WorldWideScience

Sample records for standard cooling coil

  1. Cooling and dehumidifying coils

    International Nuclear Information System (INIS)

    Murthy, M.V.K.

    1988-01-01

    The operating features of cooling and dehumidifying coils and their constructional details are discussed. The heat transfer relations as applicable to the boiling refrigerant and a single phase fluid are presented. Methods of accounting for the effect of moisture condensation on the air side heat transfer coefficient and the fin effectiveness are explained. The logic flow necessary to analyze direct expansion coils and chilled water coils is discussed

  2. Measurement of a Conduction Cooled Nb3Sn Racetrack Coil

    Science.gov (United States)

    Kim, HS; Kovacs, C.; Rochester, J.; Sumption, MD; Tomsic, M.; Peng, X.; Doll, D.

    2017-12-01

    Use of superconducting coils for wind turbines and electric aircraft is of interest because of the potential for high power density and weight reduction. Here we test a racetrack coil developed as a proof-of-concept for cryogen-free superconducting motors and generators. The coil was wound with 1209 m of 0.7-mm-diameter insulated tube-type Nb3Sn wire. The coil was epoxy-impregnated, instrumented, covered with numerous layers of aluminized mylar insulation, and inserted vertically into a dewar. The system was cooled to 4.2 K, and a few inches of liquid helium was allowed to collect at the bottom of the dewar but below the coil. The coil was cooled by conduction via copper cooling bars were attached to the coil but also were immersed in the liquid helium at their lower ends. Several current tests were performed on the coil, initially in voltage mode, and one run in current mode. The maximum coil Ic at 4.2 K was 480 A, generating 3.06 T at the surface of the coil. The coil met the design targets with a noticeable margin.

  3. Bioaerosol deposition on an air-conditioning cooling coil

    Science.gov (United States)

    Wu, Yan; Chen, Ailu; Luhung, Irvan; Gall, Elliott T.; Cao, Qingliang; Chang, Victor Wei-Chung; Nazaroff, William W.

    2016-11-01

    This study is concerned with the role of a fin-and-tube heat exchanger in modifying microbial indoor air quality. Specifically, depositional losses of ambient bioaerosols and particles onto dry (not cooled) and wet (cool) coil surfaces were measured for different airspeeds passing through the test coil. Total, bacterial and fungal DNA concentrations in condensate water produced by a wet coil were also quantified by means of fluorescent dsDNA-binding dye and qPCR assays. Results revealed that the deposition of bioaerosols and total particles is substantial on coil surfaces, especially when wet and cool. The average deposition fraction was 0.14 for total DNA, 0.18 for bacterial DNA and 0.22 for fungal DNA on the dry coil, increasing to 0.51 for total DNA, 0.50 for bacterial DNA and 0.68 for fungal DNA on the wet coil. Overall, as expected, deposition fractions increased with increasing particle size and increasing airspeed. Deposited DNA was removed from the cooling coil surfaces through the flow of condensing water at a rate comparable to the rate of direct deposition from air. A downward trend of bacterial and fungal DNA measured in condensate water over time provides suggestive evidence of biological growth on heat exchangers during nonoperational times of a ventilation system. This investigation provides new information about bioaerosol deposition onto a conventional fin-and-tube cooling coil, a potentially important factor influencing indoor exposure to microbial aerosols in air-conditioned buildings.

  4. Cooling of BITTER-type electromagnetic coils with intense field

    International Nuclear Information System (INIS)

    Fournier, Jacques

    1966-01-01

    After having outlined the various problems faced when designing BITTER-type electromagnetic coils with axial cooling (evacuation of the power dissipated in the coil, electromagnetic forces, fabrication and machining technologies, corrosion and erosion due to the presence of water and to potential differences), the author of this research thesis reports the study of the cooling of such an electromagnetic coil. In order to know the heat power to be evacuated for a given field, both the power and the field must be computed, but the influence of cooling holes on these both values is not well known. Thus, the author reports the study of the influence of these holes on the power to be dissipated by these holes, and on the magnetic field. Then, he studies how this power is evacuated, and determines heat exchange relationships for the coil canals. He finally discusses how the obtained results can be used to design an advanced electromagnetic coil [fr

  5. Development and testing of the cooling coil cleaning end effector

    International Nuclear Information System (INIS)

    Johnson, K.I.; Mullen, O.D.; Powell, M.R.; Daly, D.S.; Engel, D.W.

    1997-01-01

    The Retrieval Process Development and Enhancement (KPD ampersand E) program has developed and tested an end effector to support the waste retrieval mission at the Idaho National Engineering and Environmental Laboratory (INEEL). The end effector was developed specifically to remove a sticky waste material from the cooling coils in the High Level Liquid Waste (HLLW) tank, and to vacuum up a sediment layer that has settled beneath the cooling coils. An extensive testing program was conducted in the hydraulic test bed (HTB) at the Pacific Northwest National Laboratory (PNNL) to evaluate the performance of the end effector under simulated in-tank conditions. A mock up of the cooling coils was installed in the test bed tank, and simulated waste materials were included to represent the sticky waste on the tubes and the particulate waste settled beneath them. The testing program focused on assessing long-duration mining strategies for cleaning the cooling coils and removing the particulate waste forms. The report describes the results of the end effector testing program at PNNL. Section 2 describes the physical characteristics of the HLLW tanks, including the layout of the cooling coils, and it also describes what is known of the waste forms in the tanks. Section 3 describes the cleaning and retrieval strategy that was used in developing the end effector design. Section 4 describes the cooling coil mockup in the hydraulic test bed. Section 5 discusses the rationale used in selecting the simulants for the tarry waste and particulate waste forms. Section 6 describes the tests that were performed to evaluate cleaning of the cooling coils and retrieval of the particulate simulant. Section 7 summarizes the cleaning and retrieval tests, assesses the relative importance of cleaning the cooling coils and retrieving the particulate waste, and suggests modifications that would simplify the end effector design

  6. CLOSURE OF HLW TANKS FORMULATION FOR A COOLING COIL GROUT

    Energy Technology Data Exchange (ETDEWEB)

    Harbour, J; Vickie Williams, V; Erich Hansen, E

    2008-05-23

    The Tank Closure and Technology Development Groups are developing a strategy for closing the High Level Waste (HLW) tanks at the Savannah River Site (SRS). Two Type IV tanks, 17 and 20 in the F-Area Tank Farm, have been successfully filled with grout. Type IV tanks at SRS do not contain cooling coils; on the other hand, the majority of the tanks (Type I, II, III and IIIA) do contain cooling coils. The current concept for closing tanks equipped with cooling coils is to pump grout into the cooling coils to prevent pathways for infiltrating water after tank closure. This task addresses the use of grout to fill intact cooling coils present in most of the remaining HLW tanks on Site. The overall task was divided into two phases. Phase 1 focused on the development of a grout formulation (mix design) suitable for filling the HLW tank cooling coils. Phase 2 will be a large-scale demonstration of the filling of simulated cooling coils under field conditions using the cooling coil grout mix design recommended from Phase 1. This report summarizes the results of Phase 1, the development of the cooling coil grout formulation. A grout formulation is recommended for the full scale testing at Clemson Environmental Technology Laboratory (CETL) that is composed by mass of 90% Masterflow (MF) 816 (a commercially available cable grout) and 10% blast furnace slag, with a water to cementitious material (MF 816 + slag) ratio of 0.33. This formulation produces a grout that meets the fresh and cured grout requirements detailed in the Task Technical Plan (2). The grout showed excellent workability under continuous mixing with minimal change in rheology. An alternative formulation using 90% MF 1341 and 10% blast furnace slag with a water to cementitious material ratio of 0.29 is also acceptable and generates less heat per gram than the MF 816 plus slag mix. However this MF 1341 mix has a higher plastic viscosity than the MF 816 mix due to the presence of sand in the MF 1341 cable grout and a

  7. Cooling a solar telescope enclosure: plate coil thermal analysis

    Science.gov (United States)

    Gorman, Michael; Galapon, Chriselle; Montijo, Guillermo; Phelps, LeEllen; Murga, Gaizka

    2016-08-01

    The climate of Haleakalā requires the observatories to actively adapt to changing conditions in order to produce the best possible images. Observatories need to be maintained at a temperature closely matching ambient or the images become blurred and unusable. The Daniel K. Inouye Solar Telescope is a unique telescope as it will be active during the day as opposed to the other night-time stellar observatories. This means that it will not only need to constantly match the ever-changing temperature during the day, but also during the night so as not to sub-cool and affect the view field of other telescopes while they are in use. To accomplish this task, plate coil heat exchanger panels will be installed on the DKIST enclosure that are designed to keep the temperature at ambient temperature +0°C/-4°C. To verify the feasibility of this and to validate the design models, a test rig has been installed at the summit of Haleakalā. The project's purpose is to confirm that the plate coil panels are capable of maintaining this temperature throughout all seasons and involved collecting data sets of various variables including pressures, temperatures, coolant flows, solar radiations and wind velocities during typical operating hours. Using MATLAB, a script was written to observe the plate coil's thermal performance. The plate coil did not perform as expected, achieving a surface temperature that was generally 2ºC above ambient temperature. This isn't to say that the plate coil does not work, but the small chiller used for the experiment was undersized resulting in coolant pumped through the plate coil that was not supplied at a low enough temperature. Calculated heat depositions were about 23% lower than that used as the basis of the design for the hillers to be used on the full system, a reasonable agreement given the fact that many simplifying assumptions were used in the models. These were not carried over into the testing. The test rig performance showing a 23% margin

  8. Performance of cold compressors in a cooling system of an R and D superconducting coil cooled with subcooled helium

    International Nuclear Information System (INIS)

    Hamaguchi, S.; Imagawa, S.; Yanagi, N.; Takahata, K.; Maekawa, R.; Mito, T.

    2006-01-01

    The helical coils of large helical device (LHD) have been operated in saturated helium at 4.4 K and plasma experiments have been carried out at magnetic fields lower than 3 T for 8 years. Now, it is considered that the cooling system of helical coils will be improved to enhance magnetic fields in 2006. In the improvement, the helical coils will be cooled with subcooled helium and the operating temperature of helical coils will be lowered to achieve the designed field of 3 T and enhance cryogenic stabilities. Two cold compressors will be used in the cooling system of helical coils to generate subcooled helium. In the present study, the performance of cold compressors has been investigated, using a cooling system of R and D coil, to apply cold compressors to the cooling system of helical coils. Actual surge lines of cold compressors were observed and the stable operation area was obtained. Automatic operations were also performed within the area. In the automatic operations, the suitable pressure of a saturated helium bath, calculated from the rotation speed of the 1st cold compressor, was regulated by bypass valve. From these results, stable operations will be expected in the cooling system of helical coils

  9. STATUS OF MECHANICAL SLUDGE REMOVAL AND COOLING COILS CLOSURE AT THE SAVANNAH RIVER SITE - F TANK FARM CLOSURE PORJECT -9225

    International Nuclear Information System (INIS)

    Jolly, R.

    2009-01-01

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal using the Waste on Wheels (WOW) system within two of its storage tanks. The Waste on Wheels (WOW) system is designed to be relatively mobile with the ability for many components to be redeployed to multiple tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2839 cubic meters (750,000 gallons) each. In addition, Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. DOE intends to remove from service and operationally close Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. After obtaining regulatory approval, the tanks and cooling coils will be isolated and filled with grout for long term stabilization. Mechanical Sludge Removal of the remaining sludge waste within Tank 6 removed ∼ 75% of the original 25,000 gallons in August 2007. Utilizing lessons learned from Tank 6, Tank 5 Mechanical Sludge Removal completed removal of ∼ 90% of the original 125 cubic meters (33,000 gallons) of sludge material in May 2008. The successful removal of sludge material meets the requirement of approximately 19 to 28 cubic meters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. The Chemical Cleaning Process will utilize 8 wt% oxalic acid to dissolve the remaining sludge heel. The flow sheet for Chemical Cleaning planned a 20:1 volume ratio of acid to sludge for the first strike with mixing provided by the submersible mixer pumps. The subsequent strikes will utilize a 13:1 volume ratio of acid to sludge with no mixing. The results of the Chemical Cleaning Process are detailed in the 'Status of Chemical

  10. STATUS OF MECHANICAL SLUDGE REMOVAL AND COOLING COILS CLOSURE AT THE SAVANNAH RIVER SITE - F TANK FARM CLOSURE PROJECT - 9225

    Energy Technology Data Exchange (ETDEWEB)

    Jolly, R

    2009-01-06

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal using the Waste on Wheels (WOW) system within two of its storage tanks. The Waste on Wheels (WOW) system is designed to be relatively mobile with the ability for many components to be redeployed to multiple tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2839 cubic meters (750,000 gallons) each. In addition, Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. DOE intends to remove from service and operationally close Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. After obtaining regulatory approval, the tanks and cooling coils will be isolated and filled with grout for long term stabilization. Mechanical Sludge Removal of the remaining sludge waste within Tank 6 removed {approx} 75% of the original 25,000 gallons in August 2007. Utilizing lessons learned from Tank 6, Tank 5 Mechanical Sludge Removal completed removal of {approx} 90% of the original 125 cubic meters (33,000 gallons) of sludge material in May 2008. The successful removal of sludge material meets the requirement of approximately 19 to 28 cubic meters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. The Chemical Cleaning Process will utilize 8 wt% oxalic acid to dissolve the remaining sludge heel. The flow sheet for Chemical Cleaning planned a 20:1 volume ratio of acid to sludge for the first strike with mixing provided by the submersible mixer pumps. The subsequent strikes will utilize a 13:1 volume ratio of acid to sludge with no mixing. The results of the Chemical Cleaning Process are detailed in the &apos

  11. Simplified approach of predictions of thermal performance for counterflow fully-wet cooling coil

    Science.gov (United States)

    Mansour, M. Khamis; Hassab, M. A.

    2017-06-01

    An innovative correlation associating the effectiveness (ɛ) of the fully-wet cooling coil with its number of transfer unit and vice versa is presented in this work. The thermal performance and design of fully-wet cooling coil can be predicted simply through those correlations. The analytical model was constructed on a basis of solving heat and mass transfer equation "enthalpy potential method" simultaneously coupled with the energy equations. The validity of the new correlations was tested by experimental reported in the available literature. A good agreement with deviation less than 10% was found during the comparison between the output results of the new correlations and those obtained from the literature. The main benefits of those new correlations (1) Its simplicity to be implemented through simple calculations of input parameters (2) It provides helpful guidelines for optimization of wet cooling coil performance during its operation coupling with the thermal system at which the coil is integrated.

  12. Bucked Coils lattice: a novel ionisation cooling lattice for the Neutrino Factory

    International Nuclear Information System (INIS)

    Alekou, A; Pasternak, J

    2012-01-01

    A successful muon ionisation cooling channel for the Neutrino Factory and Muon Collider, requires simultaneously a strong focusing and a large mean RF gradient. To date, all candidate design lattices achieved these requirements with a large magnetic field in the RF cavities, which can potentially limit the achievable gradient leading to RF breakdown. This paper presents the Bucked Coils lattice, designed to reduce the magnetic field at the RF cavities while achieving a satisfactory cooling effect and muon transmission. The Bucked Coils managed to achieve significantly reduced magnetic field components at the RF position, while also achieving a comparable transmission to the FSIIA lattice, the current reference ionisation cooling lattice of the Neutrino Factory. A detailed comparison with respect to the magnetic field reduction, cooling dynamics and transmission is given. A preliminary feasibility study taking into account the hoop stress of the coils and their superconducting operation is also presented.

  13. The Effect of Extending the Length of the Coupling Coils in a Muon Ionization Cooling Channel

    International Nuclear Information System (INIS)

    Green, Michael A.

    2007-01-01

    RF cavities are used to re-accelerate muons that have been cooled by absorbers that are in low beta regions of a muon ionization cooling channel. A superconducting coupling magnet (or magnets) are around or among the RF cavities of a muon ionization-cooling channel. The field from the magnet guides the muons so that they are kept within the iris of the RF cavities that are used to accelerate the muons. This report compares the use of a single short coupling magnet with an extended coupling magnet that has one or more superconducting coils as part of a muon-cooling channel of the same design as the muon ionization cooling experiment (MICE). Whether the superconducting magnet is short and thick or long and this affects the magnet stored energy and the peak field in the winding. The magnetic field distribution also affects is the muon beam optics in the cooling cell of a muon cooling channel

  14. Coiling Temperature Control Using Temperature Measurement Method for the Hot Rolled Strip in the Water Cooling Banks

    Science.gov (United States)

    Nakagawa, Shigemasa; Tachibana, Hisayoshi; Honda, Tatsuro; Uematsu, Chihiro

    In the hot strip mill, the quality of the strip greatly depends on the cooling process between the last stand in the finishing mill and the coilers. Therefore, it is important to carefully control the coiling temperature to regulate the mechanical properties of the strip. To realize high accuracy of coiling temperature, a new coiling temperature control using temperature measurement method for the hot rolled strip in the water cooling banks has been developed. The features of the new coiling temperature control are as follows: (i) New feedforward control adjusts ON/OFF swiching of cooling headers according to the strip temperature measured in the water cooling banks. (ii) New feedforward control is achieved by dynamic control function. This coiling temperature control has been in operation successfully since 2008 at Kashima Steel Works and improved the accuracy of coiling temperature of high strength steel considerably.

  15. Conceptual design of cooling anchor for current lead on HTS field coils

    Energy Technology Data Exchange (ETDEWEB)

    Hyeon, C. J.; Kim, J. H.; Quach, H. L. [Dept. of Electrical Engineering, Jeju National University, Jeju (Korea, Republic of); and others

    2017-06-15

    The role of current lead in high-temperature superconducting synchronous machine (HTSSM) is to function as a power supply by connecting the power supply unit at room temperature with the HTS field coils at cryogenic temperature. Such physical and electrical connection causes conduction and Joule-heating losses, which are major thermal losses of HTSSM rotors. To ensure definite stability and economic feasibility of HTS field coils, quickly and smoothly cooling down the current lead is a key design technology. Therefore, in this paper, we introduce a novel concept of a cooling anchor to enhance the cooling performance of a metal current lead. The technical concept of this technology is the simultaneously chilling and supporting the current lead. First, the structure of the current lead and cooling anchor were conceptually designed for field coils for a 1.5 MW-class HTSSM. Then, the effect of this installation on the thermal characteristics of HTS coils was investigated by 3D finite element analysis.

  16. Manufacturing of REBCO coils strongly bonded to cooling members with epoxy resin aimed at its application to Maglev

    International Nuclear Information System (INIS)

    Mizuno, Katsutoshi; Ogata, Masafumi; Hasegawa, Hitoshi

    2014-01-01

    Highlights: • Paraffin has a risk of losing thermal coupling during cooling down. • We propose an epoxy impregnated REBCO coil co-wound with PTFE tape. • The coil is tightly bonded to cooling members by epoxy resin without the degradation. • We made a REBCO racetrack coil with the same outer dimension as the Maglev magnet. - Abstract: The REBCO coated conductor has been attracted attention because of its high current density in the presence of high magnetic field. If the coated conductor is applied to Maglev, the operational temperature of the on-board magnets will be over 40 K and energy consumption of cryocoolers will be reduced. That high operational temperature also means the absence of liquid helium. Therefore, reliable thermal coupling is desirable for cooling the coils. We propose an epoxy impregnated REBCO coil co-wound with PTFE tape. While the PTFE tape prevents the performance degradation of the coil, the epoxy resin bonds the coil to cooling members. We carried out three experiments to confirm that the coil structure which we propose has robust thermal coupling without the degradation. First, thermal resistances of paraffin and epoxy were measured varying the temperature from room temperature to 10 K. The measurement result indicates that paraffin has a risk of losing thermal coupling during cooling down. In another experiment, PTFE (polytetrafluoroethylene) tape insulator prevented performance degradation of a small epoxy impregnated REBCO coil, while another REBCO coil with polyimide tape showed clear performance degradation. Finally, we produced a racetrack REBCO coil with the same outer dimension as a Maglev on-board magnet coil. Although the racetrack coil was installed in a GFRP coil case and tightly bonded to the case by epoxy impregnation, any performance degradation was not observed

  17. Possible circuits for superconducting coil cooling by superfluid helium

    International Nuclear Information System (INIS)

    Shaposhnikov, V.A.; Volkova, N.M.

    1984-01-01

    Investigation results on heat transfer in heated channels under conditions of internal and forced He-2 convection are presented in order to obtain estimated dependences allowing to design cryostatting system for superconducting magnetic systems (SMS). Different cryostatting schemes are considered, and results of their calculations are presented. It is shown that in cryostatting system designing it is necessary to prefer the scheme, in which heat exchager is put into a bath with superfluid helium. One cryostatting scheme is presented; cooling of the heat release object in it is performed under conditions of forced motion. It is sown that the process of forced convection enlarges the heat exchange efficiency

  18. Superconducting HTS coil made from round cable cooled by liquid nitrogen flow

    Science.gov (United States)

    Šouc, J.; Gömöry, F.; Vojenčiak, M.; Solovyov, M.; Seiler, E.; Kováč, J.; Frolek, L.

    2017-10-01

    The concept of simple cooling arrangement for superconducting coil made from a round cable based on high-temperature superconductor tapes is demonstrated. The cable architecture is similar to the Conductor on Round Core (CORC®) concept: it consists of eight superconducting tapes wound in two layers on a copper tube core in a helical manner. Such a Conductor on Round Tube hand-made cable 4 m long was used to wind the coil with eight turns on 14 cm diameter. Layers of commercial aerogel and polyurethane foam were applied to the coil to provide vacuum-less thermal insulation at its cooling by the flow of liquid nitrogen (LN) in the cable tube. The temperature of superconducting tapes was around 1 K above the coolant temperature in these conditions, causing about 16% reduction of the critical current compared to the LN bath cooling. Electromagnetic performance of the coil was calculated by the model based on the finite element method and the results compared with experimental observations.

  19. Magnetization of the joint-free high temperature superconductor (RE)Ba2Cu3Ox coil by field cooling

    Science.gov (United States)

    Zheng, Yali; Wang, Yawei; Li, Jianwei; Jin, Zhijian

    2017-09-01

    Joint-free (RE)Ba2Cu3Ox (REBCO) coil based on `wind-and-flip' technique has been developed to generate a persistent magnetic field without power supply. This paper is to study the magnetization characteristics of the joint-free REBCO coil by field cooling, in order to trap higher field. A joint-free pancake coil is wound by REBCO tapes and the field cooling magnetization test is performed on it. An approximate numerical model based on H-formulation is built for this coil to analyze its magnetization behavior, which is validated by the experimental results Analysis show that a persistent direct current is induced in the coil during the field cooling operation, which generates the trapped field. The induced current of the joint-free coil shows an intrinsic non-uniform distribution among turns. Increasing the magnetization field and critical current of REBCO conductors can considerably increase the trapped field. But the trapping factor (the rate of trapped field to background magnetization field) reaches a maximum value (60 % for the test coil). This maximum value is an intrinsic characteristics for a fabricated coil, which only depends on the coil's geometry structure. With a same usage of REBCO tapes, the trapping factor can be improved significantly by optimizing the coil structure to multiple pancakes, and it can approach 100 %.

  20. ''Football'' test coil: a simulated service test of internally-cooled, cabled superconductor

    International Nuclear Information System (INIS)

    Marston, P.G.; Iwasa, Y.; Thome, R.J.; Hoenig, M.O.

    1981-01-01

    Internally-cooled, cabled superconductor, (ICCS), appears from small-scale tests to be a viable alternative to pool-boiling cooled superconductors for large superconducting magnets. Potential advantages may include savings in helium inventory, smaller structure and ease of fabrication. Questions remain, however, about the structural performance of these systems. The ''football'' test coil has been designed to simulate the actual ''field-current-stress-thermal'' operating conditions of a 25 ka ICCS in a commercial scale MHD magnet. The test procedure will permit demonstration of the 20 year cyclic life of such a magnet in less than 20 days. This paper describes the design, construction and test of that coil which is wound of copper-stabilized niobium-titanium cable in steel conduit. 2 refs

  1. Precooling characteristics and flow instability of a supercritical helium cooled hollow superconducting coil

    International Nuclear Information System (INIS)

    Ohuchi, N.; Yamamoto, J.; Murakami, Y.

    1986-01-01

    Thermal characteristics of a force-cooled superconductor coil at the time of precooling and steady state cooling by supercritical helium (SHE) were studied with a hollow superconductor (L=87 m, I.D.=3 mm). During cooldown of the coil to 80 K, the moving velocity of the cold front was 0.2 x 10/sup -3/ - 0.27 x 10/sup -3/ times that of incoming helium gas and it was found that the pressure drop could be calculated with the experimental equation within the error of 50 percent. The fluid conditions of SHE under the thermal input of a single and repetitive pulse along the entire conductor were examined. The decreasing rate of the mass flow and the temperature rise of SHE were a function of the strength and the period of heating while SHE inferred from the condition of steady flow were in the quasi-liquid phase

  2. Experience with the commissioning of helically coiled advanced gas cooled reactor boilers

    International Nuclear Information System (INIS)

    Kettle, D.B.

    1984-01-01

    The paper describes aspects of the experience gained during commissioning of the helically coiled pod boilers for an advanced gas-cooled reactor. The boiler geometry is shown to be a factor contributing to gas-side and water-side convection phenomena encountered during commissioning. Detailed information on thermal performance and vibrational response was obtained from commissioning tests on specially instrumented boiler units. (author)

  3. Cool-down performance of CICC superconducting coils for the CHMFL

    Science.gov (United States)

    Xie, Y.; Li, J.; Ouyang, Z. R.

    2017-10-01

    A hybrid magnet composed of a water-cooled magnet and a superconducting magnet was developed at the High Magnetic Field Laboratory of the Chinese Academy of Sciences. The superconducting coils made of Nb3Sn CICC were cooled by the forced flow of supercritical helium at 4.5 K. The paper presents the cryogenic system framework, and reports the characteristics of the supercritical helium in a cable-in-conduit conductor (CICC), including the friction factor change during the cooling process, the heat transfer coefficient from 4.6 K to 6.8 K, and the helium mass flow rate distribution. After the 23-day cooling process, the temperature reached 4.5 K. The operation process was introduced in the paper.

  4. Performance Characterization of an Actively Cooled Repetitive Transcranial Magnetic Stimulation Coil for the Rat.

    Science.gov (United States)

    Parthoens, Joke; Verhaeghe, Jeroen; Servaes, Stijn; Miranda, Alan; Stroobants, Sigrid; Staelens, Steven

    2016-07-01

    This study characterizes and validates a recently developed dedicated circular rat coil for small animal repetitive Transcranial Magnetic Stimulation (rTMS). The electric (E) field distribution was calculated in a three-dimensional (3D) spherical rat head model and coil cooling performance was characterized. Motor threshold (MT) in rats (n = 12) was determined using two current directions, MT variability (n = 16) and laterality (n = 11) of the stimulation was assessed. Finally, 2-deoxy-2-((18) F)fluoro-D-glucose ([(18) F]-FDG) small animal Positron Emission Tomography (µPET) after sham and 1, 10, and 50 Hz rTMS stimulation (n = 9) with the new Cool-40 Rat Coil (MagVenture, Denmark) was performed. The coil could produce high E-fields of maximum 220 V/m and more than 100 V/m at depths up to 5.3 mm in a ring-shaped distribution. No lateralization of stimulation was observed. Independent of the current direction, reproducible MT measurements were obtained at low percentages (27 ± 6%) of the maximum machine output (MO, MagPro X100 [MagVenture, Denmark]). At this intensity, rTMS with long pulse trains is feasible (1 Hz: continuous stimulation; 5 Hz: 1000 pulses; 10 Hz and 50 Hz: 272 pulses). When compared to sham, rTMS at different frequencies induced decreases in [(18) F]-FDG-uptake bilaterally mainly in dorsal cortical regions (visual, retrosplenial, and somatosensory cortices) and increases mainly in ventral regions (entorhinal cortex and amygdala). The coil is suitable for rTMS in rats and achieves unprecedented high E-fields at high stimulation frequencies and long durations with however a rather unfocal rat brain stimulation. Reproducible MEPs as well as alterations in cerebral glucose metabolism following rTMS were demonstrated. © 2016 International Neuromodulation Society.

  5. Characteristics analysis on a superconductor resonance coil WPT system according to cooling vessel materials in different distances

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, In-Sung, E-mail: no21park@hanmail.net; Lee, Yu-Kyeong; Choi, Hyo-Sang, E-mail: hyosang@chosun.ac.kr

    2016-11-15

    Highlights: • WPT using the superconductor coil was needed research for cooling vessel. FRP, bakelite, polystyrene, aluminum, and iron were applied as the cooling vessel material to analyze the WPT distance efficiency. • When the distance between the transmitter and receiver coils was 2000 mm, FRP being used for the cooling vessel made the transmission efficiency higher than any other materials. The efficiency and distance of sending power can be improved in the superconductor coil if the cooling vessel is made with FRP. - Abstract: The interest in wireless power transfer (WPT) that can send power without using wires has been increasing recently. Especially, there is a great interest in the wireless power devices for portable IT devices. The WPT devices that have been developed so far use the magnetic induction method, and they are not active due to their distance problem. A magnetic resonance WPT method was developed and has been actively researched to resolve this problem. A superconductor coil was applied in this study to increase the efficiency of the magnetic resonance WPT. FRP, bakelite, polystyrene, aluminum, and iron were applied as the cooling vessel material to analyze the WPT distance. The distance between the transmitter and receiver coils started from 800 mm and was increased by 200 mm. The reflection coefficient was measured at each distance. As a result, FRP, bakelite, plastic PVC, polystyrene of the reflection coefficient was similar. From among these FRP being used for the cooling vessel made the transmission characteristics higher than any other materials when the distance between the transmitter and receiver coils was 2,000 mm. On the other hand, the reflection coefficient dropped when iron was used. It is estimated based on the experimental results that the wireless power transmission characteristics and distance of sending power can be improved in the superconductor coil if the cooling vessel is made with FRP.

  6. Residual gas analysis of a cryostat vacuum chamber during the cool down of SST - 1 superconducting magnet field coil

    International Nuclear Information System (INIS)

    Semwal, P.; Joshi, K.S.; Thankey, P.L.; Pathan, F.S.; Raval, D.C.; Patel, R.J.; Pathak, H.A.

    2005-01-01

    One of the most important feature of Steady state Superconducting Tokamak -1 (SST-l) is the Nb-Ti superconducting magnet field coils. The coils will be kept in a high vacuum chamber (Cryostat) and liquid Helium will be flown through it to cool it down to its critical temperature of 4.5K. The coil along with its hydraulics has four types of joints (1) Stainless Steel (S.S.) to Copper (Cu) weld joints (2) S. S. to S. S. weld joints (3) Cu to Cu brazed joints and (4) G-10 to S. S. joints with Sti-cast as the binding material. The joints were leak tested with a Helium mass spectrometer leak detector in vacuum as well as in sniffer mode. However during the cool-down of the coil, these joints may develop leaks. This would deteriorate the vacuum inside the cryostat and coil cool-down would subsequently become more difficult. To study the effect of cooling on the vacuum condition of the Cryostat, a dummy Cryostat chamber was fabricated and a toroidal Field (TF) magnet was kept inside this chamber and cooled down to 4.5 K.A residual gas analyzer (RGA) was connected to the Cryostat chamber to study the behaviour of major gases inside this chamber with temperature. An analysis of the RGA data acquired during the coo-down has been presented in this chamber. (author)

  7. Team one (GA/MCA) effort of the DOE 12 Tesla Coil Development Program. 12 Tesla ETF toroidal field coil helium bath cooled NbTi alloy concept

    International Nuclear Information System (INIS)

    1980-07-01

    This report presents the conceptual design of an ETF compatible toroidal field coil, employing helium bath cooled NbTi alloy conductor. The ten TF-coil array generates a peak field of 11-1/2 tesla at 2.87 m radius, corresponding to a major axis field of 6.1 tesla. The 10 kA conductor is an uninsulated, unsoldered Rutherford cable, employing NbTiTa ally as developed in Phase I of this effort. The conductor is encased within a four element frame of stainless steel strips to provide hoop and bearing load support

  8. Review of Singular Cooling Inlet and Linear Pressure Drop for ITER Coils Cable in Conduit Conductor

    Science.gov (United States)

    Nicollet, S.; Bessette, D.; Cloez, H.; Decool, P.; Lacroix, B.; Lebailly, C. A.; Serries, J. P.

    2006-04-01

    New tests and measurements performed (Othello Facility, EFDA Task) on TF mock up cooling inlet and different central spirals (characteristics: hydraulic outer diameter and perforation ratio) are presented, as well as the new model of singular and linear friction factor. The ITER Coils CICC hydraulic length pressure drop is determined in operating conditions (m=8 g/s, P=0.6 MPa and T=5 K): the important result is an increase in linear pressure drop for the TF (290 Pa/m) and CS (430 Pa/m), in comparison with prototype model coils TFMC (100 Pa/m) and CSMC (180 Pa/m). The main reason is the reduction of the central spiral diameter and associated increase of friction factor and bundle to total mass flow ratio α (from 1/3 up to 2/3 typically). The ratio of singular cooling inlet to CICC linear pressure drop is estimated: TF mock up ratio (3 m) is lower than previous CS mock up tested (12 m), due to design changes. The cryogenic power necessary to compensate the CICC pressure drop is calculated for the 4 primary loop circuits: typically 2.3 kW at 5 K for TF winding system represents 40% of the whole average TF winding magnet heat loads during operation.

  9. Evolution of cool-roof standards in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hashem; Akbari, Hashem; Levinson, Ronnen

    2008-07-11

    Roofs that have high solar reflectance and high thermal emittance stay cool in the sun. A roof with lower thermal emittance but exceptionally high solar reflectance can also stay cool in the sun. Substituting a cool roof for a noncool roof decreases cooling-electricity use, cooling-power demand, and cooling-equipment capacity requirements, while slightly increasing heating-energy consumption. Cool roofs can also lower citywide ambient air temperature in summer, slowing ozone formation and increasing human comfort. Provisions for cool roofs in energy-efficiency standards can promote the building- and climate-appropriate use of cool roofing technologies. Cool-roof requirements are designed to reduce building energy use, while energy-neutral cool-roof credits permit the use of less energy-efficient components (e.g., larger windows) in a building that has energy-saving cool roofs. Both types of measures can reduce the life-cycle cost of a building (initial cost plus lifetime energy cost). Since 1999, several widely used building energy-efficiency standards, including ASHRAE 90.1, ASHRAE 90.2, the International Energy Conservation Code, and California's Title 24 have adopted cool-roof credits or requirements. This paper reviews the technical development of cool-roof provisions in the ASHRAE 90.1, ASHRAE 90.2, and California Title 24 standards, and discusses the treatment of cool roofs in other standards and energy-efficiency programs. The techniques used to develop the ASHRAE and Title 24 cool-roof provisions can be used as models to address cool roofs in building energy-efficiency standards worldwide.

  10. Thermal analysis of the forced cooled conductor for the TF [toroidal field] superconducting coils in the TIBER II ETR design

    International Nuclear Information System (INIS)

    Kerns, J.A.; Slack, D.S.; Miller, J.R.

    1987-01-01

    The Tokamak Ignition/Burn Experimental Reactor (TIBER) is being designed to provide nuclear testing capabilities for first wall and blanket design concepts. The baseline design for TIBER II is to provide steady-state nuclear burn capabilities. These objectives must be met using reactor relevant components, such as state-of-the-art current drive schemes coupled with superconducting toroidal field (TF) and poloidal field (PF) coils. The design is also constrained to be cost effective, which forces the machine to be as small as possible. This last constraint limits the nuclear shielding in TIBER. Therefore, the TF coils will have a high nuclear heat load of up to 4.5 kW per coil. The cooling scheme and the thermal analysis for this design are presented

  11. A comparative experimental and numerical study to investigate the relative merits of convectors and ``C'' inserts in cooling cold-rolled coils

    Science.gov (United States)

    Bhattacharya, Tathagata; Chakraborty, Debadi; Singh, Vikas

    2006-12-01

    The coil cooling and storage unit (CCSU) is used to cool cold-rolled coils to the temper rolling temperature after the annealing cycle is over at the batch annealing furnace (BAF) in a cold rolling mill (CRM). In the CCSU, the coils are kept on the cooling bases for any fixed time irrespective of the grade and tonnage. Therefore, the need for a mathematical model to accurately predict the cooling time of the coils was felt. The current study involves experimental and numerical analysis of a stack of coils with respect to heat transfer and fluid flow. A comparative study was carried out to ascertain the relative merits of convectors and “C” inserts (CIs) in the cooling the coils. The air flow distribution for the case of different convectors and CIs was measured by means of a full scale physical model. Two different mathematical models were applied to model the fluid flow and flow distribution through the stack of coils. The first flow model uses the hydraulic resistance concept for estimating the air flow rate distribution, whereas the second flow model uses commercial computational fluid dynamics (CFD) software and predicts the velocity distribution in the flow path between two coils in a stack. The predictions from these two models compare well with the experimental data. The flow models were used to calculate the average heat-transfer coefficient in different flow passages in a stack. The heat-transfer coefficients thus obtained were used to tune and validate a two-dimensional transient heat-transfer model of coils. The heat-transfer model predicts the cooling time of coils accurately and also suggests a possible reduction of cooling time if CIs are used in place of convectors.

  12. Slightly flexed knee position within a standard knee coil: MR delineation of the anterior cruciate ligament

    Energy Technology Data Exchange (ETDEWEB)

    Niitsu, M.; Itai, Y. [Department of Radiology, Institute of Clinical Medicine, University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305 (Japan); Ikeda, K. [Department of Orthopedic Surgery, Institute of Clinical Medicine, University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305 (Japan)

    1998-02-01

    The purpose of this study was to assess the value of positioning the knee slightly flexed within a standard MR knee coil in delineation of the anterior cruciate ligament (ACL). Within the confined space of a commercially available knee coil, knee could bend as much as 30 , average 17 of flexion. Sets of oblique sagittal MR images were obtained at both fully extended and slightly flexed positions. Twenty-two normal knees and 18 knees with ACL tears were examined and paired MR images were evaluated by two observers. Compared with knee extension, the MR images for knee flexion provided better clarity in 57 % of reviews of full length of the ACL and 53 % of the femoral attachment. In the extended position the anterior margin of the ligament was obscured due to partial averaging with the intercondylar roof. We recommend examining the knee in an achievable flexed position within the standard knee coil. (orig.) With 3 figs., 1 tab., 6 refs.

  13. Numerical Analysis of Rotating Pumping Flows in Inter-Coil Rotor Cavities and Short Cooling Grooves of a Generator

    Directory of Open Access Journals (Sweden)

    Wei Tong

    2001-01-01

    Full Text Available An important characteristic of wall rotating-driven flows is the tendency of fluid with high angular momentum to be flung radially outward. For a generator, the rotor rotating-driven flow, usually referred to as the rotating pumping flow, plays an important role in rotor winding cooling. In this study, three-dimensional numerical analyzes are presented for turbulent pumping flow in the inter-coil rotor cavity and short cooling grooves of a generator. Calculations of the flow field and the mass flux distribution through the grooves were carried out in a sequence of four related cases Under an isothermal condition: (a pumping flow, which is the self-generated flow resulted from the rotor pumping action; (b mixing flow, which is the combination of the ventilating flow and pumping flow, under a constant density condition; (c mixing flow, with density modeled by the ideal gas law; and (d mixing flow, with different pressure differentials applied on the system. The comparisons of the results from these cases can provide useful information regarding the impacts of the ventilating flow, gas density, and system pressure differential on the mass flux distribution in the short cooling grooves. Results show that the pumping effect is strong enough to generate the cooling flow for rotor winding cooling. Therefore, for small- or mid-size generators ventilation fans may be eliminated. It also suggests that increasing the chimney dimension can improve the distribution uniformity of mass flux through the cooling grooves.

  14. A study on nuclear heat load tolerable for NET/TF coils cooled by internal flow of helium II

    International Nuclear Information System (INIS)

    Hofmann, A.

    1988-02-01

    NbTi cables cooled by internal flow of superfluid helium are considered an option for the design of NET/TF coils with about 11 T peak fields. Starting from an available winding cross section of 0.61x0.61 m 2 for a 8 MA turns coil made of a 16 kA conductor it is shown that sufficient hydraulic cross section can be provided within such cables to remove the expected thermal load resulting from nuclear heating with exponential decay from inboard to outboard side of the winding. The concept is a pancake type coil with 1.8 K helium fed-in the high field region of each pancake. The temperature distribution within such coils is calculated, and the local safety margin is determined from temperature and field. The calculation takes account of nuclear and a.c. heating, and of thermal conductance between the individual layers and the coil casing. It is shown that operation with 1.8 K inlet and about 3 K outlet temperature is possible. The electrical insulation with about 0.5 mm thickness proves to provide sufficient thermal insulation. No additional thermal shield is required between the coil casing and the winding package. Two different types of conductors are being considered: a) POLO type cable with quadratic cross section and a central circular coolant duct, and b) an LCT type cable with two conductors wound in hand. Both concepts with about 500 m length of the cooland channels are shown to meet the requirements resulting from a peak nuclear heat load of 0.3 mW/cm 3 in the inboard turns. The hydraulic diameters are sufficient to operate each coils with self-sustained fountain effect pumps. Even appreciably higher heat loads with up to 3 mW/cm 3 of nuclear heating can be tolerated for the POLO type cable when the hydraulic diameter is enlarged to its maximum of 17 mm. (orig.) [de

  15. Computational fluid dynamics model for predicting flow of viscous fluids in a large fermentor with hydrofoil flow impellers and internal cooling coils

    Science.gov (United States)

    Kelly; Humphrey

    1998-03-01

    Considerable debate has occurred over the use of hydrofoil impellers in large-scale fermentors to improve mixing and mass transfer in highly viscous non-Newtonian systems. Using a computational fluid dynamics software package (Fluent, version 4.30) extensive calculations were performed to study the effect of impeller speed (70-130 rpm), broth rheology (value of power law flow behavior index from 0.2 to 0.6), and distance between the cooling coil bank and the fermentor wall (6-18 in.) on flow near the perimeter of a large (75-m3) fermentor equipped with A315 impellers. A quadratic model utilizing the data was developed in an attempt to correlate the effect of A315 impeller speed, power law flow behavior index, and distance between the cooling coil bank and the fermentor wall on the average axial velocity in the coil bank-wall region. The results suggest that there is a potential for slow or stagnant flow in the coil bank-wall region which could result in poor oxygen and heat transfer for highly viscous fermentations. The results also indicate that there is the potential for slow or stagnant flow in the region between the top impeller and the gas headspace when flow through the coil bank-wall region is slow. Finally, a simple guideline was developed to allow fermentor design engineers to predict the degree of flow behind a bank of helical cooling coils in a large fermentor with hydrofoil flow impellers.

  16. Development of a Rigid One-Meter-Side and Cooled Coil Sensor at 77 K for Magnetic Resonance Sounding to Detect Subsurface Water Sources.

    Science.gov (United States)

    Lin, Jun; Du, Guanfeng; Zhang, Jian; Yi, Xiaofeng; Jiang, Chuandong; Lin, Tingting

    2017-06-12

    Magnetic resonance sounding (MRS) using the Earth's magnetic field is a noninvasive and on-site geophysical technique providing quantitative characteristics of aquifers in the subsurface. When the MRS technology is applied in a mine or tunnel for advance detecting the source of water that may cause disastrous accident, spatial constraints limit the size of coil sensor and thus lower the detection capability. In this paper, a coil sensor for detecting the weak MRS signal is designed and the signal to noise (SNR) for the coil sensor is analyzed and optimized. The coil sensor has a rigid structure and square size of 1 m for deploying in a narrow underground space and is cooled at a low temperature of 77 K for improving the SNR. A theoretical calculation and an experimental test in an electromagnetically shielded room (EMSR) show that the optimal design of coil sensor consists of an 80-turn coil and a low-current-noise preamplifier AD745. It has a field sensitivity of 0.17 fT / Hz in the EMSR at 77 K, which is superior to the low temperature Superconducting Quantum Interference Device (LT SQUID) that is the latest application in MRS and the cooled coil with a diameter of 9 cm when detecting the laboratory NMR signal in kHz range. In the field experiment above the Taipingchi Reservoir near Changchun in China, the cooled coil sensor (CCS) developed in this paper has successfully obtained a valid weak MRS signal in high noise environment. The field results showed that the quality of measured MRS signal at 77 K is significantly superior to that at 298 K and the SNR is improved up to three times. This property of CCS makes the MRS instrument more convenient and reliable in a constricted space underground engineering environment (e.g., a mine or a tunnel).

  17. Contributed Review: Absolute spectral radiance calibration of fiber-optic shock-temperature pyrometers using a coiled-coil irradiance standard lamp.

    Science.gov (United States)

    Fat'yanov, O V; Asimow, P D

    2015-10-01

    We describe an accurate and precise calibration procedure for multichannel optical pyrometers such as the 6-channel, 3-ns temporal resolution instrument used in the Caltech experimental geophysics laboratory. We begin with a review of calibration sources for shock temperatures in the 3000-30,000 K range. High-power, coiled tungsten halogen standards of spectral irradiance appear to be the only practical alternative to NIST-traceable tungsten ribbon lamps, which are no longer available with large enough calibrated area. However, non-uniform radiance complicates the use of such coiled lamps for reliable and reproducible calibration of pyrometers that employ imaging or relay optics. Careful analysis of documented methods of shock pyrometer calibration to coiled irradiance standard lamps shows that only one technique, not directly applicable in our case, is free of major radiometric errors. We provide a detailed description of the modified Caltech pyrometer instrument and a procedure for its absolute spectral radiance calibration, accurate to ±5%. We employ a designated central area of a 0.7× demagnified image of a coiled-coil tungsten halogen lamp filament, cross-calibrated against a NIST-traceable tungsten ribbon lamp. We give the results of the cross-calibration along with descriptions of the optical arrangement, data acquisition, and processing. We describe a procedure to characterize the difference between the static and dynamic response of amplified photodetectors, allowing time-dependent photodiode correction factors for spectral radiance histories from shock experiments. We validate correct operation of the modified Caltech pyrometer with actual shock temperature experiments on single-crystal NaCl and MgO and obtain very good agreement with the literature data for these substances. We conclude with a summary of the most essential requirements for error-free calibration of a fiber-optic shock-temperature pyrometer using a high-power coiled tungsten halogen

  18. Contributed Review: Absolute spectral radiance calibration of fiber-optic shock-temperature pyrometers using a coiled-coil irradiance standard lamp

    Science.gov (United States)

    Fat'yanov, O. V.; Asimow, P. D.

    2015-10-01

    We describe an accurate and precise calibration procedure for multichannel optical pyrometers such as the 6-channel, 3-ns temporal resolution instrument used in the Caltech experimental geophysics laboratory. We begin with a review of calibration sources for shock temperatures in the 3000-30 000 K range. High-power, coiled tungsten halogen standards of spectral irradiance appear to be the only practical alternative to NIST-traceable tungsten ribbon lamps, which are no longer available with large enough calibrated area. However, non-uniform radiance complicates the use of such coiled lamps for reliable and reproducible calibration of pyrometers that employ imaging or relay optics. Careful analysis of documented methods of shock pyrometer calibration to coiled irradiance standard lamps shows that only one technique, not directly applicable in our case, is free of major radiometric errors. We provide a detailed description of the modified Caltech pyrometer instrument and a procedure for its absolute spectral radiance calibration, accurate to ±5%. We employ a designated central area of a 0.7× demagnified image of a coiled-coil tungsten halogen lamp filament, cross-calibrated against a NIST-traceable tungsten ribbon lamp. We give the results of the cross-calibration along with descriptions of the optical arrangement, data acquisition, and processing. We describe a procedure to characterize the difference between the static and dynamic response of amplified photodetectors, allowing time-dependent photodiode correction factors for spectral radiance histories from shock experiments. We validate correct operation of the modified Caltech pyrometer with actual shock temperature experiments on single-crystal NaCl and MgO and obtain very good agreement with the literature data for these substances. We conclude with a summary of the most essential requirements for error-free calibration of a fiber-optic shock-temperature pyrometer using a high-power coiled tungsten halogen

  19. Contributed Review: Absolute spectral radiance calibration of fiber-optic shock-temperature pyrometers using a coiled-coil irradiance standard lamp

    Energy Technology Data Exchange (ETDEWEB)

    Fat’yanov, O. V., E-mail: fatyan1@gps.caltech.edu; Asimow, P. D., E-mail: asimow@gps.caltech.edu [Division of Geological and Planetary Sciences 252-21, California Institute of Technology, Pasadena, California 91125 (United States)

    2015-10-15

    We describe an accurate and precise calibration procedure for multichannel optical pyrometers such as the 6-channel, 3-ns temporal resolution instrument used in the Caltech experimental geophysics laboratory. We begin with a review of calibration sources for shock temperatures in the 3000-30 000 K range. High-power, coiled tungsten halogen standards of spectral irradiance appear to be the only practical alternative to NIST-traceable tungsten ribbon lamps, which are no longer available with large enough calibrated area. However, non-uniform radiance complicates the use of such coiled lamps for reliable and reproducible calibration of pyrometers that employ imaging or relay optics. Careful analysis of documented methods of shock pyrometer calibration to coiled irradiance standard lamps shows that only one technique, not directly applicable in our case, is free of major radiometric errors. We provide a detailed description of the modified Caltech pyrometer instrument and a procedure for its absolute spectral radiance calibration, accurate to ±5%. We employ a designated central area of a 0.7× demagnified image of a coiled-coil tungsten halogen lamp filament, cross-calibrated against a NIST-traceable tungsten ribbon lamp. We give the results of the cross-calibration along with descriptions of the optical arrangement, data acquisition, and processing. We describe a procedure to characterize the difference between the static and dynamic response of amplified photodetectors, allowing time-dependent photodiode correction factors for spectral radiance histories from shock experiments. We validate correct operation of the modified Caltech pyrometer with actual shock temperature experiments on single-crystal NaCl and MgO and obtain very good agreement with the literature data for these substances. We conclude with a summary of the most essential requirements for error-free calibration of a fiber-optic shock-temperature pyrometer using a high-power coiled tungsten halogen

  20. Experimental analysis on pressure drop and heat transfer of a terminal fan-coil unit with ice slurry as cooling medium

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Seara, Jose; Diz, Ruben; Uhia, Francisco J.; Dopazo, J. Alberto [Area de Maquinas y Motores Termicos, E.T.S. de Ingenieros Industriales, University of Vigo, Campus Lagoas-Marcosende No 9, 36310 Vigo (Spain)

    2010-09-15

    This paper is concerned with the experimental analysis of a standard terminal fan-coil unit with ice slurry as coolant. The ice slurry was produced from an ethylene glycol 10 wt% aqueous solution. The pressure drop measurements are presented as a function of volumetric flow rate, ice concentration and Reynolds number. The experimental friction factors are obtained and discussed. The fan-coil capacity was experimentally determined for chilled water and melting ice slurry with inlet ice fractions around 5, 10, 15 and 20 wt%, considering in each case three different fan rotation velocities. The fan-coil capacity is higher with melting ice slurry than with chilled water by factors between 3.7 and 4.9. The heat transfer analysis realizes that the air side thermal resistance controls the heat transfer process. Experimental results for the melt off rate of ice in the fan coil and the superheating at the fan-coil outlet are shown and discussed. (author)

  1. Temporal response of laser power standards with natural convective cooling.

    Science.gov (United States)

    Xu, Tao; Gan, Haiyong; Yu, Jing; Zang, Erjun

    2016-01-25

    Laser power detectors with natural convective cooling are convenient to use and hence widely applicable in a power range below 150 W. However, the temporal response characteristics of the laser power detectors need to be studied in detail for accurate measurement. The temporal response based on the absolute laser power standards with natural convective cooling is studied through theoretical analysis, numerical simulations, and experimental verifications. Our results show that the response deviates from a single exponential function and that an ultimate response balance is difficult to achieve because the temperature rise of the heat sink leads to continuous increase of the response. To determine the measurement values, an equal time reading method is proposed and validated by the laser power calibrations.

  2. A Simplified Laser and Optics System for Laser-Cooled RB Fountain Frequency Standards

    National Research Council Canada - National Science Library

    Kunz, P. D; Heavner, T. P; Jefferts, S. R

    2007-01-01

    ...) atomic fountain frequency standard. This system uses DFB (Distributed Feedback) diode lasers and a frequency offset-locking scheme to generate the optical frequencies needed for laser-cooling, launching, post-cooling, and detection of Rb atoms...

  3. Influence of standard RF coil materials on surface and buildup dose from a 6 MV photon beam in magnetic field.

    Science.gov (United States)

    Ghila, A; Fallone, B G; Rathee, S

    2016-11-01

    Magnetic resonance guided teletherapy systems aspire to image the patient concurrently with the radiation delivery. Thus, the radiofrequency (RF) coils used for magnetic resonance imaging, placed on or close to patient skin and in close proximity to the treatment volume, would be irradiated leading to modifications of radiation dose to the skin and in the buildup region. The purpose of this work is to measure and assess these dose modifications due to standard off-the-shelf RF coil materials. A typical surface coil was approximated as layered sheets of polycarbonate, copper tape, and Teflon to emulate the base, conductor, and cover, respectively. A separate investigation used additional coil materials, such as copper pipe, plastic coil housing, a typical coil padding material, and a thin copper conductor. The materials were placed in the path of a 6 MV photon beam at various distances from polystyrene phantoms in which the surface and buildup doses were measured. The experiments were performed on a clinical Varian linac with no magnetic field and with a 0.21 T electromagnet producing a magnetic field parallel to the beam central axis. The authors repeated similar experiments in the presence of a 0.22 T magnetic field oriented perpendicular to the beam central axis using an earlier linac-MR prototype, with a biplanar permanent magnet. The radiation detectors used for the measurements were two different parallel plate ion chambers and GAFChromic films. A typical open beam surface dose of 20% (relative to open beam D max ) was increased to 63% by the coil padding material and to >74% by all other materials when placed in direct contact with the phantom, irrespective of magnetic field presence or orientation. Without a magnetic field, the surface dose decreased as the test materials were moved away from the phantom surface toward the radiation source, reaching between 30% and 40% at 10 cm gap between the phantom and the test materials. In the presence of the transverse

  4. Non-equilibrium effects evidenced by vibrational spectra during the coil-to-globule transition in poly(N-isopropylacrylamide) subjected to an ultrafast heating-cooling cycle.

    Science.gov (United States)

    Deshmukh, Sanket A; Kamath, Ganesh; Suthar, Kamlesh J; Mancini, Derrick C; Sankaranarayanan, Subramanian K R S

    2014-03-14

    Molecular dynamics simulations in conjunction with finite element calculations are used to explore the conformational dynamics of a thermo-sensitive oligomer, namely poly(N-isopropylacrylamide) (PNIPAM), subjected to an ultra-fast heating-cooling cycle. Finite element (FE) calculations were used to predict the temperature profile resulting from laser-induced heating of the polymer-aqueous system. The heating rate (∼0.6 K ps(-1)) deduced from FE calculations was used to heat an aqueous solution of PNIPAM consisting of 30 monomeric units (30-mer) from 285 K to 315 K. Non-equilibrium effects arising from the ultra-fast heating-cooling cycle results in a hysteresis during the coil-to-globule transition. The corresponding atomic scale conformations were characterized by monitoring the changes in the vibrational spectra, which provided a reliable metric to study the coil-to-globule transition in PNIPAM and vice-versa across the LCST. The vibrational spectra of bonds involving atoms from the oligomer backbone and the various side-groups (amide I, amide II, and the isopropyl group of PNIPAM) of the oligomers were analyzed to study the conformational changes in the oligomer corresponding to the observed hysteresis. The differences in the vibrational spectra calculated at various temperatures during heating and cooling cycles were used to understand the coil-to-globule and globule-to-coil transitions in the PNIPAM oligomer and identify the changes in the relative interactions between various atoms in the backbone and in the side groups of the oligomer with water. The shifts in the computed vibrational spectral peaks and the changes in the intensity of peaks for the different regions of PNIPAM, seen across the LCST during the heating cycle, are in good agreement with previous experimental studies. The changes in the radius of gyration (Rg) and vibrational spectra for amide I and amide II regions of PNIPAM suggest a clear coil-to-globule transition at ∼301 K during the

  5. Proposed Standard for a Microclimate Cooling System for Emergency Responder Operations

    Science.gov (United States)

    2012-02-17

    MICROCLIMATE COOLING SYSTEM FOR EMERGENCY RESPONDER OPERATIONS by Brad Laprise February 2012 Final Report August 2007...August 2007 - December 2010 4. TITLE AND SUBTITLE PROPOSED STANDARD FOR A MICROCLIMATE COOLING SYSTEM FOR EMERGENCY RESPONDER OPERATIONS 5a...of a Microclimate Cooling System (MCS), specifically for the Emergency Responder community. MCS have been shown to significantly improve mission

  6. Industrial Process Cooling Towers: National Emission Standards for Hazardous Air Pollutants

    Science.gov (United States)

    Standards limiting discharge of chromium compound air emissions from industrial process cooling towers (IPCT's). Includes rule history, Federal Registry citations, implementation information and additional resources.

  7. The Advancement of Cool Roof Standards in China from 2010 to 2015

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Jing [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Levinson, Ronnen M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-11-01

    Since the initiation of the U.S.-China Clean Energy Research Center-Building Energy Efficiency (CERC-BEE) cool roof research collaboration between the Lawrence Berkeley National Laboratory Heat Island Group and Chinese institutions in 2010, new cool surface credits (insulation trade- offs) have been adopted in Chinese building energy efficiency standards, industry standards, and green building standards. JGJ 75-2012: Design Standard for Energy Efficiency of Residential Buildings in Hot Summer and Warm Winter Zone became the first national level standard to provide cool surface credits. GB/T 50378-2014: Assessment Standard for Green Building is the first national level green building standard that offers points for heat island mitigation. JGJ/T 359-2015: Technical Specification for Application of Architectural Reflective Thermal Insulation Coating is the first industry standard that offers cool coating credits for both public and residential buildings in all hot-summer climates (Hot Summer/Cold Winter, Hot Summer/Warm Winter). As of December 2015, eight provinces or municipalities in hot-summer regions have credited cool surfaces credits in their residential and/or public building design standards; five other provinces or municipalities in hot-summer regions recommend, but do not credit, the use of cool surfaces in their building design standards. Cool surfaces could be further advanced in China by including cool roof credits for residential and public building energy efficiency standards in all hot-summer regions; developing a standardized process for natural exposure and aged-property rating of cool roofing products; and adapting the U.S.-developed laboratory aging process for roofing materials to replicate solar reflectance changes induced by natural exposure in China.

  8. Programming protein self assembly with coiled coils

    Science.gov (United States)

    Dietz, Hendrik; Bornschlögl, Thomas; Heym, Roland; König, Frauke; Rief, Matthias

    2007-11-01

    The controlled assembly of protein domains into supramolecular structures will be an important prerequisite for the use of functional proteins in future nanotechnology applications. Coiled coils are multimerization motifs whose dimerization properties can be programmed by amino acid sequence. Here, we report programmed supramolecular self-assembly of protein molecules using coiled coils and directly demonstrate its potential on the single molecule level by AFM force spectroscopy. We flanked two different model proteins, Ig27 from human cardiac titin and green fluorescent protein (GFP), by coiled coil binding partners and studied the capability of these elementary building blocks to self-assemble into linear chains. Simple sterical constraints are shown to control the assembly process, providing evidence that many proteins can be assembled with this method. An application for this technique is the design of polyproteins for single molecule force spectroscopy with an integrated force-calibration standard.

  9. 77 FR 60041 - Heating, Cooling, and Lighting Standards for Bureau-Funded Dormitory Facilities

    Science.gov (United States)

    2012-10-02

    ... 1076-AF10 Heating, Cooling, and Lighting Standards for Bureau-Funded Dormitory Facilities AGENCY... confirming the interim final rule published and effective on May 24, 2012, addressing heating, cooling, and... identified in the ``School Facilities Design Handbook'' (handbook) dated March 30, 2007, respecting heating...

  10. ARCIMBOLDO on coiled coils.

    Science.gov (United States)

    Caballero, Iracema; Sammito, Massimo; Millán, Claudia; Lebedev, Andrey; Soler, Nicolas; Usón, Isabel

    2018-03-01

    ARCIMBOLDO solves the phase problem by combining the location of small model fragments using Phaser with density modification and autotracing using SHELXE. Mainly helical structures constitute favourable cases, which can be solved using polyalanine helical fragments as search models. Nevertheless, the solution of coiled-coil structures is often complicated by their anisotropic diffraction and apparent translational noncrystallographic symmetry. Long, straight helices have internal translational symmetry and their alignment in preferential directions gives rise to systematic overlap of Patterson vectors. This situation has to be differentiated from the translational symmetry relating different monomers. ARCIMBOLDO_LITE has been run on single workstations on a test pool of 150 coiled-coil structures with 15-635 amino acids per asymmetric unit and with diffraction data resolutions of between 0.9 and 3.0 Å. The results have been used to identify and address specific issues when solving this class of structures using ARCIMBOLDO. Features from Phaser v.2.7 onwards are essential to correct anisotropy and produce translation solutions that will pass the packing filters. As the resolution becomes worse than 2.3 Å, the helix direction may be reversed in the placed fragments. Differentiation between true solutions and pseudo-solutions, in which helix fragments were correctly positioned but in a reverse orientation, was found to be problematic at resolutions worse than 2.3 Å. Therefore, after every new fragment-placement round, complete or sparse combinations of helices in alternative directions are generated and evaluated. The final solution is once again probed by helix reversal, refinement and extension. To conclude, density modification and SHELXE autotracing incorporating helical constraints is also exploited to extend the resolution limit in the case of coiled coils and to enhance the identification of correct solutions. This study resulted in a specialized mode

  11. 18th national meeting for energy saving promotion (prize winning case awarded by Ministry of International Trade and Industry). ; Saving energy in annealed coil cooling equipment by using volatile corrosion inhibitor. Dai 18 kai sho energy suishin zenkoku taikai (tsusho sangyo daijinsho jusho jirei); Kikasei boseizai ni yoru shodon coil reikyaku setsubi no sho energy

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-30

    A method and a device for preventing rust in annealed coils using volatile corrosion inhibitor (VCI) were put into practical use. Air cooling using dehumidified air and corrosion inhibiting air cooling have been used to prevent rusting caused by condensation on surfaces of coils being cooled, but these methods consume a very large amount of energy. As a result of discussing new corrosion inhibiting methods, cyclohexylamine carbonate (CHC) showed a highest corrosion prohibition capability as a VCI. Because CHC has a strong odor, new deodorants have been searched by combining it with special metallic salts. It was found that the range where a deodorant can be added without impeding the corrosion prohibiting effect is from 20% to 30%. A test for practical application indicated that rusting could be suppressed even using a VCI with concentration as low as 0.4 ppm to 0.8 ppm if the velocity of cooling air on coil surfaces is held from 0.2 m/s to 0.4 m/s. A high-accuracy continuous CHC analyzing method was established that uses a nitrogen oxide analyzer. The required installation space was reduced to 1/15 to 1/20 and the running cost to 1/8 to 1/10 of conventional methods. 11 figs., 4 tabs.

  12. A round robin test for pre-standardization of a saddle-shaped pickup coil method to measure AC losses in Bi-2223 Ag-sheathed tapes

    Energy Technology Data Exchange (ETDEWEB)

    Funaki, K. [Research Institute of Superconductor Science and Systems, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan)], E-mail: funaki@sc.kyushu-u.ac.jp; Iwakuma, M.; Sueyoshi, T. [Research Institute of Superconductor Science and Systems, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan); Fujikami, J.; Ayai, N.; Ishida, T. [Sumitomo Electric Industries Ltd., 1-1-3, Shimaya, Konohana-ku, Osaka 554-0024 (Japan); Tanaka, Y. [International Superconductivity Technology Center, 5-34-3 Shinbashi, Minato-ku, Tokyo 105-0004 (Japan); Osamura, K. [Research Institute for Applied Sciences, 49 Tanaka Ohicho, Sakyo-ku, Kyoto 606-8202 (Japan)

    2008-09-15

    We performed a round robin test to measure AC losses in Bi-2223 Ag-sheathed tapes with saddle-shaped pickup coils in an alternating perpendicular magnetic field at liquid nitrogen temperature. Two laboratories participated in the round robin test with each system of the pickup coil and the measurement circuit. Short specimens of a Bi-2223 tape and a copper magnet to generate the alternating magnetic field were used for common conditions in the test. The saddle-shaped pickup coils were made under recommended conditions for the structure and the sizes that give a calibration coefficient around unity. The signals of the magnetic moment from the pickup coils were calibrated by using a standard hairpin copper tape. AC losses of the common specimen of the Bi-2223 tape were measured in the round robin test in the ranges of frequency up to 60 Hz and the amplitude up to 0.2 T of perpendicular magnetic field. While we had only two participants in the test, we obtained the following results in a pre-standardization process of the AC loss measurement with the saddle-shaped pickup coil (i) it was suggested from the calibration procedure using hairpin copper tape that the deviations from numerical simulation for an ideal pickup coil and a sufficiently long specimen is within 3% on an average, (ii) the values of COV for the AC losses measured at 1 Hz and 10 Hz are less than about 3% in the range of the field amplitude between 0.02 T and 0.2 T.

  13. IAEA Workshop (Training Course) on Codes and Standards for Sodium Cooled Fast Reactors. Working Material

    International Nuclear Information System (INIS)

    2010-01-01

    The training course consisted of lectures and Q&A sessions. The lectures dealt with the history of the development of Design Codes and Standards for Sodium Cooled Fast Reactors (SFRs) in the respective country, the detailed description of the current design Codes and Standards for SFRs and their application to ongoing Fast Reactor design projects, as well as the ongoing development work and plans for the future in this area. Annex 1 contains the detailed Workshop program

  14. Standard Test Method for Measuring Heat Flux Using a Water-Cooled Calorimeter

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers the measurement of a steady heat flux to a given water-cooled surface by means of a system energy balance. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  15. Large coil program support structure conceptual design

    International Nuclear Information System (INIS)

    Litherland, P.S.

