WorldWideScience

Sample records for standard analytical models

  1. Nanometrology, Standardization and Regulation of Nanomaterials in Brazil: A Proposal for an Analytical-Prospective Model

    Directory of Open Access Journals (Sweden)

    Ana Rusmerg Giménez Ledesma

    2013-05-01

    Full Text Available The main objective of this paper is to propose an analytical-prospective model as a tool to support decision-making processes concerning metrology, standardization and regulation of nanomaterials in Brazil, based on international references and ongoing initiatives in the world. In the context of nanotechnology development in Brazil, the motivation for carrying out this research was to identify potential benefits of metrology, standardization and regulation of nanomaterials production, from the perspective of future adoption of the model by the main stakeholders of development of these areas in Brazil. The main results can be summarized as follows: (i an overview of international studies on metrology, standardization and regulation of nanomaterials, and nanoparticles, in special; (ii the analytical-prospective model; and (iii the survey questionnaire and the roadmapping tool for metrology, standardization and regulation of nanomaterials in Brazil, based on international references and ongoing initiatives in the world.

  2. Reactor Section standard analytical methods. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Sowden, D.

    1954-07-01

    the Standard Analytical Methods manual was prepared for the purpose of consolidating and standardizing all current analytical methods and procedures used in the Reactor Section for routine chemical analyses. All procedures are established in accordance with accepted practice and the general analytical methods specified by the Engineering Department. These procedures are specifically adapted to the requirements of the water treatment process and related operations. The methods included in this manual are organized alphabetically within the following five sections which correspond to the various phases of the analytical control program in which these analyses are to be used: water analyses, essential material analyses, cotton plug analyses boiler water analyses, and miscellaneous control analyses.

  3. Improved steamflood analytical model

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, S.; Mamora, D.D. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Texas A and M Univ., TX (United States)

    2005-11-01

    Predicting the performance of steam flooding can help in the proper execution of enhanced oil recovery (EOR) processes. The Jones model is often used for analytical steam flooding performance prediction, but it does not accurately predict oil production peaks. In this study, an improved steam flood model was developed by modifying 2 of the 3 components of the capture factor in the Jones model. The modifications were based on simulation results from a Society of Petroleum Engineers (SPE) comparative project case model. The production performance of a 5-spot steamflood pattern unit was simulated and compared with results obtained from the Jones model. Three reservoir types were simulated through the use of 3-D Cartesian black oil models. In order to correlate the simulation and the Jones analytical model results for the start and height of the production peak, the dimensionless steam zone size was modified to account for a decrease in oil viscosity during steam flooding and its dependence on the steam injection rate. In addition, the dimensionless volume of displaced oil produced was modified from its square-root format to an exponential form. The modified model improved results for production performance by up to 20 years of simulated steam flooding, compared to the Jones model. Results agreed with simulation results for 13 different cases, including 3 different sets of reservoir and fluid properties. Reservoir engineers will benefit from the improved accuracy of the model. Oil displacement calculations were based on methods proposed in earlier research, in which the oil displacement rate is a function of cumulative oil steam ratio. The cumulative oil steam ratio is a function of overall thermal efficiency. Capture factor component formulae were presented, as well as charts of oil production rates and cumulative oil-steam ratios for various reservoirs. 13 refs., 4 tabs., 29 figs.

  4. Local properties of analytic functions and non-standard analysis

    International Nuclear Information System (INIS)

    O'Brian, N.R.

    1976-01-01

    This is an expository account which shows how the methods of non-standard analysis can be applied to prove the Nullstellensatz for germs of analytic functions. This method of proof was discovered originally by Abraham Robinson. The necessary concepts from model theory are described in some detail and the Nullstellensatz is proved by investigating the relation between the set of infinitesimal elements in the complex n-plane and the spectrum of the ring of germs of analytic functions. (author)

  5. R2SM: a package for the analytic computation of the R2 Rational terms in the Standard Model of the Electroweak interactions

    International Nuclear Information System (INIS)

    Garzelli, M.V.

    2011-01-01

    The analytical package written in FORM presented in this paper allows the computation of the complete set of Feynman Rules producing the Rational terms of kind R 2 contributing to the virtual part of NLO corrections in the Standard Model of the Electroweak interactions. Building block topologies filled by means of generic scalars, vectors and fermions, allowing to build these Feynman Rules in terms of specific elementary particles, are explicitly given in the R ξ gauge class, together with the automatic dressing procedure to obtain the Feynman Rules from them. The results in more specific gauges, like the 't Hooft Feynman one, follow as particular cases, in both the HV and the FDH dimensional regularization schemes. As a check on our formulas, the gauge independence of the total Rational contribution (R 1 +R 2 ) to renormalized S-matrix elements is verified by considering the specific example of the H →γγ decay process at 1-loop. This package can be of interest for people aiming at a better understanding of the nature of the Rational terms. It is organized in a modular way, allowing a further use of some its files even in different contexts. Furthermore, it can be considered as a first seed in the effort towards a complete automation of the process of the analytical calculation of the R 2 effective vertices, given the Lagrangian of a generic gauge theory of particle interactions. (orig.)

  6. Analytic Modeling of Insurgencies

    Science.gov (United States)

    2014-08-01

    Counterinsurgency, Situational Awareness, Civilians, Lanchester 1. Introduction Combat modeling is one of the oldest areas of operations research, dating...Army. The ground-breaking work of Lanchester in 1916 [1] marks the beginning of formal models of conflicts, where mathematical formulas and, later...Warfare model [3], which is a Lanchester - based mathematical model (see more details about this model later on), and McCormick’s Magic Diamond model [4

  7. Automated statistical modeling of analytical measurement systems

    International Nuclear Information System (INIS)

    Jacobson, J.J.

    1992-01-01

    The statistical modeling of analytical measurement systems at the Idaho Chemical Processing Plant (ICPP) has been completely automated through computer software. The statistical modeling of analytical measurement systems is one part of a complete quality control program used by the Remote Analytical Laboratory (RAL) at the ICPP. The quality control program is an integration of automated data input, measurement system calibration, database management, and statistical process control. The quality control program and statistical modeling program meet the guidelines set forth by the American Society for Testing Materials and American National Standards Institute. A statistical model is a set of mathematical equations describing any systematic bias inherent in a measurement system and the precision of a measurement system. A statistical model is developed from data generated from the analysis of control standards. Control standards are samples which are made up at precise known levels by an independent laboratory and submitted to the RAL. The RAL analysts who process control standards do not know the values of those control standards. The object behind statistical modeling is to describe real process samples in terms of their bias and precision and, to verify that a measurement system is operating satisfactorily. The processing of control standards gives us this ability

  8. MASTERS OF ANALYTICAL TRADECRAFT: CERTIFYING THE STANDARDS AND ANALYTIC RIGOR OF INTELLIGENCE PRODUCTS

    Science.gov (United States)

    2016-04-01

    AU/ACSC/2016 AIR COMMAND AND STAFF COLLEGE AIR UNIVERSITY MASTERS OF ANALYTICAL TRADECRAFT: CERTIFYING THE STANDARDS AND ANALYTIC RIGOR OF...establishing unit level certified Masters of Analytic Tradecraft (MAT) analysts to be trained and entrusted to evaluate and rate the standards and...cues) ideally should meet or exceed effective rigor (based on analytical process).4 To accomplish this, decision makers should not be left to their

  9. 42 CFR 493.1289 - Standard: Analytic systems quality assessment.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Standard: Analytic systems quality assessment. 493.1289 Section 493.1289 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND... through 493.1283. (b) The analytic systems quality assessment must include a review of the effectiveness...

  10. Analytical standards for accountability of uranium hexafluoride - 1972

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    An analytical standard for the accountability of uranium hexafluoride is presented that includes procedures for subsampling, determination of uranium, determination of metallic impurities and isotopic analysis by gas and thermal ionization mass spectrometry

  11. Analytical chemistry methods for boron carbide absorber material. [Standard

    Energy Technology Data Exchange (ETDEWEB)

    DELVIN WL

    1977-07-01

    This standard provides analytical chemistry methods for the analysis of boron carbide powder and pellets for the following: total C and B, B isotopic composition, soluble C and B, fluoride, chloride, metallic impurities, gas content, water, nitrogen, and oxygen. (DLC)

  12. Synergistic relationships between Analytical Chemistry and written standards

    International Nuclear Information System (INIS)

    Valcárcel, Miguel; Lucena, Rafael

    2013-01-01

    Graphical abstract: -- Highlights: •Analytical Chemistry is influenced by international written standards. •Different relationships can be established between them. •Synergies can be generated when these standards are conveniently managed. -- Abstract: This paper describes the mutual impact of Analytical Chemistry and several international written standards (norms and guides) related to knowledge management (CEN-CWA 14924:2004), social responsibility (ISO 26000:2010), management of occupational health and safety (OHSAS 18001/2), environmental management (ISO 14001:2004), quality management systems (ISO 9001:2008) and requirements of the competence of testing and calibration laboratories (ISO 17025:2004). The intensity of this impact, based on a two-way influence, is quite different depending on the standard considered. In any case, a new and fruitful approach to Analytical Chemistry based on these relationships can be derived

  13. Synergistic relationships between Analytical Chemistry and written standards

    Energy Technology Data Exchange (ETDEWEB)

    Valcárcel, Miguel, E-mail: qa1vacam@uco.es; Lucena, Rafael

    2013-07-25

    Graphical abstract: -- Highlights: •Analytical Chemistry is influenced by international written standards. •Different relationships can be established between them. •Synergies can be generated when these standards are conveniently managed. -- Abstract: This paper describes the mutual impact of Analytical Chemistry and several international written standards (norms and guides) related to knowledge management (CEN-CWA 14924:2004), social responsibility (ISO 26000:2010), management of occupational health and safety (OHSAS 18001/2), environmental management (ISO 14001:2004), quality management systems (ISO 9001:2008) and requirements of the competence of testing and calibration laboratories (ISO 17025:2004). The intensity of this impact, based on a two-way influence, is quite different depending on the standard considered. In any case, a new and fruitful approach to Analytical Chemistry based on these relationships can be derived.

  14. Beyond the standard model

    International Nuclear Information System (INIS)

    Wilczek, F.

    1993-01-01

    The standard model of particle physics is highly successful, although it is obviously not a complete or final theory. In this presentation the author argues that the structure of the standard model gives some quite concrete, compelling hints regarding what lies beyond. Essentially, this presentation is a record of the author's own judgement of what the central clues for physics beyond the standard model are, and also it is an attempt at some pedagogy. 14 refs., 6 figs

  15. Standard Model processes

    CERN Document Server

    Mangano, M.L.; Aguilar-Saavedra, Juan Antonio; Alekhin, S.; Badger, S.; Bauer, C.W.; Becher, T.; Bertone, V.; Bonvini, M.; Boselli, S.; Bothmann, E.; Boughezal, R.; Cacciari, M.; Carloni Calame, C.M.; Caola, F.; Campbell, J.M.; Carrazza, S.; Chiesa, M.; Cieri, L.; Cimaglia, F.; Febres Cordero, F.; Ferrarese, P.; D'Enterria, D.; Ferrera, G.; Garcia i Tormo, X.; Garzelli, M.V.; Germann, E.; Hirschi, V.; Han, T.; Ita, H.; Jäger, B.; Kallweit, S.; Karlberg, A.; Kuttimalai, S.; Krauss, F.; Larkoski, A.J.; Lindert, J.; Luisoni, G.; Maierhöfer, P.; Mattelaer, O.; Martinez, H.; Moch, S.; Montagna, G.; Moretti, M.; Nason, P.; Nicrosini, O.; Oleari, C.; Pagani, D.; Papaefstathiou, A.; Petriello, F.; Piccinini, F.; Pierini, M.; Pierog, T.; Pozzorini, S.; Re, E.; Robens, T.; Rojo, J.; Ruiz, R.; Sakurai, K.; Salam, G.P.; Salfelder, L.; Schönherr, M.; Schulze, M.; Schumann, S.; Selvaggi, M.; Shivaji, A.; Siodmok, A.; Skands, P.; Torrielli, P.; Tramontano, F.; Tsinikos, I.; Tweedie, B.; Vicini, A.; Westhoff, S.; Zaro, M.; Zeppenfeld, D.; CERN. Geneva. ATS Department

    2017-06-22

    This report summarises the properties of Standard Model processes at the 100 TeV pp collider. We document the production rates and typical distributions for a number of benchmark Standard Model processes, and discuss new dynamical phenomena arising at the highest energies available at this collider. We discuss the intrinsic physics interest in the measurement of these Standard Model processes, as well as their role as backgrounds for New Physics searches.

  16. Preliminary results of testing bioassay analytical performance standards

    International Nuclear Information System (INIS)

    Fisher, D.R.; Robinson, A.V.; Hadley, R.T.

    1983-08-01

    The analytical performance of both in vivo and in vitro bioassay laboratories is being studied to determine the capability of these laboratories to meet the minimum criteria for accuracy and precision specified in the draft ANSI Standard N13.30, Performance Criteria for Radiobioassay. This paper presents preliminary results of the first round of testing

  17. Synthetic salt cake standards for analytical laboratory quality control

    International Nuclear Information System (INIS)

    Schilling, A.E.; Miller, A.G.

    1980-01-01

    The validation of analytical results in the characterization of Hanford Nuclear Defense Waste requires the preparation of synthetic waste for standard reference materials. Two independent synthetic salt cake standards have been prepared to monitor laboratory quality control for the chemical characterization of high-level salt cake and sludge waste in support of Rockwell Hanford Operations' High-Level Waste Management Program. Each synthetic salt cake standard contains 15 characterized chemical species and was subjected to an extensive verification/characterization program in two phases. Phase I consisted of an initial verification of each analyte in salt cake form in order to determine the current analytical capability for chemical analysis. Phase II consisted of a final characterization of those chemical species in solution form where conflicting verification data were observed. The 95 percent confidence interval on the mean for the following analytes within each standard is provided: sodium, nitrate, nitrite, phosphate, carbonate, sulfate, hydroxide, chromate, chloride, fluoride, aluminum, plutonium-239/240, strontium-90, cesium-137, and water

  18. The Standard Model course

    CERN Multimedia

    CERN. Geneva HR-RFA

    2006-01-01

    Suggested Readings: Aspects of Quantum Chromodynamics/A Pich, arXiv:hep-ph/0001118. - The Standard Model of Electroweak Interactions/A Pich, arXiv:hep-ph/0502010. - The Standard Model of Particle Physics/A Pich The Standard Model of Elementary Particle Physics will be described. A detailed discussion of the particle content, structure and symmetries of the theory will be given, together with an overview of the most important experimental facts which have established this theoretical framework as the Standard Theory of particle interactions.

  19. Predictive analytics can support the ACO model.

    Science.gov (United States)

    Bradley, Paul

    2012-04-01

    Predictive analytics can be used to rapidly spot hard-to-identify opportunities to better manage care--a key tool in accountable care. When considering analytics models, healthcare providers should: Make value-based care a priority and act on information from analytics models. Create a road map that includes achievable steps, rather than major endeavors. Set long-term expectations and recognize that the effectiveness of an analytics program takes time, unlike revenue cycle initiatives that may show a quick return.

  20. Beyond the standard model

    International Nuclear Information System (INIS)

    Pleitez, V.

    1994-01-01

    The search for physics laws beyond the standard model is discussed in a general way, and also some topics on supersymmetry theories. An approach is made on recent possibilities rise in the leptonic sector. Finally, models with SU(3) c X SU(2) L X U(1) Y symmetry are considered as alternatives for the extensions of the elementary particles standard model. 36 refs., 1 fig., 4 tabs

  1. The Standard Model

    International Nuclear Information System (INIS)

    Sutton, Christine

    1994-01-01

    The initial evidence from Fermilab for the long awaited sixth ('top') quark puts another rivet in the already firm structure of today's Standard Model of physics. Analysis of the Fermilab CDF data gives a top mass of 174 GeV with an error of ten per cent either way. This falls within the mass band predicted by the sum total of world Standard Model data and underlines our understanding of physics in terms of six quarks and six leptons. In this specially commissioned overview, physics writer Christine Sutton explains the Standard Model

  2. Beyond the standard model

    International Nuclear Information System (INIS)

    Gaillard, M.K.

    1990-04-01

    The unresolved issues of the standard model are reviewed, with emphasis on the gauge hierarchy problem. A possible mechanism for generating a hierarchy in the context of superstring theory is described. 24 refs

  3. Testing the standard model

    International Nuclear Information System (INIS)

    Gordon, H.; Marciano, W.; Williams, H.H.

    1982-01-01

    We summarize here the results of the standard model group which has studied the ways in which different facilities may be used to test in detail what we now call the standard model, that is SU/sub c/(3) x SU(2) x U(1). The topics considered are: W +- , Z 0 mass, width; sin 2 theta/sub W/ and neutral current couplings; W + W - , Wγ; Higgs; QCD; toponium and naked quarks; glueballs; mixing angles; and heavy ions

  4. Synergistic relationships between Analytical Chemistry and written standards.

    Science.gov (United States)

    Valcárcel, Miguel; Lucena, Rafael

    2013-07-25

    This paper describes the mutual impact of Analytical Chemistry and several international written standards (norms and guides) related to knowledge management (CEN-CWA 14924:2004), social responsibility (ISO 26000:2010), management of occupational health and safety (OHSAS 18001/2), environmental management (ISO 14001:2004), quality management systems (ISO 9001:2008) and requirements of the competence of testing and calibration laboratories (ISO 17025:2004). The intensity of this impact, based on a two-way influence, is quite different depending on the standard considered. In any case, a new and fruitful approach to Analytical Chemistry based on these relationships can be derived. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Analytical methods used at model facility

    International Nuclear Information System (INIS)

    Wing, N.S.

    1984-01-01

    A description of analytical methods used at the model LEU Fuel Fabrication Facility is presented. The methods include gravimetric uranium analysis, isotopic analysis, fluorimetric analysis, and emission spectroscopy

  6. Beyond the standard model

    International Nuclear Information System (INIS)

    Cuypers, F.

    1997-05-01

    These lecture notes are intended as a pedagogical introduction to several popular extensions of the standard model of strong and electroweak interactions. The topics include the Higgs sector, the left-right symmetric model, grand unification and supersymmetry. Phenomenological consequences and search procedures are emphasized. (author) figs., tabs., 18 refs

  7. Beyond the standard model

    International Nuclear Information System (INIS)

    Altarelli, G.

    1987-01-01

    The standard model of particle interactions is a complete and relatively simple theoretical framework which describes all the observed fundamental forces. It consists of quantum chromodynamics (QCD) and of the electro-weak theory of Glashow, Salam and Weinberg. The former is the theory of colored quarks and gluons, which underlies the observed phenomena of strong interactions, the latter leads to a unified description of electromagnetism and of weak interactions. The inclusion of the classical Einstein theory of gravity completes the set of established basic knowledge. The standard model is in agreement with essentially all of the experimental information which is very rich by now. The recent discovery of the charged and neutral intermediate vector bosons of weak interactions at the expected masses has closed a really important chapter of particle physics. Never before the prediction of new particles was so neat and quantitatively precise. Yet the experimental proof of the standard model is not completed. For example, the hints of experimental evidence for the top quark at a mass ∼ 40 GeV have not yet been firmly established. The Higgs sector of the theory has not been tested at all. Beyond the realm of pure QED, even remaining within the electro-weak sector, the level of quantitative precision in testing the standard model does not exceed 5% or so. Furthermore, the standard model does not look as the ultimate theory. To a closer inspection a large class of fundamental questions emerges and one finds that a host of crucial problems are left open by the standard model

  8. Beyond the Standard Model

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1997-05-01

    These lectures constitute a short course in ''Beyond the Standard Model'' for students of experimental particle physics. The author discusses the general ideas which guide the construction of models of physics beyond the Standard model. The central principle, the one which most directly motivates the search for new physics, is the search for the mechanism of the spontaneous symmetry breaking observed in the theory of weak interactions. To illustrate models of weak-interaction symmetry breaking, the author gives a detailed discussion of the idea of supersymmetry and that of new strong interactions at the TeV energy scale. He discusses experiments that will probe the details of these models at future pp and e + e - colliders

  9. Beyond the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E.

    1997-05-01

    These lectures constitute a short course in ``Beyond the Standard Model`` for students of experimental particle physics. The author discusses the general ideas which guide the construction of models of physics beyond the Standard model. The central principle, the one which most directly motivates the search for new physics, is the search for the mechanism of the spontaneous symmetry breaking observed in the theory of weak interactions. To illustrate models of weak-interaction symmetry breaking, the author gives a detailed discussion of the idea of supersymmetry and that of new strong interactions at the TeV energy scale. He discusses experiments that will probe the details of these models at future pp and e{sup +}e{sup {minus}} colliders.

  10. Conference: STANDARD MODEL @ LHC

    CERN Multimedia

    2012-01-01

    HCØ institute Universitetsparken 5 DK-2100 Copenhagen Ø Denmark Room: Auditorium 2 STANDARD MODEL @ LHC Niels Bohr International Academy and Discovery Center 10-13 April 2012 This four day meeting will bring together both experimental and theoretical aspects of Standard Model phenomenology at the LHC. The very latest results from the LHC experiments will be under discussion. Topics covered will be split into the following categories:     * QCD (Hard,Soft & PDFs)     * Vector Boson production     * Higgs searches     * Top Quark Physics     * Flavour physics

  11. The Standard Model

    Science.gov (United States)

    Burgess, Cliff; Moore, Guy

    2012-04-01

    List of illustrations; List of tables; Preface; Acknowledgments; Part I. Theoretical Framework: 1. Field theory review; 2. The standard model: general features; 3. Cross sections and lifetimes; Part II. Applications: Leptons: 4. Elementary boson decays; 5. Leptonic weak interactions: decays; 6. Leptonic weak interactions: collisions; 7. Effective Lagrangians; Part III. Applications: Hadrons: 8. Hadrons and QCD; 9. Hadronic interactions; Part IV. Beyond the Standard Model: 10. Neutrino masses; 11. Open questions, proposed solutions; Appendix A. Experimental values for the parameters; Appendix B. Symmetries and group theory review; Appendix C. Lorentz group and the Dirac algebra; Appendix D. ξ-gauge Feynman rules; Appendix E. Metric convention conversion table; Select bibliography; Index.

  12. Beyond the Standard Model

    International Nuclear Information System (INIS)

    Ross, G.G.

    1995-01-01

    The attempts to develop models beyond the Standard Model are briefly reviewed paying particular regard to the mechanisms responsible for symmetry breaking and mass generation. A comparison is made of the theoretical expectations with recent precision measurements for theories with composite Higgs and for supersymmetric theories with elementary Higgs boson(s). The implications of a heavy top quark and the origin of the light quark and lepton masses and mixing angles are considered within these frameworks. ((orig.))

  13. Standard Model festival

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1987-10-15

    The 'Standard Model' of modern particle physics, with the quantum chromodynamics (QCD) theory of inter-quark forces superimposed on the unified electroweak picture, is still unchallenged, but it is not the end of physics. This was the message at the big International Symposium on Lepton and Photon Interactions at High Energies, held in Hamburg from 27-31 July.

  14. Standard Model festival

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The 'Standard Model' of modern particle physics, with the quantum chromodynamics (QCD) theory of inter-quark forces superimposed on the unified electroweak picture, is still unchallenged, but it is not the end of physics. This was the message at the big International Symposium on Lepton and Photon Interactions at High Energies, held in Hamburg from 27-31 July

  15. Beyond the Standard Model

    CERN Multimedia

    CERN. Geneva

    2005-01-01

    The necessity for new physics beyond the Standard Model will be motivated. Theoretical problems will be exposed and possible solutions will be described. The goal is to present the exciting new physics ideas that will be tested in the near future. Supersymmetry, grand unification, extra dimensions and string theory will be presented.

  16. Preparation of standard hair material and development of analytical methodology

    International Nuclear Information System (INIS)

    Gangadharan, S.; Ganapathi Iyer, S.; Ali, M.M.; Thantry, S.S.; Verma, R.; Arunachalam, J.; Walvekar, A.P.

    1992-01-01

    In 1976 Indian Researchers suggested the possible use of hair as an indicator of environmental exposure and established through a study of country wide student population and general population of the metropolitan city of Bombay that human scalp hair could indeed be an effective first level monitor in a scheme of multilevel monitoring of environmental exposure to inorganic pollutants. It was in this context and in view of the ready availability of large quantities of scalp hair subjected to minimum treatment by chemicals that they proposed to participate in the preparation of a standard material of hair. It was also recognized that measurements of trace element concentrations at very low levels require cross-validation by different analytical techniques, even within the same laboratory. The programme of work that has been carried out since the first meeting of the CRP had been aimed at these two objectives. These objectives include the preparation of standard material of hair and the development of analytical methodologies for determination of elements and species of interest. 1 refs., 3 tabs

  17. Beyond the Standard Model

    International Nuclear Information System (INIS)

    Lykken, Joseph D.

    2010-01-01

    'BSM physics' is a phrase used in several ways. It can refer to physical phenomena established experimentally but not accommodated by the Standard Model, in particular dark matter and neutrino oscillations (technically also anything that has to do with gravity, since gravity is not part of the Standard Model). 'Beyond the Standard Model' can also refer to possible deeper explanations of phenomena that are accommodated by the Standard Model but only with ad hoc parameterizations, such as Yukawa couplings and the strong CP angle. More generally, BSM can be taken to refer to any possible extension of the Standard Model, whether or not the extension solves any particular set of puzzles left unresolved in the SM. In this general sense one sees reference to the BSM 'theory space' of all possible SM extensions, this being a parameter space of coupling constants for new interactions, new charges or other quantum numbers, and parameters describing possible new degrees of freedom or new symmetries. Despite decades of model-building it seems unlikely that we have mapped out most of, or even the most interesting parts of, this theory space. Indeed we do not even know what is the dimensionality of this parameter space, or what fraction of it is already ruled out by experiment. Since Nature is only implementing at most one point in this BSM theory space (at least in our neighborhood of space and time), it might seem an impossible task to map back from a finite number of experimental discoveries and measurements to a unique BSM explanation. Fortunately for theorists the inevitable limitations of experiments themselves, in terms of resolutions, rates, and energy scales, means that in practice there are only a finite number of BSM model 'equivalence classes' competing at any given time to explain any given set of results. BSM phenomenology is a two-way street: not only do experimental results test or constrain BSM models, they also suggest - to those who get close enough to listen

  18. Beyond the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Lykken, Joseph D.; /Fermilab

    2010-05-01

    'BSM physics' is a phrase used in several ways. It can refer to physical phenomena established experimentally but not accommodated by the Standard Model, in particular dark matter and neutrino oscillations (technically also anything that has to do with gravity, since gravity is not part of the Standard Model). 'Beyond the Standard Model' can also refer to possible deeper explanations of phenomena that are accommodated by the Standard Model but only with ad hoc parameterizations, such as Yukawa couplings and the strong CP angle. More generally, BSM can be taken to refer to any possible extension of the Standard Model, whether or not the extension solves any particular set of puzzles left unresolved in the SM. In this general sense one sees reference to the BSM 'theory space' of all possible SM extensions, this being a parameter space of coupling constants for new interactions, new charges or other quantum numbers, and parameters describing possible new degrees of freedom or new symmetries. Despite decades of model-building it seems unlikely that we have mapped out most of, or even the most interesting parts of, this theory space. Indeed we do not even know what is the dimensionality of this parameter space, or what fraction of it is already ruled out by experiment. Since Nature is only implementing at most one point in this BSM theory space (at least in our neighborhood of space and time), it might seem an impossible task to map back from a finite number of experimental discoveries and measurements to a unique BSM explanation. Fortunately for theorists the inevitable limitations of experiments themselves, in terms of resolutions, rates, and energy scales, means that in practice there are only a finite number of BSM model 'equivalence classes' competing at any given time to explain any given set of results. BSM phenomenology is a two-way street: not only do experimental results test or constrain BSM models, they also suggest

  19. Testing the Standard Model

    CERN Document Server

    Riles, K

    1998-01-01

    The Large Electron Project (LEP) accelerator near Geneva, more than any other instrument, has rigorously tested the predictions of the Standard Model of elementary particles. LEP measurements have probed the theory from many different directions and, so far, the Standard Model has prevailed. The rigour of these tests has allowed LEP physicists to determine unequivocally the number of fundamental 'generations' of elementary particles. These tests also allowed physicists to ascertain the mass of the top quark in advance of its discovery. Recent increases in the accelerator's energy allow new measurements to be undertaken, measurements that may uncover directly or indirectly the long-sought Higgs particle, believed to impart mass to all other particles.

  20. Standard Model physics

    CERN Multimedia

    Altarelli, Guido

    1999-01-01

    Introduction structure of gauge theories. The QEDand QCD examples. Chiral theories. The electroweak theory. Spontaneous symmetry breaking. The Higgs mechanism Gauge boson and fermion masses. Yukawa coupling. Charges current couplings. The Cabibo-Kobayashi-Maskawa matrix and CP violation. Neutral current couplings. The Glasow-Iliopoulos-Maiani mechanism. Gauge boson and Higgs coupling. Radiative corrections and loops. Cancellation of the chiral anomaly. Limits on the Higgs comparaison. Problems of the Standard Model. Outlook.

  1. Standard model and beyond

    International Nuclear Information System (INIS)

    Quigg, C.

    1984-09-01

    The SU(3)/sub c/ circle crossSU(2)/sub L/circle crossU(1)/sub Y/ gauge theory of ineractions among quarks and leptons is briefly described, and some recent notable successes of the theory are mentioned. Some shortcomings in our ability to apply the theory are noted, and the incompleteness of the standard model is exhibited. Experimental hints that Nature may be richer in structure than the minimal theory are discussed. 23 references

  2. Analytical Model for Sensor Placement on Microprocessors

    National Research Council Canada - National Science Library

    Lee, Kyeong-Jae; Skadron, Kevin; Huang, Wei

    2005-01-01

    .... In this paper, we present an analytical model that describes the maximum temperature differential between a hot spot and a region of interest based on their distance and processor packaging information...

  3. Toward analytic aids for standard setting in nuclear regulation

    International Nuclear Information System (INIS)

    Brown, R.V.; O'Connor, M.F.; Peterson, C.R.

    1979-05-01

    US NRC promulgates standards for nuclear reprocessing and other facilities to safeguard against the diversion of nuclear material. Two broad tasks have been directed toward establishing performance criteria for standard settings: general-purpose modeling, and analysis specific to a particular performance criterion option. This report emphasizes work on the second task. Purpose is to provide a framework for the evaluation of such options that organizes the necessary components in a way that provides for meaningful assessments with respect to required inputs

  4. Quasi standard model physics

    International Nuclear Information System (INIS)

    Peccei, R.D.

    1986-01-01

    Possible small extensions of the standard model are considered, which are motivated by the strong CP problem and by the baryon asymmetry of the Universe. Phenomenological arguments are given which suggest that imposing a PQ symmetry to solve the strong CP problem is only tenable if the scale of the PQ breakdown is much above M W . Furthermore, an attempt is made to connect the scale of the PQ breakdown to that of the breakdown of lepton number. It is argued that in these theories the same intermediate scale may be responsible for the baryon number of the Universe, provided the Kuzmin Rubakov Shaposhnikov (B+L) erasing mechanism is operative. (orig.)

  5. Standard-model bundles

    CERN Document Server

    Donagi, Ron; Pantev, Tony; Waldram, Dan; Donagi, Ron; Ovrut, Burt; Pantev, Tony; Waldram, Dan

    2002-01-01

    We describe a family of genus one fibered Calabi-Yau threefolds with fundamental group ${\\mathbb Z}/2$. On each Calabi-Yau $Z$ in the family we exhibit a positive dimensional family of Mumford stable bundles whose symmetry group is the Standard Model group $SU(3)\\times SU(2)\\times U(1)$ and which have $c_{3} = 6$. We also show that for each bundle $V$ in our family, $c_{2}(Z) - c_{2}(V)$ is the class of an effective curve on $Z$. These conditions ensure that $Z$ and $V$ can be used for a phenomenologically relevant compactification of Heterotic M-theory.

  6. Analytic nearest neighbour model for FCC metals

    International Nuclear Information System (INIS)

    Idiodi, J.O.A.; Garba, E.J.D.; Akinlade, O.

    1991-06-01

    A recently proposed analytic nearest-neighbour model for fcc metals is criticised and two alternative nearest-neighbour models derived from the separable potential method (SPM) are recommended. Results for copper and aluminium illustrate the utility of the recommended models. (author). 20 refs, 5 tabs

  7. The standard model

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1994-03-01

    In these lectures, my aim is to provide a survey of the standard model with emphasis on its renormalizability and electroweak radiative corrections. Since this is a school, I will try to be somewhat pedagogical by providing examples of loop calculations. In that way, I hope to illustrate some of the commonly employed tools of particle physics. With those goals in mind, I have organized my presentations as follows: In Section 2, renormalization is discussed from an applied perspective. The technique of dimensional regularization is described and used to define running couplings and masses. The utility of the renormalization group for computing leading logs is illustrated for the muon anomalous magnetic moment. In Section 3 electroweak radiative corrections are discussed. Standard model predictions are surveyed and used to constrain the top quark mass. The S, T, and U parameters are introduced and employed to probe for ''new physics''. The effect of Z' bosons on low energy phenomenology is described. In Section 4, a detailed illustration of electroweak radiative corrections is given for atomic parity violation. Finally, in Section 5, I conclude with an outlook for the future

  8. Analytical eigenstates for the quantum Rabi model

    International Nuclear Information System (INIS)

    Zhong, Honghua; Xie, Qiongtao; Lee, Chaohong; Batchelor, Murray T

    2013-01-01

    We develop a method to find analytical solutions for the eigenstates of the quantum Rabi model. These include symmetric, anti-symmetric and asymmetric analytic solutions given in terms of the confluent Heun functions. Both regular and exceptional solutions are given in a unified form. In addition, the analytic conditions for determining the energy spectrum are obtained. Our results show that conditions proposed by Braak (2011 Phys. Rev. Lett. 107 100401) are a type of sufficiency condition for determining the regular solutions. The well-known Judd isolated exact solutions appear naturally as truncations of the confluent Heun functions. (paper)

  9. An analytical model of iceberg drift

    Science.gov (United States)

    Eisenman, I.; Wagner, T. J. W.; Dell, R.

    2017-12-01

    Icebergs transport freshwater from glaciers and ice shelves, releasing the freshwater into the upper ocean thousands of kilometers from the source. This influences ocean circulation through its effect on seawater density. A standard empirical rule-of-thumb for estimating iceberg trajectories is that they drift at the ocean surface current velocity plus 2% of the atmospheric surface wind velocity. This relationship has been observed in empirical studies for decades, but it has never previously been physically derived or justified. In this presentation, we consider the momentum balance for an individual iceberg, which includes nonlinear drag terms. Applying a series of approximations, we derive an analytical solution for the iceberg velocity as a function of time. In order to validate the model, we force it with surface velocity and temperature data from an observational state estimate and compare the results with iceberg observations in both hemispheres. We show that the analytical solution reduces to the empirical 2% relationship in the asymptotic limit of small icebergs (or strong winds), which approximately applies for typical Arctic icebergs. We find that the 2% value arises due to a term involving the drag coefficients for water and air and the densities of the iceberg, ocean, and air. In the opposite limit of large icebergs (or weak winds), which approximately applies for typical Antarctic icebergs with horizontal length scales greater than about 12 km, we find that the 2% relationship is not applicable and that icebergs instead move with the ocean current, unaffected by the wind. The two asymptotic regimes can be understood by considering how iceberg size influences the relative importance of the wind and ocean current drag terms compared with the Coriolis and pressure gradient force terms in the iceberg momentum balance.

  10. An analytic uranium sources model

    International Nuclear Information System (INIS)

    Singer, C.E.

    2001-01-01

    This document presents a method for estimating uranium resources as a continuous function of extraction costs and describing the uncertainty in the resulting fit. The estimated functions provide convenient extrapolations of currently available data on uranium extraction cost and can be used to predict the effect of resource depletion on future uranium supply costs. As such, they are a useful input for economic models of the nuclear energy sector. The method described here pays careful attention to minimizing built-in biases in the fitting procedure and defines ways to describe the uncertainty in the resulting fits in order to render the procedure and its results useful to the widest possible variety of potential users. (author)

  11. Beyond the standard model

    International Nuclear Information System (INIS)

    Domokos, G.; Elliott, B.; Kovesi-Domokos, S.; Mrenna, S.

    1992-01-01

    In this paper the authors briefly review the necessity of going beyond the Standard Model. We argue that certain types of composite models of quarks and leptons may resolve some of the difficulties of the SM. Furthermore the authors argue that, even without a full specification of a composite model, one may predict some observable effects following from the compositeness hypothesis. The effects are most easily seen in reaction channels in which there is little competition from known processes predicted by the SM, typically in neutrino induced reactions. The authors suggest that above a certain characteristic energy, neutrino cross sections rise well above those predicted within the framework of the SM and the difference between the characteristic features of lepton and hadron induced reactions is blurred. The authors claim that there is some (so far, tenuous) evidence for the phenomenon we just alluded to: in certain high energy cosmic ray interactions it appears that photons and/or neutrinos behave in a manner which is inconsistent with the SM. The authors analyze the data and conclude that the origin of the anomaly in the observational data arises from an increased neutrino interaction cross section

  12. Standard model baryogenesis

    CERN Document Server

    Gavela, M.B.; Orloff, J.; Pene, O

    1994-01-01

    Simply on CP arguments, we argue against a Standard Model explanation of baryogenesis via the charge transport mechanism. A CP-asymmetry is found in the reflection coefficients of quarks hitting the electroweak phase boundary created during a first order phase transition. The problem is analyzed both in an academic zero temperature case and in the realistic finite temperature one. At finite temperature, a crucial role is played by the damping rate of quasi-quarks in a hot plasma, which induces loss of spatial coherence and suppresses reflection on the boundary even at tree-level. The resulting baryon asymmetry is many orders of magnitude below what observation requires. We comment as well on related works.

  13. MASCOTTE: analytical model of eddy current signals

    International Nuclear Information System (INIS)

    Delsarte, G.; Levy, R.

    1992-01-01

    Tube examination is a major application of the eddy current technique in the nuclear and petrochemical industries. Such examination configurations being specially adapted to analytical modes, a physical model is developed on portable computers. It includes simple approximations made possible by the effective conditions of the examinations. The eddy current signal is described by an analytical formulation that takes into account the tube dimensions, the sensor conception, the physical characteristics of the defect and the examination parameters. Moreover, the model makes it possible to associate real signals and simulated signals

  14. Modeling of the Global Water Cycle - Analytical Models

    Science.gov (United States)

    Yongqiang Liu; Roni Avissar

    2005-01-01

    Both numerical and analytical models of coupled atmosphere and its underlying ground components (land, ocean, ice) are useful tools for modeling the global and regional water cycle. Unlike complex three-dimensional climate models, which need very large computing resources and involve a large number of complicated interactions often difficult to interpret, analytical...

  15. Analytical model for Stirling cycle machine design

    Energy Technology Data Exchange (ETDEWEB)

    Formosa, F. [Laboratoire SYMME, Universite de Savoie, BP 80439, 74944 Annecy le Vieux Cedex (France); Despesse, G. [Laboratoire Capteurs Actionneurs et Recuperation d' Energie, CEA-LETI-MINATEC, Grenoble (France)

    2010-10-15

    In order to study further the promising free piston Stirling engine architecture, there is a need of an analytical thermodynamic model which could be used in a dynamical analysis for preliminary design. To aim at more realistic values, the models have to take into account the heat losses and irreversibilities on the engine. An analytical model which encompasses the critical flaws of the regenerator and furthermore the heat exchangers effectivenesses has been developed. This model has been validated using the whole range of the experimental data available from the General Motor GPU-3 Stirling engine prototype. The effects of the technological and operating parameters on Stirling engine performance have been investigated. In addition to the regenerator influence, the effect of the cooler effectiveness is underlined. (author)

  16. Effective modelling for predictive analytics in data science ...

    African Journals Online (AJOL)

    Effective modelling for predictive analytics in data science. ... the nearabsence of empirical or factual predictive analytics in the mainstream research going on ... Keywords: Predictive Analytics, Big Data, Business Intelligence, Project Planning.

  17. SIMMER-III analytic thermophysical property model

    International Nuclear Information System (INIS)

    Morita, K; Tobita, Y.; Kondo, Sa.; Fischer, E.A.

    1999-05-01

    An analytic thermophysical property model using general function forms is developed for a reactor safety analysis code, SIMMER-III. The function forms are designed to represent correct behavior of properties of reactor-core materials over wide temperature ranges, especially for the thermal conductivity and the viscosity near the critical point. The most up-to-date and reliable sources for uranium dioxide, mixed-oxide fuel, stainless steel, and sodium available at present are used to determine parameters in the proposed functions. This model is also designed to be consistent with a SIMMER-III model on thermodynamic properties and equations of state for reactor-core materials. (author)

  18. Premise for Standardized Sepsis Models.

    Science.gov (United States)

    Remick, Daniel G; Ayala, Alfred; Chaudry, Irshad; Coopersmith, Craig M; Deutschman, Clifford; Hellman, Judith; Moldawer, Lyle; Osuchowski, Marcin

    2018-06-05

    Sepsis morbidity and mortality exacts a toll on patients and contributes significantly to healthcare costs. Preclinical models of sepsis have been used to study disease pathogenesis and test new therapies, but divergent outcomes have been observed with the same treatment even when using the same sepsis model. Other disorders such as diabetes, cancer, malaria, obesity and cardiovascular diseases have used standardized, preclinical models that allow laboratories to compare results. Standardized models accelerate the pace of research and such models have been used to test new therapies or changes in treatment guidelines. The National Institutes of Health (NIH) mandated that investigators increase data reproducibility and the rigor of scientific experiments and has also issued research funding announcements about the development and refinement of standardized models. Our premise is that refinement and standardization of preclinical sepsis models may accelerate the development and testing of potential therapeutics for human sepsis, as has been the case with preclinical models for other disorders. As a first step towards creating standardized models, we suggest 1) standardizing the technical standards of the widely used cecal ligation and puncture model and 2) creating a list of appropriate organ injury and immune dysfunction parameters. Standardized sepsis models could enhance reproducibility and allow comparison of results between laboratories and may accelerate our understanding of the pathogenesis of sepsis.

  19. Organizational Models for Big Data and Analytics

    Directory of Open Access Journals (Sweden)

    Robert L. Grossman

    2014-04-01

    Full Text Available In this article, we introduce a framework for determining how analytics capability should be distributed within an organization. Our framework stresses the importance of building a critical mass of analytics staff, centralizing or decentralizing the analytics staff to support business processes, and establishing an analytics governance structure to ensure that analytics processes are supported by the organization as a whole.

  20. Beyond Standard Model Physics

    Energy Technology Data Exchange (ETDEWEB)

    Bellantoni, L.

    2009-11-01

    There are many recent results from searches for fundamental new physics using the TeVatron, the SLAC b-factory and HERA. This talk quickly reviewed searches for pair-produced stop, for gauge-mediated SUSY breaking, for Higgs bosons in the MSSM and NMSSM models, for leptoquarks, and v-hadrons. There is a SUSY model which accommodates the recent astrophysical experimental results that suggest that dark matter annihilation is occurring in the center of our galaxy, and a relevant experimental result. Finally, model-independent searches at D0, CDF, and H1 are discussed.

  1. Analytical performance modeling for computer systems

    CERN Document Server

    Tay, Y C

    2013-01-01

    This book is an introduction to analytical performance modeling for computer systems, i.e., writing equations to describe their performance behavior. It is accessible to readers who have taken college-level courses in calculus and probability, networking and operating systems. This is not a training manual for becoming an expert performance analyst. Rather, the objective is to help the reader construct simple models for analyzing and understanding the systems that they are interested in.Describing a complicated system abstractly with mathematical equations requires a careful choice of assumpti

  2. An analytical model for interactive failures

    International Nuclear Information System (INIS)

    Sun Yong; Ma Lin; Mathew, Joseph; Zhang Sheng

    2006-01-01

    In some systems, failures of certain components can interact with each other, and accelerate the failure rates of these components. These failures are defined as interactive failure. Interactive failure is a prevalent cause of failure associated with complex systems, particularly in mechanical systems. The failure risk of an asset will be underestimated if the interactive effect is ignored. When failure risk is assessed, interactive failures of an asset need to be considered. However, the literature is silent on previous research work in this field. This paper introduces the concepts of interactive failure, develops an analytical model to analyse this type of failure quantitatively, and verifies the model using case studies and experiments

  3. Analytical model of the optical vortex microscope.

    Science.gov (United States)

    Płocinniczak, Łukasz; Popiołek-Masajada, Agnieszka; Masajada, Jan; Szatkowski, Mateusz

    2016-04-20

    This paper presents an analytical model of the optical vortex scanning microscope. In this microscope the Gaussian beam with an embedded optical vortex is focused into the sample plane. Additionally, the optical vortex can be moved inside the beam, which allows fine scanning of the sample. We provide an analytical solution of the whole path of the beam in the system (within paraxial approximation)-from the vortex lens to the observation plane situated on the CCD camera. The calculations are performed step by step from one optical element to the next. We show that at each step, the expression for light complex amplitude has the same form with only four coefficients modified. We also derive a simple expression for the vortex trajectory of small vortex displacements.

  4. Building analytical three-field cosmological models

    Energy Technology Data Exchange (ETDEWEB)

    Santos, J.R.L. [Universidade de Federal de Campina Grande, Unidade Academica de Fisica, Campina Grande, PB (Brazil); Moraes, P.H.R.S. [ITA-Instituto Tecnologico de Aeronautica, Sao Jose dos Campos, SP (Brazil); Ferreira, D.A. [Universidade de Federal de Campina Grande, Unidade Academica de Fisica, Campina Grande, PB (Brazil); Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil); Neta, D.C.V. [Universidade de Federal de Campina Grande, Unidade Academica de Fisica, Campina Grande, PB (Brazil); Universidade Estadual da Paraiba, Departamento de Fisica, Campina Grande, PB (Brazil)

    2018-02-15

    A difficult task to deal with is the analytical treatment of models composed of three real scalar fields, as their equations of motion are in general coupled and hard to integrate. In order to overcome this problem we introduce a methodology to construct three-field models based on the so-called ''extension method''. The fundamental idea of the procedure is to combine three one-field systems in a non-trivial way, to construct an effective three scalar field model. An interesting scenario where the method can be implemented is with inflationary models, where the Einstein-Hilbert Lagrangian is coupled with the scalar field Lagrangian. We exemplify how a new model constructed from our method can lead to non-trivial behaviors for cosmological parameters. (orig.)

  5. Analytical modeling of worldwide medical radiation use

    International Nuclear Information System (INIS)

    Mettler, F.A. Jr.; Davis, M.; Kelsey, C.A.; Rosenberg, R.; Williams, A.

    1987-01-01

    An analytical model was developed to estimate the availability and frequency of medical radiation use on a worldwide basis. This model includes medical and dental x-ray, nuclear medicine, and radiation therapy. The development of an analytical model is necessary as the first step in estimating the radiation dose to the world's population from this source. Since there is no data about the frequency of medical radiation use in more than half the countries in the world and only fragmentary data in an additional one-fourth of the world's countries, such a model can be used to predict the uses of medical radiation in these countries. The model indicates that there are approximately 400,000 medical x-ray machines worldwide and that approximately 1.2 billion diagnostic medical x-ray examinations are performed annually. Dental x-ray examinations are estimated at 315 million annually and approximately 22 million in-vivo diagnostic nuclear medicine examinations. Approximately 4 million radiation therapy procedures or courses of treatment are undertaken annually

  6. Standard model without Higgs particles

    International Nuclear Information System (INIS)

    Kovalenko, S.G.

    1992-10-01

    A modification of the standard model of electroweak interactions with the nonlocal Higgs sector is proposed. Proper form of nonlocality makes Higgs particles unobservable after the electroweak symmetry breaking. They appear only as a virtual state because their propagator is an entire function. We discuss some specific consequences of this approach comparing it with the conventional standard model. (author). 12 refs

  7. Analytic models of plausible gravitational lens potentials

    International Nuclear Information System (INIS)

    Baltz, Edward A.; Marshall, Phil; Oguri, Masamune

    2009-01-01

    Gravitational lenses on galaxy scales are plausibly modelled as having ellipsoidal symmetry and a universal dark matter density profile, with a Sérsic profile to describe the distribution of baryonic matter. Predicting all lensing effects requires knowledge of the total lens potential: in this work we give analytic forms for that of the above hybrid model. Emphasising that complex lens potentials can be constructed from simpler components in linear combination, we provide a recipe for attaining elliptical symmetry in either projected mass or lens potential. We also provide analytic formulae for the lens potentials of Sérsic profiles for integer and half-integer index. We then present formulae describing the gravitational lensing effects due to smoothly-truncated universal density profiles in cold dark matter model. For our isolated haloes the density profile falls off as radius to the minus fifth or seventh power beyond the tidal radius, functional forms that allow all orders of lens potential derivatives to be calculated analytically, while ensuring a non-divergent total mass. We show how the observables predicted by this profile differ from that of the original infinite-mass NFW profile. Expressions for the gravitational flexion are highlighted. We show how decreasing the tidal radius allows stripped haloes to be modelled, providing a framework for a fuller investigation of dark matter substructure in galaxies and clusters. Finally we remark on the need for finite mass halo profiles when doing cosmological ray-tracing simulations, and the need for readily-calculable higher order derivatives of the lens potential when studying catastrophes in strong lenses

  8. An analytical model of flagellate hydrodynamics

    DEFF Research Database (Denmark)

    Dölger, Julia; Bohr, Tomas; Andersen, Anders Peter

    2017-01-01

    solution by Oseen for the low Reynolds number flow due to a point force outside a no-slip sphere. The no-slip sphere represents the cell and the point force a single flagellum. By superposition we are able to model a freely swimming flagellate with several flagella. For biflagellates with left......–right symmetric flagellar arrangements we determine the swimming velocity, and we show that transversal forces due to the periodic movements of the flagella can promote swimming. For a model flagellate with both a longitudinal and a transversal flagellum we determine radius and pitch of the helical swimming......Flagellates are unicellular microswimmers that propel themselves using one or several beating flagella. We consider a hydrodynamic model of flagellates and explore the effect of flagellar arrangement and beat pattern on swimming kinematics and near-cell flow. The model is based on the analytical...

  9. Preparation of standard hair material and development of analytical methodology

    International Nuclear Information System (INIS)

    Gangadharan, S.; Walvekar, A.P.; Ali, M.M.; Thantry, S.S.; Verma, R.; Devi, R.

    1995-01-01

    The concept of the use of human scalp hair as a first level indicator of exposure to inorganic pollutants has been established by us earlier. Efforts towards the preparation of a hair reference material are described. The analytical approaches for the determination of total mercury by cold vapour AAS and INAA and of methylmercury by extraction combined with gas chromatography coupled to an ECD are summarized with results on some of the samples analyzed, including the stability of values over a period of time of storage. (author)

  10. Analytical model of internally coupled ears

    DEFF Research Database (Denmark)

    Vossen, Christine; Christensen-Dalsgaard, Jakob; Leo van Hemmen, J

    2010-01-01

    Lizards and many birds possess a specialized hearing mechanism: internally coupled ears where the tympanic membranes connect through a large mouth cavity so that the vibrations of the tympanic membranes influence each other. This coupling enhances the phase differences and creates amplitude...... additionally provides the opportunity to incorporate the effect of the asymmetrically attached columella, which leads to the activation of higher membrane vibration modes. Incorporating this effect, the analytical model can explain measurements taken from the tympanic membrane of a living lizard, for example...

  11. An analytical model for climatic predictions

    International Nuclear Information System (INIS)

    Njau, E.C.

