WorldWideScience

Sample records for standard complementary metal-oxide-semiconductor

  1. Single-photon imaging in complementary metal oxide semiconductor processes

    NARCIS (Netherlands)

    Charbon, E.

    2014-01-01

    This paper describes the basics of single-photon counting in complementary metal oxide semiconductors, through single-photon avalanche diodes (SPADs), and the making of miniaturized pixels with photon-counting capability based on SPADs. Some applications, which may take advantage of SPAD image

  2. Single-photon imaging in complementary metal oxide semiconductor processes

    Science.gov (United States)

    Charbon, E.

    2014-01-01

    This paper describes the basics of single-photon counting in complementary metal oxide semiconductors, through single-photon avalanche diodes (SPADs), and the making of miniaturized pixels with photon-counting capability based on SPADs. Some applications, which may take advantage of SPAD image sensors, are outlined, such as fluorescence-based microscopy, three-dimensional time-of-flight imaging and biomedical imaging, to name just a few. The paper focuses on architectures that are best suited to those applications and the trade-offs they generate. In this context, architectures are described that efficiently collect the output of single pixels when designed in large arrays. Off-chip readout circuit requirements are described for a variety of applications in physics, medicine and the life sciences. Owing to the dynamic nature of SPADs, designs featuring a large number of SPADs require careful analysis of the target application for an optimal use of silicon real estate and of limited readout bandwidth. The paper also describes the main trade-offs involved in architecting such chips and the solutions adopted with focus on scalability and miniaturization. PMID:24567470

  3. Energy Harvesting Thermoelectric Generators Manufactured Using the Complementary Metal Oxide Semiconductor Process

    Directory of Open Access Journals (Sweden)

    Wen-Jung Tsai

    2013-02-01

    Full Text Available This paper presents the fabrication and characterization of energy harvesting thermoelectric micro generators using the commercial complementary metal oxide semiconductor (CMOS process. The micro generator consists of 33 thermocouples in series. Thermocouple materials are p-type and n-type polysilicon since they have a large Seebeck coefficient difference. The output power of the micro generator depends on the temperature difference in the hot and cold parts of the thermocouples. In order to increase this temperature difference, the hot part of the thermocouples is suspended to reduce heat-sinking. The micro generator needs a post-CMOS process to release the suspended structures of hot part, which the post-process includes an anisotropic dry etching to etch the sacrificial oxide layer and an isotropic dry etching to remove the silicon substrate. Experiments show that the output power of the micro generator is 9.4 mW at a temperature difference of 15 K.

  4. Ultrasensitive mass sensor fully integrated with complementary metal-oxide-semiconductor circuitry

    DEFF Research Database (Denmark)

    Forsén, Esko Sebastian; Abadal, G.; Ghatnekar-Nilsson, S.

    2005-01-01

    Nanomechanical resonators have been monolithically integrated on preprocessed complementary metal-oxide-semiconductor (CMOS) chips. Fabricated resonator systems have been designed to have resonance frequencies up to 1.5 MHz. The systems have been characterized in ambient air and vacuum conditions...... and display ultrasensitive mass detection in air. A mass sensitivity of 4 ag/Hz has been determined in air by placing a single glycerine drop, having a measured weight of 57 fg, at the apex of a cantilever and subsequently measuring a frequency shift of 14.8 kHz. CMOS integration enables electrostatic...... excitation, capacitive detection, and amplification of the resonance signal directly on the chip. (c) 2005 American Institute of Physics....

  5. Dimensional optimization of nanowire--complementary metal oxide--semiconductor inverter.

    Science.gov (United States)

    Hashim, Yasir; Sidek, Othman

    2013-01-01

    This study is the first to demonstrate dimensional optimization of nanowire-complementary metal-oxide-semiconductor inverter. Noise margins and inflection voltage of transfer characteristics are used as limiting factors in this optimization. Results indicate that optimization depends on both dimensions ratio and digital voltage level (Vdd). Diameter optimization reveals that when Vdd increases, the optimized value of (Dp/Dn) decreases. Channel length optimization results show that when Vdd increases, the optimized value of Ln decreases and that of (Lp/Ln) increases. Dimension ratio optimization reveals that when Vdd increases, the optimized value of Kp/Kn decreases, and silicon nanowire transistor with suitable dimensions (higher Dp and Ln with lower Lp and Dn) can be fabricated.

  6. Polycrystalline silicon ring resonator photodiodes in a bulk complementary metal-oxide-semiconductor process.

    Science.gov (United States)

    Mehta, Karan K; Orcutt, Jason S; Shainline, Jeffrey M; Tehar-Zahav, Ofer; Sternberg, Zvi; Meade, Roy; Popović, Miloš A; Ram, Rajeev J

    2014-02-15

    We present measurements on resonant photodetectors utilizing sub-bandgap absorption in polycrystalline silicon ring resonators, in which light is localized in the intrinsic region of a p+/p/i/n/n+ diode. The devices, operating both at λ=1280 and λ=1550  nm and fabricated in a complementary metal-oxide-semiconductor (CMOS) dynamic random-access memory emulation process, exhibit detection quantum efficiencies around 20% and few-gigahertz response bandwidths. We observe this performance at low reverse biases in the range of a few volts and in devices with dark currents below 50 pA at 10 V. These results demonstrate that such photodetector behavior, previously reported by Preston et al. [Opt. Lett. 36, 52 (2011)], is achievable in bulk CMOS processes, with significant improvements with respect to the previous work in quantum efficiency, dark current, linearity, bandwidth, and operating bias due to additional midlevel doping implants and different material deposition. The present work thus offers a robust realization of a fully CMOS-fabricated all-silicon photodetector functional across a wide wavelength range.

  7. Laser line scan underwater imaging by complementary metal-oxide-semiconductor camera

    Science.gov (United States)

    He, Zhiyi; Luo, Meixing; Song, Xiyu; Wang, Dundong; He, Ning

    2017-12-01

    This work employs the complementary metal-oxide-semiconductor (CMOS) camera to acquire images in a scanning manner for laser line scan (LLS) underwater imaging to alleviate backscatter impact of seawater. Two operating features of the CMOS camera, namely the region of interest (ROI) and rolling shutter, can be utilized to perform image scan without the difficulty of translating the receiver above the target as the traditional LLS imaging systems have. By the dynamically reconfigurable ROI of an industrial CMOS camera, we evenly divided the image into five subareas along the pixel rows and then scanned them by changing the ROI region automatically under the synchronous illumination by the fun beams of the lasers. Another scanning method was explored by the rolling shutter operation of the CMOS camera. The fun beam lasers were turned on/off to illuminate the narrow zones on the target in a good correspondence to the exposure lines during the rolling procedure of the camera's electronic shutter. The frame synchronization between the image scan and the laser beam sweep may be achieved by either the strobe lighting output pulse or the external triggering pulse of the industrial camera. Comparison between the scanning and nonscanning images shows that contrast of the underwater image can be improved by our LLS imaging techniques, with higher stability and feasibility than the mechanically controlled scanning method.

  8. High performance high-κ/metal gate complementary metal oxide semiconductor circuit element on flexible silicon

    KAUST Repository

    Sevilla, Galo T.

    2016-02-29

    Thinned silicon based complementary metal oxide semiconductor(CMOS)electronics can be physically flexible. To overcome challenges of limited thinning and damaging of devices originated from back grinding process, we show sequential reactive ion etching of silicon with the assistance from soft polymeric materials to efficiently achieve thinned (40 μm) and flexible (1.5 cm bending radius) silicon based functional CMOSinverters with high-κ/metal gate transistors. Notable advances through this study shows large area of silicon thinning with pre-fabricated high performance elements with ultra-large-scale-integration density (using 90 nm node technology) and then dicing of such large and thinned (seemingly fragile) pieces into smaller pieces using excimer laser. The impact of various mechanical bending and bending cycles show undeterred high performance of flexible siliconCMOSinverters. Future work will include transfer of diced silicon chips to destination site, interconnects, and packaging to obtain fully flexible electronic systems in CMOS compatible way.

  9. Finite Element Analysis of Film Stack Architecture for Complementary Metal-Oxide-Semiconductor Image Sensors.

    Science.gov (United States)

    Wu, Kuo-Tsai; Hwang, Sheng-Jye; Lee, Huei-Huang

    2017-05-02

    Image sensors are the core components of computer, communication, and consumer electronic products. Complementary metal oxide semiconductor (CMOS) image sensors have become the mainstay of image-sensing developments, but are prone to leakage current. In this study, we simulate the CMOS image sensor (CIS) film stacking process by finite element analysis. To elucidate the relationship between the leakage current and stack architecture, we compare the simulated and measured leakage currents in the elements. Based on the analysis results, we further improve the performance by optimizing the architecture of the film stacks or changing the thin-film material. The material parameters are then corrected to improve the accuracy of the simulation results. The simulated and experimental results confirm a positive correlation between measured leakage current and stress. This trend is attributed to the structural defects induced by high stress, which generate leakage. Using this relationship, we can change the structure of the thin-film stack to reduce the leakage current and thereby improve the component life and reliability of the CIS components.

  10. Laser Doppler blood flow complementary metal oxide semiconductor imaging sensor with analog on-chip processing

    International Nuclear Information System (INIS)

    Gu Quan; Hayes-Gill, Barrie R.; Morgan, Stephen P.

    2008-01-01

    A 4x4 pixel array with analog on-chip processing has been fabricated within a 0.35 μm complementary metal oxide semiconductor process as a prototype sensor for laser Doppler blood flow imaging. At each pixel the bandpass and frequency weighted filters necessary for processing laser Doppler blood flow signals have been designed and fabricated. Because of the space constraints of implementing an accurate ω 0.5 filter at the pixel level, this has been approximated using the ''roll off'' of a high-pass filter with a cutoff frequency set at 10 kHz. The sensor has been characterized using a modulated laser source. Fixed pattern noise is present that is demonstrated to be repeatable across the array and can be calibrated. Preliminary blood flow results on a finger before and after occlusion demonstrate that the sensor array provides the potential for a system that can be scaled to a larger number of pixels for blood flow imaging

  11. Accurate geometry scalable complementary metal oxide semiconductor modelling of low-power 90 nm amplifier circuits

    Directory of Open Access Journals (Sweden)

    Apratim Roy

    2014-05-01

    Full Text Available This paper proposes a technique to accurately estimate radio frequency behaviour of low-power 90 nm amplifier circuits with geometry scalable discrete complementary metal oxide semiconductor (CMOS modelling. Rather than characterising individual elements, the scheme is able to predict gain, noise and reflection loss of low-noise amplifier (LNA architectures made with bias, active and passive components. It reduces number of model parameters by formulating dependent functions in symmetric distributed modelling and shows that simple fitting factors can account for extraneous (interconnect effects in LNA structure. Equivalent-circuit model equations based on physical structure and describing layout parasites are developed for major amplifier elements like metal–insulator–metal (MIM capacitor, spiral symmetric inductor, polysilicon (PS resistor and bulk RF transistor. The models are geometry scalable with respect to feature dimensions, i.e. MIM/PS width and length, outer-dimension/turns of planar inductor and channel-width/fingers of active device. Results obtained with the CMOS models are compared against measured literature data for two 1.2 V amplifier circuits where prediction accuracy for RF parameters (S(21, noise figure, S(11, S(22 lies within the range of 92–99%.

  12. Multichannel, time-resolved picosecond laser ultrasound imaging and spectroscopy with custom complementary metal-oxide-semiconductor detector

    International Nuclear Information System (INIS)

    Smith, Richard J.; Light, Roger A.; Johnston, Nicholas S.; Pitter, Mark C.; Somekh, Mike G.; Sharples, Steve D.

    2010-01-01

    This paper presents a multichannel, time-resolved picosecond laser ultrasound system that uses a custom complementary metal-oxide-semiconductor linear array detector. This novel sensor allows parallel phase-sensitive detection of very low contrast modulated signals with performance in each channel comparable to that of a discrete photodiode and a lock-in amplifier. Application of the instrument is demonstrated by parallelizing spatial measurements to produce two-dimensional thickness maps on a layered sample, and spectroscopic parallelization is demonstrated by presenting the measured Brillouin oscillations from a gallium arsenide wafer. This paper demonstrates the significant advantages of our approach to pump probe systems, especially picosecond ultrasonics.

  13. A complementary metal-oxide-semiconductor compatible monocantilever 12-point probe for conductivity measurements on the nanoscale

    DEFF Research Database (Denmark)

    Gammelgaard, Lauge; Bøggild, Peter; Wells, J.W.

    2008-01-01

    and a probe pitch of 500 nm. In-air four-point measurements have been performed on indium tin oxide, ruthenium, and titanium-tungsten, showing good agreement with values obtained by other four-point probes. In-vacuum four-point resistance measurements have been performed on clean Bi(111) using different probe......We present a complementary metal-oxide-semiconductor compatible, nanoscale 12-point-probe based on TiW electrodes placed on a SiO2 monocantilever. Probes are mass fabricated on Si wafers by a combination of electron beam and UV lithography, realizing TiW electrode tips with a width down to 250 nm...

  14. A Logarithmic Response Complementary Metal Oxide Semiconductor Image Sensor with Parasitic P-N-P Bipolar Junction Transistor

    Science.gov (United States)

    Lai, Cheng‑Hsiao; Lai, Liang‑Wei; Chiang, Wen‑Jen; King, Ya‑Chin

    2006-04-01

    Logarithmic-response complementary metal oxide semiconductor (CMOS) active pixel sensors provide a desirable attribute of wide dynamic range even with low supply voltages. In this paper, a log-mode pixel with employing parasitic P-N-P bipolar junction transistor (BJT) to amplify photo-current is investigated and optimized. A new log-mode cell with a calibration transistor is proposed to increase the output voltage swing as well as to reduce the fixed pattern noise. The measurement results demonstrate that, the output voltage swing of this new cell is enhanced by 4× and fixed pattern noise (FPN) of a pixel array can be reduced by 10× comparing to that of a conventional log-mode CMOS active pixel sensor.

  15. Single carrier trapping and de-trapping in scaled silicon complementary metal-oxide-semiconductor field-effect transistors at low temperatures

    Science.gov (United States)

    Li, Zuo; Khaled Husain, Muhammad; Yoshimoto, Hiroyuki; Tani, Kazuki; Sasago, Yoshitaka; Hisamoto, Digh; Fletcher, Jonathan David; Kataoka, Masaya; Tsuchiya, Yoshishige; Saito, Shinichi

    2017-07-01

    The scaling of Silicon (Si) technology is approaching the physical limit, where various quantum effects such as direct tunnelling and quantum confinement are observed, even at room temperatures. We have measured standard complementary metal-oxide-semiconductor field-effect-transistors (CMOSFETs) with wide and short channels at low temperatures to observe single electron/hole characteristics due to local structural disturbances such as roughness and defects. In fact, we observed Coulomb blockades in sub-threshold regimes of both p-type and n-type Si CMOSFETs, showing the presence of quantum dots in the channels. The stability diagrams for the Coulomb blockade were explained by the potential minima due to poly-Si grains. We have also observed sharp current peaks at narrow bias windows at the edges of the Coulomb diamonds, showing resonant tunnelling of single carriers through charge traps.

  16. A Very Low Dark Current Temperature-Resistant, Wide Dynamic Range, Complementary Metal Oxide Semiconductor Image Sensor

    Science.gov (United States)

    Mizobuchi, Koichi; Adachi, Satoru; Tejada, Jose; Oshikubo, Hiromichi; Akahane, Nana; Sugawa, Shigetoshi

    2008-07-01

    A very low dark current (VLDC) temperature-resistant approach which best suits a wide dynamic range (WDR) complementary metal oxide semiconductor (CMOS) image sensor with a lateral over-flow integration capacitor (LOFIC) has been developed. By implementing a low electric field photodiode without a trade-off of full well-capacity, reduced plasma damage, re-crystallization, and termination of silicon-silicon dioxide interface states in the front end of line and back end of line (FEOL and BEOL) in a 0.18 µm, two polycrystalline silicon, three metal (2P3M) process, the dark current is reduced to 11 e-/s/pixel (0.35 e-/s/µm2: pixel area normalized) at 60 °C, which is the lowest value ever reported. For further robustness at low and high temperatures, 1/3-in., 5.6-µm pitch, 800×600 pixel sensor chips with low noise readout circuits designed for a signal and noise hold circuit and a programmable gain amplifier (PGA) have also been deposited with an inorganic cap layer on a micro-lens and covered with a metal hermetically sealed package assembly. Image sensing performance results in 2.4 e-rms temporal noise and 100 dB dynamic range (DR) with 237 ke- full well-capacity. The operating temperature range is extended from -40 to 85 °C while retaining good image quality.

  17. A low-voltage complementary metal-oxide semiconductor adapter circuit suitable for input rail-to-rail operation

    Science.gov (United States)

    Tadić, Nikša; Zogović, Milena; Banjević, Mirjana; Zimmermann, Horst

    2010-11-01

    In this article, a low-voltage complementary metal-oxide semiconductor (CMOS) input signal adapter (ISA) suitable for input rail-to-rail operation of various types of analogue basic building blocks is presented. The adapter acts as a pre-stage with infinite input resistance and linear transfer characteristics. Its input signal is translated into the region fitting the operating range of the following stage. The generality of the proposed method is proven through the application of the ISA in different types of analogue basic building blocks designed in 0.5 μm CMOS technology. They are the following: below-negative-rail-to-above-positive-rail voltage-controlled transconductor, quasi rail-to-rail voltage-controlled resistor (VCR), rail-to-rail operational amplifier (OA) and quasi rail-to-rail second generation current conveyor. The proposed negative resistance quasi rail-to-rail VCR and rail-to-rail OA have been used in a Sallen and Key band-pass filter. All of these analogue basic building blocks and their applications in the form of the Sallen and Key band-pass filter operate from a single supply of 1.5 V. Simulation results confirm the predictions of the analysis performed.

  18. Ultrasonic fingerprint sensor using a piezoelectric micromachined ultrasonic transducer array integrated with complementary metal oxide semiconductor electronics

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Y.; Fung, S.; Wang, Q.; Horsley, D. A. [Berkeley Sensor and Actuator Center, University of California, Davis, 1 Shields Avenue, Davis, California 95616 (United States); Tang, H.; Boser, B. E. [Berkeley Sensor and Actuator Center, University of California, Berkeley, California 94720 (United States); Tsai, J. M.; Daneman, M. [InvenSense, Inc., 1745 Technology Drive, San Jose, California 95110 (United States)

    2015-06-29

    This paper presents an ultrasonic fingerprint sensor based on a 24 × 8 array of 22 MHz piezoelectric micromachined ultrasonic transducers (PMUTs) with 100 μm pitch, fully integrated with 180 nm complementary metal oxide semiconductor (CMOS) circuitry through eutectic wafer bonding. Each PMUT is directly bonded to a dedicated CMOS receive amplifier, minimizing electrical parasitics and eliminating the need for through-silicon vias. The array frequency response and vibration mode-shape were characterized using laser Doppler vibrometry and verified via finite element method simulation. The array's acoustic output was measured using a hydrophone to be ∼14 kPa with a 28 V input, in reasonable agreement with predication from analytical calculation. Pulse-echo imaging of a 1D steel grating is demonstrated using electronic scanning of a 20 × 8 sub-array, resulting in 300 mV maximum received amplitude and 5:1 contrast ratio. Because the small size of this array limits the maximum image size, mechanical scanning was used to image a 2D polydimethylsiloxane fingerprint phantom (10 mm × 8 mm) at a 1.2 mm distance from the array.

  19. Real-time, multiplexed electrochemical DNA detection using an active complementary metal-oxide-semiconductor biosensor array with integrated sensor electronics

    Science.gov (United States)

    Levine, Peter M.; Gong, Ping; Levicky, Rastislav; Shepard, Kenneth L.

    2009-01-01

    Optical biosensing based on fluorescence detection has arguably become the standard technique for quantifying extents of hybridization between surface-immobilized probes and fluorophore-labeled analyte targets in DNA microarrays. However, electrochemical detection techniques are emerging which could eliminate the need for physically bulky optical instrumentation, enabling the design of portable devices for point-of-care applications. Unlike fluorescence detection, which can function well using a passive substrate (one without integrated electronics), multiplexed electrochemical detection requires an electronically-active substrate to analyze each array site and benefits from the addition of integrated electronic instrumentation to further reduce platform size and eliminate the electromagnetic interference that can result from bringing non-amplified signals off chip. We report on an active electrochemical biosensor array, constructed with a standard complementary metal-oxide-semiconductor (CMOS) technology, to perform quantitative DNA hybridization detection on chip using targets conjugated with ferrocene redox labels. A 4×4 array of gold working electrodes and integrated potentiostat electronics, consisting of control amplifiers and current-input analog-to-digital converters, on a custom-designed 5×3 mm2 CMOS chip drive redox reactions using cyclic voltammetry, sense DNA binding, and transmit digital data off chip for analysis. We demonstrate multiplexed and specific detection of DNA targets as well as real-time monitoring of hybridization, a task that is difficult, if not impossible, with traditional fluorescence-based microarrays. PMID:19054661

  20. Trivalued Memory Circuit Using Metal-Oxide-Semiconductor Field-Effect Transistor Bipolar-Junction-Transistor Negative-Differential-Resistance Circuits Fabricated by Standard SiGe Process

    Science.gov (United States)

    Gan, Kwang-Jow; Tsai, Cher-Shiung; Liang, Dong-Shong; Wen, Chun-Ming; Chen, Yaw-Hwang

    2006-09-01

    A trivalued memory circuit based on two cascoded metal-oxide-semiconductor field-effect transistor bipolar-junction-transistor negative-differential-resistance (MOS-BJT-NDR) devices is investigated. The MOS-BJT-NDR device is made of MOS and BJT devices, but it can show the NDR current-voltage characteristic by suitably arranging the MOS parameters. We demonstrate a trivalued memory circuit using the two-peak MOS-BJT-NDR circuit as the driver and a resistor as the load. The MOS-BJT-NDR devices and memory circuits are fabricated by the standard 0.35 μm SiGe process.

  1. Monolithic integration of a silicon nanowire field-effect transistors array on a complementary metal-oxide semiconductor chip for biochemical sensor applications.

    Science.gov (United States)

    Livi, Paolo; Kwiat, Moria; Shadmani, Amir; Pevzner, Alexander; Navarra, Giulio; Rothe, Jörg; Stettler, Alexander; Chen, Yihui; Patolsky, Fernando; Hierlemann, Andreas

    2015-10-06

    We present a monolithic complementary metal-oxide semiconductor (CMOS)-based sensor system comprising an array of silicon nanowire field-effect transistors (FETs) and the signal-conditioning circuitry on the same chip. The silicon nanowires were fabricated by chemical vapor deposition methods and then transferred to the CMOS chip, where Ti/Pd/Ti contacts had been patterned via e-beam lithography. The on-chip circuitry measures the current flowing through each nanowire FET upon applying a constant source-drain voltage. The analog signal is digitized on chip and then transmitted to a receiving unit. The system has been successfully fabricated and tested by acquiring I-V curves of the bare nanowire-based FETs. Furthermore, the sensing capabilities of the complete system have been demonstrated by recording current changes upon nanowire exposure to solutions of different pHs, as well as by detecting different concentrations of Troponin T biomarkers (cTnT) through antibody-functionalized nanowire FETs.

  2. Repeat analysis of intraoral digital imaging performed by undergraduate students using a complementary metal oxide semiconductor sensor: An institutional case study

    Science.gov (United States)

    Rahman, Nur Liyana Abdul; Asri, Amiza Aqiela Ahmad; Othman, Noor Ilyani; Wan Mokhtar, Ilham

    2017-01-01

    Purpose This study was performed to quantify the repeat rate of imaging acquisitions based on different clinical examinations, and to assess the prevalence of error types in intraoral bitewing and periapical imaging using a digital complementary metal-oxide-semiconductor (CMOS) intraoral sensor. Materials and Methods A total of 8,030 intraoral images were retrospectively collected from 3 groups of undergraduate clinical dental students. The type of examination, stage of the procedure, and reasons for repetition were analysed and recorded. The repeat rate was calculated as the total number of repeated images divided by the total number of examinations. The weighted Cohen's kappa for inter- and intra-observer agreement was used after calibration and prior to image analysis. Results The overall repeat rate on intraoral periapical images was 34.4%. A total of 1,978 repeated periapical images were from endodontic assessment, which included working length estimation (WLE), trial gutta-percha (tGP), obturation, and removal of gutta-percha (rGP). In the endodontic imaging, the highest repeat rate was from WLE (51.9%) followed by tGP (48.5%), obturation (42.2%), and rGP (35.6%). In bitewing images, the repeat rate was 15.1% and poor angulation was identified as the most common cause of error. A substantial level of intra- and interobserver agreement was achieved. Conclusion The repeat rates in this study were relatively high, especially for certain clinical procedures, warranting training in optimization techniques and radiation protection. Repeat analysis should be performed from time to time to enhance quality assurance and hence deliver high-quality health services to patients. PMID:29279822

  3. Metal oxide semiconductor thin-film transistors for flexible electronics

    Science.gov (United States)

    Petti, Luisa; Münzenrieder, Niko; Vogt, Christian; Faber, Hendrik; Büthe, Lars; Cantarella, Giuseppe; Bottacchi, Francesca; Anthopoulos, Thomas D.; Tröster, Gerhard

    2016-06-01

    The field of flexible electronics has rapidly expanded over the last decades, pioneering novel applications, such as wearable and textile integrated devices, seamless and embedded patch-like systems, soft electronic skins, as well as imperceptible and transient implants. The possibility to revolutionize our daily life with such disruptive appliances has fueled the quest for electronic devices which yield good electrical and mechanical performance and are at the same time light-weight, transparent, conformable, stretchable, and even biodegradable. Flexible metal oxide semiconductor thin-film transistors (TFTs) can fulfill all these requirements and are therefore considered the most promising technology for tomorrow's electronics. This review reflects the establishment of flexible metal oxide semiconductor TFTs, from the development of single devices, large-area circuits, up to entirely integrated systems. First, an introduction on metal oxide semiconductor TFTs is given, where the history of the field is revisited, the TFT configurations and operating principles are presented, and the main issues and technological challenges faced in the area are analyzed. Then, the recent advances achieved for flexible n-type metal oxide semiconductor TFTs manufactured by physical vapor deposition methods and solution-processing techniques are summarized. In particular, the ability of flexible metal oxide semiconductor TFTs to combine low temperature fabrication, high carrier mobility, large frequency operation, extreme mechanical bendability, together with transparency, conformability, stretchability, and water dissolubility is shown. Afterward, a detailed analysis of the most promising metal oxide semiconducting materials developed to realize the state-of-the-art flexible p-type TFTs is given. Next, the recent progresses obtained for flexible metal oxide semiconductor-based electronic circuits, realized with both unipolar and complementary technology, are reported. In particular

  4. Metal oxide semiconductor thin-film transistors for flexible electronics

    Energy Technology Data Exchange (ETDEWEB)

    Petti, Luisa; Vogt, Christian; Büthe, Lars; Cantarella, Giuseppe; Tröster, Gerhard [Electronics Laboratory, Swiss Federal Institute of Technology, Zürich (Switzerland); Münzenrieder, Niko [Electronics Laboratory, Swiss Federal Institute of Technology, Zürich (Switzerland); Sensor Technology Research Centre, University of Sussex, Falmer (United Kingdom); Faber, Hendrik; Bottacchi, Francesca; Anthopoulos, Thomas D. [Department of Physics and Centre for Plastic Electronics, Imperial College London, London (United Kingdom)

    2016-06-15

    The field of flexible electronics has rapidly expanded over the last decades, pioneering novel applications, such as wearable and textile integrated devices, seamless and embedded patch-like systems, soft electronic skins, as well as imperceptible and transient implants. The possibility to revolutionize our daily life with such disruptive appliances has fueled the quest for electronic devices which yield good electrical and mechanical performance and are at the same time light-weight, transparent, conformable, stretchable, and even biodegradable. Flexible metal oxide semiconductor thin-film transistors (TFTs) can fulfill all these requirements and are therefore considered the most promising technology for tomorrow's electronics. This review reflects the establishment of flexible metal oxide semiconductor TFTs, from the development of single devices, large-area circuits, up to entirely integrated systems. First, an introduction on metal oxide semiconductor TFTs is given, where the history of the field is revisited, the TFT configurations and operating principles are presented, and the main issues and technological challenges faced in the area are analyzed. Then, the recent advances achieved for flexible n-type metal oxide semiconductor TFTs manufactured by physical vapor deposition methods and solution-processing techniques are summarized. In particular, the ability of flexible metal oxide semiconductor TFTs to combine low temperature fabrication, high carrier mobility, large frequency operation, extreme mechanical bendability, together with transparency, conformability, stretchability, and water dissolubility is shown. Afterward, a detailed analysis of the most promising metal oxide semiconducting materials developed to realize the state-of-the-art flexible p-type TFTs is given. Next, the recent progresses obtained for flexible metal oxide semiconductor-based electronic circuits, realized with both unipolar and complementary technology, are reported. In

  5. Complementary Metal Oxide Semiconductor-Compatible, High-Mobility, ⟨111⟩-Oriented GaSb Nanowires Enabled by Vapor-Solid-Solid Chemical Vapor Deposition.

    Science.gov (United States)

    Yang, Zai-Xing; Liu, Lizhe; Yip, SenPo; Li, Dapan; Shen, Lifan; Zhou, Ziyao; Han, Ning; Hung, Tak Fu; Pun, Edwin Yue-Bun; Wu, Xinglong; Song, Aimin; Ho, Johnny C

    2017-04-25

    Using CMOS-compatible Pd catalysts, we demonstrated the formation of high-mobility ⟨111⟩-oriented GaSb nanowires (NWs) via vapor-solid-solid (VSS) growth by surfactant-assisted chemical vapor deposition through a complementary experimental and theoretical approach. In contrast to NWs formed by the conventional vapor-liquid-solid (VLS) mechanism, cylindrical-shaped Pd 5 Ga 4 catalytic seeds were present in our Pd-catalyzed VSS-NWs. As solid catalysts, stoichiometric Pd 5 Ga 4 was found to have the lowest crystal surface energy and thus giving rise to a minimal surface diffusion as well as an optimal in-plane interface orientation at the seed/NW interface for efficient epitaxial NW nucleation. These VSS characteristics led to the growth of slender NWs with diameters down to 26.9 ± 3.5 nm. Over 95% high crystalline quality NWs were grown in ⟨111⟩ orientation for a wide diameter range of between 10 and 70 nm. Back-gated field-effect transistors (FETs) fabricated using the Pd-catalyzed GaSb NWs exhibit a superior peak hole mobility of ∼330 cm 2 V -1 s -1 , close to the mobility limit for a NW channel diameter of ∼30 nm with a free carrier concentration of ∼10 18 cm -3 . This suggests that the NWs have excellent homogeneity in phase purity, growth orientation, surface morphology and electrical characteristics. Contact printing process was also used to fabricate large-scale assembly of Pd-catalyzed GaSb NW parallel arrays, confirming the potential constructions and applications of these high-performance electronic devices.

  6. Large Lateral Photovoltaic Effect in Metal-(Oxide-Semiconductor Structures

    Directory of Open Access Journals (Sweden)

    Chongqi Yu

    2010-11-01

    Full Text Available The lateral photovoltaic effect (LPE can be used in position-sensitive detectors to detect very small displacements due to its output of lateral photovoltage changing linearly with light spot position. In this review, we will summarize some of our recent works regarding LPE in metal-semiconductor and metal-oxide-semiconductor structures, and give a theoretical model of LPE in these two structures.

  7. Large lateral photovoltaic effect in metal-(oxide-) semiconductor structures.

    Science.gov (United States)

    Yu, Chongqi; Wang, Hui

    2010-01-01

    The lateral photovoltaic effect (LPE) can be used in position-sensitive detectors to detect very small displacements due to its output of lateral photovoltage changing linearly with light spot position. In this review, we will summarize some of our recent works regarding LPE in metal-semiconductor and metal-oxide-semiconductor structures, and give a theoretical model of LPE in these two structures.

  8. High-temperature complementary metal oxide semiconductors (CMOS)

    International Nuclear Information System (INIS)

    McBrayer, J.D.

    1979-10-01

    Silicon CMOS devices were studied, tested, and evaluated at high temperatures to determine processing, geometric, operating characteristics, and stability parameters. After more than 1000 hours at 300 0 C, most devices showed good stability, reliability, and operating characteristics. Processing and geometric parameters were evaluated and optimization steps discussed

  9. High-temperature complementary metal oxide semiconductors (CMOS)

    Energy Technology Data Exchange (ETDEWEB)

    McBrayer, J.D.

    1979-10-01

    Silicon CMOS devices were studied, tested, and evaluated at high temperatures to determine processing, geometric, operating characteristics, and stability parameters. After more than 1000 hours at 300/sup 0/C, most devices showed good stability, reliability, and operating characteristics. Processing and geometric parameters were evaluated and optimization steps discussed.

  10. Bistability in a complementary metal oxide semiconductor inverter circuit.

    Science.gov (United States)

    Carroll, Thomas L

    2005-09-01

    Radiofrequency signals can disrupt the operation of low frequency circuits. A digital inverter circuit would seem to be immune to such disruption, because its output state usually jumps abruptly between 0 and 5 V. Nevertheless, when driven with a high frequency signal, the inverter can have two coexisting stable states (which are not at 0 and 5 V). Slow switching between these states (by changing the rf signal) will produce a low frequency signal. I demonstrate the bistability in a circuit experiment and in a simple model of the circuit.

  11. Charge transient spectroscopy measurements of metal-oxide-semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Markus; Fechner, Axel; Zahn, Dietrich R.T. [Chemnitz University of Technology, Semiconductor Physics, 09107 Chemnitz (Germany)

    2010-02-15

    Charge transient spectroscopy (QTS) is an electrical measurement technique related to deep-level transient spectroscopy (DLTS). Using QTS it is possible to measure fast charge reloading processes even in the absence of depletion regions as a function of time and temperature with different pulse voltages and pulse widths. As a result, one can determine the number, the energetic position, the capture cross section, and the density of the electrically active traps. Here QTS measurements of Al/SiO2/Si metal-oxide-semiconductor structures are presented revealing the influence of manganese implantation into p- and n-doped silicon on the charge carrier transport and trapping properties. The QTS results are compared to I-V, C-V and DLTS measurements on the same samples and the differences are discussed (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Neutron radiation effects on metal oxide semiconductor (MOS) devices

    Energy Technology Data Exchange (ETDEWEB)

    Abdul Amir, Haider F. [School of Science and Technology, University Malaysia Sabah, 88999 Kota Kinabalu, Sabah (Malaysia)], E-mail: haider@ums.edu.my; Chik, Abdulah [School of Science and Technology, University Malaysia Sabah, 88999 Kota Kinabalu, Sabah (Malaysia)

    2009-09-15

    The main purpose of this study is to provide the knowledge and data on Deuterium-Tritium (D-T) fusion neutron induced damage in MOS devices. Silicon metal oxide semiconductor (MOS) devices are currently the cornerstone of the modern microelectronics industry. However, when a MOS device is exposed to a flux of energetic radiation or particles, the resulting effects from this radiation can cause several degradation of the device performance and of its operating life. The part of MOS structure (metal oxide semiconductor) most sensitive to neutron radiation is the oxide insulating layer (SiO{sub 2}). When ionizing radiation passes through the oxide, the energy deposited creates electron-hole pairs. These electron-hole pairs have been seriously hazardous to the performance of these electronic components. The degradation of the current gain of the dual n-channel depletion mode MOS caused by neutron displacement defects, was measured using in situ method during neutron irradiation. The average degradation of the gain of the current is about 35 mA, and the change in channel current gain increased proportionally with neutron fluence. The total fusion neutron displacement damage was found to be 4.8 x 10{sup -21} dpa per n/cm{sup 2}, while the average fraction of damage in the crystal of silicon was found to be 1.24 x 10{sup -12}. All the MOS devices tested were found to be controllable after neutron irradiation and no permanent damage was caused by neutron fluence irradiation below 10{sup 10}n/cm{sup 2}. The calculation results shows that (n,{alpha}) reaction induced soft-error cross-section about 8.7 x 10{sup -14} cm{sup 2}, and for recoil atoms about 2.9 x 10{sup -15} cm{sup 2}, respectively.

  13. Neutron radiation effects on metal oxide semiconductor (MOS) devices

    International Nuclear Information System (INIS)

    Abdul Amir, Haider F.; Chik, Abdulah

    2009-01-01

    The main purpose of this study is to provide the knowledge and data on Deuterium-Tritium (D-T) fusion neutron induced damage in MOS devices. Silicon metal oxide semiconductor (MOS) devices are currently the cornerstone of the modern microelectronics industry. However, when a MOS device is exposed to a flux of energetic radiation or particles, the resulting effects from this radiation can cause several degradation of the device performance and of its operating life. The part of MOS structure (metal oxide semiconductor) most sensitive to neutron radiation is the oxide insulating layer (SiO 2 ). When ionizing radiation passes through the oxide, the energy deposited creates electron-hole pairs. These electron-hole pairs have been seriously hazardous to the performance of these electronic components. The degradation of the current gain of the dual n-channel depletion mode MOS caused by neutron displacement defects, was measured using in situ method during neutron irradiation. The average degradation of the gain of the current is about 35 mA, and the change in channel current gain increased proportionally with neutron fluence. The total fusion neutron displacement damage was found to be 4.8 x 10 -21 dpa per n/cm 2 , while the average fraction of damage in the crystal of silicon was found to be 1.24 x 10 -12 . All the MOS devices tested were found to be controllable after neutron irradiation and no permanent damage was caused by neutron fluence irradiation below 10 10 n/cm 2 . The calculation results shows that (n,α) reaction induced soft-error cross-section about 8.7 x 10 -14 cm 2 , and for recoil atoms about 2.9 x 10 -15 cm 2 , respectively.

  14. Plasmonic nanostructured metal-oxide-semiconductor reflection modulators.

    Science.gov (United States)

    Olivieri, Anthony; Chen, Chengkun; Hassan, Sa'ad; Lisicka-Skrzek, Ewa; Tait, R Niall; Berini, Pierre

    2015-04-08

    We propose a plasmonic surface that produces an electrically controlled reflectance as a high-speed intensity modulator. The device is conceived as a metal-oxide-semiconductor capacitor on silicon with its metal structured as a thin patch bearing a contiguous nanoscale grating. The metal structure serves multiple functions as a driving electrode and as a grating coupler for perpendicularly incident p-polarized light to surface plasmons supported by the patch. Modulation is produced by charging and discharging the capacitor and exploiting the carrier refraction effect in silicon along with the high sensitivity of strongly confined surface plasmons to index perturbations. The area of the modulator is set by the area of the incident beam, leading to a very compact device for a strongly focused beam (∼2.5 μm in diameter). Theoretically, the modulator can operate over a broad electrical bandwidth (tens of gigahertz) with a modulation depth of 3 to 6%, a loss of 3 to 4 dB, and an optical bandwidth of about 50 nm. About 1000 modulators can be integrated over a 50 mm(2) area producing an aggregate electro-optic modulation rate in excess of 1 Tb/s. We demonstrate experimentally modulators operating at telecommunications wavelengths, fabricated as nanostructured Au/HfO2/p-Si capacitors. The modulators break conceptually from waveguide-based devices and belong to the same class of devices as surface photodetectors and vertical cavity surface-emitting lasers.

  15. Advancing metal-oxide-semiconductor theory: Steady-state nonequilibrium conditions

    Science.gov (United States)

    Passlack, M.; Hong, M.; Schubert, E. F.; Zydzik, G. J.; Mannaerts, J. P.; Hobson, W. S.; Harris, T. D.

    1997-06-01

    This article investigates steady-state nonequilibrium conditions in metal-oxide-semiconductor (MOS) capacitors. Steady-state nonequilibrium conditions are of significant interest due to the advent of wide-gap semiconductors in the arena of MOS (or metal-insulator-semiconductor) devices and due to the scaling of oxide thickness in Si technology. Two major classes of steady-state nonequilibrium conditions were studied both experimentally and theoretically: (i) steady-state deep depletion and (ii) steady-state low level optical generation. It is found that the identification and subsequent understanding of steady-state nonequilibrium conditions is of significant importance for correct interpretation of electrical measurements such as capacitance-voltage and conductance-voltage measurements. Basic implications of steady-state nonequilibrium conditions were derived for both MOS capacitors with low interfaces state density Dit and for oxide semiconductor interfaces with a pinned Fermi level. Further, a photoluminescence power spectroscopy technique is investigated as a complementary tool for direct-gap semiconductors to study Dit and to monitor the interface quality during device fabrication.

  16. Laser Doppler perfusion imaging with a complimentary metal oxide semiconductor image sensor

    NARCIS (Netherlands)

    Serov, Alexander; Steenbergen, Wiendelt; de Mul, F.F.M.

    2002-01-01

    We utilized a complimentary metal oxide semiconductor video camera for fast f low imaging with the laser Doppler technique. A single sensor is used for both observation of the area of interest and measurements of the interference signal caused by dynamic light scattering from moving particles inside

  17. Relating Random Telegraph Signal Noise in Metal Oxide Semiconductor Transistors to Interface Trap Energy Distribution

    NARCIS (Netherlands)

    van der Wel, A.P.; Klumperink, Eric A.M.; Hoekstra, E.; Nauta, Bram

    2005-01-01

    In this work, we study random telegraph signal (RTS) noise in metal-oxide-semiconductor field effect transistors when the device is periodically and rapidly cycled between an "on" and an "off" bias state. We derive the effective RTS time constants for this case using Shockley–Read–Hall statistics

  18. Mechanical anomaly impact on metal-oxide-semiconductor capacitors on flexible silicon fabric

    KAUST Repository

    Ghoneim, Mohamed T.

    2014-06-09

    We report the impact of mechanical anomaly on high-κ/metal-oxide-semiconductor capacitors built on flexible silicon (100) fabric. The mechanical tests include studying the effect of bending radius up to 5 mm minimum bending radius with respect to breakdown voltage and leakage current of the devices. We also report the effect of continuous mechanical stress on the breakdown voltage over extended periods of times.

  19. Characterization of Single-Photon Avalanche Diodes in Standard 140-nm SOI CMOS Technology

    NARCIS (Netherlands)

    Lee, M.J.; Sun, P.; Charbon, E.

    2015-01-01

    We report on the characterization of single-photon avalanche diodes (SPADs) fabricated in standard 140-nm silicon on insulator (SOI) complementary metal-oxide-semiconductor (CMOS) technology. As a methodology for SPAD optimization, a test structure array, called SPAD farm, was realized with several

  20. Electrical analysis of high dielectric constant insulator and metal gate metal oxide semiconductor capacitors on flexible bulk mono-crystalline silicon

    KAUST Repository

    Ghoneim, Mohamed T.

    2015-06-01

    We report on the electrical study of high dielectric constant insulator and metal gate metal oxide semiconductor capacitors (MOSCAPs) on a flexible ultra-thin (25 μm) silicon fabric which is peeled off using a CMOS compatible process from a standard bulk mono-crystalline silicon substrate. A lifetime projection is extracted using statistical analysis of the ramping voltage (Vramp) breakdown and time dependent dielectric breakdown data. The obtained flexible MOSCAPs operational voltages satisfying the 10 years lifetime benchmark are compared to those of the control MOSCAPs, which are not peeled off from the silicon wafer. © 2014 IEEE.

  1. Single-electron effects in non-overlapped multiple-gate silicon-on-insulator metal-oxide-semiconductor field-effect transistors.

    Science.gov (United States)

    Lee, W; Su, P

    2009-02-11

    This paper systematically presents controlled single-electron effects in multiple-gate silicon-on-insulator (SOI) metal-oxide-semiconductor field-effect transistors (MOSFETs) with various gate lengths, fin widths, gate bias and temperature. Our study indicates that using the non-overlapped gate to source/drain structure as an approach to the single-electron transistor (SET) in MOSFETs is promising. Combining the advantage of gate control and the constriction of high source/drain resistances, single-electron effects are further enhanced using the multiple-gate architecture. From the presented results, downsizing multiple-gate SOI MOSFETs is needed for future room-temperature SET applications. Besides, the tunnel barriers and access resistances may need to be further optimized. Since the Coulomb blockade oscillation can be achieved in state-of-the-art complementary metal-oxide-semiconductor (CMOS) devices, it is beneficial to build SETs in low-power CMOS circuits for ultra-high-density purposes.

  2. Scheme for the fabrication of ultrashort channel metal-oxide-semiconductor field-effect transistors

    International Nuclear Information System (INIS)

    Appenzeller, J.; Martel, R.; Solomon, P.; Chan, K.; Avouris, Ph.; Knoch, J.; Benedict, J.; Tanner, M.; Thomas, S.; Wang, K. L.

    2000-01-01

    We present a scheme for the fabrication of ultrashort channel length metal-oxide-semiconductor field-effect transistors (MOSFETs) involving nanolithography and molecular-beam epitaxy. The active channel is undoped and is defined by a combination of nanometer-scale patterning and anisotropic etching of an n ++ layer grown on a silicon on insulator wafer. The method is self-limiting and can produce MOSFET devices with channel lengths of less than 10 nm. Measurements on the first batch of n-MOSFET devices fabricated with this approach show very good output characteristics and good control of short-channel effects. (c) 2000 American Institute of Physics

  3. Surface Preparation and Deposited Gate Oxides for Gallium Nitride Based Metal Oxide Semiconductor Devices

    Science.gov (United States)

    Long, Rathnait D.; McIntyre, Paul C.

    2012-01-01

    The literature on polar Gallium Nitride (GaN) surfaces, surface treatments and gate dielectrics relevant to metal oxide semiconductor devices is reviewed. The significance of the GaN growth technique and growth parameters on the properties of GaN epilayers, the ability to modify GaN surface properties using in situ and ex situ processes and progress on the understanding and performance of GaN metal oxide semiconductor (MOS) devices are presented and discussed. Although a reasonably consistent picture is emerging from focused studies on issues covered in each of these topics, future research can achieve a better understanding of the critical oxide-semiconductor interface by probing the connections between these topics. The challenges in analyzing defect concentrations and energies in GaN MOS gate stacks are discussed. Promising gate dielectric deposition techniques such as atomic layer deposition, which is already accepted by the semiconductor industry for silicon CMOS device fabrication, coupled with more advanced physical and electrical characterization methods will likely accelerate the pace of learning required to develop future GaN-based MOS technology.

  4. Gate controlled magnetoresistance in a silicon metal-oxide-semiconductor field-effect-transistor

    Science.gov (United States)

    Ciccarelli, C.; Park, B. G.; Ogawa, S.; Ferguson, A. J.; Wunderlich, J.

    2010-08-01

    We present a study of the magnetoresistance (MR) of a Si metal-oxide-semiconductor field-effect-transistor (MOSFET) at the break-down regime when a magnetic field is applied perpendicular to the plane of the device. We have identified two different regimes where we observe a large and gate-voltage dependent MR. We suggest two different mechanisms which can explain the observed high MR. Moreover, we have studied how the MR of the MOSFET scales with the dimensions of the channel for gate voltages below the threshold. We observed a decrease in the MR by two orders of magnitude by reducing the dimensions of the channel from 50×280 μm2 to 5×5 μm2.

  5. Impedance analysis of Al2O3/H-terminated diamond metal-oxide-semiconductor structures

    Science.gov (United States)

    Liao, Meiyong; Liu, Jiangwei; Sang, Liwen; Coathup, David; Li, Jiangling; Imura, Masataka; Koide, Yasuo; Ye, Haitao

    2015-02-01

    Impedance spectroscopy (IS) analysis is carried out to investigate the electrical properties of the metal-oxide-semiconductor (MOS) structure fabricated on hydrogen-terminated single crystal diamond. The low-temperature atomic layer deposition Al2O3 is employed as the insulator in the MOS structure. By numerically analysing the impedance of the MOS structure at various biases, the equivalent circuit of the diamond MOS structure is derived, which is composed of two parallel capacitive and resistance pairs, in series connection with both resistance and inductance. The two capacitive components are resulted from the insulator, the hydrogenated-diamond surface, and their interface. The physical parameters such as the insulator capacitance are obtained, circumventing the series resistance and inductance effect. By comparing the IS and capacitance-voltage measurements, the frequency dispersion of the capacitance-voltage characteristic is discussed.

  6. Optimal design of an electret microphone metal-oxide-semiconductor field-effect transistor preamplifier.

    Science.gov (United States)

    van der Donk, A G; Bergveld, P

    1992-04-01

    A theoretical noise analysis of the combination of a capacitive microphone and a preamplifier containing a metal-oxide-semiconductor field-effect transistor (MOSFET) and a high-value resistive bias element is given. It is found that the output signal-to-noise ratio for a source follower and for a common-source circuit is almost the same. It is also shown that the output noise can be reduced by making the microphone capacitance as well as the bias resistor as large as possible, and furthermore by keeping the parasitic gate capacitances as low as possible and finally by using an optimum value for the gate area of the MOSFET. The main noise source is the thermal noise of the gate leakage resistance of the MOSFET. It is also shown that short-channel MOSFETs produce more thermal channel noise than longer channel devices.

  7. Thermal oxidation and electrical properties of silicon carbide metal-oxide-semiconductor structures

    Science.gov (United States)

    Singh, N.; Rys, A.

    1993-02-01

    The fabrication of metal-oxide-semiconductor (MOS) capacitors on n-type, Si-face 6H-SiC is described for both wet and dry oxidation processes, and the effect of thermal oxidation conditions on the electrical properties of MOS capacitors are investigated. The values of the oxide thickness were obtained as a function of the oxidation time at various oxidation temperatures (which were kept between 1150 and 1250 C). It was found that samples prepared by both dry and wet oxidation showed accumulation, depletion, and inversion regions under illumination, while inversion did not occur under dark conditions. The C-V characteristics of oxidized samples were improved after the oxidized samples were annealed in argon for 30 min. The relation between the oxide thickness and the oxidation time could be expressed by parabolic law, which is also used for thermal oxidation of Si.

  8. Millimeter wave complementary metal-oxide-semiconductor on-chip hexagonal ferrite circulator

    Science.gov (United States)

    Chao, Liu; Fu, Enjin; Koomson, Valencia J.; Afsar, Mohammed N.

    2014-05-01

    Hexagonal ferrites, such as BaFe12O19 and SrFe12O19, have strong uniaxial anisotropic magnetic field and remanent magnetism. By employing these properties, magnetic devices, such as phase shifter, isolator and circulator, can work up to tens of GHz frequency range without strong external magnetic field or even self-biasing. As the monolithic microwave integrated circuit extends to higher millimeter wave frequencies, the demand for high performance integrated passive magnetic components is more and more eminent. The micro- and nano-sized hexagonal ferrite can be conveniently utilized to fabricate magnetic components integrated in CMOS circuits via post processing. A nano-ferrite circulator working at 60 GHz is designed, fabricated, and integrated into the CMOS front end for the first time.

  9. Millimeter wave complementary metal-oxide-semiconductor on-chip hexagonal nano-ferrite circulator

    Science.gov (United States)

    Chao, Liu; Oukacha, Hassan; Fu, Enjin; Koomson, Valencia Joyner; Afsar, Mohammed N.

    2015-05-01

    Hexagonal ferrites such as M-type BaFe12O19 and SrFe12O19 have strong uniaxial anisotropic magnetic field and remanent magnetism. The nano-sized ferrite powder exhibits high compatibility and processability in composite material. New magnetic devices using the M-type ferrite materials can work in the tens of GHz frequency range from microwave to millimeter wave without the application of strong external magnetic field. The micro- and nano-sized hexagonal ferrite can be conveniently utilized to fabricate magnetic components integrated in CMOS integrated circuits as thin as several micrometers. The micro-fabrication method of such nano ferrite device is presented in this paper. A circulator working at 60 GHz is designed and integrated into the commercial CMOS process. The circulator exhibits distinct circulation properties in the frequency range from 56 GHz to 58 GHz.

  10. Low Temperature Processed Complementary Metal Oxide Semiconductor (CMOS) Device by Oxidation Effect from Capping Layer

    KAUST Repository

    Wang, Zhenwei

    2015-04-20

    In this report, both p- and n-type tin oxide thin-film transistors (TFTs) were simultaneously achieved using single-step deposition of the tin oxide channel layer. The tuning of charge carrier polarity in the tin oxide channel is achieved by selectively depositing a copper oxide capping layer on top of tin oxide, which serves as an oxygen source, providing additional oxygen to form an n-type tin dioxide phase. The oxidation process can be realized by annealing at temperature as low as 190°C in air, which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin dioxide phase, which facilitates the application of this transparent oxide semiconductor in emerging electronic devices field.

  11. Experimental investigation of a shielded complementary Metal-Oxide Semiconductor (MOS) structure

    Science.gov (United States)

    Lin, H. C.; Halsor, J. L.

    1974-01-01

    A shielded integrated complimentary MOS transistor structure is described which is used to prevent field inversion in the region not occupied by the gates and which permits the use of a thinner field oxide, reduces the chip area, and has provision for simplified multilayer connections. The structure is used in the design of a static shift register and results in a 20% reduction in area.

  12. Characterization of Interface State in Silicon Carbide Metal Oxide Semiconductor Capacitors

    Science.gov (United States)

    Kao, Wei-Chieh

    Silicon carbide (SiC) has always been considered as an excellent material for high temperature and high power devices. Since SiC is the only compound semiconductor whose native oxide is silicon dioxide (SiO2), it puts SiC in a unique position. Although SiC metal oxide semiconductor (MOS) technology has made significant progress in recent years, there are still a number of issues to be overcome before more commercial SiC devices can enter the market. The prevailing issues surrounding SiC MOSFET devices are the low channel mobility, the low quality of the oxide layer and the high interface state density at the SiC/SiO2 interface. Consequently, there is a need for research to be performed in order to have a better understanding of the factors causing the poor SiC/SiO2 interface properties. In this work, we investigated the generation lifetime in SiC materials by using the pulsed metal oxide semiconductor (MOS) capacitor method and measured the interface state density distribution at the SiC/SiO2 interface by using the conductance measurement and the high-low frequency capacitance technique. These measurement techniques have been performed on n-type and p-type SiC MOS capacitors. In the course of our investigation, we observed fast interface states at semiconductor-dielectric interfaces in SiC MOS capacitors that underwent three different interface passivation processes, such states were detected in the nitrided samples but not observed in PSG-passivated samples. This result indicate that the lack of fast states at PSG-passivated interface is one of the main reasons for higher channel mobility in PSG MOSFETs. In addition, the effect of mobile ions in the oxide on the response time of interface states has been investigated. In the last chapter we propose additional methods of investigation that can help elucidate the origin of the particular interface states, enabling a more complete understanding of the SiC/SiO2 material system.

  13. Core/shell nano-structuring of metal oxide semiconductors and their photocatalytic studies

    Science.gov (United States)

    Balakumar, S.; Rakkesh, R. Ajay

    2013-02-01

    Core/Shell Nanostructures of Metal Oxide Semiconductors (MOS) have attracted much attention because of their most fascinating tunable applications. These core shell morphologies can be easily engineered to enhance the unique properties of the metal-oxide nanostructures, which make them suitable as photocatalyst due to their high catalytic activity, substantial stability, and brilliant perspective in applications. This paper provides an overview on our work on the synthesis of some interesting core/ shell nanostructures of MOS such as ZnO-TiO2, ZnO-MoO3, and V2O5-TiO2 using a low temperature wet chemical route and hydrothermal techniques and their photocatalytic properties from the aspects of different shell materials and shell thicknesses. The effect of process parameters such as pH, temperature, and ratio of core and shell materials, was systematically studied. Here the evidence for the core shell formation with different shell thicknesses came from the X-ray diffraction peak intensities. The shell thickness variation was also confirmed by Transmission Electron Microscopic studies. Effect of shell thickness on optical band gap of the core shell fabricated was also investigated using DRS UV-Visible spectroscopy. A comprehensive study was carried out for the photocatalytic efficiency of core shell nanostructures by evaluating the photo-degradation of Acridine Orange (AO) dye in aqueous solution under visible and solar light irradiations. These results offered simple approaches to the nanoscale engineering and synthesis of MOS hybrid systems to serve as better photocatalytic materials.

  14. Deep electron traps in HfO2-based metal-oxide-semiconductor capacitors

    International Nuclear Information System (INIS)

    Salomone, L. Sambuco; Lipovetzky, J.; Carbonetto, S.H.; García Inza, M.A.; Redin, E.G.; Campabadal, F.

    2016-01-01

    Hafnium oxide (HfO 2 ) is currently considered to be a good candidate to take part as a component in charge-trapping nonvolatile memories. In this work, the electric field and time dependences of the electron trapping/detrapping processes are studied through a constant capacitance voltage transient technique on metal-oxide-semiconductor capacitors with atomic layer deposited HfO 2 as insulating layer. A tunneling-based model is proposed to reproduce the experimental results, obtaining fair agreement between experiments and simulations. From the fitting procedure, a band of defects is identified, located in the first 1.7 nm from the Si/HfO 2 interface at an energy level E t = 1.59 eV below the HfO 2 conduction band edge with density N t = 1.36 × 10 19 cm −3 . A simplified analytical version of the model is proposed in order to ease the fitting procedure for the low applied voltage case considered in this work. - Highlights: • We characterized deep electron trapping/detrapping in HfO 2 structures. • We modeled the experimental results through a tunneling-based model. • We obtained an electron trap energy level of 1.59 eV below conduction band edge. • We obtained a spatial trap distribution extending 1.7 nm within the insulator. • A simplified tunneling front model is able to reproduce the experimental results.

  15. Thermal stability of atomic layer deposited WCxNy electrodes for metal oxide semiconductor devices

    Science.gov (United States)

    Zonensain, Oren; Fadida, Sivan; Fisher, Ilanit; Gao, Juwen; Danek, Michal; Eizenberg, Moshe

    2018-01-01

    This study is a thorough investigation of the chemical, structural, and electrical stability of W based organo-metallic films, grown by atomic layer deposition, for future use as gate electrodes in advanced metal oxide semiconductor structures. In an earlier work, we have shown that high effective work-function (4.7 eV) was produced by nitrogen enriched films (WCxNy) dominated by W-N chemical bonding, and low effective work-function (4.2 eV) was produced by hydrogen plasma resulting in WCx films dominated by W-C chemical bonding. In the current work, we observe, using x-ray diffraction analysis, phase transformation of the tungsten carbide and tungsten nitride phases after 900 °C annealing to the cubic tungsten phase. Nitrogen diffusion is also observed and is analyzed with time-of-flight secondary ion mass spectroscopy. After this 900 °C anneal, WCxNy effective work function tunability is lost and effective work-function values of 4.7-4.8 eV are measured, similar to stable effective work function values measured for PVD TiN up to 900 °C anneal. All the observed changes after annealing are discussed and correlated to the observed change in the effective work function.

  16. Structural damage at the Si/SiO2 interface resulting from electron injection in metal-oxide-semiconductor devices

    Science.gov (United States)

    Mikawa, R. E.; Lenahan, P. M.

    1985-03-01

    With electron spin resonance, we have observed structural changes in metal-oxide-semiconductor structures resulting from the photoemisson of electrons from the silicon into the oxide. A trivalent silicon defect at the Si/SiO2 interface, termed Pb, is shown to be responsible for the interface states induced by electron injection. We find that these Pb centers are amphoteric interface state defects.

  17. Semi-classical noise investigation for sub-40nm metal-oxide-semiconductor field-effect transistors

    OpenAIRE

    C. Spathis; A. Birbas; K. Georgakopoulou

    2015-01-01

    Device white noise levels in short channel Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) dictate the performance and reliability of high-frequency circuits ranging from high-speed microprocessors to Low-Noise Amplifiers (LNAs) and microwave circuits. Recent experimental noise measurements with very short devices demonstrate the existence of suppressed shot noise, contrary to the predictions of classical channel thermal noise models. In this work we show that, as the dimensions ...

  18. Low Power Operation of Temperature-Modulated Metal Oxide Semiconductor Gas Sensors.

    Science.gov (United States)

    Burgués, Javier; Marco, Santiago

    2018-01-25

    Mobile applications based on gas sensing present new opportunities for low-cost air quality monitoring, safety, and healthcare. Metal oxide semiconductor (MOX) gas sensors represent the most prominent technology for integration into portable devices, such as smartphones and wearables. Traditionally, MOX sensors have been continuously powered to increase the stability of the sensing layer. However, continuous power is not feasible in many battery-operated applications due to power consumption limitations or the intended intermittent device operation. This work benchmarks two low-power, duty-cycling, and on-demand modes against the continuous power one. The duty-cycling mode periodically turns the sensors on and off and represents a trade-off between power consumption and stability. On-demand operation achieves the lowest power consumption by powering the sensors only while taking a measurement. Twelve thermally modulated SB-500-12 (FIS Inc. Jacksonville, FL, USA) sensors were exposed to low concentrations of carbon monoxide (0-9 ppm) with environmental conditions, such as ambient humidity (15-75% relative humidity) and temperature (21-27 °C), varying within the indicated ranges. Partial Least Squares (PLS) models were built using calibration data, and the prediction error in external validation samples was evaluated during the two weeks following calibration. We found that on-demand operation produced a deformation of the sensor conductance patterns, which led to an increase in the prediction error by almost a factor of 5 as compared to continuous operation (2.2 versus 0.45 ppm). Applying a 10% duty-cycling operation of 10-min periods reduced this prediction error to a factor of 2 (0.9 versus 0.45 ppm). The proposed duty-cycling powering scheme saved up to 90% energy as compared to the continuous operating mode. This low-power mode may be advantageous for applications that do not require continuous and periodic measurements, and which can tolerate slightly higher

  19. Metal-oxide-semiconductor based gas sensors: screening, preparation, and integration.

    Science.gov (United States)

    Zhang, Jian; Qin, Ziyu; Zeng, Dawen; Xie, Changsheng

    2017-03-01

    Metal-oxide-semiconductor (MOS) based gas sensors have been considered a promising candidate for gas detection over the past few years. However, the sensing properties of MOS-based gas sensors also need to be further enhanced to satisfy the higher requirements for specific applications, such as medical diagnosis based on human breath, gas detection in harsh environments, etc. In these fields, excellent selectivity, low power consumption, a fast response/recovery rate, low humidity dependence and a low limit of detection concentration should be fulfilled simultaneously, which pose great challenges to the MOS-based gas sensors. Recently, in order to improve the sensing performances of MOS-based gas sensors, more and more researchers have carried out extensive research from theory to practice. For a similar purpose, on the basis of the whole fabrication process of gas sensors, this review gives a presentation of the important role of screening and the recent developments in high throughput screening. Subsequently, together with the sensing mechanism, the factors influencing the sensing properties of MOSs involved in material preparation processes were also discussed in detail. It was concluded that the sensing properties of MOSs not only depend on the morphological structure (particle size, morphology, pore size, etc.), but also rely on the defect structure and heterointerface structure (grain boundaries, heterointerfaces, defect concentrations, etc.). Therefore, the material-sensor integration was also introduced to maintain the structural stability in the sensor fabrication process, ensuring the sensing stability of MOS-based gas sensors. Finally, the perspectives of the MOS-based gas sensors in the aspects of fundamental research and the improvements in the sensing properties are pointed out.