    1977-01-01

    The purpose of the Large Coil Program (LCP) is to perform tests on both pool boiling and force cooled superconducting toroidal field coils. The tests will attempt to approximate conditions anticipated in an ignition tokamak. The test requirements resulted in a coil support design which accommodates up to six (6) test coils and is mounted to a structure capable of resisting coil interactions. The steps leading to the present LCP coil support structure design, details on selected structural components, and the basic assembly sequence are discussed

  16. Draft of standard for graphite core components in high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Shibata, Taiju; Sawa, Kazuhiro; Eto, Motokuni; Kunimoto, Eiji; Shiozawa, Shusaku; Oku, Tatsuo; Maruyama, Tadashi

    2010-01-01

    For the design of the graphite components in the High Temperature Engineering Test Reactor (HTTR), the graphite structural design code for the HTTR etc. were applied. However, general standard systems for the High Temperature Gas-cooled Reactor (HTGR) have not been established yet. The authors had studied on the technical issues which is necessary for the establishment of a general standard system for the graphite components in the HTGR. The results of the study were documented and discussed at a 'Special committee on research on preparation for codes for graphite components in HTGR' at Atomic Energy Society of Japan (AESJ). As a result, 'Draft of Standard for Graphite Core Components in High Temperature Gas-cooled Reactor.' was established. In the draft standard, the graphite components are classified three categories (A, B and C) in the standpoints of safety functions and possibility of replacement. For the components in the each class, design standard, material and product standards, and in-service inspection and maintenance standard are determined. As an appendix of the design standard, the graphical expressions of material property data of 1G-110 graphite as a function of fast neutron fluence are expressed. The graphical expressions were determined through the interpolation and extrapolation of the irradiated data. (author)

  17. Endovascular cooling versus standard femoral catheters and intravascular complications: A propensity-matched cohort study.

    Science.gov (United States)

    Andremont, Olivier; du Cheyron, Damien; Terzi, Nicolas; Daubin, Cedric; Seguin, Amélie; Valette, Xavier; Lecoq, Flore-Anne; Parienti, Jean-Jacques; Sauneuf, Bertrand

    2018-03-01

    Targeted temperature management (TTM) contributes to improved neurological outcome in adults who have been successfully resuscitated after cardiac arrest with shockable rhythm. Endovascular cooling catheters are widely used to induce and maintain targeted temperature in the ICU. The aim of the study was to compare the risk of complications with cooling catheters and standard central venous catheters. In this prospective single-centre cohort study, we included all patients admitted to an intensive care unit for successfully resuscitated cardiac arrest that required endovascular TTM (Coolgard ® , Zoll™ Medical corporation, MA, USA), between August 2012 and November 2014, inclusive. We matched the endovascular cooling catheter cohort with a retrospective historical cohort of 512 central femoral venous catheters from the 3SITES trial to compare thrombotic and infectious complications. Overall, 108 patients were included in the cooling cohort, of which 89 had ultrasound doppler. The duration of catheterization was 4.9 days in the control group versus 4.2 days in the TTM group (p = 0.08). After propensity-score matching, there were significantly more thrombotic complications in the cooling (n = 75) than in the control (n = 75) group (12 of 75 (16%) versus 0 of 75 (0%), respectively, p = 0.005), and 4 patients presented major complications. There were 8 colonized catheters in each group (11%) (p > 0.99), and none of the patients had a catheter-related bloodstream infection. In our propensity-score matched study, endovascular cooling catheters were associated with an increased risk of venous catheter-related thrombosis compared to standard central venous catheters. Copyright © 2017. Published by Elsevier B.V.

  18. Nylon screws make inexpensive coil forms

    Science.gov (United States)

    Aucoin, G.; Rosenthal, C.

    1978-01-01

    Standard nylon screws act as coil form copper wire laid down in spiral thread. Completed coil may be bonded to printed-circuit board. However, it is impossible to tune coil by adjusting spacing between windings, technique sometimes used with air-core coils.

  19. A standardized technique for high-pressure cooling of protein crystals.

    Science.gov (United States)

    Quirnheim Pais, David; Rathmann, Barbara; Koepke, Juergen; Tomova, Cveta; Wurzinger, Paul; Thielmann, Yvonne

    2017-12-01

    Cryogenic temperatures slow down secondary radiation damage during data collection from macromolecular crystals. In 1973, cooling at high pressure was identified as a method for cryopreserving crystals in their mother liquor [Thomanek et al. (1973). Acta Cryst. A29, 263-265]. Results from different groups studying different crystal systems indicated that the approach had merit, although difficulties in making the process work have limited its widespread use. Therefore, a simplified and reliable technique has been developed termed high-pressure cooling (HPC). An essential requirement for HPC is to protect crystals in capillaries. These capillaries form part of new sample holders with SPINE standard dimensions. Crystals are harvested with the capillary, cooled at high pressure (220 MPa) and stored in a cryovial. This system also allows the usage of the standard automation at the synchrotron. Crystals of hen egg-white lysozyme and concanavalin A have been successfully cryopreserved and yielded data sets to resolutions of 1.45 and 1.35 Å, respectively. Extensive work has been performed to define the useful working range of HPC in capillaries with 250 µm inner diameter. Three different 96-well crystallization screens that are most frequently used in our crystallization facility were chosen to study the formation of amorphous ice in this cooling setup. More than 89% of the screening solutions were directly suitable for HPC. This achievement represents a drastic improvement for crystals that suffered from cryoprotection or were not previously eligible for cryoprotection.

  20. Poloidal coils for the Large Helical Device (LHD)

    International Nuclear Information System (INIS)

    Takahata, K.; Satow, T.; Iwamoto, A.

    1996-01-01

    Poloidal coil system of the Large Helical Device (LHD) consists of three pairs of circular solenoids; Inner Vertical (IV), Inner shaping (IS) and Outer Vertical (OV) coils. Forced flow cooling is adopted as a cooling method of the poloidal coils. The conductors of the poloidal coils are Nb-Ti cable-in-conduit types. Each coil consists of eight double-pancake coils, and coolant flows in parallel from the inner turns to the outer turns. A superconducting joint technique is adopted in the joints among the double-pancake coils. Miniaturized joints and severe quality control bring the reduction of error field. (author)

  1. Rope coiling

    Indian Academy of Sciences (India)

    Sitichoke Amnuanpol

    2017-10-19

    Oct 19, 2017 ... In rope coiling the centre of the circle is static. How- ever, it evolves in time as seen in the curling of .... friction force between the rope and the plane, because no significant changes in the coiling radius R and ... friction force relative to the axial compressive forces,. i.e. gravitational force and inertial force, ...

  2. Rope coiling

    Indian Academy of Sciences (India)

    We present the results of the combined experimental and theoretical investigation of rope coiling arising from the buckling instability. The shape of the rope is perfectly circular in the coiling region and is straight in the region below the feeding point. In between these two distant regions, the rope assumes a catenary-like ...

  3. Dick Effect in a Microwave Frequency Standard Based on Laser-Cooled 113Cd+ Ions

    Science.gov (United States)

    Zhang, Jian-Wei; Miao, Kai; Wang, Li-Jun

    2015-01-01

    The Dick effect is one of the main limits to the frequency stability of a passive frequency standard, especially for the fountain clock and ion clock operated in pulsed mode which require unavoidable dead time during interrogation. Here we measure the phase noise of the interrogation oscillator applied in the microwave frequency standard based on laser-cooled 113Cd+ ions, and analyze the Allan deviation limited by the Dick effect. The results indicate that the Dick effect is one of the key issues for the cadmium ion clock to reach expected frequency stability. This problem can be resolved by interrogating the local oscillator continuously with two ion traps.

  4. α/β coiled coils

    Science.gov (United States)

    Hartmann, Marcus D; Mendler, Claudia T; Bassler, Jens; Karamichali, Ioanna; Ridderbusch, Oswin; Lupas, Andrei N; Hernandez Alvarez, Birte

    2016-01-01

    Coiled coils are the best-understood protein fold, as their backbone structure can uniquely be described by parametric equations. This level of understanding has allowed their manipulation in unprecedented detail. They do not seem a likely source of surprises, yet we describe here the unexpected formation of a new type of fiber by the simple insertion of two or six residues into the underlying heptad repeat of a parallel, trimeric coiled coil. These insertions strain the supercoil to the breaking point, causing the local formation of short β-strands, which move the path of the chain by 120° around the trimer axis. The result is an α/β coiled coil, which retains only one backbone hydrogen bond per repeat unit from the parent coiled coil. Our results show that a substantially novel backbone structure is possible within the allowed regions of the Ramachandran space with only minor mutations to a known fold. DOI: http://dx.doi.org/10.7554/eLife.11861.001 PMID:26771248

  5. Structural specificity in coiled-coil interactions

    OpenAIRE

    Grigoryan, Gevorg; Keating, Amy E.

    2008-01-01

    Coiled coils have a rich history in the field of protein design and engineering. Novel structures, such as the first 7-helix coiled coil, continue to provide surprises and insights. Large-scale data sets quantifying the influence of systematic mutations on coiled-coil stability are a valuable new asset to the area. Scoring methods based on sequence and/or structure can predict interaction preferences in coiled-coil-mediated bZIP transcription factor dimerization. Experimental and computationa...

  6. Analysis of quench development in a cryocooler cooled Bi-2223 pancake coil based on the anisotropic transport E-J characteristics in a short tape sample

    NARCIS (Netherlands)

    Kiss, T.; Noda, S.; Nishimura, S.; Ohya, K.; Utsunomiya, D.; Ilyin, Y.; Okamoto, H.

    2001-01-01

    By calculating the magnetic field distribution in a stacked pancake coil with use of finite element method and by taking into account the transport properties obtained in a short tape sample, we predict the electric field vs. current density, E–J, characteristics depending on the position inside the

  7. Dimensional change of heat-cured acrylic resin dentures with three different cooling regimes following a standard curing cycle.

    Science.gov (United States)

    Moturi, Bhanodaya; Juszczyk, Andrzej S; Radford, David R; Clark, Robert K F

    2005-12-01

    The aim of the study was to compare dimensional changes in poly(methylmethacrylate) complete denture bases resulting from three different cooling regimens following a standard heating cycle. Changes in three separate dimensions were measured on ten dentures within each cooling regimen after curing, and before and after removing the denture from the cast using a computer imaging system. No consistent differences occurred as a result of removing the denture from the cast. The results indicated that there was greater change in dimension of dentures with the quenching cooling method than with either overnight cooling in the water bath or bench cooling. This was particularly evident after removal from the cast after curing (p<0.001). It is concluded that slow cooling results in less dimensional change.

  8. Ejector COIL

    Science.gov (United States)

    Nikolaev, Valeriy D.; Svistun, Michael I.; Zagidullin, Marsel V.

    2004-06-01

    The historical ejector-like chemical oxygen iodine laser (COIL) contribution at the Lebedev Physical Institute, Samara Branch is briefly presented. Two possible schemes of such COIL which provide the high exhaust pressure are considered. The high-pressure hot driver nitrogen is carrier of iodine vapor in the first scheme. In the second version the additional nozzles with the low-pressure secondary nitrogen are employed for injection iodine vapor but the pure high-pressure driver nitrogen has the room temperature. The last COIL version was investigated in Lebedev Physical Institute in more detail and results of these investigations are presented. This ejector nozzle bank generates gain medium with high Mach number, low temperature and high gain. A high chemical efficiency up to 25% and the potential pressure recovery up to 90 torr have been achieved simultaneously.

  9. Toroidal field coils for the PDX machine

    International Nuclear Information System (INIS)

    Bushnell, C.W.

    1975-01-01

    This paper describes the engineering design features of the TF coils for the PDX machine. Included are design details of the electrical insulation, water cooling, and coil segment joint which allows access to the central machine area. A discussion of the problems anticipated in the manufacture and the planned solutions are presented

  10. Superconducting cyclotron magnet coil short

    International Nuclear Information System (INIS)

    Mallory, M.L.; Blosser, H.G.; Clark, D.J.; Launer, H.; Lawton, D.; Miller, P.; Resmini, F.

    1982-01-01

    In February 1981, a short circuit appeared in the superconducting coil of the K500 cyclotron. The short is resistive in character and therefore has no effect on steady state operation of the magnet. The resistance of the short varies, sometimes being below threshold of detection as a heat load on the cooling system and sometimes being significant. The resistance under certain conditions shows approximately cyclic phenomena with time constants in the range of seconds and other approximately cyclic phenomena which correlate with gross operating parameters of the magnet (shifting current from one coil to another at high field and lowering and raising the liquid helium level). A number of diagnostic studies of the short have been made, using 1) an array of flux sensing loops to sense the magnetic effect of the short, 2) voltage comparisons between upper and lower sections of the coil, 3) comparisons of forces in the nine member coil support system and 4) the effect of the short on the thermal charactersitics of the coil. Insulation failure or a metal chip shorting out turns have been explored in some detail but a convincing determination of the exact cause of the short may never be available, (even the extreme step of unwinding the coil having a significant probability that an imperfection with the observed characteristics would pass unnoticed). Analysis of the characteristics of the short indicated that the most serious consequence would be failure of the coils mechanical support system in the event that the magnet was quickly discharged, as in a dump or quench. To deal with this hazard, the support system has been modified by installing solid supports which prevent the coil from moving by an amount sufficient to damage the support system. We have also reexamined the data and calculations used in the original coil design and have made some additional measurements of the properties of the materials (yield strength, friction coefficient, Young's modulus) used in the

  11. The IEA Large Coil Task

    International Nuclear Information System (INIS)

    Beard, D.S.; Klose, W.; Shimamoto, S.; Vecsey, G.

    1988-01-01

    A multinational program of cooperative research, development, demonstrations, and exchanges of information on superconducting magnets for fusion was initiated in 1977 under an IEA agreement. The first major step in the development of TF magnets was called the Large Coil Task. Participants in LCT were the U.S. DOE, EURATOM, JAERI, and the Departement Federal de l'Interieur of Switzerland. The goals of LCT were to obtain experimental data, to demonstrate reliable operation of large superconducting coils, and to prove design principles and fabrication techniques being considered for the toroidal magnets of thermonuclear reactors. These goals were to be accomplished through coordinated but largely independent design, development, and construction of six test coils, followed by collaborative testing in a compact toroidal test array at fields of 8 T and higher. Under the terms of the IEA Agreement, the United States built and operated the test facility at Oak Ridge and provided three test coils. The other participants provided one coil each. Information on design and manufacturing and all test data were shared by all. The LCT team of each participant included a government laboratory and industrial partners or contractors. The last coil was completed in 1985, and the test assembly was completed in October of that year. Over the next 23 months, the six-coil array was cooled down and extensive testing was performed. Results were gratifying, as tests achieved design-point performance and well beyond. (Each coil reached a peak field of 9 T.) Experiments elucidated coil behavior, delineated limits of operability, and demonstrated coil safety. (orig./KP)

  12. Coil protection calculator for TFTR

    International Nuclear Information System (INIS)

    Marsala, R.J.; Lawson, J.E.; Persing, R.G.; Senko, T.R.; Woolley, R.D.

    1989-01-01

    A new coil protection system (CPS) is being developed to replace the existing TFTR magnetic coil fault detector. The existing fault detector sacrifices TFTR operating capability for simplicity. The new CPS, when installed in October of 1988, will permit operation up to the actual coil stress limits parameters in real-time. The computation will be done in a microprocessor based Coil Protection Calculator (CPC) currently under construction at PPL. THe new CPC will allow TFTR to operate with higher plasma currents and will permit the optimization of pulse repetition rates. The CPC will provide real-time estimates of critical coil and bus temperatures and stresses based on real-time redundant measurements of coil currents, coil cooling water inlet temperature, and plasma current. The critical parameter calculations are compared to prespecified limits. If these limits are reached or exceeded, protection action will be initiated to a hard wired control system (HCS), which will shut down the power supplies. The CPC consists of a redundant VME based microprocessor system which will sample all input data and compute all stress quantities every ten milliseconds. Thermal calculations will be approximated every 10ms with an exact solution occurring every second. The CPC features continuous cross-checking of redundant input signal, automatic detection of internal failure modes, monitoring and recording of calculated results, and a quick, functional verification of performance via an internal test system. (author)

  13. Notes on the creation of high magnetic fields. Cooling of the coils; Considerations sur la creation de champs magnetiques eleves. Refroidissement des bobines

    Energy Technology Data Exchange (ETDEWEB)

    Armand, G. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1961-07-01

    When the temperature of a conductor is lowered, its resistance decreases appreciably. This fact can be made particular use of in the production of high magnetic fields, to reduce the total energy consumed for a given coil. In this paper the problem of the evacuation of heat is examined, and the various fluids which can be used are compared from the viewpoint of the maximum fields attainable from them for a given coil. These fluids are: - water (nucleate boiling); - liquid nitrogen; - liquid hydrogen; - helium at a temperature of 20 deg. K; - helium at a temperature of 10 deg. K. First of all a method for calculating the quantities of heat evacuated by a fluid is established, using general equations for fluid flow with heat exchange. (author) [French] Lorsque l'on abaisse la temperature d'un conducteur, sa resistivite diminue d'une facon sensible. Ce fait peut etre mis a profit notamment en vue de la production de champs magnetiques eleves, de facon a reduire l'energie totale consommee pour une bobine donnee. Dans ce qui suit, le probleme de l'evacuation des pertes Joules est examinee et les differents fluides utilisables sont compares du point de vue des champs maximum qu'ils permettent d'atteindre pour une bobine donnee. Ces fluides sont: - l'eau (nucleate boiling); - l'azote liquide; - l'hydrogene liquide; - l'helium a une temperature de 20 deg. K; - l'helium a une temperature de 10 deg. K. Au prealable une methode de calcul des quantites de chaleur evacuee par un fluide est etablie, a partir des equations globales de dynamique des fluides avec echange de chaleur. (auteur)

  14. Large coil test facility conceptual design report

    International Nuclear Information System (INIS)

    Nelms, L.W.; Thompson, P.B.; Mann, T.L.

    1978-02-01

    In the development of a superconducting toroidal field (TF) magnet for The Next Step (TNS) tokamak reactor, several different TF coils, about half TNS size, will be built and tested to permit selection of a design and fabrication procedure for full-scale TNS coils. A conceptual design has been completed for a facility to test D-shaped TF coils, 2.5 x 3.5-m bore, operating at 4-6 K, cooled either by boiling helium or by forced-flow supercritical helium. Up to six coils can be accommodated in a toroidal array housed in a single vacuum tank. The principal components and systems in the facility are an 11-m vacuum tank, a test stand providing structural support and service connections for the coils, a liquid nitrogen system, a system providing helium both as saturated liquid and at supercritical pressure, coils to produce a pulsed vertical field at any selected test coil position, coil power supplies, process instrumentation and control, coil diagnostics, and a data acquisition and handling system. The test stand structure is composed of a central bucking post, a base structure, and two horizontal torque rings. The coils are bolted to the bucking post, which transmits all gravity loads to the base structure. The torque ring structure, consisting of beams between adjacent coils, acts with the bucking structure to react all the magnetic loads that occur when the coils are energized. Liquid helium is used to cool the test stand structure to 5 K to minimize heat conduction to the coils. Liquid nitrogen is used to precool gaseous helium during system cooldown and to provide thermal radiation shielding

  15. Thermal tissue damage model analyzed for different whole-body SAR and scan durations for standard MR body coils.

    Science.gov (United States)

    Murbach, Manuel; Neufeld, Esra; Capstick, Myles; Kainz, Wolfgang; Brunner, David O; Samaras, Theodoros; Pruessmann, Klaas P; Kuster, Niels

    2014-01-01

    This article investigates the safety of radiofrequency induced local thermal hotspots within a 1.5T body coil by assessing the transient local peak temperatures as a function of exposure level and local thermoregulation in four anatomical human models in different Z-positions. To quantize the effective thermal stress of the tissues, the thermal dose model cumulative equivalent minutes at 43°C was employed, allowing the prediction of thermal tissue damage risk and the identification of potentially hazardous MR scan-scenarios. The numerical results were validated by B1 (+) - and skin temperature measurements. At continuous 4 W/kg whole-body exposure, peak tissue temperatures of up to 42.8°C were computed for the thermoregulated model (60°C in nonregulated case). When applying cumulative equivalent minutes at 43°C damage thresholds of 15 min (muscle, skin, fat, and bone) and 2 min (other), possible tissue damage cannot be excluded after 25 min for the thermoregulated model (4 min in nonregulated). The results are found to be consistent with the history of safe use in MR scanning, but not with current safety guidelines. For future safety concepts, we suggest to use thermal dose models instead of temperatures or SAR. Special safety concerns for patients with impaired thermoregulation (e.g., the elderly, diabetics) should be addressed. Copyright © 2013 Wiley Periodicals, Inc.

  16. Testing electrical insulation of LCT coils and instrumentation

    International Nuclear Information System (INIS)

    Luton, J.N.; Ulbricht, A.R.; Ellis, J.F.; Shen, S.S.; Wilson, C.T.; Okuno, K.; Siewerdt, L.O.; Zahn, G.R.; Zichy, J.A.

    1986-09-01

    Three of the superconducting test coils in the Large Coil Task (LCT) use conductors cooled internally by forced flow of helium. In the other three coils, the conductors are cooled externally by a bath of helium. The coils and facility are designed for rapid discharges (dumps) at voltages up to 2.5 kV, depending on coil design. Many coil sensors are connected electrically to the conductors. These sensor leads and signal conditioning equipment also experience high voltage. High-potential tests of ground insulation were performed on all components of the International Fusion Superconducting Magnet Test Facility (IFSMTF). Coil insulation was also tested by ring-down tests that produced voltage distributions within the coils like those occurring during rapid discharge. Methods were developed to localize problem areas and to eliminate them. The effect on breakdown voltage near the Paschen minimum of magnetic fields up to 2 T was investigated

  17. Merging fluxgate and induction coil data to produce low-noise geomagnetic observatory data meeting the INTERMAGNET definitive 1 s data standard

    Science.gov (United States)

    Brunke, Heinz-Peter; Widmer-Schnidrig, Rudolf; Korte, Monika

    2017-11-01

    For frequencies above 30 mHz the instrument intrinsic noise level of typical fluxgate magnetometers used at geomagnetic observatories usually masks ambient magnetic field variations on magnetically quiet days. This is especially true for stations located at middle and low latitudes, where variations are generally smaller than at high latitudes. INTERMAGNET has set a minimum quality standard for definitive 1 s data. Natural field variations referred to as pulsations (Pc-1, Pc-2, Pi-1) fall in this band. Usually their intensity is so small that they rarely surpass the instrumental noise of fluxgate magnetometers. Moreover, high-quality magnetic field observations in the band 30 mHz-0.5 Hz contain interesting information, e.g., for the study of ionospheric electron interactions with electromagnetic ion cyclotron plasma waves. We propose a method to improve 1 Hz observatory data by merging data from the proven and tested fluxgate magnetometers currently in use with induction coil magnetometers into a single data stream. We show how measurements of both instruments can be combined without information loss or phase distortion. The result is a time series of the magnetic field vector components, combining the benefits of both instruments: long-term stability (fluxgate) and low noise at high frequencies (induction coil). This new data stream fits perfectly into the data management procedures of INTERMAGNET and meets the requirements defined in the definitive 1 s data standard. We describe the applied algorithm and validate the result by comparing power spectra of the fluxgate magnetometer output with the merged signal. Daily spectrograms from the Niemegk observatory show that the resulting data series reveal information at frequencies above 30 mHz that cannot be seen in raw fluxgate data.

  18. Merging fluxgate and induction coil data to produce low-noise geomagnetic observatory data meeting the INTERMAGNET definitive 1 s data standard

    Directory of Open Access Journals (Sweden)

    H.-P. Brunke

    2017-11-01

    Full Text Available For frequencies above 30 mHz the instrument intrinsic noise level of typical fluxgate magnetometers used at geomagnetic observatories usually masks ambient magnetic field variations on magnetically quiet days. This is especially true for stations located at middle and low latitudes, where variations are generally smaller than at high latitudes. INTERMAGNET has set a minimum quality standard for definitive 1 s data. Natural field variations referred to as pulsations (Pc-1, Pc-2, Pi-1 fall in this band. Usually their intensity is so small that they rarely surpass the instrumental noise of fluxgate magnetometers. Moreover, high-quality magnetic field observations in the band 30 mHz–0.5 Hz contain interesting information, e.g., for the study of ionospheric electron interactions with electromagnetic ion cyclotron plasma waves. We propose a method to improve 1 Hz observatory data by merging data from the proven and tested fluxgate magnetometers currently in use with induction coil magnetometers into a single data stream. We show how measurements of both instruments can be combined without information loss or phase distortion. The result is a time series of the magnetic field vector components, combining the benefits of both instruments: long-term stability (fluxgate and low noise at high frequencies (induction coil. This new data stream fits perfectly into the data management procedures of INTERMAGNET and meets the requirements defined in the definitive 1 s data standard. We describe the applied algorithm and validate the result by comparing power spectra of the fluxgate magnetometer output with the merged signal. Daily spectrograms from the Niemegk observatory show that the resulting data series reveal information at frequencies above 30 mHz that cannot be seen in raw fluxgate data.

  19. Coiled-Coil Design: Updated and Upgraded.

    Science.gov (United States)

    Woolfson, Derek N

    2017-01-01

    α-Helical coiled coils are ubiquitous protein-folding and protein-interaction domains in which two or more α-helical chains come together to form bundles. Through a combination of bioinformatics analysis of many thousands of natural coiled-coil sequences and structures, plus empirical protein engineering and design studies, there is now a deep understanding of the sequence-to-structure relationships for this class of protein architecture. This has led to considerable success in rational design and what might be termed in biro de novo design of simple coiled coils, which include homo- and hetero-meric parallel dimers, trimers and tetramers. In turn, these provide a toolkit for directing the assembly of both natural proteins and more complex designs in protein engineering, materials science and synthetic biology. Moving on, the increased and improved use of computational design is allowing access to coiled-coil structures that are rare or even not observed in nature, for example α-helical barrels, which comprise five or more α-helices and have central channels into which different functions may be ported. This chapter reviews all of these advances, outlining improvements in our knowledge of the fundamentals of coiled-coil folding and assembly, and highlighting new coiled coil-based materials and applications that this new understanding is opening up. Despite considerable progress, however, challenges remain in coiled-coil design, and the next decade promises to be as productive and exciting as the last.

  20. Crystallographic study on oligonucleotide coiled-coils

    OpenAIRE

    Luchi, Daniela de

    2008-01-01

    En la presente tesis doctoral se han realizado estudios estructurales de DNA. Estudios previos han demostrado que los coiled-coils de d(ATATATATATAT) y d(ATATATATAT) tienen unos parámetros geométricos muy diferentes. El objetivo de esta tesis es aclarar las propiedades de los coiled-coils.Con esta finalidad se han estudiado por cristalografía de Rayos X oligonucleótidos con diferentes secuencias y con extremos cohesivos que fijen la geometría de los coiled-coils. Se han utilizado oligonucleót...

  1. Heat exchanger with auxiliary cooling system

    Science.gov (United States)

    Coleman, John H.

    1980-01-01

    A heat exchanger with an auxiliary cooling system capable of cooling a nuclear reactor should the normal cooling mechanism become inoperable. A cooling coil is disposed around vertical heat transfer tubes that carry secondary coolant therethrough and is located in a downward flow of primary coolant that passes in heat transfer relationship with both the cooling coil and the vertical heat transfer tubes. A third coolant is pumped through the cooling coil which absorbs heat from the primary coolant which increases the downward flow of the primary coolant thereby increasing the natural circulation of the primary coolant through the nuclear reactor.

  2. Testing Lorentz Invariance with Laser-Cooled Cesium Atomic Frequency Standards

    Science.gov (United States)

    Klipstein, William M.

    2004-01-01

    This slide presentation reviews the Lorentz invariance testing during the proposed PARCS experiment. It includes information on the primary atomic reference clock in space (PARCS), cesium, laser cooling, and the vision for the future.

  3. Predicting coiled coils by use of pairwise residue correlations.

    OpenAIRE

    Berger, B; Wilson, D B; Wolf, E; Tonchev, T; Milla, M; Kim, P S

    1995-01-01

    A method is presented that predicts coiled-coil domains in protein sequences by using pairwise residue correlations obtained from a (two-stranded) coiled-coil database of 58,217 amino acid residues. A program called PAIRCOIL implements this method and is significantly better than existing methods at distinguishing coiled coils from alpha-helices that are not coiled coils. The database of pairwise residue correlations suggests structural features that stabilize or destabilize coiled coils.

  4. Large magnetic coils for fusion technology

    International Nuclear Information System (INIS)

    Komarek, P.; Ulbricht, A.

    1989-01-01

    This paper reviews the current status of research in this field and outlines future tasks and experiments for the Next European Torus (NET). Research and development work accomplished so far permits generation and safe operation of magnetic fields up to 9 T by means of NbTi coils. Fields up to 11 T are feasible if the coils are cooled with superfluid helium at 1.8 K. The potential of the Nb 3 Sn coils promise achievement of magnetic fields between 12 and 13 T. (MM) [de

  5. Evolutionary patterns in coiled-coils.

    Science.gov (United States)

    Surkont, Jaroslaw; Pereira-Leal, Jose B

    2015-01-10

    Models of protein evolution are used to describe evolutionary processes, for phylogenetic analyses and homology detection. Widely used general models of protein evolution are biased toward globular domains and lack resolution to describe evolutionary processes for other protein types. As three-dimensional structure is a major constraint to protein evolution, specific models have been proposed for other types of proteins. Here, we consider evolutionary patterns in coiled-coil forming proteins. Coiled-coils are widespread structural domains, formed by a repeated motif of seven amino acids (heptad repeat). Coiled-coil forming proteins are frequently rods and spacers, structuring both the intracellular and the extracellular spaces that often form protein interaction interfaces. We tested the hypothesis that due to their specific structure the associated evolutionary constraints differ from those of globular proteins. We showed that substitution patterns in coiled-coil regions are different than those observed in globular regions, beyond the simple heptad repeat. Based on these substitution patterns we developed a coiled-coil specific (CC) model that in the context of phylogenetic reconstruction outperforms general models in tree likelihood, often leading to different topologies. For multidomain proteins containing both a coiled-coil region and a globular domain, we showed that a combination of the CC model and a general one gives higher likelihoods than a single model. Finally, we showed that the model can be used for homology detection to increase search sensitivity for coiled-coil proteins. The CC model, software, and other supplementary materials are available at http://www.evocell.org/cgl/resources (last accessed January 29, 2015). © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. Designed Coiled Coils Promote Folding of a Recombinant Bacterial Collagen*

    Science.gov (United States)

    Yoshizumi, Ayumi; Fletcher, Jordan M.; Yu, Zhuoxin; Persikov, Anton V.; Bartlett, Gail J.; Boyle, Aimee L.; Vincent, Thomas L.; Woolfson, Derek N.; Brodsky, Barbara

    2011-01-01

    Collagen triple helices fold slowly and inefficiently, often requiring adjacent globular domains to assist this process. In the Streptococcus pyogenes collagen-like protein Scl2, a V domain predicted to be largely α-helical, occurs N-terminal to the collagen triple helix (CL). Here, we replace this natural trimerization domain with a de novo designed, hyperstable, parallel, three-stranded, α-helical coiled coil (CC), either at the N terminus (CC-CL) or the C terminus (CL-CC) of the collagen domain. CD spectra of the constructs are consistent with additivity of independently and fully folded CC and CL domains, and the proteins retain their distinctive thermal stabilities, CL at ∼37 °C and CC at >90 °C. Heating the hybrid proteins to 50 °C unfolds CL, leaving CC intact, and upon cooling, the rate of CL refolding is somewhat faster for CL-CC than for CC-CL. A construct with coiled coils on both ends, CC-CL-CC, retains the ∼37 °C thermal stability for CL but shows less triple helix at low temperature and less denaturation at 50 °C. Most strikingly however, in CC-CL-CC, the CL refolds slower than in either CC-CL or CL-CC by almost two orders of magnitude. We propose that a single CC promotes folding of the CL domain via nucleation and in-register growth from one end, whereas initiation and growth from both ends in CC-CL-CC results in mismatched registers that frustrate folding. Bioinformatics analysis of natural collagens lends support to this because, where present, there is generally only one coiled-coil domain close to the triple helix, and it is nearly always N-terminal to the collagen repeat. PMID:21454493

  7. A Non-perturbing Probe of Coiled Coil Formation Based on Electron Transfer Mediated Fluorescence Quenching.

    Science.gov (United States)

    Watson, Matthew D; Peran, Ivan; Raleigh, Daniel P

    2016-07-05

    Coiled coils are abundant in nature, occurring in ∼3% of proteins across sequenced genomes, and are found in proteins ranging from transcription factors to structural proteins. The motif continues to be an important model system for understanding protein-protein interactions and is finding increased use in bioinspired materials and synthetic biology. Knowledge of the thermodynamics of self-assembly, particularly the dissociation constant KD, is essential for the application of designed coiled coils and for understanding the in vivo specificity of natural coiled coils. Standard methods for measuring KD typically rely on concentration dependent circular dichroism (CD). Fluorescence methods are an attractive alternative; however Trp is rarely found in an interior position of a coiled coil, and appending unnatural fluorophores can perturb the system. We demonstrate a simple, non-perturbing method to monitor coiled coil formation using p-cyanophenylalanine (FCN) and selenomethionine (MSe), the Se analogue of Met. FCN fluorescence can be selectively excited and is effectively quenched by electron transfer with MSe. Both FCN and MSe represent minimally perturbing substitutions in coiled coils. MSe quenching of FCN fluorescence is shown to offer a non-perturbing method for following coiled coil formation and for accurately determining dissociation constants. The method is validated using a designed heterodimeric coiled coil. The KD deduced by fluorescence monitored titration is in excellent agreement with the value deduced from concentration dependent CD measurements to within the uncertainty of the measurement. However, the fluorescence approach requires less protein, is less time-consuming, can be applied to lower concentrations and could be applied to high throughput screens.

  8. Progress on large superconducting toroidal field coils

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Luton, J.N.; Thompson, P.B.; Beard, D.S.

    1979-01-01

    Large superconducting toroidal field coils of competing designs are being produced by six major industrial teams. In the US, teams headed by General Dynamics Convair, General Electric, and Westinghouse are under contract to design and fabricate one coil each to specifications established by the Large Coil Program. A facility for testing 6 coils in a toroidal array at fields to 8 to 12 tesla is under construction at Oak Ridge. Through an international agreement, EURATOM, Japan, and Switzerland will produce one coil each for testing with the US coils. Each test coil will have a 2.5 x 3.5 m D-shape winding bore and is designed to operate at a current of 10 to 18 kA at a peak field of 8T while subjected to pulsed fields of 0.14 T applied in 1.0 s. There are significant differences among the six coil designs: five use NbTi, one Nb 3 Sn; three are cooled by pool boiling helium, three by forced flow; five have welded or bolted stainless steel coil cases, one has aluminum plate structure. All are designed to be cryostable at 8T, with structural margin for extended operation. The three US coil teams are almost or completely finished with detailed design and are now procuring materials and setting up manufacturing equipment. The non-US teams are at various stages of verification testing and design. The GDC and GE coils are scheduled for delivery in the spring of 1981 and the others will be completed a year later. The 11-m diameter vessel at the test facility has been completed and major components of the test stand are being procured. Engineering and procurement to upgrade the helium liquifier-refrigerator system are under way

  9. Development of superconducting pulsed poloidal coil in JAERI

    International Nuclear Information System (INIS)

    Shimamoto, S.; Okuno, K.; Ando, T.; Tsuji, H.

    1990-01-01

    In the Japan Atomic Energy Research Institute, (JAERI), development work on pulsed superconductors and coils started in 1979, aiming at the demonstration of the applicability of superconducting technologies to pulsed poloidal coils in a fusion reactor. Initially our effort was concentrated mainly on the development of pool-cooled large-current pulsed conductors. Over the past ten years, superconducting technology has made great progress and the forced-flow cooled coil has assumed great importance in the development work. Now the Demo Poloidal Coil Project is in progress in JAERI, and three large forced-flow cooled coils have so far been fabricated and tested. Many improvements have been achieved in ac-loss performance and mechanical characteristics. (author)

  10. Spontaneous quenches of a high temperature superconducting pancake coil

    Energy Technology Data Exchange (ETDEWEB)

    Lue, J.W.; Lubell, M.S. [Oak Ridge National Lab., TN (United States); Aized, D.; Campbell, J.M.; Schwall, R.E. [American Superconductor Corp., Westborough, MA (United States)

    1995-09-01

    A double-pancake coil made of Bi-2223/Ag high temperature superconducting (HTS) tape was constructed with an embedded heater and graded conductors to study the stability and quench propagation in HTS coils. The experiments were performed with liquid nitrogen and gaseous helium cooling in temperatures ranging from 5 to 77 K. The coil was very stable, and no ``normal`` zone was sustained or propagated with local pulsed heating. However, spontaneous quenches of the cod were experienced. This was found to be the result of having the coil current higher than that of the lower I{sub c} sections of the coil for a long time. This quench process took minutes to develop--much longer than would be expected in a low temperature superconducting coil. The quench behaved more like a spreading and continuous heating of an increasingly larger partially resistive section of the coil than like a sequential ``normal`` front propagation.

  11. An improvement of airflow and heat transfer performance of multi-coil condensers by different coil configurations

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tzong-Shing; Wu, Wu-Chieh; Chuah, Yew-Khoy; Wang, Sheng-Kai [Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, 1, Sec.3, Chung-Hsiao E. Rd., Taipei 106 (China)

    2010-11-15

    Mal-distribution of airflow is an important factor for the performance of air-cooled multi-coil air-cooled condensers. This study is an attempt to investigate the effects of different included angles between the coils of the condenser. It has been found in this study that it can be a mean to improve the performance of multi-coil condensers without using larger heat transfer surfaces. A commercially used four-coil condenser of an air-cooled water chiller was used as the base case in the tests and analysis. The results show that the variation of the included angle can increase the airflow rate by 7.85%, which corresponds to 5.29% increase in heat transfer. The improvements were found to be due to the reduction of the stagnant flow regions of the heat exchanger coils, and more even flow distribution through the coils. Test data were used to verify the computer model of the four-coil heat exchanger. The same tested fan performance characteristic was used in all of the analyses. The research results are important as air-cooled condensing units can be designed to better performance merely by changing the configuration of the coil arrangements. (author)

  12. Design considerations for ITER toroidal field coils

    International Nuclear Information System (INIS)

    Kalsi, S.S.; Lousteau, D.C.; Miller, J.R.

    1987-01-01

    The International Thermonuclear Experimental Reactor (ITER) is a new tokamak design project with joint participation from Europe, Japan, the Union of Soviet Socialist Republics (U.S.S.R.), and the United States. This paper describes a magnetic and mechanical design methodology for toroidal field (TF) coils that employs Nb 3 Sn superconductor technology. Coil winding is sized by using conductor concepts developed for the U.S. TIBER concept. Manifold concepts are presented for the complete cooling system. Also included are concepts for the coil structural arrangement. The effects of in-plane and out-of-plane loads are included in the design considerations for the windings and case. Concepts are presented for reacting these loads with a minimum amount of additional structural material. Concepts discussed in this paper could be considered for the ITER TF coils

  13. EPB standard EN ISO 52016: calculation of the building’s energy needs for heating and cooling, internal temperatures and heating and cooling load

    NARCIS (Netherlands)

    Dijk, H.A.L. van; Spiekman, M.E.; Hoes-van Oeffelen, E.C.M.

    2016-01-01

    EN ISO 52016-1 presents a coherent set of calculation methods at different levels of detail, for the (sensible) energy needs for the space heating and cooling and (latent) energy needs (de)humidification of a building and/or internal temperatures and heating and/or cooling loads, including the

  14. Heterogeneous Superconducting Low-Noise Sensing Coils

    Science.gov (United States)

    Hahn, Inseob; Penanen, Konstantin I.; Ho Eom, Byeong

    2008-01-01

    A heterogeneous material construction has been devised for sensing coils of superconducting quantum interference device (SQUID) magnetometers that are subject to a combination of requirements peculiar to some advanced applications, notably including low-field magnetic resonance imaging for medical diagnosis. The requirements in question are the following: The sensing coils must be large enough (in some cases having dimensions of as much as tens of centimeters) to afford adequate sensitivity; The sensing coils must be made electrically superconductive to eliminate Johnson noise (thermally induced noise proportional to electrical resistance); and Although the sensing coils must be cooled to below their superconducting- transition temperatures with sufficient cooling power to overcome moderate ambient radiative heat leakage, they must not be immersed in cryogenic liquid baths. For a given superconducting sensing coil, this combination of requirements can be satisfied by providing a sufficiently thermally conductive link between the coil and a cold source. However, the superconducting coil material is not suitable as such a link because electrically superconductive materials are typically poor thermal conductors. The heterogeneous material construction makes it possible to solve both the electrical- and thermal-conductivity problems. The basic idea is to construct the coil as a skeleton made of a highly thermally conductive material (typically, annealed copper), then coat the skeleton with an electrically superconductive alloy (typically, a lead-tin solder) [see figure]. In operation, the copper skeleton provides the required thermally conductive connection to the cold source, while the electrically superconductive coating material shields against Johnson noise that originates in the copper skeleton.

  15. Coil geometry effects on scanning single-coil magnetic induction tomography

    Science.gov (United States)

    Feldkamp, Joe R.; Quirk, Stephen

    2017-09-01

    Alternative coil designs for single coil magnetic induction tomography are considered in this work, with the intention of improving upon the standard design used previously. In particular, we note that the blind spot associated with this coil type, a portion of space along its axis where eddy current generation can be very weak, has an important effect on performance. The seven designs tested here vary considerably in the size of their blind spot. To provide the most discerning test possible, we use laboratory phantoms containing feature dimensions similar to blind spot size. Furthermore, conductivity contrasts are set higher than what would occur naturally in biological systems, which has the effect of weakening eddy current generation at coil locations that straddle the border between high and low conductivity features. Image reconstruction results for the various coils show that coils with smaller blind spots give markedly better performance, though improvements in signal-to-noise ratio could alter that conclusion.

  16. Biomaterials Made from Coiled-Coil Peptides.

    Science.gov (United States)

    Conticello, Vincent; Hughes, Spencer; Modlin, Charles

    The development of biomaterials designed for specific applications is an important objective in personalized medicine. While the breadth and prominence of biomaterials have increased exponentially over the past decades, critical challenges remain to be addressed, particularly in the development of biomaterials that exhibit highly specific functions. These functional properties are often encoded within the molecular structure of the component molecules. Proteins, as a consequence of their structural specificity, represent useful substrates for the construction of functional biomaterials through rational design. This chapter provides an in-depth survey of biomaterials constructed from coiled-coils, one of the best-understood protein structural motifs. We discuss the utility of this structurally diverse and functionally tunable class of proteins for the creation of novel biomaterials. This discussion illustrates the progress that has been made in the development of coiled-coil biomaterials by showcasing studies that bridge the gap between the academic science and potential technological impact.

  17. Cool Apps: Building Cryospheric Data Applications With Standards-Based Service Oriented Architecture

    Science.gov (United States)

    Collins, J. A.; Truslove, I.; Billingsley, B. W.; Oldenburg, J.; Brodzik, M.; Lewis, S.; Liu, M.

    2012-12-01

    The National Snow and Ice Data Center (NSIDC) holds a large collection of cryospheric data, and is involved in a number of informatics research and development projects aimed at improving the discoverability and accessibility of these data. To develop high-quality software in a timely manner, we have adopted a Service-Oriented Architecture (SOA) approach for our core technical infrastructure development. Data services at NSIDC are internally exposed to other tools and applications through standards-based service interfaces. These standards include OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting), various OGC (Open Geospatial Consortium) standards including WMS (Web Map Service) and WFS (Web Feature Service), ESIP (Federation of Earth Sciences Information Partners) OpenSearch, and NSIDC-specific RESTful services. By taking a standards-based approach, we are able to use off-the-shelf tools and libraries to consume, translate and broker these data services, and thus develop applications faster. Additionally, by exposing public interfaces to these services we provide valuable data services to technical collaborators; for example, NASA Reverb (http://reverb.echo.nasa.gov) uses NSIDC's WMS services. Our latest generation of web applications consume these data services directly. The most complete example of this is the Operation IceBridge Data Portal (http://nsidc.org/icebridge/portal) which depends on many of the aforementioned services, and clearly exhibits many of the advantages of building applications atop a service-oriented architecture. This presentation outlines the architectural approach and components and open standards and protocols adopted at NSIDC, demonstrates the interactions and uses of public and internal service interfaces currently powering applications including the IceBridge Data Portal, and outlines the benefits and challenges of this approach.

  18. Progress on the Focus Coil for the MICE Channel

    International Nuclear Information System (INIS)

    Yang, S.Q.; Lau, W.; Senanayake, R.S.; Witte, H.; Green, M.A.; Drumm, P.; Ivanyushenkov, Y.

    2005-01-01

    This report describes the progress on the magnet part of the absorber focus coil module for the international Muon Ionization Cooling Experiment (MICE). MICE consists of two cells of a SFOFO cooling channel that is similar to that studied in Feasibility 2 study of a neutrino factory [1]. The MICE absorber focus coil module consists of a pair of superconducting solenoids, mounted on an aluminum mandrel. The coil package is in its own vacuum vessel located around an absorber. The absorber is within a separate vacuum vessel that is within the warm bore of the focusing magnet. The superconducting focus coils may either be run in the solenoid mode (with the two coils at the same polarity) or in the gradient mode (with the coils at opposite polarity, causing the field direction to flip within the magnet bore). The coils will be cooled using a pair of small 4 K coolers. This report discusses the progress on the MICE focusing magnets, the magnet current supply system, and the quench protection system

  19. The coiled coil motif in polymer drug delivery systems.

    Science.gov (United States)

    Pechar, Michal; Pola, Robert

    2013-01-01

    The coiled coil is a superhelical structural protein motif that has been thoroughly investigated in recent years. Because of the relatively well-understood principles that determine the properties of coiled coil peptides and proteins, macromolecular systems containing the coiled coil motif have been suggested for various applications. This short review focuses on hybrid polymer coiled coil systems designed for drug delivery purposes. After a short introduction, the most important features of the coiled coils (stability, association number, oligomerization selectivity and orientation of helices) are described, and the factors influencing these characteristics are discussed. Several examples of the most interesting biomedical applications of the polymer-coiled coil systems (according to the authors' opinion) are presented. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Compact stellarator coils

    International Nuclear Information System (INIS)

    Pomphrey, N.; Berry, L.A.; Boozer, A.H.

    2001-01-01

    Experimental devices to study the physics of high-beta (β>∼4%), low aspect ratio (A<∼4.5) stellarator plasmas require coils that will produce plasmas satisfying a set of physics goals, provide experimental flexibility, and be practical to construct. In the course of designing a flexible coil set for the National Compact Stellarator Experiment, we have made several innovations that may be useful in future stellarator design efforts. These include: the use of Singular Value Decomposition methods for obtaining families of smooth current potentials on distant coil winding surfaces from which low current density solutions may be identified; the use of a Control Matrix Method for identifying which few of the many detailed elements of the stellarator boundary must be targeted if a coil set is to provide fields to control the essential physics of the plasma; the use of Genetic Algorithms for choosing an optimal set of discrete coils from a continuum of potential contours; the evaluation of alternate coil topologies for balancing the tradeoff between physics objective and engineering constraints; the development of a new coil optimization code for designing modular coils, and the identification of a 'natural' basis for describing current sheet distributions. (author)

  1. Liquid rope coiling

    NARCIS (Netherlands)

    Ribe, N.M.; Habibi, M.; Bonn, D.

    2012-01-01

    A thin stream or rope of viscous fluid falling from a sufficient height onto a surface forms a steadily rotating helical coil. Tabletop laboratory experiments in combination with a numerical model for slender liquid ropes reveal that finite-amplitude coiling can occur in four distinct regimes

  2. Molecular basis of coiled-coil oligomerization-state specificity.

    Science.gov (United States)

    Ciani, Barbara; Bjelic, Saša; Honnappa, Srinivas; Jawhari, Hatim; Jaussi, Rolf; Payapilly, Aishwarya; Jowitt, Thomas; Steinmetz, Michel O; Kammerer, Richard A

    2010-11-16

    Coiled coils are extensively and successfully used nowadays to rationally design multistranded structures for applications, including basic research, biotechnology, nanotechnology, materials science, and medicine. The wide range of applications as well as the important functions these structures play in almost all biological processes highlight the need for a detailed understanding of the factors that control coiled-coil folding and oligomerization. Here, we address the important and unresolved question why the presence of particular oligomerization-state determinants within a coiled coil does frequently not correlate with its topology. We found an unexpected, general link between coiled-coil oligomerization-state specificity and trigger sequences, elements that are indispensable for coiled-coil formation. By using the archetype coiled-coil domain of the yeast transcriptional activator GCN4 as a model system, we show that well-established trimer-specific oligomerization-state determinants switch the peptide's topology from a dimer to a trimer only when inserted into the trigger sequence. We successfully confirmed our results in two other, unrelated coiled-coil dimers, ATF1 and cortexillin-1. We furthermore show that multiple topology determinants can coexist in the same trigger sequence, revealing a delicate balance of the resulting oligomerization state by position-dependent forces. Our experimental results should significantly improve the prediction of the oligomerization state of coiled coils. They therefore should have major implications for the rational design of coiled coils and consequently many applications using these popular oligomerization domains.

  3. Divertor coil device

    International Nuclear Information System (INIS)

    Hanai, Satoru.

    1990-01-01

    The present invention concerns a divertor coil device used in a tokamak type thermonuclear device and the object thereof is to reduce thermal loads in the heat receiving portion. An auxiliary power source is disposed, in addition to a main power source, for supplying main electric current for changing electric current ratio between each of the divertor coils. Then, the null point for forming plasmas is made controllable. As a result, a power source for a part of coils connected to the auxiliary power source of the divertor coils can be changed by controlling the voltage of the auxiliary power source. Accordingly, the electric current distribution in the divertor coils is changed and the position for the null point high thermal load region can be moved laterally. The area of the heat receiving portion can be increased by moving the high thermal load region, thereby decreasing the thermal load density. (I.S.)

  4. Effect of temperature on the orthodontic clinical applications of niti closed-coil springs

    Science.gov (United States)

    Espinar-Escalona, Eduardo; Llamas-Carreras, José M.; Barrera-Mora, José M.; Abalos-Lasbrucci, Camilo

    2013-01-01

    NiTi spring coils were used to obtain large deformation under a constant force. The device consists on a NiTi coil spring, superelastic at body temperature, in order to have a stress plateau during the austenitic retransformation during the unloading. The temperature variations induced changes in the spring force. Objectives: The aim of this study is to investigate the effect of the temperature variations in the spring forces and corrosion behaviour simulating the ingestion hot/cold drinks and food. Study Design: The springs were subjected to a tensile force using universal testing machine MTS-Adamel (100 N load cell). All tests were performed in artificial saliva maintained at different temperatures. The corrosion tests were performed according to the ISO-standard 10993-15:2000. Results: The increase in temperature of 18oC induced an increase in the spring force of 30%. However, when the temperature returns to 37oC the distraction force recovers near the initial level. After cooling down the spring to 15oC, the force decreased by 46%. This investigation show as the temperature increase, the corrosion potential shifts towards negative values and the corrosion density is rising. Conclusions: The changes of the temperatures do not modify the superelastic behaviour of the NiTi closed-coil springs. The corrosion potential of NiTi in artificial saliva is decreasing by the rise of the temperatures. Key words:Superelasticity, NiTi, springs, orthodontic, coils, recovery, temperature. PMID:23722142

  5. Open coil traction system.

    Science.gov (United States)

    Vibhute, Pavankumar Janardan

    2012-01-01

    Sliding mechanics have become a popular method for space closure, with the development of preadjusted edgewise appliances. Furthermore, various space closing auxiliaries have been developed and extensively evaluated for their clinical efficiency. Their effectiveness is enhanced with optimum force magnitude and low load deflection rate/force decay. With the advent of nickel-titanium (Ni-Ti) springs in orthodontics, load deflection rates have been markedly reduced. To use Ni-Ti springs, clinicians have to depend upon prefabricated closed coil springs. The open coil traction system, or open coil retraction spring, is developed utilizing Ni-Ti open coil springs for orthodontic space closure. This article describes the fabrication and clinical application of the open coil traction system, which has a number of advantages. It sustains a low load deflection rate with optimum force magnitude, and its design is adjustable for a desired length and force level. It is fail-safe for both activation and deactivation (ie, it cannot be overactivated, and the decompression limit of the open coil is controlled by the operator). The open coil traction system can be offset from the mucosa to help reduce soft tissue impingement.

  6. Commercial applications for COIL

    Science.gov (United States)

    Solomon, Wayne C.; Carroll, David L.; King, D. M.; Fockler, L. A.; Stromberg, D. S.; Sexauer, M.; Milmoe, A.; Sentman, Lee H.

    2000-01-01

    The chemical oxygen-iodine laser (COIL) is a high power, fiber deliverable tool, which can be used for a number of different industrial applications. COIL is of particular interest because of its short fiber deliverable wavelength, high scaleable continuous wave power, and excellent material interaction properties. In past research the University of Illinois at Urbana-Champaign identified and decommissioning and decontamination (DD) of nuclear facilities as a primary focus for COIL technology. DD will be a major challenge in the coming decades. The use of a robotically driven fiber delivered cutting/ablation tool in contaminated areas promises to lower risks to workers for the DD mission. Further, the high cutting speed of COIL will significantly reduce the time required to cut contaminated equipment, reducing costs. The high power of COIL will permit the dismantling of thick stacks of piping and equipment as well as reactor vessels. COIL is very promising for the removal of material from contaminated surfaces, perhaps to depths thicker than an inch. Laser cutting and ablation minimizes dust and fumes, which reduces the required number of high efficiency particulate accumulator filters, thus reducing costly waste disposal. Other potential industrial applications for COIL are shipbuilding, automotive manufacturing, heavy machinery manufacturing, tasks requiring underwater cutting or welding, and there appear to be very promising applications for high powers lasers in the oil industry.

  7. Split-coil-system SULTAN

    International Nuclear Information System (INIS)

    Vecsey, G.

    1992-08-01

    The high field superconductor test facility SULTAN started operation successfully in May 1992. Originally designed for testing full scale conductors for the large magnets of the next generation fusion reactors, the SULTAN facility installed at PSI (Switzerland) was designed as a common venture of three European Laboratories: ENEA (Italy), ECN (Netherlands) and PSI, and built by ENEA and PSI in the framework of the Euratom Fusion Technology Program. Presently the largest facility in the world, with its superconducting split coil system generating 11 Tesla in a 0.6 m bore, it is ready now for testing superconductor samples with currents up to 50 kA at variable cooling conditions. Similar tests can be arranged also for other applications. SULTAN is offered by the European Community as a contribution to the worldwide cooperation for the next step of fusion reactor development ITER. First measurements on conductor developed by CEA (Cadarache) are now in progress. Others like those of ENEA and CERN will follow. For 1993, a test of an Italian 12 TZ model coil for fusion application is planned. SULTAN is a worldwide unique facility marking the competitive presence of Swiss technology in the field of applied superconductivity research. Based on development and design of PSI, the high field Nb 3 Sn superconductors and coils were fabricated at the works of Kabelwerke Brugg and ABB, numerous Swiss companies contributed to the success of this international effort. Financing of the Swiss contribution of SULTAN was made available by NEFF, BEW, BBW, PSI and EURATOM. (author) figs., tabs., 20 refs

  8. Coil spring venting arrangement

    International Nuclear Information System (INIS)

    McCugh, R.M.

    1975-01-01

    A simple venting device for trapped gas pockets in hydraulic systems is inserted through a small access passages, operated remotely, and removed completely. The device comprises a small diameter, closely wound coil spring which is pushed through a guide temporarily inserted in the access passage. The guide has a central passageway which directs the coil spring radially upward into the pocket, so that, with the guide properly positioned for depth and properly oriented, the coil spring can be pushed up into the top of the pocket to vent it. By positioning a seal around the free end of the guide, the spring and guide are removed and the passage is sealed

  9. New head gradient coil design and construction techniques.

    Science.gov (United States)

    Handler, William B; Harris, Chad T; Scholl, Timothy J; Parker, Dennis L; Goodrich, K Craig; Dalrymple, Brian; Van Sass, Frank; Chronik, Blaine A

    2014-05-01

    To design and build a head insert gradient coil to use in conjunction with body gradients for superior imaging. The use of the boundary element method to solve for a gradient coil wire pattern on an arbitrary surface allowed us to incorporate engineering changes into the electromagnetic design of a gradient coil directly. Improved wire pattern design was combined with robust manufacturing techniques and novel cooling methods. The finished coil had an efficiency of 0.15 mT/m/A in all three axes and allowed the imaging region to extend across the entire head and upper part of the neck. The ability to adapt an electromagnetic design to necessary changes from an engineering perspective leads to superior coil performance. Copyright © 2013 Wiley Periodicals, Inc.

  10. First assembly phase for the ATLAS toroid coils

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    The ATLAS barrel toroid system consists of eight coils, each of axial length 25.3 m, assembled radially and symmetrically around the beam axis. The coils are of a flat racetrack type with two double-pancake windings made of 20.5 kA aluminium-stabilized niobium-titanium superconductor. In the first phase of assembly, the two 'pancakes' are packed into their vacuum vessel. This is done using bladders filled with resin and glass microbeads under pressure. The resin is heated and, once cooled, holds the pancakes in place. The operation has to be performed on both sides of the coil, which necessitated a special technique to turn the coils over and then transport them to the heating table. Photos 01, 02, 03: Transporting the coil to the heating table using a special lifting gantry manufactured at JINR-Dubna, Russia in preparation for the 'bladderisation' operation.

  11. Superconducting Coil of Po Dipole

    CERN Multimedia

    1983-01-01

    The Po superconducting dipole was built as a prototype beam transport magnet for the SPS extracted proton beam P0. Its main features were: coil aperture 72 mm, length 5 m, room-temperature yoke, NbTi cable conductor impregnated with solder, nominal field 4.2 T at 4.7 K (87% of critical field). It reached its nominal field without any quench.After this successful test up to its nominal field of 4.2 T, the power was not raised to reach a quench. The magnet was not installed in a beam and had no other further use. Nevertheless its construction provided knowledges and experience which became useful in the design and construction of the LHC magnets. The photo shows a detail of the inner layer winding before superposing the outer layer to form the complete coil of a pole. Worth noticing is the interleaved glass-epoxy sheet (white) with grooved channels for the flow of cooling helium. See also 8211532X.

  12. Coiled-coils: The long and short of it.

    Science.gov (United States)

    Truebestein, Linda; Leonard, Thomas A

    2016-09-01

    Coiled-coils are found in proteins throughout all three kingdoms of life. Coiled-coil domains of some proteins are almost invariant in sequence and length, betraying a structural and functional role for amino acids along the entire length of the coiled-coil. Other coiled-coils are divergent in sequence, but conserved in length, thereby functioning as molecular spacers. In this capacity, coiled-coil proteins influence the architecture of organelles such as centrioles and the Golgi, as well as permit the tethering of transport vesicles. Specialized coiled-coils, such as those found in motor proteins, are capable of propagating conformational changes along their length that regulate cargo binding and motor processivity. Coiled-coil domains have also been identified in enzymes, where they function as molecular rulers, positioning catalytic activities at fixed distances. Finally, while coiled-coils have been extensively discussed for their potential to nucleate and scaffold large macromolecular complexes, structural evidence to substantiate this claim is relatively scarce. © 2016 The Authors BioEssays Published by WILEY Periodicals, Inc.

  13. Extending the self-assembly of coiled-coil hybrids

    NARCIS (Netherlands)

    Robson Marsden, Hana

    2009-01-01

    Of the various biomolecular building blocks in use in nature, coiled-coil forming peptides are amongst those with the most potential as building blocks for the synthetic self-assembly of nanostructures. Native coiled coils have the ability to function in, and influence, complex systems composed of

  14. Disruption of Bcr-Abl coiled coil oligomerization by design.

    Science.gov (United States)

    Dixon, Andrew S; Pendley, Scott S; Bruno, Benjamin J; Woessner, David W; Shimpi, Adrian A; Cheatham, Thomas E; Lim, Carol S

    2011-08-05

    Oligomerization is an important regulatory mechanism for many proteins, including oncoproteins and other pathogenic proteins. The oncoprotein Bcr-Abl relies on oligomerization via its coiled coil domain for its kinase activity, suggesting that a designed coiled coil domain with enhanced binding to Bcr-Abl and reduced self-oligomerization would be therapeutically useful. Key mutations in the coiled coil domain of Bcr-Abl were identified that reduce homo-oligomerization through intermolecular charge-charge repulsion yet increase interaction with the Bcr-Abl coiled coil through additional salt bridges, resulting in an enhanced ability to disrupt the oligomeric state of Bcr-Abl. The mutations were modeled computationally to optimize the design. Assays performed in vitro confirmed the validity and functionality of the optimal mutations, which were found to exhibit reduced homo-oligomerization and increased binding to the Bcr-Abl coiled coil domain. Introduction of the mutant coiled coil into K562 cells resulted in decreased phosphorylation of Bcr-Abl, reduced cell proliferation, and increased caspase-3/7 activity and DNA segmentation. Importantly, the mutant coiled coil domain was more efficacious than the wild type in all experiments performed. The improved inhibition of Bcr-Abl through oligomeric disruption resulting from this modified coiled coil domain represents a viable alternative to small molecule inhibitors for therapeutic intervention.

  15. A periodic table of coiled-coil protein structures.

    Science.gov (United States)

    Moutevelis, Efrosini; Woolfson, Derek N

    2009-01-23

    Coiled coils are protein structure domains with two or more alpha-helices packed together via interlacing of side chains known as knob-into-hole packing. We analysed and classified a large set of coiled-coil structures using a combination of automated and manual methods. This led to a systematic classification that we termed a "periodic table of coiled coils," which we have made available at http://coiledcoils.chm.bris.ac.uk/ccplus/search/periodic_table. In this table, coiled-coil assemblies are arranged in columns with increasing numbers of alpha-helices and in rows of increased complexity. The table provides a framework for understanding possibilities in and limits on coiled-coil structures and a basis for future prediction, engineering and design studies.

  16. Resistive toroidal-field coils for tokamak reactors

    International Nuclear Information System (INIS)

    Kalnavarns, J.; Jassby, D.L.

    1980-11-01

    This paper analyzes the optimization of the geometry of resistive TF coils of rectangular bore for tokamak fusion test reactors and practical neutron generators. In examining the trade-offs between geometric parameters and magnetic field for reactors giving a specified neutron wall loading, either the resistive power loss or the lifetime coil cost can be minimized. Aspects of cooling, magnetic stress, and construction are addressed for several reference designs. Bending moment distributions in closed form have been derived for rectangular coils on the basis of the theory of rigid frames. Candidate methods of fabrication and of implementing demountable joints are summarized

  17. Borehole induction coil transmitter

    Science.gov (United States)

    Holladay, Gale; Wilt, Michael J.

    2002-01-01

    A borehole induction coil transmitter which is a part of a cross-borehole electromagnetic field system that is used for underground imaging applications. The transmitter consists of four major parts: 1) a wound ferrite or mu-metal core, 2) an array of tuning capacitors, 3) a current driver circuit board, and 4) a flux monitor. The core is wound with several hundred turns of wire and connected in series with the capacitor array, to produce a tuned coil. This tuned coil uses internal circuitry to generate sinusoidal signals that are transmitted through the earth to a receiver coil in another borehole. The transmitter can operate at frequencies from 1-200 kHz and supplies sufficient power to permit the field system to operate in boreholes separated by up to 400 meters.

  18. LHC bending magnet coil

    CERN Multimedia

    A short test version of coil of wire used for the LHC dipole magnets. The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. Magnet coils are made of copper-clad niobium–titanium cables — each wire in the cable consists of 9’000 niobium–titanium filaments ten times finer than a hair.

  19. LHCb magnet coils arrive

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Each of the two coils for the LHCb magnet comprises 15 individual monolayer 'pancakes' of identical trapezoidal racetrack shape, and is bent at 45 degrees on the two transverse sides. Each pancake consists of eight turns of conductor, wound from a single length (approx. 290 m) of extruded aluminium. The coils have arrived at CERN; one of them is seen here being unloaded above the LHCb experimental cavern.

  20. Modulation of elasticity in functionally distinct domains of the tropomyosin coiled-coil.

    Science.gov (United States)

    Lakkaraju, Sirish Kaushik; Hwang, Wonmuk

    2009-03-01

    Alpha-helical coiled-coils are common protein structural motifs. Whereas vast information is available regarding their structure, folding, and stability, far less is known about their elastic properties, even though they play mechanical roles in many cases such as tropomyosin in muscle contraction or neck stalks of kinesin or myosin motor proteins. Using computer simulations, we characterized elastic properties of coiled-coils, either globally or locally. Global bending stiffness of standard leucine zipper coiled-coils was calculated using normal mode analysis. Mutations in hydrophobic residues involved in the knob-into-hole interface between the two alpha-helices affect elasticity significantly, whereas charged side chains forming inter-helical salt bridges do not. This suggests that coiled-coils with less regular heptad periodicity may have regional variations in flexibility. We show this by the flexibility map of tropomyosin, which was constructed by a local fluctuation analysis. Overall, flexibility varies by more than twofold and increases towards the C-terminal region of the molecule. Describing the coiled-coil as a twisted tape, it is generally more flexible in the splay bending than in the bending of the broad face. Actin binding sites in alpha zones show local rigidity minima. Broken core regions due to acidic residues at the hydrophobic face such as the Asp137 and the Glu218 are found to be the most labile with moduli for splay and broad face bending as 70 nm and 116 nm respectively. Such variation in flexibility could be relevant to the tropomyosin function, especially for moving across the non-uniform surface of F-actin to regulate myosin binding.

  1. Coil-springs used as mechanical filter. Modification of the bottom tie plate of a fuel assembly

    International Nuclear Information System (INIS)

    Nylund, O.