    1990-12-01

    A climatic model based upon analytical expressions is presented. This model is capable of making long-range predictions of heat energy variations on regional or global scales. These variations can then be transformed into corresponding variations of some other key climatic parameters since weather and climatic changes are basically driven by differential heating and cooling around the earth. On the basis of the mathematical expressions upon which the model is based, it is shown that the global heat energy structure (and hence the associated climatic system) are characterized by zonally as well as latitudinally propagating fluctuations at frequencies downward of 0.5 day -1 . We have calculated the propagation speeds for those particular frequencies that are well documented in the literature. The calculated speeds are in excellent agreement with the measured speeds. (author). 13 refs

  12. Beyond the standard model; Au-dela du modele standard

    Energy Technology Data Exchange (ETDEWEB)

    Cuypers, F. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-05-01

    These lecture notes are intended as a pedagogical introduction to several popular extensions of the standard model of strong and electroweak interactions. The topics include the Higgs sector, the left-right symmetric model, grand unification and supersymmetry. Phenomenological consequences and search procedures are emphasized. (author) figs., tabs., 18 refs.

  13. Approximate analytical modeling of leptospirosis infection

    Science.gov (United States)

    Ismail, Nur Atikah; Azmi, Amirah; Yusof, Fauzi Mohamed; Ismail, Ahmad Izani

    2017-11-01

    Leptospirosis is an infectious disease carried by rodents which can cause death in humans. The disease spreads directly through contact with feces, urine or through bites of infected rodents and indirectly via water contaminated with urine and droppings from them. Significant increase in the number of leptospirosis cases in Malaysia caused by the recent severe floods were recorded during heavy rainfall season. Therefore, to understand the dynamics of leptospirosis infection, a mathematical model based on fractional differential equations have been developed and analyzed. In this paper an approximate analytical method, the multi-step Laplace Adomian decomposition method, has been used to conduct numerical simulations so as to gain insight on the spread of leptospirosis infection.

  14. Simple Analytic Models of Gravitational Collapse

    Energy Technology Data Exchange (ETDEWEB)

    Adler, R.

    2005-02-09

    Most general relativity textbooks devote considerable space to the simplest example of a black hole containing a singularity, the Schwarzschild geometry. However only a few discuss the dynamical process of gravitational collapse, by which black holes and singularities form. We present here two types of analytic models for this process, which we believe are the simplest available; the first involves collapsing spherical shells of light, analyzed mainly in Eddington-Finkelstein coordinates; the second involves collapsing spheres filled with a perfect fluid, analyzed mainly in Painleve-Gullstrand coordinates. Our main goal is pedagogical simplicity and algebraic completeness, but we also present some results that we believe are new, such as the collapse of a light shell in Kruskal-Szekeres coordinates.

  15. An analytical model of flagellate hydrodynamics

    International Nuclear Information System (INIS)

    Dölger, Julia; Bohr, Tomas; Andersen, Anders

    2017-01-01

    Flagellates are unicellular microswimmers that propel themselves using one or several beating flagella. We consider a hydrodynamic model of flagellates and explore the effect of flagellar arrangement and beat pattern on swimming kinematics and near-cell flow. The model is based on the analytical solution by Oseen for the low Reynolds number flow due to a point force outside a no-slip sphere. The no-slip sphere represents the cell and the point force a single flagellum. By superposition we are able to model a freely swimming flagellate with several flagella. For biflagellates with left–right symmetric flagellar arrangements we determine the swimming velocity, and we show that transversal forces due to the periodic movements of the flagella can promote swimming. For a model flagellate with both a longitudinal and a transversal flagellum we determine radius and pitch of the helical swimming trajectory. We find that the longitudinal flagellum is responsible for the average translational motion whereas the transversal flagellum governs the rotational motion. Finally, we show that the transversal flagellum can lead to strong feeding currents to localized capture sites on the cell surface. (paper)

  16. Core monitoring with analytical model adaption

    International Nuclear Information System (INIS)

    Linford, R.B.; Martin, C.L.; Parkos, G.R.; Rahnema, F.; Williams, R.D.

    1992-01-01

    The monitoring of BWR cores has evolved rapidly due to more capable computer systems, improved analytical models and new types of core instrumentation. Coupling of first principles diffusion theory models such as applied to design to the core instrumentation has been achieved by GE with an adaptive methodology in the 3D Minicore system. The adaptive methods allow definition of 'leakage parameters' which are incorporated directly into the diffusion models to enhance monitoring accuracy and predictions. These improved models for core monitoring allow for substitution of traversing in-core probe (TIP) and local power range monitor (LPRM) with calculations to continue monitoring with no loss of accuracy or reduction of thermal limits. Experience in small BWR cores has shown that with one out of three TIP machines failed there was no operating limitation or impact from the substitute calculations. Other capabilities exist in 3D Monicore to align TIPs more accurately and accommodate other types of system measurements or anomalies. 3D Monicore also includes an accurate predictive capability which uses the adaptive results from previous monitoring calculations and is used to plan and optimize reactor maneuvers/operations to improve operating efficiency and reduce support requirements

  17. Phenomenology beyond the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Lykken, Joseph D.; /Fermilab

    2005-03-01

    An elementary review of models and phenomenology for physics beyond the Standard Model (excluding supersymmetry). The emphasis is on LHC physics. Based upon a talk given at the ''Physics at LHC'' conference, Vienna, 13-17 July 2004.

  18. About the standard solar model

    International Nuclear Information System (INIS)

    Cahen, S.

    1986-07-01

    A discussion of the still controversial solar helium content is presented, based on a comparison of recent standard solar models. Our last model yields an helium mass fraction ∼0.276, 6.4 SNU on 37 Cl and 126 SNU on 71 Ga

  19. The standard model and colliders

    International Nuclear Information System (INIS)

    Hinchliffe, I.

    1987-03-01

    Some topics in the standard model of strong and electroweak interactions are discussed, as well as how these topics are relevant for the high energy colliders which will become operational in the next few years. The radiative corrections in the Glashow-Weinberg-Salam model are discussed, stressing how these corrections may be measured at LEP and the SLC. CP violation is discussed briefly, followed by a discussion of the Higgs boson and the searches which are relevant to hadron colliders are then discussed. Some of the problems which the standard model does not solve are discussed, and the energy ranges accessible to the new colliders are indicated

  20. Dynamics of the standard model

    CERN Document Server

    Donoghue, John F; Holstein, Barry R

    2014-01-01

    Describing the fundamental theory of particle physics and its applications, this book provides a detailed account of the Standard Model, focusing on techniques that can produce information about real observed phenomena. The book begins with a pedagogic account of the Standard Model, introducing essential techniques such as effective field theory and path integral methods. It then focuses on the use of the Standard Model in the calculation of physical properties of particles. Rigorous methods are emphasized, but other useful models are also described. This second edition has been updated to include recent theoretical and experimental advances, such as the discovery of the Higgs boson. A new chapter is devoted to the theoretical and experimental understanding of neutrinos, and major advances in CP violation and electroweak physics have been given a modern treatment. This book is valuable to graduate students and researchers in particle physics, nuclear physics and related fields.

  1. Analytic modeling of the feedback stabilization of resistive wall modes

    International Nuclear Information System (INIS)

    Pustovitov, Vladimir D.

    2003-01-01

    Feedback suppression of resistive wall modes (RWM) is studied analytically using a model based on a standard cylindrical approximation. Optimal choice of the input signal for the feedback, effects related to the geometry of the feedback active coils, RWM suppression in a configuration with ITER-like double wall, are considered here. The widespread opinion that the feedback with poloidal sensors is better than that with radial sensors is discussed. It is shown that for an ideal feedback system the best input signal would be a combination of radial and poloidal perturbations measured inside the vessel. (author)

  2. From basic survival analytic theory to a non-standard application

    CERN Document Server

    Zimmermann, Georg

    2017-01-01

    Georg Zimmermann provides a mathematically rigorous treatment of basic survival analytic methods. His emphasis is also placed on various questions and problems, especially with regard to life expectancy calculations arising from a particular real-life dataset on patients with epilepsy. The author shows both the step-by-step analyses of that dataset and the theory the analyses are based on. He demonstrates that one may face serious and sometimes unexpected problems, even when conducting very basic analyses. Moreover, the reader learns that a practically relevant research question may look rather simple at first sight. Nevertheless, compared to standard textbooks, a more detailed account of the theory underlying life expectancy calculations is needed in order to provide a mathematically rigorous framework. Contents Regression Models for Survival Data Model Checking Procedures Life Expectancy Target Groups Researchers, lecturers, and students in the fields of mathematics and statistics Academics and experts work...

  3. A standards-based ontology and support for Big Data Analytics in the insurance industry

    Directory of Open Access Journals (Sweden)

    Dimitrios A. Koutsomitropoulos

    2017-06-01

    Full Text Available Standardization efforts have led to the emergence of conceptual models in the insurance industry. Simultaneously, the proliferation of digital information poses new challenges for the efficient management and analysis of available data. Based on the property and casualty data model, we propose an OWL ontology to represent insurance processes and to map large data volumes collected in traditional data stores. By the virtue of reasoning, we demonstrate a set of semantic queries using the ontology vocabulary that can simplify analytics and deduce implicit facts from these data. We compare this mapping approach to data in native RDF format, as in a triple store. As proof-of-concept, we use a large anonymized dataset for car policies from an actual insurance company.

  4. Empirically evaluating decision-analytic models.

    Science.gov (United States)

    Goldhaber-Fiebert, Jeremy D; Stout, Natasha K; Goldie, Sue J

    2010-08-01

    Model-based cost-effectiveness analyses support decision-making. To augment model credibility, evaluation via comparison to independent, empirical studies is recommended. We developed a structured reporting format for model evaluation and conducted a structured literature review to characterize current model evaluation recommendations and practices. As an illustration, we applied the reporting format to evaluate a microsimulation of human papillomavirus and cervical cancer. The model's outputs and uncertainty ranges were compared with multiple outcomes from a study of long-term progression from high-grade precancer (cervical intraepithelial neoplasia [CIN]) to cancer. Outcomes included 5 to 30-year cumulative cancer risk among women with and without appropriate CIN treatment. Consistency was measured by model ranges overlapping study confidence intervals. The structured reporting format included: matching baseline characteristics and follow-up, reporting model and study uncertainty, and stating metrics of consistency for model and study results. Structured searches yielded 2963 articles with 67 meeting inclusion criteria and found variation in how current model evaluations are reported. Evaluation of the cervical cancer microsimulation, reported using the proposed format, showed a modeled cumulative risk of invasive cancer for inadequately treated women of 39.6% (30.9-49.7) at 30 years, compared with the study: 37.5% (28.4-48.3). For appropriately treated women, modeled risks were 1.0% (0.7-1.3) at 30 years, study: 1.5% (0.4-3.3). To support external and projective validity, cost-effectiveness models should be iteratively evaluated as new studies become available, with reporting standardized to facilitate assessment. Such evaluations are particularly relevant for models used to conduct comparative effectiveness analyses.

  5. Perspectives in the standard model

    International Nuclear Information System (INIS)

    Ellis, R.K.; Hill, C.T.; Lykken, J.D.

    1992-01-01

    Particle physics is an experimentally based science, with a need for the best theorists to make contact with data and to enlarge and enhance their theoretical descriptions as the subject evolves. The authors felt it imperative that the TASI (Theoretical Advanced Study Institute) program reflect this need. The goal of this conference, was to provide the students with a comprehensive look at the current understanding of the standard model, as well as the techniques which promise to advance that understanding in the future. Topics covered include: symmetry breaking in the standard model; physics beyond the standard model; chiral effective Lagrangians; semi-classical string theory; renormalization of electroweak gauge interactions; electroweak experiments at LEP; the CKM matrix and CP violation; axion searches; lattice QCD; perturbative QCD; heavy quark effective field theory; heavy flavor physics on the lattice; and neutrinos. Separate abstracts were prepared for 13 papers in this conference

  6. The standard model and beyond

    CERN Document Server

    Langacker, Paul

    2017-01-01

    This new edition of The Standard Model and Beyond presents an advanced introduction to the physics and formalism of the standard model and other non-abelian gauge theories. It provides a solid background for understanding supersymmetry, string theory, extra dimensions, dynamical symmetry breaking, and cosmology. In addition to updating all of the experimental and phenomenological results from the first edition, it contains a new chapter on collider physics; expanded discussions of Higgs, neutrino, and dark matter physics; and many new problems. The book first reviews calculational techniques in field theory and the status of quantum electrodynamics. It then focuses on global and local symmetries and the construction of non-abelian gauge theories. The structure and tests of quantum chromodynamics, collider physics, the electroweak interactions and theory, and the physics of neutrino mass and mixing are thoroughly explored. The final chapter discusses the motivations for extending the standard model and examin...

  7. Standard model of knowledge representation

    Science.gov (United States)

    Yin, Wensheng

    2016-09-01

    Knowledge representation is the core of artificial intelligence research. Knowledge representation methods include predicate logic, semantic network, computer programming language, database, mathematical model, graphics language, natural language, etc. To establish the intrinsic link between various knowledge representation methods, a unified knowledge representation model is necessary. According to ontology, system theory, and control theory, a standard model of knowledge representation that reflects the change of the objective world is proposed. The model is composed of input, processing, and output. This knowledge representation method is not a contradiction to the traditional knowledge representation method. It can express knowledge in terms of multivariate and multidimensional. It can also express process knowledge, and at the same time, it has a strong ability to solve problems. In addition, the standard model of knowledge representation provides a way to solve problems of non-precision and inconsistent knowledge.

  8. Extensions of the Standard Model

    CERN Document Server

    Zwirner, Fabio

    1996-01-01

    Rapporteur talk at the International Europhysics Conference on High Energy Physics, Brussels (Belgium), July 27-August 2, 1995. This talk begins with a brief general introduction to the extensions of the Standard Model, reviewing the ideology of effective field theories and its practical implications. The central part deals with candidate extensions near the Fermi scale, focusing on some phenomenological aspects of the Minimal Supersymmetric Standard Model. The final part discusses some possible low-energy implications of further extensions near the Planck scale, namely superstring theories.

  9. Custom v. Standardized Risk Models

    Directory of Open Access Journals (Sweden)

    Zura Kakushadze

    2015-05-01

    Full Text Available We discuss when and why custom multi-factor risk models are warranted and give source code for computing some risk factors. Pension/mutual funds do not require customization but standardization. However, using standardized risk models in quant trading with much shorter holding horizons is suboptimal: (1 longer horizon risk factors (value, growth, etc. increase noise trades and trading costs; (2 arbitrary risk factors can neutralize alpha; (3 “standardized” industries are artificial and insufficiently granular; (4 normalization of style risk factors is lost for the trading universe; (5 diversifying risk models lowers P&L correlations, reduces turnover and market impact, and increases capacity. We discuss various aspects of custom risk model building.

  10. Analytic modeling of axisymmetric disruption halo currents

    International Nuclear Information System (INIS)

    Humphreys, D.A.; Kellman, A.G.

    1999-01-01

    Currents which can flow in plasma facing components during disruptions pose a challenge to the design of next generation tokamaks. Induced toroidal eddy currents and both induced and conducted poloidal ''halo'' currents can produce design-limiting electromagnetic loads. While induction of toroidal and poloidal currents in passive structures is a well-understood phenomenon, the driving terms and scalings for poloidal currents flowing on open field lines during disruptions are less well established. A model of halo current evolution is presented in which the current is induced in the halo by decay of the plasma current and change in enclosed toroidal flux while being convected into the halo from the core by plasma motion. Fundamental physical processes and scalings are described in a simplified analytic version of the model. The peak axisymmetric halo current is found to depend on halo and core plasma characteristics during the current quench, including machine and plasma dimensions, resistivities, safety factor, and vertical stability growth rate. Two extreme regimes in poloidal halo current amplitude are identified depending on the minimum halo safety factor reached during the disruption. A 'type I' disruption is characterized by a minimum safety factor that remains relatively high (typically 2 - 3, comparable to the predisruption safety factor), and a relatively low poloidal halo current. A 'type II' disruption is characterized by a minimum safety factor comparable to unity and a relatively high poloidal halo current. Model predictions for these two regimes are found to agree well with halo current measurements from vertical displacement event disruptions in DIII-D [T. S. Taylor, K. H. Burrell, D. R. Baker, G. L. Jackson, R. J. La Haye, M. A. Mahdavi, R. Prater, T. C. Simonen, and A. D. Turnbull, open-quotes Results from the DIII-D Scientific Research Program,close quotes in Proceedings of the 17th IAEA Fusion Energy Conference, Yokohama, 1998, to be published in

  11. The standard model and beyond

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1989-05-01

    In these lectures, my aim is to present a status report on the standard model and some key tests of electroweak unification. Within that context, I also discuss how and where hints of new physics may emerge. To accomplish those goals, I have organized my presentation as follows. I survey the standard model parameters with particular emphasis on the gauge coupling constants and vector boson masses. Examples of new physics appendages are also commented on. In addition, I have included an appendix on dimensional regularization and a simple example which employs that technique. I focus on weak charged current phenomenology. Precision tests of the standard model are described and up-to-date values for the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix parameters are presented. Constraints implied by those tests for a 4th generation, extra Z' bosons, and compositeness are discussed. An overview of the physics of tau decays is also included. I discuss weak neutral current phenomenology and the extraction of sin 2 θW from experiment. The results presented there are based on a global analysis of all existing data. I have chosen to concentrate that discussion on radiative corrections, the effect of a heavy top quark mass, implications for grand unified theories (GUTS), extra Z' gauge bosons, and atomic parity violation. The potential for further experimental progress is also commented on. Finally, I depart from the narrowest version of the standard model and discuss effects of neutrino masses, mixings, and electromagnetic moments. 32 refs., 3 figs., 5 tabs

  12. Beyond the Standard Model course

    CERN Multimedia

    CERN. Geneva HR-RFA

    2006-01-01

    The necessity for new physics beyond the Standard Model will be motivated. Theoretical problems will be exposed and possible solutions will be described. The goal is to present the exciting new physics ideas that will be tested in the near future, at LHC and elsewhere. Supersymmetry, grand unification, extra dimensions and a glimpse of string theory will be presented.

  13. Analytic Ballistic Performance Model of Whipple Shields

    Science.gov (United States)

    Miller, J. E.; Bjorkman, M. D.; Christiansen, E. L.; Ryan, S. J.

    2015-01-01

    The dual-wall, Whipple shield is the shield of choice for lightweight, long-duration flight. The shield uses an initial sacrificial wall to initiate fragmentation and melt an impacting threat that expands over a void before hitting a subsequent shield wall of a critical component. The key parameters to this type of shield are the rear wall and its mass which stops the debris, as well as the minimum shock wave strength generated by the threat particle impact of the sacrificial wall and the amount of room that is available for expansion. Ensuring the shock wave strength is sufficiently high to achieve large scale fragmentation/melt of the threat particle enables the expansion of the threat and reduces the momentum flux of the debris on the rear wall. Three key factors in the shock wave strength achieved are the thickness of the sacrificial wall relative to the characteristic dimension of the impacting particle, the density and material cohesion contrast of the sacrificial wall relative to the threat particle and the impact speed. The mass of the rear wall and the sacrificial wall are desirable to minimize for launch costs making it important to have an understanding of the effects of density contrast and impact speed. An analytic model is developed here, to describe the influence of these three key factors. In addition this paper develops a description of a fourth key parameter related to fragmentation and its role in establishing the onset of projectile expansion.

  14. Net Analyte Signal Standard Additions Method for Simultaneous Determination of Sulfamethoxazole and Trimethoprim in Pharmaceutical Formulations and Biological Fluids

    OpenAIRE

    Givianrad, M. H.; Mohagheghian, M.

    2012-01-01

    The applicability of a novel net analyte signal standard addition method (NASSAM) to the resolving of overlapping spectra corresponding to the sulfamethoxazole and trimethoprim was verified by UV-visible spectrophotometry. The results confirmed that the net analyte signal standard additions method with simultaneous addition of both analytes is suitable for the simultaneous determination of sulfamethoxazole and trimethoprim in aqueous media. Moreover, applying the net analyte signal standard a...

  15. Analytic Models of High-Temperature Hohlraums

    International Nuclear Information System (INIS)

    Stygar, W.A.; Olson, R.E.; Spielman, R.B.; Leeper, R.J.

    2000-01-01

    A unified set of high-temperature-hohlraum models has been developed. For a simple hohlraum, P s = (A s +(1minusα W )A W +A H )σT R 4 + (4Vσ/c)(dT R r /dt) where P S is the total power radiated by the source, A s is the source area, A W is the area of the cavity wall excluding the source and holes in the wall, A H is the area of the holes, σ is the Stefan-Boltzmann constant, T R is the radiation brightness temperature, V is the hohlraum volume, and c is the speed of light. The wall albedo α W triple b ond (T W /T R ) 4 where T W is the brightness temperature of area A W . The net power radiated by the source P N = P S -A S σT R 4 , which suggests that for laser-driven hohlraums the conversion efficiency η CE be defined as P N /P LASER . The characteristic time required to change T R 4 in response to a change in P N is 4V/C((lminusα W )A W +A H ). Using this model, T R , α W , and η CE can be expressed in terms of quantities directly measurable in a hohlraum experiment. For a steady-state hohlraum that encloses a convex capsule, P N = {(1minusα W )A W +A H +((1minusα C )(A S +A W α W )A C /A T = )}σT RC 4 where α C is the capsule albedo, A C is the capsule area, A T triple b ond (A S +A W +A H ), and T RC is the brightness temperature of the radiation that drives the capsule. According to this relation, the capsule-coupling efficiency of the baseline National-Ignition-Facility (NIF) hohlraum is 15% higher than predicted by previous analytic expressions. A model of a hohlraum that encloses a z pinch is also presented

  16. Higher Education Quality Assessment Model: Towards Achieving Educational Quality Standard

    Science.gov (United States)

    Noaman, Amin Y.; Ragab, Abdul Hamid M.; Madbouly, Ayman I.; Khedra, Ahmed M.; Fayoumi, Ayman G.

    2017-01-01

    This paper presents a developed higher education quality assessment model (HEQAM) that can be applied for enhancement of university services. This is because there is no universal unified quality standard model that can be used to assess the quality criteria of higher education institutes. The analytical hierarchy process is used to identify the…

  17. The standard model and beyond

    International Nuclear Information System (INIS)

    Gaillard, M.K.

    1989-05-01

    The field of elementary particle, or high energy, physics seeks to identify the most elementary constituents of nature and to study the forces that govern their interactions. Increasing the energy of a probe in a laboratory experiment increases its power as an effective microscope for discerning increasingly smaller structures of matter. Thus we have learned that matter is composed of molecules that are in turn composed of atoms, that the atom consists of a nucleus surrounded by a cloud of electrons, and that the atomic nucleus is a collection of protons and neutrons. The more powerful probes provided by high energy particle accelerators have taught us that a nucleon is itself made of objects called quarks. The forces among quarks and electrons are understood within a general theoretical framework called the ''standard model,'' that accounts for all interactions observed in high energy laboratory experiments to date. These are commonly categorized as the ''strong,'' ''weak'' and ''electromagnetic'' interactions. In this lecture I will describe the standard model, and point out some of its limitations. Probing for deeper structures in quarks and electrons defines the present frontier of particle physics. I will discuss some speculative ideas about extensions of the standard model and/or yet more fundamental forces that may underlie our present picture. 11 figs., 1 tab

  18. Extensions of the standard model

    International Nuclear Information System (INIS)

    Ramond, P.

    1983-01-01

    In these lectures we focus on several issues that arise in theoretical extensions of the standard model. First we describe the kinds of fermions that can be added to the standard model without affecting known phenomenology. We focus in particular on three types: the vector-like completion of the existing fermions as would be predicted by a Kaluza-Klein type theory, which we find cannot be realistically achieved without some chiral symmetry; fermions which are vector-like by themselves, such as do appear in supersymmetric extensions, and finally anomaly-free chiral sets of fermions. We note that a chiral symmetry, such as the Peccei-Quinn symmetry can be used to produce a vector-like theory which, at scales less than M/sub W/, appears to be chiral. Next, we turn to the analysis of the second hierarchy problem which arises in Grand Unified extensions of the standard model, and plays a crucial role in proton decay of supersymmetric extensions. We review the known mechanisms for avoiding this problem and present a new one which seems to lead to the (family) triplication of the gauge group. Finally, this being a summer school, we present a list of homework problems. 44 references

  19. Consistency Across Standards or Standards in a New Business Model

    Science.gov (United States)

    Russo, Dane M.

    2010-01-01

    Presentation topics include: standards in a changing business model, the new National Space Policy is driving change, a new paradigm for human spaceflight, consistency across standards, the purpose of standards, danger of over-prescriptive standards, a balance is needed (between prescriptive and general standards), enabling versus inhibiting, characteristics of success-oriented standards, characteristics of success-oriented standards, and conclusions. Additional slides include NASA Procedural Requirements 8705.2B identifies human rating standards and requirements, draft health and medical standards for human rating, what's been done, government oversight models, examples of consistency from anthropometry, examples of inconsistency from air quality and appendices of government and non-governmental human factors standards.

  20. Institutional model for supporting standardization

    International Nuclear Information System (INIS)

    Sanford, M.O.; Jackson, K.J.

    1993-01-01

    Restoring the nuclear option for utilities requires standardized designs. This premise is widely accepted by all parties involved in ALWR development activities. Achieving and maintaining standardization, however, demands new perspectives on the roles and responsibilities for the various commercial organizations involved in nuclear power. Some efforts are needed to define a workable model for a long-term support structure that will allow the benefits of standardization to be realized. The Nuclear Power Oversight Committee (NPOC) has developed a strategic plan that lays out the steps necessary to enable the nuclear industry to be in a position to order a new nuclear power plant by the mid 1990's. One of the key elements of the plan is the, ''industry commitment to standardization: through design certification, combined license, first-of-a-kind engineering, construction, operation, and maintenance of nuclear power plants.'' This commitment is a result of the recognition by utilities of the substantial advantages to standardization. Among these are economic benefits, licensing benefits from being treated as one of a family, sharing risks across a broader ownership group, sharing operating experiences, enhancing public safety, and a more coherent market force. Utilities controlled the construction of the past generation of nuclear units in a largely autonomous fashion procuring equipment and designs from a vendor, engineering services from an architect/engineer, and construction from a construction management firm. This, in addition to forcing the utility to assume virtually all of the risks associated with the project, typically resulted in highly customized designs based on preferences of the individual utility. However, the benefits of standardization can be realized only through cooperative choices and decision making by the utilities and through working as partners with reactor vendors, architect/engineers, and construction firms

  1. Solution standards for quality control of nuclear-material analytical measurements

    International Nuclear Information System (INIS)

    Clark, J.P.

    1981-01-01

    Analytical chemistry measurement control depends upon reliable solution standards. At the Savannah River Plant Control Laboratory over a thousand analytical measurements are made daily for process control, product specification, accountability, and nuclear safety. Large quantities of solution standards are required for a measurement quality control program covering the many different analytical chemistry methods. Savannah River Plant produced uranium, plutonium, neptunium, and americium metals or oxides are dissolved to prepare stock solutions for working or Quality Control Standards (QCS). Because extensive analytical effort is required to characterize or confirm these solutions, they are prepared in large quantities. These stock solutions are diluted and blended with different chemicals and/or each other to synthesize QCS that match the matrices of different process streams. The target uncertainty of a standard's reference value is 10% of the limit of error of the methods used for routine measurements. Standard Reference Materials from NBS are used according to special procedures to calibrate the methods used in measuring the uranium and plutonium standards so traceability can be established. Special precautions are required to minimize the effects of temperature, radiolysis, and evaporation. Standard reference values are periodically corrected to eliminate systematic errors caused by evaporation or decay products. Measurement control is achieved by requiring analysts to analyze a blind QCS each shift a measurement system is used on plant samples. Computer evaluation determines whether or not a measurement is within the +- 3 sigma control limits. Monthly evaluations of the QCS measurements are made to determine current bias correction factors for accountability measurements and detect significant changes in the bias and precision statistics. The evaluations are also used to plan activities for improving the reliability of the analytical chemistry measurements

  2. Bounds on the Higgs mass in the standard model and the minimal supersymmetric standard model

    CERN Document Server

    Quiros, M.

    1995-01-01

    Depending on the Higgs-boson and top-quark masses, M_H and M_t, the effective potential of the {\\bf Standard Model} can develop a non-standard minimum for values of the field much larger than the weak scale. In those cases the standard minimum becomes metastable and the possibility of decay to the non-standard one arises. Comparison of the decay rate to the non-standard minimum at finite (and zero) temperature with the corresponding expansion rate of the Universe allows to identify the region, in the (M_H, M_t) plane, where the Higgs field is sitting at the standard electroweak minimum. In the {\\bf Minimal Supersymmetric Standard Model}, approximate analytical expressions for the Higgs mass spectrum and couplings are worked out, providing an excellent approximation to the numerical results which include all next-to-leading-log corrections. An appropriate treatment of squark decoupling allows to consider large values of the stop and/or sbottom mixing parameters and thus fix a reliable upper bound on the mass o...

  3. Modeling and analytical simulation of a smouldering carbonaceous ...

    African Journals Online (AJOL)

    Modeling and analytical simulation of a smouldering carbonaceous rod. A.A. Mohammed, R.O. Olayiwola, M Eseyin, A.A. Wachin. Abstract. Modeling of pyrolysis and combustion in a smouldering fuel bed requires the solution of flow, heat and mass transfer through porous media. This paper presents an analytical method ...

  4. Review of the standard model

    International Nuclear Information System (INIS)

    Treille, D.

    1992-01-01

    The goal of this review is not to make one more celebration of the accuracy of LEP results, but rather to put them in a broader perspective. This set of measurements are compared with what they could and should be in the future if the various options available at LEP are exploited properly, and show that much is left to be done. Then various classes of non-LEP results are discussed which are already remarkable and still prone to improvements, which bring complementary information on the Standard Model, by probing it in widely different domains of applicability. (author) 46 refs.; 29 figs.; 12 tabs

  5. Standard for Models and Simulations

    Science.gov (United States)

    Steele, Martin J.

    2016-01-01

    This NASA Technical Standard establishes uniform practices in modeling and simulation to ensure essential requirements are applied to the design, development, and use of models and simulations (MS), while ensuring acceptance criteria are defined by the program project and approved by the responsible Technical Authority. It also provides an approved set of requirements, recommendations, and criteria with which MS may be developed, accepted, and used in support of NASA activities. As the MS disciplines employed and application areas involved are broad, the common aspects of MS across all NASA activities are addressed. The discipline-specific details of a given MS should be obtained from relevant recommended practices. The primary purpose is to reduce the risks associated with MS-influenced decisions by ensuring the complete communication of the credibility of MS results.

  6. Analytical models for low-power rectenna design

    NARCIS (Netherlands)

    Akkermans, J.A.G.; Beurden, van M.C.; Doodeman, G.J.N.; Visser, H.J.

    2005-01-01

    The design of a low-cost rectenna for low-power applications is presented. The rectenna is designed with the use of analytical models and closed-form analytical expressions. This allows for a fast design of the rectenna system. To acquire a small-area rectenna, a layered design is proposed.

  7. Analytically solvable models of reaction-diffusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Zemskov, E P; Kassner, K [Institut fuer Theoretische Physik, Otto-von-Guericke-Universitaet, Universitaetsplatz 2, 39106 Magdeburg (Germany)

    2004-05-01

    We consider a class of analytically solvable models of reaction-diffusion systems. An analytical treatment is possible because the nonlinear reaction term is approximated by a piecewise linear function. As particular examples we choose front and pulse solutions to illustrate the matching procedure in the one-dimensional case.

  8. Analytical modeling of masonry infilled steel frames

    International Nuclear Information System (INIS)

    Flanagan, R.D.; Jones, W.D.; Bennett, R.M.

    1991-01-01

    A comprehensive program is underway at the Oak Ridge Y-12 Plant to evaluate the seismic capacity of unreinforced hollow clay tile infilled steel frames. This program has three major parts. First, preliminary numerical analyses are conducted to predict behavior, initial cracking loads, ultimate capacity loads, and to identify important parameters. Second, in-situ and laboratory tests are performed to obtain constitutive parameters and confirm predicted behavior. Finally, the analytical techniques are refined based on experimental results. This paper summarizes the findings of the preliminary numerical analyses. A review of current analytical methods was conducted and a subset of these methods was applied to known experimental results. Parametric studies were used to find the sensitivity of the behavior to various parameters. Both in-plane and out-of-plane loads were examined. Two types of out-of-plane behavior were examined, the inertial forces resulting from the mass of the infill panel and the out-of-plane forces resulting from interstory drift. Cracking loads were estimated using linear elastic analysis and an elliptical failure criterion. Calculated natural frequencies were correlated with low amplitude vibration testing. Ultimate behavior under inertial loads was estimated using a modified yield line procedure accounting for membrane stresses. The initial stiffness and ultimate capacity under in-plane loadings were predicted using finite element analyses. Results were compared to experimental data and to failure loads obtained using plastic collapse theory

  9. Establishing the isolated Standard Model

    International Nuclear Information System (INIS)

    Wells, James D.; Zhang, Zhengkang; Zhao, Yue

    2017-02-01

    The goal of this article is to initiate a discussion on what it takes to claim ''there is no new physics at the weak scale,'' namely that the Standard Model (SM) is ''isolated.'' The lack of discovery of beyond the SM (BSM) physics suggests that this may be the case. But to truly establish this statement requires proving all ''connected'' BSM theories are false, which presents a significant challenge. We propose a general approach to quantitatively assess the current status and future prospects of establishing the isolated SM (ISM), which we give a reasonable definition of. We consider broad elements of BSM theories, and show many examples where current experimental results are not sufficient to verify the ISM. In some cases, there is a clear roadmap for the future experimental program, which we outline, while in other cases, further efforts - both theoretical and experimental - are needed in order to robustly claim the establishment of the ISM in the absence of new physics discoveries.

  10. The standard model and beyond

    CERN Document Server

    Vergados, J D

    2017-01-01

    This book contains a systematic and pedagogical exposition of recent developments in particle physics and cosmology. It starts with two introductory chapters on group theory and the Dirac theory. Then it proceeds with the formulation of the Standard Model (SM) of Particle Physics, particle content and symmetries, fully exploiting the first chapters. It discusses the concept of gauge symmetries and emphasizes their role in particle physics. It then analyses the Higgs mechanism and the spontaneous symmetry breaking (SSB). It explains how the particles (gauge bosons and fermions) after SSB acquire a mass and get admixed. The various forms of charged currents are discussed in detail as well as how the parameters of the SM, which cannot be determined by the theory, are fixed by experiment, including the recent LHC data and the Higgs discovery. Quantum chromodynamics is discussed and various low energy approximations to it are presented. The Feynman diagrams are introduced and applied, in a way undertandable by fir...

  11. Analytical dynamic modeling of fast trilayer polypyrrole bending actuators

    International Nuclear Information System (INIS)

    Amiri Moghadam, Amir Ali; Moavenian, Majid; Tahani, Masoud; Torabi, Keivan

    2011-01-01

    Analytical modeling of conjugated polymer actuators with complicated electro-chemo-mechanical dynamics is an interesting area for research, due to the wide range of applications including biomimetic robots and biomedical devices. Although there have been extensive reports on modeling the electrochemical dynamics of polypyrrole (PPy) bending actuators, mechanical dynamics modeling of the actuators remains unexplored. PPy actuators can operate with low voltage while producing large displacement in comparison to robotic joints, they do not have friction or backlash, but they suffer from some disadvantages such as creep and hysteresis. In this paper, a complete analytical dynamic model for fast trilayer polypyrrole bending actuators has been proposed and named the analytical multi-domain dynamic actuator (AMDDA) model. First an electrical admittance model of the actuator will be obtained based on a distributed RC line; subsequently a proper mechanical dynamic model will be derived, based on Hamilton's principle. The purposed modeling approach will be validated based on recently published experimental results

  12. Analytical and numerical modeling of sandbanks dynamics

    NARCIS (Netherlands)

    Idier, Deborah; Astruc, Dominique

    2003-01-01

    Linear and nonlinear behavior of large-scale underwater bedform patterns like sandbanks are studied using linear stability analysis and numerical modeling. The model is based on depth-integrated hydrodynamics equations with a quadratic bottom friction law and a bed load sediment transport model

  13. An analytical model for beaconing in VANETs

    NARCIS (Netherlands)

    van Eenennaam, Martijn; Remke, Anne Katharina Ingrid; Heijenk, Geert

    2012-01-01

    IEEE 802.11 CSMA/CA is generally considered to be well-understood, and many detailed models are available. However, most models focus on Unicast in small-scale W-LAN scenarios. When modelling beaconing in VANETs, the Broadcast nature and the (potentially) large number of nodes cause phenomena

  14. Analytic Models for Sunlight Charging of a Rapidly Spinning Satellite

    National Research Council Canada - National Science Library

    Tautz, Maurice

    2003-01-01

    ... photoelectrons can be blocked by local potential barriers. In this report, we discuss two analytic models for sunlight charging of a rapidly spinning spherical satellite, both of which are based on blocked photoelectron currents...

  15. Analytical Models Development of Compact Monopole Vortex Flows

    Directory of Open Access Journals (Sweden)

    Pavlo V. Lukianov

    2017-09-01

    Conclusions. The article contains series of the latest analytical models that describe both laminar and turbulent dynamics of monopole vortex flows which have not been reflected in traditional publications up to the present. The further research must be directed to search of analytical models for the coherent vortical structures in flows of viscous fluids, particularly near curved surfaces, where known in hydromechanics “wall law” is disturbed and heat and mass transfer anomalies take place.

  16. Analytical solution of dispersion relations for the nuclear optical model

    Energy Technology Data Exchange (ETDEWEB)

    VanderKam, J.M. [Center for Communications Research, Thanet Road, Princeton, NJ 08540 (United States); Weisel, G.J. [Triangle Universities Nuclear Laboratory, and Duke University, Box 90308, Durham, NC 27708-0308 (United States); Penn State Altoona, 3000 Ivyside Park, Altoona, PA 16601-3760 (United States); Tornow, W. [Triangle Universities Nuclear Laboratory, and Duke University, Box 90308, Durham, NC 27708-0308 (United States)

    2000-12-01

    Analytical solutions of dispersion integral relations, linking the real and imaginary parts of the nuclear optical model, have been derived. These are displayed for some widely used forms of the volume- and surface-absorptive nuclear potentials. When the analytical solutions are incorporated into the optical-model search code GENOA, replacing a numerical integration, the code runs three and a half to seven times faster, greatly aiding the analysis of direct-reaction, elastic scattering data. (author)

  17. Analytical Model for Fictitious Crack Propagation in Concrete Beams

    DEFF Research Database (Denmark)

    Ulfkjær, J. P.; Krenk, Steen; Brincker, Rune

    1995-01-01

    An analytical model for load-displacement curves of concrete beams is presented. The load-displacement curve is obtained by combining two simple models. The fracture is modeled by a fictitious crack in an elastic layer around the midsection of the beam. Outside the elastic layer the deformations...... are modeled by beam theory. The state of stress in the elastic layer is assumed to depend bilinearly on local elongation corresponding to a linear softening relation for the fictitious crack. Results from the analytical model are compared with results from a more detailed model based on numerical methods...... for different beam sizes. The analytical model is shown to be in agreement with the numerical results if the thickness of the elastic layer is taken as half the beam depth. It is shown that the point on the load-displacement curve where the fictitious crack starts to develop and the point where the real crack...

  18. Analytical Model for Fictitious Crack Propagation in Concrete Beams

    DEFF Research Database (Denmark)

    Ulfkjær, J. P.; Krenk, S.; Brincker, Rune

    An analytical model for load-displacement curves of unreinforced notched and un-notched concrete beams is presented. The load displacement-curve is obtained by combining two simple models. The fracture is modelled by a fictitious crack in an elastic layer around the mid-section of the beam. Outside...... the elastic layer the deformations are modelled by the Timoshenko beam theory. The state of stress in the elastic layer is assumed to depend bi-lineary on local elongation corresponding to a linear softening relation for the fictitious crack. For different beam size results from the analytical model...... is compared with results from a more accurate model based on numerical methods. The analytical model is shown to be in good agreement with the numerical results if the thickness of the elastic layer is taken as half the beam depth. Several general results are obtained. It is shown that the point on the load...

  19. Non-commutative standard model: model building

    CERN Document Server

    Chaichian, Masud; Presnajder, P

    2003-01-01

    A non-commutative version of the usual electro-weak theory is constructed. We discuss how to overcome the two major problems: (1) although we can have non-commutative U(n) (which we denote by U sub * (n)) gauge theory we cannot have non-commutative SU(n) and (2) the charges in non-commutative QED are quantized to just 0,+-1. We show how the latter problem with charge quantization, as well as with the gauge group, can be resolved by taking the U sub * (3) x U sub * (2) x U sub * (1) gauge group and reducing the extra U(1) factors in an appropriate way. Then we proceed with building the non-commutative version of the standard model by specifying the proper representations for the entire particle content of the theory, the gauge bosons, the fermions and Higgs. We also present the full action for the non-commutative standard model (NCSM). In addition, among several peculiar features of our model, we address the inherentCP violation and new neutrino interactions. (orig.)

  20. Analytical system dynamics modeling and simulation

    CERN Document Server

    Fabien, Brian C

    2008-01-01

    This book offering a modeling technique based on Lagrange's energy method includes 125 worked examples. Using this technique enables one to model and simulate systems as diverse as a six-link, closed-loop mechanism or a transistor power amplifier.

  1. Establishing the isolated Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Wells, James D.; Zhang, Zhengkang [Michigan Univ., Ann Arbor, MI (United States). Michigan Center for Theoretical Physics; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Zhao, Yue [Michigan Univ., Ann Arbor, MI (United States). Michigan Center for Theoretical Physics

    2017-02-15

    The goal of this article is to initiate a discussion on what it takes to claim ''there is no new physics at the weak scale,'' namely that the Standard Model (SM) is ''isolated.'' The lack of discovery of beyond the SM (BSM) physics suggests that this may be the case. But to truly establish this statement requires proving all ''connected'' BSM theories are false, which presents a significant challenge. We propose a general approach to quantitatively assess the current status and future prospects of establishing the isolated SM (ISM), which we give a reasonable definition of. We consider broad elements of BSM theories, and show many examples where current experimental results are not sufficient to verify the ISM. In some cases, there is a clear roadmap for the future experimental program, which we outline, while in other cases, further efforts - both theoretical and experimental - are needed in order to robustly claim the establishment of the ISM in the absence of new physics discoveries.

  2. Experiments beyond the standard model

    International Nuclear Information System (INIS)

    Perl, M.L.

    1984-09-01

    This paper is based upon lectures in which I have described and explored the ways in which experimenters can try to find answers, or at least clues toward answers, to some of the fundamental questions of elementary particle physics. All of these experimental techniques and directions have been discussed fully in other papers, for example: searches for heavy charged leptons, tests of quantum chromodynamics, searches for Higgs particles, searches for particles predicted by supersymmetric theories, searches for particles predicted by technicolor theories, searches for proton decay, searches for neutrino oscillations, monopole searches, studies of low transfer momentum hadron physics at very high energies, and elementary particle studies using cosmic rays. Each of these subjects requires several lectures by itself to do justice to the large amount of experimental work and theoretical thought which has been devoted to these subjects. My approach in these tutorial lectures is to describe general ways to experiment beyond the standard model. I will use some of the topics listed to illustrate these general ways. Also, in these lectures I present some dreams and challenges about new techniques in experimental particle physics and accelerator technology, I call these Experimental Needs. 92 references

  3. A simulation-based analytic model of radio galaxies

    Science.gov (United States)

    Hardcastle, M. J.

    2018-04-01

    I derive and discuss a simple semi-analytical model of the evolution of powerful radio galaxies which is not based on assumptions of self-similar growth, but rather implements some insights about the dynamics and energetics of these systems derived from numerical simulations, and can be applied to arbitrary pressure/density profiles of the host environment. The model can qualitatively and quantitatively reproduce the source dynamics and synchrotron light curves derived from numerical modelling. Approximate corrections for radiative and adiabatic losses allow it to predict the evolution of radio spectral index and of inverse-Compton emission both for active and `remnant' sources after the jet has turned off. Code to implement the model is publicly available. Using a standard model with a light relativistic (electron-positron) jet, subequipartition magnetic fields, and a range of realistic group/cluster environments, I simulate populations of sources and show that the model can reproduce the range of properties of powerful radio sources as well as observed trends in the relationship between jet power and radio luminosity, and predicts their dependence on redshift and environment. I show that the distribution of source lifetimes has a significant effect on both the source length distribution and the fraction of remnant sources expected in observations, and so can in principle be constrained by observations. The remnant fraction is expected to be low even at low redshift and low observing frequency due to the rapid luminosity evolution of remnants, and to tend rapidly to zero at high redshift due to inverse-Compton losses.

  4. Analytic model of heat deposition in spallation neutron target

    International Nuclear Information System (INIS)

    Findlay, D.J.S.

    2015-01-01

    A simple analytic model for estimating deposition of heat in a spallation neutron target is presented—a model that can readily be realised in an unambitious spreadsheet. The model is based on simple representations of the principal underlying physical processes, and is intended largely as a ‘sanity check’ on results from Monte Carlo codes such as FLUKA or MCNPX.

  5. Analytic model of heat deposition in spallation neutron target

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, D.J.S.

    2015-12-11

    A simple analytic model for estimating deposition of heat in a spallation neutron target is presented—a model that can readily be realised in an unambitious spreadsheet. The model is based on simple representations of the principal underlying physical processes, and is intended largely as a ‘sanity check’ on results from Monte Carlo codes such as FLUKA or MCNPX.

  6. Meta-analytic structural equation modelling

    CERN Document Server

    Jak, Suzanne

    2015-01-01

    This book explains how to employ MASEM, the combination of meta-analysis (MA) and structural equation modelling (SEM). It shows how by using MASEM, a single model can be tested to explain the relationships between a set of variables in several studies. This book gives an introduction to MASEM, with a focus on the state of the art approach: the two stage approach of Cheung and Cheung & Chan. Both, the fixed and the random approach to MASEM are illustrated with two applications to real data. All steps that have to be taken to perform the analyses are discussed extensively. All data and syntax files are available online, so that readers can imitate all analyses. By using SEM for meta-analysis, this book shows how to benefit from all available information from all available studies, even if few or none of the studies report about all relationships that feature in the full model of interest.

  7. Analytical modeling of inverted annular film boiling

    International Nuclear Information System (INIS)

    Analytis, G.T.; Yadigaroglu, G.

    1987-01-01

    By employing a two-fluid formulation similar to the one used in the most recent LWR accident analysis codes, a model for the Inverted Annular Film Boiling region is developed. The conservation equations, together with appropriate closure relations are solved numerically. Successful comparisons are made between model predictions and heat transfer coefficient distributions measured in a series of single-tube reflooding experiments. Generally, the model predicts correctly the dependence of the heat transfer coefficient on liquid subcooling and flow rate; for some cases, however, heat transfer is still under-predicted, and an enhancement of the heat exchange from the liquid-vapour interface to the bulk of the liquid is required. The importance of the initial conditions at the quench front is also discussed. (orig.)

  8. Analytical modeling of inverted annular film boiling

    International Nuclear Information System (INIS)

    Analytis, G.T.; Yadigaroglu, G.

    1985-01-01

    By employing a two-fluid formulation similar to the one used in the most recent LWR accident analysis codes, a model for the Inverted Annular Film Boiling region is developed. The conservation equations, together with appropriate constitutive relations are solved numerically and successful comparisons are made between model predictions and heat transfer coefficient distributions measured in a series of single-tube reflooding experiments. The model predicts generally correctly the dependence of the heat transfer coefficient on liquid subcooling and flow rate, through, for some cases, heat transfer is still under-predicted, and an enhancement of the heat exchange from the liquid-vapour interface to the bulk of the liquid is required

  9. Analytical study of anisotropic compact star models

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, B.V. [Bulgarian Academy of Science, Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria)

    2017-11-15

    A simple classification is given of the anisotropic relativistic star models, resembling the one of charged isotropic solutions. On the ground of this database, and taking into account the conditions for physically realistic star models, a method is proposed for generating all such solutions. It is based on the energy density and the radial pressure as seeding functions. Numerous relations between the realistic conditions are found and the need for a graphic proof is reduced just to one pair of inequalities. This general formalism is illustrated with an example of a class of solutions with linear equation of state and simple energy density. It is found that the solutions depend on three free constants and concrete examples are given. Some other popular models are studied with the same method. (orig.)

  10. Analytical model for cable tray fires

    International Nuclear Information System (INIS)

    Clarke, R.K.

    1975-09-01

    A model for cable tray fires based on buoyant plume theory is presented. Using the model in conjunction with empirical data on size of natural fires and burning rate of cellulosic materials, estimates are made of the heat flux as a function of vertical and horizontal distance from a tray fire. Both local fires and fires extending along a significant length of tray are considered. For the particular set of fire parameters assumed in the calculations, the current tray separation criteria of five feet vertical and three feet horizontal are found to be marginal for local fires and too small to prevent fire spread for extended tray fires. 8 references. (auth)

  11. Analytical model of impedance in elliptical beam pipes

    CERN Document Server

    Pesah, Arthur Chalom

    2017-01-01

    Beam instabilities are among the main limitations in building higher intensity accelerators. Having a good impedance model for every accelerators is necessary in order to build components that minimize the probability of instabilities caused by the interaction beam-environment and to understand what piece to change in case of intensity increasing. Most of accelerator components have their impedance simulated with finite elements method (using softwares like CST Studio), but simple components such as circular or flat pipes are modeled analytically, with a decreasing computation time and an increasing precision compared to their simulated model. Elliptical beam pipes, while being a simple component present in some accelerators, still misses a good analytical model working for the hole range of velocities and frequencies. In this report, we present a general framework to study the impedance of elliptical pipes analytically. We developed a model for both longitudinal and transverse impedance, first in the case of...

  12. Unjamming in models with analytic pairwise potentials

    NARCIS (Netherlands)

    Kooij, S.; Lerner, E.

    Canonical models for studying the unjamming scenario in systems of soft repulsive particles assume pairwise potentials with a sharp cutoff in the interaction range. The sharp cutoff renders the potential nonanalytic but makes it possible to describe many properties of the solid in terms of the

  13. Analytical and numerical modeling for flexible pipes

    Science.gov (United States)

    Wang, Wei; Chen, Geng

    2011-12-01

    The unbonded flexible pipe of eight layers, in which all the layers except the carcass layer are assumed to have isotropic properties, has been analyzed. Specifically, the carcass layer shows the orthotropic characteristics. The effective elastic moduli of the carcass layer have been developed in terms of the influence of deformation to stiffness. With consideration of the effective elastic moduli, the structure can be properly analyzed. Also the relative movements of tendons and relative displacements of wires in helical armour layer have been investigated. A three-dimensional nonlinear finite element model has been presented to predict the response of flexible pipes under axial force and torque. Further, the friction and contact of interlayer have been considered. Comparison between the finite element model and experimental results obtained in literature has been given and discussed, which might provide practical and technical support for the application of unbonded flexible pipes.

  14. Haskell financial data modeling and predictive analytics

    CERN Document Server

    Ryzhov, Pavel

    2013-01-01

    This book is a hands-on guide that teaches readers how to use Haskell's tools and libraries to analyze data from real-world sources in an easy-to-understand manner.This book is great for developers who are new to financial data modeling using Haskell. A basic knowledge of functional programming is not required but will be useful. An interest in high frequency finance is essential.

  15. Analytical model for screening potential CO2 repositories

    Science.gov (United States)

    Okwen, R.T.; Stewart, M.T.; Cunningham, J.A.