  20. Photo induced minority carrier annihilation at crystalline silicon surface in metal oxide semiconductor structure

    Science.gov (United States)

    Sameshima, Toshiyuki; Furukawa, Jun; Nakamura, Tomohiko; Shigeno, Satoshi; Node, Tomohito; Yoshidomi, Shinya; Hasumi, Masahiko

    2014-03-01

    We report the properties of features of photo induced minority carrier annihilation at the silicon surface in a metal-oxide-semiconductor (MOS) structure using 9.35 GHz microwave transmittance measurement. 7 Ω cm n-type 500-µm-thick crystalline silicon substrates coated with 100-nm-thick thermally grown SiO2 layers were prepared. Part of the SiO2 at the rear surface was removed. Al electrode bars were formed at the top and rear surfaces to form the structures Al/SiO2/Si/SiO2/Al and Al/SiO2/Si/Al. 635 nm light illumination onto the top surface caused photo induced carriers to be in one side of the silicon region of the Al electrode bar of the structure Al/SiO2/Si/SiO2/Al. Microwave transmittance was measured on the other side of the silicon region of the Al electrode bars. The measurement and analysis of microwave absorption by photo induced carriers laterally diffusing across the silicon region coated with Al electrodes revealed a change in the carrier recombination velocity at the silicon surface with the bias voltage applied onto the top Al electrode. The applied bias voltages of +2.0 and -2.2 V gave peaks at surface recombination velocities of 83 and 86 cm/s, respectively, for the sample structure Al/SiO2/Si/SiO2/Al, while it was 44 cm/s under the bias-free condition. A peak surface recombination velocity of 81 cm/s was only observed at a bias voltage of -2.0 V for the sample structure Al/SiO2/Si/Al.

  1. Metal-oxide-semiconductor devices based on epitaxial germanium-carbon layers grown directly on silicon substrates by ultra-high-vacuum chemical vapor deposition

    Science.gov (United States)

    Kelly, David Quest

    After the integrated circuit was invented in 1959, complementary metal-oxide-semiconductor (CMOS) technology soon became the mainstay of the semiconductor industry. Silicon-based CMOS has dominated logic technologies for decades. During this time, chip performance has grown at an exponential rate at the cost of higher power consumption and increased process complexity. The performance gains have been made possible through scaling down circuit dimensions by improvements in lithography capabilities. Since scaling cannot continue forever, researchers have vigorously pursued new ways of improving the performance of metal-oxide-semiconductor field-effect transistors (MOSFETs) without having to shrink gate lengths and reduce the gate insulator thickness. Strained silicon, with its ability to boost transistor current by improving the channel mobility, is one of the methods that has already found its way into production. Although not yet in production, high-kappa dielectrics have also drawn wide interest in industry since they allow for the reduction of the electrical oxide thickness of the gate stack without having to reduce the physical thickness of the dielectric. Further out on the horizon is the incorporation of high-mobility materials such as germanium (Ge), silicon-germanium (Si1-xGe x), and the III-V semiconductors. Among the high-mobility materials, Ge has drawn the most attention because it has been shown to be compatible with high-kappa dielectrics and to produce high drive currents compared to Si. Among the most difficult challenges for integrating Ge on Si is finding a suitable method for reducing the number of crystal defects. The use of strain-relaxed Si1- xGex buffers has proven successful for reducing the threading dislocation density in Ge epitaxial layers, but questions remain as to the viability of this method in terms of cost and process complexity. This dissertation presents research on thin germanium-carbon (Ge 1-yCy layers on Si for the fabrication

  2. Technology breakthroughs in high performance metal-oxide-semiconductor devices for ultra-high density, low power non-volatile memory applications

    Science.gov (United States)

    Hong, Augustin Jinwoo

    Non-volatile memory devices have attracted much attention because data can be retained without power consumption more than a decade. Therefore, non-volatile memory devices are essential to mobile electronic applications. Among state of the art non-volatile memory devices, NAND flash memory has earned the highest attention because of its ultra-high scalability and therefore its ultra-high storage capacity. However, human desire as well as market competition requires not only larger storage capacity but also lower power consumption for longer battery life time. One way to meet this human desire and extend the benefits of NAND flash memory is finding out new materials for storage layer inside the flash memory, which is called floating gate in the state of the art flash memory device. In this dissertation, we study new materials for the floating gate that can lower down the power consumption and increase the storage capacity at the same time. To this end, we employ various materials such as metal nanodot, metal thin film and graphene incorporating complementary-metal-oxide-semiconductor (CMOS) compatible processes. Experimental results show excellent memory effects at relatively low operating voltages. Detailed physics and analysis on experimental results are discussed. These new materials for data storage can be promising candidates for future non-volatile memory application beyond the state of the art flash technologies.

  3. Memory effects in a Al/Ti:HfO2/CuPc metal-oxide-semiconductor device

    Science.gov (United States)

    Tripathi, Udbhav; Kaur, Ramneek

    2016-05-01

    Metal oxide semiconductor structured organic memory device has been successfully fabricated. Ti doped hafnium oxide (Ti:HfO2) nanoparticles has been fabricated by precipitation method and further calcinated at 800 °C. Copper phthalocyanine, a hole transporting material has been utilized as an organic semiconductor. The electrical properties of the fabricated device have been studied by measuring the current-voltage and capacitance-voltage characteristics. The amount of charge stored in the nanoparticles has been calculated by using flat band condition. This simple approach for fabricating MOS memory device has opens up opportunities for the development of next generation memory devices.

  4. Nanoampere charge pump by single-electron ratchet using silicon nanowire metal-oxide-semiconductor field-effect transistor

    Science.gov (United States)

    Fujiwara, Akira; Nishiguchi, Katsuhiko; Ono, Yukinori

    2008-01-01

    Nanoampere single-electron pumping is presented at 20K using a single-electron ratchet comprising silicon nanowire metal-oxide-semiconductor field-effect transistors. The ratchet features an asymmetric potential with a pocket that captures single electrons from the source and ejects them to the drain. Directional single-electron transfer is achieved by applying one ac signal with the frequency up to 2.3GHz. We find anomalous shapes of current steps which can be ascribed to nonadiabatic electron capture.

  5. Energy level alignment in metal/oxide/semiconductor and organic dye/oxide systems

    Science.gov (United States)

    Bersch, Eric

    The alignment between the energy levels of the constituent materials of metal-oxide-semiconductor field effect transistors (MOSFET's) and dye sensitized solar cell (DSSC's) is a key property that is critical to the functions of these devices. We have measured the energy level alignment (band offsets) for metal/oxide/semiconductor (MOS) systems with high-kappa gate oxides and metal gates, and for organic dye/oxide systems. The combination of UV photoemission spectroscopy (UPS) and inverse photoemission spectroscopy (IPS) in the same vacuum system was used to measure both the occupied and unoccupied density of states (DOS), respectively, of these materials systems. Additional soft X-ray photoemission spectroscopy (SXPS) measurements were made of both the valence bands and core levels of the high-kappa systems. The combination of the UPS, IPS and SXPS measurements were used to determine the band offsets between the high-kappa oxides and the Si substrates of thin film oxide/Si samples. To find the metal-oxide band offsets, thin metal layers were sequentially deposited on the oxide surfaces, followed by spectroscopic measurements. These measurements, combined with the measurements from the clean oxide surfaces, were used to find the metal-oxide band offsets. Metal-oxide band offset values were also calculated by the Interface Gap State (IGS) model. We compared the experimental metal-oxide conduction band offset (CBO) values with those calculated using the IGS model, and found that they tended to agree well for Ru/oxide and Ti/oxide systems, but not as well for Al/oxide systems. Through core level spectroscopy, we correlated observations of the composition of the metallic layers with the trends in agreement between the experimental and IGS CBO values, which led to the conclusion that the IGS model gives accurate values for the CBO for systems with chemically abrupt interfaces. Core level spectroscopy of the MOS systems also showed that Al and Ti overlayers reduced the

  6. Metal-oxide-semiconductor AlGaN/GaN heterostructure field-effect transistors using TiN/AlO stack gate layer deposited by reactive sputtering

    International Nuclear Information System (INIS)

    Li, Liuan; Wang, Qingpeng; Nakamura, Ryosuke; Jiang, Ying; Ao, Jin-Ping; Xu, Yonggang

    2015-01-01

    In this paper, the influence of deposition conditions and post annealing upon the device performance of sputtering-deposited TiN/AlO/AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors is reported. The metal-oxide-semiconductor structure on GaN with AlO deposited in a medium O 2 /Ar ratio possessed the smallest interfacial state density and reverse leakage current. Metal-oxide-semiconductor heterostructure field-effect transistors with a small hysteresis and a low leakage current were obtained by depositing AlO with a medium O 2 /Ar ratio and post-annealing at 600 °C for 1 min. After annealing, the maximum transconductance shows some decrease, resulting in a decrease of saturation drain current. (paper)

  7. Magnetotransport investigations of the two-dimensional metallic state in silicon metal-oxid-semiconductor structures

    International Nuclear Information System (INIS)

    Prinz, A.

    2002-03-01

    For more than two decades it was the predominant view among the physical community that the every two-dimensional (2D) disordered electron system becomes insulating as the temperature approaches the absolute zero temperature (0 Kelvin or -273.15 o C). Two-dimensional means that the movement of the charge carriers is confined in one direction by a potential so that the carriers can move freely only perpendicular to the confinement. The most famous physical realization of a 2D system is the silicon metal-oxide-semiconductor field effect transistor (Si-MOSFET). It is one of the basic elements of most electronic devices in our daily life. The working principle is very simple. Charges are attracted to the semiconductor-oxide interface by an electric field applied between the metallic gate and the semiconductor, so that a 2D conductive channel is formed. The charge density can be adjusted by the voltage from zero up to 10 13 cm -2 . In 1994 Kravchenko and coworkers made a very important discovery. They studied high mobility Si-MOSFETs and found that for densities below a certain critical value, nc, the resistivity increases as the temperature is decreased below 2 K, whereas for densities above $n c $ the resistivity decreases unexpectedly. The transition from insulating to metallic behavior, known as metal-insulator transition (MIT), was obviously a contradiction to the commonly accepted theories which predict insulating behavior for any density. The insulating behavior is a consequence of the wave properties of electrons which leads to interference in disordered media and thus to enhanced backscattering. In the subsequent years, experimental studies were performed on a variety of 2D systems, which qualitatively showed a similar behavior. All the investigated samples had one thing in common. The interaction energy between the carriers was considerable higher than their mean kinetic energy due to their movement in the 2D plane. Since the electron-electron interaction was

  8. High-quality III-V semiconductor MBE growth on Ge/Si virtual substrates for metal-oxide-semiconductor device fabrication

    Science.gov (United States)

    Choi, Donghun; Harris, James S.; Kim, Eunji; McIntyre, Paul C.; Cagnon, Joel; Stemmer, Susanne

    2009-03-01

    We describe the molecular-beam epitaxial (MBE) growth and fabrication of III-V metal-oxide-semiconductor (MOS) devices on Ge/Si virtual substrates. We show that high-temperature in-situ H 2 annealing in the chemical-vapor deposition system changes the Ge surface configuration and produces a surface with predominantly double-step-layer conditions, which is crucial for the growth of single-domain GaAs. In addition, the surface morphology of III-V on Ge/Si improved significantly with an annealing treatment of the Ge surface carried out under high arsenic background pressure in the MBE chamber. This facilitates uniform As-monolayer formation on the entire Ge surface. Low-temperature migration-enhanced epitaxy (MEE) and low-temperature conventional GaAs growth not only enhance the growth of single-domain GaAs without Ge outdiffusion but also produce a sufficiently smooth surface for high-k dielectric deposition, achieving low leakage current. A 300-nm-thick GaAs buffer layer was grown, followed by a 10 nm growth of In 0.2Ga 0.8As high-mobility channel layer. A 7-8-nm-thick Al 2O 3 layer was deposited ex-situ by atomic-layer deposition (ALD). We verify the quality of III-V growth using transmission electron microscopy (TEM), X-ray diffraction (XRD), secondary ion mass spectrometry (SIMS) and photoluminescence (PL) measurement. The C-V characteristics show unpinning of the Fermi level, which is a necessary condition for gate voltage control of the drain current. This work suggests this materials combination is a promising candidate for the realization of advanced, nonclassical complementary-MOS and optoelectronic devices on Si substrates.

  9. Charge-flow structures as polymeric early-warning fire alarm devices. M.S. Thesis; [metal oxide semiconductors

    Science.gov (United States)

    Sechen, C. M.; Senturia, S. D.

    1977-01-01

    The charge-flow transistor (CFT) and its applications for fire detection and gas sensing were investigated. The utility of various thin film polymers as possible sensing materials was determined. One polymer, PAPA, showed promise as a relative humidity sensor; two others, PFI and PSB, were found to be particularly suitable for fire detection. The behavior of the charge-flow capacitor, which is basically a parallel-plate capacitor with a polymer-filled gap in the metallic tip electrode, was successfully modeled as an RC transmission line. Prototype charge-flow transistors were fabricated and tested. The effective threshold voltage of this metal oxide semiconductor was found to be dependent on whether surface or bulk conduction in the thin film was dominant. Fire tests with a PFI-coated CFT indicate good sensitivity to smouldering fires.

  10. Effect of Water Vapor and Surface Morphology on the Low Temperature Response of Metal Oxide Semiconductor Gas Sensors.

    Science.gov (United States)

    Maier, Konrad; Helwig, Andreas; Müller, Gerhard; Hille, Pascal; Eickhoff, Martin

    2015-09-23

    In this work the low temperature response of metal oxide semiconductor gas sensors is analyzed. Important characteristics of this low-temperature response are a pronounced selectivity to acid- and base-forming gases and a large disparity of response and recovery time constants which often leads to an integrator-type of gas response. We show that this kind of sensor performance is related to the trend of semiconductor gas sensors to adsorb water vapor in multi-layer form and that this ability is sensitively influenced by the surface morphology. In particular we show that surface roughness in the nanometer range enhances desorption of water from multi-layer adsorbates, enabling them to respond more swiftly to changes in the ambient humidity. Further experiments reveal that reactive gases, such as NO₂ and NH₃, which are easily absorbed in the water adsorbate layers, are more easily exchanged across the liquid/air interface when the humidity in the ambient air is high.

  11. Single photon sources in 4H-SiC metal-oxide-semiconductor field-effect transistors

    Science.gov (United States)

    Abe, Y.; Umeda, T.; Okamoto, M.; Kosugi, R.; Harada, S.; Haruyama, M.; Kada, W.; Hanaizumi, O.; Onoda, S.; Ohshima, T.

    2018-01-01

    We present single photon sources (SPSs) embedded in 4H-SiC metal-oxide-semiconductor field-effect transistors (MOSFETs). They are formed in the SiC/SiO2 interface regions of wet-oxidation C-face 4H-SiC MOSFETs and were not found in other C-face and Si-face MOSFETs. Their bright room-temperature photoluminescence (PL) was observed in the range from 550 to 750 nm and revealed variable multi-peak structures as well as variable peak shifts. We characterized a wide variety of their PL spectra as the inevitable variation of local atomic structures at the interface. Their polarization dependence indicates that they are formed at the SiC side of the interface. We also demonstrate that it is possible to switch on/off the SPSs by a bias voltage of the MOSFET.

  12. Impedance analysis of Al{sub 2}O{sub 3}/H-terminated diamond metal-oxide-semiconductor structures

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Meiyong, E-mail: meiyong.liao@nims.go.jp [School of Engineering and Applied Science, Aston University, Birmingham B4 7ET (United Kingdom); Optical and Electronic Materials Unit, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 3050044 (Japan); Liu, Jiangwei; Imura, Masataka; Koide, Yasuo [Optical and Electronic Materials Unit, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 3050044 (Japan); Sang, Liwen [International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 3050044 (Japan); Coathup, David; Li, Jiangling; Ye, Haitao, E-mail: h.ye@aston.ac.uk [School of Engineering and Applied Science, Aston University, Birmingham B4 7ET (United Kingdom)

    2015-02-23

    Impedance spectroscopy (IS) analysis is carried out to investigate the electrical properties of the metal-oxide-semiconductor (MOS) structure fabricated on hydrogen-terminated single crystal diamond. The low-temperature atomic layer deposition Al{sub 2}O{sub 3} is employed as the insulator in the MOS structure. By numerically analysing the impedance of the MOS structure at various biases, the equivalent circuit of the diamond MOS structure is derived, which is composed of two parallel capacitive and resistance pairs, in series connection with both resistance and inductance. The two capacitive components are resulted from the insulator, the hydrogenated-diamond surface, and their interface. The physical parameters such as the insulator capacitance are obtained, circumventing the series resistance and inductance effect. By comparing the IS and capacitance-voltage measurements, the frequency dispersion of the capacitance-voltage characteristic is discussed.

  13. Effect of channel orientation in p-type nanowire Schottky barrier metal-oxide-semiconductor field-effect transistors

    Science.gov (United States)

    Shin, Mincheol

    2010-08-01

    Device performance of p-type nanowire Schotty barrier metal-oxide-semiconductor field-effect transistors is investigated focusing on the channel orientation effects. A rigorous quantum-mechanical calculation of hole current based on the multiband k ṡp method is carried out. The [111] oriented devices show the most superior performance, in terms of subthreshold slope, threshold voltage variation, and on-current. In particular, on-current in the [111] oriented devices is about twice as large as that in the [100] oriented devices. Tunneling effective mass, quantization energy, and Schottky barrier thickness are examined as the major factors that influence on the orientation-dependent current injection into the channel.

  14. On the decay of the trapped holes and the slow states in metal-oxide-semiconductor capacitors

    Science.gov (United States)

    Meinertzhagen, A.; Petit, C.; Yard, G.; Jourdain, M.; Salace, G.

    1996-03-01

    We have compared the charge created in p-metal-oxide-semiconductor capacitors by Fowler-Nordheim injection from the gate and from the substrate. We have shown that an injection from the gate creates a negative charge, trapped holes, and positively charged slow states whereas an injection from the substrate creates a negative charge, slow states, and amphoteric neutral traps; once charged these neutral traps are discharged irreversibly, as are the trapped holes, by an appropriate gate bias. We have observed that the discharge of the trapped holes, and the charge or discharge of the slow states, obey the same general law, but the time response of the trapped holes is always shorter than the time response of the slow states. This general law is equivalent to the so-called ``universal law,'' which is the law which describes the time dependence of current observed in any dielectric in response to a step-function field.

  15. Impact of process temperature on GaSb metal-oxide-semiconductor interface properties fabricated by ex-situ process

    Science.gov (United States)

    Yokoyama, Masafumi; Asakura, Yuji; Yokoyama, Haruki; Takenaka, Mitsuru; Takagi, Shinichi

    2014-06-01

    We have studied the impact of process temperature on interface properties of GaSb metal-oxide-semiconductor (MOS) structures fabricated by an ex-situ atomic-layer-deposition (ALD) process. We have found that the ALD temperature strongly affects the Al2O3/GaSb MOS interface properties. The Al2O3/GaSb MOS interfaces fabricated at the low ALD temperature of 150 °C have the minimum interface-trap density (Dit) of ˜4.5 × 1013 cm-2 eV-1. We have also found that the post-metalization annealing at temperature higher than 200 °C degrades the Al2O3/GaSb MOS interface properties. The low-temperature process is preferable in fabricating GaSb MOS interfaces in the ex-situ ALD process to avoid the high-temperature-induced degradations.

  16. Experimental study on vertical scaling of InAs-on-insulator metal-oxide-semiconductor field-effect transistors

    Science.gov (United States)

    Kim, SangHyeon; Yokoyama, Masafumi; Nakane, Ryosho; Ichikawa, Osamu; Osada, Takenori; Hata, Masahiko; Takenaka, Mitsuru; Takagi, Shinichi

    2014-06-01

    We have investigated effects of the vertical scaling on electrical properties in extremely thin-body InAs-on-insulator (-OI) metal-oxide-semiconductor field-effect transistors (MOSFETs). It is found that the body thickness (Tbody) scaling provides better short channel effect (SCE) control, whereas the Tbody scaling also causes the reduction of the mobility limited by channel thickness fluctuation (δTbody) scattering (μfluctuation). Also, in order to achieve better SCEs control, the thickness of InAs channel layer (Tchannel) scaling is more favorable than the thickness of MOS interface buffer layer (Tbuffer) scaling from a viewpoint of a balance between SCEs control and μfluctuation reduction. These results indicate necessity of quantum well channel structure in InAs-OI MOSFETs and these should be considered in future transistor design.

  17. Semi-classical noise investigation for sub-40nm metal-oxide-semiconductor field-effect transistors

    Directory of Open Access Journals (Sweden)

    C. Spathis

    2015-08-01

    Full Text Available Device white noise levels in short channel Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs dictate the performance and reliability of high-frequency circuits ranging from high-speed microprocessors to Low-Noise Amplifiers (LNAs and microwave circuits. Recent experimental noise measurements with very short devices demonstrate the existence of suppressed shot noise, contrary to the predictions of classical channel thermal noise models. In this work we show that, as the dimensions continue to shrink, shot noise has to be considered when the channel resistance becomes comparable to the barrier resistance at the source-channel junction. By adopting a semi-classical approach and taking retrospectively into account transport, short-channel and quantum effects, we investigate the partitioning between shot and thermal noise, and formulate a predictive model that describes the noise characteristics of modern devices.

  18. Semi-classical noise investigation for sub-40nm metal-oxide-semiconductor field-effect transistors

    Science.gov (United States)

    Spathis, C.; Birbas, A.; Georgakopoulou, K.

    2015-08-01

    Device white noise levels in short channel Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) dictate the performance and reliability of high-frequency circuits ranging from high-speed microprocessors to Low-Noise Amplifiers (LNAs) and microwave circuits. Recent experimental noise measurements with very short devices demonstrate the existence of suppressed shot noise, contrary to the predictions of classical channel thermal noise models. In this work we show that, as the dimensions continue to shrink, shot noise has to be considered when the channel resistance becomes comparable to the barrier resistance at the source-channel junction. By adopting a semi-classical approach and taking retrospectively into account transport, short-channel and quantum effects, we investigate the partitioning between shot and thermal noise, and formulate a predictive model that describes the noise characteristics of modern devices.

  19. Single-electron-occupation metal-oxide-semiconductor quantum dots formed from efficient poly-silicon gate layout

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, Malcolm S.; rochette, sophie; Rudolph, Martin; Roy, A. -M.; Curry, Matthew Jon; Ten Eyck, Gregory A.; Manginell, Ronald P.; Wendt, Joel R.; Pluym, Tammy; Carr, Stephen M; Ward, Daniel Robert; Lilly, Michael; pioro-ladriere, michel

    2017-07-01

    We introduce a silicon metal-oxide-semiconductor quantum dot structure that achieves dot-reservoir tunnel coupling control without a dedicated barrier gate. The elementary structure consists of two accumulation gates separated spatially by a gap, one gate accumulating a reservoir and the other a quantum dot. Control of the tunnel rate between the dot and the reservoir across the gap is demonstrated in the single electron regime by varying the reservoir accumulation gate voltage while compensating with the dot accumulation gate voltage. The method is then applied to a quantum dot connected in series to source and drain reservoirs, enabling transport down to the single electron regime. Finally, tuning of the valley splitting with the dot accumulation gate voltage is observed. This split accumulation gate structure creates silicon quantum dots of similar characteristics to other realizations but with less electrodes, in a single gate stack subtractive fabrication process that is fully compatible with silicon foundry manufacturing.

  20. Vertical InAs/InGaAs Heterostructure Metal-Oxide-Semiconductor Field-Effect Transistors on Si.

    Science.gov (United States)

    Kilpi, Olli-Pekka; Svensson, Johannes; Wu, Jun; Persson, Axel R; Wallenberg, Reine; Lind, Erik; Wernersson, Lars-Erik

    2017-10-11

    III-V compound semiconductors offer a path to continue Moore's law due to their excellent electron transport properties. One major challenge, integrating III-V's on Si, can be addressed by using vapor-liquid-solid grown vertical nanowires. InAs is an attractive material due to its superior mobility, although InAs metal-oxide-semiconductor field-effect transistors (MOSFETs) typically suffer from band-to-band tunneling caused by its narrow band gap, which increases the off-current and therefore the power consumption. In this work, we present vertical heterostructure InAs/InGaAs nanowire MOSFETs with low off-currents provided by the wider band gap material on the drain side suppressing band-to-band tunneling. We demonstrate vertical III-V MOSFETs achieving off-current below 1 nA/μm while still maintaining on-performance comparable to InAs MOSFETs; therefore, this approach opens a path to address not only high-performance applications but also Internet-of-Things applications that require low off-state current levels.

  1. Study of the tunnelling initiated leakage current through the carbon nanotube embedded gate oxide in metal oxide semiconductor structures

    International Nuclear Information System (INIS)

    Chakraborty, Gargi; Sarkar, C K; Lu, X B; Dai, J Y

    2008-01-01

    The tunnelling currents through the gate dielectric partly embedded with semiconducting single-wall carbon nanotubes in a silicon metal-oxide-semiconductor (MOS) structure have been investigated. The application of the gate voltage to such an MOS device results in the band bending at the interface of the partly embedded oxide dielectric and the surface of the silicon, initiating tunnelling through the gate oxide responsible for the gate leakage current whenever the thickness of the oxide is scaled. A model for silicon MOS structures, where carbon nanotubes are confined in a narrow layer embedded in the gate dielectric, is proposed to investigate the direct and the Fowler-Nordheim (FN) tunnelling currents of such systems. The idea of embedding such elements in the gate oxide is to assess the possibility for charge storage for memory device applications. Comparing the FN tunnelling onset voltage between the pure gate oxide and the gate oxide embedded with carbon nanotubes, it is found that the onset voltage decreases with the introduction of the nanotubes. The direct tunnelling current has also been studied at very low gate bias, for the thin oxide MOS structure which plays an important role in scaling down the MOS transistors. The FN tunnelling current has also been studied with varying nanotube diameter

  2. Anomalous wear-out phenomena of europium-implanted light emitters based on a metal-oxide-semiconductor structure

    International Nuclear Information System (INIS)

    Rebohle, L.; Lehmann, J.; Prucnal, S.; Nazarov, A.; Tyagulskii, I.; Tyagulskii, S.; Kanjilal, A.; Voelskow, M.; Grambole, D.; Skorupa, W.; Helm, M.

    2009-01-01

    The anomalous wear-out phenomena of Eu-implanted metal-oxide-semiconductor devices were investigated. It will be shown that in contrast to other rare earth elements the electroluminescence (EL) intensity of Eu-implanted SiO 2 layers can rise under constant current injection before the known EL quenching will start. Under certain circumstances, this rise may amount up to two orders of magnitude. The EL behavior will be correlated with the microstructural and electrical properties of the devices. Transmission electron microscopy and Rutherford backscattering spectroscopy were applied to trace the development of Eu/Eu oxide clusters and the diffusion of Eu to the interfaces of the gate oxide layer. The hydrogen profile within the SiO 2 -SiON interface region was determined by nuclear reaction analysis. Current-voltage characteristics, EL decay times, and the progression of the voltage and the EL spectrum with increasing charge injection were measured to study charge and trapping phenomena in the oxide layer to reveal details of the EL excitation mechanism. A first qualitative model for the anomalous life time behavior is proposed.

  3. Effect of Water Vapor and Surface Morphology on the Low Temperature Response of Metal Oxide Semiconductor Gas Sensors

    Directory of Open Access Journals (Sweden)

    Konrad Maier

    2015-09-01

    Full Text Available In this work the low temperature response of metal oxide semiconductor gas sensors is analyzed. Important characteristics of this low-temperature response are a pronounced selectivity to acid- and base-forming gases and a large disparity of response and recovery time constants which often leads to an integrator-type of gas response. We show that this kind of sensor performance is related to the trend of semiconductor gas sensors to adsorb water vapor in multi-layer form and that this ability is sensitively influenced by the surface morphology. In particular we show that surface roughness in the nanometer range enhances desorption of water from multi-layer adsorbates, enabling them to respond more swiftly to changes in the ambient humidity. Further experiments reveal that reactive gases, such as NO2 and NH3, which are easily absorbed in the water adsorbate layers, are more easily exchanged across the liquid/air interface when the humidity in the ambient air is high.

  4. Nonvolatile memory characteristics in metal-oxide-semiconductors containing metal nanoparticles fabricated by using a unique laser irradiation method

    International Nuclear Information System (INIS)

    Yang, JungYup; Yoon, KapSoo; Kim, JuHyung; Choi, WonJun; Do, YoungHo; Kim, ChaeOk; Hong, JinPyo

    2006-01-01

    Metal-oxide-semiconductor (MOS) capacitors with metal nanoparticles (Co NP) were successfully fabricated by utilizing an external laser exposure technique for application of non-volatile memories. Images of high-resolution transmission electron microscopy reveal that the spherically shaped Co NP are clearly embedded in the gate oxide layer. Capacitance-voltage measurements exhibit typical charging and discharging effects with a large flat-band shift. The effects of the tunnel oxide thickness and the different tunnel materials are analyzed using capacitance-voltage and retention characteristics. In addition, the memory characteristics of the NP embedded in a high-permittivity material are investigated because the thickness of conventionally available SiO 2 gates is approaching the quantum tunneling limit as devices are scaled down. Finally, the suitability of NP memory devices for nonvolatile memory applications is also discussed. The present results suggest that our unique laser exposure technique holds promise for the NP formation as floating gate elements in nonvolatile NP memories and that the quality of the tunnel oxide is very important for enhancing the retention properties of nonvolatile memory.

  5. Single-electron regime and Pauli spin blockade in a silicon metal-oxide-semiconductor double quantum dot

    Science.gov (United States)

    Rochette, Sophie; Ten Eyck, Gregory A.; Pluym, Tammy; Lilly, Michael P.; Carroll, Malcolm S.; Pioro-Ladrière, Michel

    2015-03-01

    Silicon quantum dots are promising candidates for quantum information processing as spin qubits with long coherence time. We present electrical transport measurements on a silicon metal-oxide-semiconductor (MOS) double quantum dot (DQD). First, Coulomb diamonds measurements demonstrate the one-electron regime at a relatively high temperature of 1.5 K. Then, the 8 mK stability diagram shows Pauli spin blockade with a large singlet-triplet separation of approximatively 0.40 meV, pointing towards a strong lifting of the valley degeneracy. Finally, numerical simulations indicate that by integrating a micro-magnet to those devices, we could achieve fast spin rotations of the order of 30 ns. Those results are part of the recent body of work demonstrating the potential of Si MOS DQD as reliable and long-lived spin qubits that could be ultimately integrated into modern electronic facilities. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  6. Impact of process temperature on GaSb metal-oxide-semiconductor interface properties fabricated by ex-situ process

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Masafumi, E-mail: yokoyama@mosfet.t.u-tokyo.ac.jp; Takenaka, Mitsuru; Takagi, Shinichi [Department of Electrical Engineering and Information Systems, The University of Tokyo, Yayoi 2-11-16, Bunkyo, Tokyo 113-0032 (Japan); JST-CREST, Yayoi 2-11-16, Bunkyo, Tokyo 113-0032 (Japan); Asakura, Yuji [Department of Electrical Engineering and Information Systems, The University of Tokyo, Yayoi 2-11-16, Bunkyo, Tokyo 113-0032 (Japan); Yokoyama, Haruki [NTT Photonics Laboratories, NTT Corporation, Atsugi 243-0198 (Japan)

    2014-06-30

    We have studied the impact of process temperature on interface properties of GaSb metal-oxide-semiconductor (MOS) structures fabricated by an ex-situ atomic-layer-deposition (ALD) process. We have found that the ALD temperature strongly affects the Al{sub 2}O{sub 3}/GaSb MOS interface properties. The Al{sub 2}O{sub 3}/GaSb MOS interfaces fabricated at the low ALD temperature of 150 °C have the minimum interface-trap density (D{sub it}) of ∼4.5 × 10{sup 13 }cm{sup −2} eV{sup −1}. We have also found that the post-metalization annealing at temperature higher than 200 °C degrades the Al{sub 2}O{sub 3}/GaSb MOS interface properties. The low-temperature process is preferable in fabricating GaSb MOS interfaces in the ex-situ ALD process to avoid the high-temperature-induced degradations.

  7. A Customized Metal Oxide Semiconductor-Based Gas Sensor Array for Onion Quality Evaluation: System Development and Characterization

    Science.gov (United States)

    Konduru, Tharun; Rains, Glen C.; Li, Changying

    2015-01-01

    A gas sensor array, consisting of seven Metal Oxide Semiconductor (MOS) sensors that are sensitive to a wide range of organic volatile compounds was developed to detect rotten onions during storage. These MOS sensors were enclosed in a specially designed Teflon chamber equipped with a gas delivery system to pump volatiles from the onion samples into the chamber. The electronic circuit mainly comprised a microcontroller, non-volatile memory chip, and trickle-charge real time clock chip, serial communication chip, and parallel LCD panel. User preferences are communicated with the on-board microcontroller through a graphical user interface developed using LabVIEW. The developed gas sensor array was characterized and the discrimination potential was tested by exposing it to three different concentrations of acetone (ketone), acetonitrile (nitrile), ethyl acetate (ester), and ethanol (alcohol). The gas sensor array could differentiate the four chemicals of same concentrations and different concentrations within the chemical with significant difference. Experiment results also showed that the system was able to discriminate two concentrations (196 and 1964 ppm) of methlypropyl sulfide and two concentrations (145 and 1452 ppm) of 2-nonanone, two key volatile compounds emitted by rotten onions. As a proof of concept, the gas sensor array was able to achieve 89% correct classification of sour skin infected onions. The customized low-cost gas sensor array could be a useful tool to detect onion postharvest diseases in storage. PMID:25587975

  8. Improved interface properties of GaN-based metal-oxide-semiconductor devices with thin Ga-oxide interlayers

    Science.gov (United States)

    Yamada, Takahiro; Ito, Joyo; Asahara, Ryohei; Watanabe, Kenta; Nozaki, Mikito; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji

    2017-06-01

    The impact of thin Ga-oxide (GaOx) interlayers on the electrical properties of GaN-based metal-oxide-semiconductor (MOS) devices was systematically investigated. Thin thermal oxides formed at around 900 °C were found to be beneficial for improving the electrical properties of insulator/GaN interfaces, despite the fact that thermal oxidation of GaN surfaces at high temperatures proceeds by means of grain growth. Consequently, well-behaved capacitance-voltage characteristics of SiO2/GaOx/n-GaN stacked MOS capacitors with an interface state density (Dit) as low as 1.7 × 1011 cm-2 eV-1 were demonstrated. Moreover, the Dit value was further reduced for the SiO2/GaOx/GaN capacitor with a 2-nm-thick sputter-deposited GaOx interlayer. These results clearly indicate the intrinsically superior nature of the oxide/GaN interfaces and provide plausible guiding principles for fabricating high-performance GaN-MOS devices with thin GaOx interlayers.

  9. Temperature Modulation with Specified Detection Point on Metal Oxide Semiconductor Gas Sensors for E-Nose Application

    Directory of Open Access Journals (Sweden)

    Arief SUDARMAJI

    2015-03-01

    Full Text Available Temperature modulation technique, some called dynamic measurement mode, on Metal-Oxide Semiconductor (MOS/MOX gas sensor has been widely observed and employed in many fields. We present its development, a Specified Detection Point (SDP on modulated sensing element of MOS sensor is applied which associated to its temperature modulation, temperature modulation-SDP so-named. We configured the rectangular modulation signal for MOS gas sensors (TGSs and FISs using PSOC CY8C28445-24PVXI (Programmable System on Chip which also functioned as acquisition unit and interface to a computer. Initial responses and selectivity evaluations were performed using statistical tool and Principal Component Analysis (PCA to differ sample gases (Toluene, Ethanol and Ammonia on dynamic chamber measurement under various frequencies (0.25 Hz, 1 Hz, 4 Hz and duty-cycles (25 %, 50 %, 75 %. We found that at lower frequency the response waveform of the sensors becomes more sloping and distinct, and selected modulations successfully increased the selectivity either on singular or array sensors rather than static temperature measurement.

  10. Electrical characteristic of metal-oxide-semiconductor with NiSi2 nanocrystals embedded in oxide layer

    Science.gov (United States)

    Tsai, Jenn-Kai; Lo, Ikai; Gau, M. H.; Chen, Y. L.; Yeh, P. H.; Chang, T. C.

    2006-03-01

    The nano-structured electronic devices have received more attention recently. Metal-oxide-semiconductor structure with NiSi2 nanocrystals embedded in the oxide layer, HfO2/SiO2, has been fabricated. Comparing with conventional ones, it could be operated under lower voltage and faster program/erase speed and has better endurance and retention. We have measured the temperature-dependent tunneling V-I curve on these HfO2/SiO2 nano-structured devices for the temperature from 1.2K to 300K. The results show an abnormal electrical characteristic. The tunneling V-I characteristics appear a new threshold voltage in the low temperature region, from 30K to 100K, while applied a negative voltage. The abnormal threshold voltage disappears when the temperature higher than 150K or lower than 30K. We attribute the new threshold voltage to the discrete quantum states of NiSi2 nanocrystals in the oxide layer.

  11. Signatures of Quantized Energy States in Solution-Processed Ultrathin Layers of Metal-Oxide Semiconductors and Their Devices

    KAUST Repository

    Labram, John G.

    2015-02-13

    Physical phenomena such as energy quantization have to-date been overlooked in solution-processed inorganic semiconducting layers, owing to heterogeneity in layer thickness uniformity unlike some of their vacuum-deposited counterparts. Recent reports of the growth of uniform, ultrathin (<5 nm) metal-oxide semiconductors from solution, however, have potentially opened the door to such phenomena manifesting themselves. Here, a theoretical framework is developed for energy quantization in inorganic semiconductor layers with appreciable surface roughness, as compared to the mean layer thickness, and present experimental evidence of the existence of quantized energy states in spin-cast layers of zinc oxide (ZnO). As-grown ZnO layers are found to be remarkably continuous and uniform with controllable thicknesses in the range 2-24 nm and exhibit a characteristic widening of the energy bandgap with reducing thickness in agreement with theoretical predictions. Using sequentially spin-cast layers of ZnO as the bulk semiconductor and quantum well materials, and gallium oxide or organic self-assembled monolayers as the barrier materials, two terminal electronic devices are demonstrated, the current-voltage characteristics of which resemble closely those of double-barrier resonant-tunneling diodes. As-fabricated all-oxide/hybrid devices exhibit a characteristic negative-differential conductance region with peak-to-valley ratios in the range 2-7.

  12. Study of the tunnelling initiated leakage current through the carbon nanotube embedded gate oxide in metal oxide semiconductor structures.

    Science.gov (United States)

    Chakraborty, Gargi; Sarkar, C K; Lu, X B; Dai, J Y

    2008-06-25

    The tunnelling currents through the gate dielectric partly embedded with semiconducting single-wall carbon nanotubes in a silicon metal-oxide-semiconductor (MOS) structure have been investigated. The application of the gate voltage to such an MOS device results in the band bending at the interface of the partly embedded oxide dielectric and the surface of the silicon, initiating tunnelling through the gate oxide responsible for the gate leakage current whenever the thickness of the oxide is scaled. A model for silicon MOS structures, where carbon nanotubes are confined in a narrow layer embedded in the gate dielectric, is proposed to investigate the direct and the Fowler-Nordheim (FN) tunnelling currents of such systems. The idea of embedding such elements in the gate oxide is to assess the possibility for charge storage for memory device applications. Comparing the FN tunnelling onset voltage between the pure gate oxide and the gate oxide embedded with carbon nanotubes, it is found that the onset voltage decreases with the introduction of the nanotubes. The direct tunnelling current has also been studied at very low gate bias, for the thin oxide MOS structure which plays an important role in scaling down the MOS transistors. The FN tunnelling current has also been studied with varying nanotube diameter.

  13. Investigation of structural and electrical properties on substrate material for high frequency metal-oxide-semiconductor (MOS) devices

    Science.gov (United States)

    Kumar, M.; Yang, Sung-Hyun; Janardhan Reddy, K.; JagadeeshChandra, S. V.

    2017-04-01

    Hafnium oxide (HfO2) thin films were grown on cleaned P-type Ge and Si substrates by using atomic layer deposition technique (ALD) with thickness of 8 nm. The composition analysis of as-deposited and annealed HfO2 films was characterized by XPS, further electrical measurements; we fabricated the metal-oxide-semiconductor (MOS) devices with Pt electrode. Post deposition annealing in O2 ambient at 500 °C for 30 min was carried out on both Ge and Si devices. Capacitance-voltage (C-V) and conductance-voltage (G-V) curves measured at 1 MHz. The Ge MOS devices showed improved interfacial and electrical properties, high dielectric constant (~19), smaller EOT value (0.7 nm), and smaller D it value as Si MOS devices. The C-V curves shown significantly high accumulation capacitance values from Ge devices, relatively when compare with the Si MOS devices before and after annealing. It could be due to the presence of very thin interfacial layer at HfO2/Ge stacks than HfO2/Si stacks conformed by the HRTEM images. Besides, from current-voltage (I-V) curves of the Ge devices exhibited similar leakage current as Si devices. Therefore, Ge might be a reliable substrate material for structural, electrical and high frequency applications.

  14. A Customized Metal Oxide Semiconductor-Based Gas Sensor Array for Onion Quality Evaluation: System Development and Characterization

    Directory of Open Access Journals (Sweden)

    Tharun Konduru

    2015-01-01

    Full Text Available A gas sensor array, consisting of seven Metal Oxide Semiconductor (MOS sensors that are sensitive to a wide range of organic volatile compounds was developed to detect rotten onions during storage. These MOS sensors were enclosed in a specially designed Teflon chamber equipped with a gas delivery system to pump volatiles from the onion samples into the chamber. The electronic circuit mainly comprised a microcontroller, non-volatile memory chip, and trickle-charge real time clock chip, serial communication chip, and parallel LCD panel. User preferences are communicated with the on-board microcontroller through a graphical user interface developed using LabVIEW. The developed gas sensor array was characterized and the discrimination potential was tested by exposing it to three different concentrations of acetone (ketone, acetonitrile (nitrile, ethyl acetate (ester, and ethanol (alcohol. The gas sensor array could differentiate the four chemicals of same concentrations and different concentrations within the chemical with significant difference. Experiment results also showed that the system was able to discriminate two concentrations (196 and 1964 ppm of methlypropyl sulfide and two concentrations (145 and 1452 ppm of 2-nonanone, two key volatile compounds emitted by rotten onions. As a proof of concept, the gas sensor array was able to achieve 89% correct classification of sour skin infected onions. The customized low-cost gas sensor array could be a useful tool to detect onion postharvest diseases in storage.

  15. Effect of Water Vapor and Surface Morphology on the Low Temperature Response of Metal Oxide Semiconductor Gas Sensors

    Science.gov (United States)

    Maier, Konrad; Helwig, Andreas; Müller, Gerhard; Hille, Pascal; Eickhoff, Martin

    2015-01-01

    In this work the low temperature response of metal oxide semiconductor gas sensors is analyzed. Important characteristics of this low-temperature response are a pronounced selectivity to acid- and base-forming gases and a large disparity of response and recovery time constants which often leads to an integrator-type of gas response. We show that this kind of sensor performance is related to the trend of semiconductor gas sensors to adsorb water vapor in multi-layer form and that this ability is sensitively influenced by the surface morphology. In particular we show that surface roughness in the nanometer range enhances desorption of water from multi-layer adsorbates, enabling them to respond more swiftly to changes in the ambient humidity. Further experiments reveal that reactive gases, such as NO2 and NH3, which are easily absorbed in the water adsorbate layers, are more easily exchanged across the liquid/air interface when the humidity in the ambient air is high. PMID:28793583

  16. Thin film complementary metal oxide semiconductor (CMOS) device using a single-step deposition of the channel layer

    KAUST Repository

    Nayak, Pradipta K.

    2014-04-14

    We report, for the first time, the use of a single step deposition of semiconductor channel layer to simultaneously achieve both n-and p-type transport in transparent oxide thin film transistors (TFTs). This effect is achieved by controlling the concentration of hydroxyl groups (OH-groups) in the underlying gate dielectrics. The semiconducting tin oxide layer was deposited at room temperature, and the maximum device fabrication temperature was 350C. Both n and p-type TFTs showed fairly comparable performance. A functional CMOS inverter was fabricated using this novel scheme, indicating the potential use of our approach for various practical applications.

  17. A hybrid magnetic/complementary metal oxide semiconductor three-context memory bit cell for non-volatile circuit design

    International Nuclear Information System (INIS)

    Jovanović, B.; Brum, R. M.; Torres, L.

    2014-01-01

    After decades of continued scaling to the beat of Moore's law, it now appears that conventional silicon based devices are approaching their physical limits. In today's deep-submicron nodes, a number of short-channel and quantum effects are emerging that affect the manufacturing process, as well as, the functionality of the microelectronic systems-on-chip. Spintronics devices that exploit both the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, are promising solutions to circumvent these scaling threats. Being compatible with the CMOS technology, such devices offer a promising synergy of radiation immunity, infinite endurance, non-volatility, increased density, etc. In this paper, we present a hybrid (magnetic/CMOS) cell that is able to store and process data both electrically and magnetically. The cell is based on perpendicular spin-transfer torque magnetic tunnel junctions (STT-MTJs) and is suitable for use in magnetic random access memories and reprogrammable computing (non-volatile registers, processor cache memories, magnetic field-programmable gate arrays, etc). To demonstrate the potential our hybrid cell, we physically implemented a small hybrid memory block using 45 nm × 45 nm round MTJs for the magnetic part and 28 nm fully depleted silicon on insulator (FD-SOI) technology for the CMOS part. We also report the cells measured performances in terms of area, robustness, read/write speed and energy consumption

  18. Effective dose estimation for pediatric upper gastrointestinal examinations using an anthropomorphic phantom set and metal oxide semiconductor field-effect transistor (MOSFET) technology

    International Nuclear Information System (INIS)

    Emigh, Brent; Gordon, Christopher L.; Falkiner, Michelle; Thomas, Karen E.; Connolly, Bairbre L.

    2013-01-01

    There is a need for updated radiation dose estimates in pediatric fluoroscopy given the routine use of new dose-saving technologies and increased radiation safety awareness in pediatric imaging. To estimate effective doses for standardized pediatric upper gastrointestinal (UGI) examinations at our institute using direct dose measurement, as well as provide dose-area product (DAP) to effective dose conversion factors to be used for the estimation of UGI effective doses for boys and girls up to 10 years of age at other centers. Metal oxide semiconductor field-effect transistor (MOSFET) dosimeters were placed within four anthropomorphic phantoms representing children ≤10 years of age and exposed to mock UGI examinations using exposures much greater than used clinically to minimize measurement error. Measured effective dose was calculated using ICRP 103 weights and scaled to our institution's standardized clinical UGI (3.6-min fluoroscopy, four spot exposures and four examination beam projections) as determined from patient logs. Results were compared to Monte Carlo simulations and related to fluoroscope-displayed DAP. Measured effective doses for standardized pediatric UGI examinations in our institute ranged from 0.35 to 0.79 mSv in girls and were 3-8% lower for boys. Simulation-derived and measured effective doses were in agreement (percentage differences 0.18). DAP-to-effective dose conversion factors ranged from 6.5 x 10 -4 mSv per Gy-cm 2 to 4.3 x 10 -3 mSv per Gy-cm 2 for girls and were similarly lower for boys. Using modern fluoroscopy equipment, the effective dose associated with the UGI examination in children ≤10 years at our institute is < 1 mSv. Estimations of effective dose associated with pediatric UGI examinations can be made for children up to the age of 10 using the DAP-normalized conversion factors provided in this study. These estimates can be further refined to reflect individual hospital examination protocols through the use of direct organ

  19. Practical Use of Metal Oxide Semiconductor Gas Sensors for Measuring Nitrogen Dioxide and Ozone in Urban Environments.

    Science.gov (United States)

    Peterson, Philip J D; Aujla, Amrita; Grant, Kirsty H; Brundle, Alex G; Thompson, Martin R; Vande Hey, Josh; Leigh, Roland J

    2017-07-19

    The potential of inexpensive Metal Oxide Semiconductor (MOS) gas sensors to be used for urban air quality monitoring has been the topic of increasing interest in the last decade. This paper discusses some of the lessons of three years of experience working with such sensors on a novel instrument platform (Small Open General purpose Sensor (SOGS)) in the measurement of atmospheric nitrogen dioxide and ozone concentrations. Analytic methods for increasing long-term accuracy of measurements are discussed, which permit nitrogen dioxide measurements with 95% confidence intervals of 20.0 μ g m - 3 and ozone precision of 26.8 μ g m - 3 , for measurements over a period one month away from calibration, averaged over 18 months of such calibrations. Beyond four months from calibration, sensor drift becomes significant, and accuracy is significantly reduced. Successful calibration schemes are discussed with the use of controlled artificial atmospheres complementing deployment on a reference weather station exposed to the elements. Manufacturing variation in the attributes of individual sensors are examined, an experiment possible due to the instrument being equipped with pairs of sensors of the same kind. Good repeatability (better than 0.7 correlation) between individual sensor elements is shown. The results from sensors that used fans to push air past an internal sensor element are compared with mounting the sensors on the outside of the enclosure, the latter design increasing effective integration time to more than a day. Finally, possible paths forward are suggested for improving the reliability of this promising sensor technology for measuring pollution in an urban environment.

  20. Practical Use of Metal Oxide Semiconductor Gas Sensors for Measuring Nitrogen Dioxide and Ozone in Urban Environments

    Directory of Open Access Journals (Sweden)

    Philip J. D. Peterson

    2017-07-01

    Full Text Available The potential of inexpensive Metal Oxide Semiconductor (MOS gas sensors to be used for urban air quality monitoring has been the topic of increasing interest in the last decade. This paper discusses some of the lessons of three years of experience working with such sensors on a novel instrument platform (Small Open General purpose Sensor (SOGS in the measurement of atmospheric nitrogen dioxide and ozone concentrations. Analytic methods for increasing long-term accuracy of measurements are discussed, which permit nitrogen dioxide measurements with 95% confidence intervals of 20.0 μ g m − 3 and ozone precision of 26.8 μ g m − 3 , for measurements over a period one month away from calibration, averaged over 18 months of such calibrations. Beyond four months from calibration, sensor drift becomes significant, and accuracy is significantly reduced. Successful calibration schemes are discussed with the use of controlled artificial atmospheres complementing deployment on a reference weather station exposed to the elements. Manufacturing variation in the attributes of individual sensors are examined, an experiment possible due to the instrument being equipped with pairs of sensors of the same kind. Good repeatability (better than 0.7 correlation between individual sensor elements is shown. The results from sensors that used fans to push air past an internal sensor element are compared with mounting the sensors on the outside of the enclosure, the latter design increasing effective integration time to more than a day. Finally, possible paths forward are suggested for improving the reliability of this promising sensor technology for measuring pollution in an urban environment.

  1. Interface traps contribution on transport mechanisms under illumination in metal-oxide-semiconductor structures based on silicon nanocrystals

    Science.gov (United States)

    Chatbouri, S.; Troudi, M.; Kalboussi, A.; Souifi, A.

    2018-02-01

    The transport phenomena in metal-oxide-semiconductor (MOS) structures having silicon nanocrystals (Si-NCs) inside the dielectric layer have been investigated, in dark condition and under visible illumination. At first, using deep-level transient spectroscopy (DLTS), we find the presence of series electron traps having very close energy levels (comprised between 0.28 and 0.45 eV) for ours devices (with/without Si-NCs). And a single peak appears at low temperature only for MOS with Si-NCs related to Si-NCs DLTS response. In dark condition, the conduction mechanism is dominated by the thermionic fast emission/capture of charge carriers from the highly doped polysilicon layer to Si-substrate through interface trap states for MOS without Si-NCs. The tunneling of charge carriers from highly poly-Si to Si substrate trough the trapping/detrapping mechanism in the Si-NCs, at low temperature, contributed to the conduction mechanism for MOS with Si-NCs. The light effect on transport mechanisms has been investigated using current-voltage ( I- V), and high frequency capacitance-voltage ( C- V) methods. We have been marked the photoactive trap effect in inversion zone at room temperature in I- V characteristics, which confirm the contribution of photo-generated charge on the transport mechanisms from highly poly-Si to Si substrate trough the photo-trapping/detrapping mechanism in the Si-NCs and interfaces traps levels. These results have been confirmed by an increasing about 10 pF in capacity's values for the C- V characteristics of MOS with Si-NCs, in the inversion region for inverse high voltage applied under photoexcitation at low temperature. These results are helpful to understand the principle of charge transport in dark condition and under illumination, of MOS structures having Si-NCs in the SiO x = 1.5 oxide matrix.

  2. High-Resolution p-Type Metal Oxide Semiconductor Nanowire Array as an Ultrasensitive Sensor for Volatile Organic Compounds.

    Science.gov (United States)

    Cho, Soo-Yeon; Yoo, Hae-Wook; Kim, Ju Ye; Jung, Woo-Bin; Jin, Ming Liang; Kim, Jong-Seon; Jeon, Hwan-Jin; Jung, Hee-Tae

    2016-07-13

    The development of high-performance volatile organic compound (VOC) sensor based on a p-type metal oxide semiconductor (MOS) is one of the important topics in gas sensor research because of its unique sensing characteristics, namely, rapid recovery kinetics, low temperature dependence, high humidity or thermal stability, and high potential for p-n junction applications. Despite intensive efforts made in this area, the applications of such sensors are hindered because of drawbacks related to the low sensitivity and slow response or long recovery time of p-type MOSs. In this study, the VOC sensing performance of a p-type MOS was significantly enhanced by forming a patterned p-type polycrystalline MOS with an ultrathin, high-aspect-ratio (∼25) structure (∼14 nm thickness) composed of ultrasmall grains (∼5 nm size). A high-resolution polycrystalline p-type MOS nanowire array with a grain size of ∼5 nm was fabricated by secondary sputtering via Ar(+) bombardment. Various p-type nanowire arrays of CuO, NiO, and Cr2O3 were easily fabricated by simply changing the sputtering material. The VOC sensor thus fabricated exhibited higher sensitivity (ΔR/Ra = 30 at 1 ppm hexane using NiO channels), as well as faster response or shorter recovery time (∼30 s) than that of previously reported p-type MOS sensors. This result is attributed to the high resolution and small grain size of p-type MOSs, which lead to overlap of fully charged zones; as a result, electrical properties are predominantly determined by surface states. Our new approach may be used as a route for producing high-resolution MOSs with particle sizes of ∼5 nm within a highly ordered, tall nanowire array structure.

  3. Effects of buffered HF cleaning on metal-oxide-semiconductor interface properties of Al2O3/InAs/GaSb structures

    Science.gov (United States)

    Nishi, Koichi; Yokoyama, Masafumi; Yokoyama, Haruki; Hoshi, Takuya; Sugiyama, Hiroki; Takenaka, Mitsuru; Takagi, Shinichi

    2015-06-01

    We studied the impact of buffered HF (BHF) cleaning on the interface properties of Al2O3/InAs/GaSb metal-oxide-semiconductor (MOS) structures fabricated by the ex-situ surface cleaning process. The Al2O3/InAs/GaSb MOS structures fabricated with BHF cleaning exhibited lower Dit values than those fabricated with sulfur passivation. In addition, the Al2O3/InAs/GaSb MOS structures fabricated with BHF cleaning were robust with respect to the MOS field-effect transistor fabrication process by using W gate metal with PMA in the 250-300 °C range.

  4. A New Analytical Subthreshold Behavior Model for Single-Halo, Dual-Material Gate Silicon-on-Insulator Metal Oxide Semiconductor Field Effect Transistor

    Science.gov (United States)

    Chiang, Te-Kuang

    2008-11-01

    On the basis of the exact solution of the two-dimensional Poisson equation, a new analytical subthreshold behavior model consisting of the two-dimensional potential, threshold voltage, and subthreshold current for the single-halo, dual-material gate (SHDMG) silicon-on-insulator (SOI) metal oxide semiconductor field effect transistor (MOSFET) is developed. The model is verified by the good agreement with a numerical simulation using the device simulator MEDICI. The model not only offers a physical insight into device physics but is also an efficient device model for the circuit simulation.

  5. Calibration and error analysis of metal-oxide-semiconductor field-effect transistor dosimeters for computed tomography radiation dosimetry.

    Science.gov (United States)

    Trattner, Sigal; Prinsen, Peter; Wiegert, Jens; Gerland, Elazar-Lars; Shefer, Efrat; Morton, Tom; Thompson, Carla M; Yagil, Yoad; Cheng, Bin; Jambawalikar, Sachin; Al-Senan, Rani; Amurao, Maxwell; Halliburton, Sandra S; Einstein, Andrew J

    2017-12-01

    Metal-oxide-semiconductor field-effect transistors (MOSFETs) serve as a helpful tool for organ radiation dosimetry and their use has grown in computed tomography (CT). While different approaches have been used for MOSFET calibration, those using the commonly available 100 mm pencil ionization chamber have not incorporated measurements performed throughout its length, and moreover, no previous work has rigorously evaluated the multiple sources of error involved in MOSFET calibration. In this paper, we propose a new MOSFET calibration approach to translate MOSFET voltage measurements into absorbed dose from CT, based on serial measurements performed throughout the length of a 100-mm ionization chamber, and perform an analysis of the errors of MOSFET voltage measurements and four sources of error in calibration. MOSFET calibration was performed at two sites, to determine single calibration factors for tube potentials of 80, 100, and 120 kVp, using a 100-mm-long pencil ion chamber and a cylindrical computed tomography dose index (CTDI) phantom of 32 cm diameter. The dose profile along the 100-mm ion chamber axis was sampled in 5 mm intervals by nine MOSFETs in the nine holes of the CTDI phantom. Variance of the absorbed dose was modeled as a sum of the MOSFET voltage measurement variance and the calibration factor variance, the latter being comprised of three main subcomponents: ionization chamber reading variance, MOSFET-to-MOSFET variation and a contribution related to the fact that the average calibration factor of a few MOSFETs was used as an estimate for the average value of all MOSFETs. MOSFET voltage measurement error was estimated based on sets of repeated measurements. The calibration factor overall voltage measurement error was calculated from the above analysis. Calibration factors determined were close to those reported in the literature and by the manufacturer (~3 mV/mGy), ranging from 2.87 to 3.13 mV/mGy. The error σ V of a MOSFET voltage

  6. Impact of GaN cap on charges in Al2O3/(GaN/)AlGaN/GaN metal-oxide-semiconductor heterostructures analyzed by means of capacitance measurements and simulations

    Science.gov (United States)

    Ťapajna, M.; Jurkovič, M.; Válik, L.; Haščík, Š.; Gregušová, D.; Brunner, F.; Cho, E.-M.; Hashizume, T.; Kuzmík, J.

    2014-09-01

    Oxide/semiconductor interface trap density (Dit) and net charge of Al2O3/(GaN)/AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistor (MOS-HEMT) structures with and without GaN cap were comparatively analyzed using comprehensive capacitance measurements and simulations. Dit distribution was determined in full band gap of the barrier using combination of three complementary capacitance techniques. A remarkably higher Dit (˜5-8 × 1012 eV-1 cm-2) was found at trap energies ranging from EC-0.5 to 1 eV for structure with GaN cap compared to that (Dit ˜ 2-3 × 1012 eV-1 cm-2) where the GaN cap was selectively etched away. Dit distributions were then used for simulation of capacitance-voltage characteristics. A good agreement between experimental and simulated capacitance-voltage characteristics affected by interface traps suggests (i) that very high Dit (>1013 eV-1 cm-2) close to the barrier conduction band edge hampers accumulation of free electron in the barrier layer and (ii) the higher Dit centered about EC-0.6 eV can solely account for the increased C-V hysteresis observed for MOS-HEMT structure with GaN cap. Analysis of the threshold voltage dependence on Al2O3 thickness for both MOS-HEMT structures suggests that (i) positive charge, which compensates the surface polarization, is not necessarily formed during the growth of III-N heterostructure, and (ii) its density is similar to the total surface polarization charge of the GaN/AlGaN barrier, rather than surface polarization of the top GaN layer only. Some constraints for the positive surface compensating charge are discussed.

  7. Temperature Dependent Electrical Transport in Al/Poly(4-vinyl phenol/p-GaAs Metal-Oxide-Semiconductor by Sol-Gel Spin Coating Method

    Directory of Open Access Journals (Sweden)

    Şadan Özden

    2016-01-01

    Full Text Available Deposition of poly(4-vinyl phenol insulator layer is carried out by applying the spin coating technique onto p-type GaAs substrate so as to create Al/poly(4-vinyl phenol/p-GaAs metal-oxide-semiconductor (MOS structure. Temperature was set to 80–320 K while the current-voltage (I-V characteristics of the structure were examined in the study. Ideality factor (n and barrier height (ϕb values found in the experiment ranged from 3.13 and 0.616 eV (320 K to 11.56 and 0.147 eV (80 K. Comparing the thermionic field emission theory and thermionic emission theory, the temperature dependent ideality factor behavior displayed that thermionic field emission theory is more valid than the latter. The calculated tunneling energy was 96 meV.