    1993-01-01

    Describes an improved design of the bottom tie plate of a fuel assembly. The improvement of the design is an arrangement of horizontal channels holding coil-springs and crossing the vertical channels for the cooling water. The coil-springs work as strainers for the cooling water

  2. Proposed Advanced Reactor Adaptation of the Standard Review Plan NUREG-0800 Chapter 4 (Reactor) for Sodium-Cooled Fast Reactors and Modular High-Temperature Gas-Cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Belles, Randy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Poore, III, Willis P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Flanagan, George F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holbrook, Mark [Idaho National Lab. (INL), Idaho Falls, ID (United States); Moe, Wayne [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sofu, Tanju [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-03-01

    This report proposes adaptation of the previous regulatory gap analysis in Chapter 4 (Reactor) of NUREG 0800, Standard Review Plan (SRP) for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR [Light Water Reactor] Edition. The proposed adaptation would result in a Chapter 4 review plan applicable to certain advanced reactors. This report addresses two technologies: the sodium-cooled fast reactor (SFR) and the modular high temperature gas-cooled reactor (mHTGR). SRP Chapter 4, which addresses reactor components, was selected for adaptation because of the possible significant differences in advanced non-light water reactor (non-LWR) technologies compared with the current LWR-based description in Chapter 4. SFR and mHTGR technologies were chosen for this gap analysis because of their diverse designs and the availability of significant historical design detail.

  3. Coil protection calculator for TFTR

    International Nuclear Information System (INIS)

    Marsala, R.J.; Woolley, R.D.

    1987-01-01

    A new coil protection calculator (CPC) is presented in this paper. It is now being developed for TFTR's magnetic field coils will replace the existing coil fault detector. The existing fault detector sacrifices TFTR operating capability for simplicity. The new CPC will permit operation up to the actual coil limits by accurately and continuously computing coil parameters in real-time. The improvement will allow TFTR to operate with higher plasma currents and will permit the optimization of pulse repetition rates

  4. Hierarchical cascades of instability govern the mechanics of coiled coils: helix unfolding precedes coil unzipping.

    Science.gov (United States)

    Hamed, Elham; Keten, Sinan

    2014-07-15

    Coiled coils are a fundamental emergent motif in proteins found in structural biomaterials, consisting of α-helical secondary structures wrapped in a supercoil. A fundamental question regarding the thermal and mechanical stability of coiled coils in extreme environments is the sequence of events leading to the disassembly of individual oligomers from the universal coiled-coil motifs. To shed light on this phenomenon, here we report atomistic simulations of a trimeric coiled coil in an explicit water solvent and investigate the mechanisms underlying helix unfolding and coil unzipping in the assembly. We employ advanced sampling techniques involving steered molecular dynamics and metadynamics simulations to obtain the free-energy landscapes of single-strand unfolding and unzipping in a three-stranded assembly. Our comparative analysis of the free-energy landscapes of instability pathways shows that coil unzipping is a sequential process involving multiple intermediates. At each intermediate state, one heptad repeat of the coiled coil first unfolds and then unzips due to the loss of contacts with the hydrophobic core. This observation suggests that helix unfolding facilitates the initiation of coiled-coil disassembly, which is confirmed by our 2D metadynamics simulations showing that unzipping of one strand requires less energy in the unfolded state compared with the folded state. Our results explain recent experimental findings and lay the groundwork for studying the hierarchical molecular mechanisms that underpin the thermomechanical stability/instability of coiled coils and similar protein assemblies. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. First assembly phase for the ATLAS toroid coils

    CERN Multimedia

    Patrice Loïez

    2003-01-01

    The ATLAS barrel toroid system consists of eight coils, each of axial length 25.3 m, assembled radially and symmetrically around the beam axis. The coils are of a flat racetrack type with two double-pancake windings made of 20.5 kA aluminium-stabilized niobium-titanium superconductor. In the first phase of assembly, the two 'pancakes' are packed into their vacuum vessel. This is done using bladders filled with resin and glass microbeads under pressure. The resin is heated and, once cooled, holds the pancakes in place. The operation has to be performed on both sides of the coil, which necessitated a special technique to turn the coils over and then transport them to the heating table. Photos 01, 02, 03: Use of the overhead travelling crane to hoist the coil up and then tilt it over, the coil frame's metal feet being used as rotational pivots, supporting half the coil's weight. Once it has been turned over, the coil, now with only half the frame, is transported to the heating table using a special lifting gant...

  6. An automated coil winding machine for the SSC dipole magnets

    International Nuclear Information System (INIS)

    Kamiya, S.; Iwase, T.; Inoue, I.; Fukui, I.; Ishida, K.; Kashiwagi, S.; Sato, Y.; Yoshihara, T.; Yamamoto, S.; Johnson, E.; Gibson, C.

    1990-01-01

    The authors have finished the preliminary design of a fully automated coil winding machine that can be used to manufacture the large number of SSC dipole magnets. The machine aims to perform all coil winding operations including coil parts inserting without human operators at a high productive rate. The machine is composed of five industrial robots. In order to verify the design, they built a small winding machine using an industrial robot and successfully wound a 1 meter long coil using SSC dipole magnet wire. The basic design for the full length coil and the robot winding technique are described in this paper. A fully automated coil winding machine using standard industrial components would be very useful if duplicate production lines are used. 5 figs., 1 tab

  7. AAFreqCoil: a new classifier to distinguish parallel dimeric and trimeric coiled coils.

    Science.gov (United States)

    Wang, Xiaofeng; Zhou, Yuan; Yan, Renxiang

    2015-07-01

    Coiled coils are characteristic rope-like protein structures, constituted by one or more heptad repeats. Native coiled-coil structures play important roles in various biological processes, while the designed ones are widely employed in medicine and industry. To date, two major oligomeric states (i.e. dimeric and trimeric states) of a coiled-coil structure have been observed, plausibly exerting different biological functions. Therefore, exploration of the relationship between heptad repeat sequences and coiled coil structures is highly important. In this paper, we develop a new method named AAFreqCoil to classify parallel dimeric and trimeric coiled coils. Our method demonstrated its competitive performance when benchmarked based on 10-fold cross validation and jackknife cross validation. Meanwhile, the rules that can explicitly explain the prediction results of the test coiled coil can be extracted from the AAFreqCoil model for a better explanation of user predictions. A web server and stand-alone program implementing the AAFreqCoil algorithm are freely available at .

  8. Superconducting coil protection

    International Nuclear Information System (INIS)

    Woods, E.L.

    1975-01-01

    The protection system is based on a two-phase construction program. Phase I is the development of a reliable hardwired relay control system with a digital loop utilizing firmware and a microprocessor controller. Phase II is an expansion of the digital loop to include many heretofore unmonitored coil variables. These new monitored variables will be utilized to establish early quench detection and to formulate confirmation techniques of the quench detection mechanism. Established quench detection methods are discussed and a new approach to quench detection is presented. The new circuit is insensitive to external pulsed magnetic fields and the associated induced voltages. Reliability aspects of the coil protection system are discussed with respect to shutdowns of superconducting coil systems. Redundance and digital system methods are presented as related topics

  9. TESLA Coil Research

    Science.gov (United States)

    1992-05-01

    Sloan’s work was actually predated by the earlier work of Nikola Tesla . Sloan mistakenly identified " Tesla Coils" as lumped tuned resonators. The...Lefvw WsnJ L REPORT o]i 3. REPRT TYPE AND OATES COVEIRD May 1992 Special/Aug 1992 - May 1992 Z TITLE AND 5U§nUT S. FUNDING NUMIHRS Tesla Coil Research...STATEMENT 1211. ’ISTRIUUTION COOD Approved for public release; dis~ribution is unlimited 13. ABSTRACT (Masrmum 200 worw) High repetition rate Tesla

  10. Moving coil linear variable differential transformer.

    Science.gov (United States)

    Ellis, J F; Walstrom, P L

    1978-03-01

    A moving-coil linear variable differential transformer with no ferromagnetic components is described. The device is essentially interchangeable with a conventional moving-core linear variable differential transformer, but is virtually unaffected by ambient magnetic fields up to 8 T. The transducer is connected to a standard commercially available carrier amplifier for signal conditioning.

  11. Meiosis specific coiled-coil proteins in Shizosaccharomyces pombe

    Directory of Open Access Journals (Sweden)

    Okuzaki Daisuke

    2007-05-01

    Full Text Available Abstract Many meiosis-specific proteins in Schizosaccharomyces pombe contain coiled-coil motifs which play essential roles for meiotic progression. For example, the coiled-coil motifs present in Meu13 and Mcp7 are required for their function as a putative recombinase cofactor complex during meiotic recombination. Mcp6/Hrs1 and Mcp5/Num1 control horsetail chromosome movement by astral microtubule organization and anchoring dynein respectively. Dhc1 and Ssm4 are also required for horsetail chromosome movement. It is clear from these examples that the coiled-coil motif in these proteins plays an important role during the progression of cells through meiosis. However, there are still many unanswered questions on how these proteins operate. In this paper, we briefly review recent studies on the meiotic coiled-coil proteins in Sz. pombe.

  12. 46 CFR 153.434 - Heat transfer coils within a tank.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Heat transfer coils within a tank. 153.434 Section 153... Cargo Temperature Control Systems § 153.434 Heat transfer coils within a tank. When a cargo tank... the heat transfer fluid at a pressure greater than the pressure exerted on the heating or cooling...

  13. Construction and assembling of the trim coils for the Milan superconducting cyclotron

    International Nuclear Information System (INIS)

    Baccaglioni, G.; Cartegni, G.C.; Fusetti, M.; Gini, L.; Grilli, L.

    1986-01-01

    This paper presents the main characteristics of the trim coils realized for the heavy ions superconducting cyclotron under construction at the Milan University. The guidelines in the choice of the conductor size, of the insulation and cooling parameters are discussed in some details. The main operations in the coils construction, as winding, impregnation, electrical tests and assembling, are described

  14. The coil of the MBI bending magnets for the LHC injection transfer lines

    CERN Document Server

    Labutsky, S A; Pupkov, Yu A; Rouvinsky, E; Sukhina, B

    2002-01-01

    All MBI bending magnets in each of the two LHC injection transfer lines will be powered in series. The limited output voltage of existing power converters lead to an unusual coil design avoiding external return bus-bars by combining two overlapping half-coils, electrically separated, with 3 1/2 turns each in a monolithic structure. The voltage between turns in one coil can reach up-to 3.6 kV. The coil has been designed with particular care for obtaining high interturn and ground insulation. Flux-free soldering of connections with plug-in cone sleeves is applied, allowing to execute water cooled current connections as prolongation of the coil conductor. Epoxy compound polymerization in the impregnation mould is obtained by passing overheated water in regulated cycles through the water circuit of the coil conductor. We describe the design basics as well as various test results of pre-series and series produced coils. (4 refs).

  15. An improved asymmetric gradient coil design for high-resolution MRI head imaging

    Science.gov (United States)

    Tang, Fangfang; Liu, Feng; Freschi, Fabio; Li, Yu; Repetto, Maurizio; Giaccone, Luca; Wang, Yaohui; Crozier, Stuart

    2016-12-01

    For head magnetic resonance imaging, local gradient coils are often used to achieve high solution images. To accommodate the human head and shoulder, the head gradient coils are usually designed in an asymmetric configuration, allowing the region-of-uniformity (ROU) close to the coil’s patient end. However, the asymmetric configuration leads to technical difficulties in maintaining a high gradient performance for the insertable head coil with very limited space. In this work, we present a practical design configuration of an asymmetric insertable gradient head coil offering an improved performance. In the proposed design, at the patient end, the primary and secondary coils are connected using an additional radial surface, thus allowing the coil conductors distributed on the flange to ensure an improvement in the coil performance. At the service end, the primary and shielding coils are not connected, to permit access to shim trays, cooling system piping, cabling, and so on. The new designs are compared with conventional coil configurations and the simulation results show that, with a similar field quality in the ROU, the proposed coil pattern has improved construction characteristics (open service end, well-distributed wire pattern) and offers a better coil performance (lower inductance, higher efficiency, etc) than conventional head coil configurations.

  16. Development work for the Japanese LCT coil and its design and construction

    International Nuclear Information System (INIS)

    Shimamoto, Susumu; Ando, Toshinari; Tsuji, Hiroshi; Yasukochi, Ko

    1984-01-01

    This paper describes design, verification tests, and construction of the Japanese test coil for the Large Coil Task (LCT). Japan Atomic Energy Research Institute (JAERI) signed on the LCT international agreement under the International Energy Agency (IEA) in 1978, and since then JAERI has been working to develop the Japanese LCT coil to explore the problems of design and construction of tokamak toroidal coil. Based on the common requirements of the LCT, the Japanese LCT coil was designed to be a pool-cooled NbTi fully-stabilized coil whose operating current is 10,220 A at 8 T. Through research and development of the Japanese LCT coil, new advances in the super-conducting coil technology were obtained, such as mechanically and chemically treated conductor surface that has high heat transfer about four times as much as usual ones, nitrogen-strengthened stainless steel that has the yield strength twice as much as usual stainless steel, NbTi filaments those have the critical current density twice as much as those before LCT, and so on. These advances have enabled to construct the Japanese LCT coil and it was completed in the spring of 1982. During the construction of the coil, new fabrication techniques were obtained to wind large current conductor into a mechanically rigid coil and thus to construct a totally stable large coil. (author)

  17. NET model coil test possibilities

    International Nuclear Information System (INIS)

    Erb, J.; Gruenhagen, A.; Herz, W.; Jentzsch, K.; Komarek, P.; Lotz, E.; Malang, S.; Maurer, W.; Noether, G.; Ulbricht, A.; Vogt, A.; Zahn, G.; Horvath, I.; Kwasnitza, K.; Marinucci, C.; Pasztor, G.; Sborchia, C.; Weymuth, P.; Peters, A.; Roeterdink, A.

    1987-11-01

    A single full size coil for NET/INTOR represents an investment of the order of 40 MUC (Million Unit Costs). Before such an amount of money or even more for the 16 TF coils is invested as much risks as possible must be eliminated by a comprehensive development programme. In the course of such a programme a coil technology verification test should finally prove the feasibility of NET/INTOR TF coils. This study report is almost exclusively dealing with such a verification test by model coil testing. These coils will be built out of two Nb 3 Sn-conductors based on two concepts already under development and investigation. Two possible coil arrangements are discussed: A cluster facility, where two model coils out of the two Nb 3 TF-conductors are used, and the already tested LCT-coils producing a background field. A solenoid arrangement, where in addition to the two TF model coils another model coil out of a PF-conductor for the central PF-coils of NET/INTOR is used instead of LCT background coils. Technical advantages and disadvantages are worked out in order to compare and judge both facilities. Costs estimates and the time schedules broaden the base for a decision about the realisation of such a facility. (orig.) [de

  18. Epoxy resin casting of trim coils for superconducting cyclotron

    International Nuclear Information System (INIS)

    Hajra, D.P.; Sarkar, S.C.; Saha, Subimal; Chaudhuri, J.; Bhandari, R.K.

    2006-01-01

    The life of any magnet depends on the soundness of the coil insulation, its aging properties and initial and final endurance limitations. The insulation of water-cooled trim coils for superconducting cyclotron is made of glass fibre tape with heat cured unfilled epoxy resin combination. This type of insulation has been selected to achieve excellent stability against thermal and electromagnetic stresses, tight dimensional control, good dielectric strength, non-hygroscopic and considerably low vapour-pressure as it will be inside rough vacuum. The process development and the difficulties encountered for appropriate selection of epoxy resin combination, potting, vacuum process, curing cycle, control of coil dimension to achieve a sound coil absolutely free from cracks, trapped air and voids has been discussed. (author)

  19. Manufacturing Development of the NCSX Modular Coil Windings

    International Nuclear Information System (INIS)

    Chrzanowski, JH; Fogarty, PJ; Heitzenroeder, PJ; Meighan, T.; Nelson, B.; Raftopoulos, S.; Williamson, D.

    2005-01-01

    The modular coils on the National Compact Stellarator Experiment (NCSX) present a number of significant engineering challenges due to their complex shapes, requirements for high dimensional accuracy and the high current density required in the modular coils due to space constraints. In order to address these challenges, an R and D program was established to develop the conductor, insulation scheme, manufacturing techniques, and procedures. A prototype winding named Twisted Racetrack Coil (TRC) was of particular importance in dealing with these challenges. The TRC included a complex shaped winding form, conductor, insulation scheme, leads and termination, cooling system and coil clamps typical of the modular coil design. Even though the TRC is smaller in size than a modular coil, its similar complex geometry provided invaluable information in developing the final design, metrology techniques and development of manufacturing procedures. In addition a discussion of the development of the copper rope conductor including ''Keystoning'' concerns; the epoxy impregnation system (VPI) plus the tooling and equipment required to manufacture the modular coils will be presented

  20. Coil Occlusion of the Patent Ductus Arteriosus: Lessons Learned

    International Nuclear Information System (INIS)

    Sanatani, Shubhayan; Potts, James E.; Ryan, Angela; Sandor, George G.S.; Human, Derek G.; Culham, J.A. Gordon

    2000-01-01

    Purpose: To review the clinical outcomes of catheter-directed coil occlusion (coil occlusion) of persistently patent ductus arteriosus (PDA) at a pediatric tertiary care hospital.Methods: A retrospective review of all patients referred to the Cardiac Catheterization Laboratory for coil occlusion at our institution was performed. Twenty-one consecutive patients (12 female) underwent coil occlusion and follow-up between May 1995 and December 1997. We undertook PDA occlusion if: (a) the PDA narrowed to less than 4 mm on echocardiogram and (b) the minimum body weight was approximately 10 kg. Standard right and retrograde left heart catheterization was performed, followed by coil occlusion. Color-flow mapping (CFM) was used intra-procedurally to confirm occlusion of the PDA with a follow-up study several weeks later.Results: The median age and weight of the patients were 33 months and 13.2 kg, respectively. Fourteen patients received one coil, with six requiring a second coil and one requiring multiple coils. Initial follow-up was at a median of 2.4 months. At latest follow-up, 2 patients still have persistent flow at the ductal level. The coils were deployed without complication or embolization.Conclusions: A review of our first 21 cases demonstrated three important lessons: (1) the maximum diameter of the PDA suitable for coil occlusion is approximately 3 mm; (2) CFM must show complete obliteration of flow in the catheterization lab in order to ensure occlusion of the PDA at follow-up; and (3) the Jackson detachable system allows for precise placement of the coil, often within another coil

  1. Cooling water conditioning and quality control for tokamaks

    International Nuclear Information System (INIS)

    Gootgeld, A.M.

    1995-01-01

    Designers and operators of Tokamaks and all associated water cooled, peripheral equipment, are faced with the task of providing and maintaining closed-loop, low conductivity, low impurity, cooling water systems. The primary reason for supplying low conductivity water to the DIII-D vacuum vessel coils, power supplies and auxiliary heating components is to assure, along with the use of a non-conducting break in the supply piping, sufficient electrical resistance and thus an acceptable current-leakage path to ground at operating voltage potentials. As important, good quality cooling water significantly reduces the likelihood of scaling and fouling of flow passages and heat transfer surfaces. Dissolved oxygen gas removal is also required in one major DIII-D cooling water system to minimize corrosion in the ion sources of the neutral beam injectors. Currently, the combined pumping capacity of the high quality cooling water systems at DIII-D is ∼5,000 gpm. Another area that receives close attention at DIII-D is the chemical treatment of the water used in the cooling towers. This paper discusses the DIII-D water quality requirements, the means used to obtain the necessary quality and the instrumentation used for control and monitoring. Costs to mechanically and chemically condition and maintain water quality are discussed as well as the various aspects of complying with government standards and regulations

  2. Historical review: another 50th anniversary--new periodicities in coiled coils.

    Science.gov (United States)

    Gruber, Markus; Lupas, Andrei N

    2003-12-01

    In 1953, Francis Crick and Linus Pauling both proposed models of supercoiled alpha helices ('coiled coils') for the structure of keratin. These were the first attempts at modelling the tertiary structure of a protein. Crick emphasized the packing mode of the side-chains ('knobs-into-holes'), which required a periodicity of seven residues over two helical turns (7/2) and a supercoil in the opposite sense of the constituent helices. By contrast, Pauling envisaged a broader set of periodicities (4/1, 7/2, 18/5, 15/4, 11/3) and supercoils of both senses. Crick's model became canonical and the 'heptad repeat' essentially synonymous with coiled coils, but 50 years later new crystal structures and protein sequences show that the less common periodicities envisaged by Pauling also occur in coiled coils, adding a variant packing mode ('knobs-to-knobs') to the standard model. Pauling's laboratory notebooks suggest that he searched unsuccessfully for this packing mode in 1953.

  3. DEVELOPMENT OF A CHEST FREEZER – OPTIMUM DESIGN OF AN EVAPORATOR COIL

    Directory of Open Access Journals (Sweden)

    K. Kalyani Radha

    2012-06-01

    Full Text Available In a country such as India, food grains, fruit, vegetables, meat, poultry and fish, are very susceptible to microbial contamination and spoilage and require stringent preservation methods. One such method is by the use of a chest freezer for the storage of frozen food. This investigation considers different loads and design parameters for the development of a chest freezer using R134a as the working fluid. Experimental designs of an evaporator coil, condenser coil and capillary tube are investigated through the development of storage periods in terms of steady state and cyclic performance, by optimising the quantity of refrigerant charge, with strict adherence to the standards and requirement for maintaining an internal temperature of -23 °C at 43 °C ambient. Cyclic load performance tests optimise the performance of individual components selected for the design of a chest freezer. The system selection has a highly balanced performance with R134a and showed 118 kJ/kg cooling capacity with 8.42 coefficient of performance (COP. By the replacement of R134a, temperatures of -23 °C are maintained inside the freezer cabinet with low power consumption and an increase in the net refrigerating effect, which in turn increases the COP. The system design has optimum efficiency with moderate costs by optimising the length and diameter of the evaporator coil, i.e., 34.15 m and 7.94 mm, respectively.

  4. Effect of temperature on the orthodontic clinical applications of NiTi closed-coil springs.

    Science.gov (United States)

    Espinar-Escalona, Eduardo; Llamas-Carreras, José-María; Barrera-Mora, José-María; Abalos-Lasbrucci, Camilo; Gil-Mur, Francisco-Javier

    2013-07-01

    NiTi spring coils were used to obtain large deformation under a constant force. The device consists on a NiTi coil spring, superelastic at body temperature, in order to have a stress plateau during the austenitic retransformation during the unloading. The temperature variations induced changes in the spring force. The aim of this study is to investigate the effect of the temperature variations in the spring forces and corrosion behaviour simulating the ingestion hot/cold drinks and food. The springs were subjected to a tensile force using universal testing machine MTS-Adamel (100 N load cell). All tests were performed in artificial saliva maintained at different temperatures. The corrosion tests were performed according to the ISO-standard 10993-15:2000. The increase in temperature of 18 °C induced an increase in the spring force of 30%. However, when the temperature returns to 37 °C the distraction force recovers near the initial level. After cooling down the spring to 15 °C, the force decreased by 46%. This investigation show as the temperature increase, the corrosion potential shifts towards negative values and the corrosion density is rising. The changes of the temperatures do not modify the superelastic behaviour of the NiTi closed-coil springs. The corrosion potential of NiTi in artificial saliva is decreasing by the rise of the temperatures.

  5. General Atomic's superconducting toroidal field coil concept

    International Nuclear Information System (INIS)

    Alcorn, J.; Purcell, J.

    1978-01-01

    General Atomic's concept for a superconducting toroidal field coil is presented. The concept is generic for large tokamak devices, while a specific design is indicated for a 3.8 meter (major radius) ignition/burn machine. The concept utilizes bath cooled NbTi conductor to generate a peak field of 10 tesla at 4.2 K. The design is simple and straightforward, requires a minimum of developmental effort, and draws extensively upon the perspective of past experience in the design and construction of large superconducting magnets for high energy physics. Thus, the primary emphasis is upon economy, reliability, and expeditious construction scheduling. (author)

  6. Optimization of gradient coil technology for human magnetic resonance imaging

    Science.gov (United States)

    Chronik, Blaine Alexander

    The general problem of identifying the optimal gradient coil design for any given application is addressed in this thesis. The problem is divided into stages. The first step is the development of an optimal mathematical solution for single designs conforming to some set of constraints. The second step is the systematic implementation of the mathematical algorithm to search for the optimal set of design constraints for an intended application, two examples of which are investigated. The final step is the consideration of gradient coil dependent physiological limits specific to the application of strong gradient fields in human subjects. A modified minimum inductance target field method that allows the placement of a set of constraints on the final current density is developed. This constrained current minimum inductance (CCMI) method is derived in the context of previous target field methods. The method has been fully implemented on computer and applied to the design of both central and edge uniformity gradient coils. A three axis gradient coil set that utilizes interleaved, multilayer axes to achieve maximum gradient strengths of over 2000mT/m in rise times of less than 50μs with an inner coil diameter of 5cm was designed. Water cooling was incorporated into the coil to assist in thermal management. The duty cycle for the most extreme cases of single shot EPI is limited by the thermal response and expressions for maximum rates of image collection are given for burst and continuous modes of operation. A three axis gradient coil set with an imaging region extending outside the physical edge of the coil was designed, constructed, and tested. The configuration is compatible with both neck and brain imaging in humans. The coil produces a cylindrical imaging region 16cm in diameter and 16cm in length. The coil axes produce gradient strengths between 80mT/m and 100mT/m at 250A peak current, with minimum rise times of approximately 400μs. Heating tests were performed

  7. Beam cooling

    OpenAIRE

    Danared, H

    2006-01-01

    Beam cooling is the technique of reducing the momentum spread and increasing the phase-space density of stored particle beams. This paper gives an introduction to beam cooling and Liouville’s theorem, and then it describes the three methods of active beam cooling that have been proven to work so far, namely electron cooling, stochastic cooling, and laser cooling. Ionization cooling is also mentioned briefly.

  8. Coiled-coil networking shapes cell molecular machinery

    Science.gov (United States)

    Wang, Yongqiang; Zhang, Xinlei; Zhang, Hong; Lu, Yi; Huang, Haolong; Dong, Xiaoxi; Chen, Jinan; Dong, Jiuhong; Yang, Xiao; Hang, Haiying; Jiang, Taijiao

    2012-01-01

    The highly abundant α-helical coiled-coil motif not only mediates crucial protein–protein interactions in the cell but is also an attractive scaffold in synthetic biology and material science and a potential target for disease intervention. Therefore a systematic understanding of the coiled-coil interactions (CCIs) at the organismal level would help unravel the full spectrum of the biological function of this interaction motif and facilitate its application in therapeutics. We report the first identified genome-wide CCI network in Saccharomyces cerevisiae, which consists of 3495 pair-wise interactions among 598 predicted coiled-coil regions. Computational analysis revealed that the CCI network is specifically and functionally organized and extensively involved in the organization of cell machinery. We further show that CCIs play a critical role in the assembly of the kinetochore, and disruption of the CCI network leads to defects in kinetochore assembly and cell division. The CCI network identified in this study is a valuable resource for systematic characterization of coiled coils in the shaping and regulation of a host of cellular machineries and provides a basis for the utilization of coiled coils as domain-based probes for network perturbation and pharmacological applications. PMID:22875988

  9. Heterodimeric coiled-coil interactions of human GABAB receptor.

    Science.gov (United States)

    Burmakina, Svetlana; Geng, Yong; Chen, Yan; Fan, Qing R

    2014-05-13

    Metabotropic GABAB receptor is a G protein-coupled receptor that mediates inhibitory neurotransmission in the CNS. It functions as an obligatory heterodimer of GABAB receptor 1 (GBR1) and GABAB receptor 2 (GBR2) subunits. The association between GBR1 and GBR2 masks an endoplasmic reticulum (ER) retention signal in the cytoplasmic region of GBR1 and facilitates cell surface expression of both subunits. Here, we present, to our knowledge, the first crystal structure of an intracellular coiled-coil heterodimer of human GABAB receptor. We found that polar interactions buried within the hydrophobic core determine the specificity of heterodimer pairing. Disruption of the hydrophobic coiled-coil interface with single mutations in either subunit impairs surface expression of GBR1, confirming that the coiled-coil interaction is required to inactivate the adjacent ER retention signal of GBR1. The coiled-coil assembly buries an internalization motif of GBR1 at the heterodimer interface. The ER retention signal of GBR1 is not part of the core coiled-coil structure, suggesting that it is sterically shielded by GBR2 upon heterodimer formation.

  10. Electrospun Buckling Coils

    Science.gov (United States)

    Xin, Yu; Reneker, Darrell

    2009-03-01

    Electrospinning offers a useful way to produce fibers with micron and nanometer scale diameter. The present work deals with the buckling phenomenon characteristic of a jet impinging upon the surface of collector. A viscous jet may have either tensile or compressive forces along its axis. The periodic buckling that is often observed is attributed to the occurrence of compressive forces as the jet decelerates at the collector. With the increase of axial compressive stresses along the jet, a jet with circular cross sections first buckles by formation of sharp folds, and then by formation of coils. The resulting buckling patterns include zigzag patterns and coils that which can be controlled by changing parameters, such as density, viscosity, conductivity, voltage, polymer concentration, distance and volumetric flow rate. Uniformly buckled polymer fibers can be made at a rate of one turn per microsecond. An experimental apparatus was built to continuously collect buckling coils of nylon 6, from a water surface, into a multilayer sheet. These small ``springs'' and sheets will be tested for mechanical properties needed in biomedical applications.

  11. Experimental comparison of standard fuel cells PEM in radial configuration, coil and spiral; Comparacion experimental de celdas de combustible tipo PEM en configuracion radial, serpentin y espiral

    Energy Technology Data Exchange (ETDEWEB)

    Cano Andrade, Sergio

    2008-12-15

    After analyzing each one of the possible energy sources to replace oil the following question arises: which of all the possible sources is the suitable one? With no doubt another important factor in the election of this source is due to take into account, which has to do with the great problem that the humanity deals on a daily basis: the greenhouse effect. Taking into account the greenhouse effect, the fuel cells on the basis of hydrogen are the more viable energy source to substitute oil, since in their operation they are friendly with the environment since they do not produce polluting agents, reducing enormously the problem of global heating in which the planet is bottled. It is very certain that many disadvantages in these fuel cells on the basis of hydrogen still exist, but the arduous investigations realized until the present time foresee an excellent future where the planet will be able to satisfy its daily energy demand on the basis of the hydrogen technology. In future works one must have special care of the humidity control of gases before entering the fuel cell, since it is an important parameter in the correct operation of the standard fuel cells PEM. In the present investigation the advance in the state-of-the-art of the hydrogen technology is illustrated, specifically with the generation of electricity on the basis of the novel configurations of standard fuel cells PEM. Until the moment similar work it has not been found in the bibliography similar work where it is experienced with this type of radial configuration for the hydrogen technologies. The geometry and the results presented/displayed in this analysis correspond to a work of the highest category in the state-of-the-art of the fuel cells; in addition, an ample expectation due to the highly satisfactory results found, either numerically as well as experimentally, in comparison with other geometries is obtained. [Spanish] Despues de analizar cada una de las posibles fuentes de energia para

  12. Standard Practice for Laboratory Screening of Metallic Containment Materials for Use With Liquids in Solar Heating and Cooling Systems

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1980-01-01

    1.1 This practice covers several laboratory test procedures for evaluating corrosion performance of metallic containment materials under conditions similar to those that may occur in solar heating and cooling systems. All test results relate to the performance of the metallic containment material only as a part of a metal/fluid pair. Performance in these laboratory test procedures, taken by itself, does not necessarily constitute an adequate basis for acceptance or rejection of a particular metal/fluid pair in solar heating and cooling systems, either in general or in a particular design. This practice is not intended to preclude the use of other screening tests, particularly when those tests are designed to more closely simulate field service conditions. 1.2 This practice describes apparatus and procedures for several tests, any one or more of which may be used to evaluate the deterioration of the metallic containment material in a metal/fluid pair. The procedures are designed to permit simulation, heating...

  13. Magnetic field alignment of coil-coil diblock copolymers and blends via intrinsic chain anisotropy

    Science.gov (United States)

    Rokhlenko, Yekaterina; Majewski, Pawel; Larson, Steven; Yager, Kevin; Gopalan, Padma; Avgeropoulos, Apostolos; Chan, Edwin; Osuji, Chinedum

    Magnetic fields can control alignment of self-assembled soft materials such as block copolymers provided there is a suitably large magnetic susceptibility anisotropy present in the system. Recent results have highlighted the existence of a non-trivial intrinsic anisotropy in coil-coil diblock copolymers, specifically in lamellar-forming PS-b-P4VP, which enables alignment at field strengths of a few tesla in systems lacking mesogenic components. Alignment is predicated on correlation in the orientation of end-end vectors implied by the localization of block junctions at the microdomain interface and is observed on cooling across the order-disorder transition in the presence of the field. For appropriate combinations of field strength and grain size, we can leverage intrinsic chain anisotropy to magnetically direct self-assembly of many non-mesogenic systems, including other coil-coil BCPs like PS-b-PDMS and PS-b-PMMA, blends of BCPs of disparate morphologies and MWs, and blends of BCPs with homopolymers. This is noteworthy as blends of PS-b-P4VP with PEO provide a route to form functional materials such as nanoporous films by dissolution of PEO, or aligned ion conduction materials. We survey these various systems using TEM and in-situ X-ray scattering to study the phase behavior and temperature-, time- and field- dependent dynamics of alignment.

  14. Role of the large coil program in the development of superconducting magnets for fusion reactors

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Luton, J.N.; Thompson, P.B.

    1978-01-01

    Three U.S. industrial teams are designing and will build one coil each to a common set of specifications. Coil specifications and test conditions were chosen to insure maximum relevance to fusion program needs. Each test coil will have a 2.5 x 3.5 m D-shape bore, will contain about 7 MA-turns, and must operate at a peak field of 8 T while subjected to pulsed fields up to 0.14 T in a test stand that can accommodate up to 6 coils in a compact toroidal array. Coils by General Dynamics/Convair and General Electric will use different NbTi conductors cooled by pool-boiling helium. The Westinghouse coil will use Nb 3 Sn cooled by a forced flow of supercritical helium. These coils will be delivered in 1980 and 1981 for testing in the Large Coil Test Facility at Oak Ridge in a compact toroidal array with three coils from outside the U.S. These will be produced by EURATOM, Japan, and Switzerland for testing under an International Energy Agency agreement

  15. Progress on the Design of the Coupling coils for MICE and MUCOOL

    International Nuclear Information System (INIS)

    Green, M.A.; Li, D.; Virostek, Steve P.; Wang, L.; Wu, H.; Li, L.K.; Li, S.Y.; Xu, F.Y.; Guo, X.L.; Liu, C.S.; Han, G.; Liu, X.K.; Jia, L.X.

    2007-01-01

    The Muon Ionization Cooling Experiment (MICE) [1]will demonstrate ionization cooling in a short section of a realistic cooling channel using a muon beam at Rutherford Appleton Laboratory (RAL) in the UK. The MICE RF and Coupling Coil (RFCC) Module consists of a superconducting solenoid mounted around four normal conducting 201.25-MHzRF cavities. The coil package that surrounds the RF cavities is to be mounted in a 1.4 m diameter vacuum vessel. The coupling coil confines the beam in the RFCC module within the radius of the RF cavity beam windows. Each coupling magnet will be powered by a 300 A, 10 V power supply. The maximum design longitudinal force that will be carried by the cold mass support system is 0.5 MN. The detailed design and analysis of the coupling magnet has been completed by ICST. The primary magnetic and mechanical design features of the coils are presented in this paper

  16. Thermal analysis of toroidal field coil in EAST at 3.7 K

    International Nuclear Information System (INIS)

    Yi, Shi; Wu, Yu; Liu, Bo.; Long, Feng; Hao, Qiang W.

    2014-01-01

    Highlights: • In this study, the thermal performance of toroidal field (TF) coil is studied at 3.7 K in Experimental Advanced Superconducting Tokamak device (EAST) to obtain the higher stability. • The structure and cooling process design of TF coil and case is described and the helium temperature in the cable-in-conduit conductor (CICC) and case is evaluated during the 1.5 MA plasma disruptions. • Then, the experimental results of TF coil cooled at 3.7 K and discharged in 10 kA are shown including the thermal loss evaluation. • Finally, the thermal stability performance of TF coil is analyzed at 1.5 MA plasma current operations. - Abstract: The thermal performance of toroidal field (TF) coil is studied at 3.7 K in Experimental Advanced Superconducting Tokamak device (EAST) to obtain the higher stability for the higher plasma parameters operation. It is a good way to lower the operating temperature of TF coil to acquire the higher stability margin. This paper describes the structure and cooling process design of TF coil and case firstly. Based on the thermal load in the case, the thermal performance of the TF coil is performed at the plasma disruption state. The helium temperature in the cable-in-conduit conductor (CICC) and case is evaluated during the 1.5 MA plasma disruptions. Then, the experimental results of TF coil which has been cooled at 3.7 K and discharged in 10 kA are shown including the thermal loss evaluation. Finally, the thermal stability performance of TF coil is analyzed according to the 3.7 K experimental results and the stability prediction is performed at 1.5 MA plasma current operations

  17. Large coil test structural analysis

    International Nuclear Information System (INIS)

    Clinard, J.A.; Hammonds, C.J.

    1986-01-01

    The International Fusion Superconducting Magnet Test Facility (IFSMTF) at Oak Ridge National Laboratory (ORNL) is being utilized for testing of 2.5 x 3.5-m bore superconducting 8-T magnets produced by four international agencies (U.S., Euratom, Japan, and Switzerland). The definitive tests in the design configuration, six coils arranged in a compact torus, will begin in late 1985. Partial-array tests involving one US coil and the Japanese coil were completed in the fall of 1984. This presentation describes structural analysis using NASTRAN, with symmetry and superelement techniques, to predict the IFSMTF test stand and coil responses to various combinations of in-plane and out-of-plane loading conditions for both the partial-array and six-coil test configurations. Comparison to partial-array displacement and strain measurements are presented and discussed. Six-coil results and their utilization for determining safe levels of operation of the system are likewise discussed

  18. Quadrature Slotted Surface Coil Pair for Magnetic Resonance Imaging at 4 Tesla: Phantom Study

    Directory of Open Access Journals (Sweden)

    Solis S.E.

    2012-01-01

    Full Text Available A coil array was composed of two slotted surface coils forming a structure with two plates at 900, each one having 6 circular slots and is introduced in this paper. Numerical simulations of the magnetic field of this coil array were performed at 170 MHz using the finite element method to study its behaviour. This coil array was developed for brain magnetic resonance imaging to be operated at the resonant frequency of 170 MHz in the transceiver mode and quadrature driven. Numerical simulations demonstrated that electromagnetic interaction between the coil elements is negligible, and that the magnetic field showed a good uniformity. Phantom images were acquired with our coil array and standard pulse sequences on a research-dedicated 4 Tesla scanner. In vitro images showed the feasibility of this coil array for standard pulses and high field magnetic resonance imaging.

  19. Endoluminal ultrasound applicator with an integrated RF coil for high-resolution magnetic resonance imaging-guided high-intensity contact ultrasound thermotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Rata, Mihaela; Salomir, Rares; Lafon, Cyril [Inserm, U556, Universite de Lyon, Lyon, F-69003 (France); Umathum, Reiner; Jenne, Juergen; Bock, Michael [DKFZ, Innovative Cancer Diagnostics and Therapy, Heidelberg (Germany); Cotton, Francois [Universite Claude Bernard Lyon 1, Lyon F-69003 (France)], E-mail: rares.salomir@inserm.fr

    2008-11-21

    High-intensity contact ultrasound (HICU) under MRI guidance may provide minimally invasive treatment of endocavitary digestive tumors in the esophagus, colon or rectum. In this study, a miniature receive-only coil was integrated into an endoscopic ultrasound applicator to offer high-resolution MRI guidance of thermotherapy. A cylindrical plastic support with an incorporated single element flat transducer (9.45 MHz, water cooling tip) was made and equipped with a rectangular RF loop coil surrounding the active element. The integrated coil provided significantly higher sensitivity than a four-element extracorporeal phased array coil, and the standard deviation of the MR thermometry (SDT) improved up to a factor of 7 at 10 mm depth in tissue. High-resolution morphological images (T1w-TFE and IR-T1w-TSE with a voxel size of 0.25 x 0.25 x 3 mm{sup 3}) and accurate thermometry data (the PRFS method with a voxel size of 0.5 x 0.5 x 5 mm{sup 3}, 2.2 s/image, 0.3 deg. C voxel-wise SDT) were acquired in an ex vivo esophagus sample, on a clinical 1.5T scanner. The endoscopic device was actively operated under automatic temperature control, demonstrating a high level of accuracy (1.7% standard deviation, 1.1% error of mean value), which indicates that this technology may be suitable for HICU therapy of endoluminal cancer.

  20. Endoluminal ultrasound applicator with an integrated RF coil for high-resolution magnetic resonance imaging-guided high-intensity contact ultrasound thermotherapy

    Science.gov (United States)

    Rata, Mihaela; Salomir, Rares; Umathum, Reiner; Jenne, Jürgen; Lafon, Cyril; Cotton, François; Bock, Michael

    2008-11-01

    High-intensity contact ultrasound (HICU) under MRI guidance may provide minimally invasive treatment of endocavitary digestive tumors in the esophagus, colon or rectum. In this study, a miniature receive-only coil was integrated into an endoscopic ultrasound applicator to offer high-resolution MRI guidance of thermotherapy. A cylindrical plastic support with an incorporated single element flat transducer (9.45 MHz, water cooling tip) was made and equipped with a rectangular RF loop coil surrounding the active element. The integrated coil provided significantly higher sensitivity than a four-element extracorporeal phased array coil, and the standard deviation of the MR thermometry (SDT) improved up to a factor of 7 at 10 mm depth in tissue. High-resolution morphological images (T1w-TFE and IR-T1w-TSE with a voxel size of 0.25 × 0.25 × 3 mm3) and accurate thermometry data (the PRFS method with a voxel size of 0.5 × 0.5 × 5 mm3, 2.2 s/image, 0.3 °C voxel-wise SDT) were acquired in an ex vivo esophagus sample, on a clinical 1.5T scanner. The endoscopic device was actively operated under automatic temperature control, demonstrating a high level of accuracy (1.7% standard deviation, 1.1% error of mean value), which indicates that this technology may be suitable for HICU therapy of endoluminal cancer.

  1. Coil Optimization for HTS Machines

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Abrahamsen, Asger Bech

    An optimization approach of HTS coils in HTS synchronous machines (SM) is presented. The optimization is aimed at high power SM suitable for direct driven wind turbines applications. The optimization process was applied to a general radial flux machine with a peak air gap flux density of ~3T...... is suitable for which coil segment is presented. Thus, the performed study gives valuable input for the coil design of HTS machines ensuring optimal usage of HTS tapes....

  2. Large superconducting coil fabrication development

    International Nuclear Information System (INIS)

    Brown, R.L.; Allred, E.L.; Anderson, W.C.; Burn, P.B.; Deaderick, R.I.; Henderson, G.M.; Marguerat, E.F.

    1975-01-01

    Toroidal fields for some fusion devices will be produced by an array of large superconducting coils. Their size, space limitation, and field requirements dictate that they be high performance coils. Once installed, accessibility for maintenance and repairs is severely restricted; therefore, good reliability is an obvious necessity. Sufficient coil fabrication will be undertaken to develop and test methods that are reliable, fast, and economical. Industrial participation will be encouraged from the outset to insure smooth transition from development phases to production phases. Initially, practice equipment for three meter bore circular coils will be developed. Oval shape coil forms will be included in the practice facility later. Equipment that is more automated will be developed with the expectation of winding faster and obtaining good coil quality. Alternate types of coil construction, methods of winding and insulating, will be investigated. Handling and assembly problems will be studied. All technology developed must be feasible for scaling up when much larger coils are needed. Experimental power reactors may need coils having six meter or larger bores

  3. F-state quenching with CH4 for buffer-gas cooled 171Y b+ frequency standard

    Directory of Open Access Journals (Sweden)

    Y.-Y. Jau

    2015-11-01

    Full Text Available We report that methane, CH4, can be used as an efficient F-state quenching gas for trapped ytterbium ions. The quenching rate coefficient is measured to be (2.8 ± 0.3 × 106 s−1 Torr−1. For applications that use microwave hyperfine transitions of the ground-state 171Y b ions, the CH4 induced frequency shift coefficient and the decoherence rate coefficient are measured as δν/ν = (−3.6 ± 0.1 × 10−6 Torr−1 and 1/T2 = (1.5 ± 0.2 × 105 s−1 Torr−1. In our buffer-gas cooled 171Y b+ microwave clock system, we find that only ≤10−8 Torr of CH4 is required under normal operating conditions to efficiently clear the F-state and maintain ≥85% of trapped ions in the ground state with insignificant pressure shift and collisional decoherence of the clock resonance.

  4. Comparison between predicted duct effectiveness from proposed ASHRAE Standard 152P and measured field data for residential forced air cooling systems; TOPICAL

    International Nuclear Information System (INIS)

    Siegel, Jeffrey A.; McWilliams, Jennifer A.; Walker, Iain S.

    2002-01-01

    The proposed ASHRAE Standard 152P ''Method of Test for Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution Systems'' (ASHRAE 2002) has recently completed its second public review. As part of the standard development process, this study compares the forced air distribution system ratings provided by the public review draft of Standard 152P to measured field results. 58 field tests were performed on cooling systems in 11 homes in the summers of 1998 and 1999. Seven of these houses had standard attics with insulation on the attic floor and a well-vented attic space. The other four houses had unvented attics where the insulation is placed directly under the roof deck and the attic space is not deliberately vented. Each house was tested under a range of summer weather conditions at each particular site, and in some cases the amount of duct leakage was intentionally varied. The comparison between 152P predicted efficiencies and the measured results includes evaluation of the effects of weather, duct location, thermal conditions, duct leakage, and system capacity. The results showed that the difference between measured delivery effectiveness and that calculated using proposed Standard 152P is about 5 percentage points if weather data, duct leakage and air handler flow are well known. However, the accuracy of the standard is strongly dependent on having good measurements of duct leakage and system airflow. Given that the uncertainty in the measured delivery effectiveness is typically also about 5 percentage points, the Standard 152P results are acceptably close to the measured data

  5. Triple Halo Coil: Development and Comparison with Other TMS Coils

    Science.gov (United States)

    Rastogi, Priyam; Hadimani, Ravi; Jiles, David

    Transcranial Magnetic Stimulation (TMS) is a non-invasive stimulation technique that can be used for the treatment of various neurological disorders such as Parkinson's Disease, PTSD, TBI and anxiety by regulating synaptic activity. TMS is FDA approved for the treatment of major depressive disorder. There is a critical need to develop deep TMS coils that can stimulate deeper regions of the brain without excessively stimulating the cortex in order to provide an alternative to surgical methods. We have developed a novel multi-coil configuration called ``Triple Halo Coil'' (THC) that can stimulate deep brain regions. Investigation of induced electric and magnetic field in these regions have been achieved by computer modelling. Comparison of the results due to THC configuration have been conducted with other TMS coils such as ``Halo Coil'', circular coil and ``Figure of Eight'' coil. There was an improvement of more than 15 times in the strength of magnetic field, induced by THC configuration at 10 cm below the vertex of the head when compared with the ``Figure of Eight'' coil alone. Carver Charitable Trust.

  6. High-resolution structures of a heterochiral coiled coil.

    Science.gov (United States)

    Mortenson, David E; Steinkruger, Jay D; Kreitler, Dale F; Perroni, Dominic V; Sorenson, Gregory P; Huang, Lijun; Mittal, Ritesh; Yun, Hyun Gi; Travis, Benjamin R; Mahanthappa, Mahesh K; Forest, Katrina T; Gellman, Samuel H

    2015-10-27

    Interactions between polypeptide chains containing amino acid residues with opposite absolute configurations have long been a source of interest and speculation, but there is very little structural information for such heterochiral associations. The need to address this lacuna has grown in recent years because of increasing interest in the use of peptides generated from d amino acids (d peptides) as specific ligands for natural proteins, e.g., to inhibit deleterious protein-protein interactions. Coiled-coil interactions, between or among α-helices, represent the most common tertiary and quaternary packing motif in proteins. Heterochiral coiled-coil interactions were predicted over 50 years ago by Crick, and limited experimental data obtained in solution suggest that such interactions can indeed occur. To address the dearth of atomic-level structural characterization of heterochiral helix pairings, we report two independent crystal structures that elucidate coiled-coil packing between l- and d-peptide helices. Both structures resulted from racemic crystallization of a peptide corresponding to the transmembrane segment of the influenza M2 protein. Networks of canonical knobs-into-holes side-chain packing interactions are observed at each helical interface. However, the underlying patterns for these heterochiral coiled coils seem to deviate from the heptad sequence repeat that is characteristic of most homochiral analogs, with an apparent preference for a hendecad repeat pattern.

  7. Coiled Coils Ensure the Physiological Ectodomain Shedding of Collagen XVII*

    Science.gov (United States)

    Nishie, Wataru; Jackow, Joanna; Hofmann, Silke C.; Franzke, Claus-Werner; Bruckner-Tuderman, Leena

    2012-01-01

    α-Helical coiled coils, frequent protein oligomerization motifs, are commonly observed in vital proteins. Here, using collagen XVII as an example, we provide evidence for a novel function of coiled coils in the regulation of ectodomain shedding. Transmembrane collagen XVII, an epithelial cell surface receptor, mediates dermal-epidermal adhesion in the skin, and its dysfunction is linked to human skin blistering diseases. The ectodomain of this collagen is constitutively shed from the cell surface by proteinases of a disintegrin and metalloprotease family; however, the mechanisms regulating shedding remain elusive. Here, we used site-specific mutagenesis to target the coiled-coil heptad repeats within the juxtamembranous, extracellular noncollagenous 16th A (NC16A) domain of collagen XVII. This resulted in a substantial increase of ectodomain shedding, which was not mediated by disintegrin and metalloproteases. Instead, conformational changes induced by the mutation(s) unmasked a furin recognition sequence that was used for cleavage. This study shows that apart from their functions in protein oligomerization, coiled coils can also act as regulators of ectodomain shedding depending on the biological context. PMID:22761443

  8. The coiled coil motif in polymer drug delivery systems

    Czech Academy of Sciences Publication Activity Database

    Pechar, Michal; Pola, Robert

    2013-01-01

    Roč. 31, č. 1 (2013), s. 90-96 ISSN 0734-9750 R&D Projects: GA ČR GA203/08/0543; GA MŠk 1M0505 Institutional research plan: CEZ:AV0Z40500505 Keywords : coiled coil * hydrophilic polymer * recombinant protein Subject RIV: CD - Macromolecular Chemistry Impact factor: 8.905, year: 2013

  9. Competition between Coiled-Coil Structures and the Impact on Myosin-10 Bundle Selection.

    Science.gov (United States)

    Vavra, Kevin C; Xia, Youlin; Rock, Ronald S

    2016-06-07

    Coiled-coil fusions are a useful approach to enforce dimerization in protein engineering. However, the final structures of coiled-coil fusion proteins have received relatively little attention. Here, we determine the structural outcome of adjacent parallel and antiparallel coiled coils. The targets are coiled coils that stabilize myosin-10 in single-molecule biophysical studies. We reveal the solution structure of a short, antiparallel, myosin-10 coiled-coil fused to the parallel GCN4-p1 coiled coil. Surprisingly, this structure is a continuous, antiparallel coiled coil where GCN4-p1 pairs with myosin-10 rather than itself. We also show that longer myosin-10 segments in these parallel/antiparallel fusions are dynamic and do not fold cooperatively. Our data resolve conflicting results on myosin-10 selection of actin filament bundles, demonstrating the importance of understanding coiled-coil orientation and stability. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Compressing DNA sequence databases with coil

    Directory of Open Access Journals (Sweden)

    Hendy Michael D

    2008-05-01

    Full Text Available Abstract Background Publicly available DNA sequence databases such as GenBank are large, and are growing at an exponential rate. The sheer volume of data being dealt with presents serious storage and data communications problems. Currently, sequence data is usually kept in large "flat files," which are then compressed using standard Lempel-Ziv (gzip compression – an approach which rarely achieves good compression ratios. While much research has been done on compressing individual DNA sequences, surprisingly little has focused on the compression of entire databases of such sequences. In this study we introduce the sequence database compression software coil. Results We have designed and implemented a portable software package, coil, for compressing and decompressing DNA sequence databases based on the idea of edit-tree coding. coil is geared towards achieving high compression ratios at the expense of execution time and memory usage during compression – the compression time represents a "one-off investment" whose cost is quickly amortised if the resulting compressed file is transmitted many times. Decompression requires little memory and is extremely fast. We demonstrate a 5% improvement in compression ratio over state-of-the-art general-purpose compression tools for a large GenBank database file containing Expressed Sequence Tag (EST data. Finally, coil can efficiently encode incremental additions to a sequence database. Conclusion coil presents a compelling alternative to conventional compression of flat files for the storage and distribution of DNA sequence databases having a narrow distribution of sequence lengths, such as EST data. Increasing compression levels for databases having a wide distribution of sequence lengths is a direction for future work.

  11. Two-Slotted Surface Coil Array for Magnetic Resonance Imaging at 4 Tesla

    International Nuclear Information System (INIS)

    Solis, S. E.; Hernandez, J. A.; Rodriguez, A. O.; Tomasi, D.

    2008-01-01

    Arrays of antennas have been widely accepted for magnetic resonance imaging applications due to their high signal-to-noise ratio (SNR) over large volumes of interest. A new surface coil based on the magnetron tube and called slotted surface coil, has been recently introduced by our group. This coil design experimentally demonstrated a significant improvement over the circular-shaped coil when used in the receive-only mode. The slotted coils formed a two-sheet structure with a 90 deg. separation and each coil had 6 circular slots. Numerical simulations were performed using the finite element method for this coil design to study the behaviour of the array magnetic field. Then, we developed a two-coil array for brain magnetic resonance imaging to be operated at the resonant frequency of 170 MHz in the transceiver mode. Phantom images were acquired with our coil array and standard pulse sequences on a research-dedicated 4 Tesla scanner. Numerical simulations demonstrated that electromagnetic interaction between the coil elements is negligible, and that the magnetic field showed a good uniformity. In vitro images showed the feasibility of this coil array for standard pulses for high field magnetic resonance imaging

  12. CCHMM_PROF: a HMM-based coiled-coil predictor with evolutionary information

    DEFF Research Database (Denmark)

    Bartoli, Lisa; Fariselli, Piero; Krogh, Anders

    2009-01-01

    MOTIVATION: The widespread coiled-coil structural motif in proteins is known to mediate a variety of biological interactions. Recognizing a coiled-coil containing sequence and locating its coiled-coil domains are key steps towards the determination of the protein structure and function. Different...

  13. A diode-laser optical frequency standard based on laser-cooled Ca atoms: sub-kilohertz spectroscopy by optical shelving detection

    International Nuclear Information System (INIS)

    Oates, C.W.; Bondu, F.; Fox, R.W.; Hollberg, L.

    1999-01-01

    We report an optical frequency standard at 657 nm based on laser-cooled/trapped Ca atoms. The system consists of a novel, compact magneto-optic trap which uses 50 mW of frequency-doubled diode laser light at 423 nm and can trap >10 7 Ca atoms in 20 ms. High resolution spectroscopy on this atomic sample using the narrow 657 nm intercombination line resolves linewidths (FWHM) as narrow as 400 Hz, the natural linewidth of the transition. The spectroscopic signal-to-noise ratio is enhanced by an order of magnitude with the implementation of a ''shelving'' detection scheme on the 423 nm transition. Our present apparatus achieves a fractional frequency instability of 5 x 10 -14 in 1 s with a potential atom shot-noise-limited performance of 10 -16 τ -1/2 and excellent prospects for high accuracy. (orig.)

  14. Thermal stress analysis and diffraction simulation of a standard and inclined gallium-cooled high-heat-load X-ray monochromator

    International Nuclear Information System (INIS)

    Rogers, C.S.; Macrander, A.T.

    1993-01-01

    This paper describes the methods used to calculate the thermally induced deformations in symmetrically cut, standardly configured and inclined monochromator crystals using finite element analysis. The results of these analyses are compared to recent undulator experiments conducted at the Cornell High Energy Synchrotron Source (CHESS) using a high-performance, liquid-gallium-cooled silicon crystal. The modeling was carried out for a range of machine currents, and the calculated rocking curve widths were within 10% of the experimental values. The asymmetric shape of the rocking curves at high currents was also predicted. These results lend credibility to our assertion that computer simulations can be used to reliably and accurately predict the performance of high-heat-load X-ray optics for future synchrotron sources. (orig.)

  15. "Slinky" coils for neuromagnetic stimulation.

    Science.gov (United States)

    Zimmermann, K P; Simpson, R K

    1996-04-01

    Future advances in neuromagnetic stimulation depend significantly on the design of coils with improved focality. Although in the absence of internal current sources, no true focusing of magnetically induced currents is possible, improvements in the focality of current concentrations passing through an area of biologic tissue are achievable through variations of the shape, orientation and size of neuromagnetic stimulating coils. The "butterfly" and the "4-leaf" coils are two examples of planar designs which achieve improved focality through centralization of the maximum coil current and peripheral distribution of the return currents. We introduce the "slinky" coil design as a 3-dimensional generalization of the principle of peripheral distribution of return currents and demonstrate its advantages over planar designs.

  16. Thermal analysis of COIL

    Science.gov (United States)

    Takeuchi, Noriyuki; Sugimoto, Daichi; Tei, Kazuyoku; Fujioka, Tomoo

    2004-05-01

    Analysis of heat release into operative gas of Chemical Oxygen Iodine Laser (COIL) is discussed. Pooling reaction of oxygen molecules in the excited state, the iodine dissociation process and the interaction of them with water vapor release energy of in the excited state oxygen molecules as heat energy. As results of heat release in the plenum, a rise of the total pressure as a rise of the total temperature is observed, and in the supersonic region a rise of static pressure and a decrease of total pressure as a rise of total temperature are observed. By following our analysis technique regarding pressure data of three different nozzles, the evaluations such as energy loss in a duct from a Singlet delta Oxygen Generator (SOG) and the number of dissipated oxygen molecules for the iodine dissociation can be estimated.

  17. Superconducting poloidal coils for STARFIRE commercial reactor

    International Nuclear Information System (INIS)

    Wang, S.T.; Evans, K. Jr.; Turner, L.R.; Huang, Y.C.; Prater, R.; Alcorn, J.

    1979-01-01

    STARFIRE is considered to be the tenth commercial tokamak power plant. A preliminary design study on its superconducting poloidal coil system is presented. Key features of the design studies are: the elimination of the ohmic heating coil; the trade-off studies of the equilibrium field coil locations; and the development of a conceptual design for the superconducting equilibrium field coils. Described are the 100 kA cryostable conductor design, the coil structure, and evaluation of the coil forces

  18. A new laser cooling method for lithium atom interferometry

    Science.gov (United States)

    Kim, Geena

    An atom interferometer offers means to measure physical constants and physical quantities with a high precision, with relatively low cost and convenience as a table-top experiment. A precision measurement of a gravitational acceleration can test fundamental physics concepts such as Einstein equivalence principle (EEP). We identified that the two lithium isotopes (7Li and 6Li) have an advantage for the test of EEP, according to the standard model extension (SME). We aim to build the world's first lithium atom interferometer and test the Einstein equivalence principle. We demonstrate a new laser cooling method suitable for a lithium atom interferometer. Although lithium is often used in ultra-cold atom experiments for its interesting physical properties and measurement feasibility, it is more difficult to laser cool lithium than other alkali atoms due to its unresolved hyperfine states, light mass (large recoil velocity) and high temperature from the oven. Typically, standard laser cooling techniques such as Zeeman slowers and magneto-optical traps are used to cool lithium atoms to about 1 mK, and the evaporative cooling method is used to cool lithium atoms to a few muK for Bose-Einstein condensate (BEC) experiments. However, for the atom interferometry purpose, the evaporative cooling method is not ideal for several reasons: First, its cooling efficiency is so low (0.01 % or less) that typically only 104-105 atoms are left after cooling when one begins with 10. 9 atoms. More atoms in anatom interferometer are needed to have a better signal to noise ratio. Second, an evaporative cooling is used to make a BEC, but we do not need a BEC to make an atom interferometer. In an atom interferometer, a high density of atoms as in a BEC should be avoided since it causes a phase shift due to atom interactions. Third, a setup for an evaporative cooling requires intricate RF generating coils or a high power laser. With a simple optical lattice and a moderate laser power (100 m

  19. Feasibility Study: Ductless Hydronic Distribution Systems with Fan Coil Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Springer, D.; Dakin, B.; Backman, C.

    2012-07-01

    The primary objectives of this study are to estimate potential energy savings relative to conventional ducted air distribution, and to identify equipment requirements, costs, and barriers with a focus on ductless hydronic delivery systems that utilize water-to-air terminal units in each zone. Results indicate that annual heating and cooling energy use can be reduced by up to 27% assuming replacement of the conventional 13 SEER heat pump and coil with a similarly rated air-to-water heat pump.

  20. Making an Inexpensive Electromagnetic Wiggler Using Sheet Materials for the Coils

    CERN Document Server

    Herman-Biallas, George; Hiatt, Thomas; Neil, George; Snyder, Michael

    2004-01-01

    An inexpensive electromagnetic wiggler, made with twenty-eight, 4 cm periods with a K of 1 and gap of 2.6 cm was made within 10 weeks after receipt of order by an industrial machine shop. The coil design used sheet and plate materials cut to shapes using water jet cutting and was assembled in a simple stack design. The coil design extends the serpentine conductor design of the Duke OK4 to more and smaller conductors. The coils are conduction cooled to imbedded cooling plates. The wiggler features graded end pole fields, trim coil compensation for end field errors and mirror plates on the ends to avoid three dimensional end field effects. Details of the methods used in construction and the wiggler performance are presented.

  1. Is umbilical coiling genetically determined?

    Science.gov (United States)

    Ayala, Nina K; Ernst, Linda M; Miller, Emily S

    2018-02-21

    Abnormal umbilical cord coiling is associated with adverse perinatal outcomes; however, the etiology of the umbilical coiling pattern is poorly understood. Retrospective cohort of all twin deliveries >20 weeks in 2014. Pregnancies were dichotomized by chorionicity and the umbilical coiling index (UCI) and placental cord insertion location were compared. In cases with one or both cords hypercoiled, the direction and pattern of coiling were compared by chorionicity. A similar analysis was performed stratified by zygosity. Three hundred sisty two twin pairs were included; 26 (7.2%) monochorionic and 174 (87.0%) definitively dizygotic. Concordance in the UCI and coiling category were similar between dichorionic and monochorionic as well as dizygous and monozygous gestations, (73.2% vs 80.8%, p = 0.399 and 71.4% vs 80.8%, p = 0.399, respectively). Analyses of the coiling direction and pattern also demonstrated no difference by chorionicity or zygosity. These data do not support a genetic basis for umbilical cord coiling.

  2. Coiled Coils - A Model System for the 21st Century.

    Science.gov (United States)

    Lupas, Andrei N; Bassler, Jens

    2017-02-01

    α-Helical coiled coils were described more than 60 years ago as simple, repetitive structures mediating oligomerization and mechanical stability. Over the past 20 years, however, they have emerged as one of the most diverse protein folds in nature, enabling many biological functions beyond mechanical rigidity, such as membrane fusion, signal transduction, and solute transport. Despite this great diversity, their structures can be described by parametric equations, making them uniquely suited for rational protein design. Far from having been exhausted as a source of structural insight and a basis for functional engineering, coiled coils are poised to become even more important for protein science in the coming decades. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Cross-linking reveals laminin coiled-coil architecture

    Science.gov (United States)

    Armony, Gad; Jacob, Etai; Moran, Toot; Levin, Yishai; Mehlman, Tevie; Levy, Yaakov; Fass, Deborah

    2016-01-01

    Laminin, an ∼800-kDa heterotrimeric protein, is a major functional component of the extracellular matrix, contributing to tissue development and maintenance. The unique architecture of laminin is not currently amenable to determination at high resolution, as its flexible and narrow segments complicate both crystallization and single-particle reconstruction by electron microscopy. Therefore, we used cross-linking and MS, evaluated using computational methods, to address key questions regarding laminin quaternary structure. This approach was particularly well suited to the ∼750-Å coiled coil that mediates trimer assembly, and our results support revision of the subunit order typically presented in laminin schematics. Furthermore, information on the subunit register in the coiled coil and cross-links to downstream domains provide insights into the self-assembly required for interaction with other extracellular matrix and cell surface proteins. PMID:27815530

  4. Design of Correction Coil for ITER

    International Nuclear Information System (INIS)

    Kubo, Hiroatsu; Yoshida, Kiyoshi; Omine, Takeshi

    1998-11-01

    ITER (International Thermonuclear Experimental Reactor) project is under way among EU, Japan, Russia and US. In order to shut plasma, the magnetic field is applied by the superconducting coils in ITER. The coils which are called 'Poloidal field (PF-coil)' are installed to control the location and the cross-section shape for plasma in the vacuum vessel. Incorrect position of Magnetic field (Magnetic error) is occurred by the manufacture tolerance for PF-coil. The coils which are called 'Correction-Coil' are installed in order to correct these magnetic error around the PF-coil. The Correction Coils are consist of the 3-sets of the superconducting coil. The stress analysis for the correction coils is performed and the supporting structure of the coils are designed. The bolts for clamps and the position for clamps are examined from this analysis. (J.P.N.)

  5. Design of an 18 Tesla, tandem mirror, fusion reactor, hybrid choke coil

    International Nuclear Information System (INIS)

    Parmer, J.F.; Agarwal, K.; Gurol, H.; Mancuso, A.; Michels, P.H.; Peck, S.D.; Burgeson, J.; Dalder, E.N.

