WorldWideScience

Sample records for standard cooling conditions

  1. Cooling water conditioning and quality control for tokamaks

    International Nuclear Information System (INIS)

    Gootgeld, A.M.

    1995-10-01

    Designers and operators of Tokamaks and all associated water cooled, peripheral equipment, are faced with the task of providing and maintaining closed-loop, low conductivity, low impurity, cooling water systems. Most of these systems must provide large volumes of high quality cooling water at reasonable cost and comply with local and state government orders and EPA mandated national pretreatment standards and regulations. This paper discusses the DIII-D water quality requirements, the means used to obtain the necessary quality and the instrumentation used for control and monitoring. Costs to mechanically and chemically condition and maintain water quality are discussed as well as the various aspects of complying with government standards and regulations

  2. Evolution of cool-roof standards in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hashem; Akbari, Hashem; Levinson, Ronnen

    2008-07-11

    Roofs that have high solar reflectance and high thermal emittance stay cool in the sun. A roof with lower thermal emittance but exceptionally high solar reflectance can also stay cool in the sun. Substituting a cool roof for a noncool roof decreases cooling-electricity use, cooling-power demand, and cooling-equipment capacity requirements, while slightly increasing heating-energy consumption. Cool roofs can also lower citywide ambient air temperature in summer, slowing ozone formation and increasing human comfort. Provisions for cool roofs in energy-efficiency standards can promote the building- and climate-appropriate use of cool roofing technologies. Cool-roof requirements are designed to reduce building energy use, while energy-neutral cool-roof credits permit the use of less energy-efficient components (e.g., larger windows) in a building that has energy-saving cool roofs. Both types of measures can reduce the life-cycle cost of a building (initial cost plus lifetime energy cost). Since 1999, several widely used building energy-efficiency standards, including ASHRAE 90.1, ASHRAE 90.2, the International Energy Conservation Code, and California's Title 24 have adopted cool-roof credits or requirements. This paper reviews the technical development of cool-roof provisions in the ASHRAE 90.1, ASHRAE 90.2, and California Title 24 standards, and discusses the treatment of cool roofs in other standards and energy-efficiency programs. The techniques used to develop the ASHRAE and Title 24 cool-roof provisions can be used as models to address cool roofs in building energy-efficiency standards worldwide.

  3. Cooling water conditioning and quality control for tokamaks

    International Nuclear Information System (INIS)

    Gootgeld, A.M.

    1995-01-01

    Designers and operators of Tokamaks and all associated water cooled, peripheral equipment, are faced with the task of providing and maintaining closed-loop, low conductivity, low impurity, cooling water systems. The primary reason for supplying low conductivity water to the DIII-D vacuum vessel coils, power supplies and auxiliary heating components is to assure, along with the use of a non-conducting break in the supply piping, sufficient electrical resistance and thus an acceptable current-leakage path to ground at operating voltage potentials. As important, good quality cooling water significantly reduces the likelihood of scaling and fouling of flow passages and heat transfer surfaces. Dissolved oxygen gas removal is also required in one major DIII-D cooling water system to minimize corrosion in the ion sources of the neutral beam injectors. Currently, the combined pumping capacity of the high quality cooling water systems at DIII-D is ∼5,000 gpm. Another area that receives close attention at DIII-D is the chemical treatment of the water used in the cooling towers. This paper discusses the DIII-D water quality requirements, the means used to obtain the necessary quality and the instrumentation used for control and monitoring. Costs to mechanically and chemically condition and maintain water quality are discussed as well as the various aspects of complying with government standards and regulations

  4. Alternative geometry for cylindrical natural draft cooling tower with higher cooling efficiency under crosswind condition

    International Nuclear Information System (INIS)

    Goodarzi, M.; Ramezanpour, R.

    2014-01-01

    Highlights: • Alternative cross sections for natural draft cooling tower were proposed. • Numerical solution was applied to study thermal and hydraulic performances. • Thermal and hydraulic performances were assessed by comparative parameters. • Cooling tower with elliptical cross section had better thermal performance under crosswind. • It could successfully used at the regions with invariant wind direction. - Abstract: Cooling efficiency of a natural draft dry cooling tower may significantly decrease under crosswind condition. Therefore, many researchers attempted to improve the cooling efficiency under this condition by using structural or mechanical facilities. In this article, alternative shell geometry with elliptical cross section is proposed for this type of cooling tower instead of usual shell geometry with circular cross section. Thermal performance and cooling efficiency of the two types of cooling towers are numerically investigated. Numerical simulations show that cooling tower with elliptical cross section improves the cooling efficiency compared to the usual type with circular cross section under high-speed wind moving normal to the longitudinal diameter of the elliptical cooling tower

  5. The effect of cooling conditions on convective heat transfer and flow in a steam-cooled ribbed duct

    International Nuclear Information System (INIS)

    Shui, Linqi; Gao, Jianmin; Shi, Xiaojun; Liu, Jiazeng; Xu, Liang

    2014-01-01

    This work presents a numerical and experimental investigation on the heat transfer and turbulent flow of cooling steam in a rectangular duct with 90 .deg. ribs and studies the effect of cooling conditions on the heat transfer augmentation of steam. In the calculation, the variation range of Reynolds is from 10,000 to 190,000, the inlet temperature varies from 300 .deg. C to 500 .deg. C and the outlet pressure is from 0.5MPa to 6MPa. The aforementioned wide ranges of flow parameters cover the actual operating condition of coolant used in the gas turbine blades. The computations are carried with four turbulence models (the standard k-ε, the renormalized group (RNG) k-ε, the Launder-Reece-Rodi (LRR) and the Speziale-Sarkar-Gatski (SSG) turbulence models). The comparison of numerical and experimental results reveals that the SSG turbulence model is suitable for steam flow in the ribbed duct. Therefore, adopting the conjugate calculation technique, further study on the steam heat transfer and flow characteristics is performed with SSG turbulence model. The results show that the variation of cooling condition strongly impacts the forced convection heat transfer of steam in the ribbed duct. The cooling supply condition of a relative low temperature and medium pressure could bring a considerable advantage on steam thermal enhancement. In addition, comparing the heat transfer level between steam flow and air flow, the performance advantage of using steam is also influenced by the cooling supply condition. Changing Reynolds number has little effect on the performance superiority of steam cooling. Increasing pressure would strengthen the advantage, but increasing temperature gives an opposite result.

  6. Temporal response of laser power standards with natural convective cooling.

    Science.gov (United States)

    Xu, Tao; Gan, Haiyong; Yu, Jing; Zang, Erjun

    2016-01-25

    Laser power detectors with natural convective cooling are convenient to use and hence widely applicable in a power range below 150 W. However, the temporal response characteristics of the laser power detectors need to be studied in detail for accurate measurement. The temporal response based on the absolute laser power standards with natural convective cooling is studied through theoretical analysis, numerical simulations, and experimental verifications. Our results show that the response deviates from a single exponential function and that an ultimate response balance is difficult to achieve because the temperature rise of the heat sink leads to continuous increase of the response. To determine the measurement values, an equal time reading method is proposed and validated by the laser power calibrations.

  7. INFLUENCE OF CUTTING ZONE COOLING METHOD ON CHIP FORMING CONDITIONS

    Directory of Open Access Journals (Sweden)

    E. E. Feldshtein

    2014-01-01

    Full Text Available The paper considers an influence of a cutting zone cooling method on the chip shape and thickening ratio while turning R35 steel with the hardness of НВ 1250 МРа. Cutting with various types of cooling - dry, compressed air and emulsion fog has been investigated in the paper. OPORTET RG-2 emulsol with emulsion concentration of 4% has been used as an active substation. Cutting tool is a turning cutter with a changeable square plate SNUN120408 made of Р25 hard alloy with multilayer wear-resistant coating, upper titanium nitride layer. Front plate surface is flat. Range of cutting speeds - 80-450 m/min, motions - 0,1-0,5 mm/rev, emulsion flow - 1,5-3,5 g/min and compressed air - 4,5-7,0 m3/h, cutting depth - 1,0 mm. In order to reduce a number of single investigations it is possible to use plans based on ЛПх-sequences.It has been shown that the method for cutting zone cooling exerts significant influence on conditions for chip formation. Regression equation describing influence of machining conditions on Ка-chip thickening ratio has been obtained in the paper. The range of cutting modes is extended while using emulsion fog for cooling. In the process of these modes chip is formed in the shape of short spiral fragments or elements. Favourable form of chips is ensured while using the following rate of emulsion - not more than 2 g/min. The investigations have made it possible to determine conditions required for cooling emulsion fog. In this case it has been observed minimum values in chip thickening ratio and chip shape that ensures its easy removal from cutting zone. While making dry turning values of Ка is higher not less than 15 % in comparison with other methods for cutting zone cooling.

  8. Bioaerosol deposition on an air-conditioning cooling coil

    Science.gov (United States)

    Wu, Yan; Chen, Ailu; Luhung, Irvan; Gall, Elliott T.; Cao, Qingliang; Chang, Victor Wei-Chung; Nazaroff, William W.

    2016-11-01

    This study is concerned with the role of a fin-and-tube heat exchanger in modifying microbial indoor air quality. Specifically, depositional losses of ambient bioaerosols and particles onto dry (not cooled) and wet (cool) coil surfaces were measured for different airspeeds passing through the test coil. Total, bacterial and fungal DNA concentrations in condensate water produced by a wet coil were also quantified by means of fluorescent dsDNA-binding dye and qPCR assays. Results revealed that the deposition of bioaerosols and total particles is substantial on coil surfaces, especially when wet and cool. The average deposition fraction was 0.14 for total DNA, 0.18 for bacterial DNA and 0.22 for fungal DNA on the dry coil, increasing to 0.51 for total DNA, 0.50 for bacterial DNA and 0.68 for fungal DNA on the wet coil. Overall, as expected, deposition fractions increased with increasing particle size and increasing airspeed. Deposited DNA was removed from the cooling coil surfaces through the flow of condensing water at a rate comparable to the rate of direct deposition from air. A downward trend of bacterial and fungal DNA measured in condensate water over time provides suggestive evidence of biological growth on heat exchangers during nonoperational times of a ventilation system. This investigation provides new information about bioaerosol deposition onto a conventional fin-and-tube cooling coil, a potentially important factor influencing indoor exposure to microbial aerosols in air-conditioned buildings.

  9. Report of study 7.3: cooling and air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Russo, F.

    2000-07-01

    This report describes the results of the study carried out by the study group 7.3 in the triennium 1997-2000. The study was focused on industrial refrigeration and air conditioning for the large building utilising natural gas. The goal of this study, carried out in collaboration of the members of study group 7.3, was to analyse the markets of industrial refrigeration and air conditioning for large buildings to identify possibilities to increase the natural gas share in these sectors. The available technology in the two sectors of the market are described in a single section, i.e. the 'State of the art of the technology'. In this section, technical characteristics, applications, performances, new developments and others topics are discussed for absorbers, gas engines, gas turbines and fuel cells. In the 'Industrial Refrigeration' section an analysis of the present global market for the industrial sector is presented. Economics, advantages and barriers to gas units compared with the electrical units are discussed. Information on existing industrial plants, possible application options and new technology developments are described as well. The 'Air conditioning for the large building' section deals with offices, hotels, commercial buildings, hospitals and shopping centres with a cooling capacity of 350 kW or higher. It appears that the use of natural gas for cooling of large buildings has been increasing during the last decade, thanks to the greater availability of natural gas and the development of new technologies. A marketing survey of gas air-conditioning was carried out in cooperation with a group of Intergas Marketing. Based on the survey, the report describes the market position of natural gas relative to electricity. It provides the strategic prospects for further developing natural gas as a competitive option for air-conditioning of large buildings using a combination of state-of-the-art technologies. It is important to highlight

  10. Experimental Investigation of Mechanical Properties of PVC Polymer under Different Heating and Cooling Conditions

    Directory of Open Access Journals (Sweden)

    Sarkawt Rostam

    2016-01-01

    Full Text Available Due to a widely increasing usage of polymers in various industrial applications, there should be a continuous need in doing research investigations for better understanding of their properties. These applications require the usage of the polymer in different working environments subjecting the material to various temperature ranges. In this paper, an experimental investigation of mechanical properties of polyvinyl chloride (PVC polymer under heating and cooling conditions is presented. For this purpose standard samples are prepared and tested in laboratory using universal material testing apparatus. The samples are tested under different conditions including the room temperature environment, cooling in a refrigerator, and heating at different heating temperatures. It is observed that the strength of the tested samples decreases with the increasing of heating temperature and accordingly the material becomes softer. Meanwhile the cooling environments give a clear increasing to the strength of the material.

  11. Behaviour of gas cooled reactor fuel under accident conditions

    International Nuclear Information System (INIS)

    1991-11-01

    The Specialists Meeting on Behaviour of Gas Cooled Reactor Fuel under Accident Conditions was convened by the International Atomic Energy Agency on the recommendation of the International Working Group on Gas Cooled Reactors. The purpose of the meeting was to provide an international forum for the review of the development status and for the discussion on the behaviour of gas cooled reactor fuel under accident conditions and to identify areas in which additional research and development are still needed and where international co-operation would be beneficial for all involved parties. The meeting was attended by 45 participants from France, Germany, Japan, Switzerland, the Union of Soviet Socialists Republics, the United Kingdom, the United States of America, CEC and the IAEA. The meeting was subdivided into five technical sessions: Summary of Current Research and Development Programmes for Fuel; Fuel Manufacture and Quality Control; Safety Requirements; Modelling of Fission Product Release - Part I and Part II; Irradiation Testing/Operational Experience with Fuel Elements; Behaviour at Depressurization, Core Heat-up, Power Transients; Water/Steam Ingress - Part I and Part II. 22 papers were presented. A separate abstract was prepared for each of these papers. At the end of the meeting a round table discussion was held on Directions for Future R and D Work and International Co-operation. Refs, figs and tabs

  12. A Simplified Laser and Optics System for Laser-Cooled RB Fountain Frequency Standards

    National Research Council Canada - National Science Library

    Kunz, P. D; Heavner, T. P; Jefferts, S. R

    2007-01-01

    ...) atomic fountain frequency standard. This system uses DFB (Distributed Feedback) diode lasers and a frequency offset-locking scheme to generate the optical frequencies needed for laser-cooling, launching, post-cooling, and detection of Rb atoms...

  13. Cooling the vertical surface by conditionally single pulses

    Directory of Open Access Journals (Sweden)

    Karpov Pavel

    2017-01-01

    Full Text Available You Sprays with periodic supply of the droplet phase have great opportunities to control the heat exchange processes. Varying pulse duration and frequency of their repetition, we can achieve the optimal conditions of evaporative cooling with minimization of the liquid flow rate. The paper presents experimental data on studying local heat transfer on a large subcooled surface, obtained on the original setup with multinozzle controlled system of impact irrigation by the gas-droplet flow. A contribution to intensification of the spray parameters (flow rate, pulse duration, repetition frequency per a growth of integral heat transfer was studied. Data on instantaneous distribution of the heat flux value helped us to describe the processes occurring on the studied surface. These data could describe the regime of “island” film cooling.

  14. Cooling the vertical surface by conditionally single pulses

    Science.gov (United States)

    Karpov, Pavel; Nazarov, Alexander; Serov, Anatoly; Terekhov, Victor

    2017-10-01

    You Sprays with periodic supply of the droplet phase have great opportunities to control the heat exchange processes. Varying pulse duration and frequency of their repetition, we can achieve the optimal conditions of evaporative cooling with minimization of the liquid flow rate. The paper presents experimental data on studying local heat transfer on a large subcooled surface, obtained on the original setup with multinozzle controlled system of impact irrigation by the gas-droplet flow. A contribution to intensification of the spray parameters (flow rate, pulse duration, repetition frequency) per a growth of integral heat transfer was studied. Data on instantaneous distribution of the heat flux value helped us to describe the processes occurring on the studied surface. These data could describe the regime of "island" film cooling.

  15. The contemporary radioecological condition of Chernobyl NPP cooling pond

    International Nuclear Information System (INIS)

    Zarubin, O.L.; Shatrova, N.E.; Zalisskij, A.A.; Derevets, V.V.; Nazarov, A.B.

    2001-01-01

    In 1999 the condition of the Chernobyl NPP cooling pond's ecosystem was studied. The data of 13 7Cs content in organs and tissues of different kinds of fish are presented. The change of 137 Cs content correlation in different kinds of fish is shown in comparison with the data received earlier. The season dynamic of 137 Cs content in fish's tissues was noted. The differences of 137 Cs content in the fish according to the point where the samples were collected are shown

  16. Proposed Standard for a Microclimate Cooling System for Emergency Responder Operations

    Science.gov (United States)

    2012-02-17

    MICROCLIMATE COOLING SYSTEM FOR EMERGENCY RESPONDER OPERATIONS by Brad Laprise February 2012 Final Report August 2007...August 2007 - December 2010 4. TITLE AND SUBTITLE PROPOSED STANDARD FOR A MICROCLIMATE COOLING SYSTEM FOR EMERGENCY RESPONDER OPERATIONS 5a...of a Microclimate Cooling System (MCS), specifically for the Emergency Responder community. MCS have been shown to significantly improve mission

  17. Industrial Process Cooling Towers: National Emission Standards for Hazardous Air Pollutants

    Science.gov (United States)

    Standards limiting discharge of chromium compound air emissions from industrial process cooling towers (IPCT's). Includes rule history, Federal Registry citations, implementation information and additional resources.

  18. Technical potential of evaporative cooling in Danish and European condition

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Andersen, Christian Hede; Heiselberg, Per Kvols

    2015-01-01

    Evaporative cooling is a very interesting high temperature cooling solution that has potential to save energy comparing to refrigerant cooling systems and at the same time provide more cooling reliability than mechanical or natural ventilation system without cooling. Technical cooling potential...... of 5 different evaporative systems integrated in the ventilation system is investigated in this article. Annual analysis is conducted based on hourly weather data for 15 cities located in Denmark and 123 European cities. Investigated systems are direct, indirect, combinations of direct and indirect...

  19. Laboratory study on the cooling effect of flash water evaporative cooling technology for ventilation and air-conditioning of buildings

    DEFF Research Database (Denmark)

    Fang, Lei; Yuan, Shu; Yang, Jianrong

    2016-01-01

    This paper presents a simple cooling technology using flash water evaporation. The technology combines a water atomizer with a plate heat exchanger used for heat recovery of a ventilation system. It is mainly used to cool the ventilation airflow from outdoors and is particularly suitable to be used...... in warm/hot and dry environment where dehumidification of outdoor air is not needed. A laboratory experiment was designed and conducted to evaluate the cooling effectiveness of this technology. The experiment was conducted in a twin-climate chamber. One chamber simulated warm/hot and dry outdoor...... environments and the other simulated an air-conditioned indoor environment. The flash water evaporation cooling device was installed in the chamber that simulated indoor environment. The air from the chamber simulating outdoor environment was introduced into the cooling device and cooled by the flash water...

  20. Fracture behaviour of bread crust: Effect of bread cooling conditions

    NARCIS (Netherlands)

    Primo Martin, C.; Beukelaer, de H.J.; Hamer, R.J.; Vliet, van T.

    2008-01-01

    The effect of air and vacuum cooling on the fracture behaviour and accompanying sound emission, moisture content and crispness of bread crust were investigated. Vacuum cooling resulted in rapid evaporative cooling of products that contained high moisture content. Fracture experiments showed a clear

  1. The Advancement of Cool Roof Standards in China from 2010 to 2015

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Jing [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Levinson, Ronnen M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-11-01

    Since the initiation of the U.S.-China Clean Energy Research Center-Building Energy Efficiency (CERC-BEE) cool roof research collaboration between the Lawrence Berkeley National Laboratory Heat Island Group and Chinese institutions in 2010, new cool surface credits (insulation trade- offs) have been adopted in Chinese building energy efficiency standards, industry standards, and green building standards. JGJ 75-2012: Design Standard for Energy Efficiency of Residential Buildings in Hot Summer and Warm Winter Zone became the first national level standard to provide cool surface credits. GB/T 50378-2014: Assessment Standard for Green Building is the first national level green building standard that offers points for heat island mitigation. JGJ/T 359-2015: Technical Specification for Application of Architectural Reflective Thermal Insulation Coating is the first industry standard that offers cool coating credits for both public and residential buildings in all hot-summer climates (Hot Summer/Cold Winter, Hot Summer/Warm Winter). As of December 2015, eight provinces or municipalities in hot-summer regions have credited cool surfaces credits in their residential and/or public building design standards; five other provinces or municipalities in hot-summer regions recommend, but do not credit, the use of cool surfaces in their building design standards. Cool surfaces could be further advanced in China by including cool roof credits for residential and public building energy efficiency standards in all hot-summer regions; developing a standardized process for natural exposure and aged-property rating of cool roofing products; and adapting the U.S.-developed laboratory aging process for roofing materials to replicate solar reflectance changes induced by natural exposure in China.

  2. Physiological Responses to Simulated Approach March in Desert and Tropic Conditions: Effects of Three Microclimate Cooling Configurations

    Science.gov (United States)

    2012-12-01

    TROPIC CONDITIONS: EFFECTS OF THREE MICROCLIMATE COOLING CONFIGURATIONS Bruce S. Cadarette Catherine O’Brien Thermal and Mountain...Cooling HR – Heart Rate INT – Intermittent Cooling LO – Low Cooling MCCS – Microclimate Cooling System NC – No Cooling NSRDEC – Natick...develop lightweight microclimate cooling systems (MCCS) for use by dismounted Soldiers by evaluating the cooling potentials of two prototype MCCS

  3. 77 FR 60041 - Heating, Cooling, and Lighting Standards for Bureau-Funded Dormitory Facilities

    Science.gov (United States)

    2012-10-02

    ... 1076-AF10 Heating, Cooling, and Lighting Standards for Bureau-Funded Dormitory Facilities AGENCY... confirming the interim final rule published and effective on May 24, 2012, addressing heating, cooling, and... identified in the ``School Facilities Design Handbook'' (handbook) dated March 30, 2007, respecting heating...

  4. Analysis and simulation of mobile air conditioning system coupled with engine cooling system

    International Nuclear Information System (INIS)

    Qi, Zhao-gang; Chen, Jiang-ping; Chen, Zhi-jiu

    2007-01-01

    Many components of the mobile air conditioning system and engine cooling system are closely interrelated and make up the vehicle climate control system. In the present paper, a vehicle climate control system model including air conditioning system and engine cooling system has been proposed under different operational conditions. All the components have been modeled on the basis of experimental data. Based on the commercial software, a computer simulation procedure of the vehicle climate control system has been developed. The performance of the vehicle climate control system is simulated, and the calculational data have good agreement with experimental data. Furthermore, the vehicle climate control simulation results have been compared with an individual air conditioning system and engine cooling system. The influences between the mobile air conditioning system and the engine cooling system are discussed

  5. The effectiveness of cooling conditions on temperature of canine EDTA whole blood samples

    Directory of Open Access Journals (Sweden)

    Karen M. Tobias

    2016-11-01

    Full Text Available Background Preanalytic factors such as time and temperature can have significant effects on laboratory test results. For example, ammonium concentration will increase 31% in blood samples stored at room temperature for 30 min before centrifugation. To reduce preanalytic error, blood samples may be placed in precooled tubes and chilled on ice or in ice water baths; however, the effectiveness of these modalities in cooling blood samples has not been formally evaluated. The purpose of this study was to evaluate the effectiveness of various cooling modalities on reducing temperature of EDTA whole blood samples. Methods Pooled samples of canine EDTA whole blood were divided into two aliquots. Saline was added to one aliquot to produce a packed cell volume (PCV of 40% and to the second aliquot to produce a PCV of 20% (simulated anemia. Thirty samples from each aliquot were warmed to 37.7 °C and cooled in 2 ml allotments under one of three conditions: in ice, in ice after transfer to a precooled tube, or in an ice water bath. Temperature of each sample was recorded at one minute intervals for 15 min. Results Within treatment conditions, sample PCV had no significant effect on cooling. Cooling in ice water was significantly faster than cooling in ice only or transferring the sample to a precooled tube and cooling it on ice. Mean temperature of samples cooled in ice water was significantly lower at 15 min than mean temperatures of those cooled in ice, whether or not the tube was precooled. By 4 min, samples cooled in an ice water bath had reached mean temperatures less than 4 °C (refrigeration temperature, while samples cooled in other conditions remained above 4.0 °C for at least 11 min. For samples with a PCV of 40%, precooling the tube had no significant effect on rate of cooling on ice. For samples with a PCV of 20%, transfer to a precooled tube resulted in a significantly faster rate of cooling than direct placement of the warmed tube onto ice

  6. The effectiveness of cooling conditions on temperature of canine EDTA whole blood samples.

    Science.gov (United States)

    Tobias, Karen M; Serrano, Leslie; Sun, Xiaocun; Flatland, Bente

    2016-01-01

    Preanalytic factors such as time and temperature can have significant effects on laboratory test results. For example, ammonium concentration will increase 31% in blood samples stored at room temperature for 30 min before centrifugation. To reduce preanalytic error, blood samples may be placed in precooled tubes and chilled on ice or in ice water baths; however, the effectiveness of these modalities in cooling blood samples has not been formally evaluated. The purpose of this study was to evaluate the effectiveness of various cooling modalities on reducing temperature of EDTA whole blood samples. Pooled samples of canine EDTA whole blood were divided into two aliquots. Saline was added to one aliquot to produce a packed cell volume (PCV) of 40% and to the second aliquot to produce a PCV of 20% (simulated anemia). Thirty samples from each aliquot were warmed to 37.7 °C and cooled in 2 ml allotments under one of three conditions: in ice, in ice after transfer to a precooled tube, or in an ice water bath. Temperature of each sample was recorded at one minute intervals for 15 min. Within treatment conditions, sample PCV had no significant effect on cooling. Cooling in ice water was significantly faster than cooling in ice only or transferring the sample to a precooled tube and cooling it on ice. Mean temperature of samples cooled in ice water was significantly lower at 15 min than mean temperatures of those cooled in ice, whether or not the tube was precooled. By 4 min, samples cooled in an ice water bath had reached mean temperatures less than 4 °C (refrigeration temperature), while samples cooled in other conditions remained above 4.0 °C for at least 11 min. For samples with a PCV of 40%, precooling the tube had no significant effect on rate of cooling on ice. For samples with a PCV of 20%, transfer to a precooled tube resulted in a significantly faster rate of cooling than direct placement of the warmed tube onto ice. Canine EDTA whole blood samples cool most

  7. Heat Transfer Enhancement of the Air-Cooling Tower with Rotating Wind Deflectors under Crosswind Conditions

    Directory of Open Access Journals (Sweden)

    Xueping Du

    2018-04-01

    Full Text Available To investigate the effect of wind deflectors on air flow and heat transfer performance of an air-cooling tower under crosswind conditions, an experimental system based on a surface condenser aluminum exchanger-type indirect air-cooling tower is established at a 1:100 proportional reduction. A 3-D computational fluid dynamics simulation model is built to study the air flow and temperature fields. The air flow rate into the cooling tower and the heat transfer rate of the radiators are used to evaluate cooling performance. Rotating wind deflectors are adopted to reduce the influence of crosswind on the cooling tower performance. The effects of the rotating wind deflectors on the thermal-hydraulic characteristics of the air-cooling tower under different environmental crosswind speeds are studied. Results indicate that the wind direction in the tower reverses as the rotating speed of the wind deflectors increases. The thermal performance of an air-cooling tower under crosswind conditions can be improved by using rotating wind deflectors. The heat transfer rate of a cooling tower with eight wind deflectors begins to increase when the rotating speed exceeds 2 r/min.

  8. Optimum operating conditions for a combined power and cooling thermodynamic cycle

    International Nuclear Information System (INIS)

    Sadrameli, S.M.; Goswami, D.Y.

    2007-01-01

    The combined production of thermal power and cooling with an ammonia-water based cycle proposed by Goswami is under intensive investigation. In the cycle under consideration, simultaneous cooling output is produced by expanding an ammonia-rich vapor in an expander to sub-ambient temperatures and subsequently heating the cool exhaust. When this mechanism for cooling production is considered in detail, it is apparent that the cooling comes at some expense to work production. To optimize this trade-off, a very specific coefficient-of-performance has been defined. In this paper, the simulation of the cycle was carried out in the process simulator ASPEN Plus. The optimum operating conditions have been found by using the Equation Oriented mode of the simulator and some of the results have been compared with the experimental data obtained from the cycle. The agreement between the two sets proves the accuracy of the optimization results

  9. IAEA Workshop (Training Course) on Codes and Standards for Sodium Cooled Fast Reactors. Working Material

    International Nuclear Information System (INIS)

    2010-01-01

    The training course consisted of lectures and Q&A sessions. The lectures dealt with the history of the development of Design Codes and Standards for Sodium Cooled Fast Reactors (SFRs) in the respective country, the detailed description of the current design Codes and Standards for SFRs and their application to ongoing Fast Reactor design projects, as well as the ongoing development work and plans for the future in this area. Annex 1 contains the detailed Workshop program

  10. Standard Test Method for Measuring Heat Flux Using a Water-Cooled Calorimeter

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers the measurement of a steady heat flux to a given water-cooled surface by means of a system energy balance. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  11. A multiple stage approach to mitigate the risks of telecommunication equipment under free air cooling conditions

    International Nuclear Information System (INIS)

    Dai Jun; Das, Diganta; Pecht, Michael

    2012-01-01

    Highlights: ► Analyze the challenges posed by free air cooling (FAC). ► Present a multi-stage process to mitigate the risks of FAC. ► Propose a prognostics-based method to mitigate risks in data centers in operation. ► Present a case study to show the prognostics-based method implementation. - Abstract: The telecommunication industry is concerned about the energy costs of its operating infrastructure and the associated greenhouse gas emissions. At present, more than half of the total energy consumption of data centers is devoted to the power and cooling infrastructure that supports electronic equipment. One method of reducing energy consumption is an approach called “free air cooling,” where ambient air is used to cool the equipment directly, thereby reducing the energy consumed in cooling and conditioning the air. For example, Intel demonstrated free air cooling in a 10-megawatt (MW) data center, showing a reduction in energy use and savings of US$2.87 million annually. However, the impacts of this approach on the performance and reliability of telecommunication equipment need to be identified. The implementation of free air cooling changes the operating environment, including temperature and humidity, which may have a significant impact on the performance and reliability of telecom equipment. This paper discusses the challenges posed by free air cooling and presents a multi-stage process for evaluating and mitigating the potential risks arising from this new operating environment.

  12. Thermal analysis of a direct evaporative cooling system enhancement with desiccant dehumidification for vehicular air conditioning

    International Nuclear Information System (INIS)

    Alahmer, Ali

    2016-01-01

    Highlights: • Thermal analysis was conducted to design a desiccant evaporative cooling system for vehicular air conditioning. • EC is more efficient than the conventional air conditioning when the gasoline price is more than 0.34 $/liter. • Drawbacks of evaporative cooler of increased weight and reduced COP. • A rotary desiccant dehumidifier with generation was combined with evaporative cooling to be more efficient. - Abstract: This manuscript analyzes the sub-systems of evaporative cooler (EC) combined with desiccant dehumidification and regeneration for automotive air conditioning purpose. The thermodynamic and psychometric analysis was conducted to design all evaporative cooling system components in terms of desiccant selection, regeneration process, compact heat exchanger and evaporative cooler. Moreover, the effect of the desiccant, heat exchanger and evaporative performances on the mass flow rate and water sprayed required for evaporative cooling system was investigated. The results show that the theoretical evaporative cooling design will achieve two main objectives: lower fuel consumption and less environmental pollutants. However, it has the two drawbacks in terms of increased weight and reduces the coefficient of performance (COP). The main remark is that evaporating cooling system is more efficient than the conventional air conditioning when the gasoline price is more than 0.34 $/liter.

  13. Draft of standard for graphite core components in high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Shibata, Taiju; Sawa, Kazuhiro; Eto, Motokuni; Kunimoto, Eiji; Shiozawa, Shusaku; Oku, Tatsuo; Maruyama, Tadashi

    2010-01-01

    For the design of the graphite components in the High Temperature Engineering Test Reactor (HTTR), the graphite structural design code for the HTTR etc. were applied. However, general standard systems for the High Temperature Gas-cooled Reactor (HTGR) have not been established yet. The authors had studied on the technical issues which is necessary for the establishment of a general standard system for the graphite components in the HTGR. The results of the study were documented and discussed at a 'Special committee on research on preparation for codes for graphite components in HTGR' at Atomic Energy Society of Japan (AESJ). As a result, 'Draft of Standard for Graphite Core Components in High Temperature Gas-cooled Reactor.' was established. In the draft standard, the graphite components are classified three categories (A, B and C) in the standpoints of safety functions and possibility of replacement. For the components in the each class, design standard, material and product standards, and in-service inspection and maintenance standard are determined. As an appendix of the design standard, the graphical expressions of material property data of 1G-110 graphite as a function of fast neutron fluence are expressed. The graphical expressions were determined through the interpolation and extrapolation of the irradiated data. (author)

  14. Endovascular cooling versus standard femoral catheters and intravascular complications: A propensity-matched cohort study.

    Science.gov (United States)

    Andremont, Olivier; du Cheyron, Damien; Terzi, Nicolas; Daubin, Cedric; Seguin, Amélie; Valette, Xavier; Lecoq, Flore-Anne; Parienti, Jean-Jacques; Sauneuf, Bertrand

    2018-03-01

    Targeted temperature management (TTM) contributes to improved neurological outcome in adults who have been successfully resuscitated after cardiac arrest with shockable rhythm. Endovascular cooling catheters are widely used to induce and maintain targeted temperature in the ICU. The aim of the study was to compare the risk of complications with cooling catheters and standard central venous catheters. In this prospective single-centre cohort study, we included all patients admitted to an intensive care unit for successfully resuscitated cardiac arrest that required endovascular TTM (Coolgard ® , Zoll™ Medical corporation, MA, USA), between August 2012 and November 2014, inclusive. We matched the endovascular cooling catheter cohort with a retrospective historical cohort of 512 central femoral venous catheters from the 3SITES trial to compare thrombotic and infectious complications. Overall, 108 patients were included in the cooling cohort, of which 89 had ultrasound doppler. The duration of catheterization was 4.9 days in the control group versus 4.2 days in the TTM group (p = 0.08). After propensity-score matching, there were significantly more thrombotic complications in the cooling (n = 75) than in the control (n = 75) group (12 of 75 (16%) versus 0 of 75 (0%), respectively, p = 0.005), and 4 patients presented major complications. There were 8 colonized catheters in each group (11%) (p > 0.99), and none of the patients had a catheter-related bloodstream infection. In our propensity-score matched study, endovascular cooling catheters were associated with an increased risk of venous catheter-related thrombosis compared to standard central venous catheters. Copyright © 2017. Published by Elsevier B.V.

  15. Designing of the Cooling Vest from Paraffin Compounds and Evaluation of its Impact Under Laboratory Hot Conditions.

    Science.gov (United States)

    Yazdanirad, Saeid; Dehghan, Habibollah

    2016-01-01

    The phase change materials (PCMs) have the appropriate properties for controlling heat strain. One of the well-known PCMs is paraffin. This study aimed to design the cooling vest from the cheap commercial paraffin compound and evaluation of its effectiveness under laboratory hot conditions. the cooling vest was made of the polyester fabric and it had 17 aluminum packs. The each of aluminum packs was filled by 135 g of prepared paraffin with a proper melting point in the range of 15-35°C. an experimental study was conducted on ten male students under warm conditions (air temperature = 40°C, relative humidity = 40%) in a climatic chamber. Each participant was tested without cooling vest and with cooling in two activities rate on treadmill to include: light (2.8 km/h) and moderate (4.8 km/h). The time of this test was 30 min in each stage. During the test, the heart rate, the oral temperature, the skin temperature were measured every 4 min. Finally, data were analyzed using the Kolmogrov-Smirnov and repeated measurement ANOVA test in SPSS 16. The latent heat of the prepared paraffin compound and the peak of the melting point were 108 kJ/kg and 30°C, respectively. The mean and standard deviation of heart rate, oral temperature, and skin temperature with cooling vest in light activity were 103.9 (12.12) beat/min, 36.77 (0.32)°C, and 31.01 (1.96)°C and in moderate activity were 109.5 (12.57) beat/min, 36.79 (0.20)°C, and 29.69 (2.23)°C, respectively. There is a significant difference between parameters with a cooling vest and without cooling (P < 0.05). The designed cooling vest with low cost can be used to prevent thermal strain and to increase the physiological stability against the heat. However, the latent heat of this cooling vest was low.

  16. Thermal Conditions in a Simulated Office Environment with Convective and Radiant Cooling Systems

    DEFF Research Database (Denmark)

    Mustakallio, Panu; Bolashikov, Zhecho Dimitrov; Kostov, Kalin

    2013-01-01

    The thermal conditions in a two person office room were measured with four air conditioning systems: chilled beam (CB), chilled beam with radiant panel (CBR), chilled ceiling with ceiling installed mixing ventilation (CCMV) and four desk partition mounted local radiant cooling panels with mixing...

  17. Influence of deflection hole angle on effusion cooling in a real combustion chamber condition

    Directory of Open Access Journals (Sweden)

    Liu Xiao

    2015-01-01

    Full Text Available Fluid-solid coupling simulation is conducted to investigate the performance of effusion cooling in the real combustion chamber condition of strong rotation and primary holes. The wall temperature and film cooling effectiveness of different deflection angle is analyzed. From the results, it is concluded that the performance of effusion is better than conventional film cooling. The wall temperature and gradient is lower, the cooling efficiency is higher and the coolant is reduced by 20%, but pressure loss is slightly increased. The cooling effectiveness decreases behind primary holes because of local combustion. Comparison with the effect of deflection angle, the cooling performance of 60 deg deflection angle is best. The coolant is better attached to the wall downstream when the deflection angle is same as the rotating mainstream. In addition, the effect of deflection angle is not so significant on the coolant flow rate, but a large negative impact on the pressure loss. Although the cooling effectiveness of 60 deg deflection angle is highest, the total pressure recovery coefficient is lower. The maximum temperature drops about 70K and the outlet temperature distribution trends more consistent. So various factors should be taken into consideration when designing of deflection angle.

  18. A standardized technique for high-pressure cooling of protein crystals.

    Science.gov (United States)

    Quirnheim Pais, David; Rathmann, Barbara; Koepke, Juergen; Tomova, Cveta; Wurzinger, Paul; Thielmann, Yvonne

    2017-12-01

    Cryogenic temperatures slow down secondary radiation damage during data collection from macromolecular crystals. In 1973, cooling at high pressure was identified as a method for cryopreserving crystals in their mother liquor [Thomanek et al. (1973). Acta Cryst. A29, 263-265]. Results from different groups studying different crystal systems indicated that the approach had merit, although difficulties in making the process work have limited its widespread use. Therefore, a simplified and reliable technique has been developed termed high-pressure cooling (HPC). An essential requirement for HPC is to protect crystals in capillaries. These capillaries form part of new sample holders with SPINE standard dimensions. Crystals are harvested with the capillary, cooled at high pressure (220 MPa) and stored in a cryovial. This system also allows the usage of the standard automation at the synchrotron. Crystals of hen egg-white lysozyme and concanavalin A have been successfully cryopreserved and yielded data sets to resolutions of 1.45 and 1.35 Å, respectively. Extensive work has been performed to define the useful working range of HPC in capillaries with 250 µm inner diameter. Three different 96-well crystallization screens that are most frequently used in our crystallization facility were chosen to study the formation of amorphous ice in this cooling setup. More than 89% of the screening solutions were directly suitable for HPC. This achievement represents a drastic improvement for crystals that suffered from cryoprotection or were not previously eligible for cryoprotection.

  19. Coupled Effect of Elevated Temperature and Cooling Conditions on the Properties of Ground Clay Brick Mortars

    Science.gov (United States)

    Ali Abd El Aziz, Magdy; Abdelaleem, Salh; Heikal, Mohamed

    2013-12-01

    When a concrete structure is exposed to fire and cooling, some deterioration in its chemical resistivity and mechanical properties takes place. This deterioration can reach a level at which the structure may have to be thoroughly renovated or completely replaced. In this investigation, four types of cement mortars, ground clay bricks (GCB)/sand namely 0/3, 1/2, 2/1 and 3/0, were used. Three different cement contents were used: 350, 400 and 450 kg/m3. All the mortars were prepared and cured in tap water for 3 months and then kept in laboratory atmospheric conditions up to 6 months. The specimens were subjected to elevated temperatures up to 700°C for 3h and then cooled by three different conditions: water, furnace, and air cooling. The results show that all the mortars subjected to fire, irrespective of cooling mode, suffered a significant reduction in compressive strength. However, the mortars cooled in air exhibited a relativity higher reduction in compressive strength rather than those water or furnace cooled. The mortars containing GCB/sand (3/0) and GCB/sand (1/2) exhibited a relatively higher thermal stability than the others.

  20. Corrosion behaviour of hyper duplex stainless steel in various metallurgical conditions for sea water cooled condensers

    International Nuclear Information System (INIS)

    Singh, Umesh Pratap; Kain, Vivekanand; Chandra, Kamlesh

    2011-01-01

    The sea water cooled condensers have to resist severe corrosion as marine environment is the most corrosive natural environment. Copper alloys are being phased out due to difficulties in water chemistry control and Titanium base alloys are extremely expensive. Austenitic stainless steels (SS) remain prone to localized corrosion in marine environments hence not suitable. These heat exchangers operate at temperatures not exceeding 50 deg C and at very low pressures. The tubes of these heat exchangers are joined to the carbon steel tube sheets by roll expansion or by roll expansion followed by seam welding. These conditions are expected to affect the localized corrosion resistance of the tube in roll joined region due to cold working and in the tube-tube sheet welded joint due to thermal effects of welding. In this study, the localized corrosion behaviour of a Hyper Duplex Stainless Steel (HDSS) has been evaluated, and compared with other materials e.g. types 304L SS, 316L SS, Duplex SS 2205, Titanium grade - 2, and Al Brass. The evaluation is done in three metallurgical conditions (a) as received, (b) cold rolled and (c) welded condition in synthetic sea water at room temperature and at 50 deg C to assess the resistance to crevice, pitting and stress corrosion cracking using standard ASTM exposure and electrochemical techniques. The results provide comparative assessment of these alloys and show their susceptibility in the three metallurgical conditions as encountered in condensers. Hyper-duplex SS has been shown to be highly resistant in sea water for the condenser tubing application. (author)

  1. Dick Effect in a Microwave Frequency Standard Based on Laser-Cooled 113Cd+ Ions

    Science.gov (United States)

    Zhang, Jian-Wei; Miao, Kai; Wang, Li-Jun

    2015-01-01

    The Dick effect is one of the main limits to the frequency stability of a passive frequency standard, especially for the fountain clock and ion clock operated in pulsed mode which require unavoidable dead time during interrogation. Here we measure the phase noise of the interrogation oscillator applied in the microwave frequency standard based on laser-cooled 113Cd+ ions, and analyze the Allan deviation limited by the Dick effect. The results indicate that the Dick effect is one of the key issues for the cadmium ion clock to reach expected frequency stability. This problem can be resolved by interrogating the local oscillator continuously with two ion traps.

  2. Dynamics and developing of natural circulation cooling from vertical upflow and downflow conditions

    International Nuclear Information System (INIS)

    Yang, B.W.; Ouyang, W.

    2004-01-01

    Several research programs have been conducted to evaluate the capability of natural circulation cooling of reactors following a loss of cooling accident. Both experimental and RELAP5 simulation results were obtained for these studies in a facility with vertical heated tube(s) and a unheated bypass channel. The analytical results showed that, under a certain power level, a natural circulation pattern can be developed from both initial upflow and downflow conditions, and maintained for a significant cooling period. This power level, for the discussion of this paper, is defined as the natural circulation cooling (NCC) power limit. Two import factors, namely the pump coastdown rate and the initial flow direction, are examined in this paper. In the benchmark case, as compared to the experimental results, the RELAP5 simulation program accurately predicted the transient phenomena from forced convection through flow reversal, then, into natural circulation cooling. Generally, the two-phase NCC power limit is higher and also more stable for the cases with initial upflow forced convection than for the cases with initial downflow. The transient phenomena (dynamics) of the natural circulation cooling was examined by varying the pump coast down rate in approaching the flow reversal natural circulation. A significant pump coastdown effect on the NCC power limit was observed for the analytical tests with initial downflow forced convection. For the tests with initial downflow condition, the higher the coastdown rate (or the shorter the coastdown period), the higher the NCC power limit. For the case with initial upflow forced convection, there may be an optimal coastdown rate for a given subcooled condition. However, for the subcooled condition used in this study, the effect of pump coast down rate is not as significant as in the downward forced convection. (author)

  3. FIELD-BASED PRE-COOLING FOR ON-COURT TENNIS CONDITIONING TRAINING IN THE HEAT

    Directory of Open Access Journals (Sweden)

    Rob Duffield

    2011-06-01

    Full Text Available The present study investigated the effects of pre-cooling for on- court, tennis-specific conditioning training in the heat. Eight highly-trained tennis players performed two on-court conditioning sessions in 35oC, 55% Relative Humidity. Sessions were randomised, involved either a pre-cooling or control session, and consisted of 30-min of court- based, tennis movement drills. Pre-cooling involved 20-min of an ice-vest and cold towels to the head/neck and legs, followed by warm-up in a cold compression garment. On-court movement distance was recorded by 1Hz Global Positioning Satellite (GPS devices, while core temperature, heart rate and perceptual exertion and thermal stress were also recorded throughout the session. Additionally, mass and lower-body peak power during repeated counter-movement jumps were measured before and after each session. No significant performance differences were evident between conditions, although a moderate-large effect (d = 0.7-1.0; p > 0.05 was evident for total (2989 ± 256 v 2870 ± 159m and high-intensity (805 ± 340 v 629 ± 265m distance covered following pre-cooling. Further, no significant differences were evident between conditions for rise in core temperature (1.9 ± 0.4 v 2. 2 ± 0.4oC; d > 0.9; p > 0.05, although a significantly smaller change in mass (0.9 ± 0.3 v 1. 3 ± 0.3kg; p 1.0; p 0.05. Conclusions: Despite trends for lowered physiological load and increased distances covered following cooling, the observed responses were not significantly different or as explicit as previously reported laboratory-based pre-cooling research

  4. Consent Codes: Upholding Standard Data Use Conditions.

    Directory of Open Access Journals (Sweden)

    Stephanie O M Dyke

    2016-01-01

    Full Text Available A systematic way of recording data use conditions that are based on consent permissions as found in the datasets of the main public genome archives (NCBI dbGaP and EMBL-EBI/CRG EGA.

  5. Anti-seismic air condition's cooling capability increase of the second control area

    International Nuclear Information System (INIS)

    Pan Qiang

    2008-01-01

    Secondary area (SCA) air-conditioning system is an important ventilation system in plant. It should achieve the indoor temperature controllable. To resolve the problem of cooling capacity insufficiency, on the basis of ventilation and refrigeration theory, the thesis analyzes the design modification plan. (author)

  6. A basic condition-based maintenance strategy for air-cooled turbine generators

    International Nuclear Information System (INIS)

    Laird, T.; Griffith, G.; Hoof, M.

    2005-01-01

    This paper discusses the methods of using condition-based maintenance (CBM) for turbine generators. Even though it is focused on the maintenance strategy for air-cooled generators, all types of power producers can realize benefits from a better maintenance strategy at lower costs. A reliable assessment of the actual unit condition requires detailed knowledge of the unit design, operational weaknesses, cost of maintenance and operational capabilities. (author)

  7. SIMULATION OF COOLING TOWER AND INFLUENCE OF AERODYNAMIC ELEMENTS ON ITS WORK UNDER CONDITIONS OF WIND

    Directory of Open Access Journals (Sweden)

    K. V. Dobrego

    2014-01-01

    Full Text Available Modern Cooling Towers (CT may utilize different aerodynamic elements (deflectors, windbreak walls etc. aimed to improvement of its heat performance especially at the windy conditions. In this paper the effect of flow rotation in overshower zone of CT and windbreak walls on a capacity of tower evaporating unit in the windy condition is studied numerically. Geometry of the model corresponds to real Woo-Jin Power station, China. Analogy of heat and mass transfer was used that allowed to consider aerodynamic of one-dimension flow and carried out detailed 3D calculations applying modern PC. Heat transfer coefficient of irrigator and its hydrodynamic resistance were established according to experimental data on total air rate in cooling tower. Numerical model is tested and verified with experimental data.Nonlinear dependence of CT thermal performance on wind velocity is demonstrated with the minimum (critical wind velocity at ucr ~ 8 m/s for simulated system. Application of windbreak walls does not change the value of the critical wind velocity, but may improves performance of cooling unit at moderate and strong wind conditions. Simultaneous usage of windbreak walls and overshower deflectors may increase efficiency up to 20–30 % for the deflectors angle a = 60o. Simulation let one analyze aerodynamic patterns, induced inside cooling tower and homogeneity of velocities’ field in irrigator’s area.Presented results may be helpful for the CT aerodynamic design optimization, particularly, for perspective hybrid type CTs.

  8. Analysis of a Solar Cooling System for Climatic Conditions of Five Different Cities of Saudi Arabia

    Directory of Open Access Journals (Sweden)

    M. Mujahid Rafique

    2016-01-01

    Full Text Available Air high in humidity leads to uncomfortable conditions and promotes the growth of different fungi and bacteria, which may cause health problems. The control of moisture content in the air using traditional air conditioning techniques is not a suitable option due to large consumption of primary energy and hence emission of greenhouse gases. The evaporative cooling technology is a cost effective and eco-friendly alternative but can provide thermal comfort conditions only under low humidity conditions. However, the evaporative cooling method can be used effectively in conjunction with desiccant dehumidifiers for better control of humidity. Such systems can control the temperature and humidity of the air independently and can effectively utilize the low-grade thermal energy resources. In this paper, the theoretical analysis of desiccant based evaporative cooling systems is carried out for five cities in Saudi Arabia (Jeddah, Jazan, Riyadh, Hail, and Dhahran. It has been observed that the coefficient of performance (COP of the system varies from 0.275 to 0.476 for different locations. The water removal capacity of the desiccant wheel is at its maximum for the climatic conditions of Jazan and at its minimum for Hail. The effect of climatic conditions of five cities on regeneration temperature, air mass flow rate, and potential of solar energy has been evaluated using RET Screen software.

  9. Atomic and electronic structure transformations of silver nanoparticles under rapid cooling conditions

    Science.gov (United States)

    Lobato, I.; Rojas, J.; Landauro, C. V.; Torres, J.

    2009-02-01

    The structural evolution and dynamics of silver nanodrops Ag2869 (4.4 nm in diameter) under rapid cooling conditions have been studied by means of molecular dynamics simulations and electronic density of state calculations. The interaction of silver atoms is modelled by a tight-binding semiempirical interatomic potential proposed by Cleri and Rosato. The pair correlation functions and the pair analysis technique are used to reveal the structural transition in the process of solidification. It is shown that Ag nanoparticles evolve into different nanostructures under different cooling processes. At a cooling rate of 1.5625 × 1013 K s-1 the nanoparticles preserve an amorphous-like structure containing a large amount of 1551 and 1541 pairs which correspond to icosahedral symmetry. For a lower cooling rate (1.5625 × 1012 K s-1), the nanoparticles transform into a crystal-like structure consisting mainly of 1421 and 1422 pairs which correspond to the face centred cubic and hexagonal close packed structures, respectively. The variations of the electronic density of states for the differently cooled nanoparticles are small, but in correspondence with the structural changes.

  10. Atomic and electronic structure transformations of silver nanoparticles under rapid cooling conditions

    International Nuclear Information System (INIS)

    Lobato, I; Rojas, J; Landauro, C V; Torres, J

    2009-01-01

    The structural evolution and dynamics of silver nanodrops Ag 2869 (4.4 nm in diameter) under rapid cooling conditions have been studied by means of molecular dynamics simulations and electronic density of state calculations. The interaction of silver atoms is modelled by a tight-binding semiempirical interatomic potential proposed by Cleri and Rosato. The pair correlation functions and the pair analysis technique are used to reveal the structural transition in the process of solidification. It is shown that Ag nanoparticles evolve into different nanostructures under different cooling processes. At a cooling rate of 1.5625 x 10 13 K s -1 the nanoparticles preserve an amorphous-like structure containing a large amount of 1551 and 1541 pairs which correspond to icosahedral symmetry. For a lower cooling rate (1.5625 x 10 12 K s -1 ), the nanoparticles transform into a crystal-like structure consisting mainly of 1421 and 1422 pairs which correspond to the face centred cubic and hexagonal close packed structures, respectively. The variations of the electronic density of states for the differently cooled nanoparticles are small, but in correspondence with the structural changes.

  11. Atomic and electronic structure transformations of silver nanoparticles under rapid cooling conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lobato, I; Rojas, J [Instituto Peruano de EnergIa Nuclear, Avenida Canada 1470, Lima 41 (Peru); Landauro, C V; Torres, J [Facultad de Ciencias Fisicas, Universidad Nacional Mayor de San Marcos, P.O. box 14-0149, Lima 14 (Peru)], E-mail: jrojast@unmsm.edu.pe

    2009-02-04

    The structural evolution and dynamics of silver nanodrops Ag{sub 2869} (4.4 nm in diameter) under rapid cooling conditions have been studied by means of molecular dynamics simulations and electronic density of state calculations. The interaction of silver atoms is modelled by a tight-binding semiempirical interatomic potential proposed by Cleri and Rosato. The pair correlation functions and the pair analysis technique are used to reveal the structural transition in the process of solidification. It is shown that Ag nanoparticles evolve into different nanostructures under different cooling processes. At a cooling rate of 1.5625 x 10{sup 13} K s{sup -1} the nanoparticles preserve an amorphous-like structure containing a large amount of 1551 and 1541 pairs which correspond to icosahedral symmetry. For a lower cooling rate (1.5625 x 10{sup 12} K s{sup -1}), the nanoparticles transform into a crystal-like structure consisting mainly of 1421 and 1422 pairs which correspond to the face centred cubic and hexagonal close packed structures, respectively. The variations of the electronic density of states for the differently cooled nanoparticles are small, but in correspondence with the structural changes.

  12. Numerically Analysed Thermal Condition of Hearth Rollers with the Water-Cooled Shaft

    Directory of Open Access Journals (Sweden)

    A. V. Ivanov

    2016-01-01

    Full Text Available Continuous furnaces with roller hearth have wide application in the steel industry. Typically, furnaces with roller hearth belong to the class of medium-temperature heat treatment furnaces, but can be used to heat the billets for rolling. In this case, the furnaces belong to the class of high temperature heating furnaces, and their efficiency depends significantly on the reliability of the roller hearth furnace. In the high temperature heating furnaces are used three types of watercooled shaft rollers, namely rollers without insulation, rollers with insulating screens placed between the barrel and the shaft, and rollers with bulk insulation. The definition of the operating conditions of rollers with water-cooled shaft greatly facilitates the choice of their design parameters when designing. In this regard, at the design stage of the furnace with roller hearth, it is important to have information about the temperature distribution in the body of the rollers at various operating conditions. The article presents the research results of the temperature field of the hearth rollers of metallurgical heating furnaces. Modeling of stationary heat exchange between the oven atmosphere and a surface of rollers, and between the cooling water and shaft was executed by finite elements method. Temperature fields in the water-cooled shaft rollers of various designs are explored. The water-cooled shaft rollers without isolation, rollers with screen and rollers with bulk insulation, placed between the barrel and the water-cooled shaft were investigated. Determined the change of the thermo-physic parameters of the coolant, the temperature change of water when flowing in a pipe and shaft, as well as the desired pressure to supply water with a specified flow rate. Heat transfer coefficients between the cooling water and the shaft were determined directly during the solution based on the specified boundary conditions. Found that the greatest heat losses occur in the

  13. Detailed CFD system analysis of the RPV and the cooling pond of VVER-440 reactors in incidental conditions during maintenance

    International Nuclear Information System (INIS)

    Legradi, G.; Aszodi, A.

    2003-01-01

    During the annual maintenance of the VVER-440 type reactors, the RPV, the cooling pond and the transfer pond form a connected flow domain. The reactor cooled by the natural circulation, which develops in one or two main loops. The cooling pond has its own cooling loops. The main goal is to investigate whether it is possible to cool the reactor core in case the main loops are lost and other emergency systems are not available. Intensive circulation could even be caused by very small temperature differences in large water tanks. The CFX-4.3 code has been applied to investigate whether this natural circulation is sufficiently strong to make the cooling system of the cooling pond capable for cooling the whole system. First, the 3D natural circulation under normal maintenance conditions was investigated. The calculations performed on the incidental conditions have shown that the cooling system of the cooling pond with the present connection is not capable of removing the heat produced in the reactor core. Therefore, modifications of the cooling system were investigated. Calculation was performed with the outlet of the cooling loop moved to the water surface. Since building new pipe systems in operating nuclear power plant units is difficult and expensive, using of an existing discharge pipe as outlet was also investigated

  14. Dimensional change of heat-cured acrylic resin dentures with three different cooling regimes following a standard curing cycle.

    Science.gov (United States)

    Moturi, Bhanodaya; Juszczyk, Andrzej S; Radford, David R; Clark, Robert K F

    2005-12-01

    The aim of the study was to compare dimensional changes in poly(methylmethacrylate) complete denture bases resulting from three different cooling regimens following a standard heating cycle. Changes in three separate dimensions were measured on ten dentures within each cooling regimen after curing, and before and after removing the denture from the cast using a computer imaging system. No consistent differences occurred as a result of removing the denture from the cast. The results indicated that there was greater change in dimension of dentures with the quenching cooling method than with either overnight cooling in the water bath or bench cooling. This was particularly evident after removal from the cast after curing (p<0.001). It is concluded that slow cooling results in less dimensional change.

  15. Heat transport and afterheat removal for gas cooled reactors under accident conditions

    International Nuclear Information System (INIS)

    2001-01-01

    The Co-ordinated Research Project (CRP) on Heat Transport and Afterheat Removal for Gas Cooled Reactors Under Accident Conditions was organized within the framework of the International Working Group on Gas Cooled Reactors (IWGGCR). This International Working Group serves as a forum for exchange of information on national programmes, provides advice to the IAEA on international co-operative activities in advanced technologies of gas cooled reactors (GCRs) and supports the conduct of these activities. Advanced GCR designs currently being developed are predicted to achieve a high degree of safety through reliance on inherent safety features. Such design features should permit the technical demonstration of exceptional public protection with significantly reduced emergency planning requirements. For advanced GCRs, this predicted high degree of safety largely derives from the ability of the ceramic coated fuel particles to retain the fission products under normal and accident conditions, the safe neutron physics behaviour of the core, the chemical stability of the core and the ability of the design to dissipate decay heat by natural heat transport mechanisms without reaching excessive temperatures. Prior to licensing and commercial deployment of advanced GCRs, these features must first be demonstrated under experimental conditions representing realistic reactor conditions, and the methods used to predict the performance of the fuel and reactor must be validated against these experimental data. Within this CRP, the participants addressed the inherent mechanisms for removal of decay heat from GCRs under accident conditions. The objective of this CRP was to establish sufficient experimental data at realistic conditions and validated analytical tools to confirm the predicted safe thermal response of advance gas cooled reactors during accidents. The scope includes experimental and analytical investigations of heat transport by natural convection conduction and thermal

  16. Enhancement of the coefficient of performance in air conditioning systems by utilizing free cooling

    Energy Technology Data Exchange (ETDEWEB)

    Al-Salaymeh, A.; Abdelkader, M. [Jordan Univ., Amman (Jordan). Dept. of Mechanical Engineering; Al-Salaymeh, M. [Jordan Telecommunication Co., Zarka (Jordan); Rabah, M. [Al-Balqa Applied Univ., Amman (Jordan). Dept. of Mechanical Engineering

    2006-07-01

    A case study was conducted for a 4-tonne cooling load air conditioning system in buildings owned by the Jordan Telecommunications Company. The air conditioning system used a free cooling technique comprised of a motorized damper that conducted the flows of internal and external air. The damper opened to take air needed for cooling directly from the exterior, without the need for a compressor. An evaporative humidifier was used to treat air between the exhaust connection of the heat recovery unit. The free cooling system was used when the external ambient temperature exceeded the temperature in the exhaust duct after the evaporative humidifier. The system used thermostats to determine when the outside temperature was lower than the room temperature. The thermostats controlled the opening to the outdoor air damper so that the proportion of the opening could be controlled. In this case study, the system was applied in a small equipment room containing telecommunication equipment. The study considered installation costs, operating costs, and maintenance costs. Total costs were calculated by multiplying the number of operating hours with the electricity cost. Maximum electricity costs occurred during the summer months. Results showed that use of the system resulted in savings of 42.6 per cent of the total cost of electricity typically used to treat the room. 7 refs., 9 figs.

  17. Air-conditioning and antibiotics: Demand management insights from problematic health and household cooling practices

    International Nuclear Information System (INIS)

    Nicholls, Larissa; Strengers, Yolande

    2014-01-01

    Air-conditioners and antibiotics are two technologies that have both been traditionally framed around individual health and comfort needs, despite aspects of their use contributing to social health problems. The imprudent use of antibiotics is threatening the capacity of the healthcare system internationally. Similarly, in Australia the increasing reliance on air-conditioning to maintain thermal comfort is contributing to rising peak demand and electricity prices, and is placing an inequitable health and financial burden on vulnerable heat-stressed households. This paper analyses policy responses to these problems through the lens of social practice theory. In the health sector, campaigns are attempting to emphasise the social health implications of antibiotic use. In considering this approach in relation to the problem of air-conditioned cooling and how to change the ways in which people keep cool during peak times, our analysis draws on interviews with 80 Australian households. We find that the problem of peak electricity demand may be reduced through attention to the social health implications of air-conditioned cooling on very hot days. We conclude that social practice theory offers a fruitful analytical route for identifying new avenues for research and informing policy responses to emerging health and environmental problems. - Highlights: • Over-use of antibiotics and air-conditioning has social health implications. • Focusing on financial incentives limits the potential of demand management programs. • Explaining peak demand to households shifts the meanings of cooling practices. • Emphasising the social health implications of antibiotics and air-conditioning may resurrect alternative practices. • Analysing policy with social practice theory offers insights into policy approaches

  18. Transformation behavior of the γU(Zr,Nb) phase under continuous cooling conditions

    Energy Technology Data Exchange (ETDEWEB)

    Komar Varela, C.L., E-mail: cavarela@cnea.gov.ar [Instituto Sabato, UNSAM-CNEA, Comisión Nacional de Energía Atómica, Avenida General Paz 1499, B1650KNA San Martín, Buenos Aires (Argentina); Gerencia de Ciclo del Combustible Nuclear, Comisión Nacional de Energía Atómica, Avenida General Paz 1499, B1650KNA San Martín, Buenos Aires (Argentina); Gribaudo, L.M. [Gerencia de Materiales, GAEN, Comisión Nacional de Energía Atómica, Avenida General Paz 1499, B1650KNA San Martín, Buenos Aires (Argentina); González, R.O.; Aricó, S.F. [Instituto Sabato, UNSAM-CNEA, Comisión Nacional de Energía Atómica, Avenida General Paz 1499, B1650KNA San Martín, Buenos Aires (Argentina); Gerencia de Materiales, GAEN, Comisión Nacional de Energía Atómica, Avenida General Paz 1499, B1650KNA San Martín, Buenos Aires (Argentina)

    2014-10-15

    The selected alloy for designing a high-density monolithic-type nuclear fuel with U–Zr–Nb alloy as meat and Zry-4 as cladding, has to remain in the γU(Zr,Nb) phase during the whole fabrication process. Therefore, it is necessary to define a range of concentrations in which the γU(Zr,Nb) phase does not decompose under the process conditions. In this work, several U alloys with concentrations between 28.2–66.9 at.% Zr and 0–13.3 at.% Nb were fabricated to study the possible transformations of the γU(Zr,Nb) phase under different continuous cooling conditions. The results of the electrical resistivity vs temperature experiments are presented. For a cooling rate of 4 °C/min a linear regression was determined by fitting the starting decomposition temperature as a function of Nb concentration. Under these conditions, a concentration of 45.3 at.% Nb would be enough to avoid any transformation of the γU(Zr,Nb) phase. In experiments that involve higher cooling conditions, it has been determined that this concentration can be halved.