  8. Electrical characterization of Ω-gated uniaxial tensile strained Si nanowire-array metal-oxide-semiconductor field effect transistors with - and channel orientations

    International Nuclear Information System (INIS)

    Habicht, Stefan; Feste, Sebastian; Zhao, Qing-Tai; Buca, Dan; Mantl, Siegfried

    2012-01-01

    Nanowire-array metal-oxide-semiconductor field effect transistors (MOSFETs) were fabricated along and crystal directions on (001) un-/strained silicon-on-insulator substrates. Lateral strain relaxation through patterning was employed to transform biaxial tensile strain into uniaxial tensile strain along the nanowire. Devices feature ideal subthreshold swings and maximum on-current/off-current ratios of 10 11 for n and p-type transistors on both substrates. Electron and hole mobilities were extracted by split C–V method. For p-MOSFETs an increased mobility is observed for channel direction devices compared to devices. The n-MOSFETs showed a 45% increased electron mobility compared to devices. The comparison of strained and unstrained n-MOSFETs along and clearly demonstrates improved electron mobilities for strained channels of both channel orientations.

  9. Structural and electrical characteristics of high-k/metal gate metal oxide semiconductor capacitors fabricated on flexible, semi-transparent silicon (100) fabric

    KAUST Repository

    Rojas, Jhonathan Prieto

    2013-02-12

    In pursuit of flexible computers with high performance devices, we demonstrate a generic process to fabricate 10 000 metal-oxide-semiconductor capacitors (MOSCAPs) with semiconductor industry\\'s most advanced high-k/metal gate stacks on widely used, inexpensive bulk silicon (100) wafers and then using a combination of iso-/anisotropic etching to release the top portion of the silicon with the already fabricated devices as a mechanically flexible (bending curvature of 133 m−1), optically semi-transparent silicon fabric (1.5 cm × 3 cm × 25 μm). The electrical characteristics show 3.7 nm effective oxide thickness, −0.2 V flat band voltage, and no hysteresis from the fabricated MOSCAPs.

  10. A comparison of ionizing radiation and high field stress effects in n-channel power vertical double-diffused metal-oxide-semiconductor field-effect transistors

    International Nuclear Information System (INIS)

    Park, Mun-Soo; Na, Inmook; Wie, Chu R.

    2005-01-01

    n-channel power vertical double-diffused metal-oxide-semiconductor field-effect-transistor (VDMOSFET) devices were subjected to a high electric field stress or to a x-ray radiation. The current-voltage and capacitance-voltage measurements show that the channel-side interface and the drain-side interface are affected differently in the case of high electric field stress, whereas the interfaces are nearly uniformly affected in the case of x-ray radiation. This paper also shows that for the gated diode structure of VDMOSFET, the direct-current current-voltage technique measures only the drain-side interface; the subthreshold current-voltage technique measures only the channel-side interface; and the capacitance-voltage technique measures both interfaces simultaneously and clearly distinguishes the two interfaces. The capacitance-voltage technique is suggested to be a good quantitative method to examine both interface regions by a single measurement

  11. Identification of Fixed and Interface Trap Charges in Hot-Carrier Stressed Metal Oxide Semiconductor Field Effect Transistors (MOSFET's) through Ultraviolet Light Anneal and Gate Capacitance Measurements

    Science.gov (United States)

    Ling, C.

    1995-01-01

    Fixed and interface trap charges in hot-carrier degraded metal oxide semiconductor field effect transistors (MOSFET's) can be distinguished by ultraviolet light (λ=253.7 nm) annealing, and observing the resultant changes in the gate-to-drain capacitance. Trapped electrons anneal readily, resulting in large changes in the gate capacitance and the threshold voltage. This suggests a trap level below the conduction band edge of SiO2 that is smaller than the photon energy (4.9 eV). In contrast, trapped holes and interface traps do not anneal, or anneal insignificantly even after prolonged irradiation. This is consistent with a much deeper hole trap level in SiO2, generally reported.

  12. Effect of intravalley acoustic phonon scattering on quantum transport in multigate silicon nanowire metal-oxide-semiconductor field-effect transistors

    Science.gov (United States)

    Akhavan, Nima Dehdashti; Afzalian, Aryan; Lee, Chi-Woo; Yan, Ran; Ferain, Isabelle; Razavi, Pedram; Yu, Ran; Fagas, Giorgos; Colinge, Jean-Pierre

    2010-08-01

    In this paper we investigate the effects of intravalley acoustic phonon scattering on the quantum transport and on the electrical characteristics of multigate silicon nanowire metal-oxide-semiconductor field-effect transistors. We show that acoustic phonons cause a shift and broadening of the local DOS in the nanowire, which modifies the electrical characteristics of the device. The influence of scattering on off-state and on-state currents is investigated for different values of channel length. In the ballistic transport regime, source-to-drain tunneling current is predominant, whereas in the presence of acoustic phonons, diffusion becomes the dominant current transport mechanism. A three-dimensional quantum mechanical device simulator based on the nonequilibrium Green's function formalism in uncoupled-mode space has been developed to extract device parameters in the presence of electron-phonon interactions. Electron-phonon scattering is accounted for by adopting the self-consistent Born approximation and using the deformation potential theory.

  13. P-Channel InGaN/GaN heterostructure metal-oxide-semiconductor field effect transistor based on polarization-induced two-dimensional hole gas.

    Science.gov (United States)

    Zhang, Kexiong; Sumiya, Masatomo; Liao, Meiyong; Koide, Yasuo; Sang, Liwen

    2016-03-29

    The concept of p-channel InGaN/GaN heterostructure field effect transistor (FET) using a two-dimensional hole gas (2DHG) induced by polarization effect is demonstrated. The existence of 2DHG near the lower interface of InGaN/GaN heterostructure is verified by theoretical simulation and capacitance-voltage profiling. The metal-oxide-semiconductor FET (MOSFET) with Al2O3 gate dielectric shows a drain-source current density of 0.51 mA/mm at the gate voltage of -2 V and drain bias of -15 V, an ON/OFF ratio of two orders of magnitude and effective hole mobility of 10 cm(2)/Vs at room temperature. The normal operation of MOSFET without freeze-out at 8 K further proves that the p-channel behavior is originated from the polarization-induced 2DHG.

  14. Electrical hysteresis in p-GaN metal-oxide-semiconductor capacitor with atomic-layer-deposited Al2O3 as gate dielectric

    Science.gov (United States)

    Zhang, Kexiong; Liao, Meiyong; Imura, Masataka; Nabatame, Toshihide; Ohi, Akihiko; Sumiya, Masatomo; Koide, Yasuo; Sang, Liwen

    2016-12-01

    The electrical hysteresis in current-voltage (I-V) and capacitance-voltage characteristics was observed in an atomic-layer-deposited Al2O3/p-GaN metal-oxide-semiconductor capacitor (PMOSCAP). The absolute minimum leakage currents of the PMOSCAP for forward and backward I-V scans occurred not at 0 V but at -4.4 and +4.4 V, respectively. A negative flat-band voltage shift of 5.5 V was acquired with a capacitance step from +4.4 to +6.1 V during the forward scan. Mg surface accumulation on p-GaN was demonstrated to induce an Mg-Ga-Al-O oxidized layer with a trap density on the order of 1013 cm-2. The electrical hysteresis is attributed to the hole trapping and detrapping process in the traps of the Mg-Ga-Al-O layer via the Poole-Frenkel mechanism.

  15. Memory characteristics of Au nanocrystals embedded in metal-oxide-semiconductor structure by using atomic-layer-deposited Al2O3 as control oxide

    International Nuclear Information System (INIS)

    Wang, C.-C.; Chiou, Y.-K.; Chang, C.-H.; Tseng, J.-Y.; Wu, L.-J.; Chen, C.-Y.; Wu, T.-B.

    2007-01-01

    The nonvolatile memory characteristics of metal-oxide-semiconductor (MOS) structures containing Au nanocrystals in the Al 2 O 3 /SiO 2 matrix were studied. In this work, we have demonstrated that the use of Al 2 O 3 as control oxide prepared by atomic-layer-deposition enhances the erase speed of the MOS capacitors. A giant capacitance-voltage hysteresis loop and a very short erase time which is lower than 1 ms can be obtained. Compared with the conventional floating-gate electrically erasable programmable read-only memories, the erase speed was promoted drastically. In addition, very low leakage current and large turn-around voltage resulting from electrons or holes stored in the Au nanocrystals were found in the current-voltage relation of the MOS capacitors

  16. Study of Interface Charge Densities for ZrO2 and HfO2 Based Metal-Oxide-Semiconductor Devices

    Directory of Open Access Journals (Sweden)

    N. P. Maity

    2014-01-01

    Full Text Available A thickness-dependent interfacial distribution of oxide charges for thin metal oxide semiconductor (MOS structures using high-k materials ZrO2 and HfO2 has been methodically investigated. The interface charge densities are analyzed using capacitance-voltage (C-V method and also conductance (G-V method. It indicates that, by reducing the effective oxide thickness (EOT, the interface charge densities (Dit increases linearly. For the same EOT, Dit has been found for the materials to be of the order of 1012 cm−2 eV−1 and it is originated to be in good agreement with published fabrication results at p-type doping level of 1×1017 cm−3. Numerical calculations and solutions are performed by MATLAB and device simulation is done by ATLAS.

  17. Potential for normally-off operation from GaN metal oxide semiconductor devices based upon semi-insulating GaN

    Directory of Open Access Journals (Sweden)

    Yusuke Sakai

    2013-08-01

    Full Text Available The conditions for preparing normally-off GaN devices incorporating semi-insulating (SI GaN materials are explored. The properties of SI GaN where carbon behaves as a deep level acceptor are predicted using a Shockley diagram. Metal-oxide-semiconductor (MOS structures based upon these on SI-GaN layers are designed. The bandgap alignment of these structures is analyzed using Poisson equations. Normally-off operation is shown to be possible in devices featuring a thin n-GaN layer and SI-GaN layer, because of a higher conduction band energy. It is also shown that higher threshold voltage can be achieved by reducing the carrier concentration of the n-GaN channel layer.

  18. New Analytical Model for Short-Channel Fully Depleted Dual-Material-Gate Silicon-on-Insulator Metal-Oxide-Semiconductor Field-Effect Transistors

    Science.gov (United States)

    Te-Kuang Chiang,

    2010-07-01

    Using the exact solution of the two-dimensional Poisson equation, a new analytical model comprising two-dimensional potential and threshold voltage for short-channel fully depleted dual-material-gate silicon-on-insulator (SOI) metal-oxide-semiconductor field-effect transistors (MOSFETs) is developed. The model shows that the minimum acceptable channel length can be sustained while repressing the short-channel effects if a thin gate oxide and a thin silicon body are employed in the device. Moreover, by increasing the ratio of the screen gate length to control gate length, the threshold voltage roll-off can be more effectively reduced. The model is verified by the close agreement of its results with those of a numerical simulation using the device simulator MEDICI. The model not only offers an insight into the device physics but is also an efficient model for circuit simulation.

  19. Spin-dependent transport properties of a GaMnAs-based vertical spin metal-oxide-semiconductor field-effect transistor structure

    International Nuclear Information System (INIS)

    Kanaki, Toshiki; Asahara, Hirokatsu; Ohya, Shinobu; Tanaka, Masaaki

    2015-01-01

    We fabricate a vertical spin metal-oxide-semiconductor field-effect transistor (spin-MOSFET) structure, which is composed of an epitaxial single-crystal heterostructure with a ferromagnetic-semiconductor GaMnAs source/drain, and investigate its spin-dependent transport properties. We modulate the drain-source current I DS by ∼±0.5% with a gate-source voltage of ±10.8 V and also modulate I DS by up to 60% with changing the magnetization configuration of the GaMnAs source/drain at 3.5 K. The magnetoresistance ratio is more than two orders of magnitude higher than that obtained in the previous studies on spin MOSFETs. Our result shows that a vertical structure is one of the hopeful candidates for spin MOSFET when the device size is reduced to a sub-micron or nanometer scale

  20. A reliable extraction method for source and drain series resistances in silicon nanowire metal-oxide-semiconductor field-effect-transistors (MOSFETs) based on radio-frequency analysis.

    Science.gov (United States)

    Hwa, Jae Hwa; Yoon, Young Jun; Lee, Hwan Gi; Yoo, Gwan Min; Cho, Eou-Sik; Cho, Seongjae; Lee, Jung-Hee; Kang, In Man

    2014-11-01

    This paper presents a new extraction method for source and drain (S/D) series resistances of silicon nanowire (SNW) metal-oxide-semiconductor field-effect transistors (MOSFETs) based on small-signal radio-frequency (RF) analysis. The proposed method can be applied to the extraction of S/D series resistances for SNW MOSFETs with finite off-state channel resistance as well as gate bias-dependent on-state resistive components realized by 3-dimensional (3-D) device simulation. The series resistances as a function of frequency and gate voltage are presented and compared with the results obtained by an existing method with infinite off-state channel resistance model. The accuracy of the newly proposed parameter extraction method has been successfully verified by Z22- and Y-parameters up to 100 GHz operation frequency.

  1. Molecular-beam-deposited yttrium-oxide dielectrics in aluminum-gated metal - oxide - semiconductor field-effect transistors: Effective electron mobility

    International Nuclear Information System (INIS)

    Ragnarsson, L.-A degree.; Guha, S.; Copel, M.; Cartier, E.; Bojarczuk, N. A.; Karasinski, J.

    2001-01-01

    We report on high effective mobilities in yttrium-oxide-based n-channel metal - oxide - semiconductor field-effect transistors (MOSFETs) with aluminum gates. The yttrium oxide was grown in ultrahigh vacuum using a reactive atomic-beam-deposition system. Medium-energy ion-scattering studies indicate an oxide with an approximate composition of Y 2 O 3 on top of a thin layer of interfacial SiO 2 . The thickness of this interfacial oxide as well as the effective mobility are found to be dependent on the postgrowth anneal conditions. Optimum conditions result in mobilities approaching that of SiO 2 -based MOSFETs at higher fields with peak mobilities at approximately 210 cm 2 /Vs. [copyright] 2001 American Institute of Physics

  2. Non-Stoichiometric SixN Metal-Oxide-Semiconductor Field-Effect Transistor for Compact Random Number Generator with 0.3 Mbit/s Generation Rate

    Science.gov (United States)

    Matsumoto, Mari; Ohba, Ryuji; Yasuda, Shin-ichi; Uchida, Ken; Tanamoto, Tetsufumi; Fujita, Shinobu

    2008-08-01

    The demand for random numbers for security applications is increasing. A conventional random number generator using thermal noise can generate unpredictable high-quality random numbers, but the circuit is extremely large because of large amplifier circuit for a small thermal signal. On the other hand, a pseudo-random number generator is small but the quality of randomness is bad. For a small circuit and a high quality of randomness, we purpose a non-stoichiometric SixN metal-oxide-semiconductor field-effect transistor (MOSFET) noise source device. This device generates a very large noise signal without an amplifier circuit. As a result, it is shown that, utilizing a SiN MOSFET, we can attain a compact random number generator with a high generation rate near 1 Mbit/s, which is suitable for almost all security applications.

  3. GaAs metal-oxide-semiconductor based non-volatile flash memory devices with InAs quantum dots as charge storage nodes

    International Nuclear Information System (INIS)

    Islam, Sk Masiul; Chowdhury, Sisir; Sarkar, Krishnendu; Nagabhushan, B.; Banerji, P.; Chakraborty, S.; Mukherjee, Rabibrata

    2015-01-01

    Ultra-thin InP passivated GaAs metal-oxide-semiconductor based non-volatile flash memory devices were fabricated using InAs quantum dots (QDs) as charge storing elements by metal organic chemical vapor deposition technique to study the efficacy of the QDs as charge storage elements. The grown QDs were embedded between two high-k dielectric such as HfO 2 and ZrO 2 , which were used for tunneling and control oxide layers, respectively. The size and density of the QDs were found to be 5 nm and 1.8×10 11 cm −2 , respectively. The device with a structure Metal/ZrO 2 /InAs QDs/HfO 2 /GaAs/Metal shows maximum memory window equivalent to 6.87 V. The device also exhibits low leakage current density of the order of 10 −6 A/cm 2 and reasonably good charge retention characteristics. The low value of leakage current in the fabricated memory device is attributed to the Coulomb blockade effect influenced by quantum confinement as well as reduction of interface trap states by ultra-thin InP passivation on GaAs prior to HfO 2 deposition

  4. Determination of bulk and interface density of states in metal oxide semiconductor thin-film transistors by using capacitance-voltage characteristics

    Science.gov (United States)

    Wei, Xixiong; Deng, Wanling; Fang, Jielin; Ma, Xiaoyu; Huang, Junkai

    2017-10-01

    A physical-based straightforward extraction technique for interface and bulk density of states in metal oxide semiconductor thin film transistors (TFTs) is proposed by using the capacitance-voltage (C-V) characteristics. The interface trap density distribution with energy has been extracted from the analysis of capacitance-voltage characteristics. Using the obtained interface state distribution, the bulk trap density has been determined. With this method, for the interface trap density, it is found that deep state density nearing the mid-gap is approximately constant and tail states density increases exponentially with energy; for the bulk trap density, it is a superposition of exponential deep states and exponential tail states. The validity of the extraction is verified by comparisons with the measured current-voltage (I-V) characteristics and the simulation results by the technology computer-aided design (TCAD) model. This extraction method uses non-numerical iteration which is simple, fast and accurate. Therefore, it is very useful for TFT device characterization.

  5. Interfacial and electrical properties of Al2O3/GaN metal-oxide-semiconductor junctions with ultrathin AlN layer

    Science.gov (United States)

    Kim, Hogyoung; Kim, Dong Ha; Choi, Byung Joon

    2017-12-01

    Ultrathin AlN layer deposited by atomic layer deposition (ALD) was employed in Al2O3/GaN metal-oxide-semiconductor (MOS) capacitors, and their interfacial and electrical properties were investigated using X-ray photoelectron spectroscopy (XPS) and current-voltage ( I-V) and capacitance-voltage ( C-V) measurements. XPS analyses revealed that the diffusion of N atoms into Al2O3 and the degradation of Al2O3 film quality were significant for the thickest Al2O3 (10 nm). The sample with a 10-nm-thick Al2O3 layer produced the highest leakage current and trap density. These results may result from the deteriorated interface characteristics near the AlN layer caused by long growth time. Therefore, it is suggested that the Al2O3 thickness (and optimal growth time) is a key factor in Al2O3/AlN/GaN MOS capacitors.

  6. Epitaxial ZnO gate dielectrics deposited by RF sputter for AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors

    Science.gov (United States)

    Yoon, Seonno; Lee, Seungmin; Kim, Hyun-Seop; Cha, Ho-Young; Lee, Hi-Deok; Oh, Jungwoo

    2018-01-01

    Radio frequency (RF)-sputtered ZnO gate dielectrics for AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors (MOS-HEMTs) were investigated with varying O2/Ar ratios. The ZnO deposited with a low oxygen content of 4.5% showed a high dielectric constant and low interface trap density due to the compensation of oxygen vacancies during the sputtering process. The good capacitance-voltage characteristics of ZnO-on-AlGaN/GaN capacitors resulted from the high crystallinity of oxide at the interface, as investigated by x-ray diffraction and high-resolution transmission electron microscopy. The MOS-HEMTs demonstrated comparable output electrical characteristics with conventional Ni/Au HEMTs but a lower gate leakage current. At a gate voltage of -20 V, the typical gate leakage current for a MOS-HEMT with a gate length of 6 μm and width of 100 μm was found to be as low as 8.2 × 10-7 mA mm-1, which was three orders lower than that of the Ni/Au Schottky gate HEMT. The reduction of the gate leakage current improved the on/off current ratio by three orders of magnitude. These results indicate that RF-sputtered ZnO with a low O2/Ar ratio is a good gate dielectric for high-performance AlGaN/GaN MOS-HEMTs.

  7. Interface States and Trapping Effects in Al2O3- and ZrO2/InAlN/AlN/GaN Metal-Oxide-Semiconductor Heterostructures

    Science.gov (United States)

    Ťapajna, Milan; Kuzmík, Jan; Čičo, Karol; Pogany, Dionyz; Pozzovivo, Gianmauro; Strasser, Gottfried; Abermann, Stephan; Bertagnolli, Emmerich; Carlin, Jean-François; Grandjean, Nicolas; Fröhlich, Karol

    2009-09-01

    We investigate Al2O3- and ZrO2/InAlN/GaN metal-oxide-semiconductor heterostructures (MOS-H) using capacitance-time transients in the temperature range of 25-300 °C. A deep-level transient spectroscopy based analysis revealed the maximum interface state density distributions Dit(E) up to 3×1013 and 1×1013 eV-1 cm-2 for the Al2O3/InAlN and ZrO2/InAlN interface, respectively. The integral densities of interface states correlate well with the trapping-related gate-lag effect in corresponding InAlN/GaN MOS high electron mobility transistors (HEMTs). This explains the strongly reduced lag effect in ZrO2 MOS HEMTs. We assume hole trapping at oxide/InAlN interface to be a dominant effect responsible for the gate-lag effect in InAlN/GaN MOS HEMTs.

  8. Capacitance characteristics of metal-oxide-semiconductor capacitors with a single layer of embedded nickel nanoparticles for the application of nonvolatile memory

    International Nuclear Information System (INIS)

    Wei, Li; Ling, Xu; Wei-Ming, Zhao; Hong-Lin, Ding; Zhong-Yuan, Ma; Jun, Xu; Kun-Ji, Chen

    2010-01-01

    This paper reports that metal-oxide-semiconductor (MOS) capacitors with a single layer of Ni nanoparticles were successfully fabricated by using electron-beam evaporation and rapid thermal annealing for application to nonvolatile memory. Experimental scanning electron microscopy images showed that Ni nanoparticles of about 5 nm in diameter were clearly embedded in the SiO 2 layer on p-type Si (100). Capacitance–voltage measurements of the MOS capacitor show large flat-band voltage shifts of 1.8 V, which indicate the presence of charge storage in the nickel nanoparticles. In addition, the charge-retention characteristics of MOS capacitors with Ni nanoparticles were investigated by using capacitance–time measurements. The results showed that there was a decay of the capacitance embedded with Ni nanoparticles for an electron charge after 10 4 s. But only a slight decay of the capacitance originating from hole charging was observed. The present results indicate that this technique is promising for the efficient formation or insertion of metal nanoparticles inside MOS structures. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  9. In Situ XPS Chemical Analysis of MnSiO3 Copper Diffusion Barrier Layer Formation and Simultaneous Fabrication of Metal Oxide Semiconductor Electrical Test MOS Structures.

    Science.gov (United States)

    Byrne, Conor; Brennan, Barry; McCoy, Anthony P; Bogan, Justin; Brady, Anita; Hughes, Greg

    2016-02-03

    Copper/SiO2/Si metal-oxide-semiconductor (MOS) devices both with and without a MnSiO3 barrier layer at the Cu/SiO2 interface have been fabricated in an ultrahigh vacuum X-ray photoelectron spectroscopy (XPS) system, which allows interface chemical characterization of the barrier formation process to be directly correlated with electrical testing of barrier layer effectiveness. Capacitance voltage (CV) analysis, before and after tube furnace anneals of the fabricated MOS structures showed that the presence of the MnSiO3 barrier layer significantly improved electric stability of the device structures. Evidence of improved adhesion of the deposited copper layer to the MnSiO3 surface compared to the clean SiO2 surface was apparent both from tape tests and while probing the samples during electrical testing. Secondary ion mass spectroscopy (SIMS) depth profiling measurements of the MOS test structures reveal distinct differences of copper diffusion into the SiO2 dielectric layers following the thermal anneal depending on the presence of the MnSiO3 barrier layer.

  10. Investigation of 'surface donors' in Al2O3/AlGaN/GaN metal-oxide-semiconductor heterostructures: Correlation of electrical, structural, and chemical properties

    Science.gov (United States)

    Ťapajna, M.; Stoklas, R.; Gregušová, D.; Gucmann, F.; Hušeková, K.; Haščík, Š.; Fröhlich, K.; Tóth, L.; Pécz, B.; Brunner, F.; Kuzmík, J.

    2017-12-01

    III-N surface polarization compensating charge referred here to as 'surface donors' (SD) was analyzed in Al2O3/AlGaN/GaN metal-oxide-semiconductor (MOS) heterojunctions using scaled oxide films grown by metal-organic chemical vapor deposition at 600 °C. We systematically investigated impact of HCl pre-treatment prior to oxide deposition and post-deposition annealing (PDA) at 700 °C. SD density was reduced down to 1.9 × 1013 cm-2 by skipping HCl pre-treatment step as compared to 3.3 × 1013 cm-2 for structures with HCl pre-treatment followed by PDA. The nature and origin of SD was then analyzed based on the correlation between electrical, micro-structural, and chemical properties of the Al2O3/GaN interfaces with different SD density (NSD). From the comparison between distributions of interface traps of MOS heterojunction with different NSD, it is demonstrated that SD cannot be attributed to interface trapped charge. Instead, variation in the integrity of the GaOx interlayer confirmed by X-ray photoelectron spectroscopy is well correlated with NSD, indicating SD may be formed by border traps at the Al2O3/GaOx interface.

  11. Influence of CO annealing in metal-oxide-semiconductor capacitors with SiO2 films thermally grown on Si and on SiC

    Science.gov (United States)

    Pitthan, E.; dos Reis, R.; Corrêa, S. A.; Schmeisser, D.; Boudinov, H. I.; Stedile, F. C.

    2016-01-01

    Understanding the influence of SiC reaction with CO, a by-product of SiC thermal oxidation, is a key point to elucidate the origin of electrical defects in SiC metal-oxide-semiconductor (MOS) devices. In this work, the effects on electrical, structural, and chemical properties of SiO2/Si and SiO2/SiC structures submitted to CO annealing were investigated. It was observed that long annealing times resulted in the incorporation of carbon from CO in the Si substrate, followed by deterioration of the SiO2/Si interface, and its crystallization as SiC. Besides, this incorporated carbon remained in the Si surface (previous SiO2/Si region) after removal of the silicon dioxide film by HF etching. In the SiC case, an even more defective surface region was observed due to the CO interaction. All MOS capacitors formed using both semiconductor materials presented higher leakage current and generation of positive effective charge after CO annealings. Such results suggest that the negative fixed charge, typically observed in SiO2/SiC structures, is not originated from the interaction of the CO by-product, formed during SiC oxidation, with the SiO2/SiC interfacial region.

  12. Interfacial and electrical properties of InGaAs metal-oxide-semiconductor capacitor with TiON/TaON multilayer composite gate dielectric

    Science.gov (United States)

    Wang, L. S.; Xu, J. P.; Liu, L.; Lu, H. H.; Lai, P. T.; Tang, W. M.

    2015-03-01

    InGaAs metal-oxide-semiconductor (MOS) capacitors with composite gate dielectric consisting of Ti-based oxynitride (TiON)/Ta-based oxynitride (TaON) multilayer are fabricated by RF sputtering. The interfacial and electrical properties of the TiON/TaON/InGaAs and TaON/TiON/InGaAs MOS structures are investigated and compared. Experimental results show that the former exhibits lower interface-state density (1.0 × 1012 cm-2 eV-1 at midgap), smaller gate leakage current (9.5 × 10-5 A/cm2 at a gate voltage of 2 V), larger equivalent dielectric constant (19.8), and higher reliability under electrical stress than the latter. The involved mechanism lies in the fact that the ultrathin TaON interlayer deposited on the sulfur-passivated InGaAs surface can effectively reduce the defective states and thus unpin the Femi level at the TaON/InGaAs interface, improving the electrical properties of the device.

  13. Slow response in gate current-voltage characteristics of metal-oxide-semiconductor structures on the 4H-SiC(000\\bar{1}) face

    Science.gov (United States)

    Kumagai, Naoki; Kimura, Hiroshi; Onishi, Yasuhiko; Okamoto, Mitsuo; Fukuda, Kenji

    2016-05-01

    We have investigated the gate current-voltage (I g-V g) characteristics of n-channel metal-oxide-semiconductor field-effect transistors (MOSFETs) and p-MOS capacitors on the 4H-SiC(000\\bar{1}) face. The gate current response to a change in gate voltage has a very slow part, which has been considered to be due to slow traps in the oxide near the SiO2-SiC interface. However, we found that the slow response can be explained by fast interface traps if the traps have a relatively large concentration. Carrier injection into the interface traps results in a change in the surface potential, and this suppresses the further injection of carriers. This new model can explain many electrical properties such as the constant-current behavior in the I g-V g characteristics, which was confirmed by one-dimensional (1D) device simulation. According to this model, the interface traps will not be occupied up to the surface Fermi level within the general time scale of the measurement. In spite of the arguments described above, slow traps also probably exist near the interface between SiO2 and SiC.

  14. Study on the drain bias effect on negative bias temperature instability degradation of an ultra-short p-channel metal-oxide-semiconductor field-effect transistor

    International Nuclear Information System (INIS)

    Yan-Rong, Cao; Xiao-Hua, Ma; Yue, Hao; Shi-Gang, Hu

    2010-01-01

    This paper studies the effect of drain bias on ultra-short p-channel metal-oxide-semiconductor field-effect transistor (PMOSFET) degradation during negative bias temperature (NBT) stress. When a relatively large gate voltage is applied, the degradation magnitude is much more than the drain voltage which is the same as the gate voltage supplied, and the time exponent gets larger than that of the NBT instability (NBTI). With decreasing drain voltage, the degradation magnitude and the time exponent all get smaller. At some values of the drain voltage, the degradation magnitude is even smaller than that of NBTI, and when the drain voltage gets small enough, the exhibition of degradation becomes very similar to the NBTI degradation. When a relatively large drain voltage is applied, with decreasing gate voltage, the degradation magnitude gets smaller. However, the time exponent becomes larger. With the help of electric field simulation, this paper concludes that the degradation magnitude is determined by the vertical electric field of the oxide, the amount of hot holes generated by the strong channel lateral electric field at the gate/drain overlap region, and the time exponent is mainly controlled by localized damage caused by the lateral electric field of the oxide in the gate/drain overlap region where hot carriers are produced. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  15. Modeling of anisotropic two-dimensional materials monolayer HfS{sub 2} and phosphorene metal-oxide semiconductor field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jiwon [SEMATECH, 257 Fuller Rd #2200, Albany, New York 12203 (United States)

    2015-06-07

    Ballistic transport characteristics of metal-oxide semiconductor field effect transistors (MOSFETs) based on anisotropic two-dimensional materials monolayer HfS{sub 2} and phosphorene are explored through quantum transport simulations. We focus on the effects of the channel crystal orientation and the channel length scaling on device performances. Especially, the role of degenerate conduction band (CB) valleys in monolayer HfS{sub 2} is comprehensively analyzed. Benchmarking monolayer HfS{sub 2} with phosphorene MOSFETs, we predict that the effect of channel orientation on device performances is much weaker in monolayer HfS{sub 2} than in phosphorene due to the degenerate CB valleys of monolayer HfS{sub 2}. Our simulations also reveal that at 10 nm channel length scale, phosphorene MOSFETs outperform monolayer HfS{sub 2} MOSFETs in terms of the on-state current. However, it is observed that monolayer HfS{sub 2} MOSFETs may offer comparable, but a little bit degraded, device performances as compared with phosphorene MOSFETs at 5 nm channel length.

  16. An accurate simulation study on capacitance-voltage characteristics of metal-oxide-semiconductor field-effect transistors in novel structures

    Science.gov (United States)

    Yu, Eunseon; Cho, Seongjae; Park, Byung-Gook

    2017-09-01

    An essential and important method for physical and electrical characterization of a metal-oxide-semiconductor (MOS) structure is the capacitance-voltage (C-V) measurement. Judging from the C-V characteristics of a MOS structure, we are allowed to predict the DC and AC behaviors of the field-effect transistor and extract a set of primary parameters. The MOS field-effect transistor (MOSFET) technology has evolved to enhance the gate controllability over the channel in order for effectively suppressing the short-channel effects (SCEs) unwantedly taking place as device scaling progresses. For the goal, numerous novel structures have been suggested for the advanced MOSFET devices. However, the C-V characteristics of such novel MOS structures have not been seldom studied in depth. In this work, we report the C-V characteristics of ultra-thin-body (UTB) MOSFETs on the bulk Si and silicon-on-insulator (SOI) substrates by rigorous technology computer-aided design (TCAD) simulation. For higher credibility and accuracy, quantum-mechanical models are activated and empirical material parameters are employed from the existing literature. The MOSFET structure and the material configurations are schemed referring advanced logic technology suggested by the most recent technology roadmap. The C-V characteristics of UTB MOSFETs having a floating body with extremely small volume are closely investigated.

  17. Optimization of Vertical Double-Diffused Metal-Oxide Semiconductor (VDMOS) Power Transistor Structure for Use in High Frequencies and Medical Devices.

    Science.gov (United States)

    Farhadi, Rozita; Farhadi, Bita

    2014-01-01

    Power transistors, such as the vertical, double-diffused, metal-oxide semiconductor (VDMOS), are used extensively in the amplifier circuits of medical devices. The aim of this research was to construct a VDMOS power transistor with an optimized structure to enhance the operation of medical devices. First, boron was implanted in silicon by implanting unclamped inductive switching (UIS) and a Faraday shield. The Faraday shield was implanted in order to replace the gate-field parasitic capacitor on the entry part of the device. Also, implanting the UIS was used in order to decrease the effect of parasitic bipolar junction transistor (BJT) of the VDMOS power transistor. The research tool used in this study was Silvaco software. By decreasing the transistor entry resistance in the optimized VDMOS structure, power losses and noise at the entry of the transistor were decreased, and, by increasing the breakdown voltage, the lifetime of the VDMOS transistor lifetime was increased, which resulted in increasing drain flow and decreasing Ron. This consequently resulted in enhancing the operation of high-frequency medical devices that use transistors, such as Radio Frequency (RF) and electrocardiograph machines.

  18. Decrease in effective electron mobility in the channel of a metal-oxide-semiconductor transistor as the gate length is decreased

    International Nuclear Information System (INIS)

    Frantsuzov, A. A.; Boyarkina, N. I.; Popov, V. P.

    2008-01-01

    Effective electron mobility μ eff in channels of metal-oxide-semiconductor transistors with a gate length L in the range of 3.8 to 0.34 μm was measured; the transistors were formed on wafers of the silicon-oninsulator type. It was found that μ eff decreases as L is decreased. It is shown that this decrease can be accounted for by the effect of series resistances of the source and drain only if it is assumed that there is a rapid increase in these resistances as the gate voltage is decreased. This assumption is difficult to substantiate. A more realistic model is suggested; this model accounts for the observed decrease in μ eff as L is decreased. The model implies that zones with a mobility lower than that in the middle part of the channel originate at the edges of the gate. An analysis shows that, in this case, the plot of the dependence of 1/μ eff on 1/L should be linear, which is exactly what is observed experimentally. The use of this plot makes it possible to determine both the electron mobility μ 0 in the middle part of the channel and the quantity A that characterizes the zones with lowered mobility at the gate’s edges.

  19. Accuracy of dielectric-dependent hybrid functionals in the prediction of optoelectronic properties of metal oxide semiconductors: a comprehensive comparison with many-body GW and experiments

    Science.gov (United States)

    Gerosa, M.; E Bottani, C.; Di Valentin, C.; Onida, G.; Pacchioni, G.

    2018-01-01

    Understanding the electronic structure of metal oxide semiconductors is crucial to their numerous technological applications, such as photoelectrochemical water splitting and solar cells. The needed experimental and theoretical knowledge goes beyond that of pristine bulk crystals, and must include the effects of surfaces and interfaces, as well as those due to the presence of intrinsic defects (e.g. oxygen vacancies), or dopants for band engineering. In this review, we present an account of the recent efforts in predicting and understanding the optoelectronic properties of oxides using ab initio theoretical methods. In particular, we discuss the performance of recently developed dielectric-dependent hybrid functionals, providing a comparison against the results of many-body GW calculations, including G 0 W 0 as well as more refined approaches, such as quasiparticle self-consistent GW. We summarize results in the recent literature for the band gap, the band level alignment at surfaces, and optical transition energies in defective oxides, including wide gap oxide semiconductors and transition metal oxides. Correlated transition metal oxides are also discussed. For each method, we describe successes and drawbacks, emphasizing the challenges faced by the development of improved theoretical approaches. The theoretical section is preceded by a critical overview of the main experimental techniques needed to characterize the optoelectronic properties of semiconductors, including absorption and reflection spectroscopy, photoemission, and scanning tunneling spectroscopy (STS).

  20. Comparison of the leading-edge timing walk in pulsed TOF laser range finding with avalanche bipolar junction transistor (BJT) and metal-oxide-semiconductor (MOS) switch based laser diode drivers.

    Science.gov (United States)

    Hintikka, Mikko; Hallman, Lauri; Kostamovaara, Juha

    2017-12-01

    Timing walk error in pulsed time-of-flight based laser range finding was studied using two different types of laser diode drivers. The study compares avalanche bipolar junction transistor (BJT) and metal-oxide-semiconductor field-effect transistor switch based laser pulse drivers, both producing 1.35 ns current pulse length (full width at half maximum), and investigates how the slowly rising part of the current pulse of the avalanche BJT based driver affects the leading edge timing walk. The walk error was measured to be very similar with both drivers within an input signal dynamic range of 1:10 000 (receiver bandwidth of 700 MHz) but increased rapidly with the avalanche BJT based driver at higher values of dynamic range. The slowly rising part does not exist in the current pulse produced by the metal-oxide-semiconductor (MOS) based laser driver, and thus the MOS based driver can be utilized in a wider dynamic range.

  1. Interface state density of SiO2/p-type 4H-SiC ( 0001 ), ( 11 2 ¯ 0 ), ( 1 1 ¯ 00 ) metal-oxide-semiconductor structures characterized by low-temperature subthreshold slopes

    Science.gov (United States)

    Kobayashi, Takuma; Nakazawa, Seiya; Okuda, Takafumi; Suda, Jun; Kimoto, Tsunenobu

    2016-04-01

    Interface properties of heavily Al-doped 4H-SiC ( 0001 ) (Si-face), ( 11 2 ¯ 0 ) (a-face), and ( 1 1 ¯ 00 ) (m-face) metal-oxide-semiconductor (MOS) structures were characterized from the low-temperature gate characteristics of metal-oxide-semiconductor field-effect transistors (MOSFETs). From low-temperature subthreshold slopes, interface state density (Dit) at very shallow energy levels (ET) near the conduction band edge (Ec) was evaluated. We discovered that the Dit near Ec (Ec - 0.01 eV MOS structures with higher Al doping density for every crystal face (Si-, a-, and m-face). Linear correlation is observed between the channel mobility and Dit near Ec, and we concluded that the mobility drop observed in heavily doped MOSFETs is mainly caused by the increase of Dit near Ec.

  2. Impact of GaN cap on charges in Al2O3/(GaN/)AlGaN/GaN metal-oxide-semiconductor heterostructures analyzed by means of capacitance measurements and simulations

    International Nuclear Information System (INIS)

    Ťapajna, M.; Jurkovič, M.; Válik, L.; Haščík, Š.; Gregušová, D.; Kuzmík, J.; Brunner, F.; Cho, E.-M.; Hashizume, T.

    2014-01-01

    Oxide/semiconductor interface trap density (D it ) and net charge of Al 2 O 3 /(GaN)/AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistor (MOS-HEMT) structures with and without GaN cap were comparatively analyzed using comprehensive capacitance measurements and simulations. D it distribution was determined in full band gap of the barrier using combination of three complementary capacitance techniques. A remarkably higher D it (∼5–8 × 10 12  eV −1  cm −2 ) was found at trap energies ranging from E C -0.5 to 1 eV for structure with GaN cap compared to that (D it  ∼ 2–3 × 10 12  eV −1  cm −2 ) where the GaN cap was selectively etched away. D it distributions were then used for simulation of capacitance-voltage characteristics. A good agreement between experimental and simulated capacitance-voltage characteristics affected by interface traps suggests (i) that very high D it (>10 13  eV −1  cm −2 ) close to the barrier conduction band edge hampers accumulation of free electron in the barrier layer and (ii) the higher D it centered about E C -0.6 eV can solely account for the increased C-V hysteresis observed for MOS-HEMT structure with GaN cap. Analysis of the threshold voltage dependence on Al 2 O 3 thickness for both MOS-HEMT structures suggests that (i) positive charge, which compensates the surface polarization, is not necessarily formed during the growth of III-N heterostructure, and (ii) its density is similar to the total surface polarization charge of the GaN/AlGaN barrier, rather than surface polarization of the top GaN layer only. Some constraints for the positive surface compensating charge are discussed.

  3. Impact of GaN cap on charges in Al₂O₃/(GaN/)AlGaN/GaN metal-oxide-semiconductor heterostructures analyzed by means of capacitance measurements and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ťapajna, M., E-mail: milan.tapajna@savba.sk; Jurkovič, M.; Válik, L.; Haščík, Š.; Gregušová, D.; Kuzmík, J. [Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava (Slovakia); Brunner, F.; Cho, E.-M. [Ferdinand-Braun-Institut, Leibniz Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Strasse 4, 12489 Berlin (Germany); Hashizume, T. [Research Center for Integrated Quantum Electronics (RCIQE), Hokkaido University, 060-0814 Sapporo, Japan and JST-CREST, 102-0075 Tokyo (Japan)

    2014-09-14

    Oxide/semiconductor interface trap density (D{sub it}) and net charge of Al₂O₃/(GaN)/AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistor (MOS-HEMT) structures with and without GaN cap were comparatively analyzed using comprehensive capacitance measurements and simulations. D{sub it} distribution was determined in full band gap of the barrier using combination of three complementary capacitance techniques. A remarkably higher D{sub it} (∼5–8 × 10¹²eV⁻¹ cm⁻²) was found at trap energies ranging from EC-0.5 to 1 eV for structure with GaN cap compared to that (D{sub it} ∼ 2–3 × 10¹²eV⁻¹ cm⁻²) where the GaN cap was selectively etched away. D{sub it} distributions were then used for simulation of capacitance-voltage characteristics. A good agreement between experimental and simulated capacitance-voltage characteristics affected by interface traps suggests (i) that very high D{sub it} (>10¹³eV⁻¹ cm⁻²) close to the barrier conduction band edge hampers accumulation of free electron in the barrier layer and (ii) the higher D{sub it} centered about EC-0.6 eV can solely account for the increased C-V hysteresis observed for MOS-HEMT structure with GaN cap. Analysis of the threshold voltage dependence on Al₂O₃ thickness for both MOS-HEMT structures suggests that (i) positive charge, which compensates the surface polarization, is not necessarily formed during the growth of III-N heterostructure, and (ii) its density is similar to the total surface polarization charge of the GaN/AlGaN barrier, rather than surface polarization of the top GaN layer only. Some constraints for the positive surface compensating charge are discussed.

  4. Electroluminescence color tuning between green and red from metal-oxide-semiconductor devices fabricated by spin-coating of rare-earth (terbium + europium) organic compounds on silicon

    Science.gov (United States)

    Matsuda, Toshihiro; Hattori, Fumihiro; Iwata, Hideyuki; Ohzone, Takashi

    2018-04-01

    Color tunable electroluminescence (EL) from metal-oxide-semiconductor devices with the rare-earth elements Tb and Eu is reported. Organic compound liquid sources of (Tb + Ba) and Eu with various Eu/Tb ratios from 0.001 to 0.4 were spin-coated on an n+-Si substrate and annealed to form an oxide insulator layer. The EL spectra had only peaks corresponding to the intrashell Tb3+/Eu3+ transitions in the spectral range from green to red, and the intensity ratio of the peaks was appropriately tuned using the appropriate Eu/Tb ratios in liquid sources. Consequently, the EL emission colors linearly changed from yellowish green to yellowish orange and eventually to reddish orange on the CIE chromaticity diagram. The gate current +I G current also affected the EL colors for the medium-Eu/Tb-ratio device. The structure of the surface insulator films analyzed by cross-sectional transmission electron microscopy (TEM), X-ray diffraction (XRD) analysis, and X-ray photoelectron spectroscopy (XPS) has four layers, namely, (Tb4O7 + Eu2O3), [Tb4O7 + Eu2O3 + (Tb/Eu/Ba)SiO x ], (Tb/Eu/Ba)SiO x , and SiO x -rich oxide. The EL mechanism proposed is that electrons injected from the Si substrate into the SiO x -rich oxide and Tb/Eu/Ba-silicate layers become hot electrons accelerated in a high electric field, and then these hot electrons excite Tb3+ and Eu3+ ions in the Tb4O7/Eu2O3 layers resulting in EL emission from Tb3+ and Eu3+ intrashell transitions.

  5. Transport properties of SiO2/AlInN/AlN/GaN metal-oxide-semiconductor high electron mobility transistors on SiC substrate

    Science.gov (United States)

    Lachab, M.; Sultana, M.; Fareed, Q.; Husna, F.; Adivarahan, V.; Khan, A.

    2014-04-01

    Unpassivated SiO2/AlInN/AlN/GaN metal-oxide-semiconductor high electron mobility transistors (MOSHEMTs) exhibiting a thin barrier layer are investigated with a particular focus on their dc characteristics dependence on the gate length. The epiwafer exhibits a sheet resistance of ˜250 Ω/□ and a channel charge density of 7.4 × 1012 cm-2 deduced from the 1 MHz capacitance-voltage curves. The results indicate that the thickness of the AlInN barrier can be reduced below 5 nm without degradation of the insulated gate devices performance. For transistors with gate lengths (LG) between 1.8 and 2.0 µm, dc drain saturation currents densities as high as 1.8 A mm-1 are achieved at +4 V gate-source bias (VGS) with very low reverse gate leakage currents. The electron zero-bias drift mobility was determined to be 1670 cm2 V-1 s-1 from the low-field channel conductance measurements. On the other side, using an analytical model it is found that the maximum output current density at VGS = 0 V can be enhanced by ˜23% when LG is scaled from 1.8 µm down to 100 nm. With further improvement of the quality of the gate insulating oxide layer and the implementation of surface passivation, both with the aim of suppressing the observed current collapse, the presented results suggest that these MOSHEMTs could become very attractive for the realization of high-power electronics.

  6. High-performance, mechanically flexible, and vertically integrated 3D carbon nanotube and InGaZnO complementary circuits with a temperature sensor.

    Science.gov (United States)

    Honda, Wataru; Harada, Shingo; Ishida, Shohei; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu

    2015-08-26

    A vertically integrated inorganic-based flexible complementary metal-oxide-semiconductor (CMOS) inverter with a temperature sensor with a high inverter gain of ≈50 and a low power consumption of inverter and the temperature dependence of the CMOS inverter characteristics are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A 94GHz Temperature Compensated Low Noise Amplifier in 45nm Silicon-on-Insulator Complementary Metal-Oxide Semiconductor (SOI CMOS)

    Science.gov (United States)

    2014-01-01

    Meninger, T. Xanthopoulos, E. Crain, D. Ha, and D. Ham . “Dual-DLL-Based CMOS All-Digital Temperature Sensor for Microprocessor Thermal Monitoring...oscillator 49 Approved for public release; distribution unlimited. ACRONYM DESCRIPTION VLSI very-large-scale integration DR dutch roll frequency ° degree

  8. Note: Multi-confocal fluorescence correlation spectroscopy in living cells using a complementary metal oxide semiconductor-single photon avalanche diode array

    Science.gov (United States)

    Kloster-Landsberg, M.; Tyndall, D.; Wang, I.; Walker, R.; Richardson, J.; Henderson, R.; Delon, A.

    2013-07-01

    Living cells are heterogeneous and rapidly changing biological samples. It is thus desirable to measure molecular concentration and dynamics in many locations at the same time. In this note, we present a multi-confocal setup capable of performing simultaneous fluorescence correlation spectroscopy measurements, by focusing the spots with a spatial light modulator and acquiring data with a monolithic 32 × 32 single-photon avalanche photodiode array. A post-processing method is proposed to correct cross-talk effects between neighboring spots. We demonstrate the applicability of our system by simultaneously measuring the diffusion of free enhanced Green Fluorescent Protein (eGFP) molecules at nine different points in living cells.

  9. Ultra-low power high temperature and radiation hard complementary metal-oxide-semiconductor (CMOS) silicon-on-insulator (SOI) voltage reference.

    Science.gov (United States)

    Boufouss, El Hafed; Francis, Laurent A; Kilchytska, Valeriya; Gérard, Pierre; Simon, Pascal; Flandre, Denis

    2013-12-13

    This paper presents an ultra-low power CMOS voltage reference circuit which is robust under biomedical extreme conditions, such as high temperature and high total ionized dose (TID) radiation. To achieve such performances, the voltage reference is designed in a suitable 130 nm Silicon-on-Insulator (SOI) industrial technology and is optimized to work in the subthreshold regime of the transistors. The design simulations have been performed over the temperature range of -40-200 °C and for different process corners. Robustness to radiation was simulated using custom model parameters including TID effects, such as mobilities and threshold voltages degradation. The proposed circuit has been tested up to high total radiation dose, i.e., 1 Mrad (Si) performed at three different temperatures (room temperature, 100 °C and 200 °C). The maximum drift of the reference voltage V(REF) depends on the considered temperature and on radiation dose; however, it remains lower than 10% of the mean value of 1.5 V. The typical power dissipation at 2.5 V supply voltage is about 20 μW at room temperature and only 75 μW at a high temperature of 200 °C. To understand the effects caused by the combination of high total ionizing dose and temperature on such voltage reference, the threshold voltages of the used SOI MOSFETs were extracted under different conditions. The evolution of V(REF) and power consumption with temperature and radiation dose can then be explained in terms of the different balance between fixed oxide charge and interface states build-up. The total occupied area including pad-ring is less than 0.09 mm2.

  10. Effective dose assessment in the maxillofacial region using thermoluminescent (TLD) and metal oxide semiconductor field-effect transistor (MOSFET) dosemeters: a comparative study

    Science.gov (United States)

    Schulze, D; Wolff, J; Rottke, D

    2014-01-01

    Objectives: The objective of this study was to compare the performance of metal oxide semiconductor field-effect transistor (MOSFET) technology dosemeters with thermoluminescent dosemeters (TLDs) (TLD 100; Thermo Fisher Scientific, Waltham, MA) in the maxillofacial area. Methods: Organ and effective dose measurements were performed using 40 TLD and 20 MOSFET dosemeters that were alternately placed in 20 different locations in 1 anthropomorphic RANDO® head phantom (the Phantom Laboratory, Salem, NY). The phantom was exposed to four different CBCT default maxillofacial protocols using small (4 × 5 cm) to full face (20 × 17 cm) fields of view (FOVs). Results: The TLD effective doses ranged between 7.0 and 158.0 µSv and the MOSFET doses between 6.1 and 175.0 µSv. The MOSFET and TLD effective doses acquired using four different (FOV) protocols were as follows: face maxillofacial (FOV 20 × 17 cm) (MOSFET, 83.4 µSv; TLD, 87.6 µSv; −5%); teeth, upper jaw (FOV, 8.5 × 5.0 cm) (MOSFET, 6.1 µSv; TLD, 7.0 µSv; −14%); tooth, mandible and left molar (FOV, 4 × 5 cm) (MOSFET, 10.3 µSv; TLD, 12.3 µSv; −16%) and teeth, both jaws (FOV, 10 × 10 cm) (MOSFET, 175 µSv; TLD, 158 µSv; +11%). The largest variation in organ and effective dose was recorded in the small FOV protocols. Conclusions: Taking into account the uncertainties of both measurement methods and the results of the statistical analysis, the effective doses acquired using MOSFET dosemeters were found to be in good agreement with those obtained using TLD dosemeters. The MOSFET dosemeters constitute a feasible alternative for TLDs for the effective dose assessment of CBCT devices in the maxillofacial region. PMID:25143020

  11. Effect of H and OH desorption and diffusion on electronic structure in amorphous In-Ga-Zn-O metal-oxide-semiconductor diodes with various gate insulators

    Science.gov (United States)

    Hino, Aya; Morita, Shinya; Yasuno, Satoshi; Kishi, Tomoya; Hayashi, Kazushi; Kugimiya, Toshihiro

    2012-12-01

    Metal-oxide-semiconductor (MOS) diodes with various gate insulators (G/Is) were characterized by capacitance-voltage characteristics and isothermal capacitance transient spectroscopy (ICTS) to evaluate the effect of H and OH desorption and diffusion on the electronic structures in amorphous In-Ga-Zn-O (a-IGZO) thin films. The density and the distribution of the space charge were found to be varied depending on the nature of the G/I. In the case of thermally grown SiO2 (thermal SiO2) G/Is, a high space-charge region was observed near the a-IGZO and G/I interface. After thermal annealing, the space-charge density in the deeper region of the film decreased, whereas remained unchanged near the interface region. The ICTS spectra obtained from the MOS diodes with the thermal SiO2 G/Is consisted of two broad peaks at around 5 × 10-4 and 3 × 10-2 s before annealing, while one broad peak was observed at around 1 × 10-4 s at the interface and at around 1 × 10-3 s in the bulk after annealing. Further, the trap density was considerably high near the interface. In contrast, the space-charge density was high throughout the bulk region of the MOS diode when the G/I was deposited by chemical vapor deposition (CVD). The ICTS spectra from the MOS diodes with the CVD G/Is revealed the existence of continuously distributed trap states, suggesting formations of high-density tail states below the conduction band minimum. According to secondary ion mass spectroscopy analyses, desorption and outdiffusion of H and OH were clearly observed in the CVD G/I sample. These phenomena could introduce structural fluctuations in the a-IGZO films, resulting in the formation of the conduction band tail states. Thin-film transistors (TFTs) with the same gate structure as the MOS diodes were fabricated to correlate the electronic properties with the TFT performance, and it was found that TFTs with the CVD G/I showed a reduced saturation mobility. These results indicate that the electronic structures

  12. Physical and electrical characteristics of AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors with rare earth Er2O3 as a gate dielectric

    International Nuclear Information System (INIS)

    Lin, Ray-Ming; Chu, Fu-Chuan; Das, Atanu; Liao, Sheng-Yu; Chou, Shu-Tsun; Chang, Liann-Be

    2013-01-01

    In this study, the rare earth erbium oxide (Er 2 O 3 ) was deposited using an electron beam onto an AlGaN/GaN heterostructure to fabricate metal-oxide-semiconductor high-electron-mobility transistors (MOS–HEMTs) that exhibited device performance superior to that of a conventional HEMT. Under similar bias conditions, the gate leakage currents of these MOS–HEMT devices were four orders of magnitude lower than those of conventional Schottky gate HEMTs. The measured sub-threshold swing (SS) and the effective trap state density (N t ) of the MOS–HEMT were 125 mV/decade and 4.3 × 10 12 cm −2 , respectively. The dielectric constant of the Er 2 O 3 layer in this study was 14, as determined through capacitance–voltage measurements. In addition, the gate–source reverse breakdown voltage increased from –166 V for the conventional HEMT to –196 V for the Er 2 O 3 MOS–HEMT. - Highlights: ► GaN/AlGaN/Er 2 O 3 metal-oxide semiconductor high electron mobility transistor ► Physical and electrical characteristics are presented. ► Electron beam evaporated Er 2 O 3 with excellent surface roughness ► Device exhibits reduced gate leakage current and improved I ON /I OFF ratio

  13. Manipulating Conduction in Metal Oxide Semiconductors: Mechanism Investigation and Conductance Tuning in Doped Fe2O3 Hematite and Metal/Ga2O3/Metal Heterostructure

    Science.gov (United States)

    Zhao, Bo

    This study aims at understanding the fundamental mechanisms of conduction in several metal oxide semiconductors, namely alpha-Fe2O 3 and beta-Ga2O3, and how it could be tuned to desired values/states to enable a wide range of application. In the first effort, by adding Ti dopant, we successfully turned Fe2O3 from insulating to conductive by fabricated compositionally and structurally well-defined epitaxial alpha-(TixFe1-x)2 O3(0001) films for x ≤ 0.09. All films were grown by oxygen plasma assisted molecular beam epitaxy on Al2O3(0001) sapphire substrate with a buffer layer of Cr2O3 to relax the strain from lattice mismatch. Van der Pauw resistivity and Hall effect measurements reveal carrier concentrations between 1019 and 1020 cm-3 at room temperature and mobilities in the range of 0.1 to 0.6 cm2/V˙s. Such low mobility, unlike conventional band-conduction semiconductor, was attributed to hopping mechanism due to strong electron-phonon interaction in the lattice. More interestingly, conduction mechanism transitions from small-polaron hopping at higher temperatures to variable range hopping at lower temperatures with a transition temperature between 180 to 140 K. Consequently, by adding Ti dopant, conductive Fe 2O3 hematite thin films were achieved with a well-understood conducting mechanism that could guide further device application such as spin transistor and water splitting. In the case of Ga2O3, while having a band gap as high as 5 eV, they are usually conductive for commercially available samples due to unintentional Si doping. However, we discovered the conductance could be repeatedly switched between high resistance state and low resistance state when made into metal/Ga2O3 /metal heterostructure. However, to obtain well controlled switching process with consistent switching voltages and resistances, understanding switching mechanism is the key. In this study, we fabricated resistive switching devices utilizing a Ni/Ga2O3/Ir heterostructure. Bipolar

  14. Improved linearity and reliability in GaN metal-oxide-semiconductor high-electron-mobility transistors using nanolaminate La2O3/SiO2 gate dielectric

    Science.gov (United States)

    Hsu, Ching-Hsiang; Shih, Wang-Cheng; Lin, Yueh-Chin; Hsu, Heng-Tung; Hsu, Hisang-Hua; Huang, Yu-Xiang; Lin, Tai-Wei; Wu, Chia-Hsun; Wu, Wen-Hao; Maa, Jer-Shen; Iwai, Hiroshi; Kakushima, Kuniyuki; Chang, Edward Yi

    2016-04-01

    Improved device performance to enable high-linearity power applications has been discussed in this study. We have compared the La2O3/SiO2 AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors (MOS-HEMTs) with other La2O3-based (La2O3/HfO2, La2O3/CeO2 and single La2O3) MOS-HEMTs. It was found that forming lanthanum silicate films can not only improve the dielectric quality but also can improve the device characteristics. The improved gate insulation, reliability, and linearity of the 8 nm La2O3/SiO2 MOS-HEMT were demonstrated.

  15. Quantitative characterization of interface traps in Al2O3/AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors by dynamic capacitance dispersion technique

    Science.gov (United States)

    Ma, Xiao-Hua; Zhu, Jie-Jie; Liao, Xue-Yang; Yue, Tong; Chen, Wei-Wei; Hao, Yue

    2013-07-01

    In this letter, the interface traps of Al2O3/AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors (MOS-HEMTs) were characterized quantitatively by dynamic capacitance dispersion technique. An analysis of Al2O3/AlGaN interface states demonstrated deep traps in the range of 0.53 eV-1.16 eV below the conduction band, with trap density nearly constant and two orders of magnitude smaller than that at AlGaN surface due to the use of atomic layer deposition-grown Al2O3 insulator. As much as 2.23 × 1013 eV-1 cm-2 fast traps with time constant smaller than 0.3 μs were observed at AlGaN/GaN interface of MOS-HEMTs, which was consistent with the qualitative prediction from pulsed I-V test.

  16. Design and control of interface reaction between Al-based dielectrics and AlGaN layer in AlGaN/GaN metal-oxide-semiconductor structures

    Science.gov (United States)

    Watanabe, Kenta; Nozaki, Mikito; Yamada, Takahiro; Nakazawa, Satoshi; Anda, Yoshiharu; Ishida, Masahiro; Ueda, Tetsuzo; Yoshigoe, Akitaka; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji

    2017-07-01

    Important clues for achieving well-behaved AlGaN/GaN metal-oxide-semiconductor (MOS) devices with Al-based gate dielectrics were systematically investigated on the basis of electrical and physical characterizations. We found that low-temperature deposition of alumina insulators on AlGaN surfaces is crucial to improve the interface quality, thermal stability, and variability of MOS devices by suppressing Ga diffusion into the gate oxides. Moreover, aluminum oxynitride grown in a reactive nitric atmosphere was proven to expand the optimal process window that would improve the interface quality and to enhance immunity against charge injection into the gate dielectrics. The results constitute common guidelines for achieving high-performance and reliable AlGaN/GaN MOS devices.

  17. Origin of the performances degradation of two-dimensional-based metal-oxide-semiconductor field effect transistors in the sub-10 nm regime: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Anh Khoa Augustin [Semiconductor Physics Laboratory, Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); IMEC, 75 Kapeldreef, B-3001 Leuven (Belgium); Pourtois, Geoffrey [IMEC, 75 Kapeldreef, B-3001 Leuven (Belgium); Department of Chemistry, Plasmant Research Group, University of Antwerp, B-2610 Wilrijk-Antwerp (Belgium); Agarwal, Tarun [IMEC, 75 Kapeldreef, B-3001 Leuven (Belgium); Department of Electrical Engineering, University of Leuven, Kasteelpark Arenberg 10, B-3001 Leuven (Belgium); Afzalian, Aryan [TSMC, Kapeldreef 75, B-3001 Leuven (Belgium); Radu, Iuliana P. [IMEC, 75 Kapeldreef, B-3001 Leuven (Belgium); Houssa, Michel [Semiconductor Physics Laboratory, Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium)

    2016-01-25

    The impact of the scaling of the channel length on the performances of metal-oxide-semiconductor field effect transistors, based on two-dimensional (2D) channel materials, is theoretically investigated, using density functional theory combined with the non-equilibrium Green's function method. It is found that the scaling of the channel length below 10 nm leads to strong device performance degradations. Our simulations reveal that this degradation is essentially due to the tunneling current flowing between the source and the drain in these aggressively scaled devices. It is shown that this electron tunneling process is modulated by the effective mass of the 2D channel material, and sets the limit of the scaling in future transistor designs.