    1987-01-01

    A hybrid, part normal part superconducting 18-Tesla solenoid choke coil is designed for a tandem mirror fusion reactor. The present state of the art is represented by the 12-Tesla, superconducting NbSn coil. Future applications other than tandem mirror fusion devices needing high field solenoids might require hybrid magnets of the type described herein. The hybrid design was generated because of critical field performance limitations on present, practical superconducting wires. A hybrid design might be required (due to structural limits) even if the critical field were higher. Also, hybrids could be a cost-effective way of getting very high fields for certain applications. The 18-Tesla solenoid described is composed of an inner coil made of water-cooled, high-strength zirconium copper which generates 3 Tesla. A superconducting NbSn background coil contributes the remaining 15 Tesla. The focus of the design study was on the inner coil. Demonstration fabrication and testing was performed

  6. A new twist in the coil: functions of the coiled-coil domain of structural maintenance of chromosome (SMC) proteins.

    Science.gov (United States)

    Matityahu, Avi; Onn, Itay

    2018-02-01

    The higher-order organization of chromosomes ensures their stability and functionality. However, the molecular mechanism by which higher order structure is established is poorly understood. Dissecting the activity of the relevant proteins provides information essential for achieving a comprehensive understanding of chromosome structure. Proteins of the structural maintenance of chromosome (SMC) family of ATPases are the core of evolutionary conserved complexes. SMC complexes are involved in regulating genome dynamics and in maintaining genome stability. The structure of all SMC proteins resembles an elongated rod that contains a central coiled-coil domain, a common protein structural motif in which two α-helices twist together. In recent years, the imperative role of the coiled-coil domain to SMC protein activity and regulation has become evident. Here, we discuss recent advances in the function of the SMC coiled coils. We describe the structure of the coiled-coil domain of SMC proteins, modifications and interactions that are mediated by it. Furthermore, we assess the role of the coiled-coil domain in conformational switches of SMC proteins, and in determining the architecture of the SMC dimer. Finally, we review the interplay between mutations in the coiled-coil domain and human disorders. We suggest that distinctive properties of coiled coils of different SMC proteins contribute to their distinct functions. The discussion clarifies the mechanisms underlying the activity of SMC proteins, and advocates future studies to elucidate the function of the SMC coiled coil domain.

  7. First coil for the SC

    CERN Multimedia

    CERN PhotoLab

    1955-01-01

    The coils for the SC magnet were stored in the large hangar of the Cointrin Airport (to make sure that they would be available before snow and ice would block the roads and canals from Belgium, where they were built).

  8. Coil for LEAR extraction septum

    CERN Multimedia

    CERN PhotoLab

    1982-01-01

    Which way does the current flow ? This intriguing object is the coil for the LEAR extraction septum. There were two septa, first a thin one, then this one, not so thin, somewhat on the borderline between septum and bending magnet.

  9. Advanced examination techniques applied to the qualification of critical welds for the ITER correction coils

    CERN Document Server

    Sgobba, Stefano; Libeyre, Paul; Marcinek, Dawid Jaroslaw; Piguiet, Aline; Cécillon, Alexandre

    2015-01-01

    The ITER correction coils (CCs) consist of three sets of six coils located in between the toroidal (TF) and poloidal field (PF) magnets. The CCs rely on a Cable-in-Conduit Conductor (CICC), whose supercritical cooling at 4.5 K is provided by helium inlets and outlets. The assembly of the nozzles to the stainless steel conductor conduit includes fillet welds requiring full penetration through the thickness of the nozzle. Static and cyclic stresses have to be sustained by the inlet welds during operation. The entire volume of helium inlet and outlet welds, that are submitted to the most stringent quality levels of imperfections according to standards in force, is virtually uninspectable with sufficient resolution by conventional or computed radiography or by Ultrasonic Testing. On the other hand, X-ray computed tomography (CT) was successfully applied to inspect the full weld volume of several dozens of helium inlet qualification samples. The extensive use of CT techniques allowed a significant progress in the ...

  10. Mechanical and electric characteristics of vacuum impregnated no-insulation HTS coil

    International Nuclear Information System (INIS)

    Park, Heecheol; Kim, A-rong; Kim, Seokho; Park, Minwon; Kim, Kwangmin; Park, Taejun

    2014-01-01

    Highlights: • A single pancake no-insulation coil was fabricated with a brass lamination conductor. • Charging/discharging test was performed using liquid nitrogen and conduction-cooling. • Consistent contact resistance was verified after epoxy impregnation. • Equivalent circuit was used to estimate the heat generation during charging operation. • The HTS coil did not showed delamination problem for the conduction cooling. - Abstract: For the conduction cooling application, epoxy impregnation is inevitable to enhance the thermal conduction. However, there have been several research results on the delamination problem with coated conductor and the main cause of the delamination is related with the different thermal contraction between epoxy, the insulation layer and the weak conductor. To avoid this problem, the amount of epoxy and insulation layer between conductors should be minimized or removed. Therefore, no insulation (NI) winding method and impregnation after dry winding can be considered to solve the problem. The NI coil winding method is very attractive due to high mechanical/thermal stability for the special purpose of DC magnets by removing the insulation layer. In this paper, the NI coil winding method and vacuum impregnation are applied to a HTS coil to avoid the delamination problem and enhance the mechanical/thermal stability for the conduction cooling application. Through the charging/discharging operation, electric/thermal characteristics are investigated at 77 K and 30 K

  11. Inductive cooling in quantum magnetomechanics

    Science.gov (United States)

    Romero-Sanchez, Erick; Twamley, Jason; Bowen, Warwick P.; Vanner, Michael R.

    Coupling to light or microwave fields allows quantum control of the motion of a mechanical oscillator, and offers prospects for precision sensing, quantum information systems, and tests of fundamental physics. In cavity electromechanics ground state cooling has been achieved using resolved sideband cooling. Here we present an alternative approach based on a magnetomechanical system that inductively couples an LC resonator to a mechanical oscillator. The experimental setup consists of a micro cantilever with a pyramidal magnetic tip attached at the end of the beam. The sharp end of the magnetic tip is positioned close to the planar microfabricated inductor of the LC resonator. The displacement in the position of the end of the cantilever generates a change in flux through the coil inducing an electromotive force in the circuit. The current in the LC resonator generates a magnetic field, and then a force between the tip and the coil. When they are strongly coupled and the mechanical resonance frequency ωm exceeds the electrical decay rate of the resonator γe, resolved sideband cooling can be used to cool the mechanics. We present estimations for the coupling rates and the experimental parameters required for these experiments. E. Romero acknowledges to CONACyT.

  12. Dynamic multi-channel TMS with reconfigurable coil.

    Science.gov (United States)

    Jiang, Ruoli; Jansen, Ben H; Sheth, Bhavin R; Chen, Ji

    2013-05-01

    Investigations of the causal involvement of particular brain areas and interconnections in behavior require an external stimulation system with reasonable spatio-temporal resolution. Current transcranial magnetic stimulation (TMS) technology is limited to stimulating a single brain area once in a given trial. Here, we present a feasibility study for a novel TMS system based on multi-channel reconfigurable coils. With this hardware, researchers will be able to stimulate multiple brain sites in any temporal order in a trial. The system employs a wire-mesh coil, constructed using x- and y-directional wires. By varying the current direction and/or strength on each wire, we can configure the proposed mesh-wire coil into a standard loop coil and figure-eight coil of varying size. This provides maximum flexibility to the experimenter in that the location and extent of stimulation on the brain surface can be modified depending on experimental requirement. Moreover, one can dynamically and automatically modify the site(s) of stimulation several times within the span of seconds. By pre-storing various sequences of excitation patterns inside a control unit, one can explore the effect of dynamic TMS on behavior, in associative learning, and as rehabilitative therapy. Here, we present a computer simulation and bench experiments that show the feasibility of the dynamically-reconfigurable coil.

  13. Water-cooled electronics

    CERN Document Server

    Dumont, G; Righini, B

    2000-01-01

    LHC experiments demand on cooling of electronic instrumentation will be extremely high. A large number of racks will be located in underground caverns and counting rooms, where cooling by conventional climatisation would be prohibitively expensive. A series of tests on the direct water cooling of VMEbus units and of their standard power supplies is reported. A maximum dissipation of 60 W for each module and more than 1000 W delivered by the power supply to the crate have been reached. These values comply with the VMEbus specifications. (3 refs).

  14. Coil supporting device in nuclear fusion apparatus

    International Nuclear Information System (INIS)

    Hoshi, Ryo; Imura, Yasuya.

    1974-01-01

    Object: To secure intermediate fittings with a coil fixed thereon by an insulating tape to a fixed body by means of fittings, thereby supporting the coil in a narrow space. Structure: A coil is secured to intermediate fittings by means of an insulating tape, after which the intermediate fittings is mounted on a fixed body through fittings to support the coil in a narrow clearance portion between a plasma sealed vessel and a main coil. (Kamimura, M.)

  15. JT-60SA Toroidal Field Coils test cryostat development

    Energy Technology Data Exchange (ETDEWEB)

    Jamotton, Pierre, E-mail: pjamotton@ulg.ac.be [Centre Spatial de Liège (CSL), Université de Liège Avenue du Pré-Aily, B-4031 Angleur (Belgium); Wanner, Manfred [F4E Broader Fusion Development Dept., Boltzmannstr. 2, D-85748 Garching (Germany); Massaut, Vincent [SCK/CEN, Boeretang 200 2400 Mol (Belgium); Génini, Laurent; Maksoud, Walid Abdel [CEA/DSM/IRFU CEA-Saclay, F-91191 Gif-sur-Yvette Cedex (France); Collin, Bill; Delrez, Christophe [Ateliers de la Meuse (ALM), Rue Ernest Solvay, 107, B-4000 Sclessin (Belgium)

    2013-10-15

    Highlights: ► Large vacuum vessels. ► FEM mechanical design. ► Cryogenic thermal design. ► Full development process: design, manufacturing, assembly, test. -- Abstract: Within the Broader Approach Agreement, Fusion for Energy will deliver to the Japanese Atomic Energy Association, amongst other components, the 18 Toroidal Field Coils (TFCs) for the superconducting Tokamak JT-60SA [1]. These coils will be individually tested at cryogenic temperatures and at the nominal current in a test cryostat. This cryostat is provided as an in-kind contribution by Belgium and is being developed jointly with CEA-Saclay/France. The vessel is large, oval shaped with an overall length of 11 m, a width of 7.2 m and a height of 6.5 m. To reduce the heat load to the coils the cryostat is covered by LN{sub 2} cooled thermal shields. In addition to the cryostat, three test frames for the coils, the valve box vessel and the insulation vacuum system are also provided by Belgium. The Belgian contribution is design, manufacturing, assembly and test of the vacuum chamber, thermal shield and test frames by the Belgian company Ateliers de la Meuse (ALM), with the support of Centre Spatial de Liège (CSL). The TF coil test facility is assembled and the coil tests are performed by CEA/Saclay. The Belgian contribution, namely the design, manufacturing, assembly and test of the vacuum vessel, the thermal shields, and the test frames as well as of the vacuum pumping system are described in the presentation.

  16. Spray cooling

    International Nuclear Information System (INIS)

    Rollin, Philippe.

    1975-01-01

    Spray cooling - using water spraying in air - is surveyed as a possible system for make-up (peak clipping in open circuit) or major cooling (in closed circuit) of the cooling water of the condensers in thermal power plants. Indications are given on the experiments made in France and the systems recently developed in USA, questions relating to performance, cost and environmental effects of spray devices are then dealt with [fr

  17. Primary calibration of coiled 103Pd brachytherapy sources

    International Nuclear Information System (INIS)

    Paxton, Adam B.; Culberson, Wesley S.; DeWerd, Larry A.; Micka, John A.

    2008-01-01

    Coiled 103 Pd brachytherapy sources have been developed by RadioMed Corporation for use as low-dose-rate (LDR) interstitial implants. The coiled sources are provided in integer lengths from 1 to 6 cm and address many common issues seen with traditional LDR brachytherapy sources. The current standard for determining the air-kerma strength (S K ) of low-energy LDR brachytherapy sources is the National Institute of Standards and Technology's Wide-Angle Free-Air Chamber (NIST WAFAC). Due to geometric limitations, however, the NIST WAFAC is unable to determine the S K of sources longer than 1 cm. This project utilized the University of Wisconsin's Variable-Aperture Free-Air Chamber (UW VAFAC) to determine the S K of the longer coiled sources. The UW VAFAC has shown agreement in S K values of 1 cm length coils to within 1% of those determined with the NIST WAFAC, but the UW VAFAC does not share the same geometric limitations as the NIST WAFAC. A new source holder was constructed to hold the coiled sources in place during measurements with the UW VAFAC. Correction factors for the increased length of the sources have been determined and applied to the measurements. Using the new source holder and corrections, the S K of 3 and 6 cm coiled sources has been determined. Corrected UW VAFAC data and ionization current measurements from well chambers have been used to determine calibration coefficients for use in the measurement of 3 and 6 cm coiled sources in well chambers. Thus, the UW VAFAC has provided the first transferable, primary measurement of low-energy LDR brachytherapy sources with lengths greater than 1 cm

  18. Vacuum magnetic field and modular coil system of the advanced stellarator Wendelstein VII-AS

    International Nuclear Information System (INIS)

    Rau, F.; Kisslinger, J.; Wobig, H.

    1982-06-01

    The vacuum field and the modular coils of the advanced stellarator WENDELSTEIN VII-AS are described. Each of the five field periods contains 9 different twisted coils, one of them with increased dimensions and current in order to provide sufficient access. The standard vacuum field configuration (B=3 T, t=0.39, aspect ratio approx. equal to 10, low shear, and magnetic well) can be varied by toroidal and vertical fields, or by changing independently the current in the large special coils. From a study of magnetic field perturbations some estimates are derived for the admissible coil tolerances. (orig.)

  19. 14 CFR 29.908 - Cooling fans.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Cooling fans. 29.908 Section 29.908... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant General § 29.908 Cooling fans. For cooling fans that are a part of a powerplant installation the following apply: (a) Category A. For cooling fans installed...

  20. Single-molecule observation of helix staggering, sliding, and coiled coil misfolding

    Science.gov (United States)

    Xi, Zhiqun; Gao, Ying; Sirinakis, George; Guo, Honglian; Zhang, Yongli

    2012-01-01

    The biological functions of coiled coils generally depend on efficient folding and perfect pairing of their α-helices. Dynamic changes in the helical registry that lead to staggered helices have only been proposed for a few special systems and not found in generic coiled coils. Here, we report our observations of multiple staggered helical structures of two canonical coiled coils. The partially folded structures are formed predominantly by coiled coil misfolding and occasionally by helix sliding. Using high-resolution optical tweezers, we characterized their energies and transition kinetics at a single-molecule level. The staggered states occur less than 2% of the time and about 0.1% of the time at zero force. We conclude that dynamic changes in helical registry may be a general property of coiled coils. Our findings should have broad and unique implications in functions and dysfunctions of proteins containing coiled coils. PMID:22451899

  1. Performance of long J-shaped coils in large and giant intracranial aneurysms: an in vitro study

    International Nuclear Information System (INIS)

    Tokunaga, K.; Tanaka, N.; Sugiu, K.; Levrier, O.; Martin, J.B.; Ruefenacht, D.A.

    2002-01-01

    We evaluated the performance of long straight coils (Detach-18 trademark J-shaped coils) in large and giant in-vitro aneurysms. The coils consisted of a distal semicircular part 7 or 15 mm in diameter and a proximal 70 cm straight part having three types of stiffness: soft, standard, and stiff. We first investigated the ease of passage through a microcatheter in a realistic cerebral vessel model. Second, we made silicone models simulating lateral-type aneurysms of various spherical dome diameters (12, 15, 20 and 30 mm) and neck sizes (3-10 mm; dome-to-neck ratio approximately 3:1) and connected them to a pulsating circulatory pump. We evaluated the anchoring and folding patterns of the coils, stability of the microcatheter and coils in the aneurysm, and smoothness of delivery and retrieval of coils. Third, we compared the conformability of a coil in a large, irregular aneurysm with that of a spiral coil. The long J-shaped coils were easily advanced and retrieved through a microcatheter in a tortuous vessel model. In 12 mm spherical aneurysms, each coil made a complex framework, and knot formation or damage to the coil during withdrawal was often observed. In 15 mm aneurysms, the coils were all easily delivered and retrieved; standard-stiffness coils adapted best to this size. In 20 mm aneurysms, frameworks were less complex but still good with a standard or stiff coil, but those with soft coil were unstable and changed significantly within 3 min of detachment due to gravity and pulsatile flow. In 30 mm aneurysms, soft coils filled only the lower part during introduction, whereas a stiff coil still made a favourable framework. Conformability of a long J-shaped coil was superior to that of a spiral coil in a large, irregular aneurysm. Long J-shaped coils conform well to various configurations of large and giant aneurysms and can shorten procedures since a larger implant volume can be delivered with a single coil. Their principle of action may promote more favourable

  2. Computational analysis of residue contributions to coiled-coil topology

    Science.gov (United States)

    Ramos, Jorge; Lazaridis, Themis

    2011-01-01

    A variety of features are thought to contribute to the oligomeric and topological specificity of coiled coils. In previous work, we examined the determinants of oligomeric state. Here, we examine the energetic basis for the tendency of six coiled-coil peptides to align their α-helices in antiparallel orientation using molecular dynamics simulations with implicit solvation (EEF1.1). We also examine the effect of mutations known to disrupt the topology of these peptides. In agreement with experiment, ARG or LYS at a or d positions were found to stabilize the antiparallel configuration. The modeling suggests that this is not due to a–a′ or d–d′ repulsions but due to interactions with e′ and g′ residues. TRP at core positions also favors the antiparallel configuration. Residues that disfavor parallel dimers, such as ILE at d, are better tolerated in, and thus favor the antiparallel configuration. Salt bridge networks were found to be more stabilizing in the antiparallel configuration for geometric reasons: antiparallel helices point amino acid side chains in opposite directions. However, the structure with the largest number of salt bridges was not always the most stable, due to desolvation and configurational entropy contributions. In tetramers, the extent of stabilization of the antiparallel topology by core residues is influenced by the e′ residue on a neighboring helix. Residues at b and c positions in some cases also contribute to stabilization of antiparallel tetramers. This work provides useful rules toward the goal of designing coiled coils with a well-defined and predictable three-dimensional structure. PMID:21858887

  3. The Cold Mass Support System and the Helium Cooling System for the MICE Focusing Solenoid

    International Nuclear Information System (INIS)

    Yang, Stephanie Q.; Green, Michael A.; Lau, Wing W.; Senanayake, Rohan S.; Witte, Holger

    2006-01-01

    The heart of the absorber focus coil (AFC) module for the muon ionization cooling experiment (MICE) is the two-coil superconducting solenoid that surrounds the muon absorber. The superconducting magnet focuses the muons that are cooled using ionization cooling, in order to improve the efficiency of cooling. The coils of the magnet may either be run in the solenoid mode (both coils operate at the same polarity) or the gradient (the coils operate at opposite polarity). The AFC magnet cold mass support system is designed to carry a longitudinal force up to 700 kN. The AFC module will be cooled using three pulse tube coolers that produce 1.5 W of cooling at 4.2 K. One of the coolers will be used to cool the liquid (hydrogen or helium) absorber used for ionization cooling. The other two coolers will cool the superconducting solenoid. This report will describe the MICE AFC magnet. The cold mass supports will be discussed. The reasons for using a pulsed tube cooler to cool this superconducting magnet will also be discussed

  4. MR-based conductivity imaging using multiple receiver coils.

    Science.gov (United States)

    Lee, Joonsung; Shin, Jaewook; Kim, Dong-Hyun

    2016-08-01

    To propose a signal combination method for MR-based tissue conductivity mapping using a standard clinical scanner with multiple receiver coils. The theory of the proposed method is presented with two practical approaches, a coil-specific approach and a subject-specific approach. Conductivity maps were reconstructed using the transceive phase of the combined signal. The sensitivities of the coefficients used for signal combination were analyzed and the method was compared with other signal combination methods. For validation, multiple receiver brain coils and multiple receiver breast coils were used in phantom, in vivo brain, and in vivo breast studies. The variation among the conductivity estimates was conductivity estimates. MR-based tissue conductivity mapping is feasible when using a standard clinical MR scanner with multiple receiver coils. The proposed method reduces systematic errors in phase-based conductivity mapping that can occur due to the inhomogeneous magnitude of the combined receive profile. Magn Reson Med 76:530-539, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  5. Toroidal field coil torque structure

    International Nuclear Information System (INIS)

    Gaines, A.L.

    1983-01-01

    A torque structure is disclosed particularly suitable for utilization in a power reactor of the Tokamak-type, and operable therein for purposes of providing support for the toroidal field (TF) coils that comprise one of the major operating components of such a Tokamak power reactor. The subject torque structure takes the form of a frame structure that is operable to enable torque loads acting on the TF coils to be equilibrated as close to the area of force application as feasible. The aforesaid torque structure includes an intercoil structure composed of spacer wedges that are interposed between each adjacent pair of TF coils. The spacer wedges, in turn, consist of bearing plates positioned between the TF coils so as to be in contacting relation therewith and a number of cross plates that are cooperatively associated with the bearing plates so as to form therewith a rigid assembly. The intercoil structure is affixed to a segmented, membrane shell that surrounds, encloses and supports the TF coil frames. Access is had to the interior of the shell through an opening formed for this purpose in a reinforced portion of the shell. Eddy current losses are minimized by insulating the joints formed at the juncture of adjoining segments of the shell

  6. Air-cooled fast discharge resistors for ITER magnets

    International Nuclear Information System (INIS)

    Tanchuk, Victor; Grigoriev, Sergey; Lokiev, Vladimir; Roshal, Alexander; Song, Inho; Buzykin, Oleg

    2011-01-01

    The ITER superconducting magnets will store up to 50 GJ of magnetic energy per operation cycle. In case of coil quench the energy stored in the coils must be extracted rapidly with a time constant from 7.5 to 14 s. It will be achieved by fast discharge resistors (FDR) normally bridged by circuit breakers and inserted in series with the superconducting coils. The fast discharge of the coils results practically in adiabatic heating of the resistive elements up to 200-300 deg. C. The resistors need to be cooled to the initial temperature over 6-8 h. Natural air circulation is proposed as a cooling method. In order to simulate the temperature response of the resistors to energy released in the resistive plates and to demonstrate their cooling capability within the required time by natural air circulation the numerical model of the resistor cooling circuit has been developed. As the calculations have shown, the developed FDR cooling system based on cooling by natural air circulation is capable of providing the required temperature operation regime of FDRs, but the supply channels are to be optimized so that the cooling time does not exceed the permissible one.

  7. Design Studies of Magnet Systems for Muon Helical Cooling Channels

    Energy Technology Data Exchange (ETDEWEB)

    Kashikhin, V.; Kashikhin, V.S.; Lamm, M.J.; Lopes, M.L.; Zlobin, A.V.; /Fermilab; Alsharo' a, M.; Johnson, R.P.; Kahn, Stephen A.; /MUONS Inc., Batavia

    2008-06-25

    Helical cooling channels with superimposed solenoid and helical dipole and quadrupole coils, and a pressurized gas absorber in the aperture offer high efficiency of 6D muon beam cooling. In this paper, we continue design studies and comparison of two basic concepts of magnet system proposed for a helical cooling channel focusing on the high field sections. The results of magnetic analysis and Lorentz force calculations as well as the superconductor choice are presented and discussed.

  8. Cooling tower

    International Nuclear Information System (INIS)

    Baer, E.; Dittrich, H.; Ernst, G.; Roller, W.

    1975-01-01

    The task on which the invention is based is to design a cooling tower in such a way that the negative influences of the wind, in particular strong side winds (wind velocities of over 10 m/s), on the functioning of the cooling tower are reduced or eliminated altogether. (orig./TK) [de

  9. Self-assembled artificial viral capsids bearing coiled-coils at the surface.

    Science.gov (United States)

    Fujita, Seiya; Matsuura, Kazunori

    2017-06-14

    In order to construct artificial viral capsids bearing complementary dimeric coiled-coils on the surface, a β-annulus peptide bearing a coiled-coil forming sequence at the C-terminus (β-annulus-coiled-coil-B) was synthesized by a native chemical ligation of a β-annulus-SBn peptide with a Cys-containing coiled-coil-B peptide. Dynamic light scattering (DLS) measurements and transmission electron microscopy (TEM) images revealed that the β-annulus-coiled-coil-B peptide self-assembled into spherical structures of about 50 nm in 10 mM Tris-HCl buffer. Circular dichroism (CD) spectra indicated the formation of the complementary coiled-coil structure on the spherical assemblies. Addition of 0.25 equivalent of the complementary coiled-coil-A peptide to the β-annulus-coiled-coil-B peptide showed the formation of spherical assemblies of 46 ± 14 nm with grains of 5 nm at the surface, whereas addition of 1 equivalent of the complementary coiled-coil-A peptide generated fibrous assemblies.

  10. Coiled-coil domains enhance the membrane association of Salmonella type III effectors.

    Science.gov (United States)

    Knodler, Leigh A; Ibarra, J Antonio; Pérez-Rueda, Ernesto; Yip, Calvin K; Steele-Mortimer, Olivia

    2011-10-01

    Coiled-coil domains in eukaryotic and prokaryotic proteins contribute to diverse structural and regulatory functions. Here we have used in silico analysis to predict which proteins in the proteome of the enteric pathogen, Salmonella enterica serovar Typhimurium, harbour coiled-coil domains. We found that coiled-coil domains are especially prevalent in virulence-associated proteins, including type III effectors. Using SopB as a model coiled-coil domain type III effector, we have investigated the role of this motif in various aspects of effector function including chaperone binding, secretion and translocation, protein stability, localization and biological activity. Compared with wild-type SopB, SopB coiled-coil mutants were unstable, both inside bacteria and after translocation into host cells. In addition, the putative coiled-coil domain was required for the efficient membrane association of SopB in host cells. Since many other Salmonella effectors were predicted to contain coiled-coil domains, we also investigated the role of this motif in their intracellular targeting in mammalian cells. Mutation of the predicted coiled-coil domains in PipB2, SseJ and SopD2 also eliminated their membrane localization in mammalian cells. These findings suggest that coiled-coil domains represent a common membrane-targeting determinant for Salmonella type III effectors. Published 2011. This article is a US Government work and is in the public domain in the USA.

  11. The structure of the GemC1 coiled coil and its interaction with the Geminin family of coiled-coil proteins

    Energy Technology Data Exchange (ETDEWEB)

    Caillat, Christophe; Fish, Alexander [The Netherlands Cancer Institute, 1066 CX Amsterdam (Netherlands); Pefani, Dafni-Eleftheria; Taraviras, Stavros; Lygerou, Zoi [University of Patras, 26505 Rio, Patras (Greece); Perrakis, Anastassis, E-mail: a.perrakis@nki.nl [The Netherlands Cancer Institute, 1066 CX Amsterdam (Netherlands)

    2015-10-31

    The GemC1 coiled-coil structure has subtle differences compared with its homologues Geminin and Idas. Co-expression experiments in cells and biophysical stability analysis of the Geminin-family coiled coils suggest that the GemC1 coiled coil alone is unstable. GemC1, together with Idas and Geminin, an important regulator of DNA-replication licensing and differentiation decisions, constitute a superfamily sharing a homologous central coiled-coil domain. To better understand this family of proteins, the crystal structure of a GemC1 coiled-coil domain variant engineered for better solubility was determined to 2.2 Å resolution. GemC1 shows a less typical coiled coil compared with the Geminin homodimer and the Geminin–Idas heterodimer structures. It is also shown that both in vitro and in cells GemC1 interacts with Geminin through its coiled-coil domain, forming a heterodimer that is more stable that the GemC1 homodimer. Comparative analysis of the thermal stability of all of the possible superfamily complexes, using circular dichroism to follow the unfolding of the entire helix of the coiled coil, or intrinsic tryptophan fluorescence of a unique conserved N-terminal tryptophan, shows that the unfolding of the coiled coil is likely to take place from the C-terminus towards the N-terminus. It is also shown that homodimers show a single-state unfolding, while heterodimers show a two-state unfolding, suggesting that the dimer first falls apart and the helices then unfold according to the stability of each protein. The findings argue that Geminin-family members form homodimers and heterodimers between them, and this ability is likely to be important for modulating their function in cycling and differentiating cells.

  12. Superconducting solenoids for an international muon cooling experiment

    International Nuclear Information System (INIS)

    Green, M.A.; Rey, J.M.

    2002-01-01

    The international muon ionization cooling experiment MICE will consist of two focusing cooling cells and a pair of uniform field solenoids used for particle identification and emittance measurements. The 2.75-meter long cooling cells have a pair of field flip coils and a coupling coil. The 0.52-meter diameter field flip coils surround an absorber that removes transverse and longitudinal momentum from the muons to be cooled. The beam in the absorber is at a minimum beta point so that scattering of the muons is minimized. The 1.7-meter diameter coupling coils are outside of conventional 201.25 MHz RF cavities that accelerate the muons putting longitudinal momentum into the muons without putting back the transverse momentum into the beam. A third set of flip coils helps the muon beam transition from and to the experimental solenoids. The 0.6-meter diameter experimental solenoids have a uniform field region (good to about 1 part in 1000) that is 1.3-meters long. The MICE experiment magnets must operate as a single unit so that the field profile will produce the maximum muon cooling

  13. Studies of a thermal energy storage unit with ice on coils; Ice on coil gata kori chikunetsuso no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Ito, S.; Miura, N. [Kanagawa Institute of Technology, Kanagawa (Japan)

    1996-10-27

    Study was made of an ice-on-coil heat storage tank for power load levelling. Prior to the prediction of performance of the system as a whole, the performance of the heat storage tank itself needs to be predicted. A brine (35.9% water solution of ethylene glycol) cooled by a refrigerating machine was poured from the upper end of the piping in the heat storage tank (consisting of 19 spiral pipes or coils arranged in parallel in the vertical direction) for the collection of ice around the coils. Ice grew thicker with the passage of time but there was no remarkable decrease in the transfer of heat because there was an increase in the area of contact between ice and water, and the brine exit temperature remained constant over a prolonged period of time. There was a close agreement between experiment results and theoretical conclusions throughout the heat accumulation process, including changes with time in the thickness of ice on the coils, all pointing to the appropriateness of this analytical effort. To melt the ice, water was poured into the tank top at a predetermined rate. Water chilly at 2-4{degree}C was recovered at the tank bottom, stable in the amount produced. As for the use of spiral pipes for making ice, the laminar heat transfer rate in such pipes are supposed to be more than two times higher than that in straight pipes, and this was quite effective in accelerating heat transfer. 7 refs., 11 figs.

  14. Structural and biochemical characterizations of an intramolecular tandem coiled coil protein.

    Science.gov (United States)

    Shin, Donghyuk; Kim, Gwanho; Kim, Gyuhee; Zheng, Xu; Kim, Yang-Gyun; Lee, Sangho

    2014-12-12

    Coiled coil has served as an excellent model system for studying protein folding and developing protein-based biomaterials. Most designed coiled coils function as oligomers, namely intermolecular coiled coils. However, less is known about structural and biochemical behavior of intramolecular coiled coils where coiled coil domains are covalently linked in one polypeptide. Here we prepare a protein which harbors three coiled coil domains with two short linkers, termed intramolecular tandem coiled coil (ITCC) and characterize its structural and biochemical behavior in solution. ITCC consists of three coiled coil domains whose sequences are derived from Coil-Ser and its domain swapped dimer. Modifications include positioning E (Glu) residue at "e" and K (Lys) at "g" positions throughout heptad repeats to enhance ionic interaction among its constituent coiled coil domains. Molecular modeling of ITCC suggests a compact triple helical bundle structure with the second and the third coiled coil domains forming a canonical coiled coil. ITCC exists as a mixture of monomeric and dimeric species in solution. Small-angle X-ray scattering reveals ellipsoidal molecular envelopes for both dimeric and monomeric ITCC in solution. The theoretically modeled structures of ITCC dock well into the envelopes of both species. Higher ionic strength shifts the equilibrium into monomer with apparently more compact structure while secondary structure remains unchanged. Taken together, our results suggest that our designed ITCC is predominantly monomeric structure through the enhanced ionic interactions, and its conformation is affected by the concentration of ionic species in the buffer. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. 49 CFR 236.555 - Repaired or rewound receiver coil.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Repaired or rewound receiver coil. 236.555 Section 236.555 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RULES, STANDARDS, AND INSTRUCTIONS GOVERNING THE INSTALLATION...

  16. Large Coil Program magnetic system design study

    International Nuclear Information System (INIS)

    Moses, S.D.; Johnson, N.E.

    1977-01-01

    The primary objective of the Large Coil Program (LCP) is to demonstrate the reliable operation of large superconducting coils to provide a basis for the design principles, materials, and fabrication techniques proposed for the toroidal magnets for the THE NEXT STEP (TNS) and other future tokamak devices. This paper documents a design study of the Large Coil Test Facility (LCTF) in which the structural response of the Toroidal Field (TF) Coils and the supporting structure was evaluated under simulated reactor conditions. The LCP test facility structural system consists of six TF Coils, twelve coil-to-coil torsional restraining beams (torque rings), a central bucking post with base, and a Pulse Coil system. The NASTRAN Finite Element Structural Analysis computer Code was utilized to determine the distribution of deflections, forces, and stresses for each of the TF Coils, torque rings, and the central bucking post. Eleven load conditions were selected to represent probable test operations. Pulse Coils suspended in the bore of the test coil were energized to simulate the pulsed field environment characteristic of the TNS reactor system. The TORMAC Computer Code was utilized to develop the magnetic forces in the TF Coils for each of the eleven loading conditions examined, with or without the Pulse Coils energized. The TORMAC computer program output forces were used directly as input load conditions for the NASTRAN analyses. Results are presented which demonstrate the reliability of the LCTF under simulated reactor operating conditions

  17. Laser cooling of molecular anions.

    Science.gov (United States)

    Yzombard, Pauline; Hamamda, Mehdi; Gerber, Sebastian; Doser, Michael; Comparat, Daniel

    2015-05-29

    We propose a scheme for laser cooling of negatively charged molecules. We briefly summarize the requirements for such laser cooling and we identify a number of potential candidates. A detailed computation study with C_{2}^{-}, the most studied molecular anion, is carried out. Simulations of 3D laser cooling in a gas phase show that this molecule could be cooled down to below 1 mK in only a few tens of milliseconds, using standard lasers. Sisyphus cooling, where no photodetachment process is present, as well as Doppler laser cooling of trapped C_{2}^{-}, are also simulated. This cooling scheme has an impact on the study of cold molecules, molecular anions, charged particle sources, and antimatter physics.

  18. Laser Cooling of Molecular Anions

    CERN Document Server

    Yzombard, Pauline; Gerber, Sebastian; Doser, Michael; Comparat, Daniel

    2015-01-01

    We propose a scheme for laser cooling of negatively charged molecules. We briefly summarise the requirements for such laser cooling and we identify a number of potential candidates. A detailed computation study with C$\\_2^-$, the most studied molecular anion, is carried out. Simulations of 3D laser cooling in a gas phase show that this molecule could be cooled down to below 1 mK in only a few tens of milliseconds, using standard lasers. Sisyphus cooling, where no photo-detachment process is present, as well as Doppler laser cooling of trapped C$\\_2^-$, are also simulated. This cooling scheme has an impact on the study of cold molecules, molecular anions, charged particle sources and antimatter physics.

  19. LONGITUDINAL IONIZATION COOLING WITHOUT WEDGES

    International Nuclear Information System (INIS)

    BERG, J.S.

    2001-01-01

    The emittance of a muon beam must be reduced very rapidly due to the finite lifetime of the muons. The most effective known way to accomplish this is ionization cooling. It is straightforward to reduce transverse emittance through ionization cooling, but the reducing the longitudinal emittance is more challenging. Longitudinal cooling is necessary for a muon collider, and would be helpful for a neutrino factory. The method traditionally proposed for longitudinal cooling is emittance exchange involving wedges of absorber material: the longitudinal emittance is reduced at the cost of increased transverse emittance. The larger transverse emittance can then be reduced straightforwardly. An alternative method is proposed here, which does not require wedges of material but instead makes slight modifications to the standard transverse cooling lattice. We demonstrate a lattice which is a slight modification to a standard Super FOFO transverse cooling lattice, which has linear eigenvalues all of which have magnitude less than one

  20. Open-coil retraction spring.

    Science.gov (United States)

    Vibhute, Pavankumar Janardan

    2011-01-01

    Sliding mechanic has become a popular method for space closure with developments in preadjusted edgewise appliance. Furthermore, various space closing auxiliaries have been developed and evaluated extensively for their clinical efficiency. Their effectiveness enhanced with optimum force magnitude and low-load deflection rate (LDR)/force decay. With the advent of NiTi springs in orthodontics, LDRs have been markedly reduced. For use of NiTi, clinician has to depend upon prefabricated closed coil springs. "Open Coil Retraction Spring (OCRS)" is developed utilizing NiTi open-coil spring for orthodontic space closure. This paper describes fabrication and clinical application of OCRS which have number of advantages. It sustains low LDR with optimum force magnitude. Its design is adjustable for desired length and force level. It is fail-safe for both activation and deactivation (i.e., it cannot be over activated, and decompression limit of open coil is also controlled by the operator, resp.). A possibility to offset the OCRS away from mucosa helps to reduce its soft-tissue impingement.

  1. Open-Coil Retraction Spring

    Directory of Open Access Journals (Sweden)

    Pavankumar Janardan Vibhute

    2011-01-01

    Full Text Available Sliding mechanic has become a popular method for space closure with developments in preadjusted edgewise appliance. Furthermore, various space closing auxiliaries have been developed and evaluated extensively for their clinical efficiency. Their effectiveness enhanced with optimum force magnitude and low-load deflection rate (LDR/force decay. With the advent of NiTi springs in orthodontics, LDRs have been markedly reduced. For use of NiTi, clinician has to depend upon prefabricated closed coil springs. “Open Coil Retraction Spring (OCRS” is developed utilizing NiTi open-coil spring for orthodontic space closure. This paper describes fabrication and clinical application of OCRS which have number of advantages. It sustains low LDR with optimum force magnitude. Its design is adjustable for desired length and force level. It is fail-safe for both activation and deactivation (i.e., it cannot be over activated, and decompression limit of open coil is also controlled by the operator, resp.. A possibility to offset the OCRS away from mucosa helps to reduce its soft-tissue impingement.

  2. Finite element coiled cochlea model

    Science.gov (United States)

    Isailovic, Velibor; Nikolic, Milica; Milosevic, Zarko; Saveljic, Igor; Nikolic, Dalibor; Radovic, Milos; Filipović, Nenad

    2015-12-01

    Cochlea is important part of the hearing system, and thanks to special structure converts external sound waves into neural impulses which go to the brain. Shape of the cochlea is like snail, so geometry of the cochlea model is complex. The simplified cochlea coiled model was developed using finite element method inside SIFEM FP7 project. Software application is created on the way that user can prescribe set of the parameters for spiral cochlea, as well as material properties and boundary conditions to the model. Several mathematical models were tested. The acoustic wave equation for describing fluid in the cochlea chambers - scala vestibuli and scala timpani, and Newtonian dynamics for describing vibrations of the basilar membrane are used. The mechanical behavior of the coiled cochlea was analyzed and the third chamber, scala media, was not modeled because it does not have a significant impact on the mechanical vibrations of the basilar membrane. The obtained results are in good agreement with experimental measurements. Future work is needed for more realistic geometry model. Coiled model of the cochlea was created and results are compared with initial simplified coiled model of the cochlea.

  3. Wedding ring shaped excitation coil

    Science.gov (United States)

    MacLennan, Donald A.; Tsai, Peter

    2001-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency.

  4. PDX toroidal field coils stress analysis

    International Nuclear Information System (INIS)

    Nikodem, Z.D.; Smith, R.A.

    1975-01-01

    A method used in the stress analysis of the PDX toroidal field coil is developed. A multilayer coil design of arbitrary dimensions in the shape of either a circle or an oval is considered. The analytical model of the coil and the supporting coil case with connections to the main support structure is analyzed using the finite element technique. The three dimensional magnetic fields and the non-uniform body forces which are a loading condition on a coil due to toroidal and poloidal fields are calculated. The method of analysis permits rapid and economic evaluations of design changes in coil geometry as well as in coil support structures. Some results pertinent to the design evolution and their comparison are discussed. The results of the detailed stress analysis of the final coil design due to toroidal field, poloidal field and temperature loads are presented

  5. Helium distribution system for the Large Coil Test Facility (LCTF)

    International Nuclear Information System (INIS)

    Lawson, C.G.; May, J.R.

    1977-01-01

    The helium distribution system of the Large Coil Test Facility is designed to establish and maintain the thermal environment of the toroidal array of superconducting magnets throughout the initial test and evaluation period of the test program. The refrigeration and liquefaction requirements for the LCTF will be discussed including both the usual cooldown, lead cooling, thermal conduction and radiation and joule heating losses, and the unusual losses due to simulated nuclear heating, magnetic coupling losses due to the transient fields of the driving magnets, and pumping losses due to fluid resistance and pump inefficiency. The flow system is designed with separate cooldown and steady-state flow systems, and to simultaneously circulate helium understeady-state conditions through coils cooled by boiling liquid or supercritical helium at approximately 4.0 K and >2.5-atm pressure. Separate helium storage dewars are utilized for vapor cooling of the current leads to the magnets with the effluent gas being stored after compression in high pressure storage tanks. The flow diagram will be presented in simplified form to show the salient features of the cryogenic system

  6. Ventilative Cooling

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols; Kolokotroni, Maria

    This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state-of-the-art of ventil......This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state......-of-the-art of ventilative cooling potentials and limitations, its consideration in current energy performance regulations, available building components and control strategies and analysis methods and tools. In addition, the report provides twenty six examples of operational buildings using ventilative cooling ranging from...

  7. A 16-channel MR coil for simultaneous PET/MR imaging in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dregely, Isabel [Klinikum rechts der Isar der Technischen Universitaet Muenchen, Nuklearmedizinische Klinik, Munich (Germany); Department of Radiological Sciences, Los Angeles, CA (United States); Lanz, Titus; Mueller, Matthias F. [Rapid Biomedical GmbH, Rimpar (Germany); Metz, Stephan [Klinikum rechts der Isar der Technischen Universitaet Muenchen, Institut fuer diagnostische und interventionelle Radiologie, Munich (Germany); Kuschan, Marika [Klinikum rechts der Isar der Technischen Universitaet Muenchen, Nuklearmedizinische Klinik, Munich (Germany); IMETUM, Technische Universitaet Muenchen, Munich (Germany); Nimbalkar, Manoj; Ziegler, Sibylle I.; Nekolla, Stephan G.; Schwaiger, Markus [Klinikum rechts der Isar der Technischen Universitaet Muenchen, Nuklearmedizinische Klinik, Munich (Germany); Bundschuh, Ralph A. [Klinikum rechts der Isar der Technischen Universitaet Muenchen, Nuklearmedizinische Klinik, Munich (Germany); Universitaetsklinikum Bonn, Nuklearmedizinische Klinik, Bonn (Germany); Haase, Axel [IMETUM, Technische Universitaet Muenchen, Munich (Germany)

    2015-04-01

    To implement and evaluate a dedicated receiver array coil for simultaneous positron emission tomography/magnetic resonance (PET/MR) imaging in breast cancer. A 16-channel receiver coil design was optimized for simultaneous PET/MR imaging. To assess MR performance, the signal-to-noise ratio, parallel imaging capability and image quality was evaluated in phantoms, volunteers and patients and compared to clinical standard protocols. For PET evaluation, quantitative {sup 18} F-FDG PET images of phantoms and seven patients (14 lesions) were compared to images without the coil. In PET image reconstruction, a CT-based template of the coil was combined with the MR-acquired attenuation correction (AC) map of the phantom/patient. MR image quality was comparable to clinical MR-only examinations. PET evaluation in phantoms showed regionally varying underestimation of the standardised uptake value (SUV; mean 22 %) due to attenuation caused by the coil. This was improved by implementing the CT-based coil template in the AC (<2 % SUV underestimation). Patient data indicated that including the coil in the AC increased the SUV values in the lesions (21 ± 9 %). Using a dedicated PET/MR breast coil, state-of-the-art MRI was possible. In PET, accurate quantification and image homogeneity could be achieved if a CT-template of this coil was included in the AC for PET image reconstruction. (orig.)

  8. Design of a low temperature superconducting coil to be applied to current regulators

    International Nuclear Information System (INIS)

    Garcia-Tabares, L.; Grau Carles, A

    1998-05-01

    We study the magnetic design and the cryogenic stability of a superconducting coil cooled with liquid helium, which works both in DC and AC modes. In DC mode, we obtain the maximum quench current; while in AC mode, we analyze Joule losses produced by the superconductor magnetization and the generation of eddy currents inside the copper matrix. (Author)

  9. Comparison of the induced fields using different coil configurations during deep transcranial magnetic stimulation.

    Directory of Open Access Journals (Sweden)

    Mai Lu

    Full Text Available Stimulation of deeper brain structures by transcranial magnetic stimulation (TMS plays a role in the study of reward and motivation mechanisms, which may be beneficial in the treatment of several neurological and psychiatric disorders. However, electric field distributions induced in the brain by deep transcranial magnetic stimulation (dTMS are still unknown. In this paper, the double cone coil, H-coil and Halo-circular assembly (HCA coil which have been proposed for dTMS have been numerically designed. The distributions of magnetic flux density, induced electric field in an anatomically based realistic head model by applying the dTMS coils were numerically calculated by the impedance method. Results were compared with that of standard figure-of-eight (Fo8 coil. Simulation results show that double cone, H- and HCA coils have significantly deep field penetration compared to the conventional Fo8 coil, at the expense of induced higher and wider spread electrical fields in superficial cortical regions. Double cone and HCA coils have better ability to stimulate deep brain subregions compared to that of the H-coil. In the mean time, both double cone and HCA coils increase risk for optical nerve excitation. Our results suggest although the dTMS coils offer new tool with potential for both research and clinical applications for psychiatric and neurological disorders associated with dysfunctions of deep brain regions, the selection of the most suitable coil settings for a specific clinical application should be based on a balanced evaluation between stimulation depth and focality.

  10. Design and modelling of a SMES coil

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Weijia; Campbell, A M; Coombs, T A, E-mail: wy215@cam.ac.u [EPEC Superconductivity group, Engineering Department, 9 JJ Thomson Avenue, Cambridge, CB3 0FA (United Kingdom)

    2010-06-01

    The design of a Superconducting Magnetic Energy Storage (SMES) coil wound by coated conductors has been presented. Based on an existing model for coated conductor pancake coils, this paper analysed the magnetic field and current density distribution of the coil at two different operation temperatures, 77K and 22K. A comparison table of the critical currents and AC losses at these two temperatures has been presented. Several steps to improve the transport current of the coil have been suggested as well.

  11. Bow-shaped toroidal field coils

    International Nuclear Information System (INIS)

    Bonanos, P.

    1981-05-01

    Design features of Bow-Shaped Toroidal Field Coils are described and compared with circular and D shaped coils. The results indicate that bow coils can produce higher field strengths, store more energy and be made demountable. The design offers the potential for the production of ultrahigh toroidal fields. Included are representative coil shapes and their engineering properties, a suggested structural design and an analysis of a specific case

  12. Nested Surface Coils for Multinuclear NMR

    OpenAIRE

    Magill, Arthur; Gruetter, Rolf

    2011-01-01

    This article introduces the design of surface coils for multinuclear applications. The relative sensitivities of several NMR-visible nuclei of biological interest are considered, and the motivations to operate an RF coil at multiple frequencies, both sequentially and simultaneously, are reviewed. The design of nested surface coils is then developed. Magnetic fields generated by planar loop and butterfly coils are first introduced. The benefits of quadrature design are briefly considered, and ...

  13. Experimental approach to investigate the constrained recovery behavior of coiled monofilament polymer fibers

    Science.gov (United States)

    Mendes, S. S.; Nunes, L. C. S.

    2017-11-01

    The aim of this work is to propose a new approach for investigating the thermo-mechanical behavior of coiled oriented polymer fibers with fixed ends and promote an understanding of the actuation response of coiled polymers in constrained recovery applications. In the proposed experimental methodology, a coiled fiber was pre-stretched by 50% and the distance between its ends remained constant, then it was subjected to a heating-cooling cycle ranging from 30 °C to 120 °C and the induced restoring force was measured. Based on these measurements, axial deformation and shear strain were obtained from full-field displacements extracted by the digital image correlation method from images of the coiled fiber. Three coiled fibers with different initial pitch angles were manufactured, and samples with lengths of 15 mm and 20 mm were tested. Bias angles and coil radius were also estimated using the experimental data associated with the helical spring theory. Results show that significant shape changes can be noticed above the glass transition temperature (47 °C), and these changes induce variation in the resultant forces. The effects of thermal softening and thermal contraction for a modest negative thermal expansion coefficient became evident at temperatures ranging from ∼47 °C to ∼90 °C, while the response of a coiled homochiral polymer fiber was achieved at temperatures close to 90 °C. During the cooling process, saturated states of the axial deformation and shear strain of the coiled fibers were observed at temperatures between 120 °C and 100 °C.

  14. Plasmodium vivax antigen discovery based on alpha-helical coiled coil protein motif

    DEFF Research Database (Denmark)

    Céspedes, Nora; Habel, Catherine; Lopez-Perez, Mary

    2014-01-01

    Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous to Pla...

  15. Are coiled-coils of dimeric kinesins unwound during their walking on microtubule?

    Science.gov (United States)

    Duan, Zhao-Wen; Xie, Ping; Li, Wei; Wang, Peng-Ye

    2012-01-01

    Dimeric kinesin motor proteins such as homodimeric kinesin-1, homodimeric Ncd and heterodimeric Kar3/Vik1are composed of two head domains which are connected together by a rod-shaped, coiled-coil stalk. Despite the extensive and intensive studies on structures, kinetics, dynamics and walking mechanism of the dimers, whether their coiled-coils are unwound or not during their walking on the microtubule is still an unclear issue. Here, we try to clarify this issue by using molecular dynamics simulations. Our simulation results showed that, for Ncd, a large change in potential of mean force is required to unwind the coiled-coil by only several pairs of residues. For both Ncd and kinesin-1, the force required to initiate the coiled-coil unwinding is larger than that required for unfolding of the single [Formula: see text]-helix that forms the coiled-coil or is larger than that required to unwind the DNA duplex, which is higher than the unbinding force of the kinesin head from the microtubule in strong microtubule-binding states. Based on these results and the comparison of the sequence between the coiled-coil of Kar3/Vik1 and those of Ncd and kinesin-1, it was deduced that the coiled-coil of the Kar3/Vik1 should also be very stable. Thus, we concluded that the coiled-coils of kinesin-1, Ncd and Kar3/Vik1 are almost impossible to unwind during their walking on the microtubule.

  16. Split Coil Forms for Rotary Transformers

    Science.gov (United States)

    Mclyman, C. W. T.

    1982-01-01

    Split cores for rotor and stator windings of rotary transformer mounted around their respective coils (which are in bobbins) and cemented together. This arrangement simplifies winding of stator coil to go in a slot in inner diameter of stator coil. One practical application of rotary transformers fabricated according to this technique is for centrifuges, in which conventional sliprings are of uncertain reliability.

  17. The umbilical coiling index in normal pregnancy

    NARCIS (Netherlands)

    van Diik, C. C.; Franx, A.; de Laat, M. W. M.; Bruinse, H. W.; Visser, G. H. A.; Nikkels, P. G. J.

    2002-01-01

    To provide reference values for the umbilical coiling index in uncomplicated pregnancy. Umbilical cords were collected from livebom singleton infants born after uncomplicated pregnancies. The umbilical coiling index (UCI) was calculated as the number of coils divided by the cord length in

  18. The umbilical coiling index in complicated pregnancy

    NARCIS (Netherlands)

    de Laat, Monique W. M.; van Alderen, Elise D.; Franx, Arie; Visser, Gerard H. A.; Bots, Michiel L.; Nikkels, Peter G. J.

    2007-01-01

    To evaluate umbilical cord coiling in pregnancies with adverse outcome. Umbilical cords and hospital records of 565 consecutive cases with an indication for histological examination of the placenta were studied. The umbilical coiling index (UCI) was determined as the number of complete coils divided

  19. Development of SMART CRDM Coil Design

    International Nuclear Information System (INIS)

    Lee, Jae Seon; Kim, Tae Wan; Choi, Suhn; Park, Hee June

    2011-01-01

    A control rod drive mechanism (CRDM) is an electromagnetic device which drives a control rod assembly linearly to regulate reactivity of a nuclear core. Driving force is electromagnetic force generated from coils installed outside of a motor housing. The magnetic parts of a motor assembly installed inside of a motor housing are magnetized when a coil is activated, and adhere to each other to produce latching or driving force as a result. A coil assembly consists of a lifting coil, a movable latch coil and a stationary latch coil as shown in Fig. 1. The latch coils make a drive shaft engaged with or released from latches, and the lift coil makes a drive shaft and a control rod assembly move up or drop. A CRDM control system supplies controlled electric current to a specified coil in order, and then a control rod assembly moves up or down. The coil assembly for SMART CRDM has been developed based on the design concept of a coil assembly for control element drive mechanism (CEDM) of the OPR1000, and modified to satisfy dedicated design requirements for SMART reactor. Some of representative design requirements are the lifting capacity of 3200N which is greater, the lifting step of 15.875mm which is longer than that for CEDM, and one step driving instead of two step driving. Design process through an electromagnetic analysis for a lift coil is described herein as a representative example, and representative results of the analysis are presented

  20. The mechanism of thermal runaway due to continuous local disturbances in the YBCO-coated conductor coil winding

    International Nuclear Information System (INIS)

    Yanagisawa, Y; Okuyama, E; Takematsu, T; Takizawa, A; Takahashi, M; Maeda, H; Nakagome, H; Takao, T; Hamada, M; Matsumoto, S; Kiyoshi, T

    2012-01-01

    Though YBCO coils are stable against transient disturbances such as conductor motion, they suffer from thermal runaway at a current below the coil critical current due to continuous local disturbances attributed to partial degradation of the conductor in the coil winding. Continuous heat generation in the degraded layer induces thermal runaway in adjacent layers; thermal runaway does not occur in the degraded layer spontaneously due to the small n index of the degraded YBCO-coated conductor. The thermal runaway current depends on the cooling conditions of the winding. For a paraffin-impregnated YBCO coil under quasi-adiabatic conditions, the thermal runaway current is far below the coil critical current, while it is close to the coil critical current in the case of a dry-wound coil. The permissible temperature rise following a thermal runaway for YBCO conductors in the degraded layer is demonstrated to be 340 K. If the YBCO coils are operated at a temperature below 20 K, the current density, typically 600–800 A mm −2 , is much higher than that at 77 K. Therefore, the time interval between thermal runaway initiation and the melting temperature becomes less than 0.5 s, posing a difficult problem for protection; i.e., thermal runaway due to continuous local disturbances is hazardous to the safe operation of high current density YBCO coils. (paper)

  1. Modular assembly of a protein nanotriangle using orthogonally interacting coiled coils.

    Science.gov (United States)

    Park, Won Min; Bedewy, Mostafa; Berggren, Karl K; Keating, Amy E

    2017-09-05

    Synthetic protein assemblies that adopt programmed shapes would support many applications in nanotechnology. We used a rational design approach that exploits the modularity of orthogonally interacting coiled coils to create a self-assembled protein nanotriangle. Coiled coils have frequently been used to construct nanoassemblies and materials, but rarely with successful prior specification of the resulting structure. We designed a heterotrimer from three pairs of heterodimeric coiled coils that mediate specific interactions while avoiding undesired crosstalk. Non-associating pairs of coiled-coil units were strategically fused to generate three chains that were predicted to preferentially form the heterotrimer, and a rational annealing process led to the desired oligomer. Extensive biophysical characterization and modeling support the formation of a molecular triangle, which is a shape distinct from naturally occurring supramolecular nanostructures. Our approach can be extended to design more complex nanostructures using additional coiled-coil modules, other protein parts, or templated surfaces.

  2. The clear and dark sides of water: influence on the coiled coil folding domain.

    Science.gov (United States)

    Vajda, Tamás; Perczel, András

    2016-06-01

    The essential role of water in extra- and intracellular coiled coil structures of proteins is critically evaluated, and the different protein types incorporating coiled coil units are overviewed. The following subjects are discussed: i) influence of water on the formation and degradation of the coiled coil domain together with the stability of this conformer type; ii) the water's paradox iii) design of coiled coil motifs and iv) expert opinion and outlook is presented. The clear and dark sides refer to the positive and negative aspects of the water molecule, as it may enhance or inhibit a given folding event. This duplicity can be symbolized by the Roman 'Janus-face' which means that water may facilitate and stimulate coiled coil structure formation, however, it may contribute to the fatal processes of oligomerization and amyloidosis of the very same polypeptide chain.

  3. Scaffolds, levers, rods and springs: diverse cellular functions of long coiled-coil proteins.

    Science.gov (United States)

    Rose, A; Meier, I

    2004-08-01

    Long alpha-helical coiled-coil proteins are involved in a variety of organizational and regulatory processes in eukaryotic cells. They provide cables and networks in the cyto- and nucleoskeleton, molecular scaffolds that organize membrane systems, motors, levers, rotating arms and possibly springs. A growing number of human diseases are found to be caused by mutations in long coiled-coil proteins. This review summarizes our current understanding of the multifaceted group of long coiled-coil proteins in the cytoskeleton, nucleus, Golgi and cell division apparatus. The biophysical features of coiled-coil domains provide first clues toward their contribution to the diverse protein functions and promise potential future applications in the area of nanotechnology. Combining the power of fully sequenced genomes and structure prediction algorithms, it is now possible to comprehensively summarize and compare the complete inventory of coiled-coil proteins of different organisms.

  4. Standard Practices for Simulated Service Testing for Corrosion of Metallic Containment Materials for Use With Heat-Transfer Fluids in Solar Heating and Cooling Systems

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1980-01-01

    1.1 These practices cover test procedures simulating field service for evaluating the performance under corrosive conditions of metallic containment materials in solar heating and cooling systems. All test results relate to the performance of the metallic containment material only as a part of a metal/fluid pair. Performance in these test procedures, taken by itself, does not necessarily constitute an adequate basis for acceptance or rejection of a particular metal/fluid pair in solar heating and cooling systems, either in general or in a particular design. 1.2 These practices describe test procedures used to evaluate the resistance to deterioration of metallic containment materials in the several conditions that may occur in operation of solar heating and cooling systems. These conditions include: (1) operating full flow; (2) stagnant empty vented; (3) stagnant, closed to atmosphere, non-draindown; and (4) stagnant, closed to atmosphere, draindown. 1.3 The recommended practices cover the following three te...

  5. Coil Migration through a Neuroform 3 Stent during Endovascular Coiling. A Case Report.

    LENUS (Irish Health Repository)

    O'Hare, A

    2009-07-29

    Summary: A 43-year-old woman attended for stent assisted coiling. A Neuroform 30 x 4.5 mm stent had been successfully placed over the left periophthalmic aneurysm. During the coiling the first coil migrated through the crowns in the stent, lodging at the MCA bifurcation. We believe that the coil herniated through the overlying stent due to the carotid siphon curvature and the open cell design. Furthermore the distal markers of the stent impeded coil extraction with a MERCI device.

  6. An inflatable surface coil for rectal imaging

    International Nuclear Information System (INIS)

    Martin, J.F.; Hajek, P.C.; Baker, L.L.; Gylys-Morin, V.; Mattrey, R.F.

    1986-01-01

    Surface coils have become ubiquitous in MR imaging of the body because of substantial gains in signal-to-noise ratio. Unfortunately, there are some anatomic regions, such as the prostate, for which surface coils have insufficient depth sensitivity. The authors have developed an inflatable, distributed capacitance, passively decoupled surface coil which is collapsed for insertion and reinflated for imaging. Images of the prostate are dramatically improved due to proximity of the coil. Lesions in cadaver specimens were observed which were not seen with body coil imaging. Clinical trials are expected to begin in September

  7. Pulse coil concepts for the LCP Facility

    International Nuclear Information System (INIS)

    Nelson, B.E.; Burn, P.B.

    1977-01-01

    The pulse coils described in this paper are resistive copper magnets driven by time-varying currents. They are included in the Large Coil Test Facility (LCTF) portion of the Large Coil Program (LCP) to simulate the pulsed field environment of the toroidal coils in a tokamak reactor. Since TNS (a 150 sec, 5MA, igniting tokamak) and the Oak Ridge EPR (Experimental Power Reactor) are representative of the first tokamaks to require the technology developed in LCP, the reference designs for these machines, especially TNS, are used to derive the magnetic criteria for the pulse coils. This criteria includes the magnitude, distribution, and rate of change of pulsed fields in the toroidal coil windings. Three pulse coil concepts are evaluated on the basis of magnetic criteria and factors such as versatility of design, ease of fabrication and cost of operation. The three concepts include (1) a pair of poloidal coils outside the LCTF torus, (2) a single poloidal coil threaded through the torus, and (3) a pair of vertical axis coil windings inside the bore of one or more of the toroidal test coils

  8. MICE - Absorber and focus coil safety working group design document: Preliminary design and assessments

    International Nuclear Information System (INIS)

    Barr, Giles; Baynham, Elwyn; Black, Edgar; Bradshaw, Tom; Cummings, Mary Anne; Green, Michael A.; Ishimoto, Shigeru; Ivanyushenkov, Yury; Lau, Wing; Zisman, Michael

    2003-01-01

    A Neutrino Factory based on a muon storage ring is the ultimate tool for studies of neutrino oscillations, including possibly the discovery of leptonic CP violation. it is also the first step toward a muon collider. To develop a stored-muon-beam facility to serve as a Neutrino Factory, it is necessary to ''cool'' a muon beam (decrease its phase-space volume). The short lifetime of the muon, 2.2 (micro)s at rest, eliminates all currently demonstrated cooling techniques and requires that a new, heretofore untried, technique--ionization cooling--be employed. Although ionization cooling of muons has never been demonstrated in practice, it has been shown by end-to-end simulation and design studies to be an important factor both for the performance and for the cost of a Neutrino Factory. This motivates an international program of R and D, including an experimental demonstration at Rutherford Appleton Laboratory (RAL). The aims of the international Muon Ionization Cooling Experiment are: (1) to show that it is possible to design, engineer and build a section of cooling channel capable of giving the desired performance for a Neutrino Factory; and (2) to place it in a muon beam and measure its performance in various modes of operation and beam conditions, thereby investigating the limits and practicality of cooling. The MICE collaboration has designed an experiment in which a section of an ionization cooling channel is exposed to a muon beam. This cooling channel assembles liquid-hydrogen absorbers providing energy loss and high-gradient radio frequency (RF) cavities to re-accelerate the particles, all tightly contained in a magnetic channel. It reduces the beam transverse emittance by > 10% for muon momenta between 140 and 240 MeV/c. The layout of the experiment is shown. They utilize one complete magnetic cell of the cooling channel, comprising three absorber-focus-coil (AFC) modules and two RF-coupling-coil (RFCC) modules. Spectrometers placed before and after the

  9. Status of the cold test facility for the JT-60SA tokamak toroidal field coils

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Maksoud, Walid, E-mail: walid.abdelmaksoud@cea.fr; Bargueden, Patrick; Bouty, André; Dispau, Gilles; Donati, André; Eppelle, Dominique; Genini, Laurent; Guiho, Patrice; Guihard, Quentin; Joubert, Jean-Michel; Kuster, Olivier; Médioni, Damien; Molinié, Frédéric; Sinanna, Armand; Solenne, Nicolas; Somson, Sébastien; Vieillard, Laurence

    2015-10-15

    Highlights: • The 5 K cryogenic loop includes a 500 W refrigerator and a She cold pump. • The coils are energized thanks to a 25.7 kA power supply and HTS current leads. • Temperature margin tests between 5 K and 7.5 K will be made on each coil. • A magnet safety system protects each double pancake of the coil in case of quench. • Instrumentation is monitored on a 1 Hz to 10 kHz fast acquisition system. - Abstract: JT-60SA is a fusion experiment which is jointly constructed by Japan and Europe and which shall contribute to the early realization of fusion energy, by providing support to the operation of ITER, and by addressing key physics issues for ITER and DEMO. In order to achieve these goals, the existing JT-60U experiment will be upgraded to JT-60SA by using superconducting coils. The 18 TF coils of the JT-60SA device will be provided by European industry and tested in a Cold Test Facility (CTF) at CEA Saclay. The coils will be tested at the nominal current of 25.7 kA and will be cooled with supercritical helium between 5 K and 7.5 K to check the temperature margin against a quench. The main objective of these tests is to check the TF coils performance and hence mitigate the fabrication risks. The most important components of the facility are: a 11.5 m × 6.5 m large cryostat in which the TF coils will be thermally insulated by vacuum; a 500 W helium refrigerator and a valve box to cool the coils down to 5 K and circulate 24 g/s of supercritical helium through the winding pack and through the casing; a power supply and HTS current leads to energize the coil; the control and instrumentation equipment (sensors, PLC's, supervision system, fast data acquisition system, etc.) and the Magnet Safety System (MSS) that protects the coils in case of quench. The paper will give an overview of the design of this large facility and the status of its realization.

  10. Coiled transmission line pulse generators

    Science.gov (United States)

    McDonald, Kenneth Fox

    2010-11-09

    Methods and apparatus are provided for fabricating and constructing solid dielectric "Coiled Transmission Line" pulse generators in radial or axial coiled geometries. The pour and cure fabrication process enables a wide variety of geometries and form factors. The volume between the conductors is filled with liquid blends of monomers, polymers, oligomers, and/or cross-linkers and dielectric powders; and then cured to form high field strength and high dielectric constant solid dielectric transmission lines that intrinsically produce ideal rectangular high voltage pulses when charged and switched into matched impedance loads. Voltage levels may be increased by Marx and/or Blumlein principles incorporating spark gap or, preferentially, solid state switches (such as optically triggered thyristors) which produce reliable, high repetition rate operation. Moreover, these Marxed pulse generators can be DC charged and do not require additional pulse forming circuitry, pulse forming lines, transformers, or an a high voltage spark gap output switch. The apparatus accommodates a wide range of voltages, impedances, pulse durations, pulse repetition rates, and duty cycles. The resulting mobile or flight platform friendly cylindrical geometric configuration is much more compact, light-weight, and robust than conventional linear geometries, or pulse generators constructed from conventional components. Installing additional circuitry may accommodate optional pulse shape improvements. The Coiled Transmission Lines can also be connected in parallel to decrease the impedance, or in series to increase the pulse length.

  11. Head fixed field coil system for measuring eye movements in freely moving monkeys.

    Science.gov (United States)

    Ogorodnikov, Dmitri; Tarasenko, Sergey; Yakushin, Sergei; Cohen, Bernard; Raphan, Theodore

    2006-01-01

    Coil systems have been a standard for measuring eye movements since they were first introduced. These systems, which have been designed to work at low frequencies (20 KHz), generally require large field coils so that a uniform field can be established at the eye coil site. This configuration makes it virtually impossible to study eye movements in freely moving animals. In this paper, we describe the design of a coil system, which operates at radio frequencies (10 MHz). This system allows the use of compact coils with radii of 10 mm that are capable of accurately measuring eye movements in three dimensions during head free locomotion. This system opens the possibility for studying eye movements in freely moving monkeys under a wide range of conditions.