  19. Behavior of a nine-rod PWR bundle under power-cooling-mismatch conditions

    International Nuclear Information System (INIS)

    Gunnerson, F.S.; Sparks, D.T.

    1979-01-01

    An experiment to characterize the behavior of a nine-rod pressurized water reactor (PWR) fuel bundle operating during power-cooling-mismatch (PCM) conditions has been conducted in the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory (INEL). The experiment, designated Test PCM-5, is part of a series of PCM experiments designed to evaluate light water reactor (LWR) fuel rod response under postulated accident conditions. Test PCM-5 was the first nine-rod bundle experiment in the PCM test series. The primary objectives and the results of the experiment are described

  20. Containment closure time following loss of cooling under shutdown conditions of YGN units 3 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Seul, Kwang Won; Bang, Young Seok; Kim, Se Won; Kim, Hho Jung [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    1998-12-31

    The YGN Units 3 and 4 plant conditions during shutdown operation were reviewed to identify the possible event scenarios following the loss of shutdown cooling. The thermal hydraulic analyses were performed for the five cases of RCS configurations under the worst event scenario, unavailable secondary cooling and no RCS inventory makeup, using the RELAP5/MOD3.2 code to investigate the plant behavior. From the analyses results, times to boil, times to core uncovery and times to core heat up were estimated to determine the containment closure time to prevent the uncontrolled release of fission products to atmosphere. These data provide useful information to the abnormal procedure to cope with the event. 6 refs., 7 figs., 2 tabs. (Author)

  1. MODELING THE AMBIENT CONDITION EFFECTS OF AN AIR-COOLED NATURAL CIRCULATION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Rui; Lisowski, Darius D.; Bucknor, Matthew; Kraus, Adam R.; Lv, Qiuping

    2017-07-02

    The Reactor Cavity Cooling System (RCCS) is a passive safety concept under consideration for the overall safety strategy of advanced reactors such as the High Temperature Gas-Cooled Reactor (HTGR). One such variant, air-cooled RCCS, uses natural convection to drive the flow of air from outside the reactor building to remove decay heat during normal operation and accident scenarios. The Natural convection Shutdown heat removal Test Facility (NSTF) at Argonne National Laboratory (“Argonne”) is a half-scale model of the primary features of one conceptual air-cooled RCCS design. The facility was constructed to carry out highly instrumented experiments to study the performance of the RCCS concept for reactor decay heat removal that relies on natural convection cooling. Parallel modeling and simulation efforts were performed to support the design, operation, and analysis of the natural convection system. Throughout the testing program, strong influences of ambient conditions were observed in the experimental data when baseline tests were repeated under the same test procedures. Thus, significant analysis efforts were devoted to gaining a better understanding of these influences and the subsequent response of the NSTF to ambient conditions. It was determined that air humidity had negligible impacts on NSTF system performance and therefore did not warrant consideration in the models. However, temperature differences between the building exterior and interior air, along with the outside wind speed, were shown to be dominant factors. Combining the stack and wind effects together, an empirical model was developed based on theoretical considerations and using experimental data to correlate zero-power system flow rates with ambient meteorological conditions. Some coefficients in the model were obtained based on best fitting the experimental data. The predictive capability of the empirical model was demonstrated by applying it to the new set of experimental data. The

  2. Improving Geothermal Heat Pump Air Conditioning Efficiency with Wintertime Cooling using Seasonal Thermal Energy Storage (STES). Application Manual

    Science.gov (United States)

    2016-11-01

    APPLICATION MANUAL Improving Geothermal Heat Pump Air Conditioning Efficiency with Wintertime Cooling using Seasonal Thermal Energy Storage...manual is to describe the use of the Seasonal Thermal Energy Storage (STES) technology, particularly through the employment of wintertime cooling...application projects to increase energy efficiency and occupant comfort. Seasonal Thermal Energy Storage (STES) technology, energy efficiency, geothermal heat

  3. EFFECT OF AIR CONDITION ON AP-1000 CONTAINMENT COOLING PERFORMANCE IN STATION BLACK OUT ACCIDENT

    Directory of Open Access Journals (Sweden)

    Hendro Tjahjono

    2015-10-01

    Full Text Available ABSTRACT EFFECT OF AIR CONDITION ON AP-1000 CONTAINMENT COOLING PERFORMANCE IN STATION BLACK OUT ACCIDENT. AP1000 reactor is a nuclear power plant generation III+ 1000 MWe which apply passive cooling concept to anticipate accidents triggered by the extinction of the entire supply of electrical power or Station Black Out (SBO. In the AP1000 reactor, decay heat disposal mechanism conducted passively through the PRHR-IRWST and subsequently forwarded to the reactor containment. Containment externally cooled through natural convection in the air gap and through evaporation cooling water poured on the outer surface of the containment wall. The mechanism of evaporation of water into the air outside is strongly influenced by the conditions of humidity and air temperature. The purpose of this study was to determine the extent of the influence of the air condition on cooling capabilities of the AP1000 containment. The method used is to perform simulations using Matlab-based analytical calculation model capable of estimating the power of heat transfered. The simulation results showed a decrease in power up to  5% for relative humidity rose from 10% to 95%, while the variation of air temperature of 10 °C to 40°C, the power will decrease up to 15%. It can be concluded that the effect of air temperature increase is much more significant in lowering the containment cooling ability compared with the increase of humidity. Keywords: containment cooling, AP1000, air condition, SBO   ABSTRAK PENGARUH KONDISI UDARA TERHADAP KINERJA PENDINGINAN SUNGKUP AP-1000 DALAM KECELAKAAN STATION BLACK OUT. Reaktor AP-1000 merupakan PLTN generasi III+ berdaya 1000 MWe yang menerapkan konsep pendinginan pasif untuk mengantisipasi terjadinya kecelakaan yang dipicu oleh padamnya seluruh suplai daya listrik atau dikenal dengan Station Black Out (SBO. Pada reaktor AP-1000, mekanisme pembuangan kalor peluruhan dilakukan secara pasif melalui PRHR yang diteruskan ke IRWST dan

  4. 42 CFR 486.108 - Condition for coverage: Safety standards.

    Science.gov (United States)

    2010-10-01

    ... indication of the production of X-rays whenever the X-ray tube is energized. The control panel includes... BY SUPPLIERS Conditions for Coverage: Portable X-Ray Services § 486.108 Condition for coverage: Safety standards. X-ray examinations are conducted through the use of equipment which is free of...

  5. A direct numerical simulation of cool-flame affected autoignition in diesel engine-relevant conditions

    Energy Technology Data Exchange (ETDEWEB)

    Krisman, Alexander; Hawkes, Evatt Robert.; Talei, Mohsen; Bhagatwala, Ankit; Chen, Jacqueline H.

    2016-11-11

    In diesel engines, combustion is initiated by a two-staged autoignition that includes both low- and high-temperature chemistry. The location and timing of both stages of autoignition are important parameters that influence the development and stabilisation of the flame. In this study, a two-dimensional direct numerical simulation (DNS) is conducted to provide a fully resolved description of ignition at diesel engine-relevant conditions. The DNS is performed at a pressure of 40 atmospheres and at an ambient temperature of 900 K using dimethyl ether (DME) as the fuel, with a 30 species reduced chemical mechanism. At these conditions, similar to diesel fuel, DME exhibits two-stage ignition. The focus of this study is on the behaviour of the low-temperature chemistry (LTC) and the way in which it influences the high-temperature ignition. The results show that the LTC develops as a “spotty” first-stage autoignition in lean regions which transitions to a diffusively supported cool-flame and then propagates up the local mixture fraction gradient towards richer regions. The cool-flame speed is much faster than can be attributed to spatial gradients in first-stage ignition delay time in homogeneous reactors. The cool-flame causes a shortening of the second-stage ignition delay times compared to a homogeneous reactor and the shortening becomes more pronounced at richer mixtures. Multiple high-temperature ignition kernels are observed over a range of rich mixtures that are much richer than the homogeneous most reactive mixture and most kernels form much earlier than suggested by the homogeneous ignition delay time of the corresponding local mixture. Altogether, the results suggest that LTC can strongly influence both the timing and location in composition space of the high-temperature ignition.

  6. Studies of the Influence of Beam Profile and Cooling Conditions on the Laser Deposition of a Directionally-Solidified Superalloy

    Directory of Open Access Journals (Sweden)

    Shuo Yang

    2018-02-01

    Full Text Available In the laser deposition of single crystal and directionally-solidified superalloys, it is desired to form laser deposits with high volume fractions of columnar grains by suppressing the columnar-to-equiaxed transition efficiently. In this paper, the influence of beam profile (circular and square shapes and cooling conditions (natural cooling and forced cooling on the geometric morphology and microstructure of deposits were experimentally studied in the laser deposition of a directionally-solidified superalloy, IC10, and the mechanisms of influence were revealed through a numerical simulation of the thermal processes during laser deposition. The results show that wider and thinner deposits were obtained with the square laser beam than those with the circular laser beam, regardless of whether natural or forced cooling conditions was used. The heights and contact angles of deposits were notably increased due to the reduced substrate temperatures by the application of forced cooling for both laser beam profiles. Under natural cooling conditions, columnar grains formed epitaxially at both the center and the edges of the deposits with the square laser beam, but only at the center of the deposits with the circular laser beam; under forced cooling conditions, columnar grains formed at both the center and the edges of deposits regardless of the laser beam profile. The high ratios of thermal gradient and solidification velocity in the height direction of the deposits were favorable to forming deposits with higher volume fractions of columnar grains.

  7. Analysis of mercerization process based on the intensity change of deconvoluted resonances of 13C CP/MAS NMR: Cellulose mercerized under cooling and non-cooling conditions

    International Nuclear Information System (INIS)

    Miura, Kento; Nakano, Takato

    2015-01-01

    The area intensity change of C1, C4, and C6 in spectrum obtained by 13 C CP/MAS NMR and the mutual relationship between their changes were examined for cellulose samples treated with various concentrations of aqueous NaOH solutions under non-cooling and cooling conditions. The area intensity of C1-up and C6-down changed cooperatively with that of C4-down which corresponds to the crystallinity of samples: “-up” and “-down” are the up- and down- field component in a splitting peak of NMR spectrum, respectively. The intensity change of C1-up starts to decrease with decreasing in that of C4-down after that of C6-down is almost complete. These changes were more clearly observed for samples treated under cooling condition. It can be suggested that their characteristic change relates closely to the change in conformation of cellulose chains by induced decrystallization and the subsequent crystallization of cellulose II, and presumed that their changes at microscopic level relate to the macroscopic morphological changes such as contraction along the length of cellulose chains and recovery along the length. - Highlight: • Samples were mercerized at various NaOH concentrations under non-cooling and cooling. • The intensity change of C1 starts immediately after that of C6 is complete. • The creation of cell-II starts when decrystallization proceeds to a certain state. • This change relates closely to the change in conformation of cellulose chains. • The above change is more clearly found for samples treated under cooling

  8. Keeping Cool: Use of Air Conditioning by Australians with Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Michael P. Summers

    2012-01-01

    Full Text Available Despite the known difficulties many people with MS have with high ambient temperatures, there are no reported studies of air conditioning use and MS. This study systematically examined air conditioner use by Australians with MS. A short survey was sent to all participants in the Australian MS Longitudinal Study cohort with a response rate of 76% (n=2,385. Questions included hours of air-conditioner use, areas cooled, type and age of equipment, and the personal effects of overheating. Air conditioners were used by 81.9% of respondents, with an additional 9.6% who could not afford an air conditioner. Regional and seasonal variation in air conditioning use was reported, with a national annual mean of 1,557 hours running time. 90.7% reported negative effects from overheating including increased fatigue, an increase in other MS symptoms, reduced household and social activities, and reduced work capacity. Households that include people with MS spend between 4 and 12 times more on keeping cool than average Australian households.

  9. Response of unirradiated and irradiated PWR fuel rods tested under power-cooling-mismatch conditions

    International Nuclear Information System (INIS)

    MacDonald, P.E.; Quapp, W.J.; Martinson, Z.R.; McCardell, R.K.; Mehner, A.S.

    1978-01-01

    This report summarizes the results from the single-rod power-cooling-mismatch (PCM) and irradiation effects (IE) tests conducted to date in the Power Burst Facility (PBF) at the U.S. DOE Idaho National Engineering Laboratory. This work was performed for the U.S. NRC under contact to the Department of Energy. These tests are part of the NRC Fuel Behavior Program, which is designed to provide data for the development and verification of analytical fuel behavior models that are used to predict fuel response to abnormal or postulated accident conditions in commercial LWRs. The mechanical, chemical and thermal response of both previously unirradiated and previously irradiated LWR-type fuel rods tested under power-cooling-mismatch condition is discussed. A brief description of the test designs is presented. The results of the PCM thermal-hydraulic studies are summarized. Primary emphasis is placed on the behavior of the fuel and cladding during and after stable film boiling. (orig.) [de

  10. Decoupling dehumidification and cooling for energy saving and desirable space air conditions in hot and humid Hong Kong

    International Nuclear Information System (INIS)

    Lee, W.L.; Chen Hua; Leung, Y.C.; Zhang, Y.

    2012-01-01

    Highlights: ► The combined use of dedicated ventilation and dry cooling (DCDV) system was investigated. ► Investigations were based actual equipment performance data and realistic building and system characteristics. ► DCDV system could save 54% of the annual energy use for air-conditioning. ► DCDV system could better achieve the desired space air conditions. ► DCDV system could decouple dehumidification and cooling. - Abstract: The combined use of dedicated outdoor air ventilation (DV) and dry cooling (DC) air-conditioning system to decouple sensible and latent cooling for desirable space air conditions, better indoor air quality, and energy efficiency is proposed for hot and humid climates like Hong Kong. In this study, the performance and energy saving potential of DCDV system in comparison to conventional systems (constant air volume (CAV) system with and without reheat) for air conditioning of a typical office building in Hong Kong are evaluated. Through hour-by-hour simulations, using actual equipment performance data and realistic building and system characteristics, the cooling load profile, resultant indoor air conditions, condensation at the DC coil, and energy consumptions are calculated and analyzed. The results indicate that with the use of DCDV system, the desirable indoor conditions could be achieved and the annual energy use could be reduced by 54% over CAV system with reheat. The condensate-free characteristic at the DC coil to reduce risk of catching disease could also be realized.

  11. Air conditioning cool contribution to global warming?; Airconditioning koele bijdrage aan global warming?

    Energy Technology Data Exchange (ETDEWEB)

    Oudshoff, B.

    2010-06-15

    Similar to the Netherlands, the percentage of buildings with air-conditioning is growing steadily in the United Stated (US). This makes it an interesting area for energy saving. New technological developments offer opportunities to drastically reduce energy use for cooling. The best option is obviously to no longer deploy mechanical cooling but this is not a realistic option for warmer areas. This article addresses new technologies and several newly established companies in California and Colorado that target this market. [Dutch] In de Verenigde Staten (VS) groeit het percentage van gebouwen met airconditioning, net als in Nederland, de laatste jaren gestaag door. Hiermee is het een interessant gebied voor mogelijke energiebesparing. Nieuwe technologische ontwikkelingen bieden kansen om het energiegebruik voor koeling drastisch te verminderen. De beste oplossing is uiteraard geen mechanische koeling meer toe te passen maar voor warmere gebieden is die optie niet reeel. In dit artikel wordt ingegaan op nieuwe technologie en enkele startende bedrijven in Californie en Colorado die zich op deze markt richten.

  12. Standard Model Vacuum Stability and Weyl Consistency Conditions

    DEFF Research Database (Denmark)

    Antipin, Oleg; Gillioz, Marc; Krog, Jens

    2013-01-01

    At high energy the standard model possesses conformal symmetry at the classical level. This is reflected at the quantum level by relations between the different beta functions of the model. These relations are known as the Weyl consistency conditions. We show that it is possible to satisfy them...... order by order in perturbation theory, provided that a suitable coupling constant counting scheme is used. As a direct phenomenological application, we study the stability of the standard model vacuum at high energies and compare with previous computations violating the Weyl consistency conditions....

  13. Analysis of climatic conditions and preliminary assessment of alternative cooling strategies for houses in California transition climate zones

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y.J.; Zhang, H.

    1995-07-01

    This is a preliminary scoping study done as part of the {open_quotes}Alternatives to Compressive Cooling in California Transition Climates{close_quotes} project, which has the goal of demonstrating that houses in the transitional areas between the coast and the Central Valley of California do not require air-conditioning if they are properly designed and operated. The first part of this report analyzes the climate conditions within the transitional areas, with emphasis on design rather than seasonal conditions. Transitional climates are found to be milder but more variable than those further inland. The design temperatures under the most stringent design criteria, e.g. 0.1 % annual, are similar to those in the Valley, but significantly lower under more relaxed design criteria, e.g., 2% annual frequency. Transition climates also have large day-night temperature swings, indicating significant potential for night cooling, and wet-bulb depressions in excess of 25 F, indicating good potential for evaporative cooling. The second part of the report is a preliminary assessment using DOE-2 computer simulations of the effectiveness of alternative cooling and control strategies in improving indoor comfort conditions in two conventional Title-24 houses modeled in various transition climate locations. The cooling measures studied include increased insulation, light colors, low-emissivity glazing, window overhangs, and exposed floor slab. The control strategies studied include natural and mechanical ventilation, and direct and two-stage evaporative cooling. The results indicate the cooling strategies all have limited effectiveness, and need to be combined to produce significant improvements in indoor comfort. Natural and forced ventilation provide similar improvements in indoor conditions, but during peak cooling periods, these will still be above the comfort zone. Two-stage evaporative coolers can maintain indoor comfort at all hours, but not so direct evaporative coolers.

  14. Craft-joule project: air-cooled water LiBr absorption cooling machine of low capacity for air conditioning (ACABMA)

    Energy Technology Data Exchange (ETDEWEB)

    Oliva, A; Castro, J; Perez Segarra, C.D [Universitat Politecnica de Catalunya, Barcelona (Spain); Lucena, M.A [Instituto Nacional de Tecnica Aeroespecial (Spain)] (and others)

    2000-07-01

    The ACABMA (Air-Cooled water-LiBr Absorption cooling Machine of low capacity for Air- conditioning) project is a Craft-Joule Project within the framework of the Non Nuclear Energy Programme Joule III coordinated by the Centre Technologic de Transferencia de Calor (CTTC). The basic objective of this project is the development of a new air-cooled absorption cooling machine for air-conditioning, in the low power sector market. Making use of water-LiBr technology together with the air-cooling feature, it is possible to reach a better relationship between quality (in terms of performance, ecology, etc.) and price of such absorption machines, than the ones existing on the market. Air-cooling instead of water cooling saves installation costs specially in small systems and removes the demand for cooling water (an important aspect in Southern-European countries), thus increasing the possible application range. The main interest for the SME proposers is to take advantage of the increasing cooling demand in Europe, specially in southern countries. Another point of interest for the SME proposers is the development of a cheaper cooling and heating system in terms of energy and installation costs. In this moment the solar cooling systems are approx. 30% more expensive than the conventional ones. A cheaper absorption machine due to the air-cooling feature together with the possibility of energy savings due to low generator temperatures, that allow the absorption machine for solar applications or waste heat, will lead to solar cooling and heating systems more competitive to the conventional ones. In order to achieve the above mentioned goal, the following step are necessary and will be carried out in this project: i)solution of the air-cooling of the water-LiBr machine, the main problem that up to now has not allowed commercialization, ii)reduction of the size of the air-cooled elements of the machine in order to reduce the machine costs, iii)development of an efficient control

  15. The application of condensate water as an additional cooling media intermittently in condenser of a split air conditioning

    Science.gov (United States)

    Ardita, I. N.; Subagia, I. W. A.

    2018-01-01

    The condensate water produced by indoor a split air conditioning is usually not utilized and thrown away into the environment. The result of measurement shows that the temperature of condensate water produced by split air conditioning is quite low, that is 19-22 °C at the rate of 16-20 mL / min and it has PH balance. Under such conditions, Air Condensate produced by split air conditioning should still be recovered as an additional cooling medium on the condenser. This research will re-investigate the use of condensate water as an intermittent additional cooling of the condenser to increase the cooling capacity and performance of the air conditioning system. This research is done by experimental method whose implementation includes; designing and manufacturing of experimental equipment, mounting measuring tools, experimental data retrieval, data processing and yield analysis. The experimental results show that the use of condensate water as an intermittent additional cooling medium on split air conditioning condenser can increase the refrigeration effect about 2%, cooling capacity about 4% and 7% of COP system. Experimental results also show a decrease in power consumption in the system compressor about 3%

  16. Safety analysis code 'COOLTMP' for assessment of PHT cooling under reactor shutdown conditions

    International Nuclear Information System (INIS)

    Krishna Kumar, P.; Hajela, S.; Datta, D.; Malhotra, P.K.

    2006-01-01

    The thermal energy generated by the reactor core is removed by the Primary Heat Transport (PHT) System when the reactor is under normal operation, by operation of the primary circulation pumps and steam generators. However, when the reactor is shutdown, the decay heat removal is done by the Shut Down (S/D) Cooling heat exchangers and pumps of lower capacity. In the event of loss/stoppage of circulation of PHT under such a situation, the bulk of the decay heat generated will be distributed to the moderator system, end shield system and through the feeders to the feeder cabinet/FM vault environment. However, the PHT inventory in the channel will be heated up because of loss of flow in the channel. The code COOLTMP has been developed to estimate the temperature of PHT following a loss/stoppage of circulation, when the reactor is under shutdown condition. It predicts the increase in the PHT temperature with time for hot channel, average channel or a specific channel under such a condition. It also calculates the apportionment of the decay heat to different heat sinks, viz. moderator, end shield and FM Vault. This computation is required when the plant is required to be under shutdown for doing some maintenance job on the PHT system, feeders or channels where the S/D cooling system has to be stopped and in some cases the headers have to be drained. At that time such a calculation gives whether the peak PHT temperature, or the time available to reach such a temperature, as obtained, is acceptable to carry out such a job. Hence, the schedule of the maintenance job can be decided. This code has been validated for RAPS and MAPS and used extensively for predicting PHT temperature after reactor shutdown to obtain regulatory clearances to stop forced circulation with and without header filled. (author)

  17. Open absorption system for cooling and air conditioning using membrane contactors - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Conde-Petit, M. [M. Conde Engineering, Zuerich (Switzerland); Weber, R.; Dorer, V. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Duebendorf (Switzerland)

    2008-07-01

    Air conditioning systems based upon the open absorption principle, essentially an absorption device operating at atmospheric pressure, have been proposed and investigated at many instances in the past eighty years. Their potential for improving energy efficiency is clearly recognized in the earliest research reports. By the mid 1950ies, solar thermal energy was being applied to drive open absorption-based air conditioning systems. For several reasons, however, the open absorption technology was not mature enough to take place in the mainstream. In the past two decades, vigorous efforts have been undertaken to reverse this situation, but success continued to elude, despite the fact that the main problems, such as corrosion, aerosols in the supply air, etc., have been identified. This report details the work and the main results from the MemProDEC Project. In this project innovative solutions were proposed, and successfully investigated, for the corrosion problem and the improvement of efficiency of the absorption process, in particular a new method to cool a very compact absorber. The practically uniform flow distribution for all three streams in the absorber (air, water and desiccant) warrants the contact of the air to be dehumidified with the desiccant over the whole surface of exchange (across a porous membrane). This, together with the cooling with water in counter flow to the air, are the key factors for the excellent effectiveness of the absorber. As the results show, the dehydration effectiveness of the prototype absorber is up to 150 % higher than that previously obtained by others. The solutions developed for compactness and modularity represent an important step in the way to flexible manufacturing, i.e. using a single element size to assemble autonomous air handling units of various nominal capacities. And although the manufacturing methods of the individual elements require improvement, namely by avoiding adhesive bonding, the choice of materials and the

  18. Conditional Standard Errors of Measurement for Scale Scores.

    Science.gov (United States)

    Kolen, Michael J.; And Others

    1992-01-01

    A procedure is described for estimating the reliability and conditional standard errors of measurement of scale scores incorporating the discrete transformation of raw scores to scale scores. The method is illustrated using a strong true score model, and practical applications are described. (SLD)

  19. Conditioning of cooling water in power stations. Feedback from twenty years of experience with acid feeding

    International Nuclear Information System (INIS)

    Goffin, C.; Duvivier, L.; Girasa, E.; Brognez, J.

    2002-01-01

    In the late 1970's and early 1980's, with the development of the nuclear programme in many European countries, the recirculation of cooling water in power stations became an issue which required urgent attention. The concentration of several plants of 1000 MW or more on sites along inland waterways actually made simple once-through cooling impossible, owing to the risk of an unacceptable rise in the river's water temperature. The chemical composition of natural freshwater in western European waterways is such that when it becomes slightly concentrated, scale is rapidly formed. The relatively low solubility of calcium carbonate and the degassing of the carbon dioxide during close contact between the water and air in the heat exchangers of the cooling tower explain this precipitation tendency. Fairly soon, experts in the electricity power generation companies highlighted the need for on-site, pilot loop simulations, in order to foresee the physico-chemical phenomena that could arise in industrial installations. The number of financially justifiable processing possibilities could be briefly summarised by the following three solutions: to adapt the concentration factor in order to be under the calcium carbonate solubility limit and thereby avoid the need for any water conditioning; to accept concentration factors of between 1.4 and 1.9 and control the calcium carbonate precipitation through controlled acid injection in the circulation water; to raise the concentration factor over 5 and soften the makeup water through the addition of lime and flocculant. The last of these solutions was rarely ever used in Belgium and France. It was however widely used in Germany. Its application requires a greater investment and leads to higher operating costs than acid injection. Furthermore, it leads to the problem of daily drying and disposal of several dozen tonnes of sludge, which have to be recycled or dumped. In an increasingly stringent environmental context, this solution is no

  20. Conditioning of cooling water in power stations. Feedback from twenty years of experience with acid feeding

    Energy Technology Data Exchange (ETDEWEB)

    Goffin, C.; Duvivier, L.; Girasa, E. [LABORELEC, Chemistry of Water (Belgium); Brognez, J. [ELECTRABEL, TIHANGE Nuclear Power Station (Belgium)

    2002-07-01

    In the late 1970's and early 1980's, with the development of the nuclear programme in many European countries, the recirculation of cooling water in power stations became an issue which required urgent attention. The concentration of several plants of 1000 MW or more on sites along inland waterways actually made simple once-through cooling impossible, owing to the risk of an unacceptable rise in the river's water temperature. The chemical composition of natural freshwater in western European waterways is such that when it becomes slightly concentrated, scale is rapidly formed. The relatively low solubility of calcium carbonate and the degassing of the carbon dioxide during close contact between the water and air in the heat exchangers of the cooling tower explain this precipitation tendency. Fairly soon, experts in the electricity power generation companies highlighted the need for on-site, pilot loop simulations, in order to foresee the physico-chemical phenomena that could arise in industrial installations. The number of financially justifiable processing possibilities could be briefly summarised by the following three solutions: to adapt the concentration factor in order to be under the calcium carbonate solubility limit and thereby avoid the need for any water conditioning; to accept concentration factors of between 1.4 and 1.9 and control the calcium carbonate precipitation through controlled acid injection in the circulation water; to raise the concentration factor over 5 and soften the makeup water through the addition of lime and flocculant. The last of these solutions was rarely ever used in Belgium and France. It was however widely used in Germany. Its application requires a greater investment and leads to higher operating costs than acid injection. Furthermore, it leads to the problem of daily drying and disposal of several dozen tonnes of sludge, which have to be recycled or dumped. In an increasingly stringent environmental context, this

  1. Testing Lorentz Invariance with Laser-Cooled Cesium Atomic Frequency Standards

    Science.gov (United States)

    Klipstein, William M.

    2004-01-01

    This slide presentation reviews the Lorentz invariance testing during the proposed PARCS experiment. It includes information on the primary atomic reference clock in space (PARCS), cesium, laser cooling, and the vision for the future.

  2. A study of the passive cooling potential in simulated building in Latvian climate conditions

    Science.gov (United States)

    Prozuments, A.; Vanags, I.; Borodinecs, A.; Millers, R.; Tumanova, K.

    2017-10-01

    In this paper authors point out that overheating in buildings during summer season is a major problem in moderate and cold climates, not only in warm climate zones. Mostly caused by solar heat gains, especially in buildings with large glazed areas overheating is a common problem in recently constructed low-energy buildings. At the same time, comfort demands are increasing. While heating loads can be decreased by improving the insulation of the building envelope, cooling loads are also affecting total energy demand. Passive cooling solutions allow reduction of heat gains, and thus reducing the cooling loads. There is a significant night cooling potential with low temperatures at night during summer in moderate and cold climates. Night cooling is based on cooling of buildings thermal mass during the night and heat accumulation during the day. This approach allows to provide thermal comfort, reducing cooling loads during the day. Authors investigate thermal comfort requirements and causes for discomfort. Passive cooling methods are described. The simulation modeling is carried out to analyze impact of constructions and building orientation on energy consumption for cooling using the IDA-ICE software. Main criteria for simulation analysis are energy consumption for cooling and thermal comfort.

  3. Conditional Wegner Estimate for the Standard Random Breather Potential

    Science.gov (United States)

    Täufer, Matthias; Veselić, Ivan

    2015-11-01

    We prove a conditional Wegner estimate for Schrödinger operators with random potentials of breather type. More precisely, we reduce the proof of the Wegner estimate to a scale free unique continuation principle. The relevance of such unique continuation principles has been emphasized in previous papers, in particular in recent years. We consider the standard breather model, meaning that the single site potential is the characteristic function of a ball or a cube. While our methods work for a substantially larger class of random breather potentials, we discuss in this particular paper only the standard model in order to make the arguments and ideas easily accessible.

  4. Investigation of the operating conditions to morphology evolution of β-L-glutamic acid during seeded cooling crystallization

    Science.gov (United States)

    Zhang, Fangkun; Liu, Tao; Huo, Yan; Guan, Runduo; Wang, Xue Z.

    2017-07-01

    In this paper the effects of operating conditions including cooling rate, initial supersaturation, and seeding temperature were investigated on the morphology evolution of β-L-glutamic acid (β-LGA) during seeded cooling crystallization. Based on the results of in-situ image acquisition of the crystal morphology evolution during the crystallization process, it was found that the crystal products tend to be plate-like or short rod-like under a slow cooling rate, low initial supersaturation, and low seeding temperature. In the opposite, the operating conditions of a faster cooling rate, higher initial supersaturation, and higher seeding temperature tend to produce long rod-like or needle-like crystals, and meanwhile, the length and width of crystal products will be increased together with a wider crystal size distribution (CSD). The aspect ratio of crystals, defined by the crystal length over width measured from in-situ or sample images, was taken as a shape index to analyze the crystal morphologies. Based on comparative analysis of the experimental results, guidelines on these operating conditions were given for obtaining the desired crystal shapes, along with the strategies for obtaining a narrower CSD for better product quality. Experimental verifications were performed to illustrate the proposed guidelines on the operating conditions for seeded cooling crystallization of LGA solution.

  5. A STUDY ON LEGIONELLA PNEUMOPHILA, WATER CHEMISTRY, AND ATMOSPHERIC CONDITIONS IN COOLING TOWERS AT THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.; Brigmon, R.

    2009-10-20

    elevated Legionella concentrations when the dew point temperature was high--a summertime occurrence. However, analysis of the three years of Legionella monitoring data of the 14 different SRS Cooling Towers demonstrated that elevated concentrations are observed at all temperatures and seasons. The objective of this study is to evaluate the ecology of L. pneumophila including serogroups and population densities, chemical, and atmospheric data, on cooling towers at SRS to determine whether relationships exist among water chemistry, and atmospheric conditions. The goal is to more fully understand the conditions which inhibit or encourage L. pneumophila growth and supply this data and associated recommendations to SRS Cooling Tower personnel for improved management of operation. Hopefully this information could then be used to help control L. pneumophila growth more effectively in SRS cooling tower water.

  6. Transient computational fluid dynamics analysis of emergency core cooling injection at natural circulation conditions

    International Nuclear Information System (INIS)

    Scheuerer, Martina; Weis, Johannes

    2012-01-01

    Highlights: ► Pressurized thermal shocks are important phenomena for plant life extension and aging. ► The thermal-hydraulics of PTS have been studied experimentally and numerically. ► In the Large Scale Test Facility a loss of coolant accident was investigated. ► CFD software is validated to simulate the buoyancy driven flow after ECC injection. - Abstract: Within the framework of the European Nuclear Reactor Integrated Simulation Project (NURISP), computational fluid dynamics (CFD) software is validated for the simulation of the thermo-hydraulics of pressurized thermal shocks. A proposed validation experiment is the test series performed within the OECD ROSA V project in the Large Scale Test Facility (LSTF). The LSTF is a 1:48 volume-scaled model of a four-loop Westinghouse pressurized water reactor (PWR). ROSA V Test 1-1 investigates temperature stratification under natural circulation conditions. This paper describes calculations which were performed with the ANSYS CFD software for emergency core cooling injection into one loop at single-phase flow conditions. Following the OECD/NEA CFD Best Practice Guidelines (Mahaffy, 2007) the influence of grid resolution, discretisation schemes, and turbulence models (shear stress transport and Reynolds stress model) on the mixing in the cold leg were investigated. A half-model was used for these simulations. The transient calculations were started from a steady-state solution at natural circulation conditions. The final calculations were obtained in a complete model of the downcomer. The results are in good agreement with data.

  7. Effects of evaporative cooling on reproductive performance and milk production of dairy cows in hot wet conditions

    Science.gov (United States)

    Khongdee, S.; Chaiyabutr, N.; Hinch, G.; Markvichitr, K.; Vajrabukka, C.

    2006-05-01

    Fourteen animals of second and third lactation of Thai Friesian crossbred cows (87.5% Friesian × 12.5% Bos indicus) located at Sakol Nakhon Research and Breeding Centre, Department of Livestock Development, Ministry of Agriculture and Cooperatives, were divided randomly into two groups of seven each to evaluate the effects of evaporative cooling on reproductive and physiological traits under hot, humid conditions. Results indicated that installation of evaporating cooling in the open shed gave a further improvement in ameliorating heat stress in dairy cows in hot-wet environments by utilising the low humidity conditions that naturally occur during the day. The cows housed in an evaporatively cooled environment had both a rectal temperature and respiration rate (39.09°C, 61.39 breaths/min, respectively) significantly lower than that of the non-cooled cows (41.21°C; 86.87 breaths/min). The former group also had higher milk yield and more efficient reproductive performance (pregnancy rate and reduced days open) than the latter group. It is suggested that the non-evaporatively cooled cows did not gain benefit from the naturally lower heat stress during night time.

  8. Textual complexity of standard conditions used in the construction industry

    Directory of Open Access Journals (Sweden)

    Raufdeen Rameezdeen

    2013-03-01

    Full Text Available Clearly written communication aids the understanding of construction contracts, resulting in less disputation. Past research, using opinion surveys rather than objective criteria, shows that construction contracts lack clarity and standard forms have become complex over time. The study outlined in this paper uses three objective measures of clarity developed by linguists to establish the readability of construction contracts. In addition, thirty industry professionals participated in a Cloze Test which measured the level of comprehension of clauses concerning disputes. The study verifies that contract conditions are very difficult to read, with college level reading skills needed to comprehend half of the clauses. However, the hypothesis that standard forms have become complex over time was not supported by the study. The study establishes a linear relationship between readability and comprehension, proving the hypothesis that improved readability increases the comprehension of a contract clause.

  9. Textual complexity of standard conditions used in the construction industry

    Directory of Open Access Journals (Sweden)

    Raufdeen Rameezdeen

    2013-03-01

    Full Text Available Clearly written communication aids the understanding of construction contracts, resulting in less disputation. Past research, using opinion surveys rather than objective criteria, shows that construction contracts lack clarity and standard forms have become complex over time. The study outlined in this paper uses three objective measures of clarity developed by linguists to establish the readability of construction contracts. In addition, thirty industry professionals participated in a Cloze Test which measured the level of comprehension of clauses concerning disputes. The study verifies that contract conditions are very difficult to read, with college level reading skills needed to comprehend half of the clauses. However, the hypothesis that standard forms have become complex over time was not supported by the study. The study establishes a linear relationship between readability and comprehension, proving the hypothesis that improved readability increases the comprehension of a contract clause. 

  10. Thermodynamic modelling and performance study of an engine waste heat driven adsorption cooling for automotive air-conditioning

    International Nuclear Information System (INIS)

    Ali, Syed Muztuza; Chakraborty, Anutosh

    2015-01-01

    Waste heat from engine can be utilized to drive an adsorption cooling system for air conditioning purposes in the vehicle cabin, which not only improves the fuel economy but also reduces the carbon footprint. It is also important to reduce the size of the adsorption bed to adopt the adsorption technology for air-conditioning applications in passenger cars, buses and trucks or even trains. In this article, we present a two stage indirect exhaust heat recovery system of automotive engine employing an effective lumped parameter model to simulate the dynamic behaviors of an adsorption chiller that ranges from the transient to the cyclic steady states. The thermodynamic framework of adsorption chiller is developed from the rigor of mass and energy balances of each component of the system and experimentally confirmed isotherms and kinetics data of various adsorbent–adsorbate pairs. The performance factors are calculated in terms of COP (Coefficient of Performance) and SCP (Specific Cooling Power) for different operating parameters such as cycle time, exhaust gas temperatures, cooling water temperatures and flow rates. From the simulation results, it is found that the exhaust energy of a six cylinder 3000 cc private car is able to produce nearly 3 kW of cooling power for the car cabin. It is also observed that the driving heat source temperature does not remain constant throughout the cycle time unlike the conventional adsorption chiller, and the hot water temperatures as driving source vary from 65 to 95 °C. CaCl 2 -in-silica gel–water system is found better in terms of COP and SCP as compared with other adsorbents – water systems. - Highlights: • Adsorption cooling for car air conditioning. • Thermodynamic frameworks with adsorption isotherms and kinetics. • Various adsorbents such as silica gel, zeolites (AQSOA-Z01, Z-02), CaCl 2 -in-silica gel are tested. • Cooling power for car cabin employing waste heat recovery.

  11. Investigation of thermohydraulic parameter variations in operating conditions of Bilibino NPP CPS cooling circuit

    International Nuclear Information System (INIS)

    Baranaev, Yu.D.; Koz'menkova, V.V.; Parafilo, L.M.

    2015-01-01

    In consequence of activities on uncovering the reasons for through faults formation in cooling tubes of reactor control and protection system (CPS) channels of Bilibino-2 reactor the conclusion is made that corrosion failure development takes place against the backdrop of periodic increase of total moisture in reactor space at transient and standby modes at top of cooling tubes of CPS channels. Formation of corrosion defects in cooling tubes of four CPS channels of unit 2 in 2011-2012 is specific factor for this plant unit and do not effect on operation of other plant units. It is pointed out that ingress of moisture into gas system of the reactor is the critical factor providing integrity of structure elements of EhPG-6 reactor core cooling system. This fact agrees nicely with the results obtained during operation AM reactor of the First NPP [ru

  12. Effects of Rolling and Cooling Conditions on Microstructure of Umbrella-Bone Steel

    Science.gov (United States)

    Wu, Yan-Xin; Fu, Jian-Xun; Zhang, Hua; Xu, Jie; Zhai, Qi-Jie

    2017-10-01

    The effects of deformation temperature and cooling rate on the micro-structure evolution of umbrella-bone steel was investigated using a Gleeble thermal-mechanical testing machine and dynamic continuous cooling transformation (CCT) curves. The results show that fast cooling which lowers the starting temperature of ferrite transformation leads to finer ferrite grains and more pearlite. Low temperature deformation enhances the hardening effect of austenite and reduces hardenability, allowing a wider range of cooling rates and thus avoiding martensite transformation after deformation. According to the phase transformation rules, the ultimate tensile strength and reduction in area of the wire rod formed in the optimized industrial trial are 636 MPa and 73.6 %, respectively, showing excellent strength and plasticity.

  13. Theoretical assessment of evaporation rate of isolated water drop under the conditions of cooling tower of thermal power plant

    OpenAIRE

    Shevelev Sergey

    2017-01-01

    The purpose of the work is numerical modelling of heat and mass transfer at evaporation of water drops under the conditions which are typical for a modern chimney-type cooling tower of a thermal power plant. The dual task of heat and mass transfer with movable boundary at convective cooling and evaporation for a ‘drop–humid air’ system in a spherical coordinate system has been solved. It has been shown that there is a rapid decline of water evaporation rate at the initial stage of the process...

  14. Effects of spray-cooling processes on the microbiological conditions of decontaminated beef carcasses.

    Science.gov (United States)

    Gill, C O; Landers, C

    2003-07-01

    Spray processes for cooling decontaminated carcasses were examined at four beef packing plants. Temperature histories were collected from deep leg sites on 25 carcasses and from randomly selected sites on the surfaces of a further 25 carcasses selected at random from carcasses undergoing cooling at each plant. Carcass cooling rates were similar at all four plants. Proliferation values calculated from surface temperature histories indicated similar increases of 0.5 log units in the numbers of Escherichia coli on carcasses at plants A and B and plants C and D, respectively. The numbers of aerobes recovered from carcasses after cooling were about 1 log unit larger than the numbers recovered from carcasses before cooling at plants A, B, and C but >1.5 log units larger at plant D. These increases in numbers of aerobes were in agreement with the estimated proliferations of pseudomonads. The larger increase in the number of aerobes on carcasses at plant D may be attributable to carcasses not being pasteurized at that plant, while carcasses were pasteurized at all of the other plants. The numbers of E. coli recovered from carcasses after cooling at plants B, C, and D were also in agreement with the increases calculated from surface temperature histories. However, numbers of E. coli declined by about 1 log unit during carcass cooling at plant A. This decline may have been due to death occurring during chilling for some E. coli cells that were injured rather than killed by pasteurization with sprayed hot water at plant A, whereas pasteurization with steam at plants B and C seemingly left few injured E. coli cells. The growth of bacteria on decontaminated carcasses during spray cooling at the four plants was apparently constrained by temperature alone.

  15. Experimental performance and parametric analysis of heat pipe heat exchanger for air conditioning application integrated with evaporative cooling

    Science.gov (United States)

    Jadhav, Tushar S.; Lele, Mandar M.

    2017-11-01

    The experimental performance of different heat pipe heat exchanger (HPHX) configurations using distilled water as the working fluid is reported in the present study. The three HPHX configurations in the present investigation include HPHX with single wick structure (HPHX 1), HPHX with composite wick structure (HPHX 2) and hybrid HPHX (HPHX 3) which is the combination of HPHX 1 and HPHX 2. The parameters considered for the parametric analysis of HPHX in all the three configurations are outdoor air dry bulb temperature entering the evaporator section of HPHX (OADBT), return air dry bulb temperature entering the condenser section of HPHX (RADBT), outdoor air velocity (Ve) and return air velocity (Vc). The OADBT is varied between 40 and 24 °C and the outdoor & return air velocities between 0.6 and 2.4 m/s. The parametric analysis of HPHX without evaporative cooling is studied for RADBT = 24 °C whereas RADBT is maintained at 20 °C for the parametric analysis of HPHX integrated with evaporative cooling. In comparison with HPHX without evaporative cooling, the performance of HPHX with evaporative cooling is enhanced by 17% for single wick structure (HPHX 1), 47% for composite wick structure (HPHX 2) and 59% for hybrid HPHX (HPHX 3) for OADBT = 40 °C and at Ve = Vc of 0.6 m/s. The results of the experimental analysis highlights the benefits of HPHX integrated with evaporative cooling for achieving significant energy savings in air conditioning application.

  16. Measurements of erbium laser-ablation efficiency in hard dental tissues under different water cooling conditions.

    Science.gov (United States)

    Kuščer, Lovro; Diaci, Janez

    2013-10-01

    Laser triangulation measurements of Er:YAG and Er,Cr:YSGG laser-ablated volumes in hard dental tissues are made, in order to verify the possible existence of a "hydrokinetic" effect that has been proposed as an alternative to the "subsurface water expansion" mechanism for hard-tissue laser ablation. No evidence of the hydrokinetic effect could be observed under a broad range of tested laser parameters and water cooling conditions. On the contrary, the application of water spray during laser exposure of hard dental material is observed to diminish the laser-ablation efficiency (AE) in comparison with laser exposure under the absence of water spray. Our findings are in agreement with the generally accepted principle of action for erbium laser ablation, which is based on fast subsurface expansion of laser-heated water trapped within the interstitial structure of hard dental tissues. Our measurements also show that the well-known phenomenon of ablation stalling, during a series of consecutive laser pulses, can primarily be attributed to the blocking of laser light by the loosely bound and recondensed desiccated minerals that collect on the tooth surface during and following laser ablation. In addition to the prevention of tooth bulk temperature buildup, a positive function of the water spray that is typically used with erbium dental lasers is to rehydrate these minerals, and thus sustaining the subsurface expansion ablation process. A negative side effect of using a continuous water spray is that the AE gets reduced due to the laser light being partially absorbed in the water-spray particles above the tooth and in the collected water pool on the tooth surface. Finally, no evidence of the influence of the water absorption shift on the hypothesized increase in the AE of the Er,Cr:YSGG wavelength is observed.

  17. The influence of local effects on thermal sensation under non-uniform environmental conditions — Gender differences in thermophysiology, thermal comfort and productivity during convective and radiant cooling

    DEFF Research Database (Denmark)

    Schellen, L.; Loomans, M.G.L.C.; de Wit, M.H.

    2012-01-01

    of the occupants. Non-uniform thermal conditions, which may occur due to application of high temperature cooling systems, can be responsible for discomfort. Contradictions in literature exist regarding the validity of the often used predicted mean vote (PMV) index for both genders, and the index is not intended......Applying high temperature cooling concepts, i.e. high temperature cooling (Tsupply is 16–20°C) HVAC systems, in the built environment allows the reduction in the use of (high quality) energy. However, application of high temperature cooling systems can result in whole body and local discomfort......, thermal comfort and productivity in response to thermal non-uniform environmental conditions. Twenty healthy subjects (10 males and 10 females, age 20–29years) were exposed to two different experimental conditions: a convective cooling situation (CC) and a radiant cooling situation (RC). During...

  18. Comparison between predicted duct effectiveness from proposed ASHRAE Standard 152P and measured field data for residential forced air cooling systems; TOPICAL

    International Nuclear Information System (INIS)

    Siegel, Jeffrey A.; McWilliams, Jennifer A.; Walker, Iain S.

    2002-01-01

    The proposed ASHRAE Standard 152P ''Method of Test for Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution Systems'' (ASHRAE 2002) has recently completed its second public review. As part of the standard development process, this study compares the forced air distribution system ratings provided by the public review draft of Standard 152P to measured field results. 58 field tests were performed on cooling systems in 11 homes in the summers of 1998 and 1999. Seven of these houses had standard attics with insulation on the attic floor and a well-vented attic space. The other four houses had unvented attics where the insulation is placed directly under the roof deck and the attic space is not deliberately vented. Each house was tested under a range of summer weather conditions at each particular site, and in some cases the amount of duct leakage was intentionally varied. The comparison between 152P predicted efficiencies and the measured results includes evaluation of the effects of weather, duct location, thermal conditions, duct leakage, and system capacity. The results showed that the difference between measured delivery effectiveness and that calculated using proposed Standard 152P is about 5 percentage points if weather data, duct leakage and air handler flow are well known. However, the accuracy of the standard is strongly dependent on having good measurements of duct leakage and system airflow. Given that the uncertainty in the measured delivery effectiveness is typically also about 5 percentage points, the Standard 152P results are acceptably close to the measured data

  19. EPB standard EN ISO 52016: calculation of the building’s energy needs for heating and cooling, internal temperatures and heating and cooling load

    NARCIS (Netherlands)

    Dijk, H.A.L. van; Spiekman, M.E.; Hoes-van Oeffelen, E.C.M.

    2016-01-01

    EN ISO 52016-1 presents a coherent set of calculation methods at different levels of detail, for the (sensible) energy needs for the space heating and cooling and (latent) energy needs (de)humidification of a building and/or internal temperatures and heating and/or cooling loads, including the

  20. Growth of Cronobacter spp. under Dynamic Temperature Conditions Occurring during Cooling of Reconstituted Powdered Infant Formula

    NARCIS (Netherlands)

    Kandhai, M.C.; Breeuwer, P.; Gorris, L.G.M.; Zwietering, M.H.; Reij, M.W.

    2009-01-01

    Reconstituted infant formulae are excellent growth media for Cronobacter spp. (formerly Enterobacter sakazakii) and other microorganisms that may be present in such products. Immediate consumption or rapid cooling and storage at a low temperature are therefore recommended as control measures to

  1. Examining the role of canister cooling conditions on the formation of nepheline from nuclear waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-01

    Nepheline (NaAlSiO₄) crystals can form during slow cooling of high-level waste (HLW) glass after it has been poured into a waste canister. Formation of these crystals can adversely affect the chemical durability of the glass. The tendency for nepheline crystallization to form in a HLW glass increases with increasing concentrations of Al₂O₃ and Na₂O.

  2. Study on microstructures in the steel for nuclear power large forgings under different cooling conditions

    International Nuclear Information System (INIS)

    Han Lizhan; Gu Jianfeng; Xu Jun; Pan Jiansheng; Long Zhinan

    2012-01-01

    The continuous cooling transformation (CCT) diagram has been investigated for the SA508 Gr.3 steel used as the large forgings of nuclear power using the thermal simulator Gleeble 3500, the microstructures obtained under different cooling rates and isothermal temperatures have also been observed carefully with the SEM and OM. The results show that the critical cooling rate of martensite is larger than 20 ℃/s, and that for bainite is about 1℃/s. The bad microstructures such as the granular bainite, and acicular ferrite form when the cooling rate less than 0.5℃/s. The medium harden ability of steel SA508 Gr.3 proposes very high requirement for heat treatment, and it is very difficult to get uniform microstructure and property throughout the whole section of a large forging for nuclear power. Thus, highly attention should be paid on the manufacture of nuclear power equipment and corresponding fundamental research in this aspect should be carried out intensively. (authors)

  3. Performance and evaluation of gas engine driven rooftop air conditioning equipment at the Willow Grove (PA) Naval Air Station. Interim report, 1992 cooling season

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, P.R.; Conover, D.R.

    1993-05-01

    In a field evaluation conducted for the US Department of Energy (DOE) Office of Federal Energy Management Program (FEMP), the Pacific Northwest Laboratory (PNL) examined the performance of a new US energy-related technology under the FEMP Test Bed Demonstration Program. The technology was a 15-ton natural gas engine driven roof top air conditioning unit. Two such units were installed on a naval retail building to provide space conditioning to the building. Under the Test Bed Demonstration Program, private and public sector interests are focused to support the installation and evaluation of new US technologies in the federal sector. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) with DOE were the American Gas Cooling Center, Philadelphia Electric Company, Thermo King Corporation, and the US Naval Air Station at Willow Grove, Pennsylvania. Equipment operating and service data as well as building interior and exterior conditions were secured for the 1992 cooling season. Based on a computer assessment of the building using standard weather data, a comparison was made with the energy and operating costs associated with the previous space conditioning system. Based on performance during the 1992 cooling season and adjusted to a normal weather year, the technology will save the site $6,000/yr in purchased energy costs. An additional $9,000 in savings due to electricity demand ratchet charge reductions will also be realized. Detailed information on the technology, the installation, and the results of the technology test are provided to illustrate the advantages to the federal sector of using this technology. A history of the CRADA development process is also reported.

  4. Precipitation model in microalloyed steels both isothermal and continuous cooling conditions

    Directory of Open Access Journals (Sweden)

    Medina, Sebastián F.

    2015-12-01

    Full Text Available Niobium and vanadium precipitates (nitrides and carbides can inhibit the static recrystallization of austenite but this does not happen for Ti, which form nitrides at high temperatures. RPTT diagrams show the interaction between recrystallization and precipitation allowing study the strain induced precipitation kinetics and precipitate coarsening. Based on Dutta and Sellars’s expression for the start of strain-induced precipitation in microalloyed steels, a new model has been constructed which takes into account the influence of variables such as microalloying element percentages, strain, temperature, strain rate and grain size. Recrystallization- Precipitation-Time-Temperature (RPTT diagrams have been plotted thanks to a new experimental study carried out by means of hot torsion tests on approximately twenty microalloyed steels with different Nb, V and Ti contents. Mathematical analysis of the results recommends the modification of some parameters such as the supersaturation ratio (ks and constant B, which is no longer a constant but a function of ks. The expressions are now more consistent and predict the Precipitation-Time-Temperature (PTT curves with remarkable accuracy. The model for strain-induced precipitation kinetics is completed by means of Avrami’s equation. Finally, the model constructed in isothermal testing conditions, it has been converted to continuous cooling conditions in order to apply it in hot rolling.Los precipitados de V y Nb (nitruros y carburos pueden inhibir la recristalización estática de la austenita, pero no sucede lo mismo con el Ti que forma nitruros a altas temperaturas. Los diagramas RPTT muestran la interacción entre la recristalización y la precipitación, permitiendo estudiar la cinética de la misma y el crecimiento de los precipitados. Partiendo de la expresión de Dutta y Sellars se ha construido un modelo para la precipitación inducida por la deformación en aceros microaleados. El nuevo modelo

  5. Tolerance of brown bear spermatozoa to conditions of pre-freezing cooling rate and equilibration time.

    Science.gov (United States)

    López-Urueña, E; Alvarez, M; Gomes-Alves, S; Martínez-Rodríguez, C; Borragan, S; Anel-López, L; de Paz, P; Anel, L

    2014-06-01

    Specific protocols for the cryopreservation of endangered Cantabrian brown bear spermatozoa are critical to create a genetic resource bank. The aim of this study was to assess the effect of cooling rates and equilibration time before freezing on post-thawed brown bear spermatozoa quality. Electroejaculates from 11 mature bears were extended to 100 × 10(6) spermatozoa/mL in a TES-Tris-Fructose-based extender, cryopreserved following performance of the respective cooling/equilibration protocol each sample was assigned to, and stored at -196 °C for further assessment. Before freezing, after thawing, and after 1 hour's incubation post-thawing at 37 °C (thermal stress test), the quality of the samples was assessed for motility by computer-assisted semen analysis, and for viability (SYBR-14/propidium iodide), acrosomal status (peanut agglutinin-fluorescein isothiocyanate /propidium iodide), and sperm chromatin stability (SCSA) by flow cytometry. In experiment 1, three cooling rates (0.25 °C/min, 1 °C/min, and 4 °C/min) to 5 °C were assessed. After thawing, total motility (%TM) was higher and percentage of damaged acrosomes (%dACR) was lower (P bear sperm. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Transient analyses on the cooling channels of the DEMO HCPB blanket concept under accidental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yuming, E-mail: Yuming.chen@kit.edu; Ghidersa, Bradut-Eugen; Jin, Xue Zhou

    2016-11-01

    Highlights: • This paper presents transient CFD analyses on the cooling channels of the DEMO HCPB FW for accidental scenarios LOCA and LOFA. • In both LOCA & LOFA, the wall temperature increases quickly to an unacceptable level within seconds. • If the coolant flow rate is maintained at a half of nominal value in case of LOFA (partial LOFA), the wall temperature rises much slower, but will still leads to a damage of structure within minutes. • The simulated heat transfer coefficients were compared with empirical correlations. - Abstract: Helium Cooled Pebble Bed (HCPB) blanket concept is one of the DEMO (Demonstration Power Plant) blanket concepts running for the final DEMO design selection. In this paper, transient analyses on the cooling channels of the FW are carried out by means of CFD simulations for the selected accidental scenarios loss-of-coolant-accident (LOCA) and loss-of-flow-accident (LOFA). ANSYS-CFX is used for the simulations. The simulation results help to understand how fast the temperature of the FW can increase and what is the time window that is available until the temperature of the structural material reaches the design limit in order to be able to define a suitable protection strategy for the system. In view of later developments of the models, the heat transfer coefficients calculated with CFD are compared with the values predicted by two widely used correlations for turbulent pipe flows.

  7. Inhibition of calcium carbonate crystal growth by organic additives using the constant composition method in conditions of recirculating cooling circuits

    Science.gov (United States)

    Chhim, Norinda; Kharbachi, Chams; Neveux, Thibaut; Bouteleux, Céline; Teychené, Sébastien; Biscans, Béatrice

    2017-08-01

    The cooling circuits used in power plants are subject to mineral crystallization which can cause scaling on the surfaces of equipment and construction materials reducing their heat exchange efficiency. Precipitated calcium carbonate is the predominant mineral scale commonly observed in cooling systems. Supersaturation is the key parameter controlling the nucleation and growth of calcite in these systems. The present work focuses on the precipitation of calcite using the constant composition method at constant supersaturation, through controlled addition of reactants to a semi-batch crystallizer, in order to maintain constant solution pH. The determination of the thermodynamic driving force (supersaturation) was based on the relevant chemical equilibria, total alkalinity and calculation of the activity coefficients. Calcite crystallization rates were derived from the experiments performed at supersaturation levels similar to those found in industrial station cooling circuits. Several types of seeds particles were added into the aqueous solution to mimic natural river water conditions in terms of suspended particulate matters content, typically: calcite, silica or illite particles. The effect of citric and copolycarboxylic additive inhibitors added to the aqueous solution was studied. The calcium carbonate growth rate was reduced by 38.6% in the presence of the citric additive and a reduction of 92.7% was observed when the copolycarboxylic additive was used under identical experimental conditions. These results are explained by the location of the adsorbed inhibitor at the crystal surface and by the degree of chemical bonding to the surface.

  8. Standard Practice for Laboratory Screening of Metallic Containment Materials for Use With Liquids in Solar Heating and Cooling Systems

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1980-01-01

    1.1 This practice covers several laboratory test procedures for evaluating corrosion performance of metallic containment materials under conditions similar to those that may occur in solar heating and cooling systems. All test results relate to the performance of the metallic containment material only as a part of a metal/fluid pair. Performance in these laboratory test procedures, taken by itself, does not necessarily constitute an adequate basis for acceptance or rejection of a particular metal/fluid pair in solar heating and cooling systems, either in general or in a particular design. This practice is not intended to preclude the use of other screening tests, particularly when those tests are designed to more closely simulate field service conditions. 1.2 This practice describes apparatus and procedures for several tests, any one or more of which may be used to evaluate the deterioration of the metallic containment material in a metal/fluid pair. The procedures are designed to permit simulation, heating...

  9. Theoretical modelling and experimental study of air thermal conditioning process of a heat pump assisted solid desiccant cooling system

    DEFF Research Database (Denmark)

    Nie, Jinzhe; Li, Zan; Hu, Wenju

    2017-01-01

    purification aimed at improving indoor air quality and reducing building energy consumption. The heat and moisture transfer in adsorption desiccant rotor was theoretical modelled with one-dimensional partial differential equations. The theoretical model was validated with experimental measurements......Taking the integrated gaseous contaminants and moisture adsorption potential of desiccant material, a new heat pump assisted solid desiccant cooling system (HP-SDC) was proposed based on the combination of desiccant rotor with heat pump. The HP-SDC was designed for dehumidification, cooling and air......, and the results showed the model could be used to predict the heat and moisture transfer in desiccant rotor. The air thermal conditioning process and energy consumption of HP-SDC was then experimental measured under varied outdoor thermal environments. Results showed that compared to conventional ventilation...

  10. Cool Apps: Building Cryospheric Data Applications With Standards-Based Service Oriented Architecture

    Science.gov (United States)

    Collins, J. A.; Truslove, I.; Billingsley, B. W.; Oldenburg, J.; Brodzik, M.; Lewis, S.; Liu, M.

    2012-12-01

    The National Snow and Ice Data Center (NSIDC) holds a large collection of cryospheric data, and is involved in a number of informatics research and development projects aimed at improving the discoverability and accessibility of these data. To develop high-quality software in a timely manner, we have adopted a Service-Oriented Architecture (SOA) approach for our core technical infrastructure development. Data services at NSIDC are internally exposed to other tools and applications through standards-based service interfaces. These standards include OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting), various OGC (Open Geospatial Consortium) standards including WMS (Web Map Service) and WFS (Web Feature Service), ESIP (Federation of Earth Sciences Information Partners) OpenSearch, and NSIDC-specific RESTful services. By taking a standards-based approach, we are able to use off-the-shelf tools and libraries to consume, translate and broker these data services, and thus develop applications faster. Additionally, by exposing public interfaces to these services we provide valuable data services to technical collaborators; for example, NASA Reverb (http://reverb.echo.nasa.gov) uses NSIDC's WMS services. Our latest generation of web applications consume these data services directly. The most complete example of this is the Operation IceBridge Data Portal (http://nsidc.org/icebridge/portal) which depends on many of the aforementioned services, and clearly exhibits many of the advantages of building applications atop a service-oriented architecture. This presentation outlines the architectural approach and components and open standards and protocols adopted at NSIDC, demonstrates the interactions and uses of public and internal service interfaces currently powering applications including the IceBridge Data Portal, and outlines the benefits and challenges of this approach.

  11. Condition Assessment Survey (CAS) Program. Deficiency standards and inspections methods manual: Volume 8, 0.08 Mechanical, Book 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    System information is presented for asset determinant factor/CAS repair codes/CAS cost factors; guide sheet too & material listing; testing methods; inspection frequency; standard system design life tables; and system work breakdown structure. Deficiency standards are given for plumbing, fire protection, heating, cooling, and special (drinking water cooling systems).

  12. Surface Characteristics of Machined NiTi Shape Memory Alloy: The Effects of Cryogenic Cooling and Preheating Conditions

    Science.gov (United States)

    Kaynak, Y.; Huang, B.; Karaca, H. E.; Jawahir, I. S.

    2017-07-01

    This experimental study focuses on the phase state and phase transformation response of the surface and subsurface of machined NiTi alloys. X-ray diffraction (XRD) analysis and differential scanning calorimeter techniques were utilized to measure the phase state and the transformation response of machined specimens, respectively. Specimens were machined under dry machining at ambient temperature, preheated conditions, and cryogenic cooling conditions at various cutting speeds. The findings from this research demonstrate that cryogenic machining substantially alters austenite finish temperature of martensitic NiTi alloy. Austenite finish ( A f) temperature shows more than 25 percent increase resulting from cryogenic machining compared with austenite finish temperature of as-received NiTi. Dry and preheated conditions do not substantially alter austenite finish temperature. XRD analysis shows that distinctive transformation from martensite to austenite occurs during machining process in all three conditions. Complete transformation from martensite to austenite is observed in dry cutting at all selected cutting speeds.

  13. Studi Eksperimen Pengaruh Dimensi Pipa Kapiler Pada Sistem Air Conditioning Dengan Pre-Cooling

    Directory of Open Access Journals (Sweden)

    Awan Satya Darmawan

    2017-01-01

    Full Text Available Penggunaan air conditioner semakin banyak digunakan pada kehidupan sehari-hari diiringi dengan harga jual energi yang semakin mahal. Pada studi eksperimen kali ini mencoba mengoptimalisasi dan menigkatkan efisiensi energi pada sistem air conditioner dengan cara menambahkan satu buah evaporator dan satu buah pre-cooling, dimana pre-cooling dimanfaatkan untuk memanaskan air yang nantinya akan digunakan untuk keperluan rumah tangga. Pada sistem pengkondisian udara yang telah dimodifikasi tersebut maka dilakukan studi eksperimen dengan variasi panjang pipa kapiler, diameter pipa kapiler d=0,054 in, dengan panjang kapiler 1 = 35 cm, kapiler 2 = 65 cm, kapiler 3 = 95 cm. Hasil yang didapat dari studi eksperimen kali ini adalah semakin bertambahnya panjang pipa kapiler, kapasitas pendinginan evaporator, kerja kompresor dan COP dari sistem juga akan semakin kecil dan juga mengakibatkan temperatur masuk evaporator akan semakin kecil, yang akan mengakibatkan efek pendinginan akan semakin besar. Pada variasi pipa kapiler terpendek 35 cm menghasilkan data kapasitas pendinginan total sebesar 2,25 kW, kerja kompresor 0,433 kW, temperatur masuk evaporator 7,26°C, COP sebesar 5,21 dan HRR sebesar 1,16. Sedangkan pada variasi pipa kapiler terpanjang 95 cm kapasitas pendinginan total sebesar 0,72 kW, kerja kompresor 0,332 kW, temperatur masuk evaporator 1,64°C, COP sebesar 4,35 dan HRR sebesar 1,26.