    2011-01-01

    Assessing potential repositories for geologic sequestration of carbon dioxide using numerical models can be complicated, costly, and time-consuming, especially when faced with the challenge of selecting a repository from a multitude of potential repositories. This paper presents a set of simple analytical equations (model), based on the work of previous researchers, that could be used to evaluate the suitability of candidate repositories for subsurface sequestration of carbon dioxide. We considered the injection of carbon dioxide at a constant rate into a confined saline aquifer via a fully perforated vertical injection well. The validity of the analytical model was assessed via comparison with the TOUGH2 numerical model. The metrics used in comparing the two models include (1) spatial variations in formation pressure and (2) vertically integrated brine saturation profile. The analytical model and TOUGH2 show excellent agreement in their results when similar input conditions and assumptions are applied in both. The analytical model neglects capillary pressure and the pressure dependence of fluid properties. However, simulations in TOUGH2 indicate that little error is introduced by these simplifications. Sensitivity studies indicate that the agreement between the analytical model and TOUGH2 depends strongly on (1) the residual brine saturation, (2) the difference in density between carbon dioxide and resident brine (buoyancy), and (3) the relationship between relative permeability and brine saturation. The results achieved suggest that the analytical model is valid when the relationship between relative permeability and brine saturation is linear or quasi-linear and when the irreducible saturation of brine is zero or very small. ?? 2011 Springer Science+Business Media B.V.

  16. Unjamming in models with analytic pairwise potentials

    Science.gov (United States)

    Kooij, Stefan; Lerner, Edan

    2017-06-01

    Canonical models for studying the unjamming scenario in systems of soft repulsive particles assume pairwise potentials with a sharp cutoff in the interaction range. The sharp cutoff renders the potential nonanalytic but makes it possible to describe many properties of the solid in terms of the coordination number z , which has an unambiguous definition in these cases. Pairwise potentials without a sharp cutoff in the interaction range have not been studied in this context, but should in fact be considered to understand the relevance of the unjamming phenomenology in systems where such a cutoff is not present. In this work we explore two systems with such interactions: an inverse power law and an exponentially decaying pairwise potential, with the control parameters being the exponent (of the inverse power law) for the former and the number density for the latter. Both systems are shown to exhibit the characteristic features of the unjamming transition, among which are the vanishing of the shear-to-bulk modulus ratio and the emergence of an excess of low-frequency vibrational modes. We establish a relation between the pressure-to-bulk modulus ratio and the distance to unjamming in each of our model systems. This allows us to predict the dependence of other key observables on the distance to unjamming. Our results provide the means for a quantitative estimation of the proximity of generic glass-forming models to the unjamming transition in the absence of a clear-cut definition of the coordination number and highlight the general irrelevance of nonaffine contributions to the bulk modulus.

  17. Analytical Model for High Impedance Fault Analysis in Transmission Lines

    Directory of Open Access Journals (Sweden)

    S. Maximov

    2014-01-01

    Full Text Available A high impedance fault (HIF normally occurs when an overhead power line physically breaks and falls to the ground. Such faults are difficult to detect because they often draw small currents which cannot be detected by conventional overcurrent protection. Furthermore, an electric arc accompanies HIFs, resulting in fire hazard, damage to electrical devices, and risk with human life. This paper presents an analytical model to analyze the interaction between the electric arc associated to HIFs and a transmission line. A joint analytical solution to the wave equation for a transmission line and a nonlinear equation for the arc model is presented. The analytical model is validated by means of comparisons between measured and calculated results. Several cases of study are presented which support the foundation and accuracy of the proposed model.

  18. Analytical model for fast-shock ignition

    International Nuclear Information System (INIS)

    Ghasemi, S. A.; Farahbod, A. H.; Sobhanian, S.

    2014-01-01

    A model and its improvements are introduced for a recently proposed approach to inertial confinement fusion, called fast-shock ignition (FSI). The analysis is based upon the gain models of fast ignition, shock ignition and considerations for the fast electrons penetration into the pre-compressed fuel to examine the formation of an effective central hot spot. Calculations of fast electrons penetration into the dense fuel show that if the initial electron kinetic energy is of the order ∼4.5 MeV, the electrons effectively reach the central part of the fuel. To evaluate more realistically the performance of FSI approach, we have used a quasi-two temperature electron energy distribution function of Strozzi (2012) and fast ignitor energy formula of Bellei (2013) that are consistent with 3D PIC simulations for different values of fast ignitor laser wavelength and coupling efficiency. The general advantages of fast-shock ignition in comparison with the shock ignition can be estimated to be better than 1.3 and it is seen that the best results can be obtained for the fuel mass around 1.5 mg, fast ignitor laser wavelength ∼0.3  micron and the shock ignitor energy weight factor about 0.25

  19. A Model for Semantic IS Standards

    NARCIS (Netherlands)

    Folmer, Erwin Johan Albert; Oude Luttighuis, Paul; van Hillegersberg, Jos

    2011-01-01

    We argue that, in order to suggest improvements of any kind to semantic information system (IS) standards, better understanding of the conceptual structure of semantic IS standard is required. This study develops a model for semantic IS standard, based on literature and expert knowledge. The model

  20. Control system architecture: The standard and non-standard models

    International Nuclear Information System (INIS)

    Thuot, M.E.; Dalesio, L.R.

    1993-01-01

    Control system architecture development has followed the advances in computer technology through mainframes to minicomputers to micros and workstations. This technology advance and increasingly challenging accelerator data acquisition and automation requirements have driven control system architecture development. In summarizing the progress of control system architecture at the last International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS) B. Kuiper asserted that the system architecture issue was resolved and presented a ''standard model''. The ''standard model'' consists of a local area network (Ethernet or FDDI) providing communication between front end microcomputers, connected to the accelerator, and workstations, providing the operator interface and computational support. Although this model represents many present designs, there are exceptions including reflected memory and hierarchical architectures driven by requirements for widely dispersed, large channel count or tightly coupled systems. This paper describes the performance characteristics and features of the ''standard model'' to determine if the requirements of ''non-standard'' architectures can be met. Several possible extensions to the ''standard model'' are suggested including software as well as the hardware architectural feature

  1. A standard library for modeling satellite orbits on a microcomputer

    Science.gov (United States)

    Beutel, Kenneth L.

    1988-03-01

    Introductory students of astrodynamics and the space environment are required to have a fundamental understanding of the kinematic behavior of satellite orbits. This thesis develops a standard library that contains the basic formulas for modeling earth orbiting satellites. This library is used as a basis for implementing a satellite motion simulator that can be used to demonstrate orbital phenomena in the classroom. Surveyed are the equations of orbital elements, coordinate systems and analytic formulas, which are made into a standard method for modeling earth orbiting satellites. The standard library is written in the C programming language and is designed to be highly portable between a variety of computer environments. The simulation draws heavily on the standards established by the library to produce a graphics-based orbit simulation program written for the Apple Macintosh computer. The simulation demonstrates the utility of the standard library functions but, because of its extensive use of the Macintosh user interface, is not portable to other operating systems.

  2. Moving standard deviation and moving sum of outliers as quality tools for monitoring analytical precision.

    Science.gov (United States)

    Liu, Jiakai; Tan, Chin Hon; Badrick, Tony; Loh, Tze Ping

    2018-02-01

    An increase in analytical imprecision (expressed as CV a ) can introduce additional variability (i.e. noise) to the patient results, which poses a challenge to the optimal management of patients. Relatively little work has been done to address the need for continuous monitoring of analytical imprecision. Through numerical simulations, we describe the use of moving standard deviation (movSD) and a recently described moving sum of outlier (movSO) patient results as means for detecting increased analytical imprecision, and compare their performances against internal quality control (QC) and the average of normal (AoN) approaches. The power of detecting an increase in CV a is suboptimal under routine internal QC procedures. The AoN technique almost always had the highest average number of patient results affected before error detection (ANPed), indicating that it had generally the worst capability for detecting an increased CV a . On the other hand, the movSD and movSO approaches were able to detect an increased CV a at significantly lower ANPed, particularly for measurands that displayed a relatively small ratio of biological variation to CV a. CONCLUSION: The movSD and movSO approaches are effective in detecting an increase in CV a for high-risk measurands with small biological variation. Their performance is relatively poor when the biological variation is large. However, the clinical risks of an increase in analytical imprecision is attenuated for these measurands as an increased analytical imprecision will only add marginally to the total variation and less likely to impact on the clinical care. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  3. A physically based analytical spatial air temperature and humidity model

    Science.gov (United States)

    Yang Yang; Theodore A. Endreny; David J. Nowak

    2013-01-01

    Spatial variation of urban surface air temperature and humidity influences human thermal comfort, the settling rate of atmospheric pollutants, and plant physiology and growth. Given the lack of observations, we developed a Physically based Analytical Spatial Air Temperature and Humidity (PASATH) model. The PASATH model calculates spatial solar radiation and heat...

  4. AN ANALYTIC MODEL OF DUSTY, STRATIFIED, SPHERICAL H ii REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Ramírez, J. C.; Raga, A. C. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ap. 70-543, 04510 D.F., México (Mexico); Lora, V. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität, Mönchhofstr. 12-14, D-69120 Heidelberg (Germany); Cantó, J., E-mail: juan.rodriguez@nucleares.unam.mx [Instituto de Astronomía, Universidad Nacional Autónoma de México, Ap. 70-468, 04510 D. F., México (Mexico)

    2016-12-20

    We study analytically the effect of radiation pressure (associated with photoionization processes and with dust absorption) on spherical, hydrostatic H ii regions. We consider two basic equations, one for the hydrostatic balance between the radiation-pressure components and the gas pressure, and another for the balance among the recombination rate, the dust absorption, and the ionizing photon rate. Based on appropriate mathematical approximations, we find a simple analytic solution for the density stratification of the nebula, which is defined by specifying the radius of the external boundary, the cross section of dust absorption, and the luminosity of the central star. We compare the analytic solution with numerical integrations of the model equations of Draine, and find a wide range of the physical parameters for which the analytic solution is accurate.

  5. An alternative to the standard model

    International Nuclear Information System (INIS)

    Baek, Seungwon; Ko, Pyungwon; Park, Wan-Il

    2014-01-01

    We present an extension of the standard model to dark sector with an unbroken local dark U(1) X symmetry. Including various singlet portal interactions provided by the standard model Higgs, right-handed neutrinos and kinetic mixing, we show that the model can address most of phenomenological issues (inflation, neutrino mass and mixing, baryon number asymmetry, dark matter, direct/indirect dark matter searches, some scale scale puzzles of the standard collisionless cold dark matter, vacuum stability of the standard model Higgs potential, dark radiation) and be regarded as an alternative to the standard model. The Higgs signal strength is equal to one as in the standard model for unbroken U(1) X case with a scalar dark matter, but it could be less than one independent of decay channels if the dark matter is a dark sector fermion or if U(1) X is spontaneously broken, because of a mixing with a new neutral scalar boson in the models

  6. Four-parameter analytical local model potential for atoms

    International Nuclear Information System (INIS)

    Fei, Yu; Jiu-Xun, Sun; Rong-Gang, Tian; Wei, Yang

    2009-01-01

    Analytical local model potential for modeling the interaction in an atom reduces the computational effort in electronic structure calculations significantly. A new four-parameter analytical local model potential is proposed for atoms Li through Lr, and the values of four parameters are shell-independent and obtained by fitting the results of X a method. At the same time, the energy eigenvalues, the radial wave functions and the total energies of electrons are obtained by solving the radial Schrödinger equation with a new form of potential function by Numerov's numerical method. The results show that our new form of potential function is suitable for high, medium and low Z atoms. A comparison among the new potential function and other analytical potential functions shows the greater flexibility and greater accuracy of the present new potential function. (atomic and molecular physics)

  7. Analytic uncertainty and sensitivity analysis of models with input correlations

    Science.gov (United States)

    Zhu, Yueying; Wang, Qiuping A.; Li, Wei; Cai, Xu

    2018-03-01

    Probabilistic uncertainty analysis is a common means of evaluating mathematical models. In mathematical modeling, the uncertainty in input variables is specified through distribution laws. Its contribution to the uncertainty in model response is usually analyzed by assuming that input variables are independent of each other. However, correlated parameters are often happened in practical applications. In the present paper, an analytic method is built for the uncertainty and sensitivity analysis of models in the presence of input correlations. With the method, it is straightforward to identify the importance of the independence and correlations of input variables in determining the model response. This allows one to decide whether or not the input correlations should be considered in practice. Numerical examples suggest the effectiveness and validation of our analytic method in the analysis of general models. A practical application of the method is also proposed to the uncertainty and sensitivity analysis of a deterministic HIV model.

  8. PATELLOFEMORAL MODEL OF THE KNEE JOINT UNDER NON-STANDARD SQUATTING

    OpenAIRE

    FEKETE, GUSZTÁV; CSIZMADIA, BÉLA MÁLNÁSI; WAHAB, MAGD ABDEL; DE BAETS, PATRICK; VANEGAS-USECHE, LIBARDO V.; BÍRÓ, ISTVÁN

    2014-01-01

    The available analytical models for calculating knee patellofemoral forces are limited to the standard squat motion when the center of gravity is fixed horizontally. In this paper, an analytical model is presented to calculate accurately patellofemoral forces by taking into account the change in position of the trunk's center of gravity under deep squat (non-standard squatting). The accuracy of the derived model is validated through comparisons with results of the inverse dynamics technique. ...

  9. A Unified Channel Charges Expression for Analytic MOSFET Modeling

    Directory of Open Access Journals (Sweden)

    Hugues Murray

    2012-01-01

    Full Text Available Based on a 1D Poissons equation resolution, we present an analytic model of inversion charges allowing calculation of the drain current and transconductance in the Metal Oxide Semiconductor Field Effect Transistor. The drain current and transconductance are described by analytical functions including mobility corrections and short channel effects (CLM, DIBL. The comparison with the Pao-Sah integral shows excellent accuracy of the model in all inversion modes from strong to weak inversion in submicronics MOSFET. All calculations are encoded with a simple C program and give instantaneous results that provide an efficient tool for microelectronics users.

  10. An analytical model of the HINT performance metric

    Energy Technology Data Exchange (ETDEWEB)

    Snell, Q.O.; Gustafson, J.L. [Scalable Computing Lab., Ames, IA (United States)

    1996-10-01

    The HINT benchmark was developed to provide a broad-spectrum metric for computers and to measure performance over the full range of memory sizes and time scales. We have extended our understanding of why HINT performance curves look the way they do and can now predict the curves using an analytical model based on simple hardware specifications as input parameters. Conversely, by fitting the experimental curves with the analytical model, hardware specifications such as memory performance can be inferred to provide insight into the nature of a given computer system.

  11. Field theory and the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Dudas, E [Orsay, LPT (France)

    2014-07-01

    This brief introduction to Quantum Field Theory and the Standard Model contains the basic building blocks of perturbation theory in quantum field theory, an elementary introduction to gauge theories and the basic classical and quantum features of the electroweak sector of the Standard Model. Some details are given for the theoretical bias concerning the Higgs mass limits, as well as on obscure features of the Standard Model which motivate new physics constructions.

  12. Analytical Modelling and Simulation of Photovoltaic Panels and Arrays

    Directory of Open Access Journals (Sweden)

    H. Bourdoucen

    2007-12-01

    Full Text Available In this paper, an analytical model for PV panels and arrays based on extracted physical parameters of solar cells is developed. The proposed model has the advantage of simplifying mathematical modelling for different configurations of cells and panels without losing efficiency of PV system operation. The effects of external parameters, mainly temperature and solar irradiance have been considered in the modelling. Due to their critical effects on the operation of the panel, effects of series and shunt resistances were also studied. The developed analytical model has been easily implemented, simulated and validated using both Spice and Matlab packages for different series and parallel configurations of cells and panels. The results obtained with these two programs are in total agreement, which make the proposed model very useful for researchers and designers for quick and accurate sizing of PV panels and arrays.

  13. Elliptic-cylindrical analytical flux-rope model for ICMEs

    Science.gov (United States)

    Nieves-Chinchilla, T.; Linton, M.; Hidalgo, M. A. U.; Vourlidas, A.

    2016-12-01

    We present an analytical flux-rope model for realistic magnetic structures embedded in Interplanetary Coronal Mass Ejections. The framework of this model was established by Nieves-Chinchilla et al. (2016) with the circular-cylindrical analytical flux rope model and under the concept developed by Hidalgo et al. (2002). Elliptic-cylindrical geometry establishes the first-grade of complexity of a series of models. The model attempts to describe the magnetic flux rope topology with distorted cross-section as a possible consequence of the interaction with the solar wind. In this model, the flux rope is completely described in the non-euclidean geometry. The Maxwell equations are solved using tensor calculus consistently with the geometry chosen, invariance along the axial component, and with the only assumption of no radial current density. The model is generalized in terms of the radial dependence of the poloidal current density component and axial current density component. The misalignment between current density and magnetic field is studied in detail for the individual cases of different pairs of indexes for the axial and poloidal current density components. This theoretical analysis provides a map of the force distribution inside of the flux-rope. The reconstruction technique has been adapted to the model and compared with in situ ICME set of events with different in situ signatures. The successful result is limited to some cases with clear in-situ signatures of distortion. However, the model adds a piece in the puzzle of the physical-analytical representation of these magnetic structures. Other effects such as axial curvature, expansion and/or interaction could be incorporated in the future to fully understand the magnetic structure. Finally, the mathematical formulation of this model opens the door to the next model: toroidal flux rope analytical model.

  14. Two analytical models for evaluating performance of Gigabit Ethernet Hosts

    International Nuclear Information System (INIS)

    Salah, K.

    2006-01-01

    Two analytical models are developed to study the impact of interrupt overhead on operating system performance of network hosts when subjected to Gigabit network traffic. Under heavy network traffic, the system performance will be negatively affected due to interrupt overhead caused by incoming traffic. In particular, excessive latency and significant degradation in system throughput can be experienced. Also user application may livelock as the CPU power is mostly consumed by interrupt handling and protocol processing. In this paper we present and compare two analytical models that capture host behavior and evaluate its performance. The first model is based Markov processes and queuing theory, while the second, which is more accurate but more complex is a pure Markov process. For the most part both models give mathematically-equivalent closed-form solutions for a number of important system performance metrics. These metrics include throughput, latency and stability condition, CPU utilization of interrupt handling and protocol processing and CPU availability for user applications. The analysis yields insight into understanding and predicting the impact of system and network choices on the performance of interrupt-driven systems when subjected to light and heavy network loads. More, importantly, our analytical work can also be valuable in improving host performance. The paper gives guidelines and recommendations to address design and implementation issues. Simulation and reported experimental results show that our analytical models are valid and give a good approximation. (author)

  15. Analytical Model for Hook Anchor Pull-Out

    DEFF Research Database (Denmark)

    Brincker, Rune; Ulfkjær, Jens Peder; Adamsen, Peter

    1995-01-01

    A simple analytical model for the pull-out of a hook anchor is presented. The model is based on a simplified version of the fictitious crack model. It is assumed that the fracture process is the pull-off of a cone shaped concrete part, simplifying the problem by assuming pure rigid body motions...... allowing elastic deformations only in a layer between the pull-out cone and the concrete base. The derived model is in good agreement with experimental results, it predicts size effects and the model parameters found by calibration of the model on experimental data are in good agreement with what should...

  16. Analytical Model for Hook Anchor Pull-out

    DEFF Research Database (Denmark)

    Brincker, Rune; Ulfkjær, J. P.; Adamsen, P.

    A simple analytical model for the pull-out of a hook anchor is presented. The model is based on a simplified version of the fictitious crack model. It is assumed that the fracture process is the pull-off of a cone shaped concrete part, simplifying the problem by assuming pure rigid body motions...... allowing elastic deformations only in a layer between the pull-out cone and the concrete base. The derived model is in good agreement with experimental results, it predicts size effects and the model parameters found by calibration of the model on experimental data are in good agreement with what should...

  17. Evaluation of one dimensional analytical models for vegetation canopies

    Science.gov (United States)

    Goel, Narendra S.; Kuusk, Andres

    1992-01-01

    The SAIL model for one-dimensional homogeneous vegetation canopies has been modified to include the specular reflectance and hot spot effects. This modified model and the Nilson-Kuusk model are evaluated by comparing the reflectances given by them against those given by a radiosity-based computer model, Diana, for a set of canopies, characterized by different leaf area index (LAI) and leaf angle distribution (LAD). It is shown that for homogeneous canopies, the analytical models are generally quite accurate in the visible region, but not in the infrared region. For architecturally realistic heterogeneous canopies of the type found in nature, these models fall short. These shortcomings are quantified.

  18. Does leaf chemistry differentially affect breakdown in tropical vs temperate streams? Importance of standardized analytical techniques to measure leaf chemistry

    Science.gov (United States)

    Marcelo Ard& #243; n; Catherine M. Pringle; Susan L. Eggert

    2009-01-01

    Comparisons of the effects of leaf litter chemistry on leaf breakdown rates in tropical vs temperate streams are hindered by incompatibility among studies and across sites of analytical methods used to measure leaf chemistry. We used standardized analytical techniques to measure chemistry and breakdown rate of leaves from common riparian tree species at 2 sites, 1...

  19. Quality model for semantic IS standards

    NARCIS (Netherlands)

    Folmer, Erwin Johan Albert

    2011-01-01

    Semantic IS (Information Systems) standards are essential for achieving interoperability between organizations. However a recent survey suggests that not the full benefits of standards are achieved, due to the quality issues. This paper presents a quality model for semantic IS standards, that should

  20. Analytical study on model tests of soil-structure interaction

    International Nuclear Information System (INIS)

    Odajima, M.; Suzuki, S.; Akino, K.

    1987-01-01

    Since nuclear power plant (NPP) structures are stiff, heavy and partly-embedded, the behavior of those structures during an earthquake depends on the vibrational characteristics of not only the structure but also the soil. Accordingly, seismic response analyses considering the effects of soil-structure interaction (SSI) are extremely important for seismic design of NPP structures. Many studies have been conducted on analytical techniques concerning SSI and various analytical models and approaches have been proposed. Based on the studies, SSI analytical codes (computer programs) for NPP structures have been improved at JINS (Japan Institute of Nuclear Safety), one of the departments of NUPEC (Nuclear Power Engineering Test Center) in Japan. These codes are soil-spring lumped-mass code (SANLUM), finite element code (SANSSI), thin layered element code (SANSOL). In proceeding with the improvement of the analytical codes, in-situ large-scale forced vibration SSI tests were performed using models simulating light water reactor buildings, and simulation analyses were performed to verify the codes. This paper presents an analytical study to demonstrate the usefulness of the codes

  1. Analytic Model Predictive Control of Uncertain Nonlinear Systems: A Fuzzy Adaptive Approach

    Directory of Open Access Journals (Sweden)

    Xiuyan Peng

    2015-01-01

    Full Text Available A fuzzy adaptive analytic model predictive control method is proposed in this paper for a class of uncertain nonlinear systems. Specifically, invoking the standard results from the Moore-Penrose inverse of matrix, the unmatched problem which exists commonly in input and output dimensions of systems is firstly solved. Then, recurring to analytic model predictive control law, combined with fuzzy adaptive approach, the fuzzy adaptive predictive controller synthesis for the underlying systems is developed. To further reduce the impact of fuzzy approximation error on the system and improve the robustness of the system, the robust compensation term is introduced. It is shown that by applying the fuzzy adaptive analytic model predictive controller the rudder roll stabilization system is ultimately uniformly bounded stabilized in the H-infinity sense. Finally, simulation results demonstrate the effectiveness of the proposed method.

  2. Analytical models for the rewetting of hot surfaces

    International Nuclear Information System (INIS)

    Olek, S.

    1988-10-01

    Some aspects concerning analytical models for the rewetting of hot surface are discussed. These include the problems with applying various forms of boundary conditions, compatibility of boundary conditions with the physics of the rewetting problems, recent analytical models, the use of the separation of variables method versus the Wiener-Hopf technique, and the use of transformations. The report includes an updated list of rewetting models as well as benchmark solutions in tabular form for several models. It should be emphasized that this report is not meant to cover the topic of rewetting models. It merely discusses some points which are less commonly referred to in the literature. 93 refs., 3 figs., 22 tabs

  3. Analytic investigation of extended Heitler-Matthews model

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, Stefan; Veberic, Darko; Engel, Ralph [KIT, IKP (Germany)

    2016-07-01

    Many features of extensive air showers are qualitatively well described by the Heitler cascade model and its extensions. The core of a shower is given by hadrons that interact with air nuclei. After each interaction some of these hadrons decay and feed the electromagnetic shower component. The most important parameters of such hadronic interactions are inelasticity, multiplicity, and the ratio of charged vs. neutral particles. However, in analytic considerations approximations are needed to include the characteristics of hadron production. We discuss extensions of the simple cascade model by analytic description of air showers by cascade models which include also the elasticity, and derive the number of produced muons. In a second step we apply this model to calculate the dependence of the shower center of gravity on model parameters. The depth of the center of gravity is closely related to that of the shower maximum, which is a commonly-used composition-sensitive observable.

  4. An analytical model for the assessment of airline expansion strategies

    Directory of Open Access Journals (Sweden)

    Mauricio Emboaba Moreira

    2014-01-01

    Full Text Available Purpose: The purpose of this article is to develop an analytical model to assess airline expansion strategies by combining generic business strategy models with airline business models. Methodology and approach: A number of airline business models are examined, as are Porter’s (1983 industry five forces that drive competition, complemented by Nalebuff/ Brandenburger’s  (1996 sixth force, and the basic elements of the general environment in which the expansion process takes place.  A system of points and weights is developed to create a score among the 904,736 possible combinations considered. The model’s outputs are generic expansion strategies with quantitative assessments for each specific combination of elements inputted. Originality and value: The analytical model developed is original because it combines for the first time and explicitly elements of the general environment, industry environment, airline business models and the generic expansion strategy types. Besides it creates a system of scores that may be used to drive the decision process toward the choice of a specific strategic expansion path. Research implications: The analytical model may be adapted to other industries apart from the airline industry by substituting the element “airline business model” by other industries corresponding elements related to the different specific business models.

  5. Piezoresistive Cantilever Performance-Part I: Analytical Model for Sensitivity.

    Science.gov (United States)

    Park, Sung-Jin; Doll, Joseph C; Pruitt, Beth L

    2010-02-01

    An accurate analytical model for the change in resistance of a piezoresistor is necessary for the design of silicon piezoresistive transducers. Ion implantation requires a high-temperature oxidation or annealing process to activate the dopant atoms, and this treatment results in a distorted dopant profile due to diffusion. Existing analytical models do not account for the concentration dependence of piezoresistance and are not accurate for nonuniform dopant profiles. We extend previous analytical work by introducing two nondimensional factors, namely, the efficiency and geometry factors. A practical benefit of this efficiency factor is that it separates the process parameters from the design parameters; thus, designers may address requirements for cantilever geometry and fabrication process independently. To facilitate the design process, we provide a lookup table for the efficiency factor over an extensive range of process conditions. The model was validated by comparing simulation results with the experimentally determined sensitivities of piezoresistive cantilevers. We performed 9200 TSUPREM4 simulations and fabricated 50 devices from six unique process flows; we systematically explored the design space relating process parameters and cantilever sensitivity. Our treatment focuses on piezoresistive cantilevers, but the analytical sensitivity model is extensible to other piezoresistive transducers such as membrane pressure sensors.

  6. Piezoresistive Cantilever Performance—Part I: Analytical Model for Sensitivity

    Science.gov (United States)

    Park, Sung-Jin; Doll, Joseph C.; Pruitt, Beth L.

    2010-01-01

    An accurate analytical model for the change in resistance of a piezoresistor is necessary for the design of silicon piezoresistive transducers. Ion implantation requires a high-temperature oxidation or annealing process to activate the dopant atoms, and this treatment results in a distorted dopant profile due to diffusion. Existing analytical models do not account for the concentration dependence of piezoresistance and are not accurate for nonuniform dopant profiles. We extend previous analytical work by introducing two nondimensional factors, namely, the efficiency and geometry factors. A practical benefit of this efficiency factor is that it separates the process parameters from the design parameters; thus, designers may address requirements for cantilever geometry and fabrication process independently. To facilitate the design process, we provide a lookup table for the efficiency factor over an extensive range of process conditions. The model was validated by comparing simulation results with the experimentally determined sensitivities of piezoresistive cantilevers. We performed 9200 TSUPREM4 simulations and fabricated 50 devices from six unique process flows; we systematically explored the design space relating process parameters and cantilever sensitivity. Our treatment focuses on piezoresistive cantilevers, but the analytical sensitivity model is extensible to other piezoresistive transducers such as membrane pressure sensors. PMID:20336183

  7. Bubbles in inkjet printheads: analytical and numerical models

    NARCIS (Netherlands)

    Jeurissen, R.J.M.

    2009-01-01

    The phenomenon of nozzle failure of an inkjet printhead due to entrainment of air bubbles was studies using analytical and numerical models. The studied inkjet printheads consist of many channels in which an acoustic field is generated to eject a droplet. When an air bubble is entrained, it disrupts

  8. Bubbles in inkjet printheads : analytical and numerical models

    NARCIS (Netherlands)

    Jeurissen, R.J.M.

    2009-01-01

    The phenomenon of nozzle failure of an inkjet printhead due to entrainment of air bubbles was studies using analytical and numerical models. The studied inkjet printheads consist of many channels in which an acoustic field is generated to eject a droplet. When an air bubble is entrained, it disrupts

  9. Analytic processor model for fast design-space exploration

    NARCIS (Netherlands)

    Jongerius, R.; Mariani, G.; Anghel, A.; Dittmann, G.; Vermij, E.; Corporaal, H.

    2015-01-01

    In this paper, we propose an analytic model that takes as inputs a) a parametric microarchitecture-independent characterization of the target workload, and b) a hardware configuration of the core and the memory hierarchy, and returns as output an estimation of processor-core performance. To validate

  10. Models for the analytic estimation of low energy photon albedo

    International Nuclear Information System (INIS)

    Simovic, R.; Markovic, S.; Ljubenov, V.

    2005-01-01

    This paper shows some monoenergetic models for estimation of photon reflection in the energy range from 20 keV to 80 keV. Using the DP0 approximation of the H-function we have derived the analytic expressions of the η and R functions in purpose to facilitate photon reflection analyses as well as the radiation shield designee. (author) [sr

  11. An analytical excitation model for an ionizing plasma

    NARCIS (Netherlands)

    Mullen, van der J.J.A.M.; Sijde, van der B.; Schram, D.C.

    1983-01-01

    From an analytical model for the population of high-lying excited levels in ionizing plasmas it appears that the distribution is a superposition of the equilibrium (Saha) value and an overpopulation. This overpopulation takes the form of a Maxwell distribution for free electrons. Experiments for He

  12. MODEL ANALYTICAL NETWORK PROCESS (ANP DALAM PENGEMBANGAN PARIWISATA DI JEMBER

    Directory of Open Access Journals (Sweden)

    Sukidin Sukidin

    2015-04-01

    Full Text Available Abstrak    : Model Analytical Network Process (ANP dalam Pengembangan Pariwisata di Jember. Penelitian ini mengkaji kebijakan pengembangan pariwisata di Jember, terutama kebijakan pengembangan agrowisata perkebunan kopi dengan menggunakan Jember Fashion Carnival (JFC sebagai event marketing. Metode yang digunakan adalah soft system methodology dengan menggunakan metode analitis jaringan (Analytical Network Process. Penelitian ini menemukan bahwa pengembangan pariwisata di Jember masih dilakukan dengan menggunakan pendekatan konvensional, belum terkoordinasi dengan baik, dan lebih mengandalkan satu even (atraksi pariwisata, yakni JFC, sebagai lokomotif daya tarik pariwisata Jember. Model pengembangan konvensional ini perlu dirancang kembali untuk memperoleh pariwisata Jember yang berkesinambungan. Kata kunci: pergeseran paradigma, industry pariwisata, even pariwisata, agrowisata Abstract: Analytical Network Process (ANP Model in the Tourism Development in Jember. The purpose of this study is to conduct a review of the policy of tourism development in Jember, especially development policies for coffee plantation agro-tourism by using Jember Fashion Carnival (JFC as event marketing. The research method used is soft system methodology using Analytical Network Process. The result shows that the tourism development in Jember is done using a conventional approach, lack of coordination, and merely focus on a single event tourism, i.e. the JFC, as locomotive tourism attraction in Jember. This conventional development model needs to be redesigned to reach Jember sustainable tourism development. Keywords: paradigm shift, tourism industry, agro-tourism

  13. Foam for Enhanced Oil Recovery : Modeling and Analytical Solutions

    NARCIS (Netherlands)

    Ashoori, E.

    2012-01-01

    Foam increases sweep in miscible- and immiscible-gas enhanced oil recovery by decreasing the mobility of gas enormously. This thesis is concerned with the simulations and analytical solutions for foam flow for the purpose of modeling foam EOR in a reservoir. For the ultimate goal of upscaling our

  14. Learning, Learning Analytics, Activity Visualisation and Open learner Model

    DEFF Research Database (Denmark)

    Bull, Susan; Kickmeier-Rust, Michael; Vatrapu, Ravi

    2013-01-01

    This paper draws on visualisation approaches in learning analytics, considering how classroom visualisations can come together in practice. We suggest an open learner model in situations where many tools and activity visualisations produce more visual information than can be readily interpreted....

  15. Evaluating Modeling Sessions Using the Analytic Hierarchy Process

    NARCIS (Netherlands)

    Ssebuggwawo, D.; Hoppenbrouwers, S.J.B.A.; Proper, H.A.; Persson, A.; Stirna, J.

    2008-01-01

    In this paper, which is methodological in nature, we propose to use an established method from the field of Operations Research, the Analytic Hierarchy Process (AHP), in the integrated, stakeholder- oriented evaluation of enterprise modeling sessions: their language, pro- cess, tool (medium), and

  16. A revisited standard solar model

    International Nuclear Information System (INIS)

    Casse, M.; Cahen, S.; Doom, C.

    1987-01-01

    Recent models of the Sun, including our own, based on canonical physics and featuring modern reaction rates and radiative opacities are presented. They lead to a presolar helium abundance, in better agreement with the value found in the Orion nebula. Most models predict a neutrino counting rate greater than 6 SNU in the chlorine-argon detector, which is at least 3 times higher than the observed rate. The primordial helium abundance derived from the solar one, on the basis of recent models of helium production from the birth of the Galaxy to the birth of the sun, is significantly higher than the value inferred from observations of extragalactic metal-poor nebulae. This indicates that the stellar production of helium is probably underestimated by the models considered

  17. Analytical model spectrum for electrostatic turbulence in tokamaks

    International Nuclear Information System (INIS)

    Fiedler-Ferrari, N.; Misguich, J.H.

    1990-04-01

    In this work we present an analytical model spectrum, for three-dimensional electrostatic turbulence (homogeneous, stationary and locally isotropic in the plane perpendicular to the magnetic field), constructed by using experimental results from TFR and TEXT Tokamaks, and satisfying basic symmetry and parity conditions. The proposed spectrum seems to be tractable for explicit analytical calculations of transport processes, and consistent with experimental data. Additional experimental measurements in the bulk plasma remain however necessary in order to determine some unknown spectral properties of parallel propagation

  18. The Greenhouse effect within an analytic model of the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Dehnen, Heinz [Konstanz Univ. (Germany). Fachbereich Physik

    2009-01-15

    Within a simplified atmospheric model the greenhouse effect is treated by analytical methods starting from physical first principles. The influence of solar radiation, absorption cross sections of the greenhouse molecules, and cloud formation on the earth's temperature is shown and discussed explicitly by mathematical formulae in contrast to the climate simulations. The application of our analytical results on the production of 20 .10{sup 9} t of CO{sub 2} per year yields an enlargement of the earth's surface temperature of 2.3 .10{sup -2} C per year in agreement with other estimations. (orig.)

  19. Modeling in the Common Core State Standards

    Science.gov (United States)

    Tam, Kai Chung

    2011-01-01

    The inclusion of modeling and applications into the mathematics curriculum has proven to be a challenging task over the last fifty years. The Common Core State Standards (CCSS) has made mathematical modeling both one of its Standards for Mathematical Practice and one of its Conceptual Categories. This article discusses the need for mathematical…

  20. An analytically solvable model for rapid evolution of modular structure.

    Directory of Open Access Journals (Sweden)

    Nadav Kashtan

    2009-04-01

    Full Text Available Biological systems often display modularity, in the sense that they can be decomposed into nearly independent subsystems. Recent studies have suggested that modular structure can spontaneously emerge if goals (environments change over time, such that each new goal shares the same set of sub-problems with previous goals. Such modularly varying goals can also dramatically speed up evolution, relative to evolution under a constant goal. These studies were based on simulations of model systems, such as logic circuits and RNA structure, which are generally not easy to treat analytically. We present, here, a simple model for evolution under modularly varying goals that can be solved analytically. This model helps to understand some of the fundamental mechanisms that lead to rapid emergence of modular structure under modularly varying goals. In particular, the model suggests a mechanism for the dramatic speedup in evolution observed under such temporally varying goals.

  1. Experimental evaluation of analytical penumbra calculation model for wobbled beams

    International Nuclear Information System (INIS)

    Kohno, Ryosuke; Kanematsu, Nobuyuki; Yusa, Ken; Kanai, Tatsuaki

    2004-01-01

    The goal of radiotherapy is not only to apply a high radiation dose to a tumor, but also to avoid side effects in the surrounding healthy tissue. Therefore, it is important for carbon-ion treatment planning to calculate accurately the effects of the lateral penumbra. In this article, for wobbled beams under various irradiation conditions, we focus on the lateral penumbras at several aperture positions of one side leaf of the multileaf collimator. The penumbras predicted by an analytical penumbra calculation model were compared with the measured results. The results calculated by the model for various conditions agreed well with the experimental ones. In conclusion, we found that the analytical penumbra calculation model could predict accurately the measured results for wobbled beams and it was useful for carbon-ion treatment planning to apply the model

  2. Quantum decay model with exact explicit analytical solution

    Science.gov (United States)

    Marchewka, Avi; Granot, Er'El

    2009-01-01

    A simple decay model is introduced. The model comprises a point potential well, which experiences an abrupt change. Due to the temporal variation, the initial quantum state can either escape from the well or stay localized as a new bound state. The model allows for an exact analytical solution while having the necessary features of a decay process. The results show that the decay is never exponential, as classical dynamics predicts. Moreover, at short times the decay has a fractional power law, which differs from perturbation quantum method predictions. At long times the decay includes oscillations with an envelope that decays algebraically. This is a model where the final state can be either continuous or localized, and that has an exact analytical solution.

  3. Collaborative data analytics for smart buildings: opportunities and models

    DEFF Research Database (Denmark)

    Lazarova-Molnar, Sanja; Mohamed, Nader

    2018-01-01

    of collaborative data analytics for smart buildings, its benefits, as well as presently possible models of carrying it out. Furthermore, we present a framework for collaborative fault detection and diagnosis as a case of collaborative data analytics for smart buildings. We also provide a preliminary analysis...... of the energy efficiency benefit of such collaborative framework for smart buildings. The result shows that significant energy savings can be achieved for smart buildings using collaborative data analytics.......Smart buildings equipped with state-of-the-art sensors and meters are becoming more common. Large quantities of data are being collected by these devices. For a single building to benefit from its own collected data, it will need to wait for a long time to collect sufficient data to build accurate...

  4. Analytical model for nonlinear piezoelectric energy harvesting devices

    International Nuclear Information System (INIS)

    Neiss, S; Goldschmidtboeing, F; M Kroener; Woias, P

    2014-01-01

    In this work we propose analytical expressions for the jump-up and jump-down point of a nonlinear piezoelectric energy harvester. In addition, analytical expressions for the maximum power output at optimal resistive load and the 3 dB-bandwidth are derived. So far, only numerical models have been used to describe the physics of a piezoelectric energy harvester. However, this approach is not suitable to quickly evaluate different geometrical designs or piezoelectric materials in the harvester design process. In addition, the analytical expressions could be used to predict the jump-frequencies of a harvester during operation. In combination with a tuning mechanism, this would allow the design of an efficient control algorithm to ensure that the harvester is always working on the oscillator's high energy attractor. (paper)

  5. Beyond the supersymmetric standard model

    Energy Technology Data Exchange (ETDEWEB)

    Hall, L.J.

    1988-02-01

    The possibility of baryon number violation at the weak scale and an alternative primordial nucleosynthesis scheme arising from the decay of gravitations are discussed. The minimal low energy supergravity model is defined and a few of its features are described. Renormalization group scaling and flavor physics are mentioned.

  6. A revisited standard solar model

    International Nuclear Information System (INIS)

    Casse, M.; Cahen, S.; Doom, C.

    1985-09-01

    Recent models of the Sun, including our own, based on canonical physics and featuring modern reaction rates and radiative opacities are presented. They lead to a presolar helium abundance of approximately 0.28 by mass, at variance with the value of 0.25 proposed by Bahcall et al. (1982, 1985), but in better agreement with the value found in the Orion nebula. Most models predict a neutrino counting rate greater than 6 SNU in the chlorine-argon detector, which is at least 3 times higher than the observed rate. The primordial helium abundance derived from the solar one, on the basis of recent models of helium production from the birth of the Galaxy to the birth of the sun, Ysub(P) approximately 0.26, is significantly higher than the value inferred from observations of extragalactic metal-poor nebulae (Y approximately 0.23). This indicates that the stellar production of helium is probably underestimated by the models considered

  7. Beyond the supersymmetric standard model

    International Nuclear Information System (INIS)

    Hall, L.J.

    1988-02-01

    The possibility of baryon number violation at the weak scale and an alternative primordial nucleosynthesis scheme arising from the decay of gravitations are discussed. The minimal low energy supergravity model is defined and a few of its features are described. Renormalization group scaling and flavor physics are mentioned

  8. Analytic solution of the Starobinsky model for inflation

    Energy Technology Data Exchange (ETDEWEB)

    Paliathanasis, Andronikos [Universidad Austral de Chile, Instituto de Ciencias Fisicas y Matematicas, Valdivia (Chile); Durban University of Technology, Institute of Systems Science, Durban (South Africa)

    2017-07-15

    We prove that the field equations of the Starobinsky model for inflation in a Friedmann-Lemaitre-Robertson-Walker metric constitute an integrable system. The analytical solution in terms of a Painleve series for the Starobinsky model is presented for the case of zero and nonzero spatial curvature. In both cases the leading-order term describes the radiation era provided by the corresponding higher-order theory. (orig.)

  9. Analytic models for the evolution of semilocal string networks

    International Nuclear Information System (INIS)

    Nunes, A. S.; Martins, C. J. A. P.; Avgoustidis, A.; Urrestilla, J.

    2011-01-01

    We revisit previously developed analytic models for defect evolution and adapt them appropriately for the study of semilocal string networks. We thus confirm the expectation (based on numerical simulations) that linear scaling evolution is the attractor solution for a broad range of model parameters. We discuss in detail the evolution of individual semilocal segments, focusing on the phenomenology of segment growth, and also provide a preliminary comparison with existing numerical simulations.

  10. Analytic regularization of the Yukawa model at finite temperature

    International Nuclear Information System (INIS)

    Malbouisson, A.P.C.; Svaiter, N.F.; Svaiter, B.F.

    1996-07-01

    It is analysed the one-loop fermionic contribution for the scalar effective potential in the temperature dependent Yukawa model. Ir order to regularize the model a mix between dimensional and analytic regularization procedures is used. It is found a general expression for the fermionic contribution in arbitrary spacetime dimension. It is also found that in D = 3 this contribution is finite. (author). 19 refs

  11. Analytical dose modeling for preclinical proton irradiation of millimetric targets.

    Science.gov (United States)

    Vanstalle, Marie; Constanzo, Julie; Karakaya, Yusuf; Finck, Christian; Rousseau, Marc; Brasse, David

    2018-01-01

    Due to the considerable development of proton radiotherapy, several proton platforms have emerged to irradiate small animals in order to study the biological effectiveness of proton radiation. A dedicated analytical treatment planning tool was developed in this study to accurately calculate the delivered dose given the specific constraints imposed by the small dimensions of the irradiated areas. The treatment planning system (TPS) developed in this study is based on an analytical formulation of the Bragg peak and uses experimental range values of protons. The method was validated after comparison with experimental data from the literature and then compared to Monte Carlo simulations conducted using Geant4. Three examples of treatment planning, performed with phantoms made of water targets and bone-slab insert, were generated with the analytical formulation and Geant4. Each treatment planning was evaluated using dose-volume histograms and gamma index maps. We demonstrate the value of the analytical function for mouse irradiation, which requires a targeting accuracy of 0.1 mm. Using the appropriate database, the analytical modeling limits the errors caused by misestimating the stopping power. For example, 99% of a 1-mm tumor irradiated with a 24-MeV beam receives the prescribed dose. The analytical dose deviations from the prescribed dose remain within the dose tolerances stated by report 62 of the International Commission on Radiation Units and Measurements for all tested configurations. In addition, the gamma index maps show that the highly constrained targeting accuracy of 0.1 mm for mouse irradiation leads to a significant disagreement between Geant4 and the reference. This simulated treatment planning is nevertheless compatible with a targeting accuracy exceeding 0.2 mm, corresponding to rat and rabbit irradiations. Good dose accuracy for millimetric tumors is achieved with the analytical calculation used in this work. These volume sizes are typical in mouse

  12. Physics beyond the Standard Model

    Science.gov (United States)

    Lach, Theodore

    2011-04-01

    Recent discoveries of the excited states of the Bs** meson along with the discovery of the omega-b-minus have brought into popular acceptance the concept of the orbiting quarks predicted by the Checker Board Model (CBM) 14 years ago. Back then the concept of orbiting quarks was not fashionable. Recent estimates of velocities of these quarks inside the proton and neutron are in excess of 90% the speed of light also in agreement with the CBM model. Still a 2D structure of the nucleus has not been accepted nor has it been proven wrong. The CBM predicts masses of the up and dn quarks are 237.31 MeV and 42.392 MeV respectively and suggests that a lighter generation of quarks u and d make up a different generation of quarks that make up light mesons. The CBM also predicts that the T' and B' quarks do exist and are not as massive as might be expected. (this would make it a 5G world in conflict with the SM) The details of the CB model and prediction of quark masses can be found at: http://checkerboard.dnsalias.net/ (1). T.M. Lach, Checkerboard Structure of the Nucleus, Infinite Energy, Vol. 5, issue 30, (2000). (2). T.M. Lach, Masses of the Sub-Nuclear Particles, nucl-th/0008026, @http://xxx.lanl.gov/.

  13. Beyond the Standard Model of Cosmology

    International Nuclear Information System (INIS)

    Ellis, John; Nanopoulos, D. V.

    2004-01-01

    Recent cosmological observations of unprecented accuracy, by WMAP in particular, have established a 'Standard Model' of cosmology, just as LEP established the Standard Model of particle physics. Both Standard Models raise open questions whose answers are likely to be linked. The most fundamental problems in both particle physics and cosmology will be resolved only within a framework for Quantum Gravity, for which the only game in town is string theory. We discuss novel ways to model cosmological inflation and late acceleration in a non-critical string approach, and discuss possible astrophysical tests

  14. The minimal non-minimal standard model

    International Nuclear Information System (INIS)

    Bij, J.J. van der

    2006-01-01

    In this Letter I discuss a class of extensions of the standard model that have a minimal number of possible parameters, but can in principle explain dark matter and inflation. It is pointed out that the so-called new minimal standard model contains a large number of parameters that can be put to zero, without affecting the renormalizability of the model. With the extra restrictions one might call it the minimal (new) non-minimal standard model (MNMSM). A few hidden discrete variables are present. It is argued that the inflaton should be higher-dimensional. Experimental consequences for the LHC and the ILC are discussed

  15. Analytical fitting model for rough-surface BRDF.

    Science.gov (United States)

    Renhorn, Ingmar G E; Boreman, Glenn D

    2008-08-18

    A physics-based model is developed for rough surface BRDF, taking into account angles of incidence and scattering, effective index, surface autocovariance, and correlation length. Shadowing is introduced on surface correlation length and reflectance. Separate terms are included for surface scatter, bulk scatter and retroreflection. Using the FindFit function in Mathematica, the functional form is fitted to BRDF measurements over a wide range of incident angles. The model has fourteen fitting parameters; once these are fixed, the model accurately describes scattering data over two orders of magnitude in BRDF without further adjustment. The resulting analytical model is convenient for numerical computations.

  16. Analytical heat transfer modeling of a new radiation calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Obame Ndong, Elysée [Department of Industrial Engineering and Maintenance, University of Sciences and Technology of Masuku (USTM), BP 941 Franceville (Gabon); Grenoble Electrical Engineering Laboratory (G2Elab), University Grenoble Alpes and CNRS, G2Elab, F38000 Grenoble (France); Gallot-Lavallée, Olivier [Grenoble Electrical Engineering Laboratory (G2Elab), University Grenoble Alpes and CNRS, G2Elab, F38000 Grenoble (France); Aitken, Frédéric, E-mail: frederic.aitken@g2elab.grenoble-inp.fr [Grenoble Electrical Engineering Laboratory (G2Elab), University Grenoble Alpes and CNRS, G2Elab, F38000 Grenoble (France)

    2016-06-10

    Highlights: • Design of a new calorimeter for measuring heat power loss in electrical components. • The calorimeter can operate in a temperature range from −50 °C to 150 °C. • An analytical model of heat transfers for this new calorimeter is presented. • The theoretical sensibility of the new apparatus is estimated at ±1 mW. - Abstract: This paper deals with an analytical modeling of heat transfers simulating a new radiation calorimeter operating in a temperature range from −50 °C to 150 °C. The aim of this modeling is the evaluation of the feasibility and performance of the calorimeter by assessing the measurement of power losses of some electrical devices by radiation, the influence of the geometry and materials. Finally a theoretical sensibility of the new apparatus is estimated at ±1 mW. From these results the calorimeter has been successfully implemented and patented.

  17. Analytical heat transfer modeling of a new radiation calorimeter

    International Nuclear Information System (INIS)

    Obame Ndong, Elysée; Gallot-Lavallée, Olivier; Aitken, Frédéric

    2016-01-01

    Highlights: • Design of a new calorimeter for measuring heat power loss in electrical components. • The calorimeter can operate in a temperature range from −50 °C to 150 °C. • An analytical model of heat transfers for this new calorimeter is presented. • The theoretical sensibility of the new apparatus is estimated at ±1 mW. - Abstract: This paper deals with an analytical modeling of heat transfers simulating a new radiation calorimeter operating in a temperature range from −50 °C to 150 °C. The aim of this modeling is the evaluation of the feasibility and performance of the calorimeter by assessing the measurement of power losses of some electrical devices by radiation, the influence of the geometry and materials. Finally a theoretical sensibility of the new apparatus is estimated at ±1 mW. From these results the calorimeter has been successfully implemented and patented.

  18. Net Analyte Signal Standard Additions Method for Simultaneous Determination of Sulfamethoxazole and Trimethoprim in Pharmaceutical Formulations and Biological Fluids

    Directory of Open Access Journals (Sweden)

    M. H. Givianrad

    2012-01-01

    Full Text Available The applicability of a novel net analyte signal standard addition method (NASSAM to the resolving of overlapping spectra corresponding to the sulfamethoxazole and trimethoprim was verified by UV-visible spectrophotometry. The results confirmed that the net analyte signal standard additions method with simultaneous addition of both analytes is suitable for the simultaneous determination of sulfamethoxazole and trimethoprim in aqueous media. Moreover, applying the net analyte signal standard additions method revealed that the two drugs could be determined simultaneously with the concentration ratios of sulfamethoxazole to trimethoprim varying from 1:35 to 60:1 in the mixed samples. In addition, the limits of detections were 0.26 and 0.23 μmol L-1 for sulfamethoxazole and trimethoprim, respectively. The proposed method has been effectively applied to the simultaneous determination of sulfamethoxazole and trimethoprim in some synthetic, pharmaceutical formulation and biological fluid samples.

  19. Semantic Interaction for Sensemaking: Inferring Analytical Reasoning for Model Steering.

    Science.gov (United States)

    Endert, A; Fiaux, P; North, C

    2012-12-01

    Visual analytic tools aim to support the cognitively demanding task of sensemaking. Their success often depends on the ability to leverage capabilities of mathematical models, visualization, and human intuition through flexible, usable, and expressive interactions. Spatially clustering data is one effective metaphor for users to explore similarity and relationships between information, adjusting the weighting of dimensions or characteristics of the dataset to observe the change in the spatial layout. Semantic interaction is an approach to user interaction in such spatializations that couples these parametric modifications of the clustering model with users' analytic operations on the data (e.g., direct document movement in the spatialization, highlighting text, search, etc.). In this paper, we present results of a user study exploring the ability of semantic interaction in a visual analytic prototype, ForceSPIRE, to support sensemaking. We found that semantic interaction captures the analytical reasoning of the user through keyword weighting, and aids the user in co-creating a spatialization based on the user's reasoning and intuition.