  12. Cool WISPs for stellar cooling excesses

    Energy Technology Data Exchange (ETDEWEB)

    Giannotti, Maurizio [Barry Univ., Miami Shores, FL (United States). Physical Sciences; Irastorza, Igor [Zaragoza Univ. (Spain). Dept. de Fisica Teorica; Redondo, Javier [Zaragoza Univ. (Spain). Dept. de Fisica Teorica; Max-Planck-Institut fuer Physik, Muenchen (Germany); Ringwald, Andreas [DESY Hamburg (Germany). Theory Group

    2015-12-15

    Several stellar systems (white dwarfs, red giants, horizontal branch stars and possibly the neutron star in the supernova remnant Cassiopeia A) show a preference for a mild non-standard cooling mechanism when compared with theoretical models. This exotic cooling could be provided by Weakly Interacting Slim Particles (WISPs), produced in the hot cores and abandoning the star unimpeded, contributing directly to the energy loss. Taken individually, these excesses do not show a strong statistical weight. However, if one mechanism could consistently explain several of them, the hint could be significant. We analyze the hints in terms of neutrino anomalous magnetic moments, minicharged particles, hidden photons and axion-like particles (ALPs). Among them, the ALP represents the best solution. Interestingly, the hinted ALP parameter space is accessible to the next generation proposed ALP searches, such as ALPS II and IAXO.

  13. Crucible and coil monitoring during melting operation in induction crucible furnaces; Tiegel- und Spulenueberwachung beim Schmelzbetrieb von Induktionstiegeloefen

    Energy Technology Data Exchange (ETDEWEB)

    Doetsch, Erwin; Forsthoevel, Christoph; Rische, Marco [ABP Induction Systems GmbH, Dortmund (Germany)

    2013-03-15

    The immediate proximity of the metal melt, with a temperature of up to above, 1600 C, to the induction coil in inductive melting necessitates highly reliable monitoring systems, in order to prevent dangerous contact between the melt and the cooling-water-conducting copper section. Ground-fault monitoring, in which the electrical resistance between the melt and the coil is continuously measured, is a standard solution for this function. Everyday use of this long-established system has been made more dependable by automating a number of functions, and the system has also been adapted to modern plant technology, including synchronous tandem operation of two crucible furnaces from a common converter power supply, for example. Measurement of frequency and effective power, as a function of wall thickness, is a supplementary monitoring strategy. Processing of the measured data in the melt processor, in combination with visual assessment, permits appraisal of the integral crucible state and reliable estimation of the remaining service-life of the current crucible. (orig.)

  14. Convergently-evolved structural anomalies in the coiled coil domains of insect silk proteins.

    Science.gov (United States)

    Sutherland, Tara D; Trueman, Holly E; Walker, Andrew A; Weisman, Sarah; Campbell, Peter M; Dong, Zhaoming; Huson, Mickey G; Woodhead, Andrea L; Church, Jeffrey S

    2014-06-01

    The use of coiled coil proteins as the basis of silk materials is an engineering solution that has evolved convergently in at least five insect lineages-the stinging hymenopterans (ants, bees, hornets), argid sawflies, fleas, lacewings, and praying mantises-and persisted throughout large radiations of these insect families. These coiled coil silk proteins share a characteristic distinct from other coiled coil proteins, in that they are fabricated into solid materials after accumulating as highly concentrated solutions within dedicated glands. Here, we relate the amino acid sequences of these proteins to the secondary and tertiary structural information available from biophysical methods such as X-ray scattering, nuclear magnetic resonance and Raman spectroscopy. We investigate conserved and convergently evolved features within these proteins and compare these to the features of classic coiled coil proteins including tropomyosin and leucine zippers. Our analysis finds that the coiled coil domains of insect silk proteins have several common structural anomalies including a high prevalence of alanine residues in core positions. These atypical features of the coiled coil fibrous proteins - which likely produce deviations from canonical coiled-coil structure - likely exist due to selection pressures related to the process of silk fabrication and the final function of the proteins. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  15. Structural implications of conserved aspartate residues located in tropomyosin's coiled-coil core.

    Science.gov (United States)

    Moore, Jeffrey R; Li, Xiaochuan; Nirody, Jasmine; Fischer, Stefan; Lehman, William

    2011-09-01

    Polar residues lying between adjacent α-helical chains of coiled-coils often contribute to coiled-coil curvature and flexibility, while more typical core hydrophobic residues anneal the chains together. In tropomyosins, ranging from smooth and skeletal muscle to cytoplasmic isoforms, a highly conserved Asp at residue 137 places negative charges within the tropomyosin coiled-coil core in a position which may affect the conformation needed for tropomyosin binding and regulatory movements on actin. Proteolytic susceptibility suggested that substituting a canonical Leu for the naturally occurring Asp at residue 137 increases inter-chain rigidity by stabilizing the tropomyosin coiled-coil. Using molecular dynamics, we now directly assess changes in coiled-coil curvature and flexibility caused by such mutants. Although the coiled-coil flexibility is modestly diminished near the residue 137 mutation site, as expected, a delocalized increase in flexibility along the overall coiled-coil is observed. Even though the average shape of the D137L tropomyosin is straighter than that of wild-type tropomyosin, it is still capable of binding actin due to this increase in flexibility. We conclude that the conserved, non-canonical Asp-137 destabilizes the local structure resulting in a local flexible region in the middle of tropomyosin that normally is important for tropomyosin steady-state equilibrium position on actin.

  16. Exploring alternate states and oligomerization preferences of coiled-coils by de novo structure modeling.

    Science.gov (United States)

    Rämisch, Sebastian; Lizatović, Robert; André, Ingemar

    2015-02-01

    Homomeric coiled-coils can self-assemble into a wide range of structural states with different helix topologies and oligomeric states. In this study, we have combined de novo structure modeling with stability calculations to simultaneously predict structure and oligomeric states of homomeric coiled-coils. For dimers an asymmetric modeling protocol was developed. Modeling without symmetry constraints showed that backbone asymmetry is important for the formation of parallel dimeric coiled-coils. Collectively, our results demonstrate that high-resolution structure of coiled-coils, as well as parallel and antiparallel orientations of dimers and tetramers, can be accurately predicted from sequence. De novo modeling was also used to generate models of competing oligomeric states, which were used to compare stabilities and thus predict the native stoichiometry from sequence. In a benchmark set of 33 coiled-coil sequences, forming dimers to pentamers, up to 70% of the oligomeric states could be correctly predicted. The calculations demonstrated that the free energy of helix folding could be an important factor for determining stability and oligomeric state of homomeric coiled-coils. The computational methods developed here should be broadly applicable to studies of sequence-structure relationships in coiled-coils and the design of higher order assemblies with improved oligomerization specificity. © 2014 Wiley Periodicals, Inc.

  17. Growth Factor Identity Is Encoded by Discrete Coiled-Coil Rotamers in the EGFR Juxtamembrane Region.

    Science.gov (United States)

    Doerner, Amy; Scheck, Rebecca; Schepartz, Alanna

    2015-06-18

    Binding of transforming growth factor α (TGF-α) to the epidermal growth factor receptor (EGFR) extracellular domain is encoded through the formation of a unique antiparallel coiled coil within the juxtamembrane segment. This new coiled coil is an "inside-out" version of the coiled coil formed in the presence of epidermal growth factor (EGF). A third, intermediary coiled-coil interface is formed in the juxtamembrane region when EGFR is stimulated with betacellulin. The seven growth factors that activate EGFR in mammalian systems (EGF, TGF-α, epigen, epiregulin, betacellulin, heparin-binding EGF, and amphiregulin) fall into distinct categories in which the structure of the coiled coil induced within the juxtamembrane region correlates with cell state. The observation that coiled-coil state tracks with the downstream signaling profiles for each ligand provides evidence for growth factor functional selectivity by EGFR. Encoding growth factor identity in alternative coiled-coil rotamers provides a simple and elegant method for communicating chemical information across the plasma membrane. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. A repeated coiled-coil interruption in the Escherichia coli condensin MukB.

    Science.gov (United States)

    Weitzel, Christopher S; Waldman, Vincent M; Graham, Travis A; Oakley, Martha G

    2011-12-09

    MukB, a divergent structural maintenance of chromosomes (SMC) protein, is important for chromosome segregation and condensation in Escherichia coli and other γ-proteobacteria. MukB and canonical SMC proteins share a common five-domain structure in which globular N- and C-terminal regions combine to form an ATP-binding-cassette-like ATPase domain. This ATPase domain is connected to a central, globular dimerization domain by a long antiparallel coiled coil. The structures of both globular domains have been solved recently. In contrast, little is known about the coiled coil, in spite of its clear importance for SMC function. Recently, we identified interacting regions on the N- and C-terminal halves of the MukB coiled coil through photoaffinity cross-linking experiments. On the basis of these low-resolution experimental constraints, phylogenetic data, and coiled-coil prediction analysis, we proposed a preliminary model in which the MukB coiled coil is divided into multiple segments. Here, we use a disulfide cross-linking assay to detect paired residues on opposite strands of MukB's coiled coil. This method provides accurate register data and demonstrates the presence of at least five coiled-coil segments in this domain. Moreover, these studies show that the segments are interrupted by a repeated, unprecedented deviation from canonical coiled-coil structure. These experiments provide a sufficiently detailed view of the MukB coiled coil to allow rational manipulation of this region for the first time, opening the door for structure-function studies of this domain. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Enhanced MR angiography of the lower extremities with synergy spine coil

    International Nuclear Information System (INIS)

    Takashima, Hiroyuki; Watanabe, Naoki

    2002-01-01

    A synergy spine coil is a phased-array coil designed for spine imaging. The coil's sensitive area is narrow in both the x-axis and y-axis directions but very wide in the z-axis direction. It is therefore suitable for using in long parts of the body, such as the spine. We used the coil for enhanced MR angiography in the lower extremities, which requires a very long field of view on the z-axis direction. Using on the NEMA (National Electrical Manufacturers Association) standard test for special-purpose coils, the sensitive volume of the synergy spine coil was first measured by using a phantom. It was found that the sensitive lengths along x-axis and y-axis were 300 mm and 120 mm, respectively, while that along z-axis could set at any length required for the examination by modifying the element number. The above area was confirmed to be sufficient for obtaining enhanced MR angiograms of the lower extremities. The results of this study showed the use of the synergy spine coil in enhanced MR angiography of the lower extremities is superior to the use of a conventional whole body coil for obtaining good MR angiograms with a good single-to-noise ratio (SNR). (author)

  20. Remote maintenance of tandem mirror hybrid coils

    International Nuclear Information System (INIS)

    Dietz, L.P.

    1983-01-01

    Hybrid Coils (superconducting coils with normal conducting inserts) are being employed with increasing frequency on Tandem Mirror Devices to obtain high field strengths. The normal conducting copper inserts are short lived in comparison to their encircling superconductors. It becomes desirable, therefore, to devise design features and maintenance procedures to replace the inner normal conducting coils without simultaneously replacing the longer lived (and significantly more costly) superconducting coils. The high neutron wall loadings require that the task be accomplished by remote control. The approach is to permanently mount the coil assemblies on track mounted carriages which serve, during machine operation merely as structural supports, but during maintenance procedures as moveable transport devices. The carriages incorporate all necessary provisions to facilitate remote maintenance operations and to adjust and align the coil assemblies with respect to adjacent machine components. The vacuum vessel is severed on both sides of the hybrid coil by means of a remote cutting machine. The entire coil is transported horizontally, normal to the machine axis to a nearby repair station. Prepositioned carriage mounted repair equipment at the repair station withdraws the damaged normal coil as a single entity and inserts a preassembled spare unit. The repaired hybrid coil is reassembled to the reactor. A cost and risk effective procedure has been evolved to maintain one of the more critical components of a Tandem Mirror Machine

  1. Decoupling Scheme for a Cryogenic Rx-Only RF Coil for 13C Imaging at 3T

    DEFF Research Database (Denmark)

    Sanchez, Juan Diego; Søvsø Szocska Hansen, Esben; Laustsen, Christoffer

    In this study we evaluate the different active decoupling schemes that can be used to drive an Rx-only coil, in order to determine the optimal design for 13C MRI at 3T. Three different circuit schemes are studied: two known ones (with regular series and parallel tuning respectively), and a novel...... one which we found to be optimal for this case. The circuits have been cooled to 77K to reduce coil noise. Preliminary tests with the preamplifier cooled to 77K for reduction of noise figure, are also reported....

  2. Some aspects of the design of the ITER NBI Active Correction and Compensation Coils

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Javier, E-mail: javier.alonso@ciemat.es [CIEMAT, Laboratorio Nacional de Fusión, Avda. Complutense 40, 28040 Madrid (Spain); Barrera, Germán; Cabrera, Santiago; Rincón, Esther; Ríos, Luis; Soleto, Alfonso [CIEMAT, Laboratorio Nacional de Fusión, Avda. Complutense 40, 28040 Madrid (Spain); El-Ouazzani, Anass; Graceffa, Joseph; Shah, Darshan; Urbani, Marc [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Agarici, Gilbert [Fusion for Energy, Josep Pla 2, Torres Diagonal Litoral B3 – 07/08, 08019 Barcelona (Spain)

    2015-10-15

    Highlights: • Water cooled coil design. • Magnetic shielding of the plasma heating Neutral Beam Injection System. • Active coils for magnetic field compensation. - Abstract: The neutral beam system for ITER consists of two heating and current drive injectors plus a diagnostic neutral beam injector. The proposed physical plant layout allows for a possible third heating injector to be installed later. For correct operation of the beam source, and to avoid deflections of the charged fraction of the beam, the magnetic field along the beam path must be very low. To minimize the stray ITER field in critical areas (ion source, acceleration grids, neutralizer, residual ion dump), a Magnetic Field Reduction System will envelop the beam vessels and the high voltage transmission lines to ion source. This whole system comprises the Passive Magnetic Shield, a set of thick steel plates, and the Active Correction and Compensation Coils, a set of coils carrying currents which depend on the tokamak stray field. This paper describes the status of the coil design, terminals and support structures, as well as a description of the calculations carried out. Most coils are suitable for removal from their final position to be replaced in case of a fault. Conclusions of the chosen design highlight the strategy for the system feasibility.

  3. Design features of the A-cell and transition coils of MFTF-B

    International Nuclear Information System (INIS)

    Tatro, R.E.; Wohlwend, J.W.; Ring, D.S.

    1981-01-01

    The MFTF-B transition coil and A-cell magnet designs use variations of the copper-stabilized NbTi conductor developed by LLNL for the MFTF Yin-Yang magnets. This conductor will be wound on the one inch thick (12.7 mm) stainless steel coil forms using a two-axis winding machine similar to the existing LLNL Yin-Yang winding machine. After winding, covers will be placed over the coil and welded to the coil form to form a helium-tight jacket around the conductor. These jacketed coils are then enclosed in thick structural cases that react the large Lorentz forces on the magnets. The space between the coil jacket and case will be filled by a stainless steel bladder that will be injected with urethane. The injection bladder will provide cooling passages during cooldown as well as transmitting the Lorentz forces between the jacket and the case. The large self-equilibrating lobe-spreading forces on the magnets (29.10 6 lb, 127.0 MN) for the A-cell are reacted primarily through the thick 304 LN case into the external superstructure. The net Lorentz forces and the inertial forces on the magnet are reacted through support systems into the LLNL vacuum vessel structure

  4. A Coil Manufacturing Procedure for the ALICE Muon Arm Dipole Magnet

    CERN Document Server

    Swoboda, D; CERN. Geneva

    1998-01-01

    A large Dipole Magnet is required for the Muon Arm spectrometer of the ALICE experiment[1,2]. The main parameters and basic design options of the dipole magnet have been described in [3]. The coils of the magnet will be wound from hollow Aluminium conductor of 50x50 mm² cross-section with a 30 mm diameter cooling hole in the centre. Different manufacturing techniques may be envisaged for the fabrication of the excitation coils. In this note we propose a procedure to construct the coils from straight extruded bars of half turn length. The different steps necessary to bend a half turn are described. A method to form complete turns, pancakes and the total coil is explained. A possible insulation process is presented. Advantages and critical areas of the coil construction process are highlighted in the conclusions. References [1]ALICE TP, CERN/LHCC 95-71 [2]ALICE TP Addendum, CERN/LHCC 96-32 [3]A Warm Magnet for the ALICE Muon Arm, ALICE 96/24, W.Flegel, D.Swoboda, CERN List of Figures Figure 1 Coil ...

  5. Development work on superconducting coils for a large mirror fusion test facility (MFTF)

    International Nuclear Information System (INIS)

    Cornish, D.N.; Deis, D.W.; Harvey, A.R.; Hirzel, D.G.; Johnston, J.E.; Leber, R.L.; Nelson, R.L.; Zbasnik, J.P.

    1977-01-01

    The geometry and size of the superconducting coils for the Mirror Fusion Test Facility (MFTF) proposed by Lawrence Livermore Laboratory (LLL) impose certain constraints on the Nb-Ti superconductor. The most promising fabrication process is a wrap-around technique in which a superconducting core is ''wrapped'' in stabilizing copper that contains built-in cooling channels. Insulation between pancake coils and turns is provided by perforated sheets and buttons of epoxy-impregnated fiberglass. Preliminary heat-transfer tests conducted on short samples of single conductor and on a nine-conductor bundle are reported and related to the heat generated in ''normal'' conductors. Investigation of joining techniques, necessary because of the length of conductor needed for the MFTF magnet (about 21 km per coil), show that cold-welded butt joints best meet all requirements. In a test coil now being built, approximately 2 km of prototype MFTF conductor will provide a self-field of about 4 T. Supplementary coils will boost the field to about 6.7 T. The test coils will be used to study cryostatic stability, the propagation and recovery of normal zones, and diagnostic techniques

  6. Design and fabrication of forced-flow superconducting poloidal coils for the Large Helical Device

    International Nuclear Information System (INIS)

    Nakamoto, K.; Yamamoto, T.; Mizumaki, S.; Yamakoshi, T.; Kanai, Y.; Yamamoto, K.; Wachi, Y.; Ushijima, M.; Yoshida, T.; Kai, T.; Takahata, K.; Yamamoto, J.; Satow, T.; Motojima, O.

    1995-01-01

    Three pairs of superconducting poloidal coils for the LHD (Large Helical Device) have been designed and fabricated using NbTi/Cu cable-in-conduit (CIC) conductors cooled with forced-flow supercritical helium (SHE). In the LHD poloidal coils, high field accuracy as well as high reliability are required. To meet these requirements, detailed field and structural analyses have been performed and key parameters including winding pattern and size and locations of conductor joints have been determined. Compact conductor joint, where NbTi filaments are directly bonded, has also been developed using the solid state bonding technique. (orig.)

  7. A very cool cooling system

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The NA62 Gigatracker is a jewel of technology: its sensor, which delivers the time of the crossing particles with a precision of less than 200 picoseconds (better than similar LHC detectors), has a cooling system that might become the precursor to a completely new detector technique.   The 115 metre long vacuum tank of the NA62 experiment. The NA62 Gigatracker (GTK) is composed of a set of three innovative silicon pixel detectors, whose job is to measure the arrival time and the position of the incoming beam particles. Installed in the heart of the NA62 detector, the silicon sensors are cooled down (to about -20 degrees Celsius) by a microfluidic silicon device. “The cooling system is needed to remove the heat produced by the readout chips the silicon sensor is bonded to,” explains Alessandro Mapelli, microsystems engineer working in the Physics department. “For the NA62 Gigatracker we have designed a cooling plate on top of which both the silicon sensor and the...

  8. The coiled coils of cohesin are conserved in animals, but not in yeast.

    Directory of Open Access Journals (Sweden)

    Glenn E White

    Full Text Available The SMC proteins are involved in DNA repair, chromosome condensation, and sister chromatid cohesion throughout Eukaryota. Long, anti-parallel coiled coils are a prominent feature of SMC proteins, and are thought to serve as spacer rods to provide an elongated structure and to separate domains. We reported recently that the coiled coils of mammalian condensin (SMC2/4 showed moderate sequence divergence (approximately 10-15% consistent with their functioning as spacer rods. The coiled coils of mammalian cohesins (SMC1/3, however, were very highly constrained, with amino acid sequence divergence typically <0.5%. These coiled coils are among the most highly conserved mammalian proteins, suggesting that they make extensive contacts over their entire surface.Here, we broaden our initial analysis of condensin and cohesin to include additional vertebrate and invertebrate organisms and multiple species of yeast. We found that the coiled coils of SMC1/3 are highly constrained in Drosophila and other insects, and more generally across all animal species. However, in yeast they are no more constrained than the coils of SMC2/4 and Ndc80/Nuf2p, suggesting that they are serving primarily as spacer rods.SMC1/3 functions for sister chromatid cohesion in all species. Since its coiled coils apparently serve only as spacer rods in yeast, it is likely that this is sufficient for sister chromatid cohesion in all species. This suggests an additional function in animals that constrains the sequence of the coiled coils. Several recent studies have demonstrated that cohesin has a role in gene expression in post-mitotic neurons of Drosophila, and other animal cells. Some variants of human Cornelia de Lange Syndrome involve mutations in human SMC1/3. We suggest that the role of cohesin in gene expression may involve intimate contact of the coiled coils of SMC1/3, and impose the constraint on sequence divergence.

  9. Development of a new error field correction coil (C-coil) for DIII-D

    International Nuclear Information System (INIS)

    Robinson, J.I.; Scoville, J.T.

    1995-12-01

    The C-coil recently installed on the DIII-D tokamak was developed to reduce the error fields created by imperfections in the location and geometry of the existing coils used to confine, heat, and shape the plasma. First results from C-coil experiments include stable operation in a 1.6 MA plasma with a density less than 1.0 x 10 13 cm -3 , nearly a factor of three lower density than that achievable without the C-coil. The C-coil has also been used in magnetic braking of the plasma rotation and high energy particle confinement experiments. The C-coil system consists of six individual saddle coils, each 60 degree wide toroidally, spanning the midplane of the vessel with a vertical height of 1.6 m. The coils are located at a major radius of 3.2 m, just outside of the toroidal field coils. The actual shape and geometry of each coil section varied somewhat from the nominal dimensions due to the large number of obstructions to the desired coil path around the already crowded tokamak. Each coil section consists of four turns of 750 MCM insulated copper cable banded with stainless steel straps within the web of a 3 in. x 3 in. stainless steel angle frame. The C-coil structure was designed to resist peak transient radial forces (up to 1,800 Nm) exerted on the coil by the toroidal and ploidal fields. The coil frames were supported from existing poloidal field coil case brackets, coil studs, and various other structures on the tokamak

  10. Critical evaluation of in silico methods for prediction of coiled-coil domains in proteins.

    Science.gov (United States)

    Li, Chen; Ching Han Chang, Catherine; Nagel, Jeremy; Porebski, Benjamin T; Hayashida, Morihiro; Akutsu, Tatsuya; Song, Jiangning; Buckle, Ashley M

    2016-03-01

    Coiled-coils refer to a bundle of helices coiled together like strands of a rope. It has been estimated that nearly 3% of protein-encoding regions of genes harbour coiled-coil domains (CCDs). Experimental studies have confirmed that CCDs play a fundamental role in subcellular infrastructure and controlling trafficking of eukaryotic cells. Given the importance of coiled-coils, multiple bioinformatics tools have been developed to facilitate the systematic and high-throughput prediction of CCDs in proteins. In this article, we review and compare 12 sequence-based bioinformatics approaches and tools for coiled-coil prediction. These approaches can be categorized into two classes: coiled-coil detection and coiled-coil oligomeric state prediction. We evaluated and compared these methods in terms of their input/output, algorithm, prediction performance, validation methods and software utility. All the independent testing data sets are available at http://lightning.med.monash.edu/coiledcoil/. In addition, we conducted a case study of nine human polyglutamine (PolyQ) disease-related proteins and predicted CCDs and oligomeric states using various predictors. Prediction results for CCDs were highly variable among different predictors. Only two peptides from two proteins were confirmed to be CCDs by majority voting. Both domains were predicted to form dimeric coiled-coils using oligomeric state prediction. We anticipate that this comprehensive analysis will be an insightful resource for structural biologists with limited prior experience in bioinformatics tools, and for bioinformaticians who are interested in designing novel approaches for coiled-coil and its oligomeric state prediction. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  11. Argonne National Laboratory superconducting pulsed coil program

    International Nuclear Information System (INIS)

    Wang, S.T.; Kim, S.H.

    1979-01-01

    The main objectives are to develop high current (approx. 100 kA) cryostable cable configurations with reasonably low ac losses, to build a demonstration pulsed coil, and to develop a rather inexpensive large fiberglass reinforced helium cryostat. A 1.5-MJ cryostable pulsed superconducting coil has been developed and constructed at ANL. The coil has a peak field of 4.5 T at an operating current of 11.0 kA. A large inexpensive plastic cryostat has been developed for testing the pulsed coil. The coil has been pulsed with a maximum dB/dt of 11 T/s. The coil was pulsed more than 4000 cycles. Detailed results of the ac loss measurements and the current sharing of the cryostability will be described

  12. Power loss problems in EXTRAP coil systems

    International Nuclear Information System (INIS)

    Lehnert, B.

    1977-02-01

    The Ohmic power loss in the coils of external ring traps is minimized with respect to the thermonuclear power production. In the case of the DT-reaction this leads to dimensions and power densities being relevant to full-scale reactors. Not only superconducting or refrigerated coil windings can thus be used, but also hot-coil systems which are operated at several hundred degrees centrigrade and form part of a steam cycle and power extraction system. For hot coils the problems of void formation and tritium regeneration have to be further examined. The high beta value leads to moderately large coil stresses. Finally, replacement and repair become simplified by the present coil geometry. (Auth.)

  13. Endovascular treatment of intracranial aneurysms with bioactive Cerecyte coils: effects on treatment stability

    International Nuclear Information System (INIS)

    Geyik, Serdar; Yavuz, Kivilcim; Ergun, Onur; Koc, Osman; Cekirge, Saruhan; Saatci, Isil

    2008-01-01

    The Cerecyte coils were developed to improve long-term stability of embolized cerebral aneurysms by producing an increased fibrous reaction over the neck of the aneurysms. We report our preliminary clinical experience with mid-term follow-up. Seventy-eight consecutive patients with 84 intracranial aneurysms treated exclusively with Cerecyte coils were included in this study. Forty-eight aneurysms were ruptured and 36 were incidental. Twenty-two aneurysms were small with ( 25 mm). The embolization technique was the same with that in standard bare coiling. Immediate post-procedure angiography demonstrated complete aneurysm occlusion in 69%, neck remnant in 29.8% and incomplete occlusion in 1.2%. Follow-up angiography was obtained in 80 aneurysms in a period of time ranging from 6 months to 2 years. The overall recanalization rate was 11.3%, and the re-treatment rate was 6.3%; in the subgroup analysis, recanalization rates were 4.5% in S/S; 9.8% in S/W; and 33.3% in large aneurysms. The only giant aneurysm also showed recanalization. Procedure-related morbidity and mortality rates were 2.6% and 1.3%, respectively. Our midterm results showed a relatively low rate of recurrence compared to those reported for platinum coils with morbidity and mortality rates comparable to those with standard bare platinum coils. The efficacy of Cerecyte coils in the long term will be specifically addressed by the ongoing randomized Cerecyte coil trial. (orig.)

  14. Analysis for the thermal performance of a modified quadrupolar fiber coil

    Science.gov (United States)

    Zhang, Zhuo; Yu, Fei

    2018-01-01

    Among many factors contributing to fiber optic gyroscope performance, the quality of the fiber coil is one of the most important parts of it. This paper focuses on the disadvantage of cross-layer leap and sensitivity to outside temperature gradient of the present standard quadrupolar (QAD) fiber coil. The paper focuses on reducing the temperature gradient and improving the winding quality of the fiber coil to modify the original standard QAD winding pattern using methods of buffer layers and layer-by-layer leap. The buffer fiber is wound to the inner and outer sides of the fiber coil to reduce the temperature gradient of effective fiber; the layer-by-layer leap is used in place of the original cross-layer leap, and it may reduce bending and stresses variation when fiber leaping. Also, the fibers are arranged orderly to improve the fiber coil winding quality. In addition to building the mathematical model for fiber coil, the simulation and experiment are performed to verify that the improved QAD fiber coils have better thermal performance, and it helps to reduce thermal-induced drift error of a fiber optic gyroscope and improves its precision.

  15. Magnetic field measurement of HIRFL-CSR experimental ring electron cooling device

    International Nuclear Information System (INIS)

    Mao Lijun; Chinese Academy of Sciences, Beijing; Yang Xiaodong; Li Jie; Lu Wang; Wang Zhixue; Yan Hongbin; Zhang Wei; Zhang Junhui; Zhao Hongwei

    2005-01-01

    The cooling time and cooling efficiency in electron cooling device strongly depend on the transverse temperature of electron beam. In order to reduce this temperature, a new type of cooling section solenoid composed of 68 coils was used in the HIRFL-CSR electron cooling device to produce a high parallelism magnetic field. With the Hall probe, the components of the magnetic field along the ion beam orbit were measured, and using the compass method the magnetic field parallelism in cooling section was measured. According to the measured results, the magnetic axis angle of each coil with respect to the geometric axis was regulated correspondingly. The magnetic field nonparallelism in the cooling section less than 1 x 10 -4 was achieved and a magnetic induction strength of 0.078 T was obtained. (authors)

  16. Cooling systems

    International Nuclear Information System (INIS)

    Coutant, C.C.

    1978-01-01

    Progress on the thermal effects project is reported with regard to physiology and distribution of Corbicula; power plant effects studies on burrowing mayfly populations; comparative thermal responses of largemouth bass from northern and southern populations; temperature selection by striped bass in Cherokee Reservoir; fish population studies; and predictive thermoregulation by fishes. Progress is also reported on the following; cause and ecological ramifications of threadfin shad impingement; entrainment project; aquaculture project; pathogenic amoeba project; and cooling tower drift project

  17. Radiative MRI Coil Design Using Parasitic Scatterers

    DEFF Research Database (Denmark)

    Sanchez-Heredia, Juan D.; Avendal, Johan; Bibic, Adnan

    2018-01-01

    allows for antenna design techniques to be adapted to RF coil designs. This study proposes the use of parasitic scatterers to improve the performance of an existing 7T MRI coil called the single-sided adapted dipole (SSAD) antenna. The results reveal that scatterers arranged in a Yagi fashion can...... suitable for use in high density arrays. These findings show the potential of parasitic scatterers as an effective method to improve the performance of existing radiative MRI coils....

  18. The structure of the GemC1 coiled coil and its interaction with the Geminin family of coiled-coil proteins.

    Science.gov (United States)

    Caillat, Christophe; Fish, Alexander; Pefani, Dafni Eleftheria; Taraviras, Stavros; Lygerou, Zoi; Perrakis, Anastassis

    2015-11-01

    GemC1, together with Idas and Geminin, an important regulator of DNA-replication licensing and differentiation decisions, constitute a superfamily sharing a homologous central coiled-coil domain. To better understand this family of proteins, the crystal structure of a GemC1 coiled-coil domain variant engineered for better solubility was determined to 2.2 Å resolution. GemC1 shows a less typical coiled coil compared with the Geminin homodimer and the Geminin-Idas heterodimer structures. It is also shown that both in vitro and in cells GemC1 interacts with Geminin through its coiled-coil domain, forming a heterodimer that is more stable that the GemC1 homodimer. Comparative analysis of the thermal stability of all of the possible superfamily complexes, using circular dichroism to follow the unfolding of the entire helix of the coiled coil, or intrinsic tryptophan fluorescence of a unique conserved N-terminal tryptophan, shows that the unfolding of the coiled coil is likely to take place from the C-terminus towards the N-terminus. It is also shown that homodimers show a single-state unfolding, while heterodimers show a two-state unfolding, suggesting that the dimer first falls apart and the helices then unfold according to the stability of each protein. The findings argue that Geminin-family members form homodimers and heterodimers between them, and this ability is likely to be important for modulating their function in cycling and differentiating cells.

  19. Manufacturing development of the Westinghouse Nb3Sn coil for the Large Coil Test Program

    International Nuclear Information System (INIS)

    Young, J.L.; Vota, T.L.; Singh, S.K.

    1983-01-01

    The Westinghouse Nb 3 Sn Magnet for the Oak Ridge National Laboratory Large Coil Program (LCP) is currently well into the manufacturing phase. This paper identifies the manufacturing processes and development tasks for his unique, advanced coil

  20. Effects of five-membered ring amino acid incorporation into peptides for coiled coil formation.

    Science.gov (United States)

    Oba, Makoto; Ito, Chika; Tanaka, Masakazu

    2018-03-01

    A five-membered ring amino acid (Ac 5 c), the peptides of which exhibit a preference for helical secondary structures, was introduced into peptides for the purpose of designing coiled coil peptides with high binding affinities. We prepared five types of peptides containing Ac 5 c with different numbers or at different positions. The incorporation of Ac 5 c into peptides enhanced their α-helicities; however, in contrast to our expectations, it did not result in stable coiled coil formation. The structures of side chains in hydrophobic amino acids, not α-helicities appeared to be important for stable hydrophobic interactions between peptides. Although we were unable to develop coiled coil peptides with high binding affinities, the present results will be useful for designing novel coiled coil peptides. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Transport Vesicle Tethering at the Trans Golgi Network: Coiled Coil Proteins in Action.

    Science.gov (United States)

    Cheung, Pak-Yan P; Pfeffer, Suzanne R

    2016-01-01

    The Golgi complex is decorated with so-called Golgin proteins that share a common feature: a large proportion of their amino acid sequences are predicted to form coiled-coil structures. The possible presence of extensive coiled coils implies that these proteins are highly elongated molecules that can extend a significant distance from the Golgi surface. This property would help them to capture or trap inbound transport vesicles and to tether Golgi mini-stacks together. This review will summarize our current understanding of coiled coil tethers that are needed for the receipt of transport vesicles at the trans Golgi network (TGN). How do long tethering proteins actually catch vesicles? Golgi-associated, coiled coil tethers contain numerous binding sites for small GTPases, SNARE proteins, and vesicle coat proteins. How are these interactions coordinated and are any or all of them important for the tethering process? Progress toward understanding these questions and remaining, unresolved mysteries will be discussed.

  2. Radiative cooling for thermophotovoltaic systems

    Science.gov (United States)

    Zhou, Zhiguang; Sun, Xingshu; Bermel, Peter

    2016-09-01

    Radiative cooling has recently garnered a great deal of attention for its potential as an alternative method for photovoltaic thermal management. Here, we will consider the limits of radiative cooling for thermal management of electronics broadly, as well as a specific application to thermal power generation. We show that radiative cooling power can increase rapidly with temperature, and is particularly beneficial in systems lacking standard convective cooling. This finding indicates that systems previously operating at elevated temperatures (e.g., 80°C) can be passively cooled close to ambient under appropriate conditions with a reasonable cooling area. To examine these general principles for a previously unexplored application, we consider the problem of thermophotovoltaic (TPV) conversion of heat to electricity via thermal radiation illuminating a photovoltaic diode. Since TPV systems generally operate in vacuum, convective cooling is sharply limited, but radiative cooling can be implemented with proper choice of materials and structures. In this work, realistic simulations of system performance are performed using the rigorous coupled wave analysis (RCWA) techniques to capture thermal emitter radiation, PV diode absorption, and radiative cooling. We subsequently optimize the structural geometry within realistic design constraints to find the best configurations to minimize operating temperature. It is found that low-iron soda-lime glass can potentially cool the PV diode by a substantial amount, even to below ambient temperatures. The cooling effect can be further improved by adding 2D-periodic photonic crystal structures. We find that the improvement of efficiency can be as much as an 18% relative increase, relative to the non-radiatively cooled baseline, as well as a potentially significant improvement in PV diode lifetime.

  3. A precise technique for manufacturing correction coil

    International Nuclear Information System (INIS)

    Schieber, L.

    1992-01-01

    An automated method of manufacturing correction coils has been developed which provides a precise embodiment of the coil design. Numerically controlled machines have been developed to accurately position coil windings on the beam tube. Two types of machines have been built. One machine bonds the wire to a substrate which is wrapped around the beam tube after it is completed while the second machine bonds the wire directly to the beam tube. Both machines use the Multiwire reg-sign technique of bonding the wire to the substrate utilizing an ultrasonic stylus. These machines are being used to manufacture coils for both the SSC and RHIC

  4. A Comparative Study of Orthodontic Coil Springs

    OpenAIRE

    Deepak Kumar Agarwal; Anup Razdan; Abhishek Agarwal; Preeti Bhattacharya; Ankur Gupta; D N Kapoor

    2011-01-01

    Several types of force delivering system are used to carry out tooth movement in orthodontics. Coil springs being one of them are used for the same thus requiring minimal operator manipulation. Aims and objectives : The purpose of this study was to determine the effect of wire diameter, lumen size and length of coil spring on the load produced as a function of displacement of SS and NiTi coil spring. Materials and methods : The study consisted of 60 samples of open and closed coil sprin...

  5. Thomson's Jumping Ring Over a Long Coil

    Science.gov (United States)

    Jeffery, Rondo N.; Amiri, Farhang

    2018-03-01

    The classic jumping ring apparatus consists of a coil with an iron core that extends out of the coil. A copper or aluminum ring placed over the iron core jumps upward when AC power is applied to the coil. In this paper we will examine a modified design of the jumping ring apparatus, called the "long-coil design." It allows the ring to jump upward or downward, depending on the starting position of the ring. These features shed significant light on the study of the force that causes the ring to jump.

  6. Coiled-coil driven membrane fusion: zipper-like vs. non-zipper-like peptide orientation.

    Science.gov (United States)

    Versluis, Frank; Dominguez, Juan; Voskuhl, Jens; Kros, Alexander

    2013-01-01

    Membrane fusion plays a central role in biological processes such as neurotransmission and exocytosis. An important class of proteins that induce membrane fusion are called SNARE (soluble N-ethyl malemeide sensitive factor attachment protein receptors) proteins. To induce membrane fusion, two SNARE proteins embedded in opposing membranes form a four-helix coiled-coil motif together with a third, cytoplasmic, SNARE protein. Coiled-coil formation brings the two membranes into close proximity allowing fusion to occur. Importantly, structural investigations have demonstrated that native membrane fusion only occurs when the orientation of the coiled-coil motif resembles that of a zipper. The zipper orientation arises when parallel coiled-coil formation takes place between peptides that are anchored into apposing membranes at identical termini, thereby forcing the membranes into close contact. Recently, we have designed a synthetic model for membrane fusion, which is based on a set of lipidated coiled-coil forming peptide pairs which are denoted E-K. When incorporated into liposomal membranes, coiled-coil formation between these lipidated peptides induces targeted and efficient membrane fusion of liposomes. Our model system mimics SNARE-driven membrane fusion, as it contains a coiled-coil motif which has a zipper-like orientation, similar to that of the SNARE proteins. Here we investigate whether the zipper-like orientation of the coiled-coil motifs is a prerequisite for membrane fusion in our model system. Our strategy is based on conjugation of the transmembrane anchor to either the N- or the C-terminus of peptides E and K. Whereas the use of a set of complementary peptides with the membrane anchor on identical peptide termini yields the zipper-like orientation of the coiled-coil complex, membrane anchors on opposite peptide termini results in a non-zipper-like coiled-coil orientation. Surprisingly, it was observed that efficient and targeted membrane fusion was

  7. Interactions between head motion and coil sensitivity in accelerated fMRI.

    Science.gov (United States)

    Faraji-Dana, Z; Tam, F; Chen, J J; Graham, S J

    2016-09-01

    Parallel imaging is widely adopted to accelerate functional MRI (fMRI) data acquisition, through various strategies that involve multi-channel receiver coils. However, the non-uniform spatial sensitivity of multi-channel receiver coils may introduce unwanted artifacts when head motion occurs during the few-minute long fMRI scans. Although prospective correction provides a promising solution for alleviating the head motion artifacts in fMRI, the relative position of the fixed multi-channel receiver coils moves in the moving reference frame, potentially resulting in artifactual signal. We used numerical simulations to investigate this effect on fMRI using two parallel imaging schemes: sensitivity encoding (SENSE) and generalized autocalibrating partially parallel acquisitions (GRAPPA) with acceleration factors 2 and 4, towards characterizing the regime over which parallel-imaging fMRI with prospective motion correction will benefit from updating coil sensitivities to reflect relative positional change between the head and the receiver coil. Moreover, six subjects were scanned with acceleration factors 2 and 4 while performing a simple finger-tapping task with and without overt head motion. Updating coil sensitivities showed significant positive impact on standard deviation and activation maps in presence of overt head motion compared to that obtained with no overt head motion. The parallel imaging fMRI with updated coil sensitivity maps were compared to that with the coil sensitivity maps acquired at the reference position. Head motion in relation to a fixed multi-channel coil can adversely affect the quality of parallel imaging fMRI data; and updating coil sensitivity map can mitigate this effect. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Moving coil-based actuators

    Science.gov (United States)

    Neff, Edward A.

    2002-09-01

    SMAC Corporation manufactures a wide variety of moving coil based electric servo actuators. These actuators were developed with a specific purpose in mind: To produce tools that would make the automation of assembly easier to accomplish, tools that could perform work in much the same manner as fingers but with more precision. The design targets were: A. Variable programmable accurate positioning down to sub-micron level. B. Variable programmable accurately controlled speeds. C. Variable programmable forces from grams to kilograms. D. Multiple axis configurations to increase degrees of freedom hence flexibility. E. The ability to perform work and verify its success at the same time. F. A low cost design that could eventually compete with pneumatic devices. (SMAC is related to two large pneumatic manufacturers: SMC Corp. and Mac Valve, Inc.) It should be noted that in the past a number of designers have developed voice coil based actuators, the Stout design and patent, with its discussion of programmable force was an early inspiration. SMAC's basic electro/mechanical and software design patents number 20.

  9. Accommodation of structural rearrangements in the huntingtin-interacting protein 1 coiled-coil domain

    Energy Technology Data Exchange (ETDEWEB)

    Wilbur, Jeremy D., E-mail: jwilbur@msg.ucsf.edu [Graduate Program in Biophysics, University of California, San Francisco, California 94143 (United States); Hwang, Peter K. [Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143 (United States); Brodsky, Frances M. [The G. W. Hooper Foundation, Departments of Microbiology and Immunology and of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94143 (United States); Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143 (United States); Fletterick, Robert J. [Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143 (United States); Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143 (United States); Graduate Program in Biophysics, University of California, San Francisco, California 94143 (United States)

    2010-03-01

    Variable packing interaction related to the conformational flexibility within the huntingtin-interacting protein 1 coiled coil domain. Huntingtin-interacting protein 1 (HIP1) is an important link between the actin cytoskeleton and clathrin-mediated endocytosis machinery. HIP1 has also been implicated in the pathogenesis of Huntington’s disease. The binding of HIP1 to actin is regulated through an interaction with clathrin light chain. Clathrin light chain binds to a flexible coiled-coil domain in HIP1 and induces a compact state that is refractory to actin binding. To understand the mechanism of this conformational regulation, a high-resolution crystal structure of a stable fragment from the HIP1 coiled-coil domain was determined. The flexibility of the HIP1 coiled-coil region was evident from its variation from a previously determined structure of a similar region. A hydrogen-bond network and changes in coiled-coil monomer interaction suggest that the HIP1 coiled-coil domain is uniquely suited to allow conformational flexibility.

  10. Multicoil2: Predicting Coiled Coils and Their Oligomerization States from Sequence in the Twilight Zone

    Science.gov (United States)

    Trigg, Jason; Gutwin, Karl; Keating, Amy E.; Berger, Bonnie

    2011-01-01

    The alpha-helical coiled coil can adopt a variety of topologies, among the most common of which are parallel and antiparallel dimers and trimers. We present Multicoil2, an algorithm that predicts both the location and oligomerization state (two versus three helices) of coiled coils in protein sequences. Multicoil2 combines the pairwise correlations of the previous Multicoil method with the flexibility of Hidden Markov Models (HMMs) in a Markov Random Field (MRF). The resulting algorithm integrates sequence features, including pairwise interactions, through multinomial logistic regression to devise an optimized scoring function for distinguishing dimer, trimer and non-coiled-coil oligomerization states; this scoring function is used to produce Markov Random Field potentials that incorporate pairwise correlations localized in sequence. Multicoil2 significantly improves both coiled-coil detection and dimer versus trimer state prediction over the original Multicoil algorithm retrained on a newly-constructed database of coiled-coil sequences. The new database, comprised of 2,105 sequences containing 124,088 residues, includes reliable structural annotations based on experimental data in the literature. Notably, the enhanced performance of Multicoil2 is evident when tested in stringent leave-family-out cross-validation on the new database, reflecting expected performance on challenging new prediction targets that have minimal sequence similarity to known coiled-coil families. The Multicoil2 program and training database are available for download from http://multicoil2.csail.mit.edu. PMID:21901122

  11. Natural templates for coiled-coil biomaterials from praying mantis egg cases.

    Science.gov (United States)

    Walker, Andrew A; Weisman, Sarah; Kameda, Tsunenori; Sutherland, Tara D

    2012-12-10

    Whereas there is growing interest in producing biomaterials containing coiled-coils, relatively few studies have made use of naturally occurring fibrous proteins. In this study, we have characterized fibrous proteins used by mother praying mantises to produce an extensive covering for their eggs called an ootheca and demonstrate the production of artificial ootheca using recombinantly produced proteins. Examination of natural oothecae by infrared spectroscopy and solid-state nuclear magnetic resonance revealed the material to consist of proteins organized predominately as coiled-coils. Two structural proteins, Mantis Fibroin 1 and Mantis Fibroin 2, were identified in ootheca from each of three species. Between species, the primary sequences of both proteins had diverged considerably, but other features were tightly conserved, including low molecular weight, high abundance of Ala, Glu, Lys, and Ser, and a triblock-like architecture with extensive central coiled-coil domain. Mantis fibroin hydrophobic cores had an unusual composition containing high levels of alanine and aromatic residues. Recombinantly produced mantis fibroins folded into coiled-coils in solution and could be fabricated into solid materials with high coiled-coil content. The structural features of mantis fibroins and their straightforward recombinant production make them promising templates for the production of coiled-coil biomimetics materials.

  12. Modulation of Coiled-Coil Dimer Stability through Surface Residues while Preserving Pairing Specificity.

    Science.gov (United States)

    Drobnak, Igor; Gradišar, Helena; Ljubetič, Ajasja; Merljak, Estera; Jerala, Roman

    2017-06-21

    The coiled-coil dimer is a widespread protein structural motif and, due to its designability, represents an attractive building block for assembling modular nanostructures. The specificity of coiled-coil dimer pairing is mainly based on hydrophobic and electrostatic interactions between residues at positions a, d, e, and g of the heptad repeat. Binding affinity, on the other hand, can also be affected by surface residues that face away from the dimerization interface. Here we show how design of the local helical propensity of interacting peptides can be used to tune the stabilities of coiled-coil dimers over a wide range. By designing intramolecular charge pairs, regions of high local helical propensity can be engineered to form trigger sequences, and dimer stability is adjusted without changing the peptide length or any of the directly interacting residues. This general principle is demonstrated by a change in thermal stability by more than 30 °C as a result of only two mutations outside the binding interface. The same approach was successfully used to modulate the stabilities in an orthogonal set of coiled-coils without affecting their binding preferences. The stability effects of local helical propensity and peptide charge are well described by a simple linear model, which should help improve current coiled-coil stability prediction algorithms. Our findings enable tuning the stabilities of coiled-coil-based building modules match a diverse range of applications in synthetic biology and nanomaterials.

  13. LOGICOIL--multi-state prediction of coiled-coil oligomeric state.

    Science.gov (United States)

    Vincent, Thomas L; Green, Peter J; Woolfson, Derek N

    2013-01-01

    The coiled coil is a ubiquitous α-helical protein-structure domain that directs and facilitates protein-protein interactions in a wide variety of biological processes. At the protein-sequence level, the coiled coil is readily recognized via a conspicuous heptad repeat of hydrophobic and polar residues. However, structurally coiled coils are more complicated, existing in a wide range of oligomer states and topologies. As a consequence, predicting these various states from sequence remains an unmet challenge. This work introduces LOGICOIL, the first algorithm to address the problem of predicting multiple coiled-coil oligomeric states from protein-sequence information alone. By covering >90% of the known coiled-coil structures, LOGICOIL is a net improvement compared with other existing methods, which achieve a predictive coverage of ∼31% of this population. This leap in predictive power offers better opportunities for genome-scale analysis, and analyses of coiled-coil containing protein assemblies. LOGICOIL is available via a web-interface at http://coiledcoils.chm.bris.ac.uk/LOGICOIL. Source code, training sets and supporting information can be downloaded from the same site.

  14. Coiled-coil formation on lipid bilayers--implications for docking and fusion efficiency.

    Science.gov (United States)

    Pähler, Gesa; Panse, Cornelia; Diederichsen, Ulf; Janshoff, Andreas

    2012-12-05

    Coiled-coil formation of four different oligopeptides was characterized in solution, on hydrogels, and on membranes by employing circular dichroism spectroscopy, surface plasmon resonance spectroscopy, attenuated total reflection infrared spectroscopy, and ellipsometry. Peptide sequences rich in either glutamic acid (E: E3Cys, i-E3Cys) or lysine (K: K3Cys, i-K3Cys) were used to represent minimal mimics of eukaryotic SNARE motifs. Half of the peptides were synthesized in reverse sequence, so that parallel and antiparallel heptad coiled-coil structures were formed. Either E-peptides or K-peptides were attached covalently to phospholipid anchors via maleimide chemistry, and served as receptors for the recognition of the corresponding binding partners added to solution. Attenuated total reflection infrared spectroscopy of single bilayers confirmed the formation of coiled-coil complexes at the membrane interface. Coiled-coil formation in solution, as compared with association at the membrane surface, displays considerably larger binding constants that are largely attributed to loss of translational entropy at the interface. Finally, the fusogenicity of the various coiled-coil motifs was explored, and the results provide clear evidence that hemifusion followed by full fusion requires a parallel orientation of α-helices, whereas antiparallel oriented coiled-coil motifs display only docking. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Coiled-Coil Formation on Lipid Bilayers—Implications for Docking and Fusion Efficiency

    Science.gov (United States)

    Pähler, Gesa; Panse, Cornelia; Diederichsen, Ulf; Janshoff, Andreas

    2012-01-01

    Coiled-coil formation of four different oligopeptides was characterized in solution, on hydrogels, and on membranes by employing circular dichroism spectroscopy, surface plasmon resonance spectroscopy, attenuated total reflection infrared spectroscopy, and ellipsometry. Peptide sequences rich in either glutamic acid (E: E3Cys, i-E3Cys) or lysine (K: K3Cys, i-K3Cys) were used to represent minimal mimics of eukaryotic SNARE motifs. Half of the peptides were synthesized in reverse sequence, so that parallel and antiparallel heptad coiled-coil structures were formed. Either E-peptides or K-peptides were attached covalently to phospholipid anchors via maleimide chemistry, and served as receptors for the recognition of the corresponding binding partners added to solution. Attenuated total reflection infrared spectroscopy of single bilayers confirmed the formation of coiled-coil complexes at the membrane interface. Coiled-coil formation in solution, as compared with association at the membrane surface, displays considerably larger binding constants that are largely attributed to loss of translational entropy at the interface. Finally, the fusogenicity of the various coiled-coil motifs was explored, and the results provide clear evidence that hemifusion followed by full fusion requires a parallel orientation of α-helices, whereas antiparallel oriented coiled-coil motifs display only docking. PMID:23283228

  16. Structural characteristics of the redox-sensing coiled coil in the voltage-gated H+ channel.

    Science.gov (United States)

    Fujiwara, Yuichiro; Takeshita, Kohei; Nakagawa, Atsushi; Okamura, Yasushi

    2013-06-21

    Oxidation is an important biochemical defense mechanism, but it also elicits toxicity; therefore, oxidation must be under strict control. In phagocytotic events in neutrophils, the voltage-gated H(+) (Hv) channel is a key regulator of the production of reactive oxygen species against invading bacteria. The cytoplasmic domain of the Hv channel forms a dimeric coiled coil underpinning a dimerized functional unit. Importantly, in the alignment of the coiled-coil core, a conserved cysteine residue forms a potential intersubunit disulfide bond. In this study, we solved the crystal structures of the coiled-coil domain in reduced, oxidized, and mutated (Cys → Ser) states. The crystal structures indicate that a pair of Cys residues forms an intersubunit disulfide bond dependent on the redox conditions. CD spectroscopy revealed that the disulfide bond increases the thermal stability of the coiled-coil protein. We also reveal that two thiol modifier molecules are able to bind to Cys in a redox-dependent manner without disruption of the dimeric coiled-coil assembly. Thus, the biochemical properties of the cytoplasmic coiled-coil domain in the Hv channel depend on the redox condition, which may play a role in redox sensing in the phagosome.

  17. Multicoil2: predicting coiled coils and their oligomerization states from sequence in the twilight zone.

    Directory of Open Access Journals (Sweden)

    Jason Trigg

    Full Text Available The alpha-helical coiled coil can adopt a variety of topologies, among the most common of which are parallel and antiparallel dimers and trimers. We present Multicoil2, an algorithm that predicts both the location and oligomerization state (two versus three helices of coiled coils in protein sequences. Multicoil2 combines the pairwise correlations of the previous Multicoil method with the flexibility of Hidden Markov Models (HMMs in a Markov Random Field (MRF. The resulting algorithm integrates sequence features, including pairwise interactions, through multinomial logistic regression to devise an optimized scoring function for distinguishing dimer, trimer and non-coiled-coil oligomerization states; this scoring function is used to produce Markov Random Field potentials that incorporate pairwise correlations localized in sequence. Multicoil2 significantly improves both coiled-coil detection and dimer versus trimer state prediction over the original Multicoil algorithm retrained on a newly-constructed database of coiled-coil sequences. The new database, comprised of 2,105 sequences containing 124,088 residues, includes reliable structural annotations based on experimental data in the literature. Notably, the enhanced performance of Multicoil2 is evident when tested in stringent leave-family-out cross-validation on the new database, reflecting expected performance on challenging new prediction targets that have minimal sequence similarity to known coiled-coil families. The Multicoil2 program and training database are available for download from http://multicoil2.csail.mit.edu.

  18. Lessons learned from twenty-year operation of the Large Helical Device poloidal coils made from cable-in-conduit conductors

    Science.gov (United States)

    Takahata, Kazuya; Moriuchi, Sadatomo; Ooba, Kouki; Takami, Shigeyuki; Iwamoto, Akifumi; Mito, Toshiyuki; Imagawa, Shinsaku

    2018-04-01

    The Large Helical Device (LHD) superconducting magnet system consists of two pairs of helical coils and three pairs of poloidal coils. The poloidal coils use cable-in-conduit (CIC) conductors, which have now been adopted in many fusion devices, with forced cooling by supercritical helium. The poloidal coils were first energized with the helical coils on March 27, 1998. Since that time, the coils have experienced 54,600 h of steady cooling, 10,600 h of excitation operation, and nineteen thermal cycles for twenty years. During this period, no superconducting-to-normal transition of the conductors has been observed. The stable operation of the poloidal coils demonstrates that a CIC conductor is suited to large-scale superconducting magnets. The AC loss has remained constant, even though a slight decrease was observed in the early phase of operation. The hydraulic characteristics have been maintained without obstruction over the entire period of steady cooling. The experience gained from twenty years of operation has also provided lessons regarding malfunctions of peripheral equipment.

  19. Endoscopic ultrasound coil placement of gastric varices: Emerging modality for recurrent bleeding gastric varices

    Directory of Open Access Journals (Sweden)

    Yogesh Harwani

    2014-01-01

    Full Text Available Gastric varices are the probable source of bleeding in 10-36% of patients, with acute variceal bleeding and carry high mortality and rebleeding rates. Till date, cyanoacrylate glue injection is considered as the standard of care but has high complication rate. Endoscopic ultrasound (EUS guided coil placement is a new emerging technique of management of gastric varices. In this case report, we detail the EUS guided coil placement for management of gastric varices after failed glue injections.

  20. Coiled tubing drilling with supercritical carbon dioxide

    Science.gov (United States)

    Kolle , Jack J.

    2002-01-01

    A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

  1. Forced flow cooling of ISABELLE dipole magnets

    International Nuclear Information System (INIS)

    Bamberger, J.A.; Aggus, J.; Brown, D.P.; Kassner, D.A.; Sondericker, J.H.; Strobridge, T.R.

    1976-01-01

    The superconducting magnets for ISABELLE will use a forced flow supercritical helium cooling system. In order to evaluate this cooling scheme, two individual dipole magnets were first tested in conventional dewars using pool boiling helium. These magnets were then modified for forced flow cooling and retested with the identical magnet coils. The first evaluation test used a l m-long ISA model dipole magnet whose pool boiling performance had been established. The same magnet was then retested with forced flow cooling, energizing it at various operating temperatures until quench occurred. The magnet performance with forced flow cooling was consistent with data from the previous pool boiling tests. The next step in the program was a full-scale ISABELLE dipole ring magnet, 4.25 m long, whose performance was first evaluated with pool boiling. For the forced flow test the magnet was shrunk-fit into an unsplit laminated core encased in a stainless steel cylinder. The high pressure gas is cooled below 4 K by a helium bath which is pumped below atmospheric pressure with an ejector nozzle. The performance of the full-scale dipole magnet in the new configuration with forced flow cooling, showed a 10 percent increase in the attainable maximum current as compared to the pool boiling data

  2. Lessons learned from the manufacture of the W7-X planar coils

    International Nuclear Information System (INIS)

    Viebke, H; Gustke, D; Rummel, T; Sborchia, C; Schroeder, R; Williams, D; Bates, S; Leigh, B; Winter, R

    2006-01-01

    WENDELSTEIN 7-X (W7-X) is a superconducting stellarator. The planar coils are in charge to modify the magnetic filed configuration of the W7-X. The major challenges during manufacturing were the fabrication of the cable-in-conduit conductor, the accuracy of the coil cases after welding and machining and the development of electrical joints with a resistance below 1 nΩ. Leaks were detected during repetitive in the case cooling system, which were caused by stress corrosion cracking. High voltage tests in a reduced vacuum environment (Paschen conditions) revealed that the insulation had to be reinforced and the quench detection wires had to be exchanged. This paper gives an overview about the main technical challenges of the planar coils and the lessons learned during production

  3. Outcomes with single-coil versus dual-coil implantable cardioverter defibrillators: a meta-analysis.

    Science.gov (United States)

    Sunderland, Nicholas; Kaura, Amit; Murgatroyd, Francis; Dhillon, Para; Scott, Paul A

    2018-03-01

    Dual-coil implantable cardioverter defibrillator (ICD) leads have traditionally been used over single-coil leads due to concerns regarding high defibrillation thresholds (DFT) and consequent poor shock efficacy. However, accumulating evidence suggests that this position may be unfounded and that dual-coil leads may also be associated with higher complication rates during lead extraction. This meta-analysis collates data comparing dual- and single-coil ICD leads. Electronic databases were systematically searched for randomized controlled trials (RCT) and non-randomized studies comparing single-coil and dual-coil leads. The mean differences in DFT and summary estimates of the odds-ratio (OR) for first-shock efficacy and the hazard-ratio (HR) for all-cause mortality were calculated using random effects models. Eighteen studies including a total of 138,124 patients were identified. Dual-coil leads were associated with a lower DFT compared to single coil leads (mean difference -0.83J; 95% confidence interval [CI] -1.39--0.27; P = 0.004). There was no difference in the first-shock success rate with dual-coil compared to single-coil leads (OR 0.74; 95%CI 0.45-1.21; P=0.22). There was a significantly lower risk of all-cause mortality associated with single-coil leads (HR 0.91; 95%CI 0.86-0.95; P dual-coil leads. The mortality benefit with single-coil leads most likely represents patient selection bias. Given the increased risk and complexity of extracting dual-coil leads, centres should strongly consider single-coil ICD leads as the lead of choice for routine new left-sided ICD implants. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  4. HydroCoil as an adjuvant to bare platinum coil treatment of 100 cerebral aneurysms

    International Nuclear Information System (INIS)

    Fanning, Noel F.; Berentei, Zsolt; Brennan, Paul R.; Thornton, John

    2007-01-01

    Introduction The overall safety of the HydroCoil, an expansile hybrid hydrogel-platinum coil, is unknown. We report a prospective observational study of our first 100 cerebral aneurysms treated with HydroCoils, focusing on safety and initial efficacy.Methods Indications, procedural complications, clinical and angiographic outcomes were recorded. Packing density, number of coils deployed and angiographic results were compared with those in a matched control group of 100 aneurysms treated solely with bare platinum coils. HydroCoil complication rates were compared to bare platinum coil rates at our institution and in published series. Results Adjuvant HydroCoil treatment led to increased mean percentage aneurysm filling compared to controls (50 ± 21% versus 27 ± 13%, P < 0.001). Immediate posttreatment angiographic results showed significantly (P < 0.001) more complete occlusions and fewer incomplete (<95%) occlusions compared to controls. Intermediate follow-up angiograms (median 7.5 months) in 63 aneurysms showed a trend towards fewer incomplete occlusions with HydroCoil treatment. There were significantly fewer major recurrences with HydroCoil treatment compared to the control treatment (9.5% versus 22.6%, P 0.046). In the adjuvant HydroCoil group, major recurrent aneurysms had significantly less percentage volume packing with HydroCoils than non-recurrent aneurysms (50.3 ± 5.0% versus 65.3 ± 18.0%, P = 0.04). There was a 12% procedural complication rate, 6% procedural morbidity and 1% mortality rate, similar to institutional and reported bare platinum coil complication rates.Conclusion HydroCoils can be safely deployed with a similar complication rate to bare platinum coils. They result in improved aneurysm filling. Intermediate follow-up angiography showed significantly fewer major recurrences. Long-term follow-up is required to confirm initial improved stability. (orig.)

  5. Designed Coiled-Coil Peptides Inhibit the Type Three Secretion System of Enteropathogenic Escherichia coli

    Science.gov (United States)

    Larzábal, Mariano; Mercado, Elsa C.; Vilte, Daniel A.; Salazar-González, Hector; Cataldi, Angel; Navarro-Garcia, Fernando

    2010-01-01

    Background Enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC) are two categories of E. coli strains associated with human disease. A major virulence factor of both pathotypes is the expression of a type three secretion system (TTSS), responsible for their ability to adhere to gut mucosa causing a characteristic attaching and effacing lesion (A/E). The TTSS translocates effector proteins directly into the host cell that subvert mammalian cell biochemistry. Methods/Principal Findings We examined synthetic peptides designed to inhibit the TTSS. CoilA and CoilB peptides, both representing coiled-coil regions of the translocator protein EspA, and CoilD peptide, corresponding to a coiled–coil region of the needle protein EscF, were effective in inhibiting the TTSS dependent hemolysis of red blood cells by the EPEC E2348/69 strain. CoilA and CoilB peptides also reduced the formation of actin pedestals by the same strain in HEp-2 cells and impaired the TTSS-mediated protein translocation into the epithelial cell. Interestingly, CoilA and CoilB were able to block EspA assembly, destabilizing the TTSS and thereby Tir translocation. This blockage of EspA polymerization by CoilA or CoilB peptides, also inhibited the correct delivery of EspB and EspD as detected by immunoblotting. Interestingly, electron microscopy of bacteria incubated with the CoilA peptide showed a reduction of the length of EspA filaments. Conclusions Our data indicate that coiled-coil peptides can prevent the assembly and thus the functionality of the TTSS apparatus and suggest that these peptides could provide an attractive tool to block EPEC and EHEC pathogenesis. PMID:20140230

  6. ATLAS - Liquid Cooling Systems

    CERN Multimedia

    Bonneau, P.

    1998-01-01

    Photo 1 - Cooling Unit - Side View Photo 2 - Cooling Unit - Detail Manifolds Photo 3 - Cooling Unit - Rear View Photo 4 - Cooling Unit - Detail Pump, Heater and Exchanger Photo 5 - Cooling Unit - Detail Pump and Fridge Photo 6 - Cooling Unit - Front View

  7. Coil Optimization for High Temperature Superconductor Machines

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Abrahamsen, Asger Bech

    2011-01-01

    This paper presents topology optimization of HTS racetrack coils for large HTS synchronous machines. The topology optimization is used to acquire optimal coil designs for the excitation system of 3 T HTS machines. Several tapes are evaluated and the optimization results are discussed...

  8. Evidence-based pathology: umbilical cord coiling.

    Science.gov (United States)

    Khong, T Y

    2010-12-01

    The generation of a pathology test result must be based on criteria that are proven to be acceptably reproducible and clinically relevant to be evidence-based. This review de-constructs the umbilical cord coiling index to illustrate how it can stray from being evidence-based. Publications related to umbilical cord coiling were retrieved and analysed with regard to how the umbilical coiling index was calculated, abnormal coiling was defined and reference ranges were constructed. Errors and other influences that can occur with the measurement of the length of the umbilical cord or of the number of coils can compromise the generation of the coiling index. Definitions of abnormal coiling are not consistent in the literature. Reference ranges defining hypocoiling or hypercoiling have not taken those potential errors or the possible effect of gestational age into account. Even the way numerical test results in anatomical pathology are generated, as illustrated by the umbilical coiling index, warrants a critical analysis into its evidence base to ensure that they are reproducible or free from errors.

  9. Operator coil monitoring Acceptance Test Procedure

    International Nuclear Information System (INIS)

    Erhart, M.F.

    1995-01-01

    The readiness of the Data Acquisition and Control System (DACS) to provide monitoring and control of the Programmable Logic Controller (PLC) abort coils from the Master and RSS stations will be systematically tested during performance of this procedure. It should be noted that these are not physical abort coils but software coils controlled by the software's ladder logic. The readiness of the DACS to properly interface with the ENRAF wire level gauge installed in the SY-101 storage tank will also be tested. During this test, a verification of all abort coil indications will be conducted at the DACS Development Facility in the 306E Building by injecting an input signal for each DACS sensor that has an associated abort coil until the abort coil actuates, and then ensuring that the status of the abort coil indicated at the Master and RSS stations is correct. Each abort coil will also be tested to ensure that the ''ENABLE'' and ''DISABLE'' controls from the Master and RSS stations function correctly, and only with the use of proper passwords

  10. Magnetic Fields at the Center of Coils

    Science.gov (United States)

    Binder, Philippe; Hui, Kaleonui; Goldman, Jesse

    2014-01-01

    In this note we synthesize and extend expressions for the magnetic field at the center of very short and very long current-carrying coils. Elementary physics textbooks present the following equation for the magnetic field inside a very long current-carrying coil (solenoid): B[subscript sol] = µ[subscript 0] (N/L) I, (1) where I is the current, N…

  11. Optimization of modular coils for stellarator fields

    International Nuclear Information System (INIS)

    Chu, T.K.; Furth, H.P.; Johnson, J.L.; Ludescher, C.; Weimer, K.E.

