WorldWideScience

Sample records for standard backprojection algorithm

  1. A new hybrid-FBP inversion algorithm with inverse distance backprojection weight for CT reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Narasimhadhan, A.V.; Rajgopal, Kasi

    2011-07-01

    This paper presents a new hybrid filtered backprojection (FBP) algorithm for fan-beam and cone-beam scan. The hybrid reconstruction kernel is the sum of the ramp and Hilbert filters. We modify the redundancy weighting function to reduce the inverse square distance weighting in the backprojection to inverse distance weight. The modified weight also eliminates the derivative associated with the Hilbert filter kernel. Thus, the proposed reconstruction algorithm has the advantages of the inverse distance weight in the backprojection. We evaluate the performance of the new algorithm in terms of the magnitude level and uniformity in noise for the fan-beam geometry. The computer simulations show that the spatial resolution is nearly identical to the standard fan-beam ramp filtered algorithm while the noise is spatially uniform and the noise variance is reduced. (orig.)

  2. A filtered backprojection algorithm with characteristics of the iterative landweber algorithm

    OpenAIRE

    L. Zeng, Gengsheng

    2012-01-01

    Purpose: In order to eventually develop an analytical algorithm with noise characteristics of an iterative algorithm, this technical note develops a window function for the filtered backprojection (FBP) algorithm in tomography that behaves as an iterative Landweber algorithm.

  3. An accelerated threshold-based back-projection algorithm for Compton camera image reconstruction

    International Nuclear Information System (INIS)

    Mundy, Daniel W.; Herman, Michael G.

    2011-01-01

    parallel to the image plane. This effect decreases the sum of the image, thereby also affecting the mean, standard deviation, and SNR of the image. All back-projected events associated with a simulated point source intersected the voxel containing the source and the FWHM of the back-projected image was similar to that obtained from the marching method. Conclusions: The slight deficit to image quality observed with the threshold-based back-projection algorithm described here is outweighed by the 75% reduction in computation time. The implementation of this method requires the development of an optimum threshold function, which determines the overall accuracy of the method. This makes the algorithm well-suited to applications involving the reconstruction of many large images, where the time invested in threshold development is offset by the decreased image reconstruction time. Implemented in a parallel-computing environment, the threshold-based algorithm has the potential to provide real-time dose verification for radiation therapy.

  4. A fast implementation of the incremental backprojection algorithms for parallel beam geometries

    International Nuclear Information System (INIS)

    Chen, C.M.; Wang, C.Y.; Cho, Z.H.

    1996-01-01

    Filtered-backprojection algorithms are the most widely used approaches for reconstruction of computed tomographic (CT) images, such as X-ray CT and positron emission tomographic (PET) images. The Incremental backprojection algorithm is a fast backprojection approach based on restructuring the Shepp and Logan algorithm. By exploiting interdependency (position and values) of adjacent pixels, the Incremental algorithm requires only O(N) and O(N 2 ) multiplications in contrast to O(N 2 ) and O(N 3 ) multiplications for the Shepp and Logan algorithm in two-dimensional (2-D) and three-dimensional (3-D) backprojections, respectively, for each view, where N is the size of the image in each dimension. In addition, it may reduce the number of additions for each pixel computation. The improvement achieved by the Incremental algorithm in practice was not, however, as significant as expected. One of the main reasons is due to inevitably visiting pixels outside the beam in the searching flow scheme originally developed for the Incremental algorithm. To optimize implementation of the Incremental algorithm, an efficient scheme, namely, coded searching flow scheme, is proposed in this paper to minimize the overhead caused by searching for all pixels in a beam. The key idea of this scheme is to encode the searching flow for all pixels inside each beam. While backprojecting, all pixels may be visited without any overhead due to using the coded searching flow as the a priori information. The proposed coded searching flow scheme has been implemented on a Sun Sparc 10 and a Sun Sparc 20 workstations. The implementation results show that the proposed scheme is 1.45--2.0 times faster than the original searching flow scheme for most cases tested

  5. A study of reconstruction artifacts in cone beam tomography using filtered backprojection and iterative EM algorithms

    International Nuclear Information System (INIS)

    Zeng, G.L.; Gullberg, G.T.

    1990-01-01

    Reconstruction artifacts in cone beam tomography are studied for filtered backprojection (Feldkamp) and iterative EM algorithms. The filtered backprojection algorithm uses a voxel-driven, interpolated backprojection to reconstruct the cone beam data; whereas, the iterative EM algorithm performs ray-driven projection and backprojection operations for each iteration. Two weight in schemes for the projection and backprojection operations in the EM algorithm are studied. One weights each voxel by the length of the ray through the voxel and the other equates the value of a voxel to the functional value of the midpoint of the line intersecting the voxel, which is obtained by interpolating between eight neighboring voxels. Cone beam reconstruction artifacts such as rings, bright vertical extremities, and slice-to slice cross talk are not found with parallel beam and fan beam geometries

  6. A reconstruction algorithm for coherent scatter computed tomography based on filtered back-projection

    International Nuclear Information System (INIS)

    Stevendaal, U. van; Schlomka, J.-P.; Harding, A.; Grass, M.

    2003-01-01

    Coherent scatter computed tomography (CSCT) is a reconstructive x-ray imaging technique that yields the spatially resolved coherent-scatter form factor of the investigated object. Reconstruction from coherently scattered x-rays is commonly done using algebraic reconstruction techniques (ART). In this paper, we propose an alternative approach based on filtered back-projection. For the first time, a three-dimensional (3D) filtered back-projection technique using curved 3D back-projection lines is applied to two-dimensional coherent scatter projection data. The proposed algorithm is tested with simulated projection data as well as with projection data acquired with a demonstrator setup similar to a multi-line CT scanner geometry. While yielding comparable image quality as ART reconstruction, the modified 3D filtered back-projection algorithm is about two orders of magnitude faster. In contrast to iterative reconstruction schemes, it has the advantage that subfield-of-view reconstruction becomes feasible. This allows a selective reconstruction of the coherent-scatter form factor for a region of interest. The proposed modified 3D filtered back-projection algorithm is a powerful reconstruction technique to be implemented in a CSCT scanning system. This method gives coherent scatter CT the potential of becoming a competitive modality for medical imaging or nondestructive testing

  7. A filtered backprojection reconstruction algorithm for Compton camera

    Energy Technology Data Exchange (ETDEWEB)

    Lojacono, Xavier; Maxim, Voichita; Peyrin, Francoise; Prost, Remy [Lyon Univ., Villeurbanne (France). CNRS, Inserm, INSA-Lyon, CREATIS, UMR5220; Zoglauer, Andreas [California Univ., Berkeley, CA (United States). Space Sciences Lab.

    2011-07-01

    In this paper we present a filtered backprojection reconstruction algorithm for Compton Camera detectors of particles. Compared to iterative methods, widely used for the reconstruction of images from Compton camera data, analytical methods are fast, easy to implement and avoid convergence issues. The method we propose is exact for an idealized Compton camera composed of two parallel plates of infinite dimension. We show that it copes well with low number of detected photons simulated from a realistic device. Images reconstructed from both synthetic data and realistic ones obtained with Monte Carlo simulations demonstrate the efficiency of the algorithm. (orig.)

  8. Decoding using back-project algorithm from coded image in ICF

    International Nuclear Information System (INIS)

    Jiang shaoen; Liu Zhongli; Zheng Zhijian; Tang Daoyuan

    1999-01-01

    The principle of the coded imaging and its decoding in inertial confinement fusion is described simply. The authors take ring aperture microscope for example and use back-project (BP) algorithm to decode the coded image. The decoding program has been performed for numerical simulation. Simulations of two models are made, and the results show that the accuracy of BP algorithm is high and effect of reconstruction is good. Thus, it indicates that BP algorithm is applicable to decoding for coded image in ICF experiments

  9. A cone-beam tomography system with a reduced size planar detector: A backprojection-filtration reconstruction algorithm as well as numerical and practical experiments

    International Nuclear Information System (INIS)

    Li Liang; Chen Zhiqiang; Zhang Li; Xing Yuxiang; Kang Kejun

    2007-01-01

    In a traditional cone-beam computed tomography (CT) system, the cost of product and computation is very high. In this paper, we develop a transversely truncated cone-beam X-ray CT system with a reduced-size detector positioned off-center, in which X-ray beams only cover half of the object. The existing filtered backprojection (FBP) or backprojection-filtration (BPF) algorithms are not directly applicable in this new system. Hence, we develop a BPF-type direct backprojection algorithm. Different from the traditional rebinning methods, our algorithm directly backprojects the pretreated projection data without rebinning. This makes the algorithm compact and computationally more efficient. Because of avoiding interpolation errors of rebinning process, higher spatial resolution is obtained. Finally, some numerical simulations and practical experiments are done to validate the proposed algorithm and compare with rebinning algorithm

  10. Precise Aperture-Dependent Motion Compensation with Frequency Domain Fast Back-Projection Algorithm

    Directory of Open Access Journals (Sweden)

    Man Zhang

    2017-10-01

    Full Text Available Precise azimuth-variant motion compensation (MOCO is an essential and difficult task for high-resolution synthetic aperture radar (SAR imagery. In conventional post-filtering approaches, residual azimuth-variant motion errors are generally compensated through a set of spatial post-filters, where the coarse-focused image is segmented into overlapped blocks concerning the azimuth-dependent residual errors. However, image domain post-filtering approaches, such as precise topography- and aperture-dependent motion compensation algorithm (PTA, have difficulty of robustness in declining, when strong motion errors are involved in the coarse-focused image. In this case, in order to capture the complete motion blurring function within each image block, both the block size and the overlapped part need necessary extension leading to degeneration of efficiency and robustness inevitably. Herein, a frequency domain fast back-projection algorithm (FDFBPA is introduced to deal with strong azimuth-variant motion errors. FDFBPA disposes of the azimuth-variant motion errors based on a precise azimuth spectrum expression in the azimuth wavenumber domain. First, a wavenumber domain sub-aperture processing strategy is introduced to accelerate computation. After that, the azimuth wavenumber spectrum is partitioned into a set of wavenumber blocks, and each block is formed into a sub-aperture coarse resolution image via the back-projection integral. Then, the sub-aperture images are straightforwardly fused together in azimuth wavenumber domain to obtain a full resolution image. Moreover, chirp-Z transform (CZT is also introduced to implement the sub-aperture back-projection integral, increasing the efficiency of the algorithm. By disusing the image domain post-filtering strategy, robustness of the proposed algorithm is improved. Both simulation and real-measured data experiments demonstrate the effectiveness and superiority of the proposal.

  11. A backprojection-filtration algorithm for nonstandard spiral cone-beam CT with an n-PI-window

    International Nuclear Information System (INIS)

    Yu Hengyong; Ye Yangbo; Zhao Shiying; Wang Ge

    2005-01-01

    For applications in bolus-chasing computed tomography (CT) angiography and electron-beam micro-CT, the backprojection-filtration (BPF) formula developed by Zou and Pan was recently generalized by Ye et al to reconstruct images from cone-beam data collected along a rather flexible scanning locus, including a nonstandard spiral. A major implication of the generalized BPF formula is that it can be applied for n-PI-window-based reconstruction in the nonstandard spiral scanning case. In this paper, we design an n-PI-window-based BPF algorithm, and report the numerical simulation results with the 3D Shepp-Logan phantom and Defrise disk phantom. The proposed BPF algorithm consists of three steps: cone-beam data differentiation, weighted backprojection and inverse Hilbert filtration. Our simulated results demonstrate the feasibility and merits of the proposed algorithm

  12. Generalized Filtered Back-Projection for Digital Breast Tomosynthesis Reconstruction

    NARCIS (Netherlands)

    Erhard, K.; Grass, M.; Hitziger, S.; Iske, A.; Nielsen, T.

    2012-01-01

    Filtered back-projection (FBP) has been commonly used as an efficient and robust reconstruction technique in tomographic X-ray imagingduring the last decades. For limited angle tomography acquisitions such as digital breast tomosynthesis, however, standard FBP reconstruction algorithms provide poor

  13. High performance cone-beam spiral backprojection with voxel-specific weighting

    International Nuclear Information System (INIS)

    Steckmann, Sven; Knaup, Michael; Kachelriess, Marc

    2009-01-01

    Cone-beam spiral backprojection is computationally highly demanding. At first sight, the backprojection requirements are similar to those of cone-beam backprojection from circular scans such as it is performed in the widely used Feldkamp algorithm. However, there is an additional complication: the illumination of each voxel, i.e. the range of angles the voxel is seen by the x-ray cone, is a complex function of the voxel position. In general, one needs to multiply a voxel-specific weight w(x, y, z, α) prior to adding a projection from angle α to a voxel at position x, y, z. Often, the weight function has no analytically closed form and must be numerically determined. Storage of the weights is prohibitive since the amount of memory required equals the number of voxels per spiral rotation times the number of projections a voxel receives contributions and therefore is in the order of up to 10 12 floating point values for typical spiral scans. We propose a new algorithm that combines the spiral symmetry with the ability of today's 64 bit operating systems to store large amounts of precomputed weights, even above the 4 GB limit. Our trick is to backproject into slices that are rotated in the same manner as the spiral trajectory rotates. Using the spiral symmetry in this way allows one to exploit data-level paralellism and thereby to achieve a very high level of vectorization. An additional postprocessing step rotates these slices back to normal images. Our new backprojection algorithm achieves up to 17 giga voxel updates per second on our systems that are equipped with four standard Intel X7460 hexa core CPUs (Intel Xeon 7300 platform, 2.66 GHz, Intel Corporation). This equals the reconstruction of 344 images per second assuming that each slice consists of 512 x 512 pixels and receives contributions from 512 projections. Thereby, it is an order of magnitude faster than a highly optimized code that does not make use of the spiral symmetry. In its present version, the

  14. High performance cone-beam spiral backprojection with voxel-specific weighting

    Science.gov (United States)

    Steckmann, Sven; Knaup, Michael; Kachelrieß, Marc

    2009-06-01

    Cone-beam spiral backprojection is computationally highly demanding. At first sight, the backprojection requirements are similar to those of cone-beam backprojection from circular scans such as it is performed in the widely used Feldkamp algorithm. However, there is an additional complication: the illumination of each voxel, i.e. the range of angles the voxel is seen by the x-ray cone, is a complex function of the voxel position. In general, one needs to multiply a voxel-specific weight w(x, y, z, α) prior to adding a projection from angle α to a voxel at position x, y, z. Often, the weight function has no analytically closed form and must be numerically determined. Storage of the weights is prohibitive since the amount of memory required equals the number of voxels per spiral rotation times the number of projections a voxel receives contributions and therefore is in the order of up to 1012 floating point values for typical spiral scans. We propose a new algorithm that combines the spiral symmetry with the ability of today's 64 bit operating systems to store large amounts of precomputed weights, even above the 4 GB limit. Our trick is to backproject into slices that are rotated in the same manner as the spiral trajectory rotates. Using the spiral symmetry in this way allows one to exploit data-level paralellism and thereby to achieve a very high level of vectorization. An additional postprocessing step rotates these slices back to normal images. Our new backprojection algorithm achieves up to 17 giga voxel updates per second on our systems that are equipped with four standard Intel X7460 hexa core CPUs (Intel Xeon 7300 platform, 2.66 GHz, Intel Corporation). This equals the reconstruction of 344 images per second assuming that each slice consists of 512 × 512 pixels and receives contributions from 512 projections. Thereby, it is an order of magnitude faster than a highly optimized code that does not make use of the spiral symmetry. In its present version, the

  15. Data-parallel tomographic reconstruction : A comparison of filtered backprojection and direct Fourier reconstruction

    NARCIS (Netherlands)

    Roerdink, J.B.T.M.; Westenberg, M.A

    1998-01-01

    We consider the parallelization of two standard 2D reconstruction algorithms, filtered backprojection and direct Fourier reconstruction, using the data-parallel programming style. The algorithms are implemented on a Connection Machine CM-5 with 16 processors and a peak performance of 2 Gflop/s.

  16. GPU-based Branchless Distance-Driven Projection and Backprojection.

    Science.gov (United States)

    Liu, Rui; Fu, Lin; De Man, Bruno; Yu, Hengyong

    2017-12-01

    Projection and backprojection operations are essential in a variety of image reconstruction and physical correction algorithms in CT. The distance-driven (DD) projection and backprojection are widely used for their highly sequential memory access pattern and low arithmetic cost. However, a typical DD implementation has an inner loop that adjusts the calculation depending on the relative position between voxel and detector cell boundaries. The irregularity of the branch behavior makes it inefficient to be implemented on massively parallel computing devices such as graphics processing units (GPUs). Such irregular branch behaviors can be eliminated by factorizing the DD operation as three branchless steps: integration, linear interpolation, and differentiation, all of which are highly amenable to massive vectorization. In this paper, we implement and evaluate a highly parallel branchless DD algorithm for 3D cone beam CT. The algorithm utilizes the texture memory and hardware interpolation on GPUs to achieve fast computational speed. The developed branchless DD algorithm achieved 137-fold speedup for forward projection and 188-fold speedup for backprojection relative to a single-thread CPU implementation. Compared with a state-of-the-art 32-thread CPU implementation, the proposed branchless DD achieved 8-fold acceleration for forward projection and 10-fold acceleration for backprojection. GPU based branchless DD method was evaluated by iterative reconstruction algorithms with both simulation and real datasets. It obtained visually identical images as the CPU reference algorithm.

  17. Backprojection filtering for variable orbit fan-beam tomography

    International Nuclear Information System (INIS)

    Gullberg, G.T.; Zeng, G.L.

    1995-01-01

    Backprojection filtering algorithms are presented for three variable Orbit fan-beam geometries. Expressions for the fan beam projection and backprojection operators are given for a flat detector fan-beam geometry with fixed focal length, with variable focal length, and with fixed focal length and off-center focusing. Backprojection operators are derived for each geometry using transformation of coordinates to transform from a parallel geometry backprojector to a fan-beam backprojector for the appropriate geometry. The backprojection operator includes a factor which is a function of the coordinates of the projection ray and the coordinates of the pixel in the backprojected image. The backprojection filtering algorithm first backprojects the variable orbit fan-beam projection data using the appropriately derived backprojector to obtain a 1/r blurring of the original image then takes the two-dimensional (2D) Fast Fourier Transform (FFT) of the backprojected image, then multiples the transformed image by the 2D ramp filter function, and finally takes the inverse 2D FFT to obtain the reconstructed image. Computer simulations verify that backprojectors with appropriate weighting give artifact free reconstructions of simulated line integral projections. Also, it is shown that it is not necessary to assume a projection model of line integrals, but the projector and backprojector can be defined to model the physics of the imaging detection process. A backprojector for variable orbit fan-beam tomography with fixed focal length is derived which includes an additional factor which is a function of the flux density along the flat detector. It is shown that the impulse response for the composite of the projection and backprojection operations is equal to 1/r

  18. High performance parallel backprojection on FPGA

    Energy Technology Data Exchange (ETDEWEB)

    Pfanner, Florian; Knaup, Michael; Kachelriess, Marc [Erlangen-Nuernberg Univ., Erlangen (Germany). Inst. of Medical Physics (IMP)

    2011-07-01

    Reconstruction of tomographic images, i.e., images from a Computed Tomography scanner, is a very time consuming issue. The most calculation power is needed for the backprojection step. A closer inspection shows that the algorithm for backprojection is easy to parallelize. FPGAs are able to execute many operations in the same time, so a highly parallel algorithm is a requirement for a powerful acceleration. For data flow rate maximization, we realized the backprojection in a pipelined structure with data throughput of one clock cycle. Due the hardware limitations of the FPGA, it is not possible to reconstruct the image as a whole. So it is necessary to split up the image and reconstruct these parts separately. Despite that, a reconstruction of 512 projections into a 5122 image is calculated within 13 ms on a Virtex 5 FPGA. To save hardware resources we use fixed point arithmetic with an accuracy of 23 bit for calculation. A comparison of the result image and an image, calculated with floating point arithmetic on CPU, shows that there are no differences between these images. (orig.)

  19. Imaging reconstruction based on improved wavelet denoising combined with parallel-beam filtered back-projection algorithm

    Science.gov (United States)

    Ren, Zhong; Liu, Guodong; Huang, Zhen

    2012-11-01

    The image reconstruction is a key step in medical imaging (MI) and its algorithm's performance determinates the quality and resolution of reconstructed image. Although some algorithms have been used, filter back-projection (FBP) algorithm is still the classical and commonly-used algorithm in clinical MI. In FBP algorithm, filtering of original projection data is a key step in order to overcome artifact of the reconstructed image. Since simple using of classical filters, such as Shepp-Logan (SL), Ram-Lak (RL) filter have some drawbacks and limitations in practice, especially for the projection data polluted by non-stationary random noises. So, an improved wavelet denoising combined with parallel-beam FBP algorithm is used to enhance the quality of reconstructed image in this paper. In the experiments, the reconstructed effects were compared between the improved wavelet denoising and others (directly FBP, mean filter combined FBP and median filter combined FBP method). To determine the optimum reconstruction effect, different algorithms, and different wavelet bases combined with three filters were respectively test. Experimental results show the reconstruction effect of improved FBP algorithm is better than that of others. Comparing the results of different algorithms based on two evaluation standards i.e. mean-square error (MSE), peak-to-peak signal-noise ratio (PSNR), it was found that the reconstructed effects of the improved FBP based on db2 and Hanning filter at decomposition scale 2 was best, its MSE value was less and the PSNR value was higher than others. Therefore, this improved FBP algorithm has potential value in the medical imaging.

  20. Filtered backprojection algorithm in RPCs based PET

    International Nuclear Information System (INIS)

    Cruceru, Ilie; Manea Ioana; Nicorescu, Carmen; Constantin Florin

    2003-01-01

    The basis of PET consists in administration of a radioactive isotope attached to a tracer that permits to reveal its molecular pathways in the human body. A 3-D Whole-Body-Scan is necessary in order to minimize the radiation exposure of the patient and to increase significantly the axial field of view (FOV). A major candidate for gamma pair detection in 3-D Whole-Body-Scan appear to be the RPCs (Resistive Plate Counters). They consist in a longitudinal microstrip grid 15 mm thick, spaced at 1 mm; the grid is placed between a large electric resistive glass anode (ρ = 10 12 Ωcm) and an aluminium cathode; the gap of around 300 μm is filled with a special gas and is polarized at around 6 kV. Several detecting structures based on Resistive Plate Counters (RPCs) are evaluated for use in a positron emission 3-Dimensional Whole-Body-Scan tomograph. The coincidence matrix is built for the specific detecting structure by means of random gamma pair ray generation and then the filtered backprojection algorithm is used to reconstruct the original picture. The accuracy of image reconstruction is examined for the four different detecting structures. (authors)

  1. An improved cone-beam filtered backprojection reconstruction algorithm based on x-ray angular correction and multiresolution analysis

    International Nuclear Information System (INIS)

    Sun, Y.; Hou, Y.; Yan, Y.

    2004-01-01

    With the extensive application of industrial computed tomography in the field of non-destructive testing, how to improve the quality of the reconstructed image is receiving more and more concern. It is well known that in the existing cone-beam filtered backprojection reconstruction algorithms the cone angle is controlled within a narrow range. The reason of this limitation is the incompleteness of projection data when the cone angle increases. Thus the size of the tested workpiece is limited. Considering the characteristic of X-ray cone angle, an improved cone-beam filtered back-projection reconstruction algorithm taking account of angular correction is proposed in this paper. The aim of our algorithm is to correct the cone-angle effect resulted from the incompleteness of projection data in the conventional algorithm. The basis of the correction is the angular relationship among X-ray source, tested workpiece and the detector. Thus the cone angle is not strictly limited and this algorithm may be used to detect larger workpiece. Further more, adaptive wavelet filter is used to make multiresolution analysis, which can modify the wavelet decomposition series adaptively according to the demand for resolution of local reconstructed area. Therefore the computation and the time of reconstruction can be reduced, and the quality of the reconstructed image can also be improved. (author)

  2. A cone-beam reconstruction algorithm using shift-variant filtering and cone-beam backprojection

    International Nuclear Information System (INIS)

    Defrise, M.; Clack, R.

    1994-01-01

    An exact inversion formula written in the form of shift-variant filtered-backprojection (FBP) is given for reconstruction from cone-beam data taken from any orbit satisfying Tuy's sufficiency conditions. The method is based on a result of Grangeat, involving the derivative of the three-dimensional (3-D) Radon transform, but unlike Grangeat's algorithm, no 3D rebinning step is required. Data redundancy, which occurs when several cone-beam projections supply the same values in the Radon domain, is handled using an elegant weighting function and without discarding data. The algorithm is expressed in a convenient cone-beam detector reference frame, and a specific example for the case of a dual orthogonal circular orbit is presented. When the method is applied to a single circular orbit, it is shown to be equivalent to the well-known algorithm of Feldkamp et al

  3. Comparison of 3D Maximum A Posteriori and Filtered Backprojection algorithms for high resolution animal imaging in microPET

    International Nuclear Information System (INIS)

    Chatziioannou, A.; Qi, J.; Moore, A.; Annala, A.; Nguyen, K.; Leahy, R.M.; Cherry, S.R.

    2000-01-01

    We have evaluated the performance of two three dimensional reconstruction algorithms with data acquired from microPET, a high resolution tomograph dedicated to small animal imaging. The first was a linear filtered-backprojection algorithm (FBP) with reprojection of the missing data and the second was a statistical maximum-aposteriori probability algorithm (MAP). The two algorithms were evaluated in terms of their resolution performance, both in phantoms and in vivo. Sixty independent realizations of a phantom simulating the brain of a baby monkey were acquired, each containing 3 million counts. Each of these realizations was reconstructed independently with both algorithms. The ensemble of the sixty reconstructed realizations was used to estimate the standard deviation as a measure of the noise for each reconstruction algorithm. More detail was recovered in the MAP reconstruction without an increase in noise relative to FBP. Studies in a simple cylindrical compartment phantom demonstrated improved recovery of known activity ratios with MAP. Finally in vivo studies also demonstrated a clear improvement in spatial resolution using the MAP algorithm. The quantitative accuracy of the MAP reconstruction was also evaluated by comparison with autoradiography and direct well counting of tissue samples and was shown to be superior

  4. SAR focusing of P-band ice sounding data using back-projection

    DEFF Research Database (Denmark)

    Kusk, Anders; Dall, Jørgen

    2010-01-01

    accommodated at the expense of computation time. The back-projection algorithm can be easily parallelized however, and can advantageously be implemented on a graphics processing unit (GPU). Results from using the back-projection algorithm on POLARIS ice sounder data from North Greenland shows that the quality...... of data is improved by the processing, and the performance of the GPU implementation allows for very fast focusing....

  5. Parallel Backprojection: A Case Study in High-Performance Reconfigurable Computing

    Directory of Open Access Journals (Sweden)

    Cordes Ben

    2009-01-01

    Full Text Available High-performance reconfigurable computing (HPRC is a novel approach to provide large-scale computing power to modern scientific applications. Using both general-purpose processors and FPGAs allows application designers to exploit fine-grained and coarse-grained parallelism, achieving high degrees of speedup. One scientific application that benefits from this technique is backprojection, an image formation algorithm that can be used as part of a synthetic aperture radar (SAR processing system. We present an implementation of backprojection for SAR on an HPRC system. Using simulated data taken at a variety of ranges, our implementation runs over 200 times faster than a similar software program, with an overall application speedup better than 50x. The backprojection application is easily parallelizable, achieving near-linear speedup when run on multiple nodes of a clustered HPRC system. The results presented can be applied to other systems and other algorithms with similar characteristics.

  6. Parallel Backprojection: A Case Study in High-Performance Reconfigurable Computing

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available High-performance reconfigurable computing (HPRC is a novel approach to provide large-scale computing power to modern scientific applications. Using both general-purpose processors and FPGAs allows application designers to exploit fine-grained and coarse-grained parallelism, achieving high degrees of speedup. One scientific application that benefits from this technique is backprojection, an image formation algorithm that can be used as part of a synthetic aperture radar (SAR processing system. We present an implementation of backprojection for SAR on an HPRC system. Using simulated data taken at a variety of ranges, our implementation runs over 200 times faster than a similar software program, with an overall application speedup better than 50x. The backprojection application is easily parallelizable, achieving near-linear speedup when run on multiple nodes of a clustered HPRC system. The results presented can be applied to other systems and other algorithms with similar characteristics.

  7. Fan-beam filtered-backprojection reconstruction without backprojection weight

    International Nuclear Information System (INIS)

    Dennerlein, Frank; Noo, Frederic; Hornegger, Joachim; Lauritsch, Guenter

    2007-01-01

    In this paper, we address the problem of two-dimensional image reconstruction from fan-beam data acquired along a full 2π scan. Conventional approaches that follow the filtered-backprojection (FBP) structure require a weighted backprojection with the weight depending on the point to be reconstructed and also on the source position; this weight appears only in the case of divergent beam geometries. Compared to reconstruction from parallel-beam data, the backprojection weight implies an increase in computational effort and is also thought to have some negative impacts on noise properties of the reconstructed images. We demonstrate here that direct FBP reconstruction from full-scan fan-beam data is possible with no backprojection weight. Using computer-simulated, realistic fan-beam data, we compared our novel FBP formula with no backprojection weight to the use of an FBP formula based on equal weighting of all data. Comparisons in terms of signal-to-noise ratio, spatial resolution and computational efficiency are presented. These studies show that the formula we suggest yields images with a reduced noise level, at almost identical spatial resolution. This effect increases quickly with the distance from the center of the field of view, from 0% at the center to 20% less noise at 20 cm, and to 40% less noise at 25 cm. Furthermore, the suggested method is computationally less demanding and reduces computation time with a gain that was found to vary between 12% and 43% on the computers used for evaluation

  8. Efficient Backprojection-Based Synthetic Aperture Radar Computation with Many-Core Processors

    Directory of Open Access Journals (Sweden)

    Jongsoo Park

    2013-01-01

    Full Text Available Tackling computationally challenging problems with high efficiency often requires the combination of algorithmic innovation, advanced architecture, and thorough exploitation of parallelism. We demonstrate this synergy through synthetic aperture radar (SAR via backprojection, an image reconstruction method that can require hundreds of TFLOPS. Computation cost is significantly reduced by our new algorithm of approximate strength reduction; data movement cost is economized by software locality optimizations facilitated by advanced architecture support; parallelism is fully harnessed in various patterns and granularities. We deliver over 35 billion backprojections per second throughput per compute node on an Intel® Xeon® processor E5-2670-based cluster, equipped with Intel® Xeon Phi™ coprocessors. This corresponds to processing a 3K×3K image within a second using a single node. Our study can be extended to other settings: backprojection is applicable elsewhere including medical imaging, approximate strength reduction is a general code transformation technique, and many-core processors are emerging as a solution to energy-efficient computing.

  9. Filtered backprojection proton CT reconstruction along most likely paths

    Energy Technology Data Exchange (ETDEWEB)

    Rit, Simon; Dedes, George; Freud, Nicolas; Sarrut, David; Letang, Jean Michel [Universite de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Universite Lyon 1, Centre Leon Berard, 69008 Lyon (France)

    2013-03-15

    Purpose: Proton CT (pCT) has the potential to accurately measure the electron density map of tissues at low doses but the spatial resolution is prohibitive if the curved paths of protons in matter is not accounted for. The authors propose to account for an estimate of the most likely path of protons in a filtered backprojection (FBP) reconstruction algorithm. Methods: The energy loss of protons is first binned in several proton radiographs at different distances to the proton source to exploit the depth-dependency of the estimate of the most likely path. This process is named the distance-driven binning. A voxel-specific backprojection is then used to select the adequate radiograph in the distance-driven binning in order to propagate in the pCT image the best achievable spatial resolution in proton radiographs. The improvement in spatial resolution is demonstrated using Monte Carlo simulations of resolution phantoms. Results: The spatial resolution in the distance-driven binning depended on the distance of the objects from the source and was optimal in the binned radiograph corresponding to that distance. The spatial resolution in the reconstructed pCT images decreased with the depth in the scanned object but it was always better than previous FBP algorithms assuming straight line paths. In a water cylinder with 20 cm diameter, the observed range of spatial resolutions was 0.7 - 1.6 mm compared to 1.0 - 2.4 mm at best with a straight line path assumption. The improvement was strongly enhanced in shorter 200 Degree-Sign scans. Conclusions: Improved spatial resolution was obtained in pCT images with filtered backprojection reconstruction using most likely path estimates of protons. The improvement in spatial resolution combined with the practicality of FBP algorithms compared to iterative reconstruction algorithms makes this new algorithm a candidate of choice for clinical pCT.

  10. Backprojection of volcanic tremor

    Science.gov (United States)

    Haney, Matthew M.

    2014-01-01

    Backprojection has become a powerful tool for imaging the rupture process of global earthquakes. We demonstrate the ability of backprojection to illuminate and track volcanic sources as well. We apply the method to the seismic network from Okmok Volcano, Alaska, at the time of an escalation in tremor during the 2008 eruption. Although we are able to focus the wavefield close to the location of the active cone, the network array response lacks sufficient resolution to reveal kilometer-scale changes in tremor location. By deconvolving the response in successive backprojection images, we enhance resolution and find that the tremor source moved toward an intracaldera lake prior to its escalation. The increased tremor therefore resulted from magma-water interaction, in agreement with the overall phreatomagmatic character of the eruption. Imaging of eruption tremor shows that time reversal methods, such as backprojection, can provide new insights into the temporal evolution of volcanic sources.

  11. SU-F-SPS-06: Implementation of a Back-Projection Algorithm for 2D in Vivo Dosimetry with An EPID System

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Reyes, B; Rodriguez Perez, E; Sosa Aquino, M [Universidad de Guanajuato, Leon, Guanajuato (Mexico)

    2016-06-15

    Purpose: To implement a back-projection algorithm for 2D dose reconstructions for in vivo dosimetry in radiation therapy using an Electronic Portal Imaging Device (EPID) based on amorphous silicon. Methods: An EPID system was used to calculate dose-response function, pixel sensitivity map, exponential scatter kernels and beam hardenig correction for the back-projection algorithm. All measurements were done with a 6 MV beam. A 2D dose reconstruction for an irradiated water phantom (30×30×30 cm{sup 3}) was done to verify the algorithm implementation. Gamma index evaluation between the 2D reconstructed dose and the calculated with a treatment planning system (TPS) was done. Results: A linear fit was found for the dose-response function. The pixel sensitivity map has a radial symmetry and was calculated with a profile of the pixel sensitivity variation. The parameters for the scatter kernels were determined only for a 6 MV beam. The primary dose was estimated applying the scatter kernel within EPID and scatter kernel within the patient. The beam hardening coefficient is σBH= 3.788×10{sup −4} cm{sup 2} and the effective linear attenuation coefficient is µAC= 0.06084 cm{sup −1}. The 95% of points evaluated had γ values not longer than the unity, with gamma criteria of ΔD = 3% and Δd = 3 mm, and within the 50% isodose surface. Conclusion: The use of EPID systems proved to be a fast tool for in vivo dosimetry, but the implementation is more complex that the elaborated for pre-treatment dose verification, therefore, a simplest method must be investigated. The accuracy of this method should be improved modifying the algorithm in order to compare lower isodose curves.

  12. Virtual patient 3D dose reconstruction using in air EPID measurements and a back-projection algorithm for IMRT and VMAT treatments.

    Science.gov (United States)

    Olaciregui-Ruiz, Igor; Rozendaal, Roel; van Oers, René F M; Mijnheer, Ben; Mans, Anton

    2017-05-01

    At our institute, a transit back-projection algorithm is used clinically to reconstruct in vivo patient and in phantom 3D dose distributions using EPID measurements behind a patient or a polystyrene slab phantom, respectively. In this study, an extension to this algorithm is presented whereby in air EPID measurements are used in combination with CT data to reconstruct 'virtual' 3D dose distributions. By combining virtual and in vivo patient verification data for the same treatment, patient-related errors can be separated from machine, planning and model errors. The virtual back-projection algorithm is described and verified against the transit algorithm with measurements made behind a slab phantom, against dose measurements made with an ionization chamber and with the OCTAVIUS 4D system, as well as against TPS patient data. Virtual and in vivo patient dose verification results are also compared. Virtual dose reconstructions agree within 1% with ionization chamber measurements. The average γ-pass rate values (3% global dose/3mm) in the 3D dose comparison with the OCTAVIUS 4D system and the TPS patient data are 98.5±1.9%(1SD) and 97.1±2.9%(1SD), respectively. For virtual patient dose reconstructions, the differences with the TPS in median dose to the PTV remain within 4%. Virtual patient dose reconstruction makes pre-treatment verification based on deviations of DVH parameters feasible and eliminates the need for phantom positioning and re-planning. Virtual patient dose reconstructions have additional value in the inspection of in vivo deviations, particularly in situations where CBCT data is not available (or not conclusive). Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  13. Multi-example feature-constrained back-projection method for image super-resolution

    Institute of Scientific and Technical Information of China (English)

    Junlei Zhang; Dianguang Gai; Xin Zhang; Xuemei Li

    2017-01-01

    Example-based super-resolution algorithms,which predict unknown high-resolution image information using a relationship model learnt from known high- and low-resolution image pairs, have attracted considerable interest in the field of image processing. In this paper, we propose a multi-example feature-constrained back-projection method for image super-resolution. Firstly, we take advantage of a feature-constrained polynomial interpolation method to enlarge the low-resolution image. Next, we consider low-frequency images of different resolutions to provide an example pair. Then, we use adaptive k NN search to find similar patches in the low-resolution image for every image patch in the high-resolution low-frequency image, leading to a regression model between similar patches to be learnt. The learnt model is applied to the low-resolution high-frequency image to produce high-resolution high-frequency information. An iterative back-projection algorithm is used as the final step to determine the final high-resolution image.Experimental results demonstrate that our method improves the visual quality of the high-resolution image.

  14. Advancements to the planogram frequency–distance rebinning algorithm

    International Nuclear Information System (INIS)

    Champley, Kyle M; Kinahan, Paul E; Raylman, Raymond R

    2010-01-01

    In this paper we consider the task of image reconstruction in positron emission tomography (PET) with the planogram frequency–distance rebinning (PFDR) algorithm. The PFDR algorithm is a rebinning algorithm for PET systems with panel detectors. The algorithm is derived in the planogram coordinate system which is a native data format for PET systems with panel detectors. A rebinning algorithm averages over the redundant four-dimensional set of PET data to produce a three-dimensional set of data. Images can be reconstructed from this rebinned three-dimensional set of data. This process enables one to reconstruct PET images more quickly than reconstructing directly from the four-dimensional PET data. The PFDR algorithm is an approximate rebinning algorithm. We show that implementing the PFDR algorithm followed by the (ramp) filtered backprojection (FBP) algorithm in linogram coordinates from multiple views reconstructs a filtered version of our image. We develop an explicit formula for this filter which can be used to achieve exact reconstruction by means of a modified FBP algorithm applied to the stack of rebinned linograms and can also be used to quantify the errors introduced by the PFDR algorithm. This filter is similar to the filter in the planogram filtered backprojection algorithm derived by Brasse et al. The planogram filtered backprojection and exact reconstruction with the PFDR algorithm require complete projections which can be completed with a reprojection algorithm. The PFDR algorithm is similar to the rebinning algorithm developed by Kao et al. By expressing the PFDR algorithm in detector coordinates, we provide a comparative analysis between the two algorithms. Numerical experiments using both simulated data and measured data from a positron emission mammography/tomography (PEM/PET) system are performed. Images are reconstructed by PFDR+FBP (PFDR followed by 2D FBP reconstruction), PFDRX (PFDR followed by the modified FBP algorithm for exact

  15. Investigation of Backprojection Uncertainties With M6 Earthquakes

    Science.gov (United States)

    Fan, Wenyuan; Shearer, Peter M.

    2017-10-01

    We investigate possible biasing effects of inaccurate timing corrections on teleseismic P wave backprojection imaging of large earthquake ruptures. These errors occur because empirically estimated time shifts based on aligning P wave first arrivals are exact only at the hypocenter and provide approximate corrections for other parts of the rupture. Using the Japan subduction zone as a test region, we analyze 46 M6-M7 earthquakes over a 10 year period, including many aftershocks of the 2011 M9 Tohoku earthquake, performing waveform cross correlation of their initial P wave arrivals to obtain hypocenter timing corrections to global seismic stations. We then compare backprojection images for each earthquake using its own timing corrections with those obtained using the time corrections from other earthquakes. This provides a measure of how well subevents can be resolved with backprojection of a large rupture as a function of distance from the hypocenter. Our results show that backprojection is generally very robust and that the median subevent location error is about 25 km across the entire study region (˜700 km). The backprojection coherence loss and location errors do not noticeably converge to zero even when the event pairs are very close (<20 km). This indicates that most of the timing differences are due to 3-D structure close to each of the hypocenter regions, which limits the effectiveness of attempts to refine backprojection images using aftershock calibration, at least in this region.

  16. Investigation of Back-Projection Uncertainties with M6 Earthquakes

    Science.gov (United States)

    Fan, W.; Shearer, P. M.

    2017-12-01

    We investigate possible biasing effects of inaccurate timing corrections on teleseismic P-wave back-projection imaging of large earthquake ruptures. These errors occur because empirically-estimated time shifts based on aligning P-wave first arrivals are exact only at the hypocenter and provide approximate corrections for other parts of the rupture. Using the Japan subduction zone as a test region, we analyze 46 M6-7 earthquakes over a ten-year period, including many aftershocks of the 2011 M9 Tohoku earthquake, performing waveform cross-correlation of their initial P-wave arrivals to obtain hypocenter timing corrections to global seismic stations. We then compare back-projection images for each earthquake using its own timing corrections with those obtained using the time corrections for other earthquakes. This provides a measure of how well sub-events can be resolved with back-projection of a large rupture as a function of distance from the hypocenter. Our results show that back-projection is generally very robust and that sub-event location errors average about 20 km across the entire study region ( 700 km). The back-projection coherence loss and location errors do not noticeably converge to zero even when the event pairs are very close (<20 km). This indicates that most of the timing differences are due to 3D structure close to each of the hypocenter regions, which limits the effectiveness of attempts to refine back-projection images using aftershock calibration, at least in this region.

  17. Distance-driven projection and backprojection in three dimensions

    International Nuclear Information System (INIS)

    De Man, Bruno; Basu, Samit

    2004-01-01

    Projection and backprojection are operations that arise frequently in tomographic imaging. Recently, we proposed a new method for projection and backprojection, which we call distance-driven, and that offers low arithmetic cost and a highly sequential memory access pattern. Furthermore, distance-driven projection and backprojection avoid several artefact-inducing approximations characteristic of some other methods. We have previously demonstrated the application of this method to parallel and fan beam geometries. In this paper, we extend the distance-driven framework to three dimensions and demonstrate its application to cone beam reconstruction. We also present experimental results to demonstrate the computational performance, the artefact characteristics and the noise-resolution characteristics of the distance-driven method in three dimensions

  18. A three-dimensional-weighted cone beam filtered backprojection (CB-FBP) algorithm for image reconstruction in volumetric CT-helical scanning

    International Nuclear Information System (INIS)

    Tang Xiangyang; Hsieh Jiang; Nilsen, Roy A; Dutta, Sandeep; Samsonov, Dmitry; Hagiwara, Akira

    2006-01-01

    Based on the structure of the original helical FDK algorithm, a three-dimensional (3D)-weighted cone beam filtered backprojection (CB-FBP) algorithm is proposed for image reconstruction in volumetric CT under helical source trajectory. In addition to its dependence on view and fan angles, the 3D weighting utilizes the cone angle dependency of a ray to improve reconstruction accuracy. The 3D weighting is ray-dependent and the underlying mechanism is to give a favourable weight to the ray with the smaller cone angle out of a pair of conjugate rays but an unfavourable weight to the ray with the larger cone angle out of the conjugate ray pair. The proposed 3D-weighted helical CB-FBP reconstruction algorithm is implemented in the cone-parallel geometry that can improve noise uniformity and image generation speed significantly. Under the cone-parallel geometry, the filtering is naturally carried out along the tangential direction of the helical source trajectory. By exploring the 3D weighting's dependence on cone angle, the proposed helical 3D-weighted CB-FBP reconstruction algorithm can provide significantly improved reconstruction accuracy at moderate cone angle and high helical pitches. The 3D-weighted CB-FBP algorithm is experimentally evaluated by computer-simulated phantoms and phantoms scanned by a diagnostic volumetric CT system with a detector dimension of 64 x 0.625 mm over various helical pitches. The computer simulation study shows that the 3D weighting enables the proposed algorithm to reach reconstruction accuracy comparable to that of exact CB reconstruction algorithms, such as the Katsevich algorithm, under a moderate cone angle (4 deg.) and various helical pitches. Meanwhile, the experimental evaluation using the phantoms scanned by a volumetric CT system shows that the spatial resolution along the z-direction and noise characteristics of the proposed 3D-weighted helical CB-FBP reconstruction algorithm are maintained very well in comparison to the FDK

  19. A simple method to back-project isocenter dose of radiotherapy treatments using EPID transit dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, T.B.; Cerbaro, B.Q.; Rosa, L.A.R. da, E-mail: thiago.fisimed@gmail.com, E-mail: tbsilveira@inca.gov.br [Instituto de Radioproteção e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro - RJ (Brazil)

    2017-07-01

    The aim of this work was to implement a simple algorithm to evaluate isocenter dose in a phantom using the back-projected transmitted dose acquired using an Electronic Portal Imaging Device (EPID) available in a Varian Trilogy accelerator with two nominal 6 and 10 MV photon beams. This algorithm was developed in MATLAB language, to calibrate EPID measured dose in absolute dose, using a deconvolution process, and to incorporate all scattering and attenuation contributions due to photon interactions with phantom. Modeling process was simplified by using empirical curve adjustments to describe the contribution of scattering and attenuation effects. The implemented algorithm and method were validated employing 19 patient treatment plans with 104 clinical irradiation fields projected on the phantom used. Results for EPID absolute dose calibration by deconvolution have showed percent deviations lower than 1%. Final method validation presented average percent deviations between isocenter doses calculated by back-projection and isocenter doses determined with ionization chamber of 1,86% (SD of 1,00%) and -0,94% (SD of 0,61%) for 6 and 10 MV, respectively. Normalized field by field analysis showed deviations smaller than 2% for 89% of all data for 6 MV beams and 94% for 10 MV beams. It was concluded that the proposed algorithm possesses sufficient accuracy to be used for in vivo dosimetry, being sensitive to detect dose delivery errors bigger than 3-4% for conformal and intensity modulated radiation therapy techniques. (author)

  20. A rapid parallelization of cone-beam projection and back-projection operator based on texture fetching interpolation

    Science.gov (United States)

    Xie, Lizhe; Hu, Yining; Chen, Yang; Shi, Luyao

    2015-03-01

    Projection and back-projection are the most computational consuming parts in Computed Tomography (CT) reconstruction. Parallelization strategies using GPU computing techniques have been introduced. We in this paper present a new parallelization scheme for both projection and back-projection. The proposed method is based on CUDA technology carried out by NVIDIA Corporation. Instead of build complex model, we aimed on optimizing the existing algorithm and make it suitable for CUDA implementation so as to gain fast computation speed. Besides making use of texture fetching operation which helps gain faster interpolation speed, we fixed sampling numbers in the computation of projection, to ensure the synchronization of blocks and threads, thus prevents the latency caused by inconsistent computation complexity. Experiment results have proven the computational efficiency and imaging quality of the proposed method.

  1. Analytical fan-beam and cone-beam reconstruction algorithms with uniform attenuation correction for SPECT

    International Nuclear Information System (INIS)

    Tang Qiulin; Zeng, Gengsheng L; Gullberg, Grant T

    2005-01-01

    In this paper, we developed an analytical fan-beam reconstruction algorithm that compensates for uniform attenuation in SPECT. The new fan-beam algorithm is in the form of backprojection first, then filtering, and is mathematically exact. The algorithm is based on three components. The first one is the established generalized central-slice theorem, which relates the 1D Fourier transform of a set of arbitrary data and the 2D Fourier transform of the backprojected image. The second one is the fact that the backprojection of the fan-beam measurements is identical to the backprojection of the parallel measurements of the same object with the same attenuator. The third one is the stable analytical reconstruction algorithm for uniformly attenuated Radon data, developed by Metz and Pan. The fan-beam algorithm is then extended into a cone-beam reconstruction algorithm, where the orbit of the focal point of the cone-beam imaging geometry is a circle. This orbit geometry does not satisfy Tuy's condition and the obtained cone-beam algorithm is an approximation. In the cone-beam algorithm, the cone-beam data are first backprojected into the 3D image volume; then a slice-by-slice filtering is performed. This slice-by-slice filtering procedure is identical to that of the fan-beam algorithm. Both the fan-beam and cone-beam algorithms are efficient, and computer simulations are presented. The new cone-beam algorithm is compared with Bronnikov's cone-beam algorithm, and it is shown to have better performance with noisy projections

  2. A fast method to emulate an iterative POCS image reconstruction algorithm.

    Science.gov (United States)

    Zeng, Gengsheng L

    2017-10-01

    Iterative image reconstruction algorithms are commonly used to optimize an objective function, especially when the objective function is nonquadratic. Generally speaking, the iterative algorithms are computationally inefficient. This paper presents a fast algorithm that has one backprojection and no forward projection. This paper derives a new method to solve an optimization problem. The nonquadratic constraint, for example, an edge-preserving denoising constraint is implemented as a nonlinear filter. The algorithm is derived based on the POCS (projections onto projections onto convex sets) approach. A windowed FBP (filtered backprojection) algorithm enforces the data fidelity. An iterative procedure, divided into segments, enforces edge-enhancement denoising. Each segment performs nonlinear filtering. The derived iterative algorithm is computationally efficient. It contains only one backprojection and no forward projection. Low-dose CT data are used for algorithm feasibility studies. The nonlinearity is implemented as an edge-enhancing noise-smoothing filter. The patient studies results demonstrate its effectiveness in processing low-dose x ray CT data. This fast algorithm can be used to replace many iterative algorithms. © 2017 American Association of Physicists in Medicine.

  3. Evaluation of digital breast tomosynthesis reconstruction algorithms using synchrotron radiation in standard geometry

    International Nuclear Information System (INIS)

    Bliznakova, K.; Kolitsi, Z.; Speller, R. D.; Horrocks, J. A.; Tromba, G.; Pallikarakis, N.

    2010-01-01

    Purpose: In this article, the image quality of reconstructed volumes by four algorithms for digital tomosynthesis, applied in the case of breast, is investigated using synchrotron radiation. Methods: An angular data set of 21 images of a complex phantom with heterogeneous tissue-mimicking background was obtained using the SYRMEP beamline at ELETTRA Synchrotron Light Laboratory, Trieste, Italy. The irradiated part was reconstructed using the multiple projection algorithm (MPA) and the filtered backprojection with ramp followed by hamming windows (FBR-RH) and filtered backprojection with ramp (FBP-R). Additionally, an algorithm for reducing the noise in reconstructed planes based on noise mask subtraction from the planes of the originally reconstructed volume using MPA (MPA-NM) has been further developed. The reconstruction techniques were evaluated in terms of calculations and comparison of the contrast-to-noise ratio (CNR) and artifact spread function. Results: It was found that the MPA-NM resulted in higher CNR, comparable with the CNR of FBP-RH for high contrast details. Low contrast objects are well visualized and characterized by high CNR using the simple MPA and the MPA-NM. In addition, the image quality of the reconstructed features in terms of CNR and visual appearance as a function of the initial number of projection images and the reconstruction arc was carried out. Slices reconstructed with more input projection images result in less reconstruction artifacts and higher detail CNR, while those reconstructed from projection images acquired in reduced angular range causes pronounced streak artifacts. Conclusions: Of the reconstruction algorithms implemented, the MPA-NM and MPA are a good choice for detecting low contrast objects, while the FBP-RH, FBP-R, and MPA-NM provide high CNR and well outlined edges in case of microcalcifications.

  4. Beyond filtered backprojection: A reconstruction software package for ion beam microtomography data

    Science.gov (United States)

    Habchi, C.; Gordillo, N.; Bourret, S.; Barberet, Ph.; Jovet, C.; Moretto, Ph.; Seznec, H.

    2013-01-01

    A new version of the TomoRebuild data reduction software package is presented, for the reconstruction of scanning transmission ion microscopy tomography (STIMT) and particle induced X-ray emission tomography (PIXET) images. First, we present a state of the art of the reconstruction codes available for ion beam microtomography. The algorithm proposed here brings several advantages. It is a portable, multi-platform code, designed in C++ with well-separated classes for easier use and evolution. Data reduction is separated in different steps and the intermediate results may be checked if necessary. Although no additional graphic library or numerical tool is required to run the program as a command line, a user friendly interface was designed in Java, as an ImageJ plugin. All experimental and reconstruction parameters may be entered either through this plugin or directly in text format files. A simple standard format is proposed for the input of experimental data. Optional graphic applications using the ROOT interface may be used separately to display and fit energy spectra. Regarding the reconstruction process, the filtered backprojection (FBP) algorithm, already present in the previous version of the code, was optimized so that it is about 10 times as fast. In addition, Maximum Likelihood Expectation Maximization (MLEM) and its accelerated version Ordered Subsets Expectation Maximization (OSEM) algorithms were implemented. A detailed user guide in English is available. A reconstruction example of experimental data from a biological sample is given. It shows the capability of the code to reduce noise in the sinograms and to deal with incomplete data, which puts a new perspective on tomography using low number of projections or limited angle.

  5. Motion tolerant iterative reconstruction algorithm for cone-beam helical CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hisashi; Goto, Taiga; Hirokawa, Koichi; Miyazaki, Osamu [Hitachi Medical Corporation, Chiba-ken (Japan). CT System Div.

    2011-07-01

    We have developed a new advanced iterative reconstruction algorithm for cone-beam helical CT. The features of this algorithm are: (a) it uses separable paraboloidal surrogate (SPS) technique as a foundation for reconstruction to reduce noise and cone-beam artifact, (b) it uses a view weight in the back-projection process to reduce motion artifact. To confirm the improvement of our proposed algorithm over other existing algorithm, such as Feldkamp-Davis-Kress (FDK) or SPS algorithm, we compared the motion artifact reduction, image noise reduction (standard deviation of CT number), and cone-beam artifact reduction on simulated and clinical data set. Our results demonstrate that the proposed algorithm dramatically reduces motion artifacts compared with the SPS algorithm, and decreases image noise compared with the FDK algorithm. In addition, the proposed algorithm potentially improves time resolution of iterative reconstruction. (orig.)

  6. Potency backprojection

    Science.gov (United States)

    Okuwaki, R.; Kasahara, A.; Yagi, Y.

    2017-12-01

    The backprojection (BP) method has been one of the powerful tools of tracking seismic-wave sources of the large/mega earthquakes. The BP method projects waveforms onto a possible source point by stacking them with the theoretical-travel-time shifts between the source point and the stations. Following the BP method, the hybrid backprojection (HBP) method was developed to enhance depth-resolution of projected images and mitigate the dummy imaging of the depth phases, which are shortcomings of the BP method, by stacking cross-correlation functions of the observed waveforms and theoretically calculated Green's functions (GFs). The signal-intensity of the BP/HBP image at a source point is related to how much of observed waveforms was radiated from that point. Since the amplitude of the GF associated with the slip-rate increases with depth as the rigidity increases with depth, the intensity of the BP/HBP image inherently has depth dependence. To make a direct comparison of the BP/HBP image with the corresponding slip distribution inferred from a waveform inversion, and discuss the rupture properties along the fault drawn from the waveforms in high- and low-frequencies with the BP/HBP methods and the waveform inversion, respectively, it is desirable to have the variants of BP/HBP methods that directly image the potency-rate-density distribution. Here we propose new formulations of the BP/HBP methods, which image the distribution of the potency-rate density by introducing alternative normalizing factors in the conventional formulations. For the BP method, the observed waveform is normalized with the maximum amplitude of P-phase of the corresponding GF. For the HBP method, we normalize the cross-correlation function with the squared-sum of the GF. The normalized waveforms or the cross-correlation functions are then stacked for all the stations to enhance the signal to noise ratio. We will present performance-tests of the new formulations by using synthetic waveforms and the

  7. Metal artifact reduction in x-ray computed tomography by using analytical DBP-type algorithm

    Science.gov (United States)

    Wang, Zhen; Kudo, Hiroyuki

    2012-03-01

    This paper investigates a common metal artifacts problem in X-ray computed tomography (CT). The artifacts in reconstructed image may render image non-diagnostic because of inaccuracy beam hardening correction from high attenuation objects, satisfactory image could not be reconstructed from projections with missing or distorted data. In traditionally analytical metal artifact reduction (MAR) method, firstly subtract the metallic object part of projection data from the original obtained projection, secondly complete the subtracted part in original projection by using various interpolating method, thirdly reconstruction from the interpolated projection by filtered back-projection (FBP) algorithm. The interpolation error occurred during the second step can make unrealistic assumptions about the missing data, leading to DC shift artifact in the reconstructed images. We proposed a differentiated back-projection (DBP) type MAR method by instead of FBP algorithm with DBP algorithm in third step. In FBP algorithm the interpolated projection will be filtered on each projection view angle before back-projection, as a result the interpolation error is propagated to whole projection. However, the property of DBP algorithm provide a chance to do filter after the back-projection in a Hilbert filter direction, as a result the interpolation error affection would be reduce and there is expectation on improving quality of reconstructed images. In other word, if we choose the DBP algorithm instead of the FBP algorithm, less contaminated projection data with interpolation error would be used in reconstruction. A simulation study was performed to evaluate the proposed method using a given phantom.

  8. Fast backprojection-based reconstruction of spectral-spatial EPR images from projections with the constant sweep of a magnetic field.

    Science.gov (United States)

    Komarov, Denis A; Hirata, Hiroshi

    2017-08-01

    In this paper, we introduce a procedure for the reconstruction of spectral-spatial EPR images using projections acquired with the constant sweep of a magnetic field. The application of a constant field-sweep and a predetermined data sampling rate simplifies the requirements for EPR imaging instrumentation and facilitates the backprojection-based reconstruction of spectral-spatial images. The proposed approach was applied to the reconstruction of a four-dimensional numerical phantom and to actual spectral-spatial EPR measurements. Image reconstruction using projections with a constant field-sweep was three times faster than the conventional approach with the application of a pseudo-angle and a scan range that depends on the applied field gradient. Spectral-spatial EPR imaging with a constant field-sweep for data acquisition only slightly reduces the signal-to-noise ratio or functional resolution of the resultant images and can be applied together with any common backprojection-based reconstruction algorithm. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Neural network Hilbert transform based filtered backprojection for fast inline x-ray inspection

    Science.gov (United States)

    Janssens, Eline; De Beenhouwer, Jan; Van Dael, Mattias; De Schryver, Thomas; Van Hoorebeke, Luc; Verboven, Pieter; Nicolai, Bart; Sijbers, Jan

    2018-03-01

    X-ray imaging is an important tool for quality control since it allows to inspect the interior of products in a non-destructive way. Conventional x-ray imaging, however, is slow and expensive. Inline x-ray inspection, on the other hand, can pave the way towards fast and individual quality control, provided that a sufficiently high throughput can be achieved at a minimal cost. To meet these criteria, an inline inspection acquisition geometry is proposed where the object moves and rotates on a conveyor belt while it passes a fixed source and detector. Moreover, for this acquisition geometry, a new neural-network-based reconstruction algorithm is introduced: the neural network Hilbert transform based filtered backprojection. The proposed algorithm is evaluated both on simulated and real inline x-ray data and has shown to generate high quality reconstructions of 400  ×  400 reconstruction pixels within 200 ms, thereby meeting the high throughput criteria.

  10. Multichannel algorithm for fast 3D reconstruction

    International Nuclear Information System (INIS)

    Rodet, Thomas; Grangeat, Pierre; Desbat, Laurent

    2002-01-01

    Some recent medical imaging applications such as functional imaging (PET and SPECT) or interventional imaging (CT fluoroscopy) involve increasing amounts of data. In order to reduce the image reconstruction time, we develop a new fast 3D reconstruction algorithm based on a divide and conquer approach. The proposed multichannel algorithm performs an indirect frequential subband decomposition of the image f to be reconstructed (f=Σf j ) through the filtering of the projections Rf. The subband images f j are reconstructed on a downsampled grid without information suppression. In order to reduce the computation time, we do not backproject the null filtered projections and we downsample the number of projections according to the Shannon conditions associated with the subband image. Our algorithm is based on filtering and backprojection operators. Using the same algorithms for these basic operators, our approach is three and a half times faster than a classical FBP algorithm for a 2D image 512x512 and six times faster for a 3D image 32x512x512. (author)

  11. Improving Filtered Backprojection Reconstruction by Data-Dependent Filtering

    NARCIS (Netherlands)

    D.M. Pelt (Daniël); K.J. Batenburg (Joost)

    2014-01-01

    htmlabstractFiltered backprojection, one of the most widely used reconstruction methods in tomography, requires a large number of low-noise projections to yield accurate reconstructions. In many applications of tomography, complete projection data of high quality cannot be obtained, because of

  12. Implementation and Evaluation of Pinhole SPECT

    International Nuclear Information System (INIS)

    MacArtain Anne Marie

    2002-08-01

    The aim of this work was to implement Pinhole SPECT into a working Nuclear Medicine department. It has been reported that pinhole SPECT has been successfully performed to visualise pathology in ankle bones using gamma camera and the images were constructed using a standard filtered back-projection algorithm (Bahk YW, 1998). The objective of this study was to produce and evaluate this technique with the equipment available in the nuclear medicine department. The system performance was assessed using both the low-energy high resolution and the pinhole collimators. Phantoms constructed using capillary tubes, filled with technetium 99m (pertechnetate) were imaged in different arrays to identify possible limitations in the reconstruction software. A thyroid phantom with hot and cold inserts was also imaged. Data was acquired in ''tep-and-shoot'' mode as the camera was rotated 180 degrees or 360 degrees around the phantom. Images were reconstructed using standard parallel back-projection algorithm and a weighted backprojection algorithm (Nowak). An attempt was made to process images of the phantom in Matlab using the Iradon function modified by application of a cone-beam type algorithm (Feldkamp L, 1984). Visual comparison of static images between the pinhole and the LEHR collimators showed the expected improved spatial resolution of the pinhole images. Pinhole SPECT images should be reconstructed using the appropriate cone beam algorithm. However, it was established that reconstructing pinhole SPECT images using a standard parallel backprojection algorithm yielded results which were deemed to be clinically useful. The Nowak algorithm results were a distinct improvement on those achieved with the parallel backprojection algorithm. Likewise the results from the cone beam algorithm were better than the former but not as good as those obtained from the Nowak algorithm. This was due to the fact that the cone beam algorithm did not include a weighting factor. Implementation

  13. A new approximate algorithm for image reconstruction in cone-beam spiral CT at small cone-angles

    International Nuclear Information System (INIS)

    Schaller, S.; Flohr, T.; Steffen, P.

    1996-01-01

    This paper presents a new approximate algorithm for image reconstruction with cone-beam spiral CT data at relatively small cone-angles. Based on the algorithm of Wang et al., our method combines a special complementary interpolation with filtered backprojection. The presented algorithm has three main advantages over Wang's algorithm: (1) It overcomes the pitch limitation of Wang's algorithm. (2) It significantly improves z-resolution when suitable sampling schemes are applied. (3) It avoids the waste of applied radiation dose inherent to Wang's algorithm. Usage of the total applied dose is an important requirement in medical imaging. Our method has been implemented on a standard workstation. Reconstructions of computer-simulated data of different phantoms, assuming sampling conditions and image quality requirements typical to medical CT, show encouraging results

  14. A comparison of earthquake backprojection imaging methods for dense local arrays

    Science.gov (United States)

    Beskardes, G. D.; Hole, J. A.; Wang, K.; Michaelides, M.; Wu, Q.; Chapman, M. C.; Davenport, K. K.; Brown, L. D.; Quiros, D. A.

    2018-03-01

    Backprojection imaging has recently become a practical method for local earthquake detection and location due to the deployment of densely sampled, continuously recorded, local seismograph arrays. While backprojection sometimes utilizes the full seismic waveform, the waveforms are often pre-processed and simplified to overcome imaging challenges. Real data issues include aliased station spacing, inadequate array aperture, inaccurate velocity model, low signal-to-noise ratio, large noise bursts and varying waveform polarity. We compare the performance of backprojection with four previously used data pre-processing methods: raw waveform, envelope, short-term averaging/long-term averaging and kurtosis. Our primary goal is to detect and locate events smaller than noise by stacking prior to detection to improve the signal-to-noise ratio. The objective is to identify an optimized strategy for automated imaging that is robust in the presence of real-data issues, has the lowest signal-to-noise thresholds for detection and for location, has the best spatial resolution of the source images, preserves magnitude, and considers computational cost. Imaging method performance is assessed using a real aftershock data set recorded by the dense AIDA array following the 2011 Virginia earthquake. Our comparisons show that raw-waveform backprojection provides the best spatial resolution, preserves magnitude and boosts signal to detect events smaller than noise, but is most sensitive to velocity error, polarity error and noise bursts. On the other hand, the other methods avoid polarity error and reduce sensitivity to velocity error, but sacrifice spatial resolution and cannot effectively reduce noise by stacking. Of these, only kurtosis is insensitive to large noise bursts while being as efficient as the raw-waveform method to lower the detection threshold; however, it does not preserve the magnitude information. For automatic detection and location of events in a large data set, we

  15. High-definition multidetector computed tomography for evaluation of coronary artery stents: comparison to standard-definition 64-detector row computed tomography.

    Science.gov (United States)

    Min, James K; Swaminathan, Rajesh V; Vass, Melissa; Gallagher, Scott; Weinsaft, Jonathan W

    2009-01-01

    The assessment of coronary stents with present-generation 64-detector row computed tomography scanners that use filtered backprojection and operating at standard definition of 0.5-0.75 mm (standard definition, SDCT) is limited by imaging artifacts and noise. We evaluated the performance of a novel, high-definition 64-slice CT scanner (HDCT), with improved spatial resolution (0.23 mm) and applied statistical iterative reconstruction (ASIR) for evaluation of coronary artery stents. HDCT and SDCT stent imaging was performed with the use of an ex vivo phantom. HDCT was compared with SDCT with both smooth and sharp kernels for stent intraluminal diameter, intraluminal area, and image noise. Intrastent visualization was assessed with an ASIR algorithm on HDCT scans, compared with the filtered backprojection algorithms by SDCT. Six coronary stents (2.5, 2.5, 2.75, 3.0, 3.5, 4.0mm) were analyzed by 2 independent readers. Interobserver correlation was high for both HDCT and SDCT. HDCT yielded substantially larger luminal area visualization compared with SDCT, both for smooth (29.4+/-14.5 versus 20.1+/-13.0; P<0.001) and sharp (32.0+/-15.2 versus 25.5+/-12.0; P<0.001) kernels. Stent diameter was higher with HDCT compared with SDCT, for both smooth (1.54+/-0.59 versus1.00+/-0.50; P<0.0001) and detailed (1.47+/-0.65 versus 1.08+/-0.54; P<0.0001) kernels. With detailed kernels, HDCT scans that used algorithms showed a trend toward decreased image noise compared with SDCT-filtered backprojection algorithms. On the basis of this ex vivo study, HDCT provides superior detection of intrastent luminal area and diameter visualization, compared with SDCT. ASIR image reconstruction techniques for HDCT scans enhance the in-stent assessment while decreasing image noise.

  16. A local region of interest image reconstruction via filtered backprojection for fan-beam differential phase-contrast computed tomography

    International Nuclear Information System (INIS)

    Qi Zhihua; Chen Guanghong

    2007-01-01

    Recently, x-ray differential phase contrast computed tomography (DPC-CT) has been experimentally implemented using a conventional source combined with several gratings. Images were reconstructed using a parallel-beam reconstruction formula. However, parallel-beam reconstruction formulae are not directly applicable for a large image object where the parallel-beam approximation fails. In this note, we present a new image reconstruction formula for fan-beam DPC-CT. There are two major features in this algorithm: (1) it enables the reconstruction of a local region of interest (ROI) using data acquired from an angular interval shorter than 180 0 + fan angle and (2) it still preserves the filtered backprojection structure. Numerical simulations have been conducted to validate the image reconstruction algorithm. (note)

  17. Exact fan-beam image reconstruction algorithm for truncated projection data acquired from an asymmetric half-size detector

    International Nuclear Information System (INIS)

    Leng Shuai; Zhuang Tingliang; Nett, Brian E; Chen Guanghong

    2005-01-01

    In this paper, we present a new algorithm designed for a specific data truncation problem in fan-beam CT. We consider a scanning configuration in which the fan-beam projection data are acquired from an asymmetrically positioned half-sized detector. Namely, the asymmetric detector only covers one half of the scanning field of view. Thus, the acquired fan-beam projection data are truncated at every view angle. If an explicit data rebinning process is not invoked, this data acquisition configuration will reek havoc on many known fan-beam image reconstruction schemes including the standard filtered backprojection (FBP) algorithm and the super-short-scan FBP reconstruction algorithms. However, we demonstrate that a recently developed fan-beam image reconstruction algorithm which reconstructs an image via filtering a backprojection image of differentiated projection data (FBPD) survives the above fan-beam data truncation problem. Namely, we may exactly reconstruct the whole image object using the truncated data acquired in a full scan mode (2π angular range). We may also exactly reconstruct a small region of interest (ROI) using the truncated projection data acquired in a short-scan mode (less than 2π angular range). The most important characteristic of the proposed reconstruction scheme is that an explicit data rebinning process is not introduced. Numerical simulations were conducted to validate the new reconstruction algorithm

  18. TV-constrained incremental algorithms for low-intensity CT image reconstruction

    DEFF Research Database (Denmark)

    Rose, Sean D.; Andersen, Martin S.; Sidky, Emil Y.

    2015-01-01

    constraint can be guided by an image reconstructed by filtered backprojection (FBP). We apply our algorithm to low-dose synchrotron X-ray CT data from the Advanced Photon Source (APS) at Argonne National Labs (ANL) to demonstrate its potential utility. We find that the algorithm provides a means of edge-preserving...

  19. Optimization, evaluation, and comparison of standard algorithms for image reconstruction with the VIP-PET.

    Science.gov (United States)

    Mikhaylova, E; Kolstein, M; De Lorenzo, G; Chmeissani, M

    2014-07-01

    A novel positron emission tomography (PET) scanner design based on a room-temperature pixelated CdTe solid-state detector is being developed within the framework of the Voxel Imaging PET (VIP) Pathfinder project [1]. The simulation results show a great potential of the VIP to produce high-resolution images even in extremely challenging conditions such as the screening of a human head [2]. With unprecedented high channel density (450 channels/cm 3 ) image reconstruction is a challenge. Therefore optimization is needed to find the best algorithm in order to exploit correctly the promising detector potential. The following reconstruction algorithms are evaluated: 2-D Filtered Backprojection (FBP), Ordered Subset Expectation Maximization (OSEM), List-Mode OSEM (LM-OSEM), and the Origin Ensemble (OE) algorithm. The evaluation is based on the comparison of a true image phantom with a set of reconstructed images obtained by each algorithm. This is achieved by calculation of image quality merit parameters such as the bias, the variance and the mean square error (MSE). A systematic optimization of each algorithm is performed by varying the reconstruction parameters, such as the cutoff frequency of the noise filters and the number of iterations. The region of interest (ROI) analysis of the reconstructed phantom is also performed for each algorithm and the results are compared. Additionally, the performance of the image reconstruction methods is compared by calculating the modulation transfer function (MTF). The reconstruction time is also taken into account to choose the optimal algorithm. The analysis is based on GAMOS [3] simulation including the expected CdTe and electronic specifics.