  14. Status Report on Spent Fuel Pools under Loss-of-Cooling and Loss-of-Coolant Accident Conditions - Final Report

    International Nuclear Information System (INIS)

    Adorni, M.; Esmaili, H.; Grant, W.; Hollands, T.; Hozer, Z.; Jaeckel, B.; Munoz, M.; Nakajima, T.; Rocchi, F.; Strucic, M.; ); Tregoures, N.; Vokac, P.; Ahn, K.I.; Bourgue, L.; Dickson, R.; Douxchamps, P.A.; Herranz, L.E.; Jernkvist, L.O.; Amri, A.; Kissane, M.P.; )

    2015-01-01

    Following the 2011 accident at the Fukushima Daiichi Nuclear Power Station, the Nuclear Energy Agency Committee on the Safety of Nuclear Installations decided to launch several high-priority activities to address certain technical issues. Among other things, it was decided to prepare a status report on spent fuel pools (SFPs) under loss of cooling accident conditions. This activity was proposed jointly by the CSNI Working Group on Analysis and Management of Accidents (WGAMA) and the Working Group on Fuel Safety (WGFS). The main objectives, as defined by these working groups, were to: - Produce a brief summary of the status of SFP accident and mitigation strategies, to better contribute to the post-Fukushima accident decision making process; - Provide a brief assessment of current experimental and analytical knowledge about loss of cooling accidents in SFPs and their associated mitigation strategies; - Briefly describe the strengths and weaknesses of analytical methods used in codes to predict SFP accident evolution and assess the efficiency of different cooling mechanisms for mitigation of such accidents; - Identify and list additional research activities required to address gaps in the understanding of relevant phenomenological processes, to identify where analytical tool deficiencies exist, and to reduce the uncertainties in this understanding. The proposed activity was agreed and approved by CSNI in December 2012, and the first of four meetings of the appointed writing group was held in March 2013. The writing group consisted of members of the WGAMA and the WGFS, representing the European Commission and the following countries: Belgium, Canada, Czech Republic, France, Germany, Hungary, Italy, Japan, Korea, Spain, Sweden, Switzerland and the USA. This report mostly covers the information provided by these countries. The report is organised into 8 Chapters and 4 Appendices: Chapter 1: Introduction; Chapter 2: Spent fuel pools; Chapter 3: Possible accident

  15. Measuring enzyme activities under standardized in vivo-like conditions for Systems Biology

    NARCIS (Netherlands)

    van Eunen, K.; Bouwman, J.; Daran-Lapujade, P.A.L.; Postmus, J.; Canelas, A.; Mensonides, F.I.C.; Orij, R.; Tuzun, I.; van der Brink, J.; Smits, G.J.; van Gulik, W.M.; Brul, S.; Heijnen, J.J.; de Winde, J.H.; Teixeira de Mattos, M.J.; Kettner, C.; Nielsen, J.; Westerhoff, H.V.; Bakker, B.M.

    2010-01-01

    Realistic quantitative models require data from many laboratories. Therefore, standardization of experimental systems and assay conditions is crucial. Moreover, standards should be representative of the in vivo conditions. However, most often, enzyme-kinetic parameters are measured under assay

  16. Measuring enzyme activities under standardized in vivo-like conditions for systems biology

    NARCIS (Netherlands)

    van Eunen, Karen; Bouwman, Jildau; Daran-Lapujade, Pascale; Postmus, Jarne; Canelas, Andre B.; Mensonides, Femke I. C.; Orij, Rick; Tuzun, Isil; van den Brink, Joost; Smits, Gertien J.; van Gulik, Walter M.; Brul, Stanley; de Winde, Johannes H.; de Mattos, M. J. Teixeira; Kettner, Carsten; Nielsen, Jens; Westerhoff, Hans V.; Bakker, Barbara M.; Heijnen, J.J.

    Realistic quantitative models require data from many laboratories. Therefore, standardization of experimental systems and assay conditions is crucial. Moreover, standards should be representative of the in vivo conditions. However, most often, enzyme-kinetic parameters are measured under assay

  17. 14 CFR 33.21 - Engine cooling.

    Science.gov (United States)

    2010-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; General § 33.21 Engine cooling. Engine design and construction must provide the necessary cooling under conditions in which the airplane is expected to operate. ...

  18. Numerical Modelling of Micro-Stresses in Carbonised Austenitic Cast Steel under Rapid Cooling Conditions

    Directory of Open Access Journals (Sweden)

    Tuleja J.

    2017-06-01

    Full Text Available The paper presents a method of the numerical modelling of micro-stresses in carbonised austenitic cast steel being developed during rapid cooling due to differences in the values of thermal expansion coefficients for this material phases – carbides and austenitic matrix. Micro-stresses are indicated as the main cause of crack initiation in the tooling elements of carburising furnaces being mainly made of austenitic cast steel. A calculation model of carbonised and thermally fatigued austenitic cast steel was developed based on the microstructure images obtained using light microscopy techniques and the phase composition evaluated with the X-ray diffraction method. The values of the stress tensor components and the reduced stress in the complex models of test material structure were determined numerically by the finite element method. The effort analysis was performed and the areas where development of cracks is to be expected were identified, which was experimentally confirmed.

  19. Characteristic Evaluation on the Cooling Performance of an Electrical Air Conditioning System Using R744 for a Fuel Cell Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Moo-Yeon Lee

    2012-05-01

    Full Text Available The objective of this study was to investigate the cooling performance characteristics of an electrical air conditioning system using R744 as an alternative of R-134a for a fuel cell electric vehicle. In order to analyze the cooling performance characteristics of the air conditioning system using R744 for a fuel cell electric vehicle, an electrical air conditioning system using R744 was developed and tested under various operating conditions according to both inlet air conditions of the gas cooler and evaporator and compressor speed. The cooling capacity and coefficient of performance (COP forcooling of the tested air conditioning system were up to 6.4 kW and 2.5, respectively. In addition, the electrical air conditioning system with R744 using an inverter driven compressor showed better performance than the conventional air conditioning system with R-134a under the same operating conditions. The observed cooling performance of the developed electrical air conditioning system was found to be sufficient for cooling loads under various real driving conditions for a fuel cell electric vehicle.

  20. Development of ZL400 Mine Cooling Unit Using Semi-Hermetic Screw Compressor and Its Application on Local Air Conditioning in Underground Long-Wall Face

    Science.gov (United States)

    Chu, Zhaoxiang; Ji, Jianhu; Zhang, Xijun; Yan, Hongyuan; Dong, Haomin; Liu, Junjie

    2016-12-01

    Aiming at heat injuries occurring in the process of deep coal mining in China, a ZL400 mine-cooling unit employing semi-hermetic screw compressor with a cooling capacity of 400 kW is developed. This paper introduced its operating principle, structural characteristics and technical indexes. By using the self-built testing platform, some parameters for indication of its operation conditions were tested on the ground. The results show that the aforementioned cooling unit is stable in operation: cooling capacity of the unit was 420 kW underground-test conditions, while its COP (coefficient of performance) reached 3.4. To address the issue of heat injuries existing in No. 16305 U-shaped long-wall ventilation face of Jining No. 3 coal mine, a local air conditioning system was developed with ZL400 cooling unit as the system's core. The paper presented an analysis of characteristics of the air current flowing in the air-mixing and cooling mode of ZL400 cooling unit used in air intake way. Through i-d patterns we described the process of the airflow treatment, such as cooling, mixing and heating, etc. The cooling system decreased dry bulb temperature on working face by 3°C on average and 3.8°C at most, while lowered the web bulb temperature by 3.6°C on average and 4.8°C at most. At the same time, it reduced relative humidity by 5% on average and 8.6% at most. The field application of the ZL400 cooling unit had gain certain effects in air conditioning and provided support for the solution of mine heat injuries in China in terms of technology and equipment.

  1. Conformal Extensions of the Standard Model with Veltman Conditions

    DEFF Research Database (Denmark)

    Antipin, Oleg; Mojaza, Matin; Sannino, Francesco

    2014-01-01

    the Higgs is predicted to have the experimental value of the mass equal to 126 GeV. This model also predicts the existence of one more standard model singlet scalar boson with a mass of 541 GeV and the Higgs self-coupling to emerge radiatively. We study several other PNC examples that generally predict...... a somewhat smaller mass of the Higgs to the perturbative order we have investigated them. Our results can be a useful guide when building extensions of the standard model featuring fundamental scalars....

  2. Energetic and exergetic comparison of basic and ejector expander refrigeration systems operating under the same external conditions and cooling capacities

    International Nuclear Information System (INIS)

    Bilir Sag, N.; Ersoy, H.K.; Hepbasli, A.; Halkaci, H.S.

    2015-01-01

    Highlights: • An ejector was used as an expander for reducing throttling losses. • Experiments were made under the same external conditions and cooling capacities. • Work recovery in the ejector was achieved about 39–42%. • The exergy efficiency of the R134a cycle was improved by 6.6–11.24%. - Abstract: An experimental study was conducted on vapor compression refrigerators using R134a refrigerant for the purpose of achieving energy recovery and decreasing the effects of irreversibility. An ejector was used as an expander instead of an expansion valve. The coefficient of performance of the ejector refrigeration system and the amount of irreversibility and efficiency of each of its components were determined and compared with those of a basic vapor compression refrigeration system of the same cooling capacity under the same external conditions. It was found that the ejector expander system exhibited a lower total irreversibility in comparison with the basic system. When the ejector was used as the expander in the refrigeration system, the coefficient of performance was higher than in the basic system by 7.34–12.87%, while the exergy efficiency values were 6.6–11.24% higher than in the basic system

  3. Natural circulation cooling in a PWR geometry under accident-induced conditions

    International Nuclear Information System (INIS)

    Shimeck, D.J.; Johnsen, G.W.

    1983-01-01

    The characteristics and limits of natural circulation heat rejection over a wide range of conditions were experimentally investigated in a small-scale model of a pressurized water reactor. Conditions that were varied included primary and secondary coolant inventory, decay heat power, and primary noncondensable gas content. The results have defined three distinct modes of natural circulation, their limits and transition points, and the characteristic signatures accompanying natural circulation behavior. Particular emphasis is focused on the limits of natural circulation under severely degraded primary and secondary conditions

  4. Cooling Performance Characteristics of the Stack Thermal Management System for Fuel Cell Electric Vehicles under Actual Driving Conditions

    Directory of Open Access Journals (Sweden)

    Ho-Seong Lee

    2016-04-01

    Full Text Available The cooling performance of the stack radiator of a fuel cell electric vehicle was evaluated under various actual road driving conditions, such as highway and uphill travel. The thermal stability was then optimized, thereby ensuring stable operation of the stack thermal management system. The coolant inlet temperature of the radiator in the highway mode was lower than that associated with the uphill mode because the corresponding frontal air velocity was higher than obtained in the uphill mode. In both the highway and uphill modes, the coolant temperatures of the radiator, operated under actual road driving conditions, were lower than the allowable limit (80 °C; this is the maximum temperature at which stable operation of the stack thermal management system of the fuel cell electric vehicle could be maintained. Furthermore, under actual road driving conditions in uphill mode, the initial temperature difference (ITD between the coolant temperature and air temperature of the system was higher than that associated with the highway mode; this higher ITD occurred even though the thermal load of the system in uphill mode was greater than that corresponding to the highway mode. Since the coolant inlet temperature is expected to exceed the allowable limit (80 °C in uphill mode under higher ambient temperature with air conditioning system operation, the FEM design layout should be modified to improve the heat capacity. In addition, the overall volume of the stack cooling radiator is 52.2% higher than that of the present model and the coolant inlet temperature of the improved radiator is 22.7% lower than that of the present model.

  5. Textual complexity of standard conditions used in the construction industry

    OpenAIRE

    Raufdeen Rameezdeen; Anushi Rodrigo

    2013-01-01

    Clearly written communication aids the understanding of construction contracts, resulting in less disputation. Past research, using opinion surveys rather than objective criteria, shows that construction contracts lack clarity and standard forms have become complex over time. The study outlined in this paper uses three objective measures of clarity developed by linguists to establish the readability of construction contracts. In addition, thirty industry professionals participated in a Cloze ...

  6. Development of TPNCIRC code for Evaluation of Two-Phase Natural Circulation Flow Performance under External Reactor Vessel Cooling Conditions

    International Nuclear Information System (INIS)

    Choi, A-Reum; Song, Hyuk-Jin; Park, Jong-Woon

    2015-01-01

    During a severe accident, corium is relocated to the lower head of the nuclear reactor pressure vessel (RPV). Design concept of retaining the corium inside a nuclear reactor pressure vessel (RPV) through external cooling under hypothetical core melting accidents is called external reactor vessel cooling (ERVC). In this respect, validated two-phase natural circulation flow (TPNC) model is necessary to determine the adequacy of the ERVC design and operating conditions such as inlet area, form losses, gap distance, riser length and coolant conditions. The most important model generally characterizing the TPNC are void fraction and two-phase friction factors. Typical experimental and analytical studies to be referred to on two-phase circulation flow characteristics are those by Reyes, Gartia et al. based on Vijayan et al., Nayak et al. and Dubey et al. In the present paper, two-phase natural circulation (TPNC) flow characteristics under external reactor vessel cooling (ERVC) conditions are studied using two existing TPNC flow models of Reyes and Gartia et al. incorporating more improved void fraction and two-phase friction models. These models and correlations are integrated into a computer program, TPNCIRC, which can handle candidate ERVC design parameters, such as inlet, riser and downcomer flow lengths and areas, gap size between reactor vessel and surrounding insulations, minor loss factors and operating parameters of decay power, pressure and subcooling. Accuracy of the TPNCIRC program is investigated with respect to the flow rate and void fractions for existing measured data from a general experiment and ULPU specifically designed for the AP1000 in-vessel retention. Also, the effect of some important design parameters are examined for the experimental and plant conditions. Using the flow models and correlations are integrated into a computer program, TPNCIRC, a number of correlations have been examined. This seems coming from the differences of void fractions

  7. Radiative cooling for thermophotovoltaic systems

    Science.gov (United States)

    Zhou, Zhiguang; Sun, Xingshu; Bermel, Peter

    2016-09-01

    Radiative cooling has recently garnered a great deal of attention for its potential as an alternative method for photovoltaic thermal management. Here, we will consider the limits of radiative cooling for thermal management of electronics broadly, as well as a specific application to thermal power generation. We show that radiative cooling power can increase rapidly with temperature, and is particularly beneficial in systems lacking standard convective cooling. This finding indicates that systems previously operating at elevated temperatures (e.g., 80°C) can be passively cooled close to ambient under appropriate conditions with a reasonable cooling area. To examine these general principles for a previously unexplored application, we consider the problem of thermophotovoltaic (TPV) conversion of heat to electricity via thermal radiation illuminating a photovoltaic diode. Since TPV systems generally operate in vacuum, convective cooling is sharply limited, but radiative cooling can be implemented with proper choice of materials and structures. In this work, realistic simulations of system performance are performed using the rigorous coupled wave analysis (RCWA) techniques to capture thermal emitter radiation, PV diode absorption, and radiative cooling. We subsequently optimize the structural geometry within realistic design constraints to find the best configurations to minimize operating temperature. It is found that low-iron soda-lime glass can potentially cool the PV diode by a substantial amount, even to below ambient temperatures. The cooling effect can be further improved by adding 2D-periodic photonic crystal structures. We find that the improvement of efficiency can be as much as an 18% relative increase, relative to the non-radiatively cooled baseline, as well as a potentially significant improvement in PV diode lifetime.

  8. Mercury-Cadmium-Telluride Focal Plane Array Performance Under Non-Standard Operating Conditions

    Science.gov (United States)

    Richardson, Brandon S.; Eastwood, Michael L.; Bruce, Carl F.; Green, Robert O.; Coles, J. B.

    2011-01-01

    This paper highlights a new technique that allows the Teledyne Scientific & Imaging LLC TCM6604A Mercury-Cadmium-Telluride (MCT) Focal Plane Array (FPA) to operate at room temperature. The Teledyne MCT FPA has been a standard in Imaging Spectroscopy since its creation in the 1980's. This FPA has been used in applications ranging from space instruments such as CRISM, M3 and ARTEMIS to airborne instruments such as MaRS and the Next Generation AVIRIS Instruments1. Precise focal plane alignment is always a challenge for such instruments. The current FPA alignment process results in multiple cold cycles requiring week-long durations, thereby increasing the risk and cost of a project. These alignment cycles are necessary because optimal alignment is approached incrementally and can only be measured with the FPA and Optics at standard operating conditions, requiring a cold instrument. Instruments using this FPA are normally cooled to temperatures below 150K for the MCT FPA to properly function. When the FPA is run at higher temperatures the dark current increases saturating the output. This paper covers the prospect of warm MCT FPA operation from a theoretical and experimental perspective. We discuss the empirical models and physical laws that govern MCT material properties and predict the optimal settings that will result in the best MCT PA performance at 300K. Theoretical results are then calculated for the proposed settings. We finally present the images and data obtained using the actual system with the warm MCT FPA settings. The paper concludes by emphasizing the strong positive correlation between the measured values and the theoretical results.

  9. Standardization of incubation conditions for hemolysis testing of biomaterials

    NARCIS (Netherlands)

    Henkelman, Sandra; Rakhorst, Gerhard; Blanton, John; van Oeveren, Willem

    2009-01-01

    Hemolysis testing is the most common method to determine the hemocompatibility properties of biomaterials. There is however no consensus on the procedures of hemolysis testing due to insufficient comparative studies on the quality of the red blood cells used and the experimental conditions of

  10. 40 CFR 147.2925 - Standard permit conditions.

    Science.gov (United States)

    2010-07-01

    ... measurement; (ii) Individual(s) who preformed the measurements; (iii) Date(s) analyses were performed; (iv) Individual(s) who performed the analyses; (v) Analytical techniques or methods used, including quality... conditions. Proper operation and maintenance also includes adequate operator staffing and training, adequate...

  11. Heating, Air-Conditioning, and Refrigeration Technician. National Skill Standards.

    Science.gov (United States)

    Vocational Technical Education Consortium of States, Decatur, GA.

    This guide contains information on the knowledge and skills identified by industry as essential to the job performance of heating, air-conditioning, and refrigeration technicians. It is intended to assist training providers in public and private institutions, as well as in industry, to develop and implement training that will provide workers with…

  12. Standard Practices for Simulated Service Testing for Corrosion of Metallic Containment Materials for Use With Heat-Transfer Fluids in Solar Heating and Cooling Systems

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1980-01-01

    1.1 These practices cover test procedures simulating field service for evaluating the performance under corrosive conditions of metallic containment materials in solar heating and cooling systems. All test results relate to the performance of the metallic containment material only as a part of a metal/fluid pair. Performance in these test procedures, taken by itself, does not necessarily constitute an adequate basis for acceptance or rejection of a particular metal/fluid pair in solar heating and cooling systems, either in general or in a particular design. 1.2 These practices describe test procedures used to evaluate the resistance to deterioration of metallic containment materials in the several conditions that may occur in operation of solar heating and cooling systems. These conditions include: (1) operating full flow; (2) stagnant empty vented; (3) stagnant, closed to atmosphere, non-draindown; and (4) stagnant, closed to atmosphere, draindown. 1.3 The recommended practices cover the following three te...

  13. Designing of the cooling vest from paraffin compounds and evaluation of its impact under laboratory hot conditions

    Directory of Open Access Journals (Sweden)

    Saeid Yazdanirad

    2016-01-01

    Conclusions: The designed cooling vest with low cost can be used to prevent thermal strain and to increase the physiological stability against the heat. However, the latent heat of this cooling vest was low.

  14. Evaluation of air temperature distribution using thermal image under conditions of nocturnal radiative cooling in winter season over Shikoku area

    International Nuclear Information System (INIS)

    Kurose, Y.; Hayashi, Y.

    1993-01-01

    Using the thermal images offered by the infra-red thermometer and the LANDSAT, the air temperature distribution over mountainous regions were estimated under conditions of nocturnal radiative cooling in the winter season. The thermal image analyses by using an infra-red thermometer and the micrometeological observation were carried out around Zentsuji Kagawa prefecture. At the same time, the thermal image analyses were carried out by using the LANDSAT data. The LANDSAT data were taken on Dec. 7, 1984 and Dec. 5, 1989. The scenes covered the west part of Shikoku, southwest of Japan.The results were summarized as follows:Values of the surface temperature of trees, which were measured by an infra-red thermometer, were almost equal to the air temperature. On the other hand, DN values detected by LANDSAT over forest area were closely related with air temperature observed by AMeDAS. Therefore, it is possible to evaluate instantaneously a spatial distribution of the nocturnal air temperature from thermal image.The LANDSAT detect a surface temperature over Shikoku area only at 21:30. When radiative cooling was dominant, the thermal belt and the cold air lake were already formed on the mountain slopes at 21:30. Therfore, it is possible to estimate the characteristic of nocturnal temperature distribution by using LANDSAT data.It became clear that the temperature distribution estimated by thermal images offered by the infra-red thermometer and the LANDSAT was useful for the evaluation of rational land use for winter crops

  15. Reaction of the Lithuanian alfalfa breeding populations to Phoma medicaginis under cool temperate climate conditions

    International Nuclear Information System (INIS)

    Liatukiene, A.; Liatukas, Z.; Ruzgas, V.

    2015-01-01

    The alfalfa Phoma medicaginis resistance was evaluated on 100 accessions with different development date. Weather conditions favoured high disease pressure and differentiation of tested accessions was not clear in 2011. Accessions were compared by maximal disease severity (DS) and area under disease progress curve (AUDPC). DS ranged from 10 to 60% and AUDPC value ranged 119-727 in 2009. DS and AUDPC values were higher in 2010 and 2011, DS ranged 40-65 and 66-68% and AUDPC ranged 2263-2928 and 2853-3006. Development date of accessions showed low impact on resistance. The correlations between DS and AUDPC results of accessions across years highly varied (r=0.189 - 0.828) due to low differentiation of accessions resistance. Selection of alfalfa material promising by Phoma medicaginis resistance should be done under conditions moderately favourable for development of this disease. (author)

  16. Surface condition effects on tritium permeation through the first wall of a water-cooled ceramic breeder blanket

    International Nuclear Information System (INIS)

    Zhou, H.-S.; Xu, Y.-P.; Liu, H.-D.; Liu, F.; Li, X.-C.; Zhao, M.-Z.; Qi, Q.; Ding, F.; Luo, G.-N.

    2016-01-01

    Highlights: • We investigate surface effects on T transport through the first wall. • We solve transport equations with various surface conditions. • The RAFMs walls w/and w/o W exhibit different T permeation behavior. • Diffusion in W has been found to be the rate-limiting step. - Abstract: Plasma-driven permeation of tritium (T) through the first wall of a water-cooled ceramic breeder (WCCB) blanket may raise safety and other issues. In the present work, surface effects on T transport through the first wall of a WCCB blanket have been investigated by theoretical calculation. Two types of wall structures, i.e., reduced activation ferritic/martensitic steels (RAFMs) walls with and without tungsten (W) armor, have been analyzed. Surface recombination is assumed to be the boundary condition for both the plasma-facing side and the coolant side. It has been found that surface conditions at both sides can affect T permeation flux and inventory. For the first wall using W as armor material, T permeation is not sensitive to the plasma-facing surface conditions. Contamination of the surfaces will lead to higher T inventory inside the first wall.

  17. Performance simulation of the JPL solar-powered distiller. Part 1: Quasi-steady-state conditions. [for cooling microwave equipment

    Science.gov (United States)

    Yung, C. S.; Lansing, F. L.

    1983-01-01

    A 37.85 cu m (10,000 gallons) per year (nominal) passive solar powered water distillation system was installed and is operational in the Venus Deep Space Station. The system replaced an old, electrically powered water distiller. The distilled water produced with its high electrical resistivity is used to cool the sensitive microwave equipment. A detailed thermal model was developed to simulate the performance of the distiller and study its sensitivity under varying environment and load conditions. The quasi-steady state portion of the model is presented together with the formulas for heat and mass transfer coefficients used. Initial results indicated that a daily water evaporation efficiency of 30% can be achieved. A comparison made between a full day performance simulation and the actual field measurements gave good agreement between theory and experiment, which verified the model.

  18. Heat transfer tests conducted on full-scale model, to investigate cooling conditions of EL.3 experimental reactor

    International Nuclear Information System (INIS)

    Raievski, R.; Bousquet, M.; Braudeau, M.; Milliat, M.

    1958-01-01

    For such high heat flux density as is released in the channels of EL3 reactor (2.10 6 kcal/m 2 h on the hottest point) cooling conditions have proved to be satisfactory, that is free from nucleate boiling. The arrangements provided for these tests and the technique used for measurements (of temperature particularly) are specified. Two fields have been investigated: in the former (forced convection without nucleate boiling) a good agreement is found with Colburn's formula. The influence of the ratio L/D is pointed out. The latter field is of forced convection with beginning of nucleate boiling; there the observed raise of the transfer coefficient has been shown occurring with some delay. (author) [fr

  19. Service oriented product innovation for improved environmental performance. An an exploratory case study of the air conditioning and cooling sector

    Energy Technology Data Exchange (ETDEWEB)

    Cook, M.; Maggs, H.; Neame, C.; Lemon, M. [The School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire (United Kingdom)

    2006-09-15

    The need to improve the environmental performance of production and consumption practices within advanced industrialised nations is widely accepted. Finding ways to satisfy demand using far fewer resources is central to research in this field. For many, the trajectories of service orientated products are thought to provide an opportunity to address this need and anticipate futures in which economic growth is de-coupled from resource use. This paper presents the findings of exploratory research in the air-conditioning and cooling sector, which sought to understand how these benefits might be realised. It suggests that these benefits will not arise as a result of economic restructuring but rather that a deeper understanding of the process of service innovation, which underpins trajectories of service orientated products, is required to develop effective policy.

  20. Direct measurement of multi-noncondensable and steam mixture under an accident condition of a Passive Containment Cooling System (PCCS)

    International Nuclear Information System (INIS)

    Yokobori, S.; Arai, K.; Tobimatsu, T.; Kurita, T.; Ishizuka, T.; Oikawa, H.; Herzog, W.

    1998-01-01

    The Passive Containment Cooling System (PCCS) has a function to remove the long-term decay heat following an accident by condensation. As an extension of the PCCS development program, its heat removal capability under a severe accident condition has been tested. The effect of the lighter noncondensable than steam on the PCCS heat transfer characteristics was clarified. Helium gas was used to simulate hydrogen gas which can be generated by metal-water reaction. In the final stage, multi-noncondensables (i.e. both nitrogen and helium) were simultaneously confined. The GIRAFFE measurement system was accordingly modified so that noncondensable gas concentration was directly measured. Due to installation of direct measurement system of noncondensable, the noncondensable transport mechanism was modeled so that the analytical code might be remarkably improved. (author)

  1. Physiological and productive responses of multiparous lactating Holstein cows exposed to short-term cooling during severe summer conditions in an arid region of Mexico

    Science.gov (United States)

    Avendaño-Reyes, L.; Hernández-Rivera, J. A.; Álvarez-Valenzuela, F. D.; Macías-Cruz, U.; Díaz-Molina, R.; Correa-Calderón, A.; Robinson, P. H.; Fadel, J. G.

    2012-11-01

    Heat stress generates a significant economic impact for the dairy industry in arid and semi-arid regions of the world, so that heat abatement is an important issue for dairy producers. The objective of this study was to evaluate effects of two short-term cooling periods on physiological and productive status of lactating Holstein cows during hot ambient temperatures. Thirty-nine multiparous cows were blocked by milk yield and assigned to one of three treatments including: control group (C), cows cooled before milking time (0500 and 1700 h daily, 1 h cooling); AM group, cows cooled at 1000 h and before milking (2 h cooling); and AM + PM group, cows cooled at 1100, 1500 and 2200 h, as well as before milking (4 h cooling). The cooling system was placed in the holding pen which the cows were moved through for cooling. Respiratory rate, and temperatures of thurl and right flank, were lower ( P cows from the AM + PM group than AM and C cows during the morning and afternoon. However, udder temperature was higher in the AM + PM group compared to AM and C groups during the afternoon, although lower than the AM group during the morning. Rectal temperature was similar in all groups. Thyroxin concentrations tended ( P milk production than C (18.70 vs. 17.43 kg, respectively), and AM + PM cows had a trend ( P milk energy output vs. the C and AM groups (13.75 vs. 13.18 and 13.15 Mcal, respectively). Protein and fat in milk, body condition score, glucose, cholesterol, triglycerides and triiodothyronine were similar among the groups. Four hours of cooling with spray and fans during severe summer temperatures only modestly improved milk yield of lactating Holstein cows.

  2. F-state quenching with CH4 for buffer-gas cooled 171Y b+ frequency standard

    Directory of Open Access Journals (Sweden)

    Y.-Y. Jau

    2015-11-01

    Full Text Available We report that methane, CH4, can be used as an efficient F-state quenching gas for trapped ytterbium ions. The quenching rate coefficient is measured to be (2.8 ± 0.3 × 106 s−1 Torr−1. For applications that use microwave hyperfine transitions of the ground-state 171Y b ions, the CH4 induced frequency shift coefficient and the decoherence rate coefficient are measured as δν/ν = (−3.6 ± 0.1 × 10−6 Torr−1 and 1/T2 = (1.5 ± 0.2 × 105 s−1 Torr−1. In our buffer-gas cooled 171Y b+ microwave clock system, we find that only ≤10−8 Torr of CH4 is required under normal operating conditions to efficiently clear the F-state and maintain ≥85% of trapped ions in the ground state with insignificant pressure shift and collisional decoherence of the clock resonance.

  3. Damage Analysis of Elbow Fitting at Condenser Air Conditioning Cooling System

    Directory of Open Access Journals (Sweden)

    Hari Prastowo

    2017-09-01

    Full Text Available Elbow fittings is one type of fitting on the piping installation that serves to change the flow direction. With the sudden flow of changes, it will affect the physical condition of the elbow. The flow changes in the elbow will result in changes of  flow velocity that affect wall of elbow, the condition will cause erosion corrosion phenomenon.  Erosion corrotion is a type of corrosion that uses a mechanical process through the relative movement of the flow and metal. Corrosion erosion can also be caused by impingment corrotion or very rapid flow movement. This study aims to determine the cause of damage elbow by using a CFD simulation and troubleshooting by adding a Vortex Generator or a installed disturber system in the pipeline installation and simulating it again. From the results of research conducted that elbow damage caused by high flow velocity that concerns the outer elbow. The addition of Vortex Generator is proven to be used to reduce excessive flow velocity on erosion-corroded parts. According to the results of the investigation the placement of the most efficient vortex generator if placed at a distance of 0.1 R from elbow inlet.

  4. Zircaloy PWR fuel cladding deformation tests under mainly convective cooling conditions

    International Nuclear Information System (INIS)

    Hindle, E.D.; Mann, C.A.

    1980-01-01

    In a loss-of-coolant accident the temperature of the cladding of the fuel rods may rise to levels (650-810 0 C) where the ductility of Zircaloy is high (approximately 80%). The net outward pressure which will obtain if the coolant pressure falls to a small fraction of its normal working value produces stresses in the cladding which can result in large strain through secondary creep. An earlier study of the deformation of specimens of PWR Zircaloy cladding tubing 450 mm long under internal pressure had shown that strains of over 50% could be produced over considerable lengths (greater than twenty tube diameters). Extended deformation of this sort might be unacceptable if it occurred in a fuel element. The previous tests had been carried out under conditions of uniform radiative heat loss, and the work reported here extends the study to conditions of mainly convective heat loss believed to be more representative of a fuel element following a loss of coolant. Zircaloy-4 cladding specimens 450 mm long were filled with alumina pellets and tested at temperatures between 630 and 845 0 C in flowing steam at atmospheric pressure. Internal test pressures were in the range 2.9-11.0 MPa (400-1600 1b/in 2 ). Maximum strains were observed of the same magnitude as those seen in the previous tests, but the shape of the deformation differed; in these tests the deformation progressively increased in the direction of the steam flow. These results are compared with those from multi-rod tests elsewhere, and it is suggested that heat transfer has a dominant effect in determining deformation. The implications for the behaviour of fuel elements in a loss-of-coolant accident are outlined. (author)

  5. Application of solar energy in heating and cooling of residential buildings under Central Asian conditions

    Directory of Open Access Journals (Sweden)

    Usmonov Shukhrat Zaurovich

    2014-04-01

    Full Text Available Solar radiation is the main source of thermal energy for almost all the processes developing in the atmosphere, hydrosphere, and biosphere. The total duration of sunshine in Tajikistan ranges from 2100 to 3170 hours per year. Solar collectors can be mounted on the roof of a house after its renovation and modernization. One square meter of surface area in Central Asia accounts for up to 1600 kW/h of solar energy gain, whilst the average gain is 1200 kW/h. Active solar thermal systems are able to collect both low- and high-temperature heat. Active systems require the use of special engineering equipment for the collection, storage, conversion and distribution of heat, while a low-grade system is based on the principle of using a flat solar collector. The collector is connected to the storage tank for storing the heated water, gas, etc. The water temperature is in the range 50-60 °C. For summer air conditioning in hot climates, absorption-based solar installations with open evaporating solution are recommended. The UltraSolar PRO system offers an opportunity to make a home independent of traditional electricity. Combining Schneider Electric power generation and innovative energy storage technology results in an independent power supply. Traditional power supply systems can be short-lived since they store energy in lead-acid batteries which have a negligible lifetime. Lead-acid batteries operate in a constant charge-discharge mode, require specific conditions for best performance and can fail suddenly. Sudden failure of lead acid batteries, especially in winter in the northern part of Tajikistan, completely disables the heating system of a building. Instead, it is recommended to use industrial lithium-ion batteries, which have a significantly longer life and reliability compared to lead-acid type. UltraSolar PRO are ideal and provide a complete package, low noise and compact lithium-ion power supply.

  6. Experimental study on heat transfer characteristics of internal heat exchangers for CO{sub 2} system under cooling condition

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young Chul [Sunmoon University, Asan (Korea, Republic of); Kim, Dae Hoon; Lee, Jae Heon [Hanyang University, Seoul (Korea, Republic of); Choi, Jun Young [Korea Testing Laboratory, Ansan (Korea, Republic of); Lee, Sang Jae [Korea Institute of Industral Technology, Cheonan (Korea, Republic of)

    2009-03-15

    This paper presents the heat transfer characteristics of the internal heat exchanger (IHX) for CO{sub 2} heat pump system. The influence on the IHX length, the mass flow rate, the shape of IHX, the operating condition, and the oil concentration was investigated under a cooling condition. Four kinds of IHX with a coaxial type and a micro-channel type, a mass flow meter, a pump, and a measurement system. With increasing of the IHX length, the capacity, the effectiveness, and the pressure drop increased. For the mass flow rate, the capacity of micro-channel IHX are higher about 2 times than those of coaxial IHX. The pressure drop was larger at cold-side than at hot-side. In the transcritical CO{sub 2} cycle, system performance is very sensitive to the IHX design. Design parameters are closely related with the capacity and the pressure drop of CO{sub 2} heat pump system. Along the operating condition, the performance of CO{sub 2} IHXs is different remarkably. For oil concentration 1, 3, 5%, the capacity decreases and the pressure drop increased, as compared with oil concentration 0%

  7. Evaluation of Tool Path Strategy and Cooling Condition Effects on the Cutting Force and Surface Quality in Micromilling Operations

    Directory of Open Access Journals (Sweden)

    Ugur Koklu

    2017-10-01

    Full Text Available Compared to milling on a macro scale, the micromilling process has several cumbersome points that need to be addressed. Rapid tool wear and fracture, severe burr formation, and poor surface quality are the major problems encountered in the micromilling process. This study aimed to reveal the effect of cutting path strategies on the cutting force and surface quality in the micromilling of a pocket. The hatch zigzag tool path strategy and the contour climb tool path strategy under different cooling conditions (e.g., dry, air blow, and flood coolant at fixed cutting parameters. The micromilling tests revealed that better results were obtained with the use of the contour tool path strategy in terms of cutting forces (by up to ~43% compared to the dry condition and surface quality (by up to ~44% compared to the air blow condition when compared to the hatch tool path strategy. In addition, the flood coolant reduces the cutting temperature and eliminates chips to significantly enhance the quality of the micro milled surface.

  8. Aerosol resuspension in the reactor cooling system of LWR's under severe accident conditions

    International Nuclear Information System (INIS)

    Alonso, A.; Bolado, R.; Hontanon, E.

    1991-07-01

    Aerosol resuspension from the pipes of the RCS under severe accident conditions happens when the carrier gas flow is turbulent. The origin of such phenomenon seems to be the existence of turbulent bursts in the neighbourhood of the pipe wall. These bursts are of random nature, in space and time. Three theoretical models have been found in available literature; those are: Cleaver and Yates', RESUS and Reeks' models. The first two of them are force balance models, in which particle detachment is supposed whenever aerodynamic lift or drag forces, respectively exceed adhesive forces, and the third one is an energy balance model in which resuspension happens when particle vibrational energy exceeds adhesive potential. From experimental evidence it seems that the studied phenomenon is a force balance problem and RESUS seems to be the most appropriate to it, among the available ones. Small-scale experiments have shown, as main parameters affecting resuspension, the Reynolds number of the flow, aerosol composition and initial loading per unit of area. Moreover, the resuspension rate decreases with time in all experiments where temporal measurements were taken

  9. Deposition of boron on fuel rod surface under sub-cooled boiling conditions-An approach toward understanding AOA occurrence

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Asakura, Yamato; Suzuki, Hiroaki

    2011-01-01

    Highlights: → AOA is one of key issues for maintaining stable PWR operation. → AOA is caused by boron accumulation on fuel rods under sub-cooled boiling. → Unstable depositing boron was seldom measured on fuel rods. → MED model was originally developed for crud deposition on boiling surface. → Amount of boron on fuel rod can be evaluated with MED model. - Abstract: In PWR primary coolant, it has been assumed that Li and B ions deposited on fuel rod surface under sub-cooled boiling conditions and they changed their chemical forms by chemical reaction with nickel iron oxides on the fuel surface. Accumulated boron on the fuel led to axial offset anomaly (AOA). In the present paper, the amount of boron deposited on the fuel surface was evaluated from two directions. The first calculated the amount with the extended micro-layer evaporation and dry-out (MED) model and the other estimated it from the viewpoint of reactor reactivity (neutron economy calculation). The MED model, which was developed for predicting iron crud deposition on the boiling surface of BWR fuel rods, was extended for application to metallic ion deposition, and modified to evaluate deposition of crud and metallic ions on sub-cooled boiling surface. Processes of growth and collapse of bubbles were calculated to determine the time from bubble generation to collapse and total evaporation volume and deposition amount of boron and metallic ions and their oxides on the fuel rod surface for a bubble. Finally chemical reaction rates of boron and metallic ions were calculated in the deposits. From the evaluation, it was concluded that: (i) the calculated deposition amount of boron on the fuel rod surface, which was four or forty times larger than measured amounts of boron and nickel oxides compounds, was seldom measured in the fuel deposits due to its high release rate; (ii) its hideout return during the reactor shutdown period was seldom observed due to its high concentration in the primary coolant

  10. The influence of local effects on thermal sensation under non-uniform environmental conditions--gender differences in thermophysiology, thermal comfort and productivity during convective and radiant cooling.

    Science.gov (United States)

    Schellen, L; Loomans, M G L C; de Wit, M H; Olesen, B W; van Marken Lichtenbelt, W D

    2012-09-10

    Applying high temperature cooling concepts, i.e. high temperature cooling (T(supply) is 16-20°C) HVAC systems, in the built environment allows the reduction in the use of (high quality) energy. However, application of high temperature cooling systems can result in whole body and local discomfort of the occupants. Non-uniform thermal conditions, which may occur due to application of high temperature cooling systems, can be responsible for discomfort. Contradictions in literature exist regarding the validity of the often used predicted mean vote (PMV) index for both genders, and the index is not intended for evaluating the discomfort due to non-uniform environmental conditions. In some cases, however, combinations of local and general discomfort factors, for example draught under warm conditions, may not be uncomfortable. The objective of this study was to investigate gender differences in thermophysiology, thermal comfort and productivity in response to thermal non-uniform environmental conditions. Twenty healthy subjects (10 males and 10 females, age 20-29 years) were exposed to two different experimental conditions: a convective cooling situation (CC) and a radiant cooling situation (RC). During the experiments physiological responses, thermal comfort and productivity were measured. The results show that under both experimental conditions the actual mean thermal sensation votes significantly differ from the PMV-index; the subjects are feeling colder than predicted. Furthermore, the females are more uncomfortable and dissatisfied compared to the males. For females, the local sensations and skin temperatures of the extremities have a significant influence on whole body thermal sensation and are therefore important to consider under non-uniform environmental conditions. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Proposed Advanced Reactor Adaptation of the Standard Review Plan NUREG-0800 Chapter 4 (Reactor) for Sodium-Cooled Fast Reactors and Modular High-Temperature Gas-Cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Belles, Randy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Poore, III, Willis P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Flanagan, George F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holbrook, Mark [Idaho National Lab. (INL), Idaho Falls, ID (United States); Moe, Wayne [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sofu, Tanju [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-03-01

    This report proposes adaptation of the previous regulatory gap analysis in Chapter 4 (Reactor) of NUREG 0800, Standard Review Plan (SRP) for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR [Light Water Reactor] Edition. The proposed adaptation would result in a Chapter 4 review plan applicable to certain advanced reactors. This report addresses two technologies: the sodium-cooled fast reactor (SFR) and the modular high temperature gas-cooled reactor (mHTGR). SRP Chapter 4, which addresses reactor components, was selected for adaptation because of the possible significant differences in advanced non-light water reactor (non-LWR) technologies compared with the current LWR-based description in Chapter 4. SFR and mHTGR technologies were chosen for this gap analysis because of their diverse designs and the availability of significant historical design detail.

  12. Developmental Screening Using the Ages and Stages Questionnaire: Standardized versus Real-World Conditions

    Science.gov (United States)

    San Antonio, Marianne C.; Fenick, Ada M.; Shabanova, Veronika; Leventhal, John M.; Weitzman, Carol C.

    2014-01-01

    Developmental screens are often used in nonstandardized conditions, such as pediatric waiting rooms, despite validation under standardized conditions. We examined the reproducibility of the Ages and Stages Questionnaire (ASQ), a developmental screening instrument commonly used in pediatric practices, under standardized versus nonstandardized…

  13. 24 CFR 886.113 - Physical condition standard; physical inspection requirements.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Physical condition standard; physical inspection requirements. 886.113 Section 886.113 Housing and Urban Development Regulations... § 886.113 Physical condition standard; physical inspection requirements. (a) General. Housing used in...

  14. Evaluation of the effect of Bi, Sb, Sr and cooling condition on eutectic phases in an Al–Si–Cu alloy (ADC12) by in situ thermal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Farahany, S., E-mail: saeedfarahany@gmail.com [Department of Materials Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru (Malaysia); Ourdjini, A.; Idrsi, M.H. [Department of Materials Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru (Malaysia); Shabestari, S.G. [Center of Excellence for High Strength Alloys Technology (CEHSAT), School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), 16846-13114 Tehran (Iran, Islamic Republic of)

    2013-05-10

    Highlights: • Combined effect of Bi, Sb and Sr additions, and cooling condition was evaluated. • Two different scenarios of recalecense in response to cooling rate were observed. • Fraction solid increased in the order of Sr > Bi > Sb, corresponds to Si morphologies. • Only Bi decreased the nucleation temperature of Al{sub 2}Cu eutectic phase. - Abstract: Al–Si and Al–Cu eutectic phases strongly affect the properties of Al–Si–Cu cast alloys. The characteristic parameters of these two eutectic phases with addition of bismuth, antimony and strontium under different cooling rates (0.6–2 °C/s) were investigated in ADC12 alloy using in situ thermal analysis. Results show that additives affect the Al–Si phase more than the Al–Cu (Al{sub 2}Cu) phase. Addition elements showed two different scenarios in response to cooling rate in terms of recalescence of the Al–Si eutectic phase. Both Bi and Sb caused an increase in recalescence with increased cooling rate but Sr addition reduced the recalescence. Additions of Sb and Sr increased the nucleation temperature of Al{sub 2}Cu, but addition of Bi produced an opposite effect. There seems to be relationship between the solidification temperature range and fraction solid of Al–Si and Al{sub 2}Cu eutectic phases. As the cooling rate increases the fraction solid of Al–Si decreased and that of Al{sub 2}Cu increased.

  15. Huge opportunity for solar cooling

    International Nuclear Information System (INIS)

    Rowe, Daniel

    2014-01-01

    's Charlestown Square Shopping Centre and Echuca Hospital. These systems join a number of others already in operation at the large commercial and industrial scale, as well as a smaller number of systems providing cooling to cafes and offices. The development in this area is being supported by CSIRO's Solar Cooling research team which provides development, modelling and design expertise across the spectrum of solar cooling variants, sizes and applications - from remote community food preservation in India, to large commercial and residential systems in Australia. The group also has industry test facilities to support the development and testing of solar air conditioning systems as well as conventional air conditioning technologies. The Australian Institute of Refrigeration Air Conditioning and Heating (AIRAH's) Solar Cooling Special Technical Group is also involved in developing the solar cooling industry in Australia with the aim of combating climate change by reducing greenhouse emissions from the residential and commercial building sectors. The group coordinates industry and research efforts and organises information exchange, educational and training events for interested technical and business representatives. Fact file- Solar cooling systems are essentially comprised of two parts - solar thermal collectors and a sorption chiller which convert the heat into useful cooling. Though a number of collector and chiller combinations exist, no one single approach has yet dominated. Corresponding with the type of chiller used, solar cooling systems are often grouped into three categories: absorption, adsorption and desiccant. During design, an appropriate collector technology will be chosen, typically either a parabolic, flat plate or evacuated tube collector. The optimal configuration is also determined in design, to align equipment characteristics with the conditions, environment and requirements presented by each application. Thus solar cooling has a number of variants

  16. Monitoring results and analysis of thermal comfort conditions in experimental buildings for different heating systems and ventilation regimes during heating and cooling seasons

    Science.gov (United States)

    Gendelis, S.; Jakovičs, A.; Ratnieks, J.; Bandeniece, L.

    2017-10-01

    This paper focuses on the long-term monitoring of thermal comfort and discomfort parameters in five small test buildings equipped with different heating and cooling systems. Calculations of predicted percentage of dissatisfied people (PPD) index and discomfort factors are provided for the room in winter season running three different heating systems - electric heater, air-air heat pump and air-water heat pump, as well as for the summer cooling with split type air conditioning systems. It is shown that the type of heating/cooling system and its working regime has an important impact on thermal comfort conditions in observed room. Recommendations for the optimal operating regimes and choice of the heating system from the thermal comfort point of view are summarized.

  17. Molecular typing of Legionella pneumophila from air-conditioning cooling waters using mip gene, SBT, and FAFLP methods.

    Science.gov (United States)

    Gong, Xiangli; Li, Juntao; Zhang, Ying; Hou, Shuiping; Qu, Pinghua; Yang, Zhicong; Chen, Shouyi

    2017-08-01

    Legionella spp. are important waterborne pathogens. Molecular typing has become an important method for outbreaks investigations and source tracking of Legionnaires. In a survey program conducted by the Guangzhou Center for Disease Control and Prevention, multiple serotypes Legionella pneumophila (L. pneumophila) were isolated from waters in air-conditioning cooling towers in urban Guangzhou region, China between 2008 and 2011. Three genotyping methods, mip (macrophage infectivity potentiator) genotyping, SBT (sequence-based typing), and FAFLP (fluorescent amplified fragment length polymorphism analysis) were used to type these waterborne L. pneumophila isolates. The three methods were capable of typing all the 134 isolates and a reference strain of L. pneumophila (ATCC33153), with discriminatory indices of 0.7034, 0.9218, and 0.9376, for the mip, SBT, and FAFLP methods respectively. Among the 9 serotypes of the 134 isolates, 10, 50, and 34 molecular types were detected by the mip, SBT, and FAFLP methods respectively. The mip genotyping and SBT typing are more feasible for inter-laboratory results sharing and comparison of different types of L. pneumophila. The SBT and FAFLP typing methods were rapid with higher discriminatory abilities. Combinations of two or more of the typing methods enables more accurate typing of Legionella isolates for outbreak investigations and source tracking of Legionnaires. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Influence of cooling and thawing conditions and cryoprotectant concentration on frozen-thawed survival of white-naped crane (Antigone vipio) spermatozoa.

    Science.gov (United States)

    Panyaboriban, Saritvich; Pukazhenthi, Budhan; Brown, Megan E; Crowe, Chris; Lynch, Warren; Singh, Ram P; Techakumphu, Mongkol; Songsasen, Nucharin

    2016-10-01

    To assist in genetic resource management and recovery efforts of the white-naped crane (Antigone vipio), we conducted two experiments to evaluate the effect of cooling condition, thawing rate, and cryoprotectant concentration on sperm survival post-thaw. Semen was collected from four mature males during breeding season (March and April) and evaluated for volume, sperm concentration, motility, and membrane integrity. In Experiment 1, ejaculates (n = 8) were diluted with Beltsville Poultry Semen Extender (BPSE) containing 10% dimethylsulfoxide (Me2SO) and frozen using either one (average cooling rate = 2.5 °C/min) or two step (average cooling rate = 7 and 9 °C/min, respectively) cooling method. The frozen samples were thawed using one of two thawing rates: 37 °C 30 s vs. 4 °C 1 min. In Experiment 2, samples were diluted with crane semen extender containing either 6% or 10% Me2SO, frozen using two-step method and then thawed at 37 °C for 30 s. Both cooling condition (two-step > one-step) and thawing rate (37 °C 30 s > 4 °C 1 min) impacted sperm motility, progression and kinetic characteristics (P  0.05) affect plasma membrane or acrosomal integrity. Concentration of Me2SO did not impact frozen-thaw survival. We conclude that white-naped crane sperm cryopreserved using a combination of two-step cooling and thawing at 37 °C 30 s was superior to other cooling and thawing combinations regarding to sustaining sperm motility with good motility kinetics. Findings represent the first steps towards the development of effective cryopreservation protocols and establishment of a genome resource bank for this threatened species. Copyright © 2016. Published by Elsevier Inc.

  19. Equipment qualification NPP in harsh environmental conditions occurring during a design basis accident (DBA), beyond design basis accident (BDBA) in accordance with international standards

    International Nuclear Information System (INIS)

    Aparkin, F.M.; )

    2015-01-01

    The purpose of Equipment Qualification NPP (EQ), safety-related electrical and mechanical equipment is: reducing the probability of equipment failure common cause in connection with the harsh environmental conditions at the design and beyond design basis accidents; to demonstrate that the safety related electrical and mechanical equipment can perform their specific functions related safety in harsh environments in design and beyond design basis accidents. Presentation defines methodological bases of practical EQ in accordance with international standards used for PWR, for demonstration the performance of its safety functions, which subjected to abnormal and accident conditions, including loss of ventilation systems, breaks feed waterline, steam and cooling water main system and seismic events [ru

  20. Size, diet, and condition of age-0 Pacific cod (Gadus macrocephalus) during warm and cool climate states in the eastern Bering sea

    Science.gov (United States)

    Farley, Edward V.; Heintz, Ron A.; Andrews, Alex G.; Hurst, Thomas P.

    2016-12-01

    The revised Oscillating Control Hypothesis for the Bering Sea suggests that recruitment of groundfish is linked to climatic processes affecting seasonal sea ice that, in turn, drives the quality and quantity of prey available to young fish for growth and energy storage during their critical life history stages. We test this notion for age-0 (juvenile) Pacific cod (Gadus macrocephalus) by examining the variability in size, diet, and energetic condition during warm (2003-2005), average (2006), and cool (2007-2011) climate states in the eastern Bering Sea. Juvenile cod stomachs contained high proportions of age-0 walleye pollock (by wet weight) during years with warm sea temperatures with a shift to euphausiids and large copepods during years with cool sea temperatures. Juvenile cod were largest during years with warm sea temperatures and smallest during years with cool sea temperatures. However, energetic status (condition) of juvenile cod was highest during years with cool sea temperatures. This result is likely linked to the shift to high quality, lipid-rich prey found in greater abundance on the shelf and in the stomach contents of juvenile cod during cool years. Our examination of juvenile cod size, diet, and energetic status provided results that are similar to those from studies on juvenile pollock, suggesting that the common mechanisms regulating gadid recruitment on the eastern Bering Sea shelf are climate state, prey quality and quantity, and caloric density of gadids prior to winter.

  1. The influence of the passive evaporative cooling vest on a chemical industry workers and physiological strain level in hot conditions

    Directory of Open Access Journals (Sweden)

    Karkalić Radovan M.

    2015-01-01

    Full Text Available The present study was conducted in order to evaluate efficiency of a personal body cooling system based on passive evaporative technologies and its effects on test subjects psycho-physiological suitability during exertional heat stress in hot environment. Performed results are based on conducted tests in climatic chamber in the Military Medical Academy Institute of Hygiene in Belgrade. Ten male test subjects were subjected to exertional heat stress test consisted of walking on motorized treadmill at a speed of 5 km/h in hot environment. Tests were performed with and without cooling system. As a physiological strain indicator the following parameters have been determined: mean skin temperature, tympanic temperature, heart rate and sweat rate. Results confirmed that cooling vest worn over the clothes was able to attenuate the physiological strain levels during exercise, when compared to identical exposure without the cooling system.

  2. Russian standards and design practice of ensuring NPP reliability under severe external loading conditions

    International Nuclear Information System (INIS)

    Birbraer, A.N.

    1993-01-01

    Russian Standards and design practice of ensuring NPP reliability under severe external loading conditions are described. The main attention is paid to the seismic design requirements. Explosions, aircraft impact, and tornado are briefly examined too (author)

  3. Body-size structure of Central Iberian mammal fauna reveals semidesertic conditions during the middle Miocene Global Cooling Event.

    Directory of Open Access Journals (Sweden)

    Iris Menéndez

    Full Text Available We developed new quantitative palaeoclimatic inference models based on the body-size structure of mammal faunas from the Old World tropics and applied them to the Somosaguas fossil site (middle Miocene, central Iberian Peninsula. Twenty-six mammal species have been described at this site, including proboscideans, ungulates, carnivores, insectivores, lagomorphs and rodents. Our analyses were based on multivariate and bivariate regression models correlating climatic data and body-size structure of 63 modern mammal assemblages from Sub-Saharan Africa and the Indian subcontinent. The results showed an average temperature of the coldest month higher than 26°C for the Somosaguas fossil site, a mean annual thermal amplitude around 10°C, a drought length of 10 months, and an annual total precipitation greater than 200 mm per year, which are climate conditions typical of an ecotonal zone between the savanna and desert biomes. These results are congruent with the aridity peaks described over the middle Aragonian of Spain and particularly in the local biozone E, which includes Somosaguas. The aridity increase detected in this biozone is associated with the Middle Miocene Global Cooling Event. The environment of Somosaguas around 14 Ma was similar to the current environment in the Sahel region of North Africa, the Horn of Africa, the boundary area between the Kalahari and the Namib in Southern Africa, south-central Arabia, or eastern Pakistan and northwestern India. The distribution of modern vegetation in these regions follows a complex mosaic of plant communities, dominated by scattered xerophilous shrublands, semidesert grasslands, and vegetation linked to seasonal watercourses and ponds.

  4. Beam cooling

    OpenAIRE

    Danared, H

    2006-01-01

    Beam cooling is the technique of reducing the momentum spread and increasing the phase-space density of stored particle beams. This paper gives an introduction to beam cooling and Liouville’s theorem, and then it describes the three methods of active beam cooling that have been proven to work so far, namely electron cooling, stochastic cooling, and laser cooling. Ionization cooling is also mentioned briefly.

  5. Performance improvement of a hybrid air conditioning system using the indirect evaporative cooler with internal baffles as a pre-cooling unit

    Directory of Open Access Journals (Sweden)

    A.E. Kabeel

    2017-12-01

    Full Text Available In the present paper, the effects of the indirect evaporative cooler with internal baffle on the performance of the hybrid air conditioning system are numerically investigated. The hybrid air conditioning system contains two indirect evaporative coolers with internal baffle, one is utilized to pre-cool the air inlet to the desiccant wheel and the other is utilized to pre-cool the supply air inlet to the room. The effects of the inlet conditions of the process and reactivation air and working air ratio on the thermal performance of the hybrid air conditioning system have been analyzed. The results of this study show that in the hybrid air conditioning system for using the indirect evaporative cooler with internal baffle as a pre-cooling unit, the supply air temperature reduced by 21% and the coefficient of performance improved by 71% as compared to previous designs of the hybrid air conditioning system at the same inlet conditions. For increasing process air inlet temperature from 25 °C to 45 °C, supply air temperature increases from 12.7 °C to 14.2 °C, thermal COP increases from 1.87 to 2.84, and supply air relative humidity increases from 76.7% to 77.4%. Also, for increasing the reactivation air inlet temperature from 70 °C to 110 °C, supply air temperature dropped from 15.9 °C to 10.9 °C, supply air relative humidity dropped from 82.7% to 71.8%, and thermal COP dropped from 4.5 to 1.7. The recommended optimal air working ratio in the indirect evaporative cooler with internal baffle should be 0.15. Keywords: Desiccant material, Solar air collector, Evaporative cooler, Internal baffles, Air conditioning

  6. The influence of cooling conditions on grain size, secondary phase precipitates and mechanical properties of biomedical alloy specimens produced by investment casting.

    Science.gov (United States)

    Kaiser, R; Williamson, K; O'Brien, C; Ramirez-Garcia, S; Browne, D J

    2013-08-01

    The objective of this work was to investigate and evaluate the effect of the cooling environment on the microstructure, secondary phase precipitates and mechanical properties of an as-cast cobalt alloy. The microstructure of castings has a large bearing on the mechanical properties, grain size, porosity and the morphology of carbide precipitates are thought to influence hardness, tensile strength and ductility. It is postulated that a greater understanding of microstructure and secondary phase precipitate response to casting parameters could lead to the optimisation of casting parameters and serve to reduce the requirement of thermo-mechanical treatments currently applied to refine as-cast structures and achieve adequate mechanical properties. Thermal analysis was performed to determine the critical stages of cooling. Ten millimetre diameter cylindrical specimens which could be machined into tension test specimens were cast and cooled under different conditions to impose different cooling rates. Analytical techniques such as optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX), tensile testing and micro-hardness testing were used to study the specimens. Parameters studied include grain size, secondary dendrite arm spacing, secondary phase precipitates, porosity, hardness, ultimate tensile strength, yield strength and elongation. The microstructure of as-cast Co-28Cr-6Mo was found to consist of a dendritic matrix with secondary phases precipitated at grain boundaries and interdendritic zones. These secondary phase precipitates consist of carbides, rich in chromium and molybdenum. The size and area fraction of carbides was found to decrease significantly with increasing cooling rate while the micro-porosity was only marginally affected. The as-cast grains are illustrated for the first time showing a significant difference in size between insulated and naturally cooled specimens. The secondary dendrite arm spacing was

  7. Simulated performance of CIEE's 'Alternatives to Compressive Cooling' prototype house under design conditions in various California climates

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yu Joe

    1999-12-01

    To support the design development of a compressorless house that does not rely on mechanical air-conditioning, the author carried out detailed computer analysis of a prototypical house design to determine the indoor thermal conditions during peak cooling periods for over 170 California locations. The peak cooling periods are five-day sequences at 2{percent} frequency determined through statistical analysis of long-term historical weather data. The DOE-2 program was used to simulate the indoor temperatures of the house under four operating options: windows closed, with mechanical ventilation, evaporatively-cooled mechanical ventilation, or a conventional 1 1/2-ton air conditioner. The study found that with a 1500 CFM mechanical ventilation system, the house design would maintain comfort under peak conditions in the San Francisco Bay Area out to Walnut Creek, but not beyond. In southern California, the same system and house design would maintain adequate comfort only along the coast. With the evaporatively-cooled ventilation system, the applicability of the house design can be extended to Fairfield and Livermore in northern California, but in southern California a larger 3000 CFM system would be needed to maintain comfort conditions over half of the greater Los Angeles area, the southern half of the Inland Empire, and most of San Diego county. With the 1 1/2-ton air conditioner, the proposed house design would perform satisfactorily through most of the state, except in the upper areas of the Central Valley and the hot desert areas in southern California. In terms of energy savings, the simulations showed that the prototypical house design would save from 0.20 to 0.43 in northern California, 0.20 to 0.53 in southern California, and 0.16 to 0.35 in the Central Valley, the energy used by the same house design built to Title-24 requirements.

  8. Condition Assessment Survey (CAS) Program. Deficiency standards and inspections methods manual: Volume 12, 0.12 Sitework

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    General information is presented for asset determinant factor/CAS repair codes/CAS cost factors; guide sheet tool & material listing; testing methods; inspection frequency; standard system design life tables; system work breakdown structure; and general system/material data. Deficiency standards and inspection methods are given for utility distribution systems, central heating, central cooling, electrical, utility support structures, paving roadways/walkways, and tunnels.

  9. Verification of an optimized condition for low residual stress employed water-shower cooling during welding in austenitic stainless steel plates

    International Nuclear Information System (INIS)

    Yanagida, N.; Enomoto, K.; Anzai, H.

    2004-01-01

    To reduce tensile residual stress in a welded region, we have developed a new cooling method that uses a water-shower behind the welding torch. When this method is applied to the welding of austenitic stainless steel, the welding and cooling conditions mainly determine how much the residual stress can be reduced. To optimize these conditions, we first used a robust design method to determine the effects of the preheating temperature, the heat input quantity, and the water-shower area on the residual stress, and found that, to decrease the tensile residual stress, the preheating temperature should be high, the heat input low, and the water-shower area large. To confirm the effectiveness of these optimized conditions, the residual stresses under optimized or non-optimized conditions were measured experimentally. It was found that the residual stresses were tensile under the non-optimized conditions, but compressive under the optimized ones. These measurements agree well with the 3D-FEM analyses. It can therefore be concluded that the optimized conditions are valid and appropriate for reducing residual stress in an austenitic stainless-steel weld. (orig.)

  10. Responses in young Quercus petraea: coppices and standards under favourable and drought conditions

    Czech Academy of Sciences Publication Activity Database

    Stojanović, Marko; Čater, M.; Pokorný, Radek

    2016-01-01

    Roč. 76, jan (2016), s. 127-136 ISSN 1641-1307 R&D Projects: GA MŠk(CZ) EE2.3.20.0267 Institutional support: RVO:67179843 Keywords : coppice * standards * comparison * photosynthetic response * quantum yield * light conditions * drought response Subject RIV: EF - Botanics Impact factor: 0.776, year: 2016

  11. Minimum Specific Fuel Consumption of a Liquid-Cooled Multicylinder Aircraft Engine as Affected by Compression Ratio and Engine Operating Conditions

    Science.gov (United States)

    Brun, Rinaldo J.; Feder, Melvin S.; Harries, Myron L.

    1947-01-01

    An investigation was conducted on a 12-cylinder V-type liquid-cooled aircraft engine of 1710-cubic-inch displacement to determine the minimum specific fuel consumption at constant cruising engine speed and compression ratios of 6.65, 7.93, and 9.68. At each compression ratio, the effect.of the following variables was investigated at manifold pressures of 28, 34, 40, and 50 inches of mercury absolute: temperature of the inlet-air to the auxiliary-stage supercharger, fuel-air ratio, and spark advance. Standard sea-level atmospheric pressure was maintained at the auxiliary-stage supercharger inlet and the exhaust pressure was atmospheric. Advancing the spark timing from 34 deg and 28 deg B.T.C. (exhaust and intake, respectively) to 42 deg and 36 deg B.T.C. at a compression ratio of 6.65 resulted in a decrease of approximately 3 percent in brake specific fuel consumption. Further decreases in brake specific fuel consumption of 10.5 to 14.1 percent (depending on power level) were observed as the compression ratio was increased from 6.65 to 9.68, maintaining at each compression ratio the spark advance required for maximum torque at a fuel-air ratio of 0.06. This increase in compression ratio with a power output of 0.585 horsepower per cubic inch required a change from . a fuel- lend of 6-percent triptane with 94-percent 68--R fuel at a compression ratio of 6.65 to a fuel blend of 58-percent, triptane with 42-percent 28-R fuel at a compression ratio of 9.68 to provide for knock-free engine operation. As an aid in the evaluation of engine mechanical endurance, peak cylinder pressures were measured on a single-cylinder engine at several operating conditions. Peak cylinder pressures of 1900 pounds per square inch can be expected at a compression ratio of 9.68 and an indicated mean effective pressure of 320 pounds per square inch. The engine durability was considerably reduced at these conditions.

