire new knowledge about this material native to the Colombian Caribbean coast.

  12. Characterization of starch films containing starch nanoparticles. Part 2: viscoelasticity and creep properties.

    Science.gov (United States)

    Shi, Ai-Min; Wang, Li-Jun; Li, Dong; Adhikari, Benu

    2013-07-25

    Starch films were successfully produced by incorporating spray dried and vacuum-freeze dried starch nanoparticles. The frequency sweep, creep-recovery behavior and time-temperature superposition (TTS) on these films were studied. All these films exhibited dominant elastic behavior (than viscous behavior) over the entire frequency range (0.1-100 rad/s). The incorporation of both types of starch nanoparticles increased the storage and loss modulus, tanδ, creep strain, creep compliance and creep rate at long time frame and reduced the recovery rate of films while the effect of different kinds of starch nanoparticles on these parameters was similar both in magnitude and trend. TTS method was successfully used to predict long time (over 20 days) creep behavior through the master curves. The addition of these nanoparticles could increase the activation energy parameter used in TTS master curves. Power law and Burger's models were capable of fitting storage and loss modulus (R(2)>0.79) and creep data (R(2)>0.96), respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Relationship between gas production and starch degradation in feed samples

    NARCIS (Netherlands)

    Chai, W.Z.; Gelder, van A.H.; Cone, J.W.

    2004-01-01

    An investigation was completed of the possibilities to estimate starch fermentation in rumen fluid using the gas production technique by incubating the total sample. Gas production from six starchy feed ingredients and eight maize silage samples were recorded and related to starch degradation

  14. Packing and Cohesive Properties of Some Locally Extracted Starches

    African Journals Online (AJOL)

    ... properties of the particles affect the packing and cohesive properties of the starches, and are important in predicting the behaviour of the starches during handling and use in pharmaceutical preparations. These properties need to be closely controlled in pre-formulation studies. Keywords: Packing and cohesive properties, ...

  15. Films based on oxidized starch and cellulose from barley.

    Science.gov (United States)

    El Halal, Shanise Lisie Mello; Colussi, Rosana; Deon, Vinícius Gonçalves; Pinto, Vânia Zanella; Villanova, Franciene Almeida; Carreño, Neftali Lenin Villarreal; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2015-11-20

    Starch and cellulose fibers were isolated from grains and the husk from barley, respectively. Biodegradable films of native starch or oxidized starches and glycerol with different concentrations of cellulose fibers (0%, 10% and 20%) were prepared. The films were characterized by morphological, mechanical, barrier, and thermal properties. Cellulose fibers isolated from the barley husk were obtained with 75% purity and high crystallinity. The morphology of the films of the oxidized starches, regardless of the fiber addition, was more homogeneous as compared to the film of the native starch. The addition of cellulose fibers in the films increased the tensile strength and decreased elongation. The water vapor permeability of the film of oxidized starch with 20% of cellulose fibers was lower than the without fibers. However the films with cellulose fibers had the highest decomposition with the initial temperature and thermal stability. The oxidized starch and cellulose fibers from barley have a good potential for use in packaging. The addition of cellulose fibers in starch films can contribute to the development of films more resistant that can be applied in food systems to maintain its integrity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Preparation and In vitro Digestibility of Corn Starch Phosphodiester ...

    African Journals Online (AJOL)

    Purpose: To optimize the process conditions and analyze in vitro digestibility of corn starch phosphodiester prepared by sodium trimetaphosphate (STMP). Methods: By using response surface method, the effects of STMP concentration, pH, esterification temperature, and urea addition on digestion resistance of corn starch ...

  17. Lima Bean Starch-Based Hydrogels | Oladebeye | Nigerian Journal ...

    African Journals Online (AJOL)

    Hydrogels were prepared by crosslinking native lima bean starch and polyvinyl alcohol (PVA) with glutaraldehyde (GA) at varying proportions in an acidic medium. The native starch (N-LBS) and hydrogels (L-GA (low glutaraldehyde) and H-GA (high glutaraldehyde)) were examined for their water absorption capacity (WAC) ...

  18. Evaluation of binder and disintegrant properties of starch derived ...

    African Journals Online (AJOL)

    The aim of the study was to formulate metronidazole tablets using starch from Xanthosoma sagittifolium as binder and disintegrant in metronidazole tablets. Metronidazole tablets were produced by wet granulation method using X. sagittifolium starch as binder at concentrations of 5, 10, 15 and 20% w/w, and as disintegrant ...

  19. Biodegradation and moisture uptake modified starch-filled Linear ...

    African Journals Online (AJOL)

    Sixteen different modified-cassava starch-LLDPE blends containing starch in the range of 10-40% by weight were prepared. Calcium chloride, D-glucose, chloroform and alumina were differently used as modifying agents. The Moisture uptake and biodegradation of each of the composites were investigated. Both of these ...

  20. Effects of Native and Pregelatinised Fonio starches on compression ...

    African Journals Online (AJOL)

    Native and modified (pregelatinised) Fonio starches were evaluated as binding agents in comparison with maize starch B.P. in paracetamol tablet formulations. Compressional properties of the formulations were analyzed using density measurements and assessed by the compression equation of Heckel. The mechanical ...