  20. Fast parallel algorithm for three-dimensional distance-driven model in iterative computed tomography reconstruction

    International Nuclear Information System (INIS)

    Chen Jian-Lin; Li Lei; Wang Lin-Yuan; Cai Ai-Long; Xi Xiao-Qi; Zhang Han-Ming; Li Jian-Xin; Yan Bin

    2015-01-01

    The projection matrix model is used to describe the physical relationship between reconstructed object and projection. Such a model has a strong influence on projection and backprojection, two vital operations in iterative computed tomographic reconstruction. The distance-driven model (DDM) is a state-of-the-art technology that simulates forward and back projections. This model has a low computational complexity and a relatively high spatial resolution; however, it includes only a few methods in a parallel operation with a matched model scheme. This study introduces a fast and parallelizable algorithm to improve the traditional DDM for computing the parallel projection and backprojection operations. Our proposed model has been implemented on a GPU (graphic processing unit) platform and has achieved satisfactory computational efficiency with no approximation. The runtime for the projection and backprojection operations with our model is approximately 4.5 s and 10.5 s per loop, respectively, with an image size of 256×256×256 and 360 projections with a size of 512×512. We compare several general algorithms that have been proposed for maximizing GPU efficiency by using the unmatched projection/backprojection models in a parallel computation. The imaging resolution is not sacrificed and remains accurate during computed tomographic reconstruction. (paper)

  1. Navigating Earthquake Physics with High-Resolution Array Back-Projection

    Science.gov (United States)

    Meng, Lingsen

    Understanding earthquake source dynamics is a fundamental goal of geophysics. Progress toward this goal has been slow due to the gap between state-of-art earthquake simulations and the limited source imaging techniques based on conventional low-frequency finite fault inversions. Seismic array processing is an alternative source imaging technique that employs the higher frequency content of the earthquakes and provides finer detail of the source process with few prior assumptions. While the back-projection provides key observations of previous large earthquakes, the standard beamforming back-projection suffers from low resolution and severe artifacts. This thesis introduces the MUSIC technique, a high-resolution array processing method that aims to narrow the gap between the seismic observations and earthquake simulations. The MUSIC is a high-resolution method taking advantage of the higher order signal statistics. The method has not been widely used in seismology yet because of the nonstationary and incoherent nature of the seismic signal. We adapt MUSIC to transient seismic signal by incorporating the Multitaper cross-spectrum estimates. We also adopt a "reference window" strategy that mitigates the "swimming artifact," a systematic drift effect in back projection. The improved MUSIC back projections allow the imaging of recent large earthquakes in finer details which give rise to new perspectives on dynamic simulations. In the 2011 Tohoku-Oki earthquake, we observe frequency-dependent rupture behaviors which relate to the material variation along the dip of the subduction interface. In the 2012 off-Sumatra earthquake, we image the complicated ruptures involving orthogonal fault system and an usual branching direction. This result along with our complementary dynamic simulations probes the pressure-insensitive strength of the deep oceanic lithosphere. In another example, back projection is applied to the 2010 M7 Haiti earthquake recorded at regional distance. The

  2. Mitigating artifacts in back-projection source imaging with implications for frequency-dependent properties of the Tohoku-Oki earthquake

    Science.gov (United States)

    Meng, Lingsen; Ampuero, Jean-Paul; Luo, Yingdi; Wu, Wenbo; Ni, Sidao

    2012-12-01

    Comparing teleseismic array back-projection source images of the 2011 Tohoku-Oki earthquake with results from static and kinematic finite source inversions has revealed little overlap between the regions of high- and low-frequency slip. Motivated by this interesting observation, back-projection studies extended to intermediate frequencies, down to about 0.1 Hz, have suggested that a progressive transition of rupture properties as a function of frequency is observable. Here, by adapting the concept of array response function to non-stationary signals, we demonstrate that the "swimming artifact", a systematic drift resulting from signal non-stationarity, induces significant bias on beamforming back-projection at low frequencies. We introduce a "reference window strategy" into the multitaper-MUSIC back-projection technique and significantly mitigate the "swimming artifact" at high frequencies (1 s to 4 s). At lower frequencies, this modification yields notable, but significantly smaller, artifacts than time-domain stacking. We perform extensive synthetic tests that include a 3D regional velocity model for Japan. We analyze the recordings of the Tohoku-Oki earthquake at the USArray and at the European array at periods from 1 s to 16 s. The migration of the source location as a function of period, regardless of the back-projection methods, has characteristics that are consistent with the expected effect of the "swimming artifact". In particular, the apparent up-dip migration as a function of frequency obtained with the USArray can be explained by the "swimming artifact". This indicates that the most substantial frequency-dependence of the Tohoku-Oki earthquake source occurs at periods longer than 16 s. Thus, low-frequency back-projection needs to be further tested and validated in order to contribute to the characterization of frequency-dependent rupture properties.

  3. Evaluation of the OSC-TV iterative reconstruction algorithm for cone-beam optical CT.

    Science.gov (United States)

    Matenine, Dmitri; Mascolo-Fortin, Julia; Goussard, Yves; Després, Philippe

    2015-11-01

    The present work evaluates an iterative reconstruction approach, namely, the ordered subsets convex (OSC) algorithm with regularization via total variation (TV) minimization in the field of cone-beam optical computed tomography (optical CT). One of the uses of optical CT is gel-based 3D dosimetry for radiation therapy, where it is employed to map dose distributions in radiosensitive gels. Model-based iterative reconstruction may improve optical CT image quality and contribute to a wider use of optical CT in clinical gel dosimetry. This algorithm was evaluated using experimental data acquired by a cone-beam optical CT system, as well as complementary numerical simulations. A fast GPU implementation of OSC-TV was used to achieve reconstruction times comparable to those of conventional filtered backprojection. Images obtained via OSC-TV were compared with the corresponding filtered backprojections. Spatial resolution and uniformity phantoms were scanned and respective reconstructions were subject to evaluation of the modulation transfer function, image uniformity, and accuracy. The artifacts due to refraction and total signal loss from opaque objects were also studied. The cone-beam optical CT data reconstructions showed that OSC-TV outperforms filtered backprojection in terms of image quality, thanks to a model-based simulation of the photon attenuation process. It was shown to significantly improve the image spatial resolution and reduce image noise. The accuracy of the estimation of linear attenuation coefficients remained similar to that obtained via filtered backprojection. Certain image artifacts due to opaque objects were reduced. Nevertheless, the common artifact due to the gel container walls could not be eliminated. The use of iterative reconstruction improves cone-beam optical CT image quality in many ways. The comparisons between OSC-TV and filtered backprojection presented in this paper demonstrate that OSC-TV can potentially improve the rendering of

  4. Comparison of forward- and back-projection in vivo EPID dosimetry for VMAT treatment of the prostate

    Science.gov (United States)

    Bedford, James L.; Hanson, Ian M.; Hansen, Vibeke N.

    2018-01-01

    In the forward-projection method of portal dosimetry for volumetric modulated arc therapy (VMAT), the integrated signal at the electronic portal imaging device (EPID) is predicted at the time of treatment planning, against which the measured integrated image is compared. In the back-projection method, the measured signal at each gantry angle is back-projected through the patient CT scan to give a measure of total dose to the patient. This study aims to investigate the practical agreement between the two types of EPID dosimetry for prostate radiotherapy. The AutoBeam treatment planning system produced VMAT plans together with corresponding predicted portal images, and a total of 46 sets of gantry-resolved portal images were acquired in 13 patients using an iViewGT portal imager. For the forward-projection method, each acquisition of gantry-resolved images was combined into a single integrated image and compared with the predicted image. For the back-projection method, iViewDose was used to calculate the dose distribution in the patient for comparison with the planned dose. A gamma index for 3% and 3 mm was used for both methods. The results were investigated by delivering the same plans to a phantom and repeating some of the deliveries with deliberately introduced errors. The strongest agreement between forward- and back-projection methods is seen in the isocentric intensity/dose difference, with moderate agreement in the mean gamma. The strongest correlation is observed within a given patient, with less correlation between patients, the latter representing the accuracy of prediction of the two methods. The error study shows that each of the two methods has its own distinct sensitivity to errors, but that overall the response is similar. The forward- and back-projection EPID dosimetry methods show moderate agreement in this series of prostate VMAT patients, indicating that both methods can contribute to the verification of dose delivered to the patient.

  5. Fan-beam and cone-beam image reconstruction via filtering the backprojection image of differentiated projection data

    International Nuclear Information System (INIS)

    Zhuang Tingliang; Leng Shuai; Nett, Brian E; Chen Guanghong

    2004-01-01

    In this paper, a new image reconstruction scheme is presented based on Tuy's cone-beam inversion scheme and its fan-beam counterpart. It is demonstrated that Tuy's inversion scheme may be used to derive a new framework for fan-beam and cone-beam image reconstruction. In this new framework, images are reconstructed via filtering the backprojection image of differentiated projection data. The new framework is mathematically exact and is applicable to a general source trajectory provided the Tuy data sufficiency condition is satisfied. By choosing a piece-wise constant function for one of the components in the factorized weighting function, the filtering kernel is one dimensional, viz. the filtering process is along a straight line. Thus, the derived image reconstruction algorithm is mathematically exact and efficient. In the cone-beam case, the derived reconstruction algorithm is applicable to a large class of source trajectories where the pi-lines or the generalized pi-lines exist. In addition, the new reconstruction scheme survives the super-short scan mode in both the fan-beam and cone-beam cases provided the data are not transversely truncated. Numerical simulations were conducted to validate the new reconstruction scheme for the fan-beam case

  6. GPU-accelerated back-projection revisited. Squeezing performance by careful tuning

    Energy Technology Data Exchange (ETDEWEB)

    Papenhausen, Eric; Zheng, Ziyi; Mueller, Klaus [Stony Brook Univ., NY (United States). Computer Science Dept.

    2011-07-01

    In recent years, GPUs have become an increasingly popular tool in computed tomography (CT) reconstruction. In this paper, we discuss performance optimization techniques for a GPU-based filtered-backprojection reconstruction implementation. We explore the different optimization techniques we used and explain how those techniques affected performance. Our results show a nearly 50% increase in performance when compared to the current top ranked GPU implementation. (orig.)

  7. Improvement of Frequency Locking Algorithm for Atomic Frequency Standards

    Science.gov (United States)

    Park, Young-Ho; Kang, Hoonsoo; Heyong Lee, Soo; Eon Park, Sang; Lee, Jong Koo; Lee, Ho Seong; Kwon, Taeg Yong

    2010-09-01

    The authors describe a novel method of frequency locking algorithm for atomic frequency standards. The new algorithm for locking the microwave frequency to the Ramsey resonance is compared with the old one that had been employed in the cesium atomic beam frequency standards such as NIST-7 and KRISS-1. Numerical simulations for testing the performance of the algorithm show that the new method has a noise filtering performance superior to the old one by a factor of 1.2 for the flicker signal noise and 1.4 for random-walk signal noise. The new algorithm can readily be used to enhance the frequency stability for a digital servo employing the slow square wave frequency modulation.

  8. A general exact method for synthesizing parallel-beam projections from cone-beam projections via filtered backprojection

    International Nuclear Information System (INIS)

    Li Liang; Chen Zhiqiang; Xing Yuxiang; Zhang Li; Kang Kejun; Wang Ge

    2006-01-01

    In recent years, image reconstruction methods for cone-beam computed tomography (CT) have been extensively studied. However, few of these studies discussed computing parallel-beam projections from cone-beam projections. In this paper, we focus on the exact synthesis of complete or incomplete parallel-beam projections from cone-beam projections. First, an extended central slice theorem is described to establish a relationship between the Radon space and the Fourier space. Then, data sufficiency conditions are proposed for computing parallel-beam projection data from cone-beam data. Using these results, a general filtered backprojection algorithm is formulated that can exactly synthesize parallel-beam projection data from cone-beam projection data. As an example, we prove that parallel-beam projections can be exactly synthesized in an angular range in the case of circular cone-beam scanning. Interestingly, this angular range is larger than that derived in the Feldkamp reconstruction framework. Numerical experiments are performed in the circular scanning case to verify our method

  9. Metal artefact reduction for a dental cone beam CT image using image segmentation and backprojection filters

    International Nuclear Information System (INIS)

    Mohammadi, Mahdi; Khotanlou, Hassan; Mohammadi, Mohammad

    2011-01-01

    Full text: Due to low dose delivery and fast scanning, the dental Cone Beam CT (CBCT) is the latest technology being implanted for a range of dental imaging. The presence of metallic objects including amalgam or gold fillings in the mouth produces an intuitive image for human jaws. The feasibility of a fast and accurate approach for metal artefact reduction for dental CBCT is investigated. The current study investigates the metal artefact reduction using image segmentation and modification of several sinigrams. In order to reduce metal effects such as beam hardening, streak artefact and intense noises, the application of several algorithms is evaluated. The proposed method includes three stages: preprocessing, reconstruction and post-processing. In the pre-processing stage, in order to reduce the noise level, several phase and frequency filters were applied. At the second stage, based on the specific sinogram achieved for each segment, spline interpolation and weighting backprojection filters were applied to reconstruct the original image. A three-dimensional filter was then applied on reconstructed images, to improve the image quality. Results showed that compared to other available filters, standard frequency filters have a significant influence in the preprocessing stage (ΔHU = 48 ± 6). In addition, with the streak artefact, the probability of beam hardening artefact increases. t e post-processing stage, the application of three-dimensional filters improves the quality of reconstructed images (See Fig. I). Conclusion The proposed method reduces metal artefacts especially where there are more than one metal implanted in the region of interest.

  10. An algorithm for three-dimensional imaging in the positron camera

    International Nuclear Information System (INIS)

    Chen Kun; Ma Mei; Xu Rongfen; Shen Miaohe

    1986-01-01

    A mathematical algorithm of back-projection filtered for image reconstructions using two-dimensional signals detected from parallel multiwire proportional chambers is described. The approaches of pseudo three-dimensional and full three-dimensional image reconstructions are introduced, and the available point response functions are defined as well. The designing parameters and computation procedure of the full three-dimensional method is presented

  11. Signal filtering algorithm for depth-selective diffuse optical topography

    International Nuclear Information System (INIS)

    Fujii, M; Nakayama, K

    2009-01-01

    A compact filtered backprojection algorithm that suppresses the undesirable effects of skin circulation for near-infrared diffuse optical topography is proposed. Our approach centers around a depth-selective filtering algorithm that uses an inverse problem technique and extracts target signals from observation data contaminated by noise from a shallow region. The filtering algorithm is reduced to a compact matrix and is therefore easily incorporated into a real-time system. To demonstrate the validity of this method, we developed a demonstration prototype for depth-selective diffuse optical topography and performed both computer simulations and phantom experiments. The results show that the proposed method significantly suppresses the noise from the shallow region with a minimal degradation of the target signal.

  12. The mathematics of some tomography algorithms used at JET

    Energy Technology Data Exchange (ETDEWEB)

    Ingesson, L

    2000-03-01

    Mathematical details are given of various tomographic reconstruction algorithms that are in use at JET. These algorithms include constrained optimization (CO) with local basis functions, the Cormack method, methods with natural basis functions and the iterative projection-space reconstruction method. Topics discussed include: derivation of the matrix equation for constrained optimization, variable grid size, basis functions, line integrals, derivative matrices, smoothness matrices, analytical expression of the CO solution, sparse matrix storage, projection-space coordinates, the Cormack method in elliptical coordinates, interpolative generalized natural basis functions and some details of the implementation of the filtered backprojection method. (author)

  13. [Standard algorithm of molecular typing of Yersinia pestis strains].

    Science.gov (United States)

    Eroshenko, G A; Odinokov, G N; Kukleva, L M; Pavlova, A I; Krasnov, Ia M; Shavina, N Iu; Guseva, N P; Vinogradova, N A; Kutyrev, V V

    2012-01-01

    Development of the standard algorithm of molecular typing of Yersinia pestis that ensures establishing of subspecies, biovar and focus membership of the studied isolate. Determination of the characteristic strain genotypes of plague infectious agent of main and nonmain subspecies from various natural foci of plague of the Russian Federation and the near abroad. Genotyping of 192 natural Y. pestis strains of main and nonmain subspecies was performed by using PCR methods, multilocus sequencing and multilocus analysis of variable tandem repeat number. A standard algorithm of molecular typing of plague infectious agent including several stages of Yersinia pestis differentiation by membership: in main and nonmain subspecies, various biovars of the main subspecies, specific subspecies; natural foci and geographic territories was developed. The algorithm is based on 3 typing methods--PCR, multilocus sequence typing and multilocus analysis of variable tandem repeat number using standard DNA targets--life support genes (terC, ilvN, inv, glpD, napA, rhaS and araC) and 7 loci of variable tandem repeats (ms01, ms04, ms06, ms07, ms46, ms62, ms70). The effectiveness of the developed algorithm is shown on the large number of natural Y. pestis strains. Characteristic sequence types of Y. pestis strains of various subspecies and biovars as well as MLVA7 genotypes of strains from natural foci of plague of the Russian Federation and the near abroad were established. The application of the developed algorithm will increase the effectiveness of epidemiologic monitoring of plague infectious agent, and analysis of epidemics and outbreaks of plague with establishing the source of origin of the strain and routes of introduction of the infection.

  14. Alignment of Custom Standards by Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Adela Sirbu

    2010-09-01

    Full Text Available Building an efficient model for automatic alignment of terminologies would bring a significant improvement to the information retrieval process. We have developed and compared two machine learning based algorithms whose aim is to align 2 custom standards built on a 3 level taxonomy, using kNN and SVM classifiers that work on a vector representation consisting of several similarity measures. The weights utilized by the kNN were optimized with an evolutionary algorithm, while the SVM classifier's hyper-parameters were optimized with a grid search algorithm. The database used for train was semi automatically obtained by using the Coma++ tool. The performance of our aligners is shown by the results obtained on the test set.

  15. Mental Computation or Standard Algorithm? Children's Strategy Choices on Multi-Digit Subtractions

    Science.gov (United States)

    Torbeyns, Joke; Verschaffel, Lieven

    2016-01-01

    This study analyzed children's use of mental computation strategies and the standard algorithm on multi-digit subtractions. Fifty-eight Flemish 4th graders of varying mathematical achievement level were individually offered subtractions that either stimulated the use of mental computation strategies or the standard algorithm in one choice and two…

  16. An Implementation and Parallelization of the Scale Space Meshing Algorithm

    Directory of Open Access Journals (Sweden)

    Julie Digne

    2015-11-01

    Full Text Available Creating an interpolating mesh from an unorganized set of oriented points is a difficult problemwhich is often overlooked. Most methods focus indeed on building a watertight smoothed meshby defining some function whose zero level set is the surface of the object. However in some casesit is crucial to build a mesh that interpolates the points and does not fill the acquisition holes:either because the data are sparse and trying to fill the holes would create spurious artifactsor because the goal is to explore visually the data exactly as they were acquired without anysmoothing process. In this paper we detail a parallel implementation of the Scale-Space Meshingalgorithm, which builds on the scale-space framework for reconstructing a high precision meshfrom an input oriented point set. This algorithm first smoothes the point set, producing asingularity free shape. It then uses a standard mesh reconstruction technique, the Ball PivotingAlgorithm, to build a mesh from the smoothed point set. The final step consists in back-projecting the mesh built on the smoothed positions onto the original point set. The result ofthis process is an interpolating, hole-preserving surface mesh reconstruction.

  17. Preliminary Study of Image Reconstruction Algorithm on a Digital Signal Processor

    Science.gov (United States)

    2014-03-01

    5.2 Comparison of CPU-GPU, CPU-FPGA, and CPU-DSP Designs The work for implementing VHDL description of the back-projection algorithm on a physical...FPGA was not complete. Hence, the DSP implementation results are compared with the simulated results for the VHDL design. Simulating VHDL provides an...rather than at the software level. Depending on an application’s characteristics, FPGA implementations can provide a significant performance

  18. Iterative reconstruction or filtered backprojection for semi-quantitative assessment of dopamine D2 receptor SPECT studies?

    International Nuclear Information System (INIS)

    Koch, Walter; Suessmair, Christine; Tatsch, Klaus; Poepperl, Gabriele

    2011-01-01

    In routine clinical practice striatal dopamine D 2 receptor binding is generally assessed using data reconstructed by filtered backprojection (FBP). The aim of this study was to investigate the use of an iterative reconstruction algorithm (ordered subset expectation maximization, OSEM) and to assess whether it may provide comparable or even better results than those obtained by standard FBP. In 56 patients with parkinsonian syndromes, single photon emission computed tomography (SPECT) scans were acquired 2 h after i.v. application of 185 MBq [ 123 I]iodobenzamide (IBZM) using a triple-head gamma camera (Siemens MS 3). The scans were reconstructed both by FBP and OSEM (3 iterations, 8 subsets) and filtered using a Butterworth filter. After attenuation correction the studies were automatically fitted to a mean template with a corresponding 3-D volume of interest (VOI) map covering striatum (S), caudate (C), putamen (P) and several reference VOIs using BRASS software. Visual assessment of the fitted studies suggests a better separation between C and P in studies reconstructed by OSEM than FBP. Unspecific background activity appears more homogeneous after iterative reconstruction. The correlation shows a good accordance of dopamine receptor binding using FBP and OSEM (intra-class correlation coefficients S: 0.87; C: 0.88; P: 0.84). Receiver-operating characteristic (ROC) analyses show comparable diagnostic power of OSEM and FBP in the differentiation between idiopathic parkinsonian syndrome (IPS) and non-IPS. Iterative reconstruction of IBZM SPECT studies for assessment of the D 2 receptors is feasible in routine clinical practice. Close correlations between FBP and OSEM data suggest that iteratively reconstructed IBZM studies allow reliable quantification of dopamine receptor binding even though a gain in diagnostic power could not be demonstrated. (orig.)

  19. PDES, Fips Standard Data Encryption Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Nessett, D N [Lawrence Livermore National Laboratory (United States)

    1991-03-26

    Description of program or function: PDES performs the National Bureau of Standards FIPS Pub. 46 data encryption/decryption algorithm used for the cryptographic protection of computer data. The DES algorithm is designed to encipher and decipher blocks of data consisting of 64 bits under control of a 64-bit key. The key is generated in such a way that each of the 56 bits used directly by the algorithm are random and the remaining 8 error-detecting bits are set to make the parity of each 8-bit byte of the key odd, i. e. there is an odd number of '1' bits in each 8-bit byte. Each member of a group of authorized users of encrypted computer data must have the key that was used to encipher the data in order to use it. Data can be recovered from cipher only by using exactly the same key used to encipher it, but with the schedule of addressing the key bits altered so that the deciphering process is the reverse of the enciphering process. A block of data to be enciphered is subjected to an initial permutation, then to a complex key-dependent computation, and finally to a permutation which is the inverse of the initial permutation. Two PDES routines are included; both perform the same calculation. One, identified as FDES.MAR, is designed to achieve speed in execution, while the other identified as PDES.MAR, presents a clearer view of how the algorithm is executed

  20. PDES, Fips Standard Data Encryption Algorithm

    International Nuclear Information System (INIS)

    Nessett, D.N.

    1991-01-01

    Description of program or function: PDES performs the National Bureau of Standards FIPS Pub. 46 data encryption/decryption algorithm used for the cryptographic protection of computer data. The DES algorithm is designed to encipher and decipher blocks of data consisting of 64 bits under control of a 64-bit key. The key is generated in such a way that each of the 56 bits used directly by the algorithm are random and the remaining 8 error-detecting bits are set to make the parity of each 8-bit byte of the key odd, i. e. there is an odd number of '1' bits in each 8-bit byte. Each member of a group of authorized users of encrypted computer data must have the key that was used to encipher the data in order to use it. Data can be recovered from cipher only by using exactly the same key used to encipher it, but with the schedule of addressing the key bits altered so that the deciphering process is the reverse of the enciphering process. A block of data to be enciphered is subjected to an initial permutation, then to a complex key-dependent computation, and finally to a permutation which is the inverse of the initial permutation. Two PDES routines are included; both perform the same calculation. One, identified as FDES.MAR, is designed to achieve speed in execution, while the other identified as PDES.MAR, presents a clearer view of how the algorithm is executed

  1. Development of regularized expectation maximization algorithms for fan-beam SPECT data

    International Nuclear Information System (INIS)

    Kim, Soo Mee; Lee, Jae Sung; Lee, Dong Soo; Lee, Soo Jin; Kim, Kyeong Min

    2005-01-01

    SPECT using a fan-beam collimator improves spatial resolution and sensitivity. For the reconstruction from fan-beam projections, it is necessary to implement direct fan-beam reconstruction methods without transforming the data into the parallel geometry. In this study, various fan-beam reconstruction algorithms were implemented and their performances were compared. The projector for fan-beam SPECT was implemented using a ray-tracing method. The direct reconstruction algorithms implemented for fan-beam projection data were FBP (filtered backprojection), EM (expectation maximization), OS-EM (ordered subsets EM) and MAP-EM OSL (maximum a posteriori EM using the one-step late method) with membrane and thin-plate models as priors. For comparison, the fan-beam projection data were also rebinned into the parallel data using various interpolation methods, such as the nearest neighbor, bilinear and bicubic interpolations, and reconstructed using the conventional EM algorithm for parallel data. Noiseless and noisy projection data from the digital Hoffman brain and Shepp/Logan phantoms were reconstructed using the above algorithms. The reconstructed images were compared in terms of a percent error metric. For the fan-beam data with Poisson noise, the MAP-EM OSL algorithm with the thin-plate prior showed the best result in both percent error and stability. Bilinear interpolation was the most effective method for rebinning from the fan-beam to parallel geometry when the accuracy and computation load were considered. Direct fan-beam EM reconstructions were more accurate than the standard EM reconstructions obtained from rebinned parallel data. Direct fan-beam reconstruction algorithms were implemented, which provided significantly improved reconstructions

  2. Task-based evaluation of segmentation algorithms for diffusion-weighted MRI without using a gold standard

    International Nuclear Information System (INIS)

    Jha, Abhinav K; Kupinski, Matthew A; Rodríguez, Jeffrey J; Stephen, Renu M; Stopeck, Alison T

    2012-01-01

    In many studies, the estimation of the apparent diffusion coefficient (ADC) of lesions in visceral organs in diffusion-weighted (DW) magnetic resonance images requires an accurate lesion-segmentation algorithm. To evaluate these lesion-segmentation algorithms, region-overlap measures are used currently. However, the end task from the DW images is accurate ADC estimation, and the region-overlap measures do not evaluate the segmentation algorithms on this task. Moreover, these measures rely on the existence of gold-standard segmentation of the lesion, which is typically unavailable. In this paper, we study the problem of task-based evaluation of segmentation algorithms in DW imaging in the absence of a gold standard. We first show that using manual segmentations instead of gold-standard segmentations for this task-based evaluation is unreliable. We then propose a method to compare the segmentation algorithms that does not require gold-standard or manual segmentation results. The no-gold-standard method estimates the bias and the variance of the error between the true ADC values and the ADC values estimated using the automated segmentation algorithm. The method can be used to rank the segmentation algorithms on the basis of both the ensemble mean square error and precision. We also propose consistency checks for this evaluation technique. (paper)

  3. Performance evaluation of grid-enabled registration algorithms using bronze-standards

    CERN Document Server

    Glatard, T; Montagnat, J

    2006-01-01

    Evaluating registration algorithms is difficult due to the lack of gold standard in most clinical procedures. The bronze standard is a real-data based statistical method providing an alternative registration reference through a computationally intensive image database registration procedure. We propose in this paper an efficient implementation of this method through a grid-interfaced workflow enactor enabling the concurrent processing of hundreds of image registrations in a couple of hours only. The performances of two different grid infrastructures were compared. We computed the accuracy of 4 different rigid registration algorithms on longitudinal MRI images of brain tumors. Results showed an average subvoxel accuracy of 0.4 mm and 0.15 degrees in rotation.

  4. Cone-beam and fan-beam image reconstruction algorithms based on spherical and circular harmonics

    International Nuclear Information System (INIS)

    Zeng, Gengsheng L; Gullberg, Grant T

    2004-01-01

    A cone-beam image reconstruction algorithm using spherical harmonic expansions is proposed. The reconstruction algorithm is in the form of a summation of inner products of two discrete arrays of spherical harmonic expansion coefficients at each cone-beam point of acquisition. This form is different from the common filtered backprojection algorithm and the direct Fourier reconstruction algorithm. There is no re-sampling of the data, and spherical harmonic expansions are used instead of Fourier expansions. As a special case, a new fan-beam image reconstruction algorithm is also derived in terms of a circular harmonic expansion. Computer simulation results for both cone-beam and fan-beam algorithms are presented for circular planar orbit acquisitions. The algorithms give accurate reconstructions; however, the implementation of the cone-beam reconstruction algorithm is computationally intensive. A relatively efficient algorithm is proposed for reconstructing the central slice of the image when a circular scanning orbit is used

  5. High-speed computation of the EM algorithm for PET image reconstruction

    International Nuclear Information System (INIS)

    Rajan, K.; Patnaik, L.M.; Ramakrishna, J.

    1994-01-01

    The PET image reconstruction based on the EM algorithm has several attractive advantages over the conventional convolution backprojection algorithms. However, two major drawbacks have impeded the routine use of the EM algorithm, namely, the long computational time due to slow convergence and the large memory required for the storage of the image, projection data and the probability matrix. In this study, the authors attempts to solve these two problems by parallelizing the EM algorithm on a multiprocessor system. The authors have implemented an extended hypercube (EH) architecture for the high-speed computation of the EM algorithm using the commercially available fast floating point digital signal processor (DSP) chips as the processing elements (PEs). The authors discuss and compare the performance of the EM algorithm on a 386/387 machine, CD 4360 mainframe, and on the EH system. The results show that the computational speed performance of an EH using DSP chips as PEs executing the EM image reconstruction algorithm is about 130 times better than that of the CD 4360 mainframe. The EH topology is expandable with more number of PEs

  6. An administrative data validation study of the accuracy of algorithms for identifying rheumatoid arthritis: the influence of the reference standard on algorithm performance.

    Science.gov (United States)

    Widdifield, Jessica; Bombardier, Claire; Bernatsky, Sasha; Paterson, J Michael; Green, Diane; Young, Jacqueline; Ivers, Noah; Butt, Debra A; Jaakkimainen, R Liisa; Thorne, J Carter; Tu, Karen

    2014-06-23

    We have previously validated administrative data algorithms to identify patients with rheumatoid arthritis (RA) using rheumatology clinic records as the reference standard. Here we reassessed the accuracy of the algorithms using primary care records as the reference standard. We performed a retrospective chart abstraction study using a random sample of 7500 adult patients under the care of 83 family physicians contributing to the Electronic Medical Record Administrative data Linked Database (EMRALD) in Ontario, Canada. Using physician-reported diagnoses as the reference standard, we computed and compared the sensitivity, specificity, and predictive values for over 100 administrative data algorithms for RA case ascertainment. We identified 69 patients with RA for a lifetime RA prevalence of 0.9%. All algorithms had excellent specificity (>97%). However, sensitivity varied (75-90%) among physician billing algorithms. Despite the low prevalence of RA, most algorithms had adequate positive predictive value (PPV; 51-83%). The algorithm of "[1 hospitalization RA diagnosis code] or [3 physician RA diagnosis codes with ≥1 by a specialist over 2 years]" had a sensitivity of 78% (95% CI 69-88), specificity of 100% (95% CI 100-100), PPV of 78% (95% CI 69-88) and NPV of 100% (95% CI 100-100). Administrative data algorithms for detecting RA patients achieved a high degree of accuracy amongst the general population. However, results varied slightly from our previous report, which can be attributed to differences in the reference standards with respect to disease prevalence, spectrum of disease, and type of comparator group.

  7. ANALYSIS OF THE CHARACTERISTICS OF INTERNATIONAL STANDARD ALGORITHMS «LIGHTWEIGHT CRYPTOGRAPHY» – ISO/IEC 29192-3:2012

    Directory of Open Access Journals (Sweden)

    A. S. Poljakov

    2014-01-01

    Full Text Available The data on the characteristics of international standard algorithms «lightweight cryptography» while application in hardware implementation based on microchips of FPGA are provided. A compari-son of the characteristics of these algorithms with the characteristics of several widely-used standard encryption algorithms is made and possibilities of lightweight cryptography algorithms are evaluated.

  8. A Study on GPU-based Iterative ML-EM Reconstruction Algorithm for Emission Computed Tomographic Imaging Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Woo Seok; Kim, Soo Mee; Park, Min Jae; Lee, Dong Soo; Lee, Jae Sung [Seoul National University, Seoul (Korea, Republic of)

    2009-10-15

    The maximum likelihood-expectation maximization (ML-EM) is the statistical reconstruction algorithm derived from probabilistic model of the emission and detection processes. Although the ML-EM has many advantages in accuracy and utility, the use of the ML-EM is limited due to the computational burden of iterating processing on a CPU (central processing unit). In this study, we developed a parallel computing technique on GPU (graphic processing unit) for ML-EM algorithm. Using Geforce 9800 GTX+ graphic card and CUDA (compute unified device architecture) the projection and backprojection in ML-EM algorithm were parallelized by NVIDIA's technology. The time delay on computations for projection, errors between measured and estimated data and backprojection in an iteration were measured. Total time included the latency in data transmission between RAM and GPU memory. The total computation time of the CPU- and GPU-based ML-EM with 32 iterations were 3.83 and 0.26 sec, respectively. In this case, the computing speed was improved about 15 times on GPU. When the number of iterations increased into 1024, the CPU- and GPU-based computing took totally 18 min and 8 sec, respectively. The improvement was about 135 times and was caused by delay on CPU-based computing after certain iterations. On the other hand, the GPU-based computation provided very small variation on time delay per iteration due to use of shared memory. The GPU-based parallel computation for ML-EM improved significantly the computing speed and stability. The developed GPU-based ML-EM algorithm could be easily modified for some other imaging geometries

  9. A Study on GPU-based Iterative ML-EM Reconstruction Algorithm for Emission Computed Tomographic Imaging Systems

    International Nuclear Information System (INIS)

    Ha, Woo Seok; Kim, Soo Mee; Park, Min Jae; Lee, Dong Soo; Lee, Jae Sung

    2009-01-01

    The maximum likelihood-expectation maximization (ML-EM) is the statistical reconstruction algorithm derived from probabilistic model of the emission and detection processes. Although the ML-EM has many advantages in accuracy and utility, the use of the ML-EM is limited due to the computational burden of iterating processing on a CPU (central processing unit). In this study, we developed a parallel computing technique on GPU (graphic processing unit) for ML-EM algorithm. Using Geforce 9800 GTX+ graphic card and CUDA (compute unified device architecture) the projection and backprojection in ML-EM algorithm were parallelized by NVIDIA's technology. The time delay on computations for projection, errors between measured and estimated data and backprojection in an iteration were measured. Total time included the latency in data transmission between RAM and GPU memory. The total computation time of the CPU- and GPU-based ML-EM with 32 iterations were 3.83 and 0.26 sec, respectively. In this case, the computing speed was improved about 15 times on GPU. When the number of iterations increased into 1024, the CPU- and GPU-based computing took totally 18 min and 8 sec, respectively. The improvement was about 135 times and was caused by delay on CPU-based computing after certain iterations. On the other hand, the GPU-based computation provided very small variation on time delay per iteration due to use of shared memory. The GPU-based parallel computation for ML-EM improved significantly the computing speed and stability. The developed GPU-based ML-EM algorithm could be easily modified for some other imaging geometries

  10. Four (Algorithms) in One (Bag): An Integrative Framework of Knowledge for Teaching the Standard Algorithms of the Basic Arithmetic Operations

    Science.gov (United States)

    Raveh, Ira; Koichu, Boris; Peled, Irit; Zaslavsky, Orit

    2016-01-01

    In this article we present an integrative framework of knowledge for teaching the standard algorithms of the four basic arithmetic operations. The framework is based on a mathematical analysis of the algorithms, a connectionist perspective on teaching mathematics and an analogy with previous frameworks of knowledge for teaching arithmetic…

  11. Three dimensional image reconstruction in the Fourier domain

    International Nuclear Information System (INIS)

    Stearns, C.W.; Chesler, D.A.; Brownell, G.L.

    1987-01-01

    Filtered backprojection reconstruction algorithms are based upon the relationship between the Fourier transform of the imaged object and the Fourier transforms of its projections. A new reconstruction algorithm has been developed which performs the image assembly operation in Fourier space, rather than in image space by backprojection. This represents a significant decrease in the number of operations required to assemble the image. The new Fourier domain algorithm has resolution comparable to the filtered backprojection algorithm, and, after correction by a pointwise multiplication, demonstrates proper recovery throughout image space. Although originally intended for three-dimensional imaging applications, the Fourier domain algorithm can also be developed for two-dimensional imaging applications such as planar positron imaging systems

  12. X-ray dose reduction in abdominal computed tomography using advanced iterative reconstruction algorithms.

    Directory of Open Access Journals (Sweden)

    Peigang Ning

    Full Text Available OBJECTIVE: This work aims to explore the effects of adaptive statistical iterative reconstruction (ASiR and model-based iterative reconstruction (MBIR algorithms in reducing computed tomography (CT radiation dosages in abdominal imaging. METHODS: CT scans on a standard male phantom were performed at different tube currents. Images at the different tube currents were reconstructed with the filtered back-projection (FBP, 50% ASiR and MBIR algorithms and compared. The CT value, image noise and contrast-to-noise ratios (CNRs of the reconstructed abdominal images were measured. Volumetric CT dose indexes (CTDIvol were recorded. RESULTS: At different tube currents, 50% ASiR and MBIR significantly reduced image noise and increased the CNR when compared with FBP. The minimal tube current values required by FBP, 50% ASiR, and MBIR to achieve acceptable image quality using this phantom were 200, 140, and 80 mA, respectively. At the identical image quality, 50% ASiR and MBIR reduced the radiation dose by 35.9% and 59.9% respectively when compared with FBP. CONCLUSIONS: Advanced iterative reconstruction techniques are able to reduce image noise and increase image CNRs. Compared with FBP, 50% ASiR and MBIR reduced radiation doses by 35.9% and 59.9%, respectively.

  13. A theoretically exact reconstruction algorithm for helical cone-beam differential phase-contrast computed tomography

    International Nuclear Information System (INIS)

    Li Jing; Sun Yi; Zhu Peiping

    2013-01-01

    Differential phase-contrast computed tomography (DPC-CT) reconstruction problems are usually solved by using parallel-, fan- or cone-beam algorithms. For rod-shaped objects, the x-ray beams cannot recover all the slices of the sample at the same time. Thus, if a rod-shaped sample is required to be reconstructed by the above algorithms, one should alternately perform translation and rotation on this sample, which leads to lower efficiency. The helical cone-beam CT may significantly improve scanning efficiency for rod-shaped objects over other algorithms. In this paper, we propose a theoretically exact filter-backprojection algorithm for helical cone-beam DPC-CT, which can be applied to reconstruct the refractive index decrement distribution of the samples directly from two-dimensional differential phase-contrast images. Numerical simulations are conducted to verify the proposed algorithm. Our work provides a potential solution for inspecting the rod-shaped samples using DPC-CT, which may be applicable with the evolution of DPC-CT equipments. (paper)

  14. Medical image registration algorithms assesment Bronze Standard application enactment on grids using the MOTEUR workflow engine

    CERN Document Server

    Glatard, T; Pennec, X

    2006-01-01

    Medical image registration is pre-processing needed for many medical image analysis procedures. A very large number of registration algorithms are available today, but their performance is often not known and very difficult to assess due to the lack of gold standard. The Bronze Standard algorithm is a very data and compute intensive statistical approach for quantifying registration algorithms accuracy. In this paper, we describe the Bronze Standard application and we discuss the need for grids to tackle such computations on medical image databases. We demonstrate MOTEUR, a service-based workflow engine optimized for dealing with data intensive applications. MOTEUR eases the enactment of the Bronze Standard and similar applications on the EGEE production grid infrastructure. It is a generic workflow engine, based on current standards and freely available, that can be used to instrument legacy application code at low cost.

  15. Algorithms for limited-view computed tomography: an annotated bibliography and a challenge

    International Nuclear Information System (INIS)

    Rangayyan, R.; Dhawan, A.P.; Gordon, R.

    1985-01-01

    In many applications of computed tomography, it may not be possible to acquire projection data at all angles, as required by the most commonly used algorithm of convolution backprojection. In such a limited-data situation, we face an ill-posed problem in attempting to reconstruct an image from an incomplete set of projections. Many techniques have been proposed to tackle this situation, employing diverse theories such as signal recovery, image restoration, constrained deconvolution, and constrained optimization, as well as novel schemes such as iterative object-dependent algorithms incorporating a priori knowledge and use of multispectral radiation. The authors present an overview of such techniques and offer a challenge to all readers to reconstruct images from a set of limited-view data provided here

  16. Multi-Array Back-Projections of The 2015 Gorkha Earthquake With Physics-Based Aftershock Calibrations

    Science.gov (United States)

    Meng, L.; Zhang, A.; Yagi, Y.

    2015-12-01

    The 2015 Mw 7.8 Nepal-Gorkha earthquake with casualties of over 9,000 people is the most devastating disaster to strike Nepal since the 1934 Nepal-Bihar earthquake. Its rupture process is well imaged by the teleseismic MUSIC back-projections (BP). Here, we perform independent back-projections of high-frequency recordings (0.5-2 Hz) from the Australian seismic network (AU), the North America network (NA) and the European seismic network (EU), located in complementary orientations. Our results of all three arrays show unilateral linear rupture path to the east of the hypocenter. But the propagating directions and the inferred rupture speeds differ significantly among different arrays. To understand the spatial uncertainties of the BP analysis, we image four moderate-size (M5~6) aftershocks based on the timing correction derived from the alignment of the initial P-wave of the mainshock. We find that the apparent source locations inferred from BP are systematically biased along the source-array orientation, which can be explained by the uncertainty of the 3D velocity structure deviated from the 1D reference model (e.g. IASP91). We introduced a slowness error term in travel time as a first-order calibration that successfully mitigates the source location discrepancies of different arrays. The calibrated BP results of three arrays are mutually consistent and reveal a unilateral rupture propagating eastward at a speed of 2.7 km/s along the down-dip edge of the locked Himalaya thrust zone over ~ 150 km, in agreement with a narrow slip distribution inferred from finite source inversions.

  17. High-resolution backprojection at regional distance: Application to the Haiti M7.0 earthquake and comparisons with finite source studies

    Science.gov (United States)

    Meng, L.; Ampuero, J.-P.; Sladen, A.; Rendon, H.

    2012-04-01

    A catastrophic Mw7 earthquake ruptured on 12 January 2010 on a complex fault system near Port-au-Prince, Haiti. Offshore rupture is suggested by aftershock locations and marine geophysics studies, but its extent remains difficult to define using geodetic and teleseismic observations. Here we perform the multitaper multiple signal classification (MUSIC) analysis, a high-resolution array technique, at regional distance with recordings from the Venezuela National Seismic Network to resolve high-frequency (about 0.4 Hz) aspects of the earthquake process. Our results indicate westward rupture with two subevents, roughly 35 km apart. In comparison, a lower-frequency finite source inversion with fault geometry based on new geologic and aftershock data shows two slip patches with centroids 21 km apart. Apparent source time functions from USArray further constrain the intersubevent time delay, implying a rupture speed of 3.3 km/s. The tips of the slip zones coincide with subevents imaged by backprojections. The different subevent locations found by backprojection and source inversion suggest spatial complementarity between high- and low-frequency source radiation consistent with high-frequency radiation originating from rupture arrest phases at the edges of main slip areas. The centroid moment tensor (CMT) solution and a geodetic-only inversion have similar moment, indicating most of the moment released is captured by geodetic observations and no additional rupture is required beyond where it is imaged in our preferred model. Our results demonstrate the contribution of backprojections of regional seismic array data for earthquakes down to M ≈ 7, especially when incomplete coverage of seismic and geodetic data implies large uncertainties in source inversions.

  18. External force back-projective composition and globally deformable optimization for 3-D coronary artery reconstruction

    International Nuclear Information System (INIS)

    Yang, Jian; Cong, Weijian; Fan, Jingfan; Liu, Yue; Wang, Yongtian; Chen, Yang

    2014-01-01

    The clinical value of the 3D reconstruction of a coronary artery is important for the diagnosis and intervention of cardiovascular diseases. This work proposes a method based on a deformable model for reconstructing coronary arteries from two monoplane angiographic images acquired from different angles. First, an external force back-projective composition model is developed to determine the external force, for which the force distributions in different views are back-projected to the 3D space and composited in the same coordinate system based on the perspective projection principle of x-ray imaging. The elasticity and bending forces are composited as an internal force to maintain the smoothness of the deformable curve. Second, the deformable curve evolves rapidly toward the true vascular centerlines in 3D space and angiographic images under the combination of internal and external forces. Third, densely matched correspondence among vessel centerlines is constructed using a curve alignment method. The bundle adjustment method is then utilized for the global optimization of the projection parameters and the 3D structures. The proposed method is validated on phantom data and routine angiographic images with consideration for space and re-projection image errors. Experimental results demonstrate the effectiveness and robustness of the proposed method for the reconstruction of coronary arteries from two monoplane angiographic images. The proposed method can achieve a mean space error of 0.564 mm and a mean re-projection error of 0.349 mm. (paper)

  19. A parallel row-based algorithm for standard cell placement with integrated error control

    Science.gov (United States)

    Sargent, Jeff S.; Banerjee, Prith

    1989-01-01

    A new row-based parallel algorithm for standard-cell placement targeted for execution on a hypercube multiprocessor is presented. Key features of this implementation include a dynamic simulated-annealing schedule, row-partitioning of the VLSI chip image, and two novel approaches to control error in parallel cell-placement algorithms: (1) Heuristic Cell-Coloring; (2) Adaptive Sequence Length Control.

  20. An Evaluation of the Sniffer Global Optimization Algorithm Using Standard Test Functions

    Science.gov (United States)

    Butler, Roger A. R.; Slaminka, Edward E.

    1992-03-01

    The performance of Sniffer—a new global optimization algorithm—is compared with that of Simulated Annealing. Using the number of function evaluations as a measure of efficiency, the new algorithm is shown to be significantly better at finding the global minimum of seven standard test functions. Several of the test functions used have many local minima and very steep walls surrounding the global minimum. Such functions are intended to thwart global minimization algorithms.

  1. Computed tomography of the cervical spine: comparison of image quality between a standard-dose and a low-dose protocol using filtered back-projection and iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Becce, Fabio [University of Lausanne, Department of Diagnostic and Interventional Radiology, Centre Hospitalier Universitaire Vaudois, Lausanne (Switzerland); Universite Catholique Louvain, Department of Radiology, Cliniques Universitaires Saint-Luc, Brussels (Belgium); Ben Salah, Yosr; Berg, Bruno C. vande; Lecouvet, Frederic E.; Omoumi, Patrick [Universite Catholique Louvain, Department of Radiology, Cliniques Universitaires Saint-Luc, Brussels (Belgium); Verdun, Francis R. [University of Lausanne, Institute of Radiation Physics, Centre Hospitalier Universitaire Vaudois, Lausanne (Switzerland); Meuli, Reto [University of Lausanne, Department of Diagnostic and Interventional Radiology, Centre Hospitalier Universitaire Vaudois, Lausanne (Switzerland)

    2013-07-15

    To compare image quality of a standard-dose (SD) and a low-dose (LD) cervical spine CT protocol using filtered back-projection (FBP) and iterative reconstruction (IR). Forty patients investigated by cervical spine CT were prospectively randomised into two groups: SD (120 kVp, 275 mAs) and LD (120 kVp, 150 mAs), both applying automatic tube current modulation. Data were reconstructed using both FBP and sinogram-affirmed IR. Image noise, signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were measured. Two radiologists independently and blindly assessed the following anatomical structures at C3-C4 and C6-C7 levels, using a four-point scale: intervertebral disc, content of neural foramina and dural sac, ligaments, soft tissues and vertebrae. They subsequently rated overall image quality using a ten-point scale. For both protocols and at each disc level, IR significantly decreased image noise and increased SNR and CNR, compared with FBP. SNR and CNR were statistically equivalent in LD-IR and SD-FBP protocols. Regardless of the dose and disc level, the qualitative scores with IR compared with FBP, and with LD-IR compared with SD-FBP, were significantly higher or not statistically different for intervertebral discs, neural foramina and ligaments, while significantly lower or not statistically different for soft tissues and vertebrae. The overall image quality scores were significantly higher with IR compared with FBP, and with LD-IR compared with SD-FBP. LD-IR cervical spine CT provides better image quality for intervertebral discs, neural foramina and ligaments, and worse image quality for soft tissues and vertebrae, compared with SD-FBP, while reducing radiation dose by approximately 40 %. (orig.)

  2. Computed tomography of the cervical spine: comparison of image quality between a standard-dose and a low-dose protocol using filtered back-projection and iterative reconstruction

    International Nuclear Information System (INIS)

    Becce, Fabio; Ben Salah, Yosr; Berg, Bruno C. vande; Lecouvet, Frederic E.; Omoumi, Patrick; Verdun, Francis R.; Meuli, Reto

    2013-01-01

    To compare image quality of a standard-dose (SD) and a low-dose (LD) cervical spine CT protocol using filtered back-projection (FBP) and iterative reconstruction (IR). Forty patients investigated by cervical spine CT were prospectively randomised into two groups: SD (120 kVp, 275 mAs) and LD (120 kVp, 150 mAs), both applying automatic tube current modulation. Data were reconstructed using both FBP and sinogram-affirmed IR. Image noise, signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were measured. Two radiologists independently and blindly assessed the following anatomical structures at C3-C4 and C6-C7 levels, using a four-point scale: intervertebral disc, content of neural foramina and dural sac, ligaments, soft tissues and vertebrae. They subsequently rated overall image quality using a ten-point scale. For both protocols and at each disc level, IR significantly decreased image noise and increased SNR and CNR, compared with FBP. SNR and CNR were statistically equivalent in LD-IR and SD-FBP protocols. Regardless of the dose and disc level, the qualitative scores with IR compared with FBP, and with LD-IR compared with SD-FBP, were significantly higher or not statistically different for intervertebral discs, neural foramina and ligaments, while significantly lower or not statistically different for soft tissues and vertebrae. The overall image quality scores were significantly higher with IR compared with FBP, and with LD-IR compared with SD-FBP. LD-IR cervical spine CT provides better image quality for intervertebral discs, neural foramina and ligaments, and worse image quality for soft tissues and vertebrae, compared with SD-FBP, while reducing radiation dose by approximately 40 %. (orig.)

  3. A simple algorithm for estimation of source-to-detector distance in Compton imaging

    International Nuclear Information System (INIS)

    Rawool-Sullivan, Mohini W.; Sullivan, John P.; Tornga, Shawn R.; Brumby, Steven P.

    2008-01-01

    Compton imaging is used to predict the location of gamma-emitting radiation sources. The X and Y coordinates of the source can be obtained using a back-projected image and a two-dimensional peak-finding algorithm. The emphasis of this work is to estimate the source-to-detector distance (Z). The algorithm presented uses the solid angle subtended by the reconstructed image at various source-to-detector distances. This algorithm was validated using both measured data from the prototype Compton imager (PCI) constructed at the Los Alamos National Laboratory and simulated data of the same imager. Results show this method can be applied successfully to estimate Z, and it provides a way of determining Z without prior knowledge of the source location. This method is faster than the methods that employ maximum likelihood method because it is based on simple back projections of Compton scatter data

  4. A parallel implementation of 3-d CT image reconstruction on a hypercube multiprocessor

    International Nuclear Information System (INIS)

    Chen, C.M.; Lee, S.Y.; Cho, Z.H.

    1990-01-01

    In this paper, the authors describe how image reconstruction in computerized tomography (CT) can be parallelized on a message-passing multiprocessor. In particular, the results obtained from parallel implementation of 3-D CT image reconstruction for parallel beam geometries on the Intel hypercube, iPSC/2, are presented. A two stage pipelining approach is employed for filtering (convolution) and backprojection. The conventional sequential convolution algorithm is modified such that the symmetry of the filter kernel is fully utilized for parallelization. In the backprojection stage, the 3-D incremental algorithm, the authors' recently developed backprojection scheme which is shown to be faster than conventional algorithm, is parallelized

  5. Analytical inversion formula for uniformly attenuated fan-beam projections

    International Nuclear Information System (INIS)

    Weng, Y.; Zeng, G.L.; Gullberg, G.T.

    1997-01-01

    In deriving algorithms to reconstruct single photon emission computed tomography (SPECT) projection data, it is important that the algorithm compensates for photon attenuation in order to obtain quantitative reconstruction results. A convolution backprojection algorithm was derived by Tretiak and Metz to reconstruct two-dimensional (2-D) transaxial slices from uniformly attenuated parallel-beam projections. Using transformation of coordinates, this algorithm can be modified to obtain a formulation useful to reconstruct uniformly attenuated fan-beam projections. Unlike that for parallel-beam projections, this formulation does not produce a filtered backprojection reconstruction algorithm but instead has a formulation that is an inverse integral operator with a spatially varying kernel. This algorithm thus requires more computation time than does the filtered backprojection reconstruction algorithm for the uniformly attenuated parallel-beam case. However, the fan-beam reconstructions demonstrate the same image quality as that of parallel-beam reconstructions

  6. Rupture process of the 2013 Okhotsk deep mega earthquake from iterative backprojection and compress sensing methods

    Science.gov (United States)

    Qin, W.; Yin, J.; Yao, H.

    2013-12-01

    On May 24th 2013 a Mw 8.3 normal faulting earthquake occurred at a depth of approximately 600 km beneath the sea of Okhotsk, Russia. It is a rare mega earthquake that ever occurred at such a great depth. We use the time-domain iterative backprojection (IBP) method [1] and also the frequency-domain compressive sensing (CS) technique[2] to investigate the rupture process and energy radiation of this mega earthquake. We currently use the teleseismic P-wave data from about 350 stations of USArray. IBP is an improved method of the traditional backprojection method, which more accurately locates subevents (energy burst) during earthquake rupture and determines the rupture speeds. The total rupture duration of this earthquake is about 35 s with a nearly N-S rupture direction. We find that the rupture is bilateral in the beginning 15 seconds with slow rupture speeds: about 2.5km/s for the northward rupture and about 2 km/s for the southward rupture. After that, the northward rupture stopped while the rupture towards south continued. The average southward rupture speed between 20-35 s is approximately 5 km/s, lower than the shear wave speed (about 5.5 km/s) at the hypocenter depth. The total rupture length is about 140km, in a nearly N-S direction, with a southward rupture length about 100 km and a northward rupture length about 40 km. We also use the CS method, a sparse source inversion technique, to study the frequency-dependent seismic radiation of this mega earthquake. We observe clear along-strike frequency dependence of the spatial and temporal distribution of seismic radiation and rupture process. The results from both methods are generally similar. In the next step, we'll use data from dense arrays in southwest China and also global stations for further analysis in order to more comprehensively study the rupture process of this deep mega earthquake. Reference [1] Yao H, Shearer P M, Gerstoft P. Subevent location and rupture imaging using iterative backprojection for

  7. Comment on "Localized water reverberation phases and its impact on back-projection images" by Yue et al. [2017

    Science.gov (United States)

    Fan, W.; Shearer, P. M.

    2017-12-01

    Fan and Shearer [2016] analyzed the 2012 Mw 7.2 Sumatra earthquake and reported that the earthquake dynamically triggered early aftershock/aftershocks 150 km away from the mainshock and 50 s later. The early aftershock/aftershocks were detected with teleseismic P-wave back-projection, coincided with passing surface waves, and showed observable seismic waveforms in a wide frequency range (0.02—5 Hz). Recently, however, Yue et al. [2017] interpreted these coda arrivals as water reverberations from the mainshock, based mostly on EGF analysis of a nearby M6 earthquake and a water-phase synthetic test. Here, we show detailed back-projection and waveform analysis of three M6 earthquakes within 100km of the Mw 7.2 earthquake, including the EGF event analyzed in Yue et al. [2017]. In addition, we examine the waveforms of three M5.5 reverse faulting earthquakes close to our detected early aftershock landward of the trench. Our results show that the coda energy in question is more likely caused by a separate earthquake near the trench than by a mainshock water reverberation phase, thus supporting our earlier conclusion that the detected coherent radiators are likely to be dynamically triggered early aftershock/aftershocks.

  8. A faster ordered-subset convex algorithm for iterative reconstruction in a rotation-free micro-CT system

    International Nuclear Information System (INIS)

    Quan, E; Lalush, D S

    2009-01-01

    We present a faster iterative reconstruction algorithm based on the ordered-subset convex (OSC) algorithm for transmission CT. The OSC algorithm was modified such that it calculates the normalization term before the iterative process in order to save computational cost. The modified version requires only one backprojection per iteration as compared to two required for the original OSC. We applied the modified OSC (MOSC) algorithm to a rotation-free micro-CT system that we proposed previously, observed its performance, and compared with the OSC algorithm for 3D cone-beam reconstruction. Measurements on the reconstructed images as well as the point spread functions show that MOSC is quite similar to OSC; in noise-resolution trade-off, MOSC is comparable with OSC in a regular-noise situation and it is slightly worse than OSC in an extremely high-noise situation. The timing record shows that MOSC saves 25-30% CPU time, depending on the number of iterations used. We conclude that the MOSC algorithm is more efficient than OSC and provides comparable images.

  9. Cloud Computing Security Model with Combination of Data Encryption Standard Algorithm (DES) and Least Significant Bit (LSB)

    Science.gov (United States)

    Basri, M.; Mawengkang, H.; Zamzami, E. M.

    2018-03-01

    Limitations of storage sources is one option to switch to cloud storage. Confidentiality and security of data stored on the cloud is very important. To keep up the confidentiality and security of such data can be done one of them by using cryptography techniques. Data Encryption Standard (DES) is one of the block cipher algorithms used as standard symmetric encryption algorithm. This DES will produce 8 blocks of ciphers combined into one ciphertext, but the ciphertext are weak against brute force attacks. Therefore, the last 8 block cipher will be converted into 8 random images using Least Significant Bit (LSB) algorithm which later draws the result of cipher of DES algorithm to be merged into one.

  10. Public Conceptions of Algorithms and Representations in the Common Core State Standards for Mathematics

    Science.gov (United States)

    Nanna, Robert J.

    2016-01-01

    Algorithms and representations have been an important aspect of the work of mathematics, especially for understanding concepts and communicating ideas about concepts and mathematical relationships. They have played a key role in various mathematics standards documents, including the Common Core State Standards for Mathematics. However, there have…

  11. A review of lossless audio compression standards and algorithms

    Science.gov (United States)

    Muin, Fathiah Abdul; Gunawan, Teddy Surya; Kartiwi, Mira; Elsheikh, Elsheikh M. A.

    2017-09-01

    Over the years, lossless audio compression has gained popularity as researchers and businesses has become more aware of the need for better quality and higher storage demand. This paper will analyse various lossless audio coding algorithm and standards that are used and available in the market focusing on Linear Predictive Coding (LPC) specifically due to its popularity and robustness in audio compression, nevertheless other prediction methods are compared to verify this. Advanced representation of LPC such as LSP decomposition techniques are also discussed within this paper.

  12. Derivation and implementation of a cone-beam reconstruction algorithm for nonplanar orbits

    International Nuclear Information System (INIS)

    Kudo, Hiroyuki; Saito, Tsuneo

    1994-01-01

    Smith and Grangeat derived a cone-beam inversion formula that can be applied when a nonplanar orbit satisfying the completeness condition is used. Although Grangeat's inversion formula is mathematically different from Smith's, they have similar overall structures to each other. The contribution of this paper is two-fold. First, based on the derivation of Smith, the authors point out that Grangeat's inversion formula and Smith's can be conveniently described using a single formula (the Smith-Grangeat inversion formula) that is in the form of space-variant filtering followed by cone-beam backprojection. Furthermore, the resulting formula is reformulated for data acquisition systems with a planar detector to obtain a new reconstruction algorithm. Second, the authors make two significant modifications to the new algorithm to reduce artifacts and numerical errors encountered in direct implementation of the new algorithm. As for exactness of the new algorithm, the following fact can be stated. The algorithm based on Grangeat's intermediate function is exact for any complete orbit, whereas that based on Smith's intermediate function should be considered as an approximate inverse excepting the special case where almost every plane in 3-D space meets the orbit. The validity of the new algorithm is demonstrated by simulation studies

  13. Improved Image Quality in Head and Neck CT Using a 3D Iterative Approach to Reduce Metal Artifact.

    Science.gov (United States)

    Wuest, W; May, M S; Brand, M; Bayerl, N; Krauss, A; Uder, M; Lell, M

    2015-10-01

    Metal artifacts from dental fillings and other devices degrade image quality and may compromise the detection and evaluation of lesions in the oral cavity and oropharynx by CT. The aim of this study was to evaluate the effect of iterative metal artifact reduction on CT of the oral cavity and oropharynx. Data from 50 consecutive patients with metal artifacts from dental hardware were reconstructed with standard filtered back-projection, linear interpolation metal artifact reduction (LIMAR), and iterative metal artifact reduction. The image quality of sections that contained metal was analyzed for the severity of artifacts and diagnostic value. A total of 455 sections (mean ± standard deviation, 9.1 ± 4.1 sections per patient) contained metal and were evaluated with each reconstruction method. Sections without metal were not affected by the algorithms and demonstrated image quality identical to each other. Of these sections, 38% were considered nondiagnostic with filtered back-projection, 31% with LIMAR, and only 7% with iterative metal artifact reduction. Thirty-three percent of the sections had poor image quality with filtered back-projection, 46% with LIMAR, and 10% with iterative metal artifact reduction. Thirteen percent of the sections with filtered back-projection, 17% with LIMAR, and 22% with iterative metal artifact reduction were of moderate image quality, 16% of the sections with filtered back-projection, 5% with LIMAR, and 30% with iterative metal artifact reduction were of good image quality, and 1% of the sections with LIMAR and 31% with iterative metal artifact reduction were of excellent image quality. Iterative metal artifact reduction yields the highest image quality in comparison with filtered back-projection and linear interpolation metal artifact reduction in patients with metal hardware in the head and neck area. © 2015 by American Journal of Neuroradiology.

  14. The influence of image reconstruction algorithms on linear thorax EIT image analysis of ventilation

    International Nuclear Information System (INIS)

    Zhao, Zhanqi; Möller, Knut; Frerichs, Inéz; Pulletz, Sven; Müller-Lisse, Ullrich

    2014-01-01

    Analysis methods of electrical impedance tomography (EIT) images based on different reconstruction algorithms were examined. EIT measurements were performed on eight mechanically ventilated patients with acute respiratory distress syndrome. A maneuver with step increase of airway pressure was performed. EIT raw data were reconstructed offline with (1) filtered back-projection (BP); (2) the Dräger algorithm based on linearized Newton–Raphson (DR); (3) the GREIT (Graz consensus reconstruction algorithm for EIT) reconstruction algorithm with a circular forward model (GR C ) and (4) GREIT with individual thorax geometry (GR T ). Individual thorax contours were automatically determined from the routine computed tomography images. Five indices were calculated on the resulting EIT images respectively: (a) the ratio between tidal and deep inflation impedance changes; (b) tidal impedance changes in the right and left lungs; (c) center of gravity; (d) the global inhomogeneity index and (e) ventilation delay at mid-dorsal regions. No significant differences were found in all examined indices among the four reconstruction algorithms (p > 0.2, Kruskal–Wallis test). The examined algorithms used for EIT image reconstruction do not influence the selected indices derived from the EIT image analysis. Indices that validated for images with one reconstruction algorithm are also valid for other reconstruction algorithms. (paper)

  15. The influence of image reconstruction algorithms on linear thorax EIT image analysis of ventilation.

    Science.gov (United States)

    Zhao, Zhanqi; Frerichs, Inéz; Pulletz, Sven; Müller-Lisse, Ullrich; Möller, Knut

    2014-06-01

    Analysis methods of electrical impedance tomography (EIT) images based on different reconstruction algorithms were examined. EIT measurements were performed on eight mechanically ventilated patients with acute respiratory distress syndrome. A maneuver with step increase of airway pressure was performed. EIT raw data were reconstructed offline with (1) filtered back-projection (BP); (2) the Dräger algorithm based on linearized Newton-Raphson (DR); (3) the GREIT (Graz consensus reconstruction algorithm for EIT) reconstruction algorithm with a circular forward model (GR(C)) and (4) GREIT with individual thorax geometry (GR(T)). Individual thorax contours were automatically determined from the routine computed tomography images. Five indices were calculated on the resulting EIT images respectively: (a) the ratio between tidal and deep inflation impedance changes; (b) tidal impedance changes in the right and left lungs; (c) center of gravity; (d) the global inhomogeneity index and (e) ventilation delay at mid-dorsal regions. No significant differences were found in all examined indices among the four reconstruction algorithms (p > 0.2, Kruskal-Wallis test). The examined algorithms used for EIT image reconstruction do not influence the selected indices derived from the EIT image analysis. Indices that validated for images with one reconstruction algorithm are also valid for other reconstruction algorithms.

  16. Accelerating image reconstruction in three-dimensional optoacoustic tomography on graphics processing units.

    Science.gov (United States)

    Wang, Kun; Huang, Chao; Kao, Yu-Jiun; Chou, Cheng-Ying; Oraevsky, Alexander A; Anastasio, Mark A

    2013-02-01

    Optoacoustic tomography (OAT) is inherently a three-dimensional (3D) inverse problem. However, most studies of OAT image reconstruction still employ two-dimensional imaging models. One important reason is because 3D image reconstruction is computationally burdensome. The aim of this work is to accelerate existing image reconstruction algorithms for 3D OAT by use of parallel programming techniques. Parallelization strategies are proposed to accelerate a filtered backprojection (FBP) algorithm and two different pairs of projection/backprojection operations that correspond to two different numerical imaging models. The algorithms are designed to fully exploit the parallel computing power of graphics processing units (GPUs). In order to evaluate the parallelization strategies for the projection/backprojection pairs, an iterative image reconstruction algorithm is implemented. Computer simulation and experimental studies are conducted to investigate the computational efficiency and numerical accuracy of the developed algorithms. The GPU implementations improve the computational efficiency by factors of 1000, 125, and 250 for the FBP algorithm and the two pairs of projection/backprojection operators, respectively. Accurate images are reconstructed by use of the FBP and iterative image reconstruction algorithms from both computer-simulated and experimental data. Parallelization strategies for 3D OAT image reconstruction are proposed for the first time. These GPU-based implementations significantly reduce the computational time for 3D image reconstruction, complementing our earlier work on 3D OAT iterative image reconstruction.

  17. VIRTEX-5 Fpga Implementation of Advanced Encryption Standard Algorithm

    Science.gov (United States)

    Rais, Muhammad H.; Qasim, Syed M.

    2010-06-01

    In this paper, we present an implementation of Advanced Encryption Standard (AES) cryptographic algorithm using state-of-the-art Virtex-5 Field Programmable Gate Array (FPGA). The design is coded in Very High Speed Integrated Circuit Hardware Description Language (VHDL). Timing simulation is performed to verify the functionality of the designed circuit. Performance evaluation is also done in terms of throughput and area. The design implemented on Virtex-5 (XC5VLX50FFG676-3) FPGA achieves a maximum throughput of 4.34 Gbps utilizing a total of 399 slices.

  18. An attenuated projector-backprojector for iterative SPECT reconstruction

    International Nuclear Information System (INIS)

    Gullberg, G.T.; Pelc, N.J.; Huesman, R.H.; Budinger, T.F.; Malko, J.A.

    1985-01-01

    A new ray-driven projector-backprojector which can easily be adapted for hardware implementation is described and simulated in software. The projector-backprojector discretely models the attenuated Radon transform of a source distributed within an attenuating medium as line integrals of discrete pixels, obtained using the standard sampling technique of averaging the emission source or attenuation distribution over small square regions. Attenuation factors are calculated for each pixel during the projection and backprojection operations instead of using precalculated values. The calculation of the factors requires a specification of the attenuation distribution, estimated either from an assumed constant distribution and an approximate body outline or from transmission measurements. The distribution of attenuation coefficients is stored in memory for efficient access during the projection and backprojection operations. The reconstruction of the source distribution is obtained by using a conjugate gradient or SIRT type iterative algorithm which requires one projection and one backprojection operation for each iteration. (author)

  19. Measurement of vascular wall attenuation: Comparison of CT angiography using model-based iterative reconstruction with standard filtered back-projection algorithm CT in vitro

    International Nuclear Information System (INIS)

    Suzuki, Shigeru; Machida, Haruhiko; Tanaka, Isao; Ueno, Eiko

    2012-01-01

    Objectives: To compare the performance of model-based iterative reconstruction (MBIR) with that of standard filtered back projection (FBP) for measuring vascular wall attenuation. Study design: After subjecting 9 vascular models (actual attenuation value of wall, 89 HU) with wall thickness of 0.5, 1.0, or 1.5 mm that we filled with contrast material of 275, 396, or 542 HU to scanning using 64-detector computed tomography (CT), we reconstructed images using MBIR and FBP (Bone, Detail kernels) and measured wall attenuation at the center of the wall for each model. We performed attenuation measurements for each model and additional supportive measurements by a differentiation curve. We analyzed statistics using analyzes of variance with repeated measures. Results: Using the Bone kernel, standard deviation of the measurement exceeded 30 HU in most conditions. In measurements at the wall center, the attenuation values obtained using MBIR were comparable to or significantly closer to the actual wall attenuation than those acquired using Detail kernel. Using differentiation curves, we could measure attenuation for models with walls of 1.0- or 1.5-mm thickness using MBIR but only those of 1.5-mm thickness using Detail kernel. We detected no significant differences among the attenuation values of the vascular walls of either thickness (MBIR, P = 0.1606) or among the 3 densities of intravascular contrast material (MBIR, P = 0.8185; Detail kernel, P = 0.0802). Conclusions: Compared with FBP, MBIR reduces both reconstruction blur and image noise simultaneously, facilitates recognition of vascular wall boundaries, and can improve accuracy in measuring wall attenuation.

  20. Measurement of vascular wall attenuation: comparison of CT angiography using model-based iterative reconstruction with standard filtered back-projection algorithm CT in vitro.