  12. EFFECT OF PRE-COOLING ON REPEAT-SPRINT PERFORMANCE IN SEASONALLY ACCLIMATISED MALES DURING AN OUTDOOR SIMULATED TEAM-SPORT PROTOCOL IN WARM CONDITIONS

    Directory of Open Access Journals (Sweden)

    Carly J. Brade

    2013-09-01

    Full Text Available Whether precooling is beneficial for exercise performance in warm climates when heat acclimatised is unclear. The purpose of this study was to determine the effect of precooling on repeat-sprint performance during a simulated team-sport circuit performed outdoors in warm, dry field conditions in seasonally acclimatised males (n = 10. They performed two trials, one with precooling (PC; ice slushy and cooling jacket and another without (CONT. Trials began with a 30-min baseline/cooling period followed by an 80 min repeat-sprint protocol, comprising 4 x 20-min quarters, with 2 x 5-min quarter breaks and a 10-min half-time recovery/cooling period. A clear and substantial (negative; PC slower effect was recorded for first quarter circuit time. Clear and trivial effects were recorded for overall circuit time, third and fourth quarter sprint times and fourth quarter best sprint time, otherwise unclear and trivial effects were recorded for remaining performance variables. Core temperature was moderately lower (Cohen's d=0.67; 90% CL=-1.27, 0.23 in PC at the end of the precooling period and quarter 1. No differences were found for mean skin temperature, heart rate, thermal sensation, or rating of perceived exertion, however, moderate Cohen's d effect sizes suggested a greater sweat loss in PC compared with CONT. In conclusion, repeat- sprint performance was neither clearly nor substantially improved in seasonally acclimatised players by using a combination of internal and external cooling methods prior to and during exercise performed in the field in warm, dry conditions. Of practical importance, precooling appears unnecessary for repeat-sprint performance if athletes are seasonally acclimatised or artificially acclimated to heat, as it provides no additional benefit

  13. Storage of HLW in engineered structures: air-cooled and water-cooled concepts

    International Nuclear Information System (INIS)

    Ahner, S.; Dekais, J.J.; Puttke, B.; Staner, P.

    1981-01-01

    A comparative study on an air-cooled and a water-cooled intermediate storage of vitrified, highly radioactive waste (HLW) in overground installations has been performed by Nukem and Belgonucleaire respectively. In the air-cooled storage concept the decay heat from the storage area will be removed using natural convection. In the water-cooled storage concept the decay heat is carried off by a primary and secondary forced-cooling system with redundant and diverse devices. The safety study carried out by Nukem used a fault tree method. It shows that the reliability of the designed water-cooled system is very high and comparable to the inherent, safe, air-cooled system. The impact for both concepts on the environment is determined by the release route, but even during accident conditions the release is far below permissible limits. The economic analysis carried out by Belgonucleaire shows that the construction costs for both systems do not differ very much, but the operation and maintenance costs for the water-cooled facility are higher than for the air cooled facility. The result of the safety and economic analysis and the discussions with the members of the working group have shown some possible significant modifications for both systems, which are included in this report. The whole study has been carried out using certain national criteria which, in certain Member States at least, would lead to a higher standard of safety than can be justified on any social, political or economic grounds

  14. Tennis in hot and cool conditions decreases the rapid muscle torque production capacity of the knee extensors but not of the plantar flexors.

    Science.gov (United States)

    Girard, Olivier; Racinais, Sébastien; Périard, Julien D

    2014-04-01

    To assess the time course of changes in rapid muscle force/torque production capacity and neuromuscular activity of lower limb muscles in response to prolonged (∼2 h) match-play tennis under heat stress. The rates of torque development (RTD) and electromyographic activity (EMG; ie, root mean square) rise were recorded from 0 to 30, -50, -100 and -200 ms during brief (3-5 s) explosive maximal isometric voluntary contractions (MVC) of the knee extensors (KE) and plantar flexors (PF), along with the peak RTD within the entirety of the torque-time curve. These values were recorded in 12 male tennis players before (prematch) and after (postmatch, 24 and 48 h) match-play in HOT (∼37°C) and COOL (∼22°C) conditions. The postmatch core temperature was greater in the HOT (∼39.4°C) vs COOL (∼38.7°C) condition (ptorque. Furthermore, the rate of KE EMG activity rise remained unchanged. Conversely, the PF contractile RTD and rate of EMG activity rise were unaffected by the exercise or environmental conditions. In the KE, a reduction in maximal torque production capacity following prolonged match-play tennis appears to account for the decrease in the rate of torque development, independent of environmental conditions, while remaining unchanged in the PF.

  15. A diode-laser optical frequency standard based on laser-cooled Ca atoms: sub-kilohertz spectroscopy by optical shelving detection

    International Nuclear Information System (INIS)

    Oates, C.W.; Bondu, F.; Fox, R.W.; Hollberg, L.

    1999-01-01

    We report an optical frequency standard at 657 nm based on laser-cooled/trapped Ca atoms. The system consists of a novel, compact magneto-optic trap which uses 50 mW of frequency-doubled diode laser light at 423 nm and can trap >10 7 Ca atoms in 20 ms. High resolution spectroscopy on this atomic sample using the narrow 657 nm intercombination line resolves linewidths (FWHM) as narrow as 400 Hz, the natural linewidth of the transition. The spectroscopic signal-to-noise ratio is enhanced by an order of magnitude with the implementation of a ''shelving'' detection scheme on the 423 nm transition. Our present apparatus achieves a fractional frequency instability of 5 x 10 -14 in 1 s with a potential atom shot-noise-limited performance of 10 -16 τ -1/2 and excellent prospects for high accuracy. (orig.)

  16. Thermal stress analysis and diffraction simulation of a standard and inclined gallium-cooled high-heat-load X-ray monochromator

    International Nuclear Information System (INIS)

    Rogers, C.S.; Macrander, A.T.

    1993-01-01

    This paper describes the methods used to calculate the thermally induced deformations in symmetrically cut, standardly configured and inclined monochromator crystals using finite element analysis. The results of these analyses are compared to recent undulator experiments conducted at the Cornell High Energy Synchrotron Source (CHESS) using a high-performance, liquid-gallium-cooled silicon crystal. The modeling was carried out for a range of machine currents, and the calculated rocking curve widths were within 10% of the experimental values. The asymmetric shape of the rocking curves at high currents was also predicted. These results lend credibility to our assertion that computer simulations can be used to reliably and accurately predict the performance of high-heat-load X-ray optics for future synchrotron sources. (orig.)

  17. Welfare and biosecurity standards for dairy cow and pig farms: Cattle and swine rearing conditions

    Directory of Open Access Journals (Sweden)

    Hristov Slavča

    2009-01-01

    Full Text Available In this paper the essential elements concerning cattle and swine rearing and growing conditions were given in order to establish welfare and biosecurity standards. These elements were formed according to detailed annual investigations on 11 cattle and 5 swine farms and include relevant spatial, microclimate and hygienic conditions. In order to establish welfare standards, certain spatial conditions have higher importance, such as correct construction and maintenance of beds, pens and yards, and type and quality of materials used to build beds and walls. It is necessary to enable movement of animals in stables and yards as basic physiological and ethologic needs, according to latest scientific data. Also, optimal temperature, relative humidity and air velocity insuring have to be considered, as well as quality ventilation in order to establish and preserve optimal microclimate conditions. Also, it must be pointed out that hygiene maintenance of stable surfaces and animal bodies on a regular bases is essential. Basic principles and criteria for welfare level assessment are given in this paper. According to results obtained in previous investigations, special attention is given to possibilities to correct rearing and growing conditions in cattle and swine farms in our country. .

  18. Planck scale boundary conditions in the standard model with singlet scalar dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Haba, Naoyuki [Graduate School of Science and Engineering, Shimane University, Matsue, Shimane 690-8504 (Japan); Kaneta, Kunio [Kavli IPMU (WPI), The University of Tokyo, Kashiwa, Chiba 277-8568 (Japan); Takahashi, Ryo [Graduate School of Science and Engineering, Shimane University, Matsue, Shimane 690-8504 (Japan)

    2014-04-04

    We investigate Planck scale boundary conditions on the Higgs sector of the standard model with a gauge singlet scalar dark matter. We will find that vanishing self-coupling and Veltman condition at the Planck scale are realized with the 126 GeV Higgs mass and top pole mass, 172 GeV≲M{sub t}≲173.5 GeV, where a correct abundance of scalar dark matter is obtained with mass of 300 GeV≲m{sub S}≲1 TeV. It means that the Higgs potential is flat at the Planck scale, and this situation can not be realized in the standard model with the top pole mass.

  19. Tridimensional statistic analysis of cooling tower plumes. Methods and results relating to power effect and disposal conditions

    International Nuclear Information System (INIS)

    Sabaton, M.; Viollet, P.L.; Darles, A.; Gland, H.

    1980-07-01

    The PANACH three dimensional calculation code developed from tests on a small scale model and validated from full scale measurement campaigns, was used to estimate a three dimensional statistic of plumes. As it is not possible with the calculation times to make a calculation for each radio sondage, a classification method was adopted. This method developed by the French National Meteorological Office is based on a double classification comprising basic classes in which the plumes are assumed to be dynamically similar and a sub-classification to take better account of the true moisture profiles. This statistical method was then applied to the case of 2 or 4 1300 MWe units fitted with natural draught cooling towers of the wet, dry or wet-dry types [fr

  20. Trace Code Validation for BWR Spray Cooling Injection and CCFL Condition Based on GÖTA Facility Experiments

    Directory of Open Access Journals (Sweden)

    Stefano Racca

    2012-01-01

    Full Text Available Best estimate codes have been used in the past thirty years for the design, licensing, and safety of NPP. Nevertheless, large efforts are necessary for the qualification and the assessment of such codes. The aim of this work is to study the main phenomena involved in the emergency spray cooling injection in a Swedish-designed BWR. For this purpose, data from the Swedish separate effect test facility GÖTA have been simulated using TRACE version 5.0 Patch 2. Furthermore, uncertainty calculations have been performed with the propagation of input errors method, and the identification of the input parameters that mostly influence the peak cladding temperature has been performed.

  1. To enhance the cooling comfort condition in home by water spray upon the roof in hot arid region experimental work

    International Nuclear Information System (INIS)

    Abdul Sada, Ghanim Kadhem; Al Shammaa, Mostafa Khairy

    2006-01-01

    Fossil fuel shortages have been in recent years a critical problem in the world and are likely to be continued. A major part of consumed energy nowadays is used to thermally control building environment where solar radiation has a major contribution, specially in Iraq and other hot arid region where most of the day in the year are sunny. Baghdad, which is considered a typical place with this extreme climate, is chosen, in this study. This work deals with the possibility of the reducing energy consumption in building by blocking or eliminate the effect of direct solar radiation in summer season which the cooling is dominate in Iraq. It is especially important to minimize the effect of solar radiation incident upon the roof surface, which is focusing about it in this study. The roof surface most exposed to solar radiation and most of the solar gain absorbed by roof is transmitted down to the inside space. In this study built a system which spry water upon the external surface consist of net work piping system, control valves, spry nozzles, thermocouples sensor and digital temperature indicators. The study has been done in order to reduce the cooling load in living room. Reducing the heat transfer through the roof by using water spry roof system (WSRS) in Iraq's houses which reduced the heat transmission to the inside space about 96%. The result of this study shows good indication to use this method, to reduce the energy transmission. i./e. the energy transmission to inside living space through roof is about 4% only.(Author)

  2. Quantum Hall resistance standard in graphene devices under relaxed experimental conditions

    Science.gov (United States)

    Schopfer, F.; Ribeiro-Palau, R.; Lafont, F.; Brun-Picard, J.; Kazazis, D.; Michon, A.; Cheynis, F.; Couturaud, O.; Consejo, C.; Jouault, B.; Poirier, W.

    Large-area and high-quality graphene devices synthesized by CVD on SiC are used to develop reliable electrical resistance standards, based on the quantum Hall effect (QHE), with state-of-the-art accuracy of 1x10-9 and under an extended range of experimental conditions of magnetic field (down to 3.5 T), temperature (up to 10 K) or current (up to 0.5 mA). These conditions are much relaxed as compared to what is required by GaAs/AlGaAs standards and will enable to broaden the use of the primary quantum electrical standards to the benefit of Science and Industry for electrical measurements. Furthermore, by comparison of these graphene devices with GaAs/AlGaAs standards, we demonstrate the universality of the QHE within an ultimate uncertainty of 8.2x10-11. This suggests the exact relation of the quantized Hall resistance with the Planck constant and the electron charge, which is crucial for the new SI to be based on fixing such fundamental constants. These results show that graphene realizes its promises and demonstrates its superiority over other materials for a demanding application. Nature Nanotech. 10, 965-971, 2015, Nature Commun. 6, 6806, 2015

  3. Physiological Responses to Microclimate Cooling Used By the Air Soldier Dressed at MOPP 4 in an Extreme Desert Condition: Effects of Six Configurations

    Science.gov (United States)

    2012-12-01

    USARIEM TECHNICAL REPORT PHYSIOLOGICAL RESPONSES TO MICROCLIMATE COOLING USED BY THE AIR SOLDIER DRESSED AT MOPP 4 IN AN...2012 2. REPORT TYPE 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Physiological Responses to Microclimate Cooling Used By the Air Soldier 5b. GRANT... Microclimate Cooling System MCG HI – Air Warrior Microclimate Cooling Garment Used in High Cooling Configuration MCG LO - Air Warrior Microclimate

  4. Energetically optimal heating and cooling diagrams. Heating and cooling diagrams with regard to centralized air conditioning of climate installations in office buildings; Energetisch optimale stook- en koellijnen. Stook- en koellijnen met betrekking tot de centrale luchtbehandeling van klimaatinstallaties in kantoorgebouwen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-02-01

    This publication introduces an instrument to determine the energetic optimal heating/cooling curves of a central air handling unit. Limiting condition during the realization of the instrument was the control or improvement of comfort as well as a minimal energy consumption. In the design phase of the new development project the instrument can be applied to determine the optimal settings of the heating/cooling curve. During the control phase the instrument can be used to check whether the settings of the climate installations have been tuned as energetically optimal as possible. Furthermore, the instrument can be used for solving comfort problems related to the injection air temperature in the rooms. The instrument is applicable for most occurring installation drafts based on air and end units. The publication provides instructions on how to apply the instrument for other installation drafts. [Dutch] De bestaande utiliteitsbouw is verantwoordelijk voor een aanzienlijk deel van het energiegebruik in de gebouwde omgeving. Introductie van energiebesparende maatregelen vergt in deze sector grote financiele investeringen en verstoort veelal de bedrijfsprocessen in de kantoorgebouwen. In de praktijk is implementatie van deze maatregelen daarom alleen kansrijk bij onderhouds- of vervangingsactiviteiten. Met deze publicatie is een instrument ontwikkeld waarbij deze belemmerende factoren geen rol spelen om toch een omvangrijke energiebesparing te realiseren. Bovendien behoeft voor toepassing van dit instrument geen extra investering gedaan te worden, bijvoorbeeld om het installatieconcept aan te passen voordat de energiebesparende maatregelen toegepast kunnen worden. Het instrument bestaat uit een methode waarmee stapsgewijs tot een optimale instelling van de verwarmings- en koellijnen gekomen kan worden. Praktijkervaring heeft geleerd dat hiermee verregaande energiebesparing bereikt kan worden (tot ca. 30%). Het instrument is geschikt voor de in de praktijk (nieuwbouw en

  5. Facilitated acquisition of standard but not long delay classical eyeblink conditioning in behaviorally inhibited adolescents.

    Science.gov (United States)

    Caulfield, M D; VanMeenen, K M; Servatius, R J

    2015-02-01

    Adolescence is a key age in the development of anxiety disorders. The present study assessed the relationship between behavioral inhibition, a risk factor for anxiety typified by avoidance, and acquisition of the classically conditioned eyeblink response. 168 healthy high school students (mean age 15.7 years, 54% female) were given a battery of self-report measures including the Adult Measure of Behavioural Inhibition (AMBI). The study compared acquisition of three experimental training conditions. Two groups were given paired CS-US training: standard delay of 500-ms or long delay of 1000-ms with CS overlapping and co-terminating with a 50-ms airpuff US. A third group received unpaired training of 1000-ms CS and 50-ms airpuff US. Inhibited individuals showed greater acquisition of the conditioned eyeblink response in the 500-ms CS condition, but not in the paired 1000-ms condition. No differences in spontaneous blinks or reactivity to the stimulus were evident in the 1000-ms unpaired CS condition. Results support a relationship between associative learning and anxiety vulnerability that may be mediated by cerebellar functioning in inhibited individuals. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. The impact of the weather conditions on the cooling performance of the heat pump driven by an internal natural gas combustion engine

    Directory of Open Access Journals (Sweden)

    Janovcová Martina

    2015-01-01

    Full Text Available Market with sources of heat and cold offers unlimited choice of different power these devices, design technology, efficiency and price categories. New progressive technologies are constantly discovering, about which is still little information, which include heat pumps powered by a combustion engine running on natural gas. A few pieces of these installations are in Slovakia, but no studies about their work and effectiveness under real conditions. This article deals with experimental measurements of gas heat pump efficiency in cooling mode. Since the gas heat pump works only in system air – water, air is the primary low – energy source, it is necessary to monitor the impact of the climate conditions for the gas heat pump performance.

  7. [The requirements of standard and conditions of interchangeability of medical articles].

    Science.gov (United States)

    Men'shikov, V V; Lukicheva, T I

    2013-11-01

    The article deals with possibility to apply specific approaches under evaluation of interchangeability of medical articles for laboratory analysis. The development of standardized analytical technologies of laboratory medicine and formulation of requirements of standards addressed to manufacturers of medical articles the clinically validated requirements are to be followed. These requirements include sensitivity and specificity of techniques, accuracy and precision of research results, stability of reagents' quality in particular conditions of their transportation and storage. The validity of requirements formulated in standards and addressed to manufacturers of medical articles can be proved using reference system, which includes master forms and standard samples, reference techniques and reference laboratories. This approach is supported by data of evaluation of testing systems for measurement of level of thyrotrophic hormone, thyroid hormones and glycated hemoglobin HB A1c. The versions of testing systems can be considered as interchangeable only in case of results corresponding to the results of reference technique and comparable with them. In case of absence of functioning reference system the possibilities of the Joined committee of traceability in laboratory medicine make it possible for manufacturers of reagent sets to apply the certified reference materials under development of manufacturing of sets for large listing of analytes.

  8. A review of thermoelectric cooling: Materials, modeling and applications

    International Nuclear Information System (INIS)

    Zhao, Dongliang; Tan, Gang

    2014-01-01

    This study reviews the recent advances of thermoelectric materials, modeling approaches, and applications. Thermoelectric cooling systems have advantages over conventional cooling devices, including compact in size, light in weight, high reliability, no mechanical moving parts, no working fluid, being powered by direct current, and easily switching between cooling and heating modes. In this study, historical development of thermoelectric cooling has been briefly introduced first. Next, the development of thermoelectric materials has been given and the achievements in past decade have been summarized. To improve thermoelectric cooling system's performance, the modeling techniques have been described for both the thermoelement modeling and thermoelectric cooler (TEC) modeling including standard simplified energy equilibrium model, one-dimensional and three-dimensional models, and numerical compact model. Finally, the thermoelectric cooling applications have been reviewed in aspects of domestic refrigeration, electronic cooling, scientific application, and automobile air conditioning and seat temperature control, with summaries for the commercially available thermoelectric modules and thermoelectric refrigerators. It is expected that this study will be beneficial to thermoelectric cooling system design, simulation, and analysis. - Highlights: •Thermoelectric cooling has great prospects with thermoelectric material's advances. •Modeling techniques for both thermoelement and TEC have been reviewed. •Principle thermoelectric cooling applications have been reviewed and summarized

  9. Synthesis of Ti Oxides at Reducing Conditions: Implications for Beamline Standards and Cosmochemistry

    Science.gov (United States)

    Righter, K.; Pando, K. A.; Butterworth, A. L.; Gainsforth, Z.; Jilly-Rehak, C. E.; Westphal, A. J.

    2017-01-01

    These initial experiments demonstrate the great potential for synthesizing customized compounds for use as standards, or in buffering experiments at reducing conditions. We are also investigating Cr and V oxides, as well as compounds containing these elements such as FeV2O4 and FeCr2O4. Oxygen fugacity exerts a major control on mineral major element chemistry and elemental valence of minerals in any plane-tary compositional system [1]. For Earth, Fe is multivalent ranging from nearly Fe0 at low fO2 in the deep mantle to Fe2+ to Fe3+ at high low fO2. For solar nebular and meteoritic materials fO2 ranges from near IW to 10 log fO2 units below the IW buffer [1]. Phases in CAIs, for example, contain no Fe2+, but may contain Ti4+, Ti3+, or Ti2+, and Cr3+ or Cr2+, and V3+ or V2+ [1,2,3]. De-tailed study of inclusions may reveal important differences in fO2 thus reflecting different environments in the solar nebula [4]. XANES, FEG-SEM, and TEM can reveal such variations in micro and nano samples such as Stardust and cosmic dust particles [5], but successful application to reduced conditions depends upon the availability of well characterized standards. Acquiring appropriate standards for reduced phases that contain Ti3+ or Ti2+, Cr3+ or Cr2+, and V3+ or V2+ can be a challenge. Here we report our preliminary results at synthesizing reduced Ti bearing standards, and focus on the preliminary characterization.

  10. Ceramics and healthy heating and cooling systems: thermal ceramic panels in buildings. Conditions of comfort and energy demand versus convective systems

    Directory of Open Access Journals (Sweden)

    V. Echarri Iribarren

    2016-12-01

    Full Text Available Porcelain stoneware is a widely used building material. In recent years, its range of uses has expanded to encompass a new spectrum of innovative and inventive applications in architecture. In this research, we analysed the patented Thermal Ceramic Panel. This consists of a thin porcelain stoneware panel that incorporates a capillary system of polypropylene tubes measuring 3.5 mm in diameter embedded in a conductive ceramic interface. The system works with hot or cold water, producing healthy heating and cooling by means of radiant surfaces. Following an initial prototype test in which panels were placed on the walls of an office, we conducted simulations at the University of Alicante Museum using wall, ceiling and baffle panels, having previously monitored the state of the building. Thermal behaviour parameters were analysed and compared with those of other standard finishing materials, obtaining results for thermal comfort and energy savings in comparison with all-air systems.

  11. Practical issues for testing thin film PV modules at standard test conditions.

    OpenAIRE

    Marín González, Omar; Raga Arroyo, Manuela Pilar; Alonso Garcia, M. Carmen; Muñoz-García, Miguel Angel

    2013-01-01

    Thin film photovoltaic (TF) modules have gained importance in the photovoltaic (PV) market. New PV plants increasingly use TF technologies. In order to have a reliable sample of a PV module population, a huge number of modules must be measured. There is a big variety of materials used in TF technology. Some of these modules are made of amorphous or microcrystalline silicon. Other are made of CIS or CdTe. Not all these materials respond the same under standard test conditions (STC) of power...

  12. Life quality and living standards in big cities under conditions of high-rise construction development

    Science.gov (United States)

    Avdeeva, Elena; Averina, Tatiana; Kochetova, Larisa

    2018-03-01

    Modern urbanization processes occurring on a global scale inevitably lead to an increase in population density in large cities. People assess the state of life quality and living standards of megalopolises under conditions of high-rise construction development ambiguously. Using SWOT analysis, the authors distinguished positive and negative aspects of high-rise construction, highlighted threats to its development and its opportunities. The article considers the model of development of the city's industry and infrastructure, which enables determining the optimal volume of production by sectors and branches of city economy in order to increase its innovative, production and economic potential and business activity.

  13. Desiccant-assisted cooling fundamentals and applications

    CERN Document Server

    Brum, Nisio

    2014-01-01

    The increasing concern with indoor air quality has led to air-quality standards with increased ventilation rates. Although increasing the volume flow rate of outside air is advisable from the perspective of air-quality, it is detrimental to energy consumption, since the outside air has to be brought to the comfort condition before it is insufflated to the  conditioned ambient. Moreover, the humidity load carried within outside air has challenging HVAC engineers to design cooling units which are able to satisfactorily handle both sensible and latent contributions to the thermal load. This constitutes a favorable scenario for the use of solid desiccants to assist the cooling units. In fact, desiccant wheels have been increasingly applied by HVAC designers, allowing distinct processes for the air cooling and dehumidification. In fact, the ability of solid desiccants in moisture removal is effective enough to allow the use of evaporative coolers, in opposition to the traditional vapor-compression cycle, resultin...

  14. A Comparison of Three Methods for Computing Scale Score Conditional Standard Errors of Measurement. ACT Research Report Series, 2013 (7)

    Science.gov (United States)

    Woodruff, David; Traynor, Anne; Cui, Zhongmin; Fang, Yu

    2013-01-01

    Professional standards for educational testing recommend that both the overall standard error of measurement and the conditional standard error of measurement (CSEM) be computed on the score scale used to report scores to examinees. Several methods have been developed to compute scale score CSEMs. This paper compares three methods, based on…

  15. Water-cooled electronics

    CERN Document Server

    Dumont, G; Righini, B

    2000-01-01

    LHC experiments demand on cooling of electronic instrumentation will be extremely high. A large number of racks will be located in underground caverns and counting rooms, where cooling by conventional climatisation would be prohibitively expensive. A series of tests on the direct water cooling of VMEbus units and of their standard power supplies is reported. A maximum dissipation of 60 W for each module and more than 1000 W delivered by the power supply to the crate have been reached. These values comply with the VMEbus specifications. (3 refs).

  16. New normative standards of conditional reasoning and the dual-source model.

    Science.gov (United States)

    Singmann, Henrik; Klauer, Karl Christoph; Over, David

    2014-01-01

    There has been a major shift in research on human reasoning toward Bayesian and probabilistic approaches, which has been called a new paradigm. The new paradigm sees most everyday and scientific reasoning as taking place in a context of uncertainty, and inference is from uncertain beliefs and not from arbitrary assumptions. In this manuscript we present an empirical test of normative standards in the new paradigm using a novel probabilized conditional reasoning task. Our results indicated that for everyday conditional with at least a weak causal connection between antecedent and consequent only the conditional probability of the consequent given antecedent contributes unique variance to predicting the probability of conditional, but not the probability of the conjunction, nor the probability of the material conditional. Regarding normative accounts of reasoning, we found significant evidence that participants' responses were confidence preserving (i.e., p-valid in the sense of Adams, 1998) for MP inferences, but not for MT inferences. Additionally, only for MP inferences and to a lesser degree for DA inferences did the rate of responses inside the coherence intervals defined by mental probability logic (Pfeifer and Kleiter, 2005, 2010) exceed chance levels. In contrast to the normative accounts, the dual-source model (Klauer et al., 2010) is a descriptive model. It posits that participants integrate their background knowledge (i.e., the type of information primary to the normative approaches) and their subjective probability that a conclusion is seen as warranted based on its logical form. Model fits showed that the dual-source model, which employed participants' responses to a deductive task with abstract contents to estimate the form-based component, provided as good an account of the data as a model that solely used data from the probabilized conditional reasoning task.

  17. New Normative Standards of Conditional Reasoning and the Dual-Source Model

    Directory of Open Access Journals (Sweden)

    Henrik eSingmann

    2014-04-01

    Full Text Available There has been a major shift in research on human reasoning towards Bayesian and probabilistic approaches, which has been called a new paradigm. The new paradigm sees most everyday and scientific reasoning as taking place in a context of uncertainty, and inference is from uncertain beliefs and not from arbitrary assumptions. In this manuscript we present an empirical test of normative standards in the new paradigm using a novel probabilized conditional reasoning task. Our results indicated that for everyday conditional with at least a weak causal connection between antecedent and consequent only the conditional probability of the consequent given antecedent contributes unique variance to predicting the probability of conditional, but not the probability of the conjunction, nor the probability of the material conditional. Regarding normative accounts of reasoning, we found significant evidence that participants' responses were confidence preserving (i.e., p-valid in the sense of Adams, 1998 for MP inferences, but not for MT inferences. Additionally, only for MP inferences and to a lesser degree for DA inferences did the rate of responses inside the coherence intervals defined by mental probability logic (Pfeifer & Kleiter, 2005, 2010 exceed chance levels. In contrast to the normative accounts, the dual-source model (Klauer, Beller, & Hütter, 2010 is a descriptive model. It posits that participants integrate their background knowledge (i.e., the type of information primary to the normative approaches and their subjective probability that a conclusion is seen as warranted based on its logical form. Model fits showed that the dual-source model, which employed participants' responses to a deductive task with abstract contents to estimate the form-based component, provided as good an account of the data as a model that solely used data from the probabilized conditional reasoning task.

  18. Development and application of artificial neural network models to estimate values of a complex human thermal comfort index associated with urban heat and cool island patterns using air temperature data from a standard meteorological station.

    Science.gov (United States)

    Moustris, Konstantinos; Tsiros, Ioannis X; Tseliou, Areti; Nastos, Panagiotis

    2018-04-11

    The present study deals with the development and application of artificial neural network models (ANNs) to estimate the values of a complex human thermal comfort-discomfort index associated with urban heat and cool island conditions inside various urban clusters using as only inputs air temperature data from a standard meteorological station. The index used in the study is the Physiologically Equivalent Temperature (PET) index which requires as inputs, among others, air temperature, relative humidity, wind speed, and radiation (short- and long-wave components). For the estimation of PET hourly values, ANN models were developed, appropriately trained, and tested. Model results are compared to values calculated by the PET index based on field monitoring data for various urban clusters (street, square, park, courtyard, and gallery) in the city of Athens (Greece) during an extreme hot weather summer period. For the evaluation of the predictive ability of the developed ANN models, several statistical evaluation indices were applied: the mean bias error, the root mean square error, the index of agreement, the coefficient of determination, the true predictive rate, the false alarm rate, and the Success Index. According to the results, it seems that ANNs present a remarkable ability to estimate hourly PET values within various urban clusters using only hourly values of air temperature. This is very important in cases where the human thermal comfort-discomfort conditions have to be analyzed and the only available parameter is air temperature.

  19. Spray cooling

    International Nuclear Information System (INIS)

    Rollin, Philippe.

    1975-01-01

    Spray cooling - using water spraying in air - is surveyed as a possible system for make-up (peak clipping in open circuit) or major cooling (in closed circuit) of the cooling water of the condensers in thermal power plants. Indications are given on the experiments made in France and the systems recently developed in USA, questions relating to performance, cost and environmental effects of spray devices are then dealt with [fr

  20. Standardization of the energy performance of photovoltaic modules in real operating conditions

    Directory of Open Access Journals (Sweden)

    Viganó Davide

    2014-01-01

    Full Text Available The performance of a PV module at STC [1] is a useful indicator for comparing the peak performance of different module types, but on its own is not sufficient to accurately predict how much energy a module will deliver in the field when subjected to a wide range of real operating conditions [2]. An Energy Rating approach has to be preferred for that aim. It is currently under development the standard series IEC 61853 on Energy Rating, for which only part 1 [3] has been issued. It describes methods to characterize the module performance as a function of irradiance and temperature. The reproducibility of the power matrix measurements obtained by the three different methods specified in the standard, namely: under natural sunlight using a tracking system; under natural sunlight without tracker; and a large area pulsed solar simulator of Class AAA were evaluated and discussed [4,5]. The work here presented is focused on the second method listed above, which explores the real working conditions for a PV device and therefore it represents the situation where Energy Rating procedures are expected to give the largest deviations from the STC predictions. The system for continuous monitoring of module performances, already implemented at ESTI, has been recently replaced with a new system having a number of improvements described in the following. The two system results have been compared showing a discrete compatibility. The two power matrices are then merged together using a weighted average and compared to those acquired with the other two remaining “ideal” systems. An interesting tendency seems to come up from this comparison, making the power rating under real operating conditions an essential procedure for energy rating purposes.

  1. Distribution of hydrogen within the HDR-containment under severe accident conditions. OECD standard problem. Final comparison report

    International Nuclear Information System (INIS)

    Karwat, H.

    1992-08-01

    The present report summarizes the results of the International Standard Problem Exercise ISP-29, based on the HDR Hydrogen Distribution Experiment E11.2. Post-test analyses are compared to experimentally measured parameters, well-known to the analysis. This report has been prepared by the Institute for Reactor Dynamics and Reactor Safety of the Technical University Munich under contract with the Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) which received funding for this activity from the German Ministry for Research and Technology (BMFT) under the research contract RS 792. The HDR experiment E11.2 has been performed by the Kernforschungszentrum Karlsruhe (KfK) in the frame of the project 'Projekt HDR-Sicherheitsprogramm' sponsored by the BMFT. Ten institutions from eight countries participated in the post-test analysis exercise which was focussing on the long-lasting gas distribution processes expected inside a PWR containment under severe accident conditions. The gas release experiment was coupled to a long-lasting steam release into the containment typical for an unmitigated small break loss-of-coolant accident. In lieu of pure hydrogen a gas mixture consisting of 15% hydrogen and 85% helium has been applied in order to avoid reaching flammability during the experiment. Of central importance are common overlay plots comparing calculated transients with measurements of the global pressure, the local temperature-, steam- and gas concentration distributions throughout the entire HDR containment. The comparisons indicate relatively large margins between most calculations and the experiment. Having in mind that this exercise was specified as an 'open post-test' analysis of well-known measured data the reasons for discrepancies between measurements and simulations were extensively discussed during a final workshop. It was concluded that analytical shortcomings as well as some uncertainties of experimental boundary conditions may be responsible for deviations

  2. 14 CFR 29.908 - Cooling fans.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Cooling fans. 29.908 Section 29.908... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant General § 29.908 Cooling fans. For cooling fans that are a part of a powerplant installation the following apply: (a) Category A. For cooling fans installed...

  3. Robust Road Condition Detection System Using In-Vehicle Standard Sensors.

    Science.gov (United States)

    Castillo Aguilar, Juan Jesús; Cabrera Carrillo, Juan Antonio; Guerra Fernández, Antonio Jesús; Carabias Acosta, Enrique

    2015-12-19

    The appearance of active safety systems, such as Anti-lock Braking System, Traction Control System, Stability Control System, etc., represents a major evolution in road safety. In the automotive sector, the term vehicle active safety systems refers to those whose goal is to help avoid a crash or to reduce the risk of having an accident. These systems safeguard us, being in continuous evolution and incorporating new capabilities continuously. In order for these systems and vehicles to work adequately, they need to know some fundamental information: the road condition on which the vehicle is circulating. This early road detection is intended to allow vehicle control systems to act faster and more suitably, thus obtaining a substantial advantage. In this work, we try to detect the road condition the vehicle is being driven on, using the standard sensors installed in commercial vehicles. Vehicle models were programmed in on-board systems to perform real-time estimations of the forces of contact between the wheel and road and the speed of the vehicle. Subsequently, a fuzzy logic block is used to obtain an index representing the road condition. Finally, an artificial neural network was used to provide the optimal slip for each surface. Simulations and experiments verified the proposed method.

  4. A Comprehensive Subcellular Proteomic Survey of Salmonella Grown under Phagosome-Mimicking versus Standard Laboratory Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Roslyn N.; Sanford, James A.; Park, Jea H.; Deatherage, Brooke L.; Champion, Boyd L.; Smith, Richard D.; Heffron, Fred; Adkins, Joshua N.

    2012-06-01

    Towards developing a systems-level pathobiological understanding of Salmonella enterica, we performed a subcellular proteomic analysis of this pathogen grown under standard laboratory and infection-mimicking conditions in vitro. Analysis of proteins from cytoplasmic, inner membrane, periplasmic, and outer membrane fractions yielded coverage of over 30% of the theoretical proteome. Confident subcellular location could be assigned to over 1000 proteins, with good agreement between experimentally observed location and predicted/known protein properties. Comparison of protein location under the different environmental conditions provided insight into dynamic protein localization and possible moonlighting (multiple function) activities. Notable examples of dynamic localization were the response regulators of two-component regulatory systems (e.g., ArcB, PhoQ). The DNA-binding protein Dps that is generally regarded as cytoplasmic was significantly enriched in the outer membrane for all growth conditions examined, suggestive of moonlighting activities. These observations imply the existence of unknown transport mechanisms and novel functions for a subset of Salmonella proteins. Overall, this work provides a catalog of experimentally verified subcellular protein location for Salmonella and a framework for further investigations using computational modeling.

  5. Robust Road Condition Detection System Using In-Vehicle Standard Sensors

    Directory of Open Access Journals (Sweden)

    Juan Jesús Castillo Aguilar

    2015-12-01

    Full Text Available The appearance of active safety systems, such as Anti-lock Braking System, Traction Control System, Stability Control System, etc., represents a major evolution in road safety. In the automotive sector, the term vehicle active safety systems refers to those whose goal is to help avoid a crash or to reduce the risk of having an accident. These systems safeguard us, being in continuous evolution and incorporating new capabilities continuously. In order for these systems and vehicles to work adequately, they need to know some fundamental information: the road condition on which the vehicle is circulating. This early road detection is intended to allow vehicle control systems to act faster and more suitably, thus obtaining a substantial advantage. In this work, we try to detect the road condition the vehicle is being driven on, using the standard sensors installed in commercial vehicles. Vehicle models were programmed in on-board systems to perform real-time estimations of the forces of contact between the wheel and road and the speed of the vehicle. Subsequently, a fuzzy logic block is used to obtain an index representing the road condition. Finally, an artificial neural network was used to provide the optimal slip for each surface. Simulations and experiments verified the proposed method.

  6. Cooling tower

    International Nuclear Information System (INIS)

    Baer, E.; Dittrich, H.; Ernst, G.; Roller, W.

    1975-01-01

    The task on which the invention is based is to design a cooling tower in such a way that the negative influences of the wind, in particular strong side winds (wind velocities of over 10 m/s), on the functioning of the cooling tower are reduced or eliminated altogether. (orig./TK) [de

  7. LHC cooling gains ground

    CERN Multimedia

    Huillet-Miraton Catherine

    The nominal cryogenic conditions of 1.9 K have been achieved in sectors 5-6 and 7-8. This means that a quarter of the machine has reached the nominal conditions for LHC operation, having attained a temperature of below 2 K (-271°C), which is colder than interstellar space! Elsewhere, the cryogenic system in Sector 8-1 has been filled with liquid helium and cooled to 2K and will soon be available for magnet testing. Sectors 6-7 and 2-3 are being cooled down and cool-down operations have started in Sector 3-4. Finally, preparations are in hand for the cool-down of Sector 1-2 in May and of Sector 4-5, which is currently being consolidated. The LHC should be completely cold for the summer. For more information: http://lhc.web.cern.ch/lhc/Cooldown_status.htm.

  8. Effect of measurement conditions on three-dimensional roughness values, and development of measurement standard

    International Nuclear Information System (INIS)

    Fabre, A; Brenier, B; Raynaud, S

    2011-01-01

    Friction or corrosion behaviour, fatigue lifetime for mechanical components are influenced by their boundary and subsurface properties. The surface integrity is studied on mechanical component in order to improve the service behaviour of them. Roughness is one of the main geometrical properties, which is to be qualified and quantified. Components can be obtained using a complex process: forming, machining and treatment can be combined to realize parts with complex shape. Then, three-dimensional roughness is needed to characterize these parts with complex shape and textured surface. With contact or non-contact measurements (contact stylus, confocal microprobe, interferometer), three-dimensional roughness is quantified using the calculation of pertinent parameters defined by the international standard PR EN ISO 25178-2:2008. An analysis will identify the influence of measurement conditions on three-dimensional parameters. The purpose of this study is to analyse the variation of roughness results using contact stylus or optical apparatus. The second aim of this work is to develop a measurement standard well adapted to qualify the contact and non-contact apparatus.

  9. Standard test method for damage to contacting solid surfaces under fretting conditions

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers the studying or ranking the susceptibility of candidate materials to fretting corrosion or fretting wear for the purposes of material selection for applications where fretting corrosion or fretting wear can limit serviceability. 1.2 This test method uses a tribological bench test apparatus with a mechanism or device that will produce the necessary relative motion between a contacting hemispherical rider and a flat counterface. The rider is pressed against the flat counterface with a loading mass. The test method is intended for use in room temperature air, but future editions could include fretting in the presence of lubricants or other environments. 1.3 The purpose of this test method is to rub two solid surfaces together under controlled fretting conditions and to quantify the damage to both surfaces in units of volume loss for the test method. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5...

  10. Effect of measurement conditions on three-dimensional roughness values, and development of measurement standard

    Energy Technology Data Exchange (ETDEWEB)

    Fabre, A; Brenier, B [Arts et Metiers ParisTech, MecaSurf Laboratory, 2, Cours des Arts et Metiers, 13617 Aix-en-Provence (France); Raynaud, S, E-mail: agnes.fabre@ensam.eu [INSA Lyon, MIP2 Laboratory, 27 Avenue Jean Capelle, Bat Jacquard, 69100 Villeurbanne (France)

    2011-08-19

    Friction or corrosion behaviour, fatigue lifetime for mechanical components are influenced by their boundary and subsurface properties. The surface integrity is studied on mechanical component in order to improve the service behaviour of them. Roughness is one of the main geometrical properties, which is to be qualified and quantified. Components can be obtained using a complex process: forming, machining and treatment can be combined to realize parts with complex shape. Then, three-dimensional roughness is needed to characterize these parts with complex shape and textured surface. With contact or non-contact measurements (contact stylus, confocal microprobe, interferometer), three-dimensional roughness is quantified using the calculation of pertinent parameters defined by the international standard PR EN ISO 25178-2:2008. An analysis will identify the influence of measurement conditions on three-dimensional parameters. The purpose of this study is to analyse the variation of roughness results using contact stylus or optical apparatus. The second aim of this work is to develop a measurement standard well adapted to qualify the contact and non-contact apparatus.

  11. The study on the evaporation cooling efficiency and effectiveness of cooling tower of film type

    International Nuclear Information System (INIS)

    Li Yingjian; You Xinkui; Qiu Qi; Li Jiezhi

    2011-01-01

    Based on heat and mass transport mechanism of film type cooling, which was combined with an on-site test on counter flow film type cooling tower, a mathematical model on the evaporation and cooling efficiency and effectiveness has been developed. Under typical climatic conditions, air conditioning load and the operating condition, the mass and heat balances have been calculated for the air and the cooling water including the volume of evaporative cooling water. Changing rule has been measured and calculated between coefficient of performance (COP) and chiller load. The influences of air and cooling water parameters on the evaporative cooling efficiency were analyzed in cooling tower restrained by latent heat evaporative cooling, and detailed derivation and computation revealed that both the evaporative cooling efficiency and effectiveness of cooling tower are the same characteristics parameters of the thermal performance of a cooling tower under identical assumptions.

  12. Successful transportation of human corneal endothelial tissues without cool preservation in varying Indian tropical climatic conditions and in vitro cell expansion using a novel polymer.

    Science.gov (United States)

    Rao, Srinivas K; Sudhakar, John; Parikumar, Periyasamy; Natarajan, Sundaram; Insaan, Aditya; Yoshioka, Hiroshi; Mori, Yuichi; Tsukahara, Shigeo; Baskar, Subramani; Manjunath, Sadananda Rao; Senthilkumar, Rajappa; Thamaraikannan, Paramasivam; Srinivasan, Thangavelu; Preethy, Senthilkumar; Abraham, Samuel J K

    2014-02-01

    Though the transplantation of human corneal endothelial tissue (CET) separated from cadaver cornea is in practice, its transportation has not been reported. We report the successful transportation of CET in varying Indian climatic conditions without cool preservation and the in vitro expansion of Human Corneal Endothelial Precursor Cells (HCEPCs) using a novel Thermo-reversible gelation polymer (TGP). CET from cadaver corneas (n = 67), unsuitable for transplantation, were used. In phase I, CET was transported in Basal Culture Medium (Group I) and TGP (Group II) and in Phase II, in TGP cocktail alone, from three hospitals 250-2500 km away, to a central laboratory. The transportation time ranged from 6 h to 72 h and the outdoor temperature between 20°C and 41°C. On arrival, CET were processed, cells were expanded upto 30 days in basal culture medium (Group A) and TGP scaffold (Group B). Cell viability and morphology were documented and Reverse transcription polymerase chain reaction (RT-PCR) characterization undertaken. In Phase I, TGP yielded more viable cells (0.11 × 10(6) cells) than Group I (0.04 × 10(6) cells). In Phase II, the average cell count was 5.44 × 10(4) cells. During expansion, viability of HCEPCs spheres in TGP was maintained for a longer duration. The cells from both the groups tested positive for B-3 tubulin and negative for cytokeratins K3 and K12, thereby proving them to be HCEPCs. TGP preserves the CET during transportation without cool preservation and supports in vitro expansion, with a higher yield of HCEPCs, similar to that reported in clinical studies.

  13. Successful transportation of human corneal endothelial tissues without cool preservation in varying Indian tropical climatic conditions and in vitro cell expansion using a novel polymer

    Directory of Open Access Journals (Sweden)

    Srinivas K Rao

    2014-01-01

    Full Text Available Background: Though the transplantation of human corneal endothelial tissue (CET separated from cadaver cornea is in practice, its transportation has not been reported. We report the successful transportation of CET in varying Indian climatic conditions without cool preservation and the in vitro expansion of Human Corneal Endothelial Precursor Cells (HCEPCs using a novel Thermo-reversible gelation polymer (TGP. Materials and Methods: CET from cadaver corneas (n = 67, unsuitable for transplantation, were used. In phase I, CET was transported in Basal Culture Medium (Group I and TGP (Group II and in Phase II, in TGP cocktail alone, from three hospitals 250-2500 km away, to a central laboratory. The transportation time ranged from 6 h to 72 h and the outdoor temperature between 20°C and 41°C. On arrival, CET were processed, cells were expanded upto 30 days in basal culture medium (Group A and TGP scaffold (Group B. Cell viability and morphology were documented and Reverse transcription polymerase chain reaction (RT-PCR characterization undertaken. Results: In Phase I, TGP yielded more viable cells (0.11 × 10 6 cells than Group I (0.04 × 10 6 cells. In Phase II, the average cell count was 5.44 × 10 4 cells. During expansion, viability of HCEPCs spheres in TGP was maintained for a longer duration. The cells from both the groups tested positive for B-3 tubulin and negative for cytokeratins K3 and K12, thereby proving them to be HCEPCs. Conclusion: TGP preserves the CET during transportation without cool preservation and supports in vitro expansion, with a higher yield of HCEPCs, similar to that reported in clinical studies.

  14. Quantitative X-ray - UV Line and Continuum Spectroscopy with Application to AGN: State-Specific Hydrogenic Recombination Cooling Coefficients for a Wide Range of Conditions

    Science.gov (United States)

    LaMothe, J.; Ferland, Gary J.

    2002-01-01

    Recombination cooling, in which a free electron emits light while being captured to an ion, is an important cooling process in photoionized clouds that are optically thick or have low metallicity. State specific rather than total recombination cooling rates are needed since the hydrogen atom tends to become optically thick in high-density regimes such as Active Galactic Nuclei. This paper builds upon previous work to derive the cooling rate over the full temperature range where the process can be a significant contributor in a photoionized plasma. We exploit the fact that the recombination and cooling rates are given by intrinsically similar formulae to express the cooling rate in terms of the closely related radiative recombination rate. We give an especially simple but accurate approximation that works for any high hydrogenic level and can be conveniently employed in large-scale numerical simulations.

  15. Parameter analysis and optimization of the energy and economic performance of solar-assisted liquid desiccant cooling system under different climate conditions

    International Nuclear Information System (INIS)

    Qi, Ronghui; Lu, Lin; Huang, Yu

    2015-01-01

    Highlights: • Operation conditions significantly affect energy & economic performance of SLDCS. • Control parameters in three areas were optimized by Multi-Population Genetic Algorithm. • Solar collector area showed the greatest effect on system performance for humid areas. • Desiccant concentration showed greatest effect on system performance for dry areas. • Requirement of collector area, heating water and desiccant flow rates for humid areas is highest. - Abstract: Operation conditions significantly affect the energy and economic performance of solar-assisted liquid desiccant cooling systems. This study optimized the system control parameters for buildings in different climates, i.e., Singapore (hot and humid), Beijing (moderate) and Boulder (hot and dry), with a multi-parameter optimization based on the Multi-Population Genetic Algorithm to obtain optimal system performance in terms of relatively maximum electricity saving rate with a minimum cost payback period. The results indicated that the selection of operation parameters is significantly influenced by climatic conditions. The solar collector installation area exhibited the greatest effect on both energy and economic performance in humid areas, and the heating water flow rate was also important. For dry areas, a change in desiccant concentration had the largest effect on system performance. Although the effect of the desiccant flow rate was significant in humid cities, it appeared to have little influence over buildings in dry areas. Furthermore, the requirements of the solar collector installation area in humid areas were much higher. The optimized area was up to 70 m 2 in Singapore compared with 27.5 m 2 in Boulder. Similar results were found for the flow rates of heating water and the desiccant solution. Applying the optimization, humid cities could achieve an electricity saving of more than 40% with a six-year payback period. The optimal performance for hot and dry areas of a 38% electricity

  16. Laser cooling of molecular anions.

    Science.gov (United States)

    Yzombard, Pauline; Hamamda, Mehdi; Gerber, Sebastian; Doser, Michael; Comparat, Daniel

    2015-05-29

    We propose a scheme for laser cooling of negatively charged molecules. We briefly summarize the requirements for such laser cooling and we identify a number of potential candidates. A detailed computation study with C_{2}^{-}, the most studied molecular anion, is carried out. Simulations of 3D laser cooling in a gas phase show that this molecule could be cooled down to below 1 mK in only a few tens of milliseconds, using standard lasers. Sisyphus cooling, where no photodetachment process is present, as well as Doppler laser cooling of trapped C_{2}^{-}, are also simulated. This cooling scheme has an impact on the study of cold molecules, molecular anions, charged particle sources, and antimatter physics.

  17. Laser Cooling of Molecular Anions

    CERN Document Server

    Yzombard, Pauline; Gerber, Sebastian; Doser, Michael; Comparat, Daniel

    2015-01-01

    We propose a scheme for laser cooling of negatively charged molecules. We briefly summarise the requirements for such laser cooling and we identify a number of potential candidates. A detailed computation study with C$\\_2^-$, the most studied molecular anion, is carried out. Simulations of 3D laser cooling in a gas phase show that this molecule could be cooled down to below 1 mK in only a few tens of milliseconds, using standard lasers. Sisyphus cooling, where no photo-detachment process is present, as well as Doppler laser cooling of trapped C$\\_2^-$, are also simulated. This cooling scheme has an impact on the study of cold molecules, molecular anions, charged particle sources and antimatter physics.

  18. LONGITUDINAL IONIZATION COOLING WITHOUT WEDGES

    International Nuclear Information System (INIS)

    BERG, J.S.

    2001-01-01

    The emittance of a muon beam must be reduced very rapidly due to the finite lifetime of the muons. The most effective known way to accomplish this is ionization cooling. It is straightforward to reduce transverse emittance through ionization cooling, but the reducing the longitudinal emittance is more challenging. Longitudinal cooling is necessary for a muon collider, and would be helpful for a neutrino factory. The method traditionally proposed for longitudinal cooling is emittance exchange involving wedges of absorber material: the longitudinal emittance is reduced at the cost of increased transverse emittance. The larger transverse emittance can then be reduced straightforwardly. An alternative method is proposed here, which does not require wedges of material but instead makes slight modifications to the standard transverse cooling lattice. We demonstrate a lattice which is a slight modification to a standard Super FOFO transverse cooling lattice, which has linear eigenvalues all of which have magnitude less than one

  19. Ventilative Cooling

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols; Kolokotroni, Maria

    This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state-of-the-art of ventil......This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state......-of-the-art of ventilative cooling potentials and limitations, its consideration in current energy performance regulations, available building components and control strategies and analysis methods and tools. In addition, the report provides twenty six examples of operational buildings using ventilative cooling ranging from...

  20. A seismic analysis of Korean standard PWR fuels under transition core conditions

    International Nuclear Information System (INIS)

    Kim, Hyeong Koo; Park, Nam Kyu; Jang, Young Ki; Kim, Jae Ik; Kim, Kyu Tae

    2005-01-01

    The PLUS7 fuel is developed to achieve higher thermal performance, burnup and more safety margin than the conventional fuel used in the Korean Standard Nuclear Plants (KSNPs) and to sustain structural integrity under increased seismic requirement in Korea. In this study, a series of seismic analysis have been performed in order to evaluate the structural integrity of fuel assemblies associated with seismic loads in the KSNPs under transition core conditions replacing the Guardian fuel, which is a resident fuel in the KSNP reactors, with the PLUS7 fuel. For the analysis, transition core seismic models have been developed, based on the possible fuel loading patterns. And the maximum impact forces on the spacer grid and various stresses acting on the fuel components have been evaluated and compared with the through-grid strength of spacer grids and the stress criteria specified in the ASME code for each fuel component, respectively. Then three noticeable parameters regarding as important parameters governing fuel assembly dynamic behavior are evaluated to clarify their effects on the fuel impact and stress response. As a result of the study, it has been confirmed that both the PLUS7 and the Guardian fuel sustain their structural integrity under the transition core condition. And when the damping ratio is constant, increasing the natural frequency of fuel assembly results in a decrease in impact force. The fuel assembly flexural stiffness has an effect increasing the stress of fuel assembly, but not the impact force. And the spacer grid stiffness is directly related with the impact force response. (author)

  1. Experimental study of the performance of intumescent coatings exposed to standard and non-standard fire conditions

    DEFF Research Database (Denmark)

    Lucherini, Andrea; Giuliani, Luisa; Jomaas, Grunde

    2018-01-01

    Three different experimental setups corresponding to three different fire scenarios were used to investigate how different heating conditions and heating rates affect the behaviour of two different thin intumescent coatings (a solvent-based and a water-based paint). Coated steel samples were...... to four critical points: activation, end of reaction, binder exhaustion and steel austenitization point. The results also showed that the water-based paint performed better at low heating rates, while the tested solvent-based paint performed better at high heating rates and did not activate or provide...

  2. Evaluating the performance of a new model for predicting the growth of Clostridium perfringens in cooked, uncured meat and poultry products under isothermal, heating, and dynamically cooling conditions

    Science.gov (United States)

    Clostridium perfringens Type A is a significant public health threat and may germinate, outgrow, and multiply during cooling of cooked meats. This study evaluates a new C. perfringens growth model in IPMP Dynamic Prediction using the same criteria and cooling data in Mohr and others (2015), but inc...

  3. Carbon dioxide and ethanol release from champagne glasses, under standard tasting conditions.

    Science.gov (United States)

    Liger-Belair, Gérard; Beaumont, Fabien; Bourget, Marielle; Pron, Hervé; Parvitte, Bertrand; Zéninari, Virginie; Polidori, Guillaume; Cilindre, Clara

    2012-01-01

    A simple glass of champagne or sparkling wine may seem like the acme of frivolity to most people, but in fact, it may rather be considered as a fantastic playground for any fluid physicist or physicochemist. In this chapter, results obtained concerning various steps where the CO₂ molecule plays a role (from its ingestion in the liquid phase during the fermentation process to its progressive release in the headspace above the tasting glass) are gathered and synthesized to propose a self-consistent and global overview of how gaseous and dissolved CO₂ impact champagne and sparkling wine science. Some recent investigations, conducted through laser tomography techniques, on ascending bubbles and ascending-bubble-driven flow patterns found in champagne glasses are reported, which illustrate the fine interplay between ascending bubbles and the fluid around under standard tasting conditions. The simultaneous monitoring of gaseous CO₂ and ethanol in the headspace of both a flute and a coupe filled with champagne was reported, depending on whether or not the glass shows effervescence. Both gaseous CO₂ and ethanol were found to be enhanced by the presence of ascending bubbles, thus confirming the close link between ascending bubbles, ascending-bubble-driven flow patterns, and the release of gaseous CO₂ and volatile organic compounds. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Simulation of transient heat transfer during cooling and heating of whole sweet potato (Ipomoea batatas (L.) Lam.) roots under forced-air conditions

    International Nuclear Information System (INIS)

    Korese, Joseph Kudadam; Sturm, Barbara; Román, Franz; Hensel, Oliver

    2017-01-01

    Highlights: • Heat transfer of whole sweet potato roots under forced-air cooling and heating is investigated. • Experiments were carried out in a cooling and heating chamber. • The cooling and heating rate and time was clearly depended on air velocity and roots size. • Simulated and experimental data on cooling and heating times were compared for validation. • Simulation results quantitatively agreed with experimental results. - Abstract: In this work, we investigated how different air velocity and temperature affect the cooling and heating rate and time of individual sweet potato roots. Additionally, we modified and applied a simulation model which is based on the fundamental solution of the transient equations for estimating the cooling and heating time at the centre of sweet potato roots. The model was adapted to receive input parameters such as thermo-physical properties of whole sweet potato roots as well as the surrounding air properties, and was verified with experimental transient temperature data. The experimental results showed that the temperature at the centre and the under skin of sweet potato roots is almost homogeneous during forced convection cooling and heating. The cooling and heating time was significantly (P < 0.05) affected by high air velocity and sweet potato root size. The simulation results quantitatively agreed with the experimental transient data. This research, thus provides a reliable experimental and theoretical basis for understanding the temperature variations as well as estimating the cooling and heating times in individual sweet potato roots under forced convection cooling and heating. The result from this study could be applied to design and optimize forced-air treatment equipments with improved energy efficiency as well as ensuring safety and the maintenance of sweet potato roots quality.

  5. Compensation for the Effects of Ambient Conditions on the Calibration of Multi-Capillary Pressure Drop Standards

    Directory of Open Access Journals (Sweden)

    Colard S

    2014-12-01

    Full Text Available Cigarette draw resistance and filter pressure drop (PD are both major physical parameters for the tobacco industry. Therefore these parameters must be measured reliably. For these measurements, specific equipment calibrated with PD transfer standards is used. Each transfer standard must have a known and stable PD value, such standards usually being composed of several capillary tubes associated in parallel. However, PD values are modified by ambient conditions during calibration of such standards, i.e. by temperature and relative humidity (RH of air, and atmospheric pressure. In order to reduce the influence of these ambient factors, a simplified model was developed for compensating the effects of ambient conditions on the calibration of multi-capillary PD standards.

  6. Cooling in Surgical Patients: Two Case Reports

    Directory of Open Access Journals (Sweden)

    Bibi F. Gurreebun

    2014-01-01

    Full Text Available Moderate induced hypothermia has become standard of care for children with peripartum hypoxic ischaemic encephalopathy. However, children with congenital abnormalities and conditions requiring surgical intervention have been excluded from randomised controlled trials investigating this, in view of concerns regarding the potential side effects of cooling that can affect surgery. We report two cases of children, born with congenital conditions requiring surgery, who were successfully cooled and stabilised medically before undergoing surgery. Our first patient was diagnosed after birth with duodenal atresia after prolonged resuscitation, while the second had an antenatal diagnosis of left-sided congenital diaphragmatic hernia and suffered an episode of hypoxia at birth. They both met the criteria for cooling and after weighing the pros and cons, this was initiated. Both patients were medically stabilised and successfully underwent therapeutic hypothermia. Potential complications were investigated for and treated as required before they both underwent surgery successfully. We review the potential side effects of cooling, especially regarding coagulation defects. We conclude that newborns with conditions requiring surgery need not be excluded from therapeutic hypothermia if they might benefit from it.

  7. Strategy for the Operation of Cooling Towers with variable Speed Fans

    CERN Document Server

    Iñigo-Golfín, J

    2001-01-01

    Within the SPS Cooling Water Project at CERN aimed at the reduction of water consumption, this primary open cooling loop will be closed and all the primary cooling circuit components will be upgraded to the new required duty and brought to the necessary safety and operability standards. In particular the tower fans will be fitted with variable frequency drives to replace the existing two speed motors. This paper presents a study to optimize the operation of SPS cooling towers taking into account outdoor conditions (wet and dry bulb temperatures) and the entirety of the primary circuit in which they will operate.

  8. Experimental and Numerical Investigation of the Effect of Process Conditions on Residual Wall Thickness and Cooling and Surface Characteristics of Water-Assisted Injection Molded Hollow Products

    Directory of Open Access Journals (Sweden)

    Hyungpil Park

    2015-01-01

    Full Text Available Recently, water-assisted injection molding was employed in the automobile industry to manufacture three-dimensional hollow tube-type products with functionalities. However, process optimization is difficult in the case of water-assisted injection molding because of the various rheological interactions between the injected water and the polymer. In this study, the boiling phenomenon that occurs because of the high melt temperature when injecting water and the molding characteristics of the hollow section during the water-assisted injection process were analyzed by a water-assisted injection molding analysis. In addition, the changes in the residual wall thickness accompanying changes in the process conditions were compared with the analysis results by considering water-assisted injection molding based on gas-assisted injection molding. Furthermore, by comparing the cooling characteristics and inner wall surface qualities corresponding to the formation of the hollow section by gas and water injections, a water-assisted injection molding technique was proposed for manufacturing hollow products with functionality.

  9. Standardizing electrophoresis conditions: how to eliminate a major source of error in the comet assay.

    Directory of Open Access Journals (Sweden)

    Gunnar Brunborg

    2015-06-01

    Full Text Available In the alkaline comet assay, cells are embedded in agarose, lysed, and then subjected to further processing including electrophoresis at high pH (>13. We observed very large variations of mean comet tail lengths of cell samples from the same population when spread on a glass or plastic substrate and subjected to electrophoresis. These variations might be cancelled out if comets are scored randomly over a large surface, or if all the comets are scored. The mean tail length may then be representative of the population, although its standard error is large. However, the scoring process often involves selection of 50 – 100 comets in areas selected in an unsystematic way from a large gel on a glass slide. When using our 96-sample minigel format (1, neighbouring sample variations are easily detected. We have used this system to study the cause of the comet assay variations during electrophoresis and we have defined experimental conditions which reduce the variations to a minimum. We studied the importance of various physical parameters during electrophoresis: (i voltage; (ii duration of electrophoresis; (iii electric current; (iv temperature; and (v agarose concentration. We observed that the voltage (V/cm varied substantially during electrophoresis, even within a few millimetres of distance between gel samples. Not unexpectedly, both the potential ( V/cm and the time were linearly related to the mean comet tail, whereas the current was not. By measuring the local voltage with microelectrodes a few millimetres apart, we observed substantial local variations in V/cm, and they increased with time. This explains the large variations in neighbouring sample comet tails of 25% or more. By introducing simple technology (circulation of the solution during electrophoresis, and temperature control, these variations in mean comet tail were largely abolished, as were the V/cm variations. Circulation was shown to be particularly important and optimal conditions

  10. Thermohydraulic characteristics analysis of natural convective cooling mode on the steady state condition of upgraded JRR-3 core, using COOLOD-N code

    International Nuclear Information System (INIS)

    Kaminaga, Masanori; Watanabe, Shukichi; Ando, Hiroei; Sudo, Yukio; Ikawa, Hiromasa.

    1987-03-01

    This report describes the results of the steady state thermohydraulic analysis of upgraded JRR-3 core under natural convective cooling mode, using COOLOD-N code. In the code, function to calculate flow-rate under natural convective cooling mode, and a heat transfer package have been newly added to the COOLOD code which has been developed in JAERI. And this report describes outline of the COOLOD-N code. The results of analysis show that the thermohydraulics of upgraded JRR-3 core, under natural convective cooling mode have enough margine to ONB temperature, DNB heat flux and occurance of blisters in fuel meats, which are design criterion of upgraded JRR-3. (author)

  11. Injury Rates in Age-Only Versus Age-and-Weight Playing Standard Conditions in American Youth Football

    Science.gov (United States)

    Kerr, Zachary Y.; Marshall, Stephen W.; Simon, Janet E.; Hayden, Ross; Snook, Erin M.; Dodge, Thomas; Gallo, Joseph A.; Valovich McLeod, Tamara C.; Mensch, James; Murphy, Joseph M.; Nittoli, Vincent C.; Dompier, Thomas P.; Ragan, Brian; Yeargin, Susan W.; Parsons, John T.