  20. Using Learning Analytics to Understand Scientific Modeling in the Classroom

    Directory of Open Access Journals (Sweden)

    David Quigley

    2017-11-01

    Full Text Available Scientific models represent ideas, processes, and phenomena by describing important components, characteristics, and interactions. Models are constructed across various scientific disciplines, such as the food web in biology, the water cycle in Earth science, or the structure of the solar system in astronomy. Models are central for scientists to understand phenomena, construct explanations, and communicate theories. Constructing and using models to explain scientific phenomena is also an essential practice in contemporary science classrooms. Our research explores new techniques for understanding scientific modeling and engagement with modeling practices. We work with students in secondary biology classrooms as they use a web-based software tool—EcoSurvey—to characterize organisms and their interrelationships found in their local ecosystem. We use learning analytics and machine learning techniques to answer the following questions: (1 How can we automatically measure the extent to which students’ scientific models support complete explanations of phenomena? (2 How does the design of student modeling tools influence the complexity and completeness of students’ models? (3 How do clickstreams reflect and differentiate student engagement with modeling practices? We analyzed EcoSurvey usage data collected from two different deployments with over 1,000 secondary students across a large urban school district. We observe large variations in the completeness and complexity of student models, and large variations in their iterative refinement processes. These differences reveal that certain key model features are highly predictive of other aspects of the model. We also observe large differences in student modeling practices across different classrooms and teachers. We can predict a student’s teacher based on the observed modeling practices with a high degree of accuracy without significant tuning of the predictive model. These results highlight

  1. Consistent constitutive modeling of metallic target penetration using empirical, analytical, and numerical penetration models

    Directory of Open Access Journals (Sweden)

    John (Jack P. Riegel III

    2016-04-01

    Full Text Available Historically, there has been little correlation between the material properties used in (1 empirical formulae, (2 analytical formulations, and (3 numerical models. The various regressions and models may each provide excellent agreement for the depth of penetration into semi-infinite targets. But the input parameters for the empirically based procedures may have little in common with either the analytical model or the numerical model. This paper builds on previous work by Riegel and Anderson (2014 to show how the Effective Flow Stress (EFS strength model, based on empirical data, can be used as the average flow stress in the analytical Walker–Anderson Penetration model (WAPEN (Anderson and Walker, 1991 and how the same value may be utilized as an effective von Mises yield strength in numerical hydrocode simulations to predict the depth of penetration for eroding projectiles at impact velocities in the mechanical response regime of the materials. The method has the benefit of allowing the three techniques (empirical, analytical, and numerical to work in tandem. The empirical method can be used for many shot line calculations, but more advanced analytical or numerical models can be employed when necessary to address specific geometries such as edge effects or layering that are not treated by the simpler methods. Developing complete constitutive relationships for a material can be costly. If the only concern is depth of penetration, such a level of detail may not be required. The effective flow stress can be determined from a small set of depth of penetration experiments in many cases, especially for long penetrators such as the L/D = 10 ones considered here, making it a very practical approach. In the process of performing this effort, the authors considered numerical simulations by other researchers based on the same set of experimental data that the authors used for their empirical and analytical assessment. The goals were to establish a

  2. Control system architecture: The standard and non-standard models

    International Nuclear Information System (INIS)

    Thuot, M.E.; Dalesio, L.R.

    1993-01-01

    Control system architecture development has followed the advances in computer technology through mainframes to minicomputers to micros and workstations. This technology advance and increasingly challenging accelerator data acquisition and automation requirements have driven control system architecture development. In summarizing the progress of control system architecture at the last International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS) B. Kuiper asserted that the system architecture issue was resolved and presented a open-quotes standard modelclose quotes. The open-quotes standard modelclose quotes consists of a local area network (Ethernet or FDDI) providing communication between front end microcomputers, connected to the accelerator, and workstations, providing the operator interface and computational support. Although this model represents many present designs, there are exceptions including reflected memory and hierarchical architectures driven by requirements for widely dispersed, large channel count or tightly coupled systems. This paper describes the performance characteristics and features of the open-quotes standard modelclose quotes to determine if the requirements of open-quotes non-standardclose quotes architectures can be met. Several possible extensions to the open-quotes standard modelclose quotes are suggested including software as well as the hardware architectural features

  3. An Analytical Tire Model with Flexible Carcass for Combined Slips

    Directory of Open Access Journals (Sweden)

    Nan Xu

    2014-01-01

    Full Text Available The tire mechanical characteristics under combined cornering and braking/driving situations have significant effects on vehicle directional controls. The objective of this paper is to present an analytical tire model with flexible carcass for combined slip situations, which can describe tire behavior well and can also be used for studying vehicle dynamics. The tire forces and moments come mainly from the shear stress and sliding friction at the tread-road interface. In order to describe complicated tire characteristics and tire-road friction, some key factors are considered in this model: arbitrary pressure distribution; translational, bending, and twisting compliance of the carcass; dynamic friction coefficient; anisotropic stiffness properties. The analytical tire model can describe tire forces and moments accurately under combined slip conditions. Some important properties induced by flexible carcass can also be reflected. The structural parameters of a tire can be identified from tire measurements and the computational results using the analytical model show good agreement with test data.

  4. SINGLE PHASE ANALYTICAL MODELS FOR TERRY TURBINE NOZZLE

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Haihua; Zhang, Hongbin; Zou, Ling; O' Brien, James

    2016-11-01

    All BWR RCIC (Reactor Core Isolation Cooling) systems and PWR AFW (Auxiliary Feed Water) systems use Terry turbine, which is composed of the wheel with turbine buckets and several groups of fixed nozzles and reversing chambers inside the turbine casing. The inlet steam is accelerated through the turbine nozzle and impacts on the wheel buckets, generating work to drive the RCIC pump. As part of the efforts to understand the unexpected “self-regulating” mode of the RCIC systems in Fukushima accidents and extend BWR RCIC and PWR AFW operational range and flexibility, mechanistic models for the Terry turbine, based on Sandia National Laboratories’ original work, has been developed and implemented in the RELAP-7 code to simulate the RCIC system. RELAP-7 is a new reactor system code currently under development with the funding support from U.S. Department of Energy. The RELAP-7 code is a fully implicit code and the preconditioned Jacobian-free Newton-Krylov (JFNK) method is used to solve the discretized nonlinear system. This paper presents a set of analytical models for simulating the flow through the Terry turbine nozzles when inlet fluid is pure steam. The implementation of the models into RELAP-7 will be briefly discussed. In the Sandia model, the turbine bucket inlet velocity is provided according to a reduced-order model, which was obtained from a large number of CFD simulations. In this work, we propose an alternative method, using an under-expanded jet model to obtain the velocity and thermodynamic conditions for the turbine bucket inlet. The models include both adiabatic expansion process inside the nozzle and free expansion process out of the nozzle to reach the ambient pressure. The combined models are able to predict the steam mass flow rate and supersonic velocity to the Terry turbine bucket entrance, which are the necessary input conditions for the Terry Turbine rotor model. The nozzle analytical models were validated with experimental data and

  5. Electroweak baryogenesis and the standard model

    International Nuclear Information System (INIS)

    Huet, P.

    1994-01-01

    Electroweak baryogenesis is addressed within the context of the standard model of particle physics. Although the minimal standard model has the means of fulfilling the three Sakharov's conditions, it falls short to explaining the making of the baryon asymmetry of the universe. In particular, it is demonstrated that the phase of the CKM mixing matrix is an, insufficient source of CP violation. The shortcomings of the standard model could be bypassed by enlarging the symmetry breaking sector and adding a new source of CP violation

  6. Variations on Debris Disks. IV. An Improved Analytical Model for Collisional Cascades

    Science.gov (United States)

    Kenyon, Scott J.; Bromley, Benjamin C.

    2017-04-01

    We derive a new analytical model for the evolution of a collisional cascade in a thin annulus around a single central star. In this model, r max the size of the largest object changes with time, {r}\\max \\propto {t}-γ , with γ ≈ 0.1-0.2. Compared to standard models where r max is constant in time, this evolution results in a more rapid decline of M d , the total mass of solids in the annulus, and L d , the luminosity of small particles in the annulus: {M}d\\propto {t}-(γ +1) and {L}d\\propto {t}-(γ /2+1). We demonstrate that the analytical model provides an excellent match to a comprehensive suite of numerical coagulation simulations for annuli at 1 au and at 25 au. If the evolution of real debris disks follows the predictions of the analytical or numerical models, the observed luminosities for evolved stars require up to a factor of two more mass than predicted by previous analytical models.

  7. ANALYTICAL AND SIMULATION PLANNING MODEL OF URBAN PASSENGER TRANSPORT

    Directory of Open Access Journals (Sweden)

    Andrey Borisovich Nikolaev

    2017-09-01

    Full Text Available The article described the structure of the analytical and simulation models to make informed decisions in the planning of urban passenger transport. Designed UML diagram that describes the relationship of classes of the proposed model. A description of the main agents of the model developed in the simulation AnyLogic. Designed user interface integration with GIS map. Also provides simulation results that allow concluding about her health and the possibility of its use in solving planning problems of urban passenger transport.

  8. Analytical and finite element modeling of grounding systems

    Energy Technology Data Exchange (ETDEWEB)

    Luz, Mauricio Valencia Ferreira da [University of Santa Catarina (UFSC), Florianopolis, SC (Brazil)], E-mail: mauricio@grucad.ufsc.br; Dular, Patrick [University of Liege (Belgium). Institut Montefiore], E-mail: Patrick.Dular@ulg.ac.be

    2007-07-01

    Grounding is the art of making an electrical connection to the earth. This paper deals with the analytical and finite element modeling of grounding systems. An electrokinetic formulation using a scalar potential can benefit from floating potentials to define global quantities such as electric voltages and currents. The application concerns a single vertical grounding with one, two and three-layer soil, where the superior extremity stays in the surface of the soil. This problem has been modeled using a 2D axi-symmetric electrokinetic formulation. The grounding resistance obtained by finite element method is compared with the analytical one for one-layer soil. With the results of this paper it is possible to show that finite element method is a powerful tool in the analysis of the grounding systems in low frequencies. (author)

  9. A simple stationary semi-analytical wake model

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.

    We present an idealized simple, but fast, semi-analytical algorithm for computation of stationary wind farm wind fields with a possible potential within a multi-fidelity strategy for wind farm topology optimization. Basically, the model considers wakes as linear perturbations on the ambient non......-linear. With each of these approached, a parabolic system are described, which is initiated by first considering the most upwind located turbines and subsequently successively solved in the downstream direction. Algorithms for the resulting wind farm flow fields are proposed, and it is shown that in the limit......-uniform mean wind field, although the modelling of the individual stationary wake flow fields includes non-linear terms. The simulation of the individual wake contributions are based on an analytical solution of the thin shear layer approximation of the NS equations. The wake flow fields are assumed...

  10. Human performance modeling for system of systems analytics.

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Kevin R.; Lawton, Craig R.; Basilico, Justin Derrick; Longsine, Dennis E. (INTERA, Inc., Austin, TX); Forsythe, James Chris; Gauthier, John Henry; Le, Hai D.

    2008-10-01

    A Laboratory-Directed Research and Development project was initiated in 2005 to investigate Human Performance Modeling in a System of Systems analytic environment. SAND2006-6569 and SAND2006-7911 document interim results from this effort; this report documents the final results. The problem is difficult because of the number of humans involved in a System of Systems environment and the generally poorly defined nature of the tasks that each human must perform. A two-pronged strategy was followed: one prong was to develop human models using a probability-based method similar to that first developed for relatively well-understood probability based performance modeling; another prong was to investigate more state-of-art human cognition models. The probability-based modeling resulted in a comprehensive addition of human-modeling capability to the existing SoSAT computer program. The cognitive modeling resulted in an increased understanding of what is necessary to incorporate cognition-based models to a System of Systems analytic environment.

  11. Simulating the SU(2) sector of the standard model with dynamical fermions

    International Nuclear Information System (INIS)

    Lee, I. Hsiu.

    1988-01-01

    The two-generation SU(2) sector of the standard model with zero Yukawa couplings is studied on the lattice. The results from analytic studies and simulations with quenched fermions are reviewed. The methods and results of a Langevin simulation with dynamical fermions are presented. Implications for the strongly coupled standard model are mentioned. 23 refs

  12. Two dimensional analytical model for a reconfigurable field effect transistor

    Science.gov (United States)

    Ranjith, R.; Jayachandran, Remya; Suja, K. J.; Komaragiri, Rama S.

    2018-02-01

    This paper presents two-dimensional potential and current models for a reconfigurable field effect transistor (RFET). Two potential models which describe subthreshold and above-threshold channel potentials are developed by solving two-dimensional (2D) Poisson's equation. In the first potential model, 2D Poisson's equation is solved by considering constant/zero charge density in the channel region of the device to get the subthreshold potential characteristics. In the second model, accumulation charge density is considered to get above-threshold potential characteristics of the device. The proposed models are applicable for the device having lightly doped or intrinsic channel. While obtaining the mathematical model, whole body area is divided into two regions: gated region and un-gated region. The analytical models are compared with technology computer-aided design (TCAD) simulation results and are in complete agreement for different lengths of the gated regions as well as at various supply voltage levels.

  13. Analytical theory of Doppler reflectometry in slab plasma model

    Energy Technology Data Exchange (ETDEWEB)

    Gusakov, E.Z.; Surkov, A.V. [Ioffe Institute, Politekhnicheskaya 26, St. Petersburg (Russian Federation)

    2004-07-01

    Doppler reflectometry is considered in slab plasma model in the frameworks of analytical theory. The diagnostics locality is analyzed for both regimes: linear and nonlinear in turbulence amplitude. The toroidal antenna focusing of probing beam to the cut-off is proposed and discussed as a method to increase diagnostics spatial resolution. It is shown that even in the case of nonlinear regime of multiple scattering, the diagnostics can be used for an estimation (with certain accuracy) of plasma poloidal rotation profile. (authors)

  14. New analytically solvable models of relativistic point interactions

    International Nuclear Information System (INIS)

    Gesztesy, F.; Seba, P.

    1987-01-01

    Two new analytically solvable models of relativistic point interactions in one dimension (being natural extensions of the nonrelativistic δ-resp, δ'-interaction) are considered. Their spectral properties in the case of finitely many point interactions as well as in the periodic case are fully analyzed. Moreover the spectrum is explicitely determined in the case of independent, identically distributed random coupling constants and the analog of the Saxon and Huther conjecture concerning gaps in the energy spectrum of such systems is derived

  15. Extended Analytic Linear Model of Hydraulic Cylinder With Respect Different Piston Areas and Volumes

    OpenAIRE

    Petr KOŇAŘÍK

    2009-01-01

    Standard analytic linear model of hydraulic cylinder usually comes from assumptions of identical action piston areas on both sides of hydraulic cylinder (double piston rod) and suitable operation point, which is usually chosen in the middle of piston. By reason of that volumes inside of cylinder are than same. Moreover for control of that arrangement of hydraulic cylinder, usually controlled by 4/3 servovalve, the same mount of flows comes in and comes out to each of chambers of hydraulic cyl...

  16. Discrete symmetry breaking beyond the standard model

    NARCIS (Netherlands)

    Dekens, Wouter Gerard

    2015-01-01

    The current knowledge of elementary particles and their interactions is summarized in the Standard Model of particle physics. Practically all the predictions of this model, that have been tested, were confirmed experimentally. Nonetheless, there are phenomena which the model cannot explain. For

  17. Vibration Based Diagnosis for Planetary Gearboxes Using an Analytical Model

    Directory of Open Access Journals (Sweden)

    Liu Hong

    2016-01-01

    Full Text Available The application of conventional vibration based diagnostic techniques to planetary gearboxes is a challenge because of the complexity of frequency components in the measured spectrum, which is the result of relative motions between the rotary planets and the fixed accelerometer. In practice, since the fault signatures are usually contaminated by noises and vibrations from other mechanical components of gearboxes, the diagnostic efficacy may further deteriorate. Thus, it is essential to develop a novel vibration based scheme to diagnose gear failures for planetary gearboxes. Following a brief literature review, the paper begins with the introduction of an analytical model of planetary gear-sets developed by the authors in previous works, which can predict the distinct behaviors of fault introduced sidebands. This analytical model is easy to implement because the only prerequisite information is the basic geometry of the planetary gear-set. Afterwards, an automated diagnostic scheme is proposed to cope with the challenges associated with the characteristic configuration of planetary gearboxes. The proposed vibration based scheme integrates the analytical model, a denoising algorithm, and frequency domain indicators into one synergistic system for the detection and identification of damaged gear teeth in planetary gearboxes. Its performance is validated with the dynamic simulations and the experimental data from a planetary gearbox test rig.

  18. Beyond the Standard Model (2/5)

    CERN Multimedia

    CERN. Geneva

    2000-01-01

    After a critical discussion of the questions left unanswered by the Standard Model, I will review the main attemps to construct new theories. In particular, I will discuss grand unification, supersymmetry, technicolour, and theories with extra dimensions.

  19. Beyond the Standard Model (5/5)

    CERN Multimedia

    CERN. Geneva

    2000-01-01

    After a critical discussion of the questions left unanswered by the Standard Model, I will review the main attemps to construct new theories. In particular, I will discuss grand unification, supersymmetry, technicolour, and theories with extra dimensions.

  20. Beyond the Standard Model (3/5)

    CERN Multimedia

    CERN. Geneva

    2000-01-01

    After a critical discussion of the questions left unanswered by the Standard Model, I will review the main attemps to construct new theories. In particular, I will discuss grand unification, supersymmetry, technicolour, and theories with extra dimensions.

  1. Beyond the Standard Model (4/5)

    CERN Multimedia

    CERN. Geneva

    2000-01-01

    After a critical discussion of the questions left unanswered by the Standard Model, I will review the main attemps to construct new theories. In particular, I will discuss grand unification, supersymmetry, technicolour, and theories with extra dimensions.

  2. The standard model in a nutshell

    CERN Document Server

    Goldberg, Dave

    2017-01-01

    For a theory as genuinely elegant as the Standard Model--the current framework describing elementary particles and their forces--it can sometimes appear to students to be little more than a complicated collection of particles and ranked list of interactions. The Standard Model in a Nutshell provides a comprehensive and uncommonly accessible introduction to one of the most important subjects in modern physics, revealing why, despite initial appearances, the entire framework really is as elegant as physicists say. Dave Goldberg uses a "just-in-time" approach to instruction that enables students to gradually develop a deep understanding of the Standard Model even if this is their first exposure to it. He covers everything from relativity, group theory, and relativistic quantum mechanics to the Higgs boson, unification schemes, and physics beyond the Standard Model. The book also looks at new avenues of research that could answer still-unresolved questions and features numerous worked examples, helpful illustrat...

  3. Is the Standard Model about to crater?

    CERN Multimedia

    Lane, Kenneth

    2015-01-01

    The Standard Model is coming under more and more pressure from experiments. New results from the analysis of LHC's Run 1 data show effects that, if confirmed, would be the signature of new interactions at the TeV scale.

  4. Beyond the Standard Model (1/5)

    CERN Multimedia

    CERN. Geneva

    2000-01-01

    After a critical discussion of the questions left unanswered by the Standard Model, I will review the main attemps to construct new theories. In particular, I will discuss grand unification, supersymmetry, technicolour, and theories with extra dimensions.

  5. AN ANALYTIC RADIATIVE-CONVECTIVE MODEL FOR PLANETARY ATMOSPHERES

    International Nuclear Information System (INIS)

    Robinson, Tyler D.; Catling, David C.

    2012-01-01

    We present an analytic one-dimensional radiative-convective model of the thermal structure of planetary atmospheres. Our model assumes that thermal radiative transfer is gray and can be represented by the two-stream approximation. Model atmospheres are assumed to be in hydrostatic equilibrium, with a power-law scaling between the atmospheric pressure and the gray thermal optical depth. The convective portions of our models are taken to follow adiabats that account for condensation of volatiles through a scaling parameter to the dry adiabat. By combining these assumptions, we produce simple, analytic expressions that allow calculations of the atmospheric-pressure-temperature profile, as well as expressions for the profiles of thermal radiative flux and convective flux. We explore the general behaviors of our model. These investigations encompass (1) worlds where atmospheric attenuation of sunlight is weak, which we show tend to have relatively high radiative-convective boundaries; (2) worlds with some attenuation of sunlight throughout the atmosphere, which we show can produce either shallow or deep radiative-convective boundaries, depending on the strength of sunlight attenuation; and (3) strongly irradiated giant planets (including hot Jupiters), where we explore the conditions under which these worlds acquire detached convective regions in their mid-tropospheres. Finally, we validate our model and demonstrate its utility through comparisons to the average observed thermal structure of Venus, Jupiter, and Titan, and by comparing computed flux profiles to more complex models.

  6. A simple analytical infiltration model for short-duration rainfall

    Science.gov (United States)

    Wang, Kaiwen; Yang, Xiaohua; Liu, Xiaomang; Liu, Changming

    2017-12-01

    Many infiltration models have been proposed to simulate infiltration process. Different initial soil conditions and non-uniform initial water content can lead to infiltration simulation errors, especially for short-duration rainfall (SHR). Few infiltration models are specifically derived to eliminate the errors caused by the complex initial soil conditions. We present a simple analytical infiltration model for SHR infiltration simulation, i.e., Short-duration Infiltration Process model (SHIP model). The infiltration simulated by 5 models (i.e., SHIP (high) model, SHIP (middle) model, SHIP (low) model, Philip model and Parlange model) were compared based on numerical experiments and soil column experiments. In numerical experiments, SHIP (middle) and Parlange models had robust solutions for SHR infiltration simulation of 12 typical soils under different initial soil conditions. The absolute values of percent bias were less than 12% and the values of Nash and Sutcliffe efficiency were greater than 0.83. Additionally, in soil column experiments, infiltration rate fluctuated in a range because of non-uniform initial water content. SHIP (high) and SHIP (low) models can simulate an infiltration range, which successfully covered the fluctuation range of the observed infiltration rate. According to the robustness of solutions and the coverage of fluctuation range of infiltration rate, SHIP model can be integrated into hydrologic models to simulate SHR infiltration process and benefit the flood forecast.

  7. From the standard model to dark matter

    International Nuclear Information System (INIS)

    Wilczek, F.

    1995-01-01

    The standard model of particle physics is marvelously successful. However, it is obviously not a complete or final theory. I shall argue here that the structure of the standard model gives some quite concrete, compelling hints regarding what lies beyond. Taking these hints seriously, one is led to predict the existence of new types of very weakly interacting matter, stable on cosmological time scales and produced with cosmologically interesting densities--that is, ''dark matter''. copyright 1995 American Institute of Physics

  8. Standard Model measurements with the ATLAS detector

    Directory of Open Access Journals (Sweden)

    Hassani Samira

    2015-01-01

    Full Text Available Various Standard Model measurements have been performed in proton-proton collisions at a centre-of-mass energy of √s = 7 and 8 TeV using the ATLAS detector at the Large Hadron Collider. A review of a selection of the latest results of electroweak measurements, W/Z production in association with jets, jet physics and soft QCD is given. Measurements are in general found to be well described by the Standard Model predictions.

  9. Fractal approach to computer-analytical modelling of tree crown

    International Nuclear Information System (INIS)

    Berezovskaya, F.S.; Karev, G.P.; Kisliuk, O.F.; Khlebopros, R.G.; Tcelniker, Yu.L.

    1993-09-01

    In this paper we discuss three approaches to the modeling of a tree crown development. These approaches are experimental (i.e. regressive), theoretical (i.e. analytical) and simulation (i.e. computer) modeling. The common assumption of these is that a tree can be regarded as one of the fractal objects which is the collection of semi-similar objects and combines the properties of two- and three-dimensional bodies. We show that a fractal measure of crown can be used as the link between the mathematical models of crown growth and light propagation through canopy. The computer approach gives the possibility to visualize a crown development and to calibrate the model on experimental data. In the paper different stages of the above-mentioned approaches are described. The experimental data for spruce, the description of computer system for modeling and the variant of computer model are presented. (author). 9 refs, 4 figs

  10. Challenges in the development of analytical soil compaction models

    DEFF Research Database (Denmark)

    Keller, Thomas; Lamandé, Mathieu

    2010-01-01

    and recommendations for the prevention of soil compaction often rely on simulation models. This paper highlights some issues that need further consideration in order to improve soil compaction modelling, with the focus on analytical models. We discuss the different issues based on comparisons between experimental......Soil compaction can cause a number of environmental and agronomic problems (e.g. flooding, erosion, leaching of agrochemicals to recipient waters, emission of greenhouse gases to the atmosphere, crop yield losses), resulting in significant economic damage to society and agriculture. Strategies...... data and model simulations. The upper model boundary condition (i.e. contact area and stresses at the tyre-soil interface) is highly influential in stress propagation, but knowledge on the effects of loading and soil conditions on the upper model boundary condition is inadequate. The accuracy of stress...

  11. Examination of fast reactor fuels, FBR analytical quality assurance standards and methods, and analytical methods development: irradiation tests. Progress report, April 1--June 30, 1976, and FY 1976

    International Nuclear Information System (INIS)

    Baker, R.D.

    1976-08-01

    Characterization of unirradiated and irradiated LMFBR fuels by analytical chemistry methods will continue, and additional methods will be modified and mechanized for hot cell application. Macro- and microexaminations will be made on fuel and cladding using the shielded electron microprobe, emission spectrograph, radiochemistry, gamma scanner, mass spectrometers, and other analytical facilities. New capabilities will be developed in gamma scanning, analyses to assess spatial distributions of fuel and fission products, mass spectrometric measurements of burnup and fission gas constituents and other chemical analyses. Microstructural analyses of unirradiated and irradiated materials will continue using optical and electron microscopy and autoradiographic and x-ray techniques. Analytical quality assurance standards tasks are designed to assure the quality of the chemical characterizations necessary to evaluate reactor components relative to specifications. Tasks include: (1) the preparation and distribution of calibration materials and quality control samples for use in quality assurance surveillance programs, (2) the development of and the guidance in the use of quality assurance programs for sampling and analysis, (3) the development of improved methods of analysis, and (4) the preparation of continuously updated analytical method manuals. Reliable analytical methods development for the measurement of burnup, oxygen-to-metal (O/M) ratio, and various gases in irradiated fuels is described

  12. Coupled thermodynamic-dynamic semi-analytical model of free piston Stirling engines

    Energy Technology Data Exchange (ETDEWEB)

    Formosa, F., E-mail: fabien.formosa@univ-savoie.f [Laboratoire SYMME, Universite de Savoie, BP 80439, 74944 Annecy le Vieux Cedex (France)

    2011-05-15

    Research highlights: {yields} The free piston Stirling behaviour relies on its thermal and dynamic features. {yields} A global semi-analytical model for preliminary design is developed. {yields} The model compared with NASA-RE1000 experimental data shows good correlations. -- Abstract: The study of free piston Stirling engine (FPSE) requires both accurate thermodynamic and dynamic modelling to predict its performances. The steady state behaviour of the engine partly relies on non linear dissipative phenomena such as pressure drop loss within heat exchangers which is dependant on the temperature within the associated components. An analytical thermodynamic model which encompasses the effectiveness and the flaws of the heat exchangers and the regenerator has been previously developed and validated. A semi-analytical dynamic model of FPSE is developed and presented in this paper. The thermodynamic model is used to define the thermal variables that are used in the dynamic model which evaluates the kinematic results. Thus, a coupled iterative strategy has been used to perform a global simulation. The global modelling approach has been validated using the experimental data available from the NASA RE-1000 Stirling engine prototype. The resulting coupled thermodynamic-dynamic model using a standardized description of the engine allows efficient and realistic preliminary design of FPSE.

  13. Coupled thermodynamic-dynamic semi-analytical model of free piston Stirling engines

    International Nuclear Information System (INIS)

    Formosa, F.

    2011-01-01

    Research highlights: → The free piston Stirling behaviour relies on its thermal and dynamic features. → A global semi-analytical model for preliminary design is developed. → The model compared with NASA-RE1000 experimental data shows good correlations. -- Abstract: The study of free piston Stirling engine (FPSE) requires both accurate thermodynamic and dynamic modelling to predict its performances. The steady state behaviour of the engine partly relies on non linear dissipative phenomena such as pressure drop loss within heat exchangers which is dependant on the temperature within the associated components. An analytical thermodynamic model which encompasses the effectiveness and the flaws of the heat exchangers and the regenerator has been previously developed and validated. A semi-analytical dynamic model of FPSE is developed and presented in this paper. The thermodynamic model is used to define the thermal variables that are used in the dynamic model which evaluates the kinematic results. Thus, a coupled iterative strategy has been used to perform a global simulation. The global modelling approach has been validated using the experimental data available from the NASA RE-1000 Stirling engine prototype. The resulting coupled thermodynamic-dynamic model using a standardized description of the engine allows efficient and realistic preliminary design of FPSE.

  14. Analytical properties of a three-compartmental dynamical demographic model

    Science.gov (United States)

    Postnikov, E. B.

    2015-07-01

    The three-compartmental demographic model by Korotaeyv-Malkov-Khaltourina, connecting population size, economic surplus, and education level, is considered from the point of view of dynamical systems theory. It is shown that there exist two integrals of motion, which enables the system to be reduced to one nonlinear ordinary differential equation. The study of its structure provides analytical criteria for the dominance ranges of the dynamics of Malthus and Kremer. Additionally, the particular ranges of parameters enable the derived general ordinary differential equations to be reduced to the models of Gompertz and Thoularis-Wallace.

  15. Model and Analytic Processes for Export License Assessments

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Sandra E.; Whitney, Paul D.; Weimar, Mark R.; Wood, Thomas W.; Daly, Don S.; Brothers, Alan J.; Sanfilippo, Antonio P.; Cook, Diane; Holder, Larry

    2011-09-29

    This paper represents the Department of Energy Office of Nonproliferation Research and Development (NA-22) Simulations, Algorithms and Modeling (SAM) Program's first effort to identify and frame analytical methods and tools to aid export control professionals in effectively predicting proliferation intent; a complex, multi-step and multi-agency process. The report focuses on analytical modeling methodologies that alone, or combined, may improve the proliferation export control license approval process. It is a follow-up to an earlier paper describing information sources and environments related to international nuclear technology transfer. This report describes the decision criteria used to evaluate modeling techniques and tools to determine which approaches will be investigated during the final 2 years of the project. The report also details the motivation for why new modeling techniques and tools are needed. The analytical modeling methodologies will enable analysts to evaluate the information environment for relevance to detecting proliferation intent, with specific focus on assessing risks associated with transferring dual-use technologies. Dual-use technologies can be used in both weapons and commercial enterprises. A decision-framework was developed to evaluate which of the different analytical modeling methodologies would be most appropriate conditional on the uniqueness of the approach, data availability, laboratory capabilities, relevance to NA-22 and Office of Arms Control and Nonproliferation (NA-24) research needs and the impact if successful. Modeling methodologies were divided into whether they could help micro-level assessments (e.g., help improve individual license assessments) or macro-level assessment. Macro-level assessment focuses on suppliers, technology, consumers, economies, and proliferation context. Macro-level assessment technologies scored higher in the area of uniqueness because less work has been done at the macro level. An

  16. Gas Atomization of Aluminium Melts: Comparison of Analytical Models

    Directory of Open Access Journals (Sweden)

    Georgios Antipas

    2012-06-01

    Full Text Available A number of analytical models predicting the size distribution of particles during atomization of Al-based alloys by N2, He and Ar gases were compared. Simulations of liquid break up in a close coupled atomizer revealed that the finer particles are located near the center of the spray cone. Increasing gas injection pressures led to an overall reduction of particle diameters and caused a migration of the larger powder particles towards the outer boundary of the flow. At sufficiently high gas pressures the spray became monodisperse. The models also indicated that there is a minimum achievable mean diameter for any melt/gas system.

  17. A simple analytical model for reactive particle ignition in explosives

    Energy Technology Data Exchange (ETDEWEB)

    Tanguay, Vincent [Defence Research and Development Canada - Valcartier, 2459 Pie XI Blvd. North, Quebec, QC, G3J 1X5 (Canada); Higgins, Andrew J. [Department of Mechanical Engineering, McGill University, 817 Sherbrooke St. West, Montreal, QC, H3A 2K6 (Canada); Zhang, Fan [Defence Research and Development Canada - Suffield, P. O. Box 4000, Stn Main, Medicine Hat, AB, T1A 8K6 (Canada)

    2007-10-15

    A simple analytical model is developed to predict ignition of magnesium particles in nitromethane detonation products. The flow field is simplified by considering the detonation products as a perfect gas expanding in a vacuum in a planar geometry. This simplification allows the flow field to be solved analytically. A single particle is then introduced in this flow field. Its trajectory and heating history are computed. It is found that most of the particle heating occurs in the Taylor wave and in the quiescent flow region behind it, shortly after which the particle cools. By considering only these regions, thereby considerably simplifying the problem, the flow field can be solved analytically with a more realistic equation of state (such as JWL) and a spherical geometry. The model is used to compute the minimum charge diameter for particle ignition to occur. It is found that the critical charge diameter for particle ignition increases with particle size. These results are compared to experimental data and show good agreement. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  18. HTS axial flux induction motor with analytic and FEA modeling

    Energy Technology Data Exchange (ETDEWEB)

    Li, S., E-mail: alexlee.zn@gmail.com; Fan, Y.; Fang, J.; Qin, W.; Lv, G.; Li, J.H.

    2013-11-15

    Highlights: •A high temperature superconductor axial flux induction motor and a novel maglev scheme are presented. •Analytic method and finite element method have been adopted to model the motor and to calculate the force. •Magnetic field distribution in HTS coil is calculated by analytic method. •An effective method to improve the critical current of HTS coil is presented. •AC losses of HTS coils in the HTS axial flux induction motor are estimated and tested. -- Abstract: This paper presents a high-temperature superconductor (HTS) axial-flux induction motor, which can output levitation force and torque simultaneously. In order to analyze the character of the force, analytic method and finite element method are adopted to model the motor. To make sure the HTS can carry sufficiently large current and work well, the magnetic field distribution in HTS coil is calculated. An effective method to improve the critical current of HTS coil is presented. Then, AC losses in HTS windings in the motor are estimated and tested.

  19. HTS axial flux induction motor with analytic and FEA modeling

    International Nuclear Information System (INIS)

    Li, S.; Fan, Y.; Fang, J.; Qin, W.; Lv, G.; Li, J.H.

    2013-01-01

    Highlights: •A high temperature superconductor axial flux induction motor and a novel maglev scheme are presented. •Analytic method and finite element method have been adopted to model the motor and to calculate the force. •Magnetic field distribution in HTS coil is calculated by analytic method. •An effective method to improve the critical current of HTS coil is presented. •AC losses of HTS coils in the HTS axial flux induction motor are estimated and tested. -- Abstract: This paper presents a high-temperature superconductor (HTS) axial-flux induction motor, which can output levitation force and torque simultaneously. In order to analyze the character of the force, analytic method and finite element method are adopted to model the motor. To make sure the HTS can carry sufficiently large current and work well, the magnetic field distribution in HTS coil is calculated. An effective method to improve the critical current of HTS coil is presented. Then, AC losses in HTS windings in the motor are estimated and tested

  20. Analytical local electron-electron interaction model potentials for atoms

    International Nuclear Information System (INIS)

    Neugebauer, Johannes; Reiher, Markus; Hinze, Juergen

    2002-01-01

    Analytical local potentials for modeling the electron-electron interaction in an atom reduce significantly the computational effort in electronic structure calculations. The development of such potentials has a long history, but some promising ideas have not yet been taken into account for further improvements. We determine a local electron-electron interaction potential akin to those suggested by Green et al. [Phys. Rev. 184, 1 (1969)], which are widely used in atom-ion scattering calculations, electron-capture processes, and electronic structure calculations. Generalized Yukawa-type model potentials are introduced. This leads, however, to shell-dependent local potentials, because the origin behavior of such potentials is different for different shells as has been explicated analytically [J. Neugebauer, M. Reiher, and J. Hinze, Phys. Rev. A 65, 032518 (2002)]. It is found that the parameters that characterize these local potentials can be interpolated and extrapolated reliably for different nuclear charges and different numbers of electrons. The analytical behavior of the corresponding localized Hartree-Fock potentials at the origin and at long distances is utilized in order to reduce the number of fit parameters. It turns out that the shell-dependent form of Green's potential, which we also derive, yields results of comparable accuracy using only one shell-dependent parameter

  1. Analytical models of optical response in one-dimensional semiconductors

    International Nuclear Information System (INIS)

    Pedersen, Thomas Garm

    2015-01-01

    The quantum mechanical description of the optical properties of crystalline materials typically requires extensive numerical computation. Including excitonic and non-perturbative field effects adds to the complexity. In one dimension, however, the analysis simplifies and optical spectra can be computed exactly. In this paper, we apply the Wannier exciton formalism to derive analytical expressions for the optical response in four cases of increasing complexity. Thus, we start from free carriers and, in turn, switch on electrostatic fields and electron–hole attraction and, finally, analyze the combined influence of these effects. In addition, the optical response of impurity-localized excitons is discussed. - Highlights: • Optical response of one-dimensional semiconductors including excitons. • Analytical model of excitonic Franz–Keldysh effect. • Computation of optical response of impurity-localized excitons

  2. Analytical modelling of hydrogen transport in reactor containments

    International Nuclear Information System (INIS)

    Manno, V.P.

    1983-09-01

    A versatile computational model of hydrogen transport in nuclear plant containment buildings is developed. The background and significance of hydrogen-related nuclear safety issues are discussed. A computer program is constructed that embodies the analytical models. The thermofluid dynamic formulation spans a wide applicability range from rapid two-phase blowdown transients to slow incompressible hydrogen injection. Detailed ancillary models of molecular and turbulent diffusion, mixture transport properties, multi-phase multicomponent thermodynamics and heat sink modelling are addressed. The numerical solution of the continuum equations emphasizes both accuracy and efficiency in the employment of relatively coarse discretization and long time steps. Reducing undesirable numerical diffusion is addressed. Problem geometry options include lumped parameter zones, one dimensional meshs, two dimensional Cartesian or axisymmetric coordinate systems and three dimensional Cartesian or cylindrical regions. An efficient lumped nodal model is included for simulation of events in which spatial resolution is not significant. Several validation calculations are reported

  3. Analytical expressions for transition edge sensor excess noise models

    International Nuclear Information System (INIS)

    Brandt, Daniel; Fraser, George W.

    2010-01-01

    Transition edge sensors (TESs) are high-sensitivity thermometers used in cryogenic microcalorimeters which exploit the steep gradient in resistivity with temperature during the superconducting phase transition. Practical TES devices tend to exhibit a white noise of uncertain origin, arising inside the device. We discuss two candidate models for this excess noise, phase slip shot noise (PSSN) and percolation noise. We extend the existing PSSN model to include a magnetic field dependence and derive a basic analytical model for percolation noise. We compare the predicted functional forms of the noise current vs. resistivity curves of both models with experimental data and provide a set of equations for both models to facilitate future experimental efforts to clearly identify the source of excess noise.

  4. Analytical modeling of glucose biosensors based on carbon nanotubes.

    Science.gov (United States)

    Pourasl, Ali H; Ahmadi, Mohammad Taghi; Rahmani, Meisam; Chin, Huei Chaeng; Lim, Cheng Siong; Ismail, Razali; Tan, Michael Loong Peng

    2014-01-15

    In recent years, carbon nanotubes have received widespread attention as promising carbon-based nanoelectronic devices. Due to their exceptional physical, chemical, and electrical properties, namely a high surface-to-volume ratio, their enhanced electron transfer properties, and their high thermal conductivity, carbon nanotubes can be used effectively as electrochemical sensors. The integration of carbon nanotubes with a functional group provides a good and solid support for the immobilization of enzymes. The determination of glucose levels using biosensors, particularly in the medical diagnostics and food industries, is gaining mass appeal. Glucose biosensors detect the glucose molecule by catalyzing glucose to gluconic acid and hydrogen peroxide in the presence of oxygen. This action provides high accuracy and a quick detection rate. In this paper, a single-wall carbon nanotube field-effect transistor biosensor for glucose detection is analytically modeled. In the proposed model, the glucose concentration is presented as a function of gate voltage. Subsequently, the proposed model is compared with existing experimental data. A good consensus between the model and the experimental data is reported. The simulated data demonstrate that the analytical model can be employed with an electrochemical glucose sensor to predict the behavior of the sensing mechanism in biosensors.

  5. An analytical model for enantioseparation process in capillary electrophoresis

    Science.gov (United States)

    Ranzuglia, G. A.; Manzi, S. J.; Gomez, M. R.; Belardinelli, R. E.; Pereyra, V. D.

    2017-12-01

    An analytical model to explain the mobilities of enantiomer binary mixture in capillary electrophoresis experiment is proposed. The model consists in a set of kinetic equations describing the evolution of the populations of molecules involved in the enantioseparation process in capillary electrophoresis (CE) is proposed. These equations take into account the asymmetric driven migration of enantiomer molecules, chiral selector and the temporary diastomeric complexes, which are the products of the reversible reaction between the enantiomers and the chiral selector. The solution of these equations gives the spatial and temporal distribution of each species in the capillary, reproducing a typical signal of the electropherogram. The mobility, μ, of each specie is obtained by the position of the maximum (main peak) of their respective distributions. Thereby, the apparent electrophoretic mobility difference, Δμ, as a function of chiral selector concentration, [ C ] , can be measured. The behaviour of Δμ versus [ C ] is compared with the phenomenological model introduced by Wren and Rowe in J. Chromatography 1992, 603, 235. To test the analytical model, a capillary electrophoresis experiment for the enantiomeric separation of the (±)-chlorpheniramine β-cyclodextrin (β-CD) system is used. These data, as well as, other obtained from literature are in closed agreement with those obtained by the model. All these results are also corroborate by kinetic Monte Carlo simulation.

  6. Development of an analytical model to assess fuel property effects on combustor performance

    Science.gov (United States)

    Sutton, R. D.; Troth, D. L.; Miles, G. A.; Riddlebaugh, S. M.

    1987-01-01

    A generalized first-order computer model has been developed in order to analytically evaluate the potential effect of alternative fuels' effects on gas turbine combustors. The model assesses the size, configuration, combustion reliability, and durability of the combustors required to meet performance and emission standards while operating on a broad range of fuels. Predictions predicated on combustor flow-field determinations by the model indicate that fuel chemistry, as defined by hydrogen content, exerts a significant influence on flame retardation, liner wall temperature, and smoke emission.

  7. Standard Model Particles from Split Octonions

    Directory of Open Access Journals (Sweden)

    Gogberashvili M.

    2016-01-01

    Full Text Available We model physical signals using elements of the algebra of split octonions over the field of real numbers. Elementary particles are corresponded to the special elements of the algebra that nullify octonionic norms (zero divisors. It is shown that the standard model particle spectrum naturally follows from the classification of the independent primitive zero divisors of split octonions.

  8. Exploring the Standard Model of Particles

    Science.gov (United States)

    Johansson, K. E.; Watkins, P. M.

    2013-01-01

    With the recent discovery of a new particle at the CERN Large Hadron Collider (LHC) the Higgs boson could be about to be discovered. This paper provides a brief summary of the standard model of particle physics and the importance of the Higgs boson and field in that model for non-specialists. The role of Feynman diagrams in making predictions for…

  9. Noncommutative geometry and the standard model vacuum

    International Nuclear Information System (INIS)

    Barrett, John W.; Dawe Martins, Rachel A.

    2006-01-01

    The space of Dirac operators for the Connes-Chamseddine spectral action for the standard model of particle physics coupled to gravity is studied. The model is extended by including right-handed neutrino states, and the S 0 -reality axiom is not assumed. The possibility of allowing more general fluctuations than the inner fluctuations of the vacuum is proposed. The maximal case of all possible fluctuations is studied by considering the equations of motion for the vacuum. While there are interesting nontrivial vacua with Majorana-type mass terms for the leptons, the conclusion is that the equations are too restrictive to allow solutions with the standard model mass matrix

  10. Towards LHC physics with nonlocal Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Tirthabir, E-mail: tbiswas@loyno.edu [Department of Physics, Loyola University, 6363 St. Charles Avenue, Box 92, New Orleans, LA 70118 (United States); Okada, Nobuchika, E-mail: okadan@ua.edu [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487-0324 (United States)

    2015-09-15

    We take a few steps towards constructing a string-inspired nonlocal extension of the Standard Model. We start by illustrating how quantum loop calculations can be performed in nonlocal scalar field theory. In particular, we show the potential to address the hierarchy problem in the nonlocal framework. Next, we construct a nonlocal abelian gauge model and derive modifications of the gauge interaction vertex and field propagators. We apply the modifications to a toy version of the nonlocal Standard Model and investigate collider phenomenology. We find the lower bound on the scale of nonlocality from the 8 TeV LHC data to be 2.5–3 TeV.

  11. Big Bang nucleosynthesis: The standard model

    International Nuclear Information System (INIS)

    Steigman, G.

    1989-01-01

    Current observational data on the abundances of deuterium, helium-3, helium-4 and lithium-7 are reviewed and these data are used to infer (or to bound) the primordial abundances of these elements. The physics of primordial nucleosynthesis in the context of the ''standard'' (isotropic, homogeneous,...) hot big bang model is outlined and the primordial abundances predicted within the context of this model are presented. The theoretical predictions are then confronted with the observational data. This confrontation reveals the remarkable consistency of the standard model, constrains the nucleon abundance to lie within a narrow range and, permits the existence of no more than one additional flavor of light neutrinos

  12. A semi-analytic model of magnetized liner inertial fusion

    Energy Technology Data Exchange (ETDEWEB)

    McBride, Ryan D.; Slutz, Stephen A. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2015-05-15

    Presented is a semi-analytic model of magnetized liner inertial fusion (MagLIF). This model accounts for several key aspects of MagLIF, including: (1) preheat of the fuel (optionally via laser absorption); (2) pulsed-power-driven liner implosion; (3) liner compressibility with an analytic equation of state, artificial viscosity, internal magnetic pressure, and ohmic heating; (4) adiabatic compression and heating of the fuel; (5) radiative losses and fuel opacity; (6) magnetic flux compression with Nernst thermoelectric losses; (7) magnetized electron and ion thermal conduction losses; (8) end losses; (9) enhanced losses due to prescribed dopant concentrations and contaminant mix; (10) deuterium-deuterium and deuterium-tritium primary fusion reactions for arbitrary deuterium to tritium fuel ratios; and (11) magnetized α-particle fuel heating. We show that this simplified model, with its transparent and accessible physics, can be used to reproduce the general 1D behavior presented throughout the original MagLIF paper [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)]. We also discuss some important physics insights gained as a result of developing this model, such as the dependence of radiative loss rates on the radial fraction of the fuel that is preheated.

  13. An analytical model for an input/output-subsystem

    International Nuclear Information System (INIS)

    Roemgens, J.

    1983-05-01

    An input/output-subsystem of one or several computers if formed by the external memory units and the peripheral units of a computer system. For these subsystems mathematical models are established, taking into account the special properties of the I/O-subsystems, in order to avoid planning errors and to allow for predictions of the capacity of such systems. Here an analytical model is presented for the magnetic discs of a I/O-subsystem, using analytical methods for the individual waiting queues or waiting queue networks. Only I/O-subsystems of IBM-computer configurations are considered, which can be controlled by the MVS operating system. After a description of the hardware and software components of these I/O-systems, possible solutions from the literature are presented and discussed with respect to their applicability in IBM-I/O-subsystems. Based on these models a special scheme is developed which combines the advantages of the literature models and avoids the disadvantages in part. (orig./RW) [de

  14. Target normal sheath acceleration analytical modeling, comparative study and developments

    International Nuclear Information System (INIS)

    Perego, C.; Batani, D.; Zani, A.; Passoni, M.

    2012-01-01

    Ultra-intense laser interaction with solid targets appears to be an extremely promising technique to accelerate ions up to several MeV, producing beams that exhibit interesting properties for many foreseen applications. Nowadays, most of all the published experimental results can be theoretically explained in the framework of the target normal sheath acceleration (TNSA) mechanism proposed by Wilks et al. [Phys. Plasmas 8(2), 542 (2001)]. As an alternative to numerical simulation various analytical or semi-analytical TNSA models have been published in the latest years, each of them trying to provide predictions for some of the ion beam features, given the initial laser and target parameters. However, the problem of developing a reliable model for the TNSA process is still open, which is why the purpose of this work is to enlighten the present situation of TNSA modeling and experimental results, by means of a quantitative comparison between measurements and theoretical predictions of the maximum ion energy. Moreover, in the light of such an analysis, some indications for the future development of the model proposed by Passoni and Lontano [Phys. Plasmas 13(4), 042102 (2006)] are then presented.

  15. The stability of uranium microspheres for future application as reference standard in analytical measurements

    Energy Technology Data Exchange (ETDEWEB)

    Middendorp, R.; Duerr, M.; Bosbach, D. [Forschungszentrum Juelich GmbH, IEK-6, 52428 Juelich (Germany)

    2016-07-01

    The monitoring of fuel-cycle facilities provides a tool to confirm the compliant operation, for example with respect to emissions into the environment or to supervise non-proliferation commitments. Hereby, anomalous situations can be detected in a timely manner and responsive action can be initiated to prevent an escalation into an event of severe consequence to society. In order to verify non-nuclear weapon states' compliance with the non-proliferation treaty (NPT), international authorities such as the International Atomic Energy Agency (IAEA) conduct inspections at facilities dealing with fissile or fertile nuclear materials. One measure consists of collection of swipe samples through inspectors for later analysis of collected nuclear material traces in the laboratory. Highly sensitive mass spectrometric methods provide a means to detect traces from nuclear material handling activities that provide indication of undeclared use of the facility. There are, however, no relevant (certified) reference materials available that can be used as calibration or quality control standards. Therefore, an aerosol-generation based process was established at Forschungszentrum Juelich for the production of spherical, mono-disperse uranium oxide micro-particles with accurately characterized isotopic compositions and amounts of uranium in the pico-gram range. The synthesized particles are studied with respect to their suitability as (certified) reference material in ultra-trace analysis. Several options for preparation and stabilization of the particles are available, where preparation of particles in suspension offers the possibility to produces specific particle mixtures. In order to assess the stability of particles, dissolution behavior and isotope exchange effects of particles in liquid suspension is studied on the bulk of suspended particles and also via micro-analytical methods applied for single particle characterization. The insights gained within these studies will

  16. A workflow learning model to improve geovisual analytics utility.

    Science.gov (United States)

    Roth, Robert E; Maceachren, Alan M; McCabe, Craig A

    2009-01-01

    INTRODUCTION: This paper describes the design and implementation of the G-EX Portal Learn Module, a web-based, geocollaborative application for organizing and distributing digital learning artifacts. G-EX falls into the broader context of geovisual analytics, a new research area with the goal of supporting visually-mediated reasoning about large, multivariate, spatiotemporal information. Because this information is unprecedented in amount and complexity, GIScientists are tasked with the development of new tools and techniques to make sense of it. Our research addresses the challenge of implementing these geovisual analytics tools and techniques in a useful manner. OBJECTIVES: The objective of this paper is to develop and implement a method for improving the utility of geovisual analytics software. The success of software is measured by its usability (i.e., how easy the software is to use?) and utility (i.e., how useful the software is). The usability and utility of software can be improved by refining the software, increasing user knowledge about the software, or both. It is difficult to achieve transparent usability (i.e., software that is immediately usable without training) of geovisual analytics software because of the inherent complexity of the included tools and techniques. In these situations, improving user knowledge about the software through the provision of learning artifacts is as important, if not more so, than iterative refinement of the software itself. Therefore, our approach to improving utility is focused on educating the user. METHODOLOGY: The research reported here was completed in two steps. First, we developed a model for learning about geovisual analytics software. Many existing digital learning models assist only with use of the software to complete a specific task and provide limited assistance with its actual application. To move beyond task-oriented learning about software use, we propose a process-oriented approach to learning based on

  17. Untangling Slab Dynamics Using 3-D Numerical and Analytical Models

    Science.gov (United States)

    Holt, A. F.; Royden, L.; Becker, T. W.