    Science.gov (United States)

    Suzuki, Shigeru; Machida, Haruhiko; Tanaka, Isao; Ueno, Eiko

    2012-11-01

    To compare the performance of model-based iterative reconstruction (MBIR) with that of standard filtered back projection (FBP) for measuring vascular wall attenuation. After subjecting 9 vascular models (actual attenuation value of wall, 89 HU) with wall thickness of 0.5, 1.0, or 1.5 mm that we filled with contrast material of 275, 396, or 542 HU to scanning using 64-detector computed tomography (CT), we reconstructed images using MBIR and FBP (Bone, Detail kernels) and measured wall attenuation at the center of the wall for each model. We performed attenuation measurements for each model and additional supportive measurements by a differentiation curve. We analyzed statistics using analyzes of variance with repeated measures. Using the Bone kernel, standard deviation of the measurement exceeded 30 HU in most conditions. In measurements at the wall center, the attenuation values obtained using MBIR were comparable to or significantly closer to the actual wall attenuation than those acquired using Detail kernel. Using differentiation curves, we could measure attenuation for models with walls of 1.0- or 1.5-mm thickness using MBIR but only those of 1.5-mm thickness using Detail kernel. We detected no significant differences among the attenuation values of the vascular walls of either thickness (MBIR, P=0.1606) or among the 3 densities of intravascular contrast material (MBIR, P=0.8185; Detail kernel, P=0.0802). Compared with FBP, MBIR reduces both reconstruction blur and image noise simultaneously, facilitates recognition of vascular wall boundaries, and can improve accuracy in measuring wall attenuation. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. Analytic reconstruction algorithms for triple-source CT with horizontal data truncation

    International Nuclear Information System (INIS)

    Chen, Ming; Yu, Hengyong

    2015-01-01

    Purpose: This paper explores a triple-source imaging method with horizontal data truncation to enlarge the field of view (FOV) for big objects. Methods: The study is conducted by using theoretical analysis, mathematical deduction, and numerical simulations. The proposed algorithms are implemented in c + + and MATLAB. While the basic platform is constructed in MATLAB, the computationally intensive segments are coded in c + +, which are linked via a MEX interface. Results: A triple-source circular scanning configuration with horizontal data truncation is developed, where three pairs of x-ray sources and detectors are unevenly distributed on the same circle to cover the whole imaging object. For this triple-source configuration, a fan-beam filtered backprojection-type algorithm is derived for truncated full-scan projections without data rebinning. The algorithm is also extended for horizontally truncated half-scan projections and cone-beam projections in a Feldkamp-type framework. Using their method, the FOV is enlarged twofold to threefold to scan bigger objects with high speed and quality. The numerical simulation results confirm the correctness and effectiveness of the developed algorithms. Conclusions: The triple-source scanning configuration with horizontal data truncation cannot only keep most of the advantages of a traditional multisource system but also cover a larger FOV for big imaging objects. In addition, because the filtering is shift-invariant, the proposed algorithms are very fast and easily parallelized on graphic processing units

  2. Metal artifact reduction algorithm based on model images and spatial information

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jay [Institute of Radiological Science, Central Taiwan University of Science and Technology, Taichung, Taiwan (China); Shih, Cheng-Ting [Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, Taiwan (China); Chang, Shu-Jun [Health Physics Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan (China); Huang, Tzung-Chi [Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan (China); Sun, Jing-Yi [Institute of Radiological Science, Central Taiwan University of Science and Technology, Taichung, Taiwan (China); Wu, Tung-Hsin, E-mail: tung@ym.edu.tw [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No.155, Sec. 2, Linong Street, Taipei 112, Taiwan (China)

    2011-10-01

    Computed tomography (CT) has become one of the most favorable choices for diagnosis of trauma. However, high-density metal implants can induce metal artifacts in CT images, compromising image quality. In this study, we proposed a model-based metal artifact reduction (MAR) algorithm. First, we built a model image using the k-means clustering technique with spatial information and calculated the difference between the original image and the model image. Then, the projection data of these two images were combined using an exponential weighting function. At last, the corrected image was reconstructed using the filter back-projection algorithm. Two metal-artifact contaminated images were studied. For the cylindrical water phantom image, the metal artifact was effectively removed. The mean CT number of water was improved from -28.95{+-}97.97 to -4.76{+-}4.28. For the clinical pelvic CT image, the dark band and the metal line were removed, and the continuity and uniformity of the soft tissue were recovered as well. These results indicate that the proposed MAR algorithm is useful for reducing metal artifact and could improve the diagnostic value of metal-artifact contaminated CT images.

  3. A unified analysis of FBP-based algorithms in helical cone-beam and circular cone- and fan-beam scans

    International Nuclear Information System (INIS)

    Pan Xiaochuan; Xia Dan; Zou Yu; Yu Lifeng

    2004-01-01

    A circular scanning trajectory is and will likely remain a popular choice of trajectory in computed tomography (CT) imaging because it is easy to implement and control. Filtered-backprojection (FBP)-based algorithms have been developed previously for approximate and exact reconstruction of the entire image or a region of interest within the image in circular cone-beam and fan-beam cases. Recently, we have developed a 3D FBP-based algorithm for image reconstruction on PI-line segments in a helical cone-beam scan. In this work, we demonstrated that the 3D FBP-based algorithm indeed provided a rather general formulation for image reconstruction from divergent projections (such as cone-beam and fan-beam projections). On the basis of this formulation we derived new approximate or exact algorithms for image reconstruction in circular cone-beam or fan-beam scans, which can be interpreted as special cases of the helical scan. Existing algorithms corresponding to the derived algorithms were identified. We also performed a preliminary numerical study to verify our theoretical results in each of the cases. The results in the work can readily be generalized to other non-circular trajectories

  4. A standard deviation selection in evolutionary algorithm for grouper fish feed formulation

    Science.gov (United States)

    Cai-Juan, Soong; Ramli, Razamin; Rahman, Rosshairy Abdul

    2016-10-01

    Malaysia is one of the major producer countries for fishery production due to its location in the equatorial environment. Grouper fish is one of the potential markets in contributing to the income of the country due to its desirable taste, high demand and high price. However, the demand of grouper fish is still insufficient from the wild catch. Therefore, there is a need to farm grouper fish to cater to the market demand. In order to farm grouper fish, there is a need to have prior knowledge of the proper nutrients needed because there is no exact data available. Therefore, in this study, primary data and secondary data are collected even though there is a limitation of related papers and 30 samples are investigated by using standard deviation selection in Evolutionary algorithm. Thus, this study would unlock frontiers for an extensive research in respect of grouper fish feed formulation. Results shown that the fitness of standard deviation selection in evolutionary algorithm is applicable. The feasible and low fitness, quick solution can be obtained. These fitness can be further predicted to minimize cost in farming grouper fish.

  5. Iterative concurrent reconstruction algorithms for emission computed tomography

    International Nuclear Information System (INIS)

    Brown, J.K.; Hasegawa, B.H.; Lang, T.F.

    1994-01-01

    Direct reconstruction techniques, such as those based on filtered backprojection, are typically used for emission computed tomography (ECT), even though it has been argued that iterative reconstruction methods may produce better clinical images. The major disadvantage of iterative reconstruction algorithms, and a significant reason for their lack of clinical acceptance, is their computational burden. We outline a new class of ''concurrent'' iterative reconstruction techniques for ECT in which the reconstruction process is reorganized such that a significant fraction of the computational processing occurs concurrently with the acquisition of ECT projection data. These new algorithms use the 10-30 min required for acquisition of a typical SPECT scan to iteratively process the available projection data, significantly reducing the requirements for post-acquisition processing. These algorithms are tested on SPECT projection data from a Hoffman brain phantom acquired with a 2 x 10 5 counts in 64 views each having 64 projections. The SPECT images are reconstructed as 64 x 64 tomograms, starting with six angular views. Other angular views are added to the reconstruction process sequentially, in a manner that reflects their availability for a typical acquisition protocol. The results suggest that if T s of concurrent processing are used, the reconstruction processing time required after completion of the data acquisition can be reduced by at least 1/3 T s. (Author)

  6. Implementation techniques and acceleration of DBPF reconstruction algorithm based on GPGPU for helical cone beam CT

    International Nuclear Information System (INIS)

    Shen Le; Xing Yuxiang

    2010-01-01

    The derivative back-projection filtered algorithm for a helical cone-beam CT is a newly developed exact reconstruction method. Due to its large computational complexity, the reconstruction is rather slow for practical use. General purpose graphic processing unit (GPGPU) is an SIMD paralleled hardware architecture with powerful float-point operation capacity. In this paper,we propose a new method for PI-line choice and sampling grid, and a paralleled PI-line reconstruction algorithm implemented on NVIDIA's Compute Unified Device Architecture (CUDA). Numerical simulation studies are carried out to validate our method. Compared with conventional CPU implementation, the CUDA accelerated method provides images of the same quality with a speedup factor of 318. Optimization strategies for the GPU acceleration are presented. Finally, influence of the parameters of the PI-line samples on the reconstruction speed and image quality is discussed. (authors)

  7. Performance comparison of OpenCL and CUDA by benchmarking an optimized perspective backprojection

    Energy Technology Data Exchange (ETDEWEB)

    Swall, Stefan; Ritschl, Ludwig; Knaup, Michael; Kachelriess, Marc [Erlangen-Nuernberg Univ., Erlangen (Germany). Inst. of Medical Physics (IMP)

    2011-07-01

    The increase in performance of Graphical Processing Units (GPUs) and the onward development of dedicated software tools within the last decade allows to transfer performance-demanding computations from the Central Processing Unit (CPU) to the GPU and to speed up certain tasks by utilizing the massiv parallel architecture of these devices. The Computate Unified Device Architecture (CUDA) developed by NVIDIA provides an easy hence effective way to develop application that target NVIDIA GPUs. It has become one of the cardinal software tools for this purpose. Recently the Open Computing Language (OpenCL) became available that is neither vendor-specific nor limited to GPUs only. As the benefits of CUDA-based image reconstruction are well known we aim at providing a comparison between the performance that can be achieved with CUDA in comparison to OpenCL by benchmarking the time required to perform a simple but computationally demanding task: the perspective backprojection. (orig.)

  8. Imaging Seismic Source Variations Using Back-Projection Methods at El Tatio Geyser Field, Northern Chile

    Science.gov (United States)

    Kelly, C. L.; Lawrence, J. F.

    2014-12-01

    During October 2012, 51 geophones and 6 broadband seismometers were deployed in an ~50x50m region surrounding a periodically erupting columnar geyser in the El Tatio Geyser Field, Chile. The dense array served as the seismic framework for a collaborative project to study the mechanics of complex hydrothermal systems. Contemporaneously, complementary geophysical measurements (including down-hole temperature and pressure, discharge rates, thermal imaging, water chemistry, and video) were also collected. Located on the western flanks of the Andes Mountains at an elevation of 4200m, El Tatio is the third largest geyser field in the world. Its non-pristine condition makes it an ideal location to perform minutely invasive geophysical studies. The El Jefe Geyser was chosen for its easily accessible conduit and extremely periodic eruption cycle (~120s). During approximately 2 weeks of continuous recording, we recorded ~2500 nighttime eruptions which lack cultural noise from tourism. With ample data, we aim to study how the source varies spatially and temporally during each phase of the geyser's eruption cycle. We are developing a new back-projection processing technique to improve source imaging for diffuse signals. Our method was previously applied to the Sierra Negra Volcano system, which also exhibits repeating harmonic and diffuse seismic sources. We back-project correlated seismic signals from the receivers back to their sources, assuming linear source to receiver paths and a known velocity model (obtained from ambient noise tomography). We apply polarization filters to isolate individual and concurrent geyser energy associated with P and S phases. We generate 4D, time-lapsed images of the geyser source field that illustrate how the source distribution changes through the eruption cycle. We compare images for pre-eruption, co-eruption, post-eruption and quiescent periods. We use our images to assess eruption mechanics in the system (i.e. top-down vs. bottom-up) and

  9. Spectral CT metal artifact reduction with an optimization-based reconstruction algorithm

    Science.gov (United States)

    Gilat Schmidt, Taly; Barber, Rina F.; Sidky, Emil Y.

    2017-03-01

    Metal objects cause artifacts in computed tomography (CT) images. This work investigated the feasibility of a spectral CT method to reduce metal artifacts. Spectral CT acquisition combined with optimization-based reconstruction is proposed to reduce artifacts by modeling the physical effects that cause metal artifacts and by providing the flexibility to selectively remove corrupted spectral measurements in the spectral-sinogram space. The proposed Constrained `One-Step' Spectral CT Image Reconstruction (cOSSCIR) algorithm directly estimates the basis material maps while enforcing convex constraints. The incorporation of constraints on the reconstructed basis material maps is expected to mitigate undersampling effects that occur when corrupted data is excluded from reconstruction. The feasibility of the cOSSCIR algorithm to reduce metal artifacts was investigated through simulations of a pelvis phantom. The cOSSCIR algorithm was investigated with and without the use of a third basis material representing metal. The effects of excluding data corrupted by metal were also investigated. The results demonstrated that the proposed cOSSCIR algorithm reduced metal artifacts and improved CT number accuracy. For example, CT number error in a bright shading artifact region was reduced from 403 HU in the reference filtered backprojection reconstruction to 33 HU using the proposed algorithm in simulation. In the dark shading regions, the error was reduced from 1141 HU to 25 HU. Of the investigated approaches, decomposing the data into three basis material maps and excluding the corrupted data demonstrated the greatest reduction in metal artifacts.

  10. Cone-beam ROI reconstruction using the laplace operator

    Energy Technology Data Exchange (ETDEWEB)

    Dennerlein, Frank [Siemens AG, Nuernberg (Germany). Healthcare Sector

    2011-07-01

    A novel filtered-backprojection (FBP) algorithm for 3D reconstruction in the circular geometry is presented. This algorithm achieves data filtering in two steps. The first step is a 2D Laplace filtering of the projections, which acts locally on the data and can thus be carried out accurately even in presence of (transaxial) data truncation. In a second step, a nonlocal 2D filtering operation is applied on the outcome of step 1. First simulation studies show that our algorithm is implicitly more resistant to truncated projections than many standard FBP methods without the need to involve an explicit data extrapolation scheme. (orig.)

  11. Single-slice rebinning method for helical cone-beam CT

    International Nuclear Information System (INIS)

    Noo, F.; Defrise, M.; Clackdoyle, R.

    1999-01-01

    In this paper, we present reconstruction results from helical cone-beam CT data, obtained using a simple and fast algorithm, which we call the CB-SSRB algorithm. This algorithm combines the single-slice rebinning method of PET imaging with the weighting schemes of spiral CT algorithms. The reconstruction is approximate but can be performed using 2D multislice fan-beam filtered backprojection. The quality of the results is surprisingly good, and far exceeds what one might expect, even when the pitch of the helix is large. In particular, with this algorithm comparable quality is obtained using helical cone-beam data with a normalized pitch of 10 to that obtained using standard spiral CT reconstruction with a normalized pitch of 2. (author)

  12. An efficient reconstruction algorithm for differential phase-contrast tomographic images from a limited number of views

    International Nuclear Information System (INIS)

    Sunaguchi, Naoki; Yuasa, Tetsuya; Gupta, Rajiv; Ando, Masami

    2015-01-01

    The main focus of this paper is reconstruction of tomographic phase-contrast image from a set of projections. We propose an efficient reconstruction algorithm for differential phase-contrast computed tomography that can considerably reduce the number of projections required for reconstruction. The key result underlying this research is a projection theorem that states that the second derivative of the projection set is linearly related to the Laplacian of the tomographic image. The proposed algorithm first reconstructs the Laplacian image of the phase-shift distribution from the second-derivative of the projections using total variation regularization. The second step is to obtain the phase-shift distribution by solving a Poisson equation whose source is the Laplacian image previously reconstructed under the Dirichlet condition. We demonstrate the efficacy of this algorithm using both synthetically generated simulation data and projection data acquired experimentally at a synchrotron. The experimental phase data were acquired from a human coronary artery specimen using dark-field-imaging optics pioneered by our group. Our results demonstrate that the proposed algorithm can reduce the number of projections to approximately 33% as compared with the conventional filtered backprojection method, without any detrimental effect on the image quality

  13. Correction of computed tomography motion artifacts using pixel-specific back-projection

    International Nuclear Information System (INIS)

    Ritchie, C.J.; Crawford, C.R.; Godwin, J.D.; Kim, Y. King, K.F.

    1996-01-01

    Cardiac and respiratory motion can cause artifacts in computed tomography scans of the chest. The authors describe a new method for reducing these artifacts called pixel-specific back-projection (PSBP). PSBP reduces artifacts caused by in-plane motion by reconstructing each pixel in a frame of reference that moves with the in-plane motion in the volume being scanned. The motion of the frame of reference is specified by constructing maps that describe the motion of each pixel in the image at the time each projection was measured; these maps are based on measurements of the in-plane motion. PSBP has been tested in computer simulations and with volunteer data. In computer simulations, PSBP removed the structured artifacts caused by motion. In scans of two volunteers, PSBP reduced doubling and streaking in chest scans to a level that made the images clinically useful. PSBP corrections of liver scans were less satisfactory because the motion of the liver is predominantly superior-inferior (S-I). PSBP uses a unique set of motion parameters to describe the motion at each point in the chest as opposed to requiring that the motion be described by a single set of parameters. Therefore, PSBP may be more useful in correcting clinical scans than are other correction techniques previously described

  14. A new cone-beam X-ray CT system with a reduced size planar detector

    International Nuclear Information System (INIS)

    Li Liang; Chen Zhiqiang; Zhang Li; Xing Yuxiang; Kang Kejun

    2006-01-01

    In a traditional cone-beam CT system, the cost of product and computation is very high. The authors propose a transversely truncated cone-beam X-ray CT system with a reduced size detector positioned off-center, in which X-ray beams only cover half of the object. The reduced detector size cuts the cost and the X-ray dose of the CT system. The existing CT reconstruction algorithms are not directly applicable in this new CT system. Hence, the authors develop a BPF-type direct backprojection algorithm. Different from the traditional rebinding methods, our algorithm directly backprojects the pretreated projection data without rebinding. This makes the algorithm compact and computationally more efficient. Finally, some numerical simulations and practical experiments are done to validate the proposed algorithm. (authors)

  15. Implementation of a cone-beam reconstruction algorithm for the single-circle source orbit with embedded misalignment correction using homogeneous coordinates

    International Nuclear Information System (INIS)

    Karolczak, Marek; Schaller, Stefan; Engelke, Klaus; Lutz, Andreas; Taubenreuther, Ulrike; Wiesent, Karl; Kalender, Willi

    2001-01-01

    We present an efficient implementation of an approximate cone-beam image reconstruction algorithm for application in tomography, which accounts for scanner mechanical misalignment. The implementation is based on the algorithm proposed by Feldkamp et al. [J. Opt. Soc. Am. A 6, 612-619 (1984)] and is directed at circular scan paths. The algorithm has been developed for the purpose of reconstructing volume data from projections acquired in an experimental x-ray microtomography (μCT) scanner [Engelke et al., Der Radiologe 39, 203-212 (1999)]. To mathematically model misalignment we use matrix notation with homogeneous coordinates to describe the scanner geometry, its misalignment, and the acquisition process. For convenience analysis is carried out for x-ray CT scanners, but it is applicable to any tomographic modality, where two-dimensional projection acquisition in cone beam geometry takes place, e.g., single photon emission computerized tomography. We derive an algorithm assuming misalignment errors to be small enough to weight and filter original projections and to embed compensation for misalignment in the backprojection. We verify the algorithm on simulations of virtual phantoms and scans of a physical multidisk (Defrise) phantom

  16. A fast rebinning algorithm for 3D positron emission tomography using John's equation

    Science.gov (United States)

    Defrise, Michel; Liu, Xuan

    1999-08-01

    Volume imaging in positron emission tomography (PET) requires the inversion of the three-dimensional (3D) x-ray transform. The usual solution to this problem is based on 3D filtered-backprojection (FBP), but is slow. Alternative methods have been proposed which factor the 3D data into independent 2D data sets corresponding to the 2D Radon transforms of a stack of parallel slices. Each slice is then reconstructed using 2D FBP. These so-called rebinning methods are numerically efficient but are approximate. In this paper a new exact rebinning method is derived by exploiting the fact that the 3D x-ray transform of a function is the solution to the second-order partial differential equation first studied by John. The method is proposed for two sampling schemes, one corresponding to a pair of infinite plane detectors and another one corresponding to a cylindrical multi-ring PET scanner. The new FORE-J algorithm has been implemented for this latter geometry and was compared with the approximate Fourier rebinning algorithm FORE and with another exact rebinning algorithm, FOREX. Results with simulated data demonstrate a significant improvement in accuracy compared to FORE, while the reconstruction time is doubled. Compared to FOREX, the FORE-J algorithm is slightly less accurate but more than three times faster.

  17. Evaluation of Origin Ensemble algorithm for image reconstruction for pixelated solid-state detectors with large number of channels

    Science.gov (United States)

    Kolstein, M.; De Lorenzo, G.; Mikhaylova, E.; Chmeissani, M.; Ariño, G.; Calderón, Y.; Ozsahin, I.; Uzun, D.

    2013-04-01

    The Voxel Imaging PET (VIP) Pathfinder project intends to show the advantages of using pixelated solid-state technology for nuclear medicine applications. It proposes designs for Positron Emission Tomography (PET), Positron Emission Mammography (PEM) and Compton gamma camera detectors with a large number of signal channels (of the order of 106). For PET scanners, conventional algorithms like Filtered Back-Projection (FBP) and Ordered Subset Expectation Maximization (OSEM) are straightforward to use and give good results. However, FBP presents difficulties for detectors with limited angular coverage like PEM and Compton gamma cameras, whereas OSEM has an impractically large time and memory consumption for a Compton gamma camera with a large number of channels. In this article, the Origin Ensemble (OE) algorithm is evaluated as an alternative algorithm for image reconstruction. Monte Carlo simulations of the PET design are used to compare the performance of OE, FBP and OSEM in terms of the bias, variance and average mean squared error (MSE) image quality metrics. For the PEM and Compton camera designs, results obtained with OE are presented.

  18. Comparison of 30-2 Standard and Fast programs of Swedish Interactive Threshold Algorithm of Humphrey Field Analyzer for perimetry in patients with intracranial tumors.

    Science.gov (United States)

    Singh, Manav Deep; Jain, Kanika

    2017-11-01

    To find out whether 30-2 Swedish Interactive Threshold Algorithm (SITA) Fast is comparable to 30-2 SITA Standard as a tool for perimetry among the patients with intracranial tumors. This was a prospective cross-sectional study involving 80 patients aged ≥18 years with imaging proven intracranial tumors and visual acuity better than 20/60. The patients underwent multiple visual field examinations using the two algorithms till consistent and repeatable results were obtained. A total of 140 eyes of 80 patients were analyzed. Almost 60% of patients undergoing perimetry with SITA Standard required two or more sessions to obtain consistent results, whereas the same could be obtained in 81.42% with SITA Fast in the first session itself. Of 140 eyes, 70 eyes had recordable field defects and the rest had no defects as detected by either of the two algorithms. Mean deviation (MD) (P = 0.56), pattern standard deviation (PSD) (P = 0.22), visual field index (P = 0.83) and number of depressed points at P 0.5% on MD and PSD probability plots showed no statistically significant difference between two algorithms. Bland-Altman test showed that considerable variability existed between two algorithms. Perimetry performed by SITA Standard and SITA Fast algorithm of Humphrey Field Analyzer gives comparable results among the patients of intracranial tumors. Being more time efficient and with a shorter learning curve, SITA Fast my be recommended as a standard test for the purpose of perimetry among these patients.

  19. Standardized evaluation framework for evaluating coronary artery stenosis detection, stenosis quantification and lumen segmentation algorithms in computed tomography angiography.

    Science.gov (United States)

    Kirişli, H A; Schaap, M; Metz, C T; Dharampal, A S; Meijboom, W B; Papadopoulou, S L; Dedic, A; Nieman, K; de Graaf, M A; Meijs, M F L; Cramer, M J; Broersen, A; Cetin, S; Eslami, A; Flórez-Valencia, L; Lor, K L; Matuszewski, B; Melki, I; Mohr, B; Oksüz, I; Shahzad, R; Wang, C; Kitslaar, P H; Unal, G; Katouzian, A; Örkisz, M; Chen, C M; Precioso, F; Najman, L; Masood, S; Ünay, D; van Vliet, L; Moreno, R; Goldenberg, R; Vuçini, E; Krestin, G P; Niessen, W J; van Walsum, T

    2013-12-01

    Though conventional coronary angiography (CCA) has been the standard of reference for diagnosing coronary artery disease in the past decades, computed tomography angiography (CTA) has rapidly emerged, and is nowadays widely used in clinical practice. Here, we introduce a standardized evaluation framework to reliably evaluate and compare the performance of the algorithms devised to detect and quantify the coronary artery stenoses, and to segment the coronary artery lumen in CTA data. The objective of this evaluation framework is to demonstrate the feasibility of dedicated algorithms to: (1) (semi-)automatically detect and quantify stenosis on CTA, in comparison with quantitative coronary angiography (QCA) and CTA consensus reading, and (2) (semi-)automatically segment the coronary lumen on CTA, in comparison with expert's manual annotation. A database consisting of 48 multicenter multivendor cardiac CTA datasets with corresponding reference standards are described and made available. The algorithms from 11 research groups were quantitatively evaluated and compared. The results show that (1) some of the current stenosis detection/quantification algorithms may be used for triage or as a second-reader in clinical practice, and that (2) automatic lumen segmentation is possible with a precision similar to that obtained by experts. The framework is open for new submissions through the website, at http://coronary.bigr.nl/stenoses/. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Development of computed tomography system and image reconstruction algorithm

    International Nuclear Information System (INIS)

    Khairiah Yazid; Mohd Ashhar Khalid; Azaman Ahmad; Khairul Anuar Mohd Salleh; Ab Razak Hamzah

    2006-01-01

    Computed tomography is one of the most advanced and powerful nondestructive inspection techniques, which is currently used in many different industries. In several CT systems, detection has been by combination of an X-ray image intensifier and charge -coupled device (CCD) camera or by using line array detector. The recent development of X-ray flat panel detector has made fast CT imaging feasible and practical. Therefore this paper explained the arrangement of a new detection system which is using the existing high resolution (127 μm pixel size) flat panel detector in MINT and the image reconstruction technique developed. The aim of the project is to develop a prototype flat panel detector based CT imaging system for NDE. The prototype consisted of an X-ray tube, a flat panel detector system, a rotation table and a computer system to control the sample motion and image acquisition. Hence this project is divided to two major tasks, firstly to develop image reconstruction algorithm and secondly to integrate X-ray imaging components into one CT system. The image reconstruction algorithm using filtered back-projection method is developed and compared to other techniques. The MATLAB program is the tools used for the simulations and computations for this project. (Author)

  1. Characterization and Comparison of the 10-2 SITA-Standard and Fast Algorithms

    Directory of Open Access Journals (Sweden)

    Yaniv Barkana

    2012-01-01

    Full Text Available Purpose: To compare the 10-2 SITA-standard and SITA-fast visual field programs in patients with glaucoma. Methods: We enrolled 26 patients with open angle glaucoma with involvement of at least one paracentral location on 24-2 SITA-standard field test. Each subject performed 10-2 SITA-standard and SITA-fast tests. Within 2 months this sequence of tests was repeated. Results: SITA-fast was 30% shorter than SITA-standard (5.5±1.1 vs 7.9±1.1 minutes, <0.001. Mean MD was statistically significantly higher for SITA-standard compared with SITA-fast at first visit (Δ=0.3 dB, =0.017 but not second visit. Inter-visit difference in MD or in number of depressed points was not significant for both programs. Bland-Altman analysis showed that clinically significant variations can exist in individual instances between the 2 programs and between repeat tests with the same program. Conclusions: The 10-2 SITA-fast algorithm is significantly shorter than SITA-standard. The two programs have similar long-term variability. Average same-visit between-program and same-program between-visit sensitivity results were similar for the study population, but clinically significant variability was observed for some individual test pairs. Group inter- and intra-program test results may be comparable, but in the management of the individual patient field change should be verified by repeat testing.

  2. Scatter-Reducing Sounding Filtration Using a Genetic Algorithm and Mean Monthly Standard Deviation

    Science.gov (United States)

    Mandrake, Lukas

    2013-01-01

    Retrieval algorithms like that used by the Orbiting Carbon Observatory (OCO)-2 mission generate massive quantities of data of varying quality and reliability. A computationally efficient, simple method of labeling problematic datapoints or predicting soundings that will fail is required for basic operation, given that only 6% of the retrieved data may be operationally processed. This method automatically obtains a filter designed to reduce scatter based on a small number of input features. Most machine-learning filter construction algorithms attempt to predict error in the CO2 value. By using a surrogate goal of Mean Monthly STDEV, the goal is to reduce the retrieved CO2 scatter rather than solving the harder problem of reducing CO2 error. This lends itself to improved interpretability and performance. This software reduces the scatter of retrieved CO2 values globally based on a minimum number of input features. It can be used as a prefilter to reduce the number of soundings requested, or as a post-filter to label data quality. The use of the MMS (Mean Monthly Standard deviation) provides a much cleaner, clearer filter than the standard ABS(CO2-truth) metrics previously employed by competitor methods. The software's main strength lies in a clearer (i.e., fewer features required) filter that more efficiently reduces scatter in retrieved CO2 rather than focusing on the more complex (and easily removed) bias issues.

  3. A three-dimensional reconstruction algorithm for an inverse-geometry volumetric CT system

    International Nuclear Information System (INIS)

    Schmidt, Taly Gilat; Fahrig, Rebecca; Pelc, Norbert J.

    2005-01-01

    An inverse-geometry volumetric computed tomography (IGCT) system has been proposed capable of rapidly acquiring sufficient data to reconstruct a thick volume in one circular scan. The system uses a large-area scanned source opposite a smaller detector. The source and detector have the same extent in the axial, or slice, direction, thus providing sufficient volumetric sampling and avoiding cone-beam artifacts. This paper describes a reconstruction algorithm for the IGCT system. The algorithm first rebins the acquired data into two-dimensional (2D) parallel-ray projections at multiple tilt and azimuthal angles, followed by a 3D filtered backprojection. The rebinning step is performed by gridding the data onto a Cartesian grid in a 4D projection space. We present a new method for correcting the gridding error caused by the finite and asymmetric sampling in the neighborhood of each output grid point in the projection space. The reconstruction algorithm was implemented and tested on simulated IGCT data. Results show that the gridding correction reduces the gridding errors to below one Hounsfield unit. With this correction, the reconstruction algorithm does not introduce significant artifacts or blurring when compared to images reconstructed from simulated 2D parallel-ray projections. We also present an investigation of the noise behavior of the method which verifies that the proposed reconstruction algorithm utilizes cross-plane rays as efficiently as in-plane rays and can provide noise comparable to an in-plane parallel-ray geometry for the same number of photons. Simulations of a resolution test pattern and the modulation transfer function demonstrate that the IGCT system, using the proposed algorithm, is capable of 0.4 mm isotropic resolution. The successful implementation of the reconstruction algorithm is an important step in establishing feasibility of the IGCT system

  4. Clinical application and validation of an iterative forward projection matching algorithm for permanent brachytherapy seed localization from conebeam-CT x-ray projections

    Energy Technology Data Exchange (ETDEWEB)

    Pokhrel, Damodar; Murphy, Martin J.; Todor, Dorin A.; Weiss, Elisabeth; Williamson, Jeffrey F. [Department of Radiation Oncology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298 (United States)

    2010-09-15

    Purpose: To experimentally validate a new algorithm for reconstructing the 3D positions of implanted brachytherapy seeds from postoperatively acquired 2D conebeam-CT (CBCT) projection images. Methods: The iterative forward projection matching (IFPM) algorithm finds the 3D seed geometry that minimizes the sum of the squared intensity differences between computed projections of an initial estimate of the seed configuration and radiographic projections of the implant. In-house machined phantoms, containing arrays of 12 and 72 seeds, respectively, are used to validate this method. Also, four {sup 103}Pd postimplant patients are scanned using an ACUITY digital simulator. Three to ten x-ray images are selected from the CBCT projection set and processed to create binary seed-only images. To quantify IFPM accuracy, the reconstructed seed positions are forward projected and overlaid on the measured seed images to find the nearest-neighbor distance between measured and computed seed positions for each image pair. Also, the estimated 3D seed coordinates are compared to known seed positions in the phantom and clinically obtained VariSeed planning coordinates for the patient data. Results: For the phantom study, seed localization error is (0.58{+-}0.33) mm. For all four patient cases, the mean registration error is better than 1 mm while compared against the measured seed projections. IFPM converges in 20-28 iterations, with a computation time of about 1.9-2.8 min/iteration on a 1 GHz processor. Conclusions: The IFPM algorithm avoids the need to match corresponding seeds in each projection as required by standard back-projection methods. The authors' results demonstrate {approx}1 mm accuracy in reconstructing the 3D positions of brachytherapy seeds from the measured 2D projections. This algorithm also successfully localizes overlapping clustered and highly migrated seeds in the implant.

  5. Clinical application and validation of an iterative forward projection matching algorithm for permanent brachytherapy seed localization from conebeam-CT x-ray projections.

    Science.gov (United States)

    Pokhrel, Damodar; Murphy, Martin J; Todor, Dorin A; Weiss, Elisabeth; Williamson, Jeffrey F

    2010-09-01

    To experimentally validate a new algorithm for reconstructing the 3D positions of implanted brachytherapy seeds from postoperatively acquired 2D conebeam-CT (CBCT) projection images. The iterative forward projection matching (IFPM) algorithm finds the 3D seed geometry that minimizes the sum of the squared intensity differences between computed projections of an initial estimate of the seed configuration and radiographic projections of the implant. In-house machined phantoms, containing arrays of 12 and 72 seeds, respectively, are used to validate this method. Also, four 103Pd postimplant patients are scanned using an ACUITY digital simulator. Three to ten x-ray images are selected from the CBCT projection set and processed to create binary seed-only images. To quantify IFPM accuracy, the reconstructed seed positions are forward projected and overlaid on the measured seed images to find the nearest-neighbor distance between measured and computed seed positions for each image pair. Also, the estimated 3D seed coordinates are compared to known seed positions in the phantom and clinically obtained VariSeed planning coordinates for the patient data. For the phantom study, seed localization error is (0.58 +/- 0.33) mm. For all four patient cases, the mean registration error is better than 1 mm while compared against the measured seed projections. IFPM converges in 20-28 iterations, with a computation time of about 1.9-2.8 min/ iteration on a 1 GHz processor. The IFPM algorithm avoids the need to match corresponding seeds in each projection as required by standard back-projection methods. The authors' results demonstrate approximately 1 mm accuracy in reconstructing the 3D positions of brachytherapy seeds from the measured 2D projections. This algorithm also successfully localizes overlapping clustered and highly migrated seeds in the implant.

  6. Deriving causes of child mortality by re–analyzing national verbal autopsy data applying a standardized computer algorithm in Uganda, Rwanda and Ghana

    Directory of Open Access Journals (Sweden)

    Li Liu

    2015-06-01

    Full Text Available Background To accelerate progress toward the Millennium Development Goal 4, reliable information on causes of child mortality is critical. With more national verbal autopsy (VA studies becoming available, how to improve consistency of national VA derived child causes of death should be considered for the purpose of global comparison. We aimed to adapt a standardized computer algorithm to re–analyze national child VA studies conducted in Uganda, Rwanda and Ghana recently, and compare our results with those derived from physician review to explore issues surrounding the application of the standardized algorithm in place of physician review. Methods and Findings We adapted the standardized computer algorithm considering the disease profile in Uganda, Rwanda and Ghana. We then derived cause–specific mortality fractions applying the adapted algorithm and compared the results with those ascertained by physician review by examining the individual– and population–level agreement. Our results showed that the leading causes of child mortality in Uganda, Rwanda and Ghana were pneumonia (16.5–21.1% and malaria (16.8–25.6% among children below five years and intrapartum–related complications (6.4–10.7% and preterm birth complications (4.5–6.3% among neonates. The individual level agreement was poor to substantial across causes (kappa statistics: –0.03 to 0.83, with moderate to substantial agreement observed for injury, congenital malformation, preterm birth complications, malaria and measles. At the population level, despite fairly different cause–specific mortality fractions, the ranking of the leading causes was largely similar. Conclusions The standardized computer algorithm produced internally consistent distribution of causes of child mortality. The results were also qualitatively comparable to those based on physician review from the perspective of public health policy. The standardized computer algorithm has the advantage of

  7. Evaluation of 3D reconstruction algorithms for a small animal PET camera

    International Nuclear Information System (INIS)

    Johnson, C.A.; Gandler, W.R.; Seidel, J.

    1996-01-01

    The use of paired, opposing position-sensitive phototube scintillation cameras (SCs) operating in coincidence for small animal imaging with positron emitters is currently under study. Because of the low sensitivity of the system even in 3D mode and the need to produce images with high resolution, it was postulated that a 3D expectation maximization (EM) reconstruction algorithm might be well suited for this application. We investigated four reconstruction algorithms for the 3D SC PET camera: 2D filtered back-projection (FBP), 2D ordered subset EM (OSEM), 3D reprojection (3DRP), and 3D OSEM. Noise was assessed for all slices by the coefficient of variation in a simulated uniform cylinder. Resolution was assessed from a simulation of 15 point sources in the warm background of the uniform cylinder. At comparable noise levels, the resolution achieved with OSEM (0.9-mm to 1.2-mm) is significantly better than that obtained with FBP or 3DRP (1.5-mm to 2.0-mm.) Images of a rat skull labeled with 18 F-fluoride suggest that 3D OSEM can improve image quality of a small animal PET camera

  8. Analytical algorithm for the generation of polygonal projection data for tomographic reconstruction

    International Nuclear Information System (INIS)

    Davis, G.R.

    1996-01-01

    Tomographic reconstruction algorithms and filters can be tested using a mathematical phantom, that is, a computer program which takes numerical data as its input and outputs derived projection data. The input data is usually in the form of pixel ''densities'' over a regular grid, or position and dimensions of simple, geometrical objects. The former technique allows a greater variety of objects to be simulated, but is less suitable in the case when very small (relative to the ray-spacing) features are to be simulated. The second technique is normally used to simulate biological specimens, typically a human skull, modelled as a number of ellipses. This is not suitable for simulating non-biological specimens with features such as straight edges and fine cracks. We have therefore devised an algorithm for simulating objects described as a series of polygons. These polygons, or parts of them, may be smaller than the ray-spacing and there is no limit, except that imposed by computing resources, on the complexity, number or superposition of polygons. A simple test of such a phantom, reconstructed using the filtered back-projection method, revealed reconstruction artefacts not normally seen with ''biological'' phantoms. (orig.)

  9. Update on the non-prewhitening model observer in computed tomography for the assessment of the adaptive statistical and model-based iterative reconstruction algorithms

    Science.gov (United States)

    Ott, Julien G.; Becce, Fabio; Monnin, Pascal; Schmidt, Sabine; Bochud, François O.; Verdun, Francis R.

    2014-08-01

    The state of the art to describe image quality in medical imaging is to assess the performance of an observer conducting a task of clinical interest. This can be done by using a model observer leading to a figure of merit such as the signal-to-noise ratio (SNR). Using the non-prewhitening (NPW) model observer, we objectively characterised the evolution of its figure of merit in various acquisition conditions. The NPW model observer usually requires the use of the modulation transfer function (MTF) as well as noise power spectra. However, although the computation of the MTF poses no problem when dealing with the traditional filtered back-projection (FBP) algorithm, this is not the case when using iterative reconstruction (IR) algorithms, such as adaptive statistical iterative reconstruction (ASIR) or model-based iterative reconstruction (MBIR). Given that the target transfer function (TTF) had already shown it could accurately express the system resolution even with non-linear algorithms, we decided to tune the NPW model observer, replacing the standard MTF by the TTF. It was estimated using a custom-made phantom containing cylindrical inserts surrounded by water. The contrast differences between the inserts and water were plotted for each acquisition condition. Then, mathematical transformations were performed leading to the TTF. As expected, the first results showed a dependency of the image contrast and noise levels on the TTF for both ASIR and MBIR. Moreover, FBP also proved to be dependent of the contrast and noise when using the lung kernel. Those results were then introduced in the NPW model observer. We observed an enhancement of SNR every time we switched from FBP to ASIR to MBIR. IR algorithms greatly improve image quality, especially in low-dose conditions. Based on our results, the use of MBIR could lead to further dose reduction in several clinical applications.

  10. Fast volume reconstruction in positron emission tomography: Implementation of four algorithms on a high-performance scalable parallel platform

    International Nuclear Information System (INIS)

    Egger, M.L.; Scheurer, A.H.; Joseph, C.

    1996-01-01

    The issue of long reconstruction times in PET has been addressed from several points of view, resulting in an affordable dedicated system capable of handling routine 3D reconstruction in a few minutes per frame: on the hardware side using fast processors and a parallel architecture, and on the software side, using efficient implementations of computationally less intensive algorithms. Execution times obtained for the PRT-1 data set on a parallel system of five hybrid nodes, each combining an Alpha processor for computation and a transputer for communication, are the following (256 sinograms of 96 views by 128 radial samples): Ramp algorithm 56 s, Favor 81 s and reprojection algorithm of Kinahan and Rogers 187 s. The implementation of fast rebinning algorithms has shown our hardware platform to become communications-limited; they execute faster on a conventional single-processor Alpha workstation: single-slice rebinning 7 s, Fourier rebinning 22 s, 2D filtered backprojection 5 s. The scalability of the system has been demonstrated, and a saturation effect at network sizes above ten nodes has become visible; new T9000-based products lifting most of the constraints on network topology and link throughput are expected to result in improved parallel efficiency and scalability properties

  11. An electron tomography algorithm for reconstructing 3D morphology using surface tangents of projected scattering interfaces

    Science.gov (United States)

    Petersen, T. C.; Ringer, S. P.

    2010-03-01

    Upon discerning the mere shape of an imaged object, as portrayed by projected perimeters, the full three-dimensional scattering density may not be of particular interest. In this situation considerable simplifications to the reconstruction problem are possible, allowing calculations based upon geometric principles. Here we describe and provide an algorithm which reconstructs the three-dimensional morphology of specimens from tilt series of images for application to electron tomography. Our algorithm uses a differential approach to infer the intersection of projected tangent lines with surfaces which define boundaries between regions of different scattering densities within and around the perimeters of specimens. Details of the algorithm implementation are given and explained using reconstruction calculations from simulations, which are built into the code. An experimental application of the algorithm to a nano-sized Aluminium tip is also presented to demonstrate practical analysis for a real specimen. Program summaryProgram title: STOMO version 1.0 Catalogue identifier: AEFS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFS_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2988 No. of bytes in distributed program, including test data, etc.: 191 605 Distribution format: tar.gz Programming language: C/C++ Computer: PC Operating system: Windows XP RAM: Depends upon the size of experimental data as input, ranging from 200 Mb to 1.5 Gb Supplementary material: Sample output files, for the test run provided, are available. Classification: 7.4, 14 External routines: Dev-C++ ( http://www.bloodshed.net/devcpp.html) Nature of problem: Electron tomography of specimens for which conventional back projection may fail and/or data for which there is a limited angular

  12. FAST (Four chamber view And Swing Technique) Echo: a Novel and Simple Algorithm to Visualize Standard Fetal Echocardiographic Planes

    Science.gov (United States)

    Yeo, Lami; Romero, Roberto; Jodicke, Cristiano; Oggè, Giovanna; Lee, Wesley; Kusanovic, Juan Pedro; Vaisbuch, Edi; Hassan, Sonia S.

    2010-01-01

    Objective To describe a novel and simple algorithm (FAST Echo: Four chamber view And Swing Technique) to visualize standard diagnostic planes of fetal echocardiography from dataset volumes obtained with spatiotemporal image correlation (STIC) and applying a new display technology (OmniView). Methods We developed an algorithm to image standard fetal echocardiographic planes by drawing four dissecting lines through the longitudinal view of the ductal arch contained in a STIC volume dataset. Three of the lines are locked to provide simultaneous visualization of targeted planes, and the fourth line (unlocked) “swings” through the ductal arch image (“swing technique”), providing an infinite number of cardiac planes in sequence. Each line generated the following plane(s): 1) Line 1: three-vessels and trachea view; 2) Line 2: five-chamber view and long axis view of the aorta (obtained by rotation of the five-chamber view on the y-axis); 3) Line 3: four-chamber view; and 4) “Swing” line: three-vessels and trachea view, five-chamber view and/or long axis view of the aorta, four-chamber view, and stomach. The algorithm was then tested in 50 normal hearts (15.3 – 40 weeks of gestation) and visualization rates for cardiac diagnostic planes were calculated. To determine if the algorithm could identify planes that departed from the normal images, we tested the algorithm in 5 cases with proven congenital heart defects. Results In normal cases, the FAST Echo algorithm (3 locked lines and rotation of the five-chamber view on the y-axis) was able to generate the intended planes (longitudinal view of the ductal arch, pulmonary artery, three-vessels and trachea view, five-chamber view, long axis view of the aorta, four-chamber view): 1) individually in 100% of cases [except for the three-vessel and trachea view, which was seen in 98% (49/50)]; and 2) simultaneously in 98% (49/50). The “swing technique” was able to generate the three-vessels and trachea view, five

  13. Four-chamber view and 'swing technique' (FAST) echo: a novel and simple algorithm to visualize standard fetal echocardiographic planes.

    Science.gov (United States)

    Yeo, L; Romero, R; Jodicke, C; Oggè, G; Lee, W; Kusanovic, J P; Vaisbuch, E; Hassan, S

    2011-04-01

    To describe a novel and simple algorithm (four-chamber view and 'swing technique' (FAST) echo) for visualization of standard diagnostic planes of fetal echocardiography from dataset volumes obtained with spatiotemporal image correlation (STIC) and applying a new display technology (OmniView). We developed an algorithm to image standard fetal echocardiographic planes by drawing four dissecting lines through the longitudinal view of the ductal arch contained in a STIC volume dataset. Three of the lines are locked to provide simultaneous visualization of targeted planes, and the fourth line (unlocked) 'swings' through the ductal arch image (swing technique), providing an infinite number of cardiac planes in sequence. Each line generates the following plane(s): (a) Line 1: three-vessels and trachea view; (b) Line 2: five-chamber view and long-axis view of the aorta (obtained by rotation of the five-chamber view on the y-axis); (c) Line 3: four-chamber view; and (d) 'swing line': three-vessels and trachea view, five-chamber view and/or long-axis view of the aorta, four-chamber view and stomach. The algorithm was then tested in 50 normal hearts in fetuses at 15.3-40 weeks' gestation and visualization rates for cardiac diagnostic planes were calculated. To determine whether the algorithm could identify planes that departed from the normal images, we tested the algorithm in five cases with proven congenital heart defects. In normal cases, the FAST echo algorithm (three locked lines and rotation of the five-chamber view on the y-axis) was able to generate the intended planes (longitudinal view of the ductal arch, pulmonary artery, three-vessels and trachea view, five-chamber view, long-axis view of the aorta, four-chamber view) individually in 100% of cases (except for the three-vessels and trachea view, which was seen in 98% (49/50)) and simultaneously in 98% (49/50). The swing technique was able to generate the three-vessels and trachea view, five-chamber view and/or long

  14. Robustness and precision of an automatic marker detection algorithm for online prostate daily targeting using a standard V-EPID.

    Science.gov (United States)

    Aubin, S; Beaulieu, L; Pouliot, S; Pouliot, J; Roy, R; Girouard, L M; Martel-Brisson, N; Vigneault, E; Laverdière, J

    2003-07-01

    An algorithm for the daily localization of the prostate using implanted markers and a standard video-based electronic portal imaging device (V-EPID) has been tested. Prior to planning, three gold markers were implanted in the prostate of seven patients. The clinical images were acquired with a BeamViewPlus 2.1 V-EPID for each field during the normal course radiotherapy treatment and are used off-line to determine the ability of the automatic marker detection algorithm to adequately and consistently detect the markers. Clinical images were obtained with various dose levels from ranging 2.5 to 75 MU. The algorithm is based on marker attenuation characterization in the portal image and spatial distribution. A total of 1182 clinical images were taken. The results show an average efficiency of 93% for the markers detected individually and 85% for the group of markers. This algorithm accomplishes the detection and validation in 0.20-0.40 s. When the center of mass of the group of implanted markers is used, then all displacements can be corrected to within 1.0 mm in 84% of the cases and within 1.5 mm in 97% of cases. The standard video-based EPID tested provides excellent marker detection capability even with low dose levels. The V-EPID can be used successfully with radiopaque markers and the automatic detection algorithm to track and correct the daily setup deviations due to organ motions.

  15. Validation of the Welch Allyn SureBP (inflation) and StepBP (deflation) algorithms by AAMI standard testing and BHS data analysis.

    Science.gov (United States)

    Alpert, Bruce S

    2011-04-01

    We evaluated two new Welch Allyn automated blood pressure (BP) algorithms. The first, SureBP, estimates BP during cuff inflation; the second, StepBP, does so during deflation. We followed the American National Standards Institute/Association for the Advancement of Medical Instrumentation SP10:2006 standard for testing and data analysis. The data were also analyzed using the British Hypertension Society analysis strategy. We tested children, adolescents, and adults. The requirements of the American National Standards Institute/Association for the Advancement of Medical Instrumentation SP10:2006 standard were fulfilled with respect to BP levels, arm sizes, and ages. Association for the Advancement of Medical Instrumentation SP10 Method 1 data analysis was used. The mean±standard deviation for the device readings compared with auscultation by paired, trained, blinded observers in the SureBP mode were -2.14±7.44 mmHg for systolic BP (SBP) and -0.55±5.98 mmHg for diastolic BP (DBP). In the StepBP mode, the differences were -3.61±6.30 mmHg for SBP and -2.03±5.30 mmHg for DBP. Both algorithms achieved an A grade for both SBP and DBP by British Hypertension Society analysis. The SureBP inflation-based algorithm will be available in many new-generation Welch Allyn monitors. Its use will reduce the time it takes to estimate BP in critical patient care circumstances. The device will not need to inflate to excessive suprasystolic BPs to obtain the SBP values. Deflation is rapid once SBP has been determined, thus reducing the total time of cuff inflation and reducing patient discomfort. If the SureBP fails to obtain a BP value, the StepBP algorithm is activated to estimate BP by traditional deflation methodology.

  16. The Algorithm for Algorithms: An Evolutionary Algorithm Based on Automatic Designing of Genetic Operators

    Directory of Open Access Journals (Sweden)

    Dazhi Jiang

    2015-01-01

    Full Text Available At present there is a wide range of evolutionary algorithms available to researchers and practitioners. Despite the great diversity of these algorithms, virtually all of the algorithms share one feature: they have been manually designed. A fundamental question is “are there any algorithms that can design evolutionary algorithms automatically?” A more complete definition of the question is “can computer construct an algorithm which will generate algorithms according to the requirement of a problem?” In this paper, a novel evolutionary algorithm based on automatic designing of genetic operators is presented to address these questions. The resulting algorithm not only explores solutions in the problem space like most traditional evolutionary algorithms do, but also automatically generates genetic operators in the operator space. In order to verify the performance of the proposed algorithm, comprehensive experiments on 23 well-known benchmark optimization problems are conducted. The results show that the proposed algorithm can outperform standard differential evolution algorithm in terms of convergence speed and solution accuracy which shows that the algorithm designed automatically by computers can compete with the algorithms designed by human beings.

  17. Design and evaluation of basic standard encryption algorithm modules using nanosized complementary metal oxide semiconductor molecular circuits

    Science.gov (United States)

    Masoumi, Massoud; Raissi, Farshid; Ahmadian, Mahmoud; Keshavarzi, Parviz

    2006-01-01

    We are proposing that the recently proposed semiconductor-nanowire-molecular architecture (CMOL) is an optimum platform to realize encryption algorithms. The basic modules for the advanced encryption standard algorithm (Rijndael) have been designed using CMOL architecture. The performance of this design has been evaluated with respect to chip area and speed. It is observed that CMOL provides considerable improvement over implementation with regular CMOS architecture even with a 20% defect rate. Pseudo-optimum gate placement and routing are provided for Rijndael building blocks and the possibility of designing high speed, attack tolerant and long key encryptions are discussed.

  18. Fully three-dimensional reconstruction from data collected on concentric cubes in Fourier space: implementation and a sample application to MRI [magnetic resonance imaging

    International Nuclear Information System (INIS)

    Herman, G.T.; Roberts, D.; Axel, L.

    1992-01-01

    An algorithm is proposed for rapid and accurate reconstruction from data collected in Fourier space at points arranged on a grid of concentric cubes. The whole process has computational complexity of the same order as required for the 3D fast Fourier transform and so (for medically relevant sizes of the data set) it is faster than backprojection into the same size rectangular grid. The design of the algorithm ensures that no interpolations are needed, in contrast to methods involving backprojection with their unavoidable interpolations. As an application, a 3D data collection method for MRI has been designed which directly samples the Fourier transform of the object to be reconstructed on concentric cubes as needed for the algorithm. (author)

  19. Implementation of an Evidence-Based and Content Validated Standardized Ostomy Algorithm Tool in Home Care: A Quality Improvement Project.

    Science.gov (United States)

    Bare, Kimberly; Drain, Jerri; Timko-Progar, Monica; Stallings, Bobbie; Smith, Kimberly; Ward, Naomi; Wright, Sandra

    Many nurses have limited experience with ostomy management. We sought to provide a standardized approach to ostomy education and management to support nurses in early identification of stomal and peristomal complications, pouching problems, and provide standardized solutions for managing ostomy care in general while improving utilization of formulary products. This article describes development and testing of an ostomy algorithm tool.

  20. Energy efficient data sorting using standard sorting algorithms

    KAUST Repository

    Bunse, Christian; Hö pfner, Hagen; Roychoudhury, Suman; Mansour, Essam

    2011-01-01

    Protecting the environment by saving energy and thus reducing carbon dioxide emissions is one of todays hottest and most challenging topics. Although the perspective for reducing energy consumption, from ecological and business perspectives is clear, from a technological point of view, the realization especially for mobile systems still falls behind expectations. Novel strategies that allow (software) systems to dynamically adapt themselves at runtime can be effectively used to reduce energy consumption. This paper presents a case study that examines the impact of using an energy management component that dynamically selects and applies the "optimal" sorting algorithm, from an energy perspective, during multi-party mobile communication. Interestingly, the results indicate that algorithmic performance is not key and that dynamically switching algorithms at runtime does have a significant impact on energy consumption. © Springer-Verlag Berlin Heidelberg 2011.

  1. Metal artifact reduction image reconstruction algorithm for CT of implanted metal orthopedic devices: a work in progress

    International Nuclear Information System (INIS)

    Liu, Patrick T.; Pavlicek, William P.; Peter, Mary B.; Roberts, Catherine C.; Paden, Robert G.; Spangehl, Mark J.

    2009-01-01

    Despite recent advances in CT technology, metal orthopedic implants continue to cause significant artifacts on many CT exams, often obscuring diagnostic information. We performed this prospective study to evaluate the effectiveness of an experimental metal artifact reduction (MAR) image reconstruction program for CT. We examined image quality on CT exams performed in patients with hip arthroplasties as well as other types of implanted metal orthopedic devices. The exam raw data were reconstructed using two different methods, the standard filtered backprojection (FBP) program and the MAR program. Images were evaluated for quality of the metal-cement-bone interfaces, trabeculae ≤1 cm from the metal, trabeculae 5 cm apart from the metal, streak artifact, and overall soft tissue detail. The Wilcoxon Rank Sum test was used to compare the image scores from the large and small prostheses. Interobserver agreement was calculated. When all patients were grouped together, the MAR images showed mild to moderate improvement over the FBP images. However, when the cases were divided by implant size, the MAR images consistently received higher image quality scores than the FBP images for large metal implants (total hip prostheses). For small metal implants (screws, plates, staples), conversely, the MAR images received lower image quality scores than the FBP images due to blurring artifact. The difference of image scores for the large and small implants was significant (p=0.002). Interobserver agreement was found to be high for all measures of image quality (k>0.9). The experimental MAR reconstruction algorithm significantly improved CT image quality for patients with large metal implants. However, the MAR algorithm introduced blurring artifact that reduced image quality with small metal implants. (orig.)

  2. Low dose CT reconstruction via L1 norm dictionary learning using alternating minimization algorithm and balancing principle.

    Science.gov (United States)

    Wu, Junfeng; Dai, Fang; Hu, Gang; Mou, Xuanqin

    2018-04-18

    Excessive radiation exposure in computed tomography (CT) scans increases the chance of developing cancer and has become a major clinical concern. Recently, statistical iterative reconstruction (SIR) with l0-norm dictionary learning regularization has been developed to reconstruct CT images from the low dose and few-view dataset in order to reduce radiation dose. Nonetheless, the sparse regularization term adopted in this approach is l0-norm, which cannot guarantee the global convergence of the proposed algorithm. To address this problem, in this study we introduced the l1-norm dictionary learning penalty into SIR framework for low dose CT image reconstruction, and developed an alternating minimization algorithm to minimize the associated objective function, which transforms CT image reconstruction problem into a sparse coding subproblem and an image updating subproblem. During the image updating process, an efficient model function approach based on balancing principle is applied to choose the regularization parameters. The proposed alternating minimization algorithm was evaluated first using real projection data of a sheep lung CT perfusion and then using numerical simulation based on sheep lung CT image and chest image. Both visual assessment and quantitative comparison using terms of root mean square error (RMSE) and structural similarity (SSIM) index demonstrated that the new image reconstruction algorithm yielded similar performance with l0-norm dictionary learning penalty and outperformed the conventional filtered backprojection (FBP) and total variation (TV) minimization algorithms.

  3. Digital Tomosynthesis System Geometry Analysis Using Convolution-Based Blur-and-Add (BAA) Model.

    Science.gov (United States)

    Wu, Meng; Yoon, Sungwon; Solomon, Edward G; Star-Lack, Josh; Pelc, Norbert; Fahrig, Rebecca

    2016-01-01

    Digital tomosynthesis is a three-dimensional imaging technique with a lower radiation dose than computed tomography (CT). Due to the missing data in tomosynthesis systems, out-of-plane structures in the depth direction cannot be completely removed by the reconstruction algorithms. In this work, we analyzed the impulse responses of common tomosynthesis systems on a plane-to-plane basis and proposed a fast and accurate convolution-based blur-and-add (BAA) model to simulate the backprojected images. In addition, the analysis formalism describing the impulse response of out-of-plane structures can be generalized to both rotating and parallel gantries. We implemented a ray tracing forward projection and backprojection (ray-based model) algorithm and the convolution-based BAA model to simulate the shift-and-add (backproject) tomosynthesis reconstructions. The convolution-based BAA model with proper geometry distortion correction provides reasonably accurate estimates of the tomosynthesis reconstruction. A numerical comparison indicates that the simulated images using the two models differ by less than 6% in terms of the root-mean-squared error. This convolution-based BAA model can be used in efficient system geometry analysis, reconstruction algorithm design, out-of-plane artifacts suppression, and CT-tomosynthesis registration.

  4. Algorithms in Singular

    Directory of Open Access Journals (Sweden)

    Hans Schonemann

    1996-12-01

    Full Text Available Some algorithms for singularity theory and algebraic geometry The use of Grobner basis computations for treating systems of polynomial equations has become an important tool in many areas. This paper introduces of the concept of standard bases (a generalization of Grobner bases and the application to some problems from algebraic geometry. The examples are presented as SINGULAR commands. A general introduction to Grobner bases can be found in the textbook [CLO], an introduction to syzygies in [E] and [St1]. SINGULAR is a computer algebra system for computing information about singularities, for use in algebraic geometry. The basic algorithms in SINGULAR are several variants of a general standard basis algorithm for general monomial orderings (see [GG]. This includes wellorderings (Buchberger algorithm ([B1], [B2] and tangent cone orderings (Mora algorithm ([M1], [MPT] as special cases: It is able to work with non-homogeneous and homogeneous input and also to compute in the localization of the polynomial ring in 0. Recent versions include algorithms to factorize polynomials and a factorizing Grobner basis algorithm. For a complete description of SINGULAR see [Si].

  5. Portable Wideband Microwave Imaging System for Intracranial Hemorrhage Detection Using Improved Back-projection Algorithm with Model of Effective Head Permittivity

    Science.gov (United States)

    Mobashsher, Ahmed Toaha; Mahmoud, A.; Abbosh, A. M.

    2016-02-01

    Intracranial hemorrhage is a medical emergency that requires rapid detection and medication to restrict any brain damage to minimal. Here, an effective wideband microwave head imaging system for on-the-spot detection of intracranial hemorrhage is presented. The operation of the system relies on the dielectric contrast between healthy brain tissues and a hemorrhage that causes a strong microwave scattering. The system uses a compact sensing antenna, which has an ultra-wideband operation with directional radiation, and a portable, compact microwave transceiver for signal transmission and data acquisition. The collected data is processed to create a clear image of the brain using an improved back projection algorithm, which is based on a novel effective head permittivity model. The system is verified in realistic simulation and experimental environments using anatomically and electrically realistic human head phantoms. Quantitative and qualitative comparisons between the images from the proposed and existing algorithms demonstrate significant improvements in detection and localization accuracy. The radiation and thermal safety of the system are examined and verified. Initial human tests are conducted on healthy subjects with different head sizes. The reconstructed images are statistically analyzed and absence of false positive results indicate the efficacy of the proposed system in future preclinical trials.

  6. Statistical noise with the weighted backprojection method for single photon emission computed tomography

    International Nuclear Information System (INIS)

    Murayama, Hideo; Tanaka, Eiichi; Toyama, Hinako.

    1985-01-01

    The weighted backprojection (WBP) method and the radial post-correction (RPC) method were compared with other several attenuation correction methods for single photon emission computed tomography by computer simulation. These methods are the pre-correction method with arithmetic means of opposing projections, the post-correction method with a correction matrix, and the inverse attenuated Randon transform method. Statistical mean square noise in a reconstructed image was formulated, and was displayed two-dimensionally for typical simulated phantoms. The noise image for the WBP method was dependent on several parameters, namely, size of an attenuating object, distribution of activity, the attenuation coefficient, and choise of the reconstruction index, k and position of the reconstruction origin. The noise image for the WBP method with k=0 was almost the same for the RPC method. It has been shown that position of the reconstruction origin has to be chosen appropriately in order to improve the noise properties of the reconstructed image for the WBP method as well as the RPC method. Comparision of the different attenuation correction methods accomplished by using both the reconstructed images and the statistical noise images with the same mathematical phantom and convolving function concluded that the WBP method and the RPC method were more amenable to any radioisotope distributions than the other methods, and had the advantage of flexibility to improve image noise of any local positions. (author)

  7. STAR Algorithm Integration Team - Facilitating operational algorithm development

    Science.gov (United States)

    Mikles, V. J.

    2015-12-01

    The NOAA/NESDIS Center for Satellite Research and Applications (STAR) provides technical support of the Joint Polar Satellite System (JPSS) algorithm development and integration tasks. Utilizing data from the S-NPP satellite, JPSS generates over thirty Environmental Data Records (EDRs) and Intermediate Products (IPs) spanning atmospheric, ocean, cryosphere, and land weather disciplines. The Algorithm Integration Team (AIT) brings technical expertise and support to product algorithms, specifically in testing and validating science algorithms in a pre-operational environment. The AIT verifies that new and updated algorithms function in the development environment, enforces established software development standards, and ensures that delivered packages are functional and complete. AIT facilitates the development of new JPSS-1 algorithms by implementing a review approach based on the Enterprise Product Lifecycle (EPL) process. Building on relationships established during the S-NPP algorithm development process and coordinating directly with science algorithm developers, the AIT has implemented structured reviews with self-contained document suites. The process has supported algorithm improvements for products such as ozone, active fire, vegetation index, and temperature and moisture profiles.

  8. Automatic Circuit Design and Optimization Using Modified PSO Algorithm

    Directory of Open Access Journals (Sweden)

    Subhash Patel

    2016-04-01

    Full Text Available In this work, we have proposed modified PSO algorithm based optimizer for automatic circuit design. The performance of the modified PSO algorithm is compared with two other evolutionary algorithms namely ABC algorithm and standard PSO algorithm by designing two stage CMOS operational amplifier and bulk driven OTA in 130nm technology. The results show the robustness of the proposed algorithm. With modified PSO algorithm, the average design error for two stage op-amp is only 0.054% in contrast to 3.04% for standard PSO algorithm and 5.45% for ABC algorithm. For bulk driven OTA, average design error is 1.32% with MPSO compared to 4.70% with ABC algorithm and 5.63% with standard PSO algorithm.

  9. A parallel row-based algorithm with error control for standard-cell replacement on a hypercube multiprocessor

    Science.gov (United States)

    Sargent, Jeff Scott

    1988-01-01

    A new row-based parallel algorithm for standard-cell placement targeted for execution on a hypercube multiprocessor is presented. Key features of this implementation include a dynamic simulated-annealing schedule, row-partitioning of the VLSI chip image, and two novel new approaches to controlling error in parallel cell-placement algorithms; Heuristic Cell-Coloring and Adaptive (Parallel Move) Sequence Control. Heuristic Cell-Coloring identifies sets of noninteracting cells that can be moved repeatedly, and in parallel, with no buildup of error in the placement cost. Adaptive Sequence Control allows multiple parallel cell moves to take place between global cell-position updates. This feedback mechanism is based on an error bound derived analytically from the traditional annealing move-acceptance profile. Placement results are presented for real industry circuits and the performance is summarized of an implementation on the Intel iPSC/2 Hypercube. The runtime of this algorithm is 5 to 16 times faster than a previous program developed for the Hypercube, while producing equivalent quality placement. An integrated place and route program for the Intel iPSC/2 Hypercube is currently being developed.

  10. Helium-3 MR q-space imaging with radial acquisition and iterative highly constrained back-projection.

    Science.gov (United States)

    O'Halloran, Rafael L; Holmes, James H; Wu, Yu-Chien; Alexander, Andrew; Fain, Sean B

    2010-01-01

    An undersampled diffusion-weighted stack-of-stars acquisition is combined with iterative highly constrained back-projection to perform hyperpolarized helium-3 MR q-space imaging with combined regional correction of radiofrequency- and T1-related signal loss in a single breath-held scan. The technique is tested in computer simulations and phantom experiments and demonstrated in a healthy human volunteer with whole-lung coverage in a 13-sec breath-hold. Measures of lung microstructure at three different lung volumes are evaluated using inhaled gas volumes of 500 mL, 1000 mL, and 1500 mL to demonstrate feasibility. Phantom results demonstrate that the proposed technique is in agreement with theoretical values, as well as with a fully sampled two-dimensional Cartesian acquisition. Results from the volunteer study demonstrate that the root mean squared diffusion distance increased significantly from the 500-mL volume to the 1000-mL volume. This technique represents the first demonstration of a spatially resolved hyperpolarized helium-3 q-space imaging technique and shows promise for microstructural evaluation of lung disease in three dimensions. Copyright (c) 2009 Wiley-Liss, Inc.

  11. Acute appendicitis: prospective evaluation of a diagnostic algorithm integrating ultrasound and low-dose CT to reduce the need of standard CT

    International Nuclear Information System (INIS)

    Poletti, Pierre-Alexandre; Platon, Alexandra; Perrot, Thomas de; Becker, Christoph D.; Sarasin, Francois; Rutschmann, Olivier; Andereggen, Elisabeth; Dupuis-Lozeron, Elise; Perneger, Thomas; Gervaz, Pascal

    2011-01-01

    To evaluate an algorithm integrating ultrasound and low-dose unenhanced CT with oral contrast medium (LDCT) in the assessment of acute appendicitis, to reduce the need of conventional CT. Ultrasound was performed upon admission in 183 consecutive adult patients (111 women, 72 men, mean age 32) with suspicion of acute appendicitis and a BMI between 18.5 and 30 (step 1). No further examination was recommended when ultrasound was positive for appendicitis, negative with low clinical suspicion, or demonstrated an alternative diagnosis. All other patients underwent LDCT (30 mAs) (step 2). Standard intravenously enhanced CT (180 mAs) was performed after indeterminate LDCT (step 3). No further imaging was recommended after ultrasound in 84 (46%) patients; LDCT was obtained in 99 (54%). LDCT was positive or negative for appendicitis in 81 (82%) of these 99 patients, indeterminate in 18 (18%) who underwent standard CT. Eighty-six (47%) of the 183 patients had a surgically proven appendicitis. The sensitivity and specificity of the algorithm were 98.8% and 96.9%. The proposed algorithm achieved high sensitivity and specificity for detection of acute appendicitis, while reducing the need for standard CT and thus limiting exposition to radiation and to intravenous contrast media. (orig.)

  12. Acute appendicitis: prospective evaluation of a diagnostic algorithm integrating ultrasound and low-dose CT to reduce the need of standard CT

    Energy Technology Data Exchange (ETDEWEB)

    Poletti, Pierre-Alexandre; Platon, Alexandra [University Hospital of Geneva, Department of Radiology, Geneva (Switzerland); University Hospital of Geneva, Emergency Center, Geneva (Switzerland); Perrot, Thomas de; Becker, Christoph D. [University Hospital of Geneva, Department of Radiology, Geneva (Switzerland); Sarasin, Francois; Rutschmann, Olivier [University Hospital of Geneva, Emergency Center, Geneva (Switzerland); Andereggen, Elisabeth [University Hospital of Geneva, Emergency Center, Geneva (Switzerland); University Hospital of Geneva, Department of Surgery, Geneva (Switzerland); Dupuis-Lozeron, Elise; Perneger, Thomas [University Hospital of Geneva, Division of Clinical Epidemiology, Geneva (Switzerland); Gervaz, Pascal [University Hospital of Geneva, Department of Surgery, Geneva (Switzerland)

    2011-12-15

    To evaluate an algorithm integrating ultrasound and low-dose unenhanced CT with oral contrast medium (LDCT) in the assessment of acute appendicitis, to reduce the need of conventional CT. Ultrasound was performed upon admission in 183 consecutive adult patients (111 women, 72 men, mean age 32) with suspicion of acute appendicitis and a BMI between 18.5 and 30 (step 1). No further examination was recommended when ultrasound was positive for appendicitis, negative with low clinical suspicion, or demonstrated an alternative diagnosis. All other patients underwent LDCT (30 mAs) (step 2). Standard intravenously enhanced CT (180 mAs) was performed after indeterminate LDCT (step 3). No further imaging was recommended after ultrasound in 84 (46%) patients; LDCT was obtained in 99 (54%). LDCT was positive or negative for appendicitis in 81 (82%) of these 99 patients, indeterminate in 18 (18%) who underwent standard CT. Eighty-six (47%) of the 183 patients had a surgically proven appendicitis. The sensitivity and specificity of the algorithm were 98.8% and 96.9%. The proposed algorithm achieved high sensitivity and specificity for detection of acute appendicitis, while reducing the need for standard CT and thus limiting exposition to radiation and to intravenous contrast media. (orig.)

  13. Tomographic image reconstruction and rendering with texture-mapping hardware

    International Nuclear Information System (INIS)

    Azevedo, S.G.; Cabral, B.K.; Foran, J.