  18. Origin of the performances degradation of two-dimensional-based metal-oxide-semiconductor field effect transistors in the sub-10 nm regime: A first-principles study

    International Nuclear Information System (INIS)

    Lu, Anh Khoa Augustin; Pourtois, Geoffrey; Agarwal, Tarun; Afzalian, Aryan; Radu, Iuliana P.; Houssa, Michel

    2016-01-01

    The impact of the scaling of the channel length on the performances of metal-oxide-semiconductor field effect transistors, based on two-dimensional (2D) channel materials, is theoretically investigated, using density functional theory combined with the non-equilibrium Green's function method. It is found that the scaling of the channel length below 10 nm leads to strong device performance degradations. Our simulations reveal that this degradation is essentially due to the tunneling current flowing between the source and the drain in these aggressively scaled devices. It is shown that this electron tunneling process is modulated by the effective mass of the 2D channel material, and sets the limit of the scaling in future transistor designs

  19. Physical and electrical characteristics of AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors with rare earth Er{sub 2}O{sub 3} as a gate dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ray-Ming, E-mail: rmlin@mail.cgu.edu.tw; Chu, Fu-Chuan; Das, Atanu; Liao, Sheng-Yu; Chou, Shu-Tsun; Chang, Liann-Be

    2013-10-01

    In this study, the rare earth erbium oxide (Er{sub 2}O{sub 3}) was deposited using an electron beam onto an AlGaN/GaN heterostructure to fabricate metal-oxide-semiconductor high-electron-mobility transistors (MOS–HEMTs) that exhibited device performance superior to that of a conventional HEMT. Under similar bias conditions, the gate leakage currents of these MOS–HEMT devices were four orders of magnitude lower than those of conventional Schottky gate HEMTs. The measured sub-threshold swing (SS) and the effective trap state density (N{sub t}) of the MOS–HEMT were 125 mV/decade and 4.3 × 10{sup 12} cm{sup −2}, respectively. The dielectric constant of the Er{sub 2}O{sub 3} layer in this study was 14, as determined through capacitance–voltage measurements. In addition, the gate–source reverse breakdown voltage increased from –166 V for the conventional HEMT to –196 V for the Er{sub 2}O{sub 3} MOS–HEMT. - Highlights: ► GaN/AlGaN/Er{sub 2}O{sub 3} metal-oxide semiconductor high electron mobility transistor ► Physical and electrical characteristics are presented. ► Electron beam evaporated Er{sub 2}O{sub 3} with excellent surface roughness ► Device exhibits reduced gate leakage current and improved I{sub ON}/I{sub OFF} ratio.

  20. Capacitance-Voltage Characterization of La2O3 Metal-Oxide-Semiconductor Structures on In0.53Ga0.47As Substrate with Different Surface Treatment Methods

    Science.gov (United States)

    Zade, Dariush; Kanda, Takashi; Yamashita, Koji; Kakushima, Kuniyuki; Nohira, Hiroshi; Ahmet, Parhat; Tsutsui, Kazuo; Nishiyama, Akira; Sugii, Nobuyuki; Natori, Kenji; Hattori, Takeo; Iwai, Hiroshi

    2011-10-01

    We studied InGaAs surface treatment using hexamethyldisilazane (HMDS) vapor or (NH4)2S solution after initial oxide removal by hydrofluoric acid. The effect of each treatment on interface properties of La2O3/In0.53Ga0.47As metal-oxide-semiconductor (MOS) capacitor was evaluated. We found that HMDS surface treatment of InGaAs, followed by La2O3 deposition and forming gas annealing reduces the MOS capacitor's interface state density more effectively than (NH4)2S treatment. The comparison of the capacitance-voltage data shows that the HMDS-treated sample reaches a maximum accumulation capacitance of 2.3 µF/cm2 at 1 MHz with roughly 40% less frequency dispersion near accumulation, than the sample treated with (NH4)2S solution. These results suggest that process optimization of HMDS application could lead to further improvement of InGaAs MOS interface, thereby making it a potential routine step for InGaAs surface passivation.

  1. The impact of non-uniform channel layer growth on device characteristics in state of the Art Si/SiGe/Si p-metal oxide semiconductor field effect transistors

    International Nuclear Information System (INIS)

    Chang, A.C.K.; Ross, I.M.; Norris, D.J.; Cullis, A.G.; Tang, Y.T.; Cerrina, C.; Evans, A.G.R.

    2006-01-01

    In this study we have highlighted the effect of non-uniform channel layer growth by the direct correlation of the microstructure and electrical characteristics in state-of-the-art pseudomorphic Si/SiGe p-channel metal oxide semiconductor field effect transistor devices fabricated on Si. Two nominally identical sets of devices from adjacent locations of the same wafer were found to have radically different distributions in gate threshold voltages. Due to the close proximity and narrow gate length of the devices, focused ion beam milling was used to prepare a number of thin cross-sections from each of the two regions for subsequent analysis using transmission electron microscopy. It was found that devices from the region giving a very narrow range of gate threshold voltages exhibited a uniform microstructure in general agreement with the intended growth parameters. However, in the second region, which showed a large spread in the gate threshold voltages, profound anomalies in the microstructure were observed. These anomalies consisted of fluctuations in the quality and thickness of the SiGe strained layers. The non-uniform growth of the strained SiGe layer clearly accounted for the poorly controlled threshold voltages of these devices. The results emphasize the importance of good layer growth uniformity to ensure optimum device yield

  2. Disorder induced gap states as a cause of threshold voltage instabilities in Al2O3/AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors

    Science.gov (United States)

    Matys, M.; Kaneki, S.; Nishiguchi, K.; Adamowicz, B.; Hashizume, T.

    2017-12-01

    We proposed that the disorder induced gap states (DIGS) can be responsible for the threshold voltage (Vth) instability in Al2O3/AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors. In order to verify this hypothesis, we performed the theoretical calculations of the capacitance voltage (C-V) curves for the Al2O3/AlGaN/GaN structures using the DIGS model and compared them with measured ones. We found that the experimental C-V curves with a complex hysteresis behavior varied with the maximum forward bias and the sweeping rate can be well reproduced theoretically by assuming a particular distribution in energy and space of the DIGS continuum near the Al2O3/AlGaN interface, i.e., a U-shaped energy density distribution and exponential depth decay from the interface into Al2O3 layer (up to 4 nm), as well as suitable DIGS capture cross sections (the order of magnitude of 10-15 cm2). Finally, we showed that the DIGS model can also explain the negative bias induced threshold voltage instability. We believe that these results should be critical for the successful development of the passivation techniques, which allows to minimize the Vth instability related effects.

  3. Enhanced two dimensional electron gas transport characteristics in Al2O3/AlInN/GaN metal-oxide-semiconductor high-electron-mobility transistors on Si substrate

    Science.gov (United States)

    Freedsman, J. J.; Watanabe, A.; Urayama, Y.; Egawa, T.

    2015-09-01

    The authors report on Al2O3/Al0.85In0.15N/GaN Metal-Oxide-Semiconductor High-Electron-Mobility Transistor (MOS-HEMT) on Si fabricated by using atomic layer deposited Al2O3 as gate insulator and passivation layer. The MOS-HEMT with the gate length of 2 μm exhibits excellent direct-current (dc) characteristics with a drain current maximum of 1270 mA/mm at a gate bias of 3 V and an off-state breakdown voltage of 180 V for a gate-drain spacing of 4 μm. Also, the 1 μm-gate MOS-HEMT shows good radio-frequency (rf) response such as current gain and maximum oscillation cut-off frequencies of 10 and 34 GHz, respectively. The capacitance-voltage characteristics at 1 MHz revealed significant increase in two-dimensional electron gas (2DEG) density for the MOS-HEMT compared to conventional Schottky barrier HEMTs. Analyses using drain-source conductivity measurements showed improvements in 2DEG transport characteristics for the MOS-HEMT. The enhancements in dc and rf performances of the Al2O3/Al0.85In0.15N/GaN MOS-HEMT are attributed to the improvements in 2DEG characteristics.

  4. Enhanced two dimensional electron gas transport characteristics in Al2O3/AlInN/GaN metal-oxide-semiconductor high-electron-mobility transistors on Si substrate

    International Nuclear Information System (INIS)

    Freedsman, J. J.; Watanabe, A.; Urayama, Y.; Egawa, T.

    2015-01-01

    The authors report on Al 2 O 3 /Al 0.85 In 0.15 N/GaN Metal-Oxide-Semiconductor High-Electron-Mobility Transistor (MOS-HEMT) on Si fabricated by using atomic layer deposited Al 2 O 3 as gate insulator and passivation layer. The MOS-HEMT with the gate length of 2 μm exhibits excellent direct-current (dc) characteristics with a drain current maximum of 1270 mA/mm at a gate bias of 3 V and an off-state breakdown voltage of 180 V for a gate-drain spacing of 4 μm. Also, the 1 μm-gate MOS-HEMT shows good radio-frequency (rf) response such as current gain and maximum oscillation cut-off frequencies of 10 and 34 GHz, respectively. The capacitance-voltage characteristics at 1 MHz revealed significant increase in two-dimensional electron gas (2DEG) density for the MOS-HEMT compared to conventional Schottky barrier HEMTs. Analyses using drain-source conductivity measurements showed improvements in 2DEG transport characteristics for the MOS-HEMT. The enhancements in dc and rf performances of the Al 2 O 3 /Al 0.85 In 0.15 N/GaN MOS-HEMT are attributed to the improvements in 2DEG characteristics

  5. Fabrication and electrical properties of metal-oxide semiconductor capacitors based on polycrystalline p-Cu{sub x}O and HfO{sub 2}/SiO{sub 2} high-{kappa} stack gate dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Zou Xiao [Department of Electronic Science and Technology, School of Physical Science and Technology, Wuhan University, Wuhan, 430074 (China); Department of Electromachine Engineering, Jianghan University, Wuhan, 430056 (China); Fang Guojia, E-mail: gjfang@whu.edu.c [Department of Electronic Science and Technology, School of Physical Science and Technology, Wuhan University, Wuhan, 430074 (China); Yuan Longyan; Liu Nishuang; Long Hao; Zhao Xingzhong [Department of Electronic Science and Technology, School of Physical Science and Technology, Wuhan University, Wuhan, 430074 (China)

    2010-05-31

    Polycrystalline p-type Cu{sub x}O films were deposited after the growth of HfO{sub 2} dielectric on Si substrate by pulsed laser deposition, and Cu{sub x}O metal-oxide-semiconductor (MOS) capacitors with HfO{sub 2}/SiO{sub 2} stack gate dielectric were primarily fabricated and investigated. X-ray diffraction and X-ray photoelectron spectroscopy were applied to analyze crystalline structure and Cu{sup +}/Cu{sup 2+} ratios of Cu{sub x}O films respectively. SiO{sub 2} interlayer formed between the high-{kappa} dielectric and substrate was estimated by the transmission electron microscope. Results of electrical characteristic measurement indicate that the permittivity of HfO{sub 2} is about 22, and the gate leakage current density of MOS capacitor with 11.3 nm HfO{sub 2}/SiO{sub 2} stack dielectrics is {approx} 10{sup -4} A/cm{sup 2}. Results also show that the annealing in N{sub 2} can improve the quality of Cu{sub x}O/HfO{sub 2} interface and thus reduce the gate leakage density.

  6. InGaAs/GaAs metal-oxide-semiconductor heterostructure field-effect transistors with oxygen-plasma oxide and Al2O3 double-layer insulator

    Science.gov (United States)

    Gucmann, F.; Gregušová, D.; Stoklas, R.; Dérer, J.; Kúdela, R.; Fröhlich, K.; Kordoš, P.

    2014-11-01

    Surface condition before an insulator deposition is the key issue for the preparation of reliable GaAs-based metal-oxide-semiconductor (MOS) devices. This study presents the preparation and properties of InGaAs/GaAs MOS structures with a double-layer insulator consisting of an oxygen-plasma oxide covered by Al2O3. The structures were oxidized during 75 s and 150 s. Static measurements yielded a saturation drain current of ˜250 mA/mm at VG = 1 V. Capacitance measurements showed improved performance in the depletion region compared with the structures without the double-layer insulator. Trapping effects were investigated by conductance vs. frequency measurements. The trap state density was in order of 1011 cm-2.eV-1 with a continuous decrease with increased trap energy. The carrier mobility evaluation showed peak values of 3950 cm2/V.s for 75 s and 4570 cm2/V.s for 150 s oxidation times with the sheet charge density ≅2 × 1012 cm-2. The results demonstrate great potential of the procedure that was used to prepare the GaAs-based MOS devices with oxidized GaAs surface covered with an Al2O3 insulator.

  7. Interface/border trap characterization of Al{sub 2}O{sub 3}/AlN/GaN metal-oxide-semiconductor structures with an AlN interfacial layer

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shenghou; Yang, Shu; Tang, Zhikai; Jiang, Qimeng; Liu, Cheng; Chen, Kevin J., E-mail: eekjchen@ust.hk [Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Wang, Maojun [Institute of Microelectronics, Peking University, Beijing 100871 (China); Shen, Bo [School of Physics, Peking University, Beijing 100871 (China)

    2015-02-02

    We report the interface characterization of Al{sub 2}O{sub 3}/AlN/GaN MOS (metal-oxide-semiconductor) structures with an AlN interfacial layer. A thin monocrystal-like interfacial layer (AlN) is formed at the Al{sub 2}O{sub 3}/GaN to effectively block oxygen from the GaN surface and prevent the formation of detrimental Ga-O bonds. The suppression of Ga-O bonds is validated by X-ray photoelectron spectroscopy of the critical interface. Frequency-dispersion in C-V characteristics has been significantly reduced, owing to improved interface quality. Furthermore, using the conventional conductance method suitable for extracting the interface trap density D{sub it} in MOS structures, D{sub it} in the device with AlN was determined to be in the range of 10{sup 11}–10{sup 12 }eV{sup −1 }cm{sup −2}, showing one order of magnitude lower than that without AlN. Border traps near the gate-dielectric/GaN interface were identified and shown to be suppressed by the AlN interfacial layer as well.

  8. Illumination of Double Snapback Mechanism in High Voltage Operating Grounded Gate Extended Drain N-type Metal-Oxide-Semiconductor Field Effects Transistor Electro-Static Discharge Protection Devices

    Science.gov (United States)

    Kim, Kil Ho; Jung, Yong Icc; Shim, Jin Seop; So, Hyung Tae; Lee, Ji Hyun; Hwang, Lee Yeun; Park, Jin Won

    2004-10-01

    High current behaviors of the ‘grounded gate extended drain N-type metal-oxide-semiconductor field effects transistor’ (GG_EDNMOS) electro-static discharge (ESD) protection devices are analyzed. Both the transmission line pulse (TLP) data and the thermal incorporated 2-dimensional simulation analyses demonstrate a characteristic double snapback phenomenon after triggering of biploar junction transistor (BJT) operation. This implies the co-existence of two different on-states in high current region. The 2nd on-state, characterized by extremely low snapback holding voltage and low on-resistance, seems to be responsible for the vulnerability of the device under ESD stress. Simulation based contour analyses reveal that combination of BJT operation and deep electron channeling induced by high electron injection gives rise to the 2nd on-state. Thus, the deep electron channel formation needs to be prevented in order to realize stable and robust ESD protection performance. Further studies reveal that the N-drift implant dose, among various process parameters, is a critical factor to determine the formation of deep electron channeling and consequential occurrence of the 2nd on-state. Based on our analyses, general methodology to avoid the double snapback and to realize stable ESD protection is to be discussed.

  9. Epitaxial Gd2O3 on GaN and AlGaN: a potential candidate for metal oxide semiconductor based transistors on Si for high power application

    Science.gov (United States)

    Ghosh, Kankat; Das, S.; Khiangte, K. R.; Choudhury, N.; Laha, Apurba

    2017-11-01

    We report structural and electrical properties of hexagonal Gd2O3 grown epitaxially on GaN/Si (1 1 1) and AlGaN/GaN/Si(1 1 1) virtual substrates. GaN and AlGaN/GaN heterostructures were grown on Si(1 1 1) substrates by plasma assisted molecular beam epitaxy (PA-MBE), whereas the Gd2O3 layer was grown by the pulsed laser ablation (PLA) technique. Initial structural characterizations show that Gd2O3 grown on III-nitride layers by PLA, exhibit a hexagonal structure with an epitaxial relationship as {{≤ft[ 0 0 0 1 \\right]}G{{d2}{{O}3}}}||{{≤ft[ 0 0 0 1 \\right]}GaN} and {{≤ft[ 1 \\bar{1} 0 0 \\right]}G{{d2}{{O}3}}}||{{≤ft[ 1 \\bar{1} 0 0 \\right]}GaN} . X-ray photoelectron measurements of the valence bands revealed that Gd2O3 exhibits band offsets of 0.97 eV and 0.4 eV, for GaN and Al0.3Ga0.7N, respectively. Electrical measurements such as capacitance-voltage and leakage current characteristics further confirm that epi-Gd2O3 on III-nitrides could be a potential candidate for future metal-oxide-semiconductor (MOS)-based transistors also for high power applications in radio frequency range.

  10. Enhanced two dimensional electron gas transport characteristics in Al{sub 2}O{sub 3}/AlInN/GaN metal-oxide-semiconductor high-electron-mobility transistors on Si substrate

    Energy Technology Data Exchange (ETDEWEB)

    Freedsman, J. J., E-mail: freedy54@gmail.com; Watanabe, A.; Urayama, Y. [Research Center for Nano-Devices and Advanced Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466 8555 (Japan); Egawa, T., E-mail: egawa.takashi@nitech.ac.jp [Research Center for Nano-Devices and Advanced Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466 8555 (Japan); Innovation Center for Multi-Business of Nitride Semiconductors, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466 8555 (Japan)

    2015-09-07

    The authors report on Al{sub 2}O{sub 3}/Al{sub 0.85}In{sub 0.15}N/GaN Metal-Oxide-Semiconductor High-Electron-Mobility Transistor (MOS-HEMT) on Si fabricated by using atomic layer deposited Al{sub 2}O{sub 3} as gate insulator and passivation layer. The MOS-HEMT with the gate length of 2 μm exhibits excellent direct-current (dc) characteristics with a drain current maximum of 1270 mA/mm at a gate bias of 3 V and an off-state breakdown voltage of 180 V for a gate-drain spacing of 4 μm. Also, the 1 μm-gate MOS-HEMT shows good radio-frequency (rf) response such as current gain and maximum oscillation cut-off frequencies of 10 and 34 GHz, respectively. The capacitance-voltage characteristics at 1 MHz revealed significant increase in two-dimensional electron gas (2DEG) density for the MOS-HEMT compared to conventional Schottky barrier HEMTs. Analyses using drain-source conductivity measurements showed improvements in 2DEG transport characteristics for the MOS-HEMT. The enhancements in dc and rf performances of the Al{sub 2}O{sub 3}/Al{sub 0.85}In{sub 0.15}N/GaN MOS-HEMT are attributed to the improvements in 2DEG characteristics.

  11. Ultraviolet GaN photodetectors on Si via oxide buffer heterostructures with integrated short period oxide-based distributed Bragg reflectors and leakage suppressing metal-oxide-semiconductor contacts

    Science.gov (United States)

    Szyszka, A.; Lupina, L.; Lupina, G.; Schubert, M. A.; Zaumseil, P.; Haeberlen, M.; Storck, P.; Thapa, S. B.; Schroeder, T.

    2014-08-01

    Based on a novel double step oxide buffer heterostructure approach for GaN integration on Si, we present an optimized Metal-Semiconductor-Metal (MSM)-based Ultraviolet (UV) GaN photodetector system with integrated short-period (oxide/Si) Distributed Bragg Reflector (DBR) and leakage suppressing Metal-Oxide-Semiconductor (MOS) electrode contacts. In terms of structural properties, it is demonstrated by in-situ reflection high energy electron diffraction and transmission electron microscopy-energy dispersive x-ray studies that the DBR heterostructure layers grow with high thickness homogeneity and sharp interface structures sufficient for UV applications; only minor Si diffusion into the Y2O3 films is detected under the applied thermal growth budget. As revealed by comparative high resolution x-ray diffraction studies on GaN/oxide buffer/Si systems with and without DBR systems, the final GaN layer structure quality is not significantly influenced by the growth of the integrated DBR heterostructure. In terms of optoelectronic properties, it is demonstrated that—with respect to the basic GaN/oxide/Si system without DBR—the insertion of (a) the DBR heterostructures and (b) dark current suppressing MOS contacts enhances the photoresponsivity below the GaN band-gap related UV cut-off energy by almost up to two orders of magnitude. Given the in-situ oxide passivation capability of grown GaN surfaces and the one order of magnitude lower number of superlattice layers in case of higher refractive index contrast (oxide/Si) systems with respect to classical III-N DBR superlattices, virtual GaN substrates on Si via functional oxide buffer systems are thus a promising robust approach for future GaN-based UV detector technologies.

  12. Electrical properties of GaAs metal-oxide-semiconductor structure comprising Al2O3 gate oxide and AlN passivation layer fabricated in situ using a metal-organic vapor deposition/atomic layer deposition hybrid system

    Science.gov (United States)

    Aoki, Takeshi; Fukuhara, Noboru; Osada, Takenori; Sazawa, Hiroyuki; Hata, Masahiko; Inoue, Takayuki

    2015-08-01

    This paper presents a compressive study on the fabrication and optimization of GaAs metal-oxide-semiconductor (MOS) structures comprising a Al2O3 gate oxide, deposited via atomic layer deposition (ALD), with an AlN interfacial passivation layer prepared in situ via metal-organic chemical vapor deposition (MOCVD). The established protocol afforded self-limiting growth of Al2O3 in the atmospheric MOCVD reactor. Consequently, this enabled successive growth of MOCVD-formed AlN and ALD-formed Al2O3 layers on the GaAs substrate. The effects of AlN thickness, post-deposition anneal (PDA) conditions, and crystal orientation of the GaAs substrate on the electrical properties of the resulting MOS capacitors were investigated. Thin AlN passivation layers afforded incorporation of optimum amounts of nitrogen, leading to good capacitance-voltage (C-V) characteristics with reduced frequency dispersion. In contrast, excessively thick AlN passivation layers degraded the interface, thereby increasing the interfacial density of states (Dit) near the midgap and reducing the conduction band offset. To further improve the interface with the thin AlN passivation layers, the PDA conditions were optimized. Using wet nitrogen at 600 °C was effective to reduce Dit to below 2 × 1012 cm-2 eV-1. Using a (111)A substrate was also effective in reducing the frequency dispersion of accumulation capacitance, thus suggesting the suppression of traps in GaAs located near the dielectric/GaAs interface. The current findings suggest that using an atmosphere ALD process with in situ AlN passivation using the current MOCVD system could be an efficient solution to improving GaAs MOS interfaces.

  13. Impact of La2O3 interfacial layers on InGaAs metal-oxide-semiconductor interface properties in Al2O3/La2O3/InGaAs gate stacks deposited by atomic-layer-deposition

    Science.gov (United States)

    Chang, C.-Y.; Ichikawa, O.; Osada, T.; Hata, M.; Yamada, H.; Takenaka, M.; Takagi, S.

    2015-08-01

    We examine the electrical properties of atomic layer deposition (ALD) La2O3/InGaAs and Al2O3/La2O3/InGaAs metal-oxide-semiconductor (MOS) capacitors. It is found that the thick ALD La2O3/InGaAs interface provides low interface state density (Dit) with the minimum value of ˜3 × 1011 cm-2 eV-1, which is attributable to the excellent La2O3 passivation effect for InGaAs surfaces. It is observed, on the other hand, that there are a large amount of slow traps and border traps in La2O3. In order to simultaneously satisfy low Dit and small hysteresis, the effectiveness of Al2O3/La2O3/InGaAs gate stacks with ultrathin La2O3 interfacial layers is in addition evaluated. The reduction of the La2O3 thickness to 0.4 nm in Al2O3/La2O3/InGaAs gate stacks leads to the decrease in hysteresis. On the other hand, Dit of the Al2O3/La2O3/InGaAs interfaces becomes higher than that of the La2O3/InGaAs ones, attributable to the diffusion of Al2O3 through La2O3 into InGaAs and resulting modification of the La2O3/InGaAs interface structure. As a result of the effective passivation effect of La2O3 on InGaAs, however, the Al2O3/10 cycle (0.4 nm) La2O3/InGaAs gate stacks can realize still lower Dit with maintaining small hysteresis and low leakage current than the conventional Al2O3/InGaAs MOS interfaces.

  14. Metal oxide semiconductors for dye degradation

    Energy Technology Data Exchange (ETDEWEB)

    Adhikari, Sangeeta; Sarkar, Debasish, E-mail: dsarkar@nitrkl.ac.in

    2015-12-15

    Highlights: • Hydrothermal synthesis of monoclinic and hexagonal WO{sub 3} nanostructures. • Nanocuboid and nanofiber growth using different structure directing agents. • WO{sub 3}–ZnO nanocomposites for dye degradation under UV and visible light. • High photocatalytic efficiency is achieved by 10 wt% monoclinic WO{sub 3}. • WO{sub 3} assists to trap hole in UV and arrests electron in visible light irradiation. - Abstract: Organic contaminants are a growing threat to the environment that widely demands their degradation by high efficient photocatalysts. Thus, the proposed research work primely focuses on the efficient degradation of methyl orange using designed WO{sub 3}–ZnO photocatalysts under both UV and visible light irradiation. Two different sets of WO{sub 3} nanostructures namely, monoclinic WO{sub 3} (m-WO{sub 3}) and hexagonal WO{sub 3} (h-WO{sub 3}) synthesizes in presence of a different structure directing agents. A specific dispersion technique allows the intimate contact of as-synthesized WO{sub 3} and ultra-violet active commercial ZnO photocatalyst in different weight variations. ZnO nanocrystal in presence of an optimum 10 wt% m-WO{sub 3} shows a high degree of photocatalytic activity under both UV and visible light irradiation compared to counterpart h-WO{sub 3}. Symmetrical monoclinic WO{sub 3} assists to trap hole in UV, but electron arresting mechanism predominates in visible irradiation. Coupling of monoclinic nanocuboid WO{sub 3} with ZnO proves to be a promising photocatalyst in both wavelengths.

  15. Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO{sub 2}, WO{sub 3} and ZnO)

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S. Girish [Department of Physics, Indian Institute of Science, Bengaluru, 560012 Karnataka (India); Department of Chemistry, School of Engineering and Technology, CMR University, Bengaluru, 562149, Karnataka (India); Rao, K.S.R. Koteswara, E-mail: raoksrk@gmail.com [Department of Physics, Indian Institute of Science, Bengaluru, 560012 Karnataka (India)

    2017-01-01

    Graphical abstract: Semiconductor metal oxides: Modifications, charge carrier dynamics and photocatalysis. - Highlights: • TiO{sub 2}, WO{sub 3} and ZnO based photocatalysis is reviewed. • Advances to improve the efficiency are emphasized. • Differences and similarities in the modifications are highlighted. • Charge carrier dynamics for each strategy are discussed. - Abstract: Metal oxide semiconductors (TiO{sub 2}, WO{sub 3} and ZnO) finds unparalleled opportunity in wastewater purification under UV/visible light, largely encouraged by their divergent admirable features like stability, non-toxicity, ease of preparation, suitable band edge positions and facile generation of active oxygen species in the aqueous medium. However, the perennial failings of these photocatalysts emanates from the stumbling blocks like rapid charge carrier recombination and meager visible light response. In this review, tailoring the surface-bulk electronic structure through the calibrated and veritable approaches such as impurity doping, deposition with noble metals, sensitizing with other compounds (dyes, polymers, inorganic complexes and simple chelating ligands), hydrogenation process (annealing under hydrogen atmosphere), electronic integration with other semiconductors, modifying with carbon nanostructures, designing with exposed facets and tailoring with hierarchical morphologies to overcome their critical drawbacks are summarized. Taking into account the materials intrinsic properties, the pros and cons together with similarities and striking differences for each strategy in specific to TiO{sub 2}, WO{sub 3} & ZnO are highlighted. These subtlety enunciates the primacy for improving the structure-electronic properties of metal oxides and credence to its fore in the practical applications. Future research must focus on comparing the performances of ZnO, TiO{sub 2} and WO{sub 3} in parallel to get insight into their photocatalytic behaviors. Such comparisons not only reveal

  16. A molybdenum disulfide/carbon nanotube heterogeneous complementary inverter.

    Science.gov (United States)

    Huang, Jun; Somu, Sivasubramanian; Busnaina, Ahmed

    2012-08-24

    We report a simple, bottom-up/top-down approach for integrating drastically different nanoscale building blocks to form a heterogeneous complementary inverter circuit based on layered molybdenum disulfide and carbon nanotube (CNT) bundles. The fabricated CNT/MoS(2) inverter is composed of n-type molybdenum disulfide (MOS(2)) and p-type CNT transistors, with a high voltage gain of 1.3. The CNT channels are fabricated using directed assembly while the layered molybdenum disulfide channels are fabricated by mechanical exfoliation. This bottom-up fabrication approach for integrating various nanoscale elements with unique characteristics provides an alternative cost-effective methodology to complementary metal-oxide-semiconductors, laying the foundation for the realization of high performance logic circuits.

  17. Review. Evidence-based complementary oncology. Innovative approaches to optimize standard therapy strategies.

    Science.gov (United States)

    Beuth, Josef; Schierholz, Joerg Michael

    2007-01-01

    Cancer diseases demand diagnostic and therapeutic measures with proven quality, safety and efficacy. The basis for evaluation is clinical studies representing levels I or II (randomized controlled trials (RCT) or epidemiological cohort studies) in accordance with recommendations of the Centre for Evidence-based Medicine, University of Oxford, UK Regarding these claims, surgery, chemo-, radio- and hormone therapy have emerged as the gold standard in the treatment of carcinomas. These therapies have proven their cancer destructive potencies and their curative feasibilities, dependent on the particular cancer entity and stage. Complementary therapies are recommended to support and optimize the scientifically-based cancer standard treatment. Complementary medicine is currently widely debated by the oncological community, because the required scientific proof of safety and effectiveness for most of the therapeutic approaches has not yet been definitively provided. In the past years, basic research and clinical evaluation of defined complementary therapeutic concepts in oncology have been intensified in an attempt to integrate these procedures into evidence-based medicine. Scientifically-based therapies of complementary medicine cannot replace the well studied conventional cancer-destructive therapies such as surgery, chemo-, radio- or hormone therapy. Accordingly, they are by no means "alternative therapies". Complementary approaches in oncology that are recommended as additional to standard cancer destructive therapies claim to optimize this therapy. A great body of data emerging from scientifically sound clinical trials prove that defined complementary procedures are beneficial for the patients.

  18. Complementary Self-Biased Logics Based on Single-Electron Transistor (SET)/CMOS Hybrid Process

    Science.gov (United States)

    Song, Ki-Whan; Lee, Yong Kyu; Sim, Jae Sung; Kim, Kyung Rok; Lee, Jong Duk; Park, Byung-Gook; You, Young Sub; Park, Joo-On; Jin, You Seung; Kim, Young-Wug

    2005-04-01

    We propose a complementary self-biasing method which enables the single-electron transistor (SET)/complementary metal-oxide semiconductor (CMOS) hybrid multi-valued logics (MVLs) to operate well at high temperatures, where the peak-to-valley current ratio (PVCR) of the Coulomb oscillation markedly decreases. The new architecture is implemented with a few transistors by utilizing the phase control capability of the sidewall depletion gates in dual-gate single-electron transistors (DGSETs). The suggested scheme is evaluated by a SPICE simulation with an analytical DGSET model. Furthermore, we have developed a new process technology for the SET/CMOS hybrid systems. We have confirmed that both of the fabricated devices, namely, SET and CMOS transistors, exhibit the ideal characteristics for the complementary self-biasing scheme: the SET shows clear Coulomb oscillations with a 100 mV period and the CMOS transistors show a high voltage gain.

  19. Competencies for public health and interprofessional education in accreditation standards of complementary and alternative medicine disciplines.

    Science.gov (United States)

    Brett, Jennifer; Brimhall, Joseph; Healey, Dale; Pfeifer, Joseph; Prenguber, Marcia

    2013-01-01

    This review examines the educational accreditation standards of four licensed complementary and alternative medicine (CAM) disciplines (naturopathic medicine, chiropractic health care, acupuncture and oriental medicine, and massage therapy), and identifies public health and other competencies found in those standards that contribute to cooperation and collaboration among the health care professions. These competencies may form a foundation for interprofessional education. The agencies that accredit the educational programs for each of these disciplines are individually recognized by the United States Department (Secretary) of Education. Patients and the public are served when healthcare practitioners collaborate and cooperate. This is facilitated when those practitioners possess competencies that provide them the knowledge and skills to work with practitioners from other fields and disciplines. Educational accreditation standards provide a framework for the delivery of these competencies. Requiring these competencies through accreditation standards ensures that practitioners are trained to optimally function in integrative clinical care settings. © 2013 Elsevier Inc. All rights reserved.

  20. Physical activity and the use of standard and complementary therapies in Duchenne and Becker muscular dystrophies.

    Science.gov (United States)

    de Valle, Katy L; Davidson, Zoe E; Kennedy, Rachel A; Ryan, Monique M; Carroll, Kate M

    2016-01-01

    To record the use and perceived benefits of mainstream allied health services, complementary therapies, nutritional supplements and structured physical activity in a paediatric population of males with Duchenne or Becker muscular dystrophy. A questionnaire was distributed to 125 parents of males with a dystrophinopathy within a tertiary neuromuscular clinic population in Melbourne, Australia. Response rate to the survey was 41%. Most families (73%) reported use of allied health services: physiotherapy (65%), occupational therapy (47%), and psychology (25%). The most commonly used complementary therapy was massage (31%). Sixty-five percent of families reported using nutritional supplements. Fifty-one and 38% of families reported participation in swimming and other organised sports, respectively. Physical and psychological benefits of sporting activities were identified by families. Participation in physical activity was lowest in those transitioning to full-time wheelchair use. Access to allied health services by boys with dystrophinopathies is variable and inconsistent with published international standards of care. There is frequent use of complementary therapies, despite a lack of proven efficacy. Studies of the effects of such therapies would support provision of evidence-based advice to families. Continued involvement in physical activity for those boys with declining function should be supported by clinicians.

  1. Effectiveness of integrating individualized and generic complementary medicine treatments with standard care versus standard care alone for reducing preoperative anxiety.

    Science.gov (United States)

    Attias, Samuel; Keinan Boker, Lital; Arnon, Zahi; Ben-Arye, Eran; Bar'am, Ayala; Sroka, Gideon; Matter, Ibrahim; Somri, Mostafa; Schiff, Elad

    2016-03-01

    Preoperative anxiety is commonly reported by people undergoing surgery. A significant number of studies have found a correlation between preoperative anxiety and post-operative morbidity. Various methods of complementary and alternative medicine (CAM) were found to be effective in alleviating preoperative anxiety. This study examined the relative effectiveness of various individual and generic CAM methods combined with standard treatment (ST) in relieving preoperative anxiety, in comparison with ST alone. Randomized controlled trial. Holding room area Three hundred sixty patients. Patients were randomly divided into 6 equal-sized groups. Group 1 received the standard treatment (ST) for anxiety alleviation with anxiolytics. The five other groups received the following, together with ST (anxiolytics): Compact Disk Recording of Guided Imagery (CDRGI); acupuncture; individual guided imagery; reflexology; and individual guided imagery combined with reflexology, based on medical staff availability. Assessment of anxiety was taken upon entering the holding room area (surgery preparation room) ('pre-treatment assessment'), and following the treatment, shortly before transfer to the operating room ('post-treatment assessment'), based on the Visual Analogue Scale (VAS) questionnaire. Data processing included comparison of VAS averages in the 'pre' and 'post' stages among the various groups. Preoperatively, CAM treatments were associated with significant reduction of anxiety level (5.54-2.32, p<0.0001). In contrast, no significant change was noted in the standard treatment group (4.92-5.44, p=0.15). Individualized CAM treatments did not differ significantly in outcomes. However, CDRGI was less effective than individualized CAM (P<0.001), but better than ST (p=0.005). Individual CAM treatments integrated within ST reduce preoperative anxiety significantly, compared to standard treatment alone, and are more effective than generic CDRGI. In light of the scope of preoperative

  2. Ultralow power complementary inverter circuits using axially doped p- and n-channel Si nanowire field effect transistors.

    Science.gov (United States)

    Van, Ngoc Huynh; Lee, Jae-Hyun; Whang, Dongmok; Kang, Dae Joon

    2016-06-09

    We have successfully synthesized axially doped p- and n-type regions on a single Si nanowire (NW). Diodes and complementary metal-oxide-semiconductor (CMOS) inverter devices using single axial p- and n-channel Si NW field-effect transistors (FETs) were fabricated. We show that the threshold voltages of both p- and n-channel Si NW FETs can be lowered to nearly zero by effectively controlling the doping concentration. Because of the high performance of the p- and n-type Si NW channel FETs, especially with regard to the low threshold voltage, the fabricated NW CMOS inverters have a low operating voltage (power dissipation (≤0.3 pW) at an input voltage of ±3 V. This result offers a viable way for the fabrication of a high-performance high-density logic circuit using a low-temperature fabrication process, which makes it suitable for flexible electronics.

  3. Radiation effects in metal-oxide-semiconductor capacitors

    International Nuclear Information System (INIS)

    Collins, J.L.

    1987-01-01

    The effects of various radiations on commercially made Al-SiO 2 -Si Capacitors (MOSCs) have been investigated. Intrinsic dielectric breakdown in MOSCs has been shown to be a two-stage process dominated by charge injection in a pre-breakdown stage; this is associated with localised high-field injection of carriers from the semiconductor substrate to interfacial and bulk charge traps which, it is proposed, leads to the formation of conducting channels through the dielectric with breakdown occurring as a result of the dissipation of the conduction band energy. A study of radiation-induced dielectric breakdown has revealed the possibility of anomalous hot-electron injection to an excess of bulk oxide traps in the ionization channel produced by very heavily ionizing radiation, which leads to intrinsic breakdown in high-field stressed devices. This is interpreted in terms of a modified model for radiation-induced dielectric breakdown based upon the primary dependence of breakdown on charge injection rather than high-field mechanisms. A detailed investigation of charge trapping and interface state generation due to various radiations has revealed evidence of neutron induced interface states, and the generation of positive oxide charge in devices due to all the radiations tested. The greater the linear energy transfer of the radiation, the greater the magnitude of charge trapped in the oxide and the number of interface states generated. This is interpreted in terms of Si-H and Si-OH bond-breaking at the Si-SiO 2 interface which is enhanced by charge carrier transfer to the interface and by anomalous charge injection to compensate for the excess of charge carriers created by the radiation. (author)

  4. A high-performance complementary inverter based on transition metal dichalcogenide field-effect transistors.

    Science.gov (United States)

    Cho, Ah-Jin; Park, Kee Chan; Kwon, Jang-Yeon

    2015-01-01

    For several years, graphene has been the focus of much attention due to its peculiar characteristics, and it is now considered to be a representative 2-dimensional (2D) material. Even though many research groups have studied on the graphene, its intrinsic nature of a zero band-gap, limits its use in practical applications, particularly in logic circuits. Recently, transition metal dichalcogenides (TMDs), which are another type of 2D material, have drawn attention due to the advantage of having a sizable band-gap and a high mobility. Here, we report on the design of a complementary inverter, one of the most basic logic elements, which is based on a MoS2 n-type transistor and a WSe2 p-type transistor. The advantages provided by the complementary metal-oxide-semiconductor (CMOS) configuration and the high-performance TMD channels allow us to fabricate a TMD complementary inverter that has a high-gain of 13.7. This work demonstrates the operation of the MoS2 n-FET and WSe2 p-FET on the same substrate, and the electrical performance of the CMOS inverter, which is based on a different driving current, is also measured.

  5. Solution-processed ambipolar organic field-effect transistors and inverters

    NARCIS (Netherlands)

    Meijer, E.J.; Leeuw, D.M. de; Setayesh, S.; Veenendaal, E. van; Huisman, B.H.; Blom, P.W.M.; Hummelen, J.C.; Scherf, U.; Klapwijk, T.M.

    2003-01-01

    There is ample evidence that organic field-effect transistors have reached a stage where they can be industrialized, analogous to standard metal oxide semiconductor (MOS) transistors. Monocrystalline silicon technology is largely based on complementary MOS (CMOS) structures that use both n-type and

  6. Setting a Minimum Standard of Care in Clinical Trials: Human Rights and Bioethics as Complementary Frameworks.

    Science.gov (United States)

    Marouf, Fatma E; Esplin, Bryn S

    2015-06-11

    For the past few decades, there has been intense debate in bioethics about the standard of care that should be provided in clinical trials conducted in developing countries. Some interpret the Declaration of Helsinki to mean that control groups should receive the best intervention available worldwide, while others interpret this and other international guidelines to mean the best local standard of care. Questions of justice are particularly relevant where limited resources mean that the local standard of care is no care at all. Introducing human rights law into this complex and longstanding debate adds a new and important perspective. Through non-derogable rights, including the core obligations of the right to health, human rights law can help set a minimum standard of care. Copyright 2015 Marouf and Esplin. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

  7. Low Power Digital Clock Design Using LVCMOS Input/Output Standards on 45nm FPGA

    DEFF Research Database (Denmark)

    Pandey, Sujeet; Mehta, Rishabh; Kalia, Kartik

    2016-01-01

    metal oxide semiconductor i.e. LVCMOS and 45nm Spartan-6 FPGA family is used for simulation and amount of total power consumed is noted down. There is 90.02%, 98.88%, 99.86% and 100% reduction in the clock when we scale down frequency from 100GHz to 10GHz, 1GHz, 0.1GHz, and 0.01GHz respectively.......How wonderful it would be if every device we use is energy efficient. This is an approach to design an efficient digital clock that consumes low amount of power. This is done by varying frequency to different levels and checking corresponding amount of energy consumed. Low Voltage Complementary...

  8. A Radiation Nose for monitoring radiation in space missions

    Data.gov (United States)

    National Aeronautics and Space Administration — This project developed a radiation monitoring system using conventional silicon CMOS (complementary metal oxide semiconductor) chip except by replacing the silicon...

  9. Radiation-Hard Complementary Integrated Circuits Based on Semiconducting Single-Walled Carbon Nanotubes.

    Science.gov (United States)

    McMorrow, Julian J; Cress, Cory D; Gaviria Rojas, William A; Geier, Michael L; Marks, Tobin J; Hersam, Mark C

    2017-03-28

    Increasingly complex demonstrations of integrated circuit elements based on semiconducting single-walled carbon nanotubes (SWCNTs) mark the maturation of this technology for use in next-generation electronics. In particular, organic materials have recently been leveraged as dopant and encapsulation layers to enable stable SWCNT-based rail-to-rail, low-power complementary metal-oxide-semiconductor (CMOS) logic circuits. To explore the limits of this technology in extreme environments, here we study total ionizing dose (TID) effects in enhancement-mode SWCNT-CMOS inverters that employ organic doping and encapsulation layers. Details of the evolution of the device transport properties are revealed by in situ and in operando measurements, identifying n-type transistors as the more TID-sensitive component of the CMOS system with over an order of magnitude larger degradation of the static power dissipation. To further improve device stability, radiation-hardening approaches are explored, resulting in the observation that SWNCT-CMOS circuits are TID-hard under dynamic bias operation. Overall, this work reveals conditions under which SWCNTs can be employed for radiation-hard integrated circuits, thus presenting significant potential for next-generation satellite and space applications.

  10. Complementary and Alternative Medicine for Patients

    Science.gov (United States)

    ... Ask about Your Treatment Research Complementary and Alternative Medicine for Patients Complementary and alternative medicine (CAM) is any medical and ... are based on scientific evidence from research studies. Complementary medicine refers to treatments that are used with standard ...

  11. Durability-enhanced two-dimensional hole gas of C-H diamond surface for complementary power inverter applications.

    Science.gov (United States)

    Kawarada, Hiroshi; Yamada, Tetsuya; Xu, Dechen; Tsuboi, Hidetoshi; Kitabayashi, Yuya; Matsumura, Daisuke; Shibata, Masanobu; Kudo, Takuya; Inaba, Masafumi; Hiraiwa, Atsushi

    2017-02-20

    Complementary power field effect transistors (FETs) based on wide bandgap materials not only provide high-voltage switching capability with the reduction of on-resistance and switching losses, but also enable a smart inverter system by the dramatic simplification of external circuits. However, p-channel power FETs with equivalent performance to those of n-channel FETs are not obtained in any wide bandgap material other than diamond. Here we show that a breakdown voltage of more than 1600 V has been obtained in a diamond metal-oxide-semiconductor (MOS) FET with a p-channel based on a two-dimensional hole gas (2DHG). Atomic layer deposited (ALD) Al 2 O 3 induces the 2DHG ubiquitously on a hydrogen-terminated (C-H) diamond surface and also acts as both gate insulator and passivation layer. The high voltage performance is equivalent to that of state-of-the-art SiC planar n-channel FETs and AlGaN/GaN FETs. The drain current density in the on-state is also comparable to that of these two FETs with similar device size and V B .

  12. High-Performance Complementary Transistors and Medium-Scale Integrated Circuits Based on Carbon Nanotube Thin Films.

    Science.gov (United States)

    Yang, Yingjun; Ding, Li; Han, Jie; Zhang, Zhiyong; Peng, Lian-Mao

    2017-04-25

    Solution-derived carbon nanotube (CNT) network films with high semiconducting purity are suitable materials for the wafer-scale fabrication of field-effect transistors (FETs) and integrated circuits (ICs). However, it is challenging to realize high-performance complementary metal-oxide semiconductor (CMOS) FETs with high yield and stability on such CNT network films, and this difficulty hinders the development of CNT-film-based ICs. In this work, we developed a doping-free process for the fabrication of CMOS FETs based on solution-processed CNT network films, in which the polarity of the FETs was controlled using Sc or Pd as the source/drain contacts to selectively inject carriers into the channels. The fabricated top-gated CMOS FETs showed high symmetry between the characteristics of n- and p-type devices and exhibited high-performance uniformity and excellent scalability down to a gate length of 1 μm. Many common types of CMOS ICs, including typical logic gates, sequential circuits, and arithmetic units, were constructed based on CNT films, and the fabricated ICs exhibited rail-to-rail outputs because of the high noise margin of CMOS circuits. In particular, 4-bit full adders consisting of 132 CMOS FETs were realized with 100% yield, thereby demonstrating that this CMOS technology shows the potential to advance the development of medium-scale CNT-network-film-based ICs.

  13. High-Performance Carbon Nanotube Complementary Electronics and Integrated Sensor Systems on Ultrathin Plastic Foil.

    Science.gov (United States)

    Zhang, Heng; Xiang, Li; Yang, Yingjun; Xiao, Mengmeng; Han, Jie; Ding, Li; Zhang, Zhiyong; Hu, Youfan; Peng, Lian-Mao

    2018-02-01

    The longtime vacancy of high-performance complementary metal-oxide-semiconductor (CMOS) technology on plastics is a non-negligible obstacle to the applications of flexible electronics with advanced functions, such as continuous health monitoring with in situ signal processing and wireless communication capabilities, in which high speed, low power consumption, and complex functionality are desired for integrated circuits (ICs). Here, we report the implementation of carbon nanotube (CNT)-based high-performance CMOS technology and its application for signal processing in an integrated sensor system for human body monitoring on ultrathin plastic foil with a thickness of 2.5 μm. The performances of both the p- and n-type CNT field-effect transistors (FETs) are excellent and symmetric on plastic foil with a low operation voltage of 2 V: width-normalized transconductances (g m /W) as high as 4.69 μS/μm and 5.45 μS/μm, width-normalized on-state currents reaching 5.85 μA/μm and 6.05 μA/μm, and mobilities up to 80.26 cm 2 ·V -1 ·s -1 and 97.09 cm 2 ·V -1 ·s -1 , respectively, together with a current on/off ratio of approximately 10 5 . The devices were mechanically robust, withstanding a curvature radius down to 124 μm. Utilizing these transistors, various high-performance CMOS digital ICs with rail-to-rail output and a ring oscillator on plastics with an oscillation frequency of 5 MHz were demonstrated. Furthermore, an ultrathin skin-mounted humidity sensor system with in situ frequency modulation signal processing capability was realized to monitor human body sweating.

  14. Complementary Languages

    DEFF Research Database (Denmark)

    Preisler, Bent

    2009-01-01

    by an alternative concept that more adequately describes the realities of what adherents of ‘parallel languages' can hope for. The new concept I have dubbed ‘complementary languages' (komplementær­sproglighed). I will explain this concept in the following and contrast it both with ‘parallel languages...

  15. Shortened screening method for phosphorus fractionation in sediments A complementary approach to the standards, measurements and testing harmonised protocol

    International Nuclear Information System (INIS)

    Pardo, Patricia; Rauret, Gemma; Lopez-Sanchez, Jose Fermin

    2004-01-01

    The SMT protocol, a sediment phosphorus fractionation method harmonised and validated in the frame of the standards, measurements and testing (SMT) programme (European Commission), establishes five fractions of phosphorus according to their extractability. The determination of phosphate extracted is carried out spectrophotometrically. This protocol has been applied to 11 sediments of different origin and characteristics and the phosphorus extracted in each fraction was determined not only by UV-Vis spectrophotometry, but also by inductively coupled plasma-atomic emission spectrometry. The use of these two determination techniques allowed the differentiation between phosphorus that was present in the extracts as soluble reactive phosphorus and as total phosphorus. From the comparison of data obtained with both determination techniques a shortened screening method, for a quick evaluation of the magnitude and importance of the fractions given by the SMT protocol, is proposed and validated using two certified reference materials

  16. Monolithic integration of enhancement-mode vertical driving transistorson a standard InGaN/GaN light emitting diode structure

    Science.gov (United States)

    Lu, Xing; Liu, Chao; Jiang, Huaxing; Zou, Xinbo; Zhang, Anping; Lau, Kei May

    2016-08-01

    In this letter, monolithic integration of InGaN/GaN light emitting diodes (LEDs) with vertical metal-oxide-semiconductor field effect transistor (VMOSFET) drivers have been proposed and demonstrated. The VMOSFET was achieved by simply regrowing a p- and n-GaN bilayer on top of a standard LED structure. After fabrication, the VMOSFET is connected with the LED through the conductive n-GaN layer, with no need of extra metal interconnections. The junction-based VMOSFET is inherently an enhancement-mode (E-mode) device with a threshold voltage of 1.6 V. By controlling the gate bias of the VMOSFET, the light intensity emitted from the integrated VMOSFET-LED device could be well modulated, which shows great potential for various applications, including solid-state lighting, micro-displays, and visible light communications.

  17. Electrosprayed Metal Oxide Semiconductor Films for Sensitive and Selective Detection of Hydrogen Sulfide

    NARCIS (Netherlands)

    Ghimbeu, C.M.; Lumbreras, M.; Schoonman, J.; Siadat, M.

    2009-01-01

    Semiconductor metal oxide films of copper-doped tin oxide (Cu-SnO2), tungsten oxide (WO3) and indium oxide (In2O3) were deposited on a platinum coated alumina substrate employing the electrostatic spray deposition technique (ESD). The morphology studied with scanning electron microscopy (SEM) and

  18. Experimental characterization of the dominant multiple nodes charge collection mechanism in metal oxide-semiconductor transistors

    Science.gov (United States)

    Song, Ruiqiang; Chen, Shuming; Chi, Yaqing; Wu, Zhenyu; Liang, Bin; Chen, Jianjun; Xu, Jingyan; Hao, Peipei; Yu, Junting

    2017-06-01

    We propose an experimental method to investigate the dominant multiple node charge collection mechanism. A transistor array-based test structure is used to distinguish charge collection owing to the drift-diffusion and parasitic bipolar amplification effect. Heavy ion experimental results confirm that drift-diffusion dominates multiple node charge collection at low linear energy transfer (LET). However, the parasitic bipolar amplification effect dominates it at high LET. We also propose simple equations to determine the critical LET which may change the dominant multiple node charge collection mechanism. The calculated LET value is consistent with the heavy ion experimental results.

  19. Composite metal oxide semiconductor based photodiodes for solar panel tracking applications

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ghamdi, Ahmed A., E-mail: aghamdi90@hotmail.com [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Dere, A. [Department of Physics, Faculty of Science, Firat University, Elazig (Turkey); Tataroğlu, A. [Department of Physics, Faculty of Science, Gazi University, Ankara (Turkey); Arif, Bilal [Department of Physics, Faculty of Science, Firat University, Elazig (Turkey); Yakuphanoglu, F. [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Department of Physics, Faculty of Science, Firat University, Elazig (Turkey); El-Tantawy, Farid [Department of Physics, Faculty of Science, Suez Canal University, Ismailia (Egypt); Farooq, W.A. [Physics and Astronomy Department, College of Science, King Saud University, Riyadh (Saudi Arabia)

    2015-11-25

    The Zn{sub 1−x}Al{sub x}O:Cu{sub 2}O composite films were synthesized by the sol gel method to fabricate photodiodes. The transparent metal oxide Zn{sub 1−x}Al{sub x}O:Cu{sub 2}O thin films were grown on p-Si substrates by spin coating technique. Electrical characterization of the p-Si/AZO:Cu{sub 2}O photodiodes was performed by current–voltage and capacitance–conductance–voltage characteristics under dark and various illumination conditions. The transient photocurrent of the diodes increases with increase in illumination intensity. The photoconducting mechanism of the diodes is controlled by the continuous distribution of trap levels. The photocapacitance and photoconductivity of the diodes are decreased with increasing Cu{sub 2}O content. The series resistance–voltage behavior confirms the presence of the interface states in the interface of the diodes. The photoresponse properties of the diodes indicate that the p-Si/Zn{sub 1−x}Al{sub x}O–Cu{sub 2}O diodes can be used as a photosensor in solar panel tracking applications. - Highlights: • Zn{sub 1−x}Al{sub x}O:Cu{sub 2}O composite films were synthesized by the sol gel method. • p-Si/Zn{sub 1−x}Al{sub x}O–Cu{sub 2}O diodes were fabricated. • p-Si/Zn{sub 1−x}Al{sub x}O–Cu{sub 2}O diodes can be used in the optoelectronic applications.

  20. Adsorption smoke detector made of thin-film metal-oxide semiconductor sensor

    CERN Document Server

    Adamian, A Z; Aroutiounian, V M

    2001-01-01

    Based on results of investigations of the thin-film smoke sensors made of Bi sub 2 O sub 3 , irresponsive to a change in relative humidity of the environment, an absorption smoke detector processing circuit, where investigated sensor is used as a sensitive element, is proposed. It is shown that such smoke detector is able to function reliably under conditions of high relative humidity of the environment (up to 100%) and it considerably exceeds the known smoke detectors by the sensitivity threshold.

  1. Adsorption smoke detector made of thin-film metal-oxide semiconductor sensor

    International Nuclear Information System (INIS)

    Adamian, A.Z.; Adamian, Z.N.; Aroutiounian, V.M.

    2001-01-01

    Based on results of investigations of the thin-film smoke sensors made of Bi 2 O 3 , irresponsive to a change in relative humidity of the environment, an absorption smoke detector processing circuit, where investigated sensor is used as a sensitive element, is proposed. It is shown that such smoke detector is able to function reliably under conditions of high relative humidity of the environment (up to 100%) and it considerably exceeds the known smoke detectors by the sensitivity threshold

  2. Electronic defect levels in continuous wave laser annealed silicon metal oxide semiconductor devices

    Science.gov (United States)

    Cervera, M.; Garcia, B. J.; Martinez, J.; Garrido, J.; Piqueras, J.

    1988-09-01

    The effect of laser treatment on the bulk and interface states of the Si-SiO2 structure has been investigated. The annealing was performed prior to the gate metallization using a continuous wave Ar+ laser. For low laser powers the interface state density seems to decrease slightly in comparison with untreated samples. However, for the highest irradiating laser powers a new bulk level at 0.41 eV above the valence band with concentrations up to 1015 cm-3 arises probably due to the electrical activation of the oxygen diluted in the Czochralski silicon. Later postmetallization annealings reduce the interface state density to values in the 1010 cm-2 eV-1 range but leave the concentration of the 0.41-eV center nearly unchanged.

  3. Metal Oxide/Semiconductor Heterojunctions as Carrier-Selective Contacts for Photovoltaic Applications

    Science.gov (United States)

    Man, Gabriel Jen Shi

    Solar radiation is a vast, distributed, and renewable energy source which Humanity can utilize via the photovoltaic effect. The goal of photovoltaic technology is to minimize the true costs, while maximizing the power conversion efficiency and lifetime of the cell/module. Interface-related approaches to achieving this goal are explored here, for two technologically-important classes of light absorbers: crystalline-silicon (c-Si) and metal halide perovskite (MHP). The simplest solar cell consists of a light absorber, sandwiched between two metals with dissimilar work functions. Carrier-selective contacts (CSC's), which are ubiquitous in modern solar cells, are added to improve the electrical performance. Solar cells require asymmetric carrier transport within the cell, which can be effected via electrostatic and/or effective fields, and CSC's augment the asymmetry by selectively transporting holes to one contact, and electrons to the other contact. The proper design and implementation of a CSC is crucial, as the performance, lifetime, and/or cost reduction of a solar cell can be hampered by a single interface or layer. A framework, consisting of eight core requirements, was developed from first-principles to evaluate the effectiveness of a given CSC. The framework includes some requirements which are well-recognized, such as the need for appropriate band offsets, and some requirements which are not well-recognized at the moment, such as the need for effective valence/conduction band density of states matching between the absorber and CSC. The application of the framework to multiple silicon-based and MHP-based CSC's revealed the difficulties of effectively designing and implementing a CSC. A poly(3-hexylthiophene)/c-Si heterojunction was found to be a near ideal hole-selective contact (HSC). Three metal oxide/c-Si heterojunctions initially expected to yield comparable electron-selective contacts (ESC's), titanium dioxide/c-Si (TiO2/c-Si), zinc oxide/c-Si (ZnO/c-Si), and tin dioxide/c-Si (SnO2/c-Si), were instead discovered to be widely different. The TiO2/MHP heterojunction was found to be a moderately ideal ESC, and the nickel oxide/MHP (NiOX/MHP) heterojunction is expected to be a good HSC. If interfacial lead di-iodide (PbI2) is intentionally or unintentionally deposited at the interfaces of a MHP solar cell, it is expected to be detrimental to the operation of the NiOX/MHP HSC, but not to the TiO2/MHP ESC.

  4. Electrosprayed metal oxide semiconductor films for sensitive and selective detection of hydrogen sulfide.

    Science.gov (United States)

    Ghimbeu, Camelia Matei; Lumbreras, Martine; Schoonman, Joop; Siadat, Maryam

    2009-01-01

    Semiconductor metal oxide films of copper-doped tin oxide (Cu-SnO(2)), tungsten oxide (WO(3)) and indium oxide (In(2)O(3)) were deposited on a platinum coated alumina substrate employing the electrostatic spray deposition technique (ESD). The morphology studied with scanning electron microscopy (SEM) and atomic force microscopy (AFM) shows porous homogeneous films comprising uniformly distributed aggregates of nano particles. The X-ray diffraction technique (XRD) proves the formation of crystalline phases with no impurities. Besides, the Raman cartographies provided information about the structural homogeneity. Some of the films are highly sensitive to low concentrations of H(2)S (10 ppm) at low operating temperatures (100 and 200 °C) and the best response in terms of R(air)/R(gas) is given by Cu-SnO(2) films (2500) followed by WO(3) (1200) and In(2)O(3) (75). Moreover, all the films exhibit no cross-sensitivity to other reducing (SO(2)) or oxidizing (NO(2)) gases.

  5. Synthesis methods, microscopy characterization and device integration of nanoscale metal oxide semiconductors for gas sensing.

    Science.gov (United States)

    Vander Wal, Randy L; Berger, Gordon M; Kulis, Michael J; Hunter, Gary W; Xu, Jennifer C; Evans, Laura

    2009-01-01

    A comparison is made between SnO(2), ZnO, and TiO(2) single-crystal nanowires and SnO(2) polycrystalline nanofibers for gas sensing. Both nanostructures possess a one-dimensional morphology. Different synthesis methods are used to produce these materials: thermal evaporation-condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed. Practical issues associated with harvesting, purification, and integration of these materials into sensing devices are detailed. For comparison to the nascent form, these sensing materials are surface coated with Pd and Pt nanoparticles. Gas sensing tests, with respect to H(2), are conducted at ambient and elevated temperatures. Comparative normalized responses and time constants for the catalyst and noncatalyst systems provide a basis for identification of the superior metal-oxide nanostructure and catalyst combination. With temperature-dependent data, Arrhenius analyses are made to determine activation energies for the catalyst-assisted systems.

  6. Gate controlled magnetoresistance in a silicon metal-oxide-semiconductor field-effect-transistor

    Czech Academy of Sciences Publication Activity Database

    Ciccarelli, C.; Park, B.G.; Ogawa, S.; Ferguson, A.J.; Wunderlich, Joerg

    2010-01-01

    Roč. 97, č. 8 (2010), 082106/1-082106/3 ISSN 0003-6951 Institutional research plan: CEZ:AV0Z10100521 Keywords : MOSFET Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.820, year: 2010

  7. Magnetic state dependent transient lateral photovoltaic effect in patterned ferromagnetic metal-oxide-semiconductor films

    Directory of Open Access Journals (Sweden)

    Isidoro Martinez

    2015-11-01

    Full Text Available We investigate the influence of an external magnetic field on the magnitude and dephasing of the transient lateral photovoltaic effect (T-LPE in lithographically patterned Co lines of widths of a few microns grown over naturally passivated p-type Si(100. The T-LPE peak-to-peak magnitude and dephasing, measured by lock-in or through the characteristic time of laser OFF exponential relaxation, exhibit a notable influence of the magnetization direction of the ferromagnetic overlayer. We show experimentally and by numerical simulations that the T-LPE magnitude is determined by the Co anisotropic magnetoresistance. On the other hand, the magnetic field dependence of the dephasing could be described by the influence of the Lorentz force acting perpendiculary to both the Co magnetization and the photocarrier drift directions. Our findings could stimulate the development of fast position sensitive detectors with magnetically tuned magnitude and phase responses.