    2016-12-01

    Increasingly sophisticated numerical models have enabled us to make significant strides in identifying the key controls on how subducting slabs deform. For example, 3-D models have demonstrated that subducting plate width, and the related strength of toroidal flow around the plate edge, exerts a strong control on both the curvature and the rate of migration of the trench. However, the results of numerical subduction models can be difficult to interpret, and many first order dynamics issues remain at least partially unresolved. Such issues include the dominant controls on trench migration, the interdependence of asthenospheric pressure and slab dynamics, and how nearby slabs influence each other's dynamics. We augment 3-D, dynamically evolving finite element models with simple, analytical force-balance models to distill the physics associated with subduction into more manageable parts. We demonstrate that for single, isolated subducting slabs much of the complexity of our fully numerical models can be encapsulated by simple analytical expressions. Rates of subduction and slab dip correlate strongly with the asthenospheric pressure difference across the subducting slab. For double subduction, an additional slab gives rise to more complex mantle pressure and flow fields, and significantly extends the range of plate kinematics (e.g., convergence rate, trench migration rate) beyond those present in single slab models. Despite these additional complexities, we show that much of the dynamics of such multi-slab systems can be understood using the physics illuminated by our single slab study, and that a force-balance method can be used to relate intra-plate stress to viscous pressure in the asthenosphere and coupling forces at plate boundaries. This method has promise for rapid modeling of large systems of subduction zones on a global scale.

  18. Multicriteria evaluation of power plants impact on the living standard using the analytic hierarchy process

    International Nuclear Information System (INIS)

    Chatzimouratidis, Athanasios I.; Pilavachi, Petros A.

    2008-01-01

    The purpose of this study is to evaluate 10 types of power plants available at present including fossil fuel, nuclear as well as renewable-energy-based power plants, with regard to their overall impact on the living standard of local communities. Both positive and negative impacts of power plant operation are considered using the analytic hierarchy process (AHP). The current study covers the set of criteria weights considered typical for many local communities in many developed countries. The results presented here are illustrative only and user-defined weighting is required to make this study valuable for a specific group of users. A sensitivity analysis examines the most important weight variations, thus giving an overall view of the problem evaluation to every decision maker. Regardless of criteria weight variations, the five types of renewable energy power plant rank in the first five positions. Nuclear plants are in the sixth position when priority is given to quality of life and last when socioeconomic aspects are valued more important. Natural gas, oil and coal/lignite power plants rank between sixth and tenth position having slightly better ranking under priority to socioeconomic aspects

  19. Looking for physics beyond the standard model

    International Nuclear Information System (INIS)

    Binetruy, P.

    2002-01-01

    Motivations for new physics beyond the Standard Model are presented. The most successful and best motivated option, supersymmetry, is described in some detail, and the associated searches performed at LEP are reviewed. These include searches for additional Higgs bosons and for supersymmetric partners of the standard particles. These searches constrain the mass of the lightest supersymmetric particle which could be responsible for the dark matter of the universe. (authors)

  20. Evaluation of Analytical Modeling Functions for the Phonation Onset Process

    Directory of Open Access Journals (Sweden)

    Simon Petermann

    2016-01-01

    Full Text Available The human voice originates from oscillations of the vocal folds in the larynx. The duration of the voice onset (VO, called the voice onset time (VOT, is currently under investigation as a clinical indicator for correct laryngeal functionality. Different analytical approaches for computing the VOT based on endoscopic imaging were compared to determine the most reliable method to quantify automatically the transient vocal fold oscillations during VO. Transnasal endoscopic imaging in combination with a high-speed camera (8000 fps was applied to visualize the phonation onset process. Two different definitions of VO interval were investigated. Six analytical functions were tested that approximate the envelope of the filtered or unfiltered glottal area waveform (GAW during phonation onset. A total of 126 recordings from nine healthy males and 210 recordings from 15 healthy females were evaluated. Three criteria were analyzed to determine the most appropriate computation approach: (1 reliability of the fit function for a correct approximation of VO; (2 consistency represented by the standard deviation of VOT; and (3 accuracy of the approximation of VO. The results suggest the computation of VOT by a fourth-order polynomial approximation in the interval between 32.2 and 67.8% of the saturation amplitude of the filtered GAW.

  1. The Standard Model and Higgs physics

    Science.gov (United States)

    Torassa, Ezio

    2018-05-01

    The Standard Model is a consistent and computable theory that successfully describes the elementary particle interactions. The strong, electromagnetic and weak interactions have been included in the theory exploiting the relation between group symmetries and group generators, in order to smartly introduce the force carriers. The group properties lead to constraints between boson masses and couplings. All the measurements performed at the LEP, Tevatron, LHC and other accelerators proved the consistency of the Standard Model. A key element of the theory is the Higgs field, which together with the spontaneous symmetry breaking, gives mass to the vector bosons and to the fermions. Unlike the case of vector bosons, the theory does not provide prediction for the Higgs boson mass. The LEP experiments, while providing very precise measurements of the Standard Model theory, searched for the evidence of the Higgs boson until the year 2000. The discovery of the top quark in 1994 by the Tevatron experiments and of the Higgs boson in 2012 by the LHC experiments were considered as the completion of the fundamental particles list of the Standard Model theory. Nevertheless the neutrino oscillations, the dark matter and the baryon asymmetry in the Universe evidence that we need a new extended model. In the Standard Model there are also some unattractive theoretical aspects like the divergent loop corrections to the Higgs boson mass and the very small Yukawa couplings needed to describe the neutrino masses. For all these reasons, the hunt of discrepancies between Standard Model and data is still going on with the aim to finally describe the new extended theory.

  2. The Cosmological Standard Model and Its Implications for Beyond the Standard Model of Particle Physics

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    While the cosmological standard model has many notable successes, it assumes 95% of the mass-energy density of the universe is dark and of unknown nature, and there was an early stage of inflationary expansion driven by physics far beyond the range of the particle physics standard model. In the colloquium I will discuss potential particle-physics implications of the standard cosmological model.

  3. General formulation of standard model the standard model is in need of new concepts

    International Nuclear Information System (INIS)

    Khodjaev, L.Sh.

    2001-01-01

    The phenomenological basis for formulation of the Standard Model has been reviewed. The Standard Model based on the fundamental postulates has been formulated. The concept of the fundamental symmetries has been introduced: To look for not fundamental particles but fundamental symmetries. By searching of more general theory it is natural to search first of all global symmetries and than to learn consequence connected with the localisation of this global symmetries like wise of the standard Model

  4. "Violent Intent Modeling: Incorporating Cultural Knowledge into the Analytical Process

    Energy Technology Data Exchange (ETDEWEB)

    Sanfilippo, Antonio P.; Nibbs, Faith G.

    2007-08-24

    While culture has a significant effect on the appropriate interpretation of textual data, the incorporation of cultural considerations into data transformations has not been systematic. Recognizing that the successful prevention of terrorist activities could hinge on the knowledge of the subcultures, Anthropologist and DHS intern Faith Nibbs has been addressing the need to incorporate cultural knowledge into the analytical process. In this Brown Bag she will present how cultural ideology is being used to understand how the rhetoric of group leaders influences the likelihood of their constituents to engage in violent or radicalized behavior, and how violent intent modeling can benefit from understanding that process.

  5. An analytic model for flow reversal in divertor plasmas

    International Nuclear Information System (INIS)

    Cooke, P.I.H.; Prinja, A.K.

    1987-04-01

    An analytic model is developed and used to study the phenomenon of flow reversal which is observed in two-dimensional simulations of divertor plasmas. The effect is shown to be caused by the radial spread of neutral particles emitted from the divertor target which can lead to a strong peaking of the ionization source at certain radial locations. The results indicate that flow reversal over a portion of the width of the scrape-off layer is inevitable in high recycling conditions. Implications for impurity transport and particle removal in reactors are discussed

  6. Optimizing multi-pinhole SPECT geometries using an analytical model

    International Nuclear Information System (INIS)

    Rentmeester, M C M; Have, F van der; Beekman, F J

    2007-01-01

    State-of-the-art multi-pinhole SPECT devices allow for sub-mm resolution imaging of radio-molecule distributions in small laboratory animals. The optimization of multi-pinhole and detector geometries using simulations based on ray-tracing or Monte Carlo algorithms is time-consuming, particularly because many system parameters need to be varied. As an efficient alternative we develop a continuous analytical model of a pinhole SPECT system with a stationary detector set-up, which we apply to focused imaging of a mouse. The model assumes that the multi-pinhole collimator and the detector both have the shape of a spherical layer, and uses analytical expressions for effective pinhole diameters, sensitivity and spatial resolution. For fixed fields-of-view, a pinhole-diameter adapting feedback loop allows for the comparison of the system resolution of different systems at equal system sensitivity, and vice versa. The model predicts that (i) for optimal resolution or sensitivity the collimator layer with pinholes should be placed as closely as possible around the animal given a fixed detector layer, (ii) with high-resolution detectors a resolution improvement up to 31% can be achieved compared to optimized systems, (iii) high-resolution detectors can be placed close to the collimator without significant resolution losses, (iv) interestingly, systems with a physical pinhole diameter of 0 mm can have an excellent resolution when high-resolution detectors are used

  7. International Society for Analytical Cytology biosafety standard for sorting of unfixed cells.

    Science.gov (United States)

    Schmid, Ingrid; Lambert, Claude; Ambrozak, David; Marti, Gerald E; Moss, Delynn M; Perfetto, Stephen P

    2007-06-01

    Cell sorting of viable biological specimens has become very prevalent in laboratories involved in basic and clinical research. As these samples can contain infectious agents, precautions to protect instrument operators and the environment from hazards arising from the use of sorters are paramount. To this end the International Society of Analytical Cytology (ISAC) took a lead in establishing biosafety guidelines for sorting of unfixed cells (Schmid et al., Cytometry 1997;28:99-117). During the time period these recommendations have been available, they have become recognized worldwide as the standard practices and safety precautions for laboratories performing viable cell sorting experiments. However, the field of cytometry has progressed since 1997, and the document requires an update. Initially, suggestions about the document format and content were discussed among members of the ISAC Biosafety Committee and were incorporated into a draft version that was sent to all committee members for review. Comments were collected, carefully considered, and incorporated as appropriate into a draft document that was posted on the ISAC web site to invite comments from the flow cytometry community at large. The revised document was then submitted to ISAC Council for review. Simultaneously, further comments were sought from newly-appointed ISAC Biosafety committee members. This safety standard for performing viable cell sorting experiments was recently generated. The document contains background information on the biohazard potential of sorting and the hazard classification of infectious agents as well as recommendations on (1) sample handling, (2) operator training and personal protection, (3) laboratory design, (4) cell sorter set-up, maintenance, and decontamination, and (5) testing the instrument for the efficiency of aerosol containment. This standard constitutes an updated and expanded revision of the 1997 biosafety guideline document. It is intended to provide

  8. LHC Higgs physics beyond the Standard Model

    International Nuclear Information System (INIS)

    Spannowsky, M.

    2007-01-01

    The Large Hadron Collider (LHC) at CERN will be able to perform proton collisions at a much higher center-of-mass energy and luminosity than any other collider. Its main purpose is to detect the Higgs boson, the last unobserved particle of the Standard Model, explaining the riddle of the origin of mass. Studies have shown, that for the whole allowed region of the Higgs mass processes exist to detect the Higgs at the LHC. However, the Standard Model cannot be a theory of everything and is not able to provide a complete understanding of physics. It is at most an effective theory up to a presently unknown energy scale. Hence, extensions of the Standard Model are necessary which can affect the Higgs-boson signals. We discuss these effects in two popular extensions of the Standard Model: the Minimal Supersymmetric Standard Model (MSSM) and the Standard Model with four generations (SM4G). Constraints on these models come predominantly from flavor physics and electroweak precision measurements. We show, that the SM4G is still viable and that a fourth generation has strong impact on decay and production processes of the Higgs boson. Furthermore, we study the charged Higgs boson in the MSSM, yielding a clear signal for physics beyond the Standard Model. For small tan β in minimal flavor violation (MFV) no processes for the detection of a charged Higgs boson do exist at the LHC. However, MFV is just motivated by the experimental agreement of results from flavor physics with Standard Model predictions, but not by any basic theoretical consideration. In this thesis, we calculate charged Higgs boson production cross sections beyond the assumption of MFV, where a large number of free parameters is present in the MSSM. We find that the soft-breaking parameters which enhance the charged-Higgs boson production most are just bound to large values, e.g. by rare B-meson decays. Although the charged-Higgs boson cross sections beyond MFV turn out to be sizeable, only a detailed

  9. LHC Higgs physics beyond the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Spannowsky, M.

    2007-09-22

    The Large Hadron Collider (LHC) at CERN will be able to perform proton collisions at a much higher center-of-mass energy and luminosity than any other collider. Its main purpose is to detect the Higgs boson, the last unobserved particle of the Standard Model, explaining the riddle of the origin of mass. Studies have shown, that for the whole allowed region of the Higgs mass processes exist to detect the Higgs at the LHC. However, the Standard Model cannot be a theory of everything and is not able to provide a complete understanding of physics. It is at most an effective theory up to a presently unknown energy scale. Hence, extensions of the Standard Model are necessary which can affect the Higgs-boson signals. We discuss these effects in two popular extensions of the Standard Model: the Minimal Supersymmetric Standard Model (MSSM) and the Standard Model with four generations (SM4G). Constraints on these models come predominantly from flavor physics and electroweak precision measurements. We show, that the SM4G is still viable and that a fourth generation has strong impact on decay and production processes of the Higgs boson. Furthermore, we study the charged Higgs boson in the MSSM, yielding a clear signal for physics beyond the Standard Model. For small tan {beta} in minimal flavor violation (MFV) no processes for the detection of a charged Higgs boson do exist at the LHC. However, MFV is just motivated by the experimental agreement of results from flavor physics with Standard Model predictions, but not by any basic theoretical consideration. In this thesis, we calculate charged Higgs boson production cross sections beyond the assumption of MFV, where a large number of free parameters is present in the MSSM. We find that the soft-breaking parameters which enhance the charged-Higgs boson production most are just bound to large values, e.g. by rare B-meson decays. Although the charged-Higgs boson cross sections beyond MFV turn out to be sizeable, only a detailed

  10. A solar neutrino loophole: standard solar models

    Energy Technology Data Exchange (ETDEWEB)

    Rouse, C A [General Atomic Co., San Diego, Calif. (USA)

    1975-11-01

    The salient aspects of the existence theorem for a unique solution to a system of linear of nonlinear first-order, ordinary differential equations are given and applied to the equilibrium stellar structure equations. It is shown that values of pressure, temperature, mass and luminosity are needed at one point - and for the sun, the logical point is the solar radius. It is concluded that since standard solar model calculations use split boundary conditions, a solar neutrino loophole still remains: solar model calculations that seek to satisfy the necessary condition for a unique solution to the solar structure equations suggest a solar interior quite different from that deduced in standard models. This, in turn, suggests a theory of formation and solar evolution significantly different from the standard theory.

  11. Analytic model of Applied-B ion diode impedance behavior

    International Nuclear Information System (INIS)

    Miller, P.A.; Mendel, C.W. Jr.

    1987-01-01

    An empirical analysis of impedance data from Applied-B ion diodes used in seven inertial confinement fusion research experiments was published recently. The diodes all operated with impedance values well below the Child's-law value. The analysis uncovered an unusual unifying relationship among data from the different experiments. The analysis suggested that closure of the anode-cathode gap by electrode plasma was not a dominant factor in the experiments, but was not able to elaborate the underlying physics. Here we present a new analytic model of Applied-B ion diodes coupled to accelerators. A critical feature of the diode model is based on magnetic insulation theory. The model successfully describes impedance behavior of these diodes and supports stimulating new viewpoints of the physics of Applied-B ion diode operation

  12. Simplified analytical model for radionuclide transport simulation in the geosphere

    International Nuclear Information System (INIS)

    Hiromoto, G.

    1996-01-01

    In order to evaluate postclosure off-site doses from a low-level radioactive waste disposal facilities, an integrated safety assessment methodology has being developed at Instituto de Pesquisas Energeticas e Nucleares. The source-term modelling approach adopted in this system is described and the results obtained in the IAEA NSARS 'The Safety Assessment of Near-Surface Radioactive Waste Disposal Facilities' programme for model intercomparison studies are presented. The radionuclides released from the waste are calculated using a simple first order kinetics model, and the transport, through porous media below the waste is determined by using an analytical solution of the mass transport equation. The methodology and the results obtained in this work are compared with those reported by others participants of the NSARS programme. (author). 4 refs., 4 figs

  13. Extended Analytic Linear Model of Hydraulic Cylinder With Respect Different Piston Areas and Volumes

    Directory of Open Access Journals (Sweden)

    Petr KOŇAŘÍK

    2009-06-01

    Full Text Available Standard analytic linear model of hydraulic cylinder usually comes from assumptions of identical action piston areas on both sides of hydraulic cylinder (double piston rod and suitable operation point, which is usually chosen in the middle of piston. By reason of that volumes inside of cylinder are than same. Moreover for control of that arrangement of hydraulic cylinder, usually controlled by 4/3 servovalve, the same mount of flows comes in and comes out to each of chambers of hydraulic cylinder. Presented paper deal with development of extended form of analytic linear model of single piston rod hydraulic cylinder which respects different action piston areas and volumes inside of chambers of hydraulic cylinder and also two different input flows of hydraulic cylinder. In extended model are also considered possibilities of different dead volumes in hoses and intake parts of hydraulic cylinder. Dead volume has impact on damping of hydraulic cylinder. Because the system of hydraulic cylinder is generally presented as a integrative system with inertia of second order: eq , we can than obtain time constants and damping of hydraulic cylinder for each of analytic form model. The model has arisen for needs of model fractionation on two parts. Part of behaviour of chamber A and part of behaviour of chamber B of cylinder. It was created for the reason of analysis and synthesis of control parameters of regulation circuit of multivalve control concept of hydraulic drive with separately controlled chamber A and B which could be then used for.

  14. Standard model Higgs physics at colliders

    International Nuclear Information System (INIS)

    Rosca, A.

    2007-01-01

    In this report we briefly review the experimental status and prospects to verify the Higgs mechanism of spontaneous symmetry breaking. The focus is on the most relevant aspects of the phenomenology of the Standard Model Higgs boson at current (Tevatron) and future (Large Hadron Collider, LHC and International Linear Collider, ILC) particle colliders. We review the Standard Model searches: searches at the Tevatron, the program planned at the LHC and prospects at the ILC. Emphasis is put on what follows after a candidate discovery at the LHC: the various measurements which are necessary to precisely determine what the properties of this Higgs candidate are. (author)

  15. Analytic Models of Brown Dwarfs and the Substellar Mass Limit

    Directory of Open Access Journals (Sweden)

    Sayantan Auddy

    2016-01-01

    Full Text Available We present the analytic theory of brown dwarf evolution and the lower mass limit of the hydrogen burning main-sequence stars and introduce some modifications to the existing models. We give an exact expression for the pressure of an ideal nonrelativistic Fermi gas at a finite temperature, therefore allowing for nonzero values of the degeneracy parameter. We review the derivation of surface luminosity using an entropy matching condition and the first-order phase transition between the molecular hydrogen in the outer envelope and the partially ionized hydrogen in the inner region. We also discuss the results of modern simulations of the plasma phase transition, which illustrate the uncertainties in determining its critical temperature. Based on the existing models and with some simple modification, we find the maximum mass for a brown dwarf to be in the range 0.064M⊙–0.087M⊙. An analytic formula for the luminosity evolution allows us to estimate the time period of the nonsteady state (i.e., non-main-sequence nuclear burning for substellar objects. We also calculate the evolution of very low mass stars. We estimate that ≃11% of stars take longer than 107 yr to reach the main sequence, and ≃5% of stars take longer than 108 yr.

  16. Analytical Modeling for Underground Risk Assessment in Smart Cities

    Directory of Open Access Journals (Sweden)

    Israr Ullah

    2018-06-01

    Full Text Available In the developed world, underground facilities are increasing day-by-day, as it is considered as an improved utilization of available space in smart cities. Typical facilities include underground railway lines, electricity lines, parking lots, water supply systems, sewerage network, etc. Besides its utility, these facilities also pose serious threats to citizens and property. To preempt accidental loss of precious human lives and properties, a real time monitoring system is highly desirable for conducting risk assessment on continuous basis and timely report any abnormality before its too late. In this paper, we present an analytical formulation to model system behavior for risk analysis and assessment based on various risk contributing factors. Based on proposed analytical model, we have evaluated three approximation techniques for computing final risk index: (a simple linear approximation based on multiple linear regression analysis; (b hierarchical fuzzy logic based technique in which related risk factors are combined in a tree like structure; and (c hybrid approximation approach which is a combination of (a and (b. Experimental results shows that simple linear approximation fails to accurately estimate final risk index as compared to hierarchical fuzzy logic based system which shows that the latter provides an efficient method for monitoring and forecasting critical issues in the underground facilities and may assist in maintenance efficiency as well. Estimation results based on hybrid approach fails to accurately estimate final risk index. However, hybrid scheme reveals some interesting and detailed information by performing automatic clustering based on location risk index.

  17. An analytically tractable model for community ecology with many species

    Science.gov (United States)

    Dickens, Benjamin; Fisher, Charles; Mehta, Pankaj; Pankaj Mehta Biophysics Theory Group Team

    A fundamental problem in community ecology is to understand how ecological processes such as selection, drift, and immigration yield observed patterns in species composition and diversity. Here, we present an analytically tractable, presence-absence (PA) model for community assembly and use it to ask how ecological traits such as the strength of competition, diversity in competition, and stochasticity affect species composition in a community. In our PA model, we treat species as stochastic binary variables that can either be present or absent in a community: species can immigrate into the community from a regional species pool and can go extinct due to competition and stochasticity. Despite its simplicity, the PA model reproduces the qualitative features of more complicated models of community assembly. In agreement with recent work on large, competitive Lotka-Volterra systems, the PA model exhibits distinct ecological behaviors organized around a special (``critical'') point corresponding to Hubbell's neutral theory of biodiversity. Our results suggest that the concepts of ``phases'' and phase diagrams can provide a powerful framework for thinking about community ecology and that the PA model captures the essential ecological dynamics of community assembly. Pm was supported by a Simons Investigator in the Mathematical Modeling of Living Systems and a Sloan Research Fellowship.

  18. A physically based analytical spatial air temperature and humidity model

    Science.gov (United States)

    Yang, Yang; Endreny, Theodore A.; Nowak, David J.

    2013-09-01

    Spatial variation of urban surface air temperature and humidity influences human thermal comfort, the settling rate of atmospheric pollutants, and plant physiology and growth. Given the lack of observations, we developed a Physically based Analytical Spatial Air Temperature and Humidity (PASATH) model. The PASATH model calculates spatial solar radiation and heat storage based on semiempirical functions and generates spatially distributed estimates based on inputs of topography, land cover, and the weather data measured at a reference site. The model assumes that for all grids under the same mesoscale climate, grid air temperature and humidity are modified by local variation in absorbed solar radiation and the partitioning of sensible and latent heat. The model uses a reference grid site for time series meteorological data and the air temperature and humidity of any other grid can be obtained by solving the heat flux network equations. PASATH was coupled with the USDA iTree-Hydro water balance model to obtain evapotranspiration terms and run from 20 to 29 August 2010 at a 360 m by 360 m grid scale and hourly time step across a 285 km2 watershed including the urban area of Syracuse, NY. PASATH predictions were tested at nine urban weather stations representing variability in urban topography and land cover. The PASATH model predictive efficiency R2 ranged from 0.81 to 0.99 for air temperature and 0.77 to 0.97 for dew point temperature. PASATH is expected to have broad applications on environmental and ecological models.

  19. An analytical model for backscattered luminance in fog: comparisons with Monte Carlo computations and experimental results

    International Nuclear Information System (INIS)

    Taillade, Frédéric; Dumont, Eric; Belin, Etienne

    2008-01-01

    We propose an analytical model for backscattered luminance in fog and derive an expression for the visibility signal-to-noise ratio as a function of meteorological visibility distance. The model uses single scattering processes. It is based on the Mie theory and the geometry of the optical device (emitter and receiver). In particular, we present an overlap function and take the phase function of fog into account. The results of the backscattered luminance obtained with our analytical model are compared to simulations made using the Monte Carlo method based on multiple scattering processes. An excellent agreement is found in that the discrepancy between the results is smaller than the Monte Carlo standard uncertainties. If we take no account of the geometry of the optical device, the results of the model-estimated backscattered luminance differ from the simulations by a factor 20. We also conclude that the signal-to-noise ratio computed with the Monte Carlo method and our analytical model is in good agreement with experimental results since the mean difference between the calculations and experimental measurements is smaller than the experimental uncertainty

  20. Standard Model mass spectrum in inflationary universe

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xingang [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics,60 Garden Street, Cambridge, MA 02138 (United States); Wang, Yi [Department of Physics, The Hong Kong University of Science and Technology,Clear Water Bay, Kowloon, Hong Kong (China); Xianyu, Zhong-Zhi [Center of Mathematical Sciences and Applications, Harvard University,20 Garden Street, Cambridge, MA 02138 (United States)

    2017-04-11

    We work out the Standard Model (SM) mass spectrum during inflation with quantum corrections, and explore its observable consequences in the squeezed limit of non-Gaussianity. Both non-Higgs and Higgs inflation models are studied in detail. We also illustrate how some inflationary loop diagrams can be computed neatly by Wick-rotating the inflation background to Euclidean signature and by dimensional regularization.

  1. Standard Model Effective Potential from Trace Anomalies

    Directory of Open Access Journals (Sweden)

    Renata Jora

    2018-01-01

    Full Text Available By analogy with the low energy QCD effective linear sigma model, we construct a standard model effective potential based entirely on the requirement that the tree level and quantum level trace anomalies must be satisfied. We discuss a particular realization of this potential in connection with the Higgs boson mass and Higgs boson effective couplings to two photons and two gluons. We find that this kind of potential may describe well the known phenomenology of the Higgs boson.

  2. Scale gauge symmetry and the standard model

    International Nuclear Information System (INIS)

    Sola, J.

    1990-01-01

    This paper speculates on a version of the standard model of the electroweak and strong interactions coupled to gravity and equipped with a spontaneously broken, anomalous, conformal gauge symmetry. The scalar sector is virtually absent in the minimal model but in the general case it shows up in the form of a nonlinear harmonic map Lagrangian. A Euclidean approach to the phenological constant problem is also addressed in this framework

  3. Theorists reject challenge to standard model

    CERN Multimedia

    Adam, D

    2001-01-01

    Particle physicists are questioning results that appear to violate the Standard Model. There are concerns that there is not sufficient statistical significance and also charges that the comparison is being made with the 'most convenient' theoretical value for the muon's magnetic moment (1 page).

  4. Precision tests of the Standard Model

    International Nuclear Information System (INIS)

    Ol'shevskij, A.G.

    1996-01-01

    The present status of the precision measurements of electroweak observables is discussed with the special emphasis on the results obtained recently. All together these measurements provide the basis for the stringent test of the Standard Model and determination of the SM parameters. 22 refs., 23 figs., 11 tabs

  5. Standard Model at the LHC 2017

    CERN Document Server

    2017-01-01

    The SM@LHC 2017 conference will be held May 2-5, 2017 at Nikhef, Amsterdam. The meeting aims to bring together experimentalists and theorists to discuss the phenomenology, observational results and theoretical tools for Standard Model physics at the LHC.

  6. Introduction to physics beyond the Standard Model

    CERN Document Server

    Giudice, Gian Francesco

    1998-01-01

    These lectures will give an introductory review of the main ideas behind the attempts to extend the standard-model description of elementary particle interactions. After analysing the conceptual motivations that lead us to blieve in the existence of an underlying fundamental theory, wi will discuss the present status of various theoretical constructs : grand unification, supersymmetry and technicolour.

  7. Is the standard model really tested?

    International Nuclear Information System (INIS)

    Takasugi, E.

    1989-01-01

    It is discussed how the standard model is really tested. Among various tests, I concentrate on the CP violation phenomena in K and B meson system. Especially, the resent hope to overcome the theoretical uncertainty in the evaluation on the CP violation of K meson system is discussed. (author)

  8. Accidentally safe extensions of the Standard Model

    CERN Document Server

    Di Luzio, Luca; Kamenik, Jernej F.; Nardecchia, Marco

    2015-01-01

    We discuss a class of weak-scale extensions of the Standard Model which is completely invisible to low-energy indirect probes. The typical signature of this scenario is the existence of new charged and/or colored states which are stable on the scale of high-energy particle detectors.

  9. Asymptotically Safe Standard Model via Vectorlike Fermions

    Science.gov (United States)

    Mann, R. B.; Meffe, J. R.; Sannino, F.; Steele, T. G.; Wang, Z. W.; Zhang, C.

    2017-12-01

    We construct asymptotically safe extensions of the standard model by adding gauged vectorlike fermions. Using large number-of-flavor techniques we argue that all gauge couplings, including the hypercharge and, under certain conditions, the Higgs coupling, can achieve an interacting ultraviolet fixed point.

  10. Analytical model for macromolecular partitioning during yeast cell division

    International Nuclear Information System (INIS)

    Kinkhabwala, Ali; Khmelinskii, Anton; Knop, Michael

    2014-01-01

    Asymmetric cell division, whereby a parent cell generates two sibling cells with unequal content and thereby distinct fates, is central to cell differentiation, organism development and ageing. Unequal partitioning of the macromolecular content of the parent cell — which includes proteins, DNA, RNA, large proteinaceous assemblies and organelles — can be achieved by both passive (e.g. diffusion, localized retention sites) and active (e.g. motor-driven transport) processes operating in the presence of external polarity cues, internal asymmetries, spontaneous symmetry breaking, or stochastic effects. However, the quantitative contribution of different processes to the partitioning of macromolecular content is difficult to evaluate. Here we developed an analytical model that allows rapid quantitative assessment of partitioning as a function of various parameters in the budding yeast Saccharomyces cerevisiae. This model exposes quantitative degeneracies among the physical parameters that govern macromolecular partitioning, and reveals regions of the solution space where diffusion is sufficient to drive asymmetric partitioning and regions where asymmetric partitioning can only be achieved through additional processes such as motor-driven transport. Application of the model to different macromolecular assemblies suggests that partitioning of protein aggregates and episomes, but not prions, is diffusion-limited in yeast, consistent with previous reports. In contrast to computationally intensive stochastic simulations of particular scenarios, our analytical model provides an efficient and comprehensive overview of partitioning as a function of global and macromolecule-specific parameters. Identification of quantitative degeneracies among these parameters highlights the importance of their careful measurement for a given macromolecular species in order to understand the dominant processes responsible for its observed partitioning

  11. Inflation in the standard cosmological model

    Science.gov (United States)

    Uzan, Jean-Philippe

    2015-12-01

    The inflationary paradigm is now part of the standard cosmological model as a description of its primordial phase. While its original motivation was to solve the standard problems of the hot big bang model, it was soon understood that it offers a natural theory for the origin of the large-scale structure of the universe. Most models rely on a slow-rolling scalar field and enjoy very generic predictions. Besides, all the matter of the universe is produced by the decay of the inflaton field at the end of inflation during a phase of reheating. These predictions can be (and are) tested from their imprint of the large-scale structure and in particular the cosmic microwave background. Inflation stands as a window in physics where both general relativity and quantum field theory are at work and which can be observationally studied. It connects cosmology with high-energy physics. Today most models are constructed within extensions of the standard model, such as supersymmetry or string theory. Inflation also disrupts our vision of the universe, in particular with the ideas of chaotic inflation and eternal inflation that tend to promote the image of a very inhomogeneous universe with fractal structure on a large scale. This idea is also at the heart of further speculations, such as the multiverse. This introduction summarizes the connections between inflation and the hot big bang model and details the basics of its dynamics and predictions. xml:lang="fr"

  12. Progressive Learning of Topic Modeling Parameters: A Visual Analytics Framework.

    Science.gov (United States)

    El-Assady, Mennatallah; Sevastjanova, Rita; Sperrle, Fabian; Keim, Daniel; Collins, Christopher

    2018-01-01

    Topic modeling algorithms are widely used to analyze the thematic composition of text corpora but remain difficult to interpret and adjust. Addressing these limitations, we present a modular visual analytics framework, tackling the understandability and adaptability of topic models through a user-driven reinforcement learning process which does not require a deep understanding of the underlying topic modeling algorithms. Given a document corpus, our approach initializes two algorithm configurations based on a parameter space analysis that enhances document separability. We abstract the model complexity in an interactive visual workspace for exploring the automatic matching results of two models, investigating topic summaries, analyzing parameter distributions, and reviewing documents. The main contribution of our work is an iterative decision-making technique in which users provide a document-based relevance feedback that allows the framework to converge to a user-endorsed topic distribution. We also report feedback from a two-stage study which shows that our technique results in topic model quality improvements on two independent measures.

  13. Random-Effects Models for Meta-Analytic Structural Equation Modeling: Review, Issues, and Illustrations

    Science.gov (United States)

    Cheung, Mike W.-L.; Cheung, Shu Fai

    2016-01-01

    Meta-analytic structural equation modeling (MASEM) combines the techniques of meta-analysis and structural equation modeling for the purpose of synthesizing correlation or covariance matrices and fitting structural equation models on the pooled correlation or covariance matrix. Both fixed-effects and random-effects models can be defined in MASEM.…

  14. Laser-induced Breakdown spectroscopy quantitative analysis method via adaptive analytical line selection and relevance vector machine regression model

    International Nuclear Information System (INIS)

    Yang, Jianhong; Yi, Cancan; Xu, Jinwu; Ma, Xianghong

    2015-01-01

    A new LIBS quantitative analysis method based on analytical line adaptive selection and Relevance Vector Machine (RVM) regression model is proposed. First, a scheme of adaptively selecting analytical line is put forward in order to overcome the drawback of high dependency on a priori knowledge. The candidate analytical lines are automatically selected based on the built-in characteristics of spectral lines, such as spectral intensity, wavelength and width at half height. The analytical lines which will be used as input variables of regression model are determined adaptively according to the samples for both training and testing. Second, an LIBS quantitative analysis method based on RVM is presented. The intensities of analytical lines and the elemental concentrations of certified standard samples are used to train the RVM regression model. The predicted elemental concentration analysis results will be given with a form of confidence interval of probabilistic distribution, which is helpful for evaluating the uncertainness contained in the measured spectra. Chromium concentration analysis experiments of 23 certified standard high-alloy steel samples have been carried out. The multiple correlation coefficient of the prediction was up to 98.85%, and the average relative error of the prediction was 4.01%. The experiment results showed that the proposed LIBS quantitative analysis method achieved better prediction accuracy and better modeling robustness compared with the methods based on partial least squares regression, artificial neural network and standard support vector machine. - Highlights: • Both training and testing samples are considered for analytical lines selection. • The analytical lines are auto-selected based on the built-in characteristics of spectral lines. • The new method can achieve better prediction accuracy and modeling robustness. • Model predictions are given with confidence interval of probabilistic distribution

  15. Analytical Expressions of the Efficiency of Standard and High Contact Ratio Involute Spur Gears

    Directory of Open Access Journals (Sweden)

    Miguel Pleguezuelos

    2013-01-01

    Full Text Available Simple, traditional methods for computation of the efficiency of spur gears are based on the hypotheses of constant friction coefficient and uniform load sharing along the path of contact. However, none of them is accurate. The friction coefficient is variable along the path of contact, though average values can be often considered for preliminary calculations. Nevertheless, the nonuniform load sharing produced by the changing rigidity of the pair of teeth has significant influence on the friction losses, due to the different relative sliding at any contact point. In previous works, the authors obtained a nonuniform model of load distribution based on the minimum elastic potential criterion, which was applied to compute the efficiency of standard gears. In this work, this model of load sharing is applied to study the efficiency of both standard and high contact ratio involute spur gears (with contact ratio between 1 and 2 and greater than 2, resp.. Approximate expressions for the friction power losses and for the efficiency are presented assuming the friction coefficient to be constant along the path of contact. A study of the influence of some transmission parameters (as the gear ratio, pressure angle, etc. on the efficiency is also presented.

  16. A hidden analytic structure of the Rabi model

    International Nuclear Information System (INIS)

    Moroz, Alexander

    2014-01-01

    The Rabi model describes the simplest interaction between a cavity mode with a frequency ω c and a two-level system with a resonance frequency ω 0 . It is shown here that the spectrum of the Rabi model coincides with the support of the discrete Stieltjes integral measure in the orthogonality relations of recently introduced orthogonal polynomials. The exactly solvable limit of the Rabi model corresponding to Δ=ω 0 /(2ω c )=0, which describes a displaced harmonic oscillator, is characterized by the discrete Charlier polynomials in normalized energy ϵ, which are orthogonal on an equidistant lattice. A non-zero value of Δ leads to non-classical discrete orthogonal polynomials ϕ k (ϵ) and induces a deformation of the underlying equidistant lattice. The results provide a basis for a novel analytic method of solving the Rabi model. The number of ca. 1350 calculable energy levels per parity subspace obtained in double precision (cca 16 digits) by an elementary stepping algorithm is up to two orders of magnitude higher than is possible to obtain by Braak’s solution. Any first n eigenvalues of the Rabi model arranged in increasing order can be determined as zeros of ϕ N (ϵ) of at least the degree N=n+n t . The value of n t >0, which is slowly increasing with n, depends on the required precision. For instance, n t ≃26 for n=1000 and dimensionless interaction constant κ=0.2, if double precision is required. Given that the sequence of the lth zeros x nl ’s of ϕ n (ϵ)’s defines a monotonically decreasing discrete flow with increasing n, the Rabi model is indistinguishable from an algebraically solvable model in any finite precision. Although we can rigorously prove our results only for dimensionless interaction constant κ<1, numerics and exactly solvable example suggest that the main conclusions remain to be valid also for κ≥1. -- Highlights: •A significantly simplified analytic solution of the Rabi model. •The spectrum is the lattice of discrete

  17. Spiked sample standards; their uses and disadvantages in analytical quality control

    International Nuclear Information System (INIS)

    Bowen, V.T.; Volchok, H.L

    1980-01-01

    The advantages and disadvantages of spiked standards are discussed and contrasted with those of natural matrix standards. The preparation of the former class of standards and the evidence supporting recommendation of caution in their use are considered. (author)

  18. Analytical model of diffuse reflectance spectrum of skin tissue

    Energy Technology Data Exchange (ETDEWEB)

    Lisenko, S A; Kugeiko, M M; Firago, V A [Belarusian State University, Minsk (Belarus); Sobchuk, A N [B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk (Belarus)

    2014-01-31

    We have derived simple analytical expressions that enable highly accurate calculation of diffusely reflected light signals of skin in the spectral range from 450 to 800 nm at a distance from the region of delivery of exciting radiation. The expressions, taking into account the dependence of the detected signals on the refractive index, transport scattering coefficient, absorption coefficient and anisotropy factor of the medium, have been obtained in the approximation of a two-layer medium model (epidermis and dermis) for the same parameters of light scattering but different absorption coefficients of layers. Numerical experiments on the retrieval of the skin biophysical parameters from the diffuse reflectance spectra simulated by the Monte Carlo method show that commercially available fibre-optic spectrophotometers with a fixed distance between the radiation source and detector can reliably determine the concentration of bilirubin, oxy- and deoxyhaemoglobin in the dermis tissues and the tissue structure parameter characterising the size of its effective scatterers. We present the examples of quantitative analysis of the experimental data, confirming the correctness of estimates of biophysical parameters of skin using the obtained analytical expressions. (biophotonics)

  19. Exploring Higher Education Governance: Analytical Models and Heuristic Frameworks

    Directory of Open Access Journals (Sweden)

    Burhan FINDIKLI

    2017-08-01

    Full Text Available Governance in higher education, both at institutional and systemic levels, has experienced substantial changes within recent decades because of a range of world-historical processes such as massification, growth, globalization, marketization, public sector reforms, and the emergence of knowledge economy and society. These developments have made governance arrangements and decision-making processes in higher education more complex and multidimensional more than ever and forced scholars to build new analytical and heuristic tools and strategies to grasp the intricacy and diversity of higher education governance dynamics. This article provides a systematic discussion of how and through which tools prominent scholars of higher education have analyzed governance in this sector by examining certain heuristic frameworks and analytical models. Additionally, the article shows how social scientific analysis of governance in higher education has proceeded in a cumulative way with certain revisions and syntheses rather than radical conceptual and theoretical ruptures from Burton R. Clark’s seminal work to the present, revealing conceptual and empirical junctures between them.

  20. Finite element and analytical models for twisted and coiled actuator

    Science.gov (United States)

    Tang, Xintian; Liu, Yingxiang; Li, Kai; Chen, Weishan; Zhao, Jianguo

    2018-01-01

    Twisted and coiled actuator (TCA) is a class of recently discovered artificial muscle, which is usually made by twisting and coiling polymer fibers into spring-like structures. It has been widely studied since discovery due to its impressive output characteristics and bright prospects. However, its mathematical models describing the actuation in response to the temperature are still not fully developed. It is known that the large tensile stroke is resulted from the untwisting of the twisted fiber when heated. Thus, the recovered torque during untwisting is a key parameter in the mathematical model. This paper presents a simplified model for the recovered torque of TCA. Finite element method is used for evaluating the thermal stress of the twisted fiber. Based on the results of the finite element analyses, the constitutive equations of twisted fibers are simplified to develop an analytic model of the recovered torque. Finally, the model of the recovered torque is used to predict the deformation of TCA under varying temperatures and validated against experimental results. This work will enhance our understanding of the deformation mechanism of TCAs, which will pave the way for the closed-loop position control.

  1. Fuzzy modeling of analytical redundancy for sensor failure detection

    International Nuclear Information System (INIS)

    Tsai, T.M.; Chou, H.P.

    1991-01-01

    Failure detection and isolation (FDI) in dynamic systems may be accomplished by testing the consistency of the system via analytically redundant relations. The redundant relation is basically a mathematical model relating system inputs and dissimilar sensor outputs from which information is extracted and subsequently examined for the presence of failure signatures. Performance of the approach is often jeopardized by inherent modeling error and noise interference. To mitigate such effects, techniques such as Kalman filtering, auto-regression-moving-average (ARMA) modeling in conjunction with probability tests are often employed. These conventional techniques treat the stochastic nature of uncertainties in a deterministic manner to generate best-estimated model and sensor outputs by minimizing uncertainties. In this paper, the authors present a different approach by treating the effect of uncertainties with fuzzy numbers. Coefficients in redundant relations derived from first-principle physical models are considered as fuzzy parameters and on-line updated according to system behaviors. Failure detection is accomplished by examining the possibility that a sensor signal occurred in an estimated fuzzy domain. To facilitate failure isolation, individual FDI monitors are designed for each interested sensor

  2. Primordial nucleosynthesis: Beyond the standard model

    International Nuclear Information System (INIS)

    Malaney, R.A.

    1991-01-01

    Non-standard primordial nucleosynthesis merits continued study for several reasons. First and foremost are the important implications determined from primordial nucleosynthesis regarding the composition of the matter in the universe. Second, the production and the subsequent observation of the primordial isotopes is the most direct experimental link with the early (t approx-lt 1 sec) universe. Third, studies of primordial nucleosynthesis allow for important, and otherwise unattainable, constraints on many aspects of particle physics. Finally, there is tentative evidence which suggests that the Standard Big Bang (SBB) model is incorrect in that it cannot reproduce the inferred primordial abundances for a single value of the baryon-to-photon ratio. Reviewed here are some aspects of non-standard primordial nucleosynthesis which mostly overlap with the authors own personal interest. He begins with a short discussion of the SBB nucleosynthesis theory, high-lighting some recent related developments. Next he discusses how recent observations of helium and lithium abundances may indicate looming problems for the SBB model. He then discusses how the QCD phase transition, neutrinos, and cosmic strings can influence primordial nucleosynthesis. He concludes with a short discussion of the multitude of other non-standard nucleosynthesis models found in the literature, and make some comments on possible progress in the future. 58 refs., 7 figs., 2 tabs

  3. Standard Model Higgs Searches at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Knoepfel, Kyle J.

    2012-06-01

    We present results from the search for a standard model Higgs boson using data corresponding up to 10 fb{sup -1} of proton-antiproton collision data produced by the Fermilab Tevatron at a center-of-mass energy of 1.96 TeV. The data were recorded by the CDF and D0 detectors between March 2001 and September of 2011. A broad excess is observed between 105 < m{sub H} < 145 GeV/c{sup 2} with a global significance of 2.2 standard deviations relative to the background-only hypothesis.

  4. Beyond the standard model at Tevatron

    International Nuclear Information System (INIS)

    Pagliarone, C.

    2000-01-01

    Tevatron experiments performed extensive searches for physics beyond the Standard Model. No positive results have been found so far showing that the data are consistent with the SM expectations. CDF and D0 continue the analysis of Run I data placing limits on new physics, including Supersymmetry, large space time dimensions and leptoquark models. With the Run II upgrades, providing an higher acceptance and higher luminosity, it will be possible to make important progresses in the search for new phenomena as well as in setting limits on a larger variety of theoretical models

  5. Study on Standard Fatigue Vehicle Load Model

    Science.gov (United States)

    Huang, H. Y.; Zhang, J. P.; Li, Y. H.

    2018-02-01

    Based on the measured data of truck from three artery expressways in Guangdong Province, the statistical analysis of truck weight was conducted according to axle number. The standard fatigue vehicle model applied to industrial areas in the middle and late was obtained, which adopted equivalence damage principle, Miner linear accumulation law, water discharge method and damage ratio theory. Compared with the fatigue vehicle model Specified by the current bridge design code, the proposed model has better applicability. It is of certain reference value for the fatigue design of bridge in China.

  6. Standard model beyond the TeV

    International Nuclear Information System (INIS)

    Aurenche, P.

    1987-01-01

    The phenomenology of the standard model in the hadronic reactions in the 10 TeV range is described. The predictions of the model concerning the hadronic cross sections being based on the parton model, we first discuss the behaviour of the structure functions at the low values of X (x > 10 -4 ) which are attained at these energies and we show that the development of the leading logarithms equations allow us to calculate them. The production of W, Z, and gauge bosons and gauge boson pairs are reviewed. The Higgs boson production is discussed in detail according to his mass value [fr

  7. An Analytical Model of Joule Heating in Piezoresistive Microcantilevers

    Directory of Open Access Journals (Sweden)

    Chongdu Cho

    2010-11-01

    Full Text Available The present study investigates Joule heating in piezoresistive microcantilever sensors. Joule heating and thermal deflections are a major source of noise in such sensors. This work uses analytical and numerical techniques to characterise the Joule heating in 4-layer piezoresistive microcantilevers made of silicon and silicon dioxide substrates but with the same U-shaped silicon piezoresistor. A theoretical model for predicting the temperature generated due to Joule heating is developed. The commercial finite element software ANSYS Multiphysics was used to study the effect of electrical potential on temperature and deflection produced in the cantilevers. The effect of piezoresistor width on Joule heating is also studied. Results show that Joule heating strongly depends on the applied potential and width of piezoresistor and that a silicon substrate cantilever has better thermal characteristics than a silicon dioxide cantilever.

  8. An analytical model of joule heating in piezoresistive microcantilevers.

    Science.gov (United States)

    Ansari, Mohd Zahid; Cho, Chongdu

    2010-01-01

    The present study investigates Joule heating in piezoresistive microcantilever sensors. Joule heating and thermal deflections are a major source of noise in such sensors. This work uses analytical and numerical techniques to characterise the Joule heating in 4-layer piezoresistive microcantilevers made of silicon and silicon dioxide substrates but with the same U-shaped silicon piezoresistor. A theoretical model for predicting the temperature generated due to Joule heating is developed. The commercial finite element software ANSYS Multiphysics was used to study the effect of electrical potential on temperature and deflection produced in the cantilevers. The effect of piezoresistor width on Joule heating is also studied. Results show that Joule heating strongly depends on the applied potential and width of piezoresistor and that a silicon substrate cantilever has better thermal characteristics than a silicon dioxide cantilever.

  9. Analytical modeling of wet compression of gas turbine systems

    International Nuclear Information System (INIS)

    Kim, Kyoung Hoon; Ko, Hyung-Jong; Perez-Blanco, Horacio

    2011-01-01

    Evaporative gas turbine cycles (EvGT) are of importance to the power generation industry because of the potential of enhanced cycle efficiencies with moderate incremental cost. Humidification of the working fluid to result in evaporative cooling during compression is a key operation in these cycles. Previous simulations of this operation were carried out via numerical integration. The present work is aimed at modeling the wet-compression process with approximate analytical solutions instead. A thermodynamic analysis of the simultaneous heat and mass transfer processes that occur during evaporation is presented. The transient behavior of important variables in wet compression such as droplet diameter, droplet mass, gas and droplet temperature, and evaporation rate is investigated. The effects of system parameters on variables such as droplet evaporation time, compressor outlet temperature and input work are also considered. Results from this work exhibit good agreement with those of previous numerical work.

  10. Analytical Modelling Of Milling For Tool Design And Selection

    International Nuclear Information System (INIS)

    Fontaine, M.; Devillez, A.; Dudzinski, D.

    2007-01-01

    This paper presents an efficient analytical model which allows to simulate a large panel of milling operations. A geometrical description of common end mills and of their engagement in the workpiece material is proposed. The internal radius of the rounded part of the tool envelope is used to define the considered type of mill. The cutting edge position is described for a constant lead helix and for a constant local helix angle. A thermomechanical approach of oblique cutting is applied to predict forces acting on the tool and these results are compared with experimental data obtained from milling tests on a 42CrMo4 steel for three classical types of mills. The influence of some tool's geometrical parameters on predicted cutting forces is presented in order to propose optimisation criteria for design and selection of cutting tools

  11. Design of homogeneous trench-assisted multi-core fibers based on analytical model

    DEFF Research Database (Denmark)

    Ye, Feihong; Tu, Jiajing; Saitoh, Kunimasa

    2016-01-01

    We present a design method of homogeneous trench-assisted multicore fibers (TA-MCFs) based on an analytical model utilizing an analytical expression for the mode coupling coefficient between two adjacent cores. The analytical model can also be used for crosstalk (XT) properties analysis, such as ...

  12. 33 CFR 385.33 - Revisions to models and analytical tools.

    Science.gov (United States)

    2010-07-01

    ... on a case-by-case basis what documentation is appropriate for revisions to models and analytic tools... analytical tools. 385.33 Section 385.33 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE... Incorporating New Information Into the Plan § 385.33 Revisions to models and analytical tools. (a) In carrying...

  13. Anomalous Abelian symmetry in the standard model

    International Nuclear Information System (INIS)

    Ramond, P.

    1995-01-01

    The observed hierarchy of quark and lepton masses can be parametrized by nonrenormalizable operators with dimensions determined by an anomalous Abelian family symmetry, a gauge extension to the minimal supersymmetric standard model. Such an Abelian symmetry is generic to compactified superstring theories, with its anomalies compensated by the Green-Schwarz mechanism. If we assume these two symmetries to be the same, we find the electroweak mixing angle to be sin 2 θ ω = 3/8 at the string scale, just by setting the ratio of the product of down quark to charged lepton masses equal to one at the string scale. This assumes no GUT structure. The generality of the result suggests a superstring origin for the standard model. We generalize our analysis to massive neutrinos, and mixings in the lepton sector

  14. Higgs triplets in the standard model

    International Nuclear Information System (INIS)

    Gunion, J.F.; Vega, R.; Wudka, J.