    2015-01-01

    Background: American youth football leagues are typically structured using either age-only (AO) or age-and-weight (AW) playing standard conditions. These playing standard conditions group players by age in the former condition and by a combination of age and weight in the latter condition. However, no study has systematically compared injury risk between these 2 playing standards. Purpose: To compare injury rates between youth tackle football players in the AO and AW playing standard conditions. Study Design: Cohort study; Level of evidence, 2. Methods: Athletic trainers evaluated and recorded injuries at each practice and game during the 2012 and 2013 football seasons. Players (age, 5-14 years) were drawn from 13 recreational leagues across 6 states. The sample included 4092 athlete-seasons (AW, 2065; AO, 2027) from 210 teams (AW, 106; O, 104). Injury rate ratios (RRs) with 95% CIs were used to compare the playing standard conditions. Multivariate Poisson regression was used to estimate RRs adjusted for residual effects of age and clustering by team and league. There were 4 endpoints of interest: (1) any injury, (2) non–time loss (NTL) injuries only, (3) time loss (TL) injuries only, and (4) concussions only. Results: Over 2 seasons, the cohort accumulated 1475 injuries and 142,536 athlete-exposures (AEs). The most common injuries were contusions (34.4%), ligament sprains (16.3%), concussions (9.6%), and muscle strains (7.8%). The overall injury rate for both playing standard conditions combined was 10.3 per 1000 AEs (95% CI, 9.8-10.9). The TL injury, NTL injury, and concussion rates in both playing standard conditions combined were 3.1, 7.2, and 1.0 per 1000 AEs, respectively. In multivariate Poisson regression models controlling for age, team, and league, no differences were found between playing standard conditions in the overall injury rate (RRoverall, 1.1; 95% CI, 0.4-2.6). Rates for the other 3 endpoints were also similar (RRNTL, 1.1 [95% CI, 0

  12. 78 FR 73112 - Monitoring System Conditions-Transmission Operations Reliability Standards; Interconnection...

    Science.gov (United States)

    2013-12-05

    ... complement the TOP Standards, have the goal of ensuring that the bulk electric system is planned and operated... pertain to the coordinated efforts to operate the bulk electric system in a reliable manner during real... System Operating Limits (SOLs).\\5\\ The provisions in the proposed TOP Reliability Standards that require...

  13. Evaluating the Performance of a New Model for Predicting the Growth of Clostridium perfringens in Cooked, Uncured Meat and Poultry Products under Isothermal, Heating, and Dynamically Cooling Conditions.

    Science.gov (United States)

    Huang, Lihan

    2016-07-01

    Clostridium perfringens type A is a significant public health threat and its spores may germinate, outgrow, and multiply during cooling of cooked meats. This study applies a new C. perfringens growth model in the USDA Integrated Pathogen Modeling Program-Dynamic Prediction (IPMP Dynamic Prediction) Dynamic Prediction to predict the growth from spores of C. perfringens in cooked uncured meat and poultry products using isothermal, dynamic heating, and cooling data reported in the literature. The residual errors of predictions (observation-prediction) are analyzed, and the root-mean-square error (RMSE) calculated. For isothermal and heating profiles, each data point in growth curves is compared. The mean residual errors (MRE) of predictions range from -0.40 to 0.02 Log colony forming units (CFU)/g, with a RMSE of approximately 0.6 Log CFU/g. For cooling, the end point predictions are conservative in nature, with an MRE of -1.16 Log CFU/g for single-rate cooling and -0.66 Log CFU/g for dual-rate cooling. The RMSE is between 0.6 and 0.7 Log CFU/g. Compared with other models reported in the literature, this model makes more accurate and fail-safe predictions. For cooling, the percentage for accurate and fail-safe predictions is between 97.6% and 100%. Under criterion 1, the percentage of accurate predictions is 47.5% for single-rate cooling and 66.7% for dual-rate cooling, while the fail-dangerous predictions are between 0% and 2.4%. This study demonstrates that IPMP Dynamic Prediction can be used by food processors and regulatory agencies as a tool to predict the growth of C. perfringens in uncured cooked meats and evaluate the safety of cooked or heat-treated uncured meat and poultry products exposed to cooling deviations or to develop customized cooling schedules. This study also demonstrates the need for more accurate data collection during cooling. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  14. Cool WISPs for stellar cooling excesses

    Energy Technology Data Exchange (ETDEWEB)

    Giannotti, Maurizio [Barry Univ., Miami Shores, FL (United States). Physical Sciences; Irastorza, Igor [Zaragoza Univ. (Spain). Dept. de Fisica Teorica; Redondo, Javier [Zaragoza Univ. (Spain). Dept. de Fisica Teorica; Max-Planck-Institut fuer Physik, Muenchen (Germany); Ringwald, Andreas [DESY Hamburg (Germany). Theory Group

    2015-12-15

    Several stellar systems (white dwarfs, red giants, horizontal branch stars and possibly the neutron star in the supernova remnant Cassiopeia A) show a preference for a mild non-standard cooling mechanism when compared with theoretical models. This exotic cooling could be provided by Weakly Interacting Slim Particles (WISPs), produced in the hot cores and abandoning the star unimpeded, contributing directly to the energy loss. Taken individually, these excesses do not show a strong statistical weight. However, if one mechanism could consistently explain several of them, the hint could be significant. We analyze the hints in terms of neutrino anomalous magnetic moments, minicharged particles, hidden photons and axion-like particles (ALPs). Among them, the ALP represents the best solution. Interestingly, the hinted ALP parameter space is accessible to the next generation proposed ALP searches, such as ALPS II and IAXO.

  15. Autofluorescence of atmospheric bioaerosols - Biological standard particles and the influence of environmental conditions

    Science.gov (United States)

    Pöhlker, Christopher; Huffman, J. Alex; Förster, Jan-David; Pöschl, Ulrich

    2013-04-01

    standard bioparticles (pollen, fungal spores, and bacteria) as well as atmospherically relevant chemical substances. We addressed the sensitivity and selectivity of autofluorescence based online techniques. Moreover, we investigated the influence of environmental conditions, such as relative humidity and oxidizing agents in the atmosphere, on the autofluorescence signature of standard bioparticles. Our results will support the molecular understanding and quantitative interpretation of data obtained by real-time FBAP instrumentation [5,6]. [1] Elbert, W., Taylor, P. E., Andreae, M. O., & Pöschl, U. (2007). Atmos. Chem. Phys., 7, 4569-4588. [2] Huffman, J. A., Treutlein, B., & Pöschl, U. (2010). Atmos. Chem. Phys., 10, 3215-3233. [3] Pöschl, U., et al. (2010). Science, 329, 1513-1516. [4] Lakowicz, J., Principles of fluorescence spectroscopy, Plenum publishers, New York, 1999. [5] Pöhlker, C., Huffman, J. A., & Pöschl, U., (2012). Atmos. Meas. Tech., 5, 37-71. [6] Pöhlker, C., Huffman, J. A., Förster J.-D., & Pöschl, U., (2012) in preparation.

  16. Standard nomenclature and methods for describing the condition of pavements draft TRH 6

    CSIR Research Space (South Africa)

    Curtayne, PC

    2009-01-26

    Full Text Available The need for describing the condition of pavements occurs frequently in highway engineering. Accurate descriptions are a prerequisite for establishing procedures with which to evaluate the various aspects of the pavement condition. A variety...

  17. Boundary conditions for heat transfer and evaporative cooling in the trachea and air sac system of the domestic fowl: a two-dimensional CFD analysis.

    Directory of Open Access Journals (Sweden)

    Nina S Sverdlova

    Full Text Available Various parts of the respiratory system play an important role in temperature control in birds. We create a simplified computational fluid dynamics (CFD model of heat exchange in the trachea and air sacs of the domestic fowl (Gallus domesticus in order to investigate the boundary conditions for the convective and evaporative cooling in these parts of the respiratory system. The model is based upon published values for respiratory times, pressures and volumes and upon anatomical data for this species, and the calculated heat exchange is compared with experimentally determined values for the domestic fowl and a closely related, wild species. In addition, we studied the trachea histologically to estimate the thickness of the heat transfer barrier and determine the structure and function of moisture-producing glands. In the transient CFD simulation, the airflow in the trachea of a 2-dimensional model is evoked by changing the volume of the simplified air sac. The heat exchange between the respiratory system and the environment is simulated for different ambient temperatures and humidities, and using two different models of evaporation: constant water vapour concentration model and the droplet injection model. According to the histological results, small mucous glands are numerous but discrete serous glands are lacking on the tracheal surface. The amount of water and heat loss in the simulation is comparable with measured respiratory values previously reported. Tracheal temperature control in the avian respiratory system may be used as a model for extinct or rare animals and could have high relevance for explaining how gigantic, long-necked dinosaurs such as sauropoda might have maintained a high metabolic rate.

  18. Solar cooling technologies in Greece. An economic viability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tsoutsos, Theocharis; Karagiorgas, Michalis; Agoris, Dimosthenis [Centre for Renewable Energy Sources, Pikermi (Greece); Anagnostou, Joanna; Pritchard, Colin [Edinburgh Univ., Centre for the Study of Environmental Change and Sustainability, Edinburgh (United Kingdom)

    2003-08-01

    In Greece, during the summer, the demand for electricity greatly increases because of the extensive use of air-conditioning systems. This is a source of major problems in the country's electricity supply and contributes to an increase of the CO{sub 2} emissions. The use of solar energy (SE) to drive cooling cycles is attractive since the cooling load is roughly in phase with SE availability. An economic evaluation of two types of solar cooling systems is made (an absorption and an adsorption system). The analyses indicated that, because of their high investment cost, these systems would be marginally competitive with standard cooling systems at present energy prices. (Author)

  19. Measurement of Tank Cooling Airflow Based on Array Sensors

    Science.gov (United States)

    Zhou, Hui; Han, Yan; Wang, Jianguo; Zhang, Pizhuang

    2017-10-01

    Researching on the cooling airflow characters of tank will be helpful for optimizing the design of cooling system, and will be of great importance to improve the performance of armoured vehicles. According to the test requirements of tank under the actual working conditions, we studied and designed the proposed cooling airflow measurement system. The most important thing was that we finished the assembly of array sensors without any damage to tank. In addition, according to national standard we set the quantity and locations of the sensors, which was on the premise of avoiding the influence to airway. In this paper, there was description of cooling airflow signal processing; and there was analysis of air pressure distribution which was presented simultaneously by three-dimensional surface graph and plane graph at the exhaust port of tank engine compartment according to fitting algorithm.

  20. Theory of tapered laser cooling

    International Nuclear Information System (INIS)

    Okamoto, Hiromi; Wei, J.

    1998-01-01

    A theory of tapered laser cooling for fast circulating ion beams in a storage ring is constructed. The authors describe the fundamentals of this new cooling scheme, emphasizing that it might be the most promising way to beam crystallization. The cooling rates are analytically evaluated to study the ideal operating condition. They discuss the physical implication of the tapering factor of cooling laser, and show how to determine its optimum value. Molecular dynamics method is employed to demonstrate the validity of the present theory

  1. A very cool cooling system

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The NA62 Gigatracker is a jewel of technology: its sensor, which delivers the time of the crossing particles with a precision of less than 200 picoseconds (better than similar LHC detectors), has a cooling system that might become the precursor to a completely new detector technique.   The 115 metre long vacuum tank of the NA62 experiment. The NA62 Gigatracker (GTK) is composed of a set of three innovative silicon pixel detectors, whose job is to measure the arrival time and the position of the incoming beam particles. Installed in the heart of the NA62 detector, the silicon sensors are cooled down (to about -20 degrees Celsius) by a microfluidic silicon device. “The cooling system is needed to remove the heat produced by the readout chips the silicon sensor is bonded to,” explains Alessandro Mapelli, microsystems engineer working in the Physics department. “For the NA62 Gigatracker we have designed a cooling plate on top of which both the silicon sensor and the...

  2. Radio-contaminant behaviour in the cover-gas space and the containment building of a sodium-cooled fast reactor in accident conditions

    International Nuclear Information System (INIS)

    Mathe, Emmanuel

    2014-01-01

    In the context of the Generation IV initiative, the consequences of a severe-accident (SA) in a sodium-cooled fast reactor must be studied. A SFR (Sodium cooled Fast Reactor) severe accident involves the disruption of the core by super-criticality involving the destruction of a certain number of fuel assemblies. Subsequently the interaction between hot fuel and liquid sodium can lead to a vapor explosion which could create a breach in the primary system. Some contaminated liquid sodium would thus be ejected into the containment building. In this situation, the evaluation of potential releases to the environment (the source term) must forecast the quantity and the chemical speciation of the radio-contaminants likely to be released from the containment building. One critical risk of a SA is the production of contaminated aerosols in the containment building by spray ejection of primary-system sodium. Being pyrophoric, the sodium droplets react with oxygen first oxidizing then burning, with significant heat of combustion. As well as evaluating the consequences of a pressure rise inside the containment, the evolution of the sodium must be assessed since not only is it activated and contaminated but, in oxide form, very toxic. Ultimately, the aerosols are the main radiological risk acting as the vector for radionuclide transport to the environment in the event of a problem with the confinement. These aerosols could evolve and interact with the FP (Fissile Products) and these interactions could modify the physical and chemical nature of the PF. We model a large part of the events that occur during a SA inside a SFR from the sodium spray fire to the reaction between sodium aerosols and PF (iodine). At first, we develop a numerical model (NATRAC) that simulates the sodium spray fire, calculates the temperature and the pressure inside the containment as well as the mass of aerosols produced during this kind of fire. The simulation has been validated with different

  3. Conditional conservatism and value relevance of financial reporting: A study in view of converging accounting standards

    NARCIS (Netherlands)

    Thijssen, Maximiliaan Willem Pierre; Iatridis, George Emmanuel

    2016-01-01

    This study examines the relationship between conditional conservatism and value relevance in the EU and US. Specifically, it investigates whether this relationship differs under US GAAP and IFRS compliance. In addition, this study examines the trend in value relevance, conditional conservatism and

  4. [Prediction of the total Japanese cedar pollen counts based on male flower-setting conditions of standard trees].

    Science.gov (United States)

    Yuta, Atsushi; Ukai, Kotaro; Sakakura, Yasuo; Tani, Hideshi; Matsuda, Fukiko; Yang, Tian-qun; Majima, Yuichi

    2002-07-01

    We made a prediction of the Japanese cedar (Cryptomeria japonica) pollen counts at Tsu city based on male flower-setting conditions of standard trees. The 69 standard trees from 23 kinds of clones, planted at Mie Prefecture Science and Technology Promotion Center (Hakusan, Mie) in 1964, were selected. Male flower-setting conditions for 276 faces (69 trees x 4 points of the compass) were scored from 0 to 3. The average of scores and total pollen counts from 1988 to 2000 was analyzed. As the results, the average scores from standard trees and total pollen counts except two mass pollen-scattered years in 1995 and 2000 had a positive correlation (r = 0.914) by linear function. On the mass pollen-scattered years, pollen counts were influenced from the previous year. Therefore, the score of the present year minus that of the previous year were used for analysis. The average scores from male flower-setting conditions and pollen counts had a strong positive correlation (r = 0.994) when positive scores by taking account of the previous year were analyzed. We conclude that prediction of pollen counts are possible based on the male flower-setting conditions of standard trees.

  5. 42 CFR 433.123 - Notification of changes in system requirements, performance standards or other conditions for...

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Notification of changes in system requirements, performance standards or other conditions for approval or reapproval. 433.123 Section 433.123 Public Health... ASSISTANCE PROGRAMS STATE FISCAL ADMINISTRATION Mechanized Claims Processing and Information Retrieval...

  6. A Guide for Developing Standard Operating Job Procedures for the Sludge Conditioning & Dewatering Process Wastewater Treatment Facility. SOJP No. 11.

    Science.gov (United States)

    Schwing, Carl M.

    This guide describes standard operating job procedures for the sludge conditioning and dewatering process of wastewater treatment facilities. In this process, sludge is treated with chemicals to make the sludge coagulate and give up its water more easily. The treated sludge is then dewatered using a vacuum filter. The guide gives step-by-step…

  7. Conditions for vacuum stability in an S{sub 3} extension of the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Beltran, O Felix [Fac. de Cs. de la Electronica, BUAP, Apdo. Postal 542, Puebla, Pue. 72570 (Mexico); Mondragon, M [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apdo. Postal 20-364, Mexico, D.F. 01000 (Mexico); RodrIguez-Jauregui, E, E-mail: ezequiel.rodriguez@correo.fisica.uson.m [Departamento de Fisica, UNISON, Apdo. Postal 1626, Hermosillo, Son. 83000 (Mexico)

    2009-06-01

    In this work we study the Higgs sector in the minimal S{sub 3} extension of the Standard Model. The S{sub 3} extended Standard Model, which has three Higgs doublets fields that belong to the three-dimensional reducible representation of the permutation group S{sub 3}, has naturally new phenomena: there are several Higgs bosons, charged, neutral and pseuodscalar ones, and more than one potential minimum. We analyzed the stability of the minimal S3 invariant extension of the Higgs potential and show that at tree-level, the potential minimum preserving electric charge and CP symmetries, when it exists, is the global one.

  8. Using ANNs to predict cooling requirements for residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Karatasou, S.; Santamouris, M.; Geros, V. [University of Athens (Greece). Physics Dept.

    2004-07-01

    Artificial neural networks (ANNs) have been used for the prediction of cooling loads of residential buildings in Athens, Greece. The investigation was performed for the summer period, where for Southern European countries, short time cooling load forecasting in residential buildings with lead times from 1 hour to 7 days can play a key role in the economic and energy efficient operation of cooling appliances. The objective of this work is to produce a simulation algorithm, using ANNs, capable to forecast the following 24-hour cooling load profiles. Reliable cooling consumption measurements are required but are not usually available for residential buildings. State-ofthe- art building simulation software, TRNSYS, was used to calculate energy demand for cooling for five selected apartments in Athens, Greece, using detailed building data (geometry, wall construction, occupancy etc) and Athens climate conditions. These data are used to train artificial neural networks in order to generate the relationship between selected inputs and the desired output, the next day building energy consumption for cooling. A multiplayer perceptron architecture using the standard back-propagation learning algorithm has been applied yielded to satisfactory results and the conclusion that when ANNs are trained on reliable data they can simulate the behavior of the building, thus they can be effectively used to predict future performance. (orig.)

  9. The Effect of Cooling Vest on Heat Strain Indexes and Reaction Time While Wearing Chemical-Microbial-Radioactive Protective Clothing in Hot and Dry Laboratory Conditions

    Directory of Open Access Journals (Sweden)

    Dehghan

    2016-09-01

    Full Text Available Background Heat is a harmful factor in workplaces that causes physiologic and cognitive changes in workers. Objectives The purpose of this study was to investigate the effect of cooling vest on heat strain and reaction time while wearing chemical-biological-nuclear protective clothes. Methods Twelve male students with mean age of 25 ± 2 and body mass index (BMI of 23 ± 1.5 were recruited in the experiment. Each student ran on a treadmill with a speed of 2.4 km/hour in the climate chamber at 35°C and 30% relative humidity. physiological strain index score, oral temperature, heart rate, reaction time and number of errors were measured at the end of the two levels and analyzed by the SPSS software. Results Wilcoxon test showed that the differences of physiological strain index score (P = 0.02, oral temperature (P = 0.02, reaction time (P = 0.02, heart Rate (P = 0.02 and errors (P = 0.03 with and without the cooling vest were significant. The mean physiological strain index score without cooling vest was 4.038 ± 0.882 and with the cooling vest was 1.42 ± 0.435. The mean reaction time without and with the cooling vest was 0.769 ± 0.0972 and 0.539 ± 0.977, respectively. Conclusions The results of the study showed that the cooling vest reduces the physiological strain, reaction time and errors rate of workers.

  10. Cooling systems

    International Nuclear Information System (INIS)

    Coutant, C.C.

    1978-01-01

    Progress on the thermal effects project is reported with regard to physiology and distribution of Corbicula; power plant effects studies on burrowing mayfly populations; comparative thermal responses of largemouth bass from northern and southern populations; temperature selection by striped bass in Cherokee Reservoir; fish population studies; and predictive thermoregulation by fishes. Progress is also reported on the following; cause and ecological ramifications of threadfin shad impingement; entrainment project; aquaculture project; pathogenic amoeba project; and cooling tower drift project

  11. 24 CFR 886.307 - Physical condition standards; physical inspection requirements.

    Science.gov (United States)

    2010-04-01

    ..., subpart G. (b) Space and security. In addition to the standards in 24 CFR part 5, subpart G, the dwelling unit must have a living room, a kitchen area, and a bathroom. The dwelling unit must have at least one...) The unit shall contain suitable space to store, prepare and serve foods in a sanitary manner. A...

  12. Research on a Valuation Standard and the Actual Condition About Security Management in PACS

    International Nuclear Information System (INIS)

    Jeong, Jae Ho; Son, Gi Gyeong; Kang, Hee Doo; Dong, Kyung Rae; Kweon, Dae Cheol; Kim, Hyun Soo

    2008-01-01

    This study is to prepare an evaluation standard about personal information protection and security management of a medical institution and to build up a grade standard of evaluation in PACS environment. We built up evaluation index based on 10 detailed items in four big categories (political security, technical security, data management security and physical security) by referring to ISO17799 (BS 7799), HIPPA (Health Insurance and Portability and Accountability Act of 1996) and domestic medical law. We have investigated at the thirty places where medical facility with the extracted security criteria and security evaluation index. Average score of physical security list, one of the big categories, was 18.5/20 (93%) at all medical institutions. Political security score was 18.5/30 (62%), data management security score was 12/20 (60%) and technical security score was 17.5/30 (58%). Therefore, security evaluation score was average 67 in 30 general hospitals, which was 4th level. The results showed that it is necessary to establish evaluation and management standard about personal information protection and security consciousness which are weak in PACS environment.

  13. Comparison of ESD and major organ absorbed doses of 5 year old standard guidekines and clinical exposure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kang, A Ram; Ahn, Sung Min [Dept. of Radiological Science, The Graduate School, Gachon University, Incheon (Korea, Republic of); Lee, In Ja [Dept. of Radiologic technology, Dongnam health University, Suwon (Korea, Republic of)

    2017-09-15

    Pediatrics are more sensibility to radiation than adults and because they are organs that are not completely grown, they have a life expectancy that can be adversely affected by exposure. Therefore, the management of exposure dose is more important than the case of adult. The purpose of this study was to determine the suitability of the 10 year old phantom for the 5 year old pediatric's recommendation and the incident surface dose, and to measure the organ absorbed dose. This study is compared the organ absorbed dose and the entrance surface dose in the clinical conditions at 5 and 10 years old pediatric. Clinical 5 year old condition was slightly higher than recommendation condition and 10 year old condition was very high. In addition, recommendation condition ESD was found to be 43% higher than the ESD of the 5 year old group and the ESD of the 10 year old group was 126% higher than that of the 5 year old group. The recommended ESD at 5 years old and the ESD according to clinical imaging conditions were 31.6%. There was no significant difference between the 5 year old recommended exposure conditions and the organ absorbed dose due to clinical exposure conditions, but there was a large difference between the Chest and Pelvic. However, it was found that there was a remarkable difference when comparing the organ absorbed dose by 10 year clinical exposure conditions. Therefore, more detailed standard exposure dose for the recommended dose of pediatric should be studied.

  14. Mathematical analysis of the Navier-Stokes equations with non standard boundary conditions

    Science.gov (United States)

    Tidriri, M. D.

    1995-01-01

    One of the major applications of the domain decomposition time marching algorithm is the coupling of the Navier-Stokes systems with Boltzmann equations in order to compute transitional flows. Another important application is the coupling of a global Navier-Stokes problem with a local one in order to use different modelizations and/or discretizations. Both of these applications involve a global Navier-Stokes system with nonstandard boundary conditions. The purpose of this work is to prove, using the classical Leray-Schauder theory, that these boundary conditions are admissible and lead to a well posed problem.

  15. Absorption of water vapour in the falling film of water-(LiBr + LiI + LiNO{sub 3} + LiCl) in a vertical tube at air-cooling thermal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bourouis, Mahmoud; Valles, Manel; Medrano, Marc; Coronas, Alberto [Centro de Innovacion Tecnologica en Revalorizacion Energetica y Refrigeracion, CREVER, Universitat Rovira i Virgili, Autovia de Salou, s/n, 43006, Tarragona (Spain)

    2005-05-01

    In air-cooled water-LiBr absorption chillers the working conditions in the absorber and condenser are shifted to higher temperatures and concentrations, thereby increasing the risk of crystallisation. To develop this technology, two main problems are to be addressed: the availability of new salt mixtures with wider range of solubility than water-LiBr, and advanced absorber configurations that enable to carry out simultaneously an appropriate absorption process and an effective air-cooling. One way of improving the solubility of LiBr aqueous solutions is to add other salts to create multicomponent salt solutions. The aqueous solution of the quaternary salt system (LiBr + LiI + LiNO{sub 3} + LiCl) presents favourable properties required for air-cooled absorption systems: less corrosive and crystallisation temperature about 35 K lower than that of water-LiBr.This paper presents an experimental study on the absorption of water vapour over a wavy laminar falling film of an aqueous solution of (LiBr + LiI + LiNO{sub 3} + LiCl) on the inner wall of a water-cooled smooth vertical tube. Cooling water temperatures in the range 30-45 C were selected to simulate air-cooling thermal conditions. The results are compared with those obtained in the same experimental set-up with water-LiBr solutions.The control variables for the experimental study were: absorber pressure, solution Reynolds number, solution concentration and cooling water temperature. The parameters considered to assess the absorber performance were: absorber thermal load, mass absorption flux, degree of subcooling of the solution leaving the absorber, and the falling film heat transfer coefficient.The higher solubility of the multicomponent salt solution makes possible the operation of the absorber at higher salt concentration than with the conventional working fluid water-LiBr. The absorption fluxes achieved with water-(LiBr + LiI + LiNO{sub 3} + LiCl) at a concentration of 64.2 wt% are around 60 % higher than

  16. Standard methods for maintaining adult Apis mellifera in cages under in vitro laboratory conditions

    NARCIS (Netherlands)

    Williams, G.R.; Alaux, C.; Costa, C.; Csaki, C.; Steen, van der J.J.M.

    2013-01-01

    Adult honey bees are maintained in vitro in laboratory cages for a variety of purposes. For example, researchers may wish to perform experiments on honey bees caged individually or in groups to study aspects of parasitology, toxicology, or physiology under highly controlled conditions, or they may

  17. 18 CFR 4.94 - Standard terms and conditions of exemption.

    Science.gov (United States)

    2010-04-01

    ... conditions of exemption. 4.94 Section 4.94 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT LICENSES, PERMITS, EXEMPTIONS, AND DETERMINATION OF PROJECT COSTS Exemption of Small Conduit Hydroelectric Facilities § 4.94...

  18. Comparison study of judged clinical skills competence from standard setting ratings generated under different administration conditions.

    Science.gov (United States)

    Roberts, William L; Boulet, John; Sandella, Jeanne

    2017-12-01

    When the safety of the public is at stake, it is particularly relevant for licensing and credentialing exam agencies to use defensible standard setting methods to categorize candidates into competence categories (e.g., pass/fail). The aim of this study was to gather evidence to support change to the Comprehensive Osteopathic Medical Licensing-USA Level 2-Performance Evaluation standard setting design and administrative process. Twenty-two video recordings of candidates assessed for clinical competence were randomly selected from the 2014-2015 Humanistic domain test score distribution ranging from the highest to lowest quintile of performance. Nineteen panelists convened at the same site to receive training and practice prior to generating judgments of qualified or not qualified performance to each of the twenty videos. At the end of training, one panel remained onsite to complete their judgments and the second panel was released and given 1 week to observe the same twenty videos and complete their judgments offsite. The two one-sided test procedure established equivalence between panel group means at the 0.05 confidence level, controlling for rater errors within each panel group. From a practical cost-effective and administrative resource perspective, results from this study suggest it is possible to diverge from typical panel groups, who are sequestered the entire time onsite, to larger numbers of panelists who can make their judgments offsite with little impact on judged samples of qualified performance. Standard setting designs having panelists train together and then allowing those to provide judgments yields equivalent ratings and, ultimately, similar cut scores.

  19. ATLAS - Liquid Cooling Systems

    CERN Multimedia

    Bonneau, P.

    1998-01-01

    Photo 1 - Cooling Unit - Side View Photo 2 - Cooling Unit - Detail Manifolds Photo 3 - Cooling Unit - Rear View Photo 4 - Cooling Unit - Detail Pump, Heater and Exchanger Photo 5 - Cooling Unit - Detail Pump and Fridge Photo 6 - Cooling Unit - Front View

  20. Standard test method for determination of resistance to stable crack extension under low-constraint conditions

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This standard covers the determination of the resistance to stable crack extension in metallic materials in terms of the critical crack-tip-opening angle (CTOAc), ψc and/or the crack-opening displacement (COD), δ5 resistance curve (1). This method applies specifically to fatigue pre-cracked specimens that exhibit low constraint (crack-length-to-thickness and un-cracked ligament-to-thickness ratios greater than or equal to 4) and that are tested under slowly increasing remote applied displacement. The recommended specimens are the compact-tension, C(T), and middle-crack-tension, M(T), specimens. The fracture resistance determined in accordance with this standard is measured as ψc (critical CTOA value) and/or δ5 (critical COD resistance curve) as a function of crack extension. Both fracture resistance parameters are characterized using either a single-specimen or multiple-specimen procedures. These fracture quantities are determined under the opening mode (Mode I) of loading. Influences of environment a...

  1. ITER cooling system

    International Nuclear Information System (INIS)

    Kveton, O.K.

    1990-11-01

    The present specification of the ITER cooling system does not permit its operation with water above 150 C. However, the first wall needs to be heated to higher temperatures during conditioning at 250 C and bake-out at 350 C. In order to use the cooling water for these operations the cooling system would have to operate during conditioning at 37 Bar and during bake-out at 164 Bar. This is undesirable from the safety analysis point of view, and alternative heating methods are to be found. This review suggests that superheated steam or gas heating can be used for both baking and conditioning. The blanket design must consider the use of dual heat transfer media, allowing for change from one to another in both directions. Transfer from water to gas or steam is the most intricate and risky part of the entire heating process. Superheated steam conditioning appears unfavorable. The use of inert gas is recommended, although alternative heating fluids such as organic coolant should be investigated

  2. Cost-Effective Integration of Efficient Low-Lift Baseload Cooling Equipment: FY08 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Katipamula, Srinivas; Armstrong, P. R.; Wang, Weimin; Fernandez, Nicholas; Cho, Heejin; Goetzler, W.; Burgos, J.; Radhakrishnan, R.; Ahlfeldt, C.

    2010-01-31

    Documentation of a study to investigate one heating, ventilation and air conditioning (HVAC) system option, low-lift cooling, which offers potentially exemplary HVAC energy performance relative to American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE) Standard 90.1-2004.

  3. Standard methods for maintaining adult Apis mellifera in cages under in vitro laboratory conditions

    OpenAIRE

    Williams, Geoffrey R.; Alaux, Cedric; Costa, Cecilia; Csaki, Tamas; Doublet, Vincent; Eisenhardt, Dorothea; Fries, Ingemar; Kuhn, Rolf; McMahon, Dino P.; Medrzycki, Piotr; Murray, Tomas E.; Natsopoulou, Myrsini E.; Neumann, Peter; Oliver, Randy; Paxton, Robert J.

    2013-01-01

    Adult honey bees are maintained in vitro in laboratory cages for a variety of purposes. For example, researchers may wish to perform experiments on honey bees caged individually or in groups to study aspects of parasitology, toxicology, or physiology under highly controlled conditions, or they may cage whole frames to obtain newly emerged workers of known age cohorts. Regardless of purpose, researchers must manage a number of variables, ranging from selection of study subjects (e.g. honey bee...

  4. Standard methods for maintaining adult Apis mellifera in cages under in vitro laboratory conditions

    OpenAIRE

    Williams, G.R.; Alaux, C.; Costa, C.; Csaki, C.; Steen, van der, J.J.M.

    2013-01-01

    Adult honey bees are maintained in vitro in laboratory cages for a variety of purposes. For example, researchers may wish to perform experiments on honey bees caged individually or in groups to study aspects of parasitology, toxicology, or physiology under highly controlled conditions, or they may cage whole frames to obtain freshly emerged workers of known age cohorts. Regardless of purpose, researchers must manage a number of variables, ranging from selection of study subjects (e.g. honey b...

  5. Standard practice for measurement of time-of-wetness on surfaces exposed to wetting conditions as in atmospheric corrosion testing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1989-01-01

    1.1 This practice covers a technique for monitoring time-of-wetness (TOW) on surfaces exposed to cyclic atmospheric conditions which produce depositions of moisture. 1.2 The practice is also applicable for detecting and monitoring condensation within a wall or roof assembly and in test apparatus. 1.3 Exposure site calibration or characterization can be significantly enhanced if TOW is measured for comparison with other sites, particularly if this data is used in conjunction with other site-specific instrumentation techniques. 1.4 The values stated in SI units are to be regarded as the standard. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  6. Standard Practice for Exposure of Cover Materials for Solar Collectors to Natural Weathering Under Conditions Simulating Operational Mode

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1995-01-01

    1.1 This practice provides a procedure for the exposure of cover materials for flat-plate solar collectors to the natural weather environment at temperatures that are elevated to approximate operating conditions. 1.2 This practice is suitable for exposure of both glass and plastic solar collector cover materials. Provisions are made for exposure of single and double cover assemblies to accommodate the need for exposure of both inner and outer solar collector cover materials. 1.3 This practice does not apply to cover materials for evacuated collectors or photovoltaics. 1.4 The values stated in SI units are to be regarded as the standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  7. Revisiting olfactory classical conditioning of the proboscis extension response in honey bees: a step toward standardized procedures.

    Science.gov (United States)

    Matsumoto, Yukihisa; Menzel, Randolf; Sandoz, Jean-Christophe; Giurfa, Martin

    2012-10-15

    The honey bee Apis mellifera has emerged as a robust and influential model for the study of classical conditioning thanks to the existence of a powerful Pavlovian conditioning protocol, the olfactory conditioning of the proboscis extension response (PER). In 2011, the olfactory PER conditioning protocol celebrated its 50 years since it was first introduced by Kimihisa Takeda in 1961. In this protocol, individually harnessed honey bees are trained to associate an odor with sucrose solution. The resulting olfactory learning is fast and induces robust olfactory memories that have been characterized at the behavioral, neuronal and molecular levels. Despite the success of this protocol for studying the bases of learning and memory at these different levels, innumerable procedural variants have arisen throughout the years, which render comparative analyses of behavioral performances difficult. Moreover, because even slight variations in conditioning procedures may introduce significant differences in acquisition and retention performances, we revisit olfactory PER conditioning and define here a standardized framework for experiments using this behavioral protocol. To this end, we present and discuss all the methodological steps and details necessary for successful implementation of olfactory PER conditioning. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Effectiveness of the GAEC cross-compliance standard Ploughing in good soil moisture conditions in soil structure protection

    Directory of Open Access Journals (Sweden)

    Maria Teresa Dell'Abate

    2011-08-01

    Full Text Available Researches have been carried out within the framework on the EFFICOND Project, focused at evaluating the effectiveness of the standards of Good Agricultural and Environmental Conditions (GAECs established for Cross Compliance implementation under EC Regulation 1782/2003. In particular the standard 3.1b deals with soil structure protection through appropriate machinery use, with particular reference to ploughing in good soil moisture conditions. The study deals with the evaluation of soil structure after tillage in tilth and no-tilth conditions at soil moisture contents other than the optimum water content for tillage. The Mean Weight Diameter (MWD of water stable aggregates was used as an indicator of tillage effectiveness. The study was carried out in the period 2008-2009 at six experimental farms belonging to Research Centres and Units of the Italian Agricultural Research Council (CRA with different pedo-climatic and cropping conditions. Farm management and data collection in the different sites were carried out by the local CRA researchers and technicians. The comparison of MWD values in tilth and no tilth theses showed statistically significant differences in most cases, depending on topsoil texture. On clay, clay loam, silty clay, and silty clay loam topsoils a general and significant increase of MWD values under no tilth conditions were observed. No significant differences were observed in silt loam and sandy loam textures, probably due to the weak soil structure of the topsoils. Moreover, ploughing in good soil moisture condition determined higher crop production and less weed development than ploughing in high soil moisture conditions.

  9. Passive cooling containment study

    International Nuclear Information System (INIS)

    Shin, J.J.; Iotti, R.C.; Wright, R.F.

    1993-01-01

    Pressure and temperature transients of nuclear reactor containment following postulated loss of coolant accident with a coincident station blackout due to total loss of all alternating current power are studied analytically and experimentally for the full scale NPR (New Production Reactor). All the reactor and containment cooling under this condition would rely on the passive cooling system which removes reactor decay heat and provides emergency core and containment cooling. Containment passive cooling for this study takes place in the annulus between containment steel shell and concrete shield building by natural convection air flow and thermal radiation. Various heat transfer coefficients inside annular air space were investigated by running the modified CONTEMPT code CONTEMPT-NPR. In order to verify proper heat transfer coefficient, temperature, heat flux, and velocity profiles were measured inside annular air space of the test facility which is a 24 foot (7.3m) high, steam heated inner cylinder of three foot (.91m) diameter and five and half foot (1.7m) diameter outer cylinder. Comparison of CONTEMPT-NPR and WGOTHIC was done for reduced scale NPR

  10. Environmental release of engineered nanomaterials from commercial tiles under standardized abrasion conditions.

    Science.gov (United States)

    Bressot, Christophe; Manier, Nicolas; Pagnoux, Cécile; Aguerre-Chariol, Olivier; Morgeneyer, Martin

    2017-01-15

    The study presented here focuses on commercial antibacterial tiles whose emissivity of (nano) particles due to abrasion has yet barely been investigated. The tiles have been characterized regarding their surface properties and composition throughout their chain-of-use, i.e. from their state of commercialization until the experimental end-of-service life. In contrast to plane standard tiles, their surfaces form hilly surfaces. In the depressions, titanium dioxide is found at the surface, thus theoretically protected by the hilly areas against abrasion on the tile's surface. Furthermore, a deposition technique has been put in place by producers allowing for coating the before mentioned commercial tiles with titanium dioxide, thus being similar to those commercially available. It consists in depositing titanium dioxide on the surface, latter one allowing fixing the first. This development allows for better understanding the future options for product formulation and thus improvement with respect to particle release. The tests reveal the aerosolization from commercial antibacterial tiles of micronic and submicronic particles in the inhalable region or particles that can subjected to be released in the environment (tiles was found to be significantly higher compared to the non coated tiles. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Cool Snacks

    DEFF Research Database (Denmark)

    Krogager, Stinne Gunder Strøm; Grunert, Klaus G; Brunsø, Karen

    2016-01-01

    Young people snack and their snacking habits are not always healthy. We address the questions whether it is possible to develop a new snack product that adolescents will find attractive, even though it is based on ingredients as healthy as fruits and vegetables, and we argue that developing...... such a product requires an interdisciplinary effort where researchers with backgrounds in psychology, anthropology, media science, philosophy, sensory science and food science join forces. We present the COOL SNACKS project, where such a blend of competences was used first to obtain thorough insight into young...... people's snacking behaviour and then to develop and test new, healthier snacking solutions. These new snacking solutions were tested and found to be favourably accepted by young people. The paper therefore provides a proof of principle that the development of snacks that are both healthy and attractive...

  12. Cool visitors

    CERN Multimedia

    2006-01-01

    Pictured, from left to right: Tim Izo (saxophone, flute, guitar), Bobby Grant (tour manager), George Pajon (guitar). What do the LHC and a world-famous hip-hop group have in common? They are cool! On Saturday, 1st July, before their appearance at the Montreux Jazz Festival, three members of the 'Black Eyed Peas' came on a surprise visit to CERN, inspired by Dan Brown's Angels and Demons. At short notice, Connie Potter (Head of the ATLAS secretariat) organized a guided tour of ATLAS and the AD 'antimatter factory'. Still curious, lead vocalist Will.I.Am met CERN physicist Rolf Landua after the concert to ask many more questions on particles, CERN, and the origin of the Universe.

  13. Field Performance versus Standard Test Condition Efficiency of Tandem Solar Cells and the Specific Case of Perovskites/Silicon Devices

    KAUST Repository

    Dupre, Olivier

    2018-01-05

    Multijunction cells may offer a cost-effective route to boost the efficiency of industrial photovoltaics. For any technology to be deployed in the field, its performance under actual operating conditions is extremely important. In this perspective, we evaluate the impact of spectrum, light intensity, and module temperature variations on the efficiency of tandem devices with crystalline silicon bottom cells with a particular focus on perovskite top cells. We consider devices with different efficiencies and calculate their energy yields using field data from Denver. We find that annual losses due to differences between operating conditions and standard test conditions are similar for single-junction and four-terminal tandem devices. The additional loss for the two-terminal tandem configuration caused by current mismatch reduces its performance ratio by only 1.7% when an optimal top cell bandgap is used. Additionally, the unusual bandgap temperature dependence of perovskites is shown to have a positive, compensating effect on current mismatch.

  14. Stability of left ventricular longitudinal and circumferential deformation over time and standard loading conditions.

    Science.gov (United States)

    Kosmala, Wojciech; Przewlocka-Kosmala, Monika; Sharman, James E; Schultz, Martin G; Marwick, Thomas H

    2017-09-01

    Load dependence is an important source of variation in left ventricular (LV) deformation. This impacts on the precision of information obtained from serial measurements. However, it is clinically important to distinguish actual myocardial dysfunction from changes associated with altered loading conditions. We sought to investigate the association of changes of loading parameters with changes in LV longitudinal (GLS) and circumferential (GCS) strains. Baseline and a 12-month follow-up 2D echocardiograms were performed in 191 Stage A heart failure patients with uncomplicated hypertension. These patients underwent simultaneous measurement of conventional and central blood pressures (BPs) and haemodynamic measurements by applanation tonometry. Significant, but weak correlations (r = 0.15-0.28) of LV strain parameters and their changes over the follow-up period were shown for the majority of LV afterload-associated variables, including central and brachial systolic, diastolic, and mean BPs; 24-h systolic and diastolic BPs; peak reservoir and excess pressures; central augmented pressure (CAP) and pulse pressure; augmentation index; and arterial elastance index (EaI). Central mean BP, EaI, and changes in CAP and EaI over follow-up were independent contributors to LV deformation in multivariable analysis. No improvement in the Bland-Altman 95% limits of agreement and correlation coefficients was seen with LV afterload correction of GLS and GCS using central BP indices. LV longitudinal and circumferential strains in a population without apparent heart disease is relatively insusceptible to changes in LV afterload within physiological range, which, therefore, seem unlikely to be a significant confounder in repeated GLS or GCS observations. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  15. On the Implementation of the IEC 61850 Standard: Will Different Manufacturer Devices Behave Similarly under Identical Conditions?

    Directory of Open Access Journals (Sweden)

    Mohamad El Hariri

    2016-12-01

    Full Text Available Standardization in smart grid communications is necessary to facilitate complex operations of modern power system functions. However, the strong coupling between the cyber and physical domains of the contemporary grid exposes the system to vulnerabilities and thus places more burden on standards’ developers. As such, standards need to be continuously assessed for reliability and are expected to be implemented properly on field devices. However, the actual implementation of common standards varies between vendors, which may lead to different behaviors of the devices even if present under similar conditions. The work in this paper tested the implementation of the International Electro-technical Commission’s Generic Object Oriented Substation Event GOOSE (IEC 61850 GOOSE messaging protocol on commercial Intelligent Electronic Devices (IEDs and the open source libiec61850 library—also used in commercial devices—which showed different behaviors in identical situations. Based on the test results and analysis of some features of the IEC 61850 GOOSE protocol itself, this paper proposes guidelines and recommendations for proper implementation of the standard functionalities.

  16. A Two-Sinker Densimeter for Accurate Measurements of the Density of Natural Gases at Standard Conditions

    Science.gov (United States)

    Richter, Markus; Kleinrahm, Reiner; Glos, Stefan; Wagner, Wolfgang; Span, Roland; Schley, Peter; Uhrig, Martin

    2010-05-01

    A special reference densimeter has been developed for accurate measurements of densities of natural gases and multicomponent gas mixtures at standard conditions of temperature and pressure ( T s = 273.15 K and p s = 0.101325 MPa). The densimeter covers the range from 0.7 kg · m-3 to 1.3 kg · m-3; the total measurement uncertainty in density is 0.020 % (95 % level of confidence). The measurement principle used is the two-sinker method, which is based on the Archimedes buoyancy principle. The certified calibration laboratory of E.ON Ruhrgas AG, Germany, uses this densimeter to verify the standard densities of certified calibration gases (binary and multicomponent gas mixtures). Moreover, the densimeter is used to determine the compositions of commercially available binary gas mixtures with a small uncertainty of (0.01-0.03) mol%.

  17. ARE METHODS USED TO INTEGRATE STANDARDIZED MANAGEMENT SYSTEMS A CONDITIONING FACTOR OF THE LEVEL OF INTEGRATION? AN EMPIRICAL STUDY

    Directory of Open Access Journals (Sweden)

    Merce Bernardo

    2011-09-01

    Full Text Available Organizations are increasingly implementing multiple Management System Standards (M SSs and considering managing the related Management Systems (MSs as a single system.The aim of this paper is to analyze if methods us ed to integrate standardized MSs condition the level of integration of those MSs. A descriptive methodology has been applied to 343 Spanish organizations registered to, at least, ISO 9001 and ISO 14001. Seven groups of these organizations using different combinations of methods have been analyzed Results show that these organizations have a high level of integration of their MSs. The most common method used, was the process map. Organizations using a combination of different methods achieve higher levels of integration than those using a single method. However, no evidence has been found to confirm the relationship between the method used and the integration level achieved.

  18. WORKSHOP: Beam cooling

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Cooling - the control of unruly particles to provide well-behaved beams - has become a major new tool in accelerator physics. The main approaches of electron cooling pioneered by Gersh Budker at Novosibirsk and stochastic cooling by Simon van der Meer at CERN, are now complemented by additional ideas, such as laser cooling of ions and ionization cooling of muons

  19. Air conditioning using an air-cooled single effect lithium bromide absorption chiller: Results of a trial conducted in Madrid in August 2005

    International Nuclear Information System (INIS)

    Izquierdo, M.; Lizarte, R.; Marcos, J.D.; Gutierrez, G.

    2008-01-01

    Trials were conducted to determine the performance of a commercial (Rotartica 045v) 4.5-kW air-cooled, single effect LiBr/H 2 O absorption chiller for residential use. The experiments were run at La Poveda, Arganda del Rey, Madrid, in August 2005. Three typical August days, with different outdoor temperatures, were chosen for the study. The hot water inlet temperature in the generator varied throughout the day from 80 to 107 o C. Thermal demand was calculated, along with period energy balance and COP. Variations in machine component temperatures were recorded and chilling power and the daily COP calculated for each of the three days. The results for the period as a whole showed that cooling power tended to decline with rising outdoor dry bulb temperatures. At temperatures from 35 to 41.3 o C the chilled water outlet temperature in the evaporator climbed to over 15 o C. The average COP for the period, when auxiliary equipment was included into the calculations, was 0.37

  20. Comparison of tool life and surface roughness with MQL, flood cooling, and dry cutting conditions with P20 and D2 steel

    Science.gov (United States)

    Senevirathne, S. W. M. A. I.; Punchihewa, H. K. G.

    2017-09-01

    Minimum quantity lubrication (MQL) is a cutting fluid (CF) application method that has given promising results in improving machining performances. It has shown that, the performance of cutting systems, depends on the work and tool materials used. AISI P20, and D2 are popular in tool making industry. However, the applicability of MQL in machining these two steels has not been studied previously. This experimental study is focused on evaluating performances of MQL compared to dry cutting, and conventional flood cooling method. Trials were carried out with P20, and D2 steels, using coated carbides as tool material, emulsion cutting oil as the CF. Tool nose wear, and arithmetic average surface roughness (Ra) were taken as response variables. Results were statistically analysed for differences in response variables. Although many past literature has suggested that MQL causes improvements in tool wear, and surface finish, this study has found contradicting results. MQL has caused nearly 200% increase in tool nose wear, and nearly 11-13% increase in surface roughness compared flood cooling method with both P20 and D2. Therefore, this study concludes that MQL affects adversely in machining P20, and D2 steels.

  1. Cooling methods for power plants

    International Nuclear Information System (INIS)

    Gaspersic, B.; Fabjan, L.; Petelin, S.

    1977-01-01

    There are some results of measurements carried out on the wet cooling tower 275 MWe at TE Sostanj and on the experimental cooling tower at Jozef Stefan Institute, as well. They are including: the measurements of the output air conditions, the measurements of the cross current of water film and vapour-air flowing through two plates, and the distribution of velocity in boundary layer measured by anemometer

  2. Assessing behind armor blunt trauma (BABT) under NIJ standard-0101.04 conditions using human torso models.

    Science.gov (United States)

    Merkle, Andrew C; Ward, Emily E; O'Connor, James V; Roberts, Jack C

    2008-06-01

    Although soft armor vests serve to prevent penetrating wounds and dissipate impact energy, the potential of nonpenetrating injury to the thorax, termed behind armor blunt trauma, does exist. Currently, the ballistic resistance of personal body armor is determined by impacting a soft armor vest over a clay backing and measuring the resulting clay deformation as specified in National Institute of Justice (NIJ) Standard-0101.04. This research effort evaluated the efficacy of a physical Human Surrogate Torso Model (HSTM) as a device for determining thoracic response when exposed to impact conditions specified in the NIJ Standard. The HSTM was subjected to a series of ballistic impacts over the sternum and stomach. The pressure waves propagating through the torso were measured with sensors installed in the organs. A previously developed Human Torso Finite Element Model (HTFEM) was used to analyze the amount of tissue displacement during impact and compared with the amount of clay deformation predicted by a validated finite element model. All experiments and simulations were conducted at NIJ Standard test conditions. When normalized by the response at the lowest threat level (Level I), the clay deformations for the higher levels are relatively constant and range from 2.3 to 2.7 times that of the base threat level. However, the pressures in the HSTM increase with each test level and range from three to seven times greater than Level I depending on the organ. The results demonstrate the abilities of the HSTM to discriminate between threat levels, impact conditions, and impact locations. The HTFEM and HSTM are capable of realizing pressure and displacement differences because of the level of protection, surrounding tissue, and proximity to the impact point. The results of this research provide insight into the transfer of energy and pressure wave propagation during ballistic impacts using a physical surrogate and computational model of the human torso.

  3. Renewable Heating And Cooling

    Science.gov (United States)

    Renewable heating and cooling is a set of alternative resources and technologies that can be used in place of conventional heating and cooling technologies for common applications such as water heating, space heating, space cooling and process heat.

  4. Study on ex-vessel cooling of RPV (behavior of coalesced bubbles and trigger condition of critical heat flux on inclined plate)

    International Nuclear Information System (INIS)

    Ohtake, H.; Koizumi, Y.; Takano, K.I.

    2001-01-01

    The Ex-vessel cooling of Reactor-Pressure-Vessel in Light-Water-Reactor at the severe accident have been proposed for future nuclear reactors. The estimation of Critical-Heat-Flux on a downward-facing curvilinear surface, like a hemisphere, is important to the assessment of the cooling. In this study, the CHFs on inclined surfaces were examined experimentally focusing on orientation of the heating surface. In order to discuss detailed mechanism of the CHF, the behaviors of coalesced bubbles near the heating surface were investigated through visual observations. The critical heat flux obtained in the present experiments increased with the inclined angle over the present experimental range. The dependence of the inclined angle on the critical heat flux was q CHF,R-113 [q] = f (q 0.33 ) for the present experimental results. The effect of the surface orientation on the critical heat flux was roughly explained by using the simple analytical model based on the macro-layer model and Kelvin-Helmholtz instability. From visual observations for behavior of bubbles near the heating surface, whereas the coalesced bubble covered over the heating surface for the inclined angle of 0 degree, the coalesced bubble moved upward to avoid packing the bubble on the surface above 5 degree. As the inclined angle increased, the velocity of the coalesced bubble was high, the period covered the heater and the bubble length were small. The results suggested that the CHF was closely related to forming the coalesced bubble and the behavior of the bubble. (author)

  5. Protein folding: Defining a standard set of experimental conditions and a preliminary kinetic data set of two-state proteins

    DEFF Research Database (Denmark)

    Maxwell, Karen L.; Wildes, D.; Zarrine-Afsar, A.

    2005-01-01

    Recent years have seen the publication of both empirical and theoretical relationships predicting the rates with which proteins fold. Our ability to test and refine these relationships has been limited, however, by a variety of difficulties associated with the comparison of folding and unfolding ...... efforts is to set uniform standards for the experimental community and to initiate an accumulating, self-consistent data set that will aid ongoing efforts to understand the folding process....... constructs. The lack of a single approach to data analysis and error estimation, or even of a common set of units and reporting standards, further hinders comparative studies of folding. In an effort to overcome these problems, we define here a consensus set of experimental conditions (25°C at pH 7.0, 50 m...... rates, thermodynamics, and structure across diverse sets of proteins. These difficulties include the wide, potentially confounding range of experimental conditions and methods employed to date and the difficulty of obtaining correct and complete sequence and structural details for the characterized...

  6. THE BECOMING OF INFORMATION CULTURE IN THE CONDITIONS OF THE FEDERAL STATE EDUCATIONAL STANDARD OF VOCATIONAL EDUCATION’S IMPLEMENTATION

    Directory of Open Access Journals (Sweden)

    Lapina Svetlana Nikolaevna

    2013-05-01

    Full Text Available This article examines the approaches to the definition of “information culture”, its components, the system of personal values needed to succeed in the information and professional activities, the problem of students’ information culture formation in the modern information society. The analysis of the implementation of the Federal state educational standard of vocational education in "teaching in primary schools" is held. The variable part cycles of the basic professional educational programs is distributed on the base of the local professional community’s research and additional competencies. Such subjects as “Russian language and Speech”, “The cultural world of students”, “Ethics in business communication” are introduced through the variable part of the educational standard. The general amount of hours for such subject as «Computer science, information and communication technology in the professional activity" is increased. The results of the special study reveal the level of information culture of the future primary school teachers. According to the results it can be concluded that insufficient level of information culture’s development is impossible for a successful career and self-fulfillment in the present conditions. The article proposes the directions for the formation of future primary school teachers’ information culture in the implementation of the federal state educational standard of vocational education. According to the results of this research it is possible to tell about the effectiveness of these directions’ implementation.

  7. THE BECOMING OF INFORMATION CULTURE IN THE CONDITIONS OF THE FEDERAL STATE EDUCATIONAL STANDARD OF VOCATIONAL EDUCATION’S IMPLEMENTATION

    Directory of Open Access Journals (Sweden)

    Светлана Николаевна Лапина

    2013-07-01

    Full Text Available This article examines the approaches to the definition of “information culture”, its components, the system of personal values needed to succeed in the information and professional activities, the problem of students’ information culture formation in the modern information society. The analysis of the implementation of the Federal state educational standard of vocational education in "teaching in primary schools" is held. The variable part cycles of the basic professional educational programs is distributed on the base of the local professional community’s research and additional competencies. Such subjects as “Russian language and Speech”, “The cultural world of students”, “Ethics in business communication” are introduced through the variable part of the educational standard. The general amount of hours for such subject as «Computer science, information and communication technology in the professional activity" is increased. The results of the special study reveal the level of information culture of the future primary school teachers. According to the results it can be concluded that insufficient level of information culture’s development is impossible for a successful career and self-fulfillment in the present conditions. The article proposes the directions for the formation of future primary school teachers’ information culture in the implementation of the federal state educational standard of vocational education. According to the results of this research it is possible to tell about the effectiveness of these directions’ implementation.DOI: http://dx.doi.org/10.12731/2218-7405-2013-5-31

  8. conditions

    Directory of Open Access Journals (Sweden)

    M. Venkatesulu

    1996-01-01

    Full Text Available Solutions of initial value problems associated with a pair of ordinary differential systems (L1,L2 defined on two adjacent intervals I1 and I2 and satisfying certain interface-spatial conditions at the common end (interface point are studied.

  9. Restaurant food cooling practices.

    Science.gov (United States)

    Brown, Laura Green; Ripley, Danny; Blade, Henry; Reimann, Dave; Everstine, Karen; Nicholas, Dave; Egan, Jessica; Koktavy, Nicole; Quilliam, Daniela N

    2012-12-01

    Improper food cooling practices are a significant cause of foodborne illness, yet little is known about restaurant food cooling practices. This study was conducted to examine food cooling practices in restaurants. Specifically, the study assesses the frequency with which restaurants meet U.S. Food and Drug Administration (FDA) recommendations aimed at reducing pathogen proliferation during food cooling. Members of the Centers for Disease Control and Prevention's Environmental Health Specialists Network collected data on food cooling practices in 420 restaurants. The data collected indicate that many restaurants are not meeting FDA recommendations concerning cooling. Although most restaurant kitchen managers report that they have formal cooling processes (86%) and provide training to food workers on proper cooling (91%), many managers said that they do not have tested and verified cooling processes (39%), do not monitor time or temperature during cooling processes (41%), or do not calibrate thermometers used for monitoring temperatures (15%). Indeed, 86% of managers reported cooling processes that did not incorporate all FDA-recommended components. Additionally, restaurants do not always follow recommendations concerning specific cooling methods, such as refrigerating cooling food at shallow depths, ventilating cooling food, providing open-air space around the tops and sides of cooling food containers, and refraining from stacking cooling food containers on top of each other. Data from this study could be used by food safety programs and the restaurant industry to target training and intervention efforts concerning cooling practices. These efforts should focus on the most frequent poor cooling practices, as identified by this study.

  10. Growth curves and the international standard: How children's growth reflects challenging conditions in rural Timor-Leste.

    Science.gov (United States)

    Spencer, Phoebe R; Sanders, Katherine A; Judge, Debra S

    2018-02-01

    Population-specific growth references are important in understanding local growth variation, especially in developing countries where child growth is poor and the need for effective health interventions is high. In this article, we use mixed longitudinal data to calculate the first growth curves for rural East Timorese children to identify where, during development, deviation from the international standards occurs. Over an eight-year period, 1,245 children from two ecologically distinct rural areas of Timor-Leste were measured a total of 4,904 times. We compared growth to the World Health Organization (WHO) standards using z-scores, and modeled height and weight velocity using the SuperImposition by Translation And Rotation (SITAR) method. Using the Generalized Additive Model for Location, Scale and Shape (GAMLSS) method, we created the first growth curves for rural Timorese children for height, weight and body mass index (BMI). Relative to the WHO standards, children show early-life growth faltering, and stunting throughout childhood and adolescence. The median height and weight for this population tracks below the WHO fifth centile. Males have poorer growth than females in both z-BMI (p = .001) and z-height-for-age (p = .018) and, unlike females, continue to grow into adulthood. This is the most comprehensive investigation to date of rural Timorese children's growth, and the growth curves created may potentially be used to identify future secular trends in growth as the country develops. We show significant deviation from the international standard that becomes most pronounced at adolescence, similar to the growth of other Asian populations. Males and females show different growth responses to challenging conditions in this population. © 2017 Wiley Periodicals, Inc.

  11. CFC environmental problems and cooling technology

    International Nuclear Information System (INIS)

    Hornung, M.O.

    1991-08-01

    The aim of the report is to provide a broad survey of the technological problems imposed on the production of cooling systems by the demands for reduction in the use of chlorofluorocarbons as refrigerants. With regard to industrial research in this area the present situation is clarified and possible future developments are discussed. The influence of CFC gasses on the global environment and international and national legislation within this field are explained. Alternative refrigerants and cooling processes, and ways of reducing refrigerant leakage, are described. It is concluded that currently the use of alternative refrigerants is the policy which is generally accepted, and intensive research is being carried out in this field. R134a should substitute R12 in the cases of household refrigerators and air conditioning, and will soon be commercially available. The use of R22 and ammonia will be extended. This is a practical policy to follow up commercially, whereas the policy of alternative processes presents more problems because they are not so developed and there is less available know-how in this area. The possibilities for hermetic sealing of cooling systems are unrealistic and should anyway be regarded only as a supplement to alternative refrigerants. Within the European Community it is intended to provide standards and regulations in relation to air pollution from refrigerants. (AB) (58 refs.)

  12. Standards of Conditions During Preparations for the Summer Paralympic Games Between 2004 and 2012 Assessed by Polish Athletes

    Directory of Open Access Journals (Sweden)

    Sobiecka Joanna

    2015-12-01

    Full Text Available The quality of training conditions affects sporting success, injuries and health. The aim of the work was to present the conditions during the preparations of Polish athletes for the Summer Paralympic Games 2004-2012. The study encompassed 271 paralympians: Athens (91, Beijing (89 and London (91, competing in 13 disciplines. The research was based on a two-part questionnaire by Kłodecka-Różalska adjusted for disabled sports, and was conducted one month before each PG. Part 1 contained 20 closed-ended questions regarding conditions during preparations, while Part 2 concerned socio-demographic and sports-related data. Three levels of conditions: good, satisfactory and poor, were identified. The analysis showed that while the relationships between the athletes were good in all the preparatory periods, the co-operation with the paralympic coaches worsened. The standards of accommodation, food and sports facilities lowered. Personal orthopaedic supply was satisfactory in London; personal sporting equipment was good at all PG. The quality of medical care was the highest in London. The co-operation with physicians, physiotherapists and massage therapists was satisfactory. Consultations with the dietician were sporadic and assessed as poor. Psychological consultations were rare but satisfactory in Beijing and London. Contacts with the mass media were poor at all PG. Although combining private life, work, and education with sport was satisfactory, it was increasingly difficult to manage, particularly before London. The conditions during preparations for the PG 2004-2012 varied. Improvement was noticed only in the quality of medical care and personal orthopaedic supply.

  13. Standards of Conditions During Preparations for the Summer Paralympic Games Between 2004 and 2012 Assessed by Polish Athletes.

    Science.gov (United States)

    Sobiecka, Joanna; Gawroński, Wojciech; Kądziołka, Marta; Kruszelnicki, Paweł; Kłodecka-Różalska, Jadwiga; Plinta, Ryszard

    2015-11-22

    The quality of training conditions affects sporting success, injuries and health. The aim of the work was to present the conditions during the preparations of Polish athletes for the Summer Paralympic Games 2004-2012. The study encompassed 271 paralympians: Athens (91), Beijing (89) and London (91), competing in 13 disciplines. The research was based on a two-part questionnaire by Kłodecka-Różalska adjusted for disabled sports, and was conducted one month before each PG. Part 1 contained 20 closed-ended questions regarding conditions during preparations, while Part 2 concerned socio-demographic and sports-related data. Three levels of conditions: good, satisfactory and poor, were identified. The analysis showed that while the relationships between the athletes were good in all the preparatory periods, the co-operation with the paralympic coaches worsened. The standards of accommodation, food and sports facilities lowered. Personal orthopaedic supply was satisfactory in London; personal sporting equipment was good at all PG. The quality of medical care was the highest in London. The co-operation with physicians, physiotherapists and massage therapists was satisfactory. Consultations with the dietician were sporadic and assessed as poor. Psychological consultations were rare but satisfactory in Beijing and London. Contacts with the mass media were poor at all PG. Although combining private life, work, and education with sport was satisfactory, it was increasingly difficult to manage, particularly before London. The conditions during preparations for the PG 2004-2012 varied. Improvement was noticed only in the quality of medical care and personal orthopaedic supply.

  14. A standardized approach for estimating the permeability of plastic films to soil fumigants under various field and environmental conditions.