  8. Development of a Silicon Metal-Oxide-Semiconductor-Based Qubit Using Spin Exchange Interactions Alone

    Science.gov (United States)

    2016-03-31

    Meeting of the Institute for Transdisciplinary Research in Quantum Computing, Montreal, Canada, April 18, 2013. 7. HongWen Jiang, "Exploration of Si...objectives. The exchange based qubit in Si MOS QDs, in our optimistic opinion, is now about one or two years away from surpassing the state-of-the- art in...qubits based on individual charges/spins in semiconductor quantum dots", Invited talk in Annual Meeting of the Institute for Transdisciplinary Research

  9. An Overview of Radiation-Induced Interface Traps in MOS (Metal-Oxide Semiconductor) Structures

    Science.gov (United States)

    1989-11-01

    continu- this hydrogen reached the interface it could ous-time-random-walk ( CTRW ) formalism break an Si-H bond producing H2 and a dan- developed by Montroll...al- Recently, Brown et al. applied CTRW analysis ready explained for the case of hole transport. to the H + transport, with very good results [711. 12

  10. Electron transport properties of indium oxide - indium nitride metal-oxide-semiconductor heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.Y.; Hauguth, S.; Polyakov, V.; Schwierz, F.; Cimalla, V.; Kups, T.; Himmerlich, M.; Schaefer, J.A.; Krischok, S.; Ambacher, O. [Institute of Micro- and Nanotechnologies, Technical University Ilmenau, 98684 Ilmenau (Germany); Morales, F.M.; Lozano, J.G.; Gonzalez, D. [Dpto. de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, Universidad de Cadiz, 11510 Cadiz (Spain); Lebedev, V.

    2008-07-01

    The structural, chemical and electron transport properties of In{sub 2}O{sub 3}/InN heterostructures and oxidized InN epilayers are reported. It is shown that the accumulation of electrons at the InN surface can be manipulated by the formation of a thin surface oxide layer. The epitaxial In{sub 2}O{sub 3}/InN heterojunctions show an increase in the electron concentration due to the increasing band banding at the heterointerface. The oxidation of InN results in improved transport properties and in a reduction of the sheet carrier concentration of the InN epilayer very likely caused by a passivation of surface donors. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Nutrient composition of premixed and packaged complementary foods for sale in low- and middle-income countries: Lack of standards threatens infant growth.

    Science.gov (United States)

    Masters, William A; Nene, Marc D; Bell, Winnie

    2017-10-01

    Premixed flours for infant porridge are increasingly produced and sold in developing countries to complement continued breastfeeding. Such complementary food (CF) products have known efficacy against malnutrition in children from 6 to 24 months of age, but ingredient ratios and production processes may vary. This study provides the first systematic measurement of their actual nutrient composition. We purchased samples of 108 premixed CF products in 22 low- and middle-income countries, and commissioned blind laboratory measurement of each product's macronutrients and micronutrients. We compared measured contents to nutrient claims on their packaging and to CF standards from the Codex Alimentarius, the Super Cereal Plus product used in nutrition assistance programs, and the Lutter and Dewey (2003) recommendations, as well as our own modeled nutrient requirements for a healthy breastfed child. Actual densities are significantly different from nutrient claims for protein (p = .013) and fat (p = .000). Only 15% of samples met two of the three benchmarks for fat, 32% met the most stringent protein standard, while only 22% met them for iron, and 21% for zinc. The median healthy child consuming breast milk plus enough of these solid foods to meet energy needs would experience deficits of zinc at 6 months, iron at 6 and 9 months, and dietary fat from 12 months of age. In summary, premixed CF products can provide adequate nutrient density but usually do not, revealing the need and opportunity for independent monitoring and quality assurance to help grain millers making premixed foods maintain uniform ingredient ratios and production practices. © 2016 John Wiley & Sons Ltd.

  12. Complementary Paired G4FETs as Voltage-Controlled NDR Device

    Science.gov (United States)

    Mojarradi, Mohammad; Chen, Suheng; Blalock, Ben; Britton, Chuck; Prothro, Ben; Vandersand, James; Schrimph, Ron; Cristoloveanu, Sorin; Akavardar, Kerem; Gentil, P.

    2009-01-01

    It is possible to synthesize a voltage-controlled negative-differential-resistance (NDR) device or circuit by use of a pair of complementary G4FETs (four-gate field-effect transistors). [For more information about G4FETs, please see the immediately preceding article]. As shown in Figure 1, the present voltage-controlled NDR device or circuit is an updated version of a prior NDR device or circuit, known as a lambda diode, that contains a pair of complementary junction field-effect transistors (JFETs). (The lambda diode is so named because its current-versus- voltage plot bears some resemblance to an upper-case lambda.) The present version can be derived from the prior version by substituting G4FETs for the JFETs and connecting both JFET gates of each G4FET together. The front gate terminals of the G4FETs constitute additional terminals (that is, terminals not available in the older JFET version) to which one can apply control voltages VN and VP. Circuits in which NDR devices have been used include (1) Schmitt triggers and (2) oscillators containing inductance/ capacitance (LC) resonant circuits. Figure 2 depicts such circuits containing G4FET NDR devices like that of Figure 1. In the Schmitt trigger shown here, the G4FET NDR is loaded with an ordinary inversion-mode, p-channel, metal oxide/semiconductor field-effect transistor (inversion-mode PMOSFET), the VN terminal of the G4FET NDR device is used as an input terminal, and the input terminals of the PMOSFET and the G4FET NDR device are connected. VP can be used as an extra control voltage (that is, a control voltage not available in a typical prior Schmitt trigger) for adjusting the pinch-off voltage of the p-channel G4FET and thereby adjusting the trigger-voltage window. In the oscillator, a G4FET NDR device is loaded with a conventional LC tank circuit. As in other LC NDR oscillators, oscillation occurs because the NDR counteracts the resistance in the tank circuit. The advantage of this G4FET-NDR LC oscillator

  13. Superconducting Technology Assessment

    National Research Council Canada - National Science Library

    2005-01-01

    This Superconducting Technology Assessment (STA) has been conducted by the National Security Agency to address the fundamental question of a potential replacement for silicon complementary metal oxide semiconductor (CMOS...

  14. Decal Electronics: Printable Packaged with 3D Printing High-Performance Flexible CMOS Electronic Systems

    KAUST Repository

    Sevilla, Galo T.

    2016-10-14

    High-performance complementary metal oxide semiconductor electronics are flexed, packaged using 3D printing as decal electronics, and then printed in roll-to-roll fashion for highly manufacturable printed flexible high-performance electronic systems.

  15. Ultralow-loss CMOS copper plasmonic waveguides

    DEFF Research Database (Denmark)

    Fedyanin, Dmitry Yu.; Yakubovsky, Dmitry I.; Kirtaev, Roman V.

    2016-01-01

    with microelectronics manufacturing technologies. This prevents plasmonic components from integration with both silicon photonics and silicon microelectronics. Here, we demonstrate ultralow-loss copper plasmonic waveguides fabricated in a simple complementary metal-oxide semiconductor (CMOS) compatible process, which...

  16. Fabrication of integrated metallic MEMS devices

    DEFF Research Database (Denmark)

    Yalcinkaya, Arda Deniz; Ravnkilde, Jan Tue; Hansen, Ole

    2002-01-01

    A simple and complementary metal oxide semiconductor (CMOS) compatible fabrication technique for microelectromechanical (MEMS) devices is presented. The fabrication technology makes use of electroplated metal layers. Among the fabricated devices, high quality factor microresonators...

  17. Control of Ambipolar Transport in SnO Thin-Film Transistors by Back-Channel Surface Passivation for High Performance Complementary-like Inverters.

    Science.gov (United States)

    Luo, Hao; Liang, Lingyan; Cao, Hongtao; Dai, Mingzhi; Lu, Yicheng; Wang, Mei

    2015-08-12

    For ultrathin semiconductor channels, the surface and interface nature are vital and often dominate the bulk properties to govern the field-effect behaviors. High-performance thin-film transistors (TFTs) rely on the well-defined interface between the channel and gate dielectric, featuring negligible charge trap states and high-speed carrier transport with minimum carrier scattering characters. The passivation process on the back-channel surface of the bottom-gate TFTs is indispensable for suppressing the surface states and blocking the interactions between the semiconductor channel and the surrounding atmosphere. We report a dielectric layer for passivation of the back-channel surface of 20 nm thick tin monoxide (SnO) TFTs to achieve ambipolar operation and complementary metal oxide semiconductor (CMOS) like logic devices. This chemical passivation reduces the subgap states of the ultrathin channel, which offers an opportunity to facilitate the Fermi level shifting upward upon changing the polarity of the gate voltage. With the advent of n-type inversion along with the pristine p-type conduction, it is now possible to realize ambipolar operation using only one channel layer. The CMOS-like logic inverters based on ambipolar SnO TFTs were also demonstrated. Large inverter voltage gains (>100) in combination with wide noise margins are achieved due to high and balanced electron and hole mobilities. The passivation also improves the long-term stability of the devices. The ability to simultaneously achieve field-effect inversion, electrical stability, and logic function in those devices can open up possibilities for the conventional back-channel surface passivation in the CMOS-like electronics.

  18. Fabrication of integrated metallic MEMS devices

    DEFF Research Database (Denmark)

    Yalcinkaya, Arda Deniz; Ravnkilde, Jan Tue; Hansen, Ole

    2002-01-01

    A simple and complementary metal oxide semiconductor (CMOS) compatible fabrication technique for microelectromechanical (MEMS) devices is presented. The fabrication technology makes use of electroplated metal layers. Among the fabricated devices, high quality factor microresonators are characteri......A simple and complementary metal oxide semiconductor (CMOS) compatible fabrication technique for microelectromechanical (MEMS) devices is presented. The fabrication technology makes use of electroplated metal layers. Among the fabricated devices, high quality factor microresonators...

  19. Measurement and Image Processing Techniques for Particle Image Velocimetry Using Solid-Phase Carbon Dioxide

    Science.gov (United States)

    2014-03-27

    2.11 Wall regions, layers and their defining properties . . . . . . . . . . . . . . . . 28 2.12 Sno -Gun II system with various nozzles and metering...Computational fluid dynamics CMOS Complementary metal-oxide semiconductor CTA Constant-temperature anemometry DEHS Di-Ethyl-Hexyl-Sebacat EWT Educational wind...device (CCD) or complementary metal-oxide- semiconductor (CMOS) camera. Using a correlation technique, the near-instantaneous velocity and other fluid

  20. Design and Simulation of Voting and Protective Logic Sub Modules (V and PL) for Nuclear Power Plants

    International Nuclear Information System (INIS)

    Harzawardi Bin Hasim; Mohd Sabri Minhat; Syirrazie Che Soh; Mohd Idris Taib

    2011-01-01

    V and PL is one of the importance modules in Reactor Protection System (RPS). In Nuclear power plant, V and PL submodules output is high when any two in put off our inputs are high. This paper design and simulate V and PL submodules using LT spice IV software. N-channel Metal Oxide Semiconductor(NMOS) and p-channel Metal Oxide Semiconductor (PMOS) were used to design Complementary Metal Oxide Semiconductor (CMOS) gated. Thus all the gated was applied to design V and PL submodules. This design concept practiced bottom up design rule. At the end, this V and PL function correctly as expected. (author)

  1. Complementary and Alternative Medicine

    Science.gov (United States)

    ... for Educators Search English Español Complementary and Alternative Medicine KidsHealth / For Teens / Complementary and Alternative Medicine What's ... a replacement. How Is CAM Different From Conventional Medicine? Conventional medicine is based on scientific knowledge of ...

  2. Complementary and Integrative Medicine

    Science.gov (United States)

    ... medical treatments that are not part of mainstream medicine. When you are using these types of care, it may be called complementary, integrative, or alternative medicine. Complementary medicine is used together with mainstream medical ...

  3. [Complementary medicine in Israel].

    Science.gov (United States)

    Frenkel, Moshe; Gamus, Dorit

    2015-01-01

    Over the past two decades there has been an increase in the use and popularity of complementary medicine in Israel. Currently, there are over 100 complementary medicine clinics in the public health sector supported by the four health funds and most hospitals in Israel. The number of visits to those clinics reaches close to 3 million visits annually. This reflects an extensive system of care that Israelis utilize in addition to the conventional heaLthcare system. However, the communication between the two systems is still Limited and the education of complementary medicine providers is not regulated by the Ministry of Health. Concurrently, there are a growing number of physicians who expand the knowledge on these therapies and actually integrate them in patients' care. This issue describes experiences and knowledge related to the integration of complementary medicine in the Israeli healthcare system and provides additional research data in support of further integration of complementary medicine within conventional healthcare.

  4. Pulsed Capacitance Measurement of Silicon Carbide (SiC) Schottky Diode and SiC Metal Oxide Semiconductor

    National Research Council Canada - National Science Library

    Griffin, Timothy E

    2006-01-01

    The incremental capacitance C was measured for a silicon carbide (SiC) Schottky diode during a reverse-biasing pulse and for two SiC n-MOS transistors during a negative pulse to their source with the drain grounded...

  5. Characteristics and reliability of metal-oxide-semiconductor transistors with various depths of plasma-induced Si recess structure

    Science.gov (United States)

    Chen, Jone F.; Tsai, Yen-Lin; Chen, Chun-Yen; Hsu, Hao-Tang; Kao, Chia-Yu; Hwang, Hann-Ping

    2018-04-01

    Device characteristics and hot-carrier-induced device degradation of n-channel MOS transistors with an off-state breakdown voltage of approximately 25 V and various Si recess depths introduced by sidewall spacer overetching are investigated. Experimental data show that the depth of the Si recess has small effects on device characteristics. A device with a deeper Si recess has lower substrate current and channel electric field, whereas a greater hot-carrier-induced device degradation and a shorter hot-carrier lifetime are observed. Results of technology computer-aided design simulations suggest that these unexpected observations are related to the severity of plasma damage caused by the sidewall spacer overetching and the difference in topology.

  6. Study of the Physics of Insulating Films as Related to the Reliability of Metal-Oxide-Semiconductor (MOS) Devices

    Science.gov (United States)

    1982-02-01

    Powe1l- and MMH. Woods. AppI. Phys. Lett. 29. 377 (1976). 32. G.W. Hughes and R.J. Powell. IEEE Trans. iNucl. Sci. NS-23, 1569 (1976). 33. G.A. Dussel ...and K.W. Boer, Phvs. Stat. Sol. 39. 375 (1970). 34. G.A. Dussel and R.H. Bube. J. App. Phys. 37, 2797 (1966). 35. TA-I. Ning, J. Appi. Phys. 47. 3203

  7. Electron spin resonance study of interface states induced by electron injection in metal-oxide-semiconductor devices

    Science.gov (United States)

    Mikawa, R. E.; Lenahan, P. M.

    1986-03-01

    We find that electrons emitted from silicon into the oxide of metal-oxide-silicon devices generate amphoteric trivalent silicon (Pb center) defects at the Si/SiO2 interface. The Pb centers are generated in numbers approximately equal to that of the electron injection induced interface states. The effects of electron injection are similar to those of ionizing radiation to the extent that in both cases Pb centers are generated at the Si/SiO2 interface. However, the effects are not identical; ionizing radiation creates another trivalent silicon defect, termed E', in the oxide. We are unable to observe any E' generation in oxides subjected to electron injection. There appears to be a strong correlation between the number of trapped electrons and the electron injection induced Pb center interface states; this observation suggests that the trapping of electrons in the bulk of the oxides is in some way related to the creation of the Pb center interface state defects. We find that dry oxides subjected to a deuterium/nitrogen anneal exhibit less electron trapping than otherwise identical oxides which have been subjected to a hydrogen/nitrogen anneal. This observation is consistent with the idea that a hydrogen bond breaking event may be involved in electron capture.

  8. Synthesis Methods, Microscopy Characterization and Device Integration of Nanoscale Metal Oxide Semiconductors for Gas Sensing in Aerospace Applications

    Science.gov (United States)

    VanderWal, Randy L.; Berger, Gordon M.; Kulis, Michael J.; Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura J.

    2009-01-01

    A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. Both nanostructures possess a one-dimensional morphology. Different synthesis methods are used to produce these materials: thermal evaporation-condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed. Practical issues associated with harvesting, purification, and integration of these materials into sensing devices are detailed. For comparison to the nascent form, these sensing materials are surface coated with Pd and Pt nanoparticles. Gas sensing tests, with respect to H2, are conducted at ambient and elevated temperatures. Comparative normalized responses and time constants for the catalyst and noncatalyst systems provide a basis for identification of the superior metal-oxide nanostructure and catalyst combination. With temperature-dependent data, Arrhenius analyses are made to determine an activation energy for the catalyst-assisted systems.

  9. Study of the Physics of Insulating Films as Related to the Reliability of Metal-Oxide Semiconductor Devices

    Science.gov (United States)

    1983-08-01

    gate structure. As a result, the charge retention characteristics are excellent and we do not have to make the usual compromises associated with MNOS...W. Allen. AppI. Phys. Lett. 35. o I Nacional de Ciencia y Technologist (CONACyT) and Centro ( 19791. de Investigaciones y Estudios Avanzados del I.P.N...Sponsored in part by Consejo Nacional de Ciencia y Technologia (CONACyT) and Centro de Investigaciones y Estudios Avanzados del I.P.N. (CIEA). Mexico

  10. Sustained hole inversion layer in a wide-bandgap metal-oxide semiconductor with enhanced tunnel current.

    Science.gov (United States)

    Shoute, Gem; Afshar, Amir; Muneshwar, Triratna; Cadien, Kenneth; Barlage, Douglas

    2016-02-04

    Wide-bandgap, metal-oxide thin-film transistors have been limited to low-power, n-type electronic applications because of the unipolar nature of these devices. Variations from the n-type field-effect transistor architecture have not been widely investigated as a result of the lack of available p-type wide-bandgap inorganic semiconductors. Here, we present a wide-bandgap metal-oxide n-type semiconductor that is able to sustain a strong p-type inversion layer using a high-dielectric-constant barrier dielectric when sourced with a heterogeneous p-type material. A demonstration of the utility of the inversion layer was also investigated and utilized as the controlling element in a unique tunnelling junction transistor. The resulting electrical performance of this prototype device exhibited among the highest reported current, power and transconductance densities. Further utilization of the p-type inversion layer is critical to unlocking the previously unexplored capability of metal-oxide thin-film transistors, such applications with next-generation display switches, sensors, radio frequency circuits and power converters.

  11. Complementary curves of descent

    Science.gov (United States)

    Mungan, Carl E.; Lipscombe, Trevor C.

    2013-01-01

    The shapes of two wires in a vertical plane with the same starting and ending points are described as complementary curves of descent if beads frictionlessly slide down both of them in the same time, starting from rest. Every analytic curve has a unique complement, except for a cycloid (solution of the brachistochrone problem), which is self complementary. A striking example is a straight wire whose complement is a lemniscate of Bernoulli. Alternatively, the wires can be tracks down which round objects undergo a rolling race. The level of presentation is appropriate for an intermediate undergraduate course in classical mechanics.

  12. Complementary and Integrative Therapies

    Science.gov (United States)

    ... include: • Acupressure and acupuncture • Aromatherapy • Art therapy and music therapy • Chiropractic medicine and massage • Guided imagery • Meditation and ... should I avoid? • Is this complementary therapy (name therapy) safe? Is there research showing it is safe? • Are there side effects ...

  13. Complementary Coffee Cups

    Science.gov (United States)

    Banchoff, Thomas

    2006-01-01

    What may have been the birth of a new calculus problem took place when the author noticed that two coffee cups, one convex and one concave, fit nicely together, and he wondered which held more coffee. The fact that their volumes were about equal led to the topic of this article: complementary surfaces of revolution with equal volumes.

  14. Estimation of radiation exposure for brain perfusion CT: standard protocol compared with deviations in protocol.

    Science.gov (United States)

    Hoang, Jenny K; Wang, Chu; Frush, Donald P; Enterline, David S; Samei, Ehsan; Toncheva, Greta; Lowry, Carolyn; Yoshizumi, Terry T

    2013-11-01

    The purpose of this study was to measure the organ doses and estimate the effective dose for the standard brain perfusion CT protocol and erroneous protocols. An anthropomorphic phantom with metal oxide semiconductor field effect transistor (MOSFET) detectors was scanned on a 64-MDCT scanner. Protocol 1 used a standard brain perfusion protocol with 80 kVp and fixed tube current of 200 mA. Protocol 2 used 120 kVp and fixed tube current of 200 mA. Protocol 3 used 120 kVp with automatic tube current modulation (noise index, 2.4; minimum, 100 mA; maximum, 520 mA). Compared with protocol 1, the effective dose was 2.8 times higher with protocol 2 and 7.8 times higher with protocol 3. For all protocols, the peak dose was highest in the skin, followed by the brain and calvarial marrow. Compared with protocol 1, the peak skin dose was 2.6 times higher with protocol 2 and 6.7 times higher with protocol 3. The peak skin dose for protocol 3 exceeded 3 Gy. The ocular lens received significant scatter radiation: 177 mGy for protocol 2 and 435 mGy for protocol 3, which were 4.6 and 11.3 times the dose for protocol 1, respectively. Compared with the standard protocol, erroneous protocols of increasing the tube potential from 80 kVp to 120 kVp will lead to a three- to fivefold increase in organ doses, and concurrent use of high peak kilovoltage with incorrectly programmed tube current modulation can increase dose to organs by 7- to 11-fold. Tube current modulation with a low noise index can lead to doses to the skin and ocular lens that are close to thresholds for tissue reactions.

  15. A Note on Complementary Medicines

    Science.gov (United States)

    ... Issue Past Issues Special Section A Note on Complementary Medicines Past Issues / Winter 2007 Table of Contents For ... meditation, chiropractic manipulation, and acupuncture are types of complementary and alternative medicine (CAM) currently being used by millions of Americans. ...

  16. A Low-Noise CMOS THz Imager Based on Source Modulation and an In-Pixel High-Q Passive Switched-Capacitor N-Path Filter.

    Science.gov (United States)

    Boukhayma, Assim; Dupret, Antoine; Rostaing, Jean-Pierre; Enz, Christian

    2016-03-03

    This paper presents the first low noise complementary metal oxide semiconductor (CMOS) deletedCMOS terahertz (THz) imager based on source modulation and in-pixel high-Q filtering. The 31 × 31 focal plane array has been fully integrated in a 0 . 13 μ m standard CMOS process. The sensitivity has been improved significantly by modulating the active THz source that lights the scene and performing on-chip high-Q filtering. Each pixel encompass a broadband bow tie antenna coupled to an N-type metal-oxide-semiconductor (NMOS) detector that shifts the THz radiation, a low noise adjustable gain amplifier and a high-Q filter centered at the modulation frequency. The filter is based on a passive switched-capacitor (SC) N-path filter combined with a continuous-time broad-band Gm-C filter. A simplified analysis that helps in designing and tuning the passive SC N-path filter is provided. The characterization of the readout chain shows that a Q factor of 100 has been achieved for the filter with a good matching between the analytical calculation and the measurement results. An input-referred noise of 0 . 2 μ V RMS has been measured. Characterization of the chip with different THz wavelengths confirms the broadband feature of the antenna and shows that this THz imager reaches a total noise equivalent power of 0 . 6 nW at 270 GHz and 0 . 8 nW at 600 GHz.

  17. Water soluble nano-scale transient material germanium oxide for zero toxic waste based environmentally benign nano-manufacturing

    KAUST Repository

    Almuslem, A. S.

    2017-02-14

    In the recent past, with the advent of transient electronics for mostly implantable and secured electronic applications, the whole field effect transistor structure has been dissolved in a variety of chemicals. Here, we show simple water soluble nano-scale (sub-10 nm) germanium oxide (GeO) as the dissolvable component to remove the functional structures of metal oxide semiconductor devices and then reuse the expensive germanium substrate again for functional device fabrication. This way, in addition to transiency, we also show an environmentally friendly manufacturing process for a complementary metal oxide semiconductor (CMOS) technology. Every year, trillions of complementary metal oxide semiconductor (CMOS) electronics are manufactured and billions are disposed, which extend the harmful impact to our environment. Therefore, this is a key study to show a pragmatic approach for water soluble high performance electronics for environmentally friendly manufacturing and bioresorbable electronic applications.

  18. Water soluble nano-scale transient material germanium oxide for zero toxic waste based environmentally benign nano-manufacturing

    Science.gov (United States)

    Almuslem, A. S.; Hanna, A. N.; Yapici, T.; Wehbe, N.; Diallo, E. M.; Kutbee, A. T.; Bahabry, R. R.; Hussain, M. M.

    2017-02-01

    In the recent past, with the advent of transient electronics for mostly implantable and secured electronic applications, the whole field effect transistor structure has been dissolved in a variety of chemicals. Here, we show simple water soluble nano-scale (sub-10 nm) germanium oxide (GeO2) as the dissolvable component to remove the functional structures of metal oxide semiconductor devices and then reuse the expensive germanium substrate again for functional device fabrication. This way, in addition to transiency, we also show an environmentally friendly manufacturing process for a complementary metal oxide semiconductor (CMOS) technology. Every year, trillions of complementary metal oxide semiconductor (CMOS) electronics are manufactured and billions are disposed, which extend the harmful impact to our environment. Therefore, this is a key study to show a pragmatic approach for water soluble high performance electronics for environmentally friendly manufacturing and bioresorbable electronic applications.

  19. Top-Emitting White Organic Light-Emitting Diodes Based on Cu as Both Anode and Cathode

    International Nuclear Information System (INIS)

    Mu Ye; Zhang Zhen-Song; Wang Hong-Bo; Qu Da-Long; Wu Yu-Kun; Yan Ping-Rui; Li Chuan-Nan; Zhao Yi

    2015-01-01

    It is still challenging to obtain broadband emission covering visible light spectrum as much as possible with negligible angular dependence. In this work, we demonstrate a low driving voltage top-emitting white organic light-emitting diode (TEWOLED) based on complementary blue and yellow phosphor emitters with negligible angular dependence. The bottom copper anode with medium reflectance, which is compatible with the standard complementary metal oxide semiconductor (CMOS) technology below 0.13 μm, and the semitransparent multilayer Cs2CO3/Al/Cu cathode as a top electrode, are introduced to realize high-performance TEWOLED. Our TEWOLED achieves high efficiencies of 15.4 cd/A and 12.1 lm/W at a practical brightness of 1000 cd/m 2 at low voltage of 4 V. (paper)

  20. Emerging issues in complementary feeding

    DEFF Research Database (Denmark)

    Michaelsen, Kim F.; Grummer-Strawn, Laurence; Bégin, France

    2017-01-01

    addressed these issues. There are several emerging research areas that are likely to provide a better understanding of how complementary feeding influences growth, development, and health. These include the effect of the young child's diet on body composition, gastrointestinal microbiota, and environmental......The complementary feeding period (6-24 months) is a window of opportunity for preventing stunting, wasting, overweight, and obesity and for improving long-term development and health. Because WHO published its guiding principles for complementary feeding in 2003, new knowledge and evidence have...... been generated in the area of child feeding. The aim of this paper is to highlight some of the emerging issues in complementary feeding and potential implications on the guidelines revision. Evidence on the effect of the quality and quantity of protein and fat intake on child growth during...

  1. Headaches and Complementary Health Approaches

    Science.gov (United States)

    ... confusion . Headache. 2011;51(9):1419–1425. Verhagen AP, Damen L, Berger MY, et al. Behavioral treatments ... health: patterns of use in the United States . Journal of Alternative and Complementary Medicine. 2009;15(9): ...

  2. BASED COMPLEMENTARY FOODS USING GERMINAT

    African Journals Online (AJOL)

    user

    2010-08-08

    Aug 8, 2010 ... Malnutrition affects physical growth, morbidity, mortality, cognitive development, reproduction, and ... malnutrition. Development of complementary foods is guided by nutritional value, acceptability, availability and affordability of raw materials, and simplicity of food processing ... (Memmert, Germany) at 55. 0.

  3. Low-cost high-quality crystalline germanium based flexible devices

    KAUST Repository

    Nassar, Joanna M.

    2014-06-16

    High performance flexible electronics promise innovative future technology for various interactive applications for the pursuit of low-cost, light-weight, and multi-functional devices. Thus, here we show a complementary metal oxide semiconductor (CMOS) compatible fabrication of flexible metal-oxide-semiconductor capacitors (MOSCAPs) with high-κ/metal gate stack, using a physical vapor deposition (PVD) cost-effective technique to obtain a high-quality Ge channel. We report outstanding bending radius ~1.25 mm and semi-transparency of 30%.

  4. The initiation of complementary feeding among Qom indigenous people.

    Science.gov (United States)

    Olmedo, Sofia Irene; Valeggia, Claudia

    2014-06-01

    As of six months of life, breastfeeding no longer covers an infant's energy or micronutrient needs, so appropriate complementary feeding should be provided. The objective of this study was to assess the time and adequacy for introducing complementary feeding in a Qom/Toba population and analyze the sociocultural concepts of families regarding complementary feeding. Quantitative and qualitative data were collected by participant observation and semistructured surveys administered to mothers of 0-2 year old infants. Qom breastfeed their infants long term and on demand. Most infants have an adequate nutritional status and start complementary feeding at around 6 months old as per the local health center and international standards. However, mostly due to socioeconomic factors, foods chosen to complement breastfeeding have a relatively scarce nutritional value.

  5. Complementary and alternative medical therapies.

    Science.gov (United States)

    Schachter, Steven C

    2008-04-01

    Complementary and alternative medical therapies include herbs, acupuncture, and mind-body therapies. This review highlights the findings of recently published studies of complementary and alternative medical therapies and epilepsy, and provides an update of the US Food and Drug Administration's role in regulating herbal products. Complementary and alternative medical therapies are often tried by patients with epilepsy, frequently without physician knowledge. Many modalities have been evaluated in patients with epilepsy, though methodological issues preclude any firm conclusions of efficacy or safety. Some herbal medicines have been shown experimentally to have mechanisms of action relevant to epilepsy and promising actions in animal models. There is currently a paucity of credible evidence to support the use of complementary and alternative medical therapies in patients with epilepsy. Herbal medicines traditionally used for epilepsy and compounds isolated from them, as well as other herbal medicines and their constituent compounds that have been shown experimentally to have mechanisms of action relevant to epilepsy, should undergo further preclinical evaluation with a view towards clinical development under the new US Food and Drug Administration guidelines. Additional studies of other, nonherbal complementary and alternative medical therapies are also warranted based on anecdotal observations or pilot studies that suggest a favorable risk-benefit ratio.

  6. Parental concerns about complementary feeding

    DEFF Research Database (Denmark)

    Nielsen, Annemette; Michaelsen, Kim F.; Holm, Lotte

    2013-01-01

    Background/objectives:To investigate and analyze differences in parental concerns during earlier and later phases of complementary feeding.Subject/methods:Eight focus group interviews were conducted with 45 mothers of children aged 7 or 13 months. Deductive and inductive coding procedures were...... applied in the analysis.Results:There were marked differences in mothers' health concerns in early and in later phases of complementary feeding. In the early phase, feeding a child healthy food was an unquestioned and self-evident practice. The child's food was a specific category, separated from the rest....... Contested and partly contradictory practices resulted, including conscious acceptance of some intake of sugar and unhealthy fats. Perceived relevance of nutritional guidelines on complementary feeding was high in the early phase but declined later.Conclusion:Mothers' concerns and practices in the feeding...

  7. Complementary therapies for acne vulgaris

    Science.gov (United States)

    Cao, Huijuan; Yang, Guoyan; Wang, Yuyi; Liu, Jian Ping; Smith, Caroline A; Luo, Hui; Liu, Yueming

    2015-01-01

    medicine, or wet-cupping therapy were superior to controls in increasing remission or reducing skin lesions. Twenty-six of the 35 included studies reported adverse effects; they did not report any severe adverse events, but specific included trials reported mild adverse effects from herbal medicines, wet-cupping therapy, and tea tree oil gel. Thirty trials measured two of our secondary outcomes, which we combined and expressed as ’Number of participants with remission’. We were able to combine 2 studies (low quality of evidence), which compared Ziyin Qinggan Xiaocuo Granule and the antibiotic, minocycline (100 mg daily) (worst case = risk ratio (RR) 0.49, 95% CI 0.09 to 2.53, 2 trials, 206 participants at 4 weeks; best case = RR 2.82, 95% CI 0.82 to 9.06, 2 trials, 206 participants at 4 weeks), but there was no clear evidence of a difference between the groups. None of the included studies assessed ’Psychosocial function’. Two studies assessed ’Quality of life’, and significant differences in favour of the complementary therapy were found in both of them on ’feelings of self-worth’ (MD 1.51, 95% CI 0.88 to 2.14, P cupping therapy, for the treatment of this condition. There is a potential for adverse effects from herbal medicines; however, future studies need to assess the safety of all of these CAM therapies. Methodological and reporting quality limitations in the included studies weakened any evidence. Future studies should be designed to ensure low risk of bias and meet current reporting standards for clinical trials. PMID:25597924

  8. Complementary therapies for acne vulgaris.

    Science.gov (United States)

    Cao, Huijuan; Yang, Guoyan; Wang, Yuyi; Liu, Jian Ping; Smith, Caroline A; Luo, Hui; Liu, Yueming

    2015-01-19

    adverse effects; they did not report any severe adverse events, but specific included trials reported mild adverse effects from herbal medicines, wet-cupping therapy, and tea tree oil gel.Thirty trials measured two of our secondary outcomes, which we combined and expressed as 'Number of participants with remission'. We were able to combine 2 studies (low quality of evidence), which compared Ziyin Qinggan Xiaocuo Granule and the antibiotic, minocycline (100 mg daily) (worst case = risk ratio (RR) 0.49, 95% CI 0.09 to 2.53, 2 trials, 206 participants at 4 weeks; best case = RR 2.82, 95% CI 0.82 to 9.06, 2 trials, 206 participants at 4 weeks), but there was no clear evidence of a difference between the groups.None of the included studies assessed 'Psychosocial function'.Two studies assessed 'Quality of life', and significant differences in favour of the complementary therapy were found in both of them on 'feelings of self-worth' (MD 1.51, 95% CI 0.88 to 2.14, P acne vulgaris, but there is a lack of evidence from the current review to support the use of other CAMs, such as herbal medicine, acupuncture, or wet-cupping therapy, for the treatment of this condition. There is a potential for adverse effects from herbal medicines; however, future studies need to assess the safety of all of these CAM therapies. Methodological and reporting quality limitations in the included studies weakened any evidence. Future studies should be designed to ensure low risk of bias and meet current reporting standards for clinical trials.

  9. CMOS/SOS RAM transient radiation upset and ''inversion'' effect investigation

    International Nuclear Information System (INIS)

    Nikiforov, A.Y.; Poljakov, I.V.

    1996-01-01

    The Complementary Metal-Oxide-Semiconductor/Silicon-on-Sapphire Random Access Memory (CMOS/SOS RAM) transient upset and inversion effect were investigated with pulsed laser, pulsed voltage generator and low-intensity light simulators. It was found that the inversion of information occurs due to memory cell photocurrents simultaneously with the power supply voltage drop transfer to memory cells outputs

  10. Resistor Extends Life Of Battery In Clocked CMOS Circuit

    Science.gov (United States)

    Wells, George H., Jr.

    1991-01-01

    Addition of fixed resistor between battery and clocked complementary metal oxide/semiconductor (CMOS) circuit reduces current drawn from battery. Basic idea to minimize current drawn from battery by operating CMOS circuit at lowest possible current consistent with use of simple, fixed off-the-shelf components. Prolongs lives of batteries in such low-power CMOS circuits as watches and calculators.

  11. National Strategic Computing Initiative Strategic Plan

    Science.gov (United States)

    2016-07-01

    bandwidth, and higher clock speed;  Leverage strengths in device physics, materials design, and measurement tool development to address potential...explore and accelerate new paths for future computing architectures and technologies, including digital computing and alternative computing...technologies that will move digital computing performance past the theoretical limits of complementary metal-oxide semiconductors, and (2) the R&D of

  12. Monitoring Apnea in the Elderly by an Electromechanical System with a Carbon Nanotube-based Sensor

    Directory of Open Access Journals (Sweden)

    Hung-Chang Liu

    2013-09-01

    Conclusion: Our results showed that a new device composed of an NEMS by combining an MWCNT sensor and complementary metal-oxide semiconductor (CMOS circuits could be integrated to effectively detect apnea in the elderly. This novel device may improve the pattern of safe respiratory care for the elderly in the future.

  13. Atomic layer deposition of TiN films : growth and electrical behavior down to sub-nanometer scale

    NARCIS (Netherlands)

    Van Hao, B.

    2013-01-01

    During the last several decades, titanium nitride (TiN) has gained much interest because of its low resistivity, chemical inertness and compatibility with complementary metal-oxide-semiconductor (CMOS) technology. Thin films of TiN are commonly used as diffusion barrier and gate material for CMOS

  14. Assessment of intraoral image artifacts related to photostimulable ...

    African Journals Online (AJOL)

    2015-04-21

    Apr 21, 2015 ... complementary metal oxide semiconductors [CMOS]) and (2) photostimulable phosphor (PSP) technology.[3,4] In. CCD and CMOS systems, a cable usually connects the sensor to the computer, and the image is displayed almost immediately on the computer monitor after the exposure of the sensor.[4].

  15. Interface control scheme for computer high-speed interface unit

    Science.gov (United States)

    Ballard, B. K.

    1975-01-01

    Control scheme is general and performs for multiplexed and dedicated channels as well as for data-bus interfaces. Control comprises two 64-pin, dual in-line packages, each of which holds custom large-scale integrated array built with silicon-on-sapphire complementary metal-oxide semiconductor technology.

  16. Experimental demonstration of CMOS-compatible long-range dielectric-loaded surface plasmon-polariton waveguides (LR-DLSPPWs)

    DEFF Research Database (Denmark)

    Zektzer, Roy; Desiatov, Boris; Mazurski, Noa

    2015-01-01

    We demonstrate the design, fabrication and experimental characterization of long-range dielectric-loaded surface plasmon-polariton waveguides (LR-DLSPPWs) that are compatible with complementary metal-oxide semiconductor (CMOS) technology. The demonstrated waveguides feature good mode confinement...

  17. Transistor scaling with novel materials

    OpenAIRE

    Meikei Ieong; Vijay Narayanan; Dinkar Singh; Anna Topol; Victor Chan; Zhibin Ren

    2006-01-01

    Complementary metal-oxide-semiconductor (CMOS) transistor scaling will continue for at least another decade. However, innovation in transistor structures and integration of novel materials are needed to sustain this performance trend. Here we discuss the challenges and opportunities of transistor scaling for the next five to ten years.

  18. Avalanche-mode silicon LEDs for monolithic optical coupling in CMOS technology

    NARCIS (Netherlands)

    Dutta, Satadal

    2017-01-01

    Complementary Metal-Oxide-Semiconductor (CMOS) integrated circuit (IC) technology is the most commercially successful platform in modern electronic and control systems. So called "smart power" technologies such as Bipolar CMOS DMOS (BCD), combine the computational power of CMOS with high voltage

  19. Wafer-Scale Aluminum Nanoplasmonic Resonators with Optimized Metal Deposition

    Science.gov (United States)

    2016-01-04

    plasmonics. Unlike plasmonic devices based on coinage metals , such as gold and silver , which are effectively banned from silicon semiconductor fabrication...necessarily represent the view of the United States Government. Wafer-scale Aluminum Nanoplasmonic Resonators with Optimized Metal Deposition...method of aluminum deposition. Three-layer metal -dielectric- metal nanopillar arrays were fabricated in a complementary metal -oxide semiconductor (CMOS

  20. Boundary Layer Measurements in the Trisonic Gas-dynamics Facility Using Particle Image Velocimetery with CO2 Seeding

    Science.gov (United States)

    2012-03-22

    CCD and complementary metal-oxide semiconductor (CMOS) sensors convert light energy into electrical energy which is used to produce a digital image...in 2006 [12], where a commercially available system called the Sno -Gun II was used to generate dry ice particles. Several nozzles of varying

  1. Combustion Science to Reduce PM Emissions for Military Platforms

    Science.gov (United States)

    2012-01-01

    CH2O formaldehyde CIE International Society on Illumination CMOS Complementary metal oxide semiconductor xxi CO carbon monoxide CO2 carbon...production of carbonyl -hydroperoxide species, which leads to chain branching, is directly proportional to the fuel concentration. For the blend (see...but they include reactions that form hazardous air pollutants (HAPs) such as formaldehyde , butadiene, benzene and naphthalene. Current regulations

  2. Effects of post-deposition annealing on sputtered SiO2/4H-SiC metal-oxide-semiconductor

    Science.gov (United States)

    Lee, Suhyeong; Kim, Young Seok; Kang, Hong Jeon; Kim, Hyunwoo; Ha, Min-Woo; Kim, Hyeong Joon

    2018-01-01

    Reactive sputtering followed by N2, NH3, O2, and NO post-deposition annealing (PDA) of SiO2 on 4H-SiC was investigated in this study. The results of ellipsometry, an etching test, and X-ray photoemission spectroscopy showed that N2 and NH3 PDA nitrified the SiO2. Devices using N2 and NH3 PDA exhibited a high gate leakage current and low breakdown field due to oxygen vacancies and incomplete oxynitride. SiO2/4H-SiC MOS capacitors were also fabricated and their electrical characteristics measured. The average breakdown fields of the devices using N2, NH3, O2, and NO PDA were 0.12, 0.17, 4.71 and 2.63 MV/cm, respectively. The shifts in the flat-band voltage after O2 and NO PDA were 0.95 and -2.56 V, respectively, compared with the theoretical value. The extracted effective oxide charge was -4.11 × 1011 cm-2 for O2 PDA and 1.11 × 1012 cm-2 for NO PDA. NO PDA for 2 h at 1200 °C shifted the capacitance-voltage curve in the negative direction. The oxygen containing PDA showed better electrical properties than non-oxygen PDA. The sputtering method described can be applied to 4H-SiC MOS fabrication.

  3. Effects of series and parallel resistances on the C-V characteristics of silicon-based metal oxide semiconductor (MOS) devices

    Science.gov (United States)

    Omar, Rejaiba; Mohamed, Ben Amar; Adel, Matoussi

    2015-04-01

    This paper investigates the electrical behavior of the Al/SiO2/Si MOS structure. We have used the complex admittance method to develop an analytical model of total capacitance applied to our proposed equivalent circuit. The charge density, surface potential, semiconductor capacitance, flatband and threshold voltages have been determined by resolving the Poisson transport equations. This modeling is used to predict in particular the effects of frequency, parallel and series resistance on the capacitance-voltage characteristic. Results show that the variation of both frequency and parallel resistance causes strong dispersion of the C-V curves in the inversion regime. It also reveals that the series resistance influences the shape of C-V curves essentially in accumulation and inversion modes. A significant decrease of the accumulation capacitance is observed when R s increases in the range 200-50000 Ω. The degradation of the C-V magnitude is found to be more pronounced when the series resistance depends on the substrate doping density. When R s varies in the range 100 Ω-50 kΩ, it shows a decrease in the flatband voltage from -1.40 to -1.26 V and an increase in the threshold voltage negatively from -0.28 to -0.74 V, respectively. Good agreement has been observed between simulated and measured C-V curves obtained at high frequency. This study is necessary to control the adverse effects that disrupt the operation of the MOS structure in different regimes and optimizes the efficiency of such electronic device before manufacturing.

  4. InxGa1-xSb Channel p-Metal-Oxide-Semiconductor Field Effect Transistors: Effect of Strain and Heterostructure Design

    Science.gov (United States)

    2011-07-06

    good gate dielectric that will minimize the leakage current while having a low density of interface states (Dit), is direly needed for the antimonides ...dielectric, followed by evaporation and patterning of the aluminum gate material. This was followed by ion implanta- tion of beryllium, which acts as

  5. Electrical characterization of 4H-SiC metal-oxide-semiconductor structure with Al2O3 stacking layers as dielectric

    Science.gov (United States)

    Chang, P. K.; Hwu, J. G.

    2018-02-01

    Interface defects and oxide bulk traps conventionally play important roles in the electrical performance of SiC MOS device. Introducing the Al2O3 stack grown by repeated anodization of Al films can notably lower the leakage current in comparison to the SiO2 structure, and enhance the minority carrier response at low frequency when the number of Al2O3 layers increase. In addition, the interface quality is not deteriorated by the stacking of Al2O3 layers because the stacked Al2O3 structure grown by anodization possesses good uniformity. In this work, the capacitance equivalent thickness (CET) of stacking Al2O3 will be up to 19.5 nm and the oxidation process can be carried out at room temperature. For the Al2O3 gate stack with CET 19.5 nm on n-SiC substrate, the leakage current at 2 V is 2.76 × 10-10 A/cm2, the interface trap density at the flatband voltage is 3.01 × 1011 eV-1 cm-2, and the effective breakdown field is 11.8 MV/cm. Frequency dispersion and breakdown characteristics may thus be improved as a result of the reduction in trap density. The Al2O3 stacking layers are capable of maintaining the leakage current as low as possible even after constant voltage stress test, which will further ameliorate reliability characteristics.

  6. Co-integration of nano-scale vertical- and horizontal-channel metal-oxide-semiconductor field-effect transistors for low power CMOS technology.

    Science.gov (United States)

    Sun, Min-Chul; Kim, Garam; Kim, Sang Wan; Kim, Hyun Woo; Kim, Hyungjin; Lee, Jong-Ho; Shin, Hyungcheol; Park, Byung-Gook

    2012-07-01

    In order to extend the conventional low power Si CMOS technology beyond the 20-nm node without SOI substrates, we propose a novel co-integration scheme to build horizontal- and vertical-channel MOSFETs together and verify the idea using TCAD simulations. From the fabrication viewpoint, it is highlighted that this scheme provides additional vertical devices with good scalability by adding a few steps to the conventional CMOS process flow for fin formation. In addition, the benefits of the co-integrated vertical devices are investigated using a TCAD device simulation. From this study, it is confirmed that the vertical device shows improved off-current control and a larger drive current when the body dimension is less than 20 nm, due to the electric field coupling effect at the double-gated channel. Finally, the benefits from the circuit design viewpoint, such as the larger midpoint gain and beta and lower power consumption, are confirmed by the mixed-mode circuit simulation study.

  7. Contribution to the study of metal-oxide-semiconductor devices with optical access. In2O3-SiO2-Si structure

    International Nuclear Information System (INIS)

    Thenoz, Yves.

    1974-01-01

    A general study of the fabrication of the structure In 2 O 3 /SiO 2 /Si was made encompassing the problems posed during the realization of these structures. The sputtering study enabled the influence of the main parameters on layer properties to be determined. The decisive importance of clean conditions throughout fabrication (especially during sputtering) on the properties of In 2 O 3 layers and on those of the structure and its stability was revealed. However, the problem of ageing of the structure were not investigated. Finally, the construction of MOS capacitors and transistors showed that In 2 O 3 /SiO 2 /Si structures can be used in MOS circuits [fr

  8. Investigation of temperature dependent threshold voltage variation of Gd2O3/AlGaN/GaN metal-oxide-semiconductor heterostructure

    Directory of Open Access Journals (Sweden)

    Atanu Das

    2012-09-01

    Full Text Available Temperature dependent threshold voltage (Vth variation of GaN/AlGaN/Gd2O3/Ni-Au structure is investigated by capacitance-voltage measurement with temperature varying from 25°C to 150°C. The Vth of the Schottky device without oxide layer is slightly changed with respect to temperature. However, variation of Vth is observed for both as-deposited and annealed device owing to electron capture by the interface traps or bulk traps. The Vth shifts of 0.4V and 3.2V are obtained for as-deposited and annealed device respectively. For annealed device, electron capture process is not only restricted in the interface region but also extended into the crystalline Gd2O3 layer through Frenkel-Poole emission and hooping conduction, resulting in a larger Vth shift. The calculated trap density for as-deposited and annealed device is 3.28×1011∼1.12×1011 eV−1cm−2 and 1.74×1012∼7.33×1011 eV−1cm−2 respectively in measured temperature range. These results indicate that elevated temperature measurement is necessary to characterize GaN/AlGaN heterostructure based devices with oxide as gate dielectric.

  9. Investigation of trap states in Al2O3 InAlN/GaN metal-oxide-semiconductor high-electron-mobility transistors

    Science.gov (United States)

    Zhang, Peng; Zhao, Sheng-Lei; Xue, Jun-Shuai; Zhu, Jie-Jie; Ma, Xiao-Hua; Zhang, Jin-Cheng; Hao, Yue

    2015-12-01

    In this paper the trapping effects in Al2O3/In0.17Al0.83N/GaN MOS-HEMT (here, HEMT stands for high electron mobility transistor) are investigated by frequency-dependent capacitance and conductance analysis. The trap states are found at both the Al2O3/InAlN and InAlN/GaN interface. Trap states in InAlN/GaN heterostructure are determined to have mixed de-trapping mechanisms, emission, and tunneling. Part of the electrons captured in the trap states are likely to tunnel into the two-dimensional electron gas (2DEG) channel under serious band bending and stronger electric field peak caused by high Al content in the InAlN barrier, which explains the opposite voltage dependence of time constant and relation between the time constant and energy of the trap states. Project supported by the Program for National Natural Science Foundation of China (Grant Nos. 61404100 and 61306017).

  10. Characterizations of HfxMoyNz Alloys as Gate Electrodes for n- and p-Channel Metal Oxide Semiconductor Field Effect Transistors

    Science.gov (United States)

    Lai, Chao Sung; Kan Peng, Hsing; Huang, Chin Wei; Fan, Kung Ming; Fang, Yu Ching; Hsu, Li; Wang, Hui Chun; Lee, Chung Yuan; Jyh Lin, Shian

    2008-04-01

    In this article, the work functions (Φm) of hafnium-molybdenum (HfxMoy) alloys were modified using nitrogen in dc reactive cosputtering for the first time. The HfxMoyNz alloys show low resistivity and excellent thermal stability up to 900 °C. In addition, the work functions (Φm) of the HfxMoyNz alloys were tuned from the conduction band (4.17 eV) to the valence band (5.16 eV) by increasing the nitrogen flow ratio. From the X-ray diffraction (XRD) data, the MoN(200) peak can be observed for samples with a nitrogen ratio higher than 6%, which was responsible for the work function (Φm) increase in the HfxMoyNz alloys.

  11. Depth-Sensitive Raman Investigation of Metal-Oxide-Semiconductor Structures: Absorption as a Tool for Variation of Exciting Light Penetration Depth

    Directory of Open Access Journals (Sweden)

    Paweł Borowicz

    2016-01-01

    Full Text Available Presented work focuses the attention on two regions of MOS structure placed in the vicinity of the semiconductor/dielectric interface, in particular: on part of dielectric layer and thin layer of the substrate. In the presented work the application of absorption as a tool that can vary the absorption depth of excitation light into the semiconductor substrate is discussed. The changes of the absorption depth of visible light allows to obtain Raman signal from places in the substrate placed at different distances from the dielectric/semiconductor interface. The series of Raman spectra obtained from visible excitation in the case of varying absorption depth allowed to analyze the structure of the substrate as a function of distance from the interface. Deep ultraviolet Raman study regarding part of silicon dioxide layer placed directly at the interface is not discussed so far which makes the analysis of the structure of this part of dielectric layer possible. Comparison of reported in this work Raman data with structure of silicon/silicon dioxide interface obtained from other experimental techniques proves the applicability of proposed methodology.

  12. Extraction of carrier mobility and interface trap density in InGaAs metal oxide semiconductor structures using gated Hall method

    Science.gov (United States)

    Chidambaram, Thenappan

    III-V semiconductors are potential candidates to replace Si as a channel material in next generation CMOS integrated circuits owing to their superior carrier mobilities. Low density of states (DOS) and typically high interface and border trap densities (Dit) in high mobility group III-V semiconductors provide difficulties in quantification of Dit near the conduction band edge. The trap response above the threshold voltage of a MOSFET can be very fast, and conventional Dit extraction methods, based on capacitance/conductance response (CV methods) of MOS capacitors at frequencies properties of III-V interfaces is an ambiguity of determination of electron density in the MOSFET channel. Traditional evaluation of carrier density by integration of the C-V curve, gives incorrect values for D it and mobility. Here we employ gated Hall method to quantify the D it spectrum at the high-K oxide/III-V semiconductor interface for buried and surface channel devices using Hall measurement and capacitance-voltage data. Determination of electron density directly from Hall measurements allows for obtaining true mobility values.

  13. Thermal annealing effects on the interface state density of metal-oxide-semiconductor capacitors with electron cyclotron resonance plasma enhanced chemical vapor deposition Silicon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Maiolo, L. [Istituto di Fotonica e Nanotecnologie (IFN), CNR, Via Cineto Romano 42, 00156 Rome (Italy)], E-mail: lmaiolo@ifn.cnr.it; Pecora, A.; Cuscuna, M.; Fortunato, G. [Istituto di Fotonica e Nanotecnologie (IFN), CNR, Via Cineto Romano 42, 00156 Rome (Italy)

    2007-07-16

    Silicon dioxide films (SiO{sub 2}), deposited at room temperature by electron cyclotron resonance (ECR) plasma reactor from a gas phase combination of O{sub 2}, SiH{sub 4} and He, present excellent structural and electrical properties. However, when fabricating field effect devices it is also crucial to minimize the defect density at the semiconductor/insulator interface. We show that the interface state density, investigated in Al/SiO{sub 2}/Si MOS capacitors, can be substantially reduced performing post-deposition annealing. In particular we studied the effects of annealing temperature and time in different gas ambient: vacuum, nitrogen and forming gas (5% H{sub 2} + N{sub 2}). We found that interface state passivation mainly occurs when thermal annealing is performed after Al-contact deposition and that it is quite insensitive to the annealing atmosphere. The present results clearly suggest that the hydrogen passivation mechanism is driven by the H-containing species present in the film and a possible mechanism to explain the results is proposed.

  14. Thermal annealing effects on the interface state density of metal-oxide-semiconductor capacitors with electron cyclotron resonance plasma enhanced chemical vapor deposition Silicon dioxide

    International Nuclear Information System (INIS)

    Maiolo, L.; Pecora, A.; Cuscuna, M.; Fortunato, G.

    2007-01-01

    Silicon dioxide films (SiO 2 ), deposited at room temperature by electron cyclotron resonance (ECR) plasma reactor from a gas phase combination of O 2 , SiH 4 and He, present excellent structural and electrical properties. However, when fabricating field effect devices it is also crucial to minimize the defect density at the semiconductor/insulator interface. We show that the interface state density, investigated in Al/SiO 2 /Si MOS capacitors, can be substantially reduced performing post-deposition annealing. In particular we studied the effects of annealing temperature and time in different gas ambient: vacuum, nitrogen and forming gas (5% H 2 + N 2 ). We found that interface state passivation mainly occurs when thermal annealing is performed after Al-contact deposition and that it is quite insensitive to the annealing atmosphere. The present results clearly suggest that the hydrogen passivation mechanism is driven by the H-containing species present in the film and a possible mechanism to explain the results is proposed

  15. Synthesis and characterization of metal oxide semiconductors by a facile co-electroplating-annealing method and formation of ZnO/CuO pn heterojunctions with rectifying behavior

    Science.gov (United States)

    Turkdogan, Sunay; Kilic, Bayram

    2018-01-01

    We have developed a unique growth method and demonstrated the growth of CuO and ZnO semiconductor materials and the fabrication of their pn heterojunctions in ambient atmosphere. The pn heterojunctions were constructed using inherently p-type CuO and inherently n-type ZnO materials. Both p- and n-type semiconductors and pn heterojunctions were prepared using a simple but versatile growth method that relies on the transformation of electroplated Cu and Zn metals into CuO and ZnO semiconductors, respectively and is capable of a large-scale production desired in most of the applications. The structural, chemical, optical and electrical properties of the materials and junctions were investigated using various characterization methods and the results show that our growth method, materials and devices are quite promising to be utilized for various applications including but not limited to solar cells, gas/humidity sensors and photodetectors.

  16. Effects of consecutive irradiation and bias temperature stress in p-channel power vertical double-diffused metal oxide semiconductor transistors

    Science.gov (United States)

    Davidović, Vojkan; Danković, Danijel; Ilić, Aleksandar; Manić, Ivica; Golubović, Snežana; Djorić-Veljković, Snežana; Prijić, Zoran; Prijić, Aneta; Stojadinović, Ninoslav

    2018-04-01

    The mechanisms responsible for the effects of consecutive irradiation and negative bias temperature (NBT) stress in p-channel power vertical double-diffused MOS (VDMOS) transistors are presented in this paper. The investigation was performed in order to clarify the mechanisms responsible for the effects of specific kind of stress in devices previously subjected to the other kind of stress. In addition, it may help in assessing the behaviour of devices subjected to simultaneous irradiation and NBT stressing. It is shown that irradiation of previously NBT stressed devices leads to additional build-up of oxide trapped charge and interface traps, while NBT stress effects in previously irradiated devices depend on gate bias applied during irradiation and on the total dose received. In the cases of low-dose irradiation or irradiation without gate bias, the subsequent NBT stress leads to slight further device degradation. On the other hand, in the cases of devices previously irradiated to high doses or with gate bias applied during irradiation, NBT stress may have a positive role, as it actually anneals a part of radiation-induced degradation.

  17. Industrial Evolution Through Complementary Convergence

    DEFF Research Database (Denmark)

    Frøslev Christensen, Jens

    2011-01-01

    The article addresses the dynamics through which product markets become derailed from early product life cycle (PLC)-tracks and engaged in complementary convergence with other product markets or industries. We compare and contrast the theories that can explain, respectively, the PLC...

  18. Complementary Colours for a Physicist

    Science.gov (United States)

    Babic, Vitomir; Cepic, Mojca

    2009-01-01

    This paper reports on a simple experiment which enables splitting incident light into two different modes, each having a colour exactly complementary to the other. A brief historical development of colour theories and differences in a physicist's point of view with respect to an artist's one is discussed. An experimental system for producing…

  19. [Integration of complementary medicine in hospital departments: implementation model and research outline in the Cardiology Department].

    Science.gov (United States)

    Schiff, Elad; Dubretzki-Mery, Idit; Attias, Samuel; Ben-Arye, Eran; Kreindler, Gur; Avneri, Ofri; Ben Ezra, Amichai; Arnon, Zahi; Grinberg, Ina; Rosenshein, Uri

    2015-01-01

    Systematic integration of complementary medicine in hospital departments for inpatients is rarely discussed in the medical literature. Positive outcomes from trials in this setting should encourage evaluation of complementary medicine services in hospitals. To identify the potential role of complementary medicine in the Cardiology Department, characterize its implementation process, and conduct a feasibility study in this context. A narrative overview of the implementation process of complementary medicine in the Cardiology Department was used alongside a statistical analysis of a feasibility trial This was in order to determine the sample size for a larger pragmatic trial that will assess the effectiveness of complementary medicine, as compared to standard of care, in relieving common symptoms of patients hospitalized in the Cardiology Department. Focus groups consisting of representatives from the Cardiology Department, and the Complementary Medicine Service identified areas for possible integration of complementary medicine in the Cardiology Department. A literature review was conducted in order to assess complementary medicine effectiveness and safety in this setting. Consequently, appropriate treatment protocols were developed. The Complementary Medicine team participated in cardiology patient rounds, and presentations on complementary medicine were provided to the cardiology staff. Treatment indications, and contraindications were mutually developed, and questionnaires to assess treatment effectiveness were developed. A feasibility trial was completed for 237 patients who were treated with complementary medicine. Integration of complementary medicine in an inpatient setting is possible following a carefully structured implementation process that is shared by champions from the medical department and the Complementary Medicine Service. Results from the feasibility trial indicate the potential positive role that complementary medicine treatments have on common

  20. Germanium Nitride Interfacial Layer for Chalcogenide Random Access Memory Applications

    Science.gov (United States)

    Shen, Jie; Liu, Bo; Song, Zhitang; Xu, Cheng; Rao, Feng; Liang, Shuang; Feng, Songlin; Chen, Bomy

    2008-01-01

    This work reports on the performance improvement of a chalcogenide random access memory device by applying germanium nitride as an interfacial layer. The device with an 8-nm-thick GeN film was fabricated using standard 0.18 µm complementary metal oxide semiconductor technology. The as-deposited GeN is in the amorphous state and has a smooth surface. An electrical test showed that this N-deficient layer induces a lower threshold voltage during the operation. It is believed that the reduction mainly originated from the excellent interfacial properties, high electrical resistivity, and low thermal conductivity of GeN, which is would be a prospective interfacial material in CRAM devices.

  1. On-chip cell analysis platform: Implementation of contact fluorescence microscopy in microfluidic chips

    Science.gov (United States)

    Takehara, Hiroaki; Kazutaka, Osawa; Haruta, Makito; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Ohta, Jun

    2017-09-01

    Although fluorescence microscopy is the gold standard tool for biomedical research and clinical applications, their use beyond well-established laboratory infrastructures remains limited. The present study investigated a novel on-chip cell analysis platform based on contact fluorescence microscopy and microfluidics. Combined use of a contact fluorescence imager based on complementary metal-oxide semiconductor technology and an ultra-thin glass bottom microfluidic chip enabled both to observe living cells with minimal image distortion and to ease controlling and handling of biological samples (e.g. cells and biological molecules) in the imaged area. A proof-of-concept experiment of on-chip detection of cellular response to endothelial growth factor demonstrated promising use for the recently developed on-chip cell analysis platform. Contact fluorescence microscopy has numerous desirable features including compatibility with plastic microfluidic chips and compatibility with the electrical control system, and thus will fulfill the requirements of a fully automated cell analysis system.