    1990-01-01

    Even though the standard model of the strong and electroweak interactions has proven enormously successful, it need not be the case that a single Higgs-doublet field is responsible for giving masses to the weakly interacting vector bosons and the fermions. In this paper we explore the phenomenology of a Higgs sector for the standard model which contains both doublet and triplet fields [under SU(2) L ]. The resulting Higgs bosons have many exotic features and surprising experimental signatures. Since a critical task of future accelerators will be to either discover or establish the nonexistence of Higgs bosons with mass below the TeV scale, it will be important to keep in mind the alternative possibilities characteristic of this and other nonminimal Higgs sectors

  15. Superconnections: an interpretation of the standard model

    Directory of Open Access Journals (Sweden)

    Gert Roepstorff

    2000-07-01

    Full Text Available The mathematical framework of superbundles as pioneered by D. Quillen suggests that one consider the Higgs field as a natural constituent of a superconnection. I propose to take as superbundle the exterior algebra obtained from a Hermitian vector bundle of rank n where n=2 for the electroweak theory and n=5 for the full Standard Model. The present setup is similar to but avoids the use of non-commutative geometry.

  16. Neutrons and the new Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey-Musolf, M.J., E-mail: mjrm@physics.wisc.ed [Department of Physics, University of Wisconsin-Madison, Madison, WI 53706 (United States); Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States)

    2009-12-11

    Fundamental symmetry tests with neutrons can provide unique information about whatever will be the new Standard Model of fundamental interactions. I review two aspects of this possibility: searches for the permanent electric dipole moment of the neutron and its relation to the origin of baryonic matter, and precision studies of neutron decay that can probe new symmetries. I discuss the complementarity of these experiments with other low-energy precision tests and high energy collider searches for new physics.

  17. Beyond the standard model in many directions

    Energy Technology Data Exchange (ETDEWEB)

    Chris Quigg

    2004-04-28

    These four lectures constitute a gentle introduction to what may lie beyond the standard model of quarks and leptons interacting through SU(3){sub c} {direct_product} SU(2){sub L} {direct_product} U(1){sub Y} gauge bosons, prepared for an audience of graduate students in experimental particle physics. In the first lecture, I introduce a novel graphical representation of the particles and interactions, the double simplex, to elicit questions that motivate our interest in physics beyond the standard model, without recourse to equations and formalism. Lecture 2 is devoted to a short review of the current status of the standard model, especially the electroweak theory, which serves as the point of departure for our explorations. The third lecture is concerned with unified theories of the strong, weak, and electromagnetic interactions. In the fourth lecture, I survey some attempts to extend and complete the electroweak theory, emphasizing some of the promise and challenges of supersymmetry. A short concluding section looks forward.

  18. Analytical thermal model validation for Cassini radioisotope thermoelectric generator

    International Nuclear Information System (INIS)

    Lin, E.I.

    1997-01-01

    The Saturn-bound Cassini spacecraft is designed to rely, without precedent, on the waste heat from its three radioisotope thermoelectric generators (RTGs) to warm the propulsion module subsystem, and the RTG end dome temperature is a key determining factor of the amount of waste heat delivered. A previously validated SINDA thermal model of the RTG was the sole guide to understanding its complex thermal behavior, but displayed large discrepancies against some initial thermal development test data. A careful revalidation effort led to significant modifications and adjustments of the model, which result in a doubling of the radiative heat transfer from the heat source support assemblies to the end domes and bring up the end dome and flange temperature predictions to within 2 C of the pertinent test data. The increased inboard end dome temperature has a considerable impact on thermal control of the spacecraft central body. The validation process offers an example of physically-driven analytical model calibration with test data from not only an electrical simulator but also a nuclear-fueled flight unit, and has established the end dome temperatures of a flight RTG where no in-flight or ground-test data existed before

  19. Analytical modelling for ultrasonic surface mechanical attrition treatment

    Directory of Open Access Journals (Sweden)

    Guan-Rong Huang

    2015-07-01

    Full Text Available The grain refinement, gradient structure, fatigue limit, hardness, and tensile strength of metallic materials can be effectively enhanced by ultrasonic surface mechanical attrition treatment (SMAT, however, never before has SMAT been treated with rigorous analytical modelling such as the connection among the input energy and power and resultant temperature of metallic materials subjected to SMAT. Therefore, a systematic SMAT model is actually needed. In this article, we have calculated the averaged speed, duration time of a cycle, kinetic energy and kinetic energy loss of flying balls in SMAT for structural metallic materials. The connection among the quantities such as the frequency and amplitude of attrition ultrasonic vibration motor, the diameter, mass and density of balls, the sample mass, and the height of chamber have been considered and modelled in details. And we have introduced the one-dimensional heat equation with heat source within uniform-distributed depth in estimating the temperature distribution and heat energy of sample. In this approach, there exists a condition for the frequency of flying balls reaching a steady speed. With these known quantities, we can estimate the strain rate, hardness, and grain size of sample.

  20. Analytic models of NH4+ uptake and regeneration experiments

    International Nuclear Information System (INIS)

    Laws, E.A.

    1985-01-01

    Differential equations describing the uptake and regeneration of NH 4 + in both laboratory and field experiments are shown to have analytic solutions which can easily be inverted to determine the rate constants of interest. The solutions are used to study the descriptive ability of two fundamentally different models of NH 4 + cycling, one in which NH 4 + regeneration is regarded as a process that transfers N from participate N to NH 4 + , the other in which regeneration is regarded as a process that introduced NH 4 + to the dissolved phase without removing N from the particulate phase. The former model was found to give a good description of experimental field data and reasonable parameter values in all cases studied. The latter model was much less successful in describing the data and in producing reasonable parameter values. It is concluded that transfer of nitrogen from particulate N to NH 4 + is a process which must be taken into account in analyzing NH 4 + uptake and regeneration experiments

  1. Analytical modeling of bwr safety relief valve blowdown phenomenon

    International Nuclear Information System (INIS)

    Hwang, J.G.; Singh, A.

    1984-01-01

    An analytical, qualitative understanding of the pool pressures measured during safety relief valve discharge in boiling water reactors equipped with X-quenchers has been developed and compared to experimental data. A pressure trace typically consists of a brief 25-35 Hz. oscillation followed by longer 5-15 Hz. oscillation. In order to explain the pressure response, a discharge line vent clearing model has been coupled with a Rayleigh bubble dynamic model. The local conditions inside the safety relief valve discharge lines and inside of the X-quencher were simulated successfully with RELAP5. The simulation allows one to associate the peak pressure inside the quencher arm with the onset of air discharge into the suppression pool. Using the pressure and thermodynamic quality at quencher exit of RELAP5 calculation as input, a Rayleigh model of pool bubble dynamics has successfully explained both the higher and lower frequency pressure oscillations. The higher frequency oscillations are characteristic of an air bubble emanating from a single row of quencher holes. The lower frequency pressure oscillations are characteristic of a larger air bubble containing all the air expelled from one side of an X-quencher arm

  2. Applying fuzzy analytic network process in quality function deployment model

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Afsharkazemi

    2012-08-01

    Full Text Available In this paper, we propose an empirical study of QFD implementation when fuzzy numbers are used to handle the uncertainty associated with different components of the proposed model. We implement fuzzy analytical network to find the relative importance of various criteria and using fuzzy numbers we calculate the relative importance of these factors. The proposed model of this paper uses fuzzy matrix and house of quality to study the products development in QFD and also the second phase i.e. part deployment. In most researches, the primary objective is only on CRs to implement the quality function deployment and some other criteria such as production costs, manufacturing costs etc were disregarded. The results of using fuzzy analysis network process based on the QFD model in Daroupat packaging company to develop PVDC show that the most important indexes are being waterproof, resistant pill packages, and production cost. In addition, the PVDC coating is the most important index in terms of company experts’ point of view.

  3. More on analytic bootstrap for O(N) models

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Parijat; Kaviraj, Apratim; Sen, Kallol [Centre for High Energy Physics, Indian Institute of Science,C.V. Raman Avenue, Bangalore 560012 (India)

    2016-06-22

    This note is an extension of a recent work on the analytical bootstrapping of O(N) models. An additonal feature of the O(N) model is that the OPE contains trace and antisymmetric operators apart from the symmetric-traceless objects appearing in the OPE of the singlet sector. This in addition to the stress tensor (T{sub μν}) and the ϕ{sub i}ϕ{sup i} scalar, we also have other minimal twist operators as the spin-1 current J{sub μ} and the symmetric-traceless scalar in the case of O(N). We determine the effect of these additional objects on the anomalous dimensions of the corresponding trace, symmetric-traceless and antisymmetric operators in the large spin sector of the O(N) model, in the limit when the spin is much larger than the twist. As an observation, we also verified that the leading order results for the large spin sector from the ϵ−expansion are an exact match with our n=0 case. A plausible holographic setup for the special case when N=2 is also mentioned which mimics the calculation in the CFT.

  4. Beyond standard model calculations with Sherpa

    Energy Technology Data Exchange (ETDEWEB)

    Hoeche, Stefan [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Kuttimalai, Silvan [Durham University, Institute for Particle Physics Phenomenology, Durham (United Kingdom); Schumann, Steffen [Universitaet Goettingen, II. Physikalisches Institut, Goettingen (Germany); Siegert, Frank [Institut fuer Kern- und Teilchenphysik, TU Dresden, Dresden (Germany)

    2015-03-01

    We present a fully automated framework as part of the Sherpa event generator for the computation of tree-level cross sections in Beyond Standard Model scenarios, making use of model information given in the Universal FeynRules Output format. Elementary vertices are implemented into C++ code automatically and provided to the matrix-element generator Comix at runtime. Widths and branching ratios for unstable particles are computed from the same building blocks. The corresponding decays are simulated with spin correlations. Parton showers, QED radiation and hadronization are added by Sherpa, providing a full simulation of arbitrary BSM processes at the hadron level. (orig.)

  5. STAMINA - Model description. Standard Model Instrumentation for Noise Assessments

    NARCIS (Netherlands)

    Schreurs EM; Jabben J; Verheijen ENG; CMM; mev

    2010-01-01

    Deze rapportage beschrijft het STAMINA-model, dat staat voor Standard Model Instrumentation for Noise Assessments en door het RIVM is ontwikkeld. Het instituut gebruikt dit standaardmodel om omgevingsgeluid in Nederland in kaart te brengen. Het model is gebaseerd op de Standaard Karteringsmethode

  6. Supersymmetric quantum mechanics, spinors and the standard model

    International Nuclear Information System (INIS)

    Woit, P.

    1988-01-01

    The quantization of the simplest supersymmetric quantum mechanical theory of a free fermion on a riemannian manifold requires the introduction of a complex structure on the tangent space. In 4 dimensions, the subgroup of the group of frame rotations that preserves the complex structure is SU(2) x U(1), and it is argued that this symmetry can be consistently interpreted to be an internal gauge symmetry for the analytically continued theory in Minkowski space. The states of the theory carry the quantum numbers of a generation of leptons in the Weinberg-Salam model. Examination of the geometry of spinors in four dimensions also provides a natural SU(3) symmetry and very simple construction of a multiplet with the standard model quantum numbers. (orig.)

  7. Analytical Evaluation of Preliminary Drop Tests Performed to Develop a Robust Design for the Standardized DOE Spent Nuclear Fuel Canister

    International Nuclear Information System (INIS)

    Ware, A.G.; Morton, D.K.; Smith, N.L.; Snow, S.D.; Rahl, T.E.

    1999-01-01

    The Department of Energy (DOE) has developed a design concept for a set of standard canisters for the handling, interim storage, transportation, and disposal in the national repository, of DOE spent nuclear fuel (SNF). The standardized DOE SNF canister has to be capable of handling virtually all of the DOE SNF in a variety of potential storage and transportation systems. It must also be acceptable to the repository, based on current and anticipated future requirements. This expected usage mandates a robust design. The canister design has four unique geometries, with lengths of approximately 10 feet or 15 feet, and an outside nominal diameter of 18 inches or 24 inches. The canister has been developed to withstand a drop from 30 feet onto a rigid (flat) surface, sustaining only minor damage - but no rupture - to the pressure (containment) boundary. The majority of the end drop-induced damage is confined to the skirt and lifting/stiffening ring components, which can be removed if de sired after an accidental drop. A canister, with its skirt and stiffening ring removed after an accidental drop, can continue to be used in service with appropriate operational steps being taken. Features of the design concept have been proven through drop testing and finite element analyses of smaller test specimens. Finite element analyses also validated the canister design for drops onto a rigid (flat) surface for a variety of canister orientations at impact, from vertical to 45 degrees off vertical. Actual 30-foot drop testing has also been performed to verify the final design, though limited to just two full-scale test canister drops. In each case, the analytical models accurately predicted the canister response

  8. Fitting Simpson's neutrino into the standard model

    International Nuclear Information System (INIS)

    Valle, J.W.F.

    1985-01-01

    I show how to accomodate the 17 keV state recently by Simpson as one of the neutrinos of the standard model. Experimental constraints can only be satisfied if the μ and tau neutrino combine to a very good approximation to form a Dirac neutrino of 17 keV leaving a light νsub(e). Neutrino oscillations will provide the most stringent test of the model. The cosmological bounds are also satisfied in a natural way in models with Goldstone bosons. Explicit examples are given in the framework of majoron-type models. Constraints on the lepton symmetry breaking scale which follow from astrophysics, cosmology and laboratory experiments are discussed. (orig.)

  9. Analytical model for local scour prediction around hydrokinetic turbine foundations

    Science.gov (United States)

    Musa, M.; Heisel, M.; Hill, C.; Guala, M.

    2017-12-01

    Marine and Hydrokinetic renewable energy is an emerging sustainable and secure technology which produces clean energy harnessing water currents from mostly tidal and fluvial waterways. Hydrokinetic turbines are typically anchored at the bottom of the channel, which can be erodible or non-erodible. Recent experiments demonstrated the interactions between operating turbines and an erodible surface with sediment transport, resulting in a remarkable localized erosion-deposition pattern significantly larger than those observed by static in-river construction such as bridge piers, etc. Predicting local scour geometry at the base of hydrokinetic devices is extremely important during foundation design, installation, operation, and maintenance (IO&M), and long-term structural integrity. An analytical modeling framework is proposed applying the phenomenological theory of turbulence to the flow structures that promote the scouring process at the base of a turbine. The evolution of scour is directly linked to device operating conditions through the turbine drag force, which is inferred to locally dictate the energy dissipation rate in the scour region. The predictive model is validated using experimental data obtained at the University of Minnesota's St. Anthony Falls Laboratory (SAFL), covering two sediment mobility regimes (clear water and live bed), different turbine designs, hydraulic parameters, grain size distribution and bedform types. The model is applied to a potential prototype scale deployment in the lower Mississippi River, demonstrating its practical relevance and endorsing the feasibility of hydrokinetic energy power plants in large sandy rivers. Multi-turbine deployments are further studied experimentally by monitoring both local and non-local geomorphic effects introduced by a twelve turbine staggered array model installed in a wide channel at SAFL. Local scour behind each turbine is well captured by the theoretical predictive model. However, multi

  10. Experimentally testing the standard cosmological model

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N. (Chicago Univ., IL (USA) Fermi National Accelerator Lab., Batavia, IL (USA))

    1990-11-01

    The standard model of cosmology, the big bang, is now being tested and confirmed to remarkable accuracy. Recent high precision measurements relate to the microwave background; and big bang nucleosynthesis. This paper focuses on the latter since that relates more directly to high energy experiments. In particular, the recent LEP (and SLC) results on the number of neutrinos are discussed as a positive laboratory test of the standard cosmology scenario. Discussion is presented on the improved light element observational data as well as the improved neutron lifetime data. alternate nucleosynthesis scenarios of decaying matter or of quark-hadron induced inhomogeneities are discussed. It is shown that when these scenarios are made to fit the observed abundances accurately, the resulting conclusions on the baryonic density relative to the critical density, {Omega}{sub b}, remain approximately the same as in the standard homogeneous case, thus, adding to the robustness of the standard model conclusion that {Omega}{sub b} {approximately} 0.06. This latter point is the deriving force behind the need for non-baryonic dark matter (assuming {Omega}{sub total} = 1) and the need for dark baryonic matter, since {Omega}{sub visible} < {Omega}{sub b}. Recent accelerator constraints on non-baryonic matter are discussed, showing that any massive cold dark matter candidate must now have a mass M{sub x} {approx gt} 20 GeV and an interaction weaker than the Z{sup 0} coupling to a neutrino. It is also noted that recent hints regarding the solar neutrino experiments coupled with the see-saw model for {nu}-masses may imply that the {nu}{sub {tau}} is a good hot dark matter candidate. 73 refs., 5 figs.

  11. Experimentally testing the standard cosmological model

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1990-11-01

    The standard model of cosmology, the big bang, is now being tested and confirmed to remarkable accuracy. Recent high precision measurements relate to the microwave background; and big bang nucleosynthesis. This paper focuses on the latter since that relates more directly to high energy experiments. In particular, the recent LEP (and SLC) results on the number of neutrinos are discussed as a positive laboratory test of the standard cosmology scenario. Discussion is presented on the improved light element observational data as well as the improved neutron lifetime data. alternate nucleosynthesis scenarios of decaying matter or of quark-hadron induced inhomogeneities are discussed. It is shown that when these scenarios are made to fit the observed abundances accurately, the resulting conclusions on the baryonic density relative to the critical density, Ω b , remain approximately the same as in the standard homogeneous case, thus, adding to the robustness of the standard model conclusion that Ω b ∼ 0.06. This latter point is the deriving force behind the need for non-baryonic dark matter (assuming Ω total = 1) and the need for dark baryonic matter, since Ω visible b . Recent accelerator constraints on non-baryonic matter are discussed, showing that any massive cold dark matter candidate must now have a mass M x approx-gt 20 GeV and an interaction weaker than the Z 0 coupling to a neutrino. It is also noted that recent hints regarding the solar neutrino experiments coupled with the see-saw model for ν-masses may imply that the ν τ is a good hot dark matter candidate. 73 refs., 5 figs

  12. INCAS: an analytical model to describe displacement cascades

    Energy Technology Data Exchange (ETDEWEB)

    Jumel, Stephanie E-mail: stephanie.jumel@edf.fr; Claude Van-Duysen, Jean E-mail: jean-claude.van-duysen@edf.fr

    2004-07-01

    REVE (REactor for Virtual Experiments) is an international project aimed at developing tools to simulate neutron irradiation effects in Light Water Reactor materials (Fe, Ni or Zr-based alloys). One of the important steps of the project is to characterise the displacement cascades induced by neutrons. Accordingly, the Department of Material Studies of Electricite de France developed an analytical model based on the binary collision approximation. This model, called INCAS (INtegration of CAScades), was devised to be applied on pure elements; however, it can also be used on diluted alloys (reactor pressure vessel steels, etc.) or alloys composed of atoms with close atomic numbers (stainless steels, etc.). INCAS describes displacement cascades by taking into account the nuclear collisions and electronic interactions undergone by the moving atoms. In particular, it enables to determine the mean number of sub-cascades induced by a PKA (depending on its energy) as well as the mean energy dissipated in each of them. The experimental validation of INCAS requires a large effort and could not be carried out in the framework of the study. However, it was verified that INCAS results are in conformity with those obtained from other approaches. As a first application, INCAS was applied to determine the sub-cascade spectrum induced in iron by the neutron spectrum corresponding to the central channel of the High Flux Irradiation Reactor of Oak Ridge National Laboratory.

  13. INCAS: an analytical model to describe displacement cascades

    Science.gov (United States)

    Jumel, Stéphanie; Claude Van-Duysen, Jean

    2004-07-01

    REVE (REactor for Virtual Experiments) is an international project aimed at developing tools to simulate neutron irradiation effects in Light Water Reactor materials (Fe, Ni or Zr-based alloys). One of the important steps of the project is to characterise the displacement cascades induced by neutrons. Accordingly, the Department of Material Studies of Electricité de France developed an analytical model based on the binary collision approximation. This model, called INCAS (INtegration of CAScades), was devised to be applied on pure elements; however, it can also be used on diluted alloys (reactor pressure vessel steels, etc.) or alloys composed of atoms with close atomic numbers (stainless steels, etc.). INCAS describes displacement cascades by taking into account the nuclear collisions and electronic interactions undergone by the moving atoms. In particular, it enables to determine the mean number of sub-cascades induced by a PKA (depending on its energy) as well as the mean energy dissipated in each of them. The experimental validation of INCAS requires a large effort and could not be carried out in the framework of the study. However, it was verified that INCAS results are in conformity with those obtained from other approaches. As a first application, INCAS was applied to determine the sub-cascade spectrum induced in iron by the neutron spectrum corresponding to the central channel of the High Flux Irradiation Reactor of Oak Ridge National Laboratory.

  14. INCAS: an analytical model to describe displacement cascades

    International Nuclear Information System (INIS)

    Jumel, Stephanie; Claude Van-Duysen, Jean

    2004-01-01

    REVE (REactor for Virtual Experiments) is an international project aimed at developing tools to simulate neutron irradiation effects in Light Water Reactor materials (Fe, Ni or Zr-based alloys). One of the important steps of the project is to characterise the displacement cascades induced by neutrons. Accordingly, the Department of Material Studies of Electricite de France developed an analytical model based on the binary collision approximation. This model, called INCAS (INtegration of CAScades), was devised to be applied on pure elements; however, it can also be used on diluted alloys (reactor pressure vessel steels, etc.) or alloys composed of atoms with close atomic numbers (stainless steels, etc.). INCAS describes displacement cascades by taking into account the nuclear collisions and electronic interactions undergone by the moving atoms. In particular, it enables to determine the mean number of sub-cascades induced by a PKA (depending on its energy) as well as the mean energy dissipated in each of them. The experimental validation of INCAS requires a large effort and could not be carried out in the framework of the study. However, it was verified that INCAS results are in conformity with those obtained from other approaches. As a first application, INCAS was applied to determine the sub-cascade spectrum induced in iron by the neutron spectrum corresponding to the central channel of the High Flux Irradiation Reactor of Oak Ridge National Laboratory

  15. Simplified analytical model for thermal transfer in vertical hollow brick

    Energy Technology Data Exchange (ETDEWEB)

    Lorente, S [Lab. d` Etudes Thermiques et Mecaniques, INSA, UPS, Toulouse (France); Petit, M [Lab. d` Etudes Thermiques et Mecaniques, INSA, UPS, Toulouse (France); Javelas, R [Lab. d` Etudes Thermiques et Mecaniques, INSA, UPS, Toulouse (France)

    1996-12-01

    A modern building envelope has a lot of little cavities. Most of them are vertical with a high height to thickness ratio. We present here the conception of a software to determine heat transfer through terra-cotta bricks full of large vertical cavities. After a bibliographic study on convective heat transfer in such cavities, we made an analytical model based on Karman-Polhausen`s method for convection and on the radiosity method for radiative heat transfer. We used a test apparatus of a single cavity to determine the temperature field inside the cavity. Using these experimental results, we showed that the exchange was two-dimensional. We also realised heat flux measurements. Then we expose our theoretical study: We propose relations between central core temperatures and active face temperatures, then between outside and inside active face temperatures. We calculate convective superficial heat transfer because we noticed we have boundary layers along the active faces. We realise a heat flux balance between convective plus radiative heat transfer and conductive heat transfer, so we propose an algorithm to calculate global heat transfer through a single cavity. Finally, we extend our model to a whole hollow brick with lined-up cavities and propose an algorithm to calculate heat flux and thermal resistance with a good accuracy ({approx}7.5%) compared to previous experimental results. (orig.)

  16. Analytical model for an electrostatically actuated miniature diaphragm compressor

    International Nuclear Information System (INIS)

    Sathe, Abhijit A; Groll, Eckhard A; Garimella, Suresh V

    2008-01-01

    This paper presents a new analytical approach for quasi-static modeling of an electrostatically actuated diaphragm compressor that could be employed in a miniature scale refrigeration system. The compressor consists of a flexible circular diaphragm clamped at its circumference. A conformal chamber encloses the diaphragm completely. The membrane and the chamber surfaces are coated with metallic electrodes. A potential difference applied between the diaphragm and the chamber pulls the diaphragm toward the chamber surface progressively from the outer circumference toward the center. This zipping actuation reduces the volume available to the refrigerant gas, thereby increasing its pressure. A segmentation technique is proposed for analysis of the compressor by which the domain is divided into multiple segments for each of which the forces acting on the diaphragm are estimated. The pull-down voltage to completely zip each individual segment is thus obtained. The required voltage for obtaining a specific pressure rise in the chamber can thus be determined. Predictions from the model compare well with other simulation results from the literature, as well as to experimental measurements of the diaphragm displacement and chamber pressure rise in a custom-built setup

  17. Study on bird's & insect's wing aerodynamics and comparison of its analytical value with standard airfoil

    Science.gov (United States)

    Ali, Md. Nesar; Alam, Mahbubul; Hossain, Md. Abed; Ahmed, Md. Imteaz

    2017-06-01

    by several species of birds. Hovering, which is generating only lift through flapping alone rather than as a product of thrust, demands a lot of energy. On the other hand, for practical knowledge we also fabricate the various bird's, insect's & fighter jet wing by using random value of parameter & test those airfoil in wind tunnel. Finally for comparison & achieving analytical knowledge we also test those airfoil model in various simulation software.

  18. A fast semi-analytical model for the slotted structure of induction motors

    NARCIS (Netherlands)

    Sprangers, R.L.J.; Paulides, J.J.H.; Gysen, B.L.J.; Lomonova, E.A.

    A fast, semi-analytical model for induction motors (IMs) is presented. In comparison to traditional analytical models for IMs, such as lumped parameter, magnetic equivalent circuit and anisotropic layer models, the presented model calculates a continuous distribution of the magnetic flux density in

  19. Accounting for methodological, structural, and parameter uncertainty in decision-analytic models: a practical guide.

    Science.gov (United States)

    Bilcke, Joke; Beutels, Philippe; Brisson, Marc; Jit, Mark

    2011-01-01

    Accounting for uncertainty is now a standard part of decision-analytic modeling and is recommended by many health technology agencies and published guidelines. However, the scope of such analyses is often limited, even though techniques have been developed for presenting the effects of methodological, structural, and parameter uncertainty on model results. To help bring these techniques into mainstream use, the authors present a step-by-step guide that offers an integrated approach to account for different kinds of uncertainty in the same model, along with a checklist for assessing the way in which uncertainty has been incorporated. The guide also addresses special situations such as when a source of uncertainty is difficult to parameterize, resources are limited for an ideal exploration of uncertainty, or evidence to inform the model is not available or not reliable. for identifying the sources of uncertainty that influence results most are also described. Besides guiding analysts, the guide and checklist may be useful to decision makers who need to assess how well uncertainty has been accounted for in a decision-analytic model before using the results to make a decision.

  20. Recent applications of nuclear analytical methods to the certification of elemental content in NIST standard reference materials

    International Nuclear Information System (INIS)

    Greenberg, R.R.; Zeisler, R.; Mackey, E.A.

    2006-01-01

    Well-characterized, certified reference materials (CRMs) play an essential role in assuring the quality of analytical measurements. NIST has been producing CRMs, currently called NIST Standard Reference Materials (SRMs), to validate analytical measurements for nearly one hundred years. The predominant mode of certifying inorganic constituents in complex-matrix SRMs is through the use of two critically evaluated, independent analytical techniques at NIST. These techniques should have no significant sources of error in common. The use of nuclear analytical methods in combination with one of the chemically based analytical method at NIST eliminates the possibility of any significant, common error source. The inherent characteristics of the various forms of nuclear analytical methods make them extremely valuable for SRM certification. Instrumental NAA is nondestructive, which eliminates the possibility of any dissolution problems, and often provides homogeneity information. Radiochemical NAA typically provides nearly blank-free determinations of some highly important, but difficult elements at very low levels. Prompt-gamma NAA complements INAA, and provides independent determinations of some key elements. In addition, all significant uncertainty components can be evaluated for these techniques, and we believe these methods can meet all the requirements of a primary method of measurement as defined by ISO and the CCQM. NIST has certified several SRMs using INAA and RNAA as primary methods. In addition, NIST has compared measurements by INAA and PGAA with other primary methods as part of the CCQM intercomparisons of national metrology institutes. Some significant SRMs recently certified for inorganic constituents with contributions from the nuclear analytical methods include: Toxic Substances in Urine (SRM 2670a), Lake Superior Fish Tissue (SRM 1946), Air Particulate on Filter Media (SRM 2783), Inorganics in Marine Sediment (SRM 2702), Sediment for Solid Sampling (Small

  1. Skewness of the standard model possible implications

    International Nuclear Information System (INIS)

    Nielsen, H.B.; Brene, N.

    1989-09-01

    In this paper we consider combinations of gauge algebra and set of rules for quantization of gauge charges. We show that the combination of the algebra of the standard model and the rule satisfied by the electric charges of the quarks and leptons has an exceptional high degree of a kind of asymmetry which we call skewness. Assuming that skewness has physical significance and adding two other rather plausible assumptions, we may conclude that space time must have a non simply connected topology on very small distances. Such topology would allow a kind of symmetry breakdown leading to a more skew combination of gauge algebra and set of quantization rules. (orig.)

  2. The renormalization of the electroweak standard model

    International Nuclear Information System (INIS)

    Boehm, M.; Spiesberger, H.; Hollik, W.

    1984-03-01

    A renormalization scheme for the electroweak standard model is presented in which the electric charge and the masses of the gauge bosons, Higgs particle and fermions are used as physical parameters. The photon is treated such that quantum electrodynamics is contained in the usual form. Field renormalization respecting the gauge symmetry gives finite Green functions. The Ward identities between the Green functions of the unphysical sector allow a renormalization that maintains the simple pole structure of the propagators. Explicit results for the renormalization self energies and vertex functions are given. They can be directly used as building blocks for the evaluation of l-loop radiative corrections. (orig.)

  3. Baryogenesis and standard model CP violation

    International Nuclear Information System (INIS)

    Huet, P.

    1994-08-01

    The standard model possesses a natural source of CP violation contained in the phase of the CKM matrix. Whether the latter participated to the making of the matter-antimatter asymmetry of the observable universe is a fundamental question which has been addressed only recently. The generation of a CP observable occurs through interference of quantum paths along which a sequence of flavor mixings and chirality flips take place. The coherence of this phenomenon in the primeval plasma is limited by the fast quark-gluon interactions. At the electroweak era, this phenomenon of decoherence forbids a successful baryogenesis based on the sole CP violation of the CKM matrix

  4. Non standard analysis, polymer models, quantum fields

    International Nuclear Information System (INIS)

    Albeverio, S.

    1984-01-01

    We give an elementary introduction to non standard analysis and its applications to the theory of stochastic processes. This is based on a joint book with J.E. Fenstad, R. Hoeegh-Krohn and T. Lindstroeem. In particular we give a discussion of an hyperfinite theory of Dirichlet forms with applications to the study of the Hamiltonian for a quantum mechanical particle in the potential created by a polymer. We also discuss new results on the existence of attractive polymer measures in dimension d 1 2 phi 2 2 )sub(d)-model of interacting quantum fields. (orig.)

  5. The minimally tuned minimal supersymmetric standard model

    International Nuclear Information System (INIS)

    Essig, Rouven; Fortin, Jean-Francois

    2008-01-01

    The regions in the Minimal Supersymmetric Standard Model with the minimal amount of fine-tuning of electroweak symmetry breaking are presented for general messenger scale. No a priori relations among the soft supersymmetry breaking parameters are assumed and fine-tuning is minimized with respect to all the important parameters which affect electroweak symmetry breaking. The superpartner spectra in the minimally tuned region of parameter space are quite distinctive with large stop mixing at the low scale and negative squark soft masses at the high scale. The minimal amount of tuning increases enormously for a Higgs mass beyond roughly 120 GeV

  6. Search for the standard model Higgs boson

    Science.gov (United States)

    Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Pietrzyk, B.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Delfino, M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Mattison, T.; Pacheco, A.; Padilla, C.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Natali, S.; Nuzzo, S.; Quattromini, M.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Chai, Y.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhang, L.; Zhao, W.; Blucher, E.; Bonvicini, G.; Boudreau, J.; Casper, D.; Drevermann, H.; Forty, R. W.; Ganis, G.; Gay, C.; Hagelberg, R.; Harvey, J.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lehraus, I.; Lohse, T.; Maggi, M.; Markou, C.; Martinez, M.; Mato, P.; Meinhard, H.; Minten, A.; Miotto, A.; Miguel, R.; Moser, H.-G.; Palazzi, P.; Pater, J. R.; Perlas, J. A.; Pusztaszeri, J.-F.; Ranjard, F.; Redlinger, G.; Rolandi, L.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Tomalin, I. R.; Veenhof, R.; Wachsmuth, H.; Wasserbaech, S.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Badaud, F.; Bardadin-Otwinowska, M.; El Fellous, R.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Prulhière, F.; Saadi, F.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Møllerud, R.; Nilsson, B. S.; Kyriakis, A.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Fouque, G.; Orteu, S.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Focardi, E.; Moneta, L.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Levinthal, D.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; D'Ettorre-Piazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Colrain, P.; Ten Have, I.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Thompson, A. S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Greene, A. M.; Hassard, J. F.; Lieske, N. M.; Moutoussi, A.; Nash, J.; Patton, S.; Payne, D. G.; Phillips, M. J.; San Martin, G.; Sedgbeer, J. K.; Wright, A. G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Vogl, R.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Steeg, F.; Walther, S. M.; Wanke, R.; Wolf, B.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Drinkard, J.; Etienne, F.; Nicod, D.; Papalexiou, S.; Payre, P.; Roos, L.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Dehning, B.; Dietl, H.; Dydak, F.; Frank, M.; Halley, A. W.; Jakobs, K.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Richter, R.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; Dennis, R. St.; Wolf, G.; Alemany, R.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jaffe, D. E.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Abbaneo, D.; Bagliesi, G.; Batignani, G.; Bottigli, U.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Manneli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Spagnolo, P.; Steinberger, J.; Techini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Gao, Y.; Green, M. G.; March, P. V.; Mir, Ll. M.; Medcalf, T.; Quazi, I. S.; Strong, J. A.; West, L. R.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Norton, P. R.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Ashman, J. G.; Babbage, W.; Booth, C. N.; Buttar, C.; Cartwright, S.; Combley, F.; Dawson, I.; Thompson, L. F.; Barberio, E.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Lutters, G.; Rivera, F.; Schäfer, U.; Smolik, L.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Ragusa, F.; Bellantoni, L.; Chen, W.; Conway, J. S.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Hayes, O. J.; Nachtman, J. M.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I.; Sharma, V.; Shi, Z. H.; Turk, J. D.; Walsh, A. M.; Weber, F. V.; Sau Lan Wu; Wu, X.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1993-08-01

    Using a data sample corresponding to about 1 233 000 hadronic Z decays collected by the ALEPH experiment at LEP, the reaction e+e- → HZ∗ has been used to search for the standard model Higgs boson, in association with missing energy when Z∗ → v v¯, or with a pair of energetic leptons when Z∗ → e+e-or μ +μ -. No signal was found and, at the 95% confidence level, mH exceeds 58.4 GeV/ c2.

  7. Standard guide for establishing a quality assurance program for analytical chemistry laboratories within the nuclear industry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This guide covers the establishment of a quality assurance (QA) program for analytical chemistry laboratories within the nuclear industry. Reference to key elements of ANSI/ISO/ASQC Q9001, Quality Systems, provides guidance to the functional aspects of analytical laboratory operation. When implemented as recommended, the practices presented in this guide will provide a comprehensive QA program for the laboratory. The practices are grouped by functions, which constitute the basic elements of a laboratory QA program. 1.2 The essential, basic elements of a laboratory QA program appear in the following order: Section Organization 5 Quality Assurance Program 6 Training and Qualification 7 Procedures 8 Laboratory Records 9 Control of Records 10 Control of Procurement 11 Control of Measuring Equipment and Materials 12 Control of Measurements 13 Deficiencies and Corrective Actions 14

  8. Analytical models for total dose ionization effects in MOS devices.

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Phillip Montgomery; Bogdan, Carolyn W.

    2008-08-01

    MOS devices are susceptible to damage by ionizing radiation due to charge buildup in gate, field and SOI buried oxides. Under positive bias holes created in the gate oxide will transport to the Si / SiO{sub 2} interface creating oxide-trapped charge. As a result of hole transport and trapping, hydrogen is liberated in the oxide which can create interface-trapped charge. The trapped charge will affect the threshold voltage and degrade the channel mobility. Neutralization of oxidetrapped charge by electron tunneling from the silicon and by thermal emission can take place over long periods of time. Neutralization of interface-trapped charge is not observed at room temperature. Analytical models are developed that account for the principal effects of total dose in MOS devices under different gate bias. The intent is to obtain closed-form solutions that can be used in circuit simulation. Expressions are derived for the aging effects of very low dose rate radiation over long time periods.

  9. Small-scale engagement model with arrivals: analytical solutions

    International Nuclear Information System (INIS)

    Engi, D.

    1977-04-01

    This report presents an analytical model of small-scale battles. The specific impetus for this effort was provided by a need to characterize hypothetical battles between guards at a nuclear facility and their potential adversaries. The solution procedure can be used to find measures of a number of critical parameters; for example, the win probabilities and the expected duration of the battle. Numerical solutions are obtainable if the total number of individual combatants on the opposing sides is less than 10. For smaller force size battles, with one or two combatants on each side, symbolic solutions can be found. The symbolic solutions express the output parameters abstractly in terms of symbolic representations of the input parameters while the numerical solutions are expressed as numerical values. The input parameters are derived from the probability distributions of the attrition and arrival processes. The solution procedure reduces to solving sets of linear equations that have been constructed from the input parameters. The approach presented in this report does not address the problems associated with measuring the inputs. Rather, this report attempts to establish a relatively simple structure within which small-scale battles can be studied

  10. An analytical study of various telecomminication networks using Markov models

    International Nuclear Information System (INIS)

    Ramakrishnan, M; Jayamani, E; Ezhumalai, P

    2015-01-01

    The main aim of this paper is to examine issues relating to the performance of various Telecommunication networks, and applied queuing theory for better design and improved efficiency. Firstly, giving an analytical study of queues deals with quantifying the phenomenon of waiting lines using representative measures of performances, such as average queue length (on average number of customers in the queue), average waiting time in queue (on average time to wait) and average facility utilization (proportion of time the service facility is in use). In the second, using Matlab simulator, summarizes the finding of the investigations, from which and where we obtain results and describing methodology for a) compare the waiting time and average number of messages in the queue in M/M/1 and M/M/2 queues b) Compare the performance of M/M/1 and M/D/1 queues and study the effect of increasing the number of servers on the blocking probability M/M/k/k queue model. (paper)

  11. Optimization of turning process through the analytic flank wear modelling

    Science.gov (United States)

    Del Prete, A.; Franchi, R.; De Lorenzis, D.

    2018-05-01

    In the present work, the approach used for the optimization of the process capabilities for Oil&Gas components machining will be described. These components are machined by turning of stainless steel castings workpieces. For this purpose, a proper Design Of Experiments (DOE) plan has been designed and executed: as output of the experimentation, data about tool wear have been collected. The DOE has been designed starting from the cutting speed and feed values recommended by the tools manufacturer; the depth of cut parameter has been maintained as a constant. Wear data has been obtained by means the observation of the tool flank wear under an optical microscope: the data acquisition has been carried out at regular intervals of working times. Through a statistical data and regression analysis, analytical models of the flank wear and the tool life have been obtained. The optimization approach used is a multi-objective optimization, which minimizes the production time and the number of cutting tools used, under the constraint on a defined flank wear level. The technique used to solve the optimization problem is a Multi Objective Particle Swarm Optimization (MOPS). The optimization results, validated by the execution of a further experimental campaign, highlighted the reliability of the work and confirmed the usability of the optimized process parameters and the potential benefit for the company.

  12. Analytical and numerical models of transport in porous cementitious materials

    International Nuclear Information System (INIS)

    Garboczi, E.J.; Bentz, D.P.

    1990-01-01

    Most chemical and physical processes that degrade cementitious materials are dependent on an external source of either water or ions or both. Understanding the rates of these processes at the microstructural level is necessary in order to develop a sound scientific basis for the prediction and control of the service life of cement-based materials, especially for radioactive-waste containment materials that are required to have service lives on the order of hundreds of years. An important step in developing this knowledge is to understand how transport coefficients, such as diffusivity and permeability, depend on the pore structure. Fluid flow under applied pressure gradients and ionic diffusion under applied concentration gradients are important transport mechanisms that take place in the pore space of cementitious materials. This paper describes: (1) a new analytical percolation-theory-based equation for calculating the permeability of porous materials, (2) new computational methods for computing effective diffusivities of microstructural models or digitized images of actual porous materials, and (3) a new digitized-image mercury intrusion simulation technique

  13. Analytical model and design of spoke-type permanent-magnet machines accounting for saturation and nonlinearity of magnetic bridges

    Science.gov (United States)

    Liang, Peixin; Chai, Feng; Bi, Yunlong; Pei, Yulong; Cheng, Shukang

    2016-11-01

    Based on subdomain model, this paper presents an analytical method for predicting the no-load magnetic field distribution, back-EMF and torque in general spoke-type motors with magnetic bridges. Taking into account the saturation and nonlinearity of magnetic material, the magnetic bridges are equivalent to fan-shaped saturation regions. For getting standard boundary conditions, a lumped parameter magnetic circuit model and iterative method are employed to calculate the permeability. The final field domain is divided into five types of simple subdomains. Based on the method of separation of variables, the analytical expression of each subdomain is derived. The analytical results of the magnetic field distribution, Back-EMF and torque are verified by finite element method, which confirms the validity of the proposed model for facilitating the motor design and optimization.

  14. Can the superstring inspire the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, J.; Enqvist, K.; Nanopoulos, D.V.; Olive, K.A.

    1988-02-01

    We discuss general features of models in which the E/sub 8/xE'/sub 8/ heterotic superstring is compactified on a specific Calabi-Yau manifold. The gauge group of rank-6 in four dimensions is supposed to be broken down at an intermediate scale m/sub I/ to the standard model group SU(3)/sub C/ x SU(2)/sub L/ x U(1)/sub Y/, as a result of two neutral scalar fields acquiring large vacuum expectations (vev's) in one of many flat directions of the effective potential. We find that it is difficult to generate such an intermediate scale by radiative symmetry breaking, whilst such models have prima facie problems with baryon decay mediated by massive particles and with non-perturbative behaviour of the gauge couplings, unless m/sub I/ > or approx. 10/sup 16/ GeV. Rapid baryon decay mediated by light particles, large neutrino masses, other ..delta..L not = 0 processes and flavour-changing neutral currents are generic features of these models. We illustrate these observations with explicit calculations in a number of different models given by vev's in different flat directions.

  15. Can the superstring inspire the standard model?

    International Nuclear Information System (INIS)

    Ellis, J.; Enqvist, K.; Nanopoulos, D.V.; Olive, K.A.

    1988-01-01

    We discuss general features of models in which the E 8 xE' 8 heterotic superstring is compactified on a specific Calabi-Yau manifold. The gauge group of rank-6 in four dimensions is supposed to be broken down at an intermediate scale m I to the standard model group SU(3) C x SU(2) L x U(1) Y , as a result of two neutral scalar fields acquiring large vacuum expectations (vev's) in one of many flat directions of the effective potential. We find that it is difficult to generate such an intermediate scale by radiative symmetry breaking, whilst such models have prima facie problems with baryon decay mediated by massive particles and with non-perturbative behaviour of the gauge couplings, unless m I > or approx. 10 16 GeV. Rapid baryon decay mediated by light particles, large neutrino masses, other ΔL ≠ 0 processes and flavour-changing neutral currents are generic features of these models. We illustrate these observations with explicit calculations in a number of different models given by vev's in different flat directions. (orig.)

  16. B physics beyond the Standard Model

    International Nuclear Information System (INIS)

    Hewett, J.A.L.

    1997-12-01

    The ability of present and future experiments to test the Standard Model in the B meson sector is described. The authors examine the loop effects of new interactions in flavor changing neutral current B decays and in Z → b anti b, concentrating on supersymmetry and the left-right symmetric model as specific examples of new physics scenarios. The procedure for performing a global fit to the Wilson coefficients which describe b → s transitions is outlined, and the results of such a fit from Monte Carlo generated data is compared to the predictions of the two sample new physics scenarios. A fit to the Zb anti b couplings from present data is also given

  17. Complex singlet extension of the standard model

    International Nuclear Information System (INIS)

    Barger, Vernon; McCaskey, Mathew; Langacker, Paul; Ramsey-Musolf, Michael; Shaughnessy, Gabe

    2009-01-01

    We analyze a simple extension of the standard model (SM) obtained by adding a complex singlet to the scalar sector (cxSM). We show that the cxSM can contain one or two viable cold dark matter candidates and analyze the conditions on the parameters of the scalar potential that yield the observed relic density. When the cxSM potential contains a global U(1) symmetry that is both softly and spontaneously broken, it contains both a viable dark matter candidate and the ingredients necessary for a strong first order electroweak phase transition as needed for electroweak baryogenesis. We also study the implications of the model for discovery of a Higgs boson at the Large Hadron Collider.

  18. The reasonable woman standard: a meta-analytic review of gender differences in perceptions of sexual harassment.

    Science.gov (United States)

    Blumenthal, J A

    1998-02-01

    Courts and legislatures have begun to develop the "reasonable woman standard" (RWS) as a criterion for deciding sexual harassment trials. This standard rests on assumptions of a "wide divergence" between the perceptions of men and women when viewing social-sexual behavior that may be considered harassing. Narrative reviews of the literature on such perceptions have suggested that these assumptions are only minimally supported. To test these assumptions quantitatively, a meta-analytic review was conducted that assessed the size, stability, and moderators of gender differences in perceptions of sexual harassment. The effect of the actor's status relative to the target also was evaluated meta-analytically, as one alternative to the importance of gender effects. Results supported the claims of narrative reviews for a relatively small gender effect, and draw attention to the status effect. In discussing legal implications of the present findings, earlier claims are echoed suggesting caution in establishing the reasonable woman standard, and one alternative to the RWS, the "reasonable victim standard," is discussed.

  19. CALIBRATION OF SEMI-ANALYTIC MODELS OF GALAXY FORMATION USING PARTICLE SWARM OPTIMIZATION

    International Nuclear Information System (INIS)

    Ruiz, Andrés N.; Domínguez, Mariano J.; Yaryura, Yamila; Lambas, Diego García; Cora, Sofía A.; Martínez, Cristian A. Vega-; Gargiulo, Ignacio D.; Padilla, Nelson D.; Tecce, Tomás E.; Orsi, Álvaro; Arancibia, Alejandra M. Muñoz

    2015-01-01

    We present a fast and accurate method to select an optimal set of parameters in semi-analytic models of galaxy formation and evolution (SAMs). Our approach compares the results of a model against a set of observables applying a stochastic technique called Particle Swarm Optimization (PSO), a self-learning algorithm for localizing regions of maximum likelihood in multidimensional spaces that outperforms traditional sampling methods in terms of computational cost. We apply the PSO technique to the SAG semi-analytic model combined with merger trees extracted from a standard Lambda Cold Dark Matter N-body simulation. The calibration is performed using a combination of observed galaxy properties as constraints, including the local stellar mass function and the black hole to bulge mass relation. We test the ability of the PSO algorithm to find the best set of free parameters of the model by comparing the results with those obtained using a MCMC exploration. Both methods find the same maximum likelihood region, however, the PSO method requires one order of magnitude fewer evaluations. This new approach allows a fast estimation of the best-fitting parameter set in multidimensional spaces, providing a practical tool to test the consequences of including other astrophysical processes in SAMs

  20. CALIBRATION OF SEMI-ANALYTIC MODELS OF GALAXY FORMATION USING PARTICLE SWARM OPTIMIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Andrés N.; Domínguez, Mariano J.; Yaryura, Yamila; Lambas, Diego García [Instituto de Astronomía Teórica y Experimental, CONICET-UNC, Laprida 854, X5000BGR, Córdoba (Argentina); Cora, Sofía A.; Martínez, Cristian A. Vega-; Gargiulo, Ignacio D. [Consejo Nacional de Investigaciones Científicas y Técnicas, Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Padilla, Nelson D.; Tecce, Tomás E.; Orsi, Álvaro; Arancibia, Alejandra M. Muñoz, E-mail: andresnicolas@oac.uncor.edu [Instituto de Astrofísica, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago (Chile)

    2015-03-10

    We present a fast and accurate method to select an optimal set of parameters in semi-analytic models of galaxy formation and evolution (SAMs). Our approach compares the results of a model against a set of observables applying a stochastic technique called Particle Swarm Optimization (PSO), a self-learning algorithm for localizing regions of maximum likelihood in multidimensional spaces that outperforms traditional sampling methods in terms of computational cost. We apply the PSO technique to the SAG semi-analytic model combined with merger trees extracted from a standard Lambda Cold Dark Matter N-body simulation. The calibration is performed using a combination of observed galaxy properties as constraints, including the local stellar mass function and the black hole to bulge mass relation. We test the ability of the PSO algorithm to find the best set of free parameters of the model by comparing the results with those obtained using a MCMC exploration. Both methods find the same maximum likelihood region, however, the PSO method requires one order of magnitude fewer evaluations. This new approach allows a fast estimation of the best-fitting parameter set in multidimensional spaces, providing a practical tool to test the consequences of including other astrophysical processes in SAMs.

  1. Comparison of experimental target currents with analytical model results for plasma immersion ion implantation

    International Nuclear Information System (INIS)

    En, W.G.; Lieberman, M.A.; Cheung, N.W.

    1995-01-01

    Ion implantation is a standard fabrication technique used in semiconductor manufacturing. Implantation has also been used to modify the surface properties of materials to improve their resistance to wear, corrosion and fatigue. However, conventional ion implanters require complex optics to scan a narrow ion beam across the target to achieve implantation uniformity. An alternative implantation technique, called Plasma Immersion Ion Implantation (PIII), immerses the target into a plasma. The ions are extracted from the plasma directly and accelerated by applying negative high-voltage pulses to the target. An analytical model of the voltage and current characteristics of a remote plasma is presented. The model simulates the ion, electron and secondary electron currents induced before, during and after a high voltage negative pulse is applied to a target immersed in a plasma. The model also includes analytical relations that describe the sheath expansion and collapse due to negative high voltage pulses. The sheath collapse is found to be important for high repetition rate pulses. Good correlation is shown between the model and experiment for a wide variety of voltage pulses and plasma conditions

  2. Analytical method for the identification and assay of 12 phthalates in cosmetic products: application of the ISO 12787 international standard "Cosmetics-Analytical methods-Validation criteria for analytical results using chromatographic techniques".

    Science.gov (United States)

    Gimeno, Pascal; Maggio, Annie-Françoise; Bousquet, Claudine; Quoirez, Audrey; Civade, Corinne; Bonnet, Pierre-Antoine

    2012-08-31

    Esters of phthalic acid, more commonly named phthalates, may be present in cosmetic products as ingredients or contaminants. Their presence as contaminant can be due to the manufacturing process, to raw materials used or to the migration of phthalates from packaging when plastic (polyvinyl chloride--PVC) is used. 8 phthalates (DBP, DEHP, BBP, DMEP, DnPP, DiPP, DPP, and DiBP), classified H360 or H361, are forbidden in cosmetics according to the European regulation on cosmetics 1223/2009. A GC/MS method was developed for the assay of 12 phthalates in cosmetics, including the 8 phthalates regulated. Analyses are carried out on a GC/MS system with electron impact ionization mode (EI). The separation of phthalates is obtained on a cross-linked 5%-phenyl/95%-dimethylpolysiloxane capillary column 30 m × 0.25 mm (i.d.) × 0.25 mm film thickness using a temperature gradient. Phthalate quantification is performed by external calibration using an internal standard. Validation elements obtained on standard solutions, highlight a satisfactory system conformity (resolution>1.5), a common quantification limit at 0.25 ng injected, an acceptable linearity between 0.5 μg mL⁻¹ and 5.0 μg mL⁻¹ as well as a precision and an accuracy in agreement with in-house specifications. Cosmetic samples ready for analytical injection are analyzed after a dilution in ethanol whereas more complex cosmetic matrices, like milks and creams, are assayed after a liquid/liquid extraction using ter-butyl methyl ether (TBME). Depending on the type of cosmetics analyzed, the common limits of quantification for the 12 phthalates were set at 0.5 or 2.5 μg g⁻¹. All samples were assayed using the analytical approach described in the ISO 12787 international standard "Cosmetics-Analytical methods-Validation criteria for analytical results using chromatographic techniques". This analytical protocol is particularly adapted when it is not possible to make reconstituted sample matrices. Copyright © 2012

  3. Net analyte signal standard addition method for simultaneous determination of sulphadiazine and trimethoprim in bovine milk and veterinary medicines.