    1982-02-01

    Introduction of a non-sinusoidal deformation can enhance the efficacy of modular coils for generating magnetic fields with a built-in rotational transform. Techniques are developed that provide an understanding of how specific deformations affect the harmonic content of the magnetic field and thus the properties of the vacuum configuration. This provides an optimization procedure for coil design

  12. The bar coil for NMR tomograph

    International Nuclear Information System (INIS)

    Bogorodzki, P.; Piatkowski, A.; Wasielewski, J.

    1995-01-01

    The bar coil (bi-planar) for the NMR tomograph, designed for medical diagnostics, has been described. The tests of coil shown that it generates good homogenous magnetic field in a big volume what results in improving of the signal-to-noise ratio

  13. Functional investigation of the plant-specific long coiled-coil proteins PAMP-INDUCED COILED-COIL (PICC and PICC-LIKE (PICL in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Sowmya Venkatakrishnan

    Full Text Available We have identified and characterized two Arabidopsis long coiled-coil proteins PAMP-INDUCED COILED-COIL (PICC and PICC-LIKE (PICL. PICC (147 kDa and PICL (87 kDa are paralogs that consist predominantly of a long coiled-coil domain (expanded in PICC, with a predicted transmembrane domain at the immediate C-terminus. Orthologs of PICC and PICL were found exclusively in vascular plants. PICC and PICL GFP fusion proteins are anchored to the cytoplasmic surface of the endoplasmic reticulum (ER membrane by a C-terminal transmembrane domain and a short tail domain, via a tail-anchoring mechanism. T-DNA-insertion mutants of PICC and PICL as well as the double mutant show an increased sensitivity to the plant abiotic stress hormone abscisic acid (ABA in a post-germination growth response. PICC, but not PICL gene expression is induced by the bacterial pathogen-associated molecular pattern (PAMP flg22. T-DNA insertion alleles of PICC, but not PICL, show increased susceptibility to the non-virulent strain P. syringae pv. tomato DC3000 hrcC, but not to the virulent strain P. syringae pv. tomato DC3000. This suggests that PICC mutants are compromised in PAMP-triggered immunity (PTI. The data presented here provide first evidence for the involvement of a plant long coiled-coil protein in a plant defense response.

  14. Functional investigation of the plant-specific long coiled-coil proteins PAMP-INDUCED COILED-COIL (PICC) and PICC-LIKE (PICL) in Arabidopsis thaliana.

    Science.gov (United States)

    Venkatakrishnan, Sowmya; Mackey, David; Meier, Iris

    2013-01-01

    We have identified and characterized two Arabidopsis long coiled-coil proteins PAMP-INDUCED COILED-COIL (PICC) and PICC-LIKE (PICL). PICC (147 kDa) and PICL (87 kDa) are paralogs that consist predominantly of a long coiled-coil domain (expanded in PICC), with a predicted transmembrane domain at the immediate C-terminus. Orthologs of PICC and PICL were found exclusively in vascular plants. PICC and PICL GFP fusion proteins are anchored to the cytoplasmic surface of the endoplasmic reticulum (ER) membrane by a C-terminal transmembrane domain and a short tail domain, via a tail-anchoring mechanism. T-DNA-insertion mutants of PICC and PICL as well as the double mutant show an increased sensitivity to the plant abiotic stress hormone abscisic acid (ABA) in a post-germination growth response. PICC, but not PICL gene expression is induced by the bacterial pathogen-associated molecular pattern (PAMP) flg22. T-DNA insertion alleles of PICC, but not PICL, show increased susceptibility to the non-virulent strain P. syringae pv. tomato DC3000 hrcC, but not to the virulent strain P. syringae pv. tomato DC3000. This suggests that PICC mutants are compromised in PAMP-triggered immunity (PTI). The data presented here provide first evidence for the involvement of a plant long coiled-coil protein in a plant defense response.

  15. Functional Investigation of the Plant-Specific Long Coiled-Coil Proteins PAMP-INDUCED COILED-COIL (PICC) and PICC-LIKE (PICL) in Arabidopsis thaliana

    Science.gov (United States)

    Venkatakrishnan, Sowmya; Mackey, David; Meier, Iris

    2013-01-01

    We have identified and characterized two Arabidopsis long coiled-coil proteins PAMP-INDUCED COILED-COIL (PICC) and PICC-LIKE (PICL). PICC (147 kDa) and PICL (87 kDa) are paralogs that consist predominantly of a long coiled-coil domain (expanded in PICC), with a predicted transmembrane domain at the immediate C-terminus. Orthologs of PICC and PICL were found exclusively in vascular plants. PICC and PICL GFP fusion proteins are anchored to the cytoplasmic surface of the endoplasmic reticulum (ER) membrane by a C-terminal transmembrane domain and a short tail domain, via a tail-anchoring mechanism. T-DNA-insertion mutants of PICC and PICL as well as the double mutant show an increased sensitivity to the plant abiotic stress hormone abscisic acid (ABA) in a post-germination growth response. PICC, but not PICL gene expression is induced by the bacterial pathogen-associated molecular pattern (PAMP) flg22. T-DNA insertion alleles of PICC, but not PICL, show increased susceptibility to the non-virulent strain P. syringae pv. tomato DC3000 hrcC, but not to the virulent strain P. syringae pv. tomato DC3000. This suggests that PICC mutants are compromised in PAMP-triggered immunity (PTI). The data presented here provide first evidence for the involvement of a plant long coiled-coil protein in a plant defense response. PMID:23451199

  16. Composite coils for toroidal field coils and method of using same

    International Nuclear Information System (INIS)

    Perkins, R. G.; Trujillo, S. M.

    1985-01-01

    A composite toroidal field (TF) generating means consisting of segmented magnetic coil windings is disclosed. Each coil winding of the TF generating means consists of a copper or copper alloy conductor segment and an aluminum or aluminum alloy conductor segment. The conductor segments are joined at a high strength, low electrical resistance joint and the joint may either be a mechanical or metallurgical one. The use of the aluminum or aluminum alloy conductor segments improves the neutron economy of the reactor with which the TF coil is associated and reduces TF coil nuclear heating and heating gradients, and activation in the TF coils

  17. More efficient distribution of district cooling; Effektivare Distribution av Fjaerrkyla

    Energy Technology Data Exchange (ETDEWEB)

    Kaellman, Olle; Hindersson, Per [Jarl Magnusson AB, Stockholm (Sweden); Nord, Boerje [BN Consulting (Sweden)

    2004-07-01

    The output in a network for district cooling is directly proportional to the temperature difference. A lower return temperature gives a higher water through-flow, which in turn leads to a lower system efficiency and thereby higher costs to both supplier and customer. A network in which the customer receives the agreed return temperature, or higher, gives greater reliability of supply and lower costs. The report presents various technical options and measures that can be installed in a property for an effective distribution of district cooling. The focus has been oriented towards options and measures for increasing the return temperature in the network. Simulations and calculations have been conducted for three different cases with cooling systems that supply a modular-structured 2,000 m{sup 2} office with cooling. Case A: Basic case with cooled supply air - minimum flow as per requirements; Case B: VAV system with cooled supply air - increased air flow; Case C: CAV system with cooled supply air and active cooling baffles. On the basis of the above cases, the report discusses which technical measures can be carried out in order to increase the efficiency of district cooling distribution. The most important conclusions drawn from this project can be summarised as follows: Increasing the number of water channels in a coil for cooling outdoor air is a very effective way of increasing the return temperature in a property brine cycle. It is possible to place higher demands than 16 deg C and 18 deg C on the return temperature from coils for the cooling of outdoor air A higher outdoor design temperature when sizing cooling coils is not to be recommended as a practicable way of raising the return temperature in a district cooling system Sizing on the basis of a higher outdoor design temperature gives a higher subscribed power that is used for a few hours per year. The alternative involving a lower outdoor design temperature releases power for new customers There must not be

  18. Use of a High-Temperature Superconducting Coil for Magnetic Energy Storage

    International Nuclear Information System (INIS)

    Fagnard, J-F; Crate, D; Jamoye, J-F; Laurent, Ph; Mattivi, B; Cloots, R; Ausloos, M; Genon, A; Vanderbemden, Ph

    2006-01-01

    A high temperature superconducting magnetic energy storage device (SMES) has been realised using a 350 m-long BSCCO tape wound as a ''pancake'' coil. The coil is mounted on a cryocooler allowing temperatures down to 17.2 K to be achieved. The temperature dependence of coil electrical resistance R(T) shows a superconducting transition at T = 102.5 K. Measurements of the V(I) characteristics were performed at several temperatures between 17.2 K and 101.5 K to obtain the temperature dependence of the critical current (using a 1 μV/cm criterion). Critical currents were found to exceed 100 A for T < 30 K. An electronic DC-DC converter was built in order to control the energy flow in and out of the superconducting coil. The converter consists of a MOS transistor bridge switching at a 80 kHz frequency and controlled with standard Pulse Width Modulation (PWM) techniques. The system was tested using a 30 V squared wave power supply as bridge input voltage. The coil current, the bridge input and output voltages were recorded simultaneously. Using a 10 A setpoint current in the superconducting coil, the whole system (coil + DC-DC converter) can provide a stable output voltage showing uninterruptible power supply (UPS) capabilities over 1 s

  19. Startup of Large Coil Test Facility

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Bohanan, R.E.; Fietz, W.A.; Luton, J.N.; May, J.R.

    1984-01-01

    The Large Coil Test Facility (LCTF) is being used to test superconducting toroidal field coils about one-third the size of those for INTOR. Eventually, six different coils from four countries will be tested. Operations began in 1983 with acceptance testing of the helium refrigerator/liquefier system. Comprehensive shakedown of the facility and tests with the first three coils (from Japan, the United States, and Switzerland) were successfully accomplished in the summer of 1984. Currents up to 10,200 A and fields up to 6.4 T were reached. Data were obtained on performance of refrigerator, helium distribution, power supplies, controls, and data acquisition systems and on the acoustic emission, voltages, currents, and mechanical strains during charging and discharging the coils

  20. Releases from the cooling water system in the Waste Tank Farm

    International Nuclear Information System (INIS)

    Perkins, W.C.; Lux, C.R.

    1991-01-01

    On September 12, 1991, a cooling-water header broke in the H-Area Waste Tank farm, at the Savannah River Site, releasing contaminated water down a storm sewer that drains to the creek. A copy of the Occurrence Report is attached. As part of the follow-up on this incident, the NPSR Section was asked by Waste Management Technology to perform a probabilistic analysis of the following cases: (1) A large break in the header combined with a large break in a cooling coil inside a waste tank. (2) A large break in the header combined with a leak in a cooling coil inside a waste tank. (3) A large break in the header combined with a very small leak in a cooling coil inside a waste tank. This report documents the results of the analysis of these cases

  1. Design description of the Large Coil Test Facility pulse-coil support and transport system

    International Nuclear Information System (INIS)

    Queen, C.C.

    1981-01-01

    In order to simulate the transient fields which would be imposed on superconducting toroidal field coils in an operating tokamak reactor, the Large Coil Test Facility (LCTF) test stand includes a set of pulse coils. This set of pulse coils is designed to be moved from one test location to another within the LCTF vacuum vessel while the vessel is operating under vacuum and the test stand and test coils are at an operating temperature of 4.2K. This operating environment and the extremely high magnetic loads have necessitated some unique design features for the pulse coil support and transport system. The support structure for the pulse coil must react high overturning moments and axial loads induced on the pulse coil by the interaction of the pulse field with the field generated by the large test coils. These loads are reacted into the test stand support structure or spider frame by an arrangement of six pedestals and a support beam. In order to move the pulse coil set from one test location to another, the support beam containing the pulse coils must be driven across rollers mounted on the pedestals, then clamped securely to react the loads. Because these operations must be performed in a vacuum environment at cryogenic tmperature, special consideration was given to component design

  2. iGrab: hand orthosis powered by twisted and coiled polymer muscles

    Science.gov (United States)

    Saharan, Lokesh; de Andrade, Monica Jung; Saleem, Wahaj; Baughman, Ray H.; Tadesse, Yonas

    2017-10-01

    Several works have been reported in powered hand orthosis in the last ten years for assistive or rehabilitative purposes. However, most of these approaches uses conventional actuators such as servo motors to power orthosis. In this work, we demonstrate the recently reported twisted and coiled polymeric (TCP) muscles to drive a compact, light, inexpensive and wearable upper extremity device, iGrab. A 3D printed orthotic hand module was designed, developed and tested for the performance. The device has six 2-ply muscles of diameter 1.35 mm with a length of 380 mm. We used a single 2-ply muscle for each finger and two 2-ply muscles for the thumb. Pulsed actuation of the muscles at 1.8 A current for 25 s with 7% duty cycle under natural cooling showed full flexion of the fingers within 2 s. Modeling and simulation were performed on the device using standard Euler-Lagrangian equations. Our artificial muscles powered hand orthosis demonstrated the capability of pinching and picking objects of different shapes, weights, and sizes.

  3. Functional and morphological cardiac magnetic resonance imaging of mice using a cryogenic quadrature radiofrequency coil.

    Directory of Open Access Journals (Sweden)

    Babette Wagenhaus

    Full Text Available Cardiac morphology and function assessment by magnetic resonance imaging is of increasing interest for a variety of mouse models in pre-clinical cardiac research, such as myocardial infarction models or myocardial injury/remodeling in genetically or pharmacologically induced hypertension. Signal-to-noise ratio (SNR constraints, however, limit image quality and blood myocardium delineation, which crucially depend on high spatial resolution. Significant gains in SNR with a cryogenically cooled RF probe have been shown for mouse brain MRI, yet the potential of applying cryogenic RF coils for cardiac MR (CMR in mice is, as of yet, untapped. This study examines the feasibility and potential benefits of CMR in mice employing a 400 MHz cryogenic RF surface coil, compared with a conventional mouse heart coil array operating at room temperature. The cryogenic RF coil affords SNR gains of 3.0 to 5.0 versus the conventional approach and hence enables an enhanced spatial resolution. This markedly improved image quality--by better deliniation of myocardial borders and enhanced depiction of papillary muscles and trabeculae--and facilitated a more accurate cardiac chamber quantification, due to reduced intraobserver variability. In summary the use of a cryogenically cooled RF probe represents a valuable means of enhancing the capabilities of CMR of mice.

  4. An 8 cm period electromagnetic wiggler magnet with coils made from sheet copper

    International Nuclear Information System (INIS)

    George Biallas; Stephen Benson; Tommy Hiatt; George Neil; Michael Snyder

    2005-01-01

    An electromagnetic wiggler, now lasing at the Jefferson Lab FEL, has 29 eight cm periods with K variable from 0.5 to 1.1 and gap of 2.6 cm. The wiggler was made inexpensively in 11 weeks by an industrial machine shop. The conduction cooled coil design uses copper sheet material cut to forms using water jet cutting. The conductor is cut to serpentine shapes and the cooling plates are cut to ladder shape. The sheets are assembled in stacks insulated with polymer film, also cut with water jet. The coil design extends the serpentine conductor design of the Duke OK4 to more and smaller conductors. The wiggler features graded fields in the two poles at each end and trim coils on these poles to eliminate field errors caused by saturation. An added critical feature is mirror plates at the ends with integral trim coils to eliminate three dimensional end field effects and align the entrance and exit orbit with the axis of the wiggler. Details of construction, measurement methods and excellent wiggler performance are presented

  5. The 8 cm Period Electromagnetic Wiggler Magnet with Coils Made from Sheet Copper

    CERN Document Server

    Biallas, George H; Hiatt, Tommy; Neil, George R; Snyder, Michael D

    2005-01-01

    An electromagnetic wiggler, now lasing at the Jefferson Lab FEL, has 29 eight cm periods with K variable from 0.6 to1.1 and gap of 2.6 cm. The wiggler was made inexpensively in 11 weeks by an industrial machine shop. The conduction cooled coil design uses copper sheet material cut to forms using water jet cutting. The conductor is cut to serpentine shapes and the cooling plates are cut to ladder shape. The sheets are assembled in stacks insulated with polymer film, also cut with water jet. The coil design extends the serpentine conductor design of the Duke OK4 to more and smaller conductors. The wiggler features graded fields in the two poles at each end and trim coils on these poles to eliminate field errors caused by saturation. An added critical feature is mirror plates at the ends with integral trim coils to eliminate three dimensional end field effects and align the entrance and exit orbit with the axis of the wiggler. Details of construction, measurement methods and excellent wiggler performance are pre...

  6. A six-channel pediatric coil array for detection of children spinal pathologies by MRI at 1.5 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    López Terrones, Marcos Alonso, E-mail: malt.marcos@gmail.com [Ingeniería Biomédica, Dirección de Planeación, Servicios de Salud de Durango. Cuauhtémoc 225 Norte, Durango, Durango 34000 (Mexico); Solís-Nájera, Sergio Enrique, E-mail: solisnajera@ciencias.unam.mx [Facultad de Ciencias, Universidad Nacional Autónoma de México, México, DF 04510 (Mexico)

    2014-11-07

    Nowadays, magnetic resonance (MR) in Mexico has become a standard technique for clinical imaging. Although most of the times the MR systems contain only coils oriented for adults. Radiologists use these coils for children studies due to the non-availability of pediatric coils. Image quality is decreased due to the low signal to noise ratio delivered to the system. The development of RF coils is always focused towards increasing SNR and optimizing the RF penetration into the sample. Moreover, spinal pathologies in children, which are an important topic in pediatric care, cover congenital and neuromuscular disorders that occur in childhood. In this work, the design of a dedicated six-channel coil for detection of spinal pathologies at 1.5 Tesla is addressed. Numerical electromagnetic simulations were performed in order to evaluate their magnetic field performance at (63.6 MHz) 1.5 Tesla. The magnetic field uniformity as well as the RF penetration depth of the coil configurations was evaluated in order to find the best/optimized coil array configuration. The coil is comprised of three rows, one with 4 coil elements and two with only one coil element. Phantom and in vivo images were acquired with the six-channel pediatric coil array. The phantom images agree with the simulated data. In vivo images acquired with the 6-channel pediatric coil array have shown very good penetration depth and homogeneity, which allow better image quality throughout the whole FOV. In addition, the parallel imaging capabilities of the array allow the acceleration of the experiments avoiding possible motion artifacts.

  7. Cool Snacks

    DEFF Research Database (Denmark)

    Krogager, Stinne Gunder Strøm; Grunert, Klaus G; Brunsø, Karen

    2016-01-01

    Young people snack and their snacking habits are not always healthy. We address the questions whether it is possible to develop a new snack product that adolescents will find attractive, even though it is based on ingredients as healthy as fruits and vegetables, and we argue that developing...... such a product requires an interdisciplinary effort where researchers with backgrounds in psychology, anthropology, media science, philosophy, sensory science and food science join forces. We present the COOL SNACKS project, where such a blend of competences was used first to obtain thorough insight into young...... people's snacking behaviour and then to develop and test new, healthier snacking solutions. These new snacking solutions were tested and found to be favourably accepted by young people. The paper therefore provides a proof of principle that the development of snacks that are both healthy and attractive...

  8. Cool visitors

    CERN Multimedia

    2006-01-01

    Pictured, from left to right: Tim Izo (saxophone, flute, guitar), Bobby Grant (tour manager), George Pajon (guitar). What do the LHC and a world-famous hip-hop group have in common? They are cool! On Saturday, 1st July, before their appearance at the Montreux Jazz Festival, three members of the 'Black Eyed Peas' came on a surprise visit to CERN, inspired by Dan Brown's Angels and Demons. At short notice, Connie Potter (Head of the ATLAS secretariat) organized a guided tour of ATLAS and the AD 'antimatter factory'. Still curious, lead vocalist Will.I.Am met CERN physicist Rolf Landua after the concert to ask many more questions on particles, CERN, and the origin of the Universe.

  9. A Feasibility Study. Ductless Hydronic Distribution Systems with Fan Coil Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Springer, D. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Dakin, B. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Backman, C. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2012-07-01

    The primary objectives of this study are to estimate potential energy savings relative to conventional ducted air distribution, and to identify equipment requirements, costs, and barriers with a focus on ductless hydronic delivery systems that utilize water-to-air terminal units in each zone. Results indicate that annual heating and cooling energy use can be reduced by up to 27% assuming replacement of the conventional 13 SEER heat pump and coil with a similarly rated air-to-water heat pump.

  10. Simultaneous formation of right- and left-handed anti-parallel coiled-coil interfaces by a coil2 fragment of human lamin A.

    Science.gov (United States)

    Kapinos, Larisa E; Burkhard, Peter; Herrmann, Harald; Aebi, Ueli; Strelkov, Sergei V

    2011-04-22

    The elementary building block of all intermediate filaments (IFs) is a dimer featuring a central α-helical rod domain flanked by the N- and C-terminal end domains. In nuclear IF proteins (lamins), the rod domain consists of two coiled-coil segments, coil1 and coil2, that are connected by a short non-helical linker. Coil1 and the C-terminal part of coil2 contain the two highly conserved IF consensus motifs involved in the longitudinal assembly of dimers. The previously solved crystal structure of a lamin A fragment (residues 305-387) corresponding to the second half of coil2 has yielded a parallel left-handed coiled coil. Here, we present the crystal structure and solution properties of another human lamin A fragment (residues 328-398), which is largely overlapping with fragment 305-387 but harbors a short segment of the tail domain. Unexpectedly, no parallel coiled coil forms within the crystal. Instead, the α-helices are arranged such that two anti-parallel coiled-coil interfaces are formed. The most significant interface has a right-handed geometry, which is accounted for by a characteristic 15-residue repeat pattern that overlays with the canonical heptad repeat pattern. The second interface is a left-handed anti-parallel coiled coil based on the predicted heptad repeat pattern. In solution, the fragment reveals only a weak dimerization propensity. We speculate that the C-terminus of coil2 might unzip, thereby allowing for a right-handed coiled-coil interface to form between two laterally aligned dimers. Such an interface might co-exist with a heterotetrameric left-handed coiled-coil assembly, which is expected to be responsible for the longitudinal A(CN) contact. Copyright © 2011. Published by Elsevier Ltd.

  11. N@a and N@d: Oligomer and Partner Specification by Asparagine in Coiled-Coil Interfaces.

    Science.gov (United States)

    Fletcher, Jordan M; Bartlett, Gail J; Boyle, Aimee L; Danon, Jonathan J; Rush, Laura E; Lupas, Andrei N; Woolfson, Derek N

    2017-02-17

    The α-helical coiled coil is one of the best-studied protein-protein interaction motifs. As a result, sequence-to-structure relationships are available for the prediction of natural coiled-coil sequences and the de novo design of new ones. However, coiled coils adopt a wide range of oligomeric states and topologies, and our understanding of the specification of these and the discrimination between them remains incomplete. Gaps in our knowledge assume more importance as coiled coils are used increasingly to construct biomimetic systems of higher complexity; for this, coiled-coil components need to be robust, orthogonal, and transferable between contexts. Here, we explore how the polar side chain asparagine (Asn, N) is tolerated within otherwise hydrophobic helix-helix interfaces of coiled coils. The long-held view is that Asn placed at certain sites of the coiled-coil sequence repeat selects one oligomer state over others, which is rationalized by the ability of the side chain to make hydrogen bonds, or interactions with chelated ions within the coiled-coil interior of the favored state. We test this with experiments on de novo peptide sequences traditionally considered as directing parallel dimers and trimers, and more widely through bioinformatics analysis of natural coiled-coil sequences and structures. We find that when located centrally, rather than near the termini of such coiled-coil sequences, Asn does exert the anticipated oligomer-specifying influence. However, outside of these bounds, Asn is observed less frequently in the natural sequences, and the synthetic peptides are hyperthermostable and lose oligomer-state specificity. These findings highlight that not all regions of coiled-coil repeat sequences are equivalent, and that care is needed when designing coiled-coil interfaces.

  12. Analysis of Cooling and Heating of Water with Flat-plate Solar Radiators

    OpenAIRE

    Balen, Igor; Soldo, Vladimir; Kennedy, David

    2003-01-01

    Extensive analysis of flat-plate radiative panels operation using average hourly weather data for a maritime climate region was performed. The panels are integrated in the space ventilation system with air-cooling by means of a cold-water coil. Their primary function is to prepare sufficient quantity of cold water, integrating radiative and convective cooling, that is collected in the cold-water tank during the nighttime operation. That cold water is used for cooling of the air during daytime...

  13. Force generation by orthodontic coil springs.

    Science.gov (United States)

    von Fraunhofer, J A; Bonds, P W; Johnson, B E

    1993-01-01

    Nickel titanium (NiTi) coil springs are a new development in orthodontics, designed to produce light continuous forces. This study compares the force delivery by NiTi open and closed coil springs during unloading (de-activation) to that provided by comparable stainless steel (SS) springs. Open-coil springs (0.010 x 0.035 inch) were compressed from their initial length of 15 mm to 6 mm and the forces generated with spring recovery recorded. Closed-coil springs (0.009 x 0.035 inch) were distracted from their initial length of 3 mm to 9 mm and the force recorded as the spring recovered. The closed-coil NiTi springs produced light continuous forces of 75-90 g over the distraction range of 6 mm while the open-coil springs produced forces of 55-70 g within the 9 mm compression range. SS springs produced heavier forces, ca. 200 g, for an activation of 1 mm and the generated force increased rapidly as the activation was increased. The findings indicate that NiTi coil springs deliver optimal forces for orthodontic tooth movement over a longer activation range than comparable SS springs.

  14. Correcting coils in end magnets of accelerators

    Directory of Open Access Journals (Sweden)

    L. R. P. Kassab

    1998-05-01

    Full Text Available We present an empirical investigation of the correcting coils behavior used to homogenize the field distribution of the race-track microtron accelerator end magnets. These end magnets belong to the second stage of the 30.0 MeV cw electron accelerator under construction at IFUSP, the race-track microtron booster, in which the beam energy is raised from 1.97 to 5.1 MeV. The correcting coils are attached to the pole faces and are based on the inhomogeneities of the magnetic field measured. The performance of these coils, when operating the end magnets with currents that differ by ±10% from the one used in the mappings that originated the coils copper leads, is presented. For one of the magnets, adjusting conveniently the current of the correcting coils makes it possible to homogenize field distributions of different intensities, once their shapes are practically identical to those that originated the coils. For the other one, the shapes are changed and the coils are less efficient. This is related to intrinsic factors that determine the inhomogeneities. However, we obtained uniformity of 0.001% in both cases.

  15. Crystal structure of a coiled-coil domain from human ROCK I.

    Directory of Open Access Journals (Sweden)

    Daqi Tu

    2011-03-01

    Full Text Available The small GTPase Rho and one of its targets, Rho-associated kinase (ROCK, participate in a variety of actin-based cellular processes including smooth muscle contraction, cell migration, and stress fiber formation. The ROCK protein consists of an N-terminal kinase domain, a central coiled-coil domain containing a Rho binding site, and a C-terminal pleckstrin homology domain. Here we present the crystal structure of a large section of the central coiled-coil domain of human ROCK I (amino acids 535-700. The structure forms a parallel α-helical coiled-coil dimer that is structurally similar to tropomyosin, an actin filament binding protein. There is an unusual discontinuity in the coiled-coil; three charged residues (E613, R617 and D620 are positioned at what is normally the hydrophobic core of coiled-coil packing. We speculate that this conserved irregularity could function as a hinge that allows ROCK to adopt its autoinhibited conformation.

  16. A set of computationally designed orthogonal antiparallel homodimers that expands the synthetic coiled-coil toolkit.

    Science.gov (United States)

    Negron, Christopher; Keating, Amy E

    2014-11-26

    Molecular engineering of protein assemblies, including the fabrication of nanostructures and synthetic signaling pathways, relies on the availability of modular parts that can be combined to give different structures and functions. Currently, a limited number of well-characterized protein interaction components are available. Coiled-coil interaction modules have been demonstrated to be useful for biomolecular design, and many parallel homodimers and heterodimers are available in the coiled-coil toolkit. In this work, we sought to design a set of orthogonal antiparallel homodimeric coiled coils using a computational approach. There are very few antiparallel homodimers described in the literature, and none have been measured for cross-reactivity. We tested the ability of the distance-dependent statistical potential DFIRE to predict orientation preferences for coiled-coil dimers of known structure. The DFIRE model was then combined with the CLASSY multistate protein design framework to engineer sets of three orthogonal antiparallel homodimeric coiled coils. Experimental measurements confirmed the successful design of three peptides that preferentially formed antiparallel homodimers that, furthermore, did not interact with one additional previously reported antiparallel homodimer. Two designed peptides that formed higher-order structures suggest how future design protocols could be improved. The successful designs represent a significant expansion of the existing protein-interaction toolbox for molecular engineers.

  17. Exploiting Oligo(amido amine) Backbones for the Multivalent Presentation of Coiled-Coil Peptides.

    Science.gov (United States)

    Gerling-Driessen, Ulla I M; Mujkic-Ninnemann, Nina; Ponader, Daniela; Schöne, Daniel; Hartmann, Laura; Koksch, Beate; Gerling-Driessen, U I M; Schöne, D; Koksch, B; Ponader, D; Mujkic-Ninnemann, N; Hartmann, L

    2015-08-10

    The investigation of coiled coil formation for one mono- and two divalent peptide-polymer conjugates is presented. Through the assembly of the full conjugates on solid support, monodisperse sequence-defined conjugates are obtained with defined positions and distances between the peptide side chains along the polymeric backbone. A heteromeric peptide design was chosen, where peptide K is attached to the polymer backbone, and coiled-coil formation is only expected through complexation with the complementary peptide E. Indeed, the monovalent peptide K-polymer conjugate displays rapid coiled-coil formation when mixed with the complementary peptide E sequence. The divalent systems show intramolecular homomeric coiled-coil formation on the polymer backbone despite the peptide design. Interestingly, this intramolecular assembly undergoes a conformational rearrangement by the addition of the complementary peptide E leading to the formation of heteromeric coiled coil-polymer aggregates. The polymer backbone acts as a template bringing the covalently bound peptide strands in close proximity to each other, increasing the local concentration and inducing the otherwise nonfavorable formation of intramolecular helical assemblies.

  18. Routine phasing of coiled-coil protein crystal structures with AMPLE.

    Science.gov (United States)

    Thomas, Jens M H; Keegan, Ronan M; Bibby, Jaclyn; Winn, Martyn D; Mayans, Olga; Rigden, Daniel J

    2015-03-01

    Coiled-coil protein folds are among the most abundant in nature. These folds consist of long wound α-helices and are architecturally simple, but paradoxically their crystallographic structures are notoriously difficult to solve with molecular-replacement techniques. The program AMPLE can solve crystal structures by molecular replacement using ab initio search models in the absence of an existent homologous protein structure. AMPLE has been benchmarked on a large and diverse test set of coiled-coil crystal structures and has been found to solve 80% of all cases. Successes included structures with chain lengths of up to 253 residues and resolutions down to 2.9 Å, considerably extending the limits on size and resolution that are typically tractable by ab initio methodologies. The structures of two macromolecular complexes, one including DNA, were also successfully solved using their coiled-coil components. It is demonstrated that both the ab initio modelling and the use of ensemble search models contribute to the success of AMPLE by comparison with phasing attempts using single structures or ideal polyalanine helices. These successes suggest that molecular replacement with AMPLE should be the method of choice for the crystallo-graphic elucidation of a coiled-coil structure. Furthermore, AMPLE may be able to exploit the presence of a coiled coil in a complex to provide a convenient route for phasing.

  19. Cloning, overexpression, purification and crystallization of the CRN12 coiled-coil domain from Leishmania donovani.

    Science.gov (United States)

    Srivastava, Vijay Kumar; Rana, Ajay Kumar; Sahasrabuddhe, Amogh A; Gupta, C M; Pratap, J V

    2013-05-01

    Leishmania donovani coronin CRN12 is an actin-binding protein which consists of two domains: an N-terminal WD repeat domain and a C-terminal coiled-coil domain. The coiled-coil domain is 53 residues in length. Helix-helix interactions in general and coiled coils in particular are ubiquitous in the structure of proteins and play a significant role in the association among proteins, including supramolecular assemblies and transmembrane receptors that mediate cellular signalling, transport and actin dynamics. The L. donovani coronin CRN12 coiled-coil domain (5.8 kDa) was cloned, overexpressed, purified to homogeneity and the N-terminal 6×His tag was successfully removed by thrombin cleavage. Crystals of recombinant L. donovani coronin CRN12 coiled-coil domain were grown by vapour diffusion using a hanging-drop setup. Diffraction-quality crystals were obtained and data extending to 2.46 Å resolution were collected at 100 K on BM14, ESRF, Grenoble, France. The crystal belonged to the monoclinic space group C2, with unit-cell parameters a = 118.0, b = 50.6, c = 46.0 Å, β = 111.0°. Matthews coefficient (VM) calculations suggested the presence of 4-6 molecules in the asymmetric unit, corresponding to a solvent content of ∼33-55%, and are consistent with self-rotation function calculations.

  20. Inhibition of the 26S proteasome by peptide mimics of the coiled-coil region of its ATPase subunits.

    Science.gov (United States)

    Inobe, Tomonao; Genmei, Reiko

    Regulation of proteasomal degradation is an indispensable tool for biomedical studies. Thus, there is demand for novel proteasome inhibitors. Proteasomal degradation requires formation of coiled-coil structure by the N-terminal region of ATPase subunits of the proteasome cap. Here we show that peptides that mimic the N-terminal coiled-coil region of ATPase subunits interfere with proteasome function. These results suggest that coiled-coil peptides represent promising new proteasome inhibitors and that N-terminal coiled-coil regions of ATPase subunits are targets for proteasome inhibition. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Do carotid MR surface coils affect PET quantification in PET/MR imaging?

    International Nuclear Information System (INIS)

    Willemink, Martin J; Eldib, Mootaz; Leiner, Tim; Fayad, Zahi A; Mani, Venkatesh

    2015-01-01

    To evaluate the effect of surface coils for carotid MR imaging on PET quantification in a clinical simultaneous whole-body PET/MR scanner. A cylindrical phantom was filled with a homogeneous 2L water-FDG mixture at a starting dose of 301.2MBq. Clinical PET/MR and PET/CT systems were used to acquire PET-data without a coil (reference standard) and with two carotid MRI coils (Siemens Special Purpose 8-Channel and Machnet 4-Channel Phased Array). PET-signal attenuation was evaluated with Osirix using 51 (PET/MR) and 37 (PET/CT) circular ROIs. Mean and maximum standardized uptake values (SUVs) were quantified for each ROI. Furthermore, SUVs of PET/MR and PET/CT were compared. For validation, a patient was scanned with an injected dose of 407.7MBq on both a PET/CT and a PET/MR system without a coil and with both coils. PET/MR underestimations were -2.2% (Siemens) and -7.8% (Machnet) for SUVmean, and -1.2% (Siemens) and -3.3% (Machnet) for SUVmax, respectively. For PET/CT, underestimations were -1.3% (Siemens) and -1.4% (Machnet) for SUVmean and -0.5% (both Siemens and Machnet) for SUVmax, respectively using no coil data as reference. Except for PET/CT SUVmax values all differences were significant. SUVs differed significantly between PET/MR and PET/CT with SUVmean values of 0.51-0.55 for PET/MR and 0.68-0.69 for PET/CT, respectively. The patient examination showed that median SUVmean values measured in the carotid arteries decreased from 0.97 without a coil to 0.96 (Siemens) and 0.88 (Machnet). Carotid surface coils do affect attenuation correction in both PET/MR and PET/CT imaging. Furthermore, SUVs differed significantly between PET/MR and PET/CT.

  2. Magnetic field mapper based on rotating coils

    CERN Document Server

    AUTHOR|(CDS)2087244; Arpaia, Pasquale

    This thesis presents a magnetic field mapper based on rotating coils. The requirements, the architecture, the conceptual design, and the prototype for straight magnets were shown. The proposed system is made up of a rotating coil transducer and a train-like system for longitudinal motion and positioning inside magnet bore. The mapper allows a localized measurement of magnetic fields and the variation of the harmonic multipole content in the magnet ends. The proof-of-principle demonstration and the experimental characterization of the rotating-coil transducer specifically conceived for mapping validated the main objective of satisfying the magnetic measurement needs of the next generation of compact accelerators.

  3. CS model coil experimental log book

    International Nuclear Information System (INIS)

    Nishijima, Gen; Sugimoto, Makoto; Nunoya, Yoshihiko; Wakabayashi, Hiroshi; Tsuji, Hiroshi

    2001-02-01

    Charging test of the ITER CS Model Coil which is the world's largest superconducting pulse coil and the CS Insert Coil had started at April 11, 2000 and had completed at August 18, 2000. In the campaign, total shot numbers were 356 and the size of the data file in the DAS (Data Acquisition System) was over 20 GB. This report is a database that consists of the log list and the log sheets of every shot. One can access the database, make a search, and browse results via Internet (http://1ogwww.naka.jaeri.go.jp). The database will be useful to quick search to choose necessary shots. (author)

  4. WORKSHOP: Beam cooling

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Cooling - the control of unruly particles to provide well-behaved beams - has become a major new tool in accelerator physics. The main approaches of electron cooling pioneered by Gersh Budker at Novosibirsk and stochastic cooling by Simon van der Meer at CERN, are now complemented by additional ideas, such as laser cooling of ions and ionization cooling of muons

  5. Flexible eddy current coil arrays

    International Nuclear Information System (INIS)

    Krampfner, Y.; Johnson, D.P.

    1987-01-01

    A novel approach was devised to overcome certain limitations of conventional eddy current testing. The typical single-element hand-wound probe was replaced with a two dimensional array of spirally wound probe elements deposited on a thin, flexible polyimide substrate. This provides full and reliable coverage of the test area and eliminates the need for scanning. The flexible substrate construction of the array allows the probes to conform to irregular part geometries, such as turbine blades and tubing, thereby eliminating the need for specialized probes for each geometry. Additionally, the batch manufacturing process of the array can yield highly uniform and reproducible coil geometries. The array is driven by a portable computer-based eddy current instrument, smartEDDY/sup TM/, capable of two-frequency operation, and offers a great deal of versatility and flexibility due to its software-based architecture. The array is coupled to the instrument via an 80-switch multiplexer that can be configured to address up to 1600 probes. The individual array elements may be addressed in any desired sequence, as defined by the software

  6. A coil test facility for the cryogenic tests of the JT-60SA TF coils

    International Nuclear Information System (INIS)

    Chantant, M.; Genini, L.; Bayetti, P.; Millet, F.; Wanner, M.; Massaut, V.; Corte, A. Della; Ardelier-Desage, F.; Catherine-Dumont, V.; Dael, A.; Decool, P.; Donati, A.; Duchateau, J.L.; Garibaldi, P.; Girard, S.; Hatchressian, J.C.; Fejoz, P.; Jamotton, P.; Jourdheuil, L.; Juster, F.P.

    2011-01-01

    In the framework of the Broader Approach Activities, the EU will deliver to Japan the 18 superconducting coils, which constitute the JT-60SA Toroidal field magnet. These 18 coils, manufactured by France and Italy, will be cold tested before shipping to Japan. For this purpose, the European Joint Undertaking for ITER, the Development of Fusion Energy ('Fusion for Energy', F4E) and the European Voluntary Contributors are collaborating to design and set-up a coil test facility (CTF) and to perform the acceptance test of the 18 JT-60SA Toroidal Field (TF) coils. The test facility is designed to test one coil at a time at nominal current and cryogenic temperature. The test of the first coil of each manufacturer includes a quench triggered by increasing the temperature. The project is presently in the detailed design phase.

  7. Results from a model system of superconducting solenoids and phase shifting bridge for pulsed power studies for proposed tokamak EF coils

    International Nuclear Information System (INIS)

    Fuja, R.E.; Kustom, R.L.; Smith, R.P.

    1977-01-01

    A matched pair of superconducting solenoids and a phase-shifting bridge circuit has been constructed to study energy storage and transfer for application to tokamak EF coils. The intrinsically stable solenoids, each with 4 H self-inductance, incorporate sufficient cooling to allow charging at several hundred volts, corresponding to B approximately equal 1 T/sec. The three-phase inductor-convertor capacitive bridge network operating at up to 150 V rms transfers energy reversibly and at controllable rates from the storage coil to the load coil

  8. Poloidal field coil design for known plasma equilibrium states

    International Nuclear Information System (INIS)

    Paulson, C.C.; Todd, A.M.M.; Reusch, M.F.

    1986-01-01

    The technique for obtaining plasma equilibria with given boundary conditions has long been known and understood. The inverse problem of obtaining a poloidal field (PF) coil system from a given plasma equilibrium has been widely studied, however its solution has remained largely an art form. An investigation, by the writers, of this fundamentally ill-posed inverse problem has resulted in a new understanding of the requirements that solutions must satisfy. A set of interacting computer codes has been written which may be used to successfully design PF coil systems capable of supporting given plasma equilibria. It is shown that for discrete coil systems with a reasonable number of elements the standard minimization of the R M S flux error can lead to undesirable results. Examples are given to show that an additional stability requirement must be imposed on the regularization parameter to obtain correct solutions. For some equilibria, the authors find that the inverse problem admits dual solutions corresponding to two possible magnetic field configurations that fit the constraining relations on the plasma surface equally well. An additional minimization of the absolute value of the limiter flux is required to discriminate between these solutions

  9. Functional Analysis of the Bacteriophage T4 Rad50 Homolog (gp46) Coiled-coil Domain.

    Science.gov (United States)

    Barfoot, Tasida; Herdendorf, Timothy J; Behning, Bryanna R; Stohr, Bradley A; Gao, Yang; Kreuzer, Kenneth N; Nelson, Scott W

    2015-09-25

    Rad50 and Mre11 form a complex involved in the detection and processing of DNA double strand breaks. Rad50 contains an anti-parallel coiled-coil with two absolutely conserved cysteine residues at its apex. These cysteine residues serve as a dimerization domain and bind a Zn(2+) cation in a tetrathiolate coordination complex known as the zinc-hook. Mutation of the zinc-hook in bacteriophage T4 is lethal, indicating the ability to bind Zn(2+) is critical for the functioning of the MR complex. In vitro, we found that complex formation between Rad50 and a peptide corresponding to the C-terminal domain of Mre11 enhances the ATPase activity of Rad50, supporting the hypothesis that the coiled-coil is a major conduit for communication between Mre11 and Rad50. We constructed mutations to perturb this domain in the bacteriophage T4 Rad50 homolog. Deletion of the Rad50 coiled-coil and zinc-hook eliminates Mre11 binding and ATPase activation but does not affect its basal activity. Mutation of the zinc-hook or disruption of the coiled-coil does not affect Mre11 or DNA binding, but their activation of Rad50 ATPase activity is abolished. Although these mutants excise a single nucleotide at a normal rate, they lack processivity and have reduced repetitive exonuclease rates. Restricting the mobility of the coiled-coil eliminates ATPase activation and repetitive exonuclease activity, but the ability to support single nucleotide excision is retained. These results suggest that the coiled-coiled domain adopts at least two conformations throughout the ATPase/nuclease cycle, with one conformation supporting enhanced ATPase activity and processivity and the other supporting nucleotide excision. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Computational characterization of parallel dimeric and trimeric coiled-coils using effective amino acid indices.

    Science.gov (United States)

    Li, Chen; Wang, Xiao-Feng; Chen, Zhen; Zhang, Ziding; Song, Jiangning

    2015-02-01

    The coiled-coil, which consists of two or more α-helices winding around each other, is a ubiquitous and the most frequently observed protein-protein interaction motif in nature. The coiled-coil is known for its straightforward heptad repeat pattern and can be readily recognized based on protein primary sequences, exhibiting a variety of oligomer states and topologies. Due to the stable interaction formed between their α-helices, coiled-coils have been under close scrutiny to design novel protein structures for potential applications in the fields of material science, synthetic biology and medicine. However, their broader application requires an in-depth and systematic analysis of the sequence-to-structure relationship of coiled-coil folding and oligomeric formation. In this article, we propose a new oligomerization state predictor, termed as RFCoil, which exploits the most useful and non-redundant amino acid indices combined with the machine learning algorithm - random forest (RF) - to predict the oligomeric states of coiled-coil regions. Benchmarking experiments show that RFCoil achieves an AUC (area under the ROC curve) of 0.849 on the 10-fold cross-validation test using the training dataset and 0.855 on the independent test using the validation dataset, respectively. Performance comparison results indicate that RFCoil outperforms the four existing predictors LOGICOIL, PrOCoil, SCORER 2.0 and Multicoil2. Furthermore, we extract a number of predominant rules from the trained RF model that underlie the oligomeric formation. We also present two case studies to illustrate the applicability of the extracted rules to the prediction of coiled-coil oligomerization state. The RFCoil web server, source codes and datasets are freely available for academic users at http://protein.cau.edu.cn/RFCoil/.

  11. MR angiography after coiling of intracranial aneurysms

    NARCIS (Netherlands)

    Schaafsma, J.D.

    2012-01-01

    Introduction Endovascular occlusion with detachable coils has become an alternative treatment to neurosurgical clipping of intracranial aneurysms over the last two decades. Its minimal invasiveness is the most important advantage of this treatment compared to clipping. The disadvantage of occlusion

  12. 12 tesla test coil. Annual progress report

    International Nuclear Information System (INIS)

    1979-01-01

    The Plasma Fusion Center at MIT has been charged with responsibility for the design, development, fabrication and test operation of a Niobium-3-Tin Superconducting Test Coil. Research is described on DOE's 12 tesla coil demonstration program in which several one-meter diameter superconducting test coils will be inserted and tested in DOE's High Field Test Facility at the Lawrence Livermore Laboratories. The work was initiated at the start of FY 79. FY 79 saw the completion of our Preliminary Design and the initiation of three (3) subcontracts: (1) Westinghouse review of the Preliminary Design, (II) Supercon, Inc. development of a tubular copper matrix, Nb 3 Sn Superconductor and (III) Airco optimization of the LCP-W Nb 3 Sn superconductor for 12T service. In addition, Airco was charged with the production of a 1000 foot length of model 15,000A conductor. Coil winding exercises were initiated at the Everson Electric Company

  13. Superconducting magnet coils protection schemes and apparatus

    International Nuclear Information System (INIS)

    Kuchinski, V.; Bulgakov, S.; Larionov, B.; Mikhailov, N.; Silin, V.

    1995-01-01

    The circuitry of the superconducting coils protection system of the large fusion installations is analyzed. The requirements to the switches and several options of the circuit breakers and making switches with the data of their experimental study are discussed. (orig.)

  14. Fields analysis of TFR 604 copper coils

    International Nuclear Information System (INIS)

    Bourrier, P.; Dubois, C.; Deschamps, P.; Millard, A.

    1979-01-01

    This paper describes the analysis of the toroidal Bitter type coils of TFR-604 fusion device. Electric, magnetic and mechanical fields have been investigated. The major difficulty arises from the quite complicated shape of the structure

  15. Tracking method of small receiver coil using MR scanner

    International Nuclear Information System (INIS)

    Onogi, Shinya; Liao, Hongen; Kobayashi, Etsuko; Sakuma, Ichiro; Watanabe, Sigeru

    2007-01-01

    MR guided surgery is quite effective in realizing accurate and safe minimally invasive surgery (MIS). The combination of intra-operative MRI, surgical navigation system, and surgical robot should be of practical use in the field of MIS in the future. When we use flexible endoscope type robotic manipulator, the position and the orientation of the tip point of the flexible forceps should be navigated and controlled by a robotic manipulator. However, the conventional position sensor can not be used because of the strong magnetic field and the limited workspace. We propose a novel tracking method named extended active tracking (EAT), which is based on the active tracking algorithm. EAT can measure the position and the orientation of the tracking coils synchronically. The principle of EAT is three points measurement by three series inductance. We can calculate the orientation of three coils using the measured 3-D positions of coils. In this paper, three experiments was conducted to evaluate the basic performance of the EAT. First experiment is the flip angle adjustment for the reduction of background noise, which is caused by the proton around each inductance. The experimental results shown that the inductance positions could be clearly observed without background noise at 6-deg flip angle with nuclear magnetic resonance (NMR) signal peaks. Second experiment is the reproducibility evaluation. The fluctuation of measurement position and orientation were less than 0.3 mm (SD) and 1.0 deg (SD) at various positions and orientations. And standard deviation of the distance between the inductances at various positions and orientations is less than resolution (0.78 mm). Third experiment is an accuracy evaluation. The position measurement accuracy was 0.39 mm (RMS) using an optical tracking device. The orientation measurement accuracy was 3.5 deg (RMS) when the tracking coil was rotated 30 degree. Evaluation result suggests that EAT is possible to be used inside a patient body

  16. Renewable Heating And Cooling

    Science.gov (United States)

    Renewable heating and cooling is a set of alternative resources and technologies that can be used in place of conventional heating and cooling technologies for common applications such as water heating, space heating, space cooling and process heat.

  17. Umbilical coiling index & the perinatal outcome.

    Science.gov (United States)

    Devaru, Dakshayini; Thusoo, Meghna

    2012-02-01

    To correlate the perinatal outcome by noting the umbilical coiling index. The umbilical cords of the babies born to 100 women, who delivered either vaginally or by lower segment cesarean section, were examined and umbilical coiling index was calculated. There was significant correlation (p value 0.003) between the hypercoiled cords (UCI >90th percentile) and intrauterine growth restriction of the babies. Apgar score at 1 min UCI UCI UCI >10th percentile is associated with intra uterine growth restriction.

  18. Coil tests and superconductor code calculations for the stellarator W7-X coils

    Science.gov (United States)

    Baldzuhn, J.; Ehmler, H.; Hoelting, A.; Hertel, K.; Sborchia, C.; Genini, L.; Schild, T.

    2006-07-01

    For the stellarator Wendelstein 7-X, a plasma fusion experiment, the performance of the superconducting coils is tested in a cryogenic test facility. Focus is on the quench behaviour of these coils. Some key data of the coils are given here. The coil quench data, obtained during the tests, are compared to GANDALF code calculations. GANDALF is a one-dimensional finite elements code for the simulation of the quench properties of superconducting CICC cables. Good consistency between measurement and calculation is found for the development of the resistive voltage and temperature increase during the quench.

  19. Magnetic resonance dacryocystography: comparison between conventional surface coils and microscopic coils

    International Nuclear Information System (INIS)

    Abreu Junior, Luiz de; Wolosker, Angela Maria Borri; Borri, Maria Lucia; Galvao Filho, Mario de Melo; Hartmann, Luiz Guilherme de Carvalho; D'Ippolito, Giuseppe; Castro, Claudio Campi de

    2008-01-01

    Objective: Magnetic resonance imaging has been utilized in the evaluation of the lacrimal apparatus with some advantages over conventional dacryocystography. The present study was aimed at acquiring high resolution images utilizing microscopic coils for evaluating typical structures of the lacrimal apparatus as compared with the findings observed with conventional surface coils. Materials and methods: Five asymptomatic volunteers with no history of epiphora were submitted to high-field magnetic resonance imaging with microscopic and conventional surface coils, and STIR sequence after instillation of saline solution. The definition of normal anatomic structures of lacrimal apparatuses was compared utilizing conventional and microscopic surface coils. Based on a consensual scoring system, the mean values for each structure were calculated by two observers. Results: In 90% of cases, higher scores were attributed to images acquired with the microscopic coil. On average, a 1.17 point increase was observed in the scoring of anatomic structures imaged with the microscopic coil. Additionally, a subjective improvement was observed in the signal-to-noise ratio with the microscopic coil. Conclusion: Magnetic resonance dacryocystography with microscopic coils is the appropriate method for evaluating the lacrimal apparatus, providing images with better quality as compared with those acquired with conventional surface coils. (author)

  20. Coiled coil interactions for the targeting of liposomes for nucleic acid delivery.

    Science.gov (United States)

    Oude Blenke, Erik E; van den Dikkenberg, Joep; van Kolck, Bartjan; Kros, Alexander; Mastrobattista, Enrico

    2016-04-28

    Coiled coil interactions are strong protein-protein interactions that are involved in many biological processes, including intracellular trafficking and membrane fusion. A synthetic heterodimeric coiled-coil forming peptide pair, known as E3 (EIAALEK)3 and K3 (KIAALKE)3 was used to functionalize liposomes encapsulating a splice correcting oligonucleotide or siRNA. These peptide-functionalized vesicles are highly stable in solution but start to cluster when vesicles modified with complementary peptides are mixed together, demonstrating that the peptides quickly coil and crosslink the vesicles. When one of the peptides was anchored to the cell membrane using a hydrophobic cholesterol anchor, vesicles functionalized with the complementary peptide could be docked to these cells, whereas non-functionalized cells did not show any vesicle tethering. Although the anchored peptides do not have a downstream signaling pathway, microscopy pictures revealed that after four hours, the majority of the docked vesicles were internalized by endocytosis. Finally, for the first time, it was shown that the coiled coil assembly at the interface between the vesicles and the cell membrane induces active uptake and leads to cytosolic delivery of the nucleic acid cargo. Both the siRNA and the splice correcting oligonucleotide were functionally delivered, resulting respectively in the silencing or recovery of luciferase expression in the appropriate cell lines. These results demonstrate that the docking to the cell by coiled coil interaction can induce active uptake and achieve the successful intracellular delivery of otherwise membrane impermeable nucleic acids in a highly specific manner.

  1. Huge opportunity for solar cooling

    International Nuclear Information System (INIS)

    Rowe, Daniel

    2014-01-01

    which use different components or the same components in an alternate configuration. A number of variants are technically proven and available for commercial and industrial installations. Each variant uses standard 'off the shelf' FIVAC industry components which are available in both Australia and overseas. A typical solar cooling system is also able to supply broader energy needs of a building including space heating and hot water.

  2. COMPASS magnetic field coils and structure systems

    International Nuclear Information System (INIS)

    Crossland, R.T.; Booth, J.A.; Hayward, R.J.; Keogh, P.; Pratt, A.P.

    1987-01-01

    COMPASS is a new experimental toroidal assembly of compact design and with a wide range of physics objectives. It is required to operate either as a Tokamak or as a Reversed Field Pinch with interchangeable circular and dee-section vacuum vessels. The Toroidal field is produced by 16 rectangular coils of 4 turns with tapered conductors on the inside which nest together to form a vault to resist the centering forces. The coils are designed to produce a maximum field on axis of 2.1T which requires a current of 91 kA per turn. Two central solenoids and five pairs of coils symmetrically positioned above and below the machine equator provide the poloidal field. Both coil systems are supported form a mechanical support structure which surrounds the machine. This is primarily designed to resist out-of-plane forces on the TF coils but also acts as the base support for the PF coils and vacuum vessels. An illustration of the COMPASS Load Assembly is given and shows the D-shaped vacuum vessel, the major components and the various field windings

  3. ISX toroidal field coil design and analysis

    International Nuclear Information System (INIS)

    Hussung, R.O.; Lousteau, D.C.; Johnson, N.E.; Weed, R.A.

    1975-01-01

    Structural design and analysis aspects of the toroidal field coils for the Impurity Study Experiment (ISX) tokamak are discussed. The overall mechanical design of ISX is predicated on the ability to remove the upper segment of the toroidal field coils to allow access to the toroidal vacuum vessel. The high current, 120 kA, capability of the new 74 MW power supply, coupled with the modest field requirement of ISX, allows the use of room temperature copper coils. Seventy-two turns, grouped into 18 coils, generate a magnet field of 18 kG at the major radius of 90 cm. Finite element structural analysis codes were utilized to determine the distribution of stresses and deflections around a typical turn. Initial material distribution on a coil was sized using the two-dimensional program FEATS. The resulting coil design was then coupled to the center bucking and out-of-plane restraint systems utilizing the NASTRAN code. The boundary conditions for the analytical models used in the two programs were then iterated, reaching satisfactory agreement as to stress contours and location for the joints

  4. Impact of environmental regulations on control of copper ion concentration in the DIII-D cooling water system

    International Nuclear Information System (INIS)

    Gootgeld, A.M.

    1993-10-01

    Tokamaks and industrial users are faced with the task of maintaining closed-loop, low conductivity, low impurity, cooling water systems. Operating these systems concentrates the impurities in the water requiring subsequent disposal. Environmental regulations are making this increasingly difficult. This paper will discuss the solution to the problem of removing and disposing of copper ions in the DIII-D low conductivity water system. Since the commissioning of the Doublet facility, the quality of the water in the 3000 gpm system that cools the DIII-D vacuum vessel coils, power supplies and auxiliary heating components has been controlled with mixed-bed ion exchangers. Low ion levels, particularly copper, are required to operate this equipment. In early 1992, the company that leases and regenerates DIII-D ion exchangers said they no longer can accept these resin beds for regeneration due to the level of copper ion on the resin. This change in policy, a change that has been adopted throughout their industry, was necessary to assure that the Metropolitan Sewerage System of the City of San Diego stays in compliance with State of California regulations and EPA-mandated national pretreatment standards and regulations. A cost effective solution was implemented which utilizes a reverse osmosis filtration system with the ion exchangers for make-up water. Levels of copper ion disposed to the sewer are in compliance with government standards. These measures have thus far proved effective in maintaining low conductivity and overall good quality cooling water. Specifically, this paper discusses DIII-D deionized cooling water quality requirements and an affective means to meet these requirements in order to be in compliance with government regulations for copper ion disposal. The problems discussed, the alternatives considered and the approach taken would be readily applicable to any deionized cooling water system containing copper where EPA standards and regulations are mandated

  5. Computational fluid dynamics of cerebral aneurysm coiling using high-resolution and high-energy synchrotron X-ray microtomography: comparison with the homogeneous porous medium approach.

    Science.gov (United States)

    Levitt, Michael R; Barbour, Michael C; Rolland du Roscoat, Sabine; Geindreau, Christian; Chivukula, Venkat K; McGah, Patrick M; Nerva, John D; Morton, Ryan P; Kim, Louis J; Aliseda, Alberto

    2017-08-01

    Computational modeling of intracranial aneurysms provides insights into the influence of hemodynamics on aneurysm growth, rupture, and treatment outcome. Standard modeling of coiled aneurysms simplifies the complex geometry of the coil mass into a homogeneous porous medium that fills the aneurysmal sac. We compare hemodynamics of coiled aneurysms modeled from high-resolution imaging with those from the same aneurysms modeled following the standard technique, in an effort to characterize sources of error from the simplified model. Physical models of two unruptured aneurysms were created using three-dimensional printing. The models were treated with coil embolization using the same coils as those used in actual patient treatment and then scanned by synchrotron X-ray microtomography to obtain high-resolution imaging of the coil mass. Computational modeling of each aneurysm was performed using patient-specific boundary conditions. The coils were modeled using the simplified porous medium or by incorporating the X-ray imaged coil surface, and the differences in hemodynamic variables were assessed. X-ray microtomographic imaging of coils and incorporation into computational models were successful for both aneurysms. Porous medium calculations of coiled aneurysm hemodynamics overestimated intra-aneurysmal flow, underestimated oscillatory shear index and viscous dissipation, and over- or underpredicted wall shear stress (WSS) and WSS gradient compared with X-ray-based coiled computational fluid dynamics models. Computational modeling of coiled intracranial aneurysms using the porous medium approach may inaccurately estimate key hemodynamic variables compared with models incorporating high-resolution synchrotron X-ray microtomographic imaging of complex aneurysm coil geometry. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  6. Restaurant food cooling practices.

    Science.gov (United States)

    Brown, Laura Green; Ripley, Danny; Blade, Henry; Reimann, Dave; Everstine, Karen; Nicholas, Dave; Egan, Jessica; Koktavy, Nicole; Quilliam, Daniela N

    2012-12-01

    Improper food cooling practices are a significant cause of foodborne illness, yet little is known about restaurant food cooling practices. This study was conducted to examine food cooling practices in restaurants. Specifically, the study assesses the frequency with which restaurants meet U.S. Food and Drug Administration (FDA) recommendations aimed at reducing pathogen proliferation during food cooling. Members of the Centers for Disease Control and Prevention's Environmental Health Specialists Network collected data on food cooling practices in 420 restaurants. The data collected indicate that many restaurants are not meeting FDA recommendations concerning cooling. Although most restaurant kitchen managers report that they have formal cooling processes (86%) and provide training to food workers on proper cooling (91%), many managers said that they do not have tested and verified cooling processes (39%), do not monitor time or temperature during cooling processes (41%), or do not calibrate thermometers used for monitoring temperatures (15%). Indeed, 86% of managers reported cooling processes that did not incorporate all FDA-recommended components. Additionally, restaurants do not always follow recommendations concerning specific cooling methods, such as refrigerating cooling food at shallow depths, ventilating cooling food, providing open-air space around the tops and sides of cooling food containers, and refraining from stacking cooling food containers on top of each other. Data from this study could be used by food safety programs and the restaurant industry to target training and intervention efforts concerning cooling practices. These efforts should focus on the most frequent poor cooling practices, as identified by this study.

  7. HydroSoft coil versus HydroCoil for endovascular aneurysm occlusion study: A single center experience

    International Nuclear Information System (INIS)

    Guo Xinbin; Fan Yimu; Zhang Jianning

    2011-01-01

    Background and purpose: The HydroCoil Embolic System (HES) was developed to reduce recurrences of aneurysms relative to platinum coils. But the HydroCoil Embolic System was characterized with many limitations. The manufacturer had recognized the challenge and recently a new design of hydrogel-coated coil-HydroSoft has become available in the market as the new generation HydroCoil. We reported our initial experience using HydroSoft coil versus HydroCoil in our center. Methods: 75 aneurysms embolized primarily using HydroSoft Coils from July 2008 to May 2009 were compared with 66 volume- and shape-matched aneurysms treated with HydroCoils from March 2006 to August 2008. Outcome measures included length and number of coils used, contrast volume, and length of hospital stay. During embolization, a stable framework was first established with bare coils, and hydrogel-coated coils were used subsequently to increase the packing density. Follow-up angiographic results 6 months after treatment were evaluated among some of the patients. Results: Successful coil embolization was achieved in all patients. There were no differences in average total coil length used per aneurysm. There were no differences in length of hospital stay and packing density. HydroSoft coils were more suitable using as the finishing or final coil. HydroSoft coil decreased the procedure-related retreated rates, and aneurysm packing was finished with soft, flexible HydroSoft coil and decreased the neck remnant rates. Follow-up angiography in HydroSoft-treated patients at 6 months revealed aneurysm stability without significant residual neck. Conclusions: HydroSoft coil allowed us to deploy coated coils with good packing density. A slight expansion of these coils at the neck can be expected to reduce neck remnant and potentially inhibit recurrence.

  8. Operation of a forced two phase cooling system on a large superconducting magnet

    International Nuclear Information System (INIS)

    Green, M.A.; Burns, W.A.; Eberhard, P.H.; Gibson, G.H.; Pripstein, M.; Ross, R.R.; Smits, R.G.; Taylor, J.D.; Van Slyke, H.

    1980-05-01

    This paper describes the operation of a forced two phase cooling system on a two meter diameter superconducting solenoid. The magnet is a thin high current density superconducting solenoid which is cooled by forced two phase helium in tubes around the coil. The magnet, which is 2.18 meters in diameter and 3.4 meters long, has a cold mass of 1700 kg. The two phase cooling system contains less than 300 liters of liquid helium, most of which is contained in a control dewar. This paper describes the operating characteristics of the LBL two phase forced cooling system during cooldown and warm up. The paper presents experimental data on operations of the magnet using either a helium pump or the refrigerator compressor to circulate two phase helium through the superconducting coil cooling tubes

  9. Versatile fill coils: initial experience as framing coils for oblong aneurysms. A technical case report.

    Science.gov (United States)

    Osanai, Toshiya; Bain, Mark; Hui, Ferdinand K

    2014-01-01

    Coil embolization of oblong aneurysms is difficult because the majority of commercially available coils are manufactured with a helical or spherical tertiary structure. While adopting framing strategies for oblong aneurysms (aspect ratio ≥ 2: 1), traditional coils may be undersized in the long axis but oversized in the short axis, resulting in increased aneurysmal wall stress, risk of re-rupture, and difficulty creating a basket that respects the aneurysmal neck. We review three cases in which versatile filling coils (VFCs) were used as the initial coils for embolization of oblong aneurysms and report coil distribution characteristics and clinical outcomes. Packing density after VFC implantation was assessed using the software AngioSuite-Neuro edition and AngioCalc. a 58-year-old woman experienced a subarachnoid hemorrhage from a ruptured anterior communicating artery aneurysm (7.5 mm × 3.5 mm). A 3-6 mm × 15 cm VFC was selected as the first coil because the flexibility of its wave-loop structure facilitates framing of an irregularly shaped aneurysm. The loop portions of the structures tend to be pressed to the extremes of the aneurysmal sac by the wave component. The VFC was introduced smoothly into the aneurysmal sac without catheter kickback. We were then able to insert detachable filling coils without any adjunctive technique and achieved complete occlusion. Complete occlusion without severe complications was achieved in all three cases in our study. Average packing density after the first coil was 15.63%. VFC coils may have a specific role in framing oblong aneurysms given their complex loop-wave design, allowing spacing of the coils at the dome and neck while keeping sac stress to a minimum.

  10. Structural Correlation of the Neck Coil with the Coiled-coil (CC1)-Forkhead-associated (FHA) Tandem for Active Kinesin-3 KIF13A.