    Science.gov (United States)

    Papiernik, Sharon K; Yates, Scott R; Chellemi, Daniel O

    2011-01-01

    Minimizing atmospheric emissions of soil fumigants is critical for protecting human and environmental health. Covering the soil surface with a plastic tarp is a common approach to restrict fumigant emissions. The mass transfer of the fumigant vapors through the tarp is often the rate-limiting factor in fumigant emissions. An approach for standardizing measurements of film permeability is proposed that is based on determining the resistance (R) of films to diffusion of fumigants. Using this approach, values were determined for more than 200 film-chemical combinations under a range of temperature, relative humidity, and film handling conditions. Resistance to diffusion was specific for each fumigant/film combination, with the largest range of values observed for the fumigant chloropicrin. For each fumigant, decreased with increasing temperature. Changes in film permeability due to increases in temperature or field installation were generally less than a factor of five. For one film, values determined under conditions of very high relative humidity (approximately 100%) were at least 100 times lower than when humidity was very low (approximately 2%). This approach simplifies the selection of appropriate films for soil fumigation by providing rapid, reproducible, and precise measurements of their permeability to specific fumigants and application conditions. by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Analysis of the thermo-mechanical behaviour of the DEMO Water-Cooled Lithium Lead breeding blanket module under normal operation steady state conditions

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, P.A.; Arena, P. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Aubert, J. [CEA Saclay, DEN/DANS/DM2S/SEMT, 91191 Gif sur Yvette Cedex (France); Bongiovì, G. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Chiovaro, P., E-mail: pierluigi.chiovaro@unipa.it [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Giammusso, R. [ENEA – C.R. Brasimone, 40032 Camugnano (Italy); Li Puma, A. [CEA Saclay, DEN/DANS/DM2S/SEMT, 91191 Gif sur Yvette Cedex (France); Tincani, A. [ENEA – C.R. Brasimone, 40032 Camugnano (Italy)

    2015-10-15

    Highlights: • A DEMO WCLL blanket module thermo-mechanical behaviour has been investigated. • Two models of the WCLL blanket module have been set-up adopting a code based on FEM. • The water flow domain in the module has been considered. • A set of uncoupled steady state thermo-mechanical analyses has been carried out. • Critical temperature is not overcome. Safety verifications are generally satisfied. - Abstract: Within the framework of DEMO R&D activities, a research cooperation has been launched between ENEA, the University of Palermo and CEA to investigate the thermo-mechanical behaviour of the outboard equatorial module of the DEMO1 Water-Cooled Lithium Lead (WCLL) blanket under normal operation steady state scenario. The research campaign has been carried out following a theoretical–computational approach based on the Finite Element Method (FEM) and adopting a qualified commercial FEM code. In particular, two different 3D FEM models (Model 1 and Model 2), reproducing respectively the central and the lateral poloidal–radial slices of the WCLL blanket module, have been set up. A particular attention has been paid to the modelling of water flow domain, within both the segment box channels and the breeder zone tubes, to simulate realistically the coolant-box thermal coupling. Results obtained are herewith reported and critically discussed.

  16. PANDA experiment and International Standard Problem for passive cooling systems for afterheat removal; PANDA-Versuch und Internationales Standardproblem zu passiven Kuehlsystemen fuer die Nachwaermeabfuhr

    Energy Technology Data Exchange (ETDEWEB)

    Yadigaroglu, G.; Aksan, N.S. [Paul Scherrer Inst. (PSI), Villigen (Switzerland). Lab. fuer Thermohydraulik

    1999-09-03

    In the context of OECD/NEA, Paul Scherrer Institut (PSI) is working on an International Standard Problem which is to provide information on the efficiency and use of computer program systems for passive afterheat removal systems. The PANDA test facility of PSI was designed for these investigations. A six-phase PANDA experiment provides a basis for pre-calculation and recalculation of selected phases covering a limited number of system-typical operating states and phenomena. The experiment was specified and carried out in the year under report. [Deutsch] Im Rahmen der OECD/NEA fuehrt das Paul Scherrer Institut (PSI) ein Internationales Standardproblem durch, das Aufschluss ueber die Leistungsfaehigkeit und Handhabung von Computer-Programmsystemen geben soll, die im Zusammenhang mit passiven Nachwaerme-Abfuhrsystemen eingesetzt werden. Die Versuchsanlage PANDA am PSI ist speziell auf die Untersuchung derartiger Systeme ausgerichtet. Ein PANDA-Versuch in sechs Phasen liefert den teilnehmenden Organisationen die Basis fuer Voraus- und Nachrechnungen einzelner oder mehrerer Phasen, die jeweils eine begrenzte Anzahl von systemtypischen Betriebszustaenden und Phaenomenen abdecken. Im Berichtsjahr wurde der Versuch spezifiziert und gefahren. (orig.)

  17. The Disposition of Water Supply and Demand in Cameroon: What Potential for what Standard of Living Conditions?

    Directory of Open Access Journals (Sweden)

    Oumar Saidou Baba

    2017-04-01

    Full Text Available Aim/purpose - This paper attempts to appraise the potential of water resources for Cameroon and the standard of living conditions confronting people in the country. Design/methodology/approach - A simple descriptive method of data analysis is adopted using analytical tools such as percentages, tables, and means to achieve the objectives of the inquiry. Data for the study were generated from personal observations in one hand and collected from water resources literature, on the other hand. Findings - With the help of the data gathered, the paper establishes that despite the existence of abundant water resources in Cameroon the standard of living conditions of people with respect to basic needs of survival such as drinking water, improved sanitation services, and electricity supply is far below expectation. Research implications/limitations - The main implication of the study is that in spite of the surplus volume of water resources (325.96 km3 or 95.12% of annual total water resources endowment in Cameroon, the population benefits marginally from it due to the mismanagement of resources and misplacement of priorities as obtained in most sub-Saharan African countries. One limitation of this study is that the use of limited primary data in the investigation offers no room toward establishing the extent of water resources allocation to the various users of water in the country. Originality/value/contribution - The paper suggests that the government of Cameroon should encourage the population to run community basic social services projects and subsidize the activities of such ventures in kind through technical assistance or in cash.

  18. Process fluid cooling system

    International Nuclear Information System (INIS)

    Farquhar, N.G.; Schwab, J.A.

    1977-01-01

    A system of heat exchangers is disclosed for cooling process fluids. The system is particularly applicable to cooling steam generator blowdown fluid in a nuclear plant prior to chemical purification of the fluid in which it minimizes the potential of boiling of the plant cooling water which cools the blowdown fluid

  19. CFD investigations of natural circulation between the RPV and the cooling pond of VVER-440 type reactors in incidental conditions during maintenance performed with the code CFX-4.3

    International Nuclear Information System (INIS)

    Legradi, G.; Aszodi, A.

    2002-01-01

    During the annual maintenance of the VVER-440 type reactors, the RPV, the cooling pond and the transfer pond form a connected flow domain. The reactor is cooled by the natural circulation, which develops in one or two main loops. The cooling pond has its own cooling loops. CFD calculations have been performed with the CFX-4.3 code to investigate whether it is possible to cool the reactor core in case the main loops are lost and other emergency systems are not available. The results point out that the cooling system of the cooling pond is not capable of cooling the reactor core with the present connection. Therefore, modifications of the cooling system are investigated which would make it suitable for removing the remanent heat from the core.(author)

  20. Dynamic behavior structural response and capacity evaluation of the standardized WWER-1000 nuclear power plants subjected to severe loading conditions

    International Nuclear Information System (INIS)

    Ambriashvili, Y.K.; Krutzik, N.J.

    1993-01-01

    In order to verify the structural capacity of standardized WWER-1000 MW nuclear power plants, comprehensive static and dynamic analyses were performed in cooperation between Siemens and Atomenergoprojekt. The main goal of these investigations was to perform of a number of seismic analyses of standardized WWER-1000 reactor buildings on the basis of 13 given seismological inputs, taking into account the local soil conditions at 17 different sites defined by in-situ investigations. The analyses were based on appropriate mathematical models (equivalent beam models as well as detailed spatial surface element models) of the coupled vibrating structures (base structure, outer structure, containment, inner structure) and of the layered soil. The analyses were mainly performed using the indirect method (substructure method). Based on the results of the seismic analysis as well as the results of static analysis (pressure and temperature due to LOCA, dead weight, prestressing) an assessment was made of the seismic safety of the containment and the reactor building. Using a complex 3-dimensional model of the structure and the soil, the influence of the flexibility of the basement structure on the structural response was also studied. The structural analyses of the WWER-1000 reactor building led to the conclusion that its design accounts well for the main factors governing the dynamic behavior of the building. The assessment of the forces acting in the structures shows that the bearing capacity of the analyzed building structure corresponds to an earthquake intensity of about 0.2 g to 0.25 g

  1. Standard Practice for Exposure of Solar Collector Cover Materials to Natural Weathering Under Conditions Simulating Stagnation Mode

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1992-01-01

    1.1 This practice covers a procedure for the exposure of solar collector cover materials to the natural weather environment at elevated temperatures that approximate stagnation conditions in solar collectors having a combined back and edge loss coefficient of less than 1.5 W/(m2 · °C). 1.2 This practice is suitable for exposure of both glass and plastic solar collector cover materials. Provisions are made for exposure of single and double cover assemblies to accommodate the need for exposure of both inner and outer solar collector cover materials. 1.3 This practice does not apply to cover materials for evacuated collectors, photovoltaic cells, flat-plate collectors having a combined back and edge loss coefficient greater than 1.5 W/(m2 ·° C), or flat-plate collectors whose design incorporates means for limiting temperatures during stagnation. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard t...

  2. Effect of radiative cooling on a hot charged dusty grains with charging fluctuation

    International Nuclear Information System (INIS)

    ElWakil, S.A.; El-Shewy, E.K.; El-Basyouny, S.T.

    2005-01-01

    The effect of the radiative cooling of electrons on the gravitational collapse of hot dust grains with fluctuating electric charge is investigated. Propagation of linear solitary radiation in an unmagnetized collisionless dusty plasma is studied. The standard normal-mode analysis is used to study the stability condition of linear wave

  3. Assessment for Desiccant Cooling Air-Conditioning at Antilles High School, Fort Buchanan, Puerto Rico: Moisture Load Analysis of the Gymnasium Building

    National Research Council Canada - National Science Library

    Barreto-Acobe, Jaynary

    2000-01-01

    .... Due to the high temperature and high relative humidity common to Puerto Rico, it is desirable to implement an air-conditioning system that can maintain a controlled temperature of 75 deg F and a 50...

  4. Hybrid radiator cooling system

    Science.gov (United States)

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  5. TRAK App Suite: A Web-Based Intervention for Delivering Standard Care for the Rehabilitation of Knee Conditions.

    Science.gov (United States)

    Spasić, Irena; Button, Kate; Divoli, Anna; Gupta, Satyam; Pataky, Tamas; Pizzocaro, Diego; Preece, Alun; van Deursen, Robert; Wilson, Chris

    2015-10-16

    Standard care for the rehabilitation of knee conditions involves exercise programs and information provision. Current methods of rehabilitation delivery struggle to keep up with large volumes of patients and the length of treatment required to maximize the recovery. Therefore, the development of novel interventions to support self-management is strongly recommended. Such interventions need to include information provision, goal setting, monitoring, feedback, and support groups, but the most effective methods of their delivery are poorly understood. The Internet provides a medium for intervention delivery with considerable potential for meeting these needs. The objective of this study was to demonstrate the feasibility of a Web-based app and to conduct a preliminary review of its practicability as part of a complex medical intervention in the rehabilitation of knee disorders. This paper describes the development, implementation, and usability of such an app. An interdisciplinary team of health care professionals and researchers, computer scientists, and app developers developed the TRAK app suite. The key functionality of the app includes information provision, a three-step exercise program based on a standard care for the rehabilitation of knee conditions, self-monitoring with visual feedback, and a virtual support group. There were two types of stakeholders (patients and physiotherapists) that were recruited for the usability study. The usability questionnaire was used to collect both qualitative and quantitative information on computer and Internet usage, task completion, and subjective user preferences. A total of 16 patients and 15 physiotherapists participated in the usability study. Based on the System Usability Scale, the TRAK app has higher perceived usability than 70% of systems. Both patients and physiotherapists agreed that the given Web-based approach would facilitate communication, provide information, help recall information, improve understanding

  6. Effect of cooling rate on the microstructure and mechanical ...

    Indian Academy of Sciences (India)

    The microstructure and mechanical properties of a low carbon steel containing 30 ppm boron have been investigated. The steel was subjected to various cooling conditions in a thermo-mechanical simulator to generate continuous cooling transformation (CCT) diagram. Similar cooling conditions were also applied to tensile ...

  7. 40 CFR 80.527 - Under what conditions may motor vehicle diesel fuel subject to the 15 ppm sulfur standard be...

    Science.gov (United States)

    2010-07-01

    ... vehicle diesel fuel subject to the 15 ppm sulfur standard be downgraded to motor vehicle diesel fuel... Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel Standards and Requirements § 80.527 Under what conditions may motor vehicle diesel fuel subject to the 15...

  8. Evaluation of the Ross fast solution of Richards' equation in unfavourable conditions for standard finite element methods

    International Nuclear Information System (INIS)

    Crevoisier, D.; Voltz, M.; Chanzy, A.

    2009-01-01

    Ross [Ross PJ. Modeling soil water and solute transport - fast, simplified numerical solutions. Agron J 2003;95:1352-61] developed a fast, simplified method for solving Richards' equation. This non-iterative 1D approach, using Brooks and Corey [Brooks RH, Corey AT. Hydraulic properties of porous media. Hydrol. papers, Colorado St. Univ., Fort Collins: 1964] hydraulic functions, allows a significant reduction in computing time while maintaining the accuracy of the results. The first aim of this work is to confirm these results in a more extensive set of problems, including those that would lead to serious numerical difficulties for the standard numerical method. The second aim is to validate a generalisation of the Ross method to other mathematical representations of hydraulic functions. The Ross method is compared with the standard finite element model, Hydrus-1D [Simunek J, Sejna M, Van Genuchten MTh. The HYDRUS-1D and HYDRUS-2D codes for estimating unsaturated soil hydraulic and solutes transport parameters. Agron Abstr 357; 1999]. Computing time, accuracy of results and robustness of numerical schemes are monitored in 1D simulations involving different types of homogeneous soils, grids and hydrological conditions. The Ross method associated with modified Van Genuchten hydraulic functions [Vogel T, Cislerova M. On the reliability of unsaturated hydraulic conductivity calculated from the moisture retention curve. Transport Porous Media 1988:3:1-15] proves in every tested scenario to be more robust numerically, and the compromise of computing time/accuracy is seen to be particularly improved on coarse grids. Ross method run from 1.25 to 14 times faster than Hydrus-1D. (authors)

  9. Restaurant Food Cooling Practices†

    Science.gov (United States)

    BROWN, LAURA GREEN; RIPLEY, DANNY; BLADE, HENRY; REIMANN, DAVE; EVERSTINE, KAREN; NICHOLAS, DAVE; EGAN, JESSICA; KOKTAVY, NICOLE; QUILLIAM, DANIELA N.

    2017-01-01

    Improper food cooling practices are a significant cause of foodborne illness, yet little is known about restaurant food cooling practices. This study was conducted to examine food cooling practices in restaurants. Specifically, the study assesses the frequency with which restaurants meet U.S. Food and Drug Administration (FDA) recommendations aimed at reducing pathogen proliferation during food cooling. Members of the Centers for Disease Control and Prevention’s Environmental Health Specialists Network collected data on food cooling practices in 420 restaurants. The data collected indicate that many restaurants are not meeting FDA recommendations concerning cooling. Although most restaurant kitchen managers report that they have formal cooling processes (86%) and provide training to food workers on proper cooling (91%), many managers said that they do not have tested and verified cooling processes (39%), do not monitor time or temperature during cooling processes (41%), or do not calibrate thermometers used for monitoring temperatures (15%). Indeed, 86% of managers reported cooling processes that did not incorporate all FDA-recommended components. Additionally, restaurants do not always follow recommendations concerning specific cooling methods, such as refrigerating cooling food at shallow depths, ventilating cooling food, providing open-air space around the tops and sides of cooling food containers, and refraining from stacking cooling food containers on top of each other. Data from this study could be used by food safety programs and the restaurant industry to target training and intervention efforts concerning cooling practices. These efforts should focus on the most frequent poor cooling practices, as identified by this study. PMID:23212014

  10. Hygrothermal conditions in cold, north facing attic spaces under the eaves with vapour-open roofing underlay in a cool, temperate climate

    DEFF Research Database (Denmark)

    Bjarløv, Søren Peter; Johnston, C.J.; Hansen, M.H.

    2016-01-01

    compliance with the current Danish Building Regulations (BR10) for airtightness (moisture levels in attics with vapour-open roofing underlays. North facing cold attic spaces under the eaves constitute a worst case scenario. Following best...... to allow an influx of 3.3 l/s of conditioned indoor air 20 °C and 60% RH at a pressure difference of 50 Pa) and ventilation (singled-sided, passive ventilation) contained more moisture and had significantly higher levels of mould growth than the non-ventilated attics. Under the same physical conditions...... the ‘pressure equalized’ attic rooms were found to have moisture levels in between those observed in the ventilated and non-ventilated attic rooms. Likewise, the observed levels of mould growth were in between those observed in the cases of the ventilated and non-ventilated attic rooms. Attics with reduced...

  11. Experimental study of discharging PCM ceiling panels through nocturnal radiative cooling

    DEFF Research Database (Denmark)

    Bourdakis, Eleftherios; Péan, Thibault Q.; Gennari, Luca

    2016-01-01

    PhotoVoltaic/Thermal (PV/T) panels were used for cooling water through the principle of nocturnal radiative cooling. This water was utilised for discharging Phase Change Material (PCM) which was embedded in ceiling panels in a climate chamber. Three different sets of flow rates were examined...... for the solar and the PCM loops, for five days each. The highest examined water flow rate (210 l/h) in the PCM loop provided the best thermal environment in the climate chamber, namely 92% of the occupancy time was within the range of Category III of Standard EN 15251. Although the lowest examined water flow...... rate (96 l/h) in the solar loop provided the highest average cooling power, due to the significant variations in the weather conditions during the three experimental cases, made it impossible to determine to which extent the difference in the cooling power is due to the different water flow rate...

  12. Experimental study on the cool storage performance of super absorbent polymers for cool storage clothes

    Science.gov (United States)

    Li, Shidong; Mo, Caisong; Wang, Junze; Zheng, Jingfu; Tian, Ruhong

    2017-11-01

    In this paper, a kind of cool storage clothes which can cool the human body in high temperature condition is put forward. super absorbent polymers was selected as a cold storage material, through at the normal and extreme environment simulation, the cold storage materials were prepared with different composition, and their performance was tested. Test results show that:under normal temperature conditions, the 1:50 concentration of super absorbent polymers continued to release the longest cooling time, compared with pure water, cooling time extended 43 minutes by about 30%; under the condition of 37°C, the 1:100 concentration of super absorbent polymers continued to release the longest cooling time, compared with pure water, cooling time extended 105 minutes by about 50%.

  13. HANARO cooling features: design and experience

    International Nuclear Information System (INIS)

    Park, Cheol; Chae, Hee-Taek; Han, Gee-Yang; Jun, Byung-Jin; Ahn, Guk-Hoon

    1999-01-01

    In order to achieve the safe core cooling during normal operation and upset conditions, HANARO adopted an upward forced convection cooling system with dual containment arrangements instead of the forced downward flow system popularly used in the majority of forced convection cooling research reactors. This kind of upward flow system was selected by comparing the relative merits of upward and downward flow systems from various points of view such as safety, performance, maintenance. However, several operational matters which were not regarded as serious at design come out during operation. In this paper are presented the design and operational experiences on the unique cooling features of HANARO. (author)

  14. Standardize or Diversify Experimental Conditions in Ecotoxicology? A Case Study on Herbicide Toxicity to Larvae of Two Anuran Amphibians.

    Science.gov (United States)

    Mikó, Zsanett; Ujszegi, János; Gál, Zoltán; Hettyey, Attila

    2017-11-01

    Despite a steeply increasing number of ecotoxicological studies on the effects of pesticides on nontarget organisms, studies assessing the adequacy and reliability of different experimental approaches have remained scarce. We scrutinized effects of a glyphosate-based herbicide on larvae of two European anuran amphibians by estimating species-specific LC50 values, assessing how an additional stress factor may influence outcomes, and investigating whether replicate experiments yielded qualitatively the same results. We exposed Rana dalmatina and Bufo bufo tadpoles to two predator treatments (no predator vs. predator chemical cues) combined with varying herbicide concentrations, repeated the experiment with a subset of the experimental treatments and partly with slight modifications 1 week later and assessed survival. Our results indicated that the herbicide was moderately toxic to tadpoles. The presence of predator chemical cues did not affect the lethality of the herbicide in either species. The estimated sensitivity of R. dalmatina tadpoles varied considerably across experiments, whereas in case of B. bufo LC50 values remained very similar. Our results suggest that differences in the experimental setup may often have no influence on the measured effects of pesticides, whereas replicated experiments can deliver widely differing results in other cases, perhaps depending on the studied species, the population origin of the tested individuals, or the test conditions. This draws attention to the suggestion that strict standardization may not deliver widely applicable insights into the toxicity of contaminants and, instead, intentionally introducing variation into the design of ecotoxicological experiments and replicating entire experiments may prove highly beneficial.

  15. Zoobenthic Indicators of Environmental Condition At Great Lakes Coastal Margins Derived From Standardized Multivariate Analyses Across Anthropogenic Stress Gradients.

    Science.gov (United States)

    Ciborowski, J. J.; Johnson, L. B.; Gathman, J. P.; Brady, V. J.; Holland, J.; Hollenhorst, T.; Schuldt, J. A.; Host, G. E.; Richards, C.

    2005-05-01

    We used multivariate methods to derive and map multiple indices of zoobenthic community composition across anthropogenic stress gradients at Great Lakes coastal margins (shorelines - 10 m depth). We collected up to 24 benthic samples and measured environmental characteristics in each of 150 "segment sheds", ranging from minimally disturbed (=reference) to greatly modified. "K" distinct suites of co-occurring biota from minimally stressed locations were identified using cluster analysis. Discriminant function analysis identified the environmental attributes of sample locations best distinguishing each of the suites (=habitat types). Benthic community data of all samples from each habitat type (ranging across the entire stress gradient) were individually ordinated. The benthic taxa best characterizing the ends of each stress gradient were used to create a gradient-specific biotic index with a standardized scale (0=minimum, 100=maximum stress) for each habitat type, providing a stress-specific score for each sample. Contour surface analysis of mapped sample-specific scores shows the spatial pattern and limits of the overall biotic response to stress, independently of habitat type. The spatial concordance between biotic index scores and environmental stress can indicate the degree to which equivalent-to-reference conditions exist in a particular area.

  16. The costs of keeping cool in a warming world: implications of high temperatures for foraging, thermoregulation and body condition of an arid-zone bird.

    Science.gov (United States)

    du Plessis, Katherine L; Martin, Rowan O; Hockey, Philip A R; Cunningham, Susan J; Ridley, Amanda R

    2012-10-01

    Recent mass mortalities of bats, birds and even humans highlight the substantial threats that rising global temperatures pose for endotherms. Although less dramatic, sublethal fitness costs of high temperatures may be considerable and result in changing population demographics. Endothermic animals exposed to high environmental temperatures can adjust their behaviour (e.g. reducing activity) or physiology (e.g. elevating rates of evaporative water loss) to maintain body temperatures within tolerable limits. The fitness consequences of these adjustments, in terms of the ability to balance water and energy budgets and therefore maintain body condition, are poorly known. We investigated the effects of daily maximum temperature on foraging and thermoregulatory behaviour as well as maintenance of body condition in a wild, habituated population of Southern Pied Babblers Turdoides bicolor. These birds inhabit a hot, arid area of southern Africa where they commonly experience environmental temperatures exceeding optimal body temperatures. Repeated measurements of individual behaviour and body mass were taken across days varying in maximum air temperature. Contrary to expectations, foraging effort was unaffected by daily maximum temperature. Foraging efficiency, however, was lower on hotter days and this was reflected in a drop in body mass on hotter days. When maximum air temperatures exceeded 35.5 °C, individuals no longer gained sufficient weight to counter typical overnight weight loss. This reduction in foraging efficiency is likely driven, in part, by a trade-off with the need to engage in heat-dissipation behaviours. When we controlled for temperature, individuals that actively dissipated heat while continuing to forage experienced a dramatic decrease in their foraging efficiency. This study demonstrates the value of investigations of temperature-dependent behaviour in the context of impacts on body condition, and suggests that increasingly high temperatures will

  17. Identifying the Climatic Conditions in Iraq by Tracking Down Cooling Events in the North Atlantic Ocean in the Period 3000–0 BC

    Directory of Open Access Journals (Sweden)

    Muslih Khamis D.

    2014-09-01

    Full Text Available North Atlantic Oscillation (NAO, monthly averages of precipitation in the Baghdad station, and petrologic tracer proxy data for ocean properties in the North Atlantic (NA have been used in an attempt to identify climatic conditions in Iraq during the study period. The study showed that contemporary changes in precipitation in Iraq are associated with NAO, as a negative relationship is found between them. Moreover, the study found that there is a strong negative correlation between NAOI and SST in NA, where drift ice indices explain between 33–36% of the NAOI variability.

  18. A Novel 3D Thermal Impedance Model for High Power Modules Considering Multi-layer Thermal Coupling and Different Heating/Cooling Conditions

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2015-01-01

    accurate temperature estimation either vertically or horizontally inside the power devices is still hard to identify. This paper investigates the thermal behavior of high power module in various operating conditions by means of Finite Element Method (FEM). A novel 3D thermal impedance network considering......Thermal management of power electronic devices is essential for reliable performance especially at high power levels. One of the most important activities in the thermal management and reliability improvement is acquiring the temperature information in critical points of the power module. However...

  19. The behaviour of water-cooled reactor fuel rods in steady state and transient conditions; Zachowanie sie pretow paliwowych reaktorow chlodzonych woda w stanach ustalonych i nieustalonych

    Energy Technology Data Exchange (ETDEWEB)

    Strupczewski, A.; Marks, P. [Institute of Atomic Energy, Otwock-Swierk (Poland)

    1997-12-31

    In this report, the results of temperature field and filling gas pressure calculations by means of contemporary calculational models for a WWER-440 and WWER-1000 type fuel rod at low and high burnup operating under steady-state conditions are presented. A review of in-core temperature and pressure measurements for various types of LWR fuel is also included. Basing on calculational and collected measured data, the behaviour of fuel cladding during large and small break LOCA, is estimated with special emphasis on their oxidation and failure resistance. (author) 38 refs, 40 figs, 15 tabs

  20. Assessment of Humidity Conditions and Trends Based on Standardized Precipitation Evapotranspiration Index (SEPI Over Different Climatic Regions of Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Ghabaei S

    2017-01-01

    Full Text Available Introduction: Drought is a recurrent feature of climate that caused by deficiency of precipitation over time. Due to the rise in water demand and alarming climate change, recent year’s observer much focus on drought and drought conditions. A multiple types of deficits and relevant temporal scales can be achieved through the construction of a joint indicator that draws on information from multiple sources and will therefore enable better assessment of drought characteristics including return period, persistent and severity. The Standardized Precipitation Evapotranspiration Index (SPEI combines information from precipitation and temperature in the form of water surplus or deficit according to Standardized Precipitation Index (SPI. Rainfall over some regions of Iran during some resent year was below average while mean and maximum temperatures were very high during this period, as was evaporation. This would suggest that drought conditions were worse than in previous recent periods with similarly low rainfall. The main objective of this study is to assess the influences of humidity on the SPEI index and investigate its relation with SPI and Reconnaissance Drought Index (RDI over six different climatic regions in Iran. Materials and Methods: Iran has different climatic conditions which vary from desert in central part to costal wet near the Caspian Sea. In this study the selection of stations was done based on Alijani et al (2008 climatic classification. We chose 11 synoptic stations from six different climatic classes including costal wet (Rasht and Babolsar, semi mountains (Mashhad and Tabriz, mountains (Shiraz and Khoram Abad, semi-arid (Tehran and Semnan, arid (Kerman and Yazd and costal desert (Bandar Abas. The Meteorological datasets for the aforementioned stations were obtained from the Iran Meteorological Organization (IRIMO for the period 1960-2010. The compiled data included average monthly values of precipitation, minimum and maximum air

  1. Sustainable cooling method for machining titanium alloy

    International Nuclear Information System (INIS)

    Boswell, B; Islam, M N

    2016-01-01

    Hard to machine materials such as Titanium Alloy TI-6AI-4V Grade 5 are notoriously known to generate high temperatures and adverse reactions between the workpiece and the tool tip materials. These conditions all contribute to an increase in the wear mechanisms, reducing tool life. Titanium Alloy, for example always requires coolant to be used during machining. However, traditional flood cooling needs to be replaced due to environmental issues, and an alternative cooling method found that has minimum impact on the environment. For true sustainable cooling of the tool it is necessary to account for all energy used in the cooling process, including the energy involved in producing the coolant. Previous research has established that efficient cooling of the tool interface improves the tool life and cutting action. The objective of this research is to determine the most appropriate sustainable cooling method that can also reduce the rate of wear at the tool interface. (paper)

  2. Muon cooling channels

    CERN Document Server

    Eberhard-K-Kei

    2003-01-01

    A procedure uses the equations that govern ionization cooling, and leads to the most important parameters of a muon cooling channel that achieves assumed performance parameters. First, purely transverse cooling is considered, followed by both transverse and longitudinal cooling in quadrupole and solenoid channels. Similarities and differences in the results are discussed in detail, and a common notation is developed. Procedure and notation are applied to a few published cooling channels. The parameters of the cooling channels are derived step by step, starting from assumed values of the initial, final and equilibrium emittances, both transverse and longitudinal, the length of the cooling channel, and the material properties of the absorber. The results obtained include cooling lengths and partition numbers, amplitude functions and limits on the dispersion at the absorber, length, aperture and spacing of the absorber, parameters of the RF system that achieve the longitudinal amplitude function and bucket area ...

  3. PROFESSIONAL TEACHERS’ DEVELOPMENT OF EDUCATIONAL COMPLEXES IN THE CONDITIONS OF INTRODUCTION OF THE FEDERAL STATE EDUCATIONAL STANDARD

    Directory of Open Access Journals (Sweden)

    Elena A. Sidenko

    2016-01-01

    Full Text Available RETRACTED ARTICLEThe aim of this publication is to familiarize readers with the particularities of training of school teams for the introduction of the Federal State Educational Standard (hereinafter – FSES in the initial stage and considering the features of creating a component of model, namely, program of management training to the introduction of the (FSES. The purpose of the study is to developmethodological bases of construction models of implementation of the Federal state educational standard as a system innovation.Methods. The theoretical and methodological basis of the investigation involves: concepts of motivation of work and reflexive-humanistic psychology; ideas of contextual and projective training, and also acmeological approach to continuous education of adults.Results and scientific novelty. The specifics of the program of professional development of shots for education corresponding to modern realities are described. This program assumes preparation of the school teams consisting of heads of the educational organizations, their deputies, methodologists and teachers. Adequate forms of carrying out internal and correspondence occupations with the organization of productive educational activity of listeners are selected; the complex of tasks for course and intersession occupations is developed. Training of listeners according to the developed program is based as the organizational and pedagogical cascade and cluster model combining resident instruction of the managerial personnel in the organizations of system of professional development with their innovative activity in the educational organizations. The course includes some levels: the basic, technological and organizational-activity-based. The basic level assumes development of the maintenance of FSES and development of innovative potential of listeners; technological level – technologies of conducting group work on development of FSES are mastered

  4. Estudio sobre el almacenamiento de agua helada en los sistemas de climatización centralizados; Study about cooling water storage in centralized air conditioning system

    Directory of Open Access Journals (Sweden)

    Mario Espín Pérez

    2015-04-01

    Full Text Available El desarrollo de este artículo se basa en el estudio del almacenamiento de agua helada en los sistemas de climatización. Para desplazar el consumo eléctrico fuera del horario pico, como herramienta para pretender  incrementar  la eficiencia energética y disminuir el costo de la energía eléctrica en los hoteles con clima tropical. Para ello se procede a la estimación del perfil de carga térmica del hotel Jagua mediante el software TRNSYS, diseño y comprobación del sistema de almacenamiento de agua helada incorporado a las condiciones actuales de la instalación mediante modelos matemáticos que describen su funcionamiento. El objetivo es, evaluar e ilustrar los posibles efectos cuantitativos y cualitativos del almacenamiento de agua helada en el sistema de clima centralizado de la edificación. El trabajo que se presenta se enmarca en los esfuerzos para desarrollar el uso de tecnologías sustentables y la evaluación de sistemas industriales asistidos por computadora en Cuba. The development of this paper is based on the study of cold water storage in air conditioning systems. To offset power consumption off-peak, as a tool to increase energy efficiency claim and reduce the cost of electricity in tropical hotels. To do this we proceed to estimate the thermal load profile Jagua by TRNSYS software, system design and testing of chilled water storage built into the current conditions of the system using mathematical models to describe their operation. The objective is to evaluate and illustrate the quantitative and qualitative effects of cold water storage in the building centralized climate system. The work presented is part of the efforts to develop the use of sustainable technologies and evaluation of computer-aided industrial systems in Cuba.

  5. Newton's law of cooling revisited

    International Nuclear Information System (INIS)

    Vollmer, M

    2009-01-01

    The cooling of objects is often described by a law, attributed to Newton, which states that the temperature difference of a cooling body with respect to the surroundings decreases exponentially with time. Such behaviour has been observed for many laboratory experiments, which led to a wide acceptance of this approach. However, the heat transfer from any object to its surrounding is not only due to conduction and convection but also due to radiation. The latter does not vary linearly with temperature difference, which leads to deviations from Newton's law. This paper presents a theoretical analysis of the cooling of objects with a small Biot number. It is shown that Newton's law of cooling, i.e. simple exponential behaviour, is mostly valid if temperature differences are below a certain threshold which depends on the experimental conditions. For any larger temperature differences appreciable deviations occur which need the complete nonlinear treatment. This is demonstrated by results of some laboratory experiments which use IR imaging to measure surface temperatures of solid cooling objects with temperature differences of up to 300 K.

  6. Thermoelectric cooling of microelectronic circuits and waste heat electrical power generation in a desktop personal computer

    International Nuclear Information System (INIS)

    Gould, C.A.; Shammas, N.Y.A.; Grainger, S.; Taylor, I.

    2011-01-01

    Thermoelectric cooling and micro-power generation from waste heat within a standard desktop computer has been demonstrated. A thermoelectric test system has been designed and constructed, with typical test results presented for thermoelectric cooling and micro-power generation when the computer is executing a number of different applications. A thermoelectric module, operating as a heat pump, can lower the operating temperature of the computer's microprocessor and graphics processor to temperatures below ambient conditions. A small amount of electrical power, typically in the micro-watt or milli-watt range, can be generated by a thermoelectric module attached to the outside of the computer's standard heat sink assembly, when a secondary heat sink is attached to the other side of the thermoelectric module. Maximum electrical power can be generated by the thermoelectric module when a water cooled heat sink is used as the secondary heat sink, as this produces the greatest temperature difference between both sides of the module.

  7. Cooling water distribution system

    Science.gov (United States)

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  8. Laser cooling of solids

    OpenAIRE

    Nemova, Galina

    2009-01-01

    Parallel to advances in laser cooling of atoms and ions in dilute gas phase, which has progressed immensely, resulting in physics Nobel prizes in 1997 and 2001, major progress has recently been made in laser cooling of solids. I compare the physical nature of the laser cooling of atoms and ions with that of the laser cooling of solids. I point out all advantages of this new and very promising area of laser physics. Laser cooling of solids (optical refrigeration) at the present time can be lar...

  9. Modeling of hydronic radiant cooling of a thermally homeostatic building using a parametric cooling tower

    International Nuclear Information System (INIS)

    Ma, Peizheng; Wang, Lin-Shu; Guo, Nianhua

    2014-01-01

    Highlights: • Investigated cooling of thermally homeostatic buildings in 7 U.S. cities by modeling. • Natural energy is harnessed by cooling tower to extract heat for building cooling. • Systematically studied possibility and conditions of using cooling tower in buildings. • Diurnal ambient temperature amplitude is taken into account in cooling tower cooling. • Homeostatic building cooling is possible in locations with large ambient T amplitude. - Abstract: A case is made that while it is important to mitigate dissipative losses associated with heat dissipation and mechanical/electrical resistance for engineering efficiency gain, the “architect” of energy efficiency is the conception of best heat extraction frameworks—which determine the realm of possible efficiency. This precept is applied to building energy efficiency here. Following a proposed process assumption-based design method, which was used for determining the required thermal qualities of building thermal autonomy, this paper continues this line of investigation and applies heat extraction approach investigating the extent of building partial homeostasis and the possibility of full homeostasis by using cooling tower in one summer in seven selected U.S. cities. Cooling tower heat extraction is applied parametrically to hydronically activated radiant-surfaces model-buildings. Instead of sizing equipment as a function of design peak hourly temperature as it is done in heat balance design-approach of selecting HVAC equipment, it is shown that the conditions of using cooling tower depend on both “design-peak” daily-mean temperature and the distribution of diurnal range in hourly temperature (i.e., diurnal temperature amplitude). Our study indicates that homeostatic building with natural cooling (by cooling tower alone) is possible only in locations of special meso-scale climatic condition such as Sacramento, CA. In other locations the use of cooling tower alone can only achieve homeostasis

  10. Experimental Investigation on the Effects of Coolant Concentration on Sub-Cooled Boiling and Crud Deposition on Reactor Cladding at Prototypical PWR Operating Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Schultis, J., Kenneth; Fenton, Donald, L.

    2006-10-20

    Increasing demand for energy necessitates nuclear power units to increase power limits. This implies significant changes in the design of the core of the nuclear power units, therefore providing better performance and safety in operations. A major hindrance to the increase of nuclear reactor performance especially in Pressurized Deionized water Reactors (PWR) is Axial Offset Anomaly (AOA)--the unexpected change in the core axial power distribution during operation from the predicted distribution. This problem is thought to be occur because of precipitation and deposition of lithiated compounds like boric acid (H{sub 2}BO{sub 3}) and lithium metaborate (LiBO{sub 2}) on the fuel rod cladding. Deposited boron absorbs neutrons thereby affecting the total power distribution inside the reactor. AOA is thought to occur when there is sufficient build-up of crud deposits on the cladding during subcooled nucleate boiling. Predicting AOA is difficult as there is very little information regarding the heat and mass transfer during subcooled nucleate boiling. An experimental investigation was conducted to study the heat transfer characteristics during subcooled nucleate boiling at prototypical PWR conditions. Pool boiling tests were conducted with varying concentrations of lithium metaborate (LiBO{sub 2}) and boric acid (H{sub 2}BO{sub 3}) solutions in deionized water. The experimental data collected includes the effect of coolant concentration, subcooling, system pressure and heat flux on pool the boiling heat transfer coefficient. The analysis of particulate deposits formed on the fuel cladding surface during subcooled nucleate boiling was also performed. The results indicate that the pool boiling heat transfer coefficient degrades in the presence of boric acid and lithium metaborate compared to pure deionized water due to lesser nucleation. The pool boiling heat transfer coefficients decreased by about 24% for 5000 ppm concentrated boric acid solution and by 27% for 5000 ppm

  11. Cooling tower calculations

    International Nuclear Information System (INIS)

    Simonkova, J.

    1988-01-01

    The problems are summed up of the dynamic calculation of cooling towers with forced and natural air draft. The quantities and relations are given characterizing the simultaneous exchange of momentum, heat and mass in evaporative water cooling by atmospheric air in the packings of cooling towers. The method of solution is clarified in the calculation of evaporation criteria and thermal characteristics of countercurrent and cross current cooling systems. The procedure is demonstrated of the calculation of cooling towers, and correction curves and the effect assessed of the operating mode at constant air number or constant outlet air volume flow on their course in ventilator cooling towers. In cooling towers with the natural air draft the flow unevenness is assessed of water and air relative to its effect on the resulting cooling efficiency of the towers. The calculation is demonstrated of thermal and resistance response curves and cooling curves of hydraulically unevenly loaded towers owing to the water flow rate parameter graded radially by 20% along the cross-section of the packing. Flow rate unevenness of air due to wind impact on the outlet air flow from the tower significantly affects the temperatures of cooled water in natural air draft cooling towers of a design with lower demands on aerodynamics, as early as at wind velocity of 2 m.s -1 as was demonstrated on a concrete example. (author). 11 figs., 10 refs

  12. 20 CFR 667.274 - What health and safety standards apply to the working conditions of participants in activities...

    Science.gov (United States)

    2010-04-01

    ... WIA? (a) Health and safety standards established under Federal and State law otherwise applicable to... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false What health and safety standards apply to the... I OF THE WORKFORCE INVESTMENT ACT Administrative Rules, Costs and Limitations § 667.274 What health...

  13. The Impact of Statistical Adjustment on Conditional Standard Errors of Measurement in the Assessment of Physician Communication Skills

    Science.gov (United States)

    Raymond, Mark R.; Clauser, Brian E.; Furman, Gail E.

    2010-01-01

    The use of standardized patients to assess communication skills is now an essential part of assessing a physician's readiness for practice. To improve the reliability of communication scores, it has become increasingly common in recent years to use statistical models to adjust ratings provided by standardized patients. This study employed ordinary…

  14. Condition Assessment Survey (CAS) Program. Deficiency standards and inspections methods manual: Volume 7, 0.07 Conveying

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    System information is given for asset determinant factor/CAS repair codes/CAS cost factors; guide sheet tool & material listing; testing methods; inspection frequency; standard system design life tables; and system work breakdown structure. Deficiency standards and inspection methods are presented for elevators and special conveyors.

  15. Condition Assessment Survey (CAS) Program. Deficiency standards and inspections methods manual: Volume 3, 0.03 Superstructure

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    General information is presented on asset determinant factor/CAS profile codes/CAS cost process; guide sheet tool & material listing; testing methods; inspection frequency; standard system design life tables; system work breakdown structure; and general system/material data. Deficiency standards and inspection methods are presented for beams; pre-engineered building systems; floors; roof structure; stairs; and fireproofing.

  16. Recent Development in Turbine Blade Film Cooling

    Directory of Open Access Journals (Sweden)

    Je-Chin Han

    2001-01-01

    Full Text Available Gas turbines are extensively used for aircraft propulsion, land-based power generation, and industrial applications. Thermal efficiency and power output of gas turbines increase with increasing turbine rotor inlet temperature (RIT. The current RIT level in advanced gas turbines is far above the .melting point of the blade material. Therefore, along with high temperature material development, a sophisticated cooling scheme must be developed for continuous safe operation of gas turbines with high performance. Gas turbine blades are cooled internally and externally. This paper focuses on external blade cooling or so-called film cooling. In film cooling, relatively cool air is injected from the inside of the blade to the outside surface which forms a protective layer between the blade surface and hot gas streams. Performance of film cooling primarily depends on the coolant to mainstream pressure ratio, temperature ratio, and film hole location and geometry under representative engine flow conditions. In the past number of years there has been considerable progress in turbine film cooling research and this paper is limited to review a few selected publications to reflect recent development in turbine blade film cooling.

  17. Plumes from one and two cooling towers

    International Nuclear Information System (INIS)

    Kannberg, L.D.; Onishi, Y.

    1978-01-01

    Use of mechanical- and natural-draft cooling towers is expanding in the United States in response to pressures for better resource allocation and preservation. Specifically, increasing public and regulatory concern over the effects of the intake and discharge of large volumes of cooling water has encouraged electric utilities to accept cooling towers as the primary method of removing condenser waste heat even though once-through cooling is considerably less expensive. Other factors encouraging the use of cooling towers include small water supply and consumption rates, reduction in land requirements (compared to cooling ponds or lakes), and operational flexibility. The growing demand for electric energy should also add to the increase of cooling tower use. The experimental program and its comparison to model prediction suggest that optimal siting of cooling towers, particularly multiple towers, is a task requiring knowledge of ambient wind history, plume dynamics, and tower operating conditions. Based on the tower wake effects and on the results for interaction of plumes from two cooling towers, site terrain may be a very significant factor in plume dynamics and interaction

  18. Emergency reactor cooling systems for the experimental VHTR

    International Nuclear Information System (INIS)

    Mitake, Susumu; Suzuki, Katsuo; Miyamoto, Yoshiaki; Tamura, Kazuo; Ezaki, Masahiro.

    1983-03-01

    Performances and design of the panel cooling system which has been proposed to be equipped as an emergency reactor cooling system for the experimental multi purpose very high temperature gas-cooled reactor are explained. Effects of natural circulation flow which would develop in the core and temperature transients of the panel in starting have been precisely investigated. Conditions and procedures for settling accidents with the proposed panel cooling system have been also studied. Based on these studies, it has been shown that the panel cooling system is effective and useful for the emergency reactor cooling of the experimental VHTR. (author)

  19. Electromagnetic Scattering Analysis of Coated Conductors With Edges Using the Method of Auxiliary Sources (MAS) in Conjunction With the Standard Impedance Boundary Condition (SIBC)

    DEFF Research Database (Denmark)

    Anastassiu, H.T.; D.I.Kaklamani, H.T.; Economou, D.P.

    2002-01-01

    A novel combination of the method of auxiliary sources (MAS) and the standard impedance boundary condition (SIBC) is employed in the analysis of transverse magnetic (TM) plane wave scattering from infinite, coated, perfectly conducting cylinders with square cross sections. The scatterer is initia......A novel combination of the method of auxiliary sources (MAS) and the standard impedance boundary condition (SIBC) is employed in the analysis of transverse magnetic (TM) plane wave scattering from infinite, coated, perfectly conducting cylinders with square cross sections. The scatterer...... efficient than the MoM/SIBC method, proving that the proposed novel combination is a powerful and advantageous computational tool....

  20. Effect of cooling rate on the microstructure and mechanical ...

    Indian Academy of Sciences (India)

    continuous cooling transformation (CCT) diagram. Similar cooling conditions were also applied to tensile ... transformation attributes of the steel is exploited to improve strength upon cooling after deformation. .... automatically recorded on a digital gauge in arbitrary hard- ness number. These values were then converted to ...

  1. EFFECT OF COOLING RATES ON THE MICROSTRUCTURE AND ...

    African Journals Online (AJOL)

    ... eutectic under three cooling conditions were proposed. In the DTA mode (slow cooling), the relationship between the two phases was stable. However as the cooling rates increased ( quenching and meltspun modes), the relationship tended towards metastability. KEY WORDS: alloy, solidification, microstructure, eutectic, ...

  2. Radiative cooling for concentrating photovoltaic systems

    Science.gov (United States)

    Sun, Yubo; Zhou, Zhiguang; Jin, Xin; Sun, Xingshu; Alam, Muhammad Ashraful; Bermel, Peter

    2017-09-01

    Radiative cooling, a unique and uncommon passive cooling method for devices operating outdoors, has recently been demonstrated to be effective for photovoltaic thermal management. In this work, we investigate the effect of radiative cooling as a complement to existing passive cooling methods like convective cooling in a related system with much higher heat loads: a high-concentration photovoltaic (HCPV) system. A feasible radiative cooler design addressing the thermal management challenges here is proposed. It consists of low-iron soda-lime glass with a porous layer on top as an antireflection coating and a diamond layer as heat spreader. It is found that the proposed structure has strong mid-IR emittance as well as high solar transmission, allowing radiative cooling under direct sunlight and low loss in the concentrated solar irradiance. A systematic simulation with realistic considerations is then performed. Compared with a conventional copper cooler, the lowest temperature reached by the proposed radiative cooler is 14 K lower. Furthermore, less area of the proposed cooler is needed to reach a standard target temperature (333.15 K) for steady-state operation under high concentrations for the crystalline silicon PV module. In order to compare the coolers quantitatively, a figure of merit - cooling power per weight - is introduced. At the target temperature, the proposed cooler is determined to have a cooling power per weight of 75 W/kg, around 3.7 times higher than that of the conventional copper cooler.

  3. Condition Assessment Survey (CAS) Program. Deficiency standards and inspections methods manual: Volume 1, 0.01 Foundations and footings

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    General information is presented for asset determinant factor/CAS repair codes/CAS cost factors; guide sheet tool & material listing; testing methods; inspection frequency; standard system design life tables; system work breakdown structure; and general system/material data. Deficiency standards and inspection methods are given for footings - spread/strip/grade beams; foundation walls; foundation dampproofing/waterproofing; excavation/backfill/ and piles & caissons.

  4. Condition Assessment Survey (CAS) Program. Deficiency standards and inspections methods manual: Volume 5, 0.05 Roofing

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    General information is presented for asset determinant factor/CAS repair codes/CAS cost factors; guide sheet tool & material listing; testing methods; inspection frequency; standard system design life tables; and system work breakdown structure. Deficiency standards and inspection methods are presented for built-up membrane; single- ply membrane; metal roofing systems; coated foam membrane; shingles; tiles; parapets; roof drainage system; roof specialties; and skylights.

  5. Condition Assessment Survey (CAS) Program. Deficiency standards and inspections methods manual: Volume 11, 0.11 Specialty systems

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    General information is presented for asset determinant factor/CAS repair codes/CAS cost factors; guide sheet tool & material listing; testing methods; inspection frequency; standard system design life tables; system work breakdown structure; and general system/material data. Deficiency standards and inspection methods are presented for canopies; loading dock systems; tanks; domes (bulk storage, metal framing); louvers & vents; access floors; integrated ceilings; and mezzanine structures.

  6. Condition Assessment Survey (CAS) Program. Deficiency standards and inspections methods manual: Volume 6, 0.06 Interior construction

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    General information is presented for asset determinant factor/CAS repair codes/CAS cost factors; guide sheet tool & material listing; testing methods; inspection frequency; standard system design life tables; system work breakdown structure; and general system/material data. Deficiency standards and inspection methods are presented for conventional and specialty partitions, toilet partitions & accessories, interior doors, paint finishes/coatings/ wall covering systems; floor finishing systems; and ceiling systems.

  7. Comparison of different cooling regimes within a shortened liquid cooling/warming garment on physiological and psychological comfort during exercise

    Science.gov (United States)

    Leon, Gloria R.; Koscheyev, Victor S.; Coca, Aitor; List, Nathan

    2004-01-01

    The aim of this study was to compare the effectiveness of different cooling regime intensities to maintain physiological and subjective comfort during physical exertion levels comparable to that engaged in during extravehicular activities (EVA) in space. We studied eight subjects (six males, two females) donned in our newly developed physiologically based shortened liquid cooling/warming garment (SLCWG). Rigorous (condition 1) and mild (condition 2) water temperature cooling regimes were compared at physical exertion levels comparable to that performed during EVA to ascertain the effectiveness of a lesser intensity of cooling in maintaining thermal comfort, thus reducing energy consumption in the portable life support system. Exercise intensity was varied across stages of the session. Finger temperature, rectal temperature, and subjective perception of overall body and hand comfort were assessed. Finger temperature was significantly higher in the rigorous cooling condition and showed a consistent increase across exercise stages, likely due to the restriction of heat extraction because of the intensive cold. In the mild cooling condition, finger temperature exhibited an overall decline with cooling, indicating greater heat extraction from the body. Rectal temperature was not significantly different between conditions, and showed a steady increase over exercise stages in both rigorous and mild cooling conditions. Ratings of overall comfort were 30% higher (more positive) and more stable in mild cooling (p<0.001). The mild cooling regime was more effective than rigorous cooling in allowing the process of heat exchange to occur, thus maintaining thermal homeostasis and subjective comfort during physical exertion.

  8. Application of minimum quantity cooling lubrication technology in cutting processes

    OpenAIRE

    Heisel, Uwe; Lutz, Marcel; Spath, Dieter; Wassmer, Robert A.; Walter, Ulrich

    1994-01-01

    In spite of the manifold efforts to reach a total renouncement of the use of cooling lubricants in metal cutting for environmentally reasons, cooling lubrication is an essential condition to achieve an economical tool life and the required surface quality in many cases. Against this background, the minimum quantity cooling lubrication is an interesting possibility for an economical and environmentally compatible production which combines the functionality of the cooling lubrication with an ex...

  9. NASA Microclimate Cooling Challenges

    Science.gov (United States)

    Trevino, Luis A.

    2004-01-01

    The purpose of this outline form presentation is to present NASA's challenges in microclimate cooling as related to the spacesuit. An overview of spacesuit flight-rated personal cooling systems is presented, which includes a brief history of cooling systems from Gemini through Space Station missions. The roles of the liquid cooling garment, thermal environment extremes, the sublimator, multi-layer insulation, and helmet visor UV and solar coatings are reviewed. A second section is presented on advanced personal cooling systems studies, which include heat acquisition studies on cooling garments, heat rejection studies on water boiler & radiators, thermal storage studies, and insulation studies. Past and present research and development and challenges are summarized for the advanced studies.

  10. Laser cooling of atoms and ions

    International Nuclear Information System (INIS)

    Morigi, G.

    1999-02-01

    This thesis covers my work in the field of theoretical quantum optics, focusing on laser cooling of trapped atoms and ions. Laser cooling has been extensively investigated in the last twenty years, opening the possibility in experiments to move well into the quantum regime, where quantum statistical or quantum motional effects become pronounced. The successful preparation of cold atoms by means of laser cooling has recently raised the interest in the preparation of several or even many particles in a pure quantum state of the whole system. This goal imposes certain experimental circumstances, in particular the interaction between the atoms may play a significant role and affect the conditions for laser cooling considerably. Hence, there is great interest in developing cooling schemes which are compatible with such experimental conditions and in studying theoretically laser cooling of interacting particles. The work contained in this thesis contributes to this rapidly developing field, and it can be divided in two parts. In the first part, it presents an investigation of new schemes of laser cooling of single atoms or ions in traps where the amplitude of the particle's motion is comparable with the laser wavelength. This regime is typical of experiments with ultracold, weakly interacting atomic gases, and equally relevant to quantum information processing with trapped ions. In the second part, laser cooling of strongly interacting ions in a trap is investigated, with particular attention to the effect of the Coulomb interaction on the cooling process. This system is a paradigm for the experimental implementation of a quantum computer and is currently intensively studied. The thesis is divided into five chapters, of which the first one constitutes an introduction to laser cooling and to a series of concepts which are recurrent throughout this work. The other four chapters present my personal contributions to the field. Each of them contains first a general

  11. Natural gas cooling: Part of the solution

    International Nuclear Information System (INIS)

    Jones, D.R.

    1992-01-01

    This paper reviews and compares the efficiencies and performance of a number of gas cooling systems with a comparable electric cooling system. The results show that gas cooling systems compare favorably with the electric equivalents, offering a new dimension to air conditioning and refrigeration systems. The paper goes on to compare the air quality benefits of natural gas to coal or oil-burning fuel systems which are used to generate the electricity for the electric cooling systems. Finally, the paper discusses the regulatory bias that the author feels exists towards the use of natural gas and the need for modification in the existing regulations to provide a 'level-playing field' for the gas cooling industry

  12. The cooling of particle beams

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1994-10-01

    A review is given of the various methods which can be employed for cooling particle beams. These methods include radiation damping, stimulated radiation damping, ionization cooling, stochastic cooling, electron cooling, laser cooling, and laser cooling with beam coupling. Laser Cooling has provided beams of the lowest temperatures, namely 1 mK, but only for ions and only for the longitudinal temperature. Recent theoretical work has suggested how laser cooling, with the coupling of beam motion, can be used to reduce the ion beam temperature in all three directions. The majority of this paper is devoted to describing laser cooling and laser cooling with beam coupling

  13. Initial Cooling Experiment (ICE)

    CERN Multimedia

    Photographic Service; CERN PhotoLab

    1978-01-01

    In 1977, in a record-time of 9 months, the magnets of the g-2 experiment were modified and used to build a proton/antiproton storage ring: the "Initial Cooling Experiment" (ICE). It served for the verification of the cooling methods to be used for the "Antiproton Project". Stochastic cooling was proven the same year, electron cooling followed later. Also, with ICE the experimental lower limit for the antiproton lifetime was raised by 9 orders of magnitude: from 2 microseconds to 32 hours. For its previous life as g-2 storage ring, see 7405430. More on ICE: 7711282, 7809081, 7908242.

  14. Turbine airfoil cooling system with cooling systems using high and low pressure cooling fluids

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, Jan H.; Messmann, Stephen John; Scribner, Carmen Andrew

    2017-10-25

    A turbine airfoil cooling system including a low pressure cooling system and a high pressure cooling system for a turbine airfoil of a gas turbine engine is disclosed. In at least one embodiment, the low pressure cooling system may be an ambient air cooling system, and the high pressure cooling system may be a compressor bleed air cooling system. In at least one embodiment, the compressor bleed air cooling system in communication with a high pressure subsystem that may be a snubber cooling system positioned within a snubber. A delivery system including a movable air supply tube may be used to separate the low and high pressure cooling subsystems. The delivery system may enable high pressure cooling air to be passed to the snubber cooling system separate from low pressure cooling fluid supplied by the low pressure cooling system to other portions of the turbine airfoil cooling system.

  15. Evaluation of environmental and economic effectiveness of the Cross Compliance 4.3 Standards "Maintenance of olive groves and vineyards in good vegetative conditions"

    Directory of Open Access Journals (Sweden)

    Luigi Sansone

    2015-11-01

    Full Text Available This paper reports the first observations made in three farms of the Council for Agricultural Research and Economics (CREA relating to the environmental monitoring of the standard 4.3 maintenance of olive groves and vineyards in good vegetative conditions and analysis of differential of competitiveness  for both crops.

  16. ASME N511-19XX, Standard for periodic in-service testing of nuclear air treatment, heating, ventilating and air conditioning systems

    International Nuclear Information System (INIS)

    1997-01-01

    A draft version of the Standard is presented in this document. The Standard covers the requirements for periodic in-service testing of nuclear safety-related air treatment, heating, ventilating, and air conditioning systems in nuclear facilities. The Standard provides a basis for the development of test programs and does not include acceptance criteria, except in cases where the results of one test influence the performance of other tests. The Standard covers general inspection and test requirements, reference values, inspection and test requirements, generic tests, acceptance criteria, in-service test requirements, testing following an abnormal incident, corrective action requirements, and quality assurance. Mandatory appendices provide a visual inspection checklist and four test procedures. Non-mandatory appendices provide additional information and guidance on mounting frame pressure leak test procedure, corrective action, challenge gas substitute selection criteria, and test program development. 8 refs., 10 tabs

  17. 40 CFR 80.553 - Under what conditions may the small refiner gasoline sulfur standards be extended for a small...

    Science.gov (United States)

    2010-07-01

    ... gasoline produced by the refinery must meet the gasoline sulfur standards under subpart H of this Part as... all succeeding compliance periods and all gasoline produced by the refinery must meet the gasoline... applicable). Upon such effective date, all gasoline produced by the refiner must meet the gasoline sulfur...

  18. 13 CFR 107.700 - Compliance with size standards in part 121 of this chapter as a condition of Assistance.

    Science.gov (United States)

    2010-01-01

    ... Assistance SMALL BUSINESS ADMINISTRATION SMALL BUSINESS INVESTMENT COMPANIES Financing of Small Businesses by... assistance and management services only to a Small Business. To determine whether an applicant is a Small... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Compliance with size standards in...

  19. Estimation of Sensitivity and Specificity of Three Conditionally Dependent Diagnostic Tests in the Absence of a Gold Standard

    NARCIS (Netherlands)

    Engel, B.; Swildens, B.; Stegeman, J.A.; Buist, W.G.; Jong, de M.

    2006-01-01

    This article presents a model to evaluate the accuracy of diagnostic tests. Data from three tests for the detection of EF-positive Streptococcus suis serotype 2 strains in sows were analyzed. The data were collected in a field study in the absence of a gold standard, that is, the true disease status

  20. Individual condition, standard metabolic rate, and rearing temperature influence steelhead and rainbow trout (Oncorhynchus mykiss) life histories

    Science.gov (United States)

    Matthew R. Sloat; Gordon H. Reeves

    2014-01-01

    We reared juvenile Oncorhychus mykiss with low and high standard metabolic rates (SMR) under alternative thermal regimes to determine how these proximate factors influence life histories in a partially migratory salmonid fish. High SMR significantly decreased rates of freshwater maturation and increased rates of smoltification in females, but not...

  1. Condition Assessment Survey (CAS) Program. Deficiency standards and inspections methods manual: Volume 2, 0.02 Substructure

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    System information is given for asset determinant factor/CAS repair codes/CAS cost factors; guide sheet tool & material listing; testing methods; inspection frequency; standard system design life tables; system work breakdown structure; and general system/material data. System assembly/component deficiencies and inspection methods are given for slabs-on-grade, columns, and column fireproofing.

  2. Heating up the gas cooling market

    International Nuclear Information System (INIS)

    Watt, G.

    2001-01-01

    Gas cooling is an exciting technology with a potentially bright future. It comprises the production of cooling (and heating) in buildings and industry, by substituting environmentally-friendlier natural gas or LPG over predominantly coal-fired electricity in air conditioning equipment. There are currently four established technologies using gas to provide cooling energy or conditioned air. These are: absorption, both direct gas-fired and utilising hot water or steam; gas engine driven vapour compression (GED); cogeneration, with absorption cooling driven by recovered heat; and desiccant systems. The emergence of gas cooling technologies has been, and remains, one of evolution rather than revolution. However, further development of the technology has had a revolutionary effect on the performance, reliability and consumer acceptability of gas cooling products. Developments from world-renowned manufacturers such as York, Hitachi, Robur and Thermax have produced a range of absorption equipment variously offering: the use of 100 percent environmentally-friendly refrigerants, with zero global warming potential; the ideal utilisation of waste heat from cogeneration systems; a reduction in electrical distribution and stand-by generation capacity; long product life expectancy; far less noise and vibration; performance efficiency maintained down to about 20 percent of load capacity; and highly automated and low-cost maintenance. It is expected that hybrid systems, that is a mixture of gas and electric cooling technologies, will dominate the future market, reflecting the uncertainty in the electricity market and the prospects of stable future gas prices

  3. Performance characteristic of hybrid cooling system based on cooling pad and evaporator

    Science.gov (United States)

    Yoon, J. I.; Son, C. H.; Choi, K. H.; Kim, Y. B.; Sung, Y. H.; Roh, S. J.; Kim, Y. M.; Seol, S. H.

    2018-01-01

    In South Korea, most of domestic animals such as pigs and chickens might die due to thermal diseases if they are exposed to the high temperature consistently. In order to save them from the heat wave, numerous efforts have been carried out: installing a shade net, adjusting time of feeding, spraying mist and setting up a circulation fan. However, these methods have not shown significant improvements. Thus, this study proposes a hybrid cooling system combining evaporative cooler and air-conditioner in order to resolve the conventional problems caused by the high temperature in the livestock industry. The problem of cooling systems using evaporative cooling pads is that they are not effective for eliminating huge heat load due to their limited capacity. And, temperature of the supplied air cannot be low enough compared to conventional air-conditioning systems. On the other hand, conventional air-conditioning systems require relatively expensive installation cost, and high operating cost compared to evaporative cooling system. The hybrid cooling system makes up for the lack of cooling capacity of the evaporative cooler by employing the conventional air-conditioner. Additionally, temperature of supplied air can be lowered enough. In the hybrid cooling system, induced air by a fan is cooled by the evaporation of water in the cooling pad, and it is cooled again by an evaporator in the air-conditioner. Therefore, the more economical operation is possible due to additionally obtained cooling capacity from the cooling pads. Major results of experimental analysis of hybrid cooling system are as follows. The compressor power consumption of the hybrid cooling system is about 23% lower, and its COP is 17% higher than that of the conventional air-conditioners. Regarding the condition of changing ambient temperature, the total power consumption decreased by about 5% as the ambient temperature changed from 28.7°C to 31.7°C. Cooling capacity and COP also presented about 3% and 1

  4. Aid conditionalities, international Good Manufacturing Practice standards and local production rights: a case study of local production in Nepal.

    Science.gov (United States)

    Brhlikova, Petra; Harper, Ian; Subedi, Madhusudan; Bhattarai, Samita; Rawal, Nabin; Pollock, Allyson M

    2015-06-14

    Local pharmaceutical production has been endorsed by the WHO as a means of addressing health priorities of developing countries. However, local producers of essential medicines must comply with international pharmaceutical standards in order to be eligible to compete in donor tenders. These standards determine production rights for on-patent and off-patent medicines, and guide international procurement of medicines. We reviewed the literature on the impact of Good Manufacturing Practice (GMP) on local production; a gap analysis from the literature review indicated a need for further research. Over sixty interviews were conducted with people involved in the Nepali pharmaceutical production and distribution chain from 2006 to 2009 on the GMP areas of relevance: regulatory capacity, staffing, funding and training, resourcing of GMP, inspectors' interpretation of the rules and compliance. Although Nepal producers have increased their overall share of the domestic market, only the public manufacturer, Royal Drugs, focuses on medicines for public health programmes; private producers engage mainly in brand competition for private markets, not essential medicines. Nepali regulators and producers state that implementation of GMP standards is hindered by low regulatory capacity, insufficient training of staff in the industry, financial constraints and lack of investment for upgrading capital. The transition period to mandatory compliance with WHO GMP rules is lengthy. Less than half of private producers had WHO GMP in 2013. Producers are not directly affected by international harmonisation of standards as they do not export medicines and the Nepali regulator does not enforce the WHO standards strictly. Without an international GMP certificate they cannot tender for donor dependent health programmes. In Nepal, local private manufacturers focus mainly on brand competition for private consumption not essential medicines, the government preferentially procures essential

  5. The final cool down

    CERN Multimedia

    Thursday 29th May, the cool-down of the final sector (sector 4-5) of LHC has begun, one week after the start of the cool-down of sector 1-2. It will take five weeks for the sectors to be cooled from room temperature to 5 K and a further two weeks to complete the cool down to 1.9 K and the commissioning of cryogenic instrumentation, as well as to fine tune the cryogenic plants and the cooling loops of cryostats.Nearly a year and half has passed since sector 7-8 was cooled for the first time in January 2007. For Laurent Tavian, AT/CRG Group Leader, reaching the final phase of the cool down is an important milestone, confirming the basic design of the cryogenic system and the ability to operate complete sectors. “All the sectors have to operate at the same time otherwise we cannot inject the beam into the machine. The stability and reliability of the cryogenic system and its utilities are now very important. That will be the new challenge for the coming months,” he explains. The status of the cool down of ...