    1994-07-01

    The image reconstruction problem, also known as the inverse Radon transform, for x-ray computed tomography (CT) is found in numerous applications in medicine and industry. The most common algorithm used in these cases is filtered backprojection (FBP), which, while a simple procedure, is time-consuming for large images on any type of computational engine. Specially-designed, dedicated parallel processors are commonly used in medical CT scanners, whose results are then passed to graphics workstation for rendering and analysis. However, a fast direct FBP algorithm can be implemented on modern texture-mapping hardware in current high-end workstation platforms. This is done by casting the FBP algorithm as an image warping operation with summing. Texture-mapping hardware, such as that on the Silicon Graphics Reality Engine (TM), shows around 600 times speedup of backprojection over a CPU-based implementation (a 100 Mhz R4400 in this case). This technique has the further advantages of flexibility and rapid programming. In addition, the same hardware can be used for both image reconstruction and for volumetric rendering. The techniques can also be used to accelerate iterative reconstruction algorithms. The hardware architecture also allows more complex operations than straight-ray backprojection if they are required, including fan-beam, cone-beam, and curved ray paths, with little or no speed penalties

  14. Optimization of image quality and acquisition time for lab-based X-ray microtomography using an iterative reconstruction algorithm

    Science.gov (United States)

    Lin, Qingyang; Andrew, Matthew; Thompson, William; Blunt, Martin J.; Bijeljic, Branko

    2018-05-01

    Non-invasive laboratory-based X-ray microtomography has been widely applied in many industrial and research disciplines. However, the main barrier to the use of laboratory systems compared to a synchrotron beamline is its much longer image acquisition time (hours per scan compared to seconds to minutes at a synchrotron), which results in limited application for dynamic in situ processes. Therefore, the majority of existing laboratory X-ray microtomography is limited to static imaging; relatively fast imaging (tens of minutes per scan) can only be achieved by sacrificing imaging quality, e.g. reducing exposure time or number of projections. To alleviate this barrier, we introduce an optimized implementation of a well-known iterative reconstruction algorithm that allows users to reconstruct tomographic images with reasonable image quality, but requires lower X-ray signal counts and fewer projections than conventional methods. Quantitative analysis and comparison between the iterative and the conventional filtered back-projection reconstruction algorithm was performed using a sandstone rock sample with and without liquid phases in the pore space. Overall, by implementing the iterative reconstruction algorithm, the required image acquisition time for samples such as this, with sparse object structure, can be reduced by a factor of up to 4 without measurable loss of sharpness or signal to noise ratio.

  15. The use of a priori information in ICA-based techniques for real-time fMRI: an evaluation of static/dynamic and spatial/temporal characteristics

    Directory of Open Access Journals (Sweden)

    Nicola eSoldati

    2013-03-01

    Full Text Available Real-time brain functional MRI (rt-fMRI allows in-vivo non-invasive monitoring of neural networks. The use of multivariate data-driven analysis methods such as independent component analysis (ICA offers an attractive trade-off between data interpretability and information extraction, and can be used during both task-based and rest experiments. The purpose of this study was to assess the effectiveness of different ICA-based procedures to monitor in real-time a target IC defined from a functional localizer which also used ICA. Four novel methods were implemented to monitor ongoing brain activity in a sliding window approach. The methods differed in the ways in which a priori information, derived from ICA algorithms, was used to monitora target independent component (IC. We implemented four different algorithms, all based on ICA. One Back-projection method used ICA to derive static spatial information from the functional localizer, off line, which was then back-projected dynamically during the real-time acquisition. The other three methods used real-time ICA algorithms that dynamically exploited temporal, spatial, or spatial-temporal priors during the real-time acquisition. The methods were evaluated by simulating a rt-fMRI experiment that used real fMRI data. The performance of each method was characterized by the spatial and/or temporal correlation with the target IC component monitored, computation time and intrinsic stochastic variability of the algorithms. In this study the Back-projection method, which could monitor more than one IC of interest, outperformed the other methods. These results are consistent with a functional task that gives stable target ICs over time. The dynamic adaptation possibilities offered by the other ICA methods proposed may offer better performance than the Back-projection in conditions where the functional activation shows higher spatial and/or temporal variability.

  16. High-speed parallel implementation of a modified PBR algorithm on DSP-based EH topology

    Science.gov (United States)

    Rajan, K.; Patnaik, L. M.; Ramakrishna, J.

    1997-08-01

    Algebraic Reconstruction Technique (ART) is an age-old method used for solving the problem of three-dimensional (3-D) reconstruction from projections in electron microscopy and radiology. In medical applications, direct 3-D reconstruction is at the forefront of investigation. The simultaneous iterative reconstruction technique (SIRT) is an ART-type algorithm with the potential of generating in a few iterations tomographic images of a quality comparable to that of convolution backprojection (CBP) methods. Pixel-based reconstruction (PBR) is similar to SIRT reconstruction, and it has been shown that PBR algorithms give better quality pictures compared to those produced by SIRT algorithms. In this work, we propose a few modifications to the PBR algorithms. The modified algorithms are shown to give better quality pictures compared to PBR algorithms. The PBR algorithm and the modified PBR algorithms are highly compute intensive, Not many attempts have been made to reconstruct objects in the true 3-D sense because of the high computational overhead. In this study, we have developed parallel two-dimensional (2-D) and 3-D reconstruction algorithms based on modified PBR. We attempt to solve the two problems encountered by the PBR and modified PBR algorithms, i.e., the long computational time and the large memory requirements, by parallelizing the algorithm on a multiprocessor system. We investigate the possible task and data partitioning schemes by exploiting the potential parallelism in the PBR algorithm subject to minimizing the memory requirement. We have implemented an extended hypercube (EH) architecture for the high-speed execution of the 3-D reconstruction algorithm using the commercially available fast floating point digital signal processor (DSP) chips as the processing elements (PEs) and dual-port random access memories (DPR) as channels between the PEs. We discuss and compare the performances of the PBR algorithm on an IBM 6000 RISC workstation, on a Silicon

  17. An optimized routing algorithm for the automated assembly of standard multimode ribbon fibers in a full-mesh optical backplane

    Science.gov (United States)

    Basile, Vito; Guadagno, Gianluca; Ferrario, Maddalena; Fassi, Irene

    2018-03-01

    In this paper a parametric, modular and scalable algorithm allowing a fully automated assembly of a backplane fiber-optic interconnection circuit is presented. This approach guarantees the optimization of the optical fiber routing inside the backplane with respect to specific criteria (i.e. bending power losses), addressing both transmission performance and overall costs issues. Graph theory has been exploited to simplify the complexity of the NxN full-mesh backplane interconnection topology, firstly, into N independent sub-circuits and then, recursively, into a limited number of loops easier to be generated. Afterwards, the proposed algorithm selects a set of geometrical and architectural parameters whose optimization allows to identify the optimal fiber optic routing for each sub-circuit of the backplane. The topological and numerical information provided by the algorithm are then exploited to control a robot which performs the automated assembly of the backplane sub-circuits. The proposed routing algorithm can be extended to any array architecture and number of connections thanks to its modularity and scalability. Finally, the algorithm has been exploited for the automated assembly of an 8x8 optical backplane realized with standard multimode (MM) 12-fiber ribbons.

  18. A BPF-FBP tandem algorithm for image reconstruction in reverse helical cone-beam CT

    International Nuclear Information System (INIS)

    Cho, Seungryong; Xia, Dan; Pellizzari, Charles A.; Pan Xiaochuan

    2010-01-01

    Purpose: Reverse helical cone-beam computed tomography (CBCT) is a scanning configuration for potential applications in image-guided radiation therapy in which an accurate anatomic image of the patient is needed for image-guidance procedures. The authors previously developed an algorithm for image reconstruction from nontruncated data of an object that is completely within the reverse helix. The purpose of this work is to develop an image reconstruction approach for reverse helical CBCT of a long object that extends out of the reverse helix and therefore constitutes data truncation. Methods: The proposed approach comprises of two reconstruction steps. In the first step, a chord-based backprojection-filtration (BPF) algorithm reconstructs a volumetric image of an object from the original cone-beam data. Because there exists a chordless region in the middle of the reverse helix, the image obtained in the first step contains an unreconstructed central-gap region. In the second step, the gap region is reconstructed by use of a Pack-Noo-formula-based filteredbackprojection (FBP) algorithm from the modified cone-beam data obtained by subtracting from the original cone-beam data the reprojection of the image reconstructed in the first step. Results: The authors have performed numerical studies to validate the proposed approach in image reconstruction from reverse helical cone-beam data. The results confirm that the proposed approach can reconstruct accurate images of a long object without suffering from data-truncation artifacts or cone-angle artifacts. Conclusions: They developed and validated a BPF-FBP tandem algorithm to reconstruct images of a long object from reverse helical cone-beam data. The chord-based BPF algorithm was utilized for converting the long-object problem into a short-object problem. The proposed approach is applicable to other scanning configurations such as reduced circular sinusoidal trajectories.

  19. Reconstruction of 2D PET data with Monte Carlo generated system matrix for generalized natural pixels

    International Nuclear Information System (INIS)

    Vandenberghe, Stefaan; Staelens, Steven; Byrne, Charles L; Soares, Edward J; Lemahieu, Ignace; Glick, Stephen J

    2006-01-01

    In discrete detector PET, natural pixels are image basis functions calculated from the response of detector pairs. By using reconstruction with natural pixel basis functions, the discretization of the object into a predefined grid can be avoided. Here, we propose to use generalized natural pixel reconstruction. Using this approach, the basis functions are not the detector sensitivity functions as in the natural pixel case but uniform parallel strips. The backprojection of the strip coefficients results in the reconstructed image. This paper proposes an easy and efficient way to generate the matrix M directly by Monte Carlo simulation. Elements of the generalized natural pixel system matrix are formed by calculating the intersection of a parallel strip with the detector sensitivity function. These generalized natural pixels are easier to use than conventional natural pixels because the final step from solution to a square pixel representation is done by simple backprojection. Due to rotational symmetry in the PET scanner, the matrix M is block circulant and only the first blockrow needs to be stored. Data were generated using a fast Monte Carlo simulator using ray tracing. The proposed method was compared to a listmode MLEM algorithm, which used ray tracing for doing forward and backprojection. Comparison of the algorithms with different phantoms showed that an improved resolution can be obtained using generalized natural pixel reconstruction with accurate system modelling. In addition, it was noted that for the same resolution a lower noise level is present in this reconstruction. A numerical observer study showed the proposed method exhibited increased performance as compared to a standard listmode EM algorithm. In another study, more realistic data were generated using the GATE Monte Carlo simulator. For these data, a more uniform contrast recovery and a better contrast-to-noise performance were observed. It was observed that major improvements in contrast

  20. A New Modified Firefly Algorithm

    Directory of Open Access Journals (Sweden)

    Medha Gupta

    2016-07-01

    Full Text Available Nature inspired meta-heuristic algorithms studies the emergent collective intelligence of groups of simple agents. Firefly Algorithm is one of the new such swarm-based metaheuristic algorithm inspired by the flashing behavior of fireflies. The algorithm was first proposed in 2008 and since then has been successfully used for solving various optimization problems. In this work, we intend to propose a new modified version of Firefly algorithm (MoFA and later its performance is compared with the standard firefly algorithm along with various other meta-heuristic algorithms. Numerical studies and results demonstrate that the proposed algorithm is superior to existing algorithms.

  1. A comparison of global optimization algorithms with standard benchmark functions and real-world applications using Energy Plus

    Energy Technology Data Exchange (ETDEWEB)

    Kamph, Jerome Henri; Robinson, Darren; Wetter, Michael

    2009-09-01

    There is an increasing interest in the use of computer algorithms to identify combinations of parameters which optimise the energy performance of buildings. For such problems, the objective function can be multi-modal and needs to be approximated numerically using building energy simulation programs. As these programs contain iterative solution algorithms, they introduce discontinuities in the numerical approximation to the objective function. Metaheuristics often work well for such problems, but their convergence to a global optimum cannot be established formally. Moreover, different algorithms tend to be suited to particular classes of optimization problems. To shed light on this issue we compared the performance of two metaheuristics, the hybrid CMA-ES/HDE and the hybrid PSO/HJ, in minimizing standard benchmark functions and real-world building energy optimization problems of varying complexity. From this we find that the CMA-ES/HDE performs well on more complex objective functions, but that the PSO/HJ more consistently identifies the global minimum for simpler objective functions. Both identified similar values in the objective functions arising from energy simulations, but with different combinations of model parameters. This may suggest that the objective function is multi-modal. The algorithms also correctly identified some non-intuitive parameter combinations that were caused by a simplified control sequence of the building energy system that does not represent actual practice, further reinforcing their utility.

  2. Hybrid Cryptosystem Using Tiny Encryption Algorithm and LUC Algorithm

    Science.gov (United States)

    Rachmawati, Dian; Sharif, Amer; Jaysilen; Andri Budiman, Mohammad

    2018-01-01

    Security becomes a very important issue in data transmission and there are so many methods to make files more secure. One of that method is cryptography. Cryptography is a method to secure file by writing the hidden code to cover the original file. Therefore, if the people do not involve in cryptography, they cannot decrypt the hidden code to read the original file. There are many methods are used in cryptography, one of that method is hybrid cryptosystem. A hybrid cryptosystem is a method that uses a symmetric algorithm to secure the file and use an asymmetric algorithm to secure the symmetric algorithm key. In this research, TEA algorithm is used as symmetric algorithm and LUC algorithm is used as an asymmetric algorithm. The system is tested by encrypting and decrypting the file by using TEA algorithm and using LUC algorithm to encrypt and decrypt the TEA key. The result of this research is by using TEA Algorithm to encrypt the file, the cipher text form is the character from ASCII (American Standard for Information Interchange) table in the form of hexadecimal numbers and the cipher text size increase by sixteen bytes as the plaintext length is increased by eight characters.

  3. Comparison study of reconstruction algorithms for prototype digital breast tomosynthesis using various breast phantoms.

    Science.gov (United States)

    Kim, Ye-seul; Park, Hye-suk; Lee, Haeng-Hwa; Choi, Young-Wook; Choi, Jae-Gu; Kim, Hak Hee; Kim, Hee-Joung

    2016-02-01

    Digital breast tomosynthesis (DBT) is a recently developed system for three-dimensional imaging that offers the potential to reduce the false positives of mammography by preventing tissue overlap. Many qualitative evaluations of digital breast tomosynthesis were previously performed by using a phantom with an unrealistic model and with heterogeneous background and noise, which is not representative of real breasts. The purpose of the present work was to compare reconstruction algorithms for DBT by using various breast phantoms; validation was also performed by using patient images. DBT was performed by using a prototype unit that was optimized for very low exposures and rapid readout. Three algorithms were compared: a back-projection (BP) algorithm, a filtered BP (FBP) algorithm, and an iterative expectation maximization (EM) algorithm. To compare the algorithms, three types of breast phantoms (homogeneous background phantom, heterogeneous background phantom, and anthropomorphic breast phantom) were evaluated, and clinical images were also reconstructed by using the different reconstruction algorithms. The in-plane image quality was evaluated based on the line profile and the contrast-to-noise ratio (CNR), and out-of-plane artifacts were evaluated by means of the artifact spread function (ASF). Parenchymal texture features of contrast and homogeneity were computed based on reconstructed images of an anthropomorphic breast phantom. The clinical images were studied to validate the effect of reconstruction algorithms. The results showed that the CNRs of masses reconstructed by using the EM algorithm were slightly higher than those obtained by using the BP algorithm, whereas the FBP algorithm yielded much lower CNR due to its high fluctuations of background noise. The FBP algorithm provides the best conspicuity for larger calcifications by enhancing their contrast and sharpness more than the other algorithms; however, in the case of small-size and low

  4. WE-D-18A-04: How Iterative Reconstruction Algorithms Affect the MTFs of Variable-Contrast Targets in CT Images

    Energy Technology Data Exchange (ETDEWEB)

    Dodge, C.T.; Rong, J. [MD Anderson Cancer Center, Houston, TX (United States); Dodge, C.W. [Methodist Hospital, Houston, TX (United States)

    2014-06-15

    Purpose: To determine how filtered back-projection (FBP), adaptive statistical (ASiR), and model based (MBIR) iterative reconstruction algorithms affect the measured modulation transfer functions (MTFs) of variable-contrast targets over a wide range of clinically applicable dose levels. Methods: The Catphan 600 CTP401 module, surrounded by an oval, fat-equivalent ring to mimic patient size/shape, was scanned on a GE HD750 CT scanner at 1, 2, 3, 6, 12 and 24 mGy CTDIvol levels with typical patient scan parameters: 120kVp, 0.8s, 40mm beam width, large SFOV, 2.5mm thickness, 0.984 pitch. The images were reconstructed using GE's Standard kernel with FBP; 20%, 40% and 70% ASiR; and MBIR. A task-based MTF (MTFtask) was computed for six cylindrical targets: 2 low-contrast (Polystyrene, LDPE), 2 medium-contrast (Delrin, PMP), and 2 high-contrast (Teflon, air). MTFtask was used to compare the performance of reconstruction algorithms with decreasing CTDIvol from 24mGy, which is currently used in the clinic. Results: For the air target and 75% dose savings (6 mGy), MBIR MTFtask at 5 lp/cm measured 0.24, compared to 0.20 for 70% ASiR and 0.11 for FBP. Overall, for both high-contrast targets, MBIR MTFtask improved with increasing CTDIvol and consistently outperformed ASiR and FBP near the system's Nyquist frequency. Conversely, for Polystyrene at 6 mGy, MBIR (0.10) and 70% ASiR (0.07) MTFtask was lower than for FBP (0.18). For medium and low-contrast targets, FBP remains the best overall algorithm for improved resolution at low CTDIvol (1–6 mGy) levels, whereas MBIR is comparable at higher dose levels (12–24 mGy). Conclusion: MBIR improved the MTF of small, high-contrast targets compared to FBP and ASiR at doses of 50%–12.5% of those currently used in the clinic. However, for imaging low- and mediumcontrast targets, FBP performed the best across all dose levels. For assessing MTF from different reconstruction algorithms, task-based MTF measurements are necessary.

  5. WE-D-18A-04: How Iterative Reconstruction Algorithms Affect the MTFs of Variable-Contrast Targets in CT Images

    International Nuclear Information System (INIS)

    Dodge, C.T.; Rong, J.; Dodge, C.W.

    2014-01-01

    Purpose: To determine how filtered back-projection (FBP), adaptive statistical (ASiR), and model based (MBIR) iterative reconstruction algorithms affect the measured modulation transfer functions (MTFs) of variable-contrast targets over a wide range of clinically applicable dose levels. Methods: The Catphan 600 CTP401 module, surrounded by an oval, fat-equivalent ring to mimic patient size/shape, was scanned on a GE HD750 CT scanner at 1, 2, 3, 6, 12 and 24 mGy CTDIvol levels with typical patient scan parameters: 120kVp, 0.8s, 40mm beam width, large SFOV, 2.5mm thickness, 0.984 pitch. The images were reconstructed using GE's Standard kernel with FBP; 20%, 40% and 70% ASiR; and MBIR. A task-based MTF (MTFtask) was computed for six cylindrical targets: 2 low-contrast (Polystyrene, LDPE), 2 medium-contrast (Delrin, PMP), and 2 high-contrast (Teflon, air). MTFtask was used to compare the performance of reconstruction algorithms with decreasing CTDIvol from 24mGy, which is currently used in the clinic. Results: For the air target and 75% dose savings (6 mGy), MBIR MTFtask at 5 lp/cm measured 0.24, compared to 0.20 for 70% ASiR and 0.11 for FBP. Overall, for both high-contrast targets, MBIR MTFtask improved with increasing CTDIvol and consistently outperformed ASiR and FBP near the system's Nyquist frequency. Conversely, for Polystyrene at 6 mGy, MBIR (0.10) and 70% ASiR (0.07) MTFtask was lower than for FBP (0.18). For medium and low-contrast targets, FBP remains the best overall algorithm for improved resolution at low CTDIvol (1–6 mGy) levels, whereas MBIR is comparable at higher dose levels (12–24 mGy). Conclusion: MBIR improved the MTF of small, high-contrast targets compared to FBP and ASiR at doses of 50%–12.5% of those currently used in the clinic. However, for imaging low- and mediumcontrast targets, FBP performed the best across all dose levels. For assessing MTF from different reconstruction algorithms, task-based MTF measurements are necessary

  6. Optimization of the spatial resolution for the GE discovery PET/CT 710 by using NEMA NU 2-2007 standards

    Science.gov (United States)

    Yoon, Hyun Jin; Jeong, Young Jin; Son, Hye Joo; Kang, Do-Young; Hyun, Kyung-Yae; Lee, Min-Kyung

    2015-01-01

    The spatial resolution in positron emission tomography (PET) is fundamentally limited by the geometry of the detector element, the positron's recombination range with electrons, the acollinearity of the positron, the crystal decoding error, the penetration into the detector ring, and the reconstruction algorithms. In this paper, optimized parameters are suggested to produce high-resolution PET images by using an iterative reconstruction algorithm. A phantom with three point sources structured with three capillary tubes was prepared with an axial extension of less than 1 mm and was filled with 18F-fluorodeoxyglucose (18F-FDG) with concentrations above 200 MBq/cc. The performance measures of all the PET images were acquired according to the National Electrical Manufacturers Association (NEMA) NU 2-2007 standards procedures. The parameters for the iterative reconstruction were adjusted around the values recommended by General Electric GE, and the optimized values of the spatial resolution and the full width at half maximum (FWHM) or the full width at tenth of maximum (FWTM) values were found for the best PET resolution. The axial and the transverse spatial resolutions, according to the filtered back-projection (FBP) at 1 cm off-axis, were 4.81 and 4.48 mm, respectively. The axial and the transaxial spatial resolutions at 10 cm off-axis were 5.63 mm and 5.08 mm, respectively, and the trans-axial resolution at 10 cm was evaluated as the average of the radial and the tangential measurements. The recommended optimized parameters of the spatial resolution according to the NEMA phantom for the number of subsets, the number of iterations, and the Gaussian post-filter are 12, 3, and 3 mm for the iterative reconstruction VUE Point HD without the SharpIR algorithm (HD), and 12, 12, and 5.2 mm with SharpIR (HD.S), respectively, according to the Advantage Workstation Volume Share 5 (AW4.6). The performance measurements for the GE Discovery PET/CT 710 using the NEMA NU 2

  7. Engineering a Cache-Oblivious Sorting Algorithm

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Fagerberg, Rolf; Vinther, Kristoffer

    2007-01-01

    This paper is an algorithmic engineering study of cache-oblivious sorting. We investigate by empirical methods a number of implementation issues and parameter choices for the cache-oblivious sorting algorithm Lazy Funnelsort, and compare the final algorithm with Quicksort, the established standard...

  8. Rational approximations for tomographic reconstructions

    International Nuclear Information System (INIS)

    Reynolds, Matthew; Beylkin, Gregory; Monzón, Lucas

    2013-01-01

    We use optimal rational approximations of projection data collected in x-ray tomography to improve image resolution. Under the assumption that the object of interest is described by functions with jump discontinuities, for each projection we construct its rational approximation with a small (near optimal) number of terms for a given accuracy threshold. This allows us to augment the measured data, i.e., double the number of available samples in each projection or, equivalently, extend (double) the domain of their Fourier transform. We also develop a new, fast, polar coordinate Fourier domain algorithm which uses our nonlinear approximation of projection data in a natural way. Using augmented projections of the Shepp–Logan phantom, we provide a comparison between the new algorithm and the standard filtered back-projection algorithm. We demonstrate that the reconstructed image has improved resolution without additional artifacts near sharp transitions in the image. (paper)

  9. Novel search algorithms for a mid-infrared spectral library of cotton contaminants.

    Science.gov (United States)

    Loudermilk, J Brian; Himmelsbach, David S; Barton, Franklin E; de Haseth, James A

    2008-06-01

    During harvest, a variety of plant based contaminants are collected along with cotton lint. The USDA previously created a mid-infrared, attenuated total reflection (ATR), Fourier transform infrared (FT-IR) spectral library of cotton contaminants for contaminant identification as the contaminants have negative impacts on yarn quality. This library has shown impressive identification rates for extremely similar cellulose based contaminants in cases where the library was representative of the samples searched. When spectra of contaminant samples from crops grown in different geographic locations, seasons, and conditions and measured with a different spectrometer and accessories were searched, identification rates for standard search algorithms decreased significantly. Six standard algorithms were examined: dot product, correlation, sum of absolute values of differences, sum of the square root of the absolute values of differences, sum of absolute values of differences of derivatives, and sum of squared differences of derivatives. Four categories of contaminants derived from cotton plants were considered: leaf, stem, seed coat, and hull. Experiments revealed that the performance of the standard search algorithms depended upon the category of sample being searched and that different algorithms provided complementary information about sample identity. These results indicated that choosing a single standard algorithm to search the library was not possible. Three voting scheme algorithms based on result frequency, result rank, category frequency, or a combination of these factors for the results returned by the standard algorithms were developed and tested for their capability to overcome the unpredictability of the standard algorithms' performances. The group voting scheme search was based on the number of spectra from each category of samples represented in the library returned in the top ten results of the standard algorithms. This group algorithm was able to identify

  10. Construction of Realistic Liver Phantoms from Patient Images using 3D Printer and Its Application in CT Image Quality Assessment.

    Science.gov (United States)

    Leng, Shuai; Yu, Lifeng; Vrieze, Thomas; Kuhlmann, Joel; Chen, Baiyu; McCollough, Cynthia H

    2015-01-01

    The purpose of this study is to use 3D printing techniques to construct a realistic liver phantom with heterogeneous background and anatomic structures from patient CT images, and to use the phantom to assess image quality with filtered backprojection and iterative reconstruction algorithms. Patient CT images were segmented into liver tissues, contrast-enhanced vessels, and liver lesions using commercial software, based on which stereolithography (STL) files were created and sent to a commercial 3D printer. A 3D liver phantom was printed after assigning different printing materials to each object to simulate appropriate attenuation of each segmented object. As high opacity materials are not available for the printer, we printed hollow vessels and filled them with iodine solutions of adjusted concentration to represent enhance levels in contrast-enhanced liver scans. The printed phantom was then placed in a 35×26 cm oblong-shaped water phantom and scanned repeatedly at 4 dose levels. Images were reconstructed using standard filtered backprojection and an iterative reconstruction algorithm with 3 different strength settings. Heterogeneous liver background were observed from the CT images and the difference in CT numbers between lesions and background were representative for low contrast lesions in liver CT studies. CT numbers in vessels filled with iodine solutions represented the enhancement of liver arteries and veins. Images were run through a Channelized Hotelling model observer with Garbor channels and ROC analysis was performed. The AUC values showed performance improvement using the iterative reconstruction algorithm and the amount of improvement increased with strength setting.

  11. Constrained least squares regularization in PET

    International Nuclear Information System (INIS)

    Choudhury, K.R.; O'Sullivan, F.O.

    1996-01-01

    Standard reconstruction methods used in tomography produce images with undesirable negative artifacts in background and in areas of high local contrast. While sophisticated statistical reconstruction methods can be devised to correct for these artifacts, their computational implementation is excessive for routine operational use. This work describes a technique for rapid computation of approximate constrained least squares regularization estimates. The unique feature of the approach is that it involves no iterative projection or backprojection steps. This contrasts with the familiar computationally intensive algorithms based on algebraic reconstruction (ART) or expectation-maximization (EM) methods. Experimentation with the new approach for deconvolution and mixture analysis shows that the root mean square error quality of estimators based on the proposed algorithm matches and usually dominates that of more elaborate maximum likelihood, at a fraction of the computational effort

  12. Dual filtered backprojection for micro-rotation confocal microscopy

    International Nuclear Information System (INIS)

    Laksameethanasan, Danai; Brandt, Sami S; Renaud, Olivier; Shorte, Spencer L

    2009-01-01

    Micro-rotation confocal microscopy is a novel optical imaging technique which employs dielectric fields to trap and rotate individual cells to facilitate 3D fluorescence imaging using a confocal microscope. In contrast to computed tomography (CT) where an image can be modelled as parallel projection of an object, the ideal confocal image is recorded as a central slice of the object corresponding to the focal plane. In CT, the projection images and the 3D object are related by the Fourier slice theorem which states that the Fourier transform of a CT image is equal to the central slice of the Fourier transform of the 3D object. In the micro-rotation application, we have a dual form of this setting, i.e. the Fourier transform of the confocal image equals the parallel projection of the Fourier transform of the 3D object. Based on the observed duality, we present here the dual of the classical filtered back projection (FBP) algorithm and apply it in micro-rotation confocal imaging. Our experiments on real data demonstrate that the proposed method is a fast and reliable algorithm for the micro-rotation application, as FBP is for CT application

  13. Analysis of ANSI N13.11: the performance algorithm

    International Nuclear Information System (INIS)

    Roberson, P.L.; Hadley, R.T.; Thorson, M.R.

    1982-06-01

    The method of performance testing for personnel dosimeters specified in draft ANSI N13.11, Criteria for Testing Personnel Dosimetry Performance is evaluated. Points addressed are: (1) operational behavior of the performance algorithm; (2) dependence on the number of test dosimeters; (3) basis for choosing an algorithm; and (4) other possible algorithms. The performance algorithm evaluated for each test category is formed by adding the calibration bias and its standard deviation. This algorithm is not optimal due to a high dependence on the standard deviation. The dependence of the calibration bias on the standard deviation is significant because of the low number of dosimeters (15) evaluated per category. For categories with large standard deviations the uncertainty in determining the performance criterion is large. To have a reasonable chance of passing all categories in one test, we required a 95% probability of passing each category. Then, the maximum permissible standard deviation is 30% even with a zero bias. For test categories with standard deviations <10%, the bias can be as high as 35%. For intermediate standard deviations, the chance of passing a category is improved by using a 5 to 10% negative bias. Most multipurpose personnel dosimetry systems will probably require detailed calibration adjustments to pass all categories within two rounds of testing

  14. A reconstruction method for cone-beam differential x-ray phase-contrast computed tomography.

    Science.gov (United States)

    Fu, Jian; Velroyen, Astrid; Tan, Renbo; Zhang, Junwei; Chen, Liyuan; Tapfer, Arne; Bech, Martin; Pfeiffer, Franz

    2012-09-10

    Most existing differential phase-contrast computed tomography (DPC-CT) approaches are based on three kinds of scanning geometries, described by parallel-beam, fan-beam and cone-beam. Due to the potential of compact imaging systems with magnified spatial resolution, cone-beam DPC-CT has attracted significant interest. In this paper, we report a reconstruction method based on a back-projection filtration (BPF) algorithm for cone-beam DPC-CT. Due to the differential nature of phase contrast projections, the algorithm restrains from differentiation of the projection data prior to back-projection, unlike BPF algorithms commonly used for absorption-based CT data. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a micro-focus x-ray tube source. Moreover, the numerical simulation and experimental results demonstrate that the proposed method can deal with several classes of truncated cone-beam datasets. We believe that this feature is of particular interest for future medical cone-beam phase-contrast CT imaging applications.

  15. AES ALGORITHM IMPLEMENTATION IN PROGRAMMING LANGUAGES

    Directory of Open Access Journals (Sweden)

    Luminiţa DEFTA

    2010-12-01

    Full Text Available Information encryption represents the usage of an algorithm to convert an unknown message into an encrypted one. It is used to protect the data against unauthorized access. Protected data can be stored on a media device or can be transmitted through the network. In this paper we describe a concrete implementation of the AES algorithm in the Java programming language (available from Java Development Kit 6 libraries and C (using the OpenSSL library. AES (Advanced Encryption Standard is an asymmetric key encryption algorithm formally adopted by the U.S. government and was elected after a long process of standardization.

  16. Modified Firefly Algorithm

    Directory of Open Access Journals (Sweden)

    Surafel Luleseged Tilahun

    2012-01-01

    Full Text Available Firefly algorithm is one of the new metaheuristic algorithms for optimization problems. The algorithm is inspired by the flashing behavior of fireflies. In the algorithm, randomly generated solutions will be considered as fireflies, and brightness is assigned depending on their performance on the objective function. One of the rules used to construct the algorithm is, a firefly will be attracted to a brighter firefly, and if there is no brighter firefly, it will move randomly. In this paper we modify this random movement of the brighter firefly by generating random directions in order to determine the best direction in which the brightness increases. If such a direction is not generated, it will remain in its current position. Furthermore the assignment of attractiveness is modified in such a way that the effect of the objective function is magnified. From the simulation result it is shown that the modified firefly algorithm performs better than the standard one in finding the best solution with smaller CPU time.

  17. The Orthogonally Partitioned EM Algorithm: Extending the EM Algorithm for Algorithmic Stability and Bias Correction Due to Imperfect Data.

    Science.gov (United States)

    Regier, Michael D; Moodie, Erica E M

    2016-05-01

    We propose an extension of the EM algorithm that exploits the common assumption of unique parameterization, corrects for biases due to missing data and measurement error, converges for the specified model when standard implementation of the EM algorithm has a low probability of convergence, and reduces a potentially complex algorithm into a sequence of smaller, simpler, self-contained EM algorithms. We use the theory surrounding the EM algorithm to derive the theoretical results of our proposal, showing that an optimal solution over the parameter space is obtained. A simulation study is used to explore the finite sample properties of the proposed extension when there is missing data and measurement error. We observe that partitioning the EM algorithm into simpler steps may provide better bias reduction in the estimation of model parameters. The ability to breakdown a complicated problem in to a series of simpler, more accessible problems will permit a broader implementation of the EM algorithm, permit the use of software packages that now implement and/or automate the EM algorithm, and make the EM algorithm more accessible to a wider and more general audience.

  18. Autofocus algorithm for synthetic aperture radar imaging with large curvilinear apertures

    Science.gov (United States)

    Bleszynski, E.; Bleszynski, M.; Jaroszewicz, T.

    2013-05-01

    An approach to autofocusing for large curved synthetic aperture radar (SAR) apertures is presented. Its essential feature is that phase corrections are being extracted not directly from SAR images, but rather from reconstructed SAR phase-history data representing windowed patches of the scene, of sizes sufficiently small to allow the linearization of the forward- and back-projection formulae. The algorithm processes data associated with each patch independently and in two steps. The first step employs a phase-gradient-type method in which phase correction compensating (possibly rapid) trajectory perturbations are estimated from the reconstructed phase history for the dominant scattering point on the patch. The second step uses phase-gradient-corrected data and extracts the absolute phase value, removing in this way phase ambiguities and reducing possible imperfections of the first stage, and providing the distances between the sensor and the scattering point with accuracy comparable to the wavelength. The features of the proposed autofocusing method are illustrated in its applications to intentionally corrupted small-scene 2006 Gotcha data. The examples include the extraction of absolute phases (ranges) for selected prominent point targets. They are then used to focus the scene and determine relative target-target distances.

  19. A fast fractional difference algorithm

    DEFF Research Database (Denmark)

    Jensen, Andreas Noack; Nielsen, Morten Ørregaard

    2014-01-01

    We provide a fast algorithm for calculating the fractional difference of a time series. In standard implementations, the calculation speed (number of arithmetic operations) is of order T 2, where T is the length of the time series. Our algorithm allows calculation speed of order T log...

  20. A Fast Fractional Difference Algorithm

    DEFF Research Database (Denmark)

    Jensen, Andreas Noack; Nielsen, Morten Ørregaard

    We provide a fast algorithm for calculating the fractional difference of a time series. In standard implementations, the calculation speed (number of arithmetic operations) is of order T 2, where T is the length of the time series. Our algorithm allows calculation speed of order T log...

  1. NEUTRON ALGORITHM VERIFICATION TESTING

    International Nuclear Information System (INIS)

    COWGILL, M.; MOSBY, W.; ARGONNE NATIONAL LABORATORY-WEST

    2000-01-01

    Active well coincidence counter assays have been performed on uranium metal highly enriched in 235 U. The data obtained in the present program, together with highly enriched uranium (HEU) metal data obtained in other programs, have been analyzed using two approaches, the standard approach and an alternative approach developed at BNL. Analysis of the data with the standard approach revealed that the form of the relationship between the measured reals and the 235 U mass varied, being sometimes linear and sometimes a second-order polynomial. In contrast, application of the BNL algorithm, which takes into consideration the totals, consistently yielded linear relationships between the totals-corrected reals and the 235 U mass. The constants in these linear relationships varied with geometric configuration and level of enrichment. This indicates that, when the BNL algorithm is used, calibration curves can be established with fewer data points and with more certainty than if a standard algorithm is used. However, this potential advantage has only been established for assays of HEU metal. In addition, the method is sensitive to the stability of natural background in the measurement facility

  2. Improved Bat Algorithm Applied to Multilevel Image Thresholding

    Directory of Open Access Journals (Sweden)

    Adis Alihodzic

    2014-01-01

    Full Text Available Multilevel image thresholding is a very important image processing technique that is used as a basis for image segmentation and further higher level processing. However, the required computational time for exhaustive search grows exponentially with the number of desired thresholds. Swarm intelligence metaheuristics are well known as successful and efficient optimization methods for intractable problems. In this paper, we adjusted one of the latest swarm intelligence algorithms, the bat algorithm, for the multilevel image thresholding problem. The results of testing on standard benchmark images show that the bat algorithm is comparable with other state-of-the-art algorithms. We improved standard bat algorithm, where our modifications add some elements from the differential evolution and from the artificial bee colony algorithm. Our new proposed improved bat algorithm proved to be better than five other state-of-the-art algorithms, improving quality of results in all cases and significantly improving convergence speed.

  3. Content validation of a standardized algorithm for ostomy care.

    Science.gov (United States)

    Beitz, Janice; Gerlach, Mary; Ginsburg, Pat; Ho, Marianne; McCann, Eileen; Schafer, Vickie; Scott, Vera; Stallings, Bobbie; Turnbull, Gwen

    2010-10-01

    The number of ostomy care clinician experts is limited and the majority of ostomy care is provided by non-specialized clinicians or unskilled caregivers and family. The purpose of this study was to obtain content validation data for a new standardized algorithm for ostomy care developed by expert wound ostomy continence nurse (WOCN) clinicians. After face validity was established using overall review and suggestions from WOCN experts, 166 WOCNs self-identified as having expertise in ostomy care were surveyed online for 6 weeks in 2009. Using a cross-sectional, mixed methods study design and a 30-item instrument with a 4-point Likert-type scale, the participants were asked to quantify the degree of validity of the Ostomy Algorithm's decisions and components. Participants' open-ended comments also were thematically analyzed. Using a scale of 1 to 4, the mean score of the entire algorithm was 3.8 (4 = relevant/very relevant). The algorithm's content validity index (CVI) was 0.95 (out of 1.0). Individual component mean scores ranged from 3.59 to 3.91. Individual CVIs ranged from 0.90 to 0.98. Qualitative data analysis revealed themes of difficulty associated with algorithm formatting, especially orientation and use of the Studio Alterazioni Cutanee Stomali (Study on Peristomal Skin Lesions [SACS™ Instrument]) and the inability of algorithms to capture all individual patient attributes affecting ostomy care. Positive themes included content thoroughness and the helpful clinical photos. Suggestions were offered for algorithm improvement. Study results support the strong content validity of the algorithm and research to ascertain its construct validity and effect on care outcomes is warranted.

  4. X-ray differential phase-contrast tomographic reconstruction with a phase line integral retrieval filter

    International Nuclear Information System (INIS)

    Fu, Jian; Hu, Xinhua; Li, Chen

    2015-01-01

    We report an alternative reconstruction technique for x-ray differential phase-contrast computed tomography (DPC-CT). This approach is based on a new phase line integral projection retrieval filter, which is rooted in the derivative property of the Fourier transform and counteracts the differential nature of the DPC-CT projections. It first retrieves the phase line integral from the DPC-CT projections. Then the standard filtered back-projection (FBP) algorithms popular in x-ray absorption-contrast CT are directly applied to the retrieved phase line integrals to reconstruct the DPC-CT images. Compared with the conventional DPC-CT reconstruction algorithms, the proposed method removes the Hilbert imaginary filter and allows for the direct use of absorption-contrast FBP algorithms. Consequently, FBP-oriented image processing techniques and reconstruction acceleration softwares that have already been successfully used in absorption-contrast CT can be directly adopted to improve the DPC-CT image quality and speed up the reconstruction

  5. Low Cost Design of an Advanced Encryption Standard (AES) Processor Using a New Common-Subexpression-Elimination Algorithm

    Science.gov (United States)

    Chen, Ming-Chih; Hsiao, Shen-Fu

    In this paper, we propose an area-efficient design of Advanced Encryption Standard (AES) processor by applying a new common-expression-elimination (CSE) method to the sub-functions of various transformations required in AES. The proposed method reduces the area cost of realizing the sub-functions by extracting the common factors in the bit-level XOR/AND-based sum-of-product expressions of these sub-functions using a new CSE algorithm. Cell-based implementation results show that the AES processor with our proposed CSE method has significant area improvement compared with previous designs.

  6. Opposition-Based Adaptive Fireworks Algorithm

    Directory of Open Access Journals (Sweden)

    Chibing Gong

    2016-07-01

    Full Text Available A fireworks algorithm (FWA is a recent swarm intelligence algorithm that is inspired by observing fireworks explosions. An adaptive fireworks algorithm (AFWA proposes additional adaptive amplitudes to improve the performance of the enhanced fireworks algorithm (EFWA. The purpose of this paper is to add opposition-based learning (OBL to AFWA with the goal of further boosting performance and achieving global optimization. Twelve benchmark functions are tested in use of an opposition-based adaptive fireworks algorithm (OAFWA. The final results conclude that OAFWA significantly outperformed EFWA and AFWA in terms of solution accuracy. Additionally, OAFWA was compared with a bat algorithm (BA, differential evolution (DE, self-adapting control parameters in differential evolution (jDE, a firefly algorithm (FA, and a standard particle swarm optimization 2011 (SPSO2011 algorithm. The research results indicate that OAFWA ranks the highest of the six algorithms for both solution accuracy and runtime cost.

  7. Optimal Fungal Space Searching Algorithms.

    Science.gov (United States)

    Asenova, Elitsa; Lin, Hsin-Yu; Fu, Eileen; Nicolau, Dan V; Nicolau, Dan V

    2016-10-01

    Previous experiments have shown that fungi use an efficient natural algorithm for searching the space available for their growth in micro-confined networks, e.g., mazes. This natural "master" algorithm, which comprises two "slave" sub-algorithms, i.e., collision-induced branching and directional memory, has been shown to be more efficient than alternatives, with one, or the other, or both sub-algorithms turned off. In contrast, the present contribution compares the performance of the fungal natural algorithm against several standard artificial homologues. It was found that the space-searching fungal algorithm consistently outperforms uninformed algorithms, such as Depth-First-Search (DFS). Furthermore, while the natural algorithm is inferior to informed ones, such as A*, this under-performance does not importantly increase with the increase of the size of the maze. These findings suggest that a systematic effort of harvesting the natural space searching algorithms used by microorganisms is warranted and possibly overdue. These natural algorithms, if efficient, can be reverse-engineered for graph and tree search strategies.

  8. Group leaders optimization algorithm

    Science.gov (United States)

    Daskin, Anmer; Kais, Sabre

    2011-03-01

    We present a new global optimization algorithm in which the influence of the leaders in social groups is used as an inspiration for the evolutionary technique which is designed into a group architecture. To demonstrate the efficiency of the method, a standard suite of single and multi-dimensional optimization functions along with the energies and the geometric structures of Lennard-Jones clusters are given as well as the application of the algorithm on quantum circuit design problems. We show that as an improvement over previous methods, the algorithm scales as N 2.5 for the Lennard-Jones clusters of N-particles. In addition, an efficient circuit design is shown for a two-qubit Grover search algorithm which is a quantum algorithm providing quadratic speedup over the classical counterpart.

  9. A parallel simulated annealing algorithm for standard cell placement on a hypercube computer

    Science.gov (United States)

    Jones, Mark Howard

    1987-01-01

    A parallel version of a simulated annealing algorithm is presented which is targeted to run on a hypercube computer. A strategy for mapping the cells in a two dimensional area of a chip onto processors in an n-dimensional hypercube is proposed such that both small and large distance moves can be applied. Two types of moves are allowed: cell exchanges and cell displacements. The computation of the cost function in parallel among all the processors in the hypercube is described along with a distributed data structure that needs to be stored in the hypercube to support parallel cost evaluation. A novel tree broadcasting strategy is used extensively in the algorithm for updating cell locations in the parallel environment. Studies on the performance of the algorithm on example industrial circuits show that it is faster and gives better final placement results than the uniprocessor simulated annealing algorithms. An improved uniprocessor algorithm is proposed which is based on the improved results obtained from parallelization of the simulated annealing algorithm.

  10. Algorithmic complexity of quantum capacity

    Science.gov (United States)

    Oskouei, Samad Khabbazi; Mancini, Stefano

    2018-04-01

    We analyze the notion of quantum capacity from the perspective of algorithmic (descriptive) complexity. To this end, we resort to the concept of semi-computability in order to describe quantum states and quantum channel maps. We introduce algorithmic entropies (like algorithmic quantum coherent information) and derive relevant properties for them. Then we show that quantum capacity based on semi-computable concept equals the entropy rate of algorithmic coherent information, which in turn equals the standard quantum capacity. Thanks to this, we finally prove that the quantum capacity, for a given semi-computable channel, is limit computable.

  11. Higher-order force gradient symplectic algorithms

    Science.gov (United States)

    Chin, Siu A.; Kidwell, Donald W.

    2000-12-01

    We show that a recently discovered fourth order symplectic algorithm, which requires one evaluation of force gradient in addition to three evaluations of the force, when iterated to higher order, yielded algorithms that are far superior to similarly iterated higher order algorithms based on the standard Forest-Ruth algorithm. We gauge the accuracy of each algorithm by comparing the step-size independent error functions associated with energy conservation and the rotation of the Laplace-Runge-Lenz vector when solving a highly eccentric Kepler problem. For orders 6, 8, 10, and 12, the new algorithms are approximately a factor of 103, 104, 104, and 105 better.

  12. Dual EC : a standardized back door

    NARCIS (Netherlands)

    Bernstein, D.J.; Lange, T.; Niederhagen, R.F.

    2015-01-01

    Dual EC is an algorithm to compute pseudorandom numbers starting from some random input. Dual EC was standardized by NIST, ANSI, and ISO among other algorithms to generate pseudorandom numbers. For a long time this algorithm was considered suspicious -- the entity designing the algorithm could have

  13. Channel Access Algorithm Design for Automatic Identification System

    Institute of Scientific and Technical Information of China (English)

    Oh Sang-heon; Kim Seung-pum; Hwang Dong-hwan; Park Chan-sik; Lee Sang-jeong

    2003-01-01

    The Automatic Identification System (AIS) is a maritime equipment to allow an efficient exchange of the navigational data between ships and between ships and shore stations. It utilizes a channel access algorithm which can quickly resolve conflicts without any intervention from control stations. In this paper, a design of channel access algorithm for the AIS is presented. The input/output relationship of each access algorithm module is defined by drawing the state transition diagram, dataflow diagram and flowchart based on the technical standard, ITU-R M.1371. In order to verify the designed channel access algorithm, the simulator was developed using the C/C++ programming language. The results show that the proposed channel access algorithm can properly allocate transmission slots and meet the operational performance requirements specified by the technical standard.

  14. Assessing operating characteristics of CAD algorithms in the absence of a gold standard

    International Nuclear Information System (INIS)

    Roy Choudhury, Kingshuk; Paik, David S.; Yi, Chin A.; Napel, Sandy; Roos, Justus; Rubin, Geoffrey D.

    2010-01-01

    Purpose: The authors examine potential bias when using a reference reader panel as ''gold standard'' for estimating operating characteristics of CAD algorithms for detecting lesions. As an alternative, the authors propose latent class analysis (LCA), which does not require an external gold standard to evaluate diagnostic accuracy. Methods: A binomial model for multiple reader detections using different diagnostic protocols was constructed, assuming conditional independence of readings given true lesion status. Operating characteristics of all protocols were estimated by maximum likelihood LCA. Reader panel and LCA based estimates were compared using data simulated from the binomial model for a range of operating characteristics. LCA was applied to 36 thin section thoracic computed tomography data sets from the Lung Image Database Consortium (LIDC): Free search markings of four radiologists were compared to markings from four different CAD assisted radiologists. For real data, bootstrap-based resampling methods, which accommodate dependence in reader detections, are proposed to test of hypotheses of differences between detection protocols. Results: In simulation studies, reader panel based sensitivity estimates had an average relative bias (ARB) of -23% to -27%, significantly higher (p-value <0.0001) than LCA (ARB -2% to -6%). Specificity was well estimated by both reader panel (ARB -0.6% to -0.5%) and LCA (ARB 1.4%-0.5%). Among 1145 lesion candidates LIDC considered, LCA estimated sensitivity of reference readers (55%) was significantly lower (p-value 0.006) than CAD assisted readers' (68%). Average false positives per patient for reference readers (0.95) was not significantly lower (p-value 0.28) than CAD assisted readers' (1.27). Conclusions: Whereas a gold standard based on a consensus of readers may substantially bias sensitivity estimates, LCA may be a significantly more accurate and consistent means for evaluating diagnostic accuracy.

  15. Optimizing graph algorithms on pregel-like systems

    KAUST Repository

    Salihoglu, Semih; Widom, Jennifer

    2014-01-01

    We study the problem of implementing graph algorithms efficiently on Pregel-like systems, which can be surprisingly challenging. Standard graph algorithms in this setting can incur unnecessary inefficiencies such as slow convergence or high

  16. Median prior constrained TV algorithm for sparse view low-dose CT reconstruction.

    Science.gov (United States)

    Liu, Yi; Shangguan, Hong; Zhang, Quan; Zhu, Hongqing; Shu, Huazhong; Gui, Zhiguo

    2015-05-01

    It is known that lowering the X-ray tube current (mAs) or tube voltage (kVp) and simultaneously reducing the total number of X-ray views (sparse view) is an effective means to achieve low-dose in computed tomography (CT) scan. However, the associated image quality by the conventional filtered back-projection (FBP) usually degrades due to the excessive quantum noise. Although sparse-view CT reconstruction algorithm via total variation (TV), in the scanning protocol of reducing X-ray tube current, has been demonstrated to be able to result in significant radiation dose reduction while maintain image quality, noticeable patchy artifacts still exist in reconstructed images. In this study, to address the problem of patchy artifacts, we proposed a median prior constrained TV regularization to retain the image quality by introducing an auxiliary vector m in register with the object. Specifically, the approximate action of m is to draw, in each iteration, an object voxel toward its own local median, aiming to improve low-dose image quality with sparse-view projection measurements. Subsequently, an alternating optimization algorithm is adopted to optimize the associative objective function. We refer to the median prior constrained TV regularization as "TV_MP" for simplicity. Experimental results on digital phantoms and clinical phantom demonstrated that the proposed TV_MP with appropriate control parameters can not only ensure a higher signal to noise ratio (SNR) of the reconstructed image, but also its resolution compared with the original TV method. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. BPF-type region-of-interest reconstruction for parallel translational computed tomography.

    Science.gov (United States)

    Wu, Weiwen; Yu, Hengyong; Wang, Shaoyu; Liu, Fenglin

    2017-01-01

    The objective of this study is to present and test a new ultra-low-cost linear scan based tomography architecture. Similar to linear tomosynthesis, the source and detector are translated in opposite directions and the data acquisition system targets on a region-of-interest (ROI) to acquire data for image reconstruction. This kind of tomographic architecture was named parallel translational computed tomography (PTCT). In previous studies, filtered backprojection (FBP)-type algorithms were developed to reconstruct images from PTCT. However, the reconstructed ROI images from truncated projections have severe truncation artefact. In order to overcome this limitation, we in this study proposed two backprojection filtering (BPF)-type algorithms named MP-BPF and MZ-BPF to reconstruct ROI images from truncated PTCT data. A weight function is constructed to deal with data redundancy for multi-linear translations modes. Extensive numerical simulations are performed to evaluate the proposed MP-BPF and MZ-BPF algorithms for PTCT in fan-beam geometry. Qualitative and quantitative results demonstrate that the proposed BPF-type algorithms cannot only more accurately reconstruct ROI images from truncated projections but also generate high-quality images for the entire image support in some circumstances.

  18. Compensation Methods for Non-uniform and Incomplete Data Sampling in High Resolution PET with Multiple Scintillation Crystal Layers

    International Nuclear Information System (INIS)

    Lee, Jae Sung; Kim, Soo Mee; Lee, Dong Soo; Hong, Jong Hong; Sim, Kwang Souk; Rhee, June Tak

    2008-01-01

    To establish the methods for sinogram formation and correction in order to appropriately apply the filtered backprojection (FBP) reconstruction algorithm to the data acquired using PET scanner with multiple scintillation crystal layers. Formation for raw PET data storage and conversion methods from listmode data to histogram and sinogram were optimized. To solve the various problems occurred while the raw histogram was converted into sinogram, optimal sampling strategy and sampling efficiency correction method were investigated. Gap compensation methods that is unique in this system were also investigated. All the sinogram data were reconstructed using 2D filtered backprojection algorithm and compared to estimate the improvements by the correction algorithms. Optimal radial sampling interval and number of angular samples in terms of the sampling theorem and sampling efficiency correction algorithm were pitch/2 and 120, respectively. By applying the sampling efficiency correction and gap compensation, artifacts and background noise on the reconstructed image could be reduced. Conversion method from the histogram to sinogram was investigated for the FBP reconstruction of data acquired using multiple scintillation crystal layers. This method will be useful for the fast 2D reconstruction of multiple crystal layer PET data

  19. Jointly-check iterative decoding algorithm for quantum sparse graph codes

    International Nuclear Information System (INIS)

    Jun-Hu, Shao; Bao-Ming, Bai; Wei, Lin; Lin, Zhou

    2010-01-01

    For quantum sparse graph codes with stabilizer formalism, the unavoidable girth-four cycles in their Tanner graphs greatly degrade the iterative decoding performance with a standard belief-propagation (BP) algorithm. In this paper, we present a jointly-check iterative algorithm suitable for decoding quantum sparse graph codes efficiently. Numerical simulations show that this modified method outperforms the standard BP algorithm with an obvious performance improvement. (general)

  20. Influence of rebinning on the reconstructed resolution of fan-beam SPECT

    International Nuclear Information System (INIS)

    Koole, M.; D'Asseler, Y.; Staelens, S.; Vandenberghe, S.; Eede, I. van den; Walle, R. van de; Lemahieu, I.

    2002-01-01

    Aim: Fan-beam projection data can be rebinned to a parallel-beam geometry. This rebinning operation allows these data to be reconstructed with algorithms for parallel-beam projection data. The advantage of such an operation is that a dedicated projection/backprojection step for fan-beam geometry doesn't need to be developed. In clinical practice bilinear interpolation is often used for this rebinning operation. The aim of this study is to investigate the influence of the rebinning operation on the resolution properties of the reconstructed SPECT-image. Materials and methods: We have simulated the resolution properties of a fan-beam collimator, used in clinical routine, by means of a dedicated projector operation which models the distance dependent sensitivity and resolution of the collimator. With this projector, we generated noise-free sinograms for a point source located at various distances from the center of rotation. The number of angles of these sinograms varied from 60 to 180, corresponding to a step angle of 6 to 2 degrees. These generated fan-beam projection data were reconstructed directly with a filtered backprojection algorithm for fan-beam projection data, which consists of weighting and filtering the projection data with a ramp filter and of a weighted backprojection. Next, the generated fan-beam projection data were rebinned by means of bilinear interpolation and reconstructed with standard filtered backprojection for parallel-beam data. A two-dimensional Gaussian was fitted to the two point sources, one reconstructed with FBP for fan-beam and one reconstructed with FBP for parallel-beam after rebinning, yielding an estimate for the reconstructed Full Width at Half Maximum (FWHM) in the radial and tangential direction, for different locations in the field of view. Results: Results show little difference in resolution degradation in the radial direction between direct reconstruction and reconstruction after rebinning. However, significant loss in

  1. RFID Location Algorithm

    Directory of Open Access Journals (Sweden)

    Wang Zi Min

    2016-01-01

    Full Text Available With the development of social services, people’s living standards improve further requirements, there is an urgent need for a way to adapt to the complex situation of the new positioning technology. In recent years, RFID technology have a wide range of applications in all aspects of life and production, such as logistics tracking, car alarm, security and other items. The use of RFID technology to locate, it is a new direction in the eyes of the various research institutions and scholars. RFID positioning technology system stability, the error is small and low-cost advantages of its location algorithm is the focus of this study.This article analyzes the layers of RFID technology targeting methods and algorithms. First, RFID common several basic methods are introduced; Secondly, higher accuracy to political network location method; Finally, LANDMARC algorithm will be described. Through this it can be seen that advanced and efficient algorithms play an important role in increasing RFID positioning accuracy aspects.Finally, the algorithm of RFID location technology are summarized, pointing out the deficiencies in the algorithm, and put forward a follow-up study of the requirements, the vision of a better future RFID positioning technology.

  2. Algorithms of maximum likelihood data clustering with applications

    Science.gov (United States)

    Giada, Lorenzo; Marsili, Matteo

    2002-12-01

    We address the problem of data clustering by introducing an unsupervised, parameter-free approach based on maximum likelihood principle. Starting from the observation that data sets belonging to the same cluster share a common information, we construct an expression for the likelihood of any possible cluster structure. The likelihood in turn depends only on the Pearson's coefficient of the data. We discuss clustering algorithms that provide a fast and reliable approximation to maximum likelihood configurations. Compared to standard clustering methods, our approach has the advantages that (i) it is parameter free, (ii) the number of clusters need not be fixed in advance and (iii) the interpretation of the results is transparent. In order to test our approach and compare it with standard clustering algorithms, we analyze two very different data sets: time series of financial market returns and gene expression data. We find that different maximization algorithms produce similar cluster structures whereas the outcome of standard algorithms has a much wider variability.

  3. A novel algorithm for segmentation of brain MR images

    International Nuclear Information System (INIS)

    Sial, M.Y.; Yu, L.; Chowdhry, B.S.; Rajput, A.Q.K.; Bhatti, M.I.

    2006-01-01

    Accurate and fully automatic segmentation of brain from magnetic resonance (MR) scans is a challenging problem that has received an enormous amount of . attention lately. Many researchers have applied various techniques however a standard fuzzy c-means algorithm has produced better results compared to other methods. In this paper, we present a modified fuzzy c-means (FCM) based algorithm for segmentation of brain MR images. Our algorithm is formulated by modifying the objective function of the standard FCM and uses a special spread method to get a smooth and slow varying bias field This method has the advantage that it can be applied at an early stage in an automated data analysis before a tissue model is available. The results on MRI images show that this method provides better results compared to standard FCM algorithms. (author)

  4. Physics and instrumentation of emission computed tomography

    International Nuclear Information System (INIS)

    Links, J.M.

    1986-01-01

    Transverse emission computed tomography can be divided into two distinct classes: single photon emission computed tomography (SPECT) and positron emission tomography (PET). SPECT is usually accomplished with specially-adapted scintillation cameras, although dedicated SPECT scanners are available. The special SPECT cameras are standard cameras which are mounted on gantries that allow 360 degree rotation around the long axis of the head or body. The camera stops at a number of angles around the body (usually 64-128), acquiring a ''projection'' image at each stop. The data from these projections are used to reconstruct transverse images with a standard ''filtered back-projection'' algorithm, identical to that used in transmission CT. Because the scintillation camera acquires two-dimensional images, a simple 360 degree rotation around the patient results in the acquisition of data for a number of contiguous transverse slices. These slices, once reconstructed, can be ''stacked'' in computer memory, and orthogonal coronal and sagittal slices produced. Additionally, reorienting algorithms allow the generation of slices that are oblique to the long axis of the body

  5. Electrical impedance tomography methods for miniaturised 3D systems

    DEFF Research Database (Denmark)

    Canali, Chiara; Aristovich, K.; Ceccarelli, Lorenzo

    2016-01-01

    chambers (Ø 10 mm), each having eight gold plated needle electrodes vertically integrated along the chamber perimeter. As first method, the adjacent electrode configuration was tested solving the computationally simple back-projection algorithm using Comsol Multiphysics in time-difference EIT (t...

  6. An improved MODIS standard chlorophyll-a algorithm for Malacca Straits Water

    International Nuclear Information System (INIS)

    Lah, N Z Ab; Reba, M N M; Siswanto, Eko

    2014-01-01

    The Malacca Straits has high productivity of nutrients as a result to potential primary production. Yet, the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua has shown an overestimation of Chl-a retrieval in the case-2 water of Malacca Straits. In an update to the previous study, this paper presents the second validation exercise of MODIS OC3M algorithm using the reprocessed MODIS data (R2013) and locally tuned the algorithm with respect to two in-sit stations located at northern and southern part of Malacca Straits. The result shows the OC3M retrieved in the case-2 (south station) water remarkably overestimated in-situ Chl-a, but it is underestimated in the case-1 (north station). Local tuning was employed by iterative regression at the fourth-order polynomial to improve the accuracy of Chl-a retrieval. As a result, locally tuned OC3M algorithm give robust statistical performance and can be applied best for both case-1 and case-2 water in Malacca Straits

  7. Weighted simultaneous algebraic reconstruction technique for tomosynthesis imaging of objects with high-attenuation features

    International Nuclear Information System (INIS)

    Levakhina, Y. M.; Müller, J.; Buzug, T. M.; Duschka, R. L.; Vogt, F.; Barkhausen, J.

    2013-01-01

    Purpose: This paper introduces a nonlinear weighting scheme into the backprojection operation within the simultaneous algebraic reconstruction technique (SART). It is designed for tomosynthesis imaging of objects with high-attenuation features in order to reduce limited angle artifacts. Methods: The algorithm estimates which projections potentially produce artifacts in a voxel. The contribution of those projections into the updating term is reduced. In order to identify those projections automatically, a four-dimensional backprojected space representation is used. Weighting coefficients are calculated based on a dissimilarity measure, evaluated in this space. For each combination of an angular view direction and a voxel position an individual weighting coefficient for the updating term is calculated. Results: The feasibility of the proposed approach is shown based on reconstructions of the following real three-dimensional tomosynthesis datasets: a mammography quality phantom, an apple with metal needles, a dried finger bone in water, and a human hand. Datasets have been acquired with a Siemens Mammomat Inspiration tomosynthesis device and reconstructed using SART with and without suggested weighting. Out-of-focus artifacts are described using line profiles and measured using standard deviation (STD) in the plane and below the plane which contains artifact-causing features. Artifacts distribution in axial direction is measured using an artifact spread function (ASF). The volumes reconstructed with the weighting scheme demonstrate the reduction of out-of-focus artifacts, lower STD (meaning reduction of artifacts), and narrower ASF compared to nonweighted SART reconstruction. It is achieved successfully for different kinds of structures: point-like structures such as phantom features, long structures such as metal needles, and fine structures such as trabecular bone structures. Conclusions: Results indicate the feasibility of the proposed algorithm to reduce typical

  8. Weighted simultaneous algebraic reconstruction technique for tomosynthesis imaging of objects with high-attenuation features

    Energy Technology Data Exchange (ETDEWEB)

    Levakhina, Y. M. [Institute of Medical Engineering, University of Luebeck, Luebeck 23562, Germany and Graduate School for Computing in Medicine and Life Sciences, Luebeck 23562 (Germany); Mueller, J.; Buzug, T. M. [Institute of Medical Engineering, University of Luebeck, Luebeck 23562 (Germany); Duschka, R. L.; Vogt, F.; Barkhausen, J. [Clinic for Radiology, University Clinics Schleswig-Holstein, Luebeck 23562 (Germany)

    2013-03-15

    Purpose: This paper introduces a nonlinear weighting scheme into the backprojection operation within the simultaneous algebraic reconstruction technique (SART). It is designed for tomosynthesis imaging of objects with high-attenuation features in order to reduce limited angle artifacts. Methods: The algorithm estimates which projections potentially produce artifacts in a voxel. The contribution of those projections into the updating term is reduced. In order to identify those projections automatically, a four-dimensional backprojected space representation is used. Weighting coefficients are calculated based on a dissimilarity measure, evaluated in this space. For each combination of an angular view direction and a voxel position an individual weighting coefficient for the updating term is calculated. Results: The feasibility of the proposed approach is shown based on reconstructions of the following real three-dimensional tomosynthesis datasets: a mammography quality phantom, an apple with metal needles, a dried finger bone in water, and a human hand. Datasets have been acquired with a Siemens Mammomat Inspiration tomosynthesis device and reconstructed using SART with and without suggested weighting. Out-of-focus artifacts are described using line profiles and measured using standard deviation (STD) in the plane and below the plane which contains artifact-causing features. Artifacts distribution in axial direction is measured using an artifact spread function (ASF). The volumes reconstructed with the weighting scheme demonstrate the reduction of out-of-focus artifacts, lower STD (meaning reduction of artifacts), and narrower ASF compared to nonweighted SART reconstruction. It is achieved successfully for different kinds of structures: point-like structures such as phantom features, long structures such as metal needles, and fine structures such as trabecular bone structures. Conclusions: Results indicate the feasibility of the proposed algorithm to reduce typical

  9. Tilted cone-beam reconstruction with row-wise fan-to-parallel rebinning

    International Nuclear Information System (INIS)

    Hsieh Jiang; Tang Xiangyang

    2006-01-01

    Reconstruction algorithms for cone-beam CT have been the focus of many studies. Several exact and approximate reconstruction algorithms were proposed for step-and-shoot and helical scanning trajectories to combat cone-beam related artefacts. In this paper, we present a new closed-form cone-beam reconstruction formula for tilted gantry data acquisition. Although several algorithms were proposed in the past to combat errors induced by the gantry tilt, none of the algorithms addresses the scenario in which the cone-beam geometry is first rebinned to a set of parallel beams prior to the filtered backprojection. We show that the image quality advantages of the rebinned parallel-beam reconstruction are significant, which makes the development of such an algorithm necessary. Because of the rebinning process, the reconstruction algorithm becomes more complex and the amount of iso-centre adjustment depends not only on the projection and tilt angles, but also on the reconstructed pixel location. In this paper, we first demonstrate the advantages of the row-wise fan-to-parallel rebinning and derive a closed-form solution for the reconstruction algorithm for the step-and-shoot and constant-pitch helical scans. The proposed algorithm requires the 'warping' of the reconstruction matrix on a view-by-view basis prior to the backprojection step. We further extend the algorithm to the variable-pitch helical scans in which the patient table travels at non-constant speeds. The algorithm was tested extensively on both the 16- and 64-slice CT scanners. The efficacy of the algorithm is clearly demonstrated by multiple experiments

  10. Guidelines and algorithms for managing the difficult airway.

    Science.gov (United States)

    Gómez-Ríos, M A; Gaitini, L; Matter, I; Somri, M

    2018-01-01

    The difficult airway constitutes a continuous challenge for anesthesiologists. Guidelines and algorithms are key to preserving patient safety, by recommending specific plans and strategies that address predicted or unexpected difficult airway. However, there are currently no "gold standard" algorithms or universally accepted standards. The aim of this article is to present a synthesis of the recommendations of the main guidelines and difficult airway algorithms. Copyright © 2017 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. The use of a standardized PCT-algorithm reduces costs in intensive care in septic patients - a DRG-based simulation model

    Directory of Open Access Journals (Sweden)

    Wilke MH

    2011-12-01

    Full Text Available Abstract Introduction The management of bloodstream infections especially sepsis is a difficult task. An optimal antibiotic therapy (ABX is paramount for success. Procalcitonin (PCT is a well investigated biomarker that allows close monitoring of the infection and management of ABX. It has proven to be a cost-efficient diagnostic tool. In Diagnoses Related Groups (DRG based reimbursement systems, hospitals get only a fixed amount of money for certain treatments. Thus it's very important to obtain an optimal balance of clinical treatment and resource consumption namely the length of stay in hospital and especially in the Intensive Care Unit (ICU. We investigated which economic effects an optimized PCT-based algorithm for antibiotic management could have. Materials and methods We collected inpatient episode data from 16 hospitals. These data contain administrative and clinical information such as length of stay, days in the ICU or diagnoses and procedures. From various RCTs and reviews there are different algorithms for the use of PCT to manage ABX published. Moreover RCTs and meta-analyses have proven possible savings in days of ABX (ABD and length of stay in ICU (ICUD. As the meta-analyses use studies on different patient populations (pneumonia, sepsis, other bacterial infections, we undertook a short meta-analyses of 6 relevant studies investigating in sepsis or ventilator associated pneumonia (VAP. From this analyses we obtained savings in ABD and ICUD by calculating the weighted mean differences. Then we designed a new PCT-based algorithm using results from two very recent reviews. The algorithm contains evidence from several studies. From the patient data we calculated cost estimates using German National standard costing information for the German G-DRG system. We developed a simulation model where the possible savings and the extra costs for (in average 8 PCT tests due to our algorithm were brought into equation. Results We calculated ABD

  12. Testing a Fourier Accelerated Hybrid Monte Carlo Algorithm

    OpenAIRE

    Catterall, S.; Karamov, S.

    2001-01-01

    We describe a Fourier Accelerated Hybrid Monte Carlo algorithm suitable for dynamical fermion simulations of non-gauge models. We test the algorithm in supersymmetric quantum mechanics viewed as a one-dimensional Euclidean lattice field theory. We find dramatic reductions in the autocorrelation time of the algorithm in comparison to standard HMC.

  13. High performance image processing of SPRINT

    Energy Technology Data Exchange (ETDEWEB)

    DeGroot, T. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    This talk will describe computed tomography (CT) reconstruction using filtered back-projection on SPRINT parallel computers. CT is a computationally intensive task, typically requiring several minutes to reconstruct a 512x512 image. SPRINT and other parallel computers can be applied to CT reconstruction to reduce computation time from minutes to seconds. SPRINT is a family of massively parallel computers developed at LLNL. SPRINT-2.5 is a 128-node multiprocessor whose performance can exceed twice that of a Cray-Y/MP. SPRINT-3 will be 10 times faster. Described will be the parallel algorithms for filtered back-projection and their execution on SPRINT parallel computers.

  14. Cache-Oblivious Algorithms and Data Structures

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting

    2004-01-01

    Frigo, Leiserson, Prokop and Ramachandran in 1999 introduced the ideal-cache model as a formal model of computation for developing algorithms in environments with multiple levels of caching, and coined the terminology of cache-oblivious algorithms. Cache-oblivious algorithms are described...... as standard RAM algorithms with only one memory level, i.e. without any knowledge about memory hierarchies, but are analyzed in the two-level I/O model of Aggarwal and Vitter for an arbitrary memory and block size and an optimal off-line cache replacement strategy. The result are algorithms that automatically...... apply to multi-level memory hierarchies. This paper gives an overview of the results achieved on cache-oblivious algorithms and data structures since the seminal paper by Frigo et al....

  15. Comparison Of Hybrid Sorting Algorithms Implemented On Different Parallel Hardware Platforms

    Directory of Open Access Journals (Sweden)

    Dominik Zurek

    2013-01-01

    Full Text Available Sorting is a common problem in computer science. There are lot of well-known sorting algorithms created for sequential execution on a single processor. Recently, hardware platforms enable to create wide parallel algorithms. We have standard processors consist of multiple cores and hardware accelerators like GPU. The graphic cards with their parallel architecture give new possibility to speed up many algorithms. In this paper we describe results of implementation of a few different sorting algorithms on GPU cards and multicore processors. Then hybrid algorithm will be presented which consists of parts executed on both platforms, standard CPU and GPU.

  16. Immersive Algorithms: Better Visualization with Less Information

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li

    2017-01-01

    Visualizing algorithms, such as drawings, slideshow presentations, animations, videos, and software tools, is a key concept to enhance and support student learning. A typical visualization of an algorithm show the data and then perform computation on the data. For instance, a standard visualization...

  17. Back-Projection Imaging of extended, high-frequency pre-, co-, and post-eruptive seismicity at El Jefe Geyser, El Tatio Geyser Field, Chile

    Science.gov (United States)

    Kelly, C. L.; Lawrence, J. F.; Beroza, G. C.