    Science.gov (United States)

    Hajian, Reza; Mousavi, Esmat; Shams, Nafiseh

    2013-06-01

    Net analyte signal standard addition method has been used for the simultaneous determination of sulphadiazine and trimethoprim by spectrophotometry in some bovine milk and veterinary medicines. The method combines the advantages of standard addition method with the net analyte signal concept which enables the extraction of information concerning a certain analyte from spectra of multi-component mixtures. This method has some advantages such as the use of a full spectrum realisation, therefore it does not require calibration and prediction step and only a few measurements require for the determination. Cloud point extraction based on the phenomenon of solubilisation used for extraction of sulphadiazine and trimethoprim in bovine milk. It is based on the induction of micellar organised media by using Triton X-100 as an extraction solvent. At the optimum conditions, the norm of NAS vectors increased linearly with concentrations in the range of 1.0-150.0 μmolL(-1) for both sulphadiazine and trimethoprim. The limits of detection (LOD) for sulphadiazine and trimethoprim were 0.86 and 0.92 μmolL(-1), respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. An analytical model for annular flow boiling heat transfer in microchannel heat sinks

    International Nuclear Information System (INIS)

    Megahed, A.; Hassan, I.

    2009-01-01

    An analytical model has been developed to predict flow boiling heat transfer coefficient in microchannel heat sinks. The new analytical model is proposed to predict the two-phase heat transfer coefficient during annular flow regime based on the separated model. Opposing to the majority of annular flow heat transfer models, the model is based on fundamental conservation principles. The model considers the characteristics of microchannel heat sink during annular flow and eliminates using any empirical closure relations. Comparison with limited experimental data was found to validate the usefulness of this analytical model. The model predicts the experimental data with a mean absolute error 8%. (author)

  5. Photon defects in noncommutative standard model candidates

    International Nuclear Information System (INIS)

    Abel, S.A.; Khoze, V.V.

    2006-06-01

    Restrictions imposed by gauge invariance in noncommutative spaces together with the effects of ultraviolet/infrared mixing lead to strong constraints on possible candidates for a noncommutative extension of the Standard Model. We study a general class of noncommutative models consistent with these restrictions. Specifically we consider models based upon a gauge theory with the gauge group U(N 1 ) x U(N 2 ) x.. x U(N m ) coupled to matter fields transforming in the (anti)-fundamental, bi-fundamental and adjoint representations. We pay particular attention to overall trace-U(1) factors of the gauge group which are affected by the ultraviolet/infrared mixing. Typically, these trace-U(1) gauge fields do not decouple sufficiently fast in the infrared, and lead to sizable Lorentz symmetry violating effects in the low-energy effective theory. In a 4-dimensional theory on a continuous space-time making these effects unobservable would require making the effects of noncommutativity tiny, M NC >> M P . This severely limits the phenomenological prospects of such models. However, adding additional universal extra dimensions the trace-U(1) factors decouple with a power law and the constraint on the noncommutativity scale is weakened considerably. Finally, we briefly mention some interesting properties of the photon that could arise if the noncommutative theory is modified at a high energy scale. (Orig.)

  6. IBM SPSS modeler essentials effective techniques for building powerful data mining and predictive analytics solutions

    CERN Document Server

    McCormick, Keith; Wei, Bowen

    2017-01-01

    IBM SPSS Modeler allows quick, efficient predictive analytics and insight building from your data, and is a popularly used data mining tool. This book will guide you through the data mining process, and presents relevant statistical methods which are used to build predictive models and conduct other analytic tasks using IBM SPSS Modeler. From ...

  7. Determining passive cooling limits in CPV using an analytical thermal model

    Science.gov (United States)

    Gualdi, Federico; Arenas, Osvaldo; Vossier, Alexis; Dollet, Alain; Aimez, Vincent; Arès, Richard

    2013-09-01

    We propose an original thermal analytical model aiming to predict the practical limits of passive cooling systems for high concentration photovoltaic modules. The analytical model is described and validated by comparison with a commercial 3D finite element model. The limiting performances of flat plate cooling systems in natural convection are then derived and discussed.

  8. Background and derivation of ANS-5.4 standard fission product release model. Technical report

    International Nuclear Information System (INIS)

    1982-01-01

    ANS Working Group 5.4 was established in 1974 to examine fission product releases from UO2 fuel. The scope of ANS-5.4 was narrowly defined to include the following: (1) Review available experimental data on release of volatile fission products from UO2 and mixed-oxide fuel; (2) Survey existing analytical models currently being applied to lightwater reactors; and (3) Develop a standard analytical model for volatile fission product release to the fuel rod void space. Place emphasis on obtaining a model for radioactive fission product releases to be used in assessing radiological consequences of postulated accidents

  9. PARAMO: a PARAllel predictive MOdeling platform for healthcare analytic research using electronic health records.

    Science.gov (United States)

    Ng, Kenney; Ghoting, Amol; Steinhubl, Steven R; Stewart, Walter F; Malin, Bradley; Sun, Jimeng

    2014-04-01

    Healthcare analytics research increasingly involves the construction of predictive models for disease targets across varying patient cohorts using electronic health records (EHRs). To facilitate this process, it is critical to support a pipeline of tasks: (1) cohort construction, (2) feature construction, (3) cross-validation, (4) feature selection, and (5) classification. To develop an appropriate model, it is necessary to compare and refine models derived from a diversity of cohorts, patient-specific features, and statistical frameworks. The goal of this work is to develop and evaluate a predictive modeling platform that can be used to simplify and expedite this process for health data. To support this goal, we developed a PARAllel predictive MOdeling (PARAMO) platform which (1) constructs a dependency graph of tasks from specifications of predictive modeling pipelines, (2) schedules the tasks in a topological ordering of the graph, and (3) executes those tasks in parallel. We implemented this platform using Map-Reduce to enable independent tasks to run in parallel in a cluster computing environment. Different task scheduling preferences are also supported. We assess the performance of PARAMO on various workloads using three datasets derived from the EHR systems in place at Geisinger Health System and Vanderbilt University Medical Center and an anonymous longitudinal claims database. We demonstrate significant gains in computational efficiency against a standard approach. In particular, PARAMO can build 800 different models on a 300,000 patient data set in 3h in parallel compared to 9days if running sequentially. This work demonstrates that an efficient parallel predictive modeling platform can be developed for EHR data. This platform can facilitate large-scale modeling endeavors and speed-up the research workflow and reuse of health information. This platform is only a first step and provides the foundation for our ultimate goal of building analytic pipelines

  10. Design Protocols and Analytical Strategies that Incorporate Structural Reliability Models

    Science.gov (United States)

    Duffy, Stephen F.

    1997-01-01

    Ceramic matrix composites (CMC) and intermetallic materials (e.g., single crystal nickel aluminide) are high performance materials that exhibit attractive mechanical, thermal and chemical properties. These materials are critically important in advancing certain performance aspects of gas turbine engines. From an aerospace engineer's perspective the new generation of ceramic composites and intermetallics offers a significant potential for raising the thrust/weight ratio and reducing NO(x) emissions of gas turbine engines. These aspects have increased interest in utilizing these materials in the hot sections of turbine engines. However, as these materials evolve and their performance characteristics improve a persistent need exists for state-of-the-art analytical methods that predict the response of components fabricated from CMC and intermetallic material systems. This need provided the motivation for the technology developed under this research effort. Continuous ceramic fiber composites exhibit an increase in work of fracture, which allows for "graceful" rather than catastrophic failure. When loaded in the fiber direction, these composites retain substantial strength capacity beyond the initiation of transverse matrix cracking despite the fact that neither of its constituents would exhibit such behavior if tested alone. As additional load is applied beyond first matrix cracking, the matrix tends to break in a series of cracks bridged by the ceramic fibers. Any additional load is born increasingly by the fibers until the ultimate strength of the composite is reached. Thus modeling efforts supported under this research effort have focused on predicting this sort of behavior. For single crystal intermetallics the issues that motivated the technology development involved questions relating to material behavior and component design. Thus the research effort supported by this grant had to determine the statistical nature and source of fracture in a high strength, Ni

  11. A genetic algorithm-based job scheduling model for big data analytics.

    Science.gov (United States)

    Lu, Qinghua; Li, Shanshan; Zhang, Weishan; Zhang, Lei

    Big data analytics (BDA) applications are a new category of software applications that process large amounts of data using scalable parallel processing infrastructure to obtain hidden value. Hadoop is the most mature open-source big data analytics framework, which implements the MapReduce programming model to process big data with MapReduce jobs. Big data analytics jobs are often continuous and not mutually separated. The existing work mainly focuses on executing jobs in sequence, which are often inefficient and consume high energy. In this paper, we propose a genetic algorithm-based job scheduling model for big data analytics applications to improve the efficiency of big data analytics. To implement the job scheduling model, we leverage an estimation module to predict the performance of clusters when executing analytics jobs. We have evaluated the proposed job scheduling model in terms of feasibility and accuracy.

  12. Theory of a spherical electrostatic probe in a continuum plasma: Analytical models

    International Nuclear Information System (INIS)

    Brailsford, A.D.

    1977-01-01

    A simple physical model of the charge distribution surrounding a biased spherical probe in a quiescent plasma, suggested by the theory of Su and Lam, is used to rederive the probe current-voltage characteristic. The result is compared with that of a slightly different version due to Kiel and with the exact numerical results of Baum and Chapkis. It is shown that if the ratio of the probe radius to the Debye length of the plasma is greater than or of the order of unity, the model calculation is in excellent agreement with the exact results when the dimensionless probe voltage phi/sup asterisk//sub p/,=vertical-barephi/sub p//kTvertical-bar in standard notation, is greater than 10, for both thick and thin sheaths. The comparison also provides an assessment of the importance of various additional validity criteria encountered in analytical treatments of the problem

  13. Consistency test of the standard model

    International Nuclear Information System (INIS)

    Pawlowski, M.; Raczka, R.

    1997-01-01

    If the 'Higgs mass' is not the physical mass of a real particle but rather an effective ultraviolet cutoff then a process energy dependence of this cutoff must be admitted. Precision data from at least two energy scale experimental points are necessary to test this hypothesis. The first set of precision data is provided by the Z-boson peak experiments. We argue that the second set can be given by 10-20 GeV e + e - colliders. We pay attention to the special role of tau polarization experiments that can be sensitive to the 'Higgs mass' for a sample of ∼ 10 8 produced tau pairs. We argue that such a study may be regarded as a negative selfconsistency test of the Standard Model and of most of its extensions

  14. Standard model fermions and N=8 supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Nicolai, Hermann [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Muehlenberg 1, Potsdam-Golm (Germany)

    2016-07-01

    In a scheme originally proposed by Gell-Mann, and subsequently shown to be realized at the SU(3) x U(1) stationary point of maximal gauged SO(8) supergravity, the 48 spin-1/2 fermions of the theory remaining after the removal of eight Goldstinos can be identified with the 48 quarks and leptons (including right-chiral neutrinos) of the Standard model, provided one identifies the residual SU(3) with the diagonal subgroup of the color group SU(3){sub c} and a family symmetry SU(3){sub f}. However, there remained a systematic mismatch in the electric charges by a spurion charge of ± 1/6. We here identify the ''missing'' U(1) that rectifies this mismatch, and that takes a surprisingly simple, though unexpected form, and show how it is related to the conjectured R symmetry K(E10) of M Theory.

  15. Quantum field theory and the standard model

    CERN Document Server

    Schwartz, Matthew D

    2014-01-01

    Providing a comprehensive introduction to quantum field theory, this textbook covers the development of particle physics from its foundations to the discovery of the Higgs boson. Its combination of clear physical explanations, with direct connections to experimental data, and mathematical rigor make the subject accessible to students with a wide variety of backgrounds and interests. Assuming only an undergraduate-level understanding of quantum mechanics, the book steadily develops the Standard Model and state-of-the-art calculation techniques. It includes multiple derivations of many important results, with modern methods such as effective field theory and the renormalization group playing a prominent role. Numerous worked examples and end-of-chapter problems enable students to reproduce classic results and to master quantum field theory as it is used today. Based on a course taught by the author over many years, this book is ideal for an introductory to advanced quantum field theory sequence or for independe...

  16. CMS standard model Higgs boson results

    Directory of Open Access Journals (Sweden)

    Garcia-Abia Pablo

    2013-11-01

    Full Text Available In July 2012 CMS announced the discovery of a new boson with properties resembling those of the long-sought Higgs boson. The analysis of the proton-proton collision data recorded by the CMS detector at the LHC, corresponding to integrated luminosities of 5.1 fb−1 at √s = 7 TeV and 19.6 fb−1 at √s = 8 TeV, confirm the Higgs-like nature of the new boson, with a signal strength associated with vector bosons and fermions consistent with the expectations for a standard model (SM Higgs boson, and spin-parity clearly favouring the scalar nature of the new boson. In this note I review the updated results of the CMS experiment.

  17. Standard model group: Survival of the fittest

    Science.gov (United States)

    Nielsen, H. B.; Brene, N.

    1983-09-01

    The essential content of this paper is related to random dynamics. We speculate that the world seen through a sub-Planck-scale microscope has a lattice structure and that the dynamics on this lattice is almost completely random, except for the requirement that the random (plaquette) action is invariant under some "world (gauge) group". We see that the randomness may lead to spontaneous symmetry breakdown in the vacuum (spontaneous collapse) without explicit appeal to any scalar field associated with the usual Higgs mechanism. We further argue that the subgroup which survives as the end product of a possible chain of collapses is likely to have certain properties; the most important is that it has a topologically connected center. The standard group, i.e. the group of the gauge theory which combines the Salam-Weinberg model with QCD, has this property.

  18. Standard model group: survival of the fittest

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, H.B. (Niels Bohr Inst., Copenhagen (Denmark); Nordisk Inst. for Teoretisk Atomfysik, Copenhagen (Denmark)); Brene, N. (Niels Bohr Inst., Copenhagen (Denmark))

    1983-09-19

    The essential content of this paper is related to random dynamics. We speculate that the world seen through a sub-Planck-scale microscope has a lattice structure and that the dynamics on this lattice is almost completely random, except for the requirement that the random (plaquette) action is invariant under some ''world (gauge) group''. We see that the randomness may lead to spontaneous symmetry breakdown in the vacuum (spontaneous collapse) without explicit appeal to any scalar field associated with the usual Higgs mechanism. We further argue that the subgroup which survives as the end product of a possible chain of collapse is likely to have certain properties; the most important is that it has a topologically connected center. The standard group, i.e. the group of the gauge theory which combines the Salam-Weinberg model with QCD, has this property.

  19. Standard model group: survival of the fittest

    International Nuclear Information System (INIS)

    Nielsen, H.B.; Brene, N.

    1983-01-01

    Th essential content of this paper is related to random dynamics. We speculate that the world seen through a sub-Planck-scale microscope has a lattice structure and that the dynamics on this lattice is almost completely random, except for the requirement that the random (plaquette) action is invariant under some ''world (gauge) group''. We see that the randomness may lead to spontaneous symmetry breakdown in the vacuum (spontaneous collapse) without explicit appeal to any scalar field associated with the usual Higgs mechanism. We further argue that the subgroup which survives as the end product of a possible chain of collapse is likely to have certain properties; the most important is that it has a topologically connected center. The standard group, i.e. the group of the gauge theory which combines the Salam-Weinberg model with QCD, has this property. (orig.)

  20. Standard model group survival of the fittest

    International Nuclear Information System (INIS)

    Nielsen, H.B.; Brene, N.

    1983-02-01

    The essential content of this note is related to random dynamics. The authors speculate that the world seen through a sub Planck scale microscope has a lattice structure and that the dynamics on this lattice is almost completely random, except for the requirement that the random (plaquette) action is invariant under some ''world (gauge) group''. It is seen that the randomness may lead to spontaneous symmetry breakdown in the vacuum (spontaneous collapse) without explicit appeal to any scalar field associated with the usual Higgs mechanism. It is further argued that the subgroup which survives as the end product of a possible chain of collapses is likely to have certain properties; the most important is that it has a topologically connected center. The standard group, i.e. the group of the gauge theory which combines the Salam-Weinberg model with QCD, has this property. (Auth.)

  1. Symmetry breaking: The standard model and superstrings

    International Nuclear Information System (INIS)

    Gaillard, M.K.

    1988-01-01

    The outstanding unresolved issue of the highly successful standard model is the origin of electroweak symmetry breaking and of the mechanism that determines its scale, namely the vacuum expectation value (vev)v that is fixed by experiment at the value v = 4m//sub w//sup 2///g 2 = (√2G/sub F/)/sup /minus/1/ ≅ 1/4 TeV. In this talk I will discuss aspects of two approaches to this problem. One approach is straightforward and down to earth: the search for experimental signatures, as discussed previously by Pierre Darriulat. This approach covers the energy scales accessible to future and present laboratory experiments: roughly (10/sup /minus/9/ /minus/ 10 3 )GeV. The second approach involves theoretical speculations, such as technicolor and supersymmetry, that attempt to explain the TeV scale. 23 refs., 5 figs

  2. The standard model 30 years of glory

    International Nuclear Information System (INIS)

    Lefrancois, J.

    2001-03-01

    In these 3 lectures the author reviews the achievements of the past 30 years, which saw the birth and the detailed confirmation of the standard model. The first lecture is dedicated to quantum chromodynamics (QCD), deep inelastic scattering, neutrino scattering results, R(e + ,e - ), scaling violation, Drell-Yan reactions and the observation of jets. The second lecture deals with weak interactions and quark and lepton families, the discovery of W and Z bosons, of charm, of the tau lepton and B quarks are detailed. The third lecture focuses on the stunning progress that have been made in accuracy concerning detectors, the typical level of accuracy of previous e + e - experiments was about 5-10%, while the accuracy obtained at LEP/SLC is of order 0.1% to 0.5%. (A.C.)

  3. The standard model 30 years of glory

    Energy Technology Data Exchange (ETDEWEB)

    Lefrancois, J

    2001-03-01

    In these 3 lectures the author reviews the achievements of the past 30 years, which saw the birth and the detailed confirmation of the standard model. The first lecture is dedicated to quantum chromodynamics (QCD), deep inelastic scattering, neutrino scattering results, R(e{sup +},e{sup -}), scaling violation, Drell-Yan reactions and the observation of jets. The second lecture deals with weak interactions and quark and lepton families, the discovery of W and Z bosons, of charm, of the tau lepton and B quarks are detailed. The third lecture focuses on the stunning progress that have been made in accuracy concerning detectors, the typical level of accuracy of previous e{sup +}e{sup -} experiments was about 5-10%, while the accuracy obtained at LEP/SLC is of order 0.1% to 0.5%. (A.C.)

  4. Analytical model and design of spoke-type permanent-magnet machines accounting for saturation and nonlinearity of magnetic bridges

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Peixin; Chai, Feng [State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001 (China); Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150001 (China); Bi, Yunlong [Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150001 (China); Pei, Yulong, E-mail: peiyulong1@163.com [Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150001 (China); Cheng, Shukang [State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001 (China); Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2016-11-01

    Based on subdomain model, this paper presents an analytical method for predicting the no-load magnetic field distribution, back-EMF and torque in general spoke-type motors with magnetic bridges. Taking into account the saturation and nonlinearity of magnetic material, the magnetic bridges are equivalent to fan-shaped saturation regions. For getting standard boundary conditions, a lumped parameter magnetic circuit model and iterative method are employed to calculate the permeability. The final field domain is divided into five types of simple subdomains. Based on the method of separation of variables, the analytical expression of each subdomain is derived. The analytical results of the magnetic field distribution, Back-EMF and torque are verified by finite element method, which confirms the validity of the proposed model for facilitating the motor design and optimization. - Highlights: • The no-load magnetic field of poke-type motors is firstly calculated by analytical method. • The magnetic circuit model and iterative method are employed to calculate the permeability. • The analytical expression of each subdomain is derived.. • The proposed method can effectively reduce the predesign stages duration.

  5. Analytical model and design of spoke-type permanent-magnet machines accounting for saturation and nonlinearity of magnetic bridges

    International Nuclear Information System (INIS)

    Liang, Peixin; Chai, Feng; Bi, Yunlong; Pei, Yulong; Cheng, Shukang

    2016-01-01

    Based on subdomain model, this paper presents an analytical method for predicting the no-load magnetic field distribution, back-EMF and torque in general spoke-type motors with magnetic bridges. Taking into account the saturation and nonlinearity of magnetic material, the magnetic bridges are equivalent to fan-shaped saturation regions. For getting standard boundary conditions, a lumped parameter magnetic circuit model and iterative method are employed to calculate the permeability. The final field domain is divided into five types of simple subdomains. Based on the method of separation of variables, the analytical expression of each subdomain is derived. The analytical results of the magnetic field distribution, Back-EMF and torque are verified by finite element method, which confirms the validity of the proposed model for facilitating the motor design and optimization. - Highlights: • The no-load magnetic field of poke-type motors is firstly calculated by analytical method. • The magnetic circuit model and iterative method are employed to calculate the permeability. • The analytical expression of each subdomain is derived.. • The proposed method can effectively reduce the predesign stages duration.

  6. The Standard Model with one universal extra dimension

    Indian Academy of Sciences (India)

    An exhaustive list of the explicit expressions for all physical couplings induced by the ... the standard Green's functions, which implies that the Standard Model observables do ...... renormalizability of standard Green's functions is implicit in this.

  7. Standardization, diversity, and learning: A model for the nuclear power industry

    International Nuclear Information System (INIS)

    David, P.A.; Rothwell, G.S.

    1992-11-01

    The lack of standardization, frequently mentioned as a burden borne by the U.S. nuclear industry, is discussed. A simple model of learning and standardization is presented. It is shown that when the effects of learning through diversity are strong, the present value of long-run costs can be minimized with either complete standardization or with complete experimentation where no two reactors are similar in the early stages of the industry. The conclusion discusses the relevance of these and other analytical results to the present U.S. nuclear industry regarding standardization policies. 8 refs

  8. [The analytical reliability of clinical laboratory information and role of the standards in its support].

    Science.gov (United States)

    Men'shikov, V V

    2012-12-01

    The article deals with the factors impacting the reliability of clinical laboratory information. The differences of qualities of laboratory analysis tools produced by various manufacturers are discussed. These characteristics are the causes of discrepancy of the results of laboratory analyses of the same analite. The role of the reference system in supporting the comparability of laboratory analysis results is demonstrated. The project of national standard is presented to regulate the requirements to standards and calibrators for analysis of qualitative and non-metrical characteristics of components of biomaterials.

  9. In-core LOCA-s: analytical solution for the delayed mixing model for moderator poison concentration

    International Nuclear Information System (INIS)

    Firla, A.P.

    1995-01-01

    Solutions to dynamic moderator poison concentration model with delayed mixing under single pressure tube / calandria tube rupture scenario are discussed. Such a model is described by a delay differential equation, and for such equations the standard ways of solution are not directly applicable. In the paper an exact, direct time-domain analytical solution to the delayed mixing model is presented and discussed. The obtained solution has a 'marching' form and is easy to calculate numerically. Results of the numerical calculations based on the analytical solution indicate that for the expected range of mixing times the existing uniform mixing model is a good representation of the moderator poison mixing process for single PT/CT breaks. However, for postulated multi-pipe breaks ( which is very unlikely to occur ) the uniform mixing model is not adequate any more; at the same time an 'approximate' solution based on Laplace transform significantly overpredicts the rate of poison concentration decrease, resulting in excessive increase in the moderator dilution factor. In this situation the true, analytical solution must be used. The analytical solution presented in the paper may also serve as a bench-mark test for the accuracy of the existing poison mixing models. Moreover, because of the existing oscillatory tendency of the solution, special care must be taken in using delay differential models in other applications. (author). 3 refs., 3 tabs., 8 figs

  10. Ficus deltoidea Standardization: Analytical Methods for Bioactive Markers in Deltozide Tablet 200 MG

    International Nuclear Information System (INIS)

    Hazlina Ahmad Hassali; Zainah Adam; Rosniza Razali

    2016-01-01

    Standardization of herbal materials based on their chemical and biological profile is an important prerequisite for development of herbal product. The phyto pharmaceutical product that has been developed by Medical Technology Division, Malaysian Nuclear Agency is DELTOZIDE TABLET 200 MG containing 200 mg of spray-dried aqueous extract of Ficus deltoidea var kunstleri leaf as the active ingredient. Ficus deltoidea Jack or locally known as Mas Cotek is a South East Asian native plant traditionally used to treat several diseases. Pharmacological data showed that this plant exhibited good antioxidant, anti-diabetic and anti-inflammatory properties. It is important to establish the chemical profiles and determine the phytochemicals content of this plant as it is popularly used in traditional medicines. Thus, the present study reports on the comprehensive phytochemicals evaluation of bioactive markers from this extract for the development of DELTOZIDE TABLET 200 MG . Characterization of extract using LCMS/ MS Triple TOF System showed the presence of major constituents representing vitexin, isovitexin, gallic acid, catechinic, api genin, epicatechin and caffeoylquinic acid along with other minor constituents. The extract was standardized by ultra-high performance liquid chromatography (UHPLC) using two pharmacologically active markers, vitexin and isovitexin. Furthermore, qualitative determination of phytochemicals showed the presence of important phyto-constituents namely anthraquinones, terpenoids, flavonoids, tannins, phlobatannins, alkaloids, saponins, cardiac glycosides, steroids and phenols in the aqueous extract of Ficus deltoidea. Quantitative determination of phytochemicals revealed that the amount of total phenolic content (TPC; Gallic acid as standard) and total flavonoid content (TFC; Quercetin as standard) were 126.67±3.98 mg GAE/ g extract and 9.08±0.36 mg QE/ g extract respectively. The generated data provides some explanation for its wide usage in

  11. Analytical Model-based Fault Detection and Isolation in Control Systems

    DEFF Research Database (Denmark)

    Vukic, Z.; Ozbolt, H.; Blanke, M.

    1998-01-01

    The paper gives an introduction and an overview of the field of fault detection and isolation for control systems. The summary of analytical (quantitative model-based) methodds and their implementation are presented. The focus is given to mthe analytical model-based fault-detection and fault...

  12. Ethics, Big Data, and Analytics: A Model for Application.

    OpenAIRE

    Willis, James E, III

    2013-01-01

    The use of big data and analytics to predict student success presents unique ethical questions for higher education administrators relating to the nature of knowledge; in education, "to know" entails an obligation to act on behalf of the student. The Potter Box framework can help administrators address these questions and provide a framework for action.

  13. An analytical model for soil-atmosphere feedback

    NARCIS (Netherlands)

    Schaefli, B.; Van der Ent, R.J.; Woods, R.; Savenije, H.H.G.

    2012-01-01

    Soil-atmosphere feedback is a key for understanding the hydrological cycle and the direction of potential system changes. This paper presents an analytical framework to study the interplay between soil and atmospheric moisture, using as input only the boundary conditions at the upstream end of

  14. Primordial lithium and the standard model(s)

    International Nuclear Information System (INIS)

    Deliyannis, C.P.; Demarque, P.; Kawaler, S.D.; Krauss, L.M.; Romanelli, P.

    1989-01-01

    We present the results of new theoretical work on surface 7 Li and 6 Li evolution in the oldest halo stars along with a new and refined analysis of the predicted primordial lithium abundance resulting from big-bang nucleosynthesis. This allows us to determine the constraints which can be imposed upon cosmology by a consideration of primordial lithium using both standard big-bang and standard stellar-evolution models. Such considerations lead to a constraint on the baryon density today of 0.0044 2 <0.025 (where the Hubble constant is 100h Km sec/sup -1/ Mpc /sup -1/), and impose limitations on alternative nucleosynthesis scenarios

  15. Chinese Culture, Homosexuality Stigma, Social Support and Condom Use: A Path Analytic Model.

    Science.gov (United States)

    Liu, Hongjie; Feng, Tiejian; Ha, Toan; Liu, Hui; Cai, Yumao; Liu, Xiaoli; Li, Jian

    2011-01-01

    PURPOSE: The objective of this study was to examine the interrelationships among individualism, collectivism, homosexuality-related stigma, social support, and condom use among Chinese homosexual men. METHODS: A cross-sectional study using the respondent-driven sampling approach was conducted among 351 participants in Shenzhen, China. Path analytic modeling was used to analyze the interrelationships. RESULTS: The results of path analytic modeling document the following statistically significant associations with regard to homosexuality: (1) higher levels of vertical collectivism were associated with higher levels of public stigma [β (standardized coefficient) = 0.12] and self stigma (β = 0.12); (2) higher levels of vertical individualism were associated with higher levels self stigma (β = 0.18); (3) higher levels of horizontal individualism were associated with higher levels of public stigma (β = 0.12); (4) higher levels of self stigma were associated with higher levels of social support from sexual partners (β = 0.12); and (5) lower levels of public stigma were associated with consistent condom use (β = -0.19). CONCLUSIONS: The findings enhance our understanding of how individualist and collectivist cultures influence the development of homosexuality-related stigma, which in turn may affect individuals' decisions to engage in HIV-protective practices and seek social support. Accordingly, the development of HIV interventions for homosexual men in China should take the characteristics of Chinese culture into consideration.

  16. Chinese Culture, Homosexuality Stigma, Social Support and Condom Use: A Path Analytic Model

    Science.gov (United States)

    Liu, Hongjie; Feng, Tiejian; Ha, Toan; Liu, Hui; Cai, Yumao; Liu, Xiaoli; Li, Jian

    2011-01-01

    Purpose The objective of this study was to examine the interrelationships among individualism, collectivism, homosexuality-related stigma, social support, and condom use among Chinese homosexual men. Methods A cross-sectional study using the respondent-driven sampling approach was conducted among 351 participants in Shenzhen, China. Path analytic modeling was used to analyze the interrelationships. Results The results of path analytic modeling document the following statistically significant associations with regard to homosexuality: (1) higher levels of vertical collectivism were associated with higher levels of public stigma [β (standardized coefficient) = 0.12] and self stigma (β = 0.12); (2) higher levels of vertical individualism were associated with higher levels self stigma (β = 0.18); (3) higher levels of horizontal individualism were associated with higher levels of public stigma (β = 0.12); (4) higher levels of self stigma were associated with higher levels of social support from sexual partners (β = 0.12); and (5) lower levels of public stigma were associated with consistent condom use (β = −0.19). Conclusions The findings enhance our understanding of how individualist and collectivist cultures influence the development of homosexuality-related stigma, which in turn may affect individuals’ decisions to engage in HIV-protective practices and seek social support. Accordingly, the development of HIV interventions for homosexual men in China should take the characteristics of Chinese culture into consideration. PMID:21731850

  17. Modelling a flows in supply chain with analytical models: Case of a chemical industry

    Science.gov (United States)

    Benhida, Khalid; Azougagh, Yassine; Elfezazi, Said

    2016-02-01

    This study is interested on the modelling of the logistics flows in a supply chain composed on a production sites and a logistics platform. The contribution of this research is to develop an analytical model (integrated linear programming model), based on a case study of a real company operating in the phosphate field, considering a various constraints in this supply chain to resolve the planning problems for a better decision-making. The objectives of this model is to determine and define the optimal quantities of different products to route, to and from the various entities in the supply chain studied.

  18. Analytical method of CIM to PIM transformation in Model Driven Architecture (MDA

    Directory of Open Access Journals (Sweden)

    Martin Kardos

    2010-06-01

    Full Text Available Information system’s models on higher level of abstraction have become a daily routine in many software companies. The concept of Model Driven Architecture (MDA published by standardization body OMG1 since 2001 has become a concept for creation of software applications and information systems. MDA specifies four levels of abstraction: top three levels are created as graphical models and the last one as implementation code model. Many research works of MDA are focusing on the lower levels and transformations between each other. The top level of abstraction, called Computation Independent Model (CIM and its transformation to the lower level called Platform Independent Model (PIM is not so extensive research topic. Considering to a great importance and usability of this level in practice of IS2Keywords: transformation, MDA, CIM, PIM, UML, DFD. development now our research activity is focused to this highest level of abstraction – CIM and its possible transformation to the lower PIM level. In this article we are presenting a possible solution of CIM modeling and its analytic method of transformation to PIM.

  19. Analytical and Numerical Tooth Contact Analysis (TCA of Standard and Modified Involute Profile Spur Gear

    Directory of Open Access Journals (Sweden)

    Nassear Rasheid Hmoad

    2016-03-01

    Full Text Available Among all the common mechanical transmission elements, gears still playing the most dominant role especially in the heavy duty works offering extraordinary performance under extreme conditions and that the cause behind the extensive researches concentrating on the enhancement of its durability to do its job as well as possible. Contact stress distribution within the teeth domain is considered as one of the most effective parameters characterizing gear life, performance, efficiency, and application so that it has been well sought for formal gear profiles and paid a lot of attention for moderate tooth shapes. The aim of this work is to investigate the effect of pressure angle, speed ratio, and correction factor on the maximum contact and bending stress value and principal stresses distribution for symmetric and asymmetric spur gear. The analytical investigation adopted Hertz equations to find the contact stress value, distribution, and the contact zone width while the numerical part depends on Ansys software version 15, as a FE solver with Lagrange and penalty contact algorithm. The most fruitful points to be noticed are that the increasing of pressure angle and speed ratio trends to minimize all the induced stresses for the classical gears and the altered teeth shape with larger loaded side pressure angle than the unloaded side one behave better than the symmetric teeth concerning the stress reduction.

  20. Analytical Model of Water Flow in Coal with Active Matrix

    Science.gov (United States)

    Siemek, Jakub; Stopa, Jerzy

    2014-12-01

    This paper presents new analytical model of gas-water flow in coal seams in one dimension with emphasis on interactions between water flowing in cleats and coal matrix. Coal as a flowing system, can be viewed as a solid organic material consisting of two flow subsystems: a microporous matrix and a system of interconnected macropores and fractures. Most of gas is accumulated in the microporous matrix, where the primary flow mechanism is diffusion. Fractures and cleats existing in coal play an important role as a transportation system for macro scale flow of water and gas governed by Darcy's law. The coal matrix can imbibe water under capillary forces leading to exchange of mass between fractures and coal matrix. In this paper new partial differential equation for water saturation in fractures has been formulated, respecting mass exchange between coal matrix and fractures. Exact analytical solution has been obtained using the method of characteristics. The final solution has very simple form that may be useful for practical engineering calculations. It was observed that the rate of exchange of mass between the fractures and the coal matrix is governed by an expression which is analogous to the Newton cooling law known from theory of heat exchange, but in present case the mass transfer coefficient depends not only on coal and fluid properties but also on time and position. The constant term of mass transfer coefficient depends on relation between micro porosity and macro porosity of coal, capillary forces, and microporous structure of coal matrix. This term can be expressed theoretically or obtained experimentally. W artykule zaprezentowano nowy model matematyczny przepływu wody i gazu w jednowymiarowej warstwie węglowej z uwzględnieniem wymiany masy między systemem szczelin i matrycą węglową. Węgiel jako system przepływowy traktowany jest jako układ o podwójnej porowatości i przepuszczalności, składający się z mikroporowatej matrycy węglowej oraz z

  1. Early universe cosmology. In supersymmetric extensions of the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Jochen Peter

    2012-03-19

    In this thesis we investigate possible connections between cosmological inflation and leptogenesis on the one side and particle physics on the other side. We work in supersymmetric extensions of the Standard Model. A key role is played by the right-handed sneutrino, the superpartner of the right-handed neutrino involved in the type I seesaw mechanism. We study a combined model of inflation and non-thermal leptogenesis that is a simple extension of the Minimal Supersymmetric Standard Model (MSSM) with conserved R-parity, where we add three right-handed neutrino super fields. The inflaton direction is given by the imaginary components of the corresponding scalar component fields, which are protected from the supergravity (SUGRA) {eta}-problem by a shift symmetry in the Kaehler potential. We discuss the model first in a globally supersymmetric (SUSY) and then in a supergravity context and compute the inflationary predictions of the model. We also study reheating and non-thermal leptogenesis in this model. A numerical simulation shows that shortly after the waterfall phase transition that ends inflation, the universe is dominated by right-handed sneutrinos and their out-of-equilibrium decay can produce the desired matter-antimatter asymmetry. Using a simplified time-averaged description, we derive analytical expressions for the model predictions. Combining the results from inflation and leptogenesis allows us to constrain the allowed parameter space from two different directions, with implications for low energy neutrino physics. As a second thread of investigation, we discuss a generalisation of the inflationary model discussed above to include gauge non-singlet fields as inflatons. This is motivated by the fact that in left-right symmetric, supersymmetric Grand Unified Theories (SUSY GUTs), like SUSY Pati-Salam unification or SUSY SO(10) GUTs, the righthanded (s)neutrino is an indispensable ingredient and does not have to be put in by hand as in the MSSM. We discuss

  2. Early universe cosmology. In supersymmetric extensions of the standard model

    International Nuclear Information System (INIS)

    Baumann, Jochen Peter

    2012-01-01

    In this thesis we investigate possible connections between cosmological inflation and leptogenesis on the one side and particle physics on the other side. We work in supersymmetric extensions of the Standard Model. A key role is played by the right-handed sneutrino, the superpartner of the right-handed neutrino involved in the type I seesaw mechanism. We study a combined model of inflation and non-thermal leptogenesis that is a simple extension of the Minimal Supersymmetric Standard Model (MSSM) with conserved R-parity, where we add three right-handed neutrino super fields. The inflaton direction is given by the imaginary components of the corresponding scalar component fields, which are protected from the supergravity (SUGRA) η-problem by a shift symmetry in the Kaehler potential. We discuss the model first in a globally supersymmetric (SUSY) and then in a supergravity context and compute the inflationary predictions of the model. We also study reheating and non-thermal leptogenesis in this model. A numerical simulation shows that shortly after the waterfall phase transition that ends inflation, the universe is dominated by right-handed sneutrinos and their out-of-equilibrium decay can produce the desired matter-antimatter asymmetry. Using a simplified time-averaged description, we derive analytical expressions for the model predictions. Combining the results from inflation and leptogenesis allows us to constrain the allowed parameter space from two different directions, with implications for low energy neutrino physics. As a second thread of investigation, we discuss a generalisation of the inflationary model discussed above to include gauge non-singlet fields as inflatons. This is motivated by the fact that in left-right symmetric, supersymmetric Grand Unified Theories (SUSY GUTs), like SUSY Pati-Salam unification or SUSY SO(10) GUTs, the righthanded (s)neutrino is an indispensable ingredient and does not have to be put in by hand as in the MSSM. We discuss the

  3. Searches for Beyond Standard Model Physics with ATLAS and CMS

    CERN Document Server

    Rompotis, Nikolaos; The ATLAS collaboration

    2017-01-01

    The exploration of the high energy frontier with ATLAS and CMS experiments provides one of the best opportunities to look for physics beyond the Standard Model. In this talk, I review the motivation, the strategy and some recent results related to beyond Standard Model physics from these experiments. The review will cover beyond Standard Model Higgs boson searches, supersymmetry and searches for exotic particles.

  4. Connected formulas for amplitudes in standard model

    Energy Technology Data Exchange (ETDEWEB)

    He, Song [CAS Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 100190 (China); School of Physical Sciences, University of Chinese Academy of Sciences,No. 19A Yuquan Road, Beijing 100049 (China); Zhang, Yong [Department of Physics, Beijing Normal University,Beijing 100875 (China); CAS Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 100190 (China)

    2017-03-17

    Witten’s twistor string theory has led to new representations of S-matrix in massless QFT as a single object, including Cachazo-He-Yuan formulas in general and connected formulas in four dimensions. As a first step towards more realistic processes of the standard model, we extend the construction to QCD tree amplitudes with massless quarks and those with a Higgs boson. For both cases, we find connected formulas in four dimensions for all multiplicities which are very similar to the one for Yang-Mills amplitudes. The formula for quark-gluon color-ordered amplitudes differs from the pure-gluon case only by a Jacobian factor that depends on flavors and orderings of the quarks. In the formula for Higgs plus multi-parton amplitudes, the massive Higgs boson is effectively described by two additional massless legs which do not appear in the Parke-Taylor factor. The latter also represents the first twistor-string/connected formula for form factors.

  5. Experimental tests of the standard model

    International Nuclear Information System (INIS)

    Nodulman, L.

    1998-01-01

    The title implies an impossibly broad field, as the Standard Model includes the fermion matter states, as well as the forces and fields of SU(3) x SU(2) x U(1). For practical purposes, I will confine myself to electroweak unification, as discussed in the lectures of M. Herrero. Quarks and mixing were discussed in the lectures of R. Aleksan, and leptons and mixing were discussed in the lectures of K. Nakamura. I will essentially assume universality, that is flavor independence, rather than discussing tests of it. I will not pursue tests of QED beyond noting the consistency and precision of measurements of α EM in various processes including the Lamb shift, the anomalous magnetic moment (g-2) of the electron, and the quantum Hall effect. The fantastic precision and agreement of these predictions and measurements is something that convinces people that there may be something to this science enterprise. Also impressive is the success of the ''Universal Fermi Interaction'' description of beta decay processes, or in more modern parlance, weak charged current interactions. With one coupling constant G F , most precisely determined in muon decay, a huge number of nuclear instabilities are described. The slightly slow rate for neutron beta decay was one of the initial pieces of evidence for Cabbibo mixing, now generalized so that all charged current decays of any flavor are covered

  6. Standard Model theory calculations and experimental tests

    International Nuclear Information System (INIS)

    Cacciari, M.; Hamel de Monchenault, G.

    2015-01-01

    To present knowledge, all the physics at the Large Hadron Collider (LHC) can be described in the framework of the Standard Model (SM) of particle physics. Indeed the newly discovered Higgs boson with a mass close to 125 GeV seems to confirm the predictions of the SM. Thus, besides looking for direct manifestations of the physics beyond the SM, one of the primary missions of the LHC is to perform ever more stringent tests of the SM. This requires not only improved theoretical developments to produce testable predictions and provide experiments with reliable event generators, but also sophisticated analyses techniques to overcome the formidable experimental environment of the LHC and perform precision measurements. In the first section, we describe the state of the art of the theoretical tools and event generators that are used to provide predictions for the production cross sections of the processes of interest. In section 2, inclusive cross section measurements with jets, leptons and vector bosons are presented. Examples of differential cross sections, charge asymmetries and the study of lepton pairs are proposed in section 3. Finally, in section 4, we report studies on the multiple production of gauge bosons and constraints on anomalous gauge couplings

  7. Lepton radiative decays in supersymmetric standard model

    International Nuclear Information System (INIS)

    Volkov, G.G.; Liparteliani, A.G.

    1988-01-01

    Radiative decays of charged leptons l i →l j γ(γ * ) have been discussed in the framework of the supersymmetric generalization of the standard model. The most general form of the formfactors for the one-loop vertex function is written. Decay widths of the mentioned radiative decays are calculated. Scalar lepton masses are estimated at the maximal mixing angle in the scalar sector proceeding from the present upper limit for the branching of the decay μ→eγ. In case of the maximal mixing angle and the least mass degeneration of scalar leptons of various generations the following lower limit for the scalar electron mass m e-tilde >1.5 TeV has been obtained. The mass of the scalar neutrino is 0(1) TeV, in case the charged calibrino is lighter than the scalar neutrino. The result obtained sensitive to the choice of the lepton mixing angle in the scalar sector, namely, in decreasing the value sin 2 θ by an order of magnitude, the limitation on the scalar electron mass may decrease more than 3 times. In the latter case the direct observation of electrons at the e + e - -collider (1x1 TeV) becomes available

  8. Geometrical basis for the Standard Model

    Science.gov (United States)

    Potter, Franklin

    1994-02-01

    The robust character of the Standard Model is confirmed. Examination of its geometrical basis in three equivalent internal symmetry spaces-the unitary plane C 2, the quaternion space Q, and the real space R 4—as well as the real space R 3 uncovers mathematical properties that predict the physical properties of leptons and quarks. The finite rotational subgroups of the gauge group SU(2) L × U(1) Y generate exactly three lepton families and four quark families and reveal how quarks and leptons are related. Among the physical properties explained are the mass ratios of the six leptons and eight quarks, the origin of the left-handed preference by the weak interaction, the geometrical source of color symmetry, and the zero neutrino masses. The ( u, d) and ( c, s) quark families team together to satisfy the triangle anomaly cancellation with the electron family, while the other families pair one-to-one for cancellation. The spontaneously broken symmetry is discrete and needs no Higgs mechanism. Predictions include all massless neutrinos, the top quark at 160 GeV/ c 2, the b' quark at 80 GeV/ c 2, and the t' quark at 2600 GeV/ c 2.

  9. Three-dimensional time-dependent computer modeling of the electrothermal atomizers for analytical spectrometry

    Science.gov (United States)

    Tsivilskiy, I. V.; Nagulin, K. Yu.; Gilmutdinov, A. Kh.

    2016-02-01

    A full three-dimensional nonstationary numerical model of graphite electrothermal atomizers of various types is developed. The model is based on solution of a heat equation within solid walls of the atomizer with a radiative heat transfer and numerical solution of a full set of Navier-Stokes equations with an energy equation for a gas. Governing equations for the behavior of a discrete phase, i.e., atomic particles suspended in a gas (including gas-phase processes of evaporation and condensation), are derived from the formal equations molecular kinetics by numerical solution of the Hertz-Langmuir equation. The following atomizers test the model: a Varian standard heated electrothermal vaporizer (ETV), a Perkin Elmer standard THGA transversely heated graphite tube with integrated platform (THGA), and the original double-stage tube-helix atomizer (DSTHA). The experimental verification of computer calculations is carried out by a method of shadow spectral visualization of the spatial distributions of atomic and molecular vapors in an analytical space of an atomizer.

  10. Model-based Engineering for the Integration of Manufacturing Systems with Advanced Analytics

    OpenAIRE

    Lechevalier , David; Narayanan , Anantha; Rachuri , Sudarsan; Foufou , Sebti; Lee , Y Tina

    2016-01-01

    Part 3: Interoperability and Systems Integration; International audience; To employ data analytics effectively and efficiently on manufacturing systems, engineers and data scientists need to collaborate closely to bring their domain knowledge together. In this paper, we introduce a domain-specific modeling approach to integrate a manufacturing system model with advanced analytics, in particular neural networks, to model predictions. Our approach combines a set of meta-models and transformatio...

  11. Analytical estimation of effective charges at saturation in Poisson-Boltzmann cell models

    International Nuclear Information System (INIS)

    Trizac, Emmanuel; Aubouy, Miguel; Bocquet, Lyderic

    2003-01-01

    We propose a simple approximation scheme for computing the effective charges of highly charged colloids (spherical or cylindrical with infinite length). Within non-linear Poisson-Boltzmann theory, we start from an expression for the effective charge in the infinite-dilution limit which is asymptotically valid for large salt concentrations; this result is then extended to finite colloidal concentration, approximating the salt partitioning effect which relates the salt content in the suspension to that of a dialysing reservoir. This leads to an analytical expression for the effective charge as a function of colloid volume fraction and salt concentration. These results compare favourably with the effective charges at saturation (i.e. in the limit of large bare charge) computed numerically following the standard prescription proposed by Alexander et al within the cell model

  12. Review of analytical models to stream depletion induced by pumping: Guide to model selection

    Science.gov (United States)

    Huang, Ching-Sheng; Yang, Tao; Yeh, Hund-Der

    2018-06-01

    Stream depletion due to groundwater extraction by wells may cause impact on aquatic ecosystem in streams, conflict over water rights, and contamination of water from irrigation wells near polluted streams. A variety of studies have been devoted to addressing the issue of stream depletion, but a fundamental framework for analytical modeling developed from aquifer viewpoint has not yet been found. This review shows key differences in existing models regarding the stream depletion problem and provides some guidelines for choosing a proper analytical model in solving the problem of concern. We introduce commonly used models composed of flow equations, boundary conditions, well representations and stream treatments for confined, unconfined, and leaky aquifers. They are briefly evaluated and classified according to six categories of aquifer type, flow dimension, aquifer domain, stream representation, stream channel geometry, and well type. Finally, we recommend promising analytical approaches that can solve stream depletion problem in reality with aquifer heterogeneity and irregular geometry of stream channel. Several unsolved stream depletion problems are also recommended.

  13. Chain and ladder models with two-body interactions and analytical ground states

    Science.gov (United States)

    Manna, Sourav; Nielsen, Anne E. B.

    2018-05-01

    We consider a family of spin-1 /2 models with few-body, SU(2)-invariant Hamiltonians and analytical ground states related to the one-dimensional (1D) Haldane-Shastry wave function. The spins are placed on the surface of a cylinder, and the standard 1D Haldane-Shastry model is obtained by placing the spins with equal spacing in a circle around the cylinder. Here, we show that another interesting family of models with two-body exchange interactions is obtained if we instead place the spins along one or two lines parallel to the cylinder axis, giving rise to chain and ladder models, respectively. We can change the scale along the cylinder axis without changing the radius of the cylinder. This gives us a parameter that controls the ratio between the circumference of the cylinder and all other length scales in the system. We use Monte Carlo simulations and analytical investigations to study how this ratio affects the properties of the models. If the ratio is large, we find that the two legs of the ladder decouple into two chains that are in a critical phase with Haldane-Shastry-like properties. If the ratio is small, the wave function reduces to a product of singlets. In between, we find that the behavior of the correlations and the Renyi entropy depends on the distance considered. For small distances the behavior is critical, and for long distances the correlations decay exponentially and the entropy shows an area law behavior. The distance up to which there is critical behavior gets larger as the ratio increases.

  14. IT vendor selection model by using structural equation model & analytical hierarchy process

    Science.gov (United States)

    Maitra, Sarit; Dominic, P. D. D.

    2012-11-01

    Selecting and evaluating the right vendors is imperative for an organization's global marketplace competitiveness. Improper selection and evaluation of potential vendors can dwarf an organization's supply chain performance. Numerous studies have demonstrated that firms consider multiple criteria when selecting key vendors. This research intends to develop a new hybrid model for vendor selection process with better decision making. The new proposed model provides a suitable tool for assisting decision makers and managers to make the right decisions and select the most suitable vendor. This paper proposes a Hybrid model based on Structural Equation Model (SEM) and Analytical Hierarchy Process (AHP) for long-term strategic vendor selection problems. The five steps framework of the model has been designed after the thorough literature study. The proposed hybrid model will be applied using a real life case study to assess its effectiveness. In addition, What-if analysis technique will be used for model validation purpose.