  6. Solar absorption cooling

    NARCIS (Netherlands)

    Kim, D.S.

    2007-01-01

    As the world concerns more and more on global climate changes and depleting energy resources, solar cooling technology receives increasing interests from the public as an environment-friendly and sustainable alternative. However, making a competitive solar cooling machine for the market still

  7. Cooling of electronic equipment

    DEFF Research Database (Denmark)

    A. Kristensen, Anders Schmidt

    2003-01-01

    Cooling of electronic equipment is studied. The design size of electronic equipment decrease causing the thermal density to increase. This affect the cooling which can cause for example failures of critical components due to overheating or thermal induced stresses. Initially a pin fin heat sink...

  8. Coherent electron cooling

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko,V.

    2009-05-04

    Cooling intense high-energy hadron beams remains a major challenge in modern accelerator physics. Synchrotron radiation is still too feeble, while the efficiency of two other cooling methods, stochastic and electron, falls rapidly either at high bunch intensities (i.e. stochastic of protons) or at high energies (e-cooling). In this talk a specific scheme of a unique cooling technique, Coherent Electron Cooling, will be discussed. The idea of coherent electron cooling using electron beam instabilities was suggested by Derbenev in the early 1980s, but the scheme presented in this talk, with cooling times under an hour for 7 TeV protons in the LHC, would be possible only with present-day accelerator technology. This talk will discuss the principles and the main limitations of the Coherent Electron Cooling process. The talk will describe the main system components, based on a high-gain free electron laser driven by an energy recovery linac, and will present some numerical examples for ions and protons in RHIC and the LHC and for electron-hadron options for these colliders. BNL plans a demonstration of the idea in the near future.

  9. Measure Guideline: Ventilation Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Springer, D.; Dakin, B.; German, A.

    2012-04-01

    The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  10. Desiccant cooling system performance: A simple approach

    Science.gov (United States)

    Epstein, M.; Grolmes, M. A.

    1982-10-01

    The wave nature of heat and mass transfer in fixed desiccant bed adsorption is explained. A simple algebraic model of wave motion under single low desiccant bed operation is developed and applied to the prediction of the performance potential of the overall desiccant cooling system. The model is used to explain the increase in cooling system performance that is realized through the use of mixed inert desiccant material adsorption beds. The response of cooling system performance to changes in external process conditions is examined and conclusions are drawn relative to optimization of system characteristics.

  11. Review of groundwater cooling systems in London

    Energy Technology Data Exchange (ETDEWEB)

    Ampofo, F.; Maidment, G.G.; Missenden, J.F. [Department of Engineering Systems, Faculty of Engineering, Science and The Built Environment, London South Bank University, 103 Borough Road, London, SE1 0AA (United Kingdom)

    2006-12-15

    The environmental impact of the UK building stock has increased the pressure on architects, engineers and building operators to reduce the use of air conditioning in favour of more passive cooling solutions. Good progress has been made in this direction but many passive solutions are limited to new-build projects. For existing buildings, and those for which mechanical air conditioning cannot be avoided, low energy cooling capability can be incorporated to improve significantly overall efficiency. This paper focuses on one such low energy capability - cooling using groundwater, which has gained popularity in recent years in the London area. Among the reasons for this are the excellent energy efficiency and the increasing viability of water extraction systems. The paper shows that groundwater cooling technology can be incorporated into newly-build and existing buildings to help reduce the environmental impact of the UK building stock. (author)

  12. Stochastic cooling at Fermilab

    International Nuclear Information System (INIS)

    Marriner, J.

    1986-08-01

    The topics discussed are the stochastic cooling systems in use at Fermilab and some of the techniques that have been employed to meet the particular requirements of the anti-proton source. Stochastic cooling at Fermilab became of paramount importance about 5 years ago when the anti-proton source group at Fermilab abandoned the electron cooling ring in favor of a high flux anti-proton source which relied solely on stochastic cooling to achieve the phase space densities necessary for colliding proton and anti-proton beams. The Fermilab systems have constituted a substantial advance in the techniques of cooling including: large pickup arrays operating at microwave frequencies, extensive use of cryogenic techniques to reduce thermal noise, super-conducting notch filters, and the development of tools for controlling and for accurately phasing the system

  13. INITIAL COOLING EXPERIMENT (ICE)

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    ICE was built in 1977, using the modified bending magnets of the g-2 muon storage ring (see 7405430). Its purpose was to verify the validity of stochastic and electron cooling for the antiproton project. Stochastic cooling proved a resounding success early in 1978 and the antiproton project could go ahead, now entirely based on stochastic cooling. Electron cooling was experimented with in 1979. The 26 kV equipment is housed in the cage to the left of the picture, adjacent to the "e-cooler" located in a straight section of the ring. With some modifications, the cooler was later transplanted into LEAR (Low Energy Antiproton Ring) and then, with further modifications, into the AD (Antiproton Decelerator), where it cools antiprotons to this day (2006). See also: 7711282, 7802099, 7809081.

  14. Initial Cooling Experiment (ICE)

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    ICE was built in 1977, in a record time of 9 months, using the modified bending magnets of the g-2 muon storage ring. Its purpose was to verify the validity of stochastic and electron cooling for the antiproton project, to be launched in 1978. Already early in 1978, stochastic cooling proved a resounding success, such that the antiproton (p-pbar)project was entirely based on it. Tests of electron cooling followed later: protons of 46 MeV kinetic energy were cooled with an electron beam of 26 kV and 1.3 A. The cage seen prominently in the foreground houses the HV equipment, adjacent to the "cooler" installed in a straight section of the ring. With some modifications, the cooler was later transplanted into LEAR (Low Energy Antiproton Ring) and then, with further modifications, into the AD (Antiproton Decelerator), where it cools antiprotons to this day (2006). See also: 7711282, 7802099, 7908242.

  15. Cooled-Spool Piston Compressor

    Science.gov (United States)

    Morris, Brian G.

    1994-01-01

    Proposed cooled-spool piston compressor driven by hydraulic power and features internal cooling of piston by flowing hydraulic fluid to limit temperature of compressed gas. Provides sufficient cooling for higher compression ratios or reactive gases. Unlike conventional piston compressors, all parts of compressed gas lie at all times within relatively short distance of cooled surface so that gas cooled more effectively.

  16. Solar heating and cooling with absorption refrigeration

    OpenAIRE

    Montlló Casabayó, Gerard

    2010-01-01

    This project is focused on solar heating and cooling installations that use solar thermal energy to produce heat for domestic hot water or space heating, and cooling for air conditioning through absorption refrigeration cycle. The first part of the project is a literature review of said technology. The main components of such installations are described and results and conclusions from existing installations are reviewed. The second part is focused on designing, modelling and simula...

  17. Influence of Shading on Cooling Energy Demand

    Science.gov (United States)

    Rabczak, Sławomir; Bukowska, Maria; Proszak-Miąsik, Danuta; Nowak, Krzysztof

    2017-10-01

    The article presents an analysis of the building cooling load taking into account the variability of the factors affecting the size of the heat gains. In order to minimize the demand for cooling, the effect of shading elements installed on the outside on the windows and its effect on size of the cooling capacity of air conditioning system for the building has been estimated. Multivariate building cooling load calculations to determine the size of the reduction in cooling demand has derived. Determination of heat gain from the sun is laborious, but gives a result which reflects the influence of the surface transparent partitions, devices used as sunscreen and its location on the building envelope in relation to the world, as well as to the internal heat gains has great attention in obtained calculation. In this study, included in the balance sheet of solar heat gains are defined in three different shading of windows. Calculating the total demand cooling is made for variants assuming 0% shading baffles transparent, 50% shading baffles transparent external shutters at an angle of 45 °, 100% shading baffles transparent hours 12 from the N and E and from 12 from the S and W of the outer slat blinds. The calculation of the average hourly cooling load was taken into account the option assuming the hypothetical possibility of default by up to 10% of the time assumed the cooling season temperatures in the rooms. To reduce the consumption of electricity energy in the cooling system of the smallest variant identified the need for the power supply for the operation of the cooling system. Also assessed the financial benefits of the temporary default of comfort.

  18. Design and Control of Hydronic Radiant Cooling Systems

    Science.gov (United States)

    Feng, Jingjuan

    Improving energy efficiency in the Heating Ventilation and Air conditioning (HVAC) systems in buildings is critical to achieve the energy reduction in the building sector, which consumes 41% of all primary energy produced in the United States, and was responsible for nearly half of U.S. CO2 emissions. Based on a report by the New Building Institute (NBI), when HVAC systems are used, about half of the zero net energy (ZNE) buildings report using a radiant cooling/heating system, often in conjunction with ground source heat pumps. Radiant systems differ from air systems in the main heat transfer mechanism used to remove heat from a space, and in their control characteristics when responding to changes in control signals and room thermal conditions. This dissertation investigates three related design and control topics: cooling load calculations, cooling capacity estimation, and control for the heavyweight radiant systems. These three issues are fundamental to the development of accurate design/modeling tools, relevant performance testing methods, and ultimately the realization of the potential energy benefits of radiant systems. Cooling load calculations are a crucial step in designing any HVAC system. In the current standards, cooling load is defined and calculated independent of HVAC system type. In this dissertation, I present research evidence that sensible zone cooling loads for radiant systems are different from cooling loads for traditional air systems. Energy simulations, in EnergyPlus, and laboratory experiments were conducted to investigate the heat transfer dynamics in spaces conditioned by radiant and air systems. The results show that the magnitude of the cooling load difference between the two systems ranges from 7-85%, and radiant systems remove heat faster than air systems. For the experimental tested conditions, 75-82% of total heat gain was removed by radiant system during the period when the heater (simulating the heat gain) was on, while for air

  19. Design and operation of hybrid cooling towers

    International Nuclear Information System (INIS)

    Alt, W.

    1987-01-01

    The first hybrid cooling tower at a coal-fired power station with a waste heat output of 550 MW has been in operation since the middle of 1985. Experience during the construction stage and the initial period of operation has confirmed the correctness of the design standards and of the design itself and, of course, also offers a wealth of knowledge to be observed on future construction projects. A second cooling tower of similar design is being erected at the present time. This cooling tower serves a power station unit with 2500 MW of waste heat output. The programme for this cooling tower offers the possibility for all the accumulated and evaluated experience to be of influence both on the design and also on the method of operation. This paper reports on the details. (orig.) [de

  20. New Protective Measures for Cooling Systems

    International Nuclear Information System (INIS)

    Carter, D. Anthony; Nonohue, Jonh M.

    1974-01-01

    Cooling water treatments have been updated and improved during the last few years. Particularly important are the nontoxic programs which conform plant cooling water effluents to local water quality standards without expenditures for capital equipment. The relationship between scaling and corrosion in natural waters has been recognized for many years. This relationship is the basis for the Langelier Saturation Index control method which was once widely applied to reduce corrosion in cooling water systems. It used solubility characteristics to maintain a very thin deposit on metal surfaces for preventing corrosion. This technique was rarely successful. That is, the solubility of calcium carbonate and most other inorganic salts depends on temperature. If good control exists on cold surfaces, excessive deposition results on the heat transfer tubes. Also, because water characteristic normally vary in a typical cooling system, precise control of scaling at both hot and cold surfaces is virtually impossible

  1. Pre-cooling for endurance exercise performance in the heat: a systematic review

    Directory of Open Access Journals (Sweden)

    Jones Paul R

    2012-12-01

    Full Text Available Abstract Background Endurance exercise capacity diminishes under hot environmental conditions. Time to exhaustion can be increased by lowering body temperature prior to exercise (pre-cooling. This systematic literature review synthesizes the current findings of the effects of pre-cooling on endurance exercise performance, providing guidance for clinical practice and further research. Methods The MEDLINE, EMBASE, CINAHL, Web of Science and SPORTDiscus databases were searched in May 2012 for studies evaluating the effectiveness of pre-cooling to enhance endurance exercise performance in hot environmental conditions (≥ 28°C. Studies involving participants with increased susceptibility to heat strain, cooling during or between bouts of exercise, and protocols where aerobic endurance was not the principle performance outcome were excluded. Potential publications were assessed by two independent reviewers for inclusion and quality. Means and standard deviations of exercise performance variables were extracted or sought from original authors to enable effect size calculations. Results In all, 13 studies were identified. The majority of studies contained low participant numbers and/or absence of sample size calculations. Six studies used cold water immersion, four crushed ice ingestion and three cooling garments. The remaining study utilized mixed methods. Large heterogeneity in methodological design and exercise protocols was identified. Effect size calculations indicated moderate evidence that cold water immersion effectively improved endurance performance, and limited evidence that ice slurry ingestion improved performance. Cooling garments were ineffective. Most studies failed to document or report adverse events. Low participant numbers in each study limited the statistical power of certain reported trends and lack of blinding could potentially have introduced either participant or researcher bias in some studies. Conclusions Current evidence

  2. Ionization cooling ring for muons

    Directory of Open Access Journals (Sweden)

    R. Palmer

    2005-06-01

    Full Text Available Practical ionization cooling rings could lead to lower cost or improved performance in neutrino factory or muon collider designs. The ring modeled here uses realistic three-dimensional fields. The performance of the ring compares favorably with the linear cooling channel used in the second U.S. Neutrino Factory Study. The normalized 6D emittance of an ideal ring is decreased by a factor of approximately 240, compared with a factor of only 15 for the linear channel. We also examine such real-world effects as windows on the absorbers and rf cavities and leaving empty lattice cells for injection and extraction. For realistic conditions the ring decreases the normalized 6D emittance by a factor of 49.

  3. Study of cooling effectiveness for an integrated cooling turbine blade

    OpenAIRE

    Matsushita, Masahiro; Yamane, Takashi; Mimura, Fujio; Fukuyama, Yoshitaka; 松下 政裕; 山根 敬; 三村 富嗣雄; 福山 佳孝

    2007-01-01

    Experimental study of film cooling, impingement cooling and integrated cooling were carried out with the aim of applying them to turbine cooling. The experiments were conducted with 673 K hot gas flow and room temperature cooling air. Test plate surface temperature distributions were measured with an infrared camera. This report presents fundamental research data on cooling performance of the test plates for the validation of numerical simulation. Moreover, simplify heat transfer calculations...

  4. Costic's technical day: thermodynamical heating and air conditioning in accommodations (heat pumps, heating-cooling floors). Development of reversible heat pumps in France and in Europe; Journee technique Costic: chauffage thermodynamique et climatisation dans l'habitat (les pompes a chaleur, les planchers chauffants-rafraichissants). Developpement des pompes a chaleur reversibles en France et en Europe

    Energy Technology Data Exchange (ETDEWEB)

    Ecolivet, K.

    2002-07-01

    Space heating installations involving reversible heat pumps are more and more developing, in particular in individual residential accommodations. Todays, the notion of individual comfort includes also the cooling or the air-conditioning. This document gives a general overview of the different types of thermodynamical systems in use in residential buildings and presents the situation of this market in Europe: air/water systems with heating floor or heating/cooling floor, water/water systems with horizontal buried collectors and heating floor or heating/cooling floor, ground/water systems with horizontal buried collectors and heating floor, ground/ground systems with horizontal buried collectors and heating floor, air/water systems with two-pipe water terminal units (ventilation-convection units), air/air monobloc, split or multi-split systems with or without aeraulic duct. (J.S.)

  5. Second sector cool down

    CERN Multimedia

    2007-01-01

    At the beginning of July, cool-down is starting in the second LHC sector, sector 4-5. The cool down of sector 4-5 may occasionally generate mist at Point 4, like that produced last January (photo) during the cool-down of sector 7-8.Things are getting colder in the LHC. Sector 7-8 has been kept at 1.9 K for three weeks with excellent stability (see Bulletin No. 16-17 of 16 April 2007). The electrical tests in this sector have got opt to a successful start. At the beginning of July the cryogenic teams started to cool a second sector, sector 4-5. At Point 4 in Echenevex, where one of the LHC’s cryogenic plants is located, preparations for the first phase of the cool-down are underway. During this phase, the sector will first be cooled to 80 K (-193°C), the temperature of liquid nitrogen. As for the first sector, 1200 tonnes of liquid nitrogen will be used for the cool-down. In fact, the nitrogen circulates only at the surface in the ...

  6. Evaporative cooling of trapped atoms

    International Nuclear Information System (INIS)

    Ketterle, W.; Van Druten, N.J.

    1996-01-01

    This report discusses the following topics on evaporative cooling of trapped atoms: Theoretical models for evaporative cooling; the role of collisions for real atoms; experimental techniques and summary of evaporative cooling experiments. 166 refs., 6 figs., 3 tabs

  7. Heat Transfer and Cooling Techniques at Low Temperature

    CERN Document Server

    Baudouy, B

    2014-07-17

    The first part of this chapter gives an introduction to heat transfer and cooling techniques at low temperature. We review the fundamental laws of heat transfer (conduction, convection and radiation) and give useful data specific to cryogenic conditions (thermal contact resistance, total emissivity of materials and heat transfer correlation in forced or boiling flow for example) used in the design of cooling systems. In the second part, we review the main cooling techniques at low temperature, with or without cryogen, from the simplest ones (bath cooling) to the ones involving the use of cryocoolers without forgetting the cooling flow techniques.

  8. Cooling towers: a bibliography

    International Nuclear Information System (INIS)

    Whitson, M.O.

    1981-02-01

    This bibliography cites 300 selected references containing information on various aspects of large cooling tower technology, including design, construction, operation, performance, economics, and environmental effects. The towers considered include natural-draft and mechanical-draft types employing wet, dry, or combination wet-dry cooling. A few references deal with alternative cooling methods, principally ponds or spray canals. The citations were compiled for the DOE Energy Information Data Base (EDB) covering the period January to December 1980. The references are to reports from the Department of Energy and its contractors, reports from other government or private organizations, and journal articles, books, conference papers, and monographs from US originators

  9. Standard loading controls are not reliable for Western blot quantification across brain development or in pathological conditions.

    Science.gov (United States)

    Goasdoue, Kate; Awabdy, Doreen; Bjorkman, Stella Tracey; Miller, Stephanie

    2016-02-01

    A frequently utilized method of data quantification in Western blot analysis is comparison of the protein of interest with a house keeping gene or control protein. Commonly used proteins include β-actin, glyceraldehyde 3 phosphate dehydrogenase (GAPDH), and α-tubulin. Various reliability issues have been raised when using this technique for data analysis-particularly when investigating protein expression changes during development and in disease states. In this study, we have demonstrated that β-actin, GAPDH, and α-tubulin are not appropriate controls in the study of development and hypoxic-ischemic induced damage in the piglet brain. We have also shown that using an in-house pooled standard, loaded on all blots is a reliable method for controlling interassay variability and data normalization in protein expression analysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Performance characteristics of a shower cooling tower

    International Nuclear Information System (INIS)

    Qi Xiaoni; Liu Zhenyan; Li Dandan

    2007-01-01

    This study was prompted by the need to design towers for applications in which, due to salt deposition on the packing and subsequent blockage, the use of tower packing is not practical. In contrast to conventional cooling towers, the cooling tower analyzed in this study is void of fill. By means of efficient atomization nozzles, a shower cooling tower (SCT) is possible to be applied in industry, which, in terms of water cooling, energy saving and equipment investing, is better than conventional packed cooling towers. However, no systematic thermodynamic numerical method could be found in the literature up to now. Based on the kinetic model and mass and heat transfer model, this paper has developed a one dimensional model for studying the motional process and evaporative cooling process occurring at the water droplet level in the SCT. The finite difference approach is used for three motional processes to obtain relative parameters in each different stage, and the possibility of the droplets being entrained outside the tower is fully analyzed. The accuracy of this model is checked by practical operational results from a full scale prototype in real conditions, and some exclusive factors that affect the cooling characteristics for the SCT are analyzed in detail. This study provides the theoretical foundation for practical application of the SCT in industry

  11. Comparative study on thermal performance of natural draft cooling towers with finned shells

    Energy Technology Data Exchange (ETDEWEB)

    Goodarzi, Mohsen [Bu-Ali Sina Univ., Hamedan (Iran, Islamic Republic of). Dept. of Mechanical Engineering

    2016-10-15

    The cooling efficiency of natural draft cooling towers under crosswind condition should be improved. In the present research work three different externally finned shells were considered for a typical natural draft cooling tower to investigate the cooling improvement. They were numerically simulated under normal and crosswind conditions. Numerical results show that twisting four fin plates over the tower shell along the 45 peripheral angle, could improve the cooling efficiency up to 6.5 %. Because of the periodic shape of the fin plates, the cooling efficiency of the cooling tower with finned shell is less sensitive to the change of wind.

  12. Cooling Devices in Laser therapy.

    Science.gov (United States)

    Das, Anupam; Sarda, Aarti; De, Abhishek

    2016-01-01

    Cooling devices and methods are now integrated into most laser systems, with a view to protecting the epidermis, reducing pain and erythema and improving the efficacy of laser. On the basis of method employed, it can be divided into contact cooling and non-contact cooling. With respect to timing of irradiation of laser, the nomenclatures include pre-cooling, parallel cooling and post-cooling. The choice of the cooling device is dictated by the laser device, the physician's personal choice with respect to user-friendliness, comfort of the patient, the price and maintenance costs of the device. We hereby briefly review the various techniques of cooling, employed in laser practice.

  13. Cooling of wood briquettes

    Directory of Open Access Journals (Sweden)

    Adžić Miroljub M.

    2013-01-01

    Full Text Available This paper is concerned with the experimental research of surface temperature of wood briquettes during cooling phase along the cooling line. The cooling phase is an important part of the briquette production technology. It should be performed with care, otherwise the quality of briquettes could deteriorate and possible changes of combustion characteristics of briquettes could happen. The briquette surface temperature was measured with an IR camera and a surface temperature probe at 42 sections. It was found that the temperature of briquette surface dropped from 68 to 34°C after 7 minutes spent at the cooling line. The temperature at the center of briquette, during the 6 hour storage, decreased to 38°C.

  14. Turbine airfoil film cooling

    Science.gov (United States)

    Hylton, L. D.; Nirmalan, V.; Sultanian, B. K.; Kaufman, R. M.

    1987-10-01

    The experimental data obtained in this program gives insight into the physical phenomena that occur on a film cooled airfoil, and should provide a relevant data base for verification of new design tools. Results indicate that the downstream film cooling process is a complex function of the thermal dilution and turbulence augmentation parameters with trends actually reversing as blowing strength and coolant-to-gas temperature ratio varied. The pressure surface of the airfoil is shown to exhibit a considerably higher degree of sensitivity to changes in the film cooling parameters and, consequently, should prove to be more of a challenge than the suction surface in accurately predicting heat transfer levels with downsteam film cooling.

  15. Warm and Cool Dinosaurs.

    Science.gov (United States)

    Mannlein, Sally

    2001-01-01

    Presents an art activity in which first grade students draw dinosaurs in order to learn about the concept of warm and cool colors. Explains how the activity also helped the students learn about the concept of distance when drawing. (CMK)

  16. Comparison of EHR-based diagnosis documentation locations to a gold standard for risk stratification in patients with multiple chronic conditions.

    Science.gov (United States)

    Martin, Shelby; Wagner, Jesse; Lupulescu-Mann, Nicoleta; Ramsey, Katrina; Cohen, Aaron; Graven, Peter; Weiskopf, Nicole G; Dorr, David A

    2017-08-02

    To measure variation among four different Electronic Health Record (EHR) system documentation locations versus 'gold standard' manual chart review for risk stratification in patients with multiple chronic illnesses. Adults seen in primary care with EHR evidence of at least one of 13 conditions were included. EHRs were manually reviewed to determine presence of active diagnoses, and risk scores were calculated using three different methodologies and five EHR documentation locations. Claims data were used to assess cost and utilization for the following year. Descriptive and diagnostic statistics were calculated for each EHR location. Criterion validity testing compared the gold standard verified diagnoses versus other EHR locations and risk scores in predicting future cost and utilization. Nine hundred patients had 2,179 probable diagnoses. About 70% of the diagnoses from the EHR were verified by gold standard. For a subset of patients having baseline and prediction year data (n=750), modeling showed that the gold standard was the best predictor of outcomes on average for a subset of patients that had these data. However, combining all data sources together had nearly equivalent performance for prediction as the gold standard. EHR data locations were inaccurate 30% of the time, leading to improvement in overall modeling from a gold standard from chart review for individual diagnoses. However, the impact on identification of the highest risk patients was minor, and combining data from different EHR locations was equivalent to gold standard performance. The reviewer's ability to identify a diagnosis as correct was influenced by a variety of factors, including completeness, temporality, and perceived accuracy of chart data.

  17. Laser cooling of solids

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, Richard I [Los Alamos National Laboratory; Sheik-bahae, Mansoor [UNM

    2008-01-01

    We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

  18. Cooling tower waste reduction

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, S.J.; Celeste, J.; Chine, R.; Scott, C.

    1998-05-01

    At Lawrence Livermore National Laboratory (LLNL), the two main cooling tower systems (central and northwest) were upgraded during the summer of 1997 to reduce the generation of hazardous waste. In 1996, these two tower systems generated approximately 135,400 lbs (61,400 kg) of hazardous sludge, which is more than 90 percent of the hazardous waste for the site annually. At both, wet decks (cascade reservoirs) were covered to block sunlight. Covering the cascade reservoirs reduced the amount of chemical conditioners (e.g. algaecide and biocide), required and in turn the amount of waste generated was reduced. Additionally, at the northwest cooling tower system, a sand filtration system was installed to allow cyclical filtering and backflushing, and new pumps, piping, and spray nozzles were installed to increase agitation. the appurtenance upgrade increased the efficiency of the cooling towers. The sand filtration system at the northwest cooling tower system enables operators to continuously maintain the cooling tower water quality without taking the towers out of service. Operational costs (including waste handling and disposal) and maintenance activities are compared for the cooling towers before and after upgrades. Additionally, the effectiveness of the sand filter system in conjunction with the wet deck covers (northwest cooling tower system), versus the cascade reservoir covers alone (south cooling tower south) is discussed. the overall expected return on investment is calculated to be in excess of 250 percent. this upgrade has been incorporated into the 1998 DOE complex-wide water conservation project being led by Sandia National Laboratory/Albuquerque.

  19. Evaluation of the NightCool Nocturnal Radiation Cooling Concept: Annual Performance Assessment in Scale Test Buildings Stage Gate 1B

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Danny S. [Florida Solar Energy Center, Cocoa, FL (United States); Sherwin, John R. [Florida Solar Energy Center, Cocoa, FL (United States)

    2008-03-01

    In this report, data is presented on the long-term comparative with all of NightCool system fully operational, with circulating fans when attic conditions are favorable for nocturnal cooling and with conventional air conditioning at other times. Data is included for a full year of the cooling season in Central Florida, which stretches from April to November of 2007.

  20. Wine yeast phenomics: A standardized fermentation method for assessing quantitative traits of Saccharomyces cerevisiae strains in enological conditions

    Science.gov (United States)

    Bernard, Margaux; Trujillo, Marine; Prodhomme, Duyên; Barbe, Jean-Christophe; Gibon, Yves; Marullo, Philippe

    2018-01-01

    This work describes the set up of a small scale fermentation methodology for measuring quantitative traits of hundreds of samples in an enological context. By using standardized screw cap vessels, the alcoholic fermentation kinetics of Saccharomyces cerevisiae strains were measured by following their weight loss over the time. This dispositive was coupled with robotized enzymatic assays for measuring metabolites of enological interest in natural grape juices. Despite the small volume used, kinetic parameters and fermentation end products measured are similar with those observed in larger scale vats. The vessel used also offers the possibility to assay 32 volatiles compounds using a headspace solid-phase micro-extraction coupled to gas chromatography and mass spectrometry. The vessel shaking applied strongly impacted most of the phenotypes investigated due to oxygen transfer occuring in the first hours of the alcoholic fermentation. The impact of grape must and micro-oxygenation was investigated illustrating some relevant genetic x environmental interactions. By phenotyping a wide panel of commercial wine starters in five grape juices, broad phenotypic correlations between kinetics and metabolic end products were evidentiated. Moreover, a multivariate analysis illustrates that some grape musts are more able than others to discriminate commercial strains since some are less robust to environmental changes. PMID:29351285

  1. Wine yeast phenomics: A standardized fermentation method for assessing quantitative traits of Saccharomyces cerevisiae strains in enological conditions.

    Science.gov (United States)

    Peltier, Emilien; Bernard, Margaux; Trujillo, Marine; Prodhomme, Duyên; Barbe, Jean-Christophe; Gibon, Yves; Marullo, Philippe

    2018-01-01

    This work describes the set up of a small scale fermentation methodology for measuring quantitative traits of hundreds of samples in an enological context. By using standardized screw cap vessels, the alcoholic fermentation kinetics of Saccharomyces cerevisiae strains were measured by following their weight loss over the time. This dispositive was coupled with robotized enzymatic assays for measuring metabolites of enological interest in natural grape juices. Despite the small volume used, kinetic parameters and fermentation end products measured are similar with those observed in larger scale vats. The vessel used also offers the possibility to assay 32 volatiles compounds using a headspace solid-phase micro-extraction coupled to gas chromatography and mass spectrometry. The vessel shaking applied strongly impacted most of the phenotypes investigated due to oxygen transfer occuring in the first hours of the alcoholic fermentation. The impact of grape must and micro-oxygenation was investigated illustrating some relevant genetic x environmental interactions. By phenotyping a wide panel of commercial wine starters in five grape juices, broad phenotypic correlations between kinetics and metabolic end products were evidentiated. Moreover, a multivariate analysis illustrates that some grape musts are more able than others to discriminate commercial strains since some are less robust to environmental changes.

  2. SPL RF Coupler Cooling Efficiency

    CERN Document Server

    Bonomi, R; Montesinos, E; Parma, V; Vande Craen, A

    2014-01-01

    Energy saving is an important challenge in accelerator design. In this framework, reduction of heat loads in a cryomodule is of fundamental importance due to the small thermodynamic efficiency of cooling at low temperatures. In particular, care must be taken during the design of its critical components (e.g. RF couplers, coldwarm transitions). In this framework, the main RF coupler of the Superconducting Proton Linac (SPL) cryomodule at CERN will not only be used for RF powering but also as the main mechanical support of the superconducting cavities. These two functions have to be accomplished while ensuring the lowest heat in-leak to the helium bath at 2 K. In the SPL design, the RF coupler outer conductor is composed of two walls and cooled by forced convection with helium gas at 4.5 K. Analytical, semi-analytical and numerical analyses are presented in order to defend the choice of gas cooling. Temperature profiles and thermal performance have been evaluated for different operating conditions; a sensitivit...

  3. Effectiveness of cooling production with a combined power and cooling thermodynamic cycle

    International Nuclear Information System (INIS)

    Martin, C.; Goswami, D.Y.

    2006-01-01

    The combined production of power and cooling with an ammonia-water based cycle is under investigation. Cooling is produced by expanding an ammonia-rich vapor in an expander to sub-ambient temperatures and it is shown that a compromise exists between cooling and work production. A new parameter, termed the effective COP, is used to relate the gain in cooling to the compromise in work production. When the parameter is used to optimize conditions for the rectifier, the effective COP values are good, having values of up to 5. However, when combined operation is compared to work-optimized results, the maximum effective COP values are near 1.1. This implies that per unit of cooling production, nearly equal amounts of work are compromised for combined operation

  4. Determination of Ergot Alkaloids: Purity and Stability Assessment of Standards and Optimization of Extraction Conditions for Cereal Samples

    DEFF Research Database (Denmark)

    Krska, R.; Berthiller, F.; Schuhmacher, R.

    2008-01-01

    considerably above 98% apart from ergocristinine (94%), ergosine (96%), and ergosinine (95%). Also discussed is the optimization of extraction conditions presented in a recently published method for the quantitation of ergot alkaloids in food samples using solid-phase extraction with primary secondary amine...... (PSA) before LC/MS/MS. Based on the results obtained from these optimization studies, a mixture of acetonitrile with ammonium carbonate buffer was used as extraction solvent, as recoveries for all analyzed ergot alkaloids were significantly higher than those with the other solvents. Different sample......-solvent ratios and extraction times showed just minor influences in extraction efficacy. Finally, the stability of the ergot alkaloids in both raw cereals and cereal-based processed food extracts was studied. According to these studies, extracts should be prepared and analyzed the same day or stored below...

  5. Costic's technical day: thermodynamical heating and air conditioning in accommodations (heat pumps, heating-cooling floors). Heating/cooling floors; Journee technique Costic: chauffage thermodynamique et climatisation dans l'habitat (les pompes a chaleur, les planchers chauffants-rafraichissants). Les planchers chauffants-rafraichissants

    Energy Technology Data Exchange (ETDEWEB)

    Bonnefoi, F.

    2002-07-01

    Floor heating is today a common technology in many space heating installations. It is a well-mastered and very efficient solution for the residential and tertiary buildings. However, todays users' expectation is changing towards the '4 seasons comfort' which is at the origin of the development of heating/cooling floors. This document presents the principle of heating/cooling floors, the reversible heat production systems, the materials used for the floor (insulating materials, pipes), the advantages and limitations of the system, and the regulation modes. (J.S.)

  6. Comparing Social Stories™ to Cool versus Not Cool

    Science.gov (United States)

    Leaf, Justin B.; Mitchell, Erin; Townley-Cochran, Donna; McEachin, John; Taubman, Mitchell; Leaf, Ronald

    2016-01-01

    In this study we compared the cool versus not cool procedure to Social Stories™ for teaching various social behaviors to one individual diagnosed with autism spectrum disorder. The researchers randomly assigned three social skills to the cool versus not cool procedure and three social skills to the Social Stories™ procedure. Naturalistic probes…

  7. THE FORMS OF EDUCATIONAL COOPERATION IN SCHOOL UNDER THE CONDITIONS OF IMPLEMENTATION OF THE FEDERAL STATE EDUCATIONAL STANDARDS

    Directory of Open Access Journals (Sweden)

    L. G. Puzep

    2016-01-01

    Full Text Available The aim of the publication is to show possibilities of implementation of requirements of the federal state educational standard (FSES for formati on of the universal educational activities (UEA during group work at lessons at comprehensive school.Methods. Theoretical methods involve analysis, comparison and generalizationmethods; empirical method of interview.Results. The main components of learning technology in cooperation and stages of technological process of group work are presented. The features of the formation of small groups are described due to the criteria of duration of a group work and the age of pupils. The possible options for the role structure of discussion groups and ways of distribution of social roles in groups are found out. The authors show the main steps of the process of group work process and organization techniques of group work of students at different stages of the lesson that allow purposefully organize the situation of communication and reflective activities. Scientific novelty. The essence of an educational cooperation as forms of group interaction of the teacher and pupils at a lesson is considered in the context of FSES of the last generation. The emergent problems in the course of the group activities organization at school are disclosed. The authors propose their own opinion on the implementation of the basic stages of group work, which are defined as a technological lesson plan. In addition, the components of a technological lesson plan include the universal learning activities forming during groupactivities which are important for the implementation of FSES requirements.Practical significance. The proposed techniques for organizing group work of pupils at different stages of the lesson and a technological lesson plan describing the universal learning activities allow teachers to effectively use technology of cooperation in education, aimed at the formation of pupils’ communicative learning activities.

  8. Standard test method for conducting friction tests of piston ring and cylinder liner materials under lubricated conditions

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This test method covers procedures for conducting laboratory bench-scale friction tests of materials, coatings, and surface treatments intended for use in piston rings and cylinder liners in diesel or spark-ignition engines. The goal of this procedure is to provide a means for preliminary, cost-effective screening or evaluation of candidate ring and liner materials. A reciprocating sliding arrangement is used to simulate the contact that occurs between a piston ring and its mating liner near the top-dead-center position in the cylinder where liquid lubrication is least effective, and most wear is known to occur. Special attention is paid to specimen alignment, running-in, and lubricant condition. 1.2 This test method does not purport to simulate all aspects of a fired engine’s operating environment, but is intended to serve as a means for preliminary screening for assessing the frictional characteristics of candidate piston ring and liner material combinations in the presence of fluids that behave as u...

  9. Bifacial solar cell measurements under standard test conditions and the impact on cell-to-module loss analysis

    Science.gov (United States)

    Singh, Jai Prakash; Chai, Jing; Hsian Saw, Min; Khoo, Yong Sheng

    2017-08-01

    Bifacial cells are conventionally measured using gold-plated chuck, which is conductive and reflective. This measurement setup does not portray the actual operating conditions of the bifacial cells in a module. The reflective chuck causes an overestimation of the current due to the cell transmittance for the infrared light. The conductive chuck creates a shorter current flow path in the rear side of the cell and causes an over inflation of the fill factor measurement. In this study, we characterize and quantitatively analyze the difference between the bifacial cell measurements on different mounting chucks and calculate the cell-to-module (CTM) loss. To characterize the optical behavior of the bifacial cell and module, we perform external quantum efficiency, reflectance and transmittance measurements. The electrical behavior of the bifacial cell is studied using in-house developed software Griddler. Using Griddler, we calculate the difference in the fill factor of the bifacial cell due to the measurement using a conductive and non-conductive chuck, and estimate the corresponding CTM resistive losses.

  10. Contribution to the standardization of the chromatographic conditions for the lipophilicity assessment of neutral and basic drugs

    Energy Technology Data Exchange (ETDEWEB)

    Giaginis, Costas [Department of Pharmaceutical Chemistry, School of Pharmacy, University of Athens, Panepistimiopolis, Zografou, Athens 15771 (Greece); Department of Forensic Medicine and Toxicology, Medical School, University of Athens, 75 Mikras Asias Street, Athens 11527 (Greece); Theocharis, Stamatios [Department of Forensic Medicine and Toxicology, Medical School, University of Athens, 75 Mikras Asias Street, Athens 11527 (Greece); Tsantili-Kakoulidou, Anna [Department of Pharmaceutical Chemistry, School of Pharmacy, University of Athens, Panepistimiopolis, Zografou, Athens 15771 (Greece)]. E-mail: tsantili@pharm.uoa.gr

    2006-07-28

    The chromatographic conditions aiming to a better simulation of n-octanol-water partitioning using a base deactivated silica (BDS) column as stationary phase were investigated for structurally diverse basic and neutral drugs. Extrapolated retention factors log k{sub w}, determined using different methanol fractions as organic modifier, were considered as lipophilicity indices. The effect of n-decylamine and n-octanol as mobile phase additives was examined and the appropriateness of the final retention outcome to reproduce lipophilicity data was evaluated. Moreover, the influence of n-octanol on the linearity of the log k/methanol fraction relationship and on the uniformity of the retention mechanism was investigated. 1:1 correlation between log k{sub w} values and the logarithm of the distribution coefficient (log D) was established for basic drugs in presence of both n-decylamine and n-octanol as mobile phase additives. However, for neutral drugs n-decylamine proved to be a sufficient and more important factor than n-octanol.

  11. Effectiveness of the GAEC cross compliance standard Maintenance of olive groves in good vegetative condition in avoiding the deterioration of habitats and land abandonment

    Directory of Open Access Journals (Sweden)

    Elena Santilli

    2011-08-01

    Full Text Available The last CAP reform (Council Regulation (EC n. 1782/2003, coincided with the mandatory obligations of the principles of cross compliance, under which all compensatory payments given in the context of the former reform packages were replaced by a Single Payment Scheme (SPS, bound to fulfillment of certain requirements and minimum standards regarding the environment and animal welfare, as well as maintaining the land in good agricultural and environmental conditions. For the olive sector, where potential risks are mainly associated to the abandonment of groves in marginal areas with consequent negative environmental impact, it has been specifically established the standard 4.3 of the Good Agricultural and Environmental Conditions (GAEC which concerns the Maintenance of olive groves and vines in good vegetative conditions. This GAEC standard was formulated to ensure a minimum level of land maintenance and to avoid the deterioration of habitats. To achieve these objectives it should be considered that a good vegetative development is strictly related to the care of the soil in which the plants grow. Erosion, organic matter and soil structure decay are the most commonly identified impacts for olive orchards, 30% of which are localized in areas with difficult orographic conditions. In this sense, proper hydraulic and mechanical techniques, cover cropping, green manuring and timely pruning turns, are essential to minimize losses due to soil erosion, to limit the leaching of nutrients and to maintain the plant productivity. Furthermore, grinded pruning residues should be spread in situ and weeds, watersprouts and suckers should be periodically cut off in order to increase the atmospheric CO2 sequestration and soil organic matter (OM and to prevent wildfires risk and nutrients competition. The application of the standard 4.3 requires further investigations, because, while numerous studies have shown that pruning is essential for the production, there are

  12. Natural-circulation-cooling characteristics during PWR accident simulations

    International Nuclear Information System (INIS)

    Adams, J.P.; McCreery, G.E.; Berta, V.T.

    1983-01-01

    A description of natural circulation cooling characteristics is presented. Data were obtained from several pressurized water reactor accident simulations in the Loss-of-Fluid Test (LOFT) pressurized water reactor (PWR). The reliability of natural circulation cooling, its cooling effectiveness, and the effect of changing system conditions are described. Quantitative comparison of flow rates and time constants with theory for both single- and two-phase fluid conditions were made. It is concluded that natural circulation cooling can be relied on in plant recovery procedures in the absence of forced convection whenever the steam generator heat sink is available

  13. Standard partial molar heat capacities and enthalpies of formation of aqueous aluminate under hydrothermal conditions from integral heat of solution measurements

    International Nuclear Information System (INIS)

    Coulier, Yohann; Tremaine, Peter R.

    2014-01-01

    Highlights: • Heats of solution of NaAlO 2 (s) were measured at five temperatures up to 250 °C. • Standard molar enthalpies of solution were determined from the measured heats of solution. • Standard molar enthalpies of solution were correlated with the density model. • The density model allows us to determine the standard molar heat capacities of reaction. - Abstract: Heats of solution of sodium aluminum oxide, NaAlO 2 (s), were measured in aqueous sodium hydroxide solutions using a Tian–Calvet heat-flow calorimeter (Setaram, Model C80) with high pressure “batch cells” made of hastelloy C-276, at five temperatures from (373.15 to 523.15) K, steam saturation pressure, and concentrations from (0.02 to 0.09) mol · kg −1 . Standard molar enthalpies of solution, Δ soln H ∘ , and relative standard molar enthalpies, [H ∘ (T) − H ∘ (298.15 K)], of NaAl(OH) 4 (aq) were determined from the measured heats of solution. The results were fitted with the “density” model. The temperature dependence of Δ soln H ∘ from the model yielded the standard molar heat capacities of reaction, Δ soln C p ∘ , from which standard partial molar heat capacities for aqueous aluminate, C p ∘ [A1(OH) 4 − ,aq], were calculated. Standard partial molar enthalpies of formation, Δ f H ∘ , and entropies, S ∘ , of A1(OH) 4 − (aq) were also determined. The values for C p ∘ [A1(OH) 4 − ,aq] agree with literature data determined up to T = 413 K from enthalpy of solution and heat capacity measurements to within the combined experimental uncertainties. They are consistent with differential heat capacity measurements up to T = 573 K from Schrödle et al. (2010) [29] using the same calorimeter, but this method has the advantage that measurements could be made at much lower concentrations in the presence of an excess concentration of ligand. To our knowledge, these are the first standard partial molar heat capacities measured under hydrothermal conditions by the

  14. Experimental study on the evaporative cooling of an air-cooled condenser with humidifying air

    Science.gov (United States)

    Wen, Mao-Yu; Ho, Ching-Yen; Jang, Kuang-Jang; Yeh, Cheng-Hsiung

    2014-02-01

    Using six different materials to construct a water curtain, this study aims to determine the most effective spray cooling of an air cooled heat exchanger under wet conditions. The experiments were carried out at a mass flow rate of 0.005-0.01 kg/s (spraying water), an airspeed of 0.6-2.4 m/s and a run time of 0-72 h for the material degradation tests. The experimental results indicate that the cooling efficiency, the heat rejection, and the sprinkling density increase as the amount of spraying water increases, but, the air-flow of the condenser is reduced at the same time. In addition, the cooling efficiency of the pads decreases with an increase of the inlet air velocity. In terms of experimental range, the natural wood pulp fiberscan can reach 42.7-66 % for cooling efficiency and 17.17-24.48 % for increases of heat rejection. This means that the natural wood pulp fiberscan pad most effectively enhances cooling performance, followed in terms of cooling effectiveness by the special non-woven rayon pad, the woollen blanket, biochemistry cotton and kapok, non-woven cloth of rayon cotton and kapok, and white cotton pad, respectively. However, the natural wood pulp fiberscan and special non-woven rayon display a relatively greater degradation of the cooling efficiency than the other test pads used in the material degradation tests.

  15. The effect of hand cooling during intermittent training of elite swimmers.

    Science.gov (United States)

    Zochowski, Thomas; Docherty, David

    2016-03-01

    The aim of this paper was to determine the effects of using intermittent hand cooling during high intensity, intermittent training on thermoregulatory, performance and psychophysical variables in elite level swimmers in a training pool (30.5±0.5 °C). Randomized cross-over design. Following a standard warm-up, ten male swimmers (20.3±3.2 years) were instructed to maintain the fastest 100-m time (on average) for an 8 x 100 m freestyle swimming set performed either in a training pool with cooling (TPC) or a training pool with no-cooling (TPNC). Time at 100 m, core temperature (Tc), heart rate (HR), ratings of perceived exertion (RPE), thermal comfort (ThC) and thermal sensation (ThS) were recorded following each repetition. Participants were cooled during the 90 s rest interval between repetitions using the Rapid Thermal Exchange System (RTX) (AVAcore Technologies Inc., Ann Arbor, MI, USA). There was a better performance when comparing 100 m time (1.50±1.98 s faster) for the final repetition in the TPC condition compared to the final repetition in the TPNC condition (P<0.05). There was no significant difference between Tc, HR, RPE, ThC and ThS (P<0.05). There was a performance benefit in the last set of the training block in the TPC condition that could not be attributed to any of the physiological and psychophysical measures used in the study.

  16. Laser cooling of neutral atoms

    International Nuclear Information System (INIS)

    1993-01-01

    A qualitative description of laser cooling of neutral atoms is given. Two of the most important mechanisms utilized in laser cooling, the so-called Doppler Cooling and Sisyphus Cooling, are reviewed. The minimum temperature reached by the atoms is derived using simple arguments. (Author) 7 refs

  17. REFLECTION OF THE SOCIAL STANDARDS AS A CONDITION OF A SUCCESSFUL SOCIALIZATION OF THE CHILDREN WITH A HIGH CREATIVE POTENTIAL

    Directory of Open Access Journals (Sweden)

    Antonina L. Leutina

    2015-01-01

    Full Text Available The aim of this article is to study the problem of reflection of social norms and its impact on the process of socialization of children with a high creative potential.Methods. Processes of socialization and reflection of social norms are considered in this article on the basis of the methodology of the system and mental activity analysis developed by G. P. Schedrovitsky, the founder of the Moscow Methodological Study Group. The article provides the comparative analysis of the adaptation and activity approach to socialization of children with a high creative potential according to such parameters as the object, socialization mechanisms, characteristics of social norms, social controls, personal controls, personal qualities, level of social mobility, and nature of the process of socialization.Results and scientific novelty. The author puts forward the thesis about irrational character and «off-limits» of judgements of the majority of social norms in a modern society, and shows distinction of social and personal regulators of a reflection of these norms. One of the main conclusions is the following: rationalisation and reflection of social norms are the important conditions of social dynamics and social development.It has been found that unconscious personal acceptance of social norms that is typical of the adaptation approach leads to two opposite results: 1 successful adaptation due to uncritical acceptance of social norms by the child, which leads to decrease in the diversity of ways of activity and specificity of its products, and, as a result, failure to realize the creative potential; 2 desocialization of the child in case of keeping the level of creative abilities and the possibility of its realization.The activity approach which is based on reflexive mechanisms represents absolutely different methodological opportunities for solving the problem of socialization of children with a high creative potential. The activity approach contributes

  18. Modeling of Direct Contact Wet Cooling Tower in ETRR-2

    International Nuclear Information System (INIS)

    El Khatib, H.H.; Ismail, A.L.; ElRefaie, M.E.

    2008-01-01

    The Egyptian Testing and Research Reactor no.2 (ETRR-2) was commissioned at 1997 with maximum power 22 MW for research purposes; an induced draft wet cooling tower (counter flow type) was putted in operation in 2003 instead of the first one. Investigations are achieved to evaluate cooling tower performance to guarantee that the cooling tower capable to dissipate heat generated in reactor core. Merkel and Poppe analysis was applied to simulate this cooling tower packing. Merkel analysis was applied to predict water outlet temperature from cooling tower and also to show the effect of ambient conditions on this temperature. Poppe analysis was applied to predict Merkel number which evaluate cooling tower. The Runge-Kutta numerical method was applied to solve the differential equations in this model and an engineering equation solver (EES) is the language used to model the cooling tower. This research illustrates that the cooling tower achieves good performance in various sever ambient condition at maximum operating condition of reactor power. The results show that at severe summer condition of wet bulb temperature equals 24 degree c and tower inlet temperature equals 37 degree c, the outlet water temperature equals 30.4 degree c from cooling tower, while the Merkel number is be found 1.253

  19. Emergency reactor cooling circuit

    International Nuclear Information System (INIS)

    Araki, Hidefumi; Matsumoto, Tomoyuki; Kataoka, Yoshiyuki.

    1994-01-01

    Cooling water in a gravitationally dropping water reservoir is injected into a reactor pressure vessel passing through a pipeline upon occurrence of emergency. The pipeline is inclined downwardly having one end thereof being in communication with the pressure vessel. During normal operation, the cooling water in the upper portion of the inclined pipeline is heated by convection heat transfer from the communication portion with the pressure vessel. On the other hand, cooling water present at a position lower than the communication portion forms cooling water lumps. Accordingly, temperature stratification layers are formed in the inclined pipeline. Therefore, temperature rise of water in a vertical pipeline connected to the inclined pipeline is small. With such a constitution, the amount of heat lost from the pressure vessel by way of the water injection pipeline is reduced. Further, there is no worry that cooling water to be injected upon occurrence of emergency is boiled under reduced pressure in the injection pipeline to delay the depressurization of the pressure vessel. (I.N.)

  20. Emergency core cooling system

    International Nuclear Information System (INIS)

    Arai, Kenji; Oikawa, Hirohide.

    1990-01-01

    The device according to this invention can ensure cooling water required for emerency core cooling upon emergence such as abnormally, for example, loss of coolant accident, without using dynamic equipments such as a centrifugal pump or large-scaled tank. The device comprises a pressure accumulation tank containing a high pressure nitrogen gas and cooling water inside, a condensate storage tank, a pressure suppression pool and a jet stream pump. In this device there are disposed a pipeline for guiding cooling water in the pressure accumulation tank as a jetting water to a jetting stream pump, a pipeline for guiding cooling water stored in the condensate storage tank and the pressure suppression pool as pumped water to the jetting pump and, further, a pipeline for guiding the discharged water from the jet stream pump which is a mixed stream of pumped water and jetting water into the reactor pressure vessel. In this constitution, a sufficient amount of water ranging from relatively high pressure to low pressure can be supplied into the reactor pressure vessel, without increasing the size of the pressure accumulation tank. (I.S.)

  1. Gas cooled leads

    International Nuclear Information System (INIS)

    Shutt, R.P.; Rehak, M.L.; Hornik, K.E.

    1993-01-01

    The intent of this paper is to cover as completely as possible and in sufficient detail the topics relevant to lead design. The first part identifies the problems associated with lead design, states the mathematical formulation, and shows the results of numerical and analytical solutions. The second part presents the results of a parametric study whose object is to determine the best choice for cooling method, material, and geometry. These findings axe applied in a third part to the design of high-current leads whose end temperatures are determined from the surrounding equipment. It is found that cooling method or improved heat transfer are not critical once good heat exchange is established. The range 5 5 but extends over a large of values. Mass flow needed to prevent thermal runaway varies linearly with current above a given threshold. Below that value, the mass flow is constant with current. Transient analysis shows no evidence of hysteresis. If cooling is interrupted, the mass flow needed to restore the lead to its initially cooled state grows exponentially with the time that the lead was left without cooling

  2. Film Cooled Recession of SiC/SiC Ceramic Matrix Composites: Test Development, CFD Modeling and Experimental Observations

    Science.gov (United States)

    Zhu, Dongming; Sakowski, Barbara A.; Fisher, Caleb

    2014-01-01

    SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. However, the environmental stability of Si-based ceramics in high pressure, high velocity turbine engine combustion environment is of major concern. The water vapor containing combustion gas leads to accelerated oxidation and corrosion of the SiC based ceramics due to the water vapor reactions with silica (SiO2) scales forming non-protective volatile hydroxide species, resulting in recession of the ceramic components. Although environmental barrier coatings are being developed to help protect the CMC components, there is a need to better understand the fundamental recession behavior of in more realistic cooled engine component environments.In this paper, we describe a comprehensive film cooled high pressure burner rig based testing approach, by using standardized film cooled SiCSiC disc test specimen configurations. The SiCSiC specimens were designed for implementing the burner rig testing in turbine engine relevant combustion environments, obtaining generic film cooled recession rate data under the combustion water vapor conditions, and helping developing the Computational Fluid Dynamics (CFD) film cooled models and performing model validation. Factors affecting the film cooled recession such as temperature, water vapor concentration, combustion gas velocity, and pressure are particularly investigated and modeled, and compared with impingement cooling only recession data in similar combustion flow environments. The experimental and modeling work will help predict the SiCSiC CMC recession behavior, and developing durable CMC systems in complex turbine engine operating conditions.

  3. Contrastive analysis of cooling performance between a high-level water collecting cooling tower and a typical cooling tower

    Science.gov (United States)

    Wang, Miao; Wang, Jin; Wang, Jiajin; Shi, Cheng

    2018-02-01

    A three-dimensional (3D) numerical model is established and validated for cooling performance optimization between a high-level water collecting natural draft wet cooling tower (HNDWCT) and a usual natural draft wet cooling tower (UNDWCT) under the actual operation condition at Wanzhou power plant, Chongqing, China. User defined functions (UDFs) of source terms are composed and loaded into the spray, fill and rain zones. Considering the conditions of impact on three kinds of corrugated fills (Double-oblique wave, Two-way wave and S wave) and four kinds of fill height (1.25 m, 1.5 m, 1.75 m and 2 m), numerical simulation of cooling performance are analysed. The results demonstrate that the S wave has the highest cooling efficiency in three fills for both towers, indicating that fill characteristics are crucial to cooling performance. Moreover, the cooling performance of the HNDWCT is far superior to that of the UNDWCT with fill height increases of 1.75 m and above, because the air mass flow rate in the fill zone of the HNDWCT improves more than that in the UNDWCT, as a result of the rain zone resistance declining sharply for the HNDWCT. In addition, the mass and heat transfer capacity of the HNDWCT is better in the tower centre zone than in the outer zone near the tower wall under a uniform fill layout. This behaviour is inverted for the UNDWCT, perhaps because the high-level collection devices play the role of flow guiding in the inner zone. Therefore, when non-uniform fill layout optimization is applied to the HNDWCT, the inner zone increases in height from 1.75 m to 2 m, the outer zone reduces in height from 1.75 m to 1.5 m, and the outlet water temperature declines approximately 0.4 K compared to that of the uniform layout.

  4. Monitoring Cray Cooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, Don E [ORNL; Ezell, Matthew A [ORNL; Becklehimer, Jeff [Cray, Inc.; Donovan, Matthew J [ORNL; Layton, Christopher C [ORNL

    2014-01-01

    While sites generally have systems in place to monitor the health of Cray computers themselves, often the cooling systems are ignored until a computer failure requires investigation into the source of the failure. The Liebert XDP units used to cool the Cray XE/XK models as well as the Cray proprietary cooling system used for the Cray XC30 models provide data useful for health monitoring. Unfortunately, this valuable information is often available only to custom solutions not accessible by a center-wide monitoring system or is simply ignored entirely. In this paper, methods and tools used to harvest the monitoring data available are discussed, and the implementation needed to integrate the data into a center-wide monitoring system at the Oak Ridge National Laboratory is provided.

  5. Muon ionization cooling experiment

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    A neutrino factory based on a muon storage ring is the ultimate tool for studies of neutrino oscillations, including possibly leptonic CP violation. It is also the first step towards muon colliders. The performance of this new and promising line of accelerators relies heavily on the concept of ionisation cooling of minimum ionising muons, for which much R&D is required. The concept of a muon ionisation cooling experiment has been extensively studied and first steps are now being taken towards its realisation by a joint international team of accelerator and particle physicists. The aim of the workshop is to to explore at least two versions of an experiment based on existing cooling channel designs. If such an experiment is feasible, one shall then select, on the basis of effectiveness, simplicity, availability of components and overall cost, a design for the proposed experiment, and assemble the elements necessary to the presentation of a proposal. Please see workshop website.

  6. Reactor cooling system

    International Nuclear Information System (INIS)

    Kato, Etsuji.

    1979-01-01

    Purpose: To eliminate cleaning steps in the pipelines upon reactor shut-down by connecting a filtrating and desalting device to the cooling system to thereby always clean up the water in the pipelines. Constitution: A filtrating and desalting device is connected to the pipelines in the cooling system by way of drain valves and a check valve. Desalted water is taken out from the exit of the filtrating and desalting device and injected to one end of the cooling system pipelines by way of the drain valve and the check valve and then returned by way of another drain valve to the desalting device. Water in the pipelines is thus always desalted and the cleaning step in the pipelines is no more required in the shut-down. (Kawakami, Y.)

  7. ELECTRON COOLING OF RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    BEN-ZVI, I.; LITVINENKO, V.; BARTON, D.; ET AL.

    2005-05-16

    We report progress on the R&D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon at storage energy using 54 MeV electrons. The electron source will be a superconducting RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum electron bunch frequency is 9.38 MHz, with bunch charge of 20 nC. The R&D program has the following components: The photoinjector and its photocathode, the superconducting linac cavity, start-to-end beam dynamics with magnetized electrons, electron cooling calculations including benchmarking experiments and development of a large superconducting solenoid. The photoinjector and linac cavity are being incorporated into an energy recovery linac aimed at demonstrating ampere class current at about 20 MeV.

  8. Primary length standard adjustment

    Science.gov (United States)

    Ševčík, Robert; Guttenová, Jana

    2007-04-01

    This paper deals with problems and techniques connected with primary length standard adjusting, which includes disassembling of the device and by use of the secondary laser with collimated beam and diffraction laws successively reassembling of the laser. In the reassembling process the device was enhanced with substituting the thermal grease cooling of cold finger by copper socket cooler. This improved external cooling system enables more effective cooling of molecular iodine in the cell, which allows better pressure stability of iodine vapor and easier readjustment of the system.

  9. Study of magnetized accretion flow with cooling processes

    Science.gov (United States)

    Singh, Kuldeep; Chattopadhyay, Indranil

    2018-02-01

    We have studied shock in magnetized accretion flow/funnel flow in case of neutron star with bremsstrahlung cooling and cyclotron cooling. All accretion solutions terminate with a shock close to the neutron star surface, but at some regions of the parameter space, it also harbours a second shock away from the star surface. We have found that cyclotron cooling is necessary for correct accretion solutions which match the surface boundary conditions.

  10. Python bindings for C++ using PyROOT/cppyy: the experience from PyCool in COOL

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The COOL software is used by the ATLAS and LHCb experiments to handle the time variation and versioning of their conditions data, using a variety of different relational database technologies. While the COOL core libraries are written in C++ and are integrated in the experiment C++ frameworks, a package offering Python bindings of the COOL C++ APIs, PyCool, is also provided and has been an essential component of the ATLAS conditions data management toolkit for over 10 years. Almost since the beginning, the implementation of PyCool has been based on ROOT to generate Python bindings for C++, initially using Reflex and PyROOT in ROOT5 and more recently using clang and cppyy in ROOT6. This presentation will describe the PyCool experience with using ROOT to generate Python bindings for C++, throughout the many evolutions of the underlying technology.

  11. Cooling pond fog studies

    International Nuclear Information System (INIS)

    Hicks, B.B.

    1978-01-01

    The Fog Excess Water Index (FEWI) method of fog prediction has been verified by the use of data obtained at the Dresden cooling pond during 1976 and 1977 and by a reanalysis of observations made in conjunction with a study of cooling pond simulators during 1974. For applications in which the method is applied to measurements or estimates of bulk water temperature, a critical value of about 0.7 mb appears to be most appropriate. The present analyses confirm the earlier finding that wind speed plays little part in determining the susceptibility for fog generation

  12. Superconductor rotor cooling system

    Science.gov (United States)

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed; Schwall, Robert E.; Driscoll, David I.; Shoykhet, Boris A.

    2002-01-01

    A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.

  13. Stochastic cooling for beginners

    International Nuclear Information System (INIS)

    Moehl, D.

    1984-01-01

    These two lectures have been prepared to give a simple introduction to the principles. In Part I we try to explain stochastic cooling using the time-domain picture which starts from the pulse response of the system. In Part II the discussion is repeated, looking more closely at the frequency-domain response. An attempt is made to familiarize the beginners with some of the elementary cooling equations, from the 'single particle case' up to equations which describe the evolution of the particle distribution. (orig.)

  14. Biofouling control of industrial seawater cooling towers

    KAUST Repository

    Albloushi, Mohammed

    2017-11-01

    The use of seawater in cooling towers for industrial applications has much merit in the Gulf Cooperation Council countries due to the scarcity and availability of fresh water. Seawater make-up in cooling towers is deemed the most feasible because of its unlimited supply in coastal areas. Such latent-heat removal with seawater in cooling towers is several folds more efficient than sensible heat extraction via heat exchangers. Operational challenges such as scaling, corrosion, and biofouling are a major challenge in conventional cooling towers, where the latter is also a major issue in seawater cooling towers. Biofouling can significantly hamper the efficiency of cooling towers. The most popular methods used in cooling treatment to control biofouling are disinfection by chlorination. However, the disadvantages of chlorination are formation of harmful disinfection byproducts in the presence of high organic loading and safety concerns in the storage of chlorine gas. In this study, the research focuses on biofouling control in seawater cooling towers by investigating two different approaches. The first strategy addresses the use of alternative oxidants (i.e. ozone micro-bubbles and chlorine dioxide) in treatment of cooling towers. The second strategy investigates removing nutrients in seawater using granular activated carbon filter column and ultrafiltration to prevent the growth of microorganisms. Laboratory bench-scale tests in terms of temperature, cycle of concentration, dosage, etc. indicated that, at lower oxidant dosages (total residual oxidant (TRO) equivalent = 0.1 mg/l Cl2), chlorine dioxide had a better disinfection effect than chlorine and ozone. The performance of oxidizing biocides at pilot scale, operating at assorted conditions, showed that for the disinfectants tested, ozone could remove 95 % bioactivity of total number of bacteria and algae followed by chlorine dioxide at 85%, while conventional chlorine dosing only gave 60% reduction in bioactivities

  15. Investigation of lactose crystallization process during condensed milk cooling using native vacuum-crystallizer

    Directory of Open Access Journals (Sweden)

    E. I. Dobriyan

    2016-01-01

    Full Text Available One of the most general defects of condensed milk with sugar is its consistency heterogeneity – “candying”. The mentioned defect is conditioned by the presence of lactose big crystals in the product. Lactose crystals size up to 10 µm is not organoleptically felt. The bigger crystals impart heterogeneity to the consistency which can be evaluated as “floury”, “sandy”, “crunch on tooth”. Big crystals form crystalline deposit on the can or industrial package bottom in the form of thick layer. Industrial processing of the product with the defective process of crystallization results in the expensive equipment damage of the equipment at the confectionary plant accompanied with heavy losses. One of the factors influencing significantly lactose crystallization is the product cooling rate. Vacuum cooling is the necessary condition for provision of the product consistency homogeneity. For this purpose the vacuum crystallizers of “Vigand” company, Germany, are used. But their production in the last years has been stopped. All-Russian dairy research institute has developed “The references for development of the native vacuum crystallizer” according to which the industrial model has been manufactured. The produced vacuum – crystallizer test on the line for condensed milk with sugar production showed that the product cooling on the native vacuum-crystallizer guarantees production of the finished product with microstructure meeting the requirements of State standard 53436–2009 “Canned Milk. Milk and condensed cream with sugar”. The carried out investigations evidences that the average lactose crystals size in the condensed milk with sugar cooled at the native crystallizer makes up 6,78 µm. The granulometric composition of the product crystalline phase cooled at the newly developed vacuum-crystallizer is completely identical to granulometric composition of the product cooled at “Vigand” vacuum-crystallizer.