    2017-12-01

    El Tatio Geyser Field in northern Chile is the third largest geyser field in the world. It is comprised of 3 basins that span 10 km x 10 km at an average elevation of 4250 m and contains at least 80 active geysers. Heavy tourist traffic and previous geothermal exploration make the field relatively non-pristine and ideal for performing minimally invasive geophysical experiments. We deployed a dense array of 51 L-28 3-component geophones (1-10 m spacing, corner frequency 4.5 Hz, 1000 Hz sample rate), and 6 Trillium 120 broadband seismometers (2-20 m spacing, long period corner 120 s, 500 Hz sample rate) in a 50 m x 50 m grid in the central Upper Geyser Basin (the largest basin in area at 5 km x 5 km) during October 2012 as part of a collaborative study of hydrothermal systems between Stanford University; U.C. Berkeley; U. of Chile, Santiago; U. of Tokyo; and the USGS. The seismic array was designed to target at El Jefe Geyser (EJG), a columnar geyser (eruption height 1-1.5 m) with a consistent periodic eruption cycle of 132 +/- 3 s. Seismicity at EJG was recorded continuously for 9 days during which 6000 total eruptions occurred. Excluding periods of high anthropogenic noise (i.e. tourist visits, field work), the array recorded 2000 eruptions that we use to create 4D time-lapse images of the evolution of seismic source locations before, during and after EJG eruptions. We use a new back-projection processing technique to locate geyser signals, which tend to be harmonic and diffuse in nature, during characteristic phases of the EJG eruption cycle. We obtain Vp and Vs from ambient-field tomography and estimates of P and S propagation from a hammer source recorded by the array. We use these velocities to back-project and correlate seismic signals from all available receiver-pairs to all potential source locations in a subsurface model assuming straight-line raypaths. We analyze results for individual and concurrent geyser sources throughout an entire EJG eruption cycle

  18. Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI

    DEFF Research Database (Denmark)

    Bron, Esther E.; Smits, Marion; van der Flier, Wiesje M.

    2015-01-01

    algorithms based on a clinically representative multi-center data set. Using clinical practice as the starting point, the goal was to reproduce the clinical diagnosis. Therefore, we evaluated algorithms for multi-class classification of three diagnostic groups: patients with probable Alzheimer's disease...... of aging). The best performing algorithm yielded an accuracy of 63.0% and an area under the receiver-operating-characteristic curve (AUC) of 78.8%. In general, the best performances were achieved using feature extraction based on voxel-based morphometry or a combination of features that included volume......Abstract Algorithms for computer-aided diagnosis of dementia based on structural MRI have demonstrated high performance in the literature, but are difficult to compare as different data sets and methodology were used for evaluation. In addition, it is unclear how the algorithms would perform...

  19. CHAOS-BASED ADVANCED ENCRYPTION STANDARD

    KAUST Repository

    Abdulwahed, Naif B.

    2013-01-01

    This thesis introduces a new chaos-based Advanced Encryption Standard (AES). The AES is a well-known encryption algorithm that was standardized by U.S National Institute of Standard and Technology (NIST) in 2001. The thesis investigates and explores

  20. Modular Regularization Algorithms

    DEFF Research Database (Denmark)

    Jacobsen, Michael

    2004-01-01

    The class of linear ill-posed problems is introduced along with a range of standard numerical tools and basic concepts from linear algebra, statistics and optimization. Known algorithms for solving linear inverse ill-posed problems are analyzed to determine how they can be decomposed into indepen...

  1. A formal analysis of a dynamic distributed spanning tree algorithm

    NARCIS (Netherlands)

    Mooij, A.J.; Wesselink, J.W.

    2003-01-01

    Abstract. We analyze the spanning tree algorithm in the IEEE 1394.1 draft standard, which correctness has not previously been proved. This algorithm is a fully-dynamic distributed graph algorithm, which, in general, is hard to develop. The approach we use is to formally develop an algorithm that is

  2. Enhanced backpropagation training algorithm for transient event identification

    International Nuclear Information System (INIS)

    Vitela, J.; Reifman, J.

    1993-01-01

    We present an enhanced backpropagation (BP) algorithm for training feedforward neural networks that avoids the undesirable premature saturation of the network output nodes and accelerates the training process even in cases where premature saturation is not present. When the standard BP algorithm is applied to train patterns of nuclear power plant (NPP) transients, the network output nodes often become prematurely saturated causing the already slow rate of convergence of the algorithm to become even slower. When premature saturation occurs, the gradient of the prediction error becomes very small, although the prediction error itself is still large, yielding negligible weight updates and hence no significant decrease in the prediction error until the eventual recovery of the output nodes from saturation. By defining the onset of premature saturation and systematically modifying the gradient of the prediction error at saturation, we developed an enhanced BP algorithm that is compared with the standard BP algorithm in training a network to identify NPP transients

  3. Self-Adaptive Step Firefly Algorithm

    Directory of Open Access Journals (Sweden)

    Shuhao Yu

    2013-01-01

    Full Text Available In the standard firefly algorithm, each firefly has the same step settings and its values decrease from iteration to iteration. Therefore, it may fall into the local optimum. Furthermore, the decreasing of step is restrained by the maximum of iteration, which has an influence on the convergence speed and precision. In order to avoid falling into the local optimum and reduce the impact of the maximum of iteration, a self-adaptive step firefly algorithm is proposed in the paper. Its core idea is setting the step of each firefly varying with the iteration, according to each firefly’s historical information and current situation. Experiments are made to show the performance of our approach compared with the standard FA, based on sixteen standard testing benchmark functions. The results reveal that our method can prevent the premature convergence and improve the convergence speed and accurateness.

  4. Testing algorithms for critical slowing down

    Directory of Open Access Journals (Sweden)

    Cossu Guido

    2018-01-01

    Full Text Available We present the preliminary tests on two modifications of the Hybrid Monte Carlo (HMC algorithm. Both algorithms are designed to travel much farther in the Hamiltonian phase space for each trajectory and reduce the autocorrelations among physical observables thus tackling the critical slowing down towards the continuum limit. We present a comparison of costs of the new algorithms with the standard HMC evolution for pure gauge fields, studying the autocorrelation times for various quantities including the topological charge.

  5. Loop algorithms for quantum simulations of fermion models on lattices

    International Nuclear Information System (INIS)

    Kawashima, N.; Gubernatis, J.E.; Evertz, H.G.

    1994-01-01

    Two cluster algorithms, based on constructing and flipping loops, are presented for world-line quantum Monte Carlo simulations of fermions and are tested on the one-dimensional repulsive Hubbard model. We call these algorithms the loop-flip and loop-exchange algorithms. For these two algorithms and the standard world-line algorithm, we calculated the autocorrelation times for various physical quantities and found that the ordinary world-line algorithm, which uses only local moves, suffers from very long correlation times that makes not only the estimate of the error difficult but also the estimate of the average values themselves difficult. These difficulties are especially severe in the low-temperature, large-U regime. In contrast, we find that new algorithms, when used alone or in combinations with themselves and the standard algorithm, can have significantly smaller autocorrelation times, in some cases being smaller by three orders of magnitude. The new algorithms, which use nonlocal moves, are discussed from the point of view of a general prescription for developing cluster algorithms. The loop-flip algorithm is also shown to be ergodic and to belong to the grand canonical ensemble. Extensions to other models and higher dimensions are briefly discussed

  6. FIREWORKS ALGORITHM FOR UNCONSTRAINED FUNCTION OPTIMIZATION PROBLEMS

    Directory of Open Access Journals (Sweden)

    Evans BAIDOO

    2017-03-01

    Full Text Available Modern real world science and engineering problems can be classified as multi-objective optimisation problems which demand for expedient and efficient stochastic algorithms to respond to the optimization needs. This paper presents an object-oriented software application that implements a firework optimization algorithm for function optimization problems. The algorithm, a kind of parallel diffuse optimization algorithm is based on the explosive phenomenon of fireworks. The algorithm presented promising results when compared to other population or iterative based meta-heuristic algorithm after it was experimented on five standard benchmark problems. The software application was implemented in Java with interactive interface which allow for easy modification and extended experimentation. Additionally, this paper validates the effect of runtime on the algorithm performance.

  7. A hybrid Jaya algorithm for reliability-redundancy allocation problems

    Science.gov (United States)

    Ghavidel, Sahand; Azizivahed, Ali; Li, Li

    2018-04-01

    This article proposes an efficient improved hybrid Jaya algorithm based on time-varying acceleration coefficients (TVACs) and the learning phase introduced in teaching-learning-based optimization (TLBO), named the LJaya-TVAC algorithm, for solving various types of nonlinear mixed-integer reliability-redundancy allocation problems (RRAPs) and standard real-parameter test functions. RRAPs include series, series-parallel, complex (bridge) and overspeed protection systems. The search power of the proposed LJaya-TVAC algorithm for finding the optimal solutions is first tested on the standard real-parameter unimodal and multi-modal functions with dimensions of 30-100, and then tested on various types of nonlinear mixed-integer RRAPs. The results are compared with the original Jaya algorithm and the best results reported in the recent literature. The optimal results obtained with the proposed LJaya-TVAC algorithm provide evidence for its better and acceptable optimization performance compared to the original Jaya algorithm and other reported optimal results.

  8. A pipelined FPGA implementation of an encryption algorithm based on genetic algorithm

    Science.gov (United States)

    Thirer, Nonel

    2013-05-01

    With the evolution of digital data storage and exchange, it is essential to protect the confidential information from every unauthorized access. High performance encryption algorithms were developed and implemented by software and hardware. Also many methods to attack the cipher text were developed. In the last years, the genetic algorithm has gained much interest in cryptanalysis of cipher texts and also in encryption ciphers. This paper analyses the possibility to use the genetic algorithm as a multiple key sequence generator for an AES (Advanced Encryption Standard) cryptographic system, and also to use a three stages pipeline (with four main blocks: Input data, AES Core, Key generator, Output data) to provide a fast encryption and storage/transmission of a large amount of data.

  9. Semiconvergence and Relaxation Parameters for Projected SIRT Algorithms

    DEFF Research Database (Denmark)

    Elfving, Tommy; Hansen, Per Christian; Nikazad, Touraj

    2012-01-01

    We give a detailed study of the semiconverg ence behavior of projected nonstationary simultaneous iterative reconstruction technique (SIRT) algorithms, including the projected Landweber algorithm. We also consider the use of a relaxation parameter strategy, proposed recently for the standard...... algorithms, for controlling the semiconvergence of the projected algorithms. We demonstrate the semiconvergence and the performance of our strategies by examples taken from tomographic imaging. © 2012 Society for Industrial and Applied Mathematics....

  10. Functional validation and comparison framework for EIT lung imaging.

    Science.gov (United States)

    Grychtol, Bartłomiej; Elke, Gunnar; Meybohm, Patrick; Weiler, Norbert; Frerichs, Inéz; Adler, Andy

    2014-01-01

    Electrical impedance tomography (EIT) is an emerging clinical tool for monitoring ventilation distribution in mechanically ventilated patients, for which many image reconstruction algorithms have been suggested. We propose an experimental framework to assess such algorithms with respect to their ability to correctly represent well-defined physiological changes. We defined a set of clinically relevant ventilation conditions and induced them experimentally in 8 pigs by controlling three ventilator settings (tidal volume, positive end-expiratory pressure and the fraction of inspired oxygen). In this way, large and discrete shifts in global and regional lung air content were elicited. We use the framework to compare twelve 2D EIT reconstruction algorithms, including backprojection (the original and still most frequently used algorithm), GREIT (a more recent consensus algorithm for lung imaging), truncated singular value decomposition (TSVD), several variants of the one-step Gauss-Newton approach and two iterative algorithms. We consider the effects of using a 3D finite element model, assuming non-uniform background conductivity, noise modeling, reconstructing for electrode movement, total variation (TV) reconstruction, robust error norms, smoothing priors, and using difference vs. normalized difference data. Our results indicate that, while variation in appearance of images reconstructed from the same data is not negligible, clinically relevant parameters do not vary considerably among the advanced algorithms. Among the analysed algorithms, several advanced algorithms perform well, while some others are significantly worse. Given its vintage and ad-hoc formulation backprojection works surprisingly well, supporting the validity of previous studies in lung EIT.

  11. Functional validation and comparison framework for EIT lung imaging.

    Directory of Open Access Journals (Sweden)

    Bartłomiej Grychtol

    Full Text Available INTRODUCTION: Electrical impedance tomography (EIT is an emerging clinical tool for monitoring ventilation distribution in mechanically ventilated patients, for which many image reconstruction algorithms have been suggested. We propose an experimental framework to assess such algorithms with respect to their ability to correctly represent well-defined physiological changes. We defined a set of clinically relevant ventilation conditions and induced them experimentally in 8 pigs by controlling three ventilator settings (tidal volume, positive end-expiratory pressure and the fraction of inspired oxygen. In this way, large and discrete shifts in global and regional lung air content were elicited. METHODS: We use the framework to compare twelve 2D EIT reconstruction algorithms, including backprojection (the original and still most frequently used algorithm, GREIT (a more recent consensus algorithm for lung imaging, truncated singular value decomposition (TSVD, several variants of the one-step Gauss-Newton approach and two iterative algorithms. We consider the effects of using a 3D finite element model, assuming non-uniform background conductivity, noise modeling, reconstructing for electrode movement, total variation (TV reconstruction, robust error norms, smoothing priors, and using difference vs. normalized difference data. RESULTS AND CONCLUSIONS: Our results indicate that, while variation in appearance of images reconstructed from the same data is not negligible, clinically relevant parameters do not vary considerably among the advanced algorithms. Among the analysed algorithms, several advanced algorithms perform well, while some others are significantly worse. Given its vintage and ad-hoc formulation backprojection works surprisingly well, supporting the validity of previous studies in lung EIT.

  12. Algorithmic and user study of an autocompletion algorithm on a large medical vocabulary.

    Science.gov (United States)

    Sevenster, Merlijn; van Ommering, Rob; Qian, Yuechen

    2012-02-01

    Autocompletion supports human-computer interaction in software applications that let users enter textual data. We will be inspired by the use case in which medical professionals enter ontology concepts, catering the ongoing demand for structured and standardized data in medicine. Goal is to give an algorithmic analysis of one particular autocompletion algorithm, called multi-prefix matching algorithm, which suggests terms whose words' prefixes contain all words in the string typed by the user, e.g., in this sense, opt ner me matches optic nerve meningioma. Second we aim to investigate how well it supports users entering concepts from a large and comprehensive medical vocabulary (snomed ct). We give a concise description of the multi-prefix algorithm, and sketch how it can be optimized to meet required response time. Performance will be compared to a baseline algorithm, which gives suggestions that extend the string typed by the user to the right, e.g. optic nerve m gives optic nerve meningioma, but opt ner me does not. We conduct a user experiment in which 12 participants are invited to complete 40 snomed ct terms with the baseline algorithm and another set of 40 snomed ct terms with the multi-prefix algorithm. Our results show that users need significantly fewer keystrokes when supported by the multi-prefix algorithm than when supported by the baseline algorithm. The proposed algorithm is a competitive candidate for searching and retrieving terms from a large medical ontology. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Image reconstruction for digital breast tomosynthesis (DBT) by using projection-angle-dependent filter functions

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yeonok; Park, Chulkyu; Cho, Hyosung; Je, Uikyu; Hong, Daeki; Lee, Minsik; Cho, Heemoon; Choi, Sungil; Koo, Yangseo [Yonsei University, Wonju (Korea, Republic of)

    2014-09-15

    Digital breast tomosynthesis (DBT) is considered in clinics as a standard three-dimensional imaging modality, allowing the earlier detection of cancer. It typically acquires only 10-30 projections over a limited angle range of 15 - 60 .deg. with a stationary detector and typically uses a computationally-efficient filtered-backprojection (FBP) algorithm for image reconstruction. However, a common FBP algorithm yields poor image quality resulting from the loss of average image value and the presence of severe image artifacts due to the elimination of the dc component of the image by the ramp filter and to the incomplete data, respectively. As an alternative, iterative reconstruction methods are often used in DBT to overcome these difficulties, even though they are still computationally expensive. In this study, as a compromise, we considered a projection-angle dependent filtering method in which one-dimensional geometry-adapted filter kernels are computed with the aid of a conjugate-gradient method and are incorporated into the standard FBP framework. We implemented the proposed algorithm and performed systematic simulation works to investigate the imaging characteristics. Our results indicate that the proposed method is superior to a conventional FBP method for DBT imaging and has a comparable computational cost, while preserving good image homogeneity and edge sharpening with no serious image artifacts.

  14. Application of the Levenberg-Marquardt Scheme to the MUSIC Algorithm for AOA Estimation

    Directory of Open Access Journals (Sweden)

    Joon-Ho Lee

    2013-01-01

    can be expressed in a least squares form. Based on this observation, we present a rigorous Levenberg-Marquardt (LM formulation of the MUSIC algorithm for simultaneous estimation of an azimuth and an elevation. We show a convergence property and compare the performance of the LM-based MUSIC algorithm with that of the standard MUSIC algorithm via Monte-Carlo simulation. We also compare the performance of the MUSIC algorithm with that of the Capon algorithm both for the standard implementation and for the LM-based implementation.

  15. Extreme-Scale Algorithms & Software Resilience (EASIR) Architecture-Aware Algorithms for Scalable Performance and Resilience on Heterogeneous Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Demmel, James W. [Univ. of California, Berkeley, CA (United States)

    2017-09-14

    This project addresses both communication-avoiding algorithms, and reproducible floating-point computation. Communication, i.e. moving data, either between levels of memory or processors over a network, is much more expensive per operation than arithmetic (measured in time or energy), so we seek algorithms that greatly reduce communication. We developed many new algorithms for both dense and sparse, and both direct and iterative linear algebra, attaining new communication lower bounds, and getting large speedups in many cases. We also extended this work in several ways: (1) We minimize writes separately from reads, since writes may be much more expensive than reads on emerging memory technologies, like Flash, sometimes doing asymptotically fewer writes than reads. (2) We extend the lower bounds and optimal algorithms to arbitrary algorithms that may be expressed as perfectly nested loops accessing arrays, where the array subscripts may be arbitrary affine functions of the loop indices (eg A(i), B(i,j+k, k+3*m-7, …) etc.). (3) We extend our communication-avoiding approach to some machine learning algorithms, such as support vector machines. This work has won a number of awards. We also address reproducible floating-point computation. We define reproducibility to mean getting bitwise identical results from multiple runs of the same program, perhaps with different hardware resources or other changes that should ideally not change the answer. Many users depend on reproducibility for debugging or correctness. However, dynamic scheduling of parallel computing resources, combined with nonassociativity of floating point addition, makes attaining reproducibility a challenge even for simple operations like summing a vector of numbers, or more complicated operations like the Basic Linear Algebra Subprograms (BLAS). We describe an algorithm that computes a reproducible sum of floating point numbers, independent of the order of summation. The algorithm depends only on a

  16. DATA SECURITY IN LOCAL AREA NETWORK BASED ON FAST ENCRYPTION ALGORITHM

    Directory of Open Access Journals (Sweden)

    G. Ramesh

    2010-06-01

    Full Text Available Hacking is one of the greatest problems in the wireless local area networks. Many algorithms have been used to prevent the outside attacks to eavesdrop or prevent the data to be transferred to the end-user safely and correctly. In this paper, a new symmetrical encryption algorithm is proposed that prevents the outside attacks. The new algorithm avoids key exchange between users and reduces the time taken for the encryption and decryption. It operates at high data rate in comparison with The Data Encryption Standard (DES, Triple DES (TDES, Advanced Encryption Standard (AES-256, and RC6 algorithms. The new algorithm is applied successfully on both text file and voice message.

  17. Evidence-based algorithm for heparin dosing before cardiopulmonary bypass. Part 1: Development of the algorithm.

    Science.gov (United States)

    McKinney, Mark C; Riley, Jeffrey B

    2007-12-01

    The incidence of heparin resistance during adult cardiac surgery with cardiopulmonary bypass has been reported at 15%-20%. The consistent use of a clinical decision-making algorithm may increase the consistency of patient care and likely reduce the total required heparin dose and other problems associated with heparin dosing. After a directed survey of practicing perfusionists regarding treatment of heparin resistance and a literature search for high-level evidence regarding the diagnosis and treatment of heparin resistance, an evidence-based decision-making algorithm was constructed. The face validity of the algorithm decisive steps and logic was confirmed by a second survey of practicing perfusionists. The algorithm begins with review of the patient history to identify predictors for heparin resistance. The definition for heparin resistance contained in the algorithm is an activated clotting time 450 IU/kg heparin loading dose. Based on the literature, the treatment for heparin resistance used in the algorithm is anti-thrombin III supplement. The algorithm seems to be valid and is supported by high-level evidence and clinician opinion. The next step is a human randomized clinical trial to test the clinical procedure guideline algorithm vs. current standard clinical practice.

  18. Evaluation of a Cross Layer Scheduling Algorithm for LTE Downlink

    Directory of Open Access Journals (Sweden)

    A. Popovska Avramova

    2013-06-01

    Full Text Available The LTE standard is a leading standard in the wireless broadband market. The Radio Resource Management at the base station plays a major role in satisfying users demand for high data rates and quality of service. This paper evaluates a cross layer scheduling algorithm that aims at minimizing the resource utilization. The algorithm makes decisions based on channel conditions, the size of transmission buffers and different quality of service demands. Simulation results show that the new algorithm improves the resource utilization and provides better guarantees for service quality.

  19. Analysis and Improvement of Fireworks Algorithm

    Directory of Open Access Journals (Sweden)

    Xi-Guang Li

    2017-02-01

    Full Text Available The Fireworks Algorithm is a recently developed swarm intelligence algorithm to simulate the explosion process of fireworks. Based on the analysis of each operator of Fireworks Algorithm (FWA, this paper improves the FWA and proves that the improved algorithm converges to the global optimal solution with probability 1. The proposed algorithm improves the goal of further boosting performance and achieving global optimization where mainly include the following strategies. Firstly using the opposition-based learning initialization population. Secondly a new explosion amplitude mechanism for the optimal firework is proposed. In addition, the adaptive t-distribution mutation for non-optimal individuals and elite opposition-based learning for the optimal individual are used. Finally, a new selection strategy, namely Disruptive Selection, is proposed to reduce the running time of the algorithm compared with FWA. In our simulation, we apply the CEC2013 standard functions and compare the proposed algorithm (IFWA with SPSO2011, FWA, EFWA and dynFWA. The results show that the proposed algorithm has better overall performance on the test functions.

  20. ODTbrain: a Python library for full-view, dense diffraction tomography.

    Science.gov (United States)

    Müller, Paul; Schürmann, Mirjam; Guck, Jochen

    2015-11-04

    Analyzing the three-dimensional (3D) refractive index distribution of a single cell makes it possible to describe and characterize its inner structure in a marker-free manner. A dense, full-view tomographic data set is a set of images of a cell acquired for multiple rotational positions, densely distributed from 0 to 360 degrees. The reconstruction is commonly realized by projection tomography, which is based on the inversion of the Radon transform. The reconstruction quality of projection tomography is greatly improved when first order scattering, which becomes relevant when the imaging wavelength is comparable to the characteristic object size, is taken into account. This advanced reconstruction technique is called diffraction tomography. While many implementations of projection tomography are available today, there is no publicly available implementation of diffraction tomography so far. We present a Python library that implements the backpropagation algorithm for diffraction tomography in 3D. By establishing benchmarks based on finite-difference time-domain (FDTD) simulations, we showcase the superiority of the backpropagation algorithm over the backprojection algorithm. Furthermore, we discuss how measurment parameters influence the reconstructed refractive index distribution and we also give insights into the applicability of diffraction tomography to biological cells. The present software library contains a robust implementation of the backpropagation algorithm. The algorithm is ideally suited for the application to biological cells. Furthermore, the implementation is a drop-in replacement for the classical backprojection algorithm and is made available to the large user community of the Python programming language.

  1. ANN-Benchmarks: A Benchmarking Tool for Approximate Nearest Neighbor Algorithms

    DEFF Research Database (Denmark)

    Aumüller, Martin; Bernhardsson, Erik; Faithfull, Alexander

    2017-01-01

    This paper describes ANN-Benchmarks, a tool for evaluating the performance of in-memory approximate nearest neighbor algorithms. It provides a standard interface for measuring the performance and quality achieved by nearest neighbor algorithms on different standard data sets. It supports several...... visualise these as images, Open image in new window plots, and websites with interactive plots. ANN-Benchmarks aims to provide a constantly updated overview of the current state of the art of k-NN algorithms. In the short term, this overview allows users to choose the correct k-NN algorithm and parameters...... for their similarity search task; in the longer term, algorithm designers will be able to use this overview to test and refine automatic parameter tuning. The paper gives an overview of the system, evaluates the results of the benchmark, and points out directions for future work. Interestingly, very different...

  2. Fast gradient-based methods for Bayesian reconstruction of transmission and emission PET images

    International Nuclear Information System (INIS)

    Mumcuglu, E.U.; Leahy, R.; Zhou, Z.; Cherry, S.R.

    1994-01-01

    The authors describe conjugate gradient algorithms for reconstruction of transmission and emission PET images. The reconstructions are based on a Bayesian formulation, where the data are modeled as a collection of independent Poisson random variables and the image is modeled using a Markov random field. A conjugate gradient algorithm is used to compute a maximum a posteriori (MAP) estimate of the image by maximizing over the posterior density. To ensure nonnegativity of the solution, a penalty function is used to convert the problem to one of unconstrained optimization. Preconditioners are used to enhance convergence rates. These methods generally achieve effective convergence in 15--25 iterations. Reconstructions are presented of an 18 FDG whole body scan from data collected using a Siemens/CTI ECAT931 whole body system. These results indicate significant improvements in emission image quality using the Bayesian approach, in comparison to filtered backprojection, particularly when reprojections of the MAP transmission image are used in place of the standard attenuation correction factors

  3. A Novel Integrated Algorithm for Wind Vector Retrieval from Conically Scanning Scatterometers

    Directory of Open Access Journals (Sweden)

    Xuetong Xie

    2013-11-01

    Full Text Available Due to the lower efficiency and the larger wind direction error of traditional algorithms, a novel integrated wind retrieval algorithm is proposed for conically scanning scatterometers. The proposed algorithm has the dual advantages of less computational cost and higher wind direction retrieval accuracy by integrating the wind speed standard deviation (WSSD algorithm and the wind direction interval retrieval (DIR algorithm. It adopts wind speed standard deviation as a criterion for searching possible wind vector solutions and retrieving a potential wind direction interval based on the change rate of the wind speed standard deviation. Moreover, a modified three-step ambiguity removal method is designed to let more wind directions be selected in the process of nudging and filtering. The performance of the new algorithm is illustrated by retrieval experiments using 300 orbits of SeaWinds/QuikSCAT L2A data (backscatter coefficients at 25 km resolution and co-located buoy data. Experimental results indicate that the new algorithm can evidently enhance the wind direction retrieval accuracy, especially in the nadir region. In comparison with the SeaWinds L2B Version 2 25 km selected wind product (retrieved wind fields, an improvement of 5.1° in wind direction retrieval can be made by the new algorithm for that region.

  4. The quest for light sea quarks: algorithms for the future

    International Nuclear Information System (INIS)

    Schroers, W.; Eicker, N.; D'Elia, M.; Forcrand, Ph. de; Gebert, C.; Lippert, Th.; Montvay, I.; Orth, B.; Pepe, M.; Schilling, K.

    2002-01-01

    As part of a systematic algorithm study, we present first results on a performance comparison between a multibosonic algorithm and the hybrid Monte Carlo algorithm as employed by the SESAM collaboration. The standard Wilson fermion action is used on 32 x 16 3 lattices at β = 5.5

  5. Implementation of Tuy's cone-beam inversion formula

    International Nuclear Information System (INIS)

    Zeng, G.L.; Clack, R.; Gullberg, G.T.

    1994-01-01

    Tuy's cone-beam inversion formula was modified to develop a cone-beam reconstruction algorithm. The algorithm was implemented for a cone-beam vertex orbit consisting of a circle and two orthogonal lines. This orbit geometry satisfies the cone-beam data sufficiency condition and is easy to implement on commercial single photon emission computed tomography (SPECT) systems. The algorithm which consists of two derivative steps, one rebinning step, and one three-dimensional backprojection step, was verified by computer simulations and by reconstructing physical phantom data collected on a clinical SPECT system. The proposed algorithm gives equivalent results and is as efficient as other analytical cone-beam reconstruction algorithms. (Author)

  6. Tomographic reconstruction of binary fields

    International Nuclear Information System (INIS)

    Roux, Stéphane; Leclerc, Hugo; Hild, François

    2012-01-01

    A novel algorithm is proposed for reconstructing binary images from their projection along a set of different orientations. Based on a nonlinear transformation of the projection data, classical back-projection procedures can be used iteratively to converge to the sought image. A multiscale implementation allows for a faster convergence. The algorithm is tested on images up to 1 Mb definition, and an error free reconstruction is achieved with a very limited number of projection data, saving a factor of about 100 on the number of projections required for classical reconstruction algorithms.

  7. Validation of neural spike sorting algorithms without ground-truth information.

    Science.gov (United States)

    Barnett, Alex H; Magland, Jeremy F; Greengard, Leslie F

    2016-05-01

    The throughput of electrophysiological recording is growing rapidly, allowing thousands of simultaneous channels, and there is a growing variety of spike sorting algorithms designed to extract neural firing events from such data. This creates an urgent need for standardized, automatic evaluation of the quality of neural units output by such algorithms. We introduce a suite of validation metrics that assess the credibility of a given automatic spike sorting algorithm applied to a given dataset. By rerunning the spike sorter two or more times, the metrics measure stability under various perturbations consistent with variations in the data itself, making no assumptions about the internal workings of the algorithm, and minimal assumptions about the noise. We illustrate the new metrics on standard sorting algorithms applied to both in vivo and ex vivo recordings, including a time series with overlapping spikes. We compare the metrics to existing quality measures, and to ground-truth accuracy in simulated time series. We provide a software implementation. Metrics have until now relied on ground-truth, simulated data, internal algorithm variables (e.g. cluster separation), or refractory violations. By contrast, by standardizing the interface, our metrics assess the reliability of any automatic algorithm without reference to internal variables (e.g. feature space) or physiological criteria. Stability is a prerequisite for reproducibility of results. Such metrics could reduce the significant human labor currently spent on validation, and should form an essential part of large-scale automated spike sorting and systematic benchmarking of algorithms. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Evaluation of the image quality in digital breast tomosynthesis (DBT) employed with a compressed-sensing (CS)-based reconstruction algorithm by using the mammographic accreditation phantom

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yeonok; Cho, Heemoon; Je, Uikyu; Cho, Hyosung, E-mail: hscho1@yonsei.ac.kr; Park, Chulkyu; Lim, Hyunwoo; Kim, Kyuseok; Kim, Guna; Park, Soyoung; Woo, Taeho; Choi, Sungil

    2015-12-21

    In this work, we have developed a prototype digital breast tomosynthesis (DBT) system which mainly consists of an x-ray generator (28 kV{sub p}, 7 mA s), a CMOS-type flat-panel detector (70-μm pixel size, 230.5×339 mm{sup 2} active area), and a rotational arm to move the x-ray generator in an arc. We employed a compressed-sensing (CS)-based reconstruction algorithm, rather than a common filtered-backprojection (FBP) one, for more accurate DBT reconstruction. Here the CS is a state-of-the-art mathematical theory for solving the inverse problems, which exploits the sparsity of the image with substantially high accuracy. We evaluated the reconstruction quality in terms of the detectability, the contrast-to-noise ratio (CNR), and the slice-sensitive profile (SSP) by using the mammographic accreditation phantom (Model 015, CIRS Inc.) and compared it to the FBP-based quality. The CS-based algorithm yielded much better image quality, preserving superior image homogeneity, edge sharpening, and cross-plane resolution, compared to the FBP-based one. - Highlights: • A prototype digital breast tomosynthesis (DBT) system is developed. • Compressed-sensing (CS) based reconstruction framework is employed. • We reconstructed high-quality DBT images by using the proposed reconstruction framework.

  9. Image Denoising Algorithm Combined with SGK Dictionary Learning and Principal Component Analysis Noise Estimation

    Directory of Open Access Journals (Sweden)

    Wenjing Zhao

    2018-01-01

    Full Text Available SGK (sequential generalization of K-means dictionary learning denoising algorithm has the characteristics of fast denoising speed and excellent denoising performance. However, the noise standard deviation must be known in advance when using SGK algorithm to process the image. This paper presents a denoising algorithm combined with SGK dictionary learning and the principal component analysis (PCA noise estimation. At first, the noise standard deviation of the image is estimated by using the PCA noise estimation algorithm. And then it is used for SGK dictionary learning algorithm. Experimental results show the following: (1 The SGK algorithm has the best denoising performance compared with the other three dictionary learning algorithms. (2 The SGK algorithm combined with PCA is superior to the SGK algorithm combined with other noise estimation algorithms. (3 Compared with the original SGK algorithm, the proposed algorithm has higher PSNR and better denoising performance.

  10. Some nonlinear space decomposition algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Tai, Xue-Cheng; Espedal, M. [Univ. of Bergen (Norway)

    1996-12-31

    Convergence of a space decomposition method is proved for a general convex programming problem. The space decomposition refers to methods that decompose a space into sums of subspaces, which could be a domain decomposition or a multigrid method for partial differential equations. Two algorithms are proposed. Both can be used for linear as well as nonlinear elliptic problems and they reduce to the standard additive and multiplicative Schwarz methods for linear elliptic problems. Two {open_quotes}hybrid{close_quotes} algorithms are also presented. They converge faster than the additive one and have better parallelism than the multiplicative method. Numerical tests with a two level domain decomposition for linear, nonlinear and interface elliptic problems are presented for the proposed algorithms.

  11. A dynamic inertia weight particle swarm optimization algorithm

    International Nuclear Information System (INIS)

    Jiao Bin; Lian Zhigang; Gu Xingsheng

    2008-01-01

    Particle swarm optimization (PSO) algorithm has been developing rapidly and has been applied widely since it was introduced, as it is easily understood and realized. This paper presents an improved particle swarm optimization algorithm (IPSO) to improve the performance of standard PSO, which uses the dynamic inertia weight that decreases according to iterative generation increasing. It is tested with a set of 6 benchmark functions with 30, 50 and 150 different dimensions and compared with standard PSO. Experimental results indicate that the IPSO improves the search performance on the benchmark functions significantly

  12. Effect of number of of projections on inverse radon transform based image reconstruction by using filtered back-projection for parallel beam transmission tomography

    International Nuclear Information System (INIS)

    Qureshi, S.A.; Mirza, S.M.; Arif, M.

    2007-01-01

    This paper present the effect of number of projections on inverse Radon transform (IRT) estimation using filtered back-projection (FBP) technique for parallel beam transmission tomography. The head phantom and the lung phantom have been used in this work. Various filters used in this study include Ram-Lak, Shepp-Logan, Cosin, Hamming and Hanning filters. The slices have been reconstructed by increasing the number of projections through parallel beam transmission tomography keeping the projections uniformly distributed. The Euclidean and Mean Squared errors and peak signal-to-noise ratio (PSNR) have been analyzed for their sensitiveness as functions of number of projections. It has found that image quality improves with the number of projections but at the cost of the computer time. The error has been minimized to get the best approximation of inverse Radon transform (IRT) as the number of projections is enhanced. The value of PSNR has been found to increase from 8.20 to 24.53 dB as the number of projections is raised from 5 to 180 for head phantom. (author)

  13. Favorable noise uniformity properties of Fourier-based interpolation and reconstruction approaches in single-slice helical computed tomography

    International Nuclear Information System (INIS)

    La Riviere, Patrick J.; Pan Xiaochuan

    2002-01-01

    Volumes reconstructed by standard methods from single-slice helical computed tomography (CT) data have been shown to have noise levels that are highly nonuniform relative to those in conventional CT. These noise nonuniformities can affect low-contrast object detectability and have also been identified as the cause of the zebra artifacts that plague maximum intensity projection (MIP) images of such volumes. While these spatially variant noise levels have their root in the peculiarities of the helical scan geometry, there is also a strong dependence on the interpolation and reconstruction algorithms employed. In this paper, we seek to develop image reconstruction strategies that eliminate or reduce, at its source, the nonuniformity of noise levels in helical CT relative to that in conventional CT. We pursue two approaches, independently and in concert. We argue, and verify, that Fourier-based longitudinal interpolation approaches lead to more uniform noise ratios than do the standard 360LI and 180LI approaches. We also demonstrate that a Fourier-based fan-to-parallel rebinning algorithm, used as an alternative to fanbeam filtered backprojection for slice reconstruction, also leads to more uniform noise ratios, even when making use of the 180LI and 360LI interpolation approaches

  14. Particle swarm genetic algorithm and its application

    International Nuclear Information System (INIS)

    Liu Chengxiang; Yan Changxiang; Wang Jianjun; Liu Zhenhai

    2012-01-01

    To solve the problems of slow convergence speed and tendency to fall into the local optimum of the standard particle swarm optimization while dealing with nonlinear constraint optimization problem, a particle swarm genetic algorithm is designed. The proposed algorithm adopts feasibility principle handles constraint conditions and avoids the difficulty of penalty function method in selecting punishment factor, generates initial feasible group randomly, which accelerates particle swarm convergence speed, and introduces genetic algorithm crossover and mutation strategy to avoid particle swarm falls into the local optimum Through the optimization calculation of the typical test functions, the results show that particle swarm genetic algorithm has better optimized performance. The algorithm is applied in nuclear power plant optimization, and the optimization results are significantly. (authors)

  15. Amodified probabilistic genetic algorithm for the solution of complex constrained optimization problems

    OpenAIRE

    Vorozheikin, A.; Gonchar, T.; Panfilov, I.; Sopov, E.; Sopov, S.

    2009-01-01

    A new algorithm for the solution of complex constrained optimization problems based on the probabilistic genetic algorithm with optimal solution prediction is proposed. The efficiency investigation results in comparison with standard genetic algorithm are presented.

  16. Comparison of genetic algorithms with conjugate gradient methods

    Science.gov (United States)

    Bosworth, J. L.; Foo, N. Y.; Zeigler, B. P.

    1972-01-01

    Genetic algorithms for mathematical function optimization are modeled on search strategies employed in natural adaptation. Comparisons of genetic algorithms with conjugate gradient methods, which were made on an IBM 1800 digital computer, show that genetic algorithms display superior performance over gradient methods for functions which are poorly behaved mathematically, for multimodal functions, and for functions obscured by additive random noise. Genetic methods offer performance comparable to gradient methods for many of the standard functions.

  17. Evaluation of TCP Congestion Control Algorithms on the Windows Vista Platform

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yee-Ting; /SLAC

    2006-07-07

    CTCP, an innovative TCP congestion control algorithm developed by Microsoft, is evaluated and compared to HSTCP and StandardTCP. Tests were performed on the production Internet from Stanford Linear Accelerator Center (SLAC) to various geographically located hosts to give a broad overview of the performances. We find that certain issues were apparent during testing (not directly related to the congestion control algorithms) which may skew results. With this in mind, we find that CTCP performed similarly to HSTCP across a multitude of different network environments. However, to improve the fairness and to reduce the impact of CTCP upon existing StandardTCP traffic, two areas of further research were investigated. Algorithmic additions to CTCP for burst control to reduce the aggressiveness of its cwnd increments demonstrated beneficial improvements in both fairness and throughput over the original CTCP algorithm. Similarly, {gamma} auto-tuning algorithms were investigated to dynamically adapt CTCP flows to their network conditions for optimal performance. While the effects of these auto-tuning algorithms when used in addition to burst control showed little to no benefit to fairness nor throughput for the limited number of network paths tested, one of the auto-tuning algorithms performed such that there was negligible impact upon StandardTCP. With these improvements, CTCP was found to perform better than HSTCP in terms of fairness and similarly in terms of throughput under the production environments tested.

  18. Evaluation of TCP Congestion Control Algorithms on the Windows Vista Platform

    International Nuclear Information System (INIS)

    Li, Y

    2006-01-01

    CTCP, an innovative TCP congestion control algorithm developed by Microsoft, is evaluated and compared to HSTCP and StandardTCP. Tests were performed on the production Internet from Stanford Linear Accelerator Center (SLAC) to various geographically located hosts to give a broad overview of the performances. We find that certain issues were apparent during testing (not directly related to the congestion control algorithms) which may skew results. With this in mind, we find that CTCP performed similarly to HSTCP across a multitude of different network environments. However, to improve the fairness and to reduce the impact of CTCP upon existing StandardTCP traffic, two areas of further research were investigated. Algorithmic additions to CTCP for burst control to reduce the aggressiveness of its cwnd increments demonstrated beneficial improvements in both fairness and throughput over the original CTCP algorithm. Similarly, auto-tuning algorithms were investigated to dynamically adapt CTCP flows to their network conditions for optimal performance. Whilst the effects of these auto-tuning algorithms when used in addition to burst control showed little to no benefit to fairness nor throughput for the limited number of network paths tested, one of the auto-tuning algorithms performed such that there was negligible impact upon StandardTCP. With these improvements, CTCP was found to perform better than HSTCP in terms of fairness and similarly in terms of throughput under the production environments tested

  19. A rotating and warping projector/backprojector for fan-beam and cone-beam iterative algorithm

    International Nuclear Information System (INIS)

    Zeng, G.L.; Hsieh, Y.L.; Gullberg, G.T.

    1994-01-01

    A rotating-and-warping projector/backprojector is proposed for iterative algorithms used to reconstruct fan-beam and cone-beam single photon emission computed tomography (SPECT) data. The development of a new projector/backprojector for implementing attenuation, geometric point response, and scatter models is motivated by the need to reduce the computation time yet to preserve the fidelity of the corrected reconstruction. At each projection angle, the projector/backprojector first rotates the image volume so that the pixelized cube remains parallel to the detector, and then warps the image volume so that the fan-beam and cone-beam rays are converted into parallel rays. In the authors implementation, these two steps are combined so that the interpolation of voxel values are performed only once. The projection operation is achieved by a simple weighted summation, and the backprojection operation is achieved by copying weighted projection array values to the image volume. An advantage of this projector/backprojector is that the system point response function can be deconvolved via the Fast Fourier Transform using the shift-invariant property of the point response when the voxel-to-detector distance is constant. The fan-beam and cone-beam rotating-and-warping projector/backprojector is applied to SPECT data showing improved resolution

  20. Quantum algorithm for linear regression

    Science.gov (United States)

    Wang, Guoming

    2017-07-01

    We present a quantum algorithm for fitting a linear regression model to a given data set using the least-squares approach. Differently from previous algorithms which yield a quantum state encoding the optimal parameters, our algorithm outputs these numbers in the classical form. So by running it once, one completely determines the fitted model and then can use it to make predictions on new data at little cost. Moreover, our algorithm works in the standard oracle model, and can handle data sets with nonsparse design matrices. It runs in time poly( log2(N ) ,d ,κ ,1 /ɛ ) , where N is the size of the data set, d is the number of adjustable parameters, κ is the condition number of the design matrix, and ɛ is the desired precision in the output. We also show that the polynomial dependence on d and κ is necessary. Thus, our algorithm cannot be significantly improved. Furthermore, we also give a quantum algorithm that estimates the quality of the least-squares fit (without computing its parameters explicitly). This algorithm runs faster than the one for finding this fit, and can be used to check whether the given data set qualifies for linear regression in the first place.

  1. An improved recommended algorithm for network structure based on two partial graphs

    Directory of Open Access Journals (Sweden)

    Deng Song

    2017-08-01

    Full Text Available In this thesis,we introduce an improved algorithm based on network structure.Based on the standard material diffusion algorithm,considering the influence of the user's score on the recommendation,the adjustment factor of the initial resource allocation vector and the resource transfer matrix in the recommendation algorithm is improved.Using the practical data set from GroupLens webite to evaluate the performance of the proposed algorithm,we performed a series of experiments.The experimental results reveal that it can yield better recommendation accuracy and has higher hitting rate than collaborative filtering,network-based inference.It can solve the problem of cold start and scalability in the standard material diffusion algorithm.And it also can make the recommendation results diversified.

  2. Aggregation Algorithms in Heterogeneous Tables

    Directory of Open Access Journals (Sweden)

    Titus Felix FURTUNA

    2006-01-01

    Full Text Available The heterogeneous tables are most used in the problem of aggregation. A solution for this problem is to standardize these tables of figures. In this paper, we proposed some methods of aggregation based on the hierarchical algorithms.

  3. Comparison between Genetic Algorithms and Particle Swarm Optimization Methods on Standard Test Functions and Machine Design

    DEFF Research Database (Denmark)

    Nica, Florin Valentin Traian; Ritchie, Ewen; Leban, Krisztina Monika

    2013-01-01

    , genetic algorithm and particle swarm are shortly presented in this paper. These two algorithms are tested to determine their performance on five different benchmark test functions. The algorithms are tested based on three requirements: precision of the result, number of iterations and calculation time....... Both algorithms are also tested on an analytical design process of a Transverse Flux Permanent Magnet Generator to observe their performances in an electrical machine design application.......Nowadays the requirements imposed by the industry and economy ask for better quality and performance while the price must be maintained in the same range. To achieve this goal optimization must be introduced in the design process. Two of the best known optimization algorithms for machine design...

  4. Regularized iterative integration combined with non-linear diffusion filtering for phase-contrast x-ray computed tomography.

    Science.gov (United States)

    Burger, Karin; Koehler, Thomas; Chabior, Michael; Allner, Sebastian; Marschner, Mathias; Fehringer, Andreas; Willner, Marian; Pfeiffer, Franz; Noël, Peter

    2014-12-29

    Phase-contrast x-ray computed tomography has a high potential to become clinically implemented because of its complementarity to conventional absorption-contrast.In this study, we investigate noise-reducing but resolution-preserving analytical reconstruction methods to improve differential phase-contrast imaging. We apply the non-linear Perona-Malik filter on phase-contrast data prior or post filtered backprojected reconstruction. Secondly, the Hilbert kernel is replaced by regularized iterative integration followed by ramp filtered backprojection as used for absorption-contrast imaging. Combining the Perona-Malik filter with this integration algorithm allows to successfully reveal relevant sample features, quantitatively confirmed by significantly increased structural similarity indices and contrast-to-noise ratios. With this concept, phase-contrast imaging can be performed at considerably lower dose.

  5. Some multigrid algorithms for SIMD machines

    Energy Technology Data Exchange (ETDEWEB)

    Dendy, J.E. Jr. [Los Alamos National Lab., NM (United States)

    1996-12-31

    Previously a semicoarsening multigrid algorithm suitable for use on SIMD architectures was investigated. Through the use of new software tools, the performance of this algorithm has been considerably improved. The method has also been extended to three space dimensions. The method performs well for strongly anisotropic problems and for problems with coefficients jumping by orders of magnitude across internal interfaces. The parallel efficiency of this method is analyzed, and its actual performance on the CM-5 is compared with its performance on the CRAY-YMP. A standard coarsening multigrid algorithm is also considered, and we compare its performance on these two platforms as well.

  6. Trends in causes of death among children under 5 in Bangladesh, 1993-2004: an exercise applying a standardized computer algorithm to assign causes of death using verbal autopsy data

    Directory of Open Access Journals (Sweden)

    Walker Neff

    2011-08-01

    Full Text Available Abstract Background Trends in the causes of child mortality serve as important global health information to guide efforts to improve child survival. With child mortality declining in Bangladesh, the distribution of causes of death also changes. The three verbal autopsy (VA studies conducted with the Bangladesh Demographic and Health Surveys provide a unique opportunity to study these changes in child causes of death. Methods To ensure comparability of these trends, we developed a standardized algorithm to assign causes of death using symptoms collected through the VA studies. The original algorithms applied were systematically reviewed and key differences in cause categorization, hierarchy, case definition, and the amount of data collected were compared to inform the development of the standardized algorithm. Based primarily on the 2004 cause categorization and hierarchy, the standardized algorithm guarantees comparability of the trends by only including symptom data commonly available across all three studies. Results Between 1993 and 2004, pneumonia remained the leading cause of death in Bangladesh, contributing to 24% to 33% of deaths among children under 5. The proportion of neonatal mortality increased significantly from 36% (uncertainty range [UR]: 31%-41% to 56% (49%-62% during the same period. The cause-specific mortality fractions due to birth asphyxia/birth injury and prematurity/low birth weight (LBW increased steadily, with both rising from 3% (2%-5% to 13% (10%-17% and 10% (7%-15%, respectively. The cause-specific mortality rates decreased significantly due to neonatal tetanus and several postneonatal causes (tetanus: from 7 [4-11] to 2 [0.4-4] per 1,000 live births (LB; pneumonia: from 26 [20-33] to 15 [11-20] per 1,000 LB; diarrhea: from 12 [8-17] to 4 [2-7] per 1,000 LB; measles: from 5 [2-8] to 0.2 [0-0.7] per 1,000 LB; injury: from 11 [7-17] to 3 [1-5] per 1,000 LB; and malnutrition: from 9 [6-13] to 5 [2-7]. Conclusions

  7. Quantitative Imaging Biomarkers: A Review of Statistical Methods for Computer Algorithm Comparisons

    Science.gov (United States)

    2014-01-01

    Quantitative biomarkers from medical images are becoming important tools for clinical diagnosis, staging, monitoring, treatment planning, and development of new therapies. While there is a rich history of the development of quantitative imaging biomarker (QIB) techniques, little attention has been paid to the validation and comparison of the computer algorithms that implement the QIB measurements. In this paper we provide a framework for QIB algorithm comparisons. We first review and compare various study designs, including designs with the true value (e.g. phantoms, digital reference images, and zero-change studies), designs with a reference standard (e.g. studies testing equivalence with a reference standard), and designs without a reference standard (e.g. agreement studies and studies of algorithm precision). The statistical methods for comparing QIB algorithms are then presented for various study types using both aggregate and disaggregate approaches. We propose a series of steps for establishing the performance of a QIB algorithm, identify limitations in the current statistical literature, and suggest future directions for research. PMID:24919829

  8. Quantitative imaging biomarkers: a review of statistical methods for computer algorithm comparisons.

    Science.gov (United States)

    Obuchowski, Nancy A; Reeves, Anthony P; Huang, Erich P; Wang, Xiao-Feng; Buckler, Andrew J; Kim, Hyun J Grace; Barnhart, Huiman X; Jackson, Edward F; Giger, Maryellen L; Pennello, Gene; Toledano, Alicia Y; Kalpathy-Cramer, Jayashree; Apanasovich, Tatiyana V; Kinahan, Paul E; Myers, Kyle J; Goldgof, Dmitry B; Barboriak, Daniel P; Gillies, Robert J; Schwartz, Lawrence H; Sullivan, Daniel C

    2015-02-01

    Quantitative biomarkers from medical images are becoming important tools for clinical diagnosis, staging, monitoring, treatment planning, and development of new therapies. While there is a rich history of the development of quantitative imaging biomarker (QIB) techniques, little attention has been paid to the validation and comparison of the computer algorithms that implement the QIB measurements. In this paper we provide a framework for QIB algorithm comparisons. We first review and compare various study designs, including designs with the true value (e.g. phantoms, digital reference images, and zero-change studies), designs with a reference standard (e.g. studies testing equivalence with a reference standard), and designs without a reference standard (e.g. agreement studies and studies of algorithm precision). The statistical methods for comparing QIB algorithms are then presented for various study types using both aggregate and disaggregate approaches. We propose a series of steps for establishing the performance of a QIB algorithm, identify limitations in the current statistical literature, and suggest future directions for research. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  9. Dynamic Inertia Weight Binary Bat Algorithm with Neighborhood Search

    Directory of Open Access Journals (Sweden)

    Xingwang Huang

    2017-01-01

    Full Text Available Binary bat algorithm (BBA is a binary version of the bat algorithm (BA. It has been proven that BBA is competitive compared to other binary heuristic algorithms. Since the update processes of velocity in the algorithm are consistent with BA, in some cases, this algorithm also faces the premature convergence problem. This paper proposes an improved binary bat algorithm (IBBA to solve this problem. To evaluate the performance of IBBA, standard benchmark functions and zero-one knapsack problems have been employed. The numeric results obtained by benchmark functions experiment prove that the proposed approach greatly outperforms the original BBA and binary particle swarm optimization (BPSO. Compared with several other heuristic algorithms on zero-one knapsack problems, it also verifies that the proposed algorithm is more able to avoid local minima.

  10. Machine-Learning Algorithms to Code Public Health Spending Accounts.

    Science.gov (United States)

    Brady, Eoghan S; Leider, Jonathon P; Resnick, Beth A; Alfonso, Y Natalia; Bishai, David

    Government public health expenditure data sets require time- and labor-intensive manipulation to summarize results that public health policy makers can use. Our objective was to compare the performances of machine-learning algorithms with manual classification of public health expenditures to determine if machines could provide a faster, cheaper alternative to manual classification. We used machine-learning algorithms to replicate the process of manually classifying state public health expenditures, using the standardized public health spending categories from the Foundational Public Health Services model and a large data set from the US Census Bureau. We obtained a data set of 1.9 million individual expenditure items from 2000 to 2013. We collapsed these data into 147 280 summary expenditure records, and we followed a standardized method of manually classifying each expenditure record as public health, maybe public health, or not public health. We then trained 9 machine-learning algorithms to replicate the manual process. We calculated recall, precision, and coverage rates to measure the performance of individual and ensembled algorithms. Compared with manual classification, the machine-learning random forests algorithm produced 84% recall and 91% precision. With algorithm ensembling, we achieved our target criterion of 90% recall by using a consensus ensemble of ≥6 algorithms while still retaining 93% coverage, leaving only 7% of the summary expenditure records unclassified. Machine learning can be a time- and cost-saving tool for estimating public health spending in the United States. It can be used with standardized public health spending categories based on the Foundational Public Health Services model to help parse public health expenditure information from other types of health-related spending, provide data that are more comparable across public health organizations, and evaluate the impact of evidence-based public health resource allocation.

  11. A flexible fuzzy regression algorithm for forecasting oil consumption estimation

    International Nuclear Information System (INIS)

    Azadeh, A.; Khakestani, M.; Saberi, M.

    2009-01-01

    Oil consumption plays a vital role in socio-economic development of most countries. This study presents a flexible fuzzy regression algorithm for forecasting oil consumption based on standard economic indicators. The standard indicators are annual population, cost of crude oil import, gross domestic production (GDP) and annual oil production in the last period. The proposed algorithm uses analysis of variance (ANOVA) to select either fuzzy regression or conventional regression for future demand estimation. The significance of the proposed algorithm is three fold. First, it is flexible and identifies the best model based on the results of ANOVA and minimum absolute percentage error (MAPE), whereas previous studies consider the best fitted fuzzy regression model based on MAPE or other relative error results. Second, the proposed model may identify conventional regression as the best model for future oil consumption forecasting because of its dynamic structure, whereas previous studies assume that fuzzy regression always provide the best solutions and estimation. Third, it utilizes the most standard independent variables for the regression models. To show the applicability and superiority of the proposed flexible fuzzy regression algorithm the data for oil consumption in Canada, United States, Japan and Australia from 1990 to 2005 are used. The results show that the flexible algorithm provides accurate solution for oil consumption estimation problem. The algorithm may be used by policy makers to accurately foresee the behavior of oil consumption in various regions.

  12. Hilbert transform and optical tomography for anisotropic edge enhancement of phase objects

    International Nuclear Information System (INIS)

    Montes-Perez, Areli; Meneses-Fabian, Cruz; Rodriguez-Zurita, Gustavo

    2011-01-01

    In phase object tomography a slice reconstruction is related to distribution of refractive index. Typically, this is obtained by applying the filtered back-projection algorithm to the set of projections (sinogram) obtained experimentally, which are sequentially obtained by calculating the phase of the wave emerging from the slice of the object at different angles. In this paper, based on optical implementation of the Hilbert-transform in a 4f Fourier operator, the Hilbert transform of the projections leaving of the object are obtained numerically. When these projection data are captured for a set of viewing angles an unconventional sinogram is eventually obtained, we have called it as an Hilbert-sinogram. The reconstruction obtained by applying the filtered back-projection algorithm is proportional to the Hilbert transform of the distribution of refractive index of the slice and the obtained image shows a typical isotropic edge enhancement. In this manuscript, the theoretical analysis and the numerical implementation of the Hilbert-transform, mathematical model of the edge enhancement reconstructed are extensively detailed.

  13. Analytic 3D image reconstruction using all detected events

    International Nuclear Information System (INIS)

    Kinahan, P.E.; Rogers, J.G.

    1988-11-01

    We present the results of testing a previously presented algorithm for three-dimensional image reconstruction that uses all gamma-ray coincidence events detected by a PET volume-imaging scanner. By using two iterations of an analytic filter-backprojection method, the algorithm is not constrained by the requirement of a spatially invariant detector point spread function, which limits normal analytic techniques. Removing this constraint allows the incorporation of all detected events, regardless of orientation, which improves the statistical quality of the final reconstructed image

  14. MO-FG-204-04: How Iterative Reconstruction Algorithms Affect the NPS of CT Images

    International Nuclear Information System (INIS)

    Li, G; Liu, X; Dodge, C; Jensen, C; Rong, J

    2015-01-01

    Purpose: To evaluate how the third generation model based iterative reconstruction (MBIR) compares with filtered back-projection (FBP), adaptive statistical iterative reconstruction (ASiR), and the second generation MBIR based on noise power spectrum (NPS) analysis over a wide range of clinically applicable dose levels. Methods: The Catphan 600 CTP515 module, surrounded by an oval, fat-equivalent ring to mimic patient size/shape, was scanned on a GE HD750 CT scanner at 1, 2, 3, 6, 12 and 19mGy CTDIvol levels with typical patient scan parameters: 120kVp, 0.8s, 40mm beam width, large SFOV, 0.984 pitch and reconstructed thickness 2.5mm (VEO3.0: Abd/Pelvis with Texture and NR05). At each CTDIvol level, 10 repeated scans were acquired for achieving sufficient data sampling. The images were reconstructed using Standard kernel with FBP; 20%, 40% and 70% ASiR; and two versions of MBIR (VEO2.0 and 3.0). For evaluating the effect of the ROI spatial location to the Result of NPS, 4 ROI groups were categorized based on their distances from the center of the phantom. Results: VEO3.0 performed inferiorly comparing to VEO2.0 over all dose levels. On the other hand, at low dose levels (less than 3 mGy), it clearly outperformed ASiR and FBP, in NPS values. Therefore, the lower the dose level, the relative performance of MBIR improves. However, the shapes of the NPS show substantial differences in horizontal and vertical sampling dimensions. These differences may determine the characteristics of the noise/texture features in images, and hence, play an important role in image interpretation. Conclusion: The third generation MBIR did not improve over the second generation MBIR in term of NPS analysis. The overall performance of both versions of MBIR improved as compared to other reconstruction algorithms when dose was reduced. The shapes of the NPS curves provided additional value for future characterization of the image noise/texture features

  15. MO-FG-204-04: How Iterative Reconstruction Algorithms Affect the NPS of CT Images

    Energy Technology Data Exchange (ETDEWEB)

    Li, G; Liu, X; Dodge, C; Jensen, C; Rong, J [UT MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: To evaluate how the third generation model based iterative reconstruction (MBIR) compares with filtered back-projection (FBP), adaptive statistical iterative reconstruction (ASiR), and the second generation MBIR based on noise power spectrum (NPS) analysis over a wide range of clinically applicable dose levels. Methods: The Catphan 600 CTP515 module, surrounded by an oval, fat-equivalent ring to mimic patient size/shape, was scanned on a GE HD750 CT scanner at 1, 2, 3, 6, 12 and 19mGy CTDIvol levels with typical patient scan parameters: 120kVp, 0.8s, 40mm beam width, large SFOV, 0.984 pitch and reconstructed thickness 2.5mm (VEO3.0: Abd/Pelvis with Texture and NR05). At each CTDIvol level, 10 repeated scans were acquired for achieving sufficient data sampling. The images were reconstructed using Standard kernel with FBP; 20%, 40% and 70% ASiR; and two versions of MBIR (VEO2.0 and 3.0). For evaluating the effect of the ROI spatial location to the Result of NPS, 4 ROI groups were categorized based on their distances from the center of the phantom. Results: VEO3.0 performed inferiorly comparing to VEO2.0 over all dose levels. On the other hand, at low dose levels (less than 3 mGy), it clearly outperformed ASiR and FBP, in NPS values. Therefore, the lower the dose level, the relative performance of MBIR improves. However, the shapes of the NPS show substantial differences in horizontal and vertical sampling dimensions. These differences may determine the characteristics of the noise/texture features in images, and hence, play an important role in image interpretation. Conclusion: The third generation MBIR did not improve over the second generation MBIR in term of NPS analysis. The overall performance of both versions of MBIR improved as compared to other reconstruction algorithms when dose was reduced. The shapes of the NPS curves provided additional value for future characterization of the image noise/texture features.

  16. Knowledge-based iterative model reconstruction: comparative image quality and radiation dose with a pediatric computed tomography phantom

    International Nuclear Information System (INIS)

    Ryu, Young Jin; Choi, Young Hun; Cheon, Jung-Eun; Kim, Woo Sun; Kim, In-One; Ha, Seongmin

    2016-01-01

    CT of pediatric phantoms can provide useful guidance to the optimization of knowledge-based iterative reconstruction CT. To compare radiation dose and image quality of CT images obtained at different radiation doses reconstructed with knowledge-based iterative reconstruction, hybrid iterative reconstruction and filtered back-projection. We scanned a 5-year anthropomorphic phantom at seven levels of radiation. We then reconstructed CT data with knowledge-based iterative reconstruction (iterative model reconstruction [IMR] levels 1, 2 and 3; Philips Healthcare, Andover, MA), hybrid iterative reconstruction (iDose 4 , levels 3 and 7; Philips Healthcare, Andover, MA) and filtered back-projection. The noise, signal-to-noise ratio and contrast-to-noise ratio were calculated. We evaluated low-contrast resolutions and detectability by low-contrast targets and subjective and objective spatial resolutions by the line pairs and wire. With radiation at 100 peak kVp and 100 mAs (3.64 mSv), the relative doses ranged from 5% (0.19 mSv) to 150% (5.46 mSv). Lower noise and higher signal-to-noise, contrast-to-noise and objective spatial resolution were generally achieved in ascending order of filtered back-projection, iDose 4 levels 3 and 7, and IMR levels 1, 2 and 3, at all radiation dose levels. Compared with filtered back-projection at 100% dose, similar noise levels were obtained on IMR level 2 images at 24% dose and iDose 4 level 3 images at 50% dose, respectively. Regarding low-contrast resolution, low-contrast detectability and objective spatial resolution, IMR level 2 images at 24% dose showed comparable image quality with filtered back-projection at 100% dose. Subjective spatial resolution was not greatly affected by reconstruction algorithm. Reduced-dose IMR obtained at 0.92 mSv (24%) showed similar image quality to routine-dose filtered back-projection obtained at 3.64 mSv (100%), and half-dose iDose 4 obtained at 1.81 mSv. (orig.)

  17. Knowledge-based iterative model reconstruction: comparative image quality and radiation dose with a pediatric computed tomography phantom.

    Science.gov (United States)

    Ryu, Young Jin; Choi, Young Hun; Cheon, Jung-Eun; Ha, Seongmin; Kim, Woo Sun; Kim, In-One

    2016-03-01

    CT of pediatric phantoms can provide useful guidance to the optimization of knowledge-based iterative reconstruction CT. To compare radiation dose and image quality of CT images obtained at different radiation doses reconstructed with knowledge-based iterative reconstruction, hybrid iterative reconstruction and filtered back-projection. We scanned a 5-year anthropomorphic phantom at seven levels of radiation. We then reconstructed CT data with knowledge-based iterative reconstruction (iterative model reconstruction [IMR] levels 1, 2 and 3; Philips Healthcare, Andover, MA), hybrid iterative reconstruction (iDose(4), levels 3 and 7; Philips Healthcare, Andover, MA) and filtered back-projection. The noise, signal-to-noise ratio and contrast-to-noise ratio were calculated. We evaluated low-contrast resolutions and detectability by low-contrast targets and subjective and objective spatial resolutions by the line pairs and wire. With radiation at 100 peak kVp and 100 mAs (3.64 mSv), the relative doses ranged from 5% (0.19 mSv) to 150% (5.46 mSv). Lower noise and higher signal-to-noise, contrast-to-noise and objective spatial resolution were generally achieved in ascending order of filtered back-projection, iDose(4) levels 3 and 7, and IMR levels 1, 2 and 3, at all radiation dose levels. Compared with filtered back-projection at 100% dose, similar noise levels were obtained on IMR level 2 images at 24% dose and iDose(4) level 3 images at 50% dose, respectively. Regarding low-contrast resolution, low-contrast detectability and objective spatial resolution, IMR level 2 images at 24% dose showed comparable image quality with filtered back-projection at 100% dose. Subjective spatial resolution was not greatly affected by reconstruction algorithm. Reduced-dose IMR obtained at 0.92 mSv (24%) showed similar image quality to routine-dose filtered back-projection obtained at 3.64 mSv (100%), and half-dose iDose(4) obtained at 1.81 mSv.

  18. A decoupled power flow algorithm using particle swarm optimization technique

    International Nuclear Information System (INIS)

    Acharjee, P.; Goswami, S.K.

    2009-01-01

    A robust, nondivergent power flow method has been developed using the particle swarm optimization (PSO) technique. The decoupling properties between the power system quantities have been exploited in developing the power flow algorithm. The speed of the power flow algorithm has been improved using a simple perturbation technique. The basic power flow algorithm and the improvement scheme have been designed to retain the simplicity of the evolutionary approach. The power flow is rugged, can determine the critical loading conditions and also can handle the flexible alternating current transmission system (FACTS) devices efficiently. Test results on standard test systems show that the proposed method can find the solution when the standard power flows fail.

  19. A Multistrategy Optimization Improved Artificial Bee Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Wen Liu

    2014-01-01

    Full Text Available Being prone to the shortcomings of premature and slow convergence rate of artificial bee colony algorithm, an improved algorithm was proposed. Chaotic reverse learning strategies were used to initialize swarm in order to improve the global search ability of the algorithm and keep the diversity of the algorithm; the similarity degree of individuals of the population was used to characterize the diversity of population; population diversity measure was set as an indicator to dynamically and adaptively adjust the nectar position; the premature and local convergence were avoided effectively; dual population search mechanism was introduced to the search stage of algorithm; the parallel search of dual population considerably improved the convergence rate. Through simulation experiments of 10 standard testing functions and compared with other algorithms, the results showed that the improved algorithm had faster convergence rate and the capacity of jumping out of local optimum faster.

  20. Implementation and evaluation of an ordered subsets reconstruction algorithm for transmission PET studies using median root prior and inter-update median filtering

    International Nuclear Information System (INIS)

    Bettinardi, V.; Gilardi, M.C.; Fazio, F.; Alenius, S.; Ruotsalainen, U.; Numminen, P.; Teraes, M.

    2003-01-01

    An ordered subsets (OS) reconstruction algorithm based on the median root prior (MRP) and inter-update median filtering was implemented for the reconstruction of low count statistics transmission (TR) scans. The OS-MRP-TR algorithm was evaluated using an experimental phantom, simulating positron emission tomography (PET) whole-body (WB) studies, as well as patient data. Various experimental conditions, in terms of TR scan time (from 1 h to 1 min), covering a wide range of TR count statistics were evaluated. The performance of the algorithm was assessed by comparing the mean value of the attenuation coefficient (MVAC) of known tissue types and the coefficient of variation (CV) for low-count TR images, reconstructed with the OS-MRP-TR algorithm, with reference values obtained from high-count TR images reconstructed with a filtered back-projection (FBP) algorithm. The reconstructed OS-MRP-TR images were then used for attenuation correction of the corresponding emission (EM) data. EM images reconstructed with attenuation correction generated by OS-MRP-TR images, of low count statistics, were compared with the EM images corrected for attenuation using reference (high statistics) TR data. In all the experimental situations considered, the OS-MRP-TR algorithm showed: (1) a tendency towards a stable solution in terms of MVAC; (2) a difference in the MVAC of within 5% for a TR scan of 1 min reconstructed with the OS-MRP-TR and a TR scan of 1 h reconstructed with the FBP algorithm; (3) effectiveness in noise reduction, particularly for low count statistics data [using a specific parameter configuration the TR images reconstructed with OS-MRP-TR(1 min) had a lower CV than the corresponding TR images of a 1-h scan reconstructed with the FBP algorithm]; (4) a difference of within 3% between the mean counts in the EM images attenuation corrected using the OS-MRP-TR images of 1 min and the mean counts in the EM images attenuation corrected using the OS-MRP-TR images of 1 h; (5

  1. Images of gravitational and magnetic phenomena derived from two-dimensional back-projection Doppler tomography of interacting binary stars

    International Nuclear Information System (INIS)

    Richards, Mercedes T.; Cocking, Alexander S.; Fisher, John G.; Conover, Marshall J.

    2014-01-01

    We have used two-dimensional back-projection Doppler tomography as a tool to examine the influence of gravitational and magnetic phenomena in interacting binaries that undergo mass transfer from a magnetically active star onto a non-magnetic main-sequence star. This multitiered study of over 1300 time-resolved spectra of 13 Algol binaries involved calculations of the predicted dynamical behavior of the gravitational flow and the dynamics at the impact site, analysis of the velocity images constructed from tomography, and the influence on the tomograms of orbital inclination, systemic velocity, orbital coverage, and shadowing. The Hα tomograms revealed eight sources: chromospheric emission, a gas stream along the gravitational trajectory, a star-stream impact region, a bulge of absorption or emission around the mass-gaining star, a Keplerian accretion disk, an absorption zone associated with hotter gas, a disk-stream impact region, and a hot spot where the stream strikes the edge of a disk. We described several methods used to extract the physical properties of the emission sources directly from the velocity images, including S-wave analysis, the creation of simulated velocity tomograms from hydrodynamic simulations, and the use of synthetic spectra with tomography to sequentially extract the separate sources of emission from the velocity image. In summary, the tomography images have revealed results that cannot be explained solely by gravitational effects: chromospheric emission moving with the mass-losing star, a gas stream deflected from the gravitational trajectory, and alternating behavior between stream state and disk state. Our results demonstrate that magnetic effects cannot be ignored in these interacting binaries.

  2. Improving the throughput of the AES algorithm with multicore processors

    OpenAIRE

    Barnes, A.; Fernando, R.; Mettananda, K.; Ragel, R. G.

    2014-01-01

    AES, Advanced Encryption Standard, can be considered the most widely used modern symmetric key encryption standard. To encrypt/decrypt a file using the AES algorithm, the file must undergo a set of complex computational steps. Therefore a software implementation of AES algorithm would be slow and consume large amount of time to complete. The immense increase of both stored and transferred data in the recent years had made this problem even more daunting when the need to encrypt/decrypt such d...

  3. A Branch-and-bound Algorithm for the Network Diversion Problem

    National Research Council Canada - National Science Library

    Erken, Ozgur

    2002-01-01

    ...). We develop and test a specialized branch-and-hound algorithm for this NP-complete problem. The algorithm is based on partitioning the solution space with respect to edges in certain s-t cuts and yields a non- standard, non-binary enumeration tree...