  2. Design and Simulations of an Energy Harvesting Capable CMOS Pixel for Implantable Retinal Prosthesis

    Science.gov (United States)

    Ansaripour, Iman; Karami, Mohammad Azim

    2017-12-01

    A new pixel is designed with the capability of imaging and energy harvesting for the retinal prosthesis implant in 0.18 µm standard Complementary Metal Oxide Semiconductor technology. The pixel conversion gain and dynamic range, are 2.05 \\upmu{{V}}/{{e}}^{ - } and 63.2 dB. The power consumption 53.12 pW per pixel while energy harvesting performance is 3.87 nW in 60 klx of illuminance per pixel. These results have been obtained using post layout simulation. In the proposed pixel structure, the high power production capability in energy harvesting mode covers the demanded energy by using all available p-n junction photo generated currents.

  3. Triple inverter pierce oscillator circuit suitable for CMOS

    Science.gov (United States)

    Wessendorf,; Kurt, O [Albuquerque, NM

    2007-02-27

    An oscillator circuit is disclosed which can be formed using discrete field-effect transistors (FETs), or as a complementary metal-oxide-semiconductor (CMOS) integrated circuit. The oscillator circuit utilizes a Pierce oscillator design with three inverter stages connected in series. A feedback resistor provided in a feedback loop about a second inverter stage provides an almost ideal inverting transconductance thereby allowing high-Q operation at the resonator-controlled frequency while suppressing a parasitic oscillation frequency that is inherent in a Pierce configuration using a "standard" triple inverter for the sustaining amplifier. The oscillator circuit, which operates in a range of 10 50 MHz, has applications for use as a clock in a microprocessor and can also be used for sensor applications.

  4. A new coupling mechanism between two graphene electron waveguides for ultrafast switching

    Science.gov (United States)

    Huang, Wei; Liang, Shi-Jun; Kyoseva, Elica; Ang, Lay Kee

    2018-03-01

    In this paper, we report a novel coupling between two graphene electron waveguides, in analogy the optical waveguides. The design is based on the coherent quantum mechanical tunneling of Rabi oscillation between the two graphene electron waveguides. Based on this coupling mechanism, we propose that it can be used as an ultrafast electronic switching device. Based on a modified coupled mode theory, we construct a theoretical model to analyze the device characteristics, and predict that the switching speed is faster than 1 ps and the on–off ratio exceeds 106. Due to the long mean free path of electrons in graphene at room temperature, the proposed design avoids the limitation of low temperature operation required in the traditional design by using semiconductor quantum-well structure. The layout of our design is similar to that of a standard complementary metal-oxide-semiconductor transistor that should be readily fabricated with current state-of-art nanotechnology.

  5. Fabrication and characterization on width of spiral interdigitated electrodes based biosensors

    Science.gov (United States)

    Adelyn, P. Y. P.; Hashim, U.; Arshad, M. K. Md; Ruslinda, A. R.; Voon, C. H.; Ayub, R. M.; Gopinath, Subash C. B.; Liu, Wei-Wen; Kahar, S. M.; Huda, A. R. N.; Lee, H. Cheun

    2017-03-01

    Simple and inexpensive mask layout design on a transparency film were demonstrated using the conventional complementary metal oxide semiconductor (CMOS) technique to produce interdigitated electrodes (IDEs) for biomedical biosensors applications. Lift-off techniques were implemented during photolithography process in order to pattern an electrode widths of 200µm, 300µm, 400µm and 500µm, respectively with a standardized 400µm gap spacing spiral IDEs. Due to the effect of the transparent mask, a fabrication of these spiral IDEs resulted in shrinkage of electrode width and increment of the gap spacing. Among these electrode sizes, the conductance of 300µm, 400µm and 500µm electrode width were successfully examined as compared to 200µm.

  6. Radiation hardening of smart electronics

    International Nuclear Information System (INIS)

    Mayo, C.W.; Cain, V.R.; Marks, K.A.; Millward, D.G.

    1991-02-01

    Microprocessor based ''smart'' pressure, level, and flow transmitters were tested to determine the radiation hardness of this class of electronic instrumentation for use in reactor building applications. Commercial grade Complementary Metal Oxide Semiconductor (CMOS) integrated circuits used in these transmitters were found to fail at total gamma dose levels between 2500 and 10,000 rad. This results in an unacceptably short lifetime in many reactor building radiation environments. Radiation hardened integrated circuits can, in general, provide satisfactory service life for normal reactor operations when not restricted to the extremely low power budget imposed by standard 4--20 mA two-wire instrument loops. The design of these circuits will require attention to vendor radiation hardness specifications, dose rates, process control with respect to radiation hardness factors, and non-volatile programmable memory technology. 3 refs., 2 figs

  7. A 65 nm CMOS high efficiency 50 GHz VCO with regard to the coupling effect of inductors

    International Nuclear Information System (INIS)

    Ye Yu; Tian Tong

    2013-01-01

    A 50 GHz cross-coupled voltage controlled oscillator (VCO) considering the coupling effect of inductors based on a 65 nm standard complementary metal oxide semiconductor (CMOS) technology is reported. A pair of inductors has been fabricated, measured and analyzed to characterize the coupling effects of adjacent inductors. The results are then implemented to accurately evaluate the VCO's LC tank. By optimizing the tank voltage swing and the buffer's operation region, the VCO achieves a maximum efficiency of 11.4% by generating an average output power of 2.5 dBm while only consuming 19.7 mW (including buffers). The VCO exhibits a phase noise of −87 dBc/Hz at 1 MHz offset, leading to a figure of merit (FoM) of −167.5 dB/Hz and a tuning range of 3.8% (from 48.98 to 50.88 GHz). (semiconductor integrated circuits)

  8. Design of a Sub-Picosecond Jitter with Adjustable-Range CMOS Delay-Locked Loop for High-Speed and Low-Power Applications

    Directory of Open Access Journals (Sweden)

    Bilal I. Abdulrazzaq

    2016-09-01

    Full Text Available A Delay-Locked Loop (DLL with a modified charge pump circuit is proposed for generating high-resolution linear delay steps with sub-picosecond jitter performance and adjustable delay range. The small-signal model of the modified charge pump circuit is analyzed to bring forth the relationship between the DLL’s internal control voltage and output time delay. Circuit post-layout simulation shows that a 0.97 ps delay step within a 69 ps delay range with 0.26 ps Root-Mean Square (RMS jitter performance is achievable using a standard 0.13 µm Complementary Metal-Oxide Semiconductor (CMOS process. The post-layout simulation results show that the power consumption of the proposed DLL architecture’s circuit is 0.1 mW when the DLL is operated at 2 GHz.

  9. Determination of parameters affecting the use of complementary and ...

    African Journals Online (AJOL)

    This study was conducted to find out the frequency of complementary and alternative medicine (CAM) use that could lead to troubles in patient health and in applied standard therapy protocols when used improperly, which method is used, the reasons for use and from which resources the information about this topic were ...

  10. Complementary therapies and traditional Judaism.

    Science.gov (United States)

    Rosner, F

    1999-03-01

    In Jewish tradition, physicians are obligated to heal the sick and patients are obligated to seek healing from physicians. Judaism also sanctions certain complementary therapies such as prayers, faith healing, and amulets, when used as supplements to traditional medical therapy. Confidence in the healing powers of God through prayer and contrition is encouraged, provided that the patient uses prayer alongside traditional scientific medicine, not as a substitute for it.

  11. Complementary feeding and obesity risk.

    Science.gov (United States)

    Grote, Veit; Theurich, Melissa

    2014-05-01

    This article will summarize recent progress in research in the area of complementary feeding as it relates to childhood obesity. Newly emerged findings demonstrate how research on contributing factors has shifted. Examining nutrient and caloric intakes alone has failed to answer the critical question, 'Why are some children obese, whereas others are not?' Recent research explores parental attitudes, beliefs and parental feeding styles as contributing factors. Studies examining the impact of specific macronutrients on obesity risk may have partially uncovered a link between consistently high protein intakes during infancy and an elevated obesity risk, at least until the second year of life. However, this relationship was not evident in all studies evaluated in a systematic review this year. Childhood obesity is not linked to any specific types of foods or food groups during the complementary feeding period. Adherence to dietary guidelines is associated with increased lean body mass, but not BMI or fat mass. Complementary feeding practices, socioeconomic and other family dynamics at least partially explain obesity risk. As young infants are dependent on adults for nourishment, parental attitudes and beliefs about infant nutrition and actual feeding practices directly influence infant nutritional status. Early nutrition interventions to prevent obesity should take nutrition belief systems, parental feeding styles, socioeconomic and educational status, among other characteristics into consideration.

  12. African Journal of Traditional, Complementary and Alternative ...

    African Journals Online (AJOL)

    African Journal of Traditional, Complementary and Alternative Medicines: Advanced Search. Journal Home > African Journal of Traditional, Complementary and Alternative Medicines: Advanced Search. Log in or Register to get access to full text downloads.

  13. Office of Cancer Complementary and Alternative Medicine

    Science.gov (United States)

    ... C Research. Information. Outreach. The Office of Cancer Complementary and Alternative Medicine (OCCAM) was established in October 1998 to coordinate ... National Cancer Institute (NCI) in the arena of complementary and alternative medicine (CAM). More about us. CAM at the NCI ...

  14. Complementary and alternative medicine therapies for perinatal depression.

    Science.gov (United States)

    Deligiannidis, Kristina M; Freeman, Marlene P

    2014-01-01

    Complementary and alternative medicine therapies are increasingly sought out by people with psychiatric disorders. In this chapter, we review the evidence for several commonly used CAM therapies (i.e. omega-3 fatty acids, folate, S-adenosyl-methionine, St John's Wort, bright light therapy, exercise, massage, and acupuncture) in the treatment of perinatal depression. A number of these treatments may be reasonable to consider for women during pregnancy or postpartum, but the safety and efficacy of these relative to standard treatments must still be systematically determined. Evidence-based use of complementary and alternative medicine therapies treatments for perinatal depression is discussed. Adequately powered systematic studies are necessary to determine the role of complementary and alternative medicine therapies in the treatment of perinatal depression. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. High Performance Electronics on Flexible Silicon

    KAUST Repository

    Sevilla, Galo T.

    2016-09-01

    Over the last few years, flexible electronic systems have gained increased attention from researchers around the world because of their potential to create new applications such as flexible displays, flexible energy harvesters, artificial skin, and health monitoring systems that cannot be integrated with conventional wafer based complementary metal oxide semiconductor processes. Most of the current efforts to create flexible high performance devices are based on the use of organic semiconductors. However, inherent material\\'s limitations make them unsuitable for big data processing and high speed communications. The objective of my doctoral dissertation is to develop integration processes that allow the transformation of rigid high performance electronics into flexible ones while maintaining their performance and cost. In this work, two different techniques to transform inorganic complementary metal-oxide-semiconductor electronics into flexible ones have been developed using industry compatible processes. Furthermore, these techniques were used to realize flexible discrete devices and circuits which include metal-oxide-semiconductor field-effect-transistors, the first demonstration of flexible Fin-field-effect-transistors, and metal-oxide-semiconductors-based circuits. Finally, this thesis presents a new technique to package, integrate, and interconnect flexible high performance electronics using low cost additive manufacturing techniques such as 3D printing and inkjet printing. This thesis contains in depth studies on electrical, mechanical, and thermal properties of the fabricated devices.

  16. Thyroid Disease and Complementary and Alternative Medicine (CAM)

    Science.gov (United States)

    ... Alternative Medicine in Thyroid Disease Complementary and Alternative Medicine in Thyroid Disease (CAM) WHAT IS COMPLEMENTARY AND ALTERNATIVE MEDICINE (CAM)? Complementary and Alternative Medicine (CAM) is defined ...

  17. Complementary colours for a physicist

    International Nuclear Information System (INIS)

    Babic, Vitomir; Cepic, Mojca

    2009-01-01

    This paper reports on a simple experiment which enables splitting incident light into two different modes, each having a colour exactly complementary to the other. A brief historical development of colour theories and differences in a physicist's point of view with respect to an artist's one is discussed. An experimental system for producing colours and their physically exact complements using cellophane is presented. The origin of the colours lies in the transmission of polarized light through the birefringent cellophane, and therefore the optics of birefringent materials is briefly presented. A set-up which will be described in the following can be used in a laboratory experiment at an undergraduate level

  18. Gate-last TiN/HfO2 band edge effective work functions using low-temperature anneals and selective cladding to control interface composition

    KAUST Repository

    Hinkle, C. L.

    2012-04-09

    Silicon N-metal-oxide-semiconductor (NMOS) and P-metal-oxide-semiconductor (PMOS) band edge effective work functions and the correspondingly low threshold voltages (Vt) are demonstrated using standard fab materials and processes in a gate-last scheme employing low-temperature anneals and selective cladding layers. Al diffusion from the cladding to the TiN/HfO2interface during forming gas anneal together with low O concentration in the TiN enables low NMOS Vt. The use of non-migrating W cladding along with experimentally detected N-induced dipoles, produced by increased oxygen in the TiN, facilitates low PMOS Vt.

  19. Online Wavelet Complementary velocity Estimator.

    Science.gov (United States)

    Righettini, Paolo; Strada, Roberto; KhademOlama, Ehsan; Valilou, Shirin

    2018-02-01

    In this paper, we have proposed a new online Wavelet Complementary velocity Estimator (WCE) over position and acceleration data gathered from an electro hydraulic servo shaking table. This is a batch estimator type that is based on the wavelet filter banks which extract the high and low resolution of data. The proposed complementary estimator combines these two resolutions of velocities which acquired from numerical differentiation and integration of the position and acceleration sensors by considering a fixed moving horizon window as input to wavelet filter. Because of using wavelet filters, it can be implemented in a parallel procedure. By this method the numerical velocity is estimated without having high noise of differentiators, integration drifting bias and with less delay which is suitable for active vibration control in high precision Mechatronics systems by Direct Velocity Feedback (DVF) methods. This method allows us to make velocity sensors with less mechanically moving parts which makes it suitable for fast miniature structures. We have compared this method with Kalman and Butterworth filters over stability, delay and benchmarked them by their long time velocity integration for getting back the initial position data. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Complementary medicine in rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    F. Atzeni

    2011-09-01

    Full Text Available Use of complementary and alternative medicine (CAM for chronic conditions has increased in recent years. CAM is immensely popular for musculoskeletal conditions and patients suffering from rheumatoid arthritis (RA frequently try CAM. This review summarises the trial data for or against CAM as a symptomatic treatment for rheumatoid arthritis. Collectively the evidence demonstrates that some CAM modalities show significant promise, e.g. acupuncture, diets, herbal medicine, homoeopathy, massage, supplements. However, for the great majority of these therapies no evidencebased (clinical randomized trials results are available. CAM is usually used in addition to, and not as a substitute for conventional therapies. The motivation of patients to try CAM is complex; the willingness to take control of their healthcare, the desire to try everything available, the mass-media pressure and the erroneous notion that CAM is without risks. In fact, none of these treatments is totally devoid of risks. While the use of complementary and alternative modalities for the treatment of RA continues to increase, rigorous clinical trials examining their efficacy are needed before definitive recommendations regarding the application of these modalities can be made.

  1. Establishing a standard calibration methodology for MOSFET detectors in computed tomography dosimetry

    International Nuclear Information System (INIS)

    Brady, S. L.; Kaufman, R. A.

    2012-01-01

    Purpose: The use of metal-oxide-semiconductor field-effect transistor (MOSFET) detectors for patient dosimetry has increased by ∼25% since 2005. Despite this increase, no standard calibration methodology has been identified nor calibration uncertainty quantified for the use of MOSFET dosimetry in CT. This work compares three MOSFET calibration methodologies proposed in the literature, and additionally investigates questions relating to optimal time for signal equilibration and exposure levels for maximum calibration precision. Methods: The calibration methodologies tested were (1) free in-air (FIA) with radiographic x-ray tube, (2) FIA with stationary CT x-ray tube, and (3) within scatter phantom with rotational CT x-ray tube. Each calibration was performed at absorbed dose levels of 10, 23, and 35 mGy. Times of 0 min or 5 min were investigated for signal equilibration before or after signal read out. Results: Calibration precision was measured to be better than 5%–7%, 3%–5%, and 2%–4% for the 10, 23, and 35 mGy respective dose levels, and independent of calibration methodology. No correlation was demonstrated for precision and signal equilibration time when allowing 5 min before or after signal read out. Differences in average calibration coefficients were demonstrated between the FIA with CT calibration methodology 26.7 ± 1.1 mV cGy −1 versus the CT scatter phantom 29.2 ± 1.0 mV cGy −1 and FIA with x-ray 29.9 ± 1.1 mV cGy −1 methodologies. A decrease in MOSFET sensitivity was seen at an average change in read out voltage of ∼3000 mV. Conclusions: The best measured calibration precision was obtained by exposing the MOSFET detectors to 23 mGy. No signal equilibration time is necessary to improve calibration precision. A significant difference between calibration outcomes was demonstrated for FIA with CT compared to the other two methodologies. If the FIA with a CT calibration methodology was used to create calibration coefficients for the

  2. Multiple complementary gas distribution assemblies

    Science.gov (United States)

    Ng, Tuoh-Bin; Melnik, Yuriy; Pang, Lily L; Tuncel, Eda; Nguyen, Son T; Chen, Lu

    2016-04-05

    In one embodiment, an apparatus includes a first gas distribution assembly that includes a first gas passage for introducing a first process gas into a second gas passage that introduces the first process gas into a processing chamber and a second gas distribution assembly that includes a third gas passage for introducing a second process gas into a fourth gas passage that introduces the second process gas into the processing chamber. The first and second gas distribution assemblies are each adapted to be coupled to at least one chamber wall of the processing chamber. The first gas passage is shaped as a first ring positioned within the processing chamber above the second gas passage that is shaped as a second ring positioned within the processing chamber. The gas distribution assemblies may be designed to have complementary characteristic radial film growth rate profiles.

  3. Narrative journalism as complementary inquiry

    Directory of Open Access Journals (Sweden)

    Jørgen Jeppesen

    2011-10-01

    Full Text Available Narrative journalism is a method to craft stories worth reading about real people. In this article, we explore the ability of that communicative power to produce insights complementary to those obtainable through traditional qualitative and quantitative research methods. With examples from a study of journalistic narrative as patient involvement in professional rehabilitation, interview data transcribed as stories are analyzed for qualities of heterogeneity, sensibility, transparency, and reflexivity. Building on sociological theories of thinking with stories, writing as inquiry, and public journalism as ethnography, we suggest that narrative journalism as a common practice might unfold dimensions of subjective otherness of the self. Aspiring to unite writing in both transparently confrontational and empathetically dialogic ways, the narrative journalistic method holds a potential to expose dynamics of power within the interview.

  4. Complementary medicine in chronic pain treatment.

    Science.gov (United States)

    Simpson, Charles A

    2015-05-01

    This article discusses several issues related to therapies that are considered "complementary" or "alternative" to conventional medicine. A definition of "complementary and alternative medicine" (CAM) is considered in the context of the evolving health care field of complementary medicine. A rationale for pain physicians and clinicians to understand these treatments of chronic pain is presented. The challenges of an evidence-based approach to incorporating CAM therapies are explored. Finally, a brief survey of the evidence that supports several widely available and commonly used complementary therapies for chronic pain is provided. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Nutrient composition of Cirina forda (Westwood)-enriched complementary foods.

    Science.gov (United States)

    Adepoju, Oladejo Thomas; Daboh, Oladele Olatunji

    2013-01-01

    Dried Cirina forda (Westwood) larva is widely marketed, cheap, and commonly consumed in Southwestern Nigeria. Its powder was used in enriching two commonly used complementary food staples (maize and sorghum) as a source of protein and essential micronutrients in complementary foods for infants and young children. Samples of soaked and dried sorghum and maize flours and C. forda powder were prepared, and C. forda powder was added to the dried soaked maize and sorghum flours at 5, 10, and 15% (w/w) inclusion levels and analyzed for proximate, mineral, and antinutrient compositions using standard methods of AOAC. One hundred grams of C. forda larva contained 52.6 g of protein, 16.8 g of lipids, 2.6 g of ash, 268.67 mg of calcium, 5.64 mg of iron, and 15.00 mg of zinc, and yielded 458.40 kcal energy with 4.40 mg of trypsin inhibitor. Sorghum and maize flours contained 9.2 and 8.3 g of protein, respectively. Addition of C. forda at 5, 10, and 15% levels to fermented sorghum and maize flours significantly increased both micro- and macronutrients of the complementary foods (p iron, and zinc in formulating nutrient-dense complementary foods. Copyright © 2013 S. Karger AG, Basel.

  6. Special Section: Complementary and Alternative Medicine (CAM):Quiz on Complementary and Alternative Medicine

    Science.gov (United States)

    ... Special Section CAM Quiz on Complementary and Alternative Medicine Past Issues / Winter 2009 Table of Contents For ... low back pain. True False Complementary and alternative medicine (CAM) includes: Meditation Chiropractic Use of natural products, ...

  7. Complementary Feeding Practices And Nutrient Intake From ...

    African Journals Online (AJOL)

    and 12-18 months of age, the daily nutrient intakes were 88%, 121% and 94% for energy; 33%, 52% and 59% for iron and 30%, 33% and 38% for calcium, respectively. Fortification of complementary foods is necessary to meet infants' needs for iron and calcium. Keywords: Complementary feeding, infants, iron, Zambia.

  8. Qualitative content analysis of complementary topical therapies ...

    African Journals Online (AJOL)

    In order to alleviate diabetic foot problems, patients sometimes seek complementary therapies outside the professional context. This paper describes the use of complementary remedies as a topical treatment for diabetic foot ulcers among Jordanians. Qualitative content analysis was used to analyse written responses of 68 ...

  9. Effect of complementary and alternative medicine during radiotherapy on radiation toxicity.

    Science.gov (United States)

    Aksu, Melek Gamze; Bozcuk, Hakan Sat; Korcum, Aylin Fidan

    2008-04-01

    To examine the frequency and types of complementary and alternative medicine use in patients undergoing radiotherapy and to analyze the effects these therapies have on the toxicities of radiotherapy. A total of 210 consecutive cancer patients undergoing radiation therapy were included. After radiation therapy, each patient completed a standard questionnaire, and the association between radiation toxicity and complementary and alternative medicine use was analyzed. Among the study population, 44.3% of patients reported using at least one form of complementary and alternative medicine during radiotherapy. The most commonly chosen complementary and alternative medicine was stinging nettle. Complementary and alternative medicine use decreased lower gastrointestinal (F = 3.26, P = .009) and genitourinary toxicities (F = 2.38, P = .043), while it increased laryngeal toxicity (F = 2.63, P = .028). A significant correlation between the type of complementary and alternative medicine used and the degree of these toxicities was not demonstrated. Use of complementary and alternative medicine among cancer patients during radiation therapy may affect the degree of radiation toxicity. Further randomized controlled clinical trials are needed to determine the benefits and risks of complementary and alternative medicine use during radiation therapy.

  10. Complementary DNA-amplified fragment length polymorphism ...

    African Journals Online (AJOL)

    Complementary DNA-amplified fragment length polymorphism (AFLP-cDNA) analysis of differential gene expression from the xerophyte Ammopiptanthus mongolicus in response to cold, drought and cold together with drought.

  11. Sleep Disorders and Complementary Health Approaches

    Science.gov (United States)

    ... R S T U V W X Y Z Sleep Disorders: In Depth Share: On This Page What’s ... know about the usefulness of complementary approaches for sleep disorders? Relaxation techniques can be helpful for insomnia. ...

  12. Complementary and Alternative Therapies for Chronic Constipation

    Directory of Open Access Journals (Sweden)

    Xinjun Wang

    2015-01-01

    Full Text Available Chronic constipation, an ancient disease, is prevalent, and costly in the general population. Complementary and alternative therapies are frequently used for constipation. This review introduces various methods of complementary and alternative therapies, including acupuncture, moxibustion, massage, and herbal medicine. Efficacy, safety, influence factors, sham control design, and mechanisms of these therapies are discussed and evaluated. Acupuncture or electroacupuncture was found to be most commonly used for constipation among these complementary and alternative therapies, followed by herbal medicine. Although only a small number of clinical studies are flawless, our review of the literature seems to suggest that acupuncture or electroacupuncture and herbal medicine are effective in treating constipation, whereas findings on massage and moxibustion are inconclusive. More well-designed clinical trials are needed to improve and prove the efficacy of the complementary and alternative therapies for constipation; mechanistic studies that would lead to wide spread use and improvement of the methods are also discussed in this review.

  13. Integrative Medicine and Complementary and Alternative Therapies

    Science.gov (United States)

    ... Careers at LLS Language English Spanish Canadian English French Canadian I am a Patient looking for Disease/ ... like to know more about complementary clinical trials, speak with your doctor or contact one of The ...

  14. African Journal of Traditional, Complementary and Alternative ...

    African Journals Online (AJOL)

    These observations could be explained by some qualitative and /or quantitative differences observed between the constituents of the two essential oils studied. Keywords: Cymbopogon nardus, Essential oil, Chemistry, Analgesic, Comparison, Benin, Congo. African Journal of Traditional and Complementary Medicine Vol.

  15. African Journal of Traditional, Complementary and Alternative ...

    African Journals Online (AJOL)

    Author Guidelines. The African Journal of Traditional, Complementary and Alternative medicines (AJTCAM) provides rapid publication of papers on ethnomedicines and veterinary ethnomedicines. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence.

  16. IBD and Complementary and Alternative Medicine (CAM)

    Science.gov (United States)

    ... Alternative Medicine (CAM) Go Back Complementary and Alternative Medicine (CAM) Email Print + Share Crohn’s disease and ulcerative ... Energy Medicine, and Biologically-Based Practices. Mind-Body Medicine Mind-body medicine is a set of interventions ...

  17. African Journal of Traditional, Complementary and Alternative ...

    African Journals Online (AJOL)

    AJTCAM), a new broad-based journal, is founded on two key tenets: To publish exciting research in all areas of applied medicinal plants, Traditional medicines, Complementary Alternative Medicines, food and agricultural technologies, and ...

  18. Child factors associated with complementary feeding practices in ...

    African Journals Online (AJOL)

    immunisation and deworming consultations is likely to encourage beneficial complementary feeding practices in Uganda. Keywords: child age, complementary feeding, deworming, immunisation, Uganda Demographic and Health Survey. Introduction. Complementary feeding is essential if children are to grow and develop ...

  19. Introduction to complementary, alternative, and traditional therapies.

    Science.gov (United States)

    Kramlich, Debra

    2014-12-01

    The use of complementary, alternative, and traditional therapies is increasing in the United States, and patients and their families are bringing these practices into the acute care setting. Acute and critical care nurses are in a unique and trusted position to advocate for their patients and to promote safe incorporation of complementary, alternative, and traditional therapies into the plan of care. ©2014 American Association of Critical-Care Nurses.

  20. Complementary computer generated holography for aesthetic watermarking.

    Science.gov (United States)

    Martinez, Christophe; Lemonnier, Olivier; Laulagnet, Fabien; Fargeix, Alain; Tissot, Florent; Armand, Marie Françoise

    2012-02-27

    We present herein an original solution for the watermarking of holograms in binary graphic arts without unaesthetic diffractive effect. It is based on the Babinet principle of complementary diffractive structures adapted to Lohmann-type computer generated holograms. We introduce the concept and demonstrate its interest for anti-counterfeiting applications with the decoding of a hidden data matrix. A process of thermal lithography is used for the manufacturing of binary graphic arts containing complementary computer generated holograms.

  1. Methodology of Isochronal and Isothermal Anneals applied to Irradiated MOS Structures. Application to Post-Irradiation Effects (in Space, Accelerators) and Standard Test Procedures

    International Nuclear Information System (INIS)

    Chabrerie, Christian

    1997-01-01

    We report the development of a methodology using isochronal and isothermal anneals for the characterization of MOS (Metal - Oxide - Semiconductor) Transistors irradiated electronic components. We study the recovery kinetics of the post-irradiation effects and the modeling of the recovery temperature activated phenomena. This allows us to understand the basic physical mechanisms that have led to the definition of standard test procedures. The fields of application are numerous (space, military, accelerators for high energy physics, civilian nuclear and harsh environment robotics). We begin by outlining the context of our study and by presenting the actual standard test procedures (TM1019.4 and BS22900) used for the qualification of integrated circuits. We then review the different theories of the temperature activated phenomena. The link between the foundations of the normalized procedures and the thermally activated phenomena is clarified. From this analysis, we propose a new approach, mainly based on the use of isochronal anneals. During this work, we have developed two tools with this aim: - the first tool is software, it is a numerical simulation program for thermally activated phenomena. - The second is composed of a specific automated annealing bench (in particular isochronal), that we have designed. The applications and results are then presented in four parts: - the first presents simulation results computed using our calculation code, - the second concerns experimental results obtained with thin oxides from different rad-hard technologies and their application to study gate oxides of transistors, - the third develops results on non-hardened technological thick oxides and their consequences on the lateral leakage currents due to parasitic MOS structures in the 'commercial' components, - the fourth concerns the post-irradiation evolution of interface states during isochronal anneals. We conclude with a number of recommendations concerning the post

  2. [The situation of complementary medicine in Germany].

    Science.gov (United States)

    Albrecht, Henning

    2013-01-01

    With the amendment of the German Medicinal Products Act in 1976 and the inclusion of naturopathy and homeopathy into the German Medical Licensure Act from 1988, the German government set up a comparatively favorable framework for Complementary and Alternative Medicine (CAM). But no comprehensive integration into the academic operating systems followed, because the universities as well as the legislative body seemed to have no further interest in CAM. Therefore, research projects in the field and suitable professorships had and still have to be financed by third-party funds. Notwithstanding the success of several CAM-projects, no sustainable development could be established: When the third-party funding runs off and the protagonists retire the institutional structures are supposed to vanish as well. Although the public demand for CAM is high in Germany, the administration detached homeopathy as a compulsory subject from the German Medical Licensure Act in 2002 and restricted severely the refunding of naturopathic medicines by the statutory health insurance in 2004. Moreover, the trend for CAM bashing takes root in the media. Unfortunately the CAM scene does not close ranks and is incapable to implement fundamental data collection processes into daily clinical routine: A wide range of data could justify further efforts to the government as well as to the scientific community. To say something positive, it must be mentioned that the scientific standard of CAM research is high for the most part and that third-party funded projects deliver remarkable results ever and on. Copyright © 2013 S. Karger AG, Basel.

  3. Growth and complementary feeding in the Americas.

    Science.gov (United States)

    Lutter, C K

    2012-10-01

    To describe growth patterns of young children in Latin America and the Caribbean, the types of nationally representative data available on complementary feeding practices and complementary feeding practices. Data on growth, timing of introduction of liquids and foods, and complementary feeding practices were abstracted from nationally representative surveys. The high prevalence of stunting relative to the low prevalence of underweight is striking, with the "average" child in the region, with the exception of the Haitian child, short and chubby. The focus of the demographic and health surveys continues to be on undernutrition with only one question, intake of sugary foods, related foods that may have consequences for adult health. The United States has more comprehensive information; Mexico has information on beverage consumption and Brazil on soft drink and biscuit or snack consumption. In 14 of 19 countries, fewer than half of infants are exclusively breastfed for the first 6 months of life, indicating an early introduction of liquids and complementary foods. Among the 5 countries with data on the intake of sugary foods, intake in the previous 24 h among children 6-23 months of age ranged from 14% to 79%. The absence of data to characterize complementary feeding diets as they relate to risk of overweight and chronic diseases in the Region of the Americas calls attention to the need to improve data collection frameworks and methods to address this important gap in knowledge. Copyright © 2012. Published by Elsevier B.V.

  4. [Complementary and alternative medicine in oncology].

    Science.gov (United States)

    Hübner, J

    2013-06-01

    Complementary and alternative medicine are frequently used by cancer patients. The main benefit of complementary medicine is that it gives patients the chance to become active. Complementary therapy can reduce the side effects of conventional therapy. However, we have to give due consideration to side effects and interactions: the latter being able to reduce the effectiveness of cancer therapy and so to jeopardise the success of therapy. Therefore, complementary therapy should be managed by the oncologist. It is based on a common concept of cancerogenesis with conventional therapy. Complement therapy can be assessed in studies. Alternative medicine in contrast rejects common rules of evidence-based medicine. It starts from its own concepts of cancerogenesis, which is often in line with the thinking of lay persons. Alternative medicine is offered as either "alternative" to recommended cancer treatment or is used at the same time but without due regard for the interactions. Alternative medicine is a high risk to patients. In the following two parts of the article, the most important complementary and alternative therapies cancer patients use nowadays are presented and assessed according to published evidence.

  5. High performance Si nanowire field-effect-transistors based on a CMOS inverter with tunable threshold voltage.

    Science.gov (United States)

    Van, Ngoc Huynh; Lee, Jae-Hyun; Sohn, Jung Inn; Cha, Seung Nam; Whang, Dongmok; Kim, Jong Min; Kang, Dae Joon

    2014-05-21

    We successfully fabricated nanowire-based complementary metal-oxide semiconductor (NWCMOS) inverter devices by utilizing n- and p-type Si nanowire field-effect-transistors (NWFETs) via a low-temperature fabrication processing technique. We demonstrate that NWCMOS inverter devices can be operated at less than 1 V, a significantly lower voltage than that of typical thin-film based complementary metal-oxide semiconductor (CMOS) inverter devices. This low-voltage operation was accomplished by controlling the threshold voltage of the n-type Si NWFETs through effective management of the nanowire (NW) doping concentration, while realizing high voltage gain (>10) and ultra-low static power dissipation (≤3 pW) for high-performance digital inverter devices. This result offers a viable means of fabricating high-performance, low-operation voltage, and high-density digital logic circuits using a low-temperature fabrication processing technique suitable for next-generation flexible electronics.

  6. Complementary Theories to Supply Chain Management Revisited

    DEFF Research Database (Denmark)

    Halldorsson, Arni; Hsuan, Juliana; Kotzab, Herbert

    2015-01-01

    Purpose – The aim of this paper is to identify ways by which the theorizing of supply chain management (SCM) takes place, with particular attention to complementary theories. SCM suffers as well as benefits from a “conceptual slack”. Design/methodology/approach – The nature of SCM is discussed...... complementary theories to advancing understanding of SCM can benefit from the five building blocks of theorizing SCM proposed in the paper. Practical implications – Theoretical principles in SCM are not only used to describe practical problems but also to “produce the world”; supply chains can be seen...

  7. Complementary Safety Margin Assessment. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-10-15

    On March 11, 2011, a large part of the Japanese eastern coastal area was devastated by an earthquake, followed by an immense tsunami. As a result, thousands of people were killed, injured or made homeless. In the days that followed, the situation was further complicated because of the failing nuclear reactors on the Fukushima coast. The local environment suffered from radioactive releases, requiring evacuation zones, and generating international concerns about nuclear safety. In the wake of this disaster the European Union decided to assess safety on all operating nuclear reactors in its member states. This safety evaluation initiated by the European Union focusses on extreme natural hazards, beyond the standard safety evaluations which regularly have to be performed to demonstrate the safety of a nuclear power plant. Consequences of these extreme hazards for the Borssele NPP have been evaluated based on available safety analyses, supplemented by engineering judgement. In this way, the robustness of the existing plant has been assessed and possible measures to further increase the safety margins have been identified. This document presents the results of the Complementary Safety margin Assessment (CSA) performed for the NPP Borssele. The distinct difference between this report and former risk analysis reports in general and the existing Safety Report of the NPP Borssele is that the maximum resistance of the plant against redefined and more challenging events has been investigated, whereas traditionally the plant design is investigated against certain events that are determined on a historical basis. This different approach requires different analyses and studies, which in turn presents new insights into the robustness of the plant. This document has been prepared in the short time period between June 1 and October 31, 2011. If more time had been granted for this study, some of the subjects could have been pursued in greater depth. The EPZ project team has been

  8. Evaluation of diagnostic accuracy of conventional and digital periapical radiography, panoramic radiography, and cone-beam computed tomography in the assessment of alveolar bone loss

    OpenAIRE

    Wilton Mitsunari Takeshita; Lilian Cristina Vessoni Iwaki; Mariliani Chicarelli Da Silva; Renata Hernandes Tonin

    2014-01-01

    Background: To evaluate the diagnostic accuracy of different radiographic methods in the assessment of proximal alveolar bone loss (ABL). Materials and Methods: ABL, the distance between cement-enamel junction and alveolar bone crest, was measured in 70 mandibular human teeth - directly on the mandibles (control), using conventional periapical radiography with film holders (Rinn XCP and Han-Shin), digital periapical radiography with complementary metal-oxide semiconductor sensor, conventional...

  9. Semiconductor/High-Tc-Superconductor Hybrid ICs

    Science.gov (United States)

    Burns, Michael J.

    1995-01-01

    Hybrid integrated circuits (ICs) containing both Si-based semiconducting and YBa(2)Cu(3)O(7-x) superconducting circuit elements on sapphire substrates developed. Help to prevent diffusion of Cu from superconductors into semiconductors. These hybrid ICs combine superconducting and semiconducting features unavailable in superconducting or semiconducting circuitry alone. For example, complementary metal oxide/semiconductor (CMOS) readout and memory devices integrated with fast-switching Josephson-junction super-conducting logic devices and zero-resistance interconnections.

  10. Photometric Calibration and Image Stitching for a Large Field of View Multi-Camera System

    OpenAIRE

    Yu Lu; Keyi Wang; Gongshu Fan

    2016-01-01

    A new compact large field of view (FOV) multi-camera system is introduced. The camera is based on seven tiny complementary metal-oxide-semiconductor sensor modules covering over 160? ? 160? FOV. Although image stitching has been studied extensively, sensor and lens differences have not been considered in previous multi-camera devices. In this study, we have calibrated the photometric characteristics of the multi-camera device. Lenses were not mounted on the sensor in the process of radiometri...

  11. A silicon-based single-electron interferometer coupled to a fermionic sea

    OpenAIRE

    Chatterjee, Anasua; Shevchenko, Sergey N.; Barraud, Sylvain; Otxoa, Ruben M.; Nori, Franco; Morton, John J. L.; Gonzalez-Zalba, M. Fernando

    2017-01-01

    We study Landau-Zener-Stueckelberg-Majorana (LZSM) interferometry under the influence of projective readout using a charge qubit tunnel-coupled to a fermionic sea. This allows us to characterise the coherent charge qubit dynamics in the strong-driving regime. The device is realised within a silicon complementary metal-oxide-semiconductor (CMOS) transistor. We first read out the charge state of the system in a continuous non-demolition manner by measuring the dispersive response of a high-freq...

  12. Ultrastretchable and flexible copper interconnect-based smart patch for adaptive thermotherapy

    KAUST Repository

    Hussain, Aftab M.

    2014-12-03

    Unprecedented 800% stretchable, non-polymeric, widely used, low-cost, naturally rigid, metallic thin-film copper (Cu)-based flexible and non-invasive, spatially tunable, mobile thermal patch with wireless controllability, adaptability (tunes the amount of heat based on the temperature of the swollen portion), reusability, and affordability due to low-cost complementary metal oxide semiconductor (CMOS) compatible integration. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Radiation dosimetry properties of smartphone CMOS sensors

    OpenAIRE

    Van Hoey, Olivier; Salavrakos, Alexia; Marques, Antonio; Nagao, Alexandre; Willems, Ruben; Vanhavere, Filip; Cauwels, Vanessa; Nascimento, Luana F.

    2016-01-01

    During the past years, several smartphone applications have been developed for radiation detection. These applications measure radiation using the smartphone camera complementary metal-oxide-semiconductor sensor. They are potentially useful for data collection and personal dose assessment in case of a radiological incident. However, it is important to assess these applications. Six applications were tested by means of irradiations with calibrated X-ray and gamma sources. It was shown that the...

  14. Prevalence and Correlates of Complementary and Alternative ...

    African Journals Online (AJOL)

    2018-01-30

    Jan 30, 2018 ... regulating CAM use in Nigeria. Keywords: Cancer patients, complementary and alternative medicine, correlates, .... products, such as herbs and food; manipulative therapies, such as chiropractic and massage; and ..... immunity and hence a better quality of life and treatment outcome.[7] These findings are ...

  15. Comparison of the complementary feeding practices between ...

    African Journals Online (AJOL)

    The aim of this study was to compare the complementary feeding practices between mothers with twins and mothers with singletons. Methods: mother-infant pairs (50 mother-twin pairs and 50 mother-singleton pairs) with children aged 6 to 23 months were recruited from two public health clinics and communities in Tema ...

  16. Black Hole Complementary Principle and Noncommutative Membrane

    International Nuclear Information System (INIS)

    Wei Ren

    2006-01-01

    In the spirit of black hole complementary principle, we have found the noncommutative membrane of Scharzchild black holes. In this paper we extend our results to Kerr black hole and see the same story. Also we make a conjecture that spacetimes are noncommutative on the stretched membrane of the more general Kerr-Newman black hole.

  17. Complementary and Alternative Therapies for Down Syndrome

    Science.gov (United States)

    Roizen, Nancy J.

    2005-01-01

    In their role as committed advocates, parents of children with Down syndrome have always sought alternative therapies, mainly to enhance cognitive function but also to improve their appearance. Nutritional supplements have been the most frequent type of complementary and alternative therapy used. Cell therapy, plastic surgery, hormonal therapy,…

  18. Polish Complementary Schools in Iceland and England

    Science.gov (United States)

    Zielinska, Malgorzata; Kowzan, Piotr; Ragnarsdóttir, Hanna

    2014-01-01

    Since 2004, the opening of labour markets has spurred a considerable number of Poles to emigrate e.g. to Iceland and England. Families with school age children have had the challenge of adapting to foreign environments and school systems. Polish complementary schools have played an important, albeit ambivalent, role in this process. Through focus…

  19. Complementary medicines: When regulation results in revolution ...

    African Journals Online (AJOL)

    The regulatory practices include all the steps from the development and manufacture of the active ingredients until the medicines reach the consumer. The Medicines Control Council (MCC) is mandated to regulate medicines in South Africa. Complementary medicines were previously perceived to be unregulated, although ...

  20. African Journal of Traditional, Complementary and Alternative ...

    African Journals Online (AJOL)

    Survey of dental students' attitude regarding oriental medicine/complementary and alternative medicine: comparison between two Japanese dental schools · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. Atsushi Kameyama, Kazuo Toda, 287-295.

  1. African Journal of Traditional, Complementary and Alternative ...

    African Journals Online (AJOL)

    Differences in attitudes towards/beliefs on complementary and alternative medicine witnessed between physiotherapists, nurses/paramedics and physicians · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. D Živčić, A Racz, D Naletilić, 57-65.

  2. Mental disorders frequency alternative and complementary ...

    African Journals Online (AJOL)

    Objectives: Diabetes mellitus (DM) and hypertension (HT) are chronic disorders with which mental disorders may coexist and for which patients may resort to alternative medicine use. Alternative and complementary medicine is a treatment option that patients tend to use. This study is to determine the prevalence of mental ...

  3. (COPD) on complementary and alternative medicine (CAM)

    African Journals Online (AJOL)

    The purpose of this study was to examine the frequency of complementary and alternative medicine usage in Chronic Obstructive Pulmonary Disease (COPD) patients living in the eastern part of Turkey. In this study a descriptive design was used. The study was conducted with 216 patients who were present at the clinic.

  4. African Journal of Traditional, Complementary and Alternative ...

    African Journals Online (AJOL)

    African Journal of Traditional, Complementary and Alternative Medicines. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 14, No 6 (2017) >. Log in or Register to get access to full text downloads.

  5. Errata | Adewunmi | African Journal of Traditional, Complementary ...

    African Journals Online (AJOL)

    African Journal of Traditional, Complementary and Alternative Medicines. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 14, No 6 (2017) >. Log in or Register to get access to full text downloads.

  6. Prevalence and Correlates of Complementary and Alternative ...

    African Journals Online (AJOL)

    Background: The rate of complementary and alternative medicine (CAM) use among cancer patients is on the increase worldwide. This is due to the innate urge among humans to try new and alternative ways of medicine, especially where conventional medicine failed to provide satisfactory solution such as in sickle cell ...

  7. Complementary and alternative medicine use among diabetic ...

    African Journals Online (AJOL)

    Abstract. Complementary and alternative medicine (CAM) use is common among patients with chronic diseases in developing countries. The rising use of CAM in the management of diabetes is an emerging public health concern given the potential adverse effects, drug interactions and benefits associated with its use.

  8. African Journal of Traditional, Complementary and Alternative ...

    African Journals Online (AJOL)

    African Journal of Traditional, Complementary and Alternative Medicines. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 14, No 4S (2017) >. Log in or Register to get access to full text downloads.

  9. African Journal of Traditional, Complementary and Alternative ...

    African Journals Online (AJOL)

    Anthelminthic efficacy of aqueous extract of Acanthus montanus leaf against strongylid nematodes of small ruminants · EMAIL FREE FULL TEXT EMAIL FREE ... Use of complementary and alternative medicine by cancer patients at Zhejiang University Teaching Hospital, Zhuji Hospital, China · EMAIL FREE FULL TEXT ...

  10. Determining Complementary Properties with Quantum Clones

    Science.gov (United States)

    Thekkadath, G. S.; Saaltink, R. Y.; Giner, L.; Lundeen, J. S.

    2017-08-01

    In a classical world, simultaneous measurements of complementary properties (e.g., position and momentum) give a system's state. In quantum mechanics, measurement-induced disturbance is largest for complementary properties and, hence, limits the precision with which such properties can be determined simultaneously. It is tempting to try to sidestep this disturbance by copying the system and measuring each complementary property on a separate copy. However, perfect copying is physically impossible in quantum mechanics. Here, we investigate using the closest quantum analog to this copying strategy, optimal cloning. The coherent portion of the generated clones' state corresponds to "twins" of the input system. Like perfect copies, both twins faithfully reproduce the properties of the input system. Unlike perfect copies, the twins are entangled. As such, a measurement on both twins is equivalent to a simultaneous measurement on the input system. For complementary observables, this joint measurement gives the system's state, just as in the classical case. We demonstrate this experimentally using polarized single photons.

  11. FORMULATION OF COMPLEMENTARY FOOD USING AMARANTH ...

    African Journals Online (AJOL)

    Tsigereda

    complementary food is composed of starchy cereals (maize, sorghum, teff), tubers and/or root crops (enset, potatoes, sweet potatoes). These are sources of non-heme iron which is affected by phytate. Sources of heme iron and of the meat-fish-poultry factor that improves iron absorption are from meat only. Despite a large ...

  12. Complementary DNA-amplified fragment length polymorphism ...

    African Journals Online (AJOL)

    owner

    2011-05-09

    May 9, 2011 ... Complementary DNA-amplified fragment length polymorphism (cDNA-AFLP) technology was used to analyze ... that 9 of the studied expressed sequence tags (ESTs) are related to protein modification, 12 ESTs are involved in the .... primers were used during the first strand synthesis of our cDNA synthesis ...

  13. Optimizing Usability Studies by Complementary Evaluation Methods

    NARCIS (Netherlands)

    Schmettow, Martin; Bach, Cedric; Scapin, Dominique

    2014-01-01

    This paper examines combinations of complementary evaluation methods as a strategy for efficient usability problem discovery. A data set from an earlier study is re-analyzed, involving three evaluation methods applied to two virtual environment applications. Results of a mixed-effects logistic

  14. Complementary Theories to Supply Chain Management

    DEFF Research Database (Denmark)

    Halldorsson, Arni; Hsuan, Juliana; Kotzab, Herbert

    Borrowing from complementary theories has become an important part of theorizing SCM. We build upon principal-agent theory (PAT), transaction cost analysis (TCA), network theory (NT), and resource-based view (RBV) to provide insights on how to structure a supply chain and manage it. Through...

  15. Hypertension management: Perspectives of complementary and al ...

    African Journals Online (AJOL)

    Information available on the various forms of Complementary and Alternative Medicine (CAM) used in the management of hypertension is inadequate and conflicting. The primary objective of this study was to assess the use of CAM in the management of hypertension by CAM practition-ers. A qualitative study utilizing ...

  16. Solution-processed ambipolar organic field-effect transistors and inverters.

    Science.gov (United States)

    Meijer, E J; de Leeuw, D M; Setayesh, S; van Veenendaal, E; Huisman, B H; Blom, P W M; Hummelen, J C; Scherf, U; Kadam, J; Klapwijk, T M

    2003-10-01

    There is ample evidence that organic field-effect transistors have reached a stage where they can be industrialized, analogous to standard metal oxide semiconductor (MOS) transistors. Monocrystalline silicon technology is largely based on complementary MOS (CMOS) structures that use both n-type and p-type transistor channels. This complementary technology has enabled the construction of digital circuits, which operate with a high robustness, low power dissipation and a good noise margin. For the design of efficient organic integrated circuits, there is an urgent need for complementary technology, where both n-type and p-type transistor operation is realized in a single layer, while maintaining the attractiveness of easy solution processing. We demonstrate, by using solution-processed field-effect transistors, that hole transport and electron transport are both generic properties of organic semiconductors. This ambipolar transport is observed in polymers based on interpenetrating networks as well as in narrow bandgap organic semiconductors. We combine the organic ambipolar transistors into functional CMOS-like inverters.

  17. 3He(α,γ7Be cross section measured using complementary techniques

    Directory of Open Access Journals (Sweden)

    Carmona-Gallardo M.

    2014-03-01

    Full Text Available The astrophysical S-factor for the 3He(α,γ7Be reaction plays an important role in the Solar Standard Model and in the Big Bang Nucleosynthesis scenario. The advances from two recent experiments performed using complementary techniques at center of mass (C.M. energies between 1 and 3 MeV are discussed.

  18. The Complementary Therapies for Labour and Birth Study making sense of labour and birth - Experiences of women, partners and midwives of a complementary medicine antenatal education course.

    Science.gov (United States)

    Levett, K M; Smith, C A; Bensoussan, A; Dahlen, H G

    2016-09-01

    to gain insight into the experiences of women, partners and midwives who participated in the Complementary Therapies for Labour and Birth Study, an evidence based complementary medicine (CM) antenatal education course. qualitative in-depth interviews and a focus group as part of the Complementary Therapies for Labour and Birth Study. thirteen low risk primiparous women and seven partners who had participated in the study group of a randomised controlled trial of the complementary therapies for labour and birth study, and 12 midwives caring for these women. The trial was conducted at two public hospitals, and through the Western Sydney University in Sydney, Australia. the Complementary Therapies for Labour and Birth (CTLB) protocol, based on the She Births® course and the Acupressure for labour and birth protocol, incorporated six evidence-based complementary medicine (CM) techniques; acupressure, relaxation, visualisation, breathing, massage, yoga techniques and incorporated facilitated partner support. Randomisation to the trial occurred at 24-36 weeks' gestation, and participants attended a two-day antenatal education programme, plus standard care, or standard care alone. the overarching theme identified in the qualitative data was making sense of labour and birth. Women used information about normal birth physiology from the course to make sense of labour, and to utilise the CM techniques to support normal birth and reduce interventions in labour. Women's, partners' and midwives' experience of the course and its use during birth gave rise to supporting themes such as: working for normal; having a toolkit; and finding what works. the Complementary Therapies for Labour and Birth Study provided women and their partners with knowledge to understand the physiology of normal labour and birth and enabled them to use evidence-based CM tools to support birth and reduce interventions. the Complementary Therapies for Labour and Birth Study introduces concepts of what

  19. Learning from nature: binary cooperative complementary nanomaterials.

    Science.gov (United States)

    Su, Bin; Guo, Wei; Jiang, Lei

    2015-03-01

    In this Review, nature-inspired binary cooperative complementary nanomaterials (BCCNMs), consisting of two components with entirely opposite physiochemical properties at the nanoscale, are presented as a novel concept for the building of promising materials. Once the distance between the two nanoscopic components is comparable to the characteristic length of some physical interactions, the cooperation between these complementary building blocks becomes dominant and endows the macroscopic materials with novel and superior properties. The first implementation of the BCCNMs is the design of bio-inspired smart materials with superwettability and their reversible switching between different wetting states in response to various kinds of external stimuli. Coincidentally, recent studies on other types of functional nanomaterials contribute more examples to support the idea of BCCNMs, which suggests a potential yet comprehensive range of future applications in both materials science and engineering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Complementary and Integrative Medicine for Neurologic Conditions.

    Science.gov (United States)

    Wells, Rebecca Erwin; Baute, Vanessa; Wahbeh, Helané

    2017-09-01

    Although many neurologic conditions are common, cures are rare and conventional treatments are often limited. Many patients, therefore, turn to complementary and alternative medicine (CAM). The use of selected, evidence-based CAM therapies for the prevention and treatment of migraine, carpal tunnel syndrome, and dementia are presented. Evidence is growing many of modalities, including nutrition, exercise, mind-body medicine, supplements, and acupuncture. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. ZEROES OF GENERALIZED FRESNEL COMPLEMENTARY INTEGRAL FUNCTIONS

    Directory of Open Access Journals (Sweden)

    Jaime Lobo Segura

    2016-08-01

    Full Text Available Theoretical upper and lower bounds are established for zeroes of a parametric family of functions which are defined by integrals of the same type as the Fresnel complementary integral. Asymptotic properties for these bounds are obtained as well as monotony properties of the localization intervals. Given the value of the parameter an analytical-numerical procedure is deduced to enclose all zeros of a given function with an a priori error.

  2. Complementary and Integrative Health Practices for Depression.

    Science.gov (United States)

    Haefner, Judy

    2017-12-01

    The current article reviews selected complementary health approaches for the treatment of depressive symptoms. Complementary and integrative health (CIH) focuses on the whole person with the goal of optimal health-body, mind, and spirit. Patient use of integrative health practices and products is increasing; therefore, providers must understand these practices and products and be able to recommend or advise for or against their use based on research and guidelines. Difficulty with the current limitations of research on CIH practices is discussed, as these studies often may not have the same rigor or scientific weight as conventional treatment research. Although some individuals may use certain treatment options alone, such as massage therapy, meditation, and supplements to diet, the article discusses ways to combine CIH with allopathic care. Nurse practitioners should be open to considering complementary practices for health care and knowledgeable to guide patients in making safe health decisions. [Journal of Psychosocial Nursing and Mental Health Services, 55(12), 22-33.]. Copyright 2017, SLACK Incorporated.

  3. Sleep Disorders and Complementary Health Approaches : What the Science Says

    Science.gov (United States)

    ... Integrative Health NCCIH Clinical Digest for health professionals Sleep Disorders and Complementary Health Approaches: What the Science ... 2014 Clinical Guidelines, Scientific Literature, Info for Patients: Sleep Disorders and Complementary Health Approaches Mind and Body ...

  4. Use of Complementary and Alternative Medicine in the United States

    Science.gov (United States)

    ... V W X Y Z The Use of Complementary and Alternative Medicine in the United States Share: On This Page ... Prevention) released new findings on Americans' use of complementary and alternative medicine (CAM). The findings are from the 2007 National ...

  5. Mind-Body Medicine Practices in Complementary and Alternative Medicine

    Science.gov (United States)

    ... Fact Sheets Home > Mind-Body Medicine Practices in Complementary and Alternative Medicine Small Text Medium Text Large Text Mind-Body Medicine Practices in Complementary and Alternative Medicine YESTERDAY The concept that the mind is important ...

  6. Safe Use of Complementary Health Products and Practices

    Science.gov (United States)

    ... newsletter with evidence-based information on complementary and integrative practices and a health condition All News & Events About ... Safety Information Message From the Director: Complementary and Integrative Health Practices in the Real World (08/05/14) In ...

  7. Review of mixer design for low voltage - low power applications

    Science.gov (United States)

    Nurulain, D.; Musa, F. A. S.; Isa, M. Mohamad; Ahmad, N.; Kasjoo, S. R.

    2017-09-01

    A mixer is used in almost all radio frequency (RF) or microwave systems for frequency translation. Nowadays, the increase market demand encouraged the industry to deliver circuit designs to create proficient and convenient equipment with very low power (LP) consumption and low voltage (LV) supply in both digital and analogue circuits. This paper focused on different Complementary Metal Oxide Semiconductor (CMOS) design topologies for LV and LP mixer design. Floating Gate Metal Oxide Semiconductor (FGMOS) is an alternative technology to replace CMOS due to their high ability for LV and LP applications. FGMOS only required a few transistors per gate and can have a shift in threshold voltage (VTH) to increase the LP and LV performances as compared to CMOS, which makes an attractive option to replace CMOS.

  8. Silicon nanotube field effect transistor with core-shell gate stacks for enhanced high-performance operation and area scaling benefits

    KAUST Repository

    Fahad, Hossain M.

    2011-10-12

    We introduce the concept of a silicon nanotube field effect transistor whose unique core-shell gate stacks help achieve full volume inversion by giving a surge in minority carrier concentration in the near vicinity of the ultrathin channel and at the same time rapid roll-off at the source and drain junctions constituting velocity saturation-induced higher drive current-enhanced high performance per device with efficient real estate consumption. The core-shell gate stacks also provide superior short channel effects control than classical planar metal oxide semiconductor field effect transistor (MOSFET) and gate-all-around nanowire FET. The proposed device offers the true potential to be an ideal blend for quantum ballistic transport study of device property control by bottom-up approach and high-density integration compatibility using top-down state-of-the-art complementary metal oxide semiconductor flow. © 2011 American Chemical Society.

  9. Towards a Chemiresistive Sensor-Integrated Electronic Nose: A Review

    Directory of Open Access Journals (Sweden)

    Kea-Tiong Tang

    2013-10-01

    Full Text Available Electronic noses have potential applications in daily life, but are restricted by their bulky size and high price. This review focuses on the use of chemiresistive gas sensors, metal-oxide semiconductor gas sensors and conductive polymer gas sensors in an electronic nose for system integration to reduce size and cost. The review covers the system design considerations and the complementary metal-oxide-semiconductor integrated technology for a chemiresistive gas sensor electronic nose, including the integrated sensor array, its readout interface, and pattern recognition hardware. In addition, the state-of-the-art technology integrated in the electronic nose is also presented, such as the sensing front-end chip, electronic nose signal processing chip, and the electronic nose system-on-chip.

  10. Radiation-Hard SpaceWire/Gigabit Ethernet-Compatible Transponder

    Science.gov (United States)

    Katzman, Vladimir

    2012-01-01

    A radiation-hard transponder was developed utilizing submicron/nanotechnology from IBM. The device consumes low power and has a low fabrication cost. This device utilizes a Plug-and-Play concept, and can be integrated into intra-satellite networks, supporting SpaceWire and Gigabit Ethernet I/O. A space-qualified, 100-pin package also was developed, allowing space-qualified (class K) transponders to be delivered within a six-month time frame. The novel, optical, radiation-tolerant transponder was implemented as a standalone board, containing the transponder ASIC (application specific integrated circuit) and optical module, with an FPGA (field-programmable gate array) friendly parallel interface. It features improved radiation tolerance; high-data-rate, low-power consumption; and advanced functionality. The transponder utilizes a patented current mode logic library of radiation-hardened-by-architecture cells. The transponder was developed, fabricated, and radhard tested up to 1 MRad. It was fabricated using 90-nm CMOS (complementary metal oxide semiconductor) 9 SF process from IBM, and incorporates full BIT circuitry, allowing a loop back test. The low-speed parallel LVCMOS (lowvoltage complementary metal oxide semiconductor) bus is compatible with Actel FPGA. The output LVDS (low-voltage differential signaling) interface operates up to 1.5 Gb/s. Built-in CDR (clock-data recovery) circuitry provides robust synchronization and incorporates two alarm signals such as synch loss and signal loss. The ultra-linear peak detector scheme allows on-line control of the amplitude of the input signal. Power consumption is less than 300 mW. The developed transponder with a 1.25 Gb/s serial data rate incorporates a 10-to-1 serializer with an internal clock multiplication unit and a 10-1 deserializer with internal clock and data recovery block, which can operate with 8B10B encoded signals. Three loop-back test modes are provided to facilitate the built-in-test functionality. The

  11. Complementary feeding practices and nutritional status of children 6 ...

    African Journals Online (AJOL)

    Objectives: Inappropriate complementary feeding practices among children aged 6-23 months is major cause of under nutrition. There is scarce information on the relationship between complementary feeding practices and nutritional status. This study aimed to determine the factors contributing to the complementary ...

  12. Complementary and Alternative Medicine (CAM): Expanding Horizons of Health Care

    Science.gov (United States)

    ... please turn Javascript on. The National Center for Complementary and Alternative Medicine (NCCAM) is this year celebrating 10 years of ... Photo: NCCAM This year, the National Center for Complementary and Alternative Medicine (NCCAM) celebrates its 10th anniversary. We explore complementary ...

  13. Two complementary approaches to right-handed currents

    International Nuclear Information System (INIS)

    Gemmler, Katrin M.

    2012-01-01

    Flavour observables impose strong constraints on models of new physics. We study whether right-handed currents can provide a realistic extension to the Standard Model. We analyse two complementary models. These setups lead to new flavour violating interactions in the right-handed sector. We first consider a bottom-up approach assuming a left-right symmetric flavour group broken only by the Yukawa couplings. In this model the vertical stroke V ub vertical stroke problem can be solved. Secondly we study the Left-Right Model. We perform a comprehensive numerical analysis, including all known experimental constraints from ΔF=2 observables and the decay B →X s γ simultaneously. We observe that there exist regions in parameter space in accordance with the all data. In this model all flavour anomalies can be resolved except the vertical stroke V ub vertical stroke problem.

  14. Two complementary approaches to right-handed currents

    Energy Technology Data Exchange (ETDEWEB)

    Gemmler, Katrin M.

    2012-04-17

    Flavour observables impose strong constraints on models of new physics. We study whether right-handed currents can provide a realistic extension to the Standard Model. We analyse two complementary models. These setups lead to new flavour violating interactions in the right-handed sector. We first consider a bottom-up approach assuming a left-right symmetric flavour group broken only by the Yukawa couplings. In this model the vertical stroke V{sub ub} vertical stroke problem can be solved. Secondly we study the Left-Right Model. We perform a comprehensive numerical analysis, including all known experimental constraints from {Delta}F=2 observables and the decay B {yields}X{sub s}{gamma} simultaneously. We observe that there exist regions in parameter space in accordance with the all data. In this model all flavour anomalies can be resolved except the vertical stroke V{sub ub} vertical stroke problem.