  16. Electron Cooling Dynamics for RHIC

    International Nuclear Information System (INIS)

    Fedotov, A.V.; Ben-Zvi, I.; Eidelman, Yu.; Litvinenko, V.N.; Malitsky, N.; Bruhwiler, D.; Meshkov, I.; Sidorin, A.; Smirnov, A.; Trubnikov, G.

    2005-01-01

    Research towards high-energy electron cooling of RHIC is presently underway at Brookhaven National Laboratory. In this new regime, electron cooling has many unique features and challenges. At high energy, due to the difficulty of providing operational reserves, the expected cooling times must be estimated with a high degree of accuracy compared to extant low-energy coolers. To address these high-energy cooling issues, a detailed study of cooling dynamics based on computer codes and experimental benchmarking was launched at BNL. In this paper, we present an update of the high-energy cooling dynamics studies. We also include a discussion of some features of electron cooling relevant to colliders, such as the effects of rapid cooling of the beam core and an accurate treatment of the intra-beam scattering for such cooled ion distributions

  17. Structure of natural draft cooling towers, 1

    International Nuclear Information System (INIS)

    Ishioka, Hitoshi; Sakamoto, Yukichi; Tsurusaki, Mamoru; Koshizawa, Koichi; Chiba, Toshio

    1976-01-01

    Thousands of natural draft cooling towers have been utilized, in Europe and America, as cooling systems of power plants or as countermeasures against thermal polution. Recently in Japan, demands for cooling tower systems have been increasing remarkably with the construction of large power plants and the legislation of environmental regulations. In view of the severe natural conditions in Japan such as strong wind and seismic loadings, etc., the establishment of the optimum design and construction method is essential for the building of safe and economical towers. In order to establish a comprehensive plan of a power plant cooling system of the appropriate structural type, the authors have made researches and experiments on design conditions, static and dynamic analyses, and comparative studies of various structural types such as reinforced concrete thin-shell structures, steel framed structures and composite shell segment structures, based on the investigation results of towers in Europe and America. These results are presented in three reports, the 1st of which concerns cooling tower shells as are hereinafter described. (auth.)

  18. SOLAR ABSORBING COOLING SYSTEMS BASED ON MULTISTAGE HEAT-MASS-TRANSFER DEVICES

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2014-08-01

    Full Text Available The article presents the worked out schematics for the alternative refrigeration systems and of air-conditioning systems, based on the use of absorbing cycle and of the sunny energy for the regeneration (renewals of absorbent solution. We use here the cascade principle of construction of all heat-mass-transfer apparatus with variation of both the temperature level and the growth of absorbent concentration on the cascade stages. The heat-mass-transfer equipment as a part of the drying and cooling units is standardized and is executed by means of multistage monoblock compositions from poly-meric materials. The preliminary analysis of possibilities of the sunny systems in application to the tasks of cooling of environment and air-conditioning systems is carried out.

  19. Elementary stochastic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Tollestrup, A.V.; Dugan, G

    1983-12-01

    Major headings in this review include: proton sources; antiproton production; antiproton sources and Liouville, the role of the Debuncher; transverse stochastic cooling, time domain; the accumulator; frequency domain; pickups and kickers; Fokker-Planck equation; calculation of constants in the Fokker-Planck equation; and beam feedback. (GHT)

  20. Radiant Floor Cooling Systems

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.

    2008-01-01

    In many countries, hydronic radiant floor systems are widely used for heating all types of buildings such as residential, churches, gymnasiums, hospitals, hangars, storage buildings, industrial buildings, and smaller offices. However, few systems are used for cooling.This article describes a floor...

  1. Measure Guideline: Ventilation Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Springer, D. [Alliance for Residential Building Innovation (ARBI), David, CA (United States); Dakin, B. [Alliance for Residential Building Innovation (ARBI), David, CA (United States); German, A. [Alliance for Residential Building Innovation (ARBI), David, CA (United States)

    2012-04-01

    The purpose of this measure guideline is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  2. Electron Cooling of RHIC

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Barton, D.S.; Beavis, D.B.; Blaskiewicz, M.; Brennan, J.M.; Burrill, A.; Calaga, R.; Cameron, P.; Chang, X.Y.; Connolly, R.; Eidelman, Yu.I.; Fedotov, A.V.; Fischer, W.; Gassner, D.M.; Hahn, H.; Harrison, M.; Hershcovitch, A.; Hseuh, H.-C.; Jain, A.K.; Johnson, P.D.J.; Kayran, D.; Kewisch, J.; Lambiase, R.F.; Litvinenko, V.; MacKay, W.W.; Mahler, G.J.; Malitsky, N.; McIntyre, G.T.; Meng, W.; Mirabella, K.A.M.; Montag, C.; Nehring, T.C.N.; Nicoletti, T.; Oerter, B.; Parzen, G.; Pate, D.; Rank, J.; Rao, T.; Roser, T.; Russo, T.; Scaduto, J.; Smith, K.; Trbojevic, D.; Wang, G.; Wei, J.; Williams, N.W.W.; Wu, K.-C.; Yakimenko, V.; Zaltsman, A.; Zhao, Y.; Abell, D.T.; Bruhwiler, D.L.; Bluem, H.; Burger, A.; Cole, M.D.; Favale, A.J.; Holmes, D.; Rathke, J.; Schultheiss, T.; Todd, A.M.M.; Burov, A.V.; Nagaitsev, S.; Delayen, J.R.; Derbenev, Y.S.; Funk, L. W.; Kneisel, P.; Merminga, L.; Phillips, H.L.; Preble, J.P.; Koop, I.; Parkhomchuk, V.V.; Shatunov, Y.M.; Skrinsky, A.N.; Koop, I.; Parkhomchuk, V.V.; Shatunov, Y.M.; Skrinsky, A.N.; Sekutowicz, J.S.

    2005-01-01

    We report progress on the R and D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon at storage energy using 54 MeV electrons. The electron source will be a superconducting RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum electron bunch frequency is 9.38 MHz, with bunch charge of 20 nC. The R and D program has the following components: The photoinjector and its photocathode, the superconducting linac cavity, start-to-end beam dynamics with magnetized electrons, electron cooling calculations including benchmarking experiments and development of a large superconducting solenoid. The photoinjector and linac cavity are being incorporated into an energy recovery linac aimed at demonstrating ampere class current at about 20 MeV. A Zeroth Order Design Report is in an advanced draft state, and can be found on the web at http://www.agsrhichome.bnl.gov/eCool/

  3. Electron Cooling of RHIC

    Energy Technology Data Exchange (ETDEWEB)

    I. Ben-Zvi; D.S. Barton; D.B. Beavis; M. Blaskiewicz; J.M. Brennan; A. Burrill; R. Calaga; P. Cameron; X.Y. Chang; R. Connolly; Yu.I. Eidelman; A.V. Fedotov; W. Fischer; D.M. Gassner; H. Hahn; M. Harrison; A. Hershcovitch; H.-C. Hseuh; A.K. Jain; P.D.J. Johnson; D. Kayran; J. Kewisch; R.F. Lambiase; V. Litvinenko; W.W. MacKay; G.J. Mahler; N. Malitsky; G.T. McIntyre; W. Meng; K.A.M. Mirabella; C. Montag; T.C.N. Nehring; T. Nicoletti; B. Oerter; G. Parzen; D. Pate; J. Rank; T. Rao; T. Roser; T. Russo; J. Scaduto; K. Smith; D. Trbojevic; G. Wang; J. Wei; N.W.W. Williams; K.-C. Wu; V. Yakimenko; A. Zaltsman; Y. Zhao; D.T. Abell; D.L. Bruhwiler; H. Bluem; A. Burger; M.D. Cole; A.J. Favale; D. Holmes; J. Rathke; T. Schultheiss; A.M.M. Todd; A.V. Burov; S. Nagaitsev; J.R. Delayen; Y.S. Derbenev; L. W. Funk; P. Kneisel; L. Merminga; H.L. Phillips; J.P. Preble; I. Koop; V.V. Parkhomchuk; Y.M. Shatunov; A.N. Skrinsky; I. Koop; V.V. Parkhomchuk; Y.M. Shatunov; A.N. Skrinsky; J.S. Sekutowicz

    2005-05-16

    We report progress on the R&D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon at storage energy using 54 MeV electrons. The electron source will be a superconducting RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum electron bunch frequency is 9.38 MHz, with bunch charge of 20 nC. The R&D program has the following components: The photoinjector and its photocathode, the superconducting linac cavity, start-to-end beam dynamics with magnetized electrons, electron cooling calculations including benchmarking experiments and development of a large superconducting solenoid. The photoinjector and linac cavity are being incorporated into an energy recovery linac aimed at demonstrating ampere class current at about 20 MeV. A Zeroth Order Design Report is in an advanced draft state, and can be found on the web at http://www.agsrhichome.bnl.gov/eCool/.

  4. UHS, Ultimate Heat Sink Cooling Pond Analysis

    International Nuclear Information System (INIS)

    Codell, R.; Nuttle, W.K.

    1998-01-01

    1 - Description of program or function: Three programs model performance of an ultimate heat sink cooling pond. National Weather Service data is read and analyzed to predict periods of lowest cooling performance and highest evaporative loss. The data is compared to local site data for significant differences. Then the maximum pond temperature is predicted. Five programs model performance of an ultimate heat sink spray pond. The cooling performance, evaporative water loss, and drift water loss as a function of wind speed are estimated for a spray field. These estimates are used in conjunction with National Weather Service data to predict periods of lowest cooling performance and highest evaporative loss. This data is compared to local site data for significant differences. Then the maximum pond temperature is predicted. 2 - Method of solution: The transfer of heat and water vapor is modeled using an equilibrium temperature procedure for an UHS cooling pond. The UHS spray pond model considers heat, mass, and momentum transfer from a single water drop with the surrounding air, and modification of the surrounding air resulting from the heat, mass, and momentum transfer from many drops in different parts of a spray field. 3 - Restrictions on the complexity of the problem: The program SPRCO uses RANF, a uniform random number generator which is an intrinsic function on the CDC. All programs except COMET use the NAMELIST statement, which is non standard. Otherwise these programs conform to the ANSI Fortran 77 standard. The meteorological data scanning procedure requires tens of years of recorded data to be effective. The models and methods, provided as useful tool for UHS analyses of cooling ponds and spray ponds, are intended as guidelines only. Use of these methods does not automatically assure NRC approval, nor are they required procedures for nuclear-power-plant licensing

  5. Electron Cooling Study for MEIC

    International Nuclear Information System (INIS)

    Electron cooling of the ion beams is one critical R&D to achieve high luminosities in JLab's MEIC proposal. In the present MEIC design, a multi-staged cooling scheme is adapted, which includes DC electron cooling in the booster ring and bunched beam electron cooling in the collider ring at both the injection energy and the collision energy. We explored the feasibility of using both magnetized and non-magnetized electron beam for cooling, and concluded that a magnetized electron beam is necessary. Electron cooling simulation results for the newly updated MEIC design is also presented.

  6. Temperature profiles of different cooling methods in porcine pancreas procurement.

    Science.gov (United States)

    Weegman, Bradley P; Suszynski, Thomas M; Scott, William E; Ferrer Fábrega, Joana; Avgoustiniatos, Efstathios S; Anazawa, Takayuki; O'Brien, Timothy D; Rizzari, Michael D; Karatzas, Theodore; Jie, Tun; Sutherland, David E R; Hering, Bernhard J; Papas, Klearchos K

    2014-01-01

    Porcine islet xenotransplantation is a promising alternative to human islet allotransplantation. Porcine pancreas cooling needs to be optimized to reduce the warm ischemia time (WIT) following donation after cardiac death, which is associated with poorer islet isolation outcomes. This study examines the effect of four different cooling Methods on core porcine pancreas temperature (n = 24) and histopathology (n = 16). All Methods involved surface cooling with crushed ice and chilled irrigation. Method A, which is the standard for porcine pancreas procurement, used only surface cooling. Method B involved an intravascular flush with cold solution through the pancreas arterial system. Method C involved an intraductal infusion with cold solution through the major pancreatic duct, and Method D combined all three cooling Methods. Surface cooling alone (Method A) gradually decreased core pancreas temperature to procurement, but incorporating an intraductal infusion (Method C) rapidly reduced core temperature 15-20 °C within the first 2 min of cooling. Combining all methods (Method D) was the most effective at rapidly reducing temperature and providing sustained cooling throughout the duration of procurement, although the recorded WIT was not different between Methods (P = 0.36). Histological scores were different between the cooling Methods (P = 0.02) and the worst with Method A. There were differences in histological scores between Methods A and C (P = 0.02) and Methods A and D (P = 0.02), but not between Methods C and D (P = 0.95), which may highlight the importance of early cooling using an intraductal infusion. In conclusion, surface cooling alone cannot rapidly cool large (porcine or human) pancreata. Additional cooling with an intravascular flush and intraductal infusion results in improved core porcine pancreas temperature profiles during procurement and histopathology scores. These data may also have implications on human pancreas procurement as use of an

  7. Solar heating cooling. Preparation of possible participation in IEA, Solar Heating Cooling Task 25

    International Nuclear Information System (INIS)

    2001-03-01

    For the Danish solar heating industries it is interesting to discuss the domestic market possibilities and the export possibilities for solar heating cooling systems. The Danish solar heating sector also wants to participate in the international collaboration within IEA Solar Heating and Cooling Task 25 'Solar Assisted Air Conditioning of Buildings'. The Danish Energy Agency therefore has granted means for this project to discuss: The price of cooling for 3 different solar cooling methods (absorption cooling, desiccant cooling and ejector cooling); Market possibilities in Denmark and abroad; The advantages by Danish participation in IEA Task 25. The task has been solved through literature studies to establish status for the 3 technologies. It turned out that ejector cooling by low temperatures (85 deg. C from the solar collector) exists as pilot plants in relation to district heating, but is still not commercial accessible. Desiccant cooling, where the supplied heat has temperatures down to 55 deg. C is a well-developed technology. However only a handful of pilot plants with solar heating exists, and thus optimization relating to operation strategy and economy is on the experimental stage. Absorption cooling plants driven by solar heating are found in a large number in Japan and are also demonstrated in several other countries. The combination of absorption heating pump and solar heating is considered to be commercial accessible. Solar heating is interesting as heat source of to the extent that it can replace other sources of heat without the economy being depreciated. This can be the case in South Europe if: 1) oil or natural gas is used for heating; 2) a solar heating system already exists, e.g. for domestic water supply, and is installed so that the marginal costs by solar heating supply of the ventilation plant is reduced. All in all the above conditions mean that the market for solar heating for cooling is very limited in Europe, where almost everybody are

  8. Evaluation of two cooling systems under a firefighter coverall

    NARCIS (Netherlands)

    Teunissen, L.P.J.; Wang, L.C.; Chou, S.N.; Huang, C.; Jou, G.T.; Daanen, H.A.M.

    2014-01-01

    Firemen often suffer from heat strain. This study investigated two chest cooling systems for use under a firefighting suit. In nine male subjects, a vest with water soaked cooling pads and a vest with water perfused tubes were compared to a control condition. Subjects performed 30 min walking and 10

  9. Cooling performance evaluation of the concrete cask

    International Nuclear Information System (INIS)

    Maruoka, Kunio; Matsunaga, Kenichi; Abe, Ganji; Irino, Mitsuhiro; Arikawa, Hiroshi; Tamaki, Mitsuo

    2002-01-01

    The concrete cask storage system stores spent fuel by first sealing it within canisters and then containing such canisters inside a concrete cask. This report describes the results of a full-size model test performed to examine the heat dissipation characteristics of the concrete cask and to ascertain its ability to deal with elevated temperature. The specification to which a full-size concrete cask model was fabricated assumed an interim storage of 17x17UO 2 fuel that was burned in PWR, estimating the heating value of spent fuel containing canister to be approximately 20 kW apiece. The test, which actually covered canister heating values ranging from 10 kW to 30 kW per unit to allow for temperature variations likely to be experienced in actual operation, verified that the concrete cask member did not exceed temperature limits. Test condition anticipated highest air temperature inside the spent fuel storage facility to be 30degC and, with reference to existing standard, set temperature limits of 65degC or less for the main body of concrete and 90degC or less for the local part as criteria. Preliminary 3-D thermo hydrodynamic analysis done prior to the test indicated that the temperature of the local part of the concrete cask member would be below 90degC. It also confirmed that steel material used as the structural member of the canisters or concrete cask would remain around 200degC even in an area where it was highest, validating that the integrity of such material would pose no problem from the analytical point of view. Heat dissipation performance test conducted in steady state verified that the concrete cask was able to have a sufficient cooling capacity against per-canister heating values in the 10 kW to 30 kW range which had been chosen in anticipation of temperature variation thought to be encountered in actual service. Also, to examine the consequence of the concrete cask having lost its cooling ability, another heat dissipation test was carried out under

  10. Kaiseraugst nuclear power station: meteorological effects of the cooling towers

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Considerations of water conservation persuaded the German Government in 1971 not to allow the use of the Aar and Rhine for direct cooling of nuclear power stations. The criticism is often made that the Kaiseraugst cooling towers were built without full consideration of the resulting meteorological effects. The criticism is considered unjustified because the Federal Cooling Tower Commission considered all the relevant aspects before making its recommendations in 1972. Test results and other considerations show that the effect of the kaiseraugst cooling towers on meteorological and climatic conditions is indeed minimal and details are given. (P.G.R.)

  11. Thermoelectric air-cooling module for electronic devices

    International Nuclear Information System (INIS)

    Chang, Yu-Wei; Chang, Chih-Chung; Ke, Ming-Tsun; Chen, Sih-Li

    2009-01-01

    This article investigates the thermoelectric air-cooling module for electronic devices. The effects of heat load of heater and input current to thermoelectric cooler are experimentally determined. A theoretical model of thermal analogy network is developed to predict the thermal performance of the thermoelectric air-cooling module. The result shows that the prediction by the model agrees with the experimental data. At a specific heat load, the thermoelectric air-cooling module reaches the best cooling performance at an optimum input current. In this study, the optimum input currents are from 6 A to 7 A at the heat loads from 20 W to 100 W. The result also demonstrates that the thermoelectric air-cooling module performs better performance at a lower heat load. The lowest total temperature difference-heat load ratio is experimentally estimated as -0.54 W K -1 at the low heat load of 20 W, while it is 0.664 W K -1 at the high heat load of 100 W. In some conditions, the thermoelectric air-cooling module performs worse than the air-cooling heat sink only. This article shows the effective operating range in which the cooling performance of the thermoelectric air-cooling module excels that of the air-cooling heat sink only.

  12. Sorption cooling: a valid extension to passive cooling

    NARCIS (Netherlands)

    Doornink, D.J.; Burger, Johannes Faas; ter Brake, Hermanus J.M.

    2008-01-01

    Passive cooling has shown to be a very dependable cryogenic cooling method for space missions. Several missions employ passive radiators to cool down their delicate sensor systems for many years, without consuming power, without exporting vibrations or producing electromagnetic interference. So for

  13. MULTIFUNCTIONAL SOLAR SYSTEMS FOR HEATING AND COOLING

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2010-12-01

    Full Text Available The basic circuits of multifunctional solar systems of air drainage, heating (hot water supply and heating, cooling and air conditioning are developed on the basis of open absorption cycle with a direct absorbent regeneration. Basic decisions for new generation of gas-liquid solar collectors are developed. Heat-mass-transfer apparatus included in evaporative cooling system, are based on film interaction of flows of gas and liquid and in them, for the creation of nozzle, multi-channel structures from polymeric materials and porous ceramics are used. Preliminary analysis of multifunctional systems possibilities is implemented.

  14. Analysis of a solid desiccant cooling system with indirect evaporative cooling

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo

    The demand for air conditioning has been consistently increasing worldwide in recent years, concomitantly to the introduction of ambitious energy and environmental targets. As a result, high efficiency air conditioners running on low polluting energy sources need to be developed. This thesis...... selection software. Different compositions of the secondary air stream are considered, including partial recirculation of the cooled primary air stream, i.e. dew point cooling, and use of air from a separate ambient. The desiccant cooling system combines the two components, including a compact air-to-air...... heat exchanger for enhancing cooling capacity and thermal performance. The system perfor-mance is investigated considering regeneration temperatures between 50 ºC and 90 ºC, which enable low temperature heat sources, such as solar energy or waste heat, to be used. The effects of several geometrical...

  15. Advances in rapid cooling treatment for heat stroke

    Directory of Open Access Journals (Sweden)

    Jia-jia ZHAO

    2014-10-01

    Full Text Available Heat stroke is a life-threatening disease characterized clinically by central nervous system dysfunction and severe hyperthermia (core temperature rises to higher than 40℃. The unchecked rise of body core temperature overwhelms intrinsic or extrinsic heat generation mechanism, thus overwhelms homoeostatic thermoregulation. Hyperthermia causes cellular and organ dysfunction with progressive exacerbation resulting in multi-organ failure and death. Rapid cooling to reduce core temperature as quickly as possible is the primary and most effective treatment, as it has been shown that the major determinant of outcome in heatstroke is the degree and duration of hyperthermia. If suppression of body temperature is delayed, the fatality rate will be elevated. Several cooling methods are available, including physical cooling by conduction, convection and evaporation with ice/cold water immersion, internal cooling by invasive methods such as hemofiltration, intravascular cooling, cold water gastric and rectal lavage, and cooling with drugs. It is crucial to formulate a scientific and reasonable strategy for the subsequent treatment in accordance with the patient's physical condition, the condition of cooling equipment, and the manipulator's proficiency in cooling methods and equipment usage. This article reviews the domestic and international advances in study of rapid and efficient cooling measures for heat stroke. DOI: 10.11855/j.issn.0577-7402.2014.10.17

  16. Cooling devices in laser therapy

    Directory of Open Access Journals (Sweden)

    Anupam Das

    2016-01-01

    Full Text Available Cooling devices and methods are now integrated into most laser systems, with a view to protecting the epidermis, reducing pain and erythema and improving the efficacy of laser. On the basis of method employed, it can be divided into contact cooling and non-contact cooling. With respect to timing of irradiation of laser, the nomenclatures include pre-cooling, parallel cooling and post-cooling. The choice of the cooling device is dictated by the laser device, the physician′s personal choice with respect to user-friendliness, comfort of the patient, the price and maintenance costs of the device. We hereby briefly review the various techniques of cooling, employed in laser practice.

  17. Cooling apparatus and couplings therefor

    Science.gov (United States)

    Lomax, Curtis; Webbon, Bruce

    1993-11-01

    A cooling apparatus includes a container filled with a quantity of coolant fluid initially cooled to a solid phase, a cooling loop disposed between a heat load and the container. A pump for circulating a quantity of the same type of coolant fluid in a liquid phase through the cooling loop, a pair of couplings for communicating the liquid phase coolant fluid into the container in a direct interface with the solid phase coolant fluid.

  18. He-cooled divertor development for DEMO

    International Nuclear Information System (INIS)

    Norajitra, P.; Giniyatulin, R.; Ihli, T.; Janeschitz, G.; Krauss, W.; Kruessmann, R.; Kuznetsov, V.; Mazul, I.; Widak, V.; Ovchinnikov, I.; Ruprecht, R.; Zeep, B.

    2007-01-01

    Goal of the He-cooled divertor development for future fusion power plants is to resist a high heat flux of at least 10 MW/m 2 . The development includes the fields of design, analyses, and experiments. A helium-cooled modular jet concept (HEMJ) has been defined as reference solution, which is based on jet impingement cooling. In cooperation with the Efremov Institute, work was aimed at construction and high heat flux tests of prototypical tungsten mockups to demonstrate their manufacturability and their performances. A helium loop was built for this purpose to simulate the realistic thermo-hydraulics conditions close to those of DEMO (10 MPa He, 600 deg. C). The first high heat flux test results confirm the feasibility and the performance of the divertor design

  19. Cooled particle accelerator target

    Science.gov (United States)

    Degtiarenko, Pavel V.

    2005-06-14

    A novel particle beam target comprising: a rotating target disc mounted on a retainer and thermally coupled to a first array of spaced-apart parallel plate fins that extend radially inwardly from the retainer and mesh without physical contact with a second array of spaced-apart parallel plate fins that extend radially outwardly from and are thermally coupled to a cooling mechanism capable of removing heat from said second array of spaced-apart fins and located within the first array of spaced-apart parallel fins. Radiant thermal exchange between the two arrays of parallel plate fins provides removal of heat from the rotating disc. A method of cooling the rotating target is also described.

  20. ITER cooling systems

    International Nuclear Information System (INIS)

    Natalizio, A.; Hollies, R.E.; Sochaski, R.O.; Stubley, P.H.

    1992-06-01

    The ITER reference system uses low-temperature water for heat removal and high-temperature helium for bake-out. As these systems share common equipment, bake-out cannot be performed until the cooling system is drained and dried, and the reactor cannot be started until the helium has been purged from the cooling system. This study examines the feasibility of using a single high-temperature fluid to perform both heat removal and bake-out. The high temperature required for bake-out would also be in the range for power production. The study examines cost, operational benefits, and impact on reactor safety of two options: a high-pressure water system, and a low-pressure organic system. It was concluded that the cost savings and operational benefits are significant; there are no significant adverse safety impacts from operating either the water system or the organic system; and the capital costs of both systems are comparable

  1. Global Cooling: Policies to Cool the World and Offset Global Warming from CO2 Using Reflective Roofs and Pavements

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hashem; Levinson, Ronnen; Rosenfeld, Arthur; Elliot, Matthew

    2009-08-28

    Increasing the solar reflectance of the urban surface reduce its solar heat gain, lowers its temperatures, and decreases its outflow of thermal infrared radiation into the atmosphere. This process of 'negative radiative forcing' can help counter the effects of global warming. In addition, cool roofs reduce cooling-energy use in air conditioned buildings and increase comfort in unconditioned buildings; and cool roofs and cool pavements mitigate summer urban heat islands, improving outdoor air quality and comfort. Installing cool roofs and cool pavements in cities worldwide is a compelling win-win-win activity that can be undertaken immediately, outside of international negotiations to cap CO{sub 2} emissions. We propose an international campaign to use solar reflective materials when roofs and pavements are built or resurfaced in temperate and tropical regions.

  2. Cooling and dehumidifying coils

    International Nuclear Information System (INIS)

    Murthy, M.V.K.

    1988-01-01

    The operating features of cooling and dehumidifying coils and their constructional details are discussed. The heat transfer relations as applicable to the boiling refrigerant and a single phase fluid are presented. Methods of accounting for the effect of moisture condensation on the air side heat transfer coefficient and the fin effectiveness are explained. The logic flow necessary to analyze direct expansion coils and chilled water coils is discussed

  3. Laser Cooling of Solids

    Science.gov (United States)

    2009-01-01

    Panel (b) com- pares the cooling efficiencies of available thermoelectric coolers ( TECs ) with ZBLANP:Yb3+-based optical refrigerators. Devices based...on materials with low parasitic heating will outperform TECs below 200 . Coolers made from current materials are less efficient than TECs at all...luminescence extraction efficiency are being explored as well. A novel method based on the frustrated total internal reflection across a vacuum “ nano -gap” is

  4. Determination and Standardization of Analytical Conditions for Dissolved Boron in Coastal Waters of East Sea in Korea by ICP-OES

    Science.gov (United States)

    Yoon, H.; Shin, M.; Yoon, C.; Lee, J.

    2005-12-01

    The analysis of metals in seawaters has been an important subject for many years. Achieving low-level detection limits as well as overcoming high matrix effect are requested in seawater analysis especially elements of interest are present in various chemical forms. Among them, boron is one of the widely distributed elements in nature and its concentrations of about 10 ppm in the Earth's crust and about 4.5 ppm in the seawater as borates. In seawater boron concentration exhibit a linear relationship to the amount of chloride ion present. Boron had been considered as one of the valuable elements to recover from seawaters for commercial use. Currently, we launched research team for the production of valuable metals from seawaters in Korea that can be used commercially. Several metals including boron were already under serious studies. In this study we aim to prepare standardized operational procedures in analysis of boron during pilot study for boron recovery as pilot recovery process. Inductively coupled plasma Optical Emission Spectrometry (ICP-OES) method is preferred for the analysis of the low levels of boron found in environmental samples such as seawater. In order to develop test method for the determination of dissolved Boron from East Sea Seawater in Korea, all soluble boron present in seawater has been tested and accuracy of measurement was checked from the sampling step. The result of analysis of boron in seawaters presents many difficult problems, ionization of from the alkali and alkaline earth metals. And the problems also exist in handling nebulizer and injector tubes in high saline solutions. The scope of this study was to determine boron which can contain up to 35psu dissolved salt. The work also included comparing various analytical methods for better accurate results in several solution conditions. Dilution, standard addition, matrix matching calibration methods was thoroughly tested differently and detailed operating conditions for using auxiliary

  5. Conduction cooling: multicrate fastbus hardware

    International Nuclear Information System (INIS)

    Makowiecki, D.; Sims, W.; Larsen, R.

    1980-11-01

    Described is a new and novel approach for cooling nuclear instrumentation modules via heat conduction. The simplicity of liquid cooled crates and ease of thermal management with conduction cooled modules are described. While this system was developed primarily for the higher power levels expected with Fastbus electronics, it has many general applications

  6. Muon Cooling - Emittance Exchange

    International Nuclear Information System (INIS)

    Parsa, Z.

    2001-01-01

    Muon Cooling is the key factor in building of a Muon collider, (to a less degree) Muon storage ring, and a Neutrino Factory. Muon colliders potential to provide a probe for fundamental particle physics is very interesting, but may take a considerable time to realize, as much more work and study is needed. Utilizing high intensity Muon sources - Neutrino Factories, and other intermediate steps are very important and will greatly expand our abilities and confidence in the credibility of high energy muon colliders. To obtain the needed collider luminosity, the phase-space volume must be greatly reduced within the muon life time. The Ionization cooling is the preferred method used to compress the phase space and reduce the emittance to obtain high luminosity muon beams. We note that, the ionization losses results not only in damping, but also heating. The use of alternating solenoid lattices has been proposed, where the emittance are large. We present an overview of the cooling and discuss formalism, solenoid magnets and some beam dynamics

  7. Reactor container cooling device

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Koji; Kinoshita, Shoichiro

    1995-11-10

    The device of the present invention efficiently lowers pressure and temperature in a reactor container upon occurrence of a severe accident in a BWR-type reactor and can cool the inside of the container for a long period of time. That is, (1) pipelines on the side of an exhaustion tower of a filter portion in a filter bent device of the reactor container are in communication with pipelines on the side of a steam inlet of a static container cooling device by way of horizontal pipelines, (2) a back flow check valve is disposed to horizontal pipelines, (3) a steam discharge valve for a pressure vessel is disposed closer to the reactor container than the joint portion between the pipelines on the side of the steam inlet and the horizontal pipelines. Upon occurrence of a severe accident, when the pressure vessel should be ruptured and steams containing aerosol in the reactor core should be filled in the reactor container, the inlet valve of the static container cooling device is closed. Steams are flown into the filter bent device of the reactor container, where the aerosols can be removed. (I.S.).

  8. Electron Cooling of RHIC

    CERN Document Server

    Ben-Zvi, Ilan; Barton, Donald; Beavis, Dana; Blaskiewicz, Michael; Bluem, Hans; Brennan, Joseph M; Bruhwiler, David L; Burger, Al; Burov, Alexey; Burrill, Andrew; Calaga, Rama; Cameron, Peter; Chang, Xiangyun; Cole, Michael; Connolly, Roger; Delayen, Jean R; Derbenev, Yaroslav S; Eidelman, Yury I; Favale, Anthony; Fedotov, Alexei V; Fischer, Wolfram; Funk, L W; Gassner, David M; Hahn, Harald; Harrison, Michael; Hershcovitch, Ady; Holmes, Douglas; Hseuh Hsiao Chaun; Johnson, Peter; Kayran, Dmitry; Kewisch, Jorg; Kneisel, Peter; Koop, Ivan; Lambiase, Robert; Litvinenko, Vladimir N; MacKay, William W; Mahler, George; Malitsky, Nikolay; McIntyre, Gary; Meng, Wuzheng; Merminga, Lia; Meshkov, Igor; Mirabella, Kerry; Montag, Christoph; Nagaitsev, Sergei; Nehring, Thomas; Nicoletti, Tony; Oerter, Brian; Parkhomchuk, Vasily; Parzen, George; Pate, David; Phillips, Larry; Preble, Joseph P; Rank, Jim; Rao, Triveni; Rathke, John; Roser, Thomas; Russo, Thomas; Scaduto, Joseph; Schultheiss, Tom; Sekutowicz, Jacek; Shatunov, Yuri; Sidorin, Anatoly O; Skrinsky, Aleksander Nikolayevich; Smirnov, Alexander V; Smith, Kevin T; Todd, Alan M M; Trbojevic, Dejan; Troubnikov, Grigory; Wang, Gang; Wei, Jie; Williams, Neville; Wu, Kuo-Chen; Yakimenko, Vitaly; Zaltsman, Alex; Zhao, Yongxiang; ain, Animesh K

    2005-01-01

    We report progress on the R&D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon at storage energy using 54 MeV electrons. The electron source will be a superconducting RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum electron bunch frequency is 9.38 MHz, with bunch charge of 20 nC. The R&D program has the following components: The photoinjector and its photocathode, the superconducting linac cavity, start-to-end beam dynamics with magnetized electrons, electron cooling calculations including benchmarking experiments and development of a large superconducting solenoid. The photoinjector and linac cavity are being incorporated into an energy recovery linac aimed at demonstrating ampere class current at about 20 MeV. A Zeroth Order Design Report is in an advanced draft state, and can be found on the web at http://www.ags...

  9. Floor cooling. Extreme cooling efficiency due to vapour barrier? Optimized floor heating and cooling system; Flaechenkuehlung. Extreme Kuehlleistung dank Dampfsperre. Optimiertes Fussbodenheiz- und Kuehlsystem

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Rolf [Wieland-Werke AG, Ulm (Germany). Technisches Marketing Haustechnik

    2010-07-01

    The active cooling of offices generally is accepted ever more. Among other things this is due to the fact that the climatic change results in a hotter summer on a long-term basis also in Germany. Also the use of computers, printing and copying machines increases the thermal load of the rooms considerably. The architecturally affected facade design with large glass areas also has an impact. The thermal comfort maintains the efficiency in offices. Thus, the efficient space cooling has become standard.

  10. Mandate a Man to Fish?: Technological Advance in Cooling Systems at U.S. Thermal Electric Plants

    OpenAIRE

    Victor M. Peredo-Alvarez; Allen S. Bellas; Ian Lange

    2015-01-01

    Steam-based electrical generating plants use large quantities of water for cooling. The potential environmental impacts of water cooling systems have resulted in their inclusion in the Clean Water Act's (CWA) Sections 316(a), related to thermal discharges and 316(b), related to cooling water intake. The CWA mandates a technological standard for water cooling systems. This analysis examines how the performance-adjusted rates of thermal emissions and water withdrawals for cooling units have cha...

  11. Cooling lubricants; Kuehlschmierstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Pfeiffer, W. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Breuer, D. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Blome, H. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Deininger, C. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Hahn, J.U. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Kleine, H. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Nies, E. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Pflaumbaum, W. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Stockmann, R. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Willert, G. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Sonnenschein, G. [Maschinenbau- und Metall-Berufsgenossenschaft, Duesseldorf (Germany)

    1996-08-01

    As a rule, the base substances used are certain liquid hydrocarbons from mineral oils as well as from native and synthetic oils. Through the addition of further substances the cooling lubricant takes on the particular qualities required for the use in question. Employees working with cooling lubricants are exposed to various hazards. The assessment of the concentrations at the work station is carried out on the basis of existing technical rules for contact with hazardous substances. However, the application/implementation of compulsory investigation and supervision in accordance with these rules is made difficult by the fact that cooling lubricants are, as a rule, made up of complicated compound mixtures. In addition to protecting employees from exposure to mists and vapours from the cooling lubricants, protection for the skin is also of particular importance. Cooling lubricants should not, if at all possible, be brought into contact with the skin. Cleansing the skin and skin care is just as important as changing working clothes regularly, and hygiene and cleanliness at the workplace. Unavoidable emissions are to be immediately collected at the point where they arise or are released and safely disposed of. This means taking into account all sources of emissions. The programme presented in this report therefore gives a very detailed account of the individual protective measures and provides recommendations for the design of technical protection facilities. (orig./MG) [Deutsch] Als Basisstoffe dienen in der Regel bestimmte fluessige Kohlenwasserstoffverbindungen aus Mineraloelen sowie aus nativen oder synthetischen Oelen. Durch die Zugabe von weiteren Stoffen erlangt der Kuehlschmierstoff seine fuer den jeweiligen Anwendungsabfall geforderten Eigenschaften. Beschaeftigte, die mit Kuehlschmierstoffen umgehen, sind unterschiedliche Gefahren ausgesetzt. Die Beurteilung der Kuehlschmierstoffkonzentrationen in der Luft am Arbeitsplatz erfolgt auf der Grundlage bestehender

  12. Testing and further development of a solar absorption cooling plant

    Science.gov (United States)

    Amannsberger, K.; Heckel, H.; Kreutmair, J.; Weber, K. H.

    1984-12-01

    Ammonia water absorption cooling units using the process heat of line-focusing solar collectors were developed and tested. Reduction of the evaporation temperature to minus 10 C; development of an air-cooled rectifying device for the refrigerant vapor; dry cooling of absorber and condenser by natural draft; refrigerating capacities of 14 to 10 kW which correspond to air temperatures of 25 to 40 C and 24 kW power consumption to heat the machine; auxiliary power requirement 450 W; full compatibility with changing heat input and air temperature, adaptation by automatic stabilization effects; and power optimization under changing boundary conditions by a simple regulating procedure independent of auxiliary power are achieved. The dynamic behavior of the directly linked collector-refrigeration machine system was determined. Operating conditions, market, and economic viability of solar cooling in third-world countries are described. Ice production procedures using absorption cooling units are demonstrated.

  13. Design Of Cooling Configuration For Military Aeroengine V-Gutter

    Directory of Open Access Journals (Sweden)

    Batchu Suresh

    2017-07-01

    Full Text Available Military aircraft engines employ afterburner system for increasing the thrust required during combat and take-off flight conditions. V-gutter is employed for stabilisation of the flame during reheat. For fifth generation aero engine the gas temperature at the start of the afterburner is be-yond the allowable material limits of the V-gutter so it is required to cool the V-gutter to obtain acceptable creep life. The design of cooling configuration for the given source pressure is worked out for different rib configurations to obtain the allowable metal temperature with minimum coolant mass flow.1D network analysis is used to estimate the cooling mass flow and metal temperature for design flight condition. CFD analysis is carried out for four cooling configurations with different rib orientations. Out of four configurations one configuration is selected for the best cooling configuration.

  14. Solar-powered cooling system

    Science.gov (United States)

    Farmer, Joseph C.

    2015-07-28

    A solar-powered adsorption-desorption refrigeration and air conditioning system that uses nanostructural materials such as aerogels, zeolites, and sol gels as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material while the material is at a relatively low temperature, perhaps at night. During daylight hours, when the nanostructural materials is heated by the sun, the refrigerant are thermally desorbed from the surface of the aerogel, thereby creating a pressurized gas phase in the vessel that contains the aerogel. This solar-driven pressurization forces the heated gaseous refrigerant through a condenser, followed by an expansion valve. In the condenser, heat is removed from the refrigerant, first by circulating air or water. Eventually, the cooled gaseous refrigerant expands isenthalpically through a throttle valve into an evaporator, in a fashion similar to that in more conventional vapor recompression systems.

  15. Laser cooling by adiabatic transfer

    Science.gov (United States)

    Norcia, Matthew; Cline, Julia; Bartolotta, John; Holland, Murray; Thompson, James

    2017-04-01

    We have demonstrated a new method of laser cooling applicable to particles with narrow linewidth optical transitions. This simple and robust cooling mechanism uses a frequency-swept laser to adiabatically transfer atoms between internal and motional states. The role of spontaneous emission is reduced (though is still critical) compared to Doppler cooling. This allows us to achieve greater slowing forces than would be possible with Doppler cooling, and may make this an appealing technique for cooling molecules. In this talk, I will present a demonstration of this technique in a cold strontium system. DARPA QUASAR, NIST, NSF PFC.

  16. Electron cooling experiments at Fermilab

    International Nuclear Information System (INIS)

    Forster, R.; Hardek, T.; Johnson, D.E.; Kells, W.; Kerner, V.; Lai, H.; Lennox, A.J.; Mills, F.; Miyahara, Y.; Oleksiuk, L.; Peters, R.; Rhoades, T.; Young, D.; McIntyre, P.M.

    1981-01-01

    A 115 Mev proton beam has been successfully cooled in the Electron Cooling Ring at Fermilab. Initial experiments have measured the longitudinal drag force, transverse damping rate, and equilibrium beam size. The proton beam was cooled by a factor of aproximately 50 in momentum spread in 5 sec, and by a factor of 3 in transverse size in 15 sec. Long term losses were consistent with single scattering from residual gas, with lifetime approximately 1000 sec. Using the measured electron beam temperature T/sub e/.0.8(2) ev, the observed cooling agrees well with expectations from cooling theory. 13 refs

  17. Parametric study on the advantages of weather-predicted control algorithm of free cooling ventilation system

    International Nuclear Information System (INIS)

    Medved, Sašo; Babnik, Miha; Vidrih, Boris; Arkar, Ciril

    2014-01-01

    Predicted climate changes and the increased intensity of urban heat islands, as well as population aging, will increase the energy demand for the cooling of buildings in the future. However, the energy demand for cooling can be efficiently reduced by low-exergy free-cooling systems, which use natural processes, like evaporative cooling or the environmental cold of ambient air during night-time ventilation for the cooling of buildings. Unlike mechanical cooling systems, the energy for the operation of free-cooling system is needed only for the transport of the cold from the environment into the building. Because the natural cold potential is time dependent, the efficiency of free-cooling systems could be improved by introducing a weather forecast into the algorithm for the controlling. In the article, a numerical algorithm for the optimization of the operation of free-cooling systems with night-time ventilation is presented and validated on a test cell with different thermal storage capacities and during different ambient conditions. As a case study, the advantage of weather-predicted controlling is presented for a summer week for typical office room. The results show the necessity of the weather-predicted controlling of free-cooling ventilation systems for achieving the highest overall energy efficiency of such systems in comparison to mechanical cooling, better indoor comfort conditions and a decrease in the primary energy needed for cooling of the buildings. - Highlights: • Energy demand for cooling will increase due to climate changes and urban heat island • Free cooling could significantly reduce energy demand for cooling of the buildings. • Free cooling is more effective if weather prediction is included in operation control. • Weather predicted free cooling operation algorithm was validated on test cell. • Advantages of free-cooling on mechanical cooling is shown with different indicators

  18. Hybrid Cooling Systems for Low-Temperature Geothermal Power Production

    Energy Technology Data Exchange (ETDEWEB)

    Ashwood, A.; Bharathan, D.

    2011-03-01

    This paper describes the identification and evaluation of methods by which the net power output of an air-cooled geothermal power plant can be enhanced during hot ambient conditions with a minimal amount of water use.

  19. Overview of Resources for Geothermal Absorption Cooling for Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaobing [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gluesenkamp, Kyle R [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mehdizadeh Momen, Ayyoub [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-06-01

    This report summarizes the results of a literature review in three areas: available low-temperature/coproduced geothermal resources in the United States, energy use for space conditioning in commercial buildings, and state of the art of geothermal absorption cooling.

  20. Residential Pre-Cooling: Mechanical Cooling and Air-Side Economizers:

    OpenAIRE

    Turner, William J.N; Walker, Iain S.; Roux, Jordan

    2012-01-01

    This study used an advanced airflow, energy and humidity modeling tool to evaluate residential air-side economizers and mechanical pre-cooling strategies using the air conditioner, in all US DOE Climate Zones for a typical new home with ASHRAE Standard 62.2 compliant ventilation. A residential air-side economizer is a large supply fan used for night ventilation. Mechanical pre-cooling used the building air conditioner operating at lower than usual set before the peak demand period. The simula...

  1. Strong algorithmic cooling in large star-topology quantum registers

    Science.gov (United States)

    Pande, Varad R.; Bhole, Gaurav; Khurana, Deepak; Mahesh, T. S.

    2017-07-01

    Cooling the qubit into a pure initial state is crucial for realizing fault-tolerant quantum information processing. Here we envisage a star-topology arrangement of reset and computation qubits for this purpose. The reset qubits cool or purify the computation qubit by transferring its entropy to a heat bath with the help of a heat-bath algorithmic cooling procedure. By combining standard NMR methods with powerful quantum control techniques, we cool central qubits of two large star-topology systems, with 13 and 37 spins, respectively. We obtain polarization enhancements by a factor of over 24, and an associated reduction in the spin temperature from 298 K down to 12 K. Exploiting the enhanced polarization of computation qubit, we prepare combination coherences of orders up to 15. By benchmarking the decay of these coherences we investigate the underlying noise process. Further, we also cool a pair of computation qubits and subsequently prepare them in an effective pure state.

  2. Demonstration of energy savings of cool roofs

    Energy Technology Data Exchange (ETDEWEB)

    Konopacki, S.; Gartland, L.; Akbari, H. [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technologies Div.; Rainer, L. [Davis Energy Group, Davis, CA (United States)

    1998-06-01

    Dark roofs raise the summertime air-conditioning demand of buildings. For highly-absorptive roofs, the difference between the surface and ambient air temperatures can be as high as 90 F, while for highly-reflective roofs with similar insulative properties, the difference is only about 20 F. For this reason, cool roofs are effective in reducing cooling energy use. Several experiments on individual residential buildings in California and Florida show that coating roofs white reduces summertime average daily air-conditioning electricity use from 2--63%. This demonstration project was carried out to address some of the practical issues regarding the implementation of reflective roofs in a few commercial buildings. The authors monitored air-conditioning electricity use, roof surface temperature, plenum, indoor, and outdoor air temperatures, and other environmental variables in three buildings in California: two medical office buildings in Gilroy and Davis and a retail store in San Jose. Coating the roofs of these buildings with a reflective coating increased the roof albedo from an average of 0.20--0.60. The roof surface temperature on hot sunny summer afternoons fell from 175 F--120 F after the coating was applied. Summertime average daily air-conditioning electricity use was reduced by 18% (6.3 kWh/1000ft{sup 2}) in the Davis building, 13% (3.6 kWh/1000ft{sup 2}) in the Gilroy building, and 2% (0.4 kWh/1000ft{sup 2}) in the San Jose store. In each building, a kiosk was installed to display information from the project in order to educate and inform the general public about the environmental and energy-saving benefits of cool roofs. They were designed to explain cool-roof coating theory and to display real-time measurements of weather conditions, roof surface temperature, and air-conditioning electricity use. 55 figs., 15 tabs.

  3. Towards Laser Cooling of Semiconductors

    Science.gov (United States)

    Hassani nia, Iman

    This dissertation reports on novel theoretical concepts as well as experimental efforts toward laser cooling of semiconductors. The use of quantum well system brings the opportunity to engineer bandstructure, effective masses and the spatial distribution of electrons and holes. This permits the incorporation of novel quantum mechanical phenomena to manipulate the temperature change of the material upon light-matter interaction. Inspired by the fact that Coulomb interaction can lead to blueshift of radiation after photo-absorption, the theory of Coulomb assisted laser cooling is proposed and investigated for the first time. In order to design suitable multiple quantum well (MQW) structures with Coulomb interaction a Poisson-Schrodinger solver was devised using MATLAB software. The software is capable of simulating all III-V material compositions and it results have been confirmed experimentally. In the next step, different MQW designs were proposed and optimized to exploit Coulomb interaction for assisting of optical refrigeration. One of the suitable designs with standard InGaAsP/InAlAs/InP layers was used to grow the MQW structures using metal organic vapor deposition (MOCVD). Novel techniques of fabrication were implemented to make suspended structures for detecting ultralow thermal powers. By fabricating accurate thermometers, the temperature changes of the device upon laser absorption were measured. The accurate measurement of the temperature encouraged us to characterize the electrical response of the device as another important tool to promote our understanding of the 4 underlying physical phenomena. This is in addition to the accurate spectral and time-resolved photoluminescence measurements that provided us with a wealth of information about the effects of stress, Auger recombination and excitonic radiance in such structures. As the future works, important measurements for finding the quantum efficiency of the devices via electrical characterization and

  4. Cooling water systems design using process integration

    CSIR Research Space (South Africa)

    Gololo, KV

    2010-09-01

    Full Text Available Cooling water systems are generally designed with a set of heat exchangers arranged in parallel. This arrangement results in higher cooling water flowrate and low cooling water return temperature thus reducing cooling tower efficiency. Previous...

  5. Thermohydraulic relationships for advanced water cooled reactors

    International Nuclear Information System (INIS)

    2001-04-01

    This report was prepared in the context of the IAEA's Co-ordinated Research Project (CRP) on Thermohydraulic Relationships for Advanced Water Cooled Reactors, which was started in 1995 with the overall goal of promoting information exchange and co-operation in establishing a consistent set of thermohydraulic relationships which are appropriate for use in analyzing the performance and safety of advanced water cooled reactors. For advanced water cooled reactors, some key thermohydraulic phenomena are critical heat flux (CHF) and post CHF heat transfer, pressure drop under low flow and low pressure conditions, flow and heat transport by natural circulation, condensation of steam in the presence of non-condensables, thermal stratification and mixing in large pools, gravity driven reflooding, and potential flow instabilities. The objectives of the CRP are (1) to systematically list the requirements for thermohydraulic relationships in support of advanced water cooled reactors during normal and accident conditions, and provide details of their database where possible and (2) to recommend and document a consistent set of thermohydraulic relationships for selected thermohydraulic phenomena such as CHF and post-CHF heat transfer, pressure drop, and passive cooling for advanced water cooled reactors. Chapter 1 provides a brief discussion of the background for this CRP, the CRP objectives and lists the participating institutes. Chapter 2 provides a summary of important and relevant thermohydraulic phenomena for advanced water cooled reactors on the basis of previous work by the international community. Chapter 3 provides details of the database for critical heat flux, and recommends a prediction method which has been established through international co-operation and assessed within this CRP. Chapter 4 provides details of the database for film boiling heat transfer, and presents three methods for predicting film boiling heat transfer coefficients developed by institutes

  6. Experiments on novel solar heating and cooling system

    International Nuclear Information System (INIS)

    Wang Yiping; Cui Yong; Zhu Li; Han Lijun

    2008-01-01

    Solar heating and nocturnal radiant cooling techniques are united to produce a novel solar heating and cooling system. The radiant panel with both heating and cooling functions can be used as structural materials for the building envelope, which realizes true building integrated utilization of solar energy. Based on the natural circulation principle, the operation status can be changed automatically between the heating cycle and the cooling cycle. System performances under different climate conditions using different covers on the radiant panel are studied. The results show that the novel solar heating and cooling system has good performance of heating and cooling. For the no cover system, the daily average heat collecting efficiency is 52% with the maximum efficiency of 73%, while at night, the cooling capacity is about 47 W/m 2 on a sunny day. On a cloudy day, the daily average heat collecting efficiency is 47% with the maximum of 84%, while the cooling capacity is about 33 W/m 2 . As a polycarbonate (PC) panel or polyethylene film are used as covers, the maximum heat collecting efficiencies are 75% and 72% and the daily average heat collecting efficiencies are 61% and 58%, while the cooling capacities are 50 W/m 2 and 36 W/m 2 , respectively

  7. Performance enhancement of PV cells through micro-channel cooling

    Directory of Open Access Journals (Sweden)

    Muzaffar Ali

    2015-11-01

    Full Text Available Efficiency of a PV cell is strongly dependent on its surface temperature. The current study is focused to achieve maximum efficiency of PV cells even in scorching temperatures in hot climates like Pakistan where the cell surface temperatures can even rise up to around 80 ℃. The study includes both the CFD and real time experimental investigations of a solar panel using micro channel cooling. Initially, CFD analysis is performed by developing a 3D model of a Mono-Crystalline cell with micro-channels to analyze cell surface temperature distribution at different irradiance and water flow rates. Afterwards, an experimental setup is developed for performance investigations under the real conditions of an open climate of a Pakistan's city, Taxila. Two 35W panels are manufactured for the experiments; one is based on the standard manufacturing procedure while other cell is developed with 4mm thick aluminum sheet having micro-channels of cross-section of 1mm by 1mm. The whole setup also includes different sensors for the measurement of solar irradiance, cell power, surface temperature and water flow rates. The experimental results show that PV cell surface temperature drop of around 15 ℃ is achieved with power increment of around 14% at maximum applied water flow rate of 3 LPM. Additionally, a good agreement is also found between CFD and experimental results. Therefore, that study clearly shows that a significant performance improvement of PV cells can be achieved through the proposed cell cooling technique.

  8. The cooling conditions effects on the fraction and morphology of the epsilon primary phase in an ACuZinc5TM commercial alloy; Efecto de las condiciones de enfriamiento sobre la fraccion y morfologia de la fase primaria epsilon en una aleacion comercial ACuZinc5TM

    Energy Technology Data Exchange (ETDEWEB)

    Jareno, E. D.; Maldonado, S. I.; Hernandez, F. A.

    2012-07-01

    The mechanical properties of ACuZinc5TM alloys are influenced by the fraction solid of the primary epsilon (e) phase and their interrelations with the eta ({eta}) phase. In this study the primary epsilon phase fraction results from cooling conditions similar to that applied in different casting processes have been measured. Additionally an analysis was made from the morphology's changes and from the thermal analysis results to suggest the probably adequate moment to apply stirring in semisolid metal processing. From these results it is possible to design experimental thermal cycles to obtain an adequate distribution of e and . phases in the end castings microstructure. (Author) 21 refs.

  9. Gas cooled HTR

    International Nuclear Information System (INIS)

    Schweiger, F.

    1985-01-01

    In the He-cooled, graphite-moderated HTR with spherical fuel elements, the steam generator is fixed outside the pressure vessel. The heat exchangers are above the reactor level. The hot gases stream from the reactor bottom over the heat exchanger, through an annular space around the heat exchanger and through feed lines in the side reflector of the reactor back to its top part. This way, in case of shutdown there is a supplementary natural draught that helps the inner natural circulation (chimney draught effect). (orig./PW)

  10. Cooled, temperature controlled electrometer

    Science.gov (United States)

    Morgan, John P.

    1992-08-04

    A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.

  11. Illumination and radiative cooling

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Shanhui; Raman, Aaswath Pattabhi; Zhu, Linxiao; Rephaeli, Eden

    2018-03-20

    Aspects of the present disclosure are directed to providing and/or controlling electromagnetic radiation. As may be implemented in accordance with one or more embodiments, an apparatus includes a first structure that contains an object, and a second structure that is transparent at solar wavelengths and emissive in the atmospheric electromagnetic radiation transparency window. The second structure operates with the first structure to pass light into the first structure for illuminating the object, and to radiatively cool the object while preserving the object's color.

  12. Sustainable solutions for cooling systems in residential buildings: case study in the Western Cape Province, South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Foudzai, F.; M' Rithaa, M. [Cape Peninsula University of Technology, Cape Town (South Africa). Dept. of Industrial Design

    2010-07-01

    The energy demand in building sectors for summer air-conditioning is growing exponentially due to thermal loads, increased living standards and occupant comfort demands throughout the last decades. This increasing consumption of primary energy is contributing significantly to emission of greenhouse gases and therefore to global warming. Moreover, fossil fuels, current main sources of energy used for electricity generation, are being depleted at an alarming rate despite continued warning. In addition, most air-conditioning equipment still utilise CFCs, promoting further destruction of our planet's protective ozone layer. Concerns over these environmental changes, have begun shifting the emphasis from current cooling methods, to 'sustainable strategies' of achieving equally comfortable conditions in building interiors. Study of ancient strategies applied by vernacular architecture shows how the indigenously clean energies to satisfy the cooling need were used. One of the most important influences on vernacular architecture is the macro-climate of the area in which the building is constructed. Mediterranean vernacular architecture, as well as that of much of the Middle East, often includes a courtyard with a fountain or pond; air cooled by water mist and evaporation is drawn through the building by the natural ventilation set up by the building form, and in many cases also includes wind-catchers to draw air through the internal spaces. Similarly, Northern African vernacular designs often have very high thermal mass and small windows to keep the occupants cool. Not only vernacular structure but also the recent development in solar and geothermal cooling technologies could be used to the needs for environmental control. Intelligent coupling of these methods as alternative design strategies could help developing countries such as South Africa toward sustainable development in airconditioning of building. In this paper, the possible strategies for

  13. Onderzoeksrapportage duurzaam koelen : EOS Renewable Cooling

    NARCIS (Netherlands)

    Broeze, J.; Sluis, van der S.; Wissink, E.

    2010-01-01

    For reducing energy use for cooling, alternative methods (that do not rely on electricity) are needed. Renewable cooling is based on naturally available resources such as evaporative cooling, free cooling, phase change materials, ground subcooling, solar cooling, wind cooling, night radiation &

  14. Engineered intermediate storage of solidified high level wastes. A comparison of an air cooled and a water cooled concept

    International Nuclear Information System (INIS)

    Ahner, S.; Dekais, J.J.

    1980-01-01

    In the course of the CEC-Program sheet N 0 6, Nukem jointly with Belgonucleaire performed a comparative study on an air cooled and a water cooled intermediate storage of vitrified, highly radioactive waste (HLW) in overground installations. For this purpose, common design basis were determined. In the concept of the air cooled storage facility (Nukem design) the decay heat from the storage canisters will be removed, using natural convection. In the water cooled concept (Belgonucleaire concept) the decay heat is carried off by a primary and secondary forced cooling system with redundant and diverse devices. The safety analysis carried out by Nukem used a fault tree method. It shows that the reliability of the designed water cooling system is very high and comparable to the inherent safe air cooled system. The impact for both concepts on the environment, is determined by the release route, but even during accident conditions the release is far below permissible limits. The economic analysis carried out by Belgonucleaire shows, that the construction costs for both systems do not differ very much, but the operation and maintenance costs for the water cooled facility are 4 to 8 higher than for the air cooled facility

  15. 7 CFR 58.637 - Cooling the mix.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Cooling the mix. 58.637 Section 58.637 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS AND STANDARDS UNDER THE...

  16. Cooled spool piston compressor

    Science.gov (United States)

    Morris, Brian G. (Inventor)

    1993-01-01

    A hydraulically powered gas compressor receives low pressure gas and outputs a high pressure gas. The housing of the compressor defines a cylinder with a center chamber having a cross-sectional area less than the cross-sectional area of a left end chamber and a right end chamber, and a spool-type piston assembly is movable within the cylinder and includes a left end closure, a right end closure, and a center body that are in sealing engagement with the respective cylinder walls as the piston reciprocates. First and second annual compression chambers are provided between the piston enclosures and center housing portion of the compressor, thereby minimizing the spacing between the core gas and a cooled surface of the compressor. Restricted flow passageways are provided in the piston closure members and a path is provided in the central body of the piston assembly, such that hydraulic fluid flows through the piston assembly to cool the piston assembly during its operation. The compressor of the present invention may be easily adapted for a particular application, and is capable of generating high gas pressures while maintaining both the compressed gas and the compressor components within acceptable temperature limits.

  17. Water cooled nuclear reactors

    International Nuclear Information System (INIS)

    Donaldson, A.J.

    1989-01-01

    In order to reduce any loss of primary water coolant from around a reactor core of a water cooled nuclear reactor caused by any failure of a pressure vessel, an inner vessel is positioned within and spaced from the pressure vessel. The reactor core and main portion of the primary water coolant circuit and a heat exchanger are positioned within the inner vessel to maintain some primary water coolant around the reactor core and to allow residual decay heat to be removed from the reactor core by the heat exchanger. In the embodiment shown an aperture at the upper region of the inner vessel is dimensioned configured and arranged to prevent steam from a steam space of an integral pressurised water cooled nuclear reactor for a ship entering the main portion of the primary water coolant circuit in the inner vessel if the longitudinal axis of the nuclear reactor is displaced from its normal substantially vertical position to an abnormal position at an angle to the vertical direction. Shields are integral with the inner vessel. (author)

  18. Emergency core cooling system

    International Nuclear Information System (INIS)

    Kato, Masaru.

    1981-01-01

    Purpose: To enable quick cooling of a core by efficiently utilizing coolant supplied in an emergency. Constitution: A feedwater nozzle and a water level detector are disposed in the gap between a partition plate for supporting the top of a fuel assembly and a lattice plate for supporting the bottom of the fuel assembly. At the time of a loss of coolant accident, coolant is injected from a sprinkling nozzle toward the reactor core, and is also injected from a feedwater nozzle. When the coolant reaches a prescribed level in the reactor core, the water level is detected by the detector, the coolant is fed by a pump to the lower plenum, and the submerging speed of the reactor core is thereby accelerated. When the water level again becomes lower than the prescribed level, the coolant is again filled from the feedwater nozzle, and similar operation is thereafter repeated. Accordingly, the coolant filled in the reactor core can be efficiently utilized to cool the reactor core. (Kamimura, M.)

  19. Efficient Water Management in Water Cooled Reactors

    International Nuclear Information System (INIS)

    2012-01-01

    number of the countries that have recently begun to consider the introduction of nuclear power are in water scarce regions, which would certainly limit the possibility for deployment of nuclear power plants, in turn hindering these countries' development and energy security. Thus, there is a large incentive to enhance efforts to introduce innovative water use, water management practices and related technologies. Water management for nuclear power plants is gaining interest in IAEA Member States as an issue of vital importance for the deployment of nuclear power. Recent experience has shown that some nuclear power plants are susceptible to prolonged drought conditions, forcing reactors to be shut down or power to be reduced to a minimal level. In some cases, environmental issues have resulted in regulations that limit the possibility for water withdrawal as well as water discharge. Regarding the most common design for cooling nuclear power plants, this has led to a complicated siting procedure for new plants and expensive retrofits for existing ones. The IAEA has already provided its Member States with reports and documents that address the issue. At the height of nuclear power expansion in the 1970s, the need for guidance in the area resulted in publications such as Thermal Discharges at Nuclear Power Stations - Their Management and Environmental Impact (Technical Reports Series No. 155) and Environmental Effects of Cooling Systems (Technical Reports Series No. 202). Today, amid the so-called nuclear renaissance, it is of vital importance to offer guidance to the Member States on the issues and possibilities that nuclear power water management brings. Management of water at nuclear power plants is an important subject during all phases of the construction, operation and maintenance of any nuclear power plant. Water management addresses the issue of securing water for condenser cooling during operation, for construction (during the flushing phase), and for inventory

  20. Thermo-fluid simulation of a rotating disc with radial cooling passages / Francois Holtzhausen

    OpenAIRE

    Holtzhausen, Francois

    2003-01-01

    Turbine blade cooling via internal cooling channels is a very important aspect in modern-day gas turbine cycles. The need for blade cooling stems from the fact that higher cycle efficiencies requires higher maximum temperatures and therefore also higher turbine inlet temperatures. In order to evaluate the effects of these cooling flows on the cycle as a whole under various load conditions, it is necessary to simulate the compressible flow with heat transfer within the channe...