  4. FBP and BPF reconstruction methods for circular X-ray tomography with off-center detector

    International Nuclear Information System (INIS)

    Schaefer, Dirk; Grass, Michael; Haar, Peter van de

    2011-01-01

    Purpose: Circular scanning with an off-center planar detector is an acquisition scheme that allows to save detector area while keeping a large field of view (FOV). Several filtered back-projection (FBP) algorithms have been proposed earlier. The purpose of this work is to present two newly developed back-projection filtration (BPF) variants and evaluate the image quality of these methods compared to the existing state-of-the-art FBP methods. Methods: The first new BPF algorithm applies redundancy weighting of overlapping opposite projections before differentiation in a single projection. The second one uses the Katsevich-type differentiation involving two neighboring projections followed by redundancy weighting and back-projection. An averaging scheme is presented to mitigate streak artifacts inherent to circular BPF algorithms along the Hilbert filter lines in the off-center transaxial slices of the reconstructions. The image quality is assessed visually on reconstructed slices of simulated and clinical data. Quantitative evaluation studies are performed with the Forbild head phantom by calculating root-mean-squared-deviations (RMSDs) to the voxelized phantom for different detector overlap settings and by investigating the noise resolution trade-off with a wire phantom in the full detector and off-center scenario. Results: The noise-resolution behavior of all off-center reconstruction methods corresponds to their full detector performance with the best resolution for the FDK based methods with the given imaging geometry. With respect to RMSD and visual inspection, the proposed BPF with Katsevich-type differentiation outperforms all other methods for the smallest chosen detector overlap of about 15 mm. The best FBP method is the algorithm that is also based on the Katsevich-type differentiation and subsequent redundancy weighting. For wider overlap of about 40-50 mm, these two algorithms produce similar results outperforming the other three methods. The clinical

  5. Analysis of Population Diversity of Dynamic Probabilistic Particle Swarm Optimization Algorithms

    Directory of Open Access Journals (Sweden)

    Qingjian Ni

    2014-01-01

    Full Text Available In evolutionary algorithm, population diversity is an important factor for solving performance. In this paper, combined with some population diversity analysis methods in other evolutionary algorithms, three indicators are introduced to be measures of population diversity in PSO algorithms, which are standard deviation of population fitness values, population entropy, and Manhattan norm of standard deviation in population positions. The three measures are used to analyze the population diversity in a relatively new PSO variant—Dynamic Probabilistic Particle Swarm Optimization (DPPSO. The results show that the three measure methods can fully reflect the evolution of population diversity in DPPSO algorithms from different angles, and we also discuss the impact of population diversity on the DPPSO variants. The relevant conclusions of the population diversity on DPPSO can be used to analyze, design, and improve the DPPSO algorithms, thus improving optimization performance, which could also be beneficial to understand the working mechanism of DPPSO theoretically.

  6. Simultaneous and semi-alternating projection algorithms for solving split equality problems.

    Science.gov (United States)

    Dong, Qiao-Li; Jiang, Dan

    2018-01-01

    In this article, we first introduce two simultaneous projection algorithms for solving the split equality problem by using a new choice of the stepsize, and then propose two semi-alternating projection algorithms. The weak convergence of the proposed algorithms is analyzed under standard conditions. As applications, we extend the results to solve the split feasibility problem. Finally, a numerical example is presented to illustrate the efficiency and advantage of the proposed algorithms.

  7. Validation for 2D/3D registration II: The comparison of intensity- and gradient-based merit functions using a new gold standard data set

    International Nuclear Information System (INIS)

    Gendrin, Christelle; Markelj, Primoz; Pawiro, Supriyanto Ardjo; Spoerk, Jakob; Bloch, Christoph; Weber, Christoph; Figl, Michael; Bergmann, Helmar; Birkfellner, Wolfgang; Likar, Bostjan; Pernus, Franjo

    2011-01-01

    Purpose: A new gold standard data set for validation of 2D/3D registration based on a porcine cadaver head with attached fiducial markers was presented in the first part of this article. The advantage of this new phantom is the large amount of soft tissue, which simulates realistic conditions for registration. This article tests the performance of intensity- and gradient-based algorithms for 2D/3D registration using the new phantom data set. Methods: Intensity-based methods with four merit functions, namely, cross correlation, rank correlation, correlation ratio, and mutual information (MI), and two gradient-based algorithms, the backprojection gradient-based (BGB) registration method and the reconstruction gradient-based (RGB) registration method, were compared. Four volumes consisting of CBCT with two fields of view, 64 slice multidetector CT, and magnetic resonance-T1 weighted images were registered to a pair of kV x-ray images and a pair of MV images. A standardized evaluation methodology was employed. Targets were evenly spread over the volumes and 250 starting positions of the 3D volumes with initial displacements of up to 25 mm from the gold standard position were calculated. After the registration, the displacement from the gold standard was retrieved and the root mean square (RMS), mean, and standard deviation mean target registration errors (mTREs) over 250 registrations were derived. Additionally, the following merit properties were computed: Accuracy, capture range, number of minima, risk of nonconvergence, and distinctiveness of optimum for better comparison of the robustness of each merit. Results: Among the merit functions used for the intensity-based method, MI reached the best accuracy with an RMS mTRE down to 1.30 mm. Furthermore, it was the only merit function that could accurately register the CT to the kV x rays with the presence of tissue deformation. As for the gradient-based methods, BGB and RGB methods achieved subvoxel accuracy (RMS m

  8. Linking mothers and infants within electronic health records: a comparison of deterministic and probabilistic algorithms.

    Science.gov (United States)

    Baldwin, Eric; Johnson, Karin; Berthoud, Heidi; Dublin, Sascha

    2015-01-01

    To compare probabilistic and deterministic algorithms for linking mothers and infants within electronic health records (EHRs) to support pregnancy outcomes research. The study population was women enrolled in Group Health (Washington State, USA) delivering a liveborn infant from 2001 through 2008 (N = 33,093 deliveries) and infant members born in these years. We linked women to infants by surname, address, and dates of birth and delivery using deterministic and probabilistic algorithms. In a subset previously linked using "gold standard" identifiers (N = 14,449), we assessed each approach's sensitivity and positive predictive value (PPV). For deliveries with no "gold standard" linkage (N = 18,644), we compared the algorithms' linkage proportions. We repeated our analyses in an independent test set of deliveries from 2009 through 2013. We reviewed medical records to validate a sample of pairs apparently linked by one algorithm but not the other (N = 51 or 1.4% of discordant pairs). In the 2001-2008 "gold standard" population, the probabilistic algorithm's sensitivity was 84.1% (95% CI, 83.5-84.7) and PPV 99.3% (99.1-99.4), while the deterministic algorithm had sensitivity 74.5% (73.8-75.2) and PPV 95.7% (95.4-96.0). In the test set, the probabilistic algorithm again had higher sensitivity and PPV. For deliveries in 2001-2008 with no "gold standard" linkage, the probabilistic algorithm found matched infants for 58.3% and the deterministic algorithm, 52.8%. On medical record review, 100% of linked pairs appeared valid. A probabilistic algorithm improved linkage proportion and accuracy compared to a deterministic algorithm. Better linkage methods can increase the value of EHRs for pregnancy outcomes research. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Wolf Search Algorithm for Solving Optimal Reactive Power Dispatch Problem

    Directory of Open Access Journals (Sweden)

    Kanagasabai Lenin

    2015-03-01

    Full Text Available This paper presents a new bio-inspired heuristic optimization algorithm called the Wolf Search Algorithm (WSA for solving the multi-objective reactive power dispatch problem. Wolf Search algorithm is a new bio – inspired heuristic algorithm which based on wolf preying behaviour. The way wolves search for food and survive by avoiding their enemies has been imitated to formulate the algorithm for solving the reactive power dispatches. And the speciality  of wolf is  possessing  both individual local searching ability and autonomous flocking movement and this special property has been utilized to formulate the search algorithm .The proposed (WSA algorithm has been tested on standard IEEE 30 bus test system and simulation results shows clearly about the good performance of the proposed algorithm .

  10. Synthesis of logic circuits with evolutionary algorithms

    Energy Technology Data Exchange (ETDEWEB)

    JONES,JAKE S.; DAVIDSON,GEORGE S.

    2000-01-26

    In the last decade there has been interest and research in the area of designing circuits with genetic algorithms, evolutionary algorithms, and genetic programming. However, the ability to design circuits of the size and complexity required by modern engineering design problems, simply by specifying required outputs for given inputs has as yet eluded researchers. This paper describes current research in the area of designing logic circuits using an evolutionary algorithm. The goal of the research is to improve the effectiveness of this method and make it a practical aid for design engineers. A novel method of implementing the algorithm is introduced, and results are presented for various multiprocessing systems. In addition to evolving standard arithmetic circuits, work in the area of evolving circuits that perform digital signal processing tasks is described.

  11. Belief Bisimulation for Hidden Markov Models Logical Characterisation and Decision Algorithm

    DEFF Research Database (Denmark)

    Jansen, David N.; Nielson, Flemming; Zhang, Lijun

    2012-01-01

    This paper establishes connections between logical equivalences and bisimulation relations for hidden Markov models (HMM). Both standard and belief state bisimulations are considered. We also present decision algorithms for the bisimilarities. For standard bisimilarity, an extension of the usual...... partition refinement algorithm is enough. Belief bisimilarity, being a relation on the continuous space of belief states, cannot be described directly. Instead, we show how to generate a linear equation system in time cubic in the number of states....

  12. A Novel Preferential Diffusion Recommendation Algorithm Based on User’s Nearest Neighbors

    Directory of Open Access Journals (Sweden)

    Fuguo Zhang

    2017-01-01

    Full Text Available Recommender system is a very efficient way to deal with the problem of information overload for online users. In recent years, network based recommendation algorithms have demonstrated much better performance than the standard collaborative filtering methods. However, most of network based algorithms do not give a high enough weight to the influence of the target user’s nearest neighbors in the resource diffusion process, while a user or an object with high degree will obtain larger influence in the standard mass diffusion algorithm. In this paper, we propose a novel preferential diffusion recommendation algorithm considering the significance of the target user’s nearest neighbors and evaluate it in the three real-world data sets: MovieLens 100k, MovieLens 1M, and Epinions. Experiments results demonstrate that the novel preferential diffusion recommendation algorithm based on user’s nearest neighbors can significantly improve the recommendation accuracy and diversity.

  13. Minimum Probability of Error-Based Equalization Algorithms for Fading Channels

    Directory of Open Access Journals (Sweden)

    Janos Levendovszky

    2007-06-01

    Full Text Available Novel channel equalizer algorithms are introduced for wireless communication systems to combat channel distortions resulting from multipath propagation. The novel algorithms are based on newly derived bounds on the probability of error (PE and guarantee better performance than the traditional zero forcing (ZF or minimum mean square error (MMSE algorithms. The new equalization methods require channel state information which is obtained by a fast adaptive channel identification algorithm. As a result, the combined convergence time needed for channel identification and PE minimization still remains smaller than the convergence time of traditional adaptive algorithms, yielding real-time equalization. The performance of the new algorithms is tested by extensive simulations on standard mobile channels.

  14. A two-step Hilbert transform method for 2D image reconstruction

    International Nuclear Information System (INIS)

    Noo, Frederic; Clackdoyle, Rolf; Pack, Jed D

    2004-01-01

    The paper describes a new accurate two-dimensional (2D) image reconstruction method consisting of two steps. In the first step, the backprojected image is formed after taking the derivative of the parallel projection data. In the second step, a Hilbert filtering is applied along certain lines in the differentiated backprojection (DBP) image. Formulae for performing the DBP step in fan-beam geometry are also presented. The advantage of this two-step Hilbert transform approach is that in certain situations, regions of interest (ROIs) can be reconstructed from truncated projection data. Simulation results are presented that illustrate very similar reconstructed image quality using the new method compared to standard filtered backprojection, and that show the capability to correctly handle truncated projections. In particular, a simulation is presented of a wide patient whose projections are truncated laterally yet for which highly accurate ROI reconstruction is obtained

  15. Genetic algorithms and their use in Geophysical Problems

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Paul B. [Univ. of California, Berkeley, CA (United States)

    1999-04-01

    Genetic algorithms (GAs), global optimization methods that mimic Darwinian evolution are well suited to the nonlinear inverse problems of geophysics. A standard genetic algorithm selects the best or ''fittest'' models from a ''population'' and then applies operators such as crossover and mutation in order to combine the most successful characteristics of each model and produce fitter models. More sophisticated operators have been developed, but the standard GA usually provides a robust and efficient search. Although the choice of parameter settings such as crossover and mutation rate may depend largely on the type of problem being solved, numerous results show that certain parameter settings produce optimal performance for a wide range of problems and difficulties. In particular, a low (about half of the inverse of the population size) mutation rate is crucial for optimal results, but the choice of crossover method and rate do not seem to affect performance appreciably. Optimal efficiency is usually achieved with smaller (< 50) populations. Lastly, tournament selection appears to be the best choice of selection methods due to its simplicity and its autoscaling properties. However, if a proportional selection method is used such as roulette wheel selection, fitness scaling is a necessity, and a high scaling factor (> 2.0) should be used for the best performance. Three case studies are presented in which genetic algorithms are used to invert for crustal parameters. The first is an inversion for basement depth at Yucca mountain using gravity data, the second an inversion for velocity structure in the crust of the south island of New Zealand using receiver functions derived from teleseismic events, and the third is a similar receiver function inversion for crustal velocities beneath the Mendocino Triple Junction region of Northern California. The inversions demonstrate that genetic algorithms are effective in solving problems

  16. Discrete size optimization of steel trusses using a refined big bang-big crunch algorithm

    Science.gov (United States)

    Hasançebi, O.; Kazemzadeh Azad, S.

    2014-01-01

    This article presents a methodology that provides a method for design optimization of steel truss structures based on a refined big bang-big crunch (BB-BC) algorithm. It is shown that a standard formulation of the BB-BC algorithm occasionally falls short of producing acceptable solutions to problems from discrete size optimum design of steel trusses. A reformulation of the algorithm is proposed and implemented for design optimization of various discrete truss structures according to American Institute of Steel Construction Allowable Stress Design (AISC-ASD) specifications. Furthermore, the performance of the proposed BB-BC algorithm is compared to its standard version as well as other well-known metaheuristic techniques. The numerical results confirm the efficiency of the proposed algorithm in practical design optimization of truss structures.

  17. Standards and Customer Service: Employees Behavior towards Customers

    Directory of Open Access Journals (Sweden)

    Venelin Terziev

    2017-09-01

    Full Text Available Ensuring effective customer service requires targeted efforts in a number of areas, one of which is to develop service standards for each market segment. The development and implementation of standards requires the organization to accurately determine customer service types, the cost of providing alternative services, and measures for measuring and controlling the services provided. At the core of the developed and implemented standards is the development and establishment of the customer service policy, which should start with a consumer demand analysis. The definition of customer service level should allow for quantitative measurement because the vague and quantifiable policy does not provide opportunities for evaluation and control of the activities and expenses of customer service. When developing service standards, it is appropriate to apply an algorithm that focuses primarily on standards related to employee behavior towards customers. This paper explores the need and capability to develop customer service standards and provides an algorithm for developing standards for employee behavior toward customers.

  18. Information filtering via weighted heat conduction algorithm

    Science.gov (United States)

    Liu, Jian-Guo; Guo, Qiang; Zhang, Yi-Cheng

    2011-06-01

    In this paper, by taking into account effects of the user and object correlations on a heat conduction (HC) algorithm, a weighted heat conduction (WHC) algorithm is presented. We argue that the edge weight of the user-object bipartite network should be embedded into the HC algorithm to measure the object similarity. The numerical results indicate that both the accuracy and diversity could be improved greatly compared with the standard HC algorithm and the optimal values reached simultaneously. On the Movielens and Netflix datasets, the algorithmic accuracy, measured by the average ranking score, can be improved by 39.7% and 56.1% in the optimal case, respectively, and the diversity could reach 0.9587 and 0.9317 when the recommendation list equals to 5. Further statistical analysis indicates that, in the optimal case, the distributions of the edge weight are changed to the Poisson form, which may be the reason why HC algorithm performance could be improved. This work highlights the effect of edge weight on a personalized recommendation study, which maybe an important factor affecting personalized recommendation performance.

  19. Optimization of PET image quality by means of 3D data acquisition and iterative image reconstruction

    International Nuclear Information System (INIS)

    Doll, J.; Zaers, J.; Trojan, H.; Bellemann, M.E.; Adam, L.E.; Haberkorn, U.; Brix, G.

    1998-01-01

    The experiments were performed at the latest-generation whole-body PET system ECAT EXACT HR + . For 2D data acquisition, a collimator of thin tungsten septa was positioned in the field-of-view. Prior to image reconstruction, the measured 3D data were sorted into 2D sinograms by using the Fourier rebinning (FORE) algorithm developed by M. Defrise. The standard filtered backprojection (FBP) method and an optimized ML/EM algorithm with overrelaxation for accelerated convergence were employed for image reconstruction. The spatial resolution of both methods as well as the convergence and noise properties of the ML/EM algorithm were studied in phantom measurements. Furthermore, patient data were acquired in the 2D mode as well as in the 3D mode and reconstructed with both techniques. At the same spatial resolution, the ML/EM-reconstructed images showed fewer and less prominent artefacts than the FBP-reconstructed images. The resulting improved detail conspicuously was achieved for the data acquired in the 2D mode as well as in the 3D mode. The best image quality was obtained by iterative 2D reconstruction of 3D data sets which were previously rebinned into 2D sinograms with help of the FORE algorithm. The phantom measurements revealed that 50 iteration steps with the otpimized ML/EM algorithm were sufficient to keep the relative quantitation error below 5%. (orig./MG) [de

  20. Algorithms and programming tools for image processing on the MPP:3

    Science.gov (United States)

    Reeves, Anthony P.

    1987-01-01

    This is the third and final report on the work done for NASA Grant 5-403 on Algorithms and Programming Tools for Image Processing on the MPP:3. All the work done for this grant is summarized in the introduction. Work done since August 1986 is reported in detail. Research for this grant falls under the following headings: (1) fundamental algorithms for the MPP; (2) programming utilities for the MPP; (3) the Parallel Pascal Development System; and (4) performance analysis. In this report, the results of two efforts are reported: region growing, and performance analysis of important characteristic algorithms. In each case, timing results from MPP implementations are included. A paper is included in which parallel algorithms for region growing on the MPP is discussed. These algorithms permit different sized regions to be merged in parallel. Details on the implementation and peformance of several important MPP algorithms are given. These include a number of standard permutations, the FFT, convolution, arbitrary data mappings, image warping, and pyramid operations, all of which have been implemented on the MPP. The permutation and image warping functions have been included in the standard development system library.

  1. Optimisation algorithms for ECG data compression.

    Science.gov (United States)

    Haugland, D; Heber, J G; Husøy, J H

    1997-07-01

    The use of exact optimisation algorithms for compressing digital electrocardiograms (ECGs) is demonstrated. As opposed to traditional time-domain methods, which use heuristics to select a small subset of representative signal samples, the problem of selecting the subset is formulated in rigorous mathematical terms. This approach makes it possible to derive algorithms guaranteeing the smallest possible reconstruction error when a bounded selection of signal samples is interpolated. The proposed model resembles well-known network models and is solved by a cubic dynamic programming algorithm. When applied to standard test problems, the algorithm produces a compressed representation for which the distortion is about one-half of that obtained by traditional time-domain compression techniques at reasonable compression ratios. This illustrates that, in terms of the accuracy of decoded signals, existing time-domain heuristics for ECG compression may be far from what is theoretically achievable. The paper is an attempt to bridge this gap.

  2. Spiral-CT-angiography of acute pulmonary embolism: factors that influence the implementation into standard diagnostic algorithms

    International Nuclear Information System (INIS)

    Bankier, A.; Herold, C.J.; Fleischmann, D.; Janata-Schwatczek, K.

    1998-01-01

    Purpose: Debate about the potential implementation of Spiral-CT in diagnostic algorithms of pulmonary embolism are often focussed on sensitivity and specificity in the context of comparative methodologic studies. We intend to investigate whether additional factors might influence this debate. Results: The factors availability, acceptance, patient-outcome, and cost-effectiveness-studies do have substantial influence on the implementation of Spiral-CT in the diagnostic algorithms of pulmonary embolism. Incorporation of these factors into the discussion might lead to more flexible and more patient-oriented algorithms for the diagnosis of pulmonary embolism. Conclusion: Availability of equipment, acceptance among clinicians, patient-out-come, and cost-effectiveness evaluations should be implemented into the debate about potential implementation of Spiral-CT in routine diagnostic imaging algorithms of pulmonary embolism. (orig./AJ) [de

  3. Optimum design for rotor-bearing system using advanced generic algorithm

    International Nuclear Information System (INIS)

    Kim, Young Chan; Choi, Seong Pil; Yang, Bo Suk

    2001-01-01

    This paper describes a combinational method to compute the global and local solutions of optimization problems. The present hybrid algorithm uses both a generic algorithm and a local concentrate search algorithm (e.g simplex method). The hybrid algorithm is not only faster than the standard genetic algorithm but also supplies a more accurate solution. In addition, this algorithm can find the global and local optimum solutions. The present algorithm can be supplied to minimize the resonance response (Q factor) and to yield the critical speeds as far from the operating speed as possible. These factors play very important roles in designing a rotor-bearing system under the dynamic behavior constraint. In the present work, the shaft diameter, the bearing length, and clearance are used as the design variables

  4. A new algorithm for 3D reconstruction from support functions

    DEFF Research Database (Denmark)

    Gardner, Richard; Kiderlen, Markus

    2009-01-01

    We introduce a new algorithm for reconstructing an unknown shape from a finite number of noisy measurements of its support function. The algorithm, based on a least squares procedure, is very easy to program in standard software such as Matlab and allows, for the first time, good 3D reconstructio...

  5. Adaptive discrete-ordinates algorithms and strategies

    International Nuclear Information System (INIS)

    Stone, J.C.; Adams, M.L.

    2005-01-01

    We present our latest algorithms and strategies for adaptively refined discrete-ordinates quadrature sets. In our basic strategy, which we apply here in two-dimensional Cartesian geometry, the spatial domain is divided into regions. Each region has its own quadrature set, which is adapted to the region's angular flux. Our algorithms add a 'test' direction to the quadrature set if the angular flux calculated at that direction differs by more than a user-specified tolerance from the angular flux interpolated from other directions. Different algorithms have different prescriptions for the method of interpolation and/or choice of test directions and/or prescriptions for quadrature weights. We discuss three different algorithms of different interpolation orders. We demonstrate through numerical results that each algorithm is capable of generating solutions with negligible angular discretization error. This includes elimination of ray effects. We demonstrate that all of our algorithms achieve a given level of error with far fewer unknowns than does a standard quadrature set applied to an entire problem. To address a potential issue with other algorithms, we present one algorithm that retains exact integration of high-order spherical-harmonics functions, no matter how much local refinement takes place. To address another potential issue, we demonstrate that all of our methods conserve partial currents across interfaces where quadrature sets change. We conclude that our approach is extremely promising for solving the long-standing problem of angular discretization error in multidimensional transport problems. (authors)

  6. An Enhanced Jaya Algorithm with a Two Group Adaption

    Directory of Open Access Journals (Sweden)

    Chibing Gong

    2017-01-01

    Full Text Available This paper proposes a novel performance enhanced Jaya algorithm with a two group adaption (E-Jaya. Two improvements are presented in E-Jaya. First, instead of using the best and the worst values in Jaya algorithm, EJaya separates all candidates into two groups: the better and the worse groups based on their fitness values, then the mean of the better group and the mean of the worse group are used. Second, in order to add non algorithm-specific parameters in E-Jaya, a novel adaptive method of dividing the two groups has been developed. Finally, twelve benchmark functions with different dimensionality, such as 40, 60, and 100, were evaluated using the proposed EJaya algorithm. The results show that E-Jaya significantly outperformed Jaya algorithm in terms of the solution accuracy. Additionally, E-Jaya was also compared with a differential evolution (DE, a self-adapting control parameters in differential evolution (jDE, a firefly algorithm (FA, and a standard particle swarm optimization 2011 (SPSO2011 algorithm. E-Jaya algorithm outperforms all the algorithms.

  7. Current status of the MPEG-4 standardization effort

    Science.gov (United States)

    Anastassiou, Dimitris

    1994-09-01

    The Moving Pictures Experts Group (MPEG) of the International Standardization Organization has initiated a standardization effort, known as MPEG-4, addressing generic audiovisual coding at very low bit-rates (up to 64 kbits/s) with applications in videotelephony, mobile audiovisual communications, video database retrieval, computer games, video over Internet, remote sensing, etc. This paper gives a survey of the status of MPEG-4, including its planned schedule, and initial ideas about requirements and applications. A significant part of this paper is summarizing an incomplete draft version of a `requirements document' which presents specifications of desirable features on the video, audio, and system level of the forthcoming standard. Very low bit-rate coding algorithms are not described, because no endorsement of any particular algorithm, or class of algorithms, has yet been made by MPEG-4, and several seminars held concurrently with MPEG-4 meetings have not so far provided evidence that such high performance coding schemes are achievable.

  8. A Cooperative Harmony Search Algorithm for Function Optimization

    Directory of Open Access Journals (Sweden)

    Gang Li

    2014-01-01

    Full Text Available Harmony search algorithm (HS is a new metaheuristic algorithm which is inspired by a process involving musical improvisation. HS is a stochastic optimization technique that is similar to genetic algorithms (GAs and particle swarm optimizers (PSOs. It has been widely applied in order to solve many complex optimization problems, including continuous and discrete problems, such as structure design, and function optimization. A cooperative harmony search algorithm (CHS is developed in this paper, with cooperative behavior being employed as a significant improvement to the performance of the original algorithm. Standard HS just uses one harmony memory and all the variables of the object function are improvised within the harmony memory, while the proposed algorithm CHS uses multiple harmony memories, so that each harmony memory can optimize different components of the solution vector. The CHS was then applied to function optimization problems. The results of the experiment show that CHS is capable of finding better solutions when compared to HS and a number of other algorithms, especially in high-dimensional problems.

  9. Randomized algorithms in automatic control and data mining

    CERN Document Server

    Granichin, Oleg; Toledano-Kitai, Dvora

    2015-01-01

    In the fields of data mining and control, the huge amount of unstructured data and the presence of uncertainty in system descriptions have always been critical issues. The book Randomized Algorithms in Automatic Control and Data Mining introduces the readers to the fundamentals of randomized algorithm applications in data mining (especially clustering) and in automatic control synthesis. The methods proposed in this book guarantee that the computational complexity of classical algorithms and the conservativeness of standard robust control techniques will be reduced. It is shown that when a problem requires "brute force" in selecting among options, algorithms based on random selection of alternatives offer good results with certain probability for a restricted time and significantly reduce the volume of operations.

  10. Reverse Universal Resolving Algorithm and inverse driving

    DEFF Research Database (Denmark)

    Pécseli, Thomas

    2012-01-01

    Inverse interpretation is a semantics based, non-standard interpretation of programs. Given a program and a value, an inverse interpreter finds all or one of the inputs, that would yield the given value as output with normal forward evaluation. The Reverse Universal Resolving Algorithm is a new...... variant of the Universal Resolving Algorithm for inverse interpretation. The new variant outperforms the original algorithm in several cases, e.g., when unpacking a list using inverse interpretation of a pack program. It uses inverse driving as its main technique, which has not been described in detail...... before. Inverse driving may find application with, e.g., supercompilation, thus suggesting a new kind of program inverter....

  11. An Improved Harmony Search Algorithm for Power Distribution Network Planning

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2015-01-01

    Full Text Available Distribution network planning because of involving many variables and constraints is a multiobjective, discrete, nonlinear, and large-scale optimization problem. Harmony search (HS algorithm is a metaheuristic algorithm inspired by the improvisation process of music players. HS algorithm has several impressive advantages, such as easy implementation, less adjustable parameters, and quick convergence. But HS algorithm still has some defects such as premature convergence and slow convergence speed. According to the defects of the standard algorithm and characteristics of distribution network planning, an improved harmony search (IHS algorithm is proposed in this paper. We set up a mathematical model of distribution network structure planning, whose optimal objective function is to get the minimum annual cost and constraint conditions are overload and radial network. IHS algorithm is applied to solve the complex optimization mathematical model. The empirical results strongly indicate that IHS algorithm can effectively provide better results for solving the distribution network planning problem compared to other optimization algorithms.

  12. An Enhanced Genetic Algorithm for the Generalized Traveling Salesman Problem

    Directory of Open Access Journals (Sweden)

    H. Jafarzadeh

    2017-12-01

    Full Text Available The generalized traveling salesman problem (GTSP deals with finding the minimum-cost tour in a clustered set of cities. In this problem, the traveler is interested in finding the best path that goes through all clusters. As this problem is NP-hard, implementing a metaheuristic algorithm to solve the large scale problems is inevitable. The performance of these algorithms can be intensively promoted by other heuristic algorithms. In this study, a search method is developed that improves the quality of the solutions and competition time considerably in comparison with Genetic Algorithm. In the proposed algorithm, the genetic algorithms with the Nearest Neighbor Search (NNS are combined and a heuristic mutation operator is applied. According to the experimental results on a set of standard test problems with symmetric distances, the proposed algorithm finds the best solutions in most cases with the least computational time. The proposed algorithm is highly competitive with the published until now algorithms in both solution quality and running time.

  13. Prototype Implementation of Two Efficient Low-Complexity Digital Predistortion Algorithms

    Directory of Open Access Journals (Sweden)

    Timo I. Laakso

    2008-01-01

    Full Text Available Predistortion (PD lineariser for microwave power amplifiers (PAs is an important topic of research. With larger and larger bandwidth as it appears today in modern WiMax standards as well as in multichannel base stations for 3GPP standards, the relatively simple nonlinear effect of a PA becomes a complex memory-including function, severely distorting the output signal. In this contribution, two digital PD algorithms are investigated for the linearisation of microwave PAs in mobile communications. The first one is an efficient and low-complexity algorithm based on a memoryless model, called the simplicial canonical piecewise linear (SCPWL function that describes the static nonlinear characteristic of the PA. The second algorithm is more general, approximating the pre-inverse filter of a nonlinear PA iteratively using a Volterra model. The first simpler algorithm is suitable for compensation of amplitude compression and amplitude-to-phase conversion, for example, in mobile units with relatively small bandwidths. The second algorithm can be used to linearise PAs operating with larger bandwidths, thus exhibiting memory effects, for example, in multichannel base stations. A measurement testbed which includes a transmitter-receiver chain with a microwave PA is built for testing and prototyping of the proposed PD algorithms. In the testing phase, the PD algorithms are implemented using MATLAB (floating-point representation and tested in record-and-playback mode. The iterative PD algorithm is then implemented on a Field Programmable Gate Array (FPGA using fixed-point representation. The FPGA implementation allows the pre-inverse filter to be tested in a real-time mode. Measurement results show excellent linearisation capabilities of both the proposed algorithms in terms of adjacent channel power suppression. It is also shown that the fixed-point FPGA implementation of the iterative algorithm performs as well as the floating-point implementation.

  14. Modified Monkey Optimization Algorithm for Solving Optimal Reactive Power Dispatch Problem

    Directory of Open Access Journals (Sweden)

    Kanagasabai Lenin

    2015-04-01

    Full Text Available In this paper, a novel approach Modified Monkey optimization (MMO algorithm for solving optimal reactive power dispatch problem has been presented. MMO is a population based stochastic meta-heuristic algorithm and it is inspired by intelligent foraging behaviour of monkeys. This paper improves both local leader and global leader phases.  The proposed (MMO algorithm has been tested in standard IEEE 30 bus test system and simulation results show the worthy performance of the proposed algorithm in reducing the real power loss.

  15. Research on Modified Root-MUSIC Algorithm of DOA Estimation Based on Covariance Matrix Reconstruction

    Directory of Open Access Journals (Sweden)

    Changgan SHU

    2014-09-01

    Full Text Available In the standard root multiple signal classification algorithm, the performance of direction of arrival estimation will reduce and even lose effect in circumstances that a low signal noise ratio and a small signals interval. By reconstructing and weighting the covariance matrix of received signal, the modified algorithm can provide more accurate estimation results. The computer simulation and performance analysis are given next, which show that under the condition of lower signal noise ratio and stronger correlation between signals, the proposed modified algorithm could provide preferable azimuth estimating performance than the standard method.

  16. Technical Note: Modification of the standard gain correction algorithm to compensate for the number of used reference flat frames in detector performance studies

    International Nuclear Information System (INIS)

    Konstantinidis, Anastasios C.; Olivo, Alessandro; Speller, Robert D.

    2011-01-01

    Purpose: The x-ray performance evaluation of digital x-ray detectors is based on the calculation of the modulation transfer function (MTF), the noise power spectrum (NPS), and the resultant detective quantum efficiency (DQE). The flat images used for the extraction of the NPS should not contain any fixed pattern noise (FPN) to avoid contamination from nonstochastic processes. The ''gold standard'' method used for the reduction of the FPN (i.e., the different gain between pixels) in linear x-ray detectors is based on normalization with an average reference flat-field. However, the noise in the corrected image depends on the number of flat frames used for the average flat image. The aim of this study is to modify the standard gain correction algorithm to make it independent on the used reference flat frames. Methods: Many publications suggest the use of 10-16 reference flat frames, while other studies use higher numbers (e.g., 48 frames) to reduce the propagated noise from the average flat image. This study quantifies experimentally the effect of the number of used reference flat frames on the NPS and DQE values and appropriately modifies the gain correction algorithm to compensate for this effect. Results: It is shown that using the suggested gain correction algorithm a minimum number of reference flat frames (i.e., down to one frame) can be used to eliminate the FPN from the raw flat image. This saves computer memory and time during the x-ray performance evaluation. Conclusions: The authors show that the method presented in the study (a) leads to the maximum DQE value that one would have by using the conventional method and very large number of frames and (b) has been compared to an independent gain correction method based on the subtraction of flat-field images, leading to identical DQE values. They believe this provides robust validation of the proposed method.

  17. Determination of the Three-Dimensional Rate of Cancer Cell Rotation in an Optically-Induced Electrokinetics Chip Using an Optical Flow Algorithm

    Directory of Open Access Journals (Sweden)

    Yuliang Zhao

    2018-03-01

    Full Text Available Our group has reported that Melan-A cells and lymphocytes undergo self-rotation in a homogeneous AC electric field, and found that the rotation velocity of these cells is a key indicator to characterize their physical properties. However, the determination of the rotation properties of a cell by human eyes is both gruesome and time consuming, and not always accurate. In this paper, a method is presented to more accurately determine the 3D cell rotation velocity and axis from a 2D image sequence captured by a single camera. Using the optical flow method, we obtained the 2D motion field data from the image sequence and back-project it onto a 3D sphere model, and then the rotation axis and velocity of the cell were calculated. After testing the algorithm on animated image sequences, experiments were also performed on image sequences of real rotating cells. All of these results indicate that this method is accurate, practical, and useful. Furthermore, the method presented there can also be used to determine the 3D rotation velocity of other types of spherical objects that are commonly used in microfluidic applications, such as beads and microparticles.

  18. Modified Firefly Algorithm based controller design for integrating and unstable delay processes

    Directory of Open Access Journals (Sweden)

    A. Gupta

    2016-03-01

    Full Text Available In this paper, Modified Firefly Algorithm has been used for optimizing the controller parameters of Smith predictor structure. The proposed algorithm modifies the position formula of the standard Firefly Algorithm in order to achieve faster convergence rate. Performance criteria Integral Square Error (ISE is optimized using this optimization technique. Simulation results show high performance for Modified Firefly Algorithm as compared to conventional Firefly Algorithm in terms of convergence rate. Integrating and unstable delay processes are taken as examples to indicate the performance of the proposed method.

  19. Task-based detectability in CT image reconstruction by filtered backprojection and penalized likelihood estimation

    Energy Technology Data Exchange (ETDEWEB)

    Gang, Grace J. [Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 2M9, Canada and Department of Biomedical Engineering, Johns Hopkins University, Baltimore Maryland 21205 (Canada); Stayman, J. Webster; Zbijewski, Wojciech [Department of Biomedical Engineering, Johns Hopkins University, Baltimore Maryland 21205 (United States); Siewerdsen, Jeffrey H., E-mail: jeff.siewerdsen@jhu.edu [Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 2M9, Canada and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States)

    2014-08-15

    Purpose: Nonstationarity is an important aspect of imaging performance in CT and cone-beam CT (CBCT), especially for systems employing iterative reconstruction. This work presents a theoretical framework for both filtered-backprojection (FBP) and penalized-likelihood (PL) reconstruction that includes explicit descriptions of nonstationary noise, spatial resolution, and task-based detectability index. Potential utility of the model was demonstrated in the optimal selection of regularization parameters in PL reconstruction. Methods: Analytical models for local modulation transfer function (MTF) and noise-power spectrum (NPS) were investigated for both FBP and PL reconstruction, including explicit dependence on the object and spatial location. For FBP, a cascaded systems analysis framework was adapted to account for nonstationarity by separately calculating fluence and system gains for each ray passing through any given voxel. For PL, the point-spread function and covariance were derived using the implicit function theorem and first-order Taylor expansion according toFessler [“Mean and variance of implicitly defined biased estimators (such as penalized maximum likelihood): Applications to tomography,” IEEE Trans. Image Process. 5(3), 493–506 (1996)]. Detectability index was calculated for a variety of simple tasks. The model for PL was used in selecting the regularization strength parameter to optimize task-based performance, with both a constant and a spatially varying regularization map. Results: Theoretical models of FBP and PL were validated in 2D simulated fan-beam data and found to yield accurate predictions of local MTF and NPS as a function of the object and the spatial location. The NPS for both FBP and PL exhibit similar anisotropic nature depending on the pathlength (and therefore, the object and spatial location within the object) traversed by each ray, with the PL NPS experiencing greater smoothing along directions with higher noise. The MTF of FBP

  20. Single-step reinitialization and extending algorithms for level-set based multi-phase flow simulations

    Science.gov (United States)

    Fu, Lin; Hu, Xiangyu Y.; Adams, Nikolaus A.

    2017-12-01

    We propose efficient single-step formulations for reinitialization and extending algorithms, which are critical components of level-set based interface-tracking methods. The level-set field is reinitialized with a single-step (non iterative) "forward tracing" algorithm. A minimum set of cells is defined that describes the interface, and reinitialization employs only data from these cells. Fluid states are extrapolated or extended across the interface by a single-step "backward tracing" algorithm. Both algorithms, which are motivated by analogy to ray-tracing, avoid multiple block-boundary data exchanges that are inevitable for iterative reinitialization and extending approaches within a parallel-computing environment. The single-step algorithms are combined with a multi-resolution conservative sharp-interface method and validated by a wide range of benchmark test cases. We demonstrate that the proposed reinitialization method achieves second-order accuracy in conserving the volume of each phase. The interface location is invariant to reapplication of the single-step reinitialization. Generally, we observe smaller absolute errors than for standard iterative reinitialization on the same grid. The computational efficiency is higher than for the standard and typical high-order iterative reinitialization methods. We observe a 2- to 6-times efficiency improvement over the standard method for serial execution. The proposed single-step extending algorithm, which is commonly employed for assigning data to ghost cells with ghost-fluid or conservative interface interaction methods, shows about 10-times efficiency improvement over the standard method while maintaining same accuracy. Despite their simplicity, the proposed algorithms offer an efficient and robust alternative to iterative reinitialization and extending methods for level-set based multi-phase simulations.

  1. [A new peak detection algorithm of Raman spectra].

    Science.gov (United States)

    Jiang, Cheng-Zhi; Sun, Qiang; Liu, Ying; Liang, Jing-Qiu; An, Yan; Liu, Bing

    2014-01-01

    The authors proposed a new Raman peak recognition method named bi-scale correlation algorithm. The algorithm uses the combination of the correlation coefficient and the local signal-to-noise ratio under two scales to achieve Raman peak identification. We compared the performance of the proposed algorithm with that of the traditional continuous wavelet transform method through MATLAB, and then tested the algorithm with real Raman spectra. The results show that the average time for identifying a Raman spectrum is 0.51 s with the algorithm, while it is 0.71 s with the continuous wavelet transform. When the signal-to-noise ratio of Raman peak is greater than or equal to 6 (modern Raman spectrometers feature an excellent signal-to-noise ratio), the recognition accuracy with the algorithm is higher than 99%, while it is less than 84% with the continuous wavelet transform method. The mean and the standard deviations of the peak position identification error of the algorithm are both less than that of the continuous wavelet transform method. Simulation analysis and experimental verification prove that the new algorithm possesses the following advantages: no needs of human intervention, no needs of de-noising and background removal operation, higher recognition speed and higher recognition accuracy. The proposed algorithm is operable in Raman peak identification.

  2. A Novel Particle Swarm Optimization Algorithm for Global Optimization.

    Science.gov (United States)

    Wang, Chun-Feng; Liu, Kui

    2016-01-01

    Particle Swarm Optimization (PSO) is a recently developed optimization method, which has attracted interest of researchers in various areas due to its simplicity and effectiveness, and many variants have been proposed. In this paper, a novel Particle Swarm Optimization algorithm is presented, in which the information of the best neighbor of each particle and the best particle of the entire population in the current iteration is considered. Meanwhile, to avoid premature, an abandoned mechanism is used. Furthermore, for improving the global convergence speed of our algorithm, a chaotic search is adopted in the best solution of the current iteration. To verify the performance of our algorithm, standard test functions have been employed. The experimental results show that the algorithm is much more robust and efficient than some existing Particle Swarm Optimization algorithms.

  3. Analysis of a parallel multigrid algorithm

    Science.gov (United States)

    Chan, Tony F.; Tuminaro, Ray S.

    1989-01-01

    The parallel multigrid algorithm of Frederickson and McBryan (1987) is considered. This algorithm uses multiple coarse-grid problems (instead of one problem) in the hope of accelerating convergence and is found to have a close relationship to traditional multigrid methods. Specifically, the parallel coarse-grid correction operator is identical to a traditional multigrid coarse-grid correction operator, except that the mixing of high and low frequencies caused by aliasing error is removed. Appropriate relaxation operators can be chosen to take advantage of this property. Comparisons between the standard multigrid and the new method are made.

  4. Prosthetic joint infection development of an evidence-based diagnostic algorithm.

    Science.gov (United States)

    Mühlhofer, Heinrich M L; Pohlig, Florian; Kanz, Karl-Georg; Lenze, Ulrich; Lenze, Florian; Toepfer, Andreas; Kelch, Sarah; Harrasser, Norbert; von Eisenhart-Rothe, Rüdiger; Schauwecker, Johannes

    2017-03-09

    Increasing rates of prosthetic joint infection (PJI) have presented challenges for general practitioners, orthopedic surgeons and the health care system in the recent years. The diagnosis of PJI is complex; multiple diagnostic tools are used in the attempt to correctly diagnose PJI. Evidence-based algorithms can help to identify PJI using standardized diagnostic steps. We reviewed relevant publications between 1990 and 2015 using a systematic literature search in MEDLINE and PUBMED. The selected search results were then classified into levels of evidence. The keywords were prosthetic joint infection, biofilm, diagnosis, sonication, antibiotic treatment, implant-associated infection, Staph. aureus, rifampicin, implant retention, pcr, maldi-tof, serology, synovial fluid, c-reactive protein level, total hip arthroplasty (THA), total knee arthroplasty (TKA) and combinations of these terms. From an initial 768 publications, 156 publications were stringently reviewed. Publications with class I-III recommendations (EAST) were considered. We developed an algorithm for the diagnostic approach to display the complex diagnosis of PJI in a clear and logically structured process according to ISO 5807. The evidence-based standardized algorithm combines modern clinical requirements and evidence-based treatment principles. The algorithm provides a detailed transparent standard operating procedure (SOP) for diagnosing PJI. Thus, consistently high, examiner-independent process quality is assured to meet the demands of modern quality management in PJI diagnosis.

  5. Implementation of an Algorithm for Prosthetic Joint Infection: Deviations and Problems.

    Science.gov (United States)

    Mühlhofer, Heinrich M L; Kanz, Karl-Georg; Pohlig, Florian; Lenze, Ulrich; Lenze, Florian; Toepfer, Andreas; von Eisenhart-Rothe, Ruediger; Schauwecker, Johannes

    The outcome of revision surgery in arthroplasty is based on a precise diagnosis. In addition, the treatment varies based on whether the prosthetic failure is caused by aseptic or septic loosening. Algorithms can help to identify periprosthetic joint infections (PJI) and standardize diagnostic steps, however, algorithms tend to oversimplify the treatment of complex cases. We conducted a process analysis during the implementation of a PJI algorithm to determine problems and deviations associated with the implementation of this algorithm. Fifty patients who were treated after implementing a standardized algorithm were monitored retrospectively. Their treatment plans and diagnostic cascades were analyzed for deviations from the implemented algorithm. Each diagnostic procedure was recorded, compared with the algorithm, and evaluated statistically. We detected 52 deviations while treating 50 patients. In 25 cases, no discrepancy was observed. Synovial fluid aspiration was not performed in 31.8% of patients (95% confidence interval [CI], 18.1%-45.6%), while white blood cell counts (WBCs) and neutrophil differentiation were assessed in 54.5% of patients (95% CI, 39.8%-69.3%). We also observed that the prolonged incubation of cultures was not requested in 13.6% of patients (95% CI, 3.5%-23.8%). In seven of 13 cases (63.6%; 95% CI, 35.2%-92.1%), arthroscopic biopsy was performed; 6 arthroscopies were performed in discordance with the algorithm (12%; 95% CI, 3%-21%). Self-critical analysis of diagnostic processes and monitoring of deviations using algorithms are important and could increase the quality of treatment by revealing recurring faults.

  6. An efficient algorithm for reconstruction of spect images in the presence of spatially varying attenuation

    International Nuclear Information System (INIS)

    Zeeberg, B.R.; Bacharach, S.; Carson, R.; Green, M.V.; Larson, S.M.; Soucaille, J.F.

    1985-01-01

    An algorithm is presented which permits the reconstruction of SPECT images in the presence of spatially varying attenuation. The algorithm considers the spatially variant attenuation as a perturbation of the constant attenuation case and computes a reconstructed image and a correction image to estimate the effects of this perturbation. The corrected image will be computed from these two images and is of comparable quality both visually and quantitatively to those simulated for zero or constant attenuation taken as standard reference images. In addition, the algorithm is time efficient, in that the time required is approximately 2.5 times that for a standard convolution-back projection algorithm

  7. A Numerical Instability in an ADI Algorithm for Gyrokinetics

    International Nuclear Information System (INIS)

    Belli, E.A.; Hammett, G.W.

    2004-01-01

    We explore the implementation of an Alternating Direction Implicit (ADI) algorithm for a gyrokinetic plasma problem and its resulting numerical stability properties. This algorithm, which uses a standard ADI scheme to divide the field solve from the particle distribution function advance, has previously been found to work well for certain plasma kinetic problems involving one spatial and two velocity dimensions, including collisions and an electric field. However, for the gyrokinetic problem we find a severe stability restriction on the time step. Furthermore, we find that this numerical instability limitation also affects some other algorithms, such as a partially implicit Adams-Bashforth algorithm, where the parallel motion operator v parallel ∂/∂z is treated implicitly and the field terms are treated with an Adams-Bashforth explicit scheme. Fully explicit algorithms applied to all terms can be better at long wavelengths than these ADI or partially implicit algorithms

  8. Algorithms for Protein Structure Prediction

    DEFF Research Database (Denmark)

    Paluszewski, Martin

    -trace. Here we present three different approaches for reconstruction of C-traces from predictable measures. In our first approach [63, 62], the C-trace is positioned on a lattice and a tabu-search algorithm is applied to find minimum energy structures. The energy function is based on half-sphere-exposure (HSE......) is more robust than standard Monte Carlo search. In the second approach for reconstruction of C-traces, an exact branch and bound algorithm has been developed [67, 65]. The model is discrete and makes use of secondary structure predictions, HSE, CN and radius of gyration. We show how to compute good lower...... bounds for partial structures very fast. Using these lower bounds, we are able to find global minimum structures in a huge conformational space in reasonable time. We show that many of these global minimum structures are of good quality compared to the native structure. Our branch and bound algorithm...

  9. Effects of Random Values for Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Hou-Ping Dai

    2018-02-01

    Full Text Available Particle swarm optimization (PSO algorithm is generally improved by adaptively adjusting the inertia weight or combining with other evolution algorithms. However, in most modified PSO algorithms, the random values are always generated by uniform distribution in the range of [0, 1]. In this study, the random values, which are generated by uniform distribution in the ranges of [0, 1] and [−1, 1], and Gauss distribution with mean 0 and variance 1 ( U [ 0 , 1 ] , U [ − 1 , 1 ] and G ( 0 , 1 , are respectively used in the standard PSO and linear decreasing inertia weight (LDIW PSO algorithms. For comparison, the deterministic PSO algorithm, in which the random values are set as 0.5, is also investigated in this study. Some benchmark functions and the pressure vessel design problem are selected to test these algorithms with different types of random values in three space dimensions (10, 30, and 100. The experimental results show that the standard PSO and LDIW-PSO algorithms with random values generated by U [ − 1 , 1 ] or G ( 0 , 1 are more likely to avoid falling into local optima and quickly obtain the global optima. This is because the large-scale random values can expand the range of particle velocity to make the particle more likely to escape from local optima and obtain the global optima. Although the random values generated by U [ − 1 , 1 ] or G ( 0 , 1 are beneficial to improve the global searching ability, the local searching ability for a low dimensional practical optimization problem may be decreased due to the finite particles.

  10. Motion estimation and compensation in dynamic spiral CT reconstruction

    International Nuclear Information System (INIS)

    Kimdon, J.; Grangeat, P.; Koenig, A.; Bonnet, St.

    2004-01-01

    Respiratory and cardiac motion causes blurring in dynamic X-ray Computed Tomography (CT). Fast scans reduce this problem, but they require a higher radiation dose per time period to maintain the signal to noise ratio of the resulting images, thereby magnifying the health risk to the patient. As an alternative to increased radiation, our team has already developed a cone-beam reconstruction algorithm based on a dynamic particle model that estimates, predicts, and compensates for respiratory motion in circular X-ray CT. The current paper presents an extension of this method to spiral CT, applicable to modern multi-slice scanners that take advantage of the speed and dose benefits of helical trajectories. We adapted all three main areas of the algorithm: backprojection, prediction, and compensation/accumulation. In backprojection, we changed the longitudinal re-binning technique, filter direction, and the method of enforcing the data sufficiency requirements. For prediction, we had to be careful of objects appearing and disappearing as the scanner bed advanced. For compensation/accumulation, we controlled the reconstruction time and combined images to cover a greater longitudinal extent for each phase in the respiratory or cardiac cycle. Tests with moving numerical phantoms demonstrate that the algorithm successfully improves the temporal resolution of the images without increasing the dose or reducing the signal-to-noise ratio. (authors)

  11. Motion estimation and compensation in dynamic spiral CT reconstruction; Estimation et compensation de mouvement en reconstruction dynamique de tomodensitometrie helicoidale

    Energy Technology Data Exchange (ETDEWEB)

    Kimdon, J.; Grangeat, P.; Koenig, A.; Bonnet, St

    2004-07-01

    Respiratory and cardiac motion causes blurring in dynamic X-ray Computed Tomography (CT). Fast scans reduce this problem, but they require a higher radiation dose per time period to maintain the signal to noise ratio of the resulting images, thereby magnifying the health risk to the patient. As an alternative to increased radiation, our team has already developed a cone-beam reconstruction algorithm based on a dynamic particle model that estimates, predicts, and compensates for respiratory motion in circular X-ray CT. The current paper presents an extension of this method to spiral CT, applicable to modern multi-slice scanners that take advantage of the speed and dose benefits of helical trajectories. We adapted all three main areas of the algorithm: backprojection, prediction, and compensation/accumulation. In backprojection, we changed the longitudinal re-binning technique, filter direction, and the method of enforcing the data sufficiency requirements. For prediction, we had to be careful of objects appearing and disappearing as the scanner bed advanced. For compensation/accumulation, we controlled the reconstruction time and combined images to cover a greater longitudinal extent for each phase in the respiratory or cardiac cycle. Tests with moving numerical phantoms demonstrate that the algorithm successfully improves the temporal resolution of the images without increasing the dose or reducing the signal-to-noise ratio. (authors)

  12. Improvement of the cost-benefit analysis algorithm for high-rise construction projects

    Directory of Open Access Journals (Sweden)

    Gafurov Andrey

    2018-01-01

    Full Text Available The specific nature of high-rise investment projects entailing long-term construction, high risks, etc. implies a need to improve the standard algorithm of cost-benefit analysis. An improved algorithm is described in the article. For development of the improved algorithm of cost-benefit analysis for high-rise construction projects, the following methods were used: weighted average cost of capital, dynamic cost-benefit analysis of investment projects, risk mapping, scenario analysis, sensitivity analysis of critical ratios, etc. This comprehensive approach helped to adapt the original algorithm to feasibility objectives in high-rise construction. The authors put together the algorithm of cost-benefit analysis for high-rise construction projects on the basis of risk mapping and sensitivity analysis of critical ratios. The suggested project risk management algorithms greatly expand the standard algorithm of cost-benefit analysis in investment projects, namely: the “Project analysis scenario” flowchart, improving quality and reliability of forecasting reports in investment projects; the main stages of cash flow adjustment based on risk mapping for better cost-benefit project analysis provided the broad range of risks in high-rise construction; analysis of dynamic cost-benefit values considering project sensitivity to crucial variables, improving flexibility in implementation of high-rise projects.

  13. Improvement of the cost-benefit analysis algorithm for high-rise construction projects

    Science.gov (United States)

    Gafurov, Andrey; Skotarenko, Oksana; Plotnikov, Vladimir

    2018-03-01

    The specific nature of high-rise investment projects entailing long-term construction, high risks, etc. implies a need to improve the standard algorithm of cost-benefit analysis. An improved algorithm is described in the article. For development of the improved algorithm of cost-benefit analysis for high-rise construction projects, the following methods were used: weighted average cost of capital, dynamic cost-benefit analysis of investment projects, risk mapping, scenario analysis, sensitivity analysis of critical ratios, etc. This comprehensive approach helped to adapt the original algorithm to feasibility objectives in high-rise construction. The authors put together the algorithm of cost-benefit analysis for high-rise construction projects on the basis of risk mapping and sensitivity analysis of critical ratios. The suggested project risk management algorithms greatly expand the standard algorithm of cost-benefit analysis in investment projects, namely: the "Project analysis scenario" flowchart, improving quality and reliability of forecasting reports in investment projects; the main stages of cash flow adjustment based on risk mapping for better cost-benefit project analysis provided the broad range of risks in high-rise construction; analysis of dynamic cost-benefit values considering project sensitivity to crucial variables, improving flexibility in implementation of high-rise projects.

  14. Entropy coders of the H.264/AVC standard

    CERN Document Server

    Tian, Xiaohua; Lian, Yong

    2010-01-01

    This book presents a collection of algorithms and VLSI architectures of entropy (or statistical) codecs of recent video compression standards, with focus on the H.264/AVC standard. For any visual data compression scheme, there exists a combination of two, or all of the following three stages: spatial, temporal, and statistical compression. General readers are first introduced with the various algorithms of the statistical coders. The VLSI implementations are also reviewed and discussed. Readers with limited hardware design background are also introduced with a design methodology starting from

  15. An Algorithm for Fault-Tree Construction

    DEFF Research Database (Denmark)

    Taylor, J. R.

    1982-01-01

    An algorithm for performing certain parts of the fault tree construction process is described. Its input is a flow sheet of the plant, a piping and instrumentation diagram, or a wiring diagram of the circuits, to be analysed, together with a standard library of component functional and failure...

  16. Tomographic ventricular reconstruction using multiple view first-pass radionuclide angiography

    International Nuclear Information System (INIS)

    Lacy, J.L.; Ball, M.E.; Verani, M.S.; Wiles, H.; Roberts, R.

    1985-01-01

    In first-pass radionuclide angiography (FPRA) images of both left and right ventricles are uncontaminated by adjacent structures. Thus, the problem of tomographic reconstruction is vastly simplified compared to equilibrium blood pool imaging in which all structures are imaged simultaneously. Tomographic reconstruction from a limited number of views may thus be possible. A simple filtered interpolative back-projection reconstruction technique was employed. In this technique interpolation was used between sectional distributions at successive angles. Interpolations yielding 9 and 13 back projection angles of 22.5 0 and 15 0 were evaluated. Ventricular borders were obtained in each back-projected tomographic slice by location of the intensity level which provided correct total ventricular volume. Cast cross sections were quantitatively well represented by these borders. This ventricular border definition algorithm forms the basis for applications of the technique in animals and humans

  17. Power Analysis of Energy Efficient DES Algorithm and Implementation on 28nm FPGA

    DEFF Research Database (Denmark)

    Thind, Vandana; Pandey, Bishwajeet; Hussain, Dil muhammed Akbar

    2016-01-01

    In this work, we have done power analysis ofData Encryption Standard (DES) algorithm using Xilinx ISE software development kit. We have analyzed the amount of power utilized by selective components on board i.e., FPGA Artix-7, where DES algorithm is implemented. The components taken into consider......In this work, we have done power analysis ofData Encryption Standard (DES) algorithm using Xilinx ISE software development kit. We have analyzed the amount of power utilized by selective components on board i.e., FPGA Artix-7, where DES algorithm is implemented. The components taken...... into consideration areclock power, logic power, signals power, IOs power, leakage powerand supply power (dynamic and quiescent). We have used four different WLAN frequencies (2.4 GHz, 3.6 GHz, 4.9GHz, and 5.9 GHz) and four different IO standards like HSTL-I, HSTL-II, HSTL-II-18, HSTL-I-18 for power analysis. We have...... achieved13-47% saving in power at different frequencies and withdifferent energy efficient HSTL IO standard. We calculated the percentage change in the IO power with respect to the mean values of IO power at four different frequencies. We notified that there is minimum of -37.5% and maximum of +35...

  18. Configuration-defined control algorithms with the ASDEX Upgrade DCS

    Energy Technology Data Exchange (ETDEWEB)

    Treutterer, Wolfgang, E-mail: Wolfgang.Treutterer@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Cole, Richard [Unlimited Computer Systems, Seeshaupter Str. 15, 82393 Iffeldorf Germany (Germany); Gräter, Alexander [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Lüddecke, Klaus [Unlimited Computer Systems, Seeshaupter Str. 15, 82393 Iffeldorf Germany (Germany); Neu, Gregor; Rapson, Christopher; Raupp, Gerhard; Zehetbauer, Thomas [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany)

    2016-11-15

    Highlights: • Control algorithm built from combination of pre-fabricated standard function blocks. • Seamless integration in multi-threaded computation context. • Block composition defined by configuration data, only. - Abstract: The ASDEX Upgrade Discharge Control System (DCS) is a distributed real-time control system executing complex control and monitoring tasks. Up to now, DCS control algorithms have been implemented by coding dedicated application processes with the C++ programming language. Algorithm changes required code modification, compilation and commissioning which only experienced programmers could perform. This was a significant constraint of flexibility for both control system operation and design. The new approach extends DCS with the capability of configuration-defined control algorithms. These are composed of chains of small, configurable standard function blocks providing general purpose functions like algebraic operations, filters, feedback controllers, output limiters and decision logic. In a later phase a graphical editor could help to compose and modify such configuration in a Simulink-like fashion. Building algorithms from standard functions can result in a high number of elements. In order to achieve a similar performance as with C++ coding, it is essential to avoid administrative bottlenecks by design. As a consequence, DCS executes a function block chain in the context of a single real-time thread of an application process. No concurrency issues as in a multi-threaded context need to be considered resulting in strongly simplified signal handling and zero performance overhead for inter-block communication. Instead of signal-driven synchronization, a block scheduler derives the execution sequence automatically from the block dependencies as defined in the configuration. All blocks and connecting signals are instantiated dynamically, based on definitions in a configuration file. Algorithms thus are not defined in the code but only in

  19. Comparative study of simultaneous algebraic and filtered backprojection reconstruction methods in digital tomosynthesis for nondestructive testing

    International Nuclear Information System (INIS)

    Kim, Dae Cheon; Youn, Hanbean; Kim, Seung Ho; Kim, Ho Kyung

    2015-01-01

    These algorithms have their own merits and demerits, in terms of image quality and reconstruction speed. For the industrial applications, such as multi-layer printed circuit board (PCB) inspection, the automated inspection systems require real time imaging and high spatial resolution. In this study, we quantitatively evaluate the performance of FBP and SART for planar computed tomography (pCT) systems. The performance includes the contrast, and depth resolution. These benefits will be normalized by costs, such as tube loading and speed. In order to accomplish it, further study is needed. First of all, it should be verified by experiment that the algorithm works correctly. Once we prove the algorithm is correct for the PCB phantom, then the results of reconstruction images will be compared by using metric parameters

  20. Comparative study of simultaneous algebraic and filtered backprojection reconstruction methods in digital tomosynthesis for nondestructive testing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Cheon; Youn, Hanbean; Kim, Seung Ho; Kim, Ho Kyung [Pusan National University, Busan (Korea, Republic of)

    2015-05-15

    These algorithms have their own merits and demerits, in terms of image quality and reconstruction speed. For the industrial applications, such as multi-layer printed circuit board (PCB) inspection, the automated inspection systems require real time imaging and high spatial resolution. In this study, we quantitatively evaluate the performance of FBP and SART for planar computed tomography (pCT) systems. The performance includes the contrast, and depth resolution. These benefits will be normalized by costs, such as tube loading and speed. In order to accomplish it, further study is needed. First of all, it should be verified by experiment that the algorithm works correctly. Once we prove the algorithm is correct for the PCB phantom, then the results of reconstruction images will be compared by using metric parameters.

  1. Interband coding extension of the new lossless JPEG standard

    Science.gov (United States)

    Memon, Nasir D.; Wu, Xiaolin; Sippy, V.; Miller, G.

    1997-01-01

    Due to the perceived inadequacy of current standards for lossless image compression, the JPEG committee of the International Standards Organization (ISO) has been developing a new standard. A baseline algorithm, called JPEG-LS, has already been completed and is awaiting approval by national bodies. The JPEG-LS baseline algorithm despite being simple is surprisingly efficient, and provides compression performance that is within a few percent of the best and more sophisticated techniques reported in the literature. Extensive experimentations performed by the authors seem to indicate that an overall improvement by more than 10 percent in compression performance will be difficult to obtain even at the cost of great complexity; at least not with traditional approaches to lossless image compression. However, if we allow inter-band decorrelation and modeling in the baseline algorithm, nearly 30 percent improvement in compression gains for specific images in the test set become possible with a modest computational cost. In this paper we propose and investigate a few techniques for exploiting inter-band correlations in multi-band images. These techniques have been designed within the framework of the baseline algorithm, and require minimal changes to the basic architecture of the baseline, retaining its essential simplicity.

  2. Parallel GPU implementation of iterative PCA algorithms.

    Science.gov (United States)

    Andrecut, M

    2009-11-01

    Principal component analysis (PCA) is a key statistical technique for multivariate data analysis. For large data sets, the common approach to PCA computation is based on the standard NIPALS-PCA algorithm, which unfortunately suffers from loss of orthogonality, and therefore its applicability is usually limited to the estimation of the first few components. Here we present an algorithm based on Gram-Schmidt orthogonalization (called GS-PCA), which eliminates this shortcoming of NIPALS-PCA. Also, we discuss the GPU (Graphics Processing Unit) parallel implementation of both NIPALS-PCA and GS-PCA algorithms. The numerical results show that the GPU parallel optimized versions, based on CUBLAS (NVIDIA), are substantially faster (up to 12 times) than the CPU optimized versions based on CBLAS (GNU Scientific Library).

  3. A voting-based star identification algorithm utilizing local and global distribution

    Science.gov (United States)

    Fan, Qiaoyun; Zhong, Xuyang; Sun, Junhua

    2018-03-01

    A novel star identification algorithm based on voting scheme is presented in this paper. In the proposed algorithm, the global distribution and local distribution of sensor stars are fully utilized, and the stratified voting scheme is adopted to obtain the candidates for sensor stars. The database optimization is employed to reduce its memory requirement and improve the robustness of the proposed algorithm. The simulation shows that the proposed algorithm exhibits 99.81% identification rate with 2-pixel standard deviations of positional noises and 0.322-Mv magnitude noises. Compared with two similar algorithms, the proposed algorithm is more robust towards noise, and the average identification time and required memory is less. Furthermore, the real sky test shows that the proposed algorithm performs well on the real star images.

  4. Generalized Grover's Algorithm for Multiple Phase Inversion States

    Science.gov (United States)

    Byrnes, Tim; Forster, Gary; Tessler, Louis

    2018-02-01

    Grover's algorithm is a quantum search algorithm that proceeds by repeated applications of the Grover operator and the Oracle until the state evolves to one of the target states. In the standard version of the algorithm, the Grover operator inverts the sign on only one state. Here we provide an exact solution to the problem of performing Grover's search where the Grover operator inverts the sign on N states. We show the underlying structure in terms of the eigenspectrum of the generalized Hamiltonian, and derive an appropriate initial state to perform the Grover evolution. This allows us to use the quantum phase estimation algorithm to solve the search problem in this generalized case, completely bypassing the Grover algorithm altogether. We obtain a time complexity of this case of √{D /Mα }, where D is the search space dimension, M is the number of target states, and α ≈1 , which is close to the optimal scaling.

  5. An assessment of algorithms to estimate respiratory rate from the electrocardiogram and photoplethysmogram.

    Science.gov (United States)

    Charlton, Peter H; Bonnici, Timothy; Tarassenko, Lionel; Clifton, David A; Beale, Richard; Watkinson, Peter J

    2016-04-01

    Over 100 algorithms have been proposed to estimate respiratory rate (RR) from the electrocardiogram (ECG) and photoplethysmogram (PPG). As they have never been compared systematically it is unclear which algorithm performs the best. Our primary aim was to determine how closely algorithms agreed with a gold standard RR measure when operating under ideal conditions. Secondary aims were: (i) to compare algorithm performance with IP, the clinical standard for continuous respiratory rate measurement in spontaneously breathing patients; (ii) to compare algorithm performance when using ECG and PPG; and (iii) to provide a toolbox of algorithms and data to allow future researchers to conduct reproducible comparisons of algorithms. Algorithms were divided into three stages: extraction of respiratory signals, estimation of RR, and fusion of estimates. Several interchangeable techniques were implemented for each stage. Algorithms were assembled using all possible combinations of techniques, many of which were novel. After verification on simulated data, algorithms were tested on data from healthy participants. RRs derived from ECG, PPG and IP were compared to reference RRs obtained using a nasal-oral pressure sensor using the limits of agreement (LOA) technique. 314 algorithms were assessed. Of these, 270 could operate on either ECG or PPG, and 44 on only ECG. The best algorithm had 95% LOAs of  -4.7 to 4.7 bpm and a bias of 0.0 bpm when using the ECG, and  -5.1 to 7.2 bpm and 1.0 bpm when using PPG. IP had 95% LOAs of  -5.6 to 5.2 bpm and a bias of  -0.2 bpm. Four algorithms operating on ECG performed better than IP. All high-performing algorithms consisted of novel combinations of time domain RR estimation and modulation fusion techniques. Algorithms performed better when using ECG than PPG. The toolbox of algorithms and data used in this study are publicly available.

  6. KM-FCM: A fuzzy clustering optimization algorithm based on Mahalanobis distance

    Directory of Open Access Journals (Sweden)

    Zhiwen ZU

    2018-04-01

    Full Text Available The traditional fuzzy clustering algorithm uses Euclidean distance as the similarity criterion, which is disadvantageous to the multidimensional data processing. In order to solve this situation, Mahalanobis distance is used instead of the traditional Euclidean distance, and the optimization of fuzzy clustering algorithm based on Mahalanobis distance is studied to enhance the clustering effect and ability. With making the initialization means by Heuristic search algorithm combined with k-means algorithm, and in terms of the validity function which could automatically adjust the optimal clustering number, an optimization algorithm KM-FCM is proposed. The new algorithm is compared with FCM algorithm, FCM-M algorithm and M-FCM algorithm in three standard data sets. The experimental results show that the KM-FCM algorithm is effective. It has higher clustering accuracy than FCM, FCM-M and M-FCM, recognizing high-dimensional data clustering well. It has global optimization effect, and the clustering number has no need for setting in advance. The new algorithm provides a reference for the optimization of fuzzy clustering algorithm based on Mahalanobis distance.

  7. Comparison Between Manual Auditing and a Natural Language Process With Machine Learning Algorithm to Evaluate Faculty Use of Standardized Reports in Radiology.

    Science.gov (United States)

    Guimaraes, Carolina V; Grzeszczuk, Robert; Bisset, George S; Donnelly, Lane F

    2018-03-01

    When implementing or monitoring department-sanctioned standardized radiology reports, feedback about individual faculty performance has been shown to be a useful driver of faculty compliance. Most commonly, these data are derived from manual audit, which can be both time-consuming and subject to sampling error. The purpose of this study was to evaluate whether a software program using natural language processing and machine learning could accurately audit radiologist compliance with the use of standardized reports compared with performed manual audits. Radiology reports from a 1-month period were loaded into such a software program, and faculty compliance with use of standardized reports was calculated. For that same period, manual audits were performed (25 reports audited for each of 42 faculty members). The mean compliance rates calculated by automated auditing were then compared with the confidence interval of the mean rate by manual audit. The mean compliance rate for use of standardized reports as determined by manual audit was 91.2% with a confidence interval between 89.3% and 92.8%. The mean compliance rate calculated by automated auditing was 92.0%, within that confidence interval. This study shows that by use of natural language processing and machine learning algorithms, an automated analysis can accurately define whether reports are compliant with use of standardized report templates and language, compared with manual audits. This may avoid significant labor costs related to conducting the manual auditing process. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  8. Swarm algorithms with chaotic jumps for optimization of multimodal functions

    Science.gov (United States)

    Krohling, Renato A.; Mendel, Eduardo; Campos, Mauro

    2011-11-01

    In this article, the use of some well-known versions of particle swarm optimization (PSO) namely the canonical PSO, the bare bones PSO (BBPSO) and the fully informed particle swarm (FIPS) is investigated on multimodal optimization problems. A hybrid approach which consists of swarm algorithms combined with a jump strategy in order to escape from local optima is developed and tested. The jump strategy is based on the chaotic logistic map. The hybrid algorithm was tested for all three versions of PSO and simulation results show that the addition of the jump strategy improves the performance of swarm algorithms for most of the investigated optimization problems. Comparison with the off-the-shelf PSO with local topology (l best model) has also been performed and indicates the superior performance of the standard PSO with chaotic jump over the standard both using local topology (l best model).

  9. Image Steganography of Multiple File Types with Encryption and Compression Algorithms

    Directory of Open Access Journals (Sweden)

    Ernest Andreigh C. Centina

    2017-05-01

    Full Text Available The goals of this study were to develop a system intended for securing files through the technique of image steganography integrated with cryptography by utilizing ZLIB Algorithm for compressing and decompressing secret files, DES Algorithm for encryption and decryption, and Least Significant Bit Algorithm for file embedding and extraction to avoid compromise on highly confidential files from exploits of unauthorized persons. Ensuing to this, the system is in acc ordance with ISO 9126 international quality standards. Every quality criteria of the system was evaluated by 10 Information Technology professionals, and the arithmetic Mean and Standard Deviation of the survey were computed. The result exhibits that m ost of them strongly agreed that the system is excellently effective based on Functionality, Reliability, Usability, Efficiency, Maintainability and Portability conformance to ISO 9126 standards. The system was found to be a useful tool for both governmen t agencies and private institutions for it could keep not only the message secret but also the existence of that particular message or file et maintaining the privacy of highly confidential and sensitive files from unauthorized access.