    Science.gov (United States)

    Ren, Jinqi; Huo, Lin; Wang, Wenjuan; Zhang, Yong; Li, Wei; Lou, Jizhong; Xu, Tao; Feng, Wei

    2016-02-12

    Processive kinesin motors often contain a coiled-coil neck that controls the directionality and processivity. However, the neck coil (NC) of kinesin-3 is too short to form a stable coiled-coil dimer. Here, we found that the coiled-coil (CC1)-forkhead-associated (FHA) tandem (that is connected to NC by Pro-390) of kinesin-3 KIF13A assembles as an extended dimer. With the removal of Pro-390, the NC-CC1 tandem of KIF13A unexpectedly forms a continuous coiled-coil dimer that can be well aligned into the CC1-FHA dimer. The reverse introduction of Pro-390 breaks the NC-CC1 coiled-coil dimer but provides the intrinsic flexibility to couple NC with the CC1-FHA tandem. Mutations of either NC, CC1, or the FHA domain all significantly impaired the motor activity. Thus, the three elements within the NC-CC1-FHA tandem of KIF13A are structurally interrelated to form a stable dimer for activating the motor. This work also provides the first direct structural evidence to support the formation of a coiled-coil neck by the short characteristic neck domain of kinesin-3. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Structural Correlation of the Neck Coil with the Coiled-coil (CC1)-Forkhead-associated (FHA) Tandem for Active Kinesin-3 KIF13A*

    Science.gov (United States)

    Ren, Jinqi; Huo, Lin; Wang, Wenjuan; Zhang, Yong; Li, Wei; Lou, Jizhong; Xu, Tao; Feng, Wei

    2016-01-01

    Processive kinesin motors often contain a coiled-coil neck that controls the directionality and processivity. However, the neck coil (NC) of kinesin-3 is too short to form a stable coiled-coil dimer. Here, we found that the coiled-coil (CC1)-forkhead-associated (FHA) tandem (that is connected to NC by Pro-390) of kinesin-3 KIF13A assembles as an extended dimer. With the removal of Pro-390, the NC-CC1 tandem of KIF13A unexpectedly forms a continuous coiled-coil dimer that can be well aligned into the CC1-FHA dimer. The reverse introduction of Pro-390 breaks the NC-CC1 coiled-coil dimer but provides the intrinsic flexibility to couple NC with the CC1-FHA tandem. Mutations of either NC, CC1, or the FHA domain all significantly impaired the motor activity. Thus, the three elements within the NC-CC1-FHA tandem of KIF13A are structurally interrelated to form a stable dimer for activating the motor. This work also provides the first direct structural evidence to support the formation of a coiled-coil neck by the short characteristic neck domain of kinesin-3. PMID:26680000

  12. Magnets for Muon 6D Cooling Channels

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland [Muons, Inc.; Flanagan, Gene [Muons, Inc.

    2014-09-10

    The Helical Cooling Channel (HCC), an innovative technique for six-dimensional (6D) cooling of muon beams using a continuous absorber inside superconducting magnets, has shown considerable promise based on analytic and simulation studies. The implementation of this revolutionary method of muon cooling requires high field superconducting magnets that provide superimposed solenoid, helical dipole, and helical quadrupole fields. Novel magnet design concepts are required to provide HCC magnet systems with the desired fields for 6D muon beam cooling. New designs feature simple coil configurations that produce these complex fields with the required characteristics, where new high field conductor materials are particularly advantageous. The object of the program was to develop designs and construction methods for HCC magnets and design a magnet system for a 6D muon beam cooling channel. If successful the program would develop the magnet technologies needed to create bright muon beams for many applications ranging from scientific accelerators and storage rings to beams to study material properties and new sources of energy. Examples of these applications include energy frontier muon colliders, Higgs and neutrino factories, stopping muon beams for studies of rare fundamental interactions and muon catalyzed fusion, and muon sources for cargo screening for homeland security.

  13. Research on the electromagnetic structure of movable coil electromagnet drive mechanism for reactor control rod

    International Nuclear Information System (INIS)

    Zhang Jige; Yian Huijie; Wu Yuanqiang; Wu Xinxin; Yu Suyuan; He Shuyan

    2007-01-01

    The movable coil electromagnet drive mechanism (MCEDM) is a new drive scheme for the reactor control rod, and it has a simple structure, good security and reliability property, etc. MCEDM with an air cooled structure has been used in the land research reactor. In order to apply MCEDM to the mobile reactor, experimental and theoretical study on the electromagnet with an oil-water cooled structure and a single magnetic flux circuit (called the type A electro-magnet) has been completed. It is proven by the experiment and theory that the oil-water cooled structure is an excellent measure to increase the coil current of MCEDM. Moreover, a type B electromagnet with an oil-water cooled structure and double magnetic flux circuits is designed to further increase the magnetic force of MCEDM. The analysis of finite element method shows that the type B electromagnet could double the saturation current of type A electro-magnet and the magnetic force of type B electromagnet is greater than that of the type A electromagnet. Moreover, it is proven that the dynamic property of type B electromagnet is better than type A electromagnet. (author)

  14. Radiant floor cooling coupled with dehumidification systems in residential buildings: A simulation-based analysis

    International Nuclear Information System (INIS)

    Zarrella, Angelo; De Carli, Michele; Peretti, Clara

    2014-01-01

    Highlights: • The floor radiant cooling in a typical apartment is analyzed. • Dehumidification devices, fan-coil and mechanical ventilation are compared. • The results are analyzed in terms of both thermal comfort and energy consumption. • The energy consumption of the dehumidifiers is higher than that of other systems. • The mechanical ventilation decreases the moisture level better than other systems. - Abstract: The development of radiant cooling has stimulated an interest in new systems based on coupling ventilation with radiant cooling. However, radiant cooling systems may cause condensation to form on an active surface under warm and humid conditions during the cooling season. This phenomenon occurs when surface temperature falls below dew point. To prevent condensation, air humidity needs to be reduced with a dehumidification device or a mechanical ventilation system. There are two main options to achieve this. The first is to use dehumidification devices that reduce humidity, but are not coupled with ventilation, i.e. devices that handle room air and leave air change to infiltrations. The second is to combine a mechanical ventilation system with dehumidifying finned coils. This study analyzes the floor radiant cooling of a typical residential apartment within a multi-storey building in three Italian climate zones by means of a detailed simulation tool. Five systems were compared in terms of both indoor thermal comfort and energy consumption: radiant cooling without dehumidification; radiant cooling with a soft dehumidification device; radiant cooling with a dehumidification device which also supplies sensible cooling; radiant cooling coupled with fan coils; and radiant cooling with a mechanical ventilation system which dehumidifies and cools

  15. Design and Fabrication of Helmholtz Coils to Study the Effects of Pulsed Electromagnetic Fields on the Healing Process in Periodontitis: Preliminary Animal Results

    Directory of Open Access Journals (Sweden)

    Haghnegahdar A

    2014-09-01

    Full Text Available Background: Effects of electromagnetic fields on healing have been investigated for centuries. Substantial data indicate that exposure to electromagnetic field can lead to enhanced healing in both soft and hard tissues. Helmholtz coils are devices that generate pulsed electromagnetic fields (PEMF. Objective: In this work, a pair of Helmholtz coils for enhancing the healing process in periodontitis was designed and fabricated. Method: An identical pair of square Helmholtz coils generated the 50 Hz magnetic field. This device was made up of two parallel coaxial circular coils (100 turns in each loop, wound in series which were separated from each other by a distance equal to the radius of one coil (12.5 cm. The windings of our Helmholtz coil was made of standard 0.95mm wire to provide the maximum possible current. The coil was powered by a function generator. Results: The Helmholtz Coils generated a uniform magnetic field between its coils. The magnetic field strength at the center of the space between two coils was 97.6 μT. Preliminary biological studies performed on rats show that exposure of laboratory animals to pulsed electromagnetic fields enhanced the healing of periodontitis. Conclusion: Exposure to PEMFs can lead to stimulatory physiological effects on cells and tissues such as enhanced healing of periodontitis.

  16. Comparison of surface coil and knee coil for evaluation of the patellar cartilage by MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Steen, M. van den; Maeseneer, M. de E-mail: midema@belgacom.net; Hoste, M.; Vanderdood, K.; Ridder, F. de; Osteaux, M

    2003-07-01

    Purpose: The aim of this work was to compare the knee coil and the surface coil for the visualisation of the patellar cartilage. Materials and methods: In 28 patients (17 women, 11 men) with an average age of 40 years (range 14-76) with knee pain MR was performed. Transverse images were obtained using a fast spin echo proton density weighted sequence on a Philips Gyroscan Intera 1.5 T clinical system. Transverse images were obtained at the level of the patellar cartilage using both the surface and the knee coil. All images were evaluated by consensus of two radiologists. They evaluated a number of quality criteria on a 4-point scale. Criteria for artefacts were also graded on a 4-point scale. Results: For the visualisation of fluid there was no significant difference between the knee coil and the surface coil (P=0.021). For all other criteria regarding image quality and presence of imaging artefacts there was a significant difference between both coils (P<0.001) with the surface coil obtaining the better result. Conclusion: The use of the surface coil in the visualisation of the patellar cartilage can be recommended at knee MR.

  17. Immunogenicity of coiled-coil based drug-free macromolecular therapeutics

    Czech Academy of Sciences Publication Activity Database

    Kverka, Miloslav; Hartley, J.M.; Chu, T.W.; Yang, J.; Heidchen, R.; Kopeček, J.

    2014-01-01

    Roč. 35, č. 2 (2014), s. 5886-5896 ISSN 1616-0177 R&D Projects: GA MŠk(CZ) EE2.3.30.0003 Grant - others:NIH(US) GM095606 Institutional support: RVO:61388971 Keywords : coiled-coil * enantiomers * HPMA copolymer Subject RIV: EC - Immunology

  18. The influence of fusion sequences on the thermal stabilities of coiled-coil proteins

    Czech Academy of Sciences Publication Activity Database

    Xu, C.; Joss, L.; Wang, C.; Pechar, Michal; Kopeček, J.

    2002-01-01

    Roč. 2, č. 8 (2002), s. 395-401 ISSN 1616-5187 R&D Projects: GA AV ČR KSK4055109 Grant - others:GA-(US) CA88047 Keywords : coiled -coil * fusion sequence * oligomers Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.792, year: 2002

  19. Additional coiling of previously coiled cerebral aneurysms : Clinical and angiographic results

    NARCIS (Netherlands)

    Slob, MJ; Sluzewski, M; van Rooij, WJ; Roks, G; Rinkel, GJE

    BACKGROUND AND PURPOSE: Some cerebral aneurysms that have been coiled reopen over time and additional treatment should be considered to reduce the risk of recurrent hemorrhage. Our purpose was to assess procedural complications and angiographic results of additional coiling in patients with

  20. Advanced approaches for the characterization of a de novo designed antiparallel coiled coil peptide

    NARCIS (Netherlands)

    Pagel, K; Seeger, K; Seiwert, B; Villa, Alessandra; Mark, AE; Berger, S; Koksch, B

    2005-01-01

    We report here an advanced approach for the characterization of the folding pattern of a de novo designed antiparallel coiled coil peptide by high-resolution methods. Incorporation of two fluorescence labels at the C- and N-terminus of the peptide chain as well as modi. cation of two hydrophobic

  1. Associative diblock copolymers of poly(ethylene glycol) and coiled-coil peptides

    Czech Academy of Sciences Publication Activity Database

    Pechar, Michal; Kopečková, P.; Joss, L.; Kopeček, J.

    2002-01-01

    Roč. 2, č. 5 (2002), s. 199-206 ISSN 1616-5187 R&D Projects: GA AV ČR KSK4050111 Institutional research plan: CEZ:AV0Z4050913 Keywords : coiled -coil peptides * diblock copolymers * poly(ethylene glycol) Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.792, year: 2002

  2. Structural Stability of the Coiled-Coil Domain of Tumor Susceptibility Gene (TSG)-101.

    Science.gov (United States)

    White, Jordan T; Toptygin, Dmitri; Cohen, Randy; Murphy, Natalie; Hilser, Vincent J

    2017-09-05

    The tumor susceptibility gene-101 coiled coil domain (TSG101cc) is an integral component of the endosomal maturation machinery and cytokinesis, and also interacts with several transcription factors. The TSG101cc has been crystallized as a homotetramer but is known to interact with two of its binding partners as a heterotrimer. To investigate this apparent discrepancy, we examined the solution thermodynamics of the TSG101cc. Here, we use circular dichroism, differential scanning calorimetry, analytical ultracentrifugation, fluorescence, and structural thermodynamic analysis to investigate the structural stability and the unfolding of the TSG101cc. We demonstrate that TSG101cc exists in solution primarily as a tetramer, which unfolds in a two-state manner. Surprisingly, no homodimeric or homotrimeric species were detected. Structural thermodynamic analysis of the homotetrameric structure and comparison with known oligomeric coiled-coils suggests that the TSG101cc homotetramer is comparatively unstable on a per residue basis. Furthermore, the homotrimeric coiled-coil is predicted to be much less stable than the functional heterotrimeric coiled-coil in the endosomal sorting complex required for transport 1 (ESCRT1). These results support a model whereby the tetramer-monomer equilibrium of TSG101 serves as the cellular reservoir of TSG101, which is effectively outcompeted when its binding partners are present and the heteroternary complex can form.

  3. Coiled-Coil Domains of SUN Proteins as Intrinsic Dynamic Regulators.

    Science.gov (United States)

    Nie, Si; Ke, Huimin; Gao, Feng; Ren, Jinqi; Wang, Mingzhu; Huo, Lin; Gong, Weimin; Feng, Wei

    2016-01-05

    SUN proteins are the core components of LINC complexes that span across the nuclear envelope for nuclear positioning and migration. SUN proteins contain at least one predicted coiled-coil domain preceding the SUN domain. Here, we found that the two coiled-coil domains (CC1 and CC2) of SUN2 exhibit distinct oligomeric states. CC2 is a monomer in solution. The structure of the CC2-SUN monomer revealed that CC2 unexpectedly folds as a three-helix bundle that interacts with the SUN domain and locks it in an inactive conformation. In contrast, CC1 is a trimer. The structure of the CC1 trimer demonstrated that CC1 is an imperfect coiled coil for the trimerization and activation of the SUN domain. Modulations of CC1 and CC2 dictate different oligomeric states of CC1-CC2-SUN, which is essential for LINC complex formation. Thus, the two coiled-coil domains of SUN2 act as the intrinsic dynamic regulators for controlling the SUN domain activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. The tripartite motif coiled-coil is an elongated antiparallel hairpin dimer

    Science.gov (United States)

    Sanchez, Jacint G.; Okreglicka, Katarzyna; Chandrasekaran, Viswanathan; Welker, Jordan M.; Sundquist, Wesley I.; Pornillos, Owen

    2014-01-01

    Tripartite motif (TRIM) proteins make up a large family of coiled-coil-containing RING E3 ligases that function in many cellular processes, particularly innate antiviral response pathways. Both dimerization and higher-order assembly are important elements of TRIM protein function, but the atomic details of TRIM tertiary and quaternary structure have not been fully understood. Here, we present crystallographic and biochemical analyses of the TRIM coiled-coil and show that TRIM proteins dimerize by forming interdigitating antiparallel helical hairpins that position the N-terminal catalytic RING domains at opposite ends of the dimer and the C-terminal substrate-binding domains at the center. The dimer core comprises an antiparallel coiled-coil with a distinctive, symmetric pattern of flanking heptad and central hendecad repeats that appear to be conserved across the entire TRIM family. Our studies reveal how the coiled-coil organizes TRIM25 to polyubiquitylate the RIG-I/viral RNA recognition complex and how dimers of the TRIM5α protein are arranged within hexagonal arrays that recognize the HIV-1 capsid lattice and restrict retroviral replication. PMID:24550273

  5. Golgi coiled-coil proteins contain multiple binding sites for Rab family G proteins

    NARCIS (Netherlands)

    Sinka, Rita; Gillingham, Alison K.; Kondylis, Vangelis; Munro, Sean

    2008-01-01

    Vesicles and other carriers destined for the Golgi apparatus must be guided to the correct cisternae. Golgins, long coiled-coil proteins that localize to particular Golgi subdomains via their C termini, are candidate regulators of vesicle sorting. In this study, we report that the GRIP domain

  6. RCCS Experiments and Validation for High Temperature Gas-Cooled Reactor

    International Nuclear Information System (INIS)

    Chang Oh; Cliff Davis; Goon C. Park

    2007-01-01

    A reactor cavity cooling system (RCCS), an air-cooled helical coil RCCS unit immersed in the water pool, was proposed to overcome the disadvantages of the weak cooling ability of air-cooled RCCS and the complex structure of water-cooled RCCS for the high temperature gas-cooled reactor (HTGR). An experimental apparatus was constructed to investigate the various heat transfer phenomena in the water pool type RCCS, such as the natural convection of air inside the cavity, radiation in the cavity, the natural convection of water in the water pool and the forced convection of air in the cooling pipe. The RCCS experimental results were compared with published correlations. The CFX code was validated using data from the air-cooled portion of the RCCS. The RELAP5 code was validated using measured temperatures from the reactor vessel and cavity walls

  7. 14 CFR 33.21 - Engine cooling.

    Science.gov (United States)

    2010-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; General § 33.21 Engine cooling. Engine design and construction must provide the necessary cooling under conditions in which the airplane is expected to operate. ...

  8. PANDA experiment and International Standard Problem for passive cooling systems for afterheat removal; PANDA-Versuch und Internationales Standardproblem zu passiven Kuehlsystemen fuer die Nachwaermeabfuhr

    Energy Technology Data Exchange (ETDEWEB)

    Yadigaroglu, G.; Aksan, N.S. [Paul Scherrer Inst. (PSI), Villigen (Switzerland). Lab. fuer Thermohydraulik

    1999-09-03

    In the context of OECD/NEA, Paul Scherrer Institut (PSI) is working on an International Standard Problem which is to provide information on the efficiency and use of computer program systems for passive afterheat removal systems. The PANDA test facility of PSI was designed for these investigations. A six-phase PANDA experiment provides a basis for pre-calculation and recalculation of selected phases covering a limited number of system-typical operating states and phenomena. The experiment was specified and carried out in the year under report. [Deutsch] Im Rahmen der OECD/NEA fuehrt das Paul Scherrer Institut (PSI) ein Internationales Standardproblem durch, das Aufschluss ueber die Leistungsfaehigkeit und Handhabung von Computer-Programmsystemen geben soll, die im Zusammenhang mit passiven Nachwaerme-Abfuhrsystemen eingesetzt werden. Die Versuchsanlage PANDA am PSI ist speziell auf die Untersuchung derartiger Systeme ausgerichtet. Ein PANDA-Versuch in sechs Phasen liefert den teilnehmenden Organisationen die Basis fuer Voraus- und Nachrechnungen einzelner oder mehrerer Phasen, die jeweils eine begrenzte Anzahl von systemtypischen Betriebszustaenden und Phaenomenen abdecken. Im Berichtsjahr wurde der Versuch spezifiziert und gefahren. (orig.)

  9. The Nup62 Coiled-Coil Motif Provides Plasticity for Triple-Helix Bundle Formation.

    Science.gov (United States)

    Dewangan, Pravin S; Sonawane, Parshuram J; Chouksey, Ankita R; Chauhan, Radha

    2017-06-06

    The central transport channel of the vertebrate nuclear pore complex (NPC) consists of nucleoporins: Nup62, Nup54, and Nup58. The coiled-coil domains in α-helical regions of these nucleoporins are thought to be crucial for several protein-protein interactions in the NPC subcomplexes. In this study, we determined the crystal structure of the coiled-coil domain of rat Nup62 fragment (residues 362-425) to 2.4 Å resolution. The crystal structure shows the conserved coiled-coil domain as a parallel three-helix bundle for the Nup62(362-425) fragment. On the basis of our size exclusion chromatography coupled to multiangle light scattering analysis and glutaraldehyde cross-linking experiments, we conclude that the Nup62(362-425) fragment displays dynamic behavior in solution and can also exist in either homodimeric or homotrimeric states. Our comparative analysis of the rat Nup62(362-425) homotrimeric structure with previously reported heterotrimeric structures [rat Nup62(362-425)·Nup54(346-407) and Xenopus Nup62(358-485)·Nup54(315-450)·Nup58(283-406) complexes] demonstrates the structural basis for parallel triple-helix bundle formation for Nup62 with different partners. Moreover, we show that the coiled-coil domain of Nup62 is sufficient for interaction with the coiled-coil domain of rat Exo70, a protein in an exocyst complex. On the basis of these observations, we suggest the plausible chain replacement mechanism that yields to diverse protein assemblies with Nup62. In summary, the coiled-coil motif present in Nup62 imparts the ability to form a homotrimer and heterotrimers either with Nup54 or with Nup54-Nup58 within the NPCs as well as with Exo70 beyond the NPCs. These complexes of Nup62 suggest the crucial role of the coiled-coil motifs in providing plasticity to various modular assemblies.

  10. Structural analysis (Siemens) of the Euratom coil for the large coil task

    International Nuclear Information System (INIS)

    Maurer, A.

    1981-01-01

    The structural analysis of coil and casing of large superconducting magnets is essential to ensure the safety in the design and is important for the concept of even larger magnet units in future projects. For the Large Coil Task calculations are performed by the finite element computer code NASTRAN to obtain the stress on the various structural parts under thermal and magnetic loads. The mechanical behavior of the coil and casing under normal as well as alternative load conditions is discussed. Plots demonstrate the state of deformation belonging to the single structure parts. The results for the components of normal and shear stresses in the coil as well as for the equivalent stresses in the casing are summarized. The finite element model used is presented. The assumptions relating to the material properties, the force transmitted between coil and casing, the loading conditions, and the boundary conditions are discussed. 2 refs

  11. Coil in coil - components for the high voltage superconducting resistive current limiter CULT 110

    Science.gov (United States)

    Elschner, S.; Stemmle, M.; Breuer, F.; Walter, H.; Frohne, C.; Noe, M.; Bock, J.

    2008-02-01

    The German government (BMBF/VDI) funded project CULT 110 is presently the largest European current limiter project and aims at the development of a one-phase resistive limiter for the voltage level of 110 kV. The contribution presents the actual state of development of the superconducting components. As in the successful predecessor project CURL 10 these are made of melt cast processed BSCCO 2212 bulk material, however monofilar instead of bifilar coils are used. The electrical protection concept is based on a normal conducting coil arranged around a superconducting coil and connected in parallel. Simultaneously this coil serves as an electrical bypass and, under fault conditions, generates a magnetic field for quench homogenisation. Since no continuously connected shunt is needed, a much higher voltage during faults can be applied. The rules for an optimum superconductor and coil design are given and the viability of the whole concept is demonstrated by both, experiment and numerical simulation.

  12. Process fluid cooling system

    International Nuclear Information System (INIS)

    Farquhar, N.G.; Schwab, J.A.

    1977-01-01

    A system of heat exchangers is disclosed for cooling process fluids. The system is particularly applicable to cooling steam generator blowdown fluid in a nuclear plant prior to chemical purification of the fluid in which it minimizes the potential of boiling of the plant cooling water which cools the blowdown fluid

  13. Molecular dynamics studies of PEGylated α-helical coiled coils and their self-assembled micelles.

    Science.gov (United States)

    Woo, Sun Young; Lee, Hwankyu

    2014-07-29

    We performed coarse-grained (CG) molecular dynamics simulations of trimeric α-helical coiled coils grafted with poly(ethylene glycol) (PEG) of different sizes and conjugate positions and the self-assembled micelle of amphiphilic trimers. The CG model for the trimeric coiled coil is verified by comparing the α-helical structure and interhelical distance with those calculated from all-atom simulations. In CG simulations of PEGylated trimers, the end-to-end distances and radii of gyration of PEGs grafted to the sides of peptides become shorter than those of free PEGs in water, which agrees with experiments. This shorter size of the grafted PEGs is also confirmed by calculating the thickness of the PEG layer, which is less than the size of the mushroom. These indicate the adsorption of PEG chains onto coiled coils since hydrophobic residues in the exterior sites of coiled coils tend to be less exposed to water and thus interact with PEGs, leading to the compact conformation of adsorbed PEGs. Simulations of the self-assembly of amphiphilic trimers show that the randomly distributed trimers self-assemble to micelles. The outer radius and hydrodynamic radius of the micelle, which were calculated respectively from radial densities and diffusion coefficients, are ∼7 nm, in agreement with the experimental value of ∼7.5 nm, while the aggregation number of amphiphilic molecules per micelle is lower than the experimentally proposed value. These simulations predict the experimentally measured size of PEGs grafted to the trimeric coiled coils and their self-assembled amphiphilic micelles and suggest that the aggregation number of the micelle may be lower, which needs to be confirmed by experiments.

  14. Automated de novo phasing and model building of coiled-coil proteins.

    Science.gov (United States)

    Rämisch, Sebastian; Lizatović, Robert; André, Ingemar

    2015-03-01

    Models generated by de novo structure prediction can be very useful starting points for molecular replacement for systems where suitable structural homologues cannot be readily identified. Protein-protein complexes and de novo-designed proteins are examples of systems that can be challenging to phase. In this study, the potential of de novo models of protein complexes for use as starting points for molecular replacement is investigated. The approach is demonstrated using homomeric coiled-coil proteins, which are excellent model systems for oligomeric systems. Despite the stereotypical fold of coiled coils, initial phase estimation can be difficult and many structures have to be solved with experimental phasing. A method was developed for automatic structure determination of homomeric coiled coils from X-ray diffraction data. In a benchmark set of 24 coiled coils, ranging from dimers to pentamers with resolutions down to 2.5 Å, 22 systems were automatically solved, 11 of which had previously been solved by experimental phasing. The generated models contained 71-103% of the residues present in the deposited structures, had the correct sequence and had free R values that deviated on average by 0.01 from those of the respective reference structures. The electron-density maps were of sufficient quality that only minor manual editing was necessary to produce final structures. The method, named CCsolve, combines methods for de novo structure prediction, initial phase estimation and automated model building into one pipeline. CCsolve is robust against errors in the initial models and can readily be modified to make use of alternative crystallographic software. The results demonstrate the feasibility of de novo phasing of protein-protein complexes, an approach that could also be employed for other small systems beyond coiled coils.

  15. Calibration of fiber-optic shock pyrometer using high-power coiled tungsten lamp

    Science.gov (United States)

    Fat'yanov, O. V.; Asimow, P. D.

    2015-06-01

    Comparison of all known calibration sources indicates that coiled standards of spectral irradiance, despite their very non-uniform brightness, are currently the best practical choice for accurate shock temperature measurements above 3000 K by optical pyrometry. We review all three documented methods of shock pyrometer calibration to a coiled lamp and show that only one technique, with no fiber-optics employed, is free of major radiometric errors. We report the development of a new, accurate to 5% and precise to 1-1.5% calibration procedure for the modified Caltech 6-channel, 3-ns temporal resolution combined open beam and fiber-coupled instrument. A designated central area of an 0.7x demagnified image of 900 W coiled-coil lamp filament is used, cross-calibrated against a NIST-traceable tungsten ribbon lamp. The results of two slightly different cross-calibrations are reported and the procedure to characterize the difference between the static and dynamic response of NewFocus 1801 amplified photodetectors. The most essential requirements for error-free calibration of a fiber-optic pyrometer using a coiled irradiance standard lamp are discussed. All these conditions are validated in actual radiometric tests and shock temperature experiments on single-crystal NaCl and MgO.

  16. Coil development for W VII-X

    International Nuclear Information System (INIS)

    Kisslinger, J.

    1988-01-01

    Starting from a closed vacuum flux surface near the edge and using the NESCOIL code, current distributions on various toroidal surfaces are obtained. The toroidal surfaces are optimized by varying the coefficients which describe the torus topology, and by restricting the number of coefficients for the potential distribution. Configuration HS4-12 with 4 field periods has 12 coils per field period, and that with 5 periods has 10 or 12 coils per period at an average coil aspect ratio of 5. Aspect ratio of the largest flux surfaces is 10. For Helias configurations with 5 field periods compared to those with 4 field periods, higher beta values are predicted. Keeping the coil aspect ratio constant the configuration with 5 field periods has coils with lower minimum curvature radius and a larger lateral excursion. They also have reduced distance between wall and plasma. To improve the geometrical tightness with 5 field periods an increase of the major radius from 5 to 6.5m and a reduction of Bo from 4 to 3T (which allows an increase of current density from 40 to 50 MA/m 2 ) is proposed

  17. Distal biceps rupture: the coil sign.

    Science.gov (United States)

    Austin, Luke; Pepe, Matt; VanBeek, Corinne; Tjoumakaris, Fotios

    2014-06-01

    Delayed repair of the distal biceps brachii tendon can lead to the formation of scar tissue and coiling of the tendon. Dissection of the scar tissue and unraveling of the tendon may allow for anatomic repair to the radial tuberosity. A 50-year-old man had a distal biceps brachii tendon tear with an intact lacertus fibrosis. Surgery was performed 22 days after injury. On inspection, the distal biceps tendon was coiled, encased in scar tissue, and unable to be reduced to the radial tuberosity. Dissection of the scar tissue and unraveling of the tendon provided additional length, allowing anatomic repair. Postoperatively, the patient regained full range of motion and strength and returned to work without restrictions. After a distal biceps brachii tear in which the lacertus fibrosis remains intact, the coiled tendon may become enveloped in a sheath of scar tissue. Dissection of the "pseudosheath" unveils the native tendon and allows reduction to the radial tuberosity. Cadaveric analysis shows that the pseudosheath may conceal 6 cm of coiled tendon. When the lacertus fibrosis remains intact after distal biceps tendon rupture, the tethered tendon stump may coil, become encased in scar tissue, and resemble the native tendon. Failure to identify the native tendon could result in the loss of 6 cm of tendon. Copyright 2014, SLACK Incorporated.

  18. Extrap with iron-cored coils

    International Nuclear Information System (INIS)

    Lehnert, B.

    1985-05-01

    In Extrap configurations there is a high average beta value with respect to the plasma confinement volume. The externally imposed magnetic field which is required for stabilization therefore comes out to have a rather moderate strength, even under expected reactor conditions. As a consequence, this field can be generated not only by conventional external conductor arrangements, but also by iron-cored coils being operated below the saturation limit. A proposal for such iron-cored coil systems is presented in this paper. As compared to conventional conductors, this has the advantage of localizing the magnetic energy of the externally imposed magnetic field mainly to the discharge vessel and the plasma volume, thereby increasing the engineering beta value substantially. Also the problems of the coil stresses and of irradiation of the coils appear to become simplified, as well as replacement of the coil system. A main limitation of this proposal is due to combination of iron core saturation with the required stabilization effect from an ion Larmor radius of sufficient relative magnitude. This limitaion requires further investigation, especially in the full-scale reactor case. Also the modifications of the field geometry by iron core shaping needs further analysis. (Author)

  19. Prostate cancer: body-array versus endorectal coil MR imaging at 3 T--comparison of image quality, localization, and staging performance.

    NARCIS (Netherlands)

    Heijmink, S.W.T.P.J.; Futterer, J.J.; Hambrock, T.; Takahashi, S.; Scheenen, T.W.J.; Huisman, H.J.; Hulsbergen- van de Kaa, C.A.; Knipscheer, B.C.; Kiemeney, L.A.L.M.; Witjes, J.A.; Barentsz, J.O.

    2007-01-01

    PURPOSE: To prospectively compare image quality and accuracy of prostate cancer localization and staging with body-array coil (BAC) versus endorectal coil (ERC) T2-weighted magnetic resonance (MR) imaging at 3 T, with histopathologic findings as the reference standard. MATERIALS AND METHODS: After

  20. Development and Transient Analysis of a Helical-coil Steam Generator for High Temperature Reactors

    International Nuclear Information System (INIS)

    Hoffer, Nathan V.; Anderson, Nolan A.; Sabharwall, Piyush

    2011-01-01

    A high temperature gas-cooled reactor (HTGR) is under development by the Next Generation Nuclear Plant (NGNP) Project at the Idaho National Laboratory (INL). Its design emphasizes electrical power production which may potentially be coupled with process heat for hydrogen production and other industrial applications. NGNP is considering a helical-coil steam generator for the primary heat transport loop heat exchanger based on its increased heat transfer and compactness when compared to other steam generators. The safety and reliability of the helical-coil steam generator is currently under evaluation as part of the development of NGNP. Transients, such as loss of coolant accidents (LOCA), are of interest in evaluating the safety of steam generators. In this study, a complete steam generator inlet pipe break (double ended pipe break) LOCA was simulated by an exponential loss of primary side pressure. For this analysis, a model of the helical-coil steam generator was developed using RELAP5-3D, an INL inhouse systems analysis code. The steam generator model behaved normally during the transient simulating the complete steam generator inlet pipe break LOCA. Further analysis is required to comprehensively evaluate the safety and reliability of the helical-coil steam generator design in the NGNP setting.

  1. Design of MgB2 Superconducting coils for the Ignitor Experiment*

    Science.gov (United States)

    Grasso, G.; Penco, R.; Berta, S.; Coppi, B.; Giunchi, G.

    2009-11-01

    A feasibility study for the adoption of MgB2 superconducting cables for the largest (about 5 m in diameter) of the poloidal field coils of the Ignitor machine is being carried out. This initiative was prompted by the progress made in the fabrication of MgB2 long cables, and related superconducting magnets of relatively large dimensions. These magnets will be cryocooled at the operating temperature of 10-15 K that is compatible with the He-gas cryogenic cooling system of Ignitor as well as with the projected superconducting current density of the MgB2 material, at the magnetic field values (˜4-5 T) in which these coils are designed to operate. The optimal cable configuration has been identified that can provide an efficient cooling of the MgB2 conductors over times compatible with the machine duty cycles. MgB2 superconductors hold the promise of becoming suitable for high field magnets by appropriate doping of the material and of replacing gradually the normal conducting coils adopted, by necessity, in high field experiments. Therefore, an appropriate R&D program on the development of improved MgB2 material and related superconducting cabling options has been undertaken, involving different institutions.

  2. Fabrication of the KSTAR toroidal field coil structure

    International Nuclear Information System (INIS)

    Choi, C.H.; Sa, J.W.; Park, H.K.; Hong, K.H.; Shin, H.; Kim, H.T.; Bak, J.S.; Lee, G.S.; Kwak, J.H.; Moon, H.G.; Yoon, H.H.; Lee, J.W.; Lee, S.K.; Song, J.Y.; Nam, K.M.; Byun, S.E.; Kim, H.C.; Ha, E.T.; Ahn, H.J.; Kim, D.S.; Lee, J.S.; Park, K.H.; Hong, C.D.

    2005-01-01

    The KSTAR toroidal field (TF) coil structure is under fabrication upon completion of engineering design and prototype construction. The prototype TF coil structure has been fabricated within allowable tolerances. Encasing of the prototype TF coil (TF00) in the prototype structure has been carried out through major processes involving a coil encasing, an enclosing weld, a vacuum pressure impregnation, and an outer surface machining. During the enclosing weld of the TF00 coil structure, we have measured temperatures and stresses on the coil surface. Assembly test had been performed with the TF00 coil structure. We have chosen Type 316LN as material of the TF coil structure. We used the narrow-gap TIG welding method. Doosan Heavy Industries and Construction Company (DHI) will complete the fabrication of the TF coil structure in Feb. 2006. (author)

  3. Improving Coil Designs for the HSX Stellarator with FOCUS

    Science.gov (United States)

    Kruger, Thomas; Zhu, Caoxiang; Bader, Aaron; Singh, Luquant; Anderson, David

    2017-10-01

    We use the FOCUS code to generate improved coil sets for the HSX stellarator. FOCUS produces curves in 3D space to best reproduce a target plasma equilibrium. Unlike similar codes, the curves in FOCUS are not constrained to lie on a user-defined 2D surface. Therefore FOCUS can inherently solve problems such as determining the optimum coil-plasma distance for a given equilibrium. By adjusting the relative weights between a) the match to the plasma boundary, and b) the average coil length. We present the results from FOCUS where we attempt to improve the coil set by moving coils further away to reduce coil ripple, decreasing the number of coils to improve accessibility, and better matching the target plasma surface. We also present results of alternative coil designs with helical and saddle coils. Work supported by the US DOE under Grant DE-FG02-93ER54222 and UW Sorden account 233PRJ65ZM.

  4. Hybrid radiator cooling system

    Science.gov (United States)

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  5. CS model coil experimental log book

    Energy Technology Data Exchange (ETDEWEB)

    Nishijima, Gen; Sugimoto, Makoto; Nunoya, Yoshihiko; Wakabayashi, Hiroshi; Tsuji, Hiroshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2001-02-01

    Charging test of the ITER CS Model Coil which is the world's largest superconducting pulse coil and the CS Insert Coil had started at April 11, 2000 and had completed at August 18, 2000. In the campaign, total shot numbers were 356 and the size of the data file in the DAS (Data Acquisition System) was over 20 GB. This report is a database that consists of the log list and the log sheets of every shot. One can access the database, make a search, and browse results via Internet (http://1ogwww.naka.jaeri.go.jp). The database will be useful to quick search to choose necessary shots. (author)

  6. Acoustic rainbow trapping by coiling up space

    KAUST Repository

    Ni, Xu

    2014-11-13

    We numerically realize the acoustic rainbow trapping effect by tapping an air waveguide with space-coiling metamaterials. Due to the high refractive-index of the space-coiling metamaterials, our device is more compact compared to the reported trapped-rainbow devices. A numerical model utilizing effective parameters is also calculated, whose results are consistent well with the direct numerical simulation of space-coiling structure. Moreover, such device with the capability of dropping different frequency components of a broadband incident temporal acoustic signal into different channels can function as an acoustic wavelength division de-multiplexer. These results may have potential applications in acoustic device design such as an acoustic filter and an artificial cochlea.

  7. Considerations against a force compensated coil

    International Nuclear Information System (INIS)

    Hassenzahl, W.

    1988-08-01

    The cost of structural components in a large superconducting coil may well exceed the coil and cryostat cost. As a result, the idea of constructing a system composed of two different coil types assembled in such a way that the sources balance and reduce the total structural requirement is oft proposed. A suitable geometry has never been found for the fundamental reason that there can be no force compensated solution. In this paper, the general problem is presented and an analysis of the energy stored and stresses produced in the structure are described in a fundamental way. Finally, the relation between structural mass M and stored energy E, M ≥/rho/E/σ/sub w/, that is valid for all magnetic systems is developed, where /rho/ is the density of the structure and σ/sub w/ is the working stress in the structure. 12 refs., 2 figs

  8. Determination of Coil Inductances Cylindrical Iron Nucleus

    Directory of Open Access Journals (Sweden)

    Azeddine Mazouz

    2014-03-01

    Full Text Available The paper describes the investigation and development of a structure and performance characteristics of a coil iron nucleus cylindrical (C.I.N.C. The coil iron nucleus cylindrical is a nonlinear electro radio in which the moving of the nucleus in a sense or in other causes change in inductance and can reach extreme values at the superposition of nucleus and coil centers. The variation of the inductance and the degree of freedom of movement of the nucleus can lead to a device with electromechanical conversion The aim of this paper is the determination and visualization of self inductance and mutual of the (C.I.N.C based on geometric dimensions and the displacement of the nucleus.  

  9. Use of a Hydrogel-Coated Self-Expandable Coil to Salvage a Failed Transcatheter Embolization of a Mesenteric Hemorrhage

    International Nuclear Information System (INIS)

    Bui, James T.; West, Derek L.; Pai, Rajiv; Owens, Charles A.

    2006-01-01

    HydroCoil (MicroVention, Aliso Viejo, CA, USA) is a self-expanding detachable coil developed to improve the endovascular occlusion of intracranial aneurysms. The hydrogel polymer covering the microcoil expands to several times its original diameter to enhance thrombosis of the intended vessel. We made use of this new technology to occlude a mesenteric artery pseudoaneurysm that failed superselective embolization with standard microcoils

  10. A new type of coil structure called pan-shaped coil of wireless charging system based on magnetic resonance

    Science.gov (United States)

    Yue, Z. K.; Liu, Z. Z.; Hou, Y. J.; Zeng, H.; Liang, L. H.; Cui, S.

    2017-11-01

    The problem that misalignment between the transmitting coil and the receiving coil significantly impairs the transmission power and efficiency of the system has been attached more and more attention. In order to improve the uniformity of the magnetic field between the two coils to solve this problem, a new type of coil called pan-shaped coil is proposed. Three-dimension simulation models of the planar-core coil and the pan-shaped coil are established using Ansoft Maxwell software. The coupling coefficient between the transmitting coil and the receiving coil is obtained by simulating the magnetic field with the receiving coil misalignment or not. And the maximum percentage difference strength along the radial direction which is defined as the magnetic field uniformity factor is calculated. According to the simulation results of the two kinds of coil structures, it is found that the new type of coil structure can obviously improve the uniformity of the magnetic field, coupling coefficient and power transmission properties between the transmitting coil and the receiving coil.

  11. Superconducting Coil Winding Machine Control System

    Energy Technology Data Exchange (ETDEWEB)

    Nogiec, J. M. [Fermilab; Kotelnikov, S. [Fermilab; Makulski, A. [Fermilab; Walbridge, D. [Fermilab; Trombly-Freytag, K. [Fermilab

    2016-10-05

    The Spirex coil winding machine is used at Fermilab to build coils for superconducting magnets. Recently this ma-chine was equipped with a new control system, which al-lows operation from both a computer and a portable remote control unit. This control system is distributed between three layers, implemented on a PC, real-time target, and FPGA, providing respectively HMI, operational logic and direct controls. The system controls motion of all mechan-ical components and regulates the cable tension. Safety is ensured by a failsafe, redundant system.

  12. Multiple coil closure of isolated aortopulmonary collateral

    Directory of Open Access Journals (Sweden)

    Padhi Sumanta

    2010-01-01

    Full Text Available A 7-month-old girl was diagnosed to have large aortopulmonary collateral during evaluation for congestive heart failure. There was no other evidence of cardiopulmonary disease. The collateral was successfully closed with multiple coils delivered sequentially. We describe the issues associated during closure of the aortopulmonary collateral in this case. To the best of our knowledge, this is the first reported case of large aortopulmonary collateral presenting with heart failure in an otherwise structurally normal heart that was closed successfully with multiple coils delivered sequentially.

  13. Self-assembling segmented coiled tubing

    Science.gov (United States)

    Raymond, David W.

    2016-09-27

    Self-assembling segmented coiled tubing is a concept that allows the strength of thick-wall rigid pipe, and the flexibility of thin-wall tubing, to be realized in a single design. The primary use is for a drillstring tubular, but it has potential for other applications requiring transmission of mechanical loads (forces and torques) through an initially coiled tubular. The concept uses a spring-loaded spherical `ball-and-socket` type joint to interconnect two or more short, rigid segments of pipe. Use of an optional snap ring allows the joint to be permanently made, in a `self-assembling` manner.

  14. Fine-tuning of protein domain boundary by minimizing potential coiled coil regions

    International Nuclear Information System (INIS)

    Iwaya, Naoko; Goda, Natsuko; Unzai, Satoru; Fujiwara, Kenichiro; Tanaka, Toshiki; Tomii, Kentaro; Tochio, Hidehito; Shirakawa, Masahiro; Hiroaki, Hidekazu

    2007-01-01

    Structural determination of individual protein domains isolated from multidomain proteins is a common approach in the post-genomic era. Novel and thus uncharacterized domains liberated from intact proteins often self-associate due to incorrectly defined domain boundaries. Self-association results in missing signals, poor signal dispersion and a low signal-to-noise ratio in 1 H- 15 N HSQC spectra. We have found that a putative, non-canonical coiled coil region close to a domain boundary can cause transient hydrophobic self-association and monomer-dimer equilibrium in solution. Here we propose a rational method to predict putative coiled coil regions adjacent to the globular core domain using the program COILS. Except for the amino acid sequence, no preexisting knowledge concerning the domain is required. A small number of mutant proteins with a minimized coiled coil region have been rationally designed and tested. The engineered domains exhibit decreased self-association as assessed by 1 H- 15 N HSQC spectra with improved peak dispersion and sharper cross peaks. Two successful examples of isolating novel N-terminal domains from AAA-ATPases are demonstrated. Our method is useful for the experimental determination of domain boundaries suited for structural genomics studies

  15. Fine-tuning of protein domain boundary by minimizing potential coiled coil regions.

    Science.gov (United States)

    Iwaya, Naoko; Goda, Natsuko; Unzai, Satoru; Fujiwara, Kenichiro; Tanaka, Toshiki; Tomii, Kentaro; Tochio, Hidehito; Shirakawa, Masahiro; Hiroaki, Hidekazu

    2007-01-01

    Structural determination of individual protein domains isolated from multidomain proteins is a common approach in the post-genomic era. Novel and thus uncharacterized domains liberated from intact proteins often self-associate due to incorrectly defined domain boundaries. Self-association results in missing signals, poor signal dispersion and a low signal-to-noise ratio in (1)H-(15)N HSQC spectra. We have found that a putative, non-canonical coiled coil region close to a domain boundary can cause transient hydrophobic self-association and monomer-dimer equilibrium in solution. Here we propose a rational method to predict putative coiled coil regions adjacent to the globular core domain using the program COILS. Except for the amino acid sequence, no preexisting knowledge concerning the domain is required. A small number of mutant proteins with a minimized coiled coil region have been rationally designed and tested. The engineered domains exhibit decreased self-association as assessed by (1)H-(15)N HSQC spectra with improved peak dispersion and sharper cross peaks. Two successful examples of isolating novel N-terminal domains from AAA-ATPases are demonstrated. Our method is useful for the experimental determination of domain boundaries suited for structural genomics studies.

  16. Strand Displacement in Coiled-Coil Structures: Controlled Induction and Reversal of Proximity.

    Science.gov (United States)

    Gröger, Katharina; Gavins, Georgina; Seitz, Oliver

    2017-11-06

    Coiled-coil peptides are frequently used to create new function upon the self-assembly of supramolecular complexes. A multitude of coil peptide sequences provides control over the specificity and stability of coiled-coil complexes. However, comparably little attention has been paid to the development of methods that allow the reversal of complex formation under non-denaturing conditions. Herein, we present a reversible two-state switching system. The process involves two peptide molecules for the formation of a size-mismatched coiled-coil duplex and a third, disruptor peptide that targets an overhanging end. A real-time fluorescence assay revealed that the proximity between two chromophores can be switched on and off, repetitively if desired. Showcasing the advantages provided by non-denaturing conditions, the method permitted control over the bivalent interactions of the tSH2 domain of Syk kinase with a phosphopeptide ligand. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Heat treatment control of Bi-2212 coils: I. Unravelling the complex dependence of the critical current density of Bi-2212 wires on heat treatment

    Science.gov (United States)

    Shen, Tengming; Li, Pei; Ye, Liyang

    2018-01-01

    A robust and reliable heat treatment is crucial for developing superconducting magnets from several superconductors especially Bi-2212. An improper heat treatment may significantly reduce the critical current density Jc of a Bi-2212 superconducting coil, even to zero, since the Jc of Bi-2212 wires is sensitive to parameters of its heat treatment (partial melt processing). To provide an essential database for heat treating Bi-2212 coils, the dependence of Jc on heat treatment is studied systematically in 11 industrial Bi-2212 wires, revealing several common traits shared between these wires and outlier behaviors. The dependence of the Jc of Bi-2212 on heat treatment is rather complex, with many processing parameters affecting Jc, including the peak processing temperature Tp, the time at the peak temperature tp, the time in the melt tmelt, the rate at which Bi-2212 melt is initially cooled CR1, the rate at which the solidification of Bi-2212 melt occurs CR2, and the temperature Tq at which the cooling rate switches from CR1 to CR2. The role of these parameters is analyzed and clarified, in the perspective of heat treating a coil. Practical advices on heat treatment design are given. The ability of a Bi-2212 coil to follow the prescribed recipe decreases with increasing coil sizes. The size of a coil that can be properly heat treated is determined.

  18. Modeling a Helical-coil Steam Generator in RELAP5-3D for the Next Generation Nuclear Plant

    Energy Technology Data Exchange (ETDEWEB)

    Nathan V. Hoffer; Piyush Sabharwall; Nolan A. Anderson

    2011-01-01

    Options for the primary heat transport loop heat exchangers for the Next Generation Nuclear Plant are currently being evaluated. A helical-coil steam generator is one heat exchanger design under consideration. Safety is an integral part of the helical-coil steam generator evaluation. Transient analysis plays a key role in evaluation of the steam generators safety. Using RELAP5-3D to model the helical-coil steam generator, a loss of pressure in the primary side of the steam generator is simulated. This report details the development of the steam generator model, the loss of pressure transient, and the response of the steam generator primary and secondary systems to the loss of primary pressure. Back ground on High Temperature Gas-cooled reactors, steam generators, the Next Generation Nuclear Plant is provided to increase the readers understanding of the material presented.

  19. Restaurant Food Cooling Practices†

    Science.gov (United States)

    BROWN, LAURA GREEN; RIPLEY, DANNY; BLADE, HENRY; REIMANN, DAVE; EVERSTINE, KAREN; NICHOLAS, DAVE; EGAN, JESSICA; KOKTAVY, NICOLE; QUILLIAM, DANIELA N.

    2017-01-01

    Improper food cooling practices are a significant cause of foodborne illness, yet little is known about restaurant food cooling practices. This study was conducted to examine food cooling practices in restaurants. Specifically, the study assesses the frequency with which restaurants meet U.S. Food and Drug Administration (FDA) recommendations aimed at reducing pathogen proliferation during food cooling. Members of the Centers for Disease Control and Prevention’s Environmental Health Specialists Network collected data on food cooling practices in 420 restaurants. The data collected indicate that many restaurants are not meeting FDA recommendations concerning cooling. Although most restaurant kitchen managers report that they have formal cooling processes (86%) and provide training to food workers on proper cooling (91%), many managers said that they do not have tested and verified cooling processes (39%), do not monitor time or temperature during cooling processes (41%), or do not calibrate thermometers used for monitoring temperatures (15%). Indeed, 86% of managers reported cooling processes that did not incorporate all FDA-recommended components. Additionally, restaurants do not always follow recommendations concerning specific cooling methods, such as refrigerating cooling food at shallow depths, ventilating cooling food, providing open-air space around the tops and sides of cooling food containers, and refraining from stacking cooling food containers on top of each other. Data from this study could be used by food safety programs and the restaurant industry to target training and intervention efforts concerning cooling practices. These efforts should focus on the most frequent poor cooling practices, as identified by this study. PMID:23212014

  20. Vacuum Studies of a Prototype Composite Coil Dewar for Htsc Transformers

    Science.gov (United States)

    Schwenterly, S. W.; Zhang, Y.; Pleva, E. F.; Rufer, M.

    2010-04-01

    Oak Ridge National Laboratory (ORNL) is collaborating with Waukesha Electric Systems (WES) to develop a high-temperature superconducting (HTSC) utility power transformer with primary and secondary coils cooled by liquid nitrogen. Since the vacuum-insulated cryogenic coil dewar surrounds the magnetic core limb and cannot form a shorted turn, non-conductive materials are required. Two test vessels and a small prototype dewar have been fabricated by Scorpius Space Launch Company with epoxy/fiberglass composites, using their proprietary PRESSURMAXX vessel technology. The effects of pumping time, bakeout temperature, and cryogenic vessel temperature on vacuum outgassing rates have been investigated. Outgassing rates of the individual materials used in vessel construction have also been measured. The results will be scaled up to determine the required pumping capacity for a full-size 25-MVA commercial transformer dewar.

  1. Highlights from the assembly of the helical field coils for the Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Benson, R.D.

    1985-01-01

    The helical field (HF) coils in the Advanced Toroidal Facility (ATF) device consist of a set of 24 identical segments connected to form a continuous pair of helical coils wrapped around a toroidal vacuum vessel. Each segment weighs approximately 1364 kg (3000 lb) and is composed of 14 water-cooled copper plate conductors bolted to a cast stainless steel structural support member with a T-shape cross section (known as the structural tee). The segment components are electrically insulated with Kapton adhesive tape, G-10, Tefzel, and rubber to withstand 2.5 kV. As a final insulator and structural support, the entire segment is vacuum impregnated with epoxy. This paper offers a brief overview of the processes used to assemble the component parts into a completed segment, including identification of items that required special attention. 4 figs

  2. Modular Coils with Low Hydrogen Content Especially for MRI of Dry Solids

    Science.gov (United States)

    Fischer, Elmar; Gröbner, Jens; Göpper, Michael; Eisenbeiss, Anne-Katrin; Flügge, Tabea; Hennig, Jürgen; von Elverfeldt, Dominik; Hövener, Jan-Bernd

    2015-01-01

    Introduction Recent advances have enabled fast magnetic resonance imaging (MRI) of solid materials. This development has opened up new applications for MRI, but, at the same time, uncovered new challenges. Previously, MRI-invisible materials like the housing of MRI detection coils are now readily depicted and either cause artifacts or lead to a decreased image resolution. In this contribution, we present versatile, multi-nuclear single and dual-tune MRI coils that stand out by (1) a low hydrogen content for high-resolution MRI of dry solids without artifacts; (2) a modular approach with exchangeable inductors of variable volumes to optimally enclose the given object; (3) low cost and low manufacturing effort that is associated with the modular approach; (4) accurate sample placement in the coil outside of the bore, and (5) a wide, single- or dual-tune frequency range that covers several nuclei and enables multinuclear MRI without moving the sample. Materials and Methods The inductors of the coils were constructed from self-supporting copper sheets to avoid all plastic materials within or around the resonator. The components that were mounted at a distance from the inductor, including the circuit board, coaxial cable and holder were manufactured from polytetrafluoroethylene. Results and Conclusion Residual hydrogen signal was sufficiently well suppressed to allow 1H-MRI of dry solids with a minimum field of view that was smaller than the sensitive volume of the coil. The SNR was found to be comparable but somewhat lower with respect to commercial, proton-rich quadrature coils, and higher with respect to a linearly-polarized commercial coil. The potential of the setup presented was exemplified by 1H / 23Na high-resolution zero echo time (ZTE) MRI of a model solution and a dried human molar at 9.4 T. A full 3D image dataset of the tooth was obtained, rich in contrast and similar to the resolution of standard cone-beam computed tomography. PMID:26496192

  3. Modular Coils with Low Hydrogen Content Especially for MRI of Dry Solids.

    Science.gov (United States)

    Eichhorn, Timon; Ludwig, Ute; Fischer, Elmar; Gröbner, Jens; Göpper, Michael; Eisenbeiss, Anne-Katrin; Flügge, Tabea; Hennig, Jürgen; von Elverfeldt, Dominik; Hövener, Jan-Bernd

    2015-01-01

    Recent advances have enabled fast magnetic resonance imaging (MRI) of solid materials. This development has opened up new applications for MRI, but, at the same time, uncovered new challenges. Previously, MRI-invisible materials like the housing of MRI detection coils are now readily depicted and either cause artifacts or lead to a decreased image resolution. In this contribution, we present versatile, multi-nuclear single and dual-tune MRI coils that stand out by (1) a low hydrogen content for high-resolution MRI of dry solids without artifacts; (2) a modular approach with exchangeable inductors of variable volumes to optimally enclose the given object; (3) low cost and low manufacturing effort that is associated with the modular approach; (4) accurate sample placement in the coil outside of the bore, and (5) a wide, single- or dual-tune frequency range that covers several nuclei and enables multinuclear MRI without moving the sample. The inductors of the coils were constructed from self-supporting copper sheets to avoid all plastic materials within or around the resonator. The components that were mounted at a distance from the inductor, including the circuit board, coaxial cable and holder were manufactured from polytetrafluoroethylene. Residual hydrogen signal was sufficiently well suppressed to allow 1H-MRI of dry solids with a minimum field of view that was smaller than the sensitive volume of the coil. The SNR was found to be comparable but somewhat lower with respect to commercial, proton-rich quadrature coils, and higher with respect to a linearly-polarized commercial coil. The potential of the setup presented was exemplified by 1H/23Na high-resolution zero echo time (ZTE) MRI of a model solution and a dried human molar at 9.4 T. A full 3D image dataset of the tooth was obtained, rich in contrast and similar to the resolution of standard cone-beam computed tomography.

  4. Modular Coils with Low Hydrogen Content Especially for MRI of Dry Solids.

    Directory of Open Access Journals (Sweden)

    Timon Eichhorn

    Full Text Available Recent advances have enabled fast magnetic resonance imaging (MRI of solid materials. This development has opened up new applications for MRI, but, at the same time, uncovered new challenges. Previously, MRI-invisible materials like the housing of MRI detection coils are now readily depicted and either cause artifacts or lead to a decreased image resolution. In this contribution, we present versatile, multi-nuclear single and dual-tune MRI coils that stand out by (1 a low hydrogen content for high-resolution MRI of dry solids without artifacts; (2 a modular approach with exchangeable inductors of variable volumes to optimally enclose the given object; (3 low cost and low manufacturing effort that is associated with the modular approach; (4 accurate sample placement in the coil outside of the bore, and (5 a wide, single- or dual-tune frequency range that covers several nuclei and enables multinuclear MRI without moving the sample.The inductors of the coils were constructed from self-supporting copper sheets to avoid all plastic materials within or around the resonator. The components that were mounted at a distance from the inductor, including the circuit board, coaxial cable and holder were manufactured from polytetrafluoroethylene.Residual hydrogen signal was sufficiently well suppressed to allow 1H-MRI of dry solids with a minimum field of view that was smaller than the sensitive volume of the coil. The SNR was found to be comparable but somewhat lower with respect to commercial, proton-rich quadrature coils, and higher with respect to a linearly-polarized commercial coil. The potential of the setup presented was exemplified by 1H/23Na high-resolution zero echo time (ZTE MRI of a model solution and a dried human molar at 9.4 T. A full 3D image dataset of the tooth was obtained, rich in contrast and similar to the resolution of standard cone-beam computed tomography.

  5. Preoperational test report, primary ventilation condenser cooling system

    International Nuclear Information System (INIS)

    Clifton, F.T.

    1997-01-01

    This represents the preoperational test report for the Primary Ventilation Condenser Cooling System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system uses a closed chilled water piping loop to provide offgas effluent cooling for tanks AY101, AY102, AZ1O1, AZ102; the offgas is cooled from a nominal 100 F to 40 F. Resulting condensation removes tritiated vapor from the exhaust stack stream. The piping system includes a package outdoor air-cooled water chiller with parallel redundant circulating pumps; the condenser coil is located inside a shielded ventilation equipment cell. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System

  6. Preoperational test report, primary ventilation condenser cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-10-29

    This represents the preoperational test report for the Primary Ventilation Condenser Cooling System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system uses a closed chilled water piping loop to provide offgas effluent cooling for tanks AY101, AY102, AZ1O1, AZ102; the offgas is cooled from a nominal 100 F to 40 F. Resulting condensation removes tritiated vapor from the exhaust stack stream. The piping system includes a package outdoor air-cooled water chiller with parallel redundant circulating pumps; the condenser coil is located inside a shielded ventilation equipment cell. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  7. Treatment of unruptured intracranial aneurysms using internally expanding coils

    Science.gov (United States)

    Suri, M. Fareed K.; Memon, Muhammad Zeeshan; Qureshi, Adnan I.

    2008-01-01

    Background and Purpose The International Subarachnoid Aneurysm Trial (ISAT) showed that patients with intracranial aneurysms treated with coil embolization have better clinical outcomes than those undergoing neurosurgical clipping. However some patients treated endovascularly have recurrence of aneurysms. Low packing density is often cited as a reason for recurrence. Coiling with hydrogel covered coils significantly improves the packing density. We report our initial experience in using a newly introduced design of hydrogel coils. Methods: Three consecutive patients with unruptured aneurysms were treated with hydrogel coated coils. During embolization, a stable framework was first established with bare metal coils, and gel coated coils were used subsequently to increase the packing density. After the procedure, packing density was estimated by calculating the compaction ratio using an online calculator. Results: Successful coil embolization was achieved in all 3 patients. Hydrogel coated coils comprised 11, 63 and 72% of the total coils deployed. One patient had coil herniation that required stent deployment. All patients remained neurologically intact during and after the procedure. Follow-up angiography in 2 patients at 6 months revealed aneurysm stability without any residual neck remnant. Conclusions: The softness of the hydrogel allowed us to deploy coated coils with good packing density. A slight expansion of these coils at the neck can be expected to reduce any neck remnant and potentially inhibit recurrence. PMID:22518218

  8. Physical Modeling of the Polyfrequency Filter-Compensating Device Based on the Capacitor-Coil

    Science.gov (United States)

    Butyrin, P. A.; Gusev, G. G.; Mikheev, D. V.; Shakirzianov, F. N.

    2017-12-01

    The paper presents the results of physical modeling and experimental study of the frequency characteristics of the polyfrequency filter-compensating device (PFCD) based on a capacitor-coil. The amplitude- frequency and phase-frequency characteristics of the physical PFCD model were constructed and its equivalent parameters were identified. The feasibility of a PFCD in the form of a single technical device with high technical and economic characteristics was experimentally proven. In the paper, recommendations for practical applications of the capacitor-coil-based PFCD are made and the advantages of the device over known standard passive filter-compensating devices are evaluated.

  9. Cooling equipments in nuclear reactor containers

    International Nuclear Information System (INIS)

    Miyagawa, Takehisa; Sonoda, Takayuki.

    1986-01-01

    Purpose: To maintain a sound circumstance to stainless steel materials in a reactor container by passing intensely cooling gases to the upper portion in the container where the temperature tends to be higher, while gases with a relatively low cooling degree before cooling are passed from the middle to the lower portion to unify the temperature. Constitution: In a nuclear power facility having ducts contained in a reactor container in which a first opening is disposed to the space inside the pedestal, a second opening is disposed to the space inside the shielding wall and other openings are disposed above the shielding walls respectively, an air intake port communicating from the outer circumference to the inside of the pedestal is disposed to the pedestal, a blower is disposed at the midway of the duct between the first and second openings and a cooling coil is disposed at the midway of the duct between the blower and other openings, whereby the circumstantial integrity to the stainless steels materials can be ensured without supplying the cold air in the container to the space inside the pedestal directly. (Takahashi, M.)

  10. Development and application of artificial neural network models to estimate values of a complex human thermal comfort index associated with urban heat and cool island patterns using air temperature data from a standard meteorological station.

    Science.gov (United States)

    Moustris, Konstantinos; Tsiros, Ioannis X; Tseliou, Areti; Nastos, Panagiotis

    2018-04-11

    The present study deals with the development and application of artificial neural network models (ANNs) to estimate the values of a complex human thermal comfort-discomfort index associated with urban heat and cool island conditions inside various urban clusters using as only inputs air temperature data from a standard meteorological station. The index used in the study is the Physiologically Equivalent Temperature (PET) index which requires as inputs, among others, air temperature, relative humidity, wind speed, and radiation (short- and long-wave components). For the estimation of PET hourly values, ANN models were developed, appropriately trained, and tested. Model results are compared to values calculated by the PET index based on field monitoring data for various urban clusters (street, square, park, courtyard, and gallery) in the city of Athens (Greece) during an extreme hot weather summer period. For the evaluation of the predictive ability of the developed ANN models, several statistical evaluation indices were applied: the mean bias error, the root mean square error, the index of agreement, the coefficient of determination, the true predictive rate, the false alarm rate, and the Success Index. According to the results, it seems that ANNs present a remarkable ability to estimate hourly PET values within various urban clusters using only hourly values of air temperature. This is very important in cases where the human thermal comfort-discomfort conditions have to be analyzed and the only available parameter is air temperature.

  11. Ionization Cooling using Parametric Resonances

    International Nuclear Information System (INIS)

    Johnson, Rolland P.

    2008-01-01

    Ionization Cooling using Parametric Resonances was an SBIR project begun in July 2004 and ended in January 2008 with Muons, Inc., (Dr. Rolland Johnson, PI), and Thomas Jefferson National Accelerator Facility (JLab) (Dr. Yaroslav Derbenev, Subcontract PI). The project was to develop the theory and simulations of Parametric-resonance Ionization Cooling (PIC) so that it could be used to provide the extra transverse cooling needed for muon colliders in order to relax the requirements on the proton driver, reduce the site boundary radiation, and provide a better environment for experiments. During the course of the project, the theoretical understanding of PIC was developed and a final exposition is ready for publication. Workshops were sponsored by Muons, Inc. in May and September of 2007 that were devoted to the PIC technique. One outcome of the workshops was the interesting and somewhat unexpected realization that the beam emittances using the PIC technique can get small enough that space charge forces can be important. A parallel effort to develop our G4beamline simulation program to include space charge effects was initiated to address this problem. A method of compensating for chromatic aberrations by employing synchrotron motion was developed and simulated. A method of compensating for spherical aberrations using beamline symmetry was also developed and simulated. Different optics designs have been developed using the OptiM program in preparation for applying our G4beamline simulation program, which contains all the power of the Geant4 toolkit. However, no PIC channel design that has been developed has had the desired cooling performance when subjected to the complete G4beamline simulation program. This is believed to be the consequence of the difficulties of correcting the aberrations associated with the naturally large beam angles and beam sizes of the PIC method that are exacerbated by the fringe fields of the rather complicated channel designs that have been

  12. Preliminary Report: Controller Prototyping and Validation for Photo-Voltaic Comfort Cooling

    DEFF Research Database (Denmark)

    Agesen, Mads Kronborg; Skou, Arne Joachim; Pedersen, Keld Lotzfeldt

    2016-01-01

    Large office buildings - typically with glass fronts - often suffer from a high cooling demand during summertime. Typically, this requires a large amount of additional electricity for the cooling system. One straightforward alternative is to store cooling energy using electricity generated by sol......, the possibility of providing improved comfort through intelligent supervisory control is studied. The system is comprised of a grid coupled photovoltaic system, a heat pump, an ice bank and a cooling coil to interface the existing ventilation system in the office building.......Large office buildings - typically with glass fronts - often suffer from a high cooling demand during summertime. Typically, this requires a large amount of additional electricity for the cooling system. One straightforward alternative is to store cooling energy using electricity generated by solar...

  13. Rogowski coils for studies of detonator initiation

    Science.gov (United States)

    Tasker, Douglas

    2017-06-01

    The Rogowski coil dates back to 1887 and it has commonly been employed to measure rapid changes of electrical currents without direct contact with the circuits, especially in high energy density applications. Recently, it has been used to measure currents in relatively low energy devices such as semiconductor circuits; here we report its utility in the analysis of detonator initiation. From an electrical perspective, the coil is essentially an air-cored transformer and measures the temporal rate of change of current dI/dt. Following a careful characterization of the circuit, an accurate measurement of this derivative is shown to provide a complete solution of the detonator circuit, including current, voltage, power and energy delivered to the detonator. The dependence of the electrical sensitivity, accuracy and bandwidth on coil design will be discussed and a new printed circuit design will be presented. Interesting features in the initiation of exploding bridgewire detonators have been observed with this coil and the results of various experiments will be discussed.