  15. Evaluation of a complementary cyber education program for a pathophysiology class.

    Science.gov (United States)

    Yoo, Ji-Soo; Ryue, Sook-Hee; Lee, Jung Eun; Ahn, Jeong-Ah

    2009-12-01

    The goal of this study was to develop and evaluate a complementary cyber education program for a required pathophysiology class for nursing students. The cyber education program comprised electronic bulletin boards, correspondence material storage, an announcement section, a report submission section, reference sites, and statistics on learning rates. Twelve online lectures complemented five lectures in the classroom. To evaluate the course's educational effectiveness, we performed an online objective questionnaire and an open questionnaire survey anonymously, and compared the complementary cyber education program with traditional classroom education. The complementary cyber education program effected significant improvements in scores for importance with regard to major, clarity of goals and education plans for courses, professor readiness, preciseness and description of lectures, amount and efficiency of assignments, and fairness in appraisal standards compared with the traditional classroom education group. This study indicates that a complementary cyber education program provides nursing students with the flexibility of time and space, the newest information through updated lectures, efficient motivational aids through intimacy between the lecturer and students, and concrete and meaningful tasks. The complementary cyber education course also increased student effort toward studying and student satisfaction with the class.

  16. Behavioral Objectives and Standards Movement Revisited

    Science.gov (United States)

    Shakouri, Nima; Mirzaee, Sepideh

    2014-01-01

    The present paper sparks a complementary argument that the development of standards movement must not be at the expense of sacrificing the achievement of behavioral objectives. Furthermore, due to the systemic and dynamic nature of standards, standards need to be revised off and on. Besides, the present writers taking a more or less relativist…

  17. Complementary and alternative interventions in atopic dermatitis.

    Science.gov (United States)

    Lee, Joohee; Bielory, Leonard

    2010-08-01

    The burden of atopic diseases, including atopic dermatitis (AD), is significant and far-reaching. In addition to cost of care and therapies, it affects the quality of life for those affected as well as their caretakers. Complementary and alternative therapies are commonly used because of concerns about potential adverse effects of conventional therapies and frustration with the lack of response to prescribed medications, be it due to the severity of the AD or the lack of appropriate regular use. Despite the promising results reported with various herbal medicines and biologic products, the clinical efficacy of such alternative therapies remains to be determined. Physicians need to be educated about alternative therapies and discuss benefits and potential adverse effects or limitations with patients. A systematic approach and awareness of reputable and easily accessible resources are helpful in dealing with complementary and alternative medicine (CAM). The use of CAM interventions is common among individuals with AD. Epidemiologic data have been a motivating drive for better elucidation of the efficacy of CAM interventions for allergic disease. Herbal medicines and biologics for AD treatment and, more recently, prevention comprise a major area of clinical investigation. Potential mechanisms of therapeutic effect elucidated by animal models and human clinical studies implicate modulation of TH2-type allergic inflammation and induction of immune tolerance. Population-based research regarding the use of CAM for allergic diseases underscores the increasing challenge for care providers with respect to identifying CAM use and ensuring safe use of allopathic and complementary medicines in disease management. Copyright 2010. Published by Elsevier Inc.

  18. Complementary and Alternative Therapies in ALS

    Science.gov (United States)

    Bedlack, Richard S.; Joyce, Nanette; Carter, Gregory T.; Pagononi, Sabrina; Karam, Chafic

    2015-01-01

    Synopsis Given the severity of their illness and lack of effective disease modifying agents, it is not surprising that most patients with ALS consider trying complementary and alternative therapies. Some of the most commonly considered alternative therapies include special diets, nutritional supplements, cannabis, acupuncture, chelation and energy healing. This chapter reviews these in detail. We also describe 3 models by which physicians may frame discussions about alternative therapies: paternalism, autonomy and shared decision making. Finally, we review a program called ALSUntangled which using shared shared decision making to review alternative therapies for ALS. PMID:26515629

  19. Complementary and alternative medicine for rheumatic diseases

    Directory of Open Access Journals (Sweden)

    Teng Sophia

    2016-08-01

    Full Text Available The use of complementary and alternative medicine is not uncommonly encountered in our patients. This manuscript reviewed the latest evidence on other modalities in treating rheumatic diseases. Treatments that are found to be helpful for rheumatoid arthritis include herbs, fish oil, and acupuncture. Fish oil, vitamin D, N-acetylcysteine, and cognitive behavior treatments are helpful for systemic lupus erythematosus. Hydrotherapy and massage are potentially beneficial for fibromyalgia patients. Diet supplement is not found to be beneficial for osteoarthritis. CAM modalities will need further studies.

  20. Complementary alternative medicine and nuclear medicine

    International Nuclear Information System (INIS)

    Werneke, Ursula; McCready, V.Ralph

    2004-01-01

    Complementary alternative medicines (CAMs), including food supplements, are taken widely by patients, especially those with cancer. Others take CAMs hoping to improve fitness or prevent disease. Physicians (and patients) may not be aware of the potential side-effects and interactions of CAMs with conventional treatment. Likewise, their known physiological effects could interfere with radiopharmaceutical kinetics, producing abnormal treatment responses and diagnostic results. Nuclear medicine physicians are encouraged to question patients on their intake of CAMs when taking their history prior to radionuclide therapy or diagnosis. The potential effect of CAMs should be considered when unexpected therapeutic or diagnostic results are found. (orig.)

  1. Impact of acceptor concentration on electrical properties and density of interface states of 4H-SiC n-metal-oxide-semiconductor field effect transistors studied by Hall effect

    Czech Academy of Sciences Publication Activity Database

    Ortiz, G.; Strenger, C.; Uhnevionak, V.; Burenkov, A.; Bauer, A.J.; Pichler, P.; Cristiano, F.; Bedel-Pereira, E.; Mortet, Vincent

    2015-01-01

    Roč. 106, č. 6 (2015), "062104-1"-"062104-5" ISSN 0003-6951 Institutional support: RVO:68378271 Keywords : MOSFETs * doping * Hall mobility * conduction bands * epitaxy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.142, year: 2015

  2. A detailed coupled-mode-space non-equilibrium Green's function simulation study of source-to-drain tunnelling in gate-all-around Si nanowire metal oxide semiconductor field effect transistors

    Science.gov (United States)

    Seoane, N.; Martinez, A.

    2013-09-01

    In this paper we present a 3D quantum transport simulation study of source-to-drain tunnelling in gate-all-around Si nanowire transistors by using the non-equilibrium Green's function approach. The impact of the channel length, device cross-section, and drain and gate applied biases on the source-to-drain tunnelling is examined in detail. The overall effect of tunnelling on the ID-VG characteristics is also investigated. Tunnelling in devices with channel lengths of 10 nm or less substantially enhances the off-current. This enhancement is more important at high drain biases and at larger cross-sections where the sub-threshold slope is substantially degraded. A less common effect is the increase in the on-current due to the tunnelling which contributes as much as 30% of the total on-current. This effect is almost independent of the cross-section, and it depends weakly on the studied channel lengths.

  3. Use of water vapor for suppressing the growth of unstable low-{kappa} interlayer in HfTiO gate-dielectric Ge metal-oxide-semiconductor capacitors with sub-nanometer capacitance equivalent thickness

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.P. [Department of Electronic Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 (China); Zou, X. [School of Electromachine and Architecture Engineering, Jianghan University, Wuhan, 430056 (China); Lai, P.T. [Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road (Hong Kong)], E-mail: laip@eee.hku.hk; Li, C.X.; Chan, C.L. [Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road (Hong Kong)

    2009-03-02

    Annealing of high-permittivity HfTiO gate dielectric on Ge substrate in different gases (N{sub 2}, NH{sub 3}, NO and N{sub 2}O) with or without water vapor is investigated. Analysis by transmission electron microscopy indicates that the four wet anneals can greatly suppress the growth of a GeO{sub x} interlayer at the dielectric/Ge interface, and thus decrease interface states, oxide charges and gate leakage current. Moreover, compared with the wet N{sub 2} anneal, the wet NH{sub 3}, NO and N{sub 2}O anneals decrease the equivalent permittivity of the gate dielectric due to the growth of a GeO{sub x}N{sub y} interlayer. Among the eight anneals, the wet N{sub 2} anneal produces the best dielectric performance with an equivalent relative permittivity of 35, capacitance equivalent thickness of 0.81 nm, interface-state density of 6.4 x 10{sup 11} eV{sup -1} cm{sup -2} and gate leakage current of 2.7 x 10{sup -4} A/cm{sup 2} at V{sub g} = 1 V.

  4. Compressed sensing MRI exploiting complementary dual decomposition.

    Science.gov (United States)

    Park, Suhyung; Park, Jaeseok

    2014-04-01

    Compressed sensing (CS) MRI exploits the sparsity of an image in a transform domain to reconstruct the image from incoherently under-sampled k-space data. However, it has been shown that CS suffers particularly from loss of low-contrast image features with increasing reduction factors. To retain image details in such degraded experimental conditions, in this work we introduce a novel CS reconstruction method exploiting feature-based complementary dual decomposition with joint estimation of local scale mixture (LSM) model and images. Images are decomposed into dual block sparse components: total variation for piecewise smooth parts and wavelets for residuals. The LSM model parameters of residuals in the wavelet domain are estimated and then employed as a regional constraint in spatially adaptive reconstruction of high frequency subbands to restore image details missing in piecewise smooth parts. Alternating minimization of the dual image components subject to data consistency is performed to extract image details from residuals and add them back to their complementary counterparts while the LSM model parameters and images are jointly estimated in a sequential fashion. Simulations and experiments demonstrate the superior performance of the proposed method in preserving low-contrast image features even at high reduction factors. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. [Complementary and alternative medicine in oncology].

    Science.gov (United States)

    Bozza, Claudia; Agostinetto, Elisa; Gerratana, Lorenzo; Puglisi, Fabio

    2015-12-01

    The role of Complementary and Alternative Medicine (CAM) treatments in oncology has always been heavily debated. It is estimated that about half of cancer patients experience at least one form of CAM through their life and because of the growing spread of these on the internet, the proportion is destined to grow. There is no clear distinction between alternative and complementary treatment due to the possibility to use the same remedy both alongside and instead of traditional therapies. The use of CAM may expose the patients to a wide spectrum of risks that may range from under treatment due to the delay in using official medicine treatment, to toxicities derived both as a direct consequence of the alternative molecule or because of drug interaction with conventional treatments. Because of the uncertainty regarding the risk-benefit ratio and the fact that the patients often do not declare their use if no specifically requested, this topic is relevant for physicians. Aim of this review is to cover the preeminent CAM, their supposed benefits, toxicities and interactions with conventional therapeutic agents.

  6. Complementary and Integrative Approaches for Pediatric Headache.

    Science.gov (United States)

    Kedia, Sita

    2016-02-01

    In this article, the use of complementary and integrative medicine for the management of pediatric headache is reviewed. Despite limited numbers of studies for pediatric headaches, children and families seek these services. Integrative medicine focuses on treating the whole person, integrating conventional medicine with mind-body-spirit methods. Nutriceuticals include dietary supplements in the form of vitamins (vitamin D), minerals (magnesium), coenzyme Q, butterbur, and melatonin. Acupuncture, stimulation, physical therapy and Transcutaneous Electrical Nerve Stimulations (TENS) or Transcranial Magnetic Stimulation (TMS) may also be useful in selected patients. The efficacy of all these therapeutic alternatives in pediatric headache is presented here. Primary care providers, neurologists, and headache specialists alike need to be informed of such interventions and integrate these approaches, when appropriate, in the management of children with headaches. Copyright © 2016. Published by Elsevier Inc.

  7. Abrasive water jet: a complementary tool

    International Nuclear Information System (INIS)

    Duarte, J.P.; Pecas, P.; Nunes, E.; Gouveia, H.

    1998-01-01

    The abrasive water jet is a powerful cutting tool, whose main advantages lie in the absence of thermal effects and the capability of cutting highly thick materials. Compared with Laser, the abrasive water jet allows the cutting of a larger range of thicknesses and a wider variety of materials such as: ornamental stones, metals, polymers, composites, wood, glass ceramics. The application of this technology has suffered and extensive growth, with successful applications in varied industrial sectors like the automotive, aerospace, textile, metalworking, ornamental stones, etc. The present communication aims at introducing the abrasive water jet as a complementary tool to laser cutting, presenting its advantages by showing some documented examples of pieces cut for different industries. (Author) 5 refs

  8. Biodiverse food solutions to enhance complementary feeding

    DEFF Research Database (Denmark)

    Robertson, Aileen; Parlesak, Alexandr; Greiner, Ted

    2016-01-01

    that lipidbased nutrient supplements (LNS) and ready-to-use therapeutic foods (RUTFs) may thus be ineffective, de Pee advocates research to improve compliance, assuming effectiveness has been demonstrated. We highlight four additional problems: inappropriateness, cost, lack of sustainability and potential adverse...... effects. In conclusion, all UN agencies have joint responsibility to help Member States achieve their Sustainable Development Goals (SDGs), which create the opportunity to link sustainability and dietary diversity. The Convention on Biological Diversity (WHO 2015) illustrates how dietary diversity can...... help combat global malnutrition by using practical solutions that can be rolled out as public health strategies. Culturally-sensitive, cost-effective, sustainable complementary foods have the potential to increase nutrition security and sovereignty, reduce poverty, hunger and levels of chronic...

  9. Threefold Complementary Approach to Holographic QCD

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); de Teramond, Guy F. [Univ. of Costa Rica, San Jose (Costa Rica); Dosch, Hans Gunter [Inst. for Theoretical Physics, Heidelberg (Germany)

    2013-12-27

    A complementary approach, derived from (a) higher-dimensional anti-de Sitter (AdS) space, (b) light-front quantization and (c) the invariance properties of the full conformal group in one dimension leads to a nonperturbative relativistic light-front wave equation which incorporates essential spectroscopic and dynamical features of hadron physics. The fundamental conformal symmetry of the classical QCD Lagrangian in the limit of massless quarks is encoded in the resulting effective theory. The mass scale for confinement emerges from the isomorphism between the conformal group andSO(2,1). This scale appears in the light-front Hamiltonian by mapping to the evolution operator in the formalism of de Alfaro, Fubini and Furlan, which retains the conformal invariance of the action. Remarkably, the specific form of the confinement interaction and the corresponding modification of AdS space are uniquely determined in this procedure.

  10. Complementary and alternative treatment of musculoskeletal pain.

    Science.gov (United States)

    Grazio, Simeon; Balen, Diana

    2011-12-01

    The use of complementary and alternative medicine (CAM) is high and increasing worldwide. Patients usually use CAM in addition to conventional medicine, mainly to treat pain. In a large number of cases, people use CAM for chronic musculoskeletal pain as in osteoarthritis, back pain, neck pain, or fibromyalgia. Herewith, a review is presented of CAM efficacy in treating musculoskeletal pain for which, however, no scientific research has so far provided evidence solid enough. In some rare cases where adequate pain control cannot be achieved, CAM might be considered in rational and individual approach based on the first general rule in medicine "not to harm" and on the utility theory of each intervention, i.e. according to the presumed mechanism of painful stimulus and with close monitoring of the patient's response. Further high quality studies are warranted to elucidate the efficacy and side effects of CAM methods. Therefore, conventional medicine remains the main mode of treatment for patients with musculoskeletal painful conditions.

  11. The initiation of complementary feeding among Qom indigenous people

    OpenAIRE

    Irene Olmedo, Sofía; Valeggia, Claudia

    2014-01-01

    As of six months of life, breastfeeding no longer covers an infant’s energy or micronutrient needs, so appropriate complementary feeding should be provided. The objective of this study was to assess the time and adequacy for introducing complementary feeding in a Qom/Toba population and analyze the sociocultural concepts of families regarding complementary feeding. Quantitative and qualitative data were collected by participant observation and semistructured surveys administered to mothers of...

  12. Using Kotter's Change Framework to Implement and Sustain Multiple Complementary ICU Initiatives.

    Science.gov (United States)

    Mørk, Anne; Krupp, Anna; Hankwitz, Jennifer; Malec, Ann

    This article describes the planning, implementation, and outcomes of 2 complementary quality initiatives, bedside handoff and nurse-initiated interdisciplinary bedside rounds, in a 24-bed medical/surgical intensive care unit. Systematic approaches such as Kotter's change model and unit-based champions were used to redesign care processes and standardize daily communication and workflows. Active partnership with the patient and the family during these changes promoted a strong intensive care unit culture of patient- and family-centered care.

  13. Wireless Low-Power Integrated Basal-Body-Temperature Detection Systems Using Teeth Antennas in the MedRadio Band

    Directory of Open Access Journals (Sweden)

    Chin-Lung Yang

    2015-11-01

    Full Text Available This study proposes using wireless low power thermal sensors for basal-body-temperature detection using frequency modulated telemetry devices. A long-term monitoring sensor requires low-power circuits including a sampling circuit and oscillator. Moreover, temperature compensated technologies are necessary because the modulated frequency might have additional frequency deviations caused by the varying temperature. The temperature compensated oscillator is composed of a ring oscillator and a controlled-steering current source with temperature compensation, so the output frequency of the oscillator does not drift with temperature variations. The chip is fabricated in a standard Taiwan Semiconductor Manufacturing Company (TSMC 0.18-μm complementary metal oxide semiconductor (CMOS process, and the chip area is 0.9 mm2. The power consumption of the sampling amplifier is 128 µW. The power consumption of the voltage controlled oscillator (VCO core is less than 40 µW, and the output is −3.04 dBm with a buffer stage. The output voltage of the bandgap reference circuit is 1 V. For temperature measurements, the maximum error is 0.18 °C with a standard deviation of ±0.061 °C, which is superior to the required specification of 0.1 °C.

  14. Ultra-Stretchable Interconnects for High-Density Stretchable Electronics

    Directory of Open Access Journals (Sweden)

    Salman Shafqat

    2017-09-01

    Full Text Available The exciting field of stretchable electronics (SE promises numerous novel applications, particularly in-body and medical diagnostics devices. However, future advanced SE miniature devices will require high-density, extremely stretchable interconnects with micron-scale footprints, which calls for proven standardized (complementary metal-oxide semiconductor (CMOS-type process recipes using bulk integrated circuit (IC microfabrication tools and fine-pitch photolithography patterning. Here, we address this combined challenge of microfabrication with extreme stretchability for high-density SE devices by introducing CMOS-enabled, free-standing, miniaturized interconnect structures that fully exploit their 3D kinematic freedom through an interplay of buckling, torsion, and bending to maximize stretchability. Integration with standard CMOS-type batch processing is assured by utilizing the Flex-to-Rigid (F2R post-processing technology to make the back-end-of-line interconnect structures free-standing, thus enabling the routine microfabrication of highly-stretchable interconnects. The performance and reproducibility of these free-standing structures is promising: an elastic stretch beyond 2000% and ultimate (plastic stretch beyond 3000%, with <0.3% resistance change, and >10 million cycles at 1000% stretch with <1% resistance change. This generic technology provides a new route to exciting highly-stretchable miniature devices.

  15. Complementary treatments for tobacco cessation: a survey.

    Science.gov (United States)

    Sood, Amit; Ebbert, Jon O; Sood, Richa; Stevens, Susanna R

    2006-12-01

    Little information is available regarding the prevalence of use and interest in future use of complementary and alternative medicine (CAM) for tobacco cessation among tobacco users. We conducted a self-administered anonymous survey among 1,175 patients seen at a midwestern outpatient tobacco treatment specialty clinic between November 2003 and July 2005. Patient use of CAM for tobacco cessation, perceived efficacy of these treatments, and interest in future use of CAM were ascertained. Data were summarized using descriptive statistics, and logistic regression models were used to determine the characteristics associated with past CAM use or interest in future use of CAM for tobacco cessation. All of the patients who received the survey completed it. A total of 27% of patients reported previous use of CAM for tobacco cessation. The interventions most commonly used were hypnosis, relaxation, acupuncture, and meditation. CAM treatments most commonly perceived to be efficacious were yoga, relaxation, meditation, and massage therapy. A total of 67% of the patients reported interest in future use of CAM for tobacco cessation. The treatments of greatest interest for use in the future were hypnosis, herbal products, acupuncture, relaxation, and massage therapy. Female gender, previous use of conventional tobacco cessation products, previous use of CAM treatments, and a higher level of education were significantly associated with interest in future CAM use. The high level of interest in CAM among tobacco users underscores the need to conduct further research in this field.

  16. Risk, pregnancy and complementary and alternative medicine.

    Science.gov (United States)

    Mitchell, Mary

    2010-05-01

    Since the 1990's sociologists such as Giddens and Beck have highlighted the complexities of contemporary western societies in relation to risk. The "risk society" is one in which the advantages of scientific and technological developments are overshadowed with risks and dangers: leading to a world dominated by anxiety and uncertainty. Although a complex set of interrelated phenomena the risk society can be summarised under three main changes: including globalisation, scepticism about expert knowledge, Thompson: 27 and the degree of autonomy individuals have in our detraditionalised society to determine their own life choices (Beck: 13). The discourses of the "risk society" inevitably impact on women during pregnancy and the potential influence this discourse may have in relation to healthcare choices, particularly in the field of complementary and alternative medicine (CAM) are explored. In this paper it is argued that the apparently growing use of CAM during pregnancy and childbirth could be interpreted as a response by women to these discourses, that decisions made with regard to CAM may signify a desire for personal fulfilment and a need for autonomy and active participation in healthcare during pregnancy and childbirth. Copyright 2009 Elsevier Ltd. All rights reserved.

  17. Fusing complementary images for pavement cracking measurements

    International Nuclear Information System (INIS)

    Yao, Ming; Zhao, Zuyun; Xu, Bugao; Yao, Xun

    2015-01-01

    Cracking is a major pavement distress that jeopardizes road serviceability and traffic safety. Automated pavement distress survey (APDS) systems have been developed using digital imaging technology to replace human surveys for more timely and accurate inspections. Most APDS systems require special lighting devices to illuminate pavements and prevent shadows of roadside objects that distort cracks in the image. Most artificial lighting devices are laser based, and are either hazardous to unprotected people or require dedicated power supplies on the vehicle. This study was aimed to develop a new imaging system that can scan pavement surface at highway speed and determine the level of severity of pavement cracking without using any artificial lighting. The new system consists of dual line-scan cameras that are installed side by side to scan the same pavement area as the vehicle moves. Cameras are controlled with different exposure settings so that both sunlit and shadowed areas can be visible in two separate images. The paired images contain complementary details useful for reconstructing an image in which the shadows are eliminated. This paper intends to present (1) the design of the dual line-scan camera system, (2) a new calibration method for line-scan cameras to rectify and register paired images, (3) a customized image-fusion algorithm that merges the multi-exposure images into one shadow-free image for crack detection, and (4) the results of the field tests on a selected road over a long period. (paper)

  18. Wound healing and complementary therapies: a review.

    Science.gov (United States)

    Wirth, D P; Richardson, J T; Eidelman, W S

    1996-01-01

    A series of five innovative experiments conducted by Wirth et al. which examined the effect of various complementary healing interventions on the reepithelialization rate of full thickness human dermal wounds was assessed as to specific methodological and related factors. The treatment interventions utilized in the series included experimental derivatives of the Therapeutic Touch (TT), Reiki, LeShan, and Intercessory Prayer techniques. The results of the series indicated statistical significance for the initial two experiments and nonsignificance or reverse significance for the remaining three studies. This review article examines the methodological designs of the series of studies, along with the TT practitioners' phenomenologically based journal reports, to provide potential contributing correlative factors for the differential results obtained. These factors include: (1) methodological design restrictions, (2) a transference/inhibitory effect (3) the influence of experimental assistants, (4) healer visualization /imagery techniques, (5) variations in subject populations, and (6) a potential cancellation effect. While the placebo controlled double-blind methodological designs used in the series were as stringent as those used in other fields of scientific inquiry, the overall results of the experiments were inconclusive in establishing the efficacy of the treatment interventions for accelerating the rate of reepithelialization of full thickness dermal wounds.

  19. Behavior analysis and neuroscience: Complementary disciplines.

    Science.gov (United States)

    Donahoe, John W

    2017-05-01

    Behavior analysis and neuroscience are disciplines in their own right but are united in that both are subfields of a common overarching field-biology. What most fundamentally unites these disciplines is a shared commitment to selectionism, the Darwinian mode of explanation. In selectionism, the order and complexity observed in nature are seen as the cumulative products of selection processes acting over time on a population of variants-favoring some and disfavoring others-with the affected variants contributing to the population on which future selections operate. In the case of behavior analysis, the central selection process is selection by reinforcement; in neuroscience it is natural selection. The two selection processes are inter-related in that selection by reinforcement is itself the product of natural selection. The present paper illustrates the complementary nature of behavior analysis and neuroscience through considering their joint contributions to three central problem areas: reinforcement-including conditioned reinforcement, stimulus control-including equivalence classes, and memory-including reminding and remembering. © 2017 Society for the Experimental Analysis of Behavior.

  20. Alternative and complementary medicine in cancer patient

    International Nuclear Information System (INIS)

    Reckova, M.

    2009-01-01

    The use of alternative and complementary medicine (CAM) in cancer patients is widespread and it is not surprising as the results gained by conventional treatments are not sufficient. However, the results from the studies with CAM are not always sufficient according to their testing in appropriate clinical studies. Another problem that is present in the use of CAM is the possibility of drug-drug interactions between conventional therapies and CAM. Thus, it is of utmost importance that the oncologist possess a good knowledge of available CAM and provide a sufficient time for discussion with the patient and his/her family about possible alternative treatments and any downside risks. The cornerstone for pertinent discussion is sufficient knowledge on the part of the oncologist about those alternative treatments that are usually presented in the media with incomplete information about their relevant clinical tests and side effects. The following article presents a review of the current alternative treatment methods with a focus on the alternative drugs that have already been clinically tested, and secondarily on the alternative drugs that have been used even without sufficient testing in clinical trials. (author)

  1. Complementary, alternative, integrative, or unconventional medicine?

    Science.gov (United States)

    Penson, R T; Castro, C M; Seiden, M V; Chabner, B A; Lynch, T J

    2001-01-01

    Shortly before his death in 1995, Kenneth B. Schwartz, a cancer patient at Massachusetts General Hospital (MGH), founded the Kenneth B. Schwartz Center. The Schwartz Center is a non-profit organization dedicated to supporting and advancing compassionate health care delivery, which provides hope to the patient, support to caregivers, and sustenance to the healing process. The center sponsors the Schwartz Center Rounds, a monthly multidisciplinary forum where caregivers reflect on important psychosocial issues faced by patients, their families, and their caregivers, and gain insight and support from fellow staff members. Interest in complementary and alternative medicine (CAM) has grown exponentially in the past decade, fueled by Internet marketing, dissatisfaction with mainstream medicine, and a desire for patients to be actively involved in their health care. There is a large discordance between physician estimates and reported prevalence of CAM use. Many patients do not disclose their practices mainly because they believe CAM falls outside the rubric of conventional medicine or because physicians do not ask. Concern about drug interactions and adverse effects are compounded by a lack of Food and Drug Administration regulation. Physicians need to be informed about CAM and be attuned to the psychosocial needs of patients.

  2. Local coloring of self complementary graphs

    Directory of Open Access Journals (Sweden)

    P. Deepa

    2017-04-01

    Full Text Available Let G=(V,E be a graph. A local coloring of a graph G of order at least 2 is a function c:V(G⟶N having the property that for each set S⊆V(G with 2≤|S|≤3, there exist vertices u,v∈S such that |c(u−c(v|≥ms, where ms is the size of the induced subgraph 〈S〉. The maximum color assigned by a local coloring c to a vertex of G is called the value of c and is denoted by χℓ(c. The local chromatic number of G is χℓ(G=min{χℓ(c}, where the minimum is taken over all local colorings c of G. In this paper we study the local coloring for some self complementary graphs. Also we present a sc-graph with local chromatic number k for any given integer k≥6.

  3. Complementary feeding: a commentary by the ESPGHAN Committee on Nutrition

    NARCIS (Netherlands)

    Agostoni, Carlo; Decsi, Tamas; Fewtrell, Mary; Goulet, Olivier; Kolacek, Sanja; Koletzko, Berthold; Michaelsen, Kim Fleischer; Moreno, Luis; Puntis, John; Rigo, Jacques; Shamir, Raanan; Szajewska, Hania; Turck, Dominique; van Goudoever, Johannes

    2008-01-01

    This position paper on complementary feeding summarizes evidence for health effects of complementary foods. It focuses on healthy infants in Europe. After reviewing current knowledge and practices, we have formulated these conclusions: Exclusive or full breast-feeding for about 6 months is a

  4. Complementary Therapies – a spiritual resource in recovery-processes?

    DEFF Research Database (Denmark)

    Lunde, Anita; Dürr, Dorte Wiwe; Johannessen, Helle

    Background: Studies show that spirituality is an important issue for alternative and complementary practitioners and their treatment practice. In social psychiatry in Denmark, several residential homes have implemented various therapies such as massage and ear acupuncture, which along with other ...... and health as well as for the ethics of providing complementary treatment practice in social psychiatry....

  5. Acceptance of a complementary food prepared with yellow ...

    African Journals Online (AJOL)

    2014-06-13

    Jun 13, 2014 ... Keywords: provitamin A-biofortified maize, vitamin A deficiency, complementary feeding, consumer acceptance. Acceptance of a complementary food prepared with yellow, provitamin ..... maize is of better quality, subsequently overshadowing that of yellow maize. Nutrition education on the health benefits of.

  6. Complementary feeding: a critical window of opportunity from six ...

    African Journals Online (AJOL)

    2013-04-12

    Apr 12, 2013 ... Animal food products are the only foods that contains enough iron, zinc, calcium and riboflavin to supply daily requirements for complementary feeding, while being low in antinutrients.39. Infants have a great need for iron, because of rapid growth and depleted iron stores. Therefore, complementary foods.

  7. Complementary feeding practices and nutritional status of children 6 ...

    African Journals Online (AJOL)

    SARAH

    2015-01-30

    Jan 30, 2015 ... diversified diet with frequent intake of foods from all food groups for at least four food groups per day, at least four meals in a day and with continued breast- feeding (WHO, 2008). Inappropriate complementary feeding practices such as untimely introduction of complementary foods, improper frequency for.

  8. Discovering Complementary Colors from the Perspective of STEAM Education

    Science.gov (United States)

    Karabey, Burak; Koyunkaya, Melike Yigit; Enginoglu, Turan; Yurumezoglu, Kemal

    2018-01-01

    This study explored the theory and applications of complementary colors using a technology-based activity designed from the perspective of STEAM education. Complementary colors and their areas of use were examined from the perspective of physics, mathematics and art, respectively. The study, which benefits from technology, makes the theory of…

  9. Breastfeeding, complementary feeding and nutritional status of 6 ...

    African Journals Online (AJOL)

    Objective. To determine breastfeeding, complementary feeding and nutritional status of 6 - 12-month-old rural infants. Study design. A cross-sectional survey was done. Breastfeeding and complementary feeding practices were determined by questionnaire; an unquantified food frequency questionnaire was used to ...

  10. Special Section: Complementary and Alternative Medicine (CAM): Time to Talk

    Science.gov (United States)

    ... to discuss with your health care providers any complementary and alternative medicines you take or are thinking about starting. Photo: ... adults 50 and older use some form of complementary and alternative medicine (CAM). But less than one-third who use ...

  11. Use of Complementary and Alternative Medicine for Work Related ...

    African Journals Online (AJOL)

    Conclusion: Complementary and alternative medicine therapies may improve quality of life, reduce work disruptions and enhance job satisfaction for dentists who suffer from work-related musculoskeletal disorders. It is important that dentists incorporate complementary and alternative medicine strategies into practice to ...

  12. Adoption of Enriched Local Complementary Food in Osun State ...

    African Journals Online (AJOL)

    Locally processed complementary foods, appropriately enriched can complement breast milk and traditional foods during the nutritionally vulnerable periods of a child life. The study therefore examines the adoption of enriched local complementary foods in Osun State Nigeria. Structured interview schedule was used to ...

  13. African Journal of Traditional, Complementary and Alternative ...

    African Journals Online (AJOL)

    ajtcam, an independent network committed to ensuring peer-reviewed ethnomedicinal ... Traditional medicine practitioners must be trained, an essential component of the training being standardization for safety and quality; The DRPU has been ...

  14. Complementary therapy use by nursing, pharmacy and biomedical science students.

    Science.gov (United States)

    Wilkinson, J M; Simpson, M D

    2001-03-01

    Attitudes towards the use of complementary therapies by students of undergraduate Bachelor of Nursing, Pharmacy and Biomedical Sciences were determined using a self-administered questionnaire. Overall, 78% of students had used a complementary therapy in the past year and 56% had visited a complementary therapy practitioner. The therapies most used were those involving vitamins, mineral and other supplements. Practitioners specializing in this area were the most visited, followed by chiropractors. Commonly used products included vitamin C, multivitamins, B group vitamins, garlic, iron and echinacea. Most students thought complementary therapies improved quality of life, with friends and family providing the main sources of information. There were few differences attributable to course or gender. The results suggest that these students have favorable attitudes towards complementary therapies and that many choose to use them as part of normal health care.

  15. KATIS: An eHealth System for Complementary Medicine.

    Science.gov (United States)

    Ogultarhan, Venus; Shoshi, Alban; Magnucki, Rico; Kormeier, Benjamin; Hofestädt, Ralf

    2016-01-01

    Much of the information on the complementary medicine is spread across literature and the internet. However, various literature and web resources provide information just of one specialist field. In addition, these resources do not allow users to search for suitable therapies based on patient-specific indications. Aggregating knowledge about complementary medicine into one database makes the search more efficient. Data integration is a promising method for providing well-based knowledge. Therefore, integrative methods were used to create the database ALTMEDA, which includes complementary and drug-related data. Based on this comprehensive database ALTMEDA, the new eHealth system KATIS and the corresponding app ALMEKO for the mobile usage were implemented. KATIS is a web-based system for complementary medicine. KATIS provides knowledge about ten different specialist fields, which enables users not only to look up a particular complementary therapy, but also to find suitable therapies for indications more efficiently. [http://www.komplementäre-medizin.de].

  16. Use of complementary and alternative medicines during the third trimester.

    Science.gov (United States)

    Pallivalapila, Abdul Rouf; Stewart, Derek; Shetty, Ashalatha; Pande, Binita; Singh, Rajvir; McLay, James S

    2015-01-01

    To estimate the prevalence, indications, and associated factors for complementary and alternative medicine use during the last trimester of pregnancy. A questionnaire survey was conducted of women with a live birth (N=700) admitted to the postnatal unit at the Royal Aberdeen Maternity Hospital, northeast Scotland. Outcome measures included: complementary and alternative medicine used; vitamins and minerals used; reasons for complementary and alternative medicine use; independent associated factors for use; views; and experiences. Descriptive and inferential statistical analysis was performed. The response rate was 79.6% of eligible women. Two thirds of respondents (61.4%) reported using complementary and alternative medicine, excluding vitamins and minerals, during the third trimester. Respondents reported using a total of 30 different complementary and alternative medicine modalities, of which oral herbal products were the most common (38% of respondents, 40 different products). The independent associated factors for complementary and alternative medicine use identified were: complementary and alternative medicine use before pregnancy (odds ratio [OR] 4.36, 95% confidence interval [CI] 2.39-7.95, Pcomplementary and alternative medicine use by family or friends (OR 2.36, 95% CI 1.61-3.47, Pcomplementary and alternative medicines were safer than prescribed medicines (P=.006), less likely to be associated with side effects (P≤.001), and could interfere with conventional medicines (P≤.001). Despite the majority of respondents, and notably users, being uncertain about their safety and effectiveness, complementary and alternative medicine modalities and complementary and alternative medicine products are widely used during the third trimester of pregnancy in this study population. Although prior use was the most significant independent associated factor, the role of family and friends, rather than health professionals, in the decision to use complementary and

  17. Sweet potato-based complementary food for infants in low-income countries.

    Science.gov (United States)

    Amagloh, Francis Kweku; Hardacre, Allan; Mutukumira, Anthony N; Weber, Janet L; Brough, Louise; Coad, Jane

    2012-03-01

    In low-income countries, most infants are given cereal-based complementary foods prepared at the household level. Such foods are high in phytate, which limits the bioavailability of nutrients, including iron, calcium, zinc, and in some cases proteins, which are crucial to the development of infants. To compare the levels of macronutrients (protein, fat, and carbohydrate), gross energy, and fructose in sweet potato-based (denoted ComFa) formulations and enriched Weanimix (dehulled maize-dehulled soybean-groundnut blend with fish powder and sugar incorporated). The phytate level was also compared. A composite flour of sweet potato and soybeans containing fish powder was processed by oven toasting as a home-based complementary food. Another blend containing skim milk powder was processed by extrusion cooking or roller drying as industrial-based prototypes. The macronutrient composition and the levels of fructose and phytate were determined in the ComFa formulations and enriched Weanimix. The ComFa formulations and the enriched Weanimix met the stipulated values in the Codex Alimentarius Commission standard for energy (400 kcal/100 g), protein (15 g/100 g), and fat (10 to 25 g/100 g) for complementary food, with the exception of the industrial-based ComFa formulations, which satisfied 83% of the protein requirement (15 g/100 g). The ComFa formulations had a quarter of the phytate level of enriched Weanimix. The fructose level in the sweet potato-based complementary foods was more than five times that in enriched Weanimix. The sweet potato-based formulations were superior to enriched Weanimix as complementary foods for infants in low-income countries, based on the fructose (which makes the porridge naturally sweet) and phytate levels.

  18. Orange-fleshed sweet potato-based infant food is a better source of dietary vitamin A than a maize-legume blend as complementary food.

    Science.gov (United States)

    Amagloh, Francis Kweku; Coad, Jane

    2014-03-01

    White maize, which is widely used for complementary feeding and is seldom fortified at the household level, may be associated with the high prevalence of vitamin A deficiency among infants in low-income countries. The nutrient composition of complementary foods based on orange-fleshed sweet potato (OFSP) and cream-fleshed sweet potato (CFSP), maize-soybean-groundnut (Weanimix), and a proprietary wheat-based infant cereal (Nestlé Cerelac) were assessed using the Codex Standard (CODEX STAN 074-1981, Rev. 1-2006) specification as a reference. Additionally, the costs of OFSP complementary food, CFSP complementary food, and Weanimix production at the household level were estimated. Phytate and polyphenols, which limit the bioavailability of micronutrients, were assessed. Energy, macronutrients, and micronutrients listed as essential composition in the Codex Standard were determined and expressed as energy or nutrient density. All the formulations met the stipulated energy and nutrient densities as specified in the Codex Standard. The beta-carotene content of OFSP complementary food exceeded the vitamin A specification (60 to 180 microg retinol activity equivalents/100 kcal). All the formulations except Weanimix contained measurable amounts of ascorbic acid (> or = 32.0 mg/100 g). The level of phytate in Weanimix was highest, about twice that of OFSP complementary food. The sweet potato-based foods contained about twice as much total polyphenols as the cereal-based products. The estimated production cost of OFSP complementary food was slightly higher (1.5 times) than that of Weanimix. OFSP complementary food is a good source of beta-carotene and would therefore contribute to the vitamin A requirements of infants. Both OFSP complementary food and Weanimix may inhibit iron absorption because of their high levels of polyphenols and phytate, respectively, compared with those of Nestlé Cerelac.

  19. Complementary Therapies and Medicines and Reproductive Medicine.

    Science.gov (United States)

    Smith, Caroline A; Armour, Mike; Ee, Carolyn

    2016-03-01

    Complementary therapies and medicines are a broad and diverse range of treatments, and are frequently used by women and their partners during the preconception period to assist with infertility, and to address pregnancy-related conditions. Despite frequent use, the evidence examining the efficacy, effectiveness, and safety for many modalities is lacking, with variable study quality. In this article, we provide an overview of research evidence with the aim of examining the evidence to inform clinical practice. During the preconception period, there is mixed evidence for acupuncture to improve ovulation, or increase pregnancy rates. Acupuncture may improve sperm quality, but there is insufficient evidence to determine whether this results in improved pregnancy and live birth rates. Acupuncture can be described as a low-risk intervention. Chinese and Western herbal medicines may increase pregnancy rates; however, study quality is low. The evaluation of efficacy, effectiveness, and safety during the first trimester of pregnancy has most commonly reported on herbs, supplements, and practices such as acupuncture. There is high-quality evidence reporting the benefits of herbal medicines and acupuncture to treat nausea in pregnancy. The benefit from ginger to manage symptoms of nausea in early pregnancy is incorporated in national clinical guidelines, and vitamin B6 is recommended as a first-line treatment for nausea and vomiting in pregnancy. The safety of ginger and vitamin B6 is considered to be well established, and is based on epidemiological studies. Acupuncture has been shown to reduce back pain and improve function for women in early pregnancy. There is little evidence to support the use of cranberries in pregnancy for prevention of urinary tract infections, and chiropractic treatment for back pain. Overall the numbers of studies are small and of low quality, although the modalities appear to be low risk of harm. Thieme Medical Publishers 333 Seventh Avenue, New

  20. Abrasive water jet: a complementary tool

    Directory of Open Access Journals (Sweden)

    Duarte, J. P.

    1998-04-01

    Full Text Available The abrasive water jet is a powerful cutting tool, whose main advantages lie in the absence of thermal effects and the capability of cutting highly thick materials. Compared with Laser, the abrasive water jet allows the cutting of a larger range of thicknesses and a wider variety of materials such as: ornamental stones, metals, polymers, composites, wood, glass and ceramics. The application of this technology has suffered an extensive growth, with successful applications in varied industrial sectors like the automotive, aerospace, textile, metalworking, ornamental stones, etc. The present communication aims at introducing the abrasive water jet as a complementary tool to laser cutting, presenting its advantages by showing some documented examples of pieces cut for different industries.

    O jacto de água abrasivo é uma poderosa ferramenta de corte, tendo como principais vantagens a ausência de processo térmico e permitir o corte de elevadas espessuras. Comparativamente com o laser o jacto de água abrasivo permite cortar uma maior gama de espessuras, e uma maior diversidade de materiais: rochas ornamentais, metais, polimeros, compósitos, madeiras, vidro e cerâmicos. A aplicação desta tecnologia tem sofrido um crescimento acentuado, existindo aplicações de sucesso nos mais variados sectores industriáis como a indústria automóvel, aeroespacial, têxtil, metalomecânica e rochas ornamentáis. Esta comunição pretende apresentar o corte por jacto de agua abrasivo como uma ferramenta de corte complementar ao corte por laser, apresentando as suas vantagens documentadas através de alguns exemplos de peças executadas para as diferentes indústrias.

  1. Complementary and Alternative Medicine Use Among Allergy Practices: Results of a Nationwide Survey of Allergists.

    Science.gov (United States)

    Land, Michael H; Wang, Julie

    The use of complementary and alternative practices in the field of Allergy/Immunology is growing. A recent survey of American Academy of Allergy, Asthma, and Immunology members examining patterns of complementary and alternative medicine (CAM) use and adverse effects from CAM revealed that a majority of practitioners (81% of respondents) had patients who are using CAM therapies over conventional treatments and many practitioners (60% of survey respondents) have encountered patients experiencing adverse reactions. During routine office visits, a majority of practitioners do not ask patients about CAM use, and when they do, most do not have a standard intake form to take a CAM history. There is a strong need to increase knowledge and improve measures to prevent adverse reactions to CAMs. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  2. Complementary and Alternative Medicine for Posttraumatic Stress Disorder Symptoms: A Systematic Review.

    Science.gov (United States)

    Wahbeh, Helané; Senders, Angela; Neuendorf, Rachel; Cayton, Julien

    2014-07-01

    To (1) characterize complementary and alternative medicine studies for posttraumatic stress disorder symptoms, (2) evaluate the quality of these studies, and (3) systematically grade the scientific evidence for individual CAM modalities for posttraumatic stress disorder. Systematic review. Eight data sources were searched. Selection criteria included any study design assessing posttraumatic stress disorder outcomes and any complementary and alternative medicine intervention. The body of evidence for each modality was assessed with the Natural Standard evidence-based, validated grading rationale. Thirty-three studies (n = 1329) were reviewed. Scientific evidence of benefit for posttraumatic stress disorder was strong for repetitive transcranial magnetic stimulation and good for acupuncture, hypnotherapy, meditation, and visualization. Evidence was unclear or conflicting for biofeedback, relaxation, Emotional Freedom and Thought Field therapies, yoga, and natural products. Considerations for clinical applications and future research recommendations are discussed. © The Author(s) 2014.

  3. The use of complementary therapies in midwifery in the UK.

    Science.gov (United States)

    Liburd, A

    1999-01-01

    Midwives in the United Kingdom (UK) are autonomous, independent practitioners and the lead professionals in normal pregnancy and childbirth. Changing Childbirth, a government report, gave a recommendation that women should have continuity of care. Midwives have recognized the ability to implement complementary therapies in health care and have succeeded in forming the Complementary Therapies in Maternity Care National Forum (May 1988). The National Health Service Confederation identified midwives as the highest users of complementary therapies in the health care services. Midwives are in a position to incorporate complementary therapies into their practice in conjunction with the rules and guidelines promulgated by the UK Central Council for Nursing, Midwifery, and Health Visiting. Highlighting the Complementary Therapies in Maternity Care National Forum underscores the increased use of therapies by midwives in the UK. Documentation of complementary therapies used in midwifery practice has resulted in some evidence-based practice for reference. Caseload midwifery (the progressive approach of smaller teams of midwives, who are community-based) and education can play key roles in integrating complementary therapies into midwifery, providing women with more choice, and achieving greater client satisfaction from the childbirth experience. Success is also dependent on government commitment and involvement.

  4. Counterdoped very shallow p+/n junctions obtained by B and Sb implantation and codiffusion in Si

    Science.gov (United States)

    Solmi, Sandro

    1998-02-01

    In this article we investigate the B and Sb codiffusion upon postimplantation annealing in order to fabricate very shallow p+/n junctions (⩽70 nm), suitable for a complementary metal-oxide-semiconductor technology with a channel length of 0.18 μm. The junctions are prepared by implanting Sb and subsequently BF2, at a higher dose, in an n-type Si substrate. The preamorphization with Sb avoids the B channeling and increases the n-type doping in the junction region, thus confining the depth of the p layer. Furthermore, both the transient enhanced diffusion, being the B implanted in a preamorphized layer, and the standard diffusion, due to the pairing between donors and acceptors, are strongly reduced. This procedure allows us to obtain very shallow junctions even after annealings with relatively high thermal budget, like 800 °C/8 h or 900 °C/1 h, or 950 °C/10 min or 1000 °C/60 s. We verified that dopant diffusion is strongly affected by a direct donor-acceptor interaction, and that good prediction of the experimental results can only be obtained using a simulation code which takes into account the formation of neutral, near immobile, Sb-B pairs.

  5. Design of a Humidity Sensor Tag for Passive Wireless Applications.

    Science.gov (United States)

    Wu, Xiang; Deng, Fangming; Hao, Yong; Fu, Zhihui; Zhang, Lihua

    2015-10-07

    This paper presents a wireless humidity sensor tag for low-cost and low-power applications. The proposed humidity sensor tag, based on radio frequency identification (RFID) technology, was fabricated in a standard 0.18 μm complementary metal oxide semiconductor (CMOS) process. The top metal layer was deposited to form the interdigitated electrodes, which were then filled with polyimide as the humidity sensing layer. A two-stage rectifier adopts a dynamic bias-voltage generator to boost the effective gate-source voltage of the switches in differential-drive architecture, resulting in a flat power conversion efficiency curve. The capacitive sensor interface, based on phase-locked loop (PLL) theory, employs a simple architecture and can work with 0.5 V supply voltage. The measurement results show that humidity sensor tag achieves excellent linearity, hysteresis and stability performance. The total power-dissipation of the sensor tag is 2.5 μW, resulting in a maximum operating distance of 23 m under 4 W of radiation power of the RFID reader.

  6. Material insights of HfO2-based integrated 1-transistor-1-resistor resistive random access memory devices processed by batch atomic layer deposition.

    Science.gov (United States)

    Niu, Gang; Kim, Hee-Dong; Roelofs, Robin; Perez, Eduardo; Schubert, Markus Andreas; Zaumseil, Peter; Costina, Ioan; Wenger, Christian

    2016-06-17

    With the continuous scaling of resistive random access memory (RRAM) devices, in-depth understanding of the physical mechanism and the material issues, particularly by directly studying integrated cells, become more and more important to further improve the device performances. In this work, HfO2-based integrated 1-transistor-1-resistor (1T1R) RRAM devices were processed in a standard 0.25 μm complementary-metal-oxide-semiconductor (CMOS) process line, using a batch atomic layer deposition (ALD) tool, which is particularly designed for mass production. We demonstrate a systematic study on TiN/Ti/HfO2/TiN/Si RRAM devices to correlate key material factors (nano-crystallites and carbon impurities) with the filament type resistive switching (RS) behaviours. The augmentation of the nano-crystallites density in the film increases the forming voltage of devices and its variation. Carbon residues in HfO2 films turn out to be an even more significant factor strongly impacting the RS behaviour. A relatively higher deposition temperature of 300 °C dramatically reduces the residual carbon concentration, thus leading to enhanced RS performances of devices, including lower power consumption, better endurance and higher reliability. Such thorough understanding on physical mechanism of RS and the correlation between material and device performances will facilitate the realization of high density and reliable embedded RRAM devices with low power consumption.

  7. Spiral-Shaped Piezoelectric MEMS Cantilever Array for Fully Implantable Hearing Systems

    Directory of Open Access Journals (Sweden)

    Péter Udvardi

    2017-10-01

    Full Text Available Fully implantable, self-powered hearing aids with no external unit could significantly increase the life quality of patients suffering severe hearing loss. This highly demanding concept, however, requires a strongly miniaturized device which is fully implantable in the middle/inner ear and includes the following components: frequency selective microphone or accelerometer, energy harvesting device, speech processor, and cochlear multielectrode. Here we demonstrate a low volume, piezoelectric micro-electromechanical system (MEMS cantilever array which is sensitive, even in the lower part of the voice frequency range (300–700 Hz. The test array consisting of 16 cantilevers has been fabricated by standard bulk micromachining using a Si-on-Insulator (SOI wafer and aluminum nitride (AlN as a complementary metal-oxide-semiconductor (CMOS and biocompatible piezoelectric material. The low frequency and low device footprint are ensured by Archimedean spiral geometry and Si seismic mass. Experimentally detected resonance frequencies were validated by an analytical model. The generated open circuit voltage (3–10 mV is sufficient for the direct analog conversion of the signals for cochlear multielectrode implants.

  8. Microfabricated gas sensor systems with sensitive nanocrystalline metal-oxide films

    International Nuclear Information System (INIS)

    Graf, M.; Gurlo, A.; Barsan, N.; Weimar, U.; Hierlemann, A.

    2006-01-01

    This article gives an overview on recent developments in metal-oxide-based gas sensor systems, in particular on nanocrystalline oxide materials deposited on modern, state-of-the-art sensor platforms fabricated in microtechnology. First, metal-oxide-based gas sensors are introduced, and the underlying principles and fundamentals of the gas sensing process are laid out. In the second part, the different deposition methods, such as evaporation, sputtering, sol-gel techniques, aerosol methods, and screen-printing, and their applicability to micro-scale substrates are discussed in terms of their deposition precision, the achievable layer thickness, as well as with regard to the possibility to use pre-processed materials. In the third part, microsensor platforms and, in particular, semiconductor- and microelectronics-based sensor platforms, which have been fabricated in, e.g., standard CMOS-technology (CMOS: complementary metal-oxide semiconductor), are briefly reviewed. The use of such microfabricated sensor platforms inevitably imposes constraints, such as temperature limits, on the applied nanomaterial processing and deposition methods. These limitations are discussed and work-arounds are described. Additionally, monolithic sensor systems are presented that combine microtransducers or microhotplates, which are coated with nanomaterials, with the necessary control and driving electronics on a single chip. The most advanced of such systems are standalone units that can be directly connected to a computer via a digital interface

  9. On-chip cell analysis platform: Implementation of contact fluorescence microscopy in microfluidic chips

    Directory of Open Access Journals (Sweden)

    Hiroaki Takehara

    2017-09-01

    Full Text Available Although fluorescence microscopy is the gold standard tool for biomedical research and clinical applications, their use beyond well-established laboratory infrastructures remains limited. The present study investigated a novel on-chip cell analysis platform based on contact fluorescence microscopy and microfluidics. Combined use of a contact fluorescence imager based on complementary metal-oxide semiconductor technology and an ultra-thin glass bottom microfluidic chip enabled both to observe living cells with minimal image distortion and to ease controlling and handling of biological samples (e.g. cells and biological molecules in the imaged area. A proof-of-concept experiment of on-chip detection of cellular response to endothelial growth factor demonstrated promising use for the recently developed on-chip cell analysis platform. Contact fluorescence microscopy has numerous desirable features including compatibility with plastic microfluidic chips and compatibility with the electrical control system, and thus will fulfill the requirements of a fully automated cell analysis system.

  10. Integrated photonics with programmable non-volatile memory.

    Science.gov (United States)

    Song, Jun-Feng; Luo, Xian-Shu; Lim, Andy Eu-Jin; Li, Chao; Fang, Qing; Liow, Tsung-Yang; Jia, Lian-Xi; Tu, Xiao-Guang; Huang, Ying; Zhou, Hai-Feng; Lo, Guo-Qiang

    2016-03-04

    Silicon photonics integrated circuits (Si-PIC) with well-established active and passive building elements are progressing towards large-scale commercialization in optical communications and high speed optical interconnects applications. However, current Si-PICs do not have memory capabilities, in particular, the non-volatile memory functionality for energy efficient data storage. Here, we propose an electrically programmable, multi-level non-volatile photonics memory cell (PMC) fabricated by standard complementary-metal-oxide-semiconductor (CMOS) compatible processes. A micro-ring resonator (MRR) was built using the PMC to optically read the memory states. Switching energy smaller than 20 pJ was achieved. Additionally, a MRR memory array was employed to demonstrate a four-bit memory read capacity. Theoretically, this can be increased up to ~400 times using a 100 nm free spectral range broadband light source. The fundamental concept of this design provides a route to eliminate the von Neumann bottleneck. The energy-efficient optical storage can complement on-chip optical interconnects for neutral networking, memory input/output interfaces and other computational intensive applications.

  11. High-performance and compact binary blazed grating coupler based on an asymmetric subgrating structure and vertical coupling.

    Science.gov (United States)

    Yang, Junbo; Zhou, Zhiping; Jia, Honghui; Zhang, Xueao; Qin, ShiQiao

    2011-07-15

    A high-performance and compact fiber-to-waveguide binary blazed subwavelength grating coupler was designed based on silicon-on-insulator. By the appropriate choice of waveguide/grating parameters, including thicknesses, periods, height, and fill factor, to optimize the mode matching, a relatively high coupling efficiency was obtained for the fiber and waveguide interface. Moreover, perfectly vertical fiber coupling is achieved by using an asymmetric subgrating structure in which a period consists of two subgratings with identical etching height and different widths. Coupling efficiency as high as 69% at a wavelength of 1.52 μm and 65% at a wavelength of 1.55 μm is calculated. Simultaneously, the 1 dB wavelength bandwidth is around 80 nm. The coupling efficiency can reach up to 80% or so if Bragg reflector layers are added. Finally, the device layout is simple, feasible, one-step etched, and compatible with standard complementary metal-oxide semiconductor technology processing. © 2011 Optical Society of America

  12. A high-speed circuit architecture for IR-UWB transmission of fast-scan cyclic voltammetry in 0.35 εm CMOS.

    Science.gov (United States)

    Zamani, Hamidreza; Mohseni, Pedram

    2010-01-01

    This paper reports on the design of a high-speed circuit for impulse radio ultra-wideband (IR-UWB) transmission of 16-channel neurochemical activity recorded using 300-V/s fast-scan cyclic voltammetry (FSCV). Simulated in a low-cost 0.35-εm standard complementary metal-oxide-semiconductor (CMOS) technology, the circuit generates 3(rd)-derivative Gaussian pulses with sub-nanosecond duration, which are highpass filtered externally using a 4(th)-order Butterworth filter before feeding to an off-chip UWB antenna. The power spectral density (PSD) achieves a peak emission frequency of 4.6 GHz with a 2.3-GHz bandwidth (-10 dB), and is fully compliant with the UWB emission mask. The energy efficiency in pulse generation is 161.7 pJ/pulse that leads to a power consumption of 4.85 mW from 3.3 V for a data rate of 15 Mbps, when two pulses are used to transmit a single data bit.

  13. An Asynchronous IEEE Floating-Point Arithmetic Unit

    Directory of Open Access Journals (Sweden)

    Joel R. Noche

    2007-12-01

    Full Text Available An asynchronous floating-point arithmetic unit is designed and tested at the transistor level usingCadence software. It uses CMOS (complementary metal oxide semiconductor and DCVS (differentialcascode voltage switch logic in a 0.35 µm process using a 3.3 V supply voltage, with dual-rail data andsingle-rail control signals using four-phase handshaking.Using 17,085 transistors, the unit handles single-precision (32-bit addition/subtraction, multiplication,division, and remainder using the IEEE 754-1985 Standard for Binary Floating-Point Arithmetic, withrounding and other operations to be handled by separate hardware or software. Division and remainderare done using a restoring subtractive algorithm; multiplication uses an additive algorithm. Exceptionsare noted by flags (and not trap handlers and the output is in single-precision.Previous work on asynchronous floating-point arithmetic units have mostly focused on single operationssuch as division. This is the first work to the authors' knowledge that can perform floating-point addition,multiplication, division, and remainder using a common datapath.

  14. Design and Implementation of a New Real-Time Frequency Sensor Used as Hardware Countermeasure

    Directory of Open Access Journals (Sweden)

    Manuel Pedro-Carrasco

    2013-09-01

    Full Text Available A new digital countermeasure against attacks related to the clock frequency is presented. This countermeasure, known as frequency sensor, consists of a local oscillator, a transition detector, a measurement element and an output block. The countermeasure has been designed using a full-custom technique implemented in an Application-Specific Integrated Circuit (ASIC, and the implementation has been verified and characterized with an integrated design using a 0.35 mm standard Complementary Metal Oxide Semiconductor (CMOS technology (Very Large Scale Implementation—VLSI implementation. The proposed solution is configurable in resolution time and allowed range of period, achieving a minimum resolution time of only 1.91 ns and an initialization time of 5.84 ns. The proposed VLSI implementation shows better results than other solutions, such as digital ones based on semi-custom techniques and analog ones based on band pass filters, all design parameters considered. Finally, a counter has been used to verify the good performance of the countermeasure in avoiding the success of an attack.

  15. An Energy-Efficient ASIC for Wireless Body Sensor Networks in Medical Applications.

    Science.gov (United States)

    Xiaoyu Zhang; Hanjun Jiang; Lingwei Zhang; Chun Zhang; Zhihua Wang; Xinkai Chen

    2010-02-01

    An energy-efficient application-specific integrated circuit (ASIC) featured with a work-on-demand protocol is designed for wireless body sensor networks (WBSNs) in medical applications. Dedicated for ultra-low-power wireless sensor nodes, the ASIC consists of a low-power microcontroller unit (MCU), a power-management unit (PMU), reconfigurable sensor interfaces, communication ports controlling a wireless transceiver, and an integrated passive radio-frequency (RF) receiver with energy harvesting ability. The MCU, together with the PMU, provides quite flexible communication and power-control modes for energy-efficient operations. The always-on passive RF receiver with an RF energy harvesting block offers the sensor nodes the capability of work-on-demand with zero standby power. Fabricated in standard 0.18-¿m complementary metal-oxide semiconductor technology, the ASIC occupies a die area of 2 mm × 2.5 mm. A wireless body sensor network sensor-node prototype using this ASIC only consumes < 10-nA current under the passive standby mode, and < 10 ¿A under the active standby mode, when supplied by a 3-V battery.

  16. Design of Energy Aware Adder Circuits Considering Random Intra-Die Process Variations

    Directory of Open Access Journals (Sweden)

    Marco Lanuzza

    2011-04-01

    Full Text Available Energy consumption is one of the main barriers to current high-performance designs. Moreover, the increased variability experienced in advanced process technologies implies further timing yield concerns and therefore intensifies this obstacle. Thus, proper techniques to achieve robust designs are a critical requirement for integrated circuit success. In this paper, the influence of intra-die random process variations is analyzed considering the particular case of the design of energy aware adder circuits. Five well known adder circuits were designed exploiting an industrial 45 nm static complementary metal-oxide semiconductor (CMOS standard cell library. The designed adders were comparatively evaluated under different energy constraints. As a main result, the performed analysis demonstrates that, for a given energy budget, simpler circuits (which are conventionally identified as low-energy slow architectures operating at higher power supply voltages can achieve a timing yield significantly better than more complex faster adders when used in low-power design with supply voltages lower than nominal.

  17. PE-CMOS based C-scan ultrasound for foreign object detection in soft tissue.

    Science.gov (United States)

    Liu, Chu-Chuan; Lo, Shih-Chung Ben; Freedman, Matthew T; Lasser, Marvin E; Kula, John; Sarcone, Anita; Wang, Yue

    2010-01-01

    In this paper, we introduce a C-scan ultrasound prototype and three imaging modalities for the detection of foreign objects inserted in porcine soft tissue. The object materials include bamboo, plastics, glass and aluminum alloys. The images of foreign objects were acquired using the C-scan ultrasound, a portable B-scan ultrasound, film-based radiography, and computerized radiography. The C-scan ultrasound consists of a plane wave transducer, a compound acoustic lens system, and a newly developed ultrasound sensor array based on the complementary metal-oxide semiconductor coated with piezoelectric material (PE-CMOS). The contrast-to-noise ratio (CNR) of the images were analyzed to quantitatively evaluate the detectability using different imaging modalities. The experimental results indicate that the C-scan prototype has better CNR values in 4 out of 7 objects than other modalities. Specifically, the C-scan prototype provides more detail information of the soft tissues without the speckle artifacts that are commonly seen with conventional B-scan ultrasound, and has the same orientation as the standard radiographs but without ionizing radiation.