  10. A parallel algorithm for the non-symmetric eigenvalue problem

    International Nuclear Information System (INIS)

    Sidani, M.M.

    1991-01-01

    An algorithm is presented for the solution of the non-symmetric eigenvalue problem. The algorithm is based on a divide-and-conquer procedure that provides initial approximations to the eigenpairs, which are then refined using Newton iterations. Since the smaller subproblems can be solved independently, and since Newton iterations with different initial guesses can be started simultaneously, the algorithm - unlike the standard QR method - is ideal for parallel computers. The author also reports on his investigation of deflation methods designed to obtain further eigenpairs if needed. Numerical results from implementations on a host of parallel machines (distributed and shared-memory) are presented

  11. Evaluation of the Eclipse eMC algorithm for bolus electron conformal therapy using a standard verification dataset.

    Science.gov (United States)

    Carver, Robert L; Sprunger, Conrad P; Hogstrom, Kenneth R; Popple, Richard A; Antolak, John A

    2016-05-08

    The purpose of this study was to evaluate the accuracy and calculation speed of electron dose distributions calculated by the Eclipse electron Monte Carlo (eMC) algorithm for use with bolus electron conformal therapy (ECT). The recent com-mercial availability of bolus ECT technology requires further validation of the eMC dose calculation algorithm. eMC-calculated electron dose distributions for bolus ECT have been compared to previously measured TLD-dose points throughout patient-based cylindrical phantoms (retromolar trigone and nose), whose axial cross sections were based on the mid-PTV (planning treatment volume) CT anatomy. The phantoms consisted of SR4 muscle substitute, SR4 bone substitute, and air. The treatment plans were imported into the Eclipse treatment planning system, and electron dose distributions calculated using 1% and processors (Intel Xeon E5-2690, 2.9 GHz) on a framework agent server (FAS). In comparison, the eMC was significantly more accurate than the pencil beam algorithm (PBA). The eMC has comparable accuracy to the pencil beam redefinition algorithm (PBRA) used for bolus ECT planning and has acceptably low dose calculation times. The eMC accuracy decreased when smoothing was used in high-gradient dose regions. The eMC accuracy was consistent with that previously reported for accuracy of the eMC electron dose algorithm and shows that the algorithm is suitable for clinical implementation of bolus ECT.

  12. Characterizing and improving generalized belief propagation algorithms on the 2D Edwards–Anderson model

    International Nuclear Information System (INIS)

    Domínguez, Eduardo; Lage-Castellanos, Alejandro; Mulet, Roberto; Ricci-Tersenghi, Federico; Rizzo, Tommaso

    2011-01-01

    We study the performance of different message passing algorithms in the two-dimensional Edwards–Anderson model. We show that the standard belief propagation (BP) algorithm converges only at high temperature to a paramagnetic solution. Then, we test a generalized belief propagation (GBP) algorithm, derived from a cluster variational method (CVM) at the plaquette level. We compare its performance with BP and with other algorithms derived under the same approximation: double loop (DL) and a two-way message passing algorithm (HAK). The plaquette-CVM approximation improves BP in at least three ways: the quality of the paramagnetic solution at high temperatures, a better estimate (lower) for the critical temperature, and the fact that the GBP message passing algorithm converges also to nonparamagnetic solutions. The lack of convergence of the standard GBP message passing algorithm at low temperatures seems to be related to the implementation details and not to the appearance of long range order. In fact, we prove that a gauge invariance of the constrained CVM free energy can be exploited to derive a new message passing algorithm which converges at even lower temperatures. In all its region of convergence this new algorithm is faster than HAK and DL by some orders of magnitude

  13. Testing block subdivision algorithms on block designs

    Science.gov (United States)

    Wiseman, Natalie; Patterson, Zachary

    2016-01-01

    Integrated land use-transportation models predict future transportation demand taking into account how households and firms arrange themselves partly as a function of the transportation system. Recent integrated models require parcels as inputs and produce household and employment predictions at the parcel scale. Block subdivision algorithms automatically generate parcel patterns within blocks. Evaluating block subdivision algorithms is done by way of generating parcels and comparing them to those in a parcel database. Three block subdivision algorithms are evaluated on how closely they reproduce parcels of different block types found in a parcel database from Montreal, Canada. While the authors who developed each of the algorithms have evaluated them, they have used their own metrics and block types to evaluate their own algorithms. This makes it difficult to compare their strengths and weaknesses. The contribution of this paper is in resolving this difficulty with the aim of finding a better algorithm suited to subdividing each block type. The proposed hypothesis is that given the different approaches that block subdivision algorithms take, it's likely that different algorithms are better adapted to subdividing different block types. To test this, a standardized block type classification is used that consists of mutually exclusive and comprehensive categories. A statistical method is used for finding a better algorithm and the probability it will perform well for a given block type. Results suggest the oriented bounding box algorithm performs better for warped non-uniform sites, as well as gridiron and fragmented uniform sites. It also produces more similar parcel areas and widths. The Generalized Parcel Divider 1 algorithm performs better for gridiron non-uniform sites. The Straight Skeleton algorithm performs better for loop and lollipop networks as well as fragmented non-uniform and warped uniform sites. It also produces more similar parcel shapes and patterns.

  14. Firefly Algorithm for Cardinality Constrained Mean-Variance Portfolio Optimization Problem with Entropy Diversity Constraint

    Directory of Open Access Journals (Sweden)

    Nebojsa Bacanin

    2014-01-01

    portfolio model with entropy constraint. Firefly algorithm is one of the latest, very successful swarm intelligence algorithm; however, it exhibits some deficiencies when applied to constrained problems. To overcome lack of exploration power during early iterations, we modified the algorithm and tested it on standard portfolio benchmark data sets used in the literature. Our proposed modified firefly algorithm proved to be better than other state-of-the-art algorithms, while introduction of entropy diversity constraint further improved results.

  15. The FBI compression standard for digitized fingerprint images

    Energy Technology Data Exchange (ETDEWEB)

    Brislawn, C.M.; Bradley, J.N. [Los Alamos National Lab., NM (United States); Onyshczak, R.J. [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Hopper, T. [Federal Bureau of Investigation, Washington, DC (United States)

    1996-10-01

    The FBI has formulated national standards for digitization and compression of gray-scale fingerprint images. The compression algorithm for the digitized images is based on adaptive uniform scalar quantization of a discrete wavelet transform subband decomposition, a technique referred to as the wavelet/scalar quantization method. The algorithm produces archival-quality images at compression ratios of around 15 to 1 and will allow the current database of paper fingerprint cards to be replaced by digital imagery. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations. We will review the current status of the FBI standard, including the compliance testing process and the details of the first-generation encoder.

  16. Optimizing graph algorithms on pregel-like systems

    KAUST Repository

    Salihoglu, Semih

    2014-03-01

    We study the problem of implementing graph algorithms efficiently on Pregel-like systems, which can be surprisingly challenging. Standard graph algorithms in this setting can incur unnecessary inefficiencies such as slow convergence or high communication or computation cost, typically due to structural properties of the input graphs such as large diameters or skew in component sizes. We describe several optimization techniques to address these inefficiencies. Our most general technique is based on the idea of performing some serial computation on a tiny fraction of the input graph, complementing Pregel\\'s vertex-centric parallelism. We base our study on thorough implementations of several fundamental graph algorithms, some of which have, to the best of our knowledge, not been implemented on Pregel-like systems before. The algorithms and optimizations we describe are fully implemented in our open-source Pregel implementation. We present detailed experiments showing that our optimization techniques improve runtime significantly on a variety of very large graph datasets.

  17. Usefulness of an enhanced Kitaev phase-estimation algorithm in quantum metrology and computation

    Science.gov (United States)

    Kaftal, Tomasz; Demkowicz-Dobrzański, Rafał

    2014-12-01

    We analyze the performance of a generalized Kitaev's phase-estimation algorithm where N phase gates, acting on M qubits prepared in a product state, may be distributed in an arbitrary way. Unlike the standard algorithm, where the mean square error scales as 1 /N , the optimal generalizations offer the Heisenberg 1 /N2 error scaling and we show that they are in fact very close to the fundamental Bayesian estimation bound. We also demonstrate that the optimality of the algorithm breaks down when losses are taken into account, in which case the performance is inferior to the optimal entanglement-based estimation strategies. Finally, we show that when an alternative resource quantification is adopted, which describes the phase estimation in Shor's algorithm more accurately, the standard Kitaev's procedure is indeed optimal and there is no need to consider its generalized version.

  18. Structure-Based Algorithms for Microvessel Classification

    KAUST Repository

    Smith, Amy F.

    2015-02-01

    © 2014 The Authors. Microcirculation published by John Wiley & Sons Ltd. Objective: Recent developments in high-resolution imaging techniques have enabled digital reconstruction of three-dimensional sections of microvascular networks down to the capillary scale. To better interpret these large data sets, our goal is to distinguish branching trees of arterioles and venules from capillaries. Methods: Two novel algorithms are presented for classifying vessels in microvascular anatomical data sets without requiring flow information. The algorithms are compared with a classification based on observed flow directions (considered the gold standard), and with an existing resistance-based method that relies only on structural data. Results: The first algorithm, developed for networks with one arteriolar and one venular tree, performs well in identifying arterioles and venules and is robust to parameter changes, but incorrectly labels a significant number of capillaries as arterioles or venules. The second algorithm, developed for networks with multiple inlets and outlets, correctly identifies more arterioles and venules, but is more sensitive to parameter changes. Conclusions: The algorithms presented here can be used to classify microvessels in large microvascular data sets lacking flow information. This provides a basis for analyzing the distinct geometrical properties and modelling the functional behavior of arterioles, capillaries, and venules.

  19. Modification of MSDR algorithm and ITS implementation on graph clustering

    Science.gov (United States)

    Prastiwi, D.; Sugeng, K. A.; Siswantining, T.

    2017-07-01

    Maximum Standard Deviation Reduction (MSDR) is a graph clustering algorithm to minimize the distance variation within a cluster. In this paper we propose a modified MSDR by replacing one technical step in MSDR which uses polynomial regression, with a new and simpler step. This leads to our new algorithm called Modified MSDR (MMSDR). We implement the new algorithm to separate a domestic flight network of an Indonesian airline into two large clusters. Further analysis allows us to discover a weak link in the network, which should be improved by adding more flights.

  20. Controller Parameter Optimization for Nonlinear Systems Using Enhanced Bacteria Foraging Algorithm

    Directory of Open Access Journals (Sweden)

    V. Rajinikanth

    2012-01-01

    Full Text Available An enhanced bacteria foraging optimization (EBFO algorithm-based Proportional + integral + derivative (PID controller tuning is proposed for a class of nonlinear process models. The EBFO algorithm is a modified form of standard BFO algorithm. A multiobjective performance index is considered to guide the EBFO algorithm for discovering the best possible value of controller parameters. The efficiency of the proposed scheme has been validated through a comparative study with classical BFO, adaptive BFO, PSO, and GA based controller tuning methods proposed in the literature. The proposed algorithm is tested in real time on a nonlinear spherical tank system. The real-time results show that, EBFO tuned PID controller gives a smooth response for setpoint tracking performance.

  1. A difference tracking algorithm based on discrete sine transform

    Science.gov (United States)

    Liu, HaoPeng; Yao, Yong; Lei, HeBing; Wu, HaoKun

    2018-04-01

    Target tracking is an important field of computer vision. The template matching tracking algorithm based on squared difference matching (SSD) and standard correlation coefficient (NCC) matching is very sensitive to the gray change of image. When the brightness or gray change, the tracking algorithm will be affected by high-frequency information. Tracking accuracy is reduced, resulting in loss of tracking target. In this paper, a differential tracking algorithm based on discrete sine transform is proposed to reduce the influence of image gray or brightness change. The algorithm that combines the discrete sine transform and the difference algorithm maps the target image into a image digital sequence. The Kalman filter predicts the target position. Using the Hamming distance determines the degree of similarity between the target and the template. The window closest to the template is determined the target to be tracked. The target to be tracked updates the template. Based on the above achieve target tracking. The algorithm is tested in this paper. Compared with SSD and NCC template matching algorithms, the algorithm tracks target stably when image gray or brightness change. And the tracking speed can meet the read-time requirement.

  2. Mapping robust parallel multigrid algorithms to scalable memory architectures

    Science.gov (United States)

    Overman, Andrea; Vanrosendale, John

    1993-01-01

    The convergence rate of standard multigrid algorithms degenerates on problems with stretched grids or anisotropic operators. The usual cure for this is the use of line or plane relaxation. However, multigrid algorithms based on line and plane relaxation have limited and awkward parallelism and are quite difficult to map effectively to highly parallel architectures. Newer multigrid algorithms that overcome anisotropy through the use of multiple coarse grids rather than relaxation are better suited to massively parallel architectures because they require only simple point-relaxation smoothers. In this paper, we look at the parallel implementation of a V-cycle multiple semicoarsened grid (MSG) algorithm on distributed-memory architectures such as the Intel iPSC/860 and Paragon computers. The MSG algorithms provide two levels of parallelism: parallelism within the relaxation or interpolation on each grid and across the grids on each multigrid level. Both levels of parallelism must be exploited to map these algorithms effectively to parallel architectures. This paper describes a mapping of an MSG algorithm to distributed-memory architectures that demonstrates how both levels of parallelism can be exploited. The result is a robust and effective multigrid algorithm for distributed-memory machines.

  3. A hardware-oriented concurrent TZ search algorithm for High-Efficiency Video Coding

    Science.gov (United States)

    Doan, Nghia; Kim, Tae Sung; Rhee, Chae Eun; Lee, Hyuk-Jae

    2017-12-01

    High-Efficiency Video Coding (HEVC) is the latest video coding standard, in which the compression performance is double that of its predecessor, the H.264/AVC standard, while the video quality remains unchanged. In HEVC, the test zone (TZ) search algorithm is widely used for integer motion estimation because it effectively searches the good-quality motion vector with a relatively small amount of computation. However, the complex computation structure of the TZ search algorithm makes it difficult to implement it in the hardware. This paper proposes a new integer motion estimation algorithm which is designed for hardware execution by modifying the conventional TZ search to allow parallel motion estimations of all prediction unit (PU) partitions. The algorithm consists of the three phases of zonal, raster, and refinement searches. At the beginning of each phase, the algorithm obtains the search points required by the original TZ search for all PU partitions in a coding unit (CU). Then, all redundant search points are removed prior to the estimation of the motion costs, and the best search points are then selected for all PUs. Compared to the conventional TZ search algorithm, experimental results show that the proposed algorithm significantly decreases the Bjøntegaard Delta bitrate (BD-BR) by 0.84%, and it also reduces the computational complexity by 54.54%.

  4. Algebraic dynamics algorithm: Numerical comparison with Runge-Kutta algorithm and symplectic geometric algorithm

    Institute of Scientific and Technical Information of China (English)

    WANG ShunJin; ZHANG Hua

    2007-01-01

    Based on the exact analytical solution of ordinary differential equations,a truncation of the Taylor series of the exact solution to the Nth order leads to the Nth order algebraic dynamics algorithm.A detailed numerical comparison is presented with Runge-Kutta algorithm and symplectic geometric algorithm for 12 test models.The results show that the algebraic dynamics algorithm can better preserve both geometrical and dynamical fidelity of a dynamical system at a controllable precision,and it can solve the problem of algorithm-induced dissipation for the Runge-Kutta algorithm and the problem of algorithm-induced phase shift for the symplectic geometric algorithm.

  5. Algebraic dynamics algorithm:Numerical comparison with Runge-Kutta algorithm and symplectic geometric algorithm

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the exact analytical solution of ordinary differential equations, a truncation of the Taylor series of the exact solution to the Nth order leads to the Nth order algebraic dynamics algorithm. A detailed numerical comparison is presented with Runge-Kutta algorithm and symplectic geometric algorithm for 12 test models. The results show that the algebraic dynamics algorithm can better preserve both geometrical and dynamical fidelity of a dynamical system at a controllable precision, and it can solve the problem of algorithm-induced dissipation for the Runge-Kutta algorithm and the problem of algorithm-induced phase shift for the symplectic geometric algorithm.

  6. CSA: An efficient algorithm to improve circular DNA multiple alignment

    Directory of Open Access Journals (Sweden)

    Pereira Luísa

    2009-07-01

    Full Text Available Abstract Background The comparison of homologous sequences from different species is an essential approach to reconstruct the evolutionary history of species and of the genes they harbour in their genomes. Several complete mitochondrial and nuclear genomes are now available, increasing the importance of using multiple sequence alignment algorithms in comparative genomics. MtDNA has long been used in phylogenetic analysis and errors in the alignments can lead to errors in the interpretation of evolutionary information. Although a large number of multiple sequence alignment algorithms have been proposed to date, they all deal with linear DNA and cannot handle directly circular DNA. Researchers interested in aligning circular DNA sequences must first rotate them to the "right" place using an essentially manual process, before they can use multiple sequence alignment tools. Results In this paper we propose an efficient algorithm that identifies the most interesting region to cut circular genomes in order to improve phylogenetic analysis when using standard multiple sequence alignment algorithms. This algorithm identifies the largest chain of non-repeated longest subsequences common to a set of circular mitochondrial DNA sequences. All the sequences are then rotated and made linear for multiple alignment purposes. To evaluate the effectiveness of this new tool, three different sets of mitochondrial DNA sequences were considered. Other tests considering randomly rotated sequences were also performed. The software package Arlequin was used to evaluate the standard genetic measures of the alignments obtained with and without the use of the CSA algorithm with two well known multiple alignment algorithms, the CLUSTALW and the MAVID tools, and also the visualization tool SinicView. Conclusion The results show that a circularization and rotation pre-processing step significantly improves the efficiency of public available multiple sequence alignment

  7. A parallel version of a multigrid algorithm for isotropic transport equations

    International Nuclear Information System (INIS)

    Manteuffel, T.; McCormick, S.; Yang, G.; Morel, J.; Oliveira, S.

    1994-01-01

    The focus of this paper is on a parallel algorithm for solving the transport equations in a slab geometry using multigrid. The spatial discretization scheme used is a finite element method called the modified linear discontinuous (MLD) scheme. The MLD scheme represents a lumped version of the standard linear discontinuous (LD) scheme. The parallel algorithm was implemented on the Connection Machine 2 (CM2). Convergence rates and timings for this algorithm on the CM2 and Cray-YMP are shown

  8. [An automatic color correction algorithm for digital human body sections].

    Science.gov (United States)

    Zhuge, Bin; Zhou, He-qin; Tang, Lei; Lang, Wen-hui; Feng, Huan-qing

    2005-06-01

    To find a new approach to improve the uniformity of color parameters for images data of the serial sections of the human body. An auto-color correction algorithm in the RGB color space based on a standard CMYK color chart was proposed. The gray part of the color chart was auto-segmented from every original image, and fifteen gray values were attained. The transformation function between the measured gray value and the standard gray value of the color chart and the lookup table were obtained. In RGB color space, the colors of images were corrected according to the lookup table. The color of original Chinese Digital Human Girl No. 1 (CDH-G1) database was corrected by using the algorithm with Matlab 6.5, and it took 13.475 s to deal with one picture on a personal computer. Using the algorithm, the color of the original database is corrected automatically and quickly. The uniformity of color parameters for corrected dataset is improved.

  9. An enhanced fractal image denoising algorithm

    International Nuclear Information System (INIS)

    Lu Jian; Ye Zhongxing; Zou Yuru; Ye Ruisong

    2008-01-01

    In recent years, there has been a significant development in image denoising using fractal-based method. This paper presents an enhanced fractal predictive denoising algorithm for denoising the images corrupted by an additive white Gaussian noise (AWGN) by using quadratic gray-level function. Meanwhile, a quantization method for the fractal gray-level coefficients of the quadratic function is proposed to strictly guarantee the contractivity requirement of the enhanced fractal coding, and in terms of the quality of the fractal representation measured by PSNR, the enhanced fractal image coding using quadratic gray-level function generally performs better than the standard fractal coding using linear gray-level function. Based on this enhanced fractal coding, the enhanced fractal image denoising is implemented by estimating the fractal gray-level coefficients of the quadratic function of the noiseless image from its noisy observation. Experimental results show that, compared with other standard fractal-based image denoising schemes using linear gray-level function, the enhanced fractal denoising algorithm can improve the quality of the restored image efficiently

  10. Electronic circuits, systems and standards the best of EDN

    CERN Document Server

    Hickman, Ian

    2013-01-01

    Electronic Circuits, Systems and Standards: The Best of EDN is a collection of 66 EDN articles. The topics covered in this collection are diverse but all are relevant to controlled circulation electronics. The coverage of the text includes topics about software and algorithms, such as simple random number algorithm; simple log algorithm; and efficient algorithm for repeated FFTs. The book also tackles measurement related topics, including test for identifying a Gaussian noise source; enhancing product reliability; and amplitude-locked loop speeds filter test. The text will be useful to student

  11. A generalized global alignment algorithm.

    Science.gov (United States)

    Huang, Xiaoqiu; Chao, Kun-Mao

    2003-01-22

    Homologous sequences are sometimes similar over some regions but different over other regions. Homologous sequences have a much lower global similarity if the different regions are much longer than the similar regions. We present a generalized global alignment algorithm for comparing sequences with intermittent similarities, an ordered list of similar regions separated by different regions. A generalized global alignment model is defined to handle sequences with intermittent similarities. A dynamic programming algorithm is designed to compute an optimal general alignment in time proportional to the product of sequence lengths and in space proportional to the sum of sequence lengths. The algorithm is implemented as a computer program named GAP3 (Global Alignment Program Version 3). The generalized global alignment model is validated by experimental results produced with GAP3 on both DNA and protein sequences. The GAP3 program extends the ability of standard global alignment programs to recognize homologous sequences of lower similarity. The GAP3 program is freely available for academic use at http://bioinformatics.iastate.edu/aat/align/align.html.

  12. Time-of-flight PET image reconstruction using origin ensembles

    Science.gov (United States)

    Wülker, Christian; Sitek, Arkadiusz; Prevrhal, Sven

    2015-03-01

    The origin ensemble (OE) algorithm is a novel statistical method for minimum-mean-square-error (MMSE) reconstruction of emission tomography data. This method allows one to perform reconstruction entirely in the image domain, i.e. without the use of forward and backprojection operations. We have investigated the OE algorithm in the context of list-mode (LM) time-of-flight (TOF) PET reconstruction. In this paper, we provide a general introduction to MMSE reconstruction, and a statistically rigorous derivation of the OE algorithm. We show how to efficiently incorporate TOF information into the reconstruction process, and how to correct for random coincidences and scattered events. To examine the feasibility of LM-TOF MMSE reconstruction with the OE algorithm, we applied MMSE-OE and standard maximum-likelihood expectation-maximization (ML-EM) reconstruction to LM-TOF phantom data with a count number typically registered in clinical PET examinations. We analyzed the convergence behavior of the OE algorithm, and compared reconstruction time and image quality to that of the EM algorithm. In summary, during the reconstruction process, MMSE-OE contrast recovery (CRV) remained approximately the same, while background variability (BV) gradually decreased with an increasing number of OE iterations. The final MMSE-OE images exhibited lower BV and a slightly lower CRV than the corresponding ML-EM images. The reconstruction time of the OE algorithm was approximately 1.3 times longer. At the same time, the OE algorithm can inherently provide a comprehensive statistical characterization of the acquired data. This characterization can be utilized for further data processing, e.g. in kinetic analysis and image registration, making the OE algorithm a promising approach in a variety of applications.

  13. Prior image constrained scatter correction in cone-beam computed tomography image-guided radiation therapy.

    Science.gov (United States)

    Brunner, Stephen; Nett, Brian E; Tolakanahalli, Ranjini; Chen, Guang-Hong

    2011-02-21

    X-ray scatter is a significant problem in cone-beam computed tomography when thicker objects and larger cone angles are used, as scattered radiation can lead to reduced contrast and CT number inaccuracy. Advances have been made in x-ray computed tomography (CT) by incorporating a high quality prior image into the image reconstruction process. In this paper, we extend this idea to correct scatter-induced shading artifacts in cone-beam CT image-guided radiation therapy. Specifically, this paper presents a new scatter correction algorithm which uses a prior image with low scatter artifacts to reduce shading artifacts in cone-beam CT images acquired under conditions of high scatter. The proposed correction algorithm begins with an empirical hypothesis that the target image can be written as a weighted summation of a series of basis images that are generated by raising the raw cone-beam projection data to different powers, and then, reconstructing using the standard filtered backprojection algorithm. The weight for each basis image is calculated by minimizing the difference between the target image and the prior image. The performance of the scatter correction algorithm is qualitatively and quantitatively evaluated through phantom studies using a Varian 2100 EX System with an on-board imager. Results show that the proposed scatter correction algorithm using a prior image with low scatter artifacts can substantially mitigate scatter-induced shading artifacts in both full-fan and half-fan modes.

  14. A fast sparse reconstruction algorithm for electrical tomography

    International Nuclear Information System (INIS)

    Zhao, Jia; Xu, Yanbin; Tan, Chao; Dong, Feng

    2014-01-01

    Electrical tomography (ET) has been widely investigated due to its advantages of being non-radiative, low-cost and high-speed. However, the image reconstruction of ET is a nonlinear and ill-posed inverse problem and the imaging results are easily affected by measurement noise. A sparse reconstruction algorithm based on L 1 regularization is robust to noise and consequently provides a high quality of reconstructed images. In this paper, a sparse reconstruction by separable approximation algorithm (SpaRSA) is extended to solve the ET inverse problem. The algorithm is competitive with the fastest state-of-the-art algorithms in solving the standard L 2 −L 1 problem. However, it is computationally expensive when the dimension of the matrix is large. To further improve the calculation speed of solving inverse problems, a projection method based on the Krylov subspace is employed and combined with the SpaRSA algorithm. The proposed algorithm is tested with image reconstruction of electrical resistance tomography (ERT). Both simulation and experimental results demonstrate that the proposed method can reduce the computational time and improve the noise robustness for the image reconstruction. (paper)

  15. A Spectral Algorithm for Envelope Reduction of Sparse Matrices

    Science.gov (United States)

    Barnard, Stephen T.; Pothen, Alex; Simon, Horst D.

    1993-01-01

    The problem of reordering a sparse symmetric matrix to reduce its envelope size is considered. A new spectral algorithm for computing an envelope-reducing reordering is obtained by associating a Laplacian matrix with the given matrix and then sorting the components of a specified eigenvector of the Laplacian. This Laplacian eigenvector solves a continuous relaxation of a discrete problem related to envelope minimization called the minimum 2-sum problem. The permutation vector computed by the spectral algorithm is a closest permutation vector to the specified Laplacian eigenvector. Numerical results show that the new reordering algorithm usually computes smaller envelope sizes than those obtained from the current standard algorithms such as Gibbs-Poole-Stockmeyer (GPS) or SPARSPAK reverse Cuthill-McKee (RCM), in some cases reducing the envelope by more than a factor of two.

  16. SU-G-IeP2-08: Investigation On Signal Detectability in Volumetric Cone Beam CT Images with Anatomical Background

    International Nuclear Information System (INIS)

    Han, M; Baek, J

    2016-01-01

    Purpose: To investigate the slice direction dependent detectability in cone beam CT images with anatomical background. Methods: We generated 3D anatomical background images using breast anatomy model. To generate 3D breast anatomy, we filtered 3D Gaussian noise with a square root of 1/f"3, and then assigned the attenuation coefficient of glandular (0.8cm"−"1) and adipose (0.46 cm"−"1) tissues based on voxel values. Projections were acquired by forward projection, and quantum noise was added to the projection data. The projection data were reconstructed by FDK algorithm. We compared the detectability of a 3 mm spherical signal in the image reconstructed from four different backprojection Methods: Hanning weighted ramp filter with linear interpolation (RECON1), Hanning weighted ramp filter with Fourier interpolation (RECON2), ramp filter with linear interpolation (RECON3), and ramp filter with Fourier interpolation (RECON4), respectively. We computed task SNR of the spherical signal in transverse and longitudinal planes using channelized Hotelling observer with Laguerre-Gauss channels. Results: Transverse plane has similar task SNR values for different backprojection methods, while longitudinal plane has a maximum task SNR value in RECON1. For all backprojection methods, longitudinal plane has higher task SNR than transverse plane. Conclusion: In this work, we investigated detectability for different slice direction in cone beam CT images with anatomical background. Longitudinal plane has a higher task SNR than transverse plane, and backprojection with hanning weighted ramp filter with linear interpolation method (i.e., RECON1) produced the highest task SNR among four different backprojection methods. This research was supported by the MSIP (Ministry of Science, ICT and Future Planning), Korea, under the IT Consilience Creative Programs(IITP-2015-R0346-15-1008) supervised by the IITP (Institute for Information & Communications Technology Promotion), Basic Science

  17. SU-G-IeP2-08: Investigation On Signal Detectability in Volumetric Cone Beam CT Images with Anatomical Background

    Energy Technology Data Exchange (ETDEWEB)

    Han, M; Baek, J [Yonsei University, Incheon (Korea, Republic of)

    2016-06-15

    Purpose: To investigate the slice direction dependent detectability in cone beam CT images with anatomical background. Methods: We generated 3D anatomical background images using breast anatomy model. To generate 3D breast anatomy, we filtered 3D Gaussian noise with a square root of 1/f{sup 3}, and then assigned the attenuation coefficient of glandular (0.8cm{sup −1}) and adipose (0.46 cm{sup −1}) tissues based on voxel values. Projections were acquired by forward projection, and quantum noise was added to the projection data. The projection data were reconstructed by FDK algorithm. We compared the detectability of a 3 mm spherical signal in the image reconstructed from four different backprojection Methods: Hanning weighted ramp filter with linear interpolation (RECON1), Hanning weighted ramp filter with Fourier interpolation (RECON2), ramp filter with linear interpolation (RECON3), and ramp filter with Fourier interpolation (RECON4), respectively. We computed task SNR of the spherical signal in transverse and longitudinal planes using channelized Hotelling observer with Laguerre-Gauss channels. Results: Transverse plane has similar task SNR values for different backprojection methods, while longitudinal plane has a maximum task SNR value in RECON1. For all backprojection methods, longitudinal plane has higher task SNR than transverse plane. Conclusion: In this work, we investigated detectability for different slice direction in cone beam CT images with anatomical background. Longitudinal plane has a higher task SNR than transverse plane, and backprojection with hanning weighted ramp filter with linear interpolation method (i.e., RECON1) produced the highest task SNR among four different backprojection methods. This research was supported by the MSIP (Ministry of Science, ICT and Future Planning), Korea, under the IT Consilience Creative Programs(IITP-2015-R0346-15-1008) supervised by the IITP (Institute for Information & Communications Technology Promotion

  18. Error Estimation for the Linearized Auto-Localization Algorithm

    Directory of Open Access Journals (Sweden)

    Fernando Seco

    2012-02-01

    Full Text Available The Linearized Auto-Localization (LAL algorithm estimates the position of beacon nodes in Local Positioning Systems (LPSs, using only the distance measurements to a mobile node whose position is also unknown. The LAL algorithm calculates the inter-beacon distances, used for the estimation of the beacons’ positions, from the linearized trilateration equations. In this paper we propose a method to estimate the propagation of the errors of the inter-beacon distances obtained with the LAL algorithm, based on a first order Taylor approximation of the equations. Since the method depends on such approximation, a confidence parameter τ is defined to measure the reliability of the estimated error. Field evaluations showed that by applying this information to an improved weighted-based auto-localization algorithm (WLAL, the standard deviation of the inter-beacon distances can be improved by more than 30% on average with respect to the original LAL method.

  19. Overview of image reconstruction

    International Nuclear Information System (INIS)

    Marr, R.B.

    1980-04-01

    Image reconstruction (or computerized tomography, etc.) is any process whereby a function, f, on R/sup n/ is estimated from empirical data pertaining to its integrals, ∫f(x) dx, for some collection of hyperplanes of dimension k < n. The paper begins with background information on how image reconstruction problems have arisen in practice, and describes some of the application areas of past or current interest; these include radioastronomy, optics, radiology and nuclear medicine, electron microscopy, acoustical imaging, geophysical tomography, nondestructive testing, and NMR zeugmatography. Then the various reconstruction algorithms are discussed in five classes: summation, or simple back-projection; convolution, or filtered back-projection; Fourier and other functional transforms; orthogonal function series expansion; and iterative methods. Certain more technical mathematical aspects of image reconstruction are considered from the standpoint of uniqueness, consistency, and stability of solution. The paper concludes by presenting certain open problems. 73 references

  20. Reconstruction algorithm in compressed sensing based on maximum a posteriori estimation

    International Nuclear Information System (INIS)

    Takeda, Koujin; Kabashima, Yoshiyuki

    2013-01-01

    We propose a systematic method for constructing a sparse data reconstruction algorithm in compressed sensing at a relatively low computational cost for general observation matrix. It is known that the cost of ℓ 1 -norm minimization using a standard linear programming algorithm is O(N 3 ). We show that this cost can be reduced to O(N 2 ) by applying the approach of posterior maximization. Furthermore, in principle, the algorithm from our approach is expected to achieve the widest successful reconstruction region, which is evaluated from theoretical argument. We also discuss the relation between the belief propagation-based reconstruction algorithm introduced in preceding works and our approach

  1. An international consensus report on a new algorithm for the management of infant diarrhoea

    NARCIS (Netherlands)

    Lo Vecchio, Andrea; Vandenplas, Yvan; Benninga, Marc; Broekaert, Ilse; Falconer, Jackie; Gottrand, Frederic; Lifschitz, Carlos; Lionetti, Paolo; Orel, Rok; Papadopoulou, Alexandra; Ribes-Koninckx, Carmen; Salvatore, Silvia; Shamir, Raanan; Schäppi, Michela; Staiano, Annamaria; Szajewska, Hania; Thapar, Nikhil; Wilschanski, Michael; Guarino, Alfredo

    2016-01-01

    Implementing international guidelines guarantees high standards of clinical care. A group of experts developed an algorithm to drive the management of common gastrointestinal symptoms in infancy by paediatricians and general practitioners. The algorithm started from the evidence-based

  2. Detection of Cheating by Decimation Algorithm

    Science.gov (United States)

    Yamanaka, Shogo; Ohzeki, Masayuki; Decelle, Aurélien

    2015-02-01

    We expand the item response theory to study the case of "cheating students" for a set of exams, trying to detect them by applying a greedy algorithm of inference. This extended model is closely related to the Boltzmann machine learning. In this paper we aim to infer the correct biases and interactions of our model by considering a relatively small number of sets of training data. Nevertheless, the greedy algorithm that we employed in the present study exhibits good performance with a few number of training data. The key point is the sparseness of the interactions in our problem in the context of the Boltzmann machine learning: the existence of cheating students is expected to be very rare (possibly even in real world). We compare a standard approach to infer the sparse interactions in the Boltzmann machine learning to our greedy algorithm and we find the latter to be superior in several aspects.

  3. GPU-based fast pencil beam algorithm for proton therapy

    International Nuclear Information System (INIS)

    Fujimoto, Rintaro; Nagamine, Yoshihiko; Kurihara, Tsuneya

    2011-01-01

    Performance of a treatment planning system is an essential factor in making sophisticated plans. The dose calculation is a major time-consuming process in planning operations. The standard algorithm for proton dose calculations is the pencil beam algorithm which produces relatively accurate results, but is time consuming. In order to shorten the computational time, we have developed a GPU (graphics processing unit)-based pencil beam algorithm. We have implemented this algorithm and calculated dose distributions in the case of a water phantom. The results were compared to those obtained by a traditional method with respect to the computational time and discrepancy between the two methods. The new algorithm shows 5-20 times faster performance using the NVIDIA GeForce GTX 480 card in comparison with the Intel Core-i7 920 processor. The maximum discrepancy of the dose distribution is within 0.2%. Our results show that GPUs are effective for proton dose calculations.

  4. Improved Global Ocean Color Using Polymer Algorithm

    Science.gov (United States)

    Steinmetz, Francois; Ramon, Didier; Deschamps, ierre-Yves; Stum, Jacques

    2010-12-01

    A global ocean color product has been developed based on the use of the POLYMER algorithm to correct atmospheric scattering and sun glint and to process the data to a Level 2 ocean color product. Thanks to the use of this algorithm, the coverage and accuracy of the MERIS ocean color product have been significantly improved when compared to the standard product, therefore increasing its usefulness for global ocean monitor- ing applications like GLOBCOLOUR. We will present the latest developments of the algorithm, its first application to MODIS data and its validation against in-situ data from the MERMAID database. Examples will be shown of global NRT chlorophyll maps produced by CLS with POLYMER for operational applications like fishing or oil and gas industry, as well as its use by Scripps for a NASA study of the Beaufort and Chukchi seas.

  5. [Algorithms for treatment of complex hand injuries].

    Science.gov (United States)

    Pillukat, T; Prommersberger, K-J

    2011-07-01

    The primary treatment strongly influences the course and prognosis of hand injuries. Complex injuries which compromise functional recovery are especially challenging. Despite an apparently unlimited number of injury patterns it is possible to develop strategies which facilitate a standardized approach to operative treatment. In this situation algorithms can be important guidelines for a rational approach. The following algorithms have been proven in the treatment of complex injuries of the hand by our own experience. They were modified according to the current literature and refer to prehospital care, emergency room management, basic strategy in general and reconstruction of bone and joints, vessels, nerves, tendons and soft tissue coverage in detail. Algorithms facilitate the treatment of severe hand injuries. Applying simple yes/no decisions complex injury patterns are split into distinct partial problems which can be managed step by step.

  6. Comparison of primary productivity estimates in the Baltic Sea based on the DESAMBEM algorithm with estimates based on other similar algorithms

    Directory of Open Access Journals (Sweden)

    Małgorzata Stramska

    2013-02-01

    Full Text Available The quasi-synoptic view available from satellites has been broadly used in recent years to observe in near-real time the large-scale dynamics of marine ecosystems and to estimate primary productivity in the world ocean. However, the standard global NASA ocean colour algorithms generally do not produce good results in the Baltic Sea. In this paper, we compare the ability of seven algorithms to estimate depth-integrated daily primary production (PP, mg C m-2 in the Baltic Sea. All the algorithms use surface chlorophyll concentration, sea surface temperature, photosynthetic available radiation, latitude, longitude and day of the year as input data. Algorithm-derived PP is then compared with PP estimates obtained from 14C uptake measurements. The results indicate that the best agreement between the modelled and measured PP in the Baltic Sea is obtained with the DESAMBEM algorithm. This result supports the notion that a regional approach should be used in the interpretation of ocean colour satellite data in the Baltic Sea.

  7. Research on distributed QOS routing algorithm based on TCP/IP

    Science.gov (United States)

    Liu, Xiaoyue; Chen, Yongqiang

    2011-10-01

    At present, network environment follow protocol standard of IPV4 is intended to do the best effort of network to provide network applied service for users, however, not caring about service quality.Thus the packet loss rate is high, it cannot reach an ideal applied results. This article through the establishment of mathematical model, put forward a new distributed multi QOS routing algorithm, given the realization process of this distributed QOS routing algorithm, and simulation was carried out by simulation software. The results show the proposed algorithm can improve the utilization rate of network resources and the service quality of network application.

  8. Multiple Lookup Table-Based AES Encryption Algorithm Implementation

    Science.gov (United States)

    Gong, Jin; Liu, Wenyi; Zhang, Huixin

    Anew AES (Advanced Encryption Standard) encryption algorithm implementation was proposed in this paper. It is based on five lookup tables, which are generated from S-box(the substitution table in AES). The obvious advantages are reducing the code-size, improving the implementation efficiency, and helping new learners to understand the AES encryption algorithm and GF(28) multiplication which are necessary to correctly implement AES[1]. This method can be applied on processors with word length 32 or above, FPGA and others. And correspondingly we can implement it by VHDL, Verilog, VB and other languages.

  9. Symmetric encryption algorithms using chaotic and non-chaotic generators: A review.

    Science.gov (United States)

    Radwan, Ahmed G; AbdElHaleem, Sherif H; Abd-El-Hafiz, Salwa K

    2016-03-01

    This paper summarizes the symmetric image encryption results of 27 different algorithms, which include substitution-only, permutation-only or both phases. The cores of these algorithms are based on several discrete chaotic maps (Arnold's cat map and a combination of three generalized maps), one continuous chaotic system (Lorenz) and two non-chaotic generators (fractals and chess-based algorithms). Each algorithm has been analyzed by the correlation coefficients between pixels (horizontal, vertical and diagonal), differential attack measures, Mean Square Error (MSE), entropy, sensitivity analyses and the 15 standard tests of the National Institute of Standards and Technology (NIST) SP-800-22 statistical suite. The analyzed algorithms include a set of new image encryption algorithms based on non-chaotic generators, either using substitution only (using fractals) and permutation only (chess-based) or both. Moreover, two different permutation scenarios are presented where the permutation-phase has or does not have a relationship with the input image through an ON/OFF switch. Different encryption-key lengths and complexities are provided from short to long key to persist brute-force attacks. In addition, sensitivities of those different techniques to a one bit change in the input parameters of the substitution key as well as the permutation key are assessed. Finally, a comparative discussion of this work versus many recent research with respect to the used generators, type of encryption, and analyses is presented to highlight the strengths and added contribution of this paper.

  10. The SRT reconstruction algorithm for semiquantification in PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kastis, George A., E-mail: gkastis@academyofathens.gr [Research Center of Mathematics, Academy of Athens, Athens 11527 (Greece); Gaitanis, Anastasios [Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens 11527 (Greece); Samartzis, Alexandros P. [Nuclear Medicine Department, Evangelismos General Hospital, Athens 10676 (Greece); Fokas, Athanasios S. [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB30WA, United Kingdom and Research Center of Mathematics, Academy of Athens, Athens 11527 (Greece)

    2015-10-15

    Purpose: The spline reconstruction technique (SRT) is a new, fast algorithm based on a novel numerical implementation of an analytic representation of the inverse Radon transform. The mathematical details of this algorithm and comparisons with filtered backprojection were presented earlier in the literature. In this study, the authors present a comparison between SRT and the ordered-subsets expectation–maximization (OSEM) algorithm for determining contrast and semiquantitative indices of {sup 18}F-FDG uptake. Methods: The authors implemented SRT in the software for tomographic image reconstruction (STIR) open-source platform and evaluated this technique using simulated and real sinograms obtained from the GE Discovery ST positron emission tomography/computer tomography scanner. All simulations and reconstructions were performed in STIR. For OSEM, the authors used the clinical protocol of their scanner, namely, 21 subsets and two iterations. The authors also examined images at one, four, six, and ten iterations. For the simulation studies, the authors analyzed an image-quality phantom with cold and hot lesions. Two different versions of the phantom were employed at two different hot-sphere lesion-to-background ratios (LBRs), namely, 2:1 and 4:1. For each noiseless sinogram, 20 Poisson realizations were created at five different noise levels. In addition to making visual comparisons of the reconstructed images, the authors determined contrast and bias as a function of the background image roughness (IR). For the real-data studies, sinograms of an image-quality phantom simulating the human torso were employed. The authors determined contrast and LBR as a function of the background IR. Finally, the authors present plots of contrast as a function of IR after smoothing each reconstructed image with Gaussian filters of six different sizes. Statistical significance was determined by employing the Wilcoxon rank-sum test. Results: In both simulated and real studies, SRT

  11. The SRT reconstruction algorithm for semiquantification in PET imaging

    International Nuclear Information System (INIS)

    Kastis, George A.; Gaitanis, Anastasios; Samartzis, Alexandros P.; Fokas, Athanasios S.

    2015-01-01

    Purpose: The spline reconstruction technique (SRT) is a new, fast algorithm based on a novel numerical implementation of an analytic representation of the inverse Radon transform. The mathematical details of this algorithm and comparisons with filtered backprojection were presented earlier in the literature. In this study, the authors present a comparison between SRT and the ordered-subsets expectation–maximization (OSEM) algorithm for determining contrast and semiquantitative indices of 18 F-FDG uptake. Methods: The authors implemented SRT in the software for tomographic image reconstruction (STIR) open-source platform and evaluated this technique using simulated and real sinograms obtained from the GE Discovery ST positron emission tomography/computer tomography scanner. All simulations and reconstructions were performed in STIR. For OSEM, the authors used the clinical protocol of their scanner, namely, 21 subsets and two iterations. The authors also examined images at one, four, six, and ten iterations. For the simulation studies, the authors analyzed an image-quality phantom with cold and hot lesions. Two different versions of the phantom were employed at two different hot-sphere lesion-to-background ratios (LBRs), namely, 2:1 and 4:1. For each noiseless sinogram, 20 Poisson realizations were created at five different noise levels. In addition to making visual comparisons of the reconstructed images, the authors determined contrast and bias as a function of the background image roughness (IR). For the real-data studies, sinograms of an image-quality phantom simulating the human torso were employed. The authors determined contrast and LBR as a function of the background IR. Finally, the authors present plots of contrast as a function of IR after smoothing each reconstructed image with Gaussian filters of six different sizes. Statistical significance was determined by employing the Wilcoxon rank-sum test. Results: In both simulated and real studies, SRT

  12. Analysis of the MPEG-1 Layer III (MP3) Algorithm using MATLAB

    CERN Document Server

    Thiagarajan, Jayaraman

    2011-01-01

    The MPEG-1 Layer III (MP3) algorithm is one of the most successful audio formats for consumer audio storage and for transfer and playback of music on digital audio players. The MP3 compression standard along with the AAC (Advanced Audio Coding) algorithm are associated with the most successful music players of the last decade. This book describes the fundamentals and the MATLAB implementation details of the MP3 algorithm. Several of the tedious processes in MP3 are supported by demonstrations using MATLAB software. The book presents the theoretical concepts and algorithms used in the MP3 stand

  13. Development and performance analysis of a lossless data reduction algorithm for voip

    International Nuclear Information System (INIS)

    Misbahuddin, S.; Boulejfen, N.

    2014-01-01

    VoIP (Voice Over IP) is becoming an alternative way of voice communications over the Internet. To better utilize voice call bandwidth, some standard compression algorithms are applied in VoIP systems. However, these algorithms affect the voice quality with high compression ratios. This paper presents a lossless data reduction technique to improve VoIP data transfer rate over the IP network. The proposed algorithm exploits the data redundancies in digitized VFs (Voice Frames) generated by VoIP systems. Performance of proposed data reduction algorithm has been presented in terms of compression ratio. The proposed algorithm will help retain the voice quality along with the improvement in VoIP data transfer rates. (author)

  14. Application of 2 mm thin-slice scanning with bone algorithm on conventional CT in diagnosis of the pulmonary diseases

    International Nuclear Information System (INIS)

    Zhang Xianheng; Li Xiuhua; Wang Fenghua

    2004-01-01

    Objective: To evaluate the value of 2 mm thin-slice conventional CT scan with bone algorithm in diagnosis and differential diagnosis in the pulmonary diseases. Methods: In total 135 cases of the pulmonary diseases were routinely scanned by conventional scan, 10 mm per slice, with standard algorithm, then the 2 mm thin-slice scan with bone algorithm was performed at the interested region of the lungs. Result: According to the comparative study of the CT signs between 10 mm slice scan with standard algorithm and 2 mm thin-slice scan with bone algorithm, the latter was better on displaying the pulmonary axial interstium, intralobular septum, subpleura lines, honeycombing, 2-5 mm nodulars and anomalies of bronchial wall. Conclusion: According to the study of 135 cases, 2 mm thin-slice scan with bone algorithm is superior to 10 mm slice scan with standard algorithm in demonstrating the pulmonary lesions. It has a similar value with high-resolution spiral CT in the diagnosis of the pulmonary solitary or diffuse nodules, pulmonary diffuse interstitial lesions and the lesions of the airway. It is practical and advisable in the community hospital

  15. A comparison between physicians and computer algorithms for form CMS-2728 data reporting.

    Science.gov (United States)

    Malas, Mohammed Said; Wish, Jay; Moorthi, Ranjani; Grannis, Shaun; Dexter, Paul; Duke, Jon; Moe, Sharon

    2017-01-01

    CMS-2728 form (Medical Evidence Report) assesses 23 comorbidities chosen to reflect poor outcomes and increased mortality risk. Previous studies questioned the validity of physician reporting on forms CMS-2728. We hypothesize that reporting of comorbidities by computer algorithms identifies more comorbidities than physician completion, and, therefore, is more reflective of underlying disease burden. We collected data from CMS-2728 forms for all 296 patients who had incident ESRD diagnosis and received chronic dialysis from 2005 through 2014 at Indiana University outpatient dialysis centers. We analyzed patients' data from electronic medical records systems that collated information from multiple health care sources. Previously utilized algorithms or natural language processing was used to extract data on 10 comorbidities for a period of up to 10 years prior to ESRD incidence. These algorithms incorporate billing codes, prescriptions, and other relevant elements. We compared the presence or unchecked status of these comorbidities on the forms to the presence or absence according to the algorithms. Computer algorithms had higher reporting of comorbidities compared to forms completion by physicians. This remained true when decreasing data span to one year and using only a single health center source. The algorithms determination was well accepted by a physician panel. Importantly, algorithms use significantly increased the expected deaths and lowered the standardized mortality ratios. Using computer algorithms showed superior identification of comorbidities for form CMS-2728 and altered standardized mortality ratios. Adapting similar algorithms in available EMR systems may offer more thorough evaluation of comorbidities and improve quality reporting. © 2016 International Society for Hemodialysis.

  16. Optimization in optical systems revisited: Beyond genetic algorithms

    Science.gov (United States)

    Gagnon, Denis; Dumont, Joey; Dubé, Louis

    2013-05-01

    Designing integrated photonic devices such as waveguides, beam-splitters and beam-shapers often requires optimization of a cost function over a large solution space. Metaheuristics - algorithms based on empirical rules for exploring the solution space - are specifically tailored to those problems. One of the most widely used metaheuristics is the standard genetic algorithm (SGA), based on the evolution of a population of candidate solutions. However, the stochastic nature of the SGA sometimes prevents access to the optimal solution. Our goal is to show that a parallel tabu search (PTS) algorithm is more suited to optimization problems in general, and to photonics in particular. PTS is based on several search processes using a pool of diversified initial solutions. To assess the performance of both algorithms (SGA and PTS), we consider an integrated photonics design problem, the generation of arbitrary beam profiles using a two-dimensional waveguide-based dielectric structure. The authors acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC).

  17. Solving Multiobjective Optimization Problems Using Artificial Bee Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Wenping Zou

    2011-01-01

    Full Text Available Multiobjective optimization has been a difficult problem and focus for research in fields of science and engineering. This paper presents a novel algorithm based on artificial bee colony (ABC to deal with multi-objective optimization problems. ABC is one of the most recently introduced algorithms based on the intelligent foraging behavior of a honey bee swarm. It uses less control parameters, and it can be efficiently used for solving multimodal and multidimensional optimization problems. Our algorithm uses the concept of Pareto dominance to determine the flight direction of a bee, and it maintains nondominated solution vectors which have been found in an external archive. The proposed algorithm is validated using the standard test problems, and simulation results show that the proposed approach is highly competitive and can be considered a viable alternative to solve multi-objective optimization problems.

  18. ''adding'' algorithm for the Markov chain formalism for radiation transfer

    International Nuclear Information System (INIS)

    Esposito, L.W.

    1979-01-01

    The Markov chain radiative transfer method of Esposito and House has been shown to be both efficient and accurate for calculation of the diffuse reflection from a homogeneous scattering planetary atmosphere. The use of a new algorithm similar to the ''adding'' formula of Hansen and Travis extends the application of this formalism to an arbitrarily deep atmosphere. The basic idea for this algorithm is to consider a preceding calculation as a single state of a new Markov chain. Successive application of this procedure makes calculation possible for any optical depth without increasing the size of the linear system used. The time required for the algorithm is comparable to that for a doubling calculation for a homogeneous atmosphere, but for a non-homogeneous atmosphere the new method is considerably faster than the standard ''adding'' routine. As with he standard ''adding'' method, the information on the internal radiation field is lost during the calculation. This method retains the advantage of the earlier Markov chain method that the time required is relatively insensitive to the number of illumination angles or observation angles for which the diffuse reflection is calculated. A technical write-up giving fuller details of the algorithm and a sample code are available from the author

  19. Research on Synthetic Aperture Radar Processing for the Spaceborne Sliding Spotlight Mode.

    Science.gov (United States)

    Shen, Shijian; Nie, Xin; Zhang, Xinggan

    2018-02-03

    Gaofen-3 (GF-3) is China' first C-band multi-polarization synthetic aperture radar (SAR) satellite, which also provides the sliding spotlight mode for the first time. Sliding-spotlight mode is a novel mode to realize imaging with not only high resolution, but also wide swath. Several key technologies for sliding spotlight mode in spaceborne SAR with high resolution are investigated in this paper, mainly including the imaging parameters, the methods of velocity estimation and ambiguity elimination, and the imaging algorithms. Based on the chosen Convolution BackProjection (CBP) and PFA (Polar Format Algorithm) imaging algorithms, a fast implementation method of CBP and a modified PFA method suitable for sliding spotlight mode are proposed, and the processing flows are derived in detail. Finally, the algorithms are validated by simulations and measured data.

  20. Research on Synthetic Aperture Radar Processing for the Spaceborne Sliding Spotlight Mode

    Directory of Open Access Journals (Sweden)

    Shijian Shen

    2018-02-01

    Full Text Available Gaofen-3 (GF-3 is China’ first C-band multi-polarization synthetic aperture radar (SAR satellite, which also provides the sliding spotlight mode for the first time. Sliding-spotlight mode is a novel mode to realize imaging with not only high resolution, but also wide swath. Several key technologies for sliding spotlight mode in spaceborne SAR with high resolution are investigated in this paper, mainly including the imaging parameters, the methods of velocity estimation and ambiguity elimination, and the imaging algorithms. Based on the chosen Convolution BackProjection (CBP and PFA (Polar Format Algorithm imaging algorithms, a fast implementation method of CBP and a modified PFA method suitable for sliding spotlight mode are proposed, and the processing flows are derived in detail. Finally, the algorithms are validated by simulations and measured data.

  1. A low-resource quantum factoring algorithm

    NARCIS (Netherlands)

    Bernstein, D.J.; Biasse, J. F.; Mosca, M.; Lange, T.; Takagi, T.

    2017-01-01

    In this paper, we present a factoring algorithm that, assuming standard heuristics, uses just (log N)2/3+o(1) qubits to factor an integer N in time Lq+o(1) where L = exp((log N)1/3 (log log N)2/3) and q =3√8/3 ≈ 1.387. For comparison, the lowest asymptotic time complexity for known pre-quantum

  2. Validation of PSF-based 3D reconstruction for myocardial blood flow measurements with Rb-82 PET

    DEFF Research Database (Denmark)

    Tolbod, Lars Poulsen; Christensen, Nana Louise; Møller, Lone W.

    images, filtered backprojection (FBP). Furthermore, since myocardial segmentation might be affected by image quality, two different approaches to segmentation implemented in standard software (Carimas (Turku PET Centre) and QPET (Cedar Sinai)) are utilized. Method:14 dynamic rest-stress Rb-82 patient......-scans performed on a GE Discovery 690 PET/CT were included. Images were reconstructed in an isotropic matrix (3.27x3.27x3.27 mm) using PSF (SharpIR: 3 iterations and 21 subsets) and FBP (FORE FBP) with the same edge-preserving filter (3D Butterworth: cut-off 10 mm, power 10). Analysis: The dynamic PET......Aim:The use of PSF-based 3D reconstruction algorithms (PSF) is desirable in most clinical PET-exams due to their superior image quality. Rb-82 cardiac PET is inherently noisy due to short half-life and prompt gammas and would presumably benefit from PSF. However, the quantitative behavior of PSF...

  3. Improved hybrid optimization algorithm for 3D protein structure prediction.

    Science.gov (United States)

    Zhou, Changjun; Hou, Caixia; Wei, Xiaopeng; Zhang, Qiang

    2014-07-01

    A new improved hybrid optimization algorithm - PGATS algorithm, which is based on toy off-lattice model, is presented for dealing with three-dimensional protein structure prediction problems. The algorithm combines the particle swarm optimization (PSO), genetic algorithm (GA), and tabu search (TS) algorithms. Otherwise, we also take some different improved strategies. The factor of stochastic disturbance is joined in the particle swarm optimization to improve the search ability; the operations of crossover and mutation that are in the genetic algorithm are changed to a kind of random liner method; at last tabu search algorithm is improved by appending a mutation operator. Through the combination of a variety of strategies and algorithms, the protein structure prediction (PSP) in a 3D off-lattice model is achieved. The PSP problem is an NP-hard problem, but the problem can be attributed to a global optimization problem of multi-extremum and multi-parameters. This is the theoretical principle of the hybrid optimization algorithm that is proposed in this paper. The algorithm combines local search and global search, which overcomes the shortcoming of a single algorithm, giving full play to the advantage of each algorithm. In the current universal standard sequences, Fibonacci sequences and real protein sequences are certified. Experiments show that the proposed new method outperforms single algorithms on the accuracy of calculating the protein sequence energy value, which is proved to be an effective way to predict the structure of proteins.

  4. Ant colony search algorithm for optimal reactive power optimization

    Directory of Open Access Journals (Sweden)

    Lenin K.

    2006-01-01

    Full Text Available The paper presents an (ACSA Ant colony search Algorithm for Optimal Reactive Power Optimization and voltage control of power systems. ACSA is a new co-operative agents’ approach, which is inspired by the observation of the behavior of real ant colonies on the topic of ant trial formation and foraging methods. Hence, in the ACSA a set of co-operative agents called "Ants" co-operates to find good solution for Reactive Power Optimization problem. The ACSA is applied for optimal reactive power optimization is evaluated on standard IEEE, 30, 57, 191 (practical test bus system. The proposed approach is tested and compared to genetic algorithm (GA, Adaptive Genetic Algorithm (AGA.

  5. Estimation of Compton Imager Using Single 3D Position-Sensitive LYSO Scintillator: Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taewoong; Lee, Hyounggun; Kim, Younghak; Lee, Wonho [Korea University, Seoul (Korea, Republic of)

    2017-07-15

    The performance of a Compton imager using a single three-dimensional position-sensitive LYSO scintillator detector was estimated using a Monte Carlo simulation. The Compton imager consisted of a single LYSO scintillator with a pixelized structure. The size of the scintillator and each pixel were 1.3 × 1.3 × 1.3 cm{sup 3} and 0.3 × 0.3 × 0.3 cm{sup 3}, respectively. The order of γ-ray interactions was determined based on the deposited energies in each detector. After the determination of the interaction sequence, various types of reconstruction algorithms such as simple back-projection, filtered back-projection, and list-mode maximum-likelihood expectation maximization (LM-MLEM) were applied and compared with each other in terms of their angular resolution and signal-tonoise ratio (SNR) for several γ-ray energies. The LM-MLEM reconstruction algorithm exhibited the best performance for Compton imaging in maintaining high angular resolution and SNR. The two sources of {sup 137}Cs (662 keV) could be distinguishable if they were more than 17 ◦ apart. The reconstructed Compton images showed the precise position and distribution of various radiation isotopes, which demonstrated the feasibility of the monitoring of nuclear materials in homeland security and radioactive waste management applications.

  6. Crystal Symmetry Algorithms in a High-Throughput Framework for Materials

    Science.gov (United States)

    Taylor, Richard

    The high-throughput framework AFLOW that has been developed and used successfully over the last decade is improved to include fully-integrated software for crystallographic symmetry characterization. The standards used in the symmetry algorithms conform with the conventions and prescriptions given in the International Tables of Crystallography (ITC). A standard cell choice with standard origin is selected, and the space group, point group, Bravais lattice, crystal system, lattice system, and representative symmetry operations are determined. Following the conventions of the ITC, the Wyckoff sites are also determined and their labels and site symmetry are provided. The symmetry code makes no assumptions on the input cell orientation, origin, or reduction and has been integrated in the AFLOW high-throughput framework for materials discovery by adding to the existing code base and making use of existing classes and functions. The software is written in object-oriented C++ for flexibility and reuse. A performance analysis and examination of the algorithms scaling with cell size and symmetry is also reported.

  7. Predicting Subcellular Localization of Proteins by Bioinformatic Algorithms

    DEFF Research Database (Denmark)

    Nielsen, Henrik

    2015-01-01

    was used. Various statistical and machine learning algorithms are used with all three approaches, and various measures and standards are employed when reporting the performances of the developed methods. This chapter presents a number of available methods for prediction of sorting signals and subcellular...

  8. Performance Analysis of Binary Search Algorithm in RFID

    Directory of Open Access Journals (Sweden)

    Xiangmei SONG

    2014-12-01

    Full Text Available Binary search algorithm (BS is a kind of important anti-collision algorithm in the Radio Frequency Identification (RFID, is also one of the key technologies which determine whether the information in the tag is identified by the reader-writer fast and reliably. The performance of BS directly affects the quality of service in Internet of Things. This paper adopts an automated formal technology: probabilistic model checking to analyze the performance of BS algorithm formally. Firstly, according to the working principle of BS algorithm, its dynamic behavior is abstracted into a Discrete Time Markov Chains which can describe deterministic, discrete time and the probability selection. And then on the model we calculate the probability of the data sent successfully and the expected time of tags completing the data transmission. Compared to the another typical anti-collision protocol S-ALOHA in RFID, experimental results show that with an increase in the number of tags the BS algorithm has a less space and time consumption, the average number of conflicts increases slower than the S-ALOHA protocol standard, BS algorithm needs fewer expected time to complete the data transmission, and the average speed of the data transmission in BS is as 1.6 times as the S-ALOHA protocol.

  9. ERGC: an efficient referential genome compression algorithm.

    Science.gov (United States)

    Saha, Subrata; Rajasekaran, Sanguthevar

    2015-11-01

    Genome sequencing has become faster and more affordable. Consequently, the number of available complete genomic sequences is increasing rapidly. As a result, the cost to store, process, analyze and transmit the data is becoming a bottleneck for research and future medical applications. So, the need for devising efficient data compression and data reduction techniques for biological sequencing data is growing by the day. Although there exists a number of standard data compression algorithms, they are not efficient in compressing biological data. These generic algorithms do not exploit some inherent properties of the sequencing data while compressing. To exploit statistical and information-theoretic properties of genomic sequences, we need specialized compression algorithms. Five different next-generation sequencing data compression problems have been identified and studied in the literature. We propose a novel algorithm for one of these problems known as reference-based genome compression. We have done extensive experiments using five real sequencing datasets. The results on real genomes show that our proposed algorithm is indeed competitive and performs better than the best known algorithms for this problem. It achieves compression ratios that are better than those of the currently best performing algorithms. The time to compress and decompress the whole genome is also very promising. The implementations are freely available for non-commercial purposes. They can be downloaded from http://engr.uconn.edu/∼rajasek/ERGC.zip. rajasek@engr.uconn.edu. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Active Semisupervised Clustering Algorithm with Label Propagation for Imbalanced and Multidensity Datasets

    Directory of Open Access Journals (Sweden)

    Mingwei Leng

    2013-01-01

    Full Text Available The accuracy of most of the existing semisupervised clustering algorithms based on small size of labeled dataset is low when dealing with multidensity and imbalanced datasets, and labeling data is quite expensive and time consuming in many real-world applications. This paper focuses on active data selection and semisupervised clustering algorithm in multidensity and imbalanced datasets and proposes an active semisupervised clustering algorithm. The proposed algorithm uses an active mechanism for data selection to minimize the amount of labeled data, and it utilizes multithreshold to expand labeled datasets on multidensity and imbalanced datasets. Three standard datasets and one synthetic dataset are used to demonstrate the proposed algorithm, and the experimental results show that the proposed semisupervised clustering algorithm has a higher accuracy and a more stable performance in comparison to other clustering and semisupervised clustering algorithms, especially when the datasets are multidensity and imbalanced.

  11. Standardizing estimates of the Plasmodium falciparum parasite rate

    Directory of Open Access Journals (Sweden)

    Smith David L

    2007-09-01

    Full Text Available Abstract Background The Plasmodium falciparum parasite rate (PfPR is a commonly reported index of malaria transmission intensity. PfPR rises after birth to a plateau before declining in older children and adults. Studies of populations with different age ranges generally report average PfPR, so age is an important source of heterogeneity in reported PfPR data. This confounds simple comparisons of PfPR surveys conducted at different times or places. Methods Several algorithms for standardizing PfPR were developed using 21 studies that stratify in detail PfPR by age. An additional 121 studies were found that recorded PfPR from the same population over at least two different age ranges; these paired estimates were used to evaluate these algorithms. The best algorithm was judged to be the one that described most of the variance when converting the PfPR pairs from one age-range to another. Results The analysis suggests that the relationship between PfPR and age is predictable across the observed range of malaria endemicity. PfPR reaches a peak after about two years and remains fairly constant in older children until age ten before declining throughout adolescence and adulthood. The PfPR pairs were poorly correlated; using one to predict the other would explain only 5% of the total variance. By contrast, the PfPR predicted by the best algorithm explained 72% of the variance. Conclusion The PfPR in older children is useful for standardization because it has good biological, epidemiological and statistical properties. It is also historically consistent with the classical categories of hypoendemic, mesoendemic and hyperendemic malaria. This algorithm provides a reliable method for standardizing PfPR for the purposes of comparing studies and mapping malaria endemicity. The scripts for doing so are freely available to all.

  12. Data compression techniques and the ACR-NEMA digital interface communications standard

    International Nuclear Information System (INIS)

    Zielonka, J.S.; Blume, H.; Hill, D.; Horil, S.C.; Lodwick, G.S.; Moore, J.; Murphy, L.L.; Wake, R.; Wallace, G.

    1987-01-01

    Data compression offers the possibility of achieving high, effective information transfer rates between devices and of efficient utilization of digital storge devices in meeting department-wide archiving needs. Accordingly, the ARC-NEMA Digital Imaging and Communications Standards Committee established a Working Group to develop a means to incorporate the optimal use of a wide variety of current compression techniques while remaining compatible with the standard. This proposed method allows the use of public domain techniques, predetermined methods between devices already aware of the selected algorithm, and the ability for the originating device to specify algorithms and parameters prior to transmitting compressed data. Because of the latter capability, the technique has the potential for supporting many compression algorithms not yet developed or in common use. Both lossless and lossy methods can be implemented. In addition to description of the overall structure of this proposal, several examples using current compression algorithms are given

  13. Second-order accurate volume-of-fluid algorithms for tracking material interfaces

    International Nuclear Information System (INIS)

    Pilliod, James Edward; Puckett, Elbridge Gerry

    2004-01-01

    We introduce two new volume-of-fluid interface reconstruction algorithms and compare the accuracy of these algorithms to four other widely used volume-of-fluid interface reconstruction algorithms. We find that when the interface is smooth (e.g., continuous with two continuous derivatives) the new methods are second-order accurate and the other algorithms are first-order accurate. We propose a design criteria for a volume-of-fluid interface reconstruction algorithm to be second-order accurate. Namely, that it reproduce lines in two space dimensions or planes in three space dimensions exactly. We also introduce a second-order, unsplit, volume-of-fluid advection algorithm that is based on a second-order, finite difference method for scalar conservation laws due to Bell, Dawson and Shubin. We test this advection algorithm by modeling several different interface shapes propagating in two simple incompressible flows and compare the results with the standard second-order, operator-split advection algorithm. Although both methods are second-order accurate when the interface is smooth, we find that the unsplit algorithm exhibits noticeably better resolution in regions where the interface has discontinuous derivatives, such as at corners

  14. Improving performance of wavelet-based image denoising algorithm using complex diffusion process

    DEFF Research Database (Denmark)

    Nadernejad, Ehsan; Sharifzadeh, Sara; Korhonen, Jari

    2012-01-01

    using a variety of standard images and its performance has been compared against several de-noising algorithms known from the prior art. Experimental results show that the proposed algorithm preserves the edges better and in most cases, improves the measured visual quality of the denoised images......Image enhancement and de-noising is an essential pre-processing step in many image processing algorithms. In any image de-noising algorithm, the main concern is to keep the interesting structures of the image. Such interesting structures often correspond to the discontinuities (edges...... in comparison to the existing methods known from the literature. The improvement is obtained without excessive computational cost, and the algorithm works well on a wide range of different types of noise....

  15. Cheap contouring of costly functions: the Pilot Approximation Trajectory algorithm

    International Nuclear Information System (INIS)

    Huttunen, Janne M J; Stark, Philip B

    2012-01-01

    The Pilot Approximation Trajectory (PAT) contour algorithm can find the contour of a function accurately when it is not practical to evaluate the function on a grid dense enough to use a standard contour algorithm, for instance, when evaluating the function involves conducting a physical experiment or a computationally intensive simulation. PAT relies on an inexpensive pilot approximation to the function, such as interpolating from a sparse grid of inexact values, or solving a partial differential equation (PDE) numerically using a coarse discretization. For each level of interest, the location and ‘trajectory’ of an approximate contour of this pilot function are used to decide where to evaluate the original function to find points on its contour. Those points are joined by line segments to form the PAT approximation of the contour of the original function. Approximating a contour numerically amounts to estimating a lower level set of the function, the set of points on which the function does not exceed the contour level. The area of the symmetric difference between the true lower level set and the estimated lower level set measures the accuracy of the contour. PAT measures its own accuracy by finding an upper confidence bound for this area. In examples, PAT can estimate a contour more accurately than standard algorithms, using far fewer function evaluations than standard algorithms require. We illustrate PAT by constructing a confidence set for viscosity and thermal conductivity of a flowing gas from simulated noisy temperature measurements, a problem in which each evaluation of the function to be contoured requires solving a different set of coupled nonlinear PDEs. (paper)

  16. Development of emission computed tomography in Japan

    International Nuclear Information System (INIS)

    Tanaka, E.

    1984-01-01

    Two positron emission computed tomography (PCT) devices developed in Japan are described. One is for head and the other for wholebody. The devices show fairly quantitative images with slight modifications of the existing algorithms because they were developed based on filtered back-projection. The PCT device seems to be better than the single photon emission computed tomography (SPECT) since it provides adequade compensation for photon attenuation in patients. (M.A.C.) [pt

  17. Otsu Based Optimal Multilevel Image Thresholding Using Firefly Algorithm

    Directory of Open Access Journals (Sweden)

    N. Sri Madhava Raja

    2014-01-01

    Full Text Available Histogram based multilevel thresholding approach is proposed using Brownian distribution (BD guided firefly algorithm (FA. A bounded search technique is also presented to improve the optimization accuracy with lesser search iterations. Otsu’s between-class variance function is maximized to obtain optimal threshold level for gray scale images. The performances of the proposed algorithm are demonstrated by considering twelve benchmark images and are compared with the existing FA algorithms such as Lévy flight (LF guided FA and random operator guided FA. The performance assessment comparison between the proposed and existing firefly algorithms is carried using prevailing parameters such as objective function, standard deviation, peak-to-signal ratio (PSNR, structural similarity (SSIM index, and search time of CPU. The results show that BD guided FA provides better objective function, PSNR, and SSIM, whereas LF based FA provides faster convergence with relatively lower CPU time.