  14. Large coil test facility instrumentation system design

    International Nuclear Information System (INIS)

    Walstrom, P.L.; Fletcher, W.M.; Goddard, J.S.; Murphy, J.L.

    1979-01-01

    The design of the instrumentation system for the Large Coil Test Facility (LCTF) is described. Sensors are divided into two categories: coil diagnostic sensors, installed in the test coils; and facility sensors, installed in the various systems of the test facility in order to monitor their performance. After signal conditioning, data from the ''fast'' channels are multiplexed, digitized, and stored in four microcomputer systems programmed to be used in a ring buffer mode to record data before and after receipt of a random trigger from the normal zone detection circuitry. ''Slow'' channels are digitized by a scanner and buffered by a microcomputer. Selected data channels are continuously displayed on digital or recorded on strip chart recorders. The microcomputer systems are interfaced to a central minicomputer system for display and archival storage. Facility variables are digitized by a separate scanner system. Certain critical fault variables are compared with set point values, and if they are out of range, cause a programmable logic controller to initiate an emergency coil energy dump. 2 refs

  15. Coiling of ruptured pericallosal artery aneurysms.

    NARCIS (Netherlands)

    Menovsky, T.; Rooij, W.J.J. van; Sluzewski, M.; Wijnalda, D.

    2002-01-01

    OBJECTIVE: To assess the technical feasibility of treating ruptured pericallosal artery aneurysms with detachable coils and to evaluate the anatomic and clinical results. METHODS: Over a period of 27 months, 12 patients with a ruptured pericallosal artery aneurysm were treated with detachable

  16. Voltage distribution within superconducting coils during quench

    International Nuclear Information System (INIS)

    Tominaka, T.; Hara, N.; Kuroda, K.

    1988-01-01

    A computer program which can be applied to the calculation of voltage distribution within superconducting coils during quench has been developed. The calculation is compared with an experiment for a small superconducting solenoid, and the propriety of the calculation is discussed

  17. Ureteral stents: coil strength and durometer.

    Science.gov (United States)

    Hendlin, Kari; Dockendorf, Kelly; Horn, Christina; Pshon, Nicole; Lund, Brynn; Monga, Manoj

    2006-07-01

    To evaluate the coil strength before and after urine exposure and the stiffness of commercially available double-J ureteral stents because both properties may affect stent performance and patient comfort. Twelve commercially available 6F ureteral stents were tested for coil strength before and after 30 days of urine exposure. The proximal end of each stent was inserted through a 2-mm hole in bologna, allowed to recoil, and then pulled using a handheld force gauge. Ten different commercially available ureteral stent models were tested for tensile strength using an MTS MicroBionix Testing System and Testworks II software and a 5 N load cell. The Cook Black Silicone and Cook C-Flex stents had the strongest coil strengths before urine exposure at 0.480 +/- 0.0 lb (P Circon Double J stent and Bard InLay. Ureteral stents can be differentiated according to their coil strength and stiffness. The impact of these properties on stent performance and patient comfort deserve additional evaluation. The significant variability found in stent stiffness among stents from different lot numbers suggests poor quality assurance in biomaterials or stent processing and increases the complexity of cross-stent comparisons.

  18. Superconducting coil design for a tokamak experimental power reactor

    International Nuclear Information System (INIS)

    Turner, L.R.; Wang, S.T.; Smelser, P.

    1977-01-01

    Superconducting toroidal field (TF) and polodial-field (PF) coils have been designed for the proposed Argonne National Laboratory experimental power reactor (EPR). Features of the design include: (1) Peak field of 8 T at 4.2 K or 10 T at 3.0 K. (2) Constant-tension shape for the TF coils, corrected for the finite number (16) of coils. (3) Analysis of errors in coil alignment. (4) Comparison of safety aspects of series-connected and parallel-connected coils. (5) A 60 kA sheet conductor of NbTi with copper stabilizer and stainless steel for support. (6) Superconducting PF coils outside the TF coils. (7) The TF coils shielded from pulsed fields by high-purity aluminum

  19. Structural design of the superconducting toroidal field coils for ITER

    International Nuclear Information System (INIS)

    Wong, F.M.G.; Sborchia, C.; Thome, R.J.; Malkov, A.; Titus, P.H.

    1995-01-01

    Structural design issues and features of the superconducting toroidal field (TF) coils for the International Thermonuclear Experimental Reactor (ITER) will be discussed. Selected analyses of the structural and mechanical behavior of the ITER TF coils will also be presented. (orig.)

  20. Evaluation of mechanical integrity for helical coil hold-down spring of PLUS7TM fuel

    International Nuclear Information System (INIS)

    Choi, Ki Sung; Kim, Yong Hwan; Kwon, Jung Tack; Kim, Kyu Tae

    2004-01-01

    Nuclear fuel assembly is subject to hydraulic forces generated by primary coolant flow during reactor operation. These forces may be sufficient to overcome the fuel assembly weight thereby allowing the fuel assembly to lift off of its support. To provide a positive hold-down margin against the upward coolant flow forces, helical coil springs or leaf springs are installed in the fuel assemblies. An advanced fuel for Korean Standard Nuclear Power Plants (KSNP), PLUS7 fuel has developed to get the thermal margin increase, failure free and high seismic resistance, etc. And the new designed helical coil hold-down spring was introduced into PLUS7 fuel assembly. The purpose of this paper is to evaluate the mechanical integrity for the helical coil hold-down spring of PLUS7 fuel assembly

  1. Cryogenic commissioning, cool down and first magnet operation of Wendelstein 7-X

    Science.gov (United States)

    Nagel, M.; Dhard, C. P.; Bau, H.; Bosch, H.-S.; Meyer, U.; Raatz, S.; Risse, K.; Rummel, T.

    2017-02-01

    The construction of the stellarator fusion experiment Wendelstein 7-X (W7-X) was accomplished in 2014. Commissioning of cryogenic system, first cool down of W7-X cryostat and operation of the magnet system was achieved. First plasma operation was accomplished 10th of December 2015. W7-X consists of a magnet system with 70 superconducting coils inside a cryostat. The cold mass of 456 tons is cooled with a helium plant with an equivalent refrigeration power of 7 kW at 4.5 K. The paper presents the commissioning of the cryogenic system, the cool down of the cryostat and first steady state operation with currents up to 12.8 kA. Helium temperatures, mass flow rates and pressure drops inside W7-X cooling circuits are as expected allowing safe magnet operation. Heat loads on the thermal shield and on the superconducting coils are lower than specified for the cryostat design.

  2. A virtually 1H-free birdcage coil for zero echo time MRI without background signal.

    Science.gov (United States)

    Weiger, Markus; Brunner, David O; Schmid, Thomas; Froidevaux, Romain; Rösler, Manuela B; Gross, Simon; Pruessmann, Klaas P

    2017-07-01

    MRI of tissues with rapid transverse relaxation can be performed efficiently using the zero echo time (ZTE) technique. At high bandwidths leading to large relative initial radiofrequency (RF) dead times, the method becomes increasingly sensitive to artifacts related to signal stemming from outside the field of view, particularly from the RF coils. Therefore, in this work, a birdcage coil was designed that is virtually free of 1H signal. A transmit-receive birdcage RF coil for MRI of joints at 7T was designed by rigorously avoiding materials containing 1H nuclei, by using purely mechanical connections without glue, and by spoiling of unwanted signal by application of ferromagnetic materials. The coil was tested for residual 1H signal using ZTE phantom and in vivo joint imaging. In standard ZTE imaging, no 1H signal was detected above noise level. Only at extreme averaging, residual signal was observed close to conductors associated with 1H-containing molecules at adjacent glass surfaces. Phantom images with dead times up to 3.8 Nyquist dwells were obtained with only negligible background artifacts. Furthermore, high-quality ZTE images of human joints were acquired. A virtually 1H-free birdcage coil is presented, thus enabling in vivo ZTE MRI practically free of background signal, even at high bandwidths. Magn Reson Med 78:399-407, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  3. Coiled-Coil Irregularities and Instabilities in Group A Streptococcus M1 Are Required for Virulence

    Energy Technology Data Exchange (ETDEWEB)

    McNamara, Case; Zinkernagel, Annelies S.; Macheboeuf, Pauline; Cunningham, Madeleine W.; Nizet, Victor; Ghosh, Partho (UO-HSC); (UCSD)

    2008-07-21

    Antigenically variable M proteins are major virulence factors and immunogens of the human pathogen group A Streptococcus (GAS). Here, we report the -3 angstrom resolution structure of a GAS M1 fragment containing the regions responsible for eliciting type-specific, protective immunity and for binding fibrinogen, which promotes M1 proinflammatory and antiphagocytic functions. The structure revealed substantial irregularities and instabilities throughout the coiled coil of the M1 fragment. Similar structural irregularities occur in myosin and tropomyosin, explaining the patterns of cross-reactivity seen in autoimmune sequelae of GAS infection. Sequence idealization of a large segment of the M1 coiled coil enhanced stability but diminished fibrinogen binding, proinflammatory effects, and antibody cross-reactivity, whereas it left protective immunogenicity undiminished. Idealized M proteins appear to have promise as vaccine immunogens.

  4. Muon cooling channels

    CERN Document Server

    Eberhard-K-Kei

    2003-01-01

    A procedure uses the equations that govern ionization cooling, and leads to the most important parameters of a muon cooling channel that achieves assumed performance parameters. First, purely transverse cooling is considered, followed by both transverse and longitudinal cooling in quadrupole and solenoid channels. Similarities and differences in the results are discussed in detail, and a common notation is developed. Procedure and notation are applied to a few published cooling channels. The parameters of the cooling channels are derived step by step, starting from assumed values of the initial, final and equilibrium emittances, both transverse and longitudinal, the length of the cooling channel, and the material properties of the absorber. The results obtained include cooling lengths and partition numbers, amplitude functions and limits on the dispersion at the absorber, length, aperture and spacing of the absorber, parameters of the RF system that achieve the longitudinal amplitude function and bucket area ...

  5. GBNV encoded movement protein (NSm) remodels ER network via C-terminal coiled coil domain

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pratibha; Savithri, H.S., E-mail: bchss@biochem.iisc.ernet.in

    2015-08-15

    Plant viruses exploit the host machinery for targeting the viral genome–movement protein complex to plasmodesmata (PD). The mechanism by which the non-structural protein m (NSm) of Groundnut bud necrosis virus (GBNV) is targeted to PD was investigated using Agrobacterium mediated transient expression of NSm and its fusion proteins in Nicotiana benthamiana. GFP:NSm formed punctuate structures that colocalized with mCherry:plasmodesmata localized protein 1a (PDLP 1a) confirming that GBNV NSm localizes to PD. Unlike in other movement proteins, the C-terminal coiled coil domain of GBNV NSm was shown to be involved in the localization of NSm to PD, as deletion of this domain resulted in the cytoplasmic localization of NSm. Treatment with Brefeldin A demonstrated the role of ER in targeting GFP NSm to PD. Furthermore, mCherry:NSm co-localized with ER–GFP (endoplasmic reticulum targeting peptide (HDEL peptide fused with GFP). Co-expression of NSm with ER–GFP showed that the ER-network was transformed into vesicles indicating that NSm interacts with ER and remodels it. Mutations in the conserved hydrophobic region of NSm (residues 130–138) did not abolish the formation of vesicles. Additionally, the conserved prolines at positions 140 and 142 were found to be essential for targeting the vesicles to the cell membrane. Further, systematic deletion of amino acid residues from N- and C-terminus demonstrated that N-terminal 203 amino acids are dispensable for the vesicle formation. On the other hand, the C-terminal coiled coil domain when expressed alone could also form vesicles. These results suggest that GBNV NSm remodels the ER network by forming vesicles via its interaction through the C-terminal coiled coil domain. Interestingly, NSm interacts with NP in vitro and coexpression of these two proteins in planta resulted in the relocalization of NP to PD and this relocalization was abolished when the N-terminal unfolded region of NSm was deleted. Thus, the NSm

  6. Coiled-coil forming peptides for the induction of silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Božič Abram, Sabina [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); Graduate School of Biomedicine, University of Ljubljana, Ljubljana 1000 (Slovenia); Aupič, Jana [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); Doctoral Programme in Chemical Sciences, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana 1000 (Slovenia); Dražić, Goran [Laboratory for Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); Gradišar, Helena [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); EN-FIST, Centre of Excellence, Trg Osvobodilne fronte 13, Ljubljana 1000 (Slovenia); Jerala, Roman, E-mail: roman.jerala@ki.si [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); EN-FIST, Centre of Excellence, Trg Osvobodilne fronte 13, Ljubljana 1000 (Slovenia)

    2016-04-08

    Biopolymers with defined sequence patterns offer an attractive alternative for the formation of silver nanoparticle (AgNP). A set of coiled-coil dimer forming peptides was tested for their AgNP formation ability. Seventeen of those peptides mediated the formation of AgNPs in aqueous solution at neutral pH, while the formation of a coiled-coil dimer inhibited the nanoparticle generation. A QSAR regression model on the relationship between sequence and function suggests that in this peptide type the patterns KXQQ and KXEE are favorable, whereas Ala residues appear to have an inhibitory effect. UV–VIS spectra of the obtained nanoparticles gave a peak at around 420 nm, typical for AgNPs in the size range around 40 nm, which was confirmed by dynamic light scattering and transmission electron microscopy. Peptide-induced AgNPs exhibited good antibacterial activity, even after a 15 min contact time, while they had low toxicity to human cells at the same concentrations. These results show that our designed peptides generate AgNPs with antibacterial activity at mild conditions and might be used for antibacterial coatings. - Highlights: • 17 of the 30 tested coiled-coil forming peptides induce AgNP formation. • Coiled-coil dimer formation suppresses AgNP generation of individual peptides. • Size of the peptide-induced silver nanoparticles is around 40 nm. • QSAR analysis points to the importance of KXQQ and KXEE motifs for AgNP generation. • Peptide-induced silver nanoparticles exhibit antibacterial activity.

  7. CCBuilder 2.0: Powerful and accessible coiled-coil modeling.

    Science.gov (United States)

    Wood, Christopher W; Woolfson, Derek N

    2018-01-01

    The increased availability of user-friendly and accessible computational tools for biomolecular modeling would expand the reach and application of biomolecular engineering and design. For protein modeling, one key challenge is to reduce the complexities of 3D protein folds to sets of parametric equations that nonetheless capture the salient features of these structures accurately. At present, this is possible for a subset of proteins, namely, repeat proteins. The α-helical coiled coil provides one such example, which represents ≈ 3-5% of all known protein-encoding regions of DNA. Coiled coils are bundles of α helices that can be described by a small set of structural parameters. Here we describe how this parametric description can be implemented in an easy-to-use web application, called CCBuilder 2.0, for modeling and optimizing both α-helical coiled coils and polyproline-based collagen triple helices. This has many applications from providing models to aid molecular replacement for X-ray crystallography, in silico model building and engineering of natural and designed protein assemblies, and through to the creation of completely de novo "dark matter" protein structures. CCBuilder 2.0 is available as a web-based application, the code for which is open-source and can be downloaded freely. http://coiledcoils.chm.bris.ac.uk/ccbuilder2. We have created CCBuilder 2.0, an easy to use web-based application that can model structures for a whole class of proteins, the α-helical coiled coil, which is estimated to account for 3-5% of all proteins in nature. CCBuilder 2.0 will be of use to a large number of protein scientists engaged in fundamental studies, such as protein structure determination, through to more-applied research including designing and engineering novel proteins that have potential applications in biotechnology. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  8. Coiled coil peptides as universal linkers for the attachment of recombinant proteins to polymer therapeutics

    Czech Academy of Sciences Publication Activity Database

    Pechar, Michal; Pola, Robert; Laga, Richard; Ulbrich, Karel; Bednárová, Lucie; Maloň, Petr; Sieglová, Irena; Král, Vlastimil; Fábry, Milan; Vaněk, O.

    2011-01-01

    Roč. 12, č. 10 (2011), s. 3645-3655 ISSN 1525-7797 R&D Projects: GA ČR GA203/08/0543; GA MŠk 1M0505 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z40550506; CEZ:AV0Z50520514 Keywords : coiled coil * polymer therapeutics * drug targeting Subject RIV: CC - Organic Chemistry Impact factor: 5.479, year: 2011

  9. Plasmodium vivax antigen discovery based on alpha-helical coiled coil protein motif.

    Directory of Open Access Journals (Sweden)

    Nora Céspedes

    Full Text Available Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous to Plasmodium falciparum were identified in the P. vivax genome. The peptides identified in silico were chemically synthesized; circular dichroism studies indicated partial or high α-helical content. Antigenicity was evaluated using human sera samples from malaria-endemic areas of Colombia and Papua New Guinea. Eight of these fragments were selected and used to assess immunogenicity in BALB/c mice. ELISA assays indicated strong reactivity of serum samples from individuals residing in malaria-endemic regions and sera of immunized mice, with the α-helical coiled coil structures. In addition, ex vivo production of IFN-γ by murine mononuclear cells confirmed the immunogenicity of these structures and the presence of T-cell epitopes in the peptide sequences. Moreover, sera of mice immunized with four of the eight antigens recognized native proteins on blood-stage P. vivax parasites, and antigenic cross-reactivity with three of the peptides was observed when reacted with both the P. falciparum orthologous fragments and whole parasites. Results here point to the α-helical coiled coil peptides as possible P. vivax malaria vaccine candidates as were observed for P. falciparum. Fragments selected here warrant further study in humans and non-human primate models to assess their protective efficacy as single components or assembled as hybrid linear epitopes.

  10. Data-Driven Prediction and Design of bZIP Coiled-Coil Interactions

    Science.gov (United States)

    Potapov, Vladimir; Kaplan, Jenifer B.; Keating, Amy E.

    2015-01-01

    Selective dimerization of the basic-region leucine-zipper (bZIP) transcription factors presents a vivid example of how a high degree of interaction specificity can be achieved within a family of structurally similar proteins. The coiled-coil motif that mediates homo- or hetero-dimerization of the bZIP proteins has been intensively studied, and a variety of methods have been proposed to predict these interactions from sequence data. In this work, we used a large quantitative set of 4,549 bZIP coiled-coil interactions to develop a predictive model that exploits knowledge of structurally conserved residue-residue interactions in the coiled-coil motif. Our model, which expresses interaction energies as a sum of interpretable residue-pair and triplet terms, achieves a correlation with experimental binding free energies of R = 0.68 and significantly out-performs other scoring functions. To use our model in protein design applications, we devised a strategy in which synthetic peptides are built by assembling 7-residue native-protein heptad modules into new combinations. An integer linear program was used to find the optimal combination of heptads to bind selectively to a target human bZIP coiled coil, but not to target paralogs. Using this approach, we designed peptides to interact with the bZIP domains from human JUN, XBP1, ATF4 and ATF5. Testing more than 132 candidate protein complexes using a fluorescence resonance energy transfer assay confirmed the formation of tight and selective heterodimers between the designed peptides and their targets. This approach can be used to make inhibitors of native proteins, or to develop novel peptides for applications in synthetic biology or nanotechnology. PMID:25695764

  11. Application of Coiled Coil Peptides in Liposomal Anticancer Drug Delivery Using a Zebrafish Xenograft Model.

    Science.gov (United States)

    Yang, Jian; Shimada, Yasuhito; Olsthoorn, René C L; Snaar-Jagalska, B Ewa; Spaink, Herman P; Kros, Alexander

    2016-08-23

    The complementary coiled coil forming peptides E4 [(EIAALEK)4] and K4 [(KIAALKE)4] are known to trigger liposomal membrane fusion when tethered to lipid vesicles in the form of lipopeptides. In this study, we examined whether these coiled coil forming peptides can be used for drug delivery applications. First, we prepared E4 peptide modified liposomes containing the far-red fluorescent dye TO-PRO-3 iodide (E4-Lipo-TP3) and confirmed that E4-liposomes could deliver TP3 into HeLa cells expressing K4 peptide on the membrane (HeLa-K) under cell culture conditions in a selective manner. Next, we prepared doxorubicin-containing E4-liposomes (E4-Lipo-DOX) and confirmed that E4-liposomes could also deliver DOX into HeLa-K cells. Moreover, E4-Lipo-DOX showed enhanced cytotoxicity toward HeLa-K cells compared to free doxorubicin. To prove the suitability of E4/K4 coiled coil formation for in vivo drug delivery, we injected E4-Lipo-TP3 or E4-Lipo-DOX into zebrafish xenografts of HeLa-K. As a result, E4-liposomes delivered TP3 to the implanted HeLa-K cells, and E4-Lipo-DOX could suppress cancer proliferation in the xenograft when compared to nontargeted conditions (i.e., zebrafish xenograft with free DOX injection). These data demonstrate that coiled coil formation enables drug selectivity and efficacy in vivo. It is envisaged that these findings are a step forward toward biorthogonal targeting systems as a tool for clinical drug delivery.

  12. Coiled-coil coactivators play a structural role mediating interactions in hypoxia-inducible factor heterodimerization.

    Science.gov (United States)

    Guo, Yirui; Scheuermann, Thomas H; Partch, Carrie L; Tomchick, Diana R; Gardner, Kevin H

    2015-03-20

    The hypoxia-inducible factor complex (HIF-α·aryl hydrocarbon receptor nuclear translocator (ARNT)) requires association with several transcription coactivators for a successful cellular response to hypoxic stress. In addition to the conventional global transcription coactivator CREB-binding protein/p300 (CBP/p300) that binds to the HIF-α transactivation domain, a new group of transcription coactivators called the coiled-coil coactivators (CCCs) interact directly with the second PER-ARNT-SIM (PAS) domain of ARNT (ARNT PAS-B). These less studied transcription coactivators play essential roles in the HIF-dependent hypoxia response, and CCC misregulation is associated with several forms of cancer. To better understand CCC protein recruitment by the heterodimeric HIF transcription factor, we used x-ray crystallography, NMR spectroscopy, and biochemical methods to investigate the structure of the ARNT PAS-B domain in complex with the C-terminal fragment of a coiled-coil coactivator protein, transforming acidic coiled-coil coactivator 3 (TACC3). We found that the HIF-2α PAS-B domain also directly interacts with TACC3, motivating an NMR data-derived model suggesting a means by which TACC3 could form a ternary complex with HIF-2α PAS-B and ARNT PAS-B via β-sheet/coiled-coil interactions. These findings suggest that TACC3 could be recruited as a bridge to cooperatively mediate between the HIF-2α PAS-B·ARNT PAS-B complex, thereby participating more directly in HIF-dependent gene transcription than previously anticipated. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Transport of one SC coil through the village of Meyrin

    CERN Multimedia

    1956-01-01

    The energizing coils of the Synchro-cyclotron magnet were manufactured in Belgium before travelling to Basel in Switzerland by boat and continuing by road to Geneva. The first coil reached Geneva in December 1955, with the second following in early 1956. The coils were stored in a hangar at the Geneva airport before they were brought to CERN in May 1956.

  14. The umbilical coiling index, a review of the literature

    NARCIS (Netherlands)

    de Laat, Monique W. M.; Franx, Arie; van Alderen, Elise D.; Nikkels, Peter G. J.; Visser, Gerard H. A.

    2005-01-01

    Our aim was to review the literature on umbilical cord coiling. Relevant articles in English published between 1966 and 2003 were retrieved by a Medline search and cross-referencing. The normal umbilical cord coiling index (UCI) is 0.17 (+/- 0.009) spirals completed per cm. Abnormal cord coiling,

  15. The Roach muscle bundle and umbilical cord coiling

    NARCIS (Netherlands)

    de Laat, Monique W. M.; Nikkels, Peter G. J.; Franx, Arie; Visser, Gerard H. A.

    2007-01-01

    To determine if presence of the Roach muscle, a small muscle bundle lying just beside the umbilical artery, contributes to umbilical cord coiling. 251 umbilical cords were examined. The umbilical coiling index (UCI) was calculated as the number of coils divided by the cord length in cm. Cords were

  16. The coil array method for creating a dynamic imaging volume.

    Science.gov (United States)

    Smith, Elliot; Freschi, Fabio; Repetto, Maurizio; Crozier, Stuart

    2017-08-01

    Gradient strength and speed are limited by peripheral nerve stimulation (PNS) thresholds. The coil array method allows the gradient field to be moved across the imaging area. This can help reduce PNS and provide faster imaging for image-guided therapy systems such as the magnetic resonance imaging-guided linear accelerator (MRI-linac). The coil array is designed such that many coils produce magnetic fields, which combine to give the desired gradient profile. The design of the coil array uses two methods: either the singular value decomposition (SVD) of a set of field profiles or the electromagnetic modes of the coil surface. Two whole-body coils and one experimental coil were designed to investigate the method. The field produced by the experimental coil was compared to simulated results. The experimental coil region of uniformity (ROU) was moved along the z axis as shown in simulation. The highest observed field deviation was 16.9% at the edge of the ROU with a shift of 35 mm. The whole-body coils showed a median field deviation across all offsets below 5% with an eight-coil basis when using the SVD design method. Experimental results show the feasibility of a moving imaging region within an MRI with a low number of coils in the array. Magn Reson Med 78:784-793, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  17. Strain and stress of the ASDEX multipole magnetic coils

    International Nuclear Information System (INIS)

    Jandl, O.; Pillsticker, M.

    1978-01-01

    A brief description of the technical concept of the multipole magnetic field coils for the ASDEX tokamak is given. The various loads of the coils are explained in quality. To compute displacement and stress of the coils FEM computer programs are used. The computing models applied to this problem are founded and the results and the conclusions are reported. (orig.) [de

  18. Preferred side-chain constellations at antiparallel coiled-coil interfaces.

    Science.gov (United States)

    Hadley, Erik B; Testa, Oliver D; Woolfson, Derek N; Gellman, Samuel H

    2008-01-15

    Reliable predictive rules that relate protein sequence to structure would facilitate postgenome predictive biology and the engineering and de novo design of peptides and proteins. Through a combination of experiment and analysis of the protein data bank (PDB), we have deciphered and rationalized new rules for helix-helix interfaces of a common protein-folding and association motif, the antiparallel dimeric coiled coil. These interfaces are defined by a specific pattern of interactions among largely hydrophobic side chains often referred to as knobs-into-holes (KIH) packing: a knob from one helix inserts into a hole formed by four residues on the partner. Previous work has focused on lateral interactions within the KIH motif, for example, between an a position on one helix and a d' position on the other in an antiparallel coiled coil. We show that vertical interactions within the KIH motif, such as a'-a-a', are energetically important as well. The experimental and database analyses concur regarding preferred vertical combinations, which can be rationalized as leading to favorable side-chain interactions that we call constellations. The findings presented here highlight an unanticipated level of complexity in coiled-coil interactions, and our analysis of a few specific constellations illustrates a general, multipronged approach to addressing this complexity.

  19. Role of the coiled-coil tip of Escherichia coli DksA in promoter control

    Science.gov (United States)

    Lee, Jeong-Hyun; Lennon, Christopher W.; Ross, Wilma; Gourse, Richard L.

    2012-01-01

    E. coli DksA works in conjunction with the small molecule ppGpp to regulate transcription initiation negatively or positively, depending on the identity of the promoter. DksA is in a class of transcription factors that do not bind directly to DNA like classical repressors or activators but rather bind in the RNA polymerase (RNAP) secondary channel like the transcription elongation factors GreA and GreB in E. coli and TFIIS in eukaryotes. We found that substitution for either of two residues in its coiled-coil tip, D74 or A76, eliminates DksA function without affecting its apparent affinity for RNAP. The properties of DksA-Gre factor chimeras indicated that the coiled-coil tip is responsible for the DksA-specific effects on open complex formation. A conservative substitution at position 74, D74E, resulted in a loss of DksA function in both negative and positive control, and an E44D substitution at the analogous position in GreA resulted in a gain of function in both negative and positive control. That a single methylene group has such an extraordinary effect on these transcription factors highlights the critical nature of the identity of coiled-coil tip interactions with RNAP for open complex formation. PMID:22200485

  20. Coiled-Coil Proteins Facilitated the Functional Expansion of the Centrosome

    Science.gov (United States)

    Kuhn, Michael; Hyman, Anthony A.; Beyer, Andreas

    2014-01-01

    Repurposing existing proteins for new cellular functions is recognized as a main mechanism of evolutionary innovation, but its role in organelle evolution is unclear. Here, we explore the mechanisms that led to the evolution of the centrosome, an ancestral eukaryotic organelle that expanded its functional repertoire through the course of evolution. We developed a refined sequence alignment technique that is more sensitive to coiled coil proteins, which are abundant in the centrosome. For proteins with high coiled-coil content, our algorithm identified 17% more reciprocal best hits than BLAST. Analyzing 108 eukaryotic genomes, we traced the evolutionary history of centrosome proteins. In order to assess how these proteins formed the centrosome and adopted new functions, we computationally emulated evolution by iteratively removing the most recently evolved proteins from the centrosomal protein interaction network. Coiled-coil proteins that first appeared in the animal–fungi ancestor act as scaffolds and recruit ancestral eukaryotic proteins such as kinases and phosphatases to the centrosome. This process created a signaling hub that is crucial for multicellular development. Our results demonstrate how ancient proteins can be co-opted to different cellular localizations, thereby becoming involved in novel functions. PMID:24901223

  1. An accurate online calibration system based on combined clamp-shape coil for high voltage electronic current transformers.

    Science.gov (United States)

    Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi

    2013-07-01

    Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Based on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class.

  2. An accurate online calibration system based on combined clamp-shape coil for high voltage electronic current transformers

    International Nuclear Information System (INIS)

    Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi

    2013-01-01

    Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Based on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class

  3. Modeling the shape of a noncircular toroidal field coil

    International Nuclear Information System (INIS)

    Shah, V.N.; Marshall, N.H.

    1983-01-01

    Operating and transient forces acting on toroidal field coils may cause conductors and insulation to slide or break and may lead to quenching of the coil. Therefore, it is essential that each individual turn of the coil be modeled for detailed analysis of the coil structure. For this, a special purpose computer program is needed. As a first step in developing such a computer program, the authors present a finite element analysis of a turn of noncircular coil subjected to electromagnetic loading. A turn of superconducting coil is represented by a thin ring modeled by curved finite elements. Of the several curved beam elements reported in the literature, the strain element with two nodes, six degrees-of-freedom, and constant radius of curvature converges fastest for thin-deep arches whose geometrical characteristics are similar to those of a turn of toroidal field coil. They present an algorithm to model a noncircular ring using the number of strain elements satisfying the continuity of slopes at their nodes. This paper verifies the finite element model of a coil shape subjected to a toroidal magnetic field by solving three problems: circular and elliptic coils with the same inner and outer radii, a D-shaped coil, and a compound coil consisting of C- and D-shaped segments. The first problem shows that the resultant vertical force in the upper half of the coil is independent of coil shape. The remaining two problems calculate stresses that represent the constant tension in the D-shaped coil and in each segment of the compound coil. The results of the three problems compare well with the analytical results

  4. Computational study for the effects of coil configuration on blood flow characteristics in coil-embolized cerebral aneurysm.

    Science.gov (United States)

    Otani, Tomohiro; Ii, Satoshi; Shigematsu, Tomoyoshi; Fujinaka, Toshiyuki; Hirata, Masayuki; Ozaki, Tomohiko; Wada, Shigeo

    2017-05-01

    Coil embolization of cerebral aneurysms with inhomogeneous coil distribution leads to an incomplete occlusion of the aneurysm. However, the effects of this factor on the blood flow characteristics are still not fully understood. This study investigates the effects of coil configuration on the blood flow characteristics in a coil-embolized aneurysm using computational fluid dynamics (CFD) simulation. The blood flow analysis in the aneurysm with coil embolization was performed using a coil deployment (CD) model, in which the coil configuration was constructed using a physics-based simulation of the CD. In the CFD results, total flow momentum and kinetic energy in the aneurysm gradually decayed with increasing coil packing density (PD), regardless of the coil configuration attributed to deployment conditions. However, the total shear rate in the aneurysm was relatively high and the strength of the local shear flow varied based on the differences in coil configuration, even at adequate PDs used in clinical practice (20-25 %). Because the sufficient shear rate reduction is a well-known factor in the blood clot formation occluding the aneurysm inside, the present study gives useful insight into the effects of coil configuration on the treatment efficiency of coil embolization.

  5. Subunit b-Dimer of the Escherichia coli ATP Synthase Can Form Left-Handed Coiled-Coils

    Science.gov (United States)

    Wise, John G.; Vogel, Pia D.

    2008-01-01

    One remaining challenge to our understanding of the ATP synthase concerns the dimeric coiled-coil stator subunit b of bacterial synthases. The subunit b-dimer has been implicated in important protein interactions that appear necessary for energy conservation and that may be instrumental in energy conservation during rotary catalysis by the synthase. Understanding the stator structure and its interactions with the rest of the enzyme is crucial to the understanding of the overall catalytic mechanism. Controversy exists on whether subunit b adopts a classic left-handed or a presumed right-handed dimeric coiled-coil and whether or not staggered pairing between nonhomologous residues in the homodimer is required for intersubunit packing. In this study we generated molecular models of the Escherichia coli subunit b-dimer that were based on the well-established heptad-repeat packing exhibited by left-handed, dimeric coiled-coils by employing simulated annealing protocols with structural restraints collected from known structures. In addition, we attempted to create hypothetical right-handed coiled-coil models and left- and right-handed models with staggered packing in the coiled-coil domains. Our analyses suggest that the available structural and biochemical evidence for subunit b can be accommodated by classic left-handed, dimeric coiled-coil quaternary structures. PMID:18326648

  6. Structural attributes for the recognition of weak and anomalous regions in coiled-coils of myosins and other motor proteins

    Science.gov (United States)

    2012-01-01

    Background Coiled-coils are found in different proteins like transcription factors, myosin tail domain, tropomyosin, leucine zippers and kinesins. Analysis of various structures containing coiled-coils has revealed the importance of electrostatic and hydrophobic interactions. In such domains, regions of different strength of interactions need to be identified since they could be biologically relevant. Findings We have updated our coiled-coil validation webserver, now called COILCHECK+, where new features were added to efficiently identify the strength of interaction at the interface region and measure the density of charged residues and hydrophobic residues. We have examined charged residues and hydrophobic ladders, using a new algorithm called CHAHO, which is incorporated within COILCHECK + server. CHAHO permits the identification of spatial charged residue patches and the continuity of hydrophobic ladder which stabilizes and destabilizes the coiled-coil structure. Conclusions The availability of such computational tools should be useful to understand the importance of spatial clustering of charged residues and the continuity of hydrophobic residues at the interface region of coiled-coil dimers. COILCHECK + is a structure based tool to validate coiled-coil stability; it can be accessed at http://caps.ncbs.res.in/coilcheckplus. PMID:23009691

  7. CCBuilder: an interactive web-based tool for building, designing and assessing coiled-coil protein assemblies.

    Science.gov (United States)

    Wood, Christopher W; Bruning, Marc; Ibarra, Amaurys Á; Bartlett, Gail J; Thomson, Andrew R; Sessions, Richard B; Brady, R Leo; Woolfson, Derek N

    2014-11-01

    The ability to accurately model protein structures at the atomistic level underpins efforts to understand protein folding, to engineer natural proteins predictably and to design proteins de novo. Homology-based methods are well established and produce impressive results. However, these are limited to structures presented by and resolved for natural proteins. Addressing this problem more widely and deriving truly ab initio models requires mathematical descriptions for protein folds; the means to decorate these with natural, engineered or de novo sequences; and methods to score the resulting models. We present CCBuilder, a web-based application that tackles the problem for a defined but large class of protein structure, the α-helical coiled coils. CCBuilder generates coiled-coil backbones, builds side chains onto these frameworks and provides a range of metrics to measure the quality of the models. Its straightforward graphical user interface provides broad functionality that allows users to build and assess models, in which helix geometry, coiled-coil architecture and topology and protein sequence can be varied rapidly. We demonstrate the utility of CCBuilder by assembling models for 653 coiled-coil structures from the PDB, which cover >96% of the known coiled-coil types, and by generating models for rarer and de novo coiled-coil structures. CCBuilder is freely available, without registration, at http://coiledcoils.chm.bris.ac.uk/app/cc_builder/. © The Author 2014. Published by Oxford University Press.

  8. Cooling water distribution system

    Science.gov (United States)

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  9. Laser cooling of solids

    OpenAIRE

    Nemova, Galina

    2009-01-01

    Parallel to advances in laser cooling of atoms and ions in dilute gas phase, which has progressed immensely, resulting in physics Nobel prizes in 1997 and 2001, major progress has recently been made in laser cooling of solids. I compare the physical nature of the laser cooling of atoms and ions with that of the laser cooling of solids. I point out all advantages of this new and very promising area of laser physics. Laser cooling of solids (optical refrigeration) at the present time can be lar...

  10. Natural air convection for cooling of particle accelerator electromagnets: case studies at CERN

    CERN Document Server

    Moreira, Mariana

    Cooling by natural convection is investigated on two air-cooled corrector magnets at CERN. The heat transfer coefficient (HTC) for each magnet is estimated analytically using established empirical correlations for certain geometries. The HTC is also estimated numerically with three-dimensional steady-state finite element simulations. Air convection around the respective coils as well as heat conduction inside the coils are modelled. Different formulas for the HTC are tested in the post-processing of the simulation results. The HTC for each magnet is then determined experimentally by measuring surface temperatures on the coils through time at constant currents. A method to extract the HTC from these temperature curves is developed, in which the curves are fitted to a function that is derived from a thermodynamical analysis of the heating process. Some plausible ranges for the HTC for each magnet for different currents are obtained. The results of the different estimation methods are compared with the experimen...

  11. Study on influence of three kinds of stress on crack propagation in butt welds of spiral coil waterwall for ultra supercritical boiler

    Science.gov (United States)

    Yan, Zhenrong; Si, Jun

    2017-09-01

    The spiral coil waterwall is the main pressure parts and the core functional components of Ultra Supercritical Boiler. In the process of operation, the spiral coil waterwall is under the combined action of welding residual stress, installation defects stress and working fluid stress, Cracks and crack propagation are easy to occur in butt welds with defects. In view of the early cracks in the butt welds of more T23 water cooled walls, in this paper, the influence of various stresses on the crack propagation in the butt welds of spiral coil waterwall was studied by numerical simulation. Firstly, the welding process of T23 water cooled wall tube was simulated, and the welding residual stress field was obtained. Then,on the basis, put the working medium load on the spiral coil waterwall, the supercoated stress distribution of the welding residual stress and the stress of the working medium is obtained. Considering the bending moment formed by stagger joint which is the most common installation defects, the stress field distribution of butt welds in T23 water-cooled wall tubes was obtained by applying bending moment on the basis of the stress field of the welding residual stress and the working medium stress. The results show that, the welding residual stress is small, the effect of T23 heat treatment after welding to improve the weld quality is not obvious; The working medium load plays a great role in the hoop stress of the water cooled wall tube, and promotes the cracks in the butt welds; The axial stress on the water cooled wall tube produced by the installation defect stress is obvious, the stagger joint, and other installation defects are the main reason of crack propagation of spiral coil waterwall. It is recommended that the control the bending moment resulting from the stagger joint not exceed 756.5 NM.

  12. Cooling tower calculations

    International Nuclear Information System (INIS)

    Simonkova, J.

    1988-01-01

    The problems are summed up of the dynamic calculation of cooling towers with forced and natural air draft. The quantities and relations are given characterizing the simultaneous exchange of momentum, heat and mass in evaporative water cooling by atmospheric air in the packings of cooling towers. The method of solution is clarified in the calculation of evaporation criteria and thermal characteristics of countercurrent and cross current cooling systems. The procedure is demonstrated of the calculation of cooling towers, and correction curves and the effect assessed of the operating mode at constant air number or constant outlet air volume flow on their course in ventilator cooling towers. In cooling towers with the natural air draft the flow unevenness is assessed of water and air relative to its effect on the resulting cooling efficiency of the towers. The calculation is demonstrated of thermal and resistance response curves and cooling curves of hydraulically unevenly loaded towers owing to the water flow rate parameter graded radially by 20% along the cross-section of the packing. Flow rate unevenness of air due to wind impact on the outlet air flow from the tower significantly affects the temperatures of cooled water in natural air draft cooling towers of a design with lower demands on aerodynamics, as early as at wind velocity of 2 m.s -1 as was demonstrated on a concrete example. (author). 11 figs., 10 refs

  13. Umbilical Cord Coiling and Zygosity: Is there a Link?

    Science.gov (United States)

    Coetzee, André Joannou; Castro, Eumenia; Peres, Luiz Cesar

    2015-01-01

    The aim of this study was to analyze abnormalities of umbilical coiling index (UCI) in twin gestation to test whether the coiling is genetically influenced by zygosity. Data retrieved comprised gestational age (GA), chorionicity, fetal gender, and UCI. The mean UCI of hypercoiled cords in monochorionic placentas was 0.55 coils/cm and 0.49 coils/cm in dichorionic placentas with discordant fetal gender (P = 0.2629). In conclusion, no significant statistical difference between UCI in monochorionic and dichorionic twin placentas with discordant fetal gender was identified, suggesting that zygosity does not play a role in umbilical coiling induction.

  14. SSC [Superconducting Super Collider] dipole coil production tooling

    International Nuclear Information System (INIS)

    Carson, J.A.; Barczak, E.J.; Bossert, R.C.; Brandt, J.S.; Smith, G.A.

    1989-03-01

    Superconducting Super Collider dipole coils must be produced to high precision to ensure uniform prestress and even conductor distribution within the collared coil assembly. Tooling is being prepared at Fermilab for the production of high precision 1M and 16.6M SSC dipole coils suitable for mass production. The design and construction methods builds on the Tevatron tooling and production experience. Details of the design and construction methods and measured coil uniformity of 1M coils will be presented. 4 refs., 10 figs

  15. SSC (Superconducting Super Collider) dipole coil production tooling

    Energy Technology Data Exchange (ETDEWEB)

    Carson, J.A.; Barczak, E.J.; Bossert, R.C.; Brandt, J.S.; Smith, G.A.

    1989-03-01

    Superconducting Super Collider dipole coils must be produced to high precision to ensure uniform prestress and even conductor distribution within the collared coil assembly. Tooling is being prepared at Fermilab for the production of high precision 1M and 16.6M SSC dipole coils suitable for mass production. The design and construction methods builds on the Tevatron tooling and production experience. Details of the design and construction methods and measured coil uniformity of 1M coils will be presented. 4 refs., 10 figs.

  16. The IEA large coil task test results in IFSMTF

    International Nuclear Information System (INIS)

    Lubell, M.S.; Clinard, J.A.; Dresner, L.

    1987-01-01

    The Large Coil Task (LCT) is an international collaboration of the United States, EURATOM, Japan, and Switzerland to develop large superconducting magnets for fusion reactors. The testing phase of LCT was completed on September 3, 1987. All six coils exceeded the design goals, both as single coils and in six-coil toroidal tests. In addition, a symmetric torus test was performed in which a maximum field of 9 T was reached in all coils simultaneously. These are by far the largest magnets (either in size, weight, or stored energy) ever to achieve such a field. 6 refs., 6 figs., 3 tabs

  17. Coil compaction after embolization of the superior mesenteric artery pseudoaneurysm

    Energy Technology Data Exchange (ETDEWEB)

    Hama, Yukihiro; Iwasaki, Yoshie; Kaji, Tatsumi; Kusano, Shoichi [Department of Radiology, National Defense Medical College, 3-2 Namiki, Tokorozawa, 3590042 Saitama (Japan); Hatsuse, Kazuo [Department of Surgery I, National Defense Medical College, 3-2 Namiki, Tokorozawa, 3590042 Saitama (Japan)

    2002-07-01

    A 58-year-old man with an abscess of the psoas muscle was returned to our hospital with hematemesis. Two years earlier, he had undergone coil embolization for a superior mesenteric artery (SMA) pseudoaneurysm secondary to pancreatitis. Based on the physical examination, serum amylase level, and abdominal radiographs, a diagnosis of acute exacerbation of pancreatitis and coil compaction of the SMA pseudoaneurysm was made. The patient underwent re-embolization for the coil compaction using interlocking detachable coils. His condition improved gradually, and he was discharged 3 weeks later. To our knowledge, this is the first report of coil compaction of SMA pseudoaneurysm. (orig.)

  18. Random coil chemical shift for intrinsically disordered proteins

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Brander, Søren; Poulsen, Flemming Martin

    2011-01-01

    Secondary chemical shift analysis is the main NMR method for detection of transiently formed secondary structure in intrinsically disordered proteins. The quality of the secondary chemical shifts is dependent on an appropriate choice of random coil chemical shifts. We report random coil chemical....... Temperature has a non-negligible effect on the (13)C random coil chemical shifts, so temperature coefficients are reported for the random coil chemical shifts to allow extrapolation to other temperatures. The pH dependence of the histidine random coil chemical shifts is investigated in a titration series...

  19. Planar quadrature coil design using shielded-loop resonators

    DEFF Research Database (Denmark)

    Stensgaard, A

    1997-01-01

    The shielded-loop resonator is known to have a low capacitive sample loss due to a perfect balancing. In this paper, it is demonstrated that shielded-loop technology also can be used to improve design of planar quadrature coils. Both a dual-loop circuit and especially a dual-mode circuit may...... benefit from use of shielded-loop resonators. Observations in measurements agree with theory for both a dual-loop coil and a dual-mode coil. The coils were designed for use as transmit/receive coil for 1H imaging and spectroscopy at 4.7 T in rat brain....

  20. A Conduction-Cooled Superconducting Magnet System-Design, Fabrication and Thermal Tests

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Holbøll, Joachim; Wang, Qiuliang

    2015-01-01

    A conduction-cooled superconducting magnet system with an operating current of 105.5 A was designed, fabricated and tested for material processing applications. The magnet consists of two coaxial NbTi solenoid coils with an identical vertical height of 300 mm and is installed in a high...

  1. Baculovirus FP25K Localization: Role of the Coiled-Coil Domain.

    Science.gov (United States)

    Garretson, Tyler A; McCoy, Jason C; Cheng, Xiao-Wen

    2016-11-01

    Two types of viruses are produced during the baculovirus life cycle: budded virus (BV) and occlusion-derived virus (ODV). A particular baculovirus protein, FP25K, is involved in the switch from BV to ODV production. Previously, FP25K from the model alphabaculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) was shown to traffic ODV envelope proteins. However, FP25K localization and the domains involved are inconclusive. Here we used a quantitative approach to study FP25K subcellular localization during infection using an AcMNPV bacmid virus that produces a functional AcMNPV FP25K-green fluorescent protein (GFP) fusion protein. During cell infection, FP25K-GFP localized primarily to the cytoplasm, particularly amorphous structures, with a small fraction being localized in the nucleus. To investigate the sequences involved in FP25K localization, an alignment of baculovirus FP25K sequences revealed that the N-terminal putative coiled-coil domain is present in all alphabaculoviruses but absent in betabaculoviruses. Structural prediction indicated a strong relatedness of AcMNPV FP25K to long interspersed element 1 (LINE-1) open reading frame 1 protein (ORF1p), which contains an N-terminal coiled-coil domain responsible for cytoplasmic retention. Point mutations and deletions of this domain lead to a change in AcMNPV FP25K localization from cytoplasmic to nuclear. The coiled-coil and C-terminal deletion viruses increased BV production. Furthermore, a betabaculovirus FP25K protein lacking this N-terminal coiled-coil domain localized predominantly to the nucleus and exhibited increased BV production. These data suggest that the acquisition of this N-terminal coiled-coil domain in FP25K is important for the evolution of alphabaculoviruses. Moreover, with the divergence of preocclusion nuclear membrane breakdown in betabaculoviruses and membrane integrity in alphabaculoviruses, this domain represents an alphabaculovirus adaptation for nuclear trafficking

  2. Liquid nitrogen cooling for the compact ignition tokamak

    International Nuclear Information System (INIS)

    Fleming, R.B.; Martin, G.D.; Lyon, R.E.

    1989-01-01

    The Compact Ignition Tokamak (CIT), which is currently being designed, will have toroidal and poloidal magnetic field coils pre-cooled by liquid nitrogen to a temperature near 80 degree K prior to each plasma pulse. The purpose is to gain the advantage of lower copper resistivity at reduced temperature. To maintain this temperature, the field coils, vacuum vessel, and surrounding structure will be enclosed within a cryostat. During a full-power D-T pulse, nuclear and resistive heating will impart a heat load of 11.0 GJ to the coils, which will raise the temperature of certain areas of the coils to near room temperature. The cryogenic system will supply 60,000 kg (19,500 gallons) of liquid nitrogen to remove this heat within a 60-minute cool-down period between pulses. A primary design consideration is that the nitrogen gas within the cryostat during a pulse will be activated by neutrons, producing nitrogen-13, which has a half-life of 10 minutes. This gas cannot be released into the environment without a sufficient decay period. The coolant nitrogen will therefore be contained within a closed (primary) circuit, and will be condensed in a heat exchanger. Liquid nitrogen from the supply dewars will be evaporated on the other side of the exchanger (the secondary side), and released to the atmosphere via a roof vent. Other operating modes (standby operation and initial cool-down from room temperature) are described in the paper. A safety analysis indicates that the cryogenic system will meet all applicable environmental requirements. 1 ref., 1 fig., 1 tab

  3. Accelerated tests of coil coatings

    Directory of Open Access Journals (Sweden)

    Rosales, B. M.

    2003-12-01

    Full Text Available Accelerated laboratory tests on 12 materials in study in the Subgroup 6 of the PATINA Network (CYTED, are discussed for different exposition periods in salt spray, SO2 and Prohesion chambers. International standards used to evaluate failures caused by the different aggressive agents of these laboratory tests are the same as those applied for outdoor expositions. The results exposed contribute to a better understanding of the mechanisms occurred in the diverse natural environments, being mentioned the main analogies and differences respect to factors affecting natural tests. They also allowed to evidence the advantages and limitations in the application of these tests during several days, as compared to the years required to attain similar failure magnitudes through outdoor tests.

    En este trabajo se discuten los ensayos de laboratorio acelerados, realizados sobre 12 materiales de estudio en el Subgrupo 6 de la Red PATINA (CYTED, a diferentes periodos de exposición en cámaras de niebla salina, SO2 y Prohesion. Se utilizaron las normas internacionales para evaluar los fallos causados por los diferentes agentes agresivos de estos ensayos de laboratorio, las cuales se aplican también para los ensayos de exposición a la intemperie. Los resultados expuestos contribuyen a una mejor comprensión de los mecanismos ocurridos en los diversos ambientes naturales, mencionándose las principales analogías y diferencias respecto de los factores que afectan los ensayos naturales. También permitieron evidenciar las ventajas y limitaciones en la aplicación de estos ensayos durante varios días, en comparación con los años requeridos para alcanzar magnitudes de fallos similares por medio de ensayos a intemperie.

  4. Coil supporting device for a nuclear fusion device

    International Nuclear Information System (INIS)

    Kuno, Kazuo.

    1976-01-01

    Object: To reduce a thermal stress of a coil such as a magnetic limiter to minimize stress acting on a protective tube of the coil. Structure: A coil within a protective tube has its outer periphery surrounded and supported by a heat-resisting material such as ceramic at more than two positions suitably spaced lengthwise of a coil conductor, and heat insulating members are interposed between both sides of the coil and the protective tube so that it may be retained with respect to the width of the coil. Further, a heat-resisting resilient member is inserted in a clearance between an outer circumference and an inner circumference of the coil to allow a radial displacement of the coil. As a result, elongation of the coil due to thermal expansion may be escaped at the aforesaid two supports to reduce thermal stress of the coil and protective tube to support the coil within the protective tube in positively heat-resisting and insulating manner. (Kamimura, M.)

  5. Deep brain transcranial magnetic stimulation using variable "Halo coil" system

    Science.gov (United States)

    Meng, Y.; Hadimani, R. L.; Crowther, L. J.; Xu, Z.; Qu, J.; Jiles, D. C.

    2015-05-01

    Transcranial Magnetic Stimulation has the potential to treat various neurological disorders non-invasively and safely. The "Halo coil" configuration can stimulate deeper regions of the brain with lower surface to deep-brain field ratio compared to other coil configurations. The existing "Halo coil" configuration is fixed and is limited in varying the site of stimulation in the brain. We have developed a new system based on the current "Halo coil" design along with a graphical user interface system that enables the larger coil to rotate along the transverse plane. The new system can also enable vertical movement of larger coil. Thus, this adjustable "Halo coil" configuration can stimulate different regions of the brain by adjusting the position and orientation of the larger coil on the head. We have calculated magnetic and electric fields inside a MRI-derived heterogeneous head model for various positions and orientations of the coil. We have also investigated the mechanical and thermal stability of the adjustable "Halo coil" configuration for various positions and orientations of the coil to ensure safe operation of the system.

  6. Design of a dynamic transcranial magnetic stimulation coil system.

    Science.gov (United States)

    Ge, Sheng; Jiang, Ruoli; Wang, Ruimin; Chen, Ji

    2014-08-01

    To study the brain activity at the whole-head range, transcranial magnetic stimulation (TMS) researchers need to investigate brain activity over the whole head at multiple locations. In the past, this has been accomplished with multiple single TMS coils that achieve quasi whole-head array stimulation. However, these designs have low resolution and are difficult to position and control over the skull. In this study, we propose a new dynamic whole-head TMS mesh coil system. This system was constructed using several sagittal and coronal directional wires. Using both simulation and real experimental data, we show that by varying the current direction and strength of each wire, this new coil system can form both circular coils or figure-eight coils that have the same features as traditional TMS coils. Further, our new system is superior to current coil systems because stimulation parameters such as size, type, location, and timing of stimulation can be dynamically controlled within a single experiment.

  7. New technique for wiring SSC superconducting sextupole corrector coils

    International Nuclear Information System (INIS)

    Leon, B.

    1985-01-01

    There exists in the electronics industry, a technology for the manufacture of printed circuit (PC) boards which is directly transferable into the creation of highly controlled coils, such as the SSC sextupole superconducting corrector coils. This technology, which uses a process of laying down insulated wire in highly controlled patterns has heretofore been confined exclusively to the manufacture of high density printed circuit (PC) boards, possibly due to an ignorance of its utility in the field of precision winding of coils. This ability to fix wires in a well defined location can be used to produce precision wound coils in a very cost-effective manner. These coils may be superior in quality to conventionally made coils. Before describing what can be created with this technology, it is necessary to take a look at this coil winding process, the MULTIWIRE process, and the industry which has utilized this technology

  8. A new technique for wiring SSC superconducting sextupole corrector coils

    International Nuclear Information System (INIS)

    Leon, B.

    1985-01-01

    There exists in the electronics industry, a technology for the manufacture of printed circuit (PC) boards which is directly transferable into the creation of highly controlled coils, such as the SSC sextupole superconducting corrector coils. This technology, which uses a process of laying down insulated wire in highly controlled patterns, has heretofore been confined excusively to the manufacture of high density printed circuit (PC) boards, possibly due to an ignorance of its utility in the field of precision winding of coils. This ability to fix wires in a well defined location can be used to produce precision wound coils in a very cost-effective manner. These coils may be superior in quality to conventionally made coils. Before describing what can be created with this technology, it is necessary to take a look at this coil winding process, the MULTIWIRE process, and the industry which has utilized this technology

  9. Coil irrigation in sugar cane (Saccharum officinarum

    Directory of Open Access Journals (Sweden)

    Jesús Sánchez Gutiérrez

    2016-01-01

    Full Text Available This study was made at the Basic Seed Bank of the Local Sugar Cane Research Station for the Mideastern Cuba, based in Camaguey, on brown carbonate soil, between 2013 and 12014. Coil irrigation was applied to meet the water requirements for the crop, according to the edafoclimatic conditions and the different phenological phases it has. The Savo method was used to determine useful rain water. Adjustment and complementation of the irrigation program was based on indicators that characterize the exploitation scheme. The machine´s working parameters were determined to meet the water needs, and increase crop´s overall yields. The evaluations and results achieved have contributed to new proposals for management and operation of coil irrigation, and they are important to increase its efficiency.

  10. Voice coil based scanning probe microscopy

    Czech Academy of Sciences Publication Activity Database

    Klapetek, P.; Valtr, M.; Duchoň, V.; Sobota, Jaroslav

    2012-01-01

    Roč. 7, č. 6 (2012), 332:1-7 ISSN 1931-7573 R&D Projects: GA MPO FR-TI1/241; GA AV ČR KAN311610701; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : SPM * Voice coil * Interferometry Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.524, year: 2012

  11. Coil irrigation in sugar cane (Saccharum officinarum)

    OpenAIRE

    Jesús Sánchez Gutiérrez; Yoslén Fernández Gálvez; Mayra Martínez Pírez; Camilo Bonet Pérez; Manuel A Hernández Victoria; Arlandy Noy Perera

    2016-01-01

    This study was made at the Basic Seed Bank of the Local Sugar Cane Research Station for the Mideastern Cuba, based in Camaguey, on brown carbonate soil, between 2013 and 12014. Coil irrigation was applied to meet the water requirements for the crop, according to the edafoclimatic conditions and the different phenological phases it has. The Savo method was used to determine useful rain water. Adjustment and complementation of the irrigation program was based on indicators that characterize the...

  12. Acute lung injury following refrigeration coil deicing.

    Science.gov (United States)

    McKeown, Nathanael J; Burton, Brent T

    2012-03-01

    We report a case of a worker who developed ALI requiring mechanical ventilatory support after attempting to melt ice condensate by applying the flame of an oxy-acetylene torch to refrigeration coils charged with a halocarbon refrigerant in a closed environment. A discussion of possible etiologies are discussed, including phosgene, carbonyl fluoride, and nitrogen oxides. Primary prevention with adequate respiratory protection is recommended whenever deicing is performed in a closed space environment.

  13. A new moving-coil microelectrode puller.

    Science.gov (United States)

    Ensor, D R

    1979-03-01

    This paper describes an improved electrode puller for the manufacture of glass microelectrodes or micropipettes. The instrument resembles a conventional horizontal two-stage, solenoid-powered electrode puller but the pull is now developed by a light moving-coil and a fixed permanent magnet, using the principle of the moving-coil loudspeaker. In a conventional puller the force is generated by a solenoid with a massive moving-iron core. In this new puller the moving-coil solenoid responds much more rapidly to changing currents because of its greatly reduced inductance, and a substantial reduction in mass to 25 g, gives more acceleration from a comparable force. The sudden discharge of a capacitor bank through the coil accelerates the glass quickly during the last stage of the pull. This rapid acceleration is of importance in the formation of good electrodes with fine tips. For the prototype, an electronic control unit was constructed which allows the parameters necessary for the manufacture of electrodes to be set and regulated accurately and repeatedly, so that series of electrodes of constant shapes can be made. The length of the electrode shank may be predetermined over a wide range and tip diameters down to 0.08 micron have already been measured. The angle of the taper that supports the tip may be varied from less than 1 to over 6 degrees. The mechanical design of the instrument is comparatively simple, as it has only one moving part, while the relative complexity of the electronic control section should not present any manufacturing difficulties. Although this puller has been used mainly to make single-barrel fine electrodes from borosilicate glass, it is adaptable for other purposes. The extent of the control over the shape of the shank of the electrode renders it particularly suitable for the manufacture of composite, ion-sensitive electrodes.

  14. Single coil bistable, bidirectional micromechanical actuator

    Science.gov (United States)

    Tabat, Ned; Guckel, Henry

    1998-09-15

    Micromechanical actuators capable of bidirectional and bistable operation can be formed on substrates using lithographic processing techniques. Bistable operation of the microactuator is obtained using a single coil and a magnetic core with a gap. A plunger having two magnetic heads is supported for back and forth linear movement with respect to the gap in the magnetic core, and is spring biased to a neutral position in which the two heads are on each side of the gap in the core. The single electrical coil is coupled to the core and is provided with electrical current to attract one of the heads toward the core by reluctance action to drive the plunger to a limit of travel in one direction. The current is then cut off and the plunger returns by spring action toward the gap, whereafter the current is reapplied to the coil to attract the other head of the plunger by reluctance action to drive the plunger to its other limit of travel. This process can be repeated at a time when switching of the actuator is required.

  15. Transcatheter coil embolisation of pulmonary arteriovenous malformations

    International Nuclear Information System (INIS)

    Wingen, M.; Guenther, R.W.

    2001-01-01

    Evaluation of technical success, complications and long-term results of transcatheter coil embolisation in pulmonary arteriovenous malformations (pAVMs). Material and Methods: Transcatheter embolisations of 46 pAVMs in 14 patients were analysed retrospectively, and, 5 years after treatment, the patients were interviewed by telefone concerning persistent symptoms and complications. Main symptoms before embolisation were dyspnoe (86%), hypoxaemia (100%), cerebral ischemia (21%), and hemoptysis (14%); 11 patients (79%) suffered from hereditary hemorrhagic telangiectasia. Results: Embolisation with an average of 3,9 coils (min. 1, max. 19 coils) per pAVM yielded technical success in all cases. Only two minor complications, transitory pleuritis and a small lung infarction were observed. On follow up examination after 5 years either no residual complaints or substantial improvement of dyspnoe were reported; no patient suffered from neurologic or hemorrhagic complications after the embolisation. Conclusion: Transcatheter embolisation is a safe and minimally invasive therapy for pAVMs and has rightfully replaced surgical resection as the therapy of choice. (orig.) [de

  16. Carbon footprint of automotive ignition coil

    Science.gov (United States)

    Chang, Huey-Ling; Chen, Chih-Ming; Sun, Chin-Huang; Lin, Hung-Di

    2015-07-01

    In recent years, environmental issues, such as climate change and global warming due to the excessive development of industry, have attracted increasing attention of citizens worldwide. It is known that CO2 accounts for the largest proportion of greenhouse gases. Therefore, how to reduce CO2 emissions during the life cycle of a product to lessen its impact on environment is an important topic in the industrial society. Furthermore, it is also of great significance to cut down the required energy so as to lower its production costs during the manufacturing process nowadays. This study presents the carbon footprint of an automotive ignition coil and its partial materials are defined to explore their carbon emissions and environmental impact. The model IPCC GWP100a calculates potential global greenhouse effect by converting them into CO2 equivalents. In this way, the overall carbon footprint of an ignition coil can be explored. By using IPCC GWP100a, the results display that the shell has the most carbon emissions. The results can help the industry reduce the carbon emissions of an ignition coil product.

  17. Improvements in or relating to superconductive coils

    International Nuclear Information System (INIS)

    Good, J.A.

    1976-01-01

    The windings of a superconducting coil may operate under great stress and movement of the conductors under this stress results in energy dissipation and since specific heats are small at the low temperatures required to induce superconductivity the resultant temperature rise may be sufficient to cause the superconducting properties of the conductor to be impaired. The usual solution to the problem is to employ substantial quantities of normal material in parallel with the superconductor to minimise such effects, but such coils are cumbersome and expensive to produce and operate, and are not suitable for generating intense field gradients. It has been proposed, as an alternative solution, to construct the winding so rigidly as to prevent the movement occurring. Simple potting in an epoxy resin is too brittle to withstand the large stresses. Another proposal involves glass fibre interleaving between layers of winding and then potting in epoxy resin, but this is not very satisfactory. In the arrangement described the winding is wrapped in at least one yard of glass fibre wound helically and the whole is impregnated with epoxy resin. A method for producing such a coil is described. (U.K.)

  18. Displacement control of an antagonistic-type twisted and coiled polymer actuator

    Science.gov (United States)

    Suzuki, Motoya; Kamamichi, Norihiro

    2018-03-01

    A novel artificial muscle actuator referred to as a twisted and coiled polymer actuator can be easily fabricated by commercially available nylon fibers. It can be thermally activated and has remarkable properties such as large deformation and flexibility. The actuator uses conductive nylon fibers and can be activated by Joule heating and is easily controlled electrically. However, asymmetric response characteristics due to a speed difference in heating-cooling are a problem. In the case of actuation in air, the cooling speed depends on the external temperature, and is slower than the heating speed. To solve these problems, we apply an antagonistic structure. The validity of the applied method is investigated through numerical simulations and experiments. The response characteristics of the PID feedback control and the 2-DOF control of the displacement are investigated.

  19. Design and testing of a coil-unit barrel for helical coil electromagnetic launcher

    Science.gov (United States)

    Yang, Dong; Liu, Zhenxiang; Shu, Ting; Yang, Lijia; Ouyang, Jianming

    2018-01-01

    A coil-unit barrel for a helical coil electromagnetic launcher is described. It provides better features of high structural strength and flexible adjustability. It is convenient to replace the damaged coil units and easy to adjust the number of turns in the stator coils due to the modular design. In our experiments, the highest velocity measured for a 4.5-kg projectile is 47.3 m/s and the mechanical reinforcement of the launcher could bear 35 kA peak current. The relationship between the energy conversion efficiency and the inductance gradient of the launcher is also studied. In the region of low inductance gradient, the efficiency is positively correlated with the inductance gradient. However, in the region of high inductance gradient, the inter-turn arc erosion becomes a major problem of limiting the efficiency and velocity of the launcher. This modular barrel allows further studies in the inter-turn arc and the variable inductance gradient helical coil launcher.

  20. Radiative cooling for concentrating photovoltaic systems

    Science.gov (United States)

    Sun, Yubo; Zhou, Zhiguang; Jin, Xin; Sun, Xingshu; Alam, Muhammad Ashraful; Bermel, Peter

    2017-09-01

    Radiative cooling, a unique and uncommon passive cooling method for devices operating outdoors, has recently been demonstrated to be effective for photovoltaic thermal management. In this work, we investigate the effect of radiative cooling as a complement to existing passive cooling methods like convective cooling in a related system with much higher heat loads: a high-concentration photovoltaic (HCPV) system. A feasible radiative cooler design addressing the thermal management challenges here is proposed. It consists of low-iron soda-lime glass with a porous layer on top as an antireflection coating and a diamond layer as heat spreader. It is found that the proposed structure has strong mid-IR emittance as well as high solar transmission, allowing radiative cooling under direct sunlight and low loss in the concentrated solar irradiance. A systematic simulation with realistic considerations is then performed. Compared with a conventional copper cooler, the lowest temperature reached by the proposed radiative cooler is 14 K lower. Furthermore, less area of the proposed cooler is needed to reach a standard target temperature (333.15 K) for steady-state operation under high concentrations for the crystalline silicon PV module. In order to compare the coolers quantitatively, a figure of merit - cooling power per weight - is introduced. At the target temperature, the proposed cooler is determined to have a cooling power per weight of 75 W/kg, around 3.7 times higher than that of the conventional copper cooler.