  18. Resolution Properties of a Calcium Tungstate (CaWO4) Screen Coupled to a CMOS Imaging Detector

    Science.gov (United States)

    Koukou, Vaia; Martini, Niki; Valais, Ioannis; Bakas, Athanasios; Kalyvas, Nektarios; Lavdas, Eleftherios; Fountos, George; Kandarakis, Ioannis; Michail, Christos

    2017-11-01

    The aim of the current work was to assess the resolution properties of a calcium tungstate (CaWO4) screen (screen coating thickness: 50.09 mg/cm2, actual thickness: 167.2 μm) coupled to a high resolution complementary metal oxide semiconductor (CMOS) digital imaging sensor. A 2.7x3.6 cm2 CaWO4 sample was extracted from an Agfa Curix universal screen and was coupled directly with the active area of the active pixel sensor (APS) CMOS sensor. Experiments were performed following the new IEC 62220-1-1:2015 International Standard, using an RQA-5 beam quality. Resolution was assessed in terms of the Modulation Transfer Function (MTF), using the slanted-edge method. The CaWO4/CMOS detector configuration was found with linear response, in the exposure range under investigation. The final MTF was obtained through averaging the oversampled edge spread function (ESF), using a custom-made software developed by our team, according to the IEC 62220-1-1:2015. Considering the renewed interest in calcium tungstate for various applications, along with the resolution results of this work, CaWO4 could be also considered for use in X-ray imaging devices such as charged-coupled devices (CCD) and CMOS.

  19. Material insights of HfO2-based integrated 1-transistor-1-resistor resistive random access memory devices processed by batch atomic layer deposition

    Science.gov (United States)

    Niu, Gang; Kim, Hee-Dong; Roelofs, Robin; Perez, Eduardo; Schubert, Markus Andreas; Zaumseil, Peter; Costina, Ioan; Wenger, Christian

    2016-06-01

    With the continuous scaling of resistive random access memory (RRAM) devices, in-depth understanding of the physical mechanism and the material issues, particularly by directly studying integrated cells, become more and more important to further improve the device performances. In this work, HfO2-based integrated 1-transistor-1-resistor (1T1R) RRAM devices were processed in a standard 0.25 μm complementary-metal-oxide-semiconductor (CMOS) process line, using a batch atomic layer deposition (ALD) tool, which is particularly designed for mass production. We demonstrate a systematic study on TiN/Ti/HfO2/TiN/Si RRAM devices to correlate key material factors (nano-crystallites and carbon impurities) with the filament type resistive switching (RS) behaviours. The augmentation of the nano-crystallites density in the film increases the forming voltage of devices and its variation. Carbon residues in HfO2 films turn out to be an even more significant factor strongly impacting the RS behaviour. A relatively higher deposition temperature of 300 °C dramatically reduces the residual carbon concentration, thus leading to enhanced RS performances of devices, including lower power consumption, better endurance and higher reliability. Such thorough understanding on physical mechanism of RS and the correlation between material and device performances will facilitate the realization of high density and reliable embedded RRAM devices with low power consumption.

  20. A 2.4-GHz BAW-Based Transceiver for Wireless Body Area Networks.

    Science.gov (United States)

    Contaldo, M; Banerjee, B; Ruffieux, D; Chabloz, J; Le Roux, E; Enz, C C

    2010-12-01

    This paper presents a BAW-based transceiver targeting wireless networks for biomedical applications. The use of high-Q microelectromechanical-systems resonators brings interesting benefits to the fundamental building blocks of the frequency synthesis, receiver, and transmitter and allows achieving at the same time low-power consumption, improved phase noise, and high selectivity in the receiver and transmitter paths. In the baseband, the power consumption is minimized thanks to the use of a phase analog-to-digital converter (ADC) which directly quantizes the phase of the received signal instead of using two separate amplitude ADCs. A complete wireless node composed of the transceiver integrated circuit (IC) and a microprocessing IC, both integrated in a standard digital 0.18-μm complementary metal-oxide semiconductor technology are described and validated by measurement results. The RF carrier phase noise is -136.2 dBc/Hz at 1-MHz offset. The transmitter demonstrates 1-Mb/s Gaussian frequency-shift keying modulation at an output power of 5.4 dBm with an overall current of 35 mA, in compliance with Bluetooth and Bluetooth low energy output spectrum requirements. At the receiver, further investigations are needed to find the origins of an unexpected sensitivity of -75 dBm at 200 kb/s.

  1. High-sensitivity active pixel sensor with variable threshold photodetector

    Science.gov (United States)

    Jo, Sung-Hyun; Bae, Myunghan; Choi, Byoung-Soo; Lyu, Hong-Kun; Shin, Jang-Kyoo

    2015-05-01

    A novel high-sensitivity active pixel sensor (APS) with a variable threshold photodetector has been presented and for the first time, a simple SPICE model for the variable threshold photodetector is presented. Its SPICE model is in good agreement with measurements and is more simpler than the conventional model. The proposed APS has a gate/body-tied PMOSFET-type photodetector with an overlapping control gate that makes it possible to control the sensitivity of the proposed APS. It is a hybrid device composed of a metal-oxide-semiconductor field-effect transistor (MOSFET), a lateral bipolar junction transistor (BJT) and a vertical BJT. Using sufficient overlapping control gate bias to operate the MOSFET in inversion mode, the variable threshold photodetector allows for increasing the photocurrent gain by 105 at low light intensities when the control gate bias is -3 V. Thus, the proposed APS with a variable threshold photodetector has better low-light-level sensitivity than the conventional APS operating mode, and it has a variable sensitivity which is determined by the control gate bias. The proposed sensor has been fabricated by using 0.35 μm 2-poly 4-metal standard complementary MOS (CMOS) process and its characteristics have been evaluated.

  2. Pacemaker, implanted cardiac defibrillator and irradiation: Management proposal in 2010 depending on the type of cardiac stimulator and prognosis and location of cancer; Pacemaker, defibrillateur et radiotherapie: propositions de conduite a tenir en 2010 en fonction du type de stimulateur cardiaque, du pronostic et du site du cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, P. [Service d' anesthesie reanimation, hopital Nord, centre hospitalier universitaire de Saint-etienne, 42055 Saint-etienne cedex 2 (France); Da Costa, A. [Service de cardiologie, hopital Nord, centre hospitalier universitaire de Saint-etienne, 42055 Saint-etienne cedex 2 (France); Marcy, P.Y. [Departement de radiologie, centre Antoine-Lacassagne, 33, avenue de Valombrose, 06189 Nice cedex 2 (France); Universite Nice Sophia-Antipolis, 33, avenue de Valombrose, 06189 Nice cedex 2 (France); Kreps, S. [Service de radiotherapie Corad, centre regional universitaire de cancerologie Henry-S.-Kaplan, hopital Bretonneau-2, CHU de Tours, boulevard Tonnelle, 37000 Tours (France); Angellier, G.; Marcie, S.; Bondiau, P.Y. [Universite Nice Sophia-Antipolis, 33, avenue de Valombrose, 06189 Nice cedex 2 (France); Departement de radiotherapie oncologie, centre CyberKnife, centre Antoine-Lacassagne, 33, avenue de Valombrose, 06189 Nice cedex 2 (France); Briand-Amoros, C. [Service de radiotherapie, hopital europeen Georges-Pompidou, 20, rue Leblanc, 75015 Paris (France); Thariat, J. [Universite Nice Sophia-Antipolis, 33, avenue de Valombrose, 06189 Nice cedex 2 (France); Departement de radiotherapie oncologie, centre CyberKnife, centre Antoine-Lacassagne, 33, avenue de Valombrose, 06189 Nice cedex 2 (France); IBDC CNRS UMR 6543, centre Antoine-Lacassagne, universite Sophia-Antipolis, 33, avenue de Valombrose, 06189 Nice cedex 2 (France)

    2011-06-15

    Ionizing radiation may interfere with electric components of pacemakers or implantable cardioverter defibrillators. The type, severity and extent of radiation damage to pacemakers, have previously been shown to depend on the total dose and dose rate. Over 300,000 new cancer cases are treated yearly in France, among which 60% are irradiated in the course of their disease. One among 400 of these patients has an implanted pacemaker or defibrillator. The incidence of pacemaker and implanted cardioverter defibrillator increases in an ageing population. The oncologic prognosis must be weighted against the cardiologic prognosis in a multidisciplinary and transversal setting. Innovative irradiation techniques and technological sophistications of pacemakers and implantable cardioverter-defibrillators (with the introduction of more radiosensitive complementary metal-oxide-semiconductors since 1970) have potentially changed the tolerance profiles. This review of the literature studied the geometric, dosimetric and radiobiological characteristics of the radiation beams for high energy photons, stereotactic irradiation, proton-therapy. Standardized protocols and radiotherapy optimization (particle, treatment fields, energy) are advisable in order to improve patient management during radiotherapy and prolonged monitoring is necessary following radiation therapy. The dose received at the pacemaker/heart should be calculated. The threshold for the cumulated dose to the pacemaker/implantable cardioverter-defibrillator (2 to 5 Gy depending on the brand), the necessity to remove/displace the device based on the dose-volume histogram on dosimetry, as well as the use of lead shielding and magnet are discussed. (authors)

  3. Nutritional status, complementary feeding practices and feasible ...

    African Journals Online (AJOL)

    2012-02-03

    Feb 3, 2012 ... patterns in children aged 6-23 months in returnee villages in northern Uganda, and then to identify feasible strategies to promote nutrition. Perceived understanding of the presentation and ... Weight. Weight was measured using a digital Seca scale according to World. Health Organization (WHO) standards.

  4. Best Available Evidence: Three Complementary Approaches

    Science.gov (United States)

    Slocum, Timothy A.; Spencer, Trina D.; Detrich, Ronnie

    2012-01-01

    The best available evidence is one of the three critical features of evidence-based practice. Best available evidence is often considered to be synonymous with extremely high standards for research methodology. However, this notion may limit the scope and impact of evidence based practice to those educational decisions on which high quality…

  5. Realization of a complementary medium using dielectric photonic crystals.

    Science.gov (United States)

    Xu, Tao; Fang, Anan; Jia, Ziyuan; Ji, Liyu; Hang, Zhi Hong

    2017-12-01

    By exploiting the scaling invariance of photonic band diagrams, a complementary photonic crystal slab structure is realized by stacking two uniformly scaled double-zero-index dielectric photonic crystal slabs together. The space cancellation effect in complementary photonic crystals is demonstrated in both numerical simulations and microwave experiments. The refractive index dispersion of double-zero-index dielectric photonic crystal is experimentally measured. Using pure dielectrics, our photonic crystal structure will be an ideal platform to explore various intriguing properties related to a complementary medium.

  6. Moral injury: A new challenge for complementary and alternative medicine.

    Science.gov (United States)

    Kopacz, Marek S; Connery, April L; Bishop, Todd M; Bryan, Craig J; Drescher, Kent D; Currier, Joseph M; Pigeon, Wilfred R

    2016-02-01

    Moral injury represents an emerging clinical construct recognized as a source of morbidity in current and former military personnel. Finding effective ways to support those affected by moral injury remains a challenge for both biomedical and complementary and alternative medicine. This paper introduces the concept of moral injury and suggests two complementary and alternative medicine, pastoral care and mindfulness, which may prove useful in supporting military personnel thought to be dealing with moral injury. Research strategies for developing an evidence-base for applying these, and other, complementary and alternative medicine modalities to moral injury are discussed. Published by Elsevier Ltd.

  7. Have complementary therapies demonstrated effectiveness in rheumatoid arthritis?

    Science.gov (United States)

    Fernández-Llanio Comella, Nagore; Fernández Matilla, Meritxell; Castellano Cuesta, Juan Antonio

    2016-01-01

    In recent decades the treatment of rheumatoid arthritis (RA) has improved thanks to the use of highly effective drugs. However, patients usually require long term therapy, which is not free of side effects. Therefore RA patients often demand complementary medicine, they seek additional sources of relief and/or less side effects. In fact 30-60% of rheumatic patients use some form of complementary medicine. Therefore, from conventional medicine, if we want to optimally treat our patients facilitating communication with them we must know the most commonly used complementary medicines. The aim of this review is to assess, based on published scientific research, what complementary therapies commonly used by patients with RA are effective and safe. Copyright © 2015 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.

  8. High Cholesterol and Complementary Health Practices: What the Science Says

    Science.gov (United States)

    ... Health NCCIH Clinical Digest for health professionals High Cholesterol and Complementary Health Practices: What the Science Says ... chemically identical to the active ingredient in the cholesterol-lowering drug lovastatin. Available evidence on the cholesterol- ...

  9. Complementary and alternative medicine use in children with cystic fibrosis.

    Science.gov (United States)

    Giangioppo, Sandra; Kalaci, Odion; Radhakrishnan, Arun; Fleischer, Erin; Itterman, Jennifer; Lyttle, Brian; Price, April; Radhakrishnan, Dhenuka

    2016-11-01

    To estimate the overall prevalence of complementary and alternative medicine use among children with cystic fibrosis, determine specific modalities used, predictors of use and subjective helpfulness or harm from individual modalities. Of 53 children attending the cystic fibrosis clinic in London, Ontario (100% recruitment), 79% had used complementary and alternative medicine. The most commonly used modalities were air purifiers, humidifiers, probiotics, and omega-3 fatty acids. Family complementary and alternative medicine use was the only independent predictor of overall use. The majority of patients perceived benefit from specific modalities for cystic fibrosis symptoms. Given the high frequency and number of modalities used and lack of patient and disease characteristics predicting use, we recommend that health care providers should routinely ask about complementary and alternative medicine among all pediatric cystic fibrosis patients and assist patients in understanding the potential benefits and risks to make informed decisions about its use. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Complementary and alternative medicine for children: does it work?

    OpenAIRE

    Kemper, K

    2001-01-01

    Paediatric use of complementary and alternative medicine is common and increasing, particularly for the sickest children. This review discusses the various options available including dietary supplements, hypnosis, massage, chiropractic, and acupuncture.



  11. Critical review of complementary therapies in haemato-oncology.

    Science.gov (United States)

    Joske, D J L; Rao, A; Kristjanson, L

    2006-09-01

    There is evidence of the increasing use of complementary and alternative medicine by Australians diagnosed with cancer. Given the increasing desire of cancer patients to use complementary and alternative medicine, it is important that clinicians have a good understanding of the evidence available in this field. This critical review aims to provide an overview of the current evidence pertaining to a range of complementary therapies that are used in a supportive role in the treatment of cancer patients. Treatment methods considered are acupuncture, music therapy, massage and touch therapies and psychological interventions. The efficacy of these complementary therapies in terms of improvement in symptoms and quality of life is examined. Evidence that relates to an effect on immune function and survival is also investigated.

  12. 75 FR 26780 - Request for Comment: National Center for Complementary and Alternative Medicine Announcement of...

    Science.gov (United States)

    2010-05-12

    ...: National Center for Complementary and Alternative Medicine Announcement of Strategic Planning White Papers ACTION: Notice. SUMMARY: The National Center for Complementary and Alternative Medicine (NCCAM) is... and Alternative Medicine (NCCAM) was established in 1998 with the mission of exploring complementary...

  13. 76 FR 6487 - National Center for Complementary and Alternative Medicine; Announcement of Workshop on...

    Science.gov (United States)

    2011-02-04

    ... Complementary and Alternative Medicine; Announcement of Workshop on Clarifying Directions and Approaches to...: The National Center for Complementary and Alternative Medicine (NCCAM) invites the research [email protected] . Background: The National Center for Complementary and Alternative Medicine (NCCAM) was...

  14. 75 FR 52357 - Request for Comment: National Center for Complementary and Alternative Medicine Draft Strategic Plan

    Science.gov (United States)

    2010-08-25

    ...: National Center for Complementary and Alternative Medicine Draft Strategic Plan ACTION: Notice. SUMMARY: The National Center for Complementary and Alternative Medicine (NCCAM) is developing its third... for Complementary and Alternative Medicine (NCCAM) was established in 1998 with the mission of...

  15. 77 FR 31862 - National Center for Complementary & Alternative Medicine; Notice of Closed Meetings

    Science.gov (United States)

    2012-05-30

    ... Complementary & Alternative Medicine; Notice of Closed Meetings Pursuant to section 10(d) of the Federal... Scientific Review, National Center for Complementary and Alternative Medicine, NIH, 6707 Democracy Blvd... for Complementary and Alternative Medicine Special Emphasis Panel; HCS Collaboratory Pragmatic Trials...

  16. Proximate Composition Energy Content And Sensory Properties Of Complementary Foods Produced From Blends Of Sorghum And African Yam Bean Flour

    Directory of Open Access Journals (Sweden)

    Okoye

    2015-08-01

    Full Text Available the proximate composition energy content and sensory properties of complementary foods prepared from sorghum and African yam bean flour blends were investigated. The sorghum flour SF was blended with African yam bean flour AYBF in the ratios of 9010 8020 7030 6040 and 5050 and used for the production of complementary foods. The complementary foods produced were evaluated for proximate composition energy content and sensory qualities using standard methods. The proximate composition of the samples showed that the protein content of the complementary foods increased gradually with increased level of African yam bean flour addition from 8.64 in 9010 SF AYBF to 13.44 in 5050 SF AYBF samples while carbohydrate decreased. In the same vein the energy content of the samples also increased with increased supplementation with African yam bean flour from 368.84KJ100g in 9010 SF AYBF to 382.98KJ100g in 5050 SF AYBF. The sensory evaluation carried out on different samples of complementary food after reconstitution into gruels with boiling water showed that the formulation prepared from 100 sorghum flour used as control was most acceptable by the judges and also differed significantly pamp88040.05 from the other samples in flavour texture and taste. However the sample fortified with 50 African yam bean flour was scored highest in colour.

  17. Complementary Set Matrices Satisfying a Column Correlation Constraint

    OpenAIRE

    Wu, Di; Spasojevic, Predrag

    2006-01-01

    Motivated by the problem of reducing the peak to average power ratio (PAPR) of transmitted signals, we consider a design of complementary set matrices whose column sequences satisfy a correlation constraint. The design algorithm recursively builds a collection of $2^{t+1}$ mutually orthogonal (MO) complementary set matrices starting from a companion pair of sequences. We relate correlation properties of column sequences to that of the companion pair and illustrate how to select an appropriate...

  18. Complementary and alternative medicine use in children with thalassaemia.

    Science.gov (United States)

    Efe, Emine; Işler, Ayşegül; Sarvan, Süreyya; Başer, Hayriye; Yeşilipek, Akif

    2013-03-01

    The aims of this study were to: (1) determine the types of complementary and alternative medicine use among children with thalassaemia as reported by parents and (2) describe sociodemographic and medical factors associated with the use of such treatments in families residing in southern Turkey. Thalassaemia is one of the most common human genetic diseases. Despite the therapeutic efforts, patients will encounter a variety of physical and psychological problems. Therefore, the use of complementary and alternative medicines among children thalassaemia is becoming increasingly popular. This is a descriptive study of complementary and alternative medicine. This study was conducted in the Hematology Outpatient Clinic at Akdeniz University Hospital and in the Thalassemia Centre at Ministry of Health Antalya Education and Research Hospital, Antalya, Turkey, between January 2010-December 2010. Parents of 97 paediatric patients, among 125 parents who applied to the haematology outpatient clinic and thalassaemia centre between these dates, agreed to take part in the study with whom contact could be made were included. Data were collected by using a questionnaire. The proportion of parents who reported using one or more of the complementary and alternative medicine methods was 82·5%. Of these parents, 61·8% were using prayer/spiritual practice, 47·4% were using nutritional supplements and 35·1% were using animal materials. It was determined that a significant portion of the parents using complementary and alternative medicine use it to treat their children's health problems, they were informed about complementary and alternative medicine by their paediatricians and family elders, and they have discussed the use of complementary and alternative medicine with healthcare professionals. To sustain medical treatment and prognosis of thalassaemia, it is important for nurses to consult with their patients and parents regarding the use and potential risks of some complementary

  19. Determination of complementary therapies for prevention of striae gravidarum

    OpenAIRE

    Gamze Teskereci; İlkay Boz; Hamide Şahin Aydus

    2018-01-01

    Background and Design: Striae gravidarum (SG) has been reported to be associated with various factors, but the role of complementary therapies in the prevention of SG is still not well understood. The aim of this study was to determine complementary therapies for prevention of SG. Materials and Methods: This descriptive research was conducted on 120 pregnant women in a maternity clinic at a university hospital. Of 120 women, 49 were going through the last trimester and 71 were going throu...

  20. Supramolecular Assembly of Complementary Cyanine Salt J-Aggregates

    KAUST Repository

    Li, Zhong’an

    2015-09-09

    An understanding of structure–property relationships in cyanine dyes is critical for their design and application. Anionic and cationic cyanines can be organized into complementary cyanine salts, offering potential building blocks to modulate their intra/intermolecular interactions in the solid state. Here, we demonstrate how the structures of these complementary salts can be tuned to achieve highly ordered J-type supramolecular aggregate structures of heptamethine dyes in crystalline solids.

  1. Complementary Hand Responses Occur in Both Peri- and Extrapersonal Space.

    Directory of Open Access Journals (Sweden)

    Tim W Faber

    Full Text Available Human beings have a strong tendency to imitate. Evidence from motor priming paradigms suggests that people automatically tend to imitate observed actions such as hand gestures by performing mirror-congruent movements (e.g., lifting one's right finger upon observing a left finger movement; from a mirror perspective. Many observed actions however, do not require mirror-congruent responses but afford complementary (fitting responses instead (e.g., handing over a cup; shaking hands. Crucially, whereas mirror-congruent responses don't require physical interaction with another person, complementary actions often do. Given that most experiments studying motor priming have used stimuli devoid of contextual information, this space or interaction-dependency of complementary responses has not yet been assessed. To address this issue, we let participants perform a task in which they had to mirror or complement a hand gesture (fist or open hand performed by an actor depicted either within or outside of reach. In three studies, we observed faster reaction times and less response errors for complementary relative to mirrored hand movements in response to open hand gestures (i.e., 'hand-shaking' irrespective of the perceived interpersonal distance of the actor. This complementary effect could not be accounted for by a low-level spatial cueing effect. These results demonstrate that humans have a strong and automatic tendency to respond by performing complementary actions. In addition, our findings underline the limitations of manipulations of space in modulating effects of motor priming and the perception of affordances.

  2. Complementary and alternative drug therapy versus science-oriented medicine.

    Science.gov (United States)

    Anlauf, Manfred; Hein, Lutz; Hense, Hans-Werner; Köbberling, Johannes; Lasek, Rainer; Leidl, Reiner; Schöne-Seifert, Bettina

    2015-01-01

    This opinion deals critically with the so-called complementary and alternative medical (CAM) therapy on the basis of current data. From the authors' perspective, CAM prescriptions and most notably the extensive current endeavours to the "integration" of CAM into conventional patient care is problematic in several respects. Thus, several CAM measures are used, although no specific effects of medicines can be proved in clinical studies. It is extensively explained that the methods used in this regard are those of evidence-based medicine, which is one of the indispensable pillars of science-oriented medicine. This standard of proof of efficacy is fundamentally independent of the requirement of being able to explain efficacy of a therapy in a manner compatible with the insights of the natural sciences, which is also essential for medical progress. Numerous CAM treatments can however never conceivably satisfy this requirement; rather they are justified with pre-scientific or unscientific paradigms. The high attractiveness of CAM measures evidenced in patients and many doctors is based on a combination of positive expectations and experiences, among other things, which are at times unjustified, at times thoroughly justified, from a science-oriented view, but which are non-specific (context effects). With a view to the latter phenomenon, the authors consider the conscious use of CAM as unrevealed therapeutic placebos to be problematic. In addition, they advocate that academic medicine should again systematically endeavour to pay more attention to medical empathy and use context effects in the service of patients to the utmost. The subsequent opinion discusses the following after an introduction to medical history: the definition of CAM; the efficacy of most common CAM procedures; CAM utilisation and costs in Germany; characteristics of science-oriented medicine; awareness of placebo research; pro and contra arguments about the use of CAM, not least of all in terms of

  3. Complementary and alternative drug therapy versus science-oriented medicine

    Science.gov (United States)

    Anlauf, Manfred; Hein, Lutz; Hense, Hans-Werner; Köbberling, Johannes; Lasek, Rainer; Leidl, Reiner; Schöne-Seifert, Bettina

    2015-01-01

    This opinion deals critically with the so-called complementary and alternative medical (CAM) therapy on the basis of current data. From the authors’ perspective, CAM prescriptions and most notably the extensive current endeavours to the “integration” of CAM into conventional patient care is problematic in several respects. Thus, several CAM measures are used, although no specific effects of medicines can be proved in clinical studies. It is extensively explained that the methods used in this regard are those of evidence-based medicine, which is one of the indispensable pillars of science-oriented medicine. This standard of proof of efficacy is fundamentally independent of the requirement of being able to explain efficacy of a therapy in a manner compatible with the insights of the natural sciences, which is also essential for medical progress. Numerous CAM treatments can however never conceivably satisfy this requirement; rather they are justified with pre-scientific or unscientific paradigms. The high attractiveness of CAM measures evidenced in patients and many doctors is based on a combination of positive expectations and experiences, among other things, which are at times unjustified, at times thoroughly justified, from a science-oriented view, but which are non-specific (context effects). With a view to the latter phenomenon, the authors consider the conscious use of CAM as unrevealed therapeutic placebos to be problematic. In addition, they advocate that academic medicine should again systematically endeavour to pay more attention to medical empathy and use context effects in the service of patients to the utmost. The subsequent opinion discusses the following after an introduction to medical history: the definition of CAM; the efficacy of most common CAM procedures; CAM utilisation and costs in Germany; characteristics of science-oriented medicine; awareness of placebo research; pro and contra arguments about the use of CAM, not least of all in terms

  4. Complementary feeding practices among children aged 6-23 months in Aligarh, Uttar Pradesh.

    Science.gov (United States)

    Ahmad, Istiyaq; Khalique, Najam; Khalil, Salman; Urfi; Maroof, Mohd

    2017-01-01

    Complementary feeding practices play an important role in the growth and development of the children. The aim of this study is to determine the prevalence of complementary feeding practices among children aged 6-23 months and its association with various sociodemographic factors. The study was a community-based, cross-sectional study conducted at field practice area of Urban Health Training Centre and Rural Health Training Centre, Department of Community Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh. Mothers of children aged 6-23 months of age interviewed using the infant and young child feeding questionnaire for complimentary feeding indicators, namely, minimum dietary diversity (MDD), minimum meal frequency (MMF), and minimum acceptable diet (MAD). The sample size drawn was 326 using systematic random sampling with probability proportionate to size. Wald's statistics, bivariate and multivariate logistic regression. MDD was adequate in 42.6% children, MMF in 50.9% children, and MAD in 35.6% children. MDD was significantly associated with area of residence, birth order of child, and Standard of living index (SLI); MMF was significantly associated with area of residence, sex of child, and literacy status of mother; MAD was significantly associated with area of residence, sex of child, birth order of child, and SLI. The study revealed that approximately 50% of mothers practiced inadequate complementary feeding. The feeding practices were found to be significantly associated with various sociodemographic factors highlighting the importance of addressing these factors if we aim an improvement in feeding practices.

  5. BELIEFS AND ATTITUDES OF PARAMEDICAL COLLEGE STAFF TOWARDS COMPLEMENTARY AND ALTERNATE MEDICINE.

    Science.gov (United States)

    Alghadir, Ahmad H; Al-Yousef, Hanan M; Al-Hussany, Fatema; Hasaneen, Alla; Iqbal, Zaheen A

    2016-01-01

    Complementary and alternate medicine (CAM) has been defined as a group of diverse medical and healthcare systems, practices, and products not presently considered part of conventional medicine (CM). Studies in different countries have revealed a geographical difference in the knowledge about CAM therapies, especially among medical school staff and students. This study aimed to assess the extent of CAM use among staff working in paramedical colleges in the Riyadh region of Saudi Arabia and to examine their perception and attitudes towards such medicines. Eighty paramedical staff members of different age groups and specializations were invited to participate in the study. A self-administered questionnaire adapted from similar studies was used in this study. The response rate was 99%. The majority of respondents (56%) reported believing that CAM therapies play an important complementary role to the action ofCM. To the best of the authors' knowledge, this is the first study of its kind to assess peoples' attitudes towards CAM use in the region. As the use of healing practices outside of CM rise among patients, ignorance of CAM by future medical practitioners can cause a communication gap between people and the profession that serves them. It is encouraging that the majority of medical staff in this study recognizes and is enthusiastic to rectify this lack of knowledge. List of Non-Standard Abbreviations: CAM: Complementary and alternate medicine; CM: Conventional medicine.

  6. Risk of interactions between complementary and alternative medicine and medication for comorbidities in patients with melanoma.

    Science.gov (United States)

    Loquai, Carmen; Dechent, Dagmar; Garzarolli, Marlene; Kaatz, Martin; Kaehler, Katharina C; Kurschat, Peter; Meiss, Frank; Stein, Annette; Nashan, Dorothee; Micke, Oliver; Muecke, Ralph; Muenstedt, Karsten; Stoll, Christoph; Schmidtmann, Irene; Huebner, Jutta

    2016-05-01

    Complementary and alternative medicine (CAM) is used widely among cancer patients. Beside the risk of interaction with cancer therapies, interactions with treatment for comorbidities are an underestimated problem. The aim of this study was to assess prevalence of interactions between CAM and drugs for comorbidities from a large CAM usage survey on melanoma patients and to classify herb-drug interactions with regard to their potential to harm. Consecutive melanoma outpatients of seven skin cancer centers were asked to complete a standardized CAM questionnaire including questions to their CAM use and their taken medication for comorbidities and cancer. Each combination of conventional drugs and complementary substances was evaluated for their potential of interaction. 1089 questionnaires were eligible for evaluation. From these, 61.6% of patients reported taking drugs regularly from which 34.4% used biological-based CAM methods. Risk evaluation for interaction was possible for 180 CAM users who listed the names or substances they took for comorbidities. From those patients, we found 37.2% at risk of interaction of their co-consumption of conventional and complementary drugs. Almost all patients using Chinese herbs were at risk (88.6%). With a high rate of CAM usage at risk of interactions between CAM drugs and drugs taken for comorbidities, implementation of a regular assessment of CAM usage and drugs for comorbidities is mandatory in cancer care.

  7. Complementary and alternative medicine in radiation oncology. Survey of patients' attitudes

    International Nuclear Information System (INIS)

    Lettner, Sabrina; Kessel, Kerstin A.; Combs, Stephanie E.

    2017-01-01

    Complementary and alternative medicine (CAM) are gaining in importance, but objective data are mostly missing. However, in previous trials, methods such as acupuncture showed significant advantages compared to standard therapies. Thus, the aim was to evaluate most frequently used methods, their significance and the general acceptance amongst cancer patients undergoing radiotherapy (RT). A questionnaire of 18 questions based on the categorical classification released by the National Centre for Complementary and Integrative Health was developed. From April to September 2015, all patients undergoing RT at the Department of Radiation Oncology, Technical University of Munich, completed the survey. Changes in attitude towards CAM were evaluated using the questionnaire after RT during the first follow-up visit (n = 31). Of 634 patients, 333 answered the questionnaire (52.5%). Of all participants, 26.4% used CAM parallel to RT. Before RT, a total of 39.3% had already used complementary medicine. The most frequently applied methods during therapy were vitamins/minerals, food supplements, physiotherapy/manual medicine, and homeopathy. The majority (71.5%) did not use any complementary treatment, mostly stating that CAM was not offered to them (73.5%). The most common reasons for use were to improve the immune system (48%), to reduce side effects (43.8%), and to not miss an opportunity (37.8%). Treatment integrated into the individual therapy concept, e.g. regular acupuncture, would be used by 63.7% of RT patients. In comparison to other studies, usage of CAM parallel to RT in our department is considered to be low. Acceptance amongst patients is present, as treatment integrated into the individual oncology therapy would be used by about two-third of patients. (orig.) [de

  8. Complementary and alternative medicine in radiation oncology : Survey of patients' attitudes.

    Science.gov (United States)

    Lettner, Sabrina; Kessel, Kerstin A; Combs, Stephanie E

    2017-05-01

    Complementary and alternative medicine (CAM) are gaining in importance, but objective data are mostly missing. However, in previous trials, methods such as acupuncture showed significant advantages compared to standard therapies. Thus, the aim was to evaluate most frequently used methods, their significance and the general acceptance amongst cancer patients undergoing radiotherapy (RT). A questionnaire of 18 questions based on the categorical classification released by the National Centre for Complementary and Integrative Health was developed. From April to September 2015, all patients undergoing RT at the Department of Radiation Oncology, Technical University of Munich, completed the survey. Changes in attitude towards CAM were evaluated using the questionnaire after RT during the first follow-up visit (n = 31). Of 634 patients, 333 answered the questionnaire (52.5%). Of all participants, 26.4% used CAM parallel to RT. Before RT, a total of 39.3% had already used complementary medicine. The most frequently applied methods during therapy were vitamins/minerals, food supplements, physiotherapy/manual medicine, and homeopathy. The majority (71.5%) did not use any complementary treatment, mostly stating that CAM was not offered to them (73.5%). The most common reasons for use were to improve the immune system (48%), to reduce side effects (43.8%), and to not miss an opportunity (37.8%). Treatment integrated into the individual therapy concept, e.g. regular acupuncture, would be used by 63.7% of RT patients. In comparison to other studies, usage of CAM parallel to RT in our department is considered to be low. Acceptance amongst patients is present, as treatment integrated into the individual oncology therapy would be used by about two-third of patients.

  9. Two Complementary Strategies for New Physics Searches at Lepton Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Hooberman, Benjamin Henry [Univ. of California, Berkeley, CA (United States)

    2009-07-06

    In this thesis I present two complementary strategies for probing beyond-the-Standard Model physics using data collected in e+e- collisions at lepton colliders. One strategy involves searching for effects at low energy mediated by new particles at the TeV mass scale, at which new physics is expected to manifest. Several new physics scenarios, including Supersymmetry and models with leptoquarks or compositeness, may lead to observable rates for charged lepton-flavor violating processes, which are forbidden in the Standard Model. I present a search for lepton-flavor violating decays of the Υ(3S) using data collected with the BABAR detector. This study establishes the 90% confidence level upper limits BF(Υ(3S) → eτ) < 5.0 x 10-6 and BF(Υ(3S) → μτ) < 4.1 x 10-6 which are used to place constraints on new physics contributing to lepton-flavor violation at the TeV mass scale. An alternative strategy is to increase the collision energy above the threshold for new particles and produce them directly. I discuss research and development efforts aimed at producing a vertex tracker which achieves the physics performance required of a high energy lepton collider. A small-scale vertex tracker prototype is constructed using Silicon sensors of 50 μm thickness and tested using charged particle beams. This tracker achieves the targeted impact parameter resolution of σLP = (5⊕10 GeV/pT) as well as a longitudinal vertex resolution of (260 ± 10) μm, which is consistent with the requirements of a TeV-scale lepton collider. This detector research and development effort must be motivated and directed by simulation studies of physics processes. Investigation of a dark matter-motivated Supersymmetry scenario is presented, in which the dark matter is composed of Supersymmetric neutralinos. In this scenario, studies of the e+e- → H0A0 production process allow for

  10. [Alternative and complementary medicine from the primary care physician's viewpoint].

    Science.gov (United States)

    Soós, Sándor Árpád; Eőry, Ajándék; Eőry, Ajándok; Harsányi, László; Kalabay, László

    2015-07-12

    The patients initiate the use of complementary and alternative medicine and this often remains hidden from their primary care physician. To explore general practitioners' knowledge and attitude towards complementary and alternative medicine, and study the need and appropriate forms of education, as well as ask their opinion on integration of alternative medicine into mainstream medicine. A voluntary anonymous questionnaire was used on two conferences for general practitioners organized by the Family Medicine Department of Semmelweis University. Complementary and alternative medicine was defined by the definition of the Hungarian Academy of Sciences and certified modalities were all listed. 194 general practitioners answered the questionnaire (39.8% response rate). 14% of the responders had licence in at least one of the complementary and alternative therapies, 45% used complementary and alternative therapy in their family in case of illness. It was the opinion of the majority (91.8%) that it was necessary to be familiar with every method used by their patients, however, 82.5% claimed not to have enough knowledge in complementary medicine. Graduate and postgraduate education in the field was thought to be necessary by 86% of the responders; increased odds for commitment in personal education was found among female general practitioners, less than 20 years professional experience and personal experience of alternative medicine. These data suggest that general practitioners would like to know more about complementary and alternative medicine modalities used by their patients. They consider education of medical professionals necessary and a special group is willing to undergo further education in the field.

  11. Commercialization strategy of the herbal composition HemoHIM as a complementary drug for anti-cancer therapies

    International Nuclear Information System (INIS)

    Jo, Sungkee; Jung, Uhee; Park, Haeran

    2013-01-01

    Ο Purpose - Establishment of strategy for the development of HemoHIM as a complementary drug for cancer therapies including non-clinical data preparation, obtainment of a research project grant, base of manufacturing process and raw material standardization Ο Research Results - Examination and confirmation of the essential requirements to develop the complementary drug for anticancer therapies by consulting with Korea FDA, and clinical CRO, and medical experts (animal efficacy study, toxicological safety test, standard analytical method, raw material standardization) - Obtainment of a governmental research project for 3 years from Ministry of Health and Welfare to develop HemoHIM as an complementary herbal drug for anti-cancer therapies - Acquisition of fundamental data on the manufacturing process and the raw material standardization for the optimal efficacy of HemoHIM Ο Expected benefit - Planning to get the approval of IND from Korea FDA by 2015 after completing the non-clinical study through the on-going project from Ministry of Health and Welfare - Planning to commercialize the product by 2017

  12. Commercialization strategy of the herbal composition HemoHIM as a complementary drug for anti-cancer therapies

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Sungkee; Jung, Uhee; Park, Haeran

    2013-01-15

    Ο Purpose - Establishment of strategy for the development of HemoHIM as a complementary drug for cancer therapies including non-clinical data preparation, obtainment of a research project grant, base of manufacturing process and raw material standardization Ο Research Results - Examination and confirmation of the essential requirements to develop the complementary drug for anticancer therapies by consulting with Korea FDA, and clinical CRO, and medical experts (animal efficacy study, toxicological safety test, standard analytical method, raw material standardization) - Obtainment of a governmental research project for 3 years from Ministry of Health and Welfare to develop HemoHIM as an complementary herbal drug for anti-cancer therapies - Acquisition of fundamental data on the manufacturing process and the raw material standardization for the optimal efficacy of HemoHIM Ο Expected benefit - Planning to get the approval of IND from Korea FDA by 2015 after completing the non-clinical study through the on-going project from Ministry of Health and Welfare - Planning to commercialize the product by 2017.

  13. Design of organic complementary circuits and systems on foil

    CERN Document Server

    Abdinia, Sahel; Cantatore, Eugenio

    2015-01-01

    This book describes new approaches to fabricate complementary organic electronics, and focuses on the design of circuits and practical systems created using these manufacturing approaches. The authors describe two state-of-the-art, complementary organic technologies, characteristics and modeling of their transistors and their capability to implement circuits and systems on foil. Readers will benefit from the valuable overview of the challenges and opportunities that these extremely innovative technologies provide. ·         Demonstrates first circuits implemented using specific complementary organic technologies, including first printed analog to digital converter, first dynamic logic on foil and largest complementary organic circuit ·         Includes step-by-step design from single transistor level to complete systems on foil ·         Provides a platform for comparing state-of-the-art complementary organic technologies and for comparing these with other similar technologies, spec...

  14. Determination of complementary therapies for prevention of striae gravidarum

    Directory of Open Access Journals (Sweden)

    Gamze Teskereci

    2018-03-01

    Full Text Available Background and Design: Striae gravidarum (SG has been reported to be associated with various factors, but the role of complementary therapies in the prevention of SG is still not well understood. The aim of this study was to determine complementary therapies for prevention of SG. Materials and Methods: This descriptive research was conducted on 120 pregnant women in a maternity clinic at a university hospital. Of 120 women, 49 were going through the last trimester and 71 were going through their first postpartum 24 hours. Data were collected using a 25-item-questionnaire through face-to-face interviews between June and July in 2016. Obtained data were evaluated by using descriptive statistics, chi-square test and the Kruskal-Wallis test. Results: 90.8% of women had SG. For the prevention of SG, 46.7% of women used massage, a manipulative body-based complementary therapy, 55.2% used oils, 28.6% used creams and 8.0% used a mixture of creams and oils for massaging. 42.9% of women started to use complementary therapies in their first trimester. Half of the women stated that they had received information about complementary therapies. A significantly lower rate of women using massage had SG compared to those not using massage (p=0.023. Conclusion: It was concluded that nearly half of the women used massage for the prevention of SG. In addition, massage application was found to reduce the occurrence of SG.

  15. Complementary and alternative medicine approaches in the treatment of PTSD.

    Science.gov (United States)

    Wynn, Gary H

    2015-08-01

    Complementary and alternative medicine is a diverse set of practices and treatments that has seen a significant increase among Americans over the past decade. These approaches have been applied to a myriad of medical and mental health disorders with varying levels of efficacy. Recent years have seen an increased interest in the use of complementary and alternative medicine to address the growing numbers of individuals suffering from post-traumatic stress disorder and other trauma-related disorders. These approaches include pharmacologic and non-pharmacologic modalities. This article will review some of the most widely used non-pharmacologic complementary and alternative medicine practices used to treat post-traumatic stress disorder such as recreational therapy, animal-assisted therapy, yoga, and acupuncture as well as alternative delivery methods for psychotherapy.

  16. Tunable photonic radiofrequency filter with complementary bandpass and bandstop responses.

    Science.gov (United States)

    Li, Peixuan; Pan, Wei; Zou, Xihua; Yan, Lianshan; Pan, Yan

    2017-08-15

    A photonic radiofrequency (RF) filter with two complementary bandpass and bandstop responses that is capable of simultaneously providing a single transmission channel at one port and a notch rejection channel at the other port is proposed. An integrated polarization division-multiplexing Mach-Zehnder modulator and the in-fiber stimulated Brillouin scattering effect are used to control the amplitudes and phases of the RF modulation sidebands along two orthogonal states of polarization to generate two complementary bandpass and bandstop responses at two output ports, respectively. Experiments are then performed. Two complementary responses are simultaneously generated in a high-frequency resolution of ∼20  MHz, with a rejection over 35 or 51 dB being achieved for the passband or stopband. A tunable central frequency to the bandpass and bandstop responses is also demonstrated within the range from 3 to 15 GHz.

  17. Publishing scientifically sound papers in Traditional and Complementary Medicine.

    Science.gov (United States)

    Isidoro, Ciro; Huang, Chia-Chi; Sheen, Lee-Yan

    2016-01-01

    Non-conventional medical practices that make use of dietary supplements, herbal extracts, physical manipulations, and other practices typically associated with folk and Traditional Medicine are increasingly becoming popular in Western Countries. These practices are commonly referred to by the generic, all-inclusive term "Complementary and Alternative Medicine." Scientists, practitioners, and medical institutions bear the responsibility of testing and proving the effectiveness of these non-conventional medical practices in the interest of patients. In this context, the number of peer-reviewed journals and published articles on this topic has greatly increased in the recent decades. In this editorial article, we illustrate the policy of the Journal of Traditional and Complementary Medicine for publishing solid and scientifically sound papers in the field of Traditional and Complementary Medicine.

  18. [Antibiotics prescription and complementary tests based on frequency of use and loyalty in Primary Care].

    Science.gov (United States)

    Balaguer Martínez, Josep Vicent; Del Castillo Aguas, Guadalupe; Gallego Iborra, Ana

    2017-12-30

    To assess whether there is a relationship between the prescription of antibiotics and the performance of complementary tests with frequency of use and loyalty in Primary Care. Analytical descriptive study performed through a network of Primary Care sentinel paediatricians (PAPenRed). Each paediatrician reviewed the spontaneous visits (in Primary Care and in Emergency Departments) of 15 patients for 12 months, randomly chosen from their quota. The prescription of antibiotics and the complementary tests performed on these patients were also collected. A total of 212 paediatricians took part and reviewed 2,726 patients. It was found that 8.3% were moderate over-users (mean + 1-2 standard deviations) and 5.2% extreme over-users (mean + 2 standard deviations). Almost half (49.6%) were high-loyalty patients (more than 75% of visits with their doctor). The incidence ratio of antibiotic prescriptions for moderate over-users was 2.13 (1.74-2.62) and 3.25 (2.55-4.13) for extreme over-users, compared to non-over-user children. The incidence ratio for the diagnostic tests were 2.25 (1.86-2.73) and 3.48 (2.78-4.35), respectively. The incidence ratios for antibiotic prescription were 1.34 (1.16-1.55) in patients with medium-high loyalty, 1.45 (1.15-1.83) for medium-low loyalty, and 1.08 (0.81-1.44) for those with low loyalty, compared to patients with high loyalty. The incidence ratios to perform diagnostic tests were 1.46 (1.27-1.67); 1.60 (1.28 - 2.00), and 0.84 (0.63-1.12), respectively. Antibiotics prescription and complementary tests were significantly related to medical overuse. They were also related to loyalty, but less significantly. Copyright © 2017. Publicado por Elsevier España, S.L.U.

  19. Complementary and alternative medications for chronic pelvic pain.

    Science.gov (United States)

    Leong, Fah Che

    2014-09-01

    Chronic pelvic pain is common, but rarely cured, thus patients seek both second opinions and alternative means of controlling their pain. Complementary and alternative medicine accounts for 11.2% of out-of-pocket medical expenditures for adults for all conditions in the United States. Although there are many treatments, rigorous testing and well-done randomized studies are lacking. Dietary changes and physical modalities such as physical therapy have often been included in the category of alternative medicine, but their use is now considered mainstream. This article concentrates on other sources of alternative and complementary medicine, such as dietary supplementation and acupuncture. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Complementary therapies as adjuncts in the treatment of postpartum depression.

    Science.gov (United States)

    Weier, Kira M; Beal, Margaret W

    2004-01-01

    Postpartum depression affects an estimated 13% of women who have recently given birth. This article discusses several alternative or complementary therapies that may serve as adjuncts in the treatment of postpartum depression. The intent is to help practitioners better understand the treatments that are available that their clients may be using. Complementary modalities discussed include herbal medicine, dietary supplements, massage, aromatherapy, and acupuncture. Evidence supporting the use of these modalities is reviewed where available, and a list of resources is given in the appendix.

  1. Optimal advertising and pricing decisions for complementary products

    Science.gov (United States)

    Taleizadeh, Ata Allah; Charmchi, Masoud

    2015-02-01

    Cooperative advertising is an agreement between a manufacturer and a retailer to share advertising cost at the local level. Previous studies have not investigated cooperative advertising for complementary products and their main focus was only on one good. In this paper, we study a two-echelon supply chain consisting of one manufacturer and one retailer with two complementary goods. The demand of each good is influenced not only by its price but also by the price of the other product. We use two game theory approaches to model this problem; Stackelberg manufacturer and Stackelberg retailer.

  2. Research methods in complementary and alternative medicine: an integrative review.

    Science.gov (United States)

    de Almeida Andrade, Fabiana; Schlechta Portella, Caio Fabio

    2018-01-01

    The scientific literature presents a modest amount of evidence in the use of complementary and alternative medicine (CAM). On the other hand, in practice, relevant results are common. The debates among CAM practitioners about the quality and execution of scientific research are important. Therefore, the aim of this review is to gather, synthesize and describe the differentiated methodological models that encompass the complexity of therapeutic interventions. The process of bringing evidence-based medicine into clinical practice in CAM is essential for the growth and strengthening of complementary medicines worldwide. Copyright © 2017 Shanghai Changhai Hospital. Published by Elsevier B.V. All rights reserved.

  3. Managing radiation therapy side effects with complementary medicine.

    Science.gov (United States)

    Thomas, Jerah; Beinhorn, Curtiss; Norton, Dena; Richardson, Michael; Sumler, Sat-Siri; Frenkel, Moshe

    2010-01-01

    Over one-third of Americans use complementary and alternative medicine (CAM). The prevalence among cancer patients may even be higher. Complementary therapies may reduce possible symptom burdens caused by conventional cancer treatments. Integrating CAM therapies has become more common and more accepted in clinical oncology. However, little research is available on beneficial CAM therapies for radiation therapy patients. This article reviews potential CAM therapies that have been shown to be effective in decreasing the symptom burden related to radiation therapy treatments and includes clinical observations from CAM practitioners in a comprehensive cancer center.

  4. Enhanced sensing of dengue virus DNA detection using O2plasma treated-silicon nanowire based electrical biosensor.

    Science.gov (United States)

    Rahman, S F A; Yusof, N A; Hashim, U; Hushiarian, R; M N, M Nuzaihan; Hamidon, M N; Zawawi, R M; Fathil, M F M

    2016-10-26

    Dengue Virus (DENV) has become one of the most serious arthropod-borne viral diseases, causing death globally. The existing methods for DENV detection suffer from the late stage treatment due to antibodies-based detection which is feasible only after five days following the onset of the illness. Here, we demonstrated the highly effective molecular electronic based detection utilizing silicon nanowire (SiNW) integrated with standard complementary metal-oxide-semiconductor (CMOS) process as a sensing device for detecting deoxyribonucleic acid (DNA) related to DENV in an early stage diagnosis. To transform the fabricated devices as a functional sensing element, three-step procedure consist of SiNW surface modification, DNA immobilization and DNA hybridization were employed. The detection principle works by detecting the changes in current of SiNW which bridge the source and drain terminal to sense the immobilization of probe DNA and their hybridization with target DNA. The oxygen (O 2 ) plasma was proposed as an effective strategy for increasing the binding amounts of target DNA by modified the SiNW surface. It was found that the detection limit of the optimized O 2 plasma treated-SiNW device could be reduced to 1.985 × 10 -14  M with a linear detection range of the sequence-specific DNA from 1.0 × 10 -9  M to 1.0 × 10 -13  M. In addition, the developed biosensor device was able to discriminate between complementary, single mismatch and non-complementary DNA sequences. This highly sensitive assay was then applied to the detection of reverse transcription-polymerase chain reaction (RT-PCR) product of DENV-DNA, making it as a potential method for disease diagnosis through electrical biosensor. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Complementary and Alternative Medicine Use among Physicians in Oriental Medicine Hospitals in Vietnam: A Hospital-Based Survey

    OpenAIRE

    Pham, Duong Duc; Yoo, Jong Hyang; Tran, Binh Quoc; Ta, Thuy Thu

    2013-01-01

    Interest in complementary and alternative medicine (CAM) is growing worldwide, even in Vietnam where traditional medicine is considered mainstream. We conducted a survey of the knowledge, attitudes, and practices of CAM therapies among physicians in oriental medicine (OM) hospitals in Vietnam. A two-stage random selection process selected 337 physicians who were interviewed using a face-to-face method with a standardized structured questionnaire. Data from 312 physicians who completed the que...

  6. Complementary Metal-Oxide-Silicon (CMOS)-Memristor Hybrid Nanoelectronics for Advanced Encryption Standard (AES) Encryption

    Science.gov (United States)

    2016-04-01

    electrodes (TEs) for the development study were patterned using either a shadow mask or a conventional photolithography-based lift-off process. Au...organic precursor, and a 300 W RF O2 plasma as the reactant. The target thickness of HfOx was 50 nm, which required 603 ALD cycles, totaling 6.23...TEs were patterned using either a shadow mask or a conventional photolithography-based lift-off process. Au, Ni, Al, or Pt were deposited

  7. ['Gold standard', not 'golden standard'

    NARCIS (Netherlands)

    Claassen, J.A.H.R.

    2005-01-01

    In medical literature, both 'gold standard' and 'golden standard' are employed to describe a reference test used for comparison with a novel method. The term 'gold standard' in its current sense in medical research was coined by Rudd in 1979, in reference to the monetary gold standard. In the same

  8. Scintimammography Complementary Examination in Diagnosis of Breast Cancer

    International Nuclear Information System (INIS)

    Cobzac, Gh.; Andries, G.; Chiorean, Angela

    2006-01-01

    Full text: Mammography is the main screening method in breast cancer with a sensitivity of 80-90%, but with only 25-35% PPV. Thus, there are necessary complementary imaging methods (US, scintimammography-SM, MRI) to improve sensitivity and specificity of standard mammography. Material and Methods: We studied a group of 12 women patients (age between 46-69 years) selected by mammographic findings suspicious of malignancy, 1 patient after quadrantectomie for breast cancer. US bidimensional and Doppler was perform with a transducer for small parts. We perform 13 SM (before and after chemotherapy in 1 patient) with 740 MBq of 99mTc-MIBI injected in contralateral arm and acquisition performed in prone position with free breasts for lateral projections and in supine position for anterior projections. In two women we performed contrast-enhanced MRI. After mammary biopsy, patients with malignant lesions received surgery, radio- and chemotherapy. Results: US showed unilateral hypoechoic lesions (5), unilateral multi centric lesions (4), bilateral lesions (2) and a recurrent suspect lesion. In six women axillary lymph nodes were visible on US. SM was normal in 2 patients and showed focal accumulation of MIBI in breasts in other 10 women and axillary in 3. MRI showed a irregular focal mammary lesion with rapid contrast enhancement and one focal lesion with delayed enhancement. Morpho pathological findings were benign in 3 cases (SM normal or reduced focal uptake and delayed enhancement on MRI) and invasive ductal carcinoma in 9 patients (focal uptake on SM and rapid enhancement on MRI). All patients with axillary uptake on SM had metastatic axillary lymph nodes. After chemotherapy MIBI uptake decrease in one patient. Conclusion: Mammography remain the choice option for screening in breast cancer because its high sensitivity and low cost. The advantages of US are the high sensitivity and relatively low cost and FNAB guidance, but is operator dependent and has a low PPV

  9. Test CMOS/SOS RAM for transient radiation upset comparative research and failure analysis

    International Nuclear Information System (INIS)

    Nikiforov, A.Y.; Poljakov, I.V.

    1995-01-01

    The test Complementary Metal-Oxide-Semiconductor/Silicon-on-Sapphire Random Access Memory (CMOS/SOS RAM) with eight types of memory cells was designed and tested at high dose rates with a flash X-ray machine and laser simulator. The memory cell (MC) design with additional transistors and RC-chain was found to be upset free up to 2 x 10 12 rad(Si)/s. An inversion effect was discovered in which almost 100% logic upset was observed in poorly protected memory cell arrays at very high dose rates

  10. Designing quantum-dot cellular automata circuits using a robust one layer crossover scheme

    Directory of Open Access Journals (Sweden)

    Sara Hashemi

    2014-04-01

    Full Text Available Quantum-dot cellular automata (QCA is a novel nanotechnology which is considered as a solution to the scaling problems in complementary metal oxide semiconductor technology. In this Letter, a robust one layer crossover scheme is introduced. It uses only 90° QCA cells and works based on a proper clock assignment. The application of this new scheme is shown in designing a sample QCA circuit. Simulation results demonstrate that using this new scheme, significant improvements in terms of area and complexity can be achieved.

  11. CMOS circuit design, layout and simulation

    CERN Document Server

    Baker, R Jacob

    2010-01-01

    The Third Edition of CMOS Circuit Design, Layout, and Simulation continues to cover the practical design of both analog and digital integrated circuits, offering a vital, contemporary view of a wide range of analog/digital circuit blocks including: phase-locked-loops, delta-sigma sensing circuits, voltage/current references, op-amps, the design of data converters, and much more. Regardless of one's integrated circuit (IC) design skill level, this book allows readers to experience both the theory behind, and the hands-on implementation of, complementary metal oxide semiconductor (CMOS) IC design via detailed derivations, discussions, and hundreds of design, layout, and simulation examples.

  12. An all-silicon passive optical diode.

    Science.gov (United States)

    Fan, Li; Wang, Jian; Varghese, Leo T; Shen, Hao; Niu, Ben; Xuan, Yi; Weiner, Andrew M; Qi, Minghao

    2012-01-27

    A passive optical diode effect would be useful for on-chip optical information processing but has been difficult to achieve. Using a method based on optical nonlinearity, we demonstrate a forward-backward transmission ratio of up to 28 decibels within telecommunication wavelengths. Our device, which uses two silicon rings 5 micrometers in radius, is passive yet maintains optical nonreciprocity for a broad range of input power levels, and it performs equally well even if the backward input power is higher than the forward input. The silicon optical diode is ultracompact and is compatible with current complementary metal-oxide semiconductor processing.

  13. Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials

    DEFF Research Database (Denmark)

    Naik, Gururaj V.; Saha, Bivas; Liu, Jing

    2014-01-01

    Titanium nitride (TiN) is a plasmonic material having optical properties resembling gold. Unlike gold, however, TiN is complementary metal oxide semiconductor-compatible, mechanically strong, and thermally stable at higher temperatures. Additionally, TiN exhibits low-index surfaces with surface...... optical properties, including extremely high broad-band photonic densities of states (PDOS), which are useful in quantum plasmonic applications. However, the extent to which the exotic properties of HMMs can be realized has been seriously limited by fabrication constraints and material properties. Here...

  14. Design and Characterization of a High Resolution Microfluidic Heat Flux Sensor with Thermal Modulation

    OpenAIRE

    Nam; Kim; Cho; Lee

    2010-01-01

    A complementary metal-oxide semiconductor-compatible process was used in the design and fabrication of a suspended membrane microfluidic heat flux sensor with a thermopile for the purpose of measuring the heat flow rate. The combination of a thirty-junction gold and nickel thermoelectric sensor with an ultralow noise preamplifier, a low pass filter, and a lock-in amplifier can yield a resolution 20 nW with a sensitivity of 461 V/W. The thermal modulation method is used to eliminate low-freque...

  15. CMOS Integrated Carbon Nanotube Sensor

    International Nuclear Information System (INIS)

    Perez, M. S.; Lerner, B.; Boselli, A.; Lamagna, A.; Obregon, P. D. Pareja; Julian, P. M.; Mandolesi, P. S.; Buffa, F. A.

    2009-01-01

    Recently carbon nanotubes (CNTs) have been gaining their importance as sensors for gases, temperature and chemicals. Advances in fabrication processes simplify the formation of CNT sensor on silicon substrate. We have integrated single wall carbon nanotubes (SWCNTs) with complementary metal oxide semiconductor process (CMOS) to produce a chip sensor system. The sensor prototype was designed and fabricated using a 0.30 um CMOS process. The main advantage is that the device has a voltage amplifier so the electrical measure can be taken and amplified inside the sensor. When the conductance of the SWCNTs varies in response to media changes, this is observed as a variation in the output tension accordingly.

  16. Observation of soliton compression in silicon photonic crystals

    Science.gov (United States)

    Blanco-Redondo, A.; Husko, C.; Eades, D.; Zhang, Y.; Li, J.; Krauss, T.F.; Eggleton, B.J.

    2014-01-01

    Solitons are nonlinear waves present in diverse physical systems including plasmas, water surfaces and optics. In silicon, the presence of two photon absorption and accompanying free carriers strongly perturb the canonical dynamics of optical solitons. Here we report the first experimental demonstration of soliton-effect pulse compression of picosecond pulses in silicon, despite two photon absorption and free carriers. Here we achieve compression of 3.7 ps pulses to 1.6 ps with soliton-based functionalities in complementary metal-oxide-semiconductor-compatible platforms. PMID:24423977

  17. Optical and Electric Multifunctional CMOS Image Sensors for On-Chip Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Kiyotaka Sasagawa

    2010-12-01

    Full Text Available In this review, the concept, design, performance, and a functional demonstration of multifunctional complementary metal-oxide-semiconductor (CMOS image sensors dedicated to on-chip biosensing applications are described. We developed a sensor architecture that allows flexible configuration of a sensing pixel array consisting of optical and electric sensing pixels, and designed multifunctional CMOS image sensors that can sense light intensity and electric potential or apply a voltage to an on-chip measurement target. We describe the sensors’ architecture on the basis of the type of electric measurement or imaging functionalities.

  18. Effects of the somatic electrical circuit on spontaneous mechanical oscillations of inner ear hair bundles

    Science.gov (United States)

    Ramunno-Johnson, Damien; Strimbu, C. Elliott; Fredrickson, Lea; Kao, Albert; Bozovic, Dolores

    2010-03-01

    Under in vitro conditions, uncoupled hair bundles of the bullfrog (Rana catesbeiana) sacculus have been shown to exhibit spontaneous oscillations. We used a high-speed complementary metal oxide semiconductor camera to track the movements of hundreds of cells in parallel from dozens of preparations. We found that innate bundle movements exhibit a complex profile with multiple periodicities. Experiments inhibiting the electrical resonance in the cell body show a strong effect on the mechanical oscillations of the hair bundles. This indicates that the electrical oscillation is coupled with the mechanical oscillations of the hair bundles.

  19. Graphene-protected copper and silver plasmonics

    DEFF Research Database (Denmark)

    Kravets, V. G.; Jalil, R.; Kim, Y. J.

    2014-01-01

    suitable for plasmonic applications. To this end, there has been a continuous search for alternative plasmonic materials that are also compatible with complementary metal oxide semiconductor technology. Here we show that copper and silver protected by graphene are viable candidates. Copper films covered...... with one to a few graphene layers show excellent plasmonic characteristics. They can be used to fabricate plasmonic devices and survive for at least a year, even in wet and corroding conditions. As a proof of concept, we use the graphene-protected copper to demonstrate dielectric loaded plasmonic...... waveguides and test sensitivity of surface plasmon resonances. Our results are likely to initiate wide use of graphene-protected plasmonics....

  20. Design and analysis of spiral inductors

    CERN Document Server

    Haobijam, Genemala

    2013-01-01

    The book addresses the critical challenges faced by the ever-expanding wireless communication market and the increasing frequency of operation due to continuous innovation of high performance integrated passive devices. The challenges like low quality factor, design complexity, manufacturability, processing cost, etc., are studied with examples and specifics. Silicon on-chip inductor was first reported in 1990 by Nguyen and Meyer in a 0.8 µm silicon bipolar complementary metal oxide semiconductor technology (BiCMOS). Since then, there has been an enormous progress in the research on the perfo