  18. A lossless one-pass sorting algorithm for symmetric three-dimensional gamma-ray data sets

    International Nuclear Information System (INIS)

    Brinkman, M.J.; Manatt, D.R.; Becker, J.A.; Henry, E.A.

    1992-01-01

    An algorithm for three-dimensional sorting and storing of the large data sets expected from the next generation of large gamma-ray detector arrays (i.e., EUROGAM, GAMMASPHERE) is presented. The algorithm allows the storage of realistic data sets on standard mass storage media. A discussion of an efficient implementation of the algorithm is provided with a proposed technique for exploiting its inherently parallel nature. (author). 5 refs., 2 figs

  19. A lossless one-pass sorting algorithm for symmetric three-dimensional gamma-ray data sets

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, M J; Manatt, D R; Becker, J A; Henry, E A [Lawrence Livermore National Lab., CA (United States)

    1992-08-01

    An algorithm for three-dimensional sorting and storing of the large data sets expected from the next generation of large gamma-ray detector arrays (i.e., EUROGAM, GAMMASPHERE) is presented. The algorithm allows the storage of realistic data sets on standard mass storage media. A discussion of an efficient implementation of the algorithm is provided with a proposed technique for exploiting its inherently parallel nature. (author). 5 refs., 2 figs.

  20. A high throughput architecture for a low complexity soft-output demapping algorithm

    Science.gov (United States)

    Ali, I.; Wasenmüller, U.; Wehn, N.

    2015-11-01

    Iterative channel decoders such as Turbo-Code and LDPC decoders show exceptional performance and therefore they are a part of many wireless communication receivers nowadays. These decoders require a soft input, i.e., the logarithmic likelihood ratio (LLR) of the received bits with a typical quantization of 4 to 6 bits. For computing the LLR values from a received complex symbol, a soft demapper is employed in the receiver. The implementation cost of traditional soft-output demapping methods is relatively large in high order modulation systems, and therefore low complexity demapping algorithms are indispensable in low power receivers. In the presence of multiple wireless communication standards where each standard defines multiple modulation schemes, there is a need to have an efficient demapper architecture covering all the flexibility requirements of these standards. Another challenge associated with hardware implementation of the demapper is to achieve a very high throughput in double iterative systems, for instance, MIMO and Code-Aided Synchronization. In this paper, we present a comprehensive communication and hardware performance evaluation of low complexity soft-output demapping algorithms to select the best algorithm for implementation. The main goal of this work is to design a high throughput, flexible, and area efficient architecture. We describe architectures to execute the investigated algorithms. We implement these architectures on a FPGA device to evaluate their hardware performance. The work has resulted in a hardware architecture based on the figured out best low complexity algorithm delivering a high throughput of 166 Msymbols/second for Gray mapped 16-QAM modulation on Virtex-5. This efficient architecture occupies only 127 slice registers, 248 slice LUTs and 2 DSP48Es.

  1. Stegano-Crypto Hiding Encrypted Data in Encrypted Image Using Advanced Encryption Standard and Lossy Algorithm

    Directory of Open Access Journals (Sweden)

    Ari Shawakat Tahir

    2015-12-01

    Full Text Available The Steganography is an art and science of hiding information by embedding messages within other, seemingly harmless messages and lots of researches are working in it. Proposed system is using AES Algorithm and Lossy technique to overcome the limitation of previous work and increasing the process’s speed. The sender uses AES Algorithm to encrypt message and image, then using LSB technique to hide encrypted data in encrypted message. The receive get the original data using the keys that had been used in encryption process. The proposed system has been implemented in NetBeans 7.3 software uses image and data in different size to find the system’s speed.

  2. A computational fluid dynamics algorithm on a massively parallel computer

    International Nuclear Information System (INIS)

    Jespersen, D.C.; Levit, C.

    1989-01-01

    The implementation and performance of a finite-difference algorithm for the compressible Navier-Stokes equations in two or three dimensions on the Connection Machine are described. This machine is a single-instruction multiple-data machine with up to 65536 physical processors. The implicit portion of the algorithm is of particular interest. Running times and megadrop rates are given for two- and three-dimensional problems. Included are comparisons with the standard codes on a Cray X-MP/48. 15 refs

  3. Automatable algorithms to identify nonmedical opioid use using electronic data: a systematic review.

    Science.gov (United States)

    Canan, Chelsea; Polinski, Jennifer M; Alexander, G Caleb; Kowal, Mary K; Brennan, Troyen A; Shrank, William H

    2017-11-01

    Improved methods to identify nonmedical opioid use can help direct health care resources to individuals who need them. Automated algorithms that use large databases of electronic health care claims or records for surveillance are a potential means to achieve this goal. In this systematic review, we reviewed the utility, attempts at validation, and application of such algorithms to detect nonmedical opioid use. We searched PubMed and Embase for articles describing automatable algorithms that used electronic health care claims or records to identify patients or prescribers with likely nonmedical opioid use. We assessed algorithm development, validation, and performance characteristics and the settings where they were applied. Study variability precluded a meta-analysis. Of 15 included algorithms, 10 targeted patients, 2 targeted providers, 2 targeted both, and 1 identified medications with high abuse potential. Most patient-focused algorithms (67%) used prescription drug claims and/or medical claims, with diagnosis codes of substance abuse and/or dependence as the reference standard. Eleven algorithms were developed via regression modeling. Four used natural language processing, data mining, audit analysis, or factor analysis. Automated algorithms can facilitate population-level surveillance. However, there is no true gold standard for determining nonmedical opioid use. Users must recognize the implications of identifying false positives and, conversely, false negatives. Few algorithms have been applied in real-world settings. Automated algorithms may facilitate identification of patients and/or providers most likely to need more intensive screening and/or intervention for nonmedical opioid use. Additional implementation research in real-world settings would clarify their utility. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  4. Algorithms

    Indian Academy of Sciences (India)

    polynomial) division have been found in Vedic Mathematics which are dated much before Euclid's algorithm. A programming language Is used to describe an algorithm for execution on a computer. An algorithm expressed using a programming.

  5. A sequential quadratic programming algorithm using an incomplete solution of the subproblem

    Energy Technology Data Exchange (ETDEWEB)

    Murray, W. [Stanford Univ., CA (United States). Systems Optimization Lab.; Prieto, F.J. [Universidad `Carlos III` de Madrid (Spain). Dept. de Estadistica y Econometria

    1993-05-01

    We analyze sequential quadratic programming (SQP) methods to solve nonlinear constrained optimization problems that are more flexible in their definition than standard SQP methods. The type of flexibility introduced is motivated by the necessity to deviate from the standard approach when solving large problems. Specifically we no longer require a minimizer of the QP subproblem to be determined or particular Lagrange multiplier estimates to be used. Our main focus is on an SQP algorithm that uses a particular augmented Lagrangian merit function. New results are derived for this algorithm under weaker conditions than previously assumed; in particular, it is not assumed that the iterates lie on a compact set.

  6. Portfolio optimization by using linear programing models based on genetic algorithm

    Science.gov (United States)

    Sukono; Hidayat, Y.; Lesmana, E.; Putra, A. S.; Napitupulu, H.; Supian, S.

    2018-01-01

    In this paper, we discussed the investment portfolio optimization using linear programming model based on genetic algorithms. It is assumed that the portfolio risk is measured by absolute standard deviation, and each investor has a risk tolerance on the investment portfolio. To complete the investment portfolio optimization problem, the issue is arranged into a linear programming model. Furthermore, determination of the optimum solution for linear programming is done by using a genetic algorithm. As a numerical illustration, we analyze some of the stocks traded on the capital market in Indonesia. Based on the analysis, it is shown that the portfolio optimization performed by genetic algorithm approach produces more optimal efficient portfolio, compared to the portfolio optimization performed by a linear programming algorithm approach. Therefore, genetic algorithms can be considered as an alternative on determining the investment portfolio optimization, particularly using linear programming models.

  7. Parallel algorithms for placement and routing in VLSI design. Ph.D. Thesis

    Science.gov (United States)

    Brouwer, Randall Jay

    1991-01-01

    The computational requirements for high quality synthesis, analysis, and verification of very large scale integration (VLSI) designs have rapidly increased with the fast growing complexity of these designs. Research in the past has focused on the development of heuristic algorithms, special purpose hardware accelerators, or parallel algorithms for the numerous design tasks to decrease the time required for solution. Two new parallel algorithms are proposed for two VLSI synthesis tasks, standard cell placement and global routing. The first algorithm, a parallel algorithm for global routing, uses hierarchical techniques to decompose the routing problem into independent routing subproblems that are solved in parallel. Results are then presented which compare the routing quality to the results of other published global routers and which evaluate the speedups attained. The second algorithm, a parallel algorithm for cell placement and global routing, hierarchically integrates a quadrisection placement algorithm, a bisection placement algorithm, and the previous global routing algorithm. Unique partitioning techniques are used to decompose the various stages of the algorithm into independent tasks which can be evaluated in parallel. Finally, results are presented which evaluate the various algorithm alternatives and compare the algorithm performance to other placement programs. Measurements are presented on the parallel speedups available.

  8. From plastic to gold: a unified classification scheme for reference standards in medical image processing

    Science.gov (United States)

    Lehmann, Thomas M.

    2002-05-01

    Reliable evaluation of medical image processing is of major importance for routine applications. Nonetheless, evaluation is often omitted or methodically defective when novel approaches or algorithms are introduced. Adopted from medical diagnosis, we define the following criteria to classify reference standards: 1. Reliance, if the generation or capturing of test images for evaluation follows an exactly determined and reproducible protocol. 2. Equivalence, if the image material or relationships considered within an algorithmic reference standard equal real-life data with respect to structure, noise, or other parameters of importance. 3. Independence, if any reference standard relies on a different procedure than that to be evaluated, or on other images or image modalities than that used routinely. This criterion bans the simultaneous use of one image for both, training and test phase. 4. Relevance, if the algorithm to be evaluated is self-reproducible. If random parameters or optimization strategies are applied, reliability of the algorithm must be shown before the reference standard is applied for evaluation. 5. Significance, if the number of reference standard images that are used for evaluation is sufficient large to enable statistically founded analysis. We demand that a true gold standard must satisfy the Criteria 1 to 3. Any standard only satisfying two criteria, i.e., Criterion 1 and Criterion 2 or Criterion 1 and Criterion 3, is referred to as silver standard. Other standards are termed to be from plastic. Before exhaustive evaluation based on gold or silver standards is performed, its relevance must be shown (Criterion 4) and sufficient tests must be carried out to found statistical analysis (Criterion 5). In this paper, examples are given for each class of reference standards.

  9. Dynamic contrast-enhanced MRI of the prostate. Comparison of two different post-processing algorithms

    International Nuclear Information System (INIS)

    Beyersdorff, Dirk; Franiel, T.; Luedemann, L.; Dietz, E.; Galler, D.; Marchot, P.

    2011-01-01

    Purpose: To evaluate the usefulness of a commercially available post-processing software tool for detecting prostate cancer on dynamic contrast-enhanced magnetic resonance imaging (MRI) and to compare the results to those obtained with a custom-made post-processing algorithm already tested under clinical conditions. Materials and Methods: Forty-eight patients with proven prostate cancer were examined by standard MRI supplemented by dynamic contrast-enhanced dual susceptibility contrast (DCE-DSC) MRI prior to prostatectomy. A custom-made post-processing algorithm was used to analyze the MRI data sets and the results were compared to those obtained using a post-processing algorithm from Invivo Corporation (Dyna CAD for Prostate) applied to dynamic T 1-weighted images. Histology was used as the gold standard. Results: The sensitivity for prostate cancer detection was 78 % for the custom-made algorithm and 60 % for the commercial algorithm and the specificity was 79 % and 82 %, respectively. The accuracy was 79 % for our algorithm and 77.5 % for the commercial software tool. The chi-square test (McNemar-Bowker test) yielded no significant differences between the two tools (p = 0.06). Conclusion: The two investigated post-processing algorithms did not differ in terms of prostate cancer detection. The commercially available software tool allows reliable and fast analysis of dynamic contrast-enhanced MRI for the detection of prostate cancer. (orig.)

  10. Response analysis for an approximate 3-D image reconstruction in cone-beam SPECT

    International Nuclear Information System (INIS)

    Murayama, Hideo; Nohara, Norimasa

    1991-01-01

    Cone-beam single photon emission computed tomography (SPECT) offers the potential for a large increase in sensitivity as compared with parallel hole or fan-beam collimation. Three-dimensional image reconstruction was approximately accomplished by backprojecting filtered projections using a two-dimensional fan-beam algorithm. The cone-beam projection data were formed from mathematical phantoms as analytically derived line integrals of the density. In order to reduce the processing time, the filtered projections were backprojected into each plane parallel to the circle on which the focal point moved. Discrepancy of source position and degradation of resolution were investigated by computer simulation in three-dimensional image space. The results obtained suggest that, the nearer to the central plane or the axis of rotation, the less image degradation is performed. By introducing a parameter of angular difference between the focal point and a fixed point in the image space during rotation, degradation of the reconstructed image can be estimated for any cone-beam SPECT system. (author)

  11. THE QUASIPERIODIC AUTOMATED TRANSIT SEARCH ALGORITHM

    International Nuclear Information System (INIS)

    Carter, Joshua A.; Agol, Eric

    2013-01-01

    We present a new algorithm for detecting transiting extrasolar planets in time-series photometry. The Quasiperiodic Automated Transit Search (QATS) algorithm relaxes the usual assumption of strictly periodic transits by permitting a variable, but bounded, interval between successive transits. We show that this method is capable of detecting transiting planets with significant transit timing variations without any loss of significance— s mearing — as would be incurred with traditional algorithms; however, this is at the cost of a slightly increased stochastic background. The approximate times of transit are standard products of the QATS search. Despite the increased flexibility, we show that QATS has a run-time complexity that is comparable to traditional search codes and is comparably easy to implement. QATS is applicable to data having a nearly uninterrupted, uniform cadence and is therefore well suited to the modern class of space-based transit searches (e.g., Kepler, CoRoT). Applications of QATS include transiting planets in dynamically active multi-planet systems and transiting planets in stellar binary systems.

  12. Two-phase hybrid cryptography algorithm for wireless sensor networks

    Directory of Open Access Journals (Sweden)

    Rawya Rizk

    2015-12-01

    Full Text Available For achieving security in wireless sensor networks (WSNs, cryptography plays an important role. In this paper, a new security algorithm using combination of both symmetric and asymmetric cryptographic techniques is proposed to provide high security with minimized key maintenance. It guarantees three cryptographic primitives, integrity, confidentiality and authentication. Elliptical Curve Cryptography (ECC and Advanced Encryption Standard (AES are combined to provide encryption. XOR-DUAL RSA algorithm is considered for authentication and Message Digest-5 (MD5 for integrity. The results show that the proposed hybrid algorithm gives better performance in terms of computation time, the size of cipher text, and the energy consumption in WSN. It is also robust against different types of attacks in the case of image encryption.

  13. Quantification and visualization of carotid segmentation accuracy and precision using a 2D standardized carotid map

    International Nuclear Information System (INIS)

    Chiu, Bernard; Ukwatta, Eranga; Shavakh, Shadi; Fenster, Aaron

    2013-01-01

    This paper describes a framework for vascular image segmentation evaluation. Since the size of vessel wall and plaque burden is defined by the lumen and wall boundaries in vascular segmentation, these two boundaries should be considered as a pair in statistical evaluation of a segmentation algorithm. This work proposed statistical metrics to evaluate the difference of local vessel wall thickness (VWT) produced by manual and algorithm-based semi-automatic segmentation methods (ΔT) with the local segmentation standard deviation of the wall and lumen boundaries considered. ΔT was further approximately decomposed into the local wall and lumen boundary differences (ΔW and ΔL respectively) in order to provide information regarding which of the wall and lumen segmentation errors contribute more to the VWT difference. In this study, the lumen and wall boundaries in 3D carotid ultrasound images acquired for 21 subjects were each segmented five times manually and by a level-set segmentation algorithm. The (absolute) difference measures (i.e., ΔT, ΔW, ΔL and their absolute values) and the pooled local standard deviation of manually and algorithmically segmented wall and lumen boundaries were computed for each subject and represented in a 2D standardized map. The local accuracy and variability of the segmentation algorithm at each point can be quantified by the average of these metrics for the whole group of subjects and visualized on the 2D standardized map. Based on the results shown on the 2D standardized map, a variety of strategies, such as adding anchor points and adjusting weights of different forces in the algorithm, can be introduced to improve the accuracy and variability of the algorithm. (paper)

  14. Advancements in the Development of an Operational Lightning Jump Algorithm for GOES-R GLM

    Science.gov (United States)

    Shultz, Chris; Petersen, Walter; Carey, Lawrence

    2011-01-01

    Rapid increases in total lightning have been shown to precede the manifestation of severe weather at the surface. These rapid increases have been termed lightning jumps, and are the current focus of algorithm development for the GOES-R Geostationary Lightning Mapper (GLM). Recent lightning jump algorithm work has focused on evaluation of algorithms in three additional regions of the country, as well as, markedly increasing the number of thunderstorms in order to evaluate the each algorithm s performance on a larger population of storms. Lightning characteristics of just over 600 thunderstorms have been studied over the past four years. The 2 lightning jump algorithm continues to show the most promise for an operational lightning jump algorithm, with a probability of detection of 82%, a false alarm rate of 35%, a critical success index of 57%, and a Heidke Skill Score of 0.73 on the entire population of thunderstorms. Average lead time for the 2 algorithm on all severe weather is 21.15 minutes, with a standard deviation of +/- 14.68 minutes. Looking at tornadoes alone, the average lead time is 18.71 minutes, with a standard deviation of +/-14.88 minutes. Moreover, removing the 2 lightning jumps that occur after a jump has been detected, and before severe weather is detected at the ground, the 2 lightning jump algorithm s false alarm rate drops from 35% to 21%. Cold season, low topped, and tropical environments cause problems for the 2 lightning jump algorithm, due to their relative dearth in lightning as compared to a supercellular or summertime airmass thunderstorm environment.

  15. An accurate projection algorithm for array processor based SPECT systems

    International Nuclear Information System (INIS)

    King, M.A.; Schwinger, R.B.; Cool, S.L.

    1985-01-01

    A data re-projection algorithm has been developed for use in single photon emission computed tomography (SPECT) on an array processor based computer system. The algorithm makes use of an accurate representation of pixel activity (uniform square pixel model of intensity distribution), and is rapidly performed due to the efficient handling of an array based algorithm and the Fast Fourier Transform (FFT) on parallel processing hardware. The algorithm consists of using a pixel driven nearest neighbour projection operation to an array of subdivided projection bins. This result is then convolved with the projected uniform square pixel distribution before being compressed to original bin size. This distribution varies with projection angle and is explicitly calculated. The FFT combined with a frequency space multiplication is used instead of a spatial convolution for more rapid execution. The new algorithm was tested against other commonly used projection algorithms by comparing the accuracy of projections of a simulated transverse section of the abdomen against analytically determined projections of that transverse section. The new algorithm was found to yield comparable or better standard error and yet result in easier and more efficient implementation on parallel hardware. Applications of the algorithm include iterative reconstruction and attenuation correction schemes and evaluation of regions of interest in dynamic and gated SPECT

  16. A Novel Real-coded Quantum-inspired Genetic Algorithm and Its Application in Data Reconciliation

    Directory of Open Access Journals (Sweden)

    Gao Lin

    2012-06-01

    Full Text Available Traditional quantum-inspired genetic algorithm (QGA has drawbacks such as premature convergence, heavy computational cost, complicated coding and decoding process etc. In this paper, a novel real-coded quantum-inspired genetic algorithm is proposed based on interval division thinking. Detailed comparisons with some similar approaches for some standard benchmark functions test validity of the proposed algorithm. Besides, the proposed algorithm is used in two typical nonlinear data reconciliation problems (distilling process and extraction process and simulation results show its efficiency in nonlinear data reconciliation problems.

  17. Hybrid fuzzy charged system search algorithm based state estimation in distribution networks

    Directory of Open Access Journals (Sweden)

    Sachidananda Prasad

    2017-06-01

    Full Text Available This paper proposes a new hybrid charged system search (CSS algorithm based state estimation in radial distribution networks in fuzzy framework. The objective of the optimization problem is to minimize the weighted square of the difference between the measured and the estimated quantity. The proposed method of state estimation considers bus voltage magnitude and phase angle as state variable along with some equality and inequality constraints for state estimation in distribution networks. A rule based fuzzy inference system has been designed to control the parameters of the CSS algorithm to achieve better balance between the exploration and exploitation capability of the algorithm. The efficiency of the proposed fuzzy adaptive charged system search (FACSS algorithm has been tested on standard IEEE 33-bus system and Indian 85-bus practical radial distribution system. The obtained results have been compared with the conventional CSS algorithm, weighted least square (WLS algorithm and particle swarm optimization (PSO for feasibility of the algorithm.

  18. Harmony search algorithm for solving combined heat and power economic dispatch problems

    Energy Technology Data Exchange (ETDEWEB)

    Khorram, Esmaile, E-mail: eskhor@aut.ac.i [Department of Applied Mathematics, Faculty of Mathematics and Computer Science, Amirkabir University of Technology, No. 424, Hafez Ave., 15914 Tehran (Iran, Islamic Republic of); Jaberipour, Majid, E-mail: Majid.Jaberipour@gmail.co [Department of Applied Mathematics, Faculty of Mathematics and Computer Science, Amirkabir University of Technology, No. 424, Hafez Ave., 15914 Tehran (Iran, Islamic Republic of)

    2011-02-15

    Economic dispatch (ED) is one of the key optimization problems in electric power system operation. The problem grows complex if one or more units produce both power and heat. Combined heat and power economic dispatch (CHPED) problem is a complicated problem that needs powerful methods to solve. This paper presents a harmony search (EDHS) algorithm to solve CHPED. Some standard examples are presented to demonstrate the effectiveness of this algorithm in obtaining the optimal solution. In all cases, the solutions obtained using EDHS algorithm are better than those obtained by other methods.

  19. An iterative algorithm for calculating stylus radius unambiguously

    International Nuclear Information System (INIS)

    Vorburger, T V; Zheng, A; Renegar, T B; Song, J-F; Ma, L

    2011-01-01

    The stylus radius is an important specification for stylus instruments and is commonly provided by instrument manufacturers. However, it is difficult to measure the stylus radius unambiguously. Accurate profiles of the stylus tip may be obtained by profiling over an object sharper than itself, such as a razor blade. However, the stylus profile thus obtained is a partial arc, and unless the shape of the stylus tip is a perfect sphere or circle, the effective value of the radius depends on the length of the tip profile over which the radius is determined. We have developed an iterative, least squares algorithm aimed to determine the effective least squares stylus radius unambiguously. So far, the algorithm converges to reasonable results for the least squares stylus radius. We suggest that the algorithm be considered for adoption in documentary standards describing the properties of stylus instruments.

  20. Status Report on the First Round of the Development of the Advanced Encryption Standard

    Science.gov (United States)

    Nechvatal, James; Barker, Elaine; Dodson, Donna; Dworkin, Morris; Foti, James; Roback, Edward

    1999-01-01

    In 1997, the National Institute of Standards and Technology (NIST) initiated a process to select a symmetric-key encryption algorithm to be used to protect sensitive (unclassified) Federal information in furtherance of NIST’s statutory responsibilities. In 1998, NIST announced the acceptance of 15 candidate algorithms and requested the assistance of the cryptographic research community in analyzing the candidates. This analysis included an initial examination of the security and efficiency characteristics for each algorithm. NIST has reviewed the results of this research and selected five algorithms (MARS, RC6™, Rijndael, Serpent and Twofish) as finalists. The research results and rationale for the selection of the finalists are documented in this report. The five finalists will be the subject of further study before the selection of one or more of these algorithms for inclusion in the Advanced Encryption Standard.

  1. Algorithms for Computation of Fundamental Properties of Seawater. Endorsed by Unesco/SCOR/ICES/IAPSO Joint Panel on Oceanographic Tables and Standards and SCOR Working Group 51. Unesco Technical Papers in Marine Science, No. 44.

    Science.gov (United States)

    Fofonoff, N. P.; Millard, R. C., Jr.

    Algorithms for computation of fundamental properties of seawater, based on the practicality salinity scale (PSS-78) and the international equation of state for seawater (EOS-80), are compiled in the present report for implementing and standardizing computer programs for oceanographic data processing. Sample FORTRAN subprograms and tables are given…

  2. Myocardial perfusion magnetic resonance imaging using sliding-window conjugate-gradient highly constrained back-projection reconstruction for detection of coronary artery disease.

    Science.gov (United States)

    Ma, Heng; Yang, Jun; Liu, Jing; Ge, Lan; An, Jing; Tang, Qing; Li, Han; Zhang, Yu; Chen, David; Wang, Yong; Liu, Jiabin; Liang, Zhigang; Lin, Kai; Jin, Lixin; Bi, Xiaoming; Li, Kuncheng; Li, Debiao

    2012-04-15

    Myocardial perfusion magnetic resonance imaging (MRI) with sliding-window conjugate-gradient highly constrained back-projection reconstruction (SW-CG-HYPR) allows whole left ventricular coverage, improved temporal and spatial resolution and signal/noise ratio, and reduced cardiac motion-related image artifacts. The accuracy of this technique for detecting coronary artery disease (CAD) has not been determined in a large number of patients. We prospectively evaluated the diagnostic performance of myocardial perfusion MRI with SW-CG-HYPR in patients with suspected CAD. A total of 50 consecutive patients who were scheduled for coronary angiography with suspected CAD underwent myocardial perfusion MRI with SW-CG-HYPR at 3.0 T. The perfusion defects were interpreted qualitatively by 2 blinded observers and were correlated with x-ray angiographic stenoses ≥50%. The prevalence of CAD was 56%. In the per-patient analysis, the sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of SW-CG-HYPR was 96% (95% confidence interval 82% to 100%), 82% (95% confidence interval 60% to 95%), 87% (95% confidence interval 70% to 96%), 95% (95% confidence interval 74% to100%), and 90% (95% confidence interval 82% to 98%), respectively. In the per-vessel analysis, the corresponding values were 98% (95% confidence interval 91% to 100%), 89% (95% confidence interval 80% to 94%), 86% (95% confidence interval 76% to 93%), 99% (95% confidence interval 93% to 100%), and 93% (95% confidence interval 89% to 97%), respectively. In conclusion, myocardial perfusion MRI using SW-CG-HYPR allows whole left ventricular coverage and high resolution and has high diagnostic accuracy in patients with suspected CAD. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. A Parallel, Finite-Volume Algorithm for Large-Eddy Simulation of Turbulent Flows

    Science.gov (United States)

    Bui, Trong T.

    1999-01-01

    A parallel, finite-volume algorithm has been developed for large-eddy simulation (LES) of compressible turbulent flows. This algorithm includes piecewise linear least-square reconstruction, trilinear finite-element interpolation, Roe flux-difference splitting, and second-order MacCormack time marching. Parallel implementation is done using the message-passing programming model. In this paper, the numerical algorithm is described. To validate the numerical method for turbulence simulation, LES of fully developed turbulent flow in a square duct is performed for a Reynolds number of 320 based on the average friction velocity and the hydraulic diameter of the duct. Direct numerical simulation (DNS) results are available for this test case, and the accuracy of this algorithm for turbulence simulations can be ascertained by comparing the LES solutions with the DNS results. The effects of grid resolution, upwind numerical dissipation, and subgrid-scale dissipation on the accuracy of the LES are examined. Comparison with DNS results shows that the standard Roe flux-difference splitting dissipation adversely affects the accuracy of the turbulence simulation. For accurate turbulence simulations, only 3-5 percent of the standard Roe flux-difference splitting dissipation is needed.

  4. A modified genetic algorithm with fuzzy roulette wheel selection for job-shop scheduling problems

    Science.gov (United States)

    Thammano, Arit; Teekeng, Wannaporn

    2015-05-01

    The job-shop scheduling problem is one of the most difficult production planning problems. Since it is in the NP-hard class, a recent trend in solving the job-shop scheduling problem is shifting towards the use of heuristic and metaheuristic algorithms. This paper proposes a novel metaheuristic algorithm, which is a modification of the genetic algorithm. This proposed algorithm introduces two new concepts to the standard genetic algorithm: (1) fuzzy roulette wheel selection and (2) the mutation operation with tabu list. The proposed algorithm has been evaluated and compared with several state-of-the-art algorithms in the literature. The experimental results on 53 JSSPs show that the proposed algorithm is very effective in solving the combinatorial optimization problems. It outperforms all state-of-the-art algorithms on all benchmark problems in terms of the ability to achieve the optimal solution and the computational time.

  5. Structure-preserving geometric algorithms for plasma physics and beam physics

    Science.gov (United States)

    Qin, Hong

    2017-10-01

    Standard algorithms in the plasma physics and beam physics do not possess the long-term accuracy and fidelity required in the study of multi-scale dynamics, because they do not preserve the geometric structures of the physical systems, such as the local energy-momentum conservation, symplectic structure and gauge symmetry. As a result, numerical errors accumulate coherently with time and long-term simulation results are not reliable. To overcome this difficulty, since 2008 structure-preserving geometric algorithms have been developed. This new generation of algorithms utilizes advanced techniques, such as interpolating differential forms, canonical and non-canonical symplectic integrators, and finite element exterior calculus to guarantee gauge symmetry and charge conservation, and the conservation of energy-momentum and symplectic structure. It is our vision that future numerical capabilities in plasma physics and beam physics will be based on the structure-preserving geometric algorithms.

  6. A comparison between the conventional manual ROI method and an automatic algorithm for semiquantitative analysis of SPECT studies

    International Nuclear Information System (INIS)

    Pagan, L; Novi, B; Guidarelli, G; Tranfaglia, C; Galli, S; Lucchi, G; Fagioli, G

    2011-01-01

    In this study, the performance of a free software for automatic segmentation of striatal SPECT brain studies (BasGanV2 - www.aimn.it) and a standard manual Region Of Interest (ROI) method were compared. The anthropomorphic Alderson RSD phantom, filled with solutions at different concentration of 123 I-FP-CIT with Caudate-Putamen to Background ratios between 1 and 8.7 and Caudate to Putamen ratios between 1 and 2, was imaged on a Philips-Irix triple head gamma camera. Images were reconstructed using filtered back-projection and processed with both BasGanV2, that provides normalized striatal uptake values on volumetric anatomical ROIs, and a manual method, based on average counts per voxel in ROIs drawn in a three-slice section. Caudate-Putamen/Background and Caudate/Putamen ratios obtained with the two methods were compared with true experimental ratios. Good correlation was found for each method; BasGanV2, however, has higher R index (BasGan R mean = 0.95, p mean = 0.89, p 123 I-FP-CIT SPECT data with, moreover, the advantage of the availability of a control subject's database.

  7. The impact of reconstruction method on the quantification of DaTSCAN images

    Energy Technology Data Exchange (ETDEWEB)

    Dickson, John C.; Erlandsson, Kjell; Hutton, Brian F. [UCLH NHS Foundation Trust and University College London, Institute of Nuclear Medicine, London (United Kingdom); Tossici-Bolt, Livia [Southampton University Hospitals NHS Trust, Department of Medical Physics, Southampton (United Kingdom); Sera, Terez [University of Szeged, Department of Nuclear Medicine and Euromedic Szeged, Szeged (Hungary); Varrone, Andrea [Psychiatry Section and Stockholm Brain Institute, Karolinska Institute, Department of Clinical Neuroscience, Stockholm (Sweden); Tatsch, Klaus [EANM/European Network of Excellence for Brain Imaging, Vienna (Austria)

    2010-01-15

    Reconstruction of DaTSCAN brain studies using OS-EM iterative reconstruction offers better image quality and more accurate quantification than filtered back-projection. However, reconstruction must proceed for a sufficient number of iterations to achieve stable and accurate data. This study assessed the impact of the number of iterations on the image quantification, comparing the results of the iterative reconstruction with filtered back-projection data. A striatal phantom filled with {sup 123}I using striatal to background ratios between 2:1 and 10:1 was imaged on five different gamma camera systems. Data from each system were reconstructed using OS-EM (which included depth-independent resolution recovery) with various combinations of iterations and subsets to achieve up to 200 EM-equivalent iterations and with filtered back-projection. Using volume of interest analysis, the relationships between image reconstruction strategy and quantification of striatal uptake were assessed. For phantom filling ratios of 5:1 or less, significant convergence of measured ratios occurred close to 100 EM-equivalent iterations, whereas for higher filling ratios, measured uptake ratios did not display a convergence pattern. Assessment of the count concentrations used to derive the measured uptake ratio showed that nonconvergence of low background count concentrations caused peaking in higher measured uptake ratios. Compared to filtered back-projection, OS-EM displayed larger uptake ratios because of the resolution recovery applied in the iterative algorithm. The number of EM-equivalent iterations used in OS-EM reconstruction influences the quantification of DaTSCAN studies because of incomplete convergence and possible bias in areas of low activity due to the nonnegativity constraint in OS-EM reconstruction. Nevertheless, OS-EM using 100 EM-equivalent iterations provides the best linear discriminatory measure to quantify the uptake in DaTSCAN studies. (orig.)

  8. Improved non-LTE simulation algorithm

    Science.gov (United States)

    Busquet, Michel; Klapisch, Marcel; Colombant, Denis; Fyfe, David; Gardner, John

    2008-11-01

    The RAdiation Dependent Ionization Model (RADIOM)- a.k.a Busquet's model-[1] has proven its success in simulating non --LTE effects in laser fusion plasmas [2]. This improved algorithm can take into account Auger effect by a new parameter fitted to SCROLL [3] results. It is independent of the photon binning thanks to a projection on a standard grid. It guarantees smoother convergence to LTE. This algorithm has been implemented in a new way in the hydro-code FASTnD. Hydro simulations on the recent subMJ targets[4], with and without non-LTE corrections will be shown. [1] M. Busquet, Phys. Fluids B 5, 4191(1993). [2] D.G. Colombant et al, Phys. Plas. 7,2046 (2000). [3] A. Bar-Shalom, J. Oreg M. Klapisch, J. Quant. Spectr. Rad. Transf. 65 ,43 (2000). [4] S. P. Obenschain, D. G. Colombant, A. J. Schmitt et al., Phys. Plasmas 13, 056320 (2006).

  9. Modified cuckoo search: A new gradient free optimisation algorithm

    International Nuclear Information System (INIS)

    Walton, S.; Hassan, O.; Morgan, K.; Brown, M.R.

    2011-01-01

    Highlights: → Modified cuckoo search (MCS) is a new gradient free optimisation algorithm. → MCS shows a high convergence rate, able to outperform other optimisers. → MCS is particularly strong at high dimension objective functions. → MCS performs well when applied to engineering problems. - Abstract: A new robust optimisation algorithm, which can be regarded as a modification of the recently developed cuckoo search, is presented. The modification involves the addition of information exchange between the top eggs, or the best solutions. Standard optimisation benchmarking functions are used to test the effects of these modifications and it is demonstrated that, in most cases, the modified cuckoo search performs as well as, or better than, the standard cuckoo search, a particle swarm optimiser, and a differential evolution strategy. In particular the modified cuckoo search shows a high convergence rate to the true global minimum even at high numbers of dimensions.

  10. Histogram-driven cupping correction (HDCC) in CT

    Science.gov (United States)

    Kyriakou, Y.; Meyer, M.; Lapp, R.; Kalender, W. A.

    2010-04-01

    Typical cupping correction methods are pre-processing methods which require either pre-calibration measurements or simulations of standard objects to approximate and correct for beam hardening and scatter. Some of them require the knowledge of spectra, detector characteristics, etc. The aim of this work was to develop a practical histogram-driven cupping correction (HDCC) method to post-process the reconstructed images. We use a polynomial representation of the raw-data generated by forward projection of the reconstructed images; forward and backprojection are performed on graphics processing units (GPU). The coefficients of the polynomial are optimized using a simplex minimization of the joint entropy of the CT image and its gradient. The algorithm was evaluated using simulations and measurements of homogeneous and inhomogeneous phantoms. For the measurements a C-arm flat-detector CT (FD-CT) system with a 30×40 cm2 detector, a kilovoltage on board imager (radiation therapy simulator) and a micro-CT system were used. The algorithm reduced cupping artifacts both in simulations and measurements using a fourth-order polynomial and was in good agreement to the reference. The minimization algorithm required less than 70 iterations to adjust the coefficients only performing a linear combination of basis images, thus executing without time consuming operations. HDCC reduced cupping artifacts without the necessity of pre-calibration or other scan information enabling a retrospective improvement of CT image homogeneity. However, the method can work with other cupping correction algorithms or in a calibration manner, as well.

  11. A comparison of three optimization algorithms for intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Pflugfelder, D.; Wilkens, J.J.; Nill, S.; Oelfke, U.

    2008-01-01

    In intensity modulated treatment techniques, the modulation of each treatment field is obtained using an optimization algorithm. Multiple optimization algorithms have been proposed in the literature, e.g. steepest descent, conjugate gradient, quasi-Newton methods to name a few. The standard optimization algorithm in our in-house inverse planning tool KonRad is a quasi-Newton algorithm. Although this algorithm yields good results, it also has some drawbacks. Thus we implemented an improved optimization algorithm based on the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) routine. In this paper the improved optimization algorithm is described. To compare the two algorithms, several treatment plans are optimized using both algorithms. This included photon (IMRT) as well as proton (IMPT) intensity modulated therapy treatment plans. To present the results in a larger context the widely used conjugate gradient algorithm was also included into this comparison. On average, the improved optimization algorithm was six times faster to reach the same objective function value. However, it resulted not only in an acceleration of the optimization. Due to the faster convergence, the improved optimization algorithm usually terminates the optimization process at a lower objective function value. The average of the observed improvement in the objective function value was 37%. This improvement is clearly visible in the corresponding dose-volume-histograms. The benefit of the improved optimization algorithm is particularly pronounced in proton therapy plans. The conjugate gradient algorithm ranked in between the other two algorithms with an average speedup factor of two and an average improvement of the objective function value of 30%. (orig.)

  12. Direct cone beam SPECT reconstruction with camera tilt

    International Nuclear Information System (INIS)

    Jianying Li; Jaszczak, R.J.; Greer, K.L.; Coleman, R.E.; Zongjian Cao; Tsui, B.M.W.

    1993-01-01

    A filtered backprojection (FBP) algorithm is derived to perform cone beam (CB) single-photon emission computed tomography (SPECT) reconstruction with camera tilt using circular orbits. This algorithm reconstructs the tilted angle CB projection data directly by incorporating the tilt angle into it. When the tilt angle becomes zero, this algorithm reduces to that of Feldkamp. Experimentally acquired phantom studies using both a two-point source and the three-dimensional Hoffman brain phantom have been performed. The transaxial tilted cone beam brain images and profiles obtained using the new algorithm are compared with those without camera tilt. For those slices which have approximately the same distance from the detector in both tilt and non-tilt set-ups, the two transaxial reconstructions have similar profiles. The two-point source images reconstructed from this new algorithm and the tilted cone beam brain images are also compared with those reconstructed from the existing tilted cone beam algorithm. (author)

  13. Selfish Gene Algorithm Vs Genetic Algorithm: A Review

    Science.gov (United States)

    Ariff, Norharyati Md; Khalid, Noor Elaiza Abdul; Hashim, Rathiah; Noor, Noorhayati Mohamed

    2016-11-01

    Evolutionary algorithm is one of the algorithms inspired by the nature. Within little more than a decade hundreds of papers have reported successful applications of EAs. In this paper, the Selfish Gene Algorithms (SFGA), as one of the latest evolutionary algorithms (EAs) inspired from the Selfish Gene Theory which is an interpretation of Darwinian Theory ideas from the biologist Richards Dawkins on 1989. In this paper, following a brief introduction to the Selfish Gene Algorithm (SFGA), the chronology of its evolution is presented. It is the purpose of this paper is to present an overview of the concepts of Selfish Gene Algorithm (SFGA) as well as its opportunities and challenges. Accordingly, the history, step involves in the algorithm are discussed and its different applications together with an analysis of these applications are evaluated.

  14. Computer-Based Algorithmic Determination of Muscle Movement Onset Using M-Mode Ultrasonography

    Science.gov (United States)

    2017-05-01

    statistical analysis. Given the large number of MO algorithms, poorly performing algorithms were systematically eliminated from further evaluation. First...very large data sets (Kaufman and Rousseeuw 2005). The three algo- rithms with the closest proximity (i.e., highest similarity) to the gold-standard...but lowering the thresholds will likely increase the chances of premature onset detection. Additionally, although theFig. 4. Forest plot of mean

  15. Multi-band algorithms for the estimation of chlorophyll concentration in the Chesapeake Bay

    KAUST Repository

    Gilerson, Alexander

    2015-10-14

    Standard blue-green ratio algorithms do not usually work well in turbid productive waters because of the contamination of the blue and green bands by CDOM absorption and scattering by non-algal particles. One of the alternative approaches is based on the two- or three band ratio algorithms in the red/NIR part of the spectrum, which require 665, 708, 753 nm bands (or similar) and which work well in various waters all over the world. The critical 708 nm band for these algorithms is not available on MODIS and VIIRS sensors, which limits applications of this approach. We report on another approach where a combination of the 745nm band with blue-green-red bands was the basis for the new algorithms. A multi-band algorithm which includes ratios Rrs(488)/Rrs(551)and Rrs(671)/Rrs(745) and two band algorithm based on Rrs671/Rrs745 ratio were developed with the main focus on the Chesapeake Bay (USA) waters. These algorithms were tested on the specially developed synthetic datasets, well representing the main relationships between water parameters in the Bay taken from the NASA NOMAD database and available literature, on the field data collected by our group during a 2013 campaign in the Bay, as well as NASA SeaBASS data from the other group and on matchups between satellite imagery and water parameters measured by the Chesapeake Bay program. Our results demonstrate that the coefficient of determination can be as high as R2 > 0.90 for the new algorithms in comparison with R2 = 0.6 for the standard OC3V algorithm on the same field dataset. Substantial improvement was also achieved by applying a similar approach (inclusion of Rrs(667)/Rrs(753) ratio) for MODIS matchups. Results for VIIRS are not yet conclusive. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  16. Algorithms

    Indian Academy of Sciences (India)

    to as 'divide-and-conquer'. Although there has been a large effort in realizing efficient algorithms, there are not many universally accepted algorithm design paradigms. In this article, we illustrate algorithm design techniques such as balancing, greedy strategy, dynamic programming strategy, and backtracking or traversal of ...

  17. An innovative localisation algorithm for railway vehicles

    Science.gov (United States)

    Allotta, B.; D'Adamio, P.; Malvezzi, M.; Pugi, L.; Ridolfi, A.; Rindi, A.; Vettori, G.

    2014-11-01

    In modern railway automatic train protection and automatic train control systems, odometry is a safety relevant on-board subsystem which estimates the instantaneous speed and the travelled distance of the train; a high reliability of the odometry estimate is fundamental, since an error on the train position may lead to a potentially dangerous overestimation of the distance available for braking. To improve the odometry estimate accuracy, data fusion of different inputs coming from a redundant sensor layout may be used. The aim of this work has been developing an innovative localisation algorithm for railway vehicles able to enhance the performances, in terms of speed and position estimation accuracy, of the classical odometry algorithms, such as the Italian Sistema Controllo Marcia Treno (SCMT). The proposed strategy consists of a sensor fusion between the information coming from a tachometer and an Inertial Measurements Unit (IMU). The sensor outputs have been simulated through a 3D multibody model of a railway vehicle. The work has provided the development of a custom IMU, designed by ECM S.p.a, in order to meet their industrial and business requirements. The industrial requirements have to be compliant with the European Train Control System (ETCS) standards: the European Rail Traffic Management System (ERTMS), a project developed by the European Union to improve the interoperability among different countries, in particular as regards the train control and command systems, fixes some standard values for the odometric (ODO) performance, in terms of speed and travelled distance estimation. The reliability of the ODO estimation has to be taken into account basing on the allowed speed profiles. The results of the currently used ODO algorithms can be improved, especially in case of degraded adhesion conditions; it has been verified in the simulation environment that the results of the proposed localisation algorithm are always compliant with the ERTMS requirements

  18. Towards a Framework for Evaluating and Comparing Diagnosis Algorithms

    Science.gov (United States)

    Kurtoglu, Tolga; Narasimhan, Sriram; Poll, Scott; Garcia,David; Kuhn, Lukas; deKleer, Johan; vanGemund, Arjan; Feldman, Alexander

    2009-01-01

    Diagnostic inference involves the detection of anomalous system behavior and the identification of its cause, possibly down to a failed unit or to a parameter of a failed unit. Traditional approaches to solving this problem include expert/rule-based, model-based, and data-driven methods. Each approach (and various techniques within each approach) use different representations of the knowledge required to perform the diagnosis. The sensor data is expected to be combined with these internal representations to produce the diagnosis result. In spite of the availability of various diagnosis technologies, there have been only minimal efforts to develop a standardized software framework to run, evaluate, and compare different diagnosis technologies on the same system. This paper presents a framework that defines a standardized representation of the system knowledge, the sensor data, and the form of the diagnosis results and provides a run-time architecture that can execute diagnosis algorithms, send sensor data to the algorithms at appropriate time steps from a variety of sources (including the actual physical system), and collect resulting diagnoses. We also define a set of metrics that can be used to evaluate and compare the performance of the algorithms, and provide software to calculate the metrics.

  19. Algorithmic mathematics

    CERN Document Server

    Hougardy, Stefan

    2016-01-01

    Algorithms play an increasingly important role in nearly all fields of mathematics. This book allows readers to develop basic mathematical abilities, in particular those concerning the design and analysis of algorithms as well as their implementation. It presents not only fundamental algorithms like the sieve of Eratosthenes, the Euclidean algorithm, sorting algorithms, algorithms on graphs, and Gaussian elimination, but also discusses elementary data structures, basic graph theory, and numerical questions. In addition, it provides an introduction to programming and demonstrates in detail how to implement algorithms in C++. This textbook is suitable for students who are new to the subject and covers a basic mathematical lecture course, complementing traditional courses on analysis and linear algebra. Both authors have given this "Algorithmic Mathematics" course at the University of Bonn several times in recent years.

  20. Performance in population models for count data, part II: a new SAEM algorithm

    Science.gov (United States)

    Savic, Radojka; Lavielle, Marc

    2009-01-01

    Analysis of count data from clinical trials using mixed effect analysis has recently become widely used. However, algorithms available for the parameter estimation, including LAPLACE and Gaussian quadrature (GQ), are associated with certain limitations, including bias in parameter estimates and the long analysis runtime. The stochastic approximation expectation maximization (SAEM) algorithm has proven to be a very efficient and powerful tool in the analysis of continuous data. The aim of this study was to implement and investigate the performance of a new SAEM algorithm for application to count data. A new SAEM algorithm was implemented in MATLAB for estimation of both, parameters and the Fisher information matrix. Stochastic Monte Carlo simulations followed by re-estimation were performed according to scenarios used in previous studies (part I) to investigate properties of alternative algorithms (1). A single scenario was used to explore six probability distribution models. For parameter estimation, the relative bias was less than 0.92% and 4.13 % for fixed and random effects, for all models studied including ones accounting for over- or under-dispersion. Empirical and estimated relative standard errors were similar, with distance between them being <1.7 % for all explored scenarios. The longest CPU time was 95s for parameter estimation and 56s for SE estimation. The SAEM algorithm was extended for analysis of count data. It provides accurate estimates of both, parameters and standard errors. The estimation is significantly faster compared to LAPLACE and GQ. The algorithm is implemented in Monolix 3.1, (beta-version available in July 2009). PMID:19680795

  1. Algorithmic Trading with Developmental and Linear Genetic Programming

    Science.gov (United States)

    Wilson, Garnett; Banzhaf, Wolfgang

    A developmental co-evolutionary genetic programming approach (PAM DGP) and a standard linear genetic programming (LGP) stock trading systemare applied to a number of stocks across market sectors. Both GP techniques were found to be robust to market fluctuations and reactive to opportunities associated with stock price rise and fall, with PAMDGP generating notably greater profit in some stock trend scenarios. Both algorithms were very accurate at buying to achieve profit and selling to protect assets, while exhibiting bothmoderate trading activity and the ability to maximize or minimize investment as appropriate. The content of the trading rules produced by both algorithms are also examined in relation to stock price trend scenarios.

  2. A hybrid neural network – world cup optimization algorithm for melanoma detection

    Directory of Open Access Journals (Sweden)

    Razmjooy Navid

    2018-03-01

    Full Text Available One of the most dangerous cancers in humans is Melanoma. However, early detection of melanoma can help us to cure it completely. This paper presents a new efficient method to detect malignancy in melanoma via images. At first, the extra scales are eliminated by using edge detection and smoothing. Afterwards, the proposed method can be utilized to segment the cancer images. Finally, the extra information is eliminated by morphological operations and used to focus on the area which melanoma boundary potentially exists. To do this, World Cup Optimization algorithm is utilized to optimize an MLP neural Networks (ANN. World Cup Optimization algorithm is a new meta-heuristic algorithm which is recently presented and has a good performance in some optimization problems. WCO is a derivative-free, Meta-Heuristic algorithm, mimicking the world’s FIFA competitions. World cup Optimization algorithm is a global search algorithm while gradient-based back propagation method is local search. In this proposed algorithm, multi-layer perceptron network (MLP employs the problem’s constraints and WCO algorithm attempts to minimize the root mean square error. Experimental results show that the proposed method can develop the performance of the standard MLP algorithm significantly.

  3. Crystal structure prediction of flexible molecules using parallel genetic algorithms with a standard force field.

    Science.gov (United States)

    Kim, Seonah; Orendt, Anita M; Ferraro, Marta B; Facelli, Julio C

    2009-10-01

    This article describes the application of our distributed computing framework for crystal structure prediction (CSP) the modified genetic algorithms for crystal and cluster prediction (MGAC), to predict the crystal structure of flexible molecules using the general Amber force field (GAFF) and the CHARMM program. The MGAC distributed computing framework includes a series of tightly integrated computer programs for generating the molecule's force field, sampling crystal structures using a distributed parallel genetic algorithm and local energy minimization of the structures followed by the classifying, sorting, and archiving of the most relevant structures. Our results indicate that the method can consistently find the experimentally known crystal structures of flexible molecules, but the number of missing structures and poor ranking observed in some crystals show the need for further improvement of the potential. Copyright 2009 Wiley Periodicals, Inc.

  4. SU-E-J-218: Evaluation of CT Images Created Using a New Metal Artifact Reduction Reconstruction Algorithm for Radiation Therapy Treatment Planning

    Energy Technology Data Exchange (ETDEWEB)

    Niemkiewicz, J; Palmiotti, A; Miner, M; Stunja, L; Bergene, J [Lehigh Valley Health Network, Allentown, PA (United States)

    2014-06-01

    Purpose: Metal in patients creates streak artifacts in CT images. When used for radiation treatment planning, these artifacts make it difficult to identify internal structures and affects radiation dose calculations, which depend on HU numbers for inhomogeneity correction. This work quantitatively evaluates a new metal artifact reduction (MAR) CT image reconstruction algorithm (GE Healthcare CT-0521-04.13-EN-US DOC1381483) when metal is present. Methods: A Gammex Model 467 Tissue Characterization phantom was used. CT images were taken of this phantom on a GE Optima580RT CT scanner with and without steel and titanium plugs using both the standard and MAR reconstruction algorithms. HU values were compared pixel by pixel to determine if the MAR algorithm altered the HUs of normal tissues when no metal is present, and to evaluate the effect of using the MAR algorithm when metal is present. Also, CT images of patients with internal metal objects using standard and MAR reconstruction algorithms were compared. Results: Comparing the standard and MAR reconstructed images of the phantom without metal, 95.0% of pixels were within ±35 HU and 98.0% of pixels were within ±85 HU. Also, the MAR reconstruction algorithm showed significant improvement in maintaining HUs of non-metallic regions in the images taken of the phantom with metal. HU Gamma analysis (2%, 2mm) of metal vs. non-metal phantom imaging using standard reconstruction resulted in an 84.8% pass rate compared to 96.6% for the MAR reconstructed images. CT images of patients with metal show significant artifact reduction when reconstructed with the MAR algorithm. Conclusion: CT imaging using the MAR reconstruction algorithm provides improved visualization of internal anatomy and more accurate HUs when metal is present compared to the standard reconstruction algorithm. MAR reconstructed CT images provide qualitative and quantitative improvements over current reconstruction algorithms, thus improving radiation

  5. SU-E-J-218: Evaluation of CT Images Created Using a New Metal Artifact Reduction Reconstruction Algorithm for Radiation Therapy Treatment Planning

    International Nuclear Information System (INIS)

    Niemkiewicz, J; Palmiotti, A; Miner, M; Stunja, L; Bergene, J

    2014-01-01

    Purpose: Metal in patients creates streak artifacts in CT images. When used for radiation treatment planning, these artifacts make it difficult to identify internal structures and affects radiation dose calculations, which depend on HU numbers for inhomogeneity correction. This work quantitatively evaluates a new metal artifact reduction (MAR) CT image reconstruction algorithm (GE Healthcare CT-0521-04.13-EN-US DOC1381483) when metal is present. Methods: A Gammex Model 467 Tissue Characterization phantom was used. CT images were taken of this phantom on a GE Optima580RT CT scanner with and without steel and titanium plugs using both the standard and MAR reconstruction algorithms. HU values were compared pixel by pixel to determine if the MAR algorithm altered the HUs of normal tissues when no metal is present, and to evaluate the effect of using the MAR algorithm when metal is present. Also, CT images of patients with internal metal objects using standard and MAR reconstruction algorithms were compared. Results: Comparing the standard and MAR reconstructed images of the phantom without metal, 95.0% of pixels were within ±35 HU and 98.0% of pixels were within ±85 HU. Also, the MAR reconstruction algorithm showed significant improvement in maintaining HUs of non-metallic regions in the images taken of the phantom with metal. HU Gamma analysis (2%, 2mm) of metal vs. non-metal phantom imaging using standard reconstruction resulted in an 84.8% pass rate compared to 96.6% for the MAR reconstructed images. CT images of patients with metal show significant artifact reduction when reconstructed with the MAR algorithm. Conclusion: CT imaging using the MAR reconstruction algorithm provides improved visualization of internal anatomy and more accurate HUs when metal is present compared to the standard reconstruction algorithm. MAR reconstructed CT images provide qualitative and quantitative improvements over current reconstruction algorithms, thus improving radiation

  6. Search and optimization by metaheuristics techniques and algorithms inspired by nature

    CERN Document Server

    Du, Ke-Lin

    2016-01-01

    This textbook provides a comprehensive introduction to nature-inspired metaheuristic methods for search and optimization, including the latest trends in evolutionary algorithms and other forms of natural computing. Over 100 different types of these methods are discussed in detail. The authors emphasize non-standard optimization problems and utilize a natural approach to the topic, moving from basic notions to more complex ones. An introductory chapter covers the necessary biological and mathematical backgrounds for understanding the main material. Subsequent chapters then explore almost all of the major metaheuristics for search and optimization created based on natural phenomena, including simulated annealing, recurrent neural networks, genetic algorithms and genetic programming, differential evolution, memetic algorithms, particle swarm optimization, artificial immune systems, ant colony optimization, tabu search and scatter search, bee and bacteria foraging algorithms, harmony search, biomolecular computin...

  7. Programming Deep Brain Stimulation for Tremor and Dystonia: The Toronto Western Hospital Algorithms.

    Science.gov (United States)

    Picillo, Marina; Lozano, Andres M; Kou, Nancy; Munhoz, Renato Puppi; Fasano, Alfonso

    2016-01-01

    Deep brain stimulation (DBS) is an effective treatment for essential tremor (ET) and dystonia. After surgery, a number of extensive programming sessions are performed, mainly relying on neurologist's personal experience as no programming guidelines have been provided so far, with the exception of recommendations provided by groups of experts. Finally, fewer information is available for the management of DBS in ET and dystonia compared with Parkinson's disease. Our aim is to review the literature on initial and follow-up DBS programming procedures for ET and dystonia and integrate the results with our current practice at Toronto Western Hospital (TWH) to develop standardized DBS programming protocols. We conducted a literature search of PubMed from inception to July 2014 with the keywords "balance", "bradykinesia", "deep brain stimulation", "dysarthria", "dystonia", "gait disturbances", "initial programming", "loss of benefit", "micrographia", "speech", "speech difficulties" and "tremor". Seventy-six papers were considered for this review. Based on the literature review and our experience at TWH, we refined three algorithms for management of ET, including: (1) initial programming, (2) management of balance and speech issues and (3) loss of stimulation benefit. We also depicted algorithms for the management of dystonia, including: (1) initial programming and (2) management of stimulation-induced hypokinesia (shuffling gait, micrographia and speech impairment). We propose five algorithms tailored to an individualized approach to managing ET and dystonia patients with DBS. We encourage the application of these algorithms to supplement current standards of care in established as well as new DBS centers to test the clinical usefulness of these algorithms in supplementing the current standards of care. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Development of web-based reliability data analysis algorithm model and its application

    International Nuclear Information System (INIS)

    Hwang, Seok-Won; Oh, Ji-Yong; Moosung-Jae

    2010-01-01

    For this study, a database model of plant reliability was developed for the effective acquisition and management of plant-specific data that can be used in various applications of plant programs as well as in Probabilistic Safety Assessment (PSA). Through the development of a web-based reliability data analysis algorithm, this approach systematically gathers specific plant data such as component failure history, maintenance history, and shift diary. First, for the application of the developed algorithm, this study reestablished the raw data types, data deposition procedures and features of the Enterprise Resource Planning (ERP) system process. The component codes and system codes were standardized to make statistical analysis between different types of plants possible. This standardization contributes to the establishment of a flexible database model that allows the customization of reliability data for the various applications depending on component types and systems. In addition, this approach makes it possible for users to perform trend analyses and data comparisons for the significant plant components and systems. The validation of the algorithm is performed through a comparison of the importance measure value (Fussel-Vesely) of the mathematical calculation and that of the algorithm application. The development of a reliability database algorithm is one of the best approaches for providing systemic management of plant-specific reliability data with transparency and continuity. This proposed algorithm reinforces the relationships between raw data and application results so that it can provide a comprehensive database that offers everything from basic plant-related data to final customized data.

  9. Development of web-based reliability data analysis algorithm model and its application

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Seok-Won, E-mail: swhwang@khnp.co.k [Korea Hydro and Nuclear Power Co. Ltd., Jang-Dong 25-1, Yuseong-Gu, 305-343 Daejeon (Korea, Republic of); Oh, Ji-Yong [Korea Hydro and Nuclear Power Co. Ltd., Jang-Dong 25-1, Yuseong-Gu, 305-343 Daejeon (Korea, Republic of); Moosung-Jae [Department of Nuclear Engineering Hanyang University 17 Haengdang, Sungdong, Seoul (Korea, Republic of)

    2010-02-15

    For this study, a database model of plant reliability was developed for the effective acquisition and management of plant-specific data that can be used in various applications of plant programs as well as in Probabilistic Safety Assessment (PSA). Through the development of a web-based reliability data analysis algorithm, this approach systematically gathers specific plant data such as component failure history, maintenance history, and shift diary. First, for the application of the developed algorithm, this study reestablished the raw data types, data deposition procedures and features of the Enterprise Resource Planning (ERP) system process. The component codes and system codes were standardized to make statistical analysis between different types of plants possible. This standardization contributes to the establishment of a flexible database model that allows the customization of reliability data for the various applications depending on component types and systems. In addition, this approach makes it possible for users to perform trend analyses and data comparisons for the significant plant components and systems. The validation of the algorithm is performed through a comparison of the importance measure value (Fussel-Vesely) of the mathematical calculation and that of the algorithm application. The development of a reliability database algorithm is one of the best approaches for providing systemic management of plant-specific reliability data with transparency and continuity. This proposed algorithm reinforces the relationships between raw data and application results so that it can provide a comprehensive database that offers everything from basic plant-related data to final customized data.

  10. Essential algorithms a practical approach to computer algorithms

    CERN Document Server

    Stephens, Rod

    2013-01-01

    A friendly and accessible introduction to the most useful algorithms Computer algorithms are the basic recipes for programming. Professional programmers need to know how to use algorithms to solve difficult programming problems. Written in simple, intuitive English, this book describes how and when to use the most practical classic algorithms, and even how to create new algorithms to meet future needs. The book also includes a collection of questions that can help readers prepare for a programming job interview. Reveals methods for manipulating common data structures s

  11. Computationally efficient real-time interpolation algorithm for non-uniform sampled biosignals.

    Science.gov (United States)

    Guven, Onur; Eftekhar, Amir; Kindt, Wilko; Constandinou, Timothy G

    2016-06-01

    This Letter presents a novel, computationally efficient interpolation method that has been optimised for use in electrocardiogram baseline drift removal. In the authors' previous Letter three isoelectric baseline points per heartbeat are detected, and here utilised as interpolation points. As an extension from linear interpolation, their algorithm segments the interpolation interval and utilises different piecewise linear equations. Thus, the algorithm produces a linear curvature that is computationally efficient while interpolating non-uniform samples. The proposed algorithm is tested using sinusoids with different fundamental frequencies from 0.05 to 0.7 Hz and also validated with real baseline wander data acquired from the Massachusetts Institute of Technology University and Boston's Beth Israel Hospital (MIT-BIH) Noise Stress Database. The synthetic data results show an root mean square (RMS) error of 0.9 μV (mean), 0.63 μV (median) and 0.6 μV (standard deviation) per heartbeat on a 1 mVp-p 0.1 Hz sinusoid. On real data, they obtain an RMS error of 10.9 μV (mean), 8.5 μV (median) and 9.0 μV (standard deviation) per heartbeat. Cubic spline interpolation and linear interpolation on the other hand shows 10.7 μV, 11.6 μV (mean), 7.8 μV, 8.9 μV (median) and 9.8 μV, 9.3 μV (standard deviation) per heartbeat.

  12. A Parallel Compact Multi-Dimensional Numerical Algorithm with Aeroacoustics Applications

    Science.gov (United States)

    Povitsky, Alex; Morris, Philip J.

    1999-01-01

    In this study we propose a novel method to parallelize high-order compact numerical algorithms for the solution of three-dimensional PDEs (Partial Differential Equations) in a space-time domain. For this numerical integration most of the computer time is spent in computation of spatial derivatives at each stage of the Runge-Kutta temporal update. The most efficient direct method to compute spatial derivatives on a serial computer is a version of Gaussian elimination for narrow linear banded systems known as the Thomas algorithm. In a straightforward pipelined implementation of the Thomas algorithm processors are idle due to the forward and backward recurrences of the Thomas algorithm. To utilize processors during this time, we propose to use them for either non-local data independent computations, solving lines in the next spatial direction, or local data-dependent computations by the Runge-Kutta method. To achieve this goal, control of processor communication and computations by a static schedule is adopted. Thus, our parallel code is driven by a communication and computation schedule instead of the usual "creative, programming" approach. The obtained parallelization speed-up of the novel algorithm is about twice as much as that for the standard pipelined algorithm and close to that for the explicit DRP algorithm.

  13. Standard random number generation for MBASIC

    Science.gov (United States)

    Tausworthe, R. C.

    1976-01-01

    A machine-independent algorithm is presented and analyzed for generating pseudorandom numbers suitable for the standard MBASIC system. The algorithm used is the polynomial congruential or linear recurrence modulo 2 method. Numbers, formed as nonoverlapping adjacent 28-bit words taken from the bit stream produced by the formula a sub m + 532 = a sub m + 37 + a sub m (modulo 2), do not repeat within the projected age of the solar system, show no ensemble correlation, exhibit uniform distribution of adjacent numbers up to 19 dimensions, and do not deviate from random runs-up and runs-down behavior.

  14. Algorithmic cryptanalysis

    CERN Document Server

    Joux, Antoine

    2009-01-01

    Illustrating the power of algorithms, Algorithmic Cryptanalysis describes algorithmic methods with cryptographically relevant examples. Focusing on both private- and public-key cryptographic algorithms, it presents each algorithm either as a textual description, in pseudo-code, or in a C code program.Divided into three parts, the book begins with a short introduction to cryptography and a background chapter on elementary number theory and algebra. It then moves on to algorithms, with each chapter in this section dedicated to a single topic and often illustrated with simple cryptographic applic

  15. EDITORIAL: Special issue on time scale algorithms

    Science.gov (United States)

    Matsakis, Demetrios; Tavella, Patrizia

    2008-12-01

    This special issue of Metrologia presents selected papers from the Fifth International Time Scale Algorithm Symposium (VITSAS), including some of the tutorials presented on the first day. The symposium was attended by 76 persons, from every continent except Antarctica, by students as well as senior scientists, and hosted by the Real Instituto y Observatorio de la Armada (ROA) in San Fernando, Spain, whose staff further enhanced their nation's high reputation for hospitality. Although a timescale can be simply defined as a weighted average of clocks, whose purpose is to measure time better than any individual clock, timescale theory has long been and continues to be a vibrant field of research that has both followed and helped to create advances in the art of timekeeping. There is no perfect timescale algorithm, because every one embodies a compromise involving user needs. Some users wish to generate a constant frequency, perhaps not necessarily one that is well-defined with respect to the definition of a second. Other users might want a clock which is as close to UTC or a particular reference clock as possible, or perhaps wish to minimize the maximum variation from that standard. In contrast to the steered timescales that would be required by those users, other users may need free-running timescales, which are independent of external information. While no algorithm can meet all these needs, every algorithm can benefit from some form of tuning. The optimal tuning, and even the optimal algorithm, can depend on the noise characteristics of the frequency standards, or of their comparison systems, the most precise and accurate of which are currently Two Way Satellite Time and Frequency Transfer (TWSTFT) and GPS carrier phase time transfer. The interest in time scale algorithms and its associated statistical methodology began around 40 years ago when the Allan variance appeared and when the metrological institutions started realizing ensemble atomic time using more than

  16. Applicability of a set of tomographic reconstruction algorithms for quantitative SPECT on irradiated nuclear fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsson Svärd, Staffan, E-mail: staffan.jacobsson_svard@physics.uu.se; Holcombe, Scott; Grape, Sophie

    2015-05-21

    assessment, which may be particularly useful in the latter application. Two main classes of algorithms are covered; (1) analytic filtered back-projection algorithms, and (2) a group of model-based or algebraic algorithms. For the former class, a basic algorithm has been implemented, which does not take attenuation in the materials of the fuel assemblies into account and which assumes an idealized imaging geometry. In addition, a novel methodology has been presented for introducing a first-order correction to the obtained images for these deficits; in particular, the effects of attenuation are taken into account by modelling the response for an object with a homogeneous mix of fuel materials in the image area. Neither the basic algorithm, nor the correction method requires prior knowledge of the fuel geometry, but they result in images of the assembly's internal activity distribution. Image analysis is then applied to deduce quantitative information. Two algebraic algorithms are also presented, which model attenuation in the fuel assemblies to different degrees; either assuming a homogenous mix of materials in the image area without a priori information or utilizing known information of the assembly geometry and of its position in the measuring setup for modelling the gamma-ray attenuation in detail. Both algorithms model the detection system in detail. The former algorithm returns an image of the cross-section of the object, from which quantitative information is extracted, whereas the latter returns conclusive relative rod-by-rod data. Here, all reconstruction methods are demonstrated on simulated data of a 96-rod fuel assembly in a tomographic measurement setup. The assembly was simulated with the same activity content in all rods for evaluation purposes. Based on the results, it is argued that the choice of algorithm to a large degree depends on application, and also that a combination of reconstruction methods may be useful. A discussion on alternative analysis

  17. Technological features and clinical feasibility of megavoltage CT scanning

    International Nuclear Information System (INIS)

    Nakagawa, Keiichi; Aoki, Yukimasa; Akanuma, Atsuo; Sakata, Kouichi; Karasawa, Katsuyuki; Terahara, Atsurou; Onogi, Yuzou; Hasezawa, Kenji; Sasaki, Yasuhito

    1992-01-01

    Megavoltage CT scanning using 4-MV and 6-MV radiotherapy beams has been developed and applied to verify errors in patient positioning. A detector system composed of 120 pairs of cadmium tungstate scintillators with photodiodes is mounted to the treatment unit at a distance of 160 cm from the beam source. Image reconstruction is performed with a standard filtered back-projection algorithm. Scanning time and reconstruction time for a slice is approximately 35 s and 60 s respectively. Although spatial resolution is as large as 4 mm, it has sufficient image quality to be applied for treatment planning and verification. The delivered dose with 4 MV and 6 MV is about 1.4 cGy and 2.8 cGy respectively. When a megavoltage CT image is taken in treatment position, the positioning errors are easily detected by comparing it with diagnostic CT sections for treatment planning. Several clinical examples are presented. (orig.)

  18. Denni Algorithm An Enhanced Of SMS (Scan, Move and Sort) Algorithm

    Science.gov (United States)

    Aprilsyah Lubis, Denni; Salim Sitompul, Opim; Marwan; Tulus; Andri Budiman, M.

    2017-12-01

    Sorting has been a profound area for the algorithmic researchers, and many resources are invested to suggest a more working sorting algorithm. For this purpose many existing sorting algorithms were observed in terms of the efficiency of the algorithmic complexity. Efficient sorting is important to optimize the use of other algorithms that require sorted lists to work correctly. Sorting has been considered as a fundamental problem in the study of algorithms that due to many reasons namely, the necessary to sort information is inherent in many applications, algorithms often use sorting as a key subroutine, in algorithm design there are many essential techniques represented in the body of sorting algorithms, and many engineering issues come to the fore when implementing sorting algorithms., Many algorithms are very well known for sorting the unordered lists, and one of the well-known algorithms that make the process of sorting to be more economical and efficient is SMS (Scan, Move and Sort) algorithm, an enhancement of Quicksort invented Rami Mansi in 2010. This paper presents a new sorting algorithm called Denni-algorithm. The Denni algorithm is considered as an enhancement on the SMS algorithm in average, and worst cases. The Denni algorithm is compared with the SMS algorithm and the results were promising.

  19. Special Issue on Time Scale Algorithms

    Science.gov (United States)

    2008-01-01

    unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 IOP PUBLISHING METROLOGIA Metrologia 45 (2008) doi:10.1088/0026-1394/45/6/E01...special issue of Metrologia presents selected papers from the Fifth International Time Scale Algorithm Symposium (VITSAS), including some of the...scientists, and hosted by the Real Instituto y Observatorio de la Armada (ROA) in San Fernando, Spain, whose staff further enhanced their nation’s high

  20. Clinical algorithms to aid osteoarthritis guideline dissemination

    DEFF Research Database (Denmark)

    Meneses, S. R. F.; Goode, A. P.; Nelson, A. E

    2016-01-01

    Background: Numerous scientific organisations have developed evidence-based recommendations aiming to optimise the management of osteoarthritis (OA). Uptake, however, has been suboptimal. The purpose of this exercise was to harmonize the recent recommendations and develop a user-friendly treatment...... algorithm to facilitate translation of evidence into practice. Methods: We updated a previous systematic review on clinical practice guidelines (CPGs) for OA management. The guidelines were assessed using the Appraisal of Guidelines for Research and Evaluation for quality and the standards for developing...... to facilitate the implementation of guidelines in clinical practice are necessary. The algorithms proposed are examples of how to apply recommendations in the clinical context, helping the clinician to visualise the patient flow and timing of different treatment modalities. (C) 2016 Osteoarthritis Research...