  15. Automated drusen detection in retinal images using analytical modelling algorithms

    Directory of Open Access Journals (Sweden)

    Manivannan Ayyakkannu

    2011-07-01

    Full Text Available Abstract Background Drusen are common features in the ageing macula associated with exudative Age-Related Macular Degeneration (ARMD. They are visible in retinal images and their quantitative analysis is important in the follow up of the ARMD. However, their evaluation is fastidious and difficult to reproduce when performed manually. Methods This article proposes a methodology for Automatic Drusen Deposits Detection and quantification in Retinal Images (AD3RI by using digital image processing techniques. It includes an image pre-processing method to correct the uneven illumination and to normalize the intensity contrast with smoothing splines. The drusen detection uses a gradient based segmentation algorithm that isolates drusen and provides basic drusen characterization to the modelling stage. The detected drusen are then fitted by Modified Gaussian functions, producing a model of the image that is used to evaluate the affected area. Twenty two images were graded by eight experts, with the aid of a custom made software and compared with AD3RI. This comparison was based both on the total area and on the pixel-to-pixel analysis. The coefficient of variation, the intraclass correlation coefficient, the sensitivity, the specificity and the kappa coefficient were calculated. Results The ground truth used in this study was the experts' average grading. In order to evaluate the proposed methodology three indicators were defined: AD3RI compared to the ground truth (A2G; each expert compared to the other experts (E2E and a standard Global Threshold method compared to the ground truth (T2G. The results obtained for the three indicators, A2G, E2E and T2G, were: coefficient of variation 28.8 %, 22.5 % and 41.1 %, intraclass correlation coefficient 0.92, 0.88 and 0.67, sensitivity 0.68, 0.67 and 0.74, specificity 0.96, 0.97 and 0.94, and kappa coefficient 0.58, 0.60 and 0.49, respectively. Conclusions The gradings produced by AD3RI obtained an agreement

  16. Flexural Behaviour of Reinforced Fibrous Concrete Beams: Experiments and Analytical Modelling

    International Nuclear Information System (INIS)

    Hameed, R.; Sellier, A.; Turatsinze, A.; Duprat, F.

    2013-01-01

    Flexural behaviour of reinforced fibrous concrete beams was investigated in this research study. Two types of metallic fibers were studied: amorphous metallic fibers (FibraFlex fibers), and carbon steel hooked-end fibers (Dramix fibers). Four types of reinforced concretes were made: one control (without fibers) and three fibrous. Among three reinforced fibrous concretes, two contained fibers in mono form and one contained fibers in hybrid form. The total quantity of fibers in mono and hybrid forms was 20 kg/m3 and 40 kg/m3, respectively. Three point bending tests were performed according to European standards NF EN 14651 on beams of 150 x 150 mm cross section and length of 550 mm. The results showed that due to positive synergetic interaction between the two metallic fibers used, reinforced fibrous concret (RFC) beams containing fibers in hybrid form exhibited better response at all loading stages. Analytical model to predict ultimate moment capacity of the RFC beam of rectangular section was developed and is presented in this paper. Analytical results for ultimate moment were found to be in good agreement with experimental results. (author)

  17. Analytic treatment of nuclear spin-lattice relaxation for diffusion in a cone model

    Science.gov (United States)

    Sitnitsky, A. E.

    2011-12-01

    We consider nuclear spin-lattice relaxation rate resulted from a diffusion equation for rotational wobbling in a cone. We show that the widespread point of view that there are no analytical expressions for correlation functions for wobbling in a cone model is invalid and prove that nuclear spin-lattice relaxation in this model is exactly tractable and amenable to full analytical description. The mechanism of relaxation is assumed to be due to dipole-dipole interaction of nuclear spins and is treated within the framework of the standard Bloemberger, Purcell, Pound-Solomon scheme. We consider the general case of arbitrary orientation of the cone axis relative the magnetic field. The BPP-Solomon scheme is shown to remain valid for systems with the distribution of the cone axes depending only on the tilt relative the magnetic field but otherwise being isotropic. We consider the case of random isotropic orientation of cone axes relative the magnetic field taking place in powders. Also we consider the cases of their predominant orientation along or opposite the magnetic field and that of their predominant orientation transverse to the magnetic field which may be relevant for, e.g., liquid crystals. Besides we treat in details the model case of the cone axis directed along the magnetic field. The latter provides direct comparison of the limiting case of our formulas with the textbook formulas for free isotropic rotational diffusion. The dependence of the spin-lattice relaxation rate on the cone half-width yields results similar to those predicted by the model-free approach.

  18. Environmental vulnerability assessment using Grey Analytic Hierarchy Process based model

    International Nuclear Information System (INIS)

    Sahoo, Satiprasad; Dhar, Anirban; Kar, Amlanjyoti

    2016-01-01

    Environmental management of an area describes a policy for its systematic and sustainable environmental protection. In the present study, regional environmental vulnerability assessment in Hirakud command area of Odisha, India is envisaged based on Grey Analytic Hierarchy Process method (Grey–AHP) using integrated remote sensing (RS) and geographic information system (GIS) techniques. Grey–AHP combines the advantages of classical analytic hierarchy process (AHP) and grey clustering method for accurate estimation of weight coefficients. It is a new method for environmental vulnerability assessment. Environmental vulnerability index (EVI) uses natural, environmental and human impact related factors, e.g., soil, geology, elevation, slope, rainfall, temperature, wind speed, normalized difference vegetation index, drainage density, crop intensity, agricultural DRASTIC value, population density and road density. EVI map has been classified into four environmental vulnerability zones (EVZs) namely: ‘low’, ‘moderate’ ‘high’, and ‘extreme’ encompassing 17.87%, 44.44%, 27.81% and 9.88% of the study area, respectively. EVI map indicates that the northern part of the study area is more vulnerable from an environmental point of view. EVI map shows close correlation with elevation. Effectiveness of the zone classification is evaluated by using grey clustering method. General effectiveness is in between “better” and “common classes”. This analysis demonstrates the potential applicability of the methodology. - Highlights: • Environmental vulnerability zone identification based on Grey Analytic Hierarchy Process (AHP) • The effectiveness evaluation by means of a grey clustering method with support from AHP • Use of grey approach eliminates the excessive dependency on the experience of experts.

  19. Environmental vulnerability assessment using Grey Analytic Hierarchy Process based model

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Satiprasad [School of Water Resources, Indian Institute of Technology Kharagpur (India); Dhar, Anirban, E-mail: anirban.dhar@gmail.com [Department of Civil Engineering, Indian Institute of Technology Kharagpur (India); Kar, Amlanjyoti [Central Ground Water Board, Bhujal Bhawan, Faridabad, Haryana (India)

    2016-01-15

    Environmental management of an area describes a policy for its systematic and sustainable environmental protection. In the present study, regional environmental vulnerability assessment in Hirakud command area of Odisha, India is envisaged based on Grey Analytic Hierarchy Process method (Grey–AHP) using integrated remote sensing (RS) and geographic information system (GIS) techniques. Grey–AHP combines the advantages of classical analytic hierarchy process (AHP) and grey clustering method for accurate estimation of weight coefficients. It is a new method for environmental vulnerability assessment. Environmental vulnerability index (EVI) uses natural, environmental and human impact related factors, e.g., soil, geology, elevation, slope, rainfall, temperature, wind speed, normalized difference vegetation index, drainage density, crop intensity, agricultural DRASTIC value, population density and road density. EVI map has been classified into four environmental vulnerability zones (EVZs) namely: ‘low’, ‘moderate’ ‘high’, and ‘extreme’ encompassing 17.87%, 44.44%, 27.81% and 9.88% of the study area, respectively. EVI map indicates that the northern part of the study area is more vulnerable from an environmental point of view. EVI map shows close correlation with elevation. Effectiveness of the zone classification is evaluated by using grey clustering method. General effectiveness is in between “better” and “common classes”. This analysis demonstrates the potential applicability of the methodology. - Highlights: • Environmental vulnerability zone identification based on Grey Analytic Hierarchy Process (AHP) • The effectiveness evaluation by means of a grey clustering method with support from AHP • Use of grey approach eliminates the excessive dependency on the experience of experts.

  20. Determination of trace impurities in uranium-transition metal alloy fuels by ICP-MS using extended common analyte internal standardization (ECAIS) technique

    International Nuclear Information System (INIS)

    Saha, Abhijit; Deb, S.B.; Nagar, B.K.; Saxena, M.K.

    2015-01-01

    An analytical methodology was developed for the determination of eight trace impurities viz, Al, B, Cd, Co, Cu, Mg, Mn and Ni in three different uranium-transition metal alloy fuels (U-Me; Me = Ti, Zr and Mo) employing inductively coupled plasma mass spectrometry (ICP-MS). The well known common analyte internal standardization (CAIS) chemometric technique was modified and then employed to minimize and account for the matrix effect on analyte intensity. Standard addition of analytes to the pure synthetic U-Me sample solutions and subsequently their ≥ 94% recovery by the ICP-MS measurement validates the proposed methodology. One real sample of each of these alloys was analyzed by the developed analytical methodology and the %RSD observed was in the range of 5-8%. The method detection limits were found to be within 4-10 μg L -1 . (author)

  1. An analytical model on thermal performance evaluation of counter flow wet cooling tower

    Directory of Open Access Journals (Sweden)

    Wang Qian

    2017-01-01

    Full Text Available This paper proposes an analytical model for simultaneous heat and mass transfer processes in a counter flow wet cooling tower, with the assumption that the enthalpy of the saturated air is a linear function of the water surface temperature. The performance of the proposed analytical model is validated in some typical cases. The validation reveals that, when cooling range is in a certain interval, the proposed model is not only comparable with the accurate model, but also can reduce computational complexity. In addition, with the proposed analytical model, the thermal performance of the counter flow wet cooling towers in power plants is calculated. The results show that the proposed analytical model can be applied to evaluate and predict the thermal performance of counter flow wet cooling towers.

  2. Cooperative effects in spherical spasers: Ab initio analytical model

    Science.gov (United States)

    Bordo, V. G.

    2017-06-01

    A fully analytical semiclassical theory of cooperative optical processes which occur in an ensemble of molecules embedded in a spherical core-shell nanoparticle is developed from first principles. Both the plasmonic Dicke effect and spaser generation are investigated for the designs in which a shell/core contains an arbitrarily large number of active molecules in the vicinity of a metallic core/shell. An essential aspect of the theory is an ab initio account of the feedback from the core/shell boundaries which significantly modifies the molecular dynamics. The theory provides rigorous, albeit simple and physically transparent, criteria for both plasmonic superradiance and surface plasmon generation.

  3. Predictive analytics technology review: Similarity-based modeling and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, James; Doan, Don; Gandhi, Devang; Nieman, Bill

    2010-09-15

    Over 11 years ago, SmartSignal introduced Predictive Analytics for eliminating equipment failures, using its patented SBM technology. SmartSignal continues to lead and dominate the market and, in 2010, went one step further and introduced Predictive Diagnostics. Now, SmartSignal is combining Predictive Diagnostics with RCM methodology and industry expertise. FMEA logic reengineers maintenance work management, eliminates unneeded inspections, and focuses efforts on the real issues. This integrated solution significantly lowers maintenance costs, protects against critical asset failures, and improves commercial availability, and reduces work orders 20-40%. Learn how.

  4. Analytical models of optical refraction in the troposphere.

    Science.gov (United States)

    Nener, Brett D; Fowkes, Neville; Borredon, Laurent

    2003-05-01

    An extremely accurate but simple asymptotic description (with known error) is obtained for the path of a ray propagating over a curved Earth with radial variations in refractive index. The result is sufficiently simple that analytic solutions for the path can be obtained for linear and quadratic index profiles. As well as rendering the inverse problem trivial for these profiles, this formulation shows that images are uniformly magnified in the vertical direction when viewed through a quadratic refractive-index profile. Nonuniform vertical distortions occur for higher-order refractive-index profiles.

  5. Modelling of packet traffic with matrix analytic methods

    DEFF Research Database (Denmark)

    Andersen, Allan T.

    1995-01-01

    BISDN network. The heuristic formula did not seem to yield substantially better results than already available approximations. Finally, some results for the finite capacity BMAP/G/1 queue have been obtained. The steady state probability vector of the embedded chain is found by a direct method where...... process. A heuristic formula for the tail behaviour of a single server queue fed by a superposition of renewal processes has been evaluated. The evaluation was performed by applying Matrix Analytic methods. The heuristic formula has applications in the Call Admission Control (CAC) procedure of the future...

  6. Analytical solution of a stochastic content-based network model

    International Nuclear Information System (INIS)

    Mungan, Muhittin; Kabakoglu, Alkan; Balcan, Duygu; Erzan, Ayse

    2005-01-01

    We define and completely solve a content-based directed network whose nodes consist of random words and an adjacency rule involving perfect or approximate matches for an alphabet with an arbitrary number of letters. The analytic expression for the out-degree distribution shows a crossover from a leading power law behaviour to a log-periodic regime bounded by a different power law decay. The leading exponents in the two regions have a weak dependence on the mean word length, and an even weaker dependence on the alphabet size. The in-degree distribution, on the other hand, is much narrower and does not show any scaling behaviour

  7. An Analytical Hierarchy Process Model for the Evaluation of College Experimental Teaching Quality

    Science.gov (United States)

    Yin, Qingli

    2013-01-01

    Taking into account the characteristics of college experimental teaching, through investigaton and analysis, evaluation indices and an Analytical Hierarchy Process (AHP) model of experimental teaching quality have been established following the analytical hierarchy process method, and the evaluation indices have been given reasonable weights. An…

  8. An Analytic Hierarchy Process for School Quality and Inspection: Model Development and Application

    Science.gov (United States)

    Al Qubaisi, Amal; Badri, Masood; Mohaidat, Jihad; Al Dhaheri, Hamad; Yang, Guang; Al Rashedi, Asma; Greer, Kenneth

    2016-01-01

    Purpose: The purpose of this paper is to develop an analytic hierarchy planning-based framework to establish criteria weights and to develop a school performance system commonly called school inspections. Design/methodology/approach: The analytic hierarchy process (AHP) model uses pairwise comparisons and a measurement scale to generate the…

  9. Medical ethical standards in dermatology: an analytical study of knowledge, attitudes and practices.

    Science.gov (United States)

    Mostafa, W Z; Abdel Hay, R M; El Lawindi, M I

    2015-01-01

    Dermatology practice has not been ethically justified at all times. The objective of the study was to find out dermatologists' knowledge about medical ethics, their attitudes towards regulatory measures and their practices, and to study the different factors influencing the knowledge, the attitude and the practices of dermatologists. This is a cross-sectional comparative study conducted among 214 dermatologists, from five Academic Universities and from participants in two conferences. A 54 items structured anonymous questionnaire was designed to describe the demographical characteristics of the study group as well as their knowledge, attitude and practices regarding the medical ethics standards in clinical and research settings. Five scoring indices were estimated regarding knowledge, attitude and practice. Inferential statistics were used to test differences between groups as indicated. The Student's t-test and analysis of variance were carried out for quantitative variables. The chi-squared test was conducted for qualitative variables. The results were considered statistically significant at a P > 0.05. Analysis of the possible factors having impact on the overall scores revealed that the highest knowledge scores were among dermatologists who practice in an academic setting plus an additional place; however, this difference was statistically non-significant (P = 0.060). Female dermatologists showed a higher attitude score compared to males (P = 0.028). The highest significant attitude score (P = 0.019) regarding clinical practice was recorded among those practicing cosmetic dermatology. The different studied groups of dermatologists revealed a significant impact on the attitude score (P = 0.049), and the evidence-practice score (P dermatology research. © 2014 European Academy of Dermatology and Venereology.

  10. An Analytical Model for the Evolution of the Protoplanetary Disks

    Energy Technology Data Exchange (ETDEWEB)

    Khajenabi, Fazeleh; Kazrani, Kimia; Shadmehri, Mohsen, E-mail: f.khajenabi@gu.ac.ir [Department of Physics, Faculty of Sciences, Golestan University, Gorgan 49138-15739 (Iran, Islamic Republic of)

    2017-06-01

    We obtain a new set of analytical solutions for the evolution of a self-gravitating accretion disk by holding the Toomre parameter close to its threshold and obtaining the stress parameter from the cooling rate. In agreement with the previous numerical solutions, furthermore, the accretion rate is assumed to be independent of the disk radius. Extreme situations where the entire disk is either optically thick or optically thin are studied independently, and the obtained solutions can be used for exploring the early or the final phases of a protoplanetary disk evolution. Our solutions exhibit decay of the accretion rate as a power-law function of the age of the system, with exponents −0.75 and −1.04 for optically thick and thin cases, respectively. Our calculations permit us to explore the evolution of the snow line analytically. The location of the snow line in the optically thick regime evolves as a power-law function of time with the exponent −0.16; however, when the disk is optically thin, the location of the snow line as a function of time with the exponent −0.7 has a stronger dependence on time. This means that in an optically thin disk inward migration of the snow line is faster than an optically thick disk.

  11. An analytic equation of state for Ising-like models

    International Nuclear Information System (INIS)

    O'Connor, Denjoe; Santiago, J A; Stephens, C R

    2007-01-01

    Using an environmentally friendly renormalization we derive, from an underlying field theory representation, a formal expression for the equation of state, y = f(x), that exhibits all desired asymptotic and analyticity properties in the three limits x → 0, x → ∞ and x → -1. The only necessary inputs are the Wilson functions γ λ , γ ψ and γ φ 2 , associated with a renormalization of the transverse vertex functions. These Wilson functions exhibit a crossover between the Wilson-Fisher fixed point and the fixed point that controls the coexistence curve. Restricting to the case N = 1, we derive a one-loop equation of state for 2 < d < 4 naturally parameterized by a ratio of nonlinear scaling fields. For d = 3 we show that a non-parameterized analytic form can be deduced. Various asymptotic amplitudes are calculated directly from the equation of state in all three asymptotic limits of interest and comparison made with known results. By positing a scaling form for the equation of state inspired by the one-loop result, but adjusted to fit the known values of the critical exponents, we obtain better agreement with known asymptotic amplitudes

  12. Design Evaluation of Wind Turbine Spline Couplings Using an Analytical Model: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y.; Keller, J.; Wallen, R.; Errichello, R.; Halse, C.; Lambert, S.

    2015-02-01

    Articulated splines are commonly used in the planetary stage of wind turbine gearboxes for transmitting the driving torque and improving load sharing. Direct measurement of spline loads and performance is extremely challenging because of limited accessibility. This paper presents an analytical model for the analysis of articulated spline coupling designs. For a given torque and shaft misalignment, this analytical model quickly yields insights into relationships between the spline design parameters and resulting loads; bending, contact, and shear stresses; and safety factors considering various heat treatment methods. Comparisons of this analytical model against previously published computational approaches are also presented.

  13. Standard operating procedures for pre-analytical handling of blood and urine for metabolomic studies and biobanks.

    Science.gov (United States)

    Bernini, Patrizia; Bertini, Ivano; Luchinat, Claudio; Nincheri, Paola; Staderini, Samuele; Turano, Paola

    2011-04-01

    (1)H NMR metabolic profiling of urine, serum and plasma has been used to monitor the impact of the pre-analytical steps on the sample quality and stability in order to propose standard operating procedures (SOPs) for deposition in biobanks. We analyzed the quality of serum and plasma samples as a function of the elapsed time (t = 0-4 h) between blood collection and processing and of the time from processing to freezing (up to 24 h). The stability of the urine metabolic profile over time (up to 24 h) at various storage temperatures was monitored as a function of the different pre-analytical treatments like pre-storage centrifugation, filtration, and addition of the bacteriostatic preservative sodium azide. Appreciable changes in the profiles, reflecting changes in the concentration of a number of metabolites, were detected and discussed in terms of chemical and enzymatic reactions for both blood and urine samples. Appropriate procedures for blood derivatives collection and urine preservation/storage that allow maintaining as much as possible the original metabolic profile of the fresh samples emerge, and are proposed as SOPs for biobanking.

  14. Standard operating procedures for pre-analytical handling of blood and urine for metabolomic studies and biobanks

    International Nuclear Information System (INIS)

    Bernini, Patrizia; Bertini, Ivano; Luchinat, Claudio; Nincheri, Paola; Staderini, Samuele; Turano, Paola

    2011-01-01

    1 H NMR metabolic profiling of urine, serum and plasma has been used to monitor the impact of the pre-analytical steps on the sample quality and stability in order to propose standard operating procedures (SOPs) for deposition in biobanks. We analyzed the quality of serum and plasma samples as a function of the elapsed time (t = 0−4 h) between blood collection and processing and of the time from processing to freezing (up to 24 h). The stability of the urine metabolic profile over time (up to 24 h) at various storage temperatures was monitored as a function of the different pre-analytical treatments like pre-storage centrifugation, filtration, and addition of the bacteriostatic preservative sodium azide. Appreciable changes in the profiles, reflecting changes in the concentration of a number of metabolites, were detected and discussed in terms of chemical and enzymatic reactions for both blood and urine samples. Appropriate procedures for blood derivatives collection and urine preservation/storage that allow maintaining as much as possible the original metabolic profile of the fresh samples emerge, and are proposed as SOPs for biobanking.

  15. Standard operating procedures for pre-analytical handling of blood and urine for metabolomic studies and biobanks

    Energy Technology Data Exchange (ETDEWEB)

    Bernini, Patrizia; Bertini, Ivano, E-mail: bertini@cerm.unifi.it; Luchinat, Claudio [University of Florence, Magnetic Resonance Center (CERM) (Italy); Nincheri, Paola; Staderini, Samuele [FiorGen Foundation (Italy); Turano, Paola [University of Florence, Magnetic Resonance Center (CERM) (Italy)

    2011-04-15

    {sup 1}H NMR metabolic profiling of urine, serum and plasma has been used to monitor the impact of the pre-analytical steps on the sample quality and stability in order to propose standard operating procedures (SOPs) for deposition in biobanks. We analyzed the quality of serum and plasma samples as a function of the elapsed time (t = 0-4 h) between blood collection and processing and of the time from processing to freezing (up to 24 h). The stability of the urine metabolic profile over time (up to 24 h) at various storage temperatures was monitored as a function of the different pre-analytical treatments like pre-storage centrifugation, filtration, and addition of the bacteriostatic preservative sodium azide. Appreciable changes in the profiles, reflecting changes in the concentration of a number of metabolites, were detected and discussed in terms of chemical and enzymatic reactions for both blood and urine samples. Appropriate procedures for blood derivatives collection and urine preservation/storage that allow maintaining as much as possible the original metabolic profile of the fresh samples emerge, and are proposed as SOPs for biobanking.

  16. Analytical probabilistic modeling of RBE-weighted dose for ion therapy

    Science.gov (United States)

    Wieser, H. P.; Hennig, P.; Wahl, N.; Bangert, M.

    2017-12-01

    Particle therapy is especially prone to uncertainties. This issue is usually addressed with uncertainty quantification and minimization techniques based on scenario sampling. For proton therapy, however, it was recently shown that it is also possible to use closed-form computations based on analytical probabilistic modeling (APM) for this purpose. APM yields unique features compared to sampling-based approaches, motivating further research in this context. This paper demonstrates the application of APM for intensity-modulated carbon ion therapy to quantify the influence of setup and range uncertainties on the RBE-weighted dose. In particular, we derive analytical forms for the nonlinear computations of the expectation value and variance of the RBE-weighted dose by propagating linearly correlated Gaussian input uncertainties through a pencil beam dose calculation algorithm. Both exact and approximation formulas are presented for the expectation value and variance of the RBE-weighted dose and are subsequently studied in-depth for a one-dimensional carbon ion spread-out Bragg peak. With V and B being the number of voxels and pencil beams, respectively, the proposed approximations induce only a marginal loss of accuracy while lowering the computational complexity from order O(V × B^2) to O(V × B) for the expectation value and from O(V × B^4) to O(V × B^2) for the variance of the RBE-weighted dose. Moreover, we evaluated the approximated calculation of the expectation value and standard deviation of the RBE-weighted dose in combination with a probabilistic effect-based optimization on three patient cases considering carbon ions as radiation modality against sampled references. The resulting global γ-pass rates (2 mm,2%) are > 99.15% for the expectation value and > 94.95% for the standard deviation of the RBE-weighted dose, respectively. We applied the derived analytical model to carbon ion treatment planning, although the concept is in general applicable to other

  17. Yarn supplier selection using analytical hierarchy process (AHP) and standardized unitless rating (SUR) method on textile industry

    Science.gov (United States)

    Erfaisalsyah, M. H.; Mansur, A.; Khasanah, A. U.

    2017-11-01

    For a company which engaged in the textile field, specify the supplier of raw materials for production is one important part of supply chain management which can affect the company's business processes. This study aims to identify the best suppliers of raw material suppliers of yarn for PC. PKBI based on several criteria. In this study, the integration between the Analytical Hierarchy Process (AHP) and the Standardized Unitless Rating (SUR) are used to assess the performance of the suppliers. By using AHP, it can be known the value of the relative weighting of each criterion. While SUR shows the sequence performance value of the supplier. The result of supplier ranking calculation can be used to know the strengths and weaknesses of each supplier based on its performance criteria. From the final result, it can be known which suppliers should improve their performance in order to create long term cooperation with the company.

  18. Higgs bosons in the standard model, the MSSM and beyond

    Indian Academy of Sciences (India)

    Abstract. I summarize the basic theory and selected phenomenology for the Higgs boson(s) of the standard model, the minimal supersymmetric model and some extensions thereof, including the next-to-minimal supersymmetric model.

  19. Assessing the service quality of Iran military hospitals: Joint Commission International standards and Analytic Hierarchy Process (AHP) technique

    Science.gov (United States)

    Bahadori, Mohammadkarim; Ravangard, Ramin; Yaghoubi, Maryam; Alimohammadzadeh, Khalil

    2014-01-01

    Background: Military hospitals are responsible for preserving, restoring and improving the health of not only armed forces, but also other people. According to the military organizations strategy, which is being a leader and pioneer in all areas, providing quality health services is one of the main goals of the military health care organizations. This study was aimed to evaluate the service quality of selected military hospitals in Iran based on the Joint Commission International (JCI) standards and comparing these hospitals with each other and ranking them using the analytic hierarchy process (AHP) technique in 2013. Materials and Methods: This was a cross-sectional and descriptive study conducted on five military hospitals, selected using the purposive sampling method, in 2013. Required data collected using checklists of accreditation standards and nominal group technique. AHP technique was used for prioritizing. Furthermore, Expert Choice 11.0 was used to analyze the collected data. Results: Among JCI standards, the standards of access to care and continuity of care (weight = 0.122), quality improvement and patient safety (weight = 0.121) and leadership and management (weight = 0.117) had the greatest importance, respectively. Furthermore, in the overall ranking, BGT (weight = 0.369), IHM (0.238), SAU (0.202), IHK (weight = 0.125) and SAB (weight = 0.066) ranked first to fifth, respectively. Conclusion: AHP is an appropriate technique for measuring the overall performance of hospitals and their quality of services. It is a holistic approach that takes all hospital processes into consideration. The results of the present study can be used to improve hospitals performance through identifying areas, which are in need of focus for quality improvement and selecting strategies to improve service quality. PMID:25250364

  20. Assessing the service quality of Iran military hospitals: Joint Commission International standards and Analytic Hierarchy Process (AHP) technique.

    Science.gov (United States)

    Bahadori, Mohammadkarim; Ravangard, Ramin; Yaghoubi, Maryam; Alimohammadzadeh, Khalil

    2014-01-01

    Military hospitals are responsible for preserving, restoring and improving the health of not only armed forces, but also other people. According to the military organizations strategy, which is being a leader and pioneer in all areas, providing quality health services is one of the main goals of the military health care organizations. This study was aimed to evaluate the service quality of selected military hospitals in Iran based on the Joint Commission International (JCI) standards and comparing these hospitals with each other and ranking them using the analytic hierarchy process (AHP) technique in 2013. This was a cross-sectional and descriptive study conducted on five military hospitals, selected using the purposive sampling method, in 2013. Required data collected using checklists of accreditation standards and nominal group technique. AHP technique was used for prioritizing. Furthermore, Expert Choice 11.0 was used to analyze the collected data. Among JCI standards, the standards of access to care and continuity of care (weight = 0.122), quality improvement and patient safety (weight = 0.121) and leadership and management (weight = 0.117) had the greatest importance, respectively. Furthermore, in the overall ranking, BGT (weight = 0.369), IHM (0.238), SAU (0.202), IHK (weight = 0.125) and SAB (weight = 0.066) ranked first to fifth, respectively. AHP is an appropriate technique for measuring the overall performance of hospitals and their quality of services. It is a holistic approach that takes all hospital processes into consideration. The results of the present study can be used to improve hospitals performance through identifying areas, which are in need of focus for quality improvement and selecting strategies to improve service quality.

  1. Neutrinos: in and out of the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Parke, Stephen; /Fermilab

    2006-07-01

    The particle physics Standard Model has been tremendously successful in predicting the outcome of a large number of experiments. In this model Neutrinos are massless. Yet recent evidence points to the fact that neutrinos are massive particles with tiny masses compared to the other particles in the Standard Model. These tiny masses allow the neutrinos to change flavor and oscillate. In this series of Lectures, I will review the properties of Neutrinos In the Standard Model and then discuss the physics of Neutrinos Beyond the Standard Model. Topics to be covered include Neutrino Flavor Transformations and Oscillations, Majorana versus Dirac Neutrino Masses, the Seesaw Mechanism and Leptogenesis.

  2. Semi-analytical Model for Estimating Absorption Coefficients of Optically Active Constituents in Coastal Waters

    Science.gov (United States)

    Wang, D.; Cui, Y.

    2015-12-01

    The objectives of this paper are to validate the applicability of a multi-band quasi-analytical algorithm (QAA) in retrieval absorption coefficients of optically active constituents in turbid coastal waters, and to further improve the model using a proposed semi-analytical model (SAA). The ap(531) and ag(531) semi-analytically derived using SAA model are quite different from the retrievals procedures of QAA model that ap(531) and ag(531) are semi-analytically derived from the empirical retrievals results of a(531) and a(551). The two models are calibrated and evaluated against datasets taken from 19 independent cruises in West Florida Shelf in 1999-2003, provided by SeaBASS. The results indicate that the SAA model produces a superior performance to QAA model in absorption retrieval. Using of the SAA model in retrieving absorption coefficients of optically active constituents from West Florida Shelf decreases the random uncertainty of estimation by >23.05% from the QAA model. This study demonstrates the potential of the SAA model in absorption coefficients of optically active constituents estimating even in turbid coastal waters. Keywords: Remote sensing; Coastal Water; Absorption Coefficient; Semi-analytical Model

  3. An Analytics Approach to Adaptive Maturity Models using Organizational Characteristics

    NARCIS (Netherlands)

    Baars, T.; Mijnhardt, F.; Vlaanderen, K.; Spruit, M.

    2016-01-01

    Ever since the first incarnations of maturity models, critics have voiced several concerns with these frameworks. Indeed, a lack of model fit and oversimplification of the real world can be attributed to the rigidity of these models, which assumes that each organization that uses the framework is

  4. Analytical Model of Planar Double Split Ring Resonator

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Jensen, Thomas; Krozer, Viktor

    2007-01-01

    This paper focuses on accurate modelling of microstrip double split ring resonators. The impedance matrix representation for coupled lines is applied for the first time to model the SRR, resulting in excellent model accuracy over a wide frequency range. Phase compensation is implemented to take i...

  5. An analytical model for the prediction of rip spacing in intermediate ...

    Indian Academy of Sciences (India)

    61

    study, an analytical model was presented to predict the spacing of channel rip currents (Srip) ... beach and normal wave incidence in two cases with the fixed breaking line and variable one .... On the other hand, in the above relations radiation.

  6. An Analytical Model for Prediction of Magnetic Flux Leakage from Surface Defects in Ferromagnetic Tubes

    Directory of Open Access Journals (Sweden)

    Suresh V.

    2016-02-01

    Full Text Available In this paper, an analytical model is proposed to predict magnetic flux leakage (MFL signals from the surface defects in ferromagnetic tubes. The analytical expression consists of elliptic integrals of first kind based on the magnetic dipole model. The radial (Bz component of leakage fields is computed from the cylindrical holes in ferromagnetic tubes. The effectiveness of the model has been studied by analyzing MFL signals as a function of the defect parameters and lift-off. The model predicted results are verified with experimental results and a good agreement is observed between the analytical and the experimental results. This analytical expression could be used for quick prediction of MFL signals and also input data for defect reconstructions in inverse MFL problem.

  7. Improved metastability bounds on the standard model Higgs mass

    CERN Document Server

    Espinosa, J R; Espinosa, J R; Quiros, M

    1995-01-01

    Depending on the Higgs-boson and top-quark masses, M_H and M_t, the effective potential of the Standard Model at finite (and zero) temperature can have a deep and unphysical stable minimum \\langle \\phi(T)\\rangle at values of the field much larger than G_F^{-1/2}. We have computed absolute lower bounds on M_H, as a function of M_t, imposing the condition of no decay by thermal fluctuations, or quantum tunnelling, to the stable minimum. Our effective potential at zero temperature includes all next-to-leading logarithmic corrections (making it extremely scale-independent), and we have used pole masses for the Higgs-boson and top-quark. Thermal corrections to the effective potential include plasma effects by one-loop ring resummation of Debye masses. All calculations, including the effective potential and the bubble nucleation rate, are performed numerically and so the results do not rely on any kind of analytical approximation. Easy-to-use fits are provided for the benefit of the reader. Conclusions on the possi...

  8. Analytical model of a burst assembly algorithm for the VBR in the OBS networks

    International Nuclear Information System (INIS)

    Shargabi, M.A.A.; Mellah, H.; Abid, A.

    2008-01-01

    This paper presents a proposed analytical model for the number of bursts aggregated in a period of time in OBS networks. The model considers the case of VBR traffic with two different sending rates, which are SCR and PCR. The model is validated using extensive simulations. Where results from simulations are in total agreement with the results obtained by the proposed model. (author)

  9. Galaxy modelling. II. Multi-wavelength faint counts from a semi-analytic model of galaxy formation

    Science.gov (United States)

    Devriendt, J. E. G.; Guiderdoni, B.

    2000-11-01

    This paper predicts self-consistent faint galaxy counts from the UV to the submm wavelength range. The stardust spectral energy distributions described in Devriendt et al. \\citeparyear{DGS99} (Paper I) are embedded within the explicit cosmological framework of a simple semi-analytic model of galaxy formation and evolution. We begin with a description of the non-dissipative and dissipative collapses of primordial perturbations, and plug in standard recipes for star formation, stellar evolution and feedback. We also model the absorption of starlight by dust and its re-processing in the IR and submm. We then build a class of models which capture the luminosity budget of the universe through faint galaxy counts and redshift distributions in the whole wavelength range spanned by our spectra. In contrast with a rather stable behaviour in the optical and even in the far-IR, the submm counts are dramatically sensitive to variations in the cosmological parameters and changes in the star formation history. Faint submm counts are more easily accommodated within an open universe with a low value of Omega_0 , or a flat universe with a non-zero cosmological constant. We confirm the suggestion of Guiderdoni et al. \\citeparyear{GHBM98} that matching the current multi-wavelength data requires a population of heavily-extinguished, massive galaxies with large star formation rates ( ~ 500 M_sun yr-1) at intermediate and high redshift (z >= 1.5). Such a population of objects probably is the consequence of an increase of interaction and merging activity at high redshift, but a realistic quantitative description can only be obtained through more detailed modelling of such processes. This study illustrates the implementation of multi-wavelength spectra into a semi-analytic model. In spite of its simplicity, it already provides fair fits of the current data of faint counts, and a physically motivated way of interpolating and extrapolating these data to other wavelengths and fainter flux

  10. Analytical modeling of electron energy loss spectroscopy of graphene: Ab initio study versus extended hydrodynamic model.

    Science.gov (United States)

    Djordjević, Tijana; Radović, Ivan; Despoja, Vito; Lyon, Keenan; Borka, Duško; Mišković, Zoran L

    2018-01-01

    We present an analytical modeling of the electron energy loss (EEL) spectroscopy data for free-standing graphene obtained by scanning transmission electron microscope. The probability density for energy loss of fast electrons traversing graphene under normal incidence is evaluated using an optical approximation based on the conductivity of graphene given in the local, i.e., frequency-dependent form derived by both a two-dimensional, two-fluid extended hydrodynamic (eHD) model and an ab initio method. We compare the results for the real and imaginary parts of the optical conductivity in graphene obtained by these two methods. The calculated probability density is directly compared with the EEL spectra from three independent experiments and we find very good agreement, especially in the case of the eHD model. Furthermore, we point out that the subtraction of the zero-loss peak from the experimental EEL spectra has a strong influence on the analytical model for the EEL spectroscopy data. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Incorporating photon recycling into the analytical drift-diffusion model of high efficiency solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lumb, Matthew P. [The George Washington University, 2121 I Street NW, Washington, DC 20037 (United States); Naval Research Laboratory, Washington, DC 20375 (United States); Steiner, Myles A.; Geisz, John F. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Walters, Robert J. [Naval Research Laboratory, Washington, DC 20375 (United States)

    2014-11-21

    The analytical drift-diffusion formalism is able to accurately simulate a wide range of solar cell architectures and was recently extended to include those with back surface reflectors. However, as solar cells approach the limits of material quality, photon recycling effects become increasingly important in predicting the behavior of these cells. In particular, the minority carrier diffusion length is significantly affected by the photon recycling, with consequences for the solar cell performance. In this paper, we outline an approach to account for photon recycling in the analytical Hovel model and compare analytical model predictions to GaAs-based experimental devices operating close to the fundamental efficiency limit.

  12. Analytical Solution for the Anisotropic Rabi Model: Effects of Counter-Rotating Terms

    OpenAIRE

    Zhang, Guofeng; Zhu, Hanjie

    2015-01-01

    The anisotropic Rabi model, which was proposed recently, differs from the original Rabi model: the rotating and counter-rotating terms are governed by two different coupling constants. This feature allows us to vary the counter-rotating interaction independently and explore the effects of it on some quantum properties. In this paper, we eliminate the counter-rotating terms approximately and obtain the analytical energy spectrums and wavefunctions. These analytical results agree well with the ...

  13. Gauge coupling unification in superstring derived standard-like models

    International Nuclear Information System (INIS)

    Faraggi, A.E.

    1992-11-01

    I discuss gauge coupling unification in a class of superstring standard-like models, which are derived in the free fermionic formulation. Recent calculations indicate that the superstring unification scale is at O(10 18 GeV) while the minimal supersymmetric standard model is consistent with LEP data if the unification scale is at O(10 16 )GeV. A generic feature of the superstring standard-like models is the appearance of extra color triplets (D,D), and electroweak doublets (l,l), in vector-like representations, beyond the supersymmetric standard model. I show that the gauge coupling unification at O(10 18 GeV) in the superstring standard-like models can be consistent with LEP data. I present an explicit standard-like model that can realize superstring gauge coupling unification. (author)

  14. Orthogonal analytical methods for botanical standardization: determination of green tea catechins by qNMR and LC-MS/MS.

    Science.gov (United States)

    Napolitano, José G; Gödecke, Tanja; Lankin, David C; Jaki, Birgit U; McAlpine, James B; Chen, Shao-Nong; Pauli, Guido F

    2014-05-01

    The development of analytical methods for parallel characterization of multiple phytoconstituents is essential to advance the quality control of herbal products. While chemical standardization is commonly carried out by targeted analysis using gas or liquid chromatography-based methods, more universal approaches based on quantitative (1)H NMR (qHNMR) measurements are being used increasingly in the multi-targeted assessment of these complex mixtures. The present study describes the development of a 1D qHNMR-based method for simultaneous identification and quantification of green tea constituents. This approach utilizes computer-assisted (1)H iterative Full Spin Analysis (HiFSA) and enables rapid profiling of seven catechins in commercial green tea extracts. The qHNMR results were cross-validated against quantitative profiles obtained with an orthogonal LC-MS/MS method. The relative strengths and weaknesses of both approaches are discussed, with special emphasis on the role of identical reference standards in qualitative and quantitative analyses. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Regional technical cooperation model project, IAEA - RER/2/2004 ''quality control and quality assurance for nuclear analytical techniques'

    International Nuclear Information System (INIS)

    Arikan, P.

    2002-01-01

    An analytical laboratory should produce high quality analytical data through the use of analytical measurements that is accurate, reliable and adequate for the intended purpose. This objective can be accomplished in a cost-effective manner under a planned and documented quality system of activities. It is well-known that serious deficiencies can occur in laboratory operations when insufficient attention is given to the quality of the work. It requires not only a thorough knowledge of the laboratory's purpose and operation, but also the dedication of the management and operating staff to standards of excellence. Laboratories employing nuclear and nuclear-related analytical techniques are sometimes confronted with performance problems which prevent them from becoming accepted and respected by clients, such as industry, government and regulatory bodies, and from being eligible for contracts. The International Standard ISO 17025 has been produced as the result of extensive experience in the implementation of ISO/IEC Guide 25:1990 and EN 45001:1989, which replaces both of them now. It contains all of the requirements that testing and calibration laboratories must meet if they wish to demonstrate that they operate a quality system that is technically competent, and are able to generate technically valid results. The use of ISO 17025 should facilitate cooperation between laboratories and other bodies to assist in the exchange of information and experience, and in the harmonization of standards and procedures. IAEA model project RER/2/004 entitled 'Quality Assurance/Quality Control in Nuclear Analytical Techniques' was initiated in 1999 as a Regional TC project in East European countries to assist Member State laboratories in the region to install a complete quality system according to the ISO/IEC 17025 standard. 12 laboratories from 11 countries plus the Agency's Laboratories in Seibersdorf have been selected as participants to undergo exercises and training with the

  16. A hybrid analytical model for open-circuit field calculation of multilayer interior permanent magnet machines

    Science.gov (United States)

    Zhang, Zhen; Xia, Changliang; Yan, Yan; Geng, Qiang; Shi, Tingna

    2017-08-01

    Due to the complicated rotor structure and nonlinear saturation of rotor bridges, it is difficult to build a fast and accurate analytical field calculation model for multilayer interior permanent magnet (IPM) machines. In this paper, a hybrid analytical model suitable for the open-circuit field calculation of multilayer IPM machines is proposed by coupling the magnetic equivalent circuit (MEC) method and the subdomain technique. In the proposed analytical model, the rotor magnetic field is calculated by the MEC method based on the Kirchhoff's law, while the field in the stator slot, slot opening and air-gap is calculated by subdomain technique based on the Maxwell's equation. To solve the whole field distribution of the multilayer IPM machines, the coupled boundary conditions on the rotor surface are deduced for the coupling of the rotor MEC and the analytical field distribution of the stator slot, slot opening and air-gap. The hybrid analytical model can be used to calculate the open-circuit air-gap field distribution, back electromotive force (EMF) and cogging torque of multilayer IPM machines. Compared with finite element analysis (FEA), it has the advantages of faster modeling, less computation source occupying and shorter time consuming, and meanwhile achieves the approximate accuracy. The analytical model is helpful and applicable for the open-circuit field calculation of multilayer IPM machines with any size and pole/slot number combination.

  17. Hybrid Analytical and Data-Driven Modeling for Feed-Forward Robot Control †

    Directory of Open Access Journals (Sweden)

    René Felix Reinhart

    2017-02-01

    Full Text Available Feed-forward model-based control relies on models of the controlled plant, e.g., in robotics on accurate knowledge of manipulator kinematics or dynamics. However, mechanical and analytical models do not capture all aspects of a plant’s intrinsic properties and there remain unmodeled dynamics due to varying parameters, unmodeled friction or soft materials. In this context, machine learning is an alternative suitable technique to extract non-linear plant models from data. However, fully data-based models suffer from inaccuracies as well and are inefficient if they include learning of well known analytical models. This paper thus argues that feed-forward control based on hybrid models comprising an analytical model and a learned error model can significantly improve modeling accuracy. Hybrid modeling here serves the purpose to combine the best of the two modeling worlds. The hybrid modeling methodology is described and the approach is demonstrated for two typical problems in robotics, i.e., inverse kinematics control and computed torque control. The former is performed for a redundant soft robot and the latter for a rigid industrial robot with redundant degrees of freedom, where a complete analytical model is not available for any of the platforms.

  18. Hybrid Analytical and Data-Driven Modeling for Feed-Forward Robot Control.

    Science.gov (United States)

    Reinhart, René Felix; Shareef, Zeeshan; Steil, Jochen Jakob

    2017-02-08

    Feed-forward model-based control relies on models of the controlled plant, e.g., in robotics on accurate knowledge of manipulator kinematics or dynamics. However, mechanical and analytical models do not capture all aspects of a plant's intrinsic properties and there remain unmodeled dynamics due to varying parameters, unmodeled friction or soft materials. In this context, machine learning is an alternative suitable technique to extract non-linear plant models from data. However, fully data-based models suffer from inaccuracies as well and are inefficient if they include learning of well known analytical models. This paper thus argues that feed-forward control based on hybrid models comprising an analytical model and a learned error model can significantly improve modeling accuracy. Hybrid modeling here serves the purpose to combine the best of the two modeling worlds. The hybrid modeling methodology is described and the approach is demonstrated for two typical problems in robotics, i.e., inverse kinematics control and computed torque control. The former is performed for a redundant soft robot and the latter for a rigid industrial robot with redundant degrees of freedom, where a complete analytical model is not available for any of the platforms.

  19. Hybrid Analytical and Data-Driven Modeling for Feed-Forward Robot Control †

    Science.gov (United States)

    Reinhart, René Felix; Shareef, Zeeshan; Steil, Jochen Jakob

    2017-01-01

    Feed-forward model-based control relies on models of the controlled plant, e.g., in robotics on accurate knowledge of manipulator kinematics or dynamics. However, mechanical and analytical models do not capture all aspects of a plant’s intrinsic properties and there remain unmodeled dynamics due to varying parameters, unmodeled friction or soft materials. In this context, machine learning is an alternative suitable technique to extract non-linear plant models from data. However, fully data-based models suffer from inaccuracies as well and are inefficient if they include learning of well known analytical models. This paper thus argues that feed-forward control based on hybrid models comprising an analytical model and a learned error model can significantly improve modeling accuracy. Hybrid modeling here serves the purpose to combine the best of the two modeling worlds. The hybrid modeling methodology is described and the approach is demonstrated for two typical problems in robotics, i.e., inverse kinematics control and computed torque control. The former is performed for a redundant soft robot and the latter for a rigid industrial robot with redundant degrees of freedom, where a complete analytical model is not available for any of the platforms. PMID:28208697

  20. Analytical modeling for heat transfer in sheared flows of nanofluids

    NARCIS (Netherlands)

    Ferrari, C.; Kaoui, B.; L'vov, V.S.; Procaccia, I.; Rudenko, O.; Thije Boonkkamp, ten J.H.M.; Toschi, F.

    2012-01-01

    We developed a model for the enhancement of the heat flux by spherical and elongated nanoparticles in sheared laminar flows of nanofluids. Besides the heat flux carried by the nanoparticles, the model accounts for the contribution of their rotation to the heat flux inside and outside the particles.

  1. Health promotion in context – a reflective-analytical model

    DEFF Research Database (Denmark)

    Liveng, Anne; Andersen, Heidi Lene; Lehn-Christiansen, Sine

    2018-01-01

    model,” which is presented in this article. The model provides a framework for the analysis of health-promotion initiatives, employing eight perspectives each intertwined with the others. It is based on the assumption that health and health inequities are contextual and that the theoretically inspired...

  2. Energy demand analytics using coupled technological and economic models

    Science.gov (United States)

    Impacts of a range of policy scenarios on end-use energy demand are examined using a coupling of MARKAL, an energy system model with extensive supply and end-use technological detail, with Inforum LIFT, a large-scale model of the us. economy with inter-industry, government, and c...

  3. Analytical modeling for heat transfer in sheared flows of nanofluids.

    Science.gov (United States)

    Ferrari, Claudio; Kaoui, Badr; L'vov, Victor S; Procaccia, Itamar; Rudenko, Oleksii; ten Thije Boonkkamp, J H M; Toschi, Federico

    2012-07-01

    We developed a model for the enhancement of the heat flux by spherical and elongated nanoparticles in sheared laminar flows of nanofluids. Besides the heat flux carried by the nanoparticles, the model accounts for the contribution of their rotation to the heat flux inside and outside the particles. The rotation of the nanoparticles has a twofold effect: it induces a fluid advection around the particle and it strongly influences the statistical distribution of particle orientations. These dynamical effects, which were not included in existing thermal models, are responsible for changing the thermal properties of flowing fluids as compared to quiescent fluids. The proposed model is strongly supported by extensive numerical simulations, demonstrating a potential increase of the heat flux far beyond the Maxwell-Garnett limit for the spherical nanoparticles. The road ahead, which should lead toward robust predictive models of heat flux enhancement, is discussed.

  4. Beyond the standard model with B and K physics

    International Nuclear Information System (INIS)

    Grossman, Y

    2003-01-01

    In the first part of the talk the flavor physics input to models beyond the standard model is described. One specific example of such new physics model is given: A model with bulk fermions in a non factorizable one extra dimension. In the second part of the talk we discuss several observables that are sensitive to new physics. We explain what type of new physics can produce deviations from the standard model predictions in each of these observables

  5. An analytical gate tunneling current model for MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Kazerouni, Iman Abaspur, E-mail: imanabaspur@gmail.com; Hosseini, Seyed Ebrahim [Sabzevar Tarbiat Moallem University, Electrical and Computer Department (Iran, Islamic Republic of)

    2012-03-15

    Gate tunneling current of MOSFETs is an important factor in modeling ultra small devices. In this paper, gate tunneling in present-generation MOSFETs is studied. In the proposed model, we calculate the electron wave function at the semiconductor-oxide interface and inversion charge by treating the inversion layer as a potential well, including some simplifying assumptions. Then we compute the gate tunneling current using the calculated wave function. The proposed model results have an excellent agreement with experimental results in the literature.

  6. Analytical modeling of nuclear power station operator reliability

    International Nuclear Information System (INIS)

    Sabri, Z.A.; Husseiny, A.A.

    1979-01-01

    The operator-plant interface is a critical component of power stations which requires the formulation of mathematical models to be applied in plant reliability analysis. The human model introduced here is based on cybernetic interactions and allows for use of available data from psychological experiments, hot and cold training and normal operation. The operator model is identified and integrated in the control and protection systems. The availability and reliability are given for different segments of the operator task and for specific periods of the operator life: namely, training, operation and vigilance or near retirement periods. The results can be easily and directly incorporated in system reliability analysis. (author)

  7. Cake filtration modeling: Analytical cake filtration model and filter medium characterization

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Michael

    2008-05-15

    Cake filtration is a unit operation to separate solids from fluids in industrial processes. The build up of a filter cake is usually accompanied with a decrease in overall permeability over the filter leading to an increased pressure drop over the filter. For an incompressible filter cake that builds up on a homogeneous filter cloth, a linear pressure drop profile over time is expected for a constant fluid volume flow. However, experiments show curved pressure drop profiles, which are also attributed to inhomogeneities of the filter (filter medium and/or residual filter cake). In this work, a mathematical filter model is developed to describe the relationship between time and overall permeability. The model considers a filter with an inhomogeneous permeability and accounts for fluid mechanics by a one-dimensional formulation of Darcy's law and for the cake build up by solid continuity. The model can be solved analytically in the time domain. The analytic solution allows for the unambiguous inversion of the model to determine the inhomogeneous permeability from the time resolved overall permeability, e.g. pressure drop measurements. An error estimation of the method is provided by rewriting the model as convolution transformation. This method is applied to simulated and experimental pressure drop data of gas filters with textile filter cloths and various situations with non-uniform flow situations in practical problems are explored. A routine is developed to generate characteristic filter cycles from semi-continuous filter plant operation. The model is modified to investigate the impact of non-uniform dust concentrations. (author). 34 refs., 40 figs., 1 tab

  8. Standardized training in nurse model travel clinics.

    Science.gov (United States)

    Sofarelli, Theresa A; Ricks, Jane H; Anand, Rahul; Hale, Devon C

    2011-01-01

    International travel plays a significant role in the emergence and redistribution of major human diseases. The importance of travel medicine clinics for preventing morbidity and mortality has been increasingly appreciated, although few studies have thus far examined the management and staff training strategies that result in successful travel-clinic operations. Here, we describe an example of travel-clinic operation and management coordinated through the University of Utah School of Medicine, Division of Infectious Diseases. This program, which involves eight separate clinics distributed statewide, functions both to provide patient consult and care services, as well as medical provider training and continuing medical education (CME). Initial training, the use of standardized forms and protocols, routine chart reviews and monthly continuing education meetings are the distinguishing attributes of this program. An Infectious Disease team consisting of one medical doctor (MD) and a physician assistant (PA) act as consultants to travel nurses who comprise the majority of clinic staff. Eight clinics distributed throughout the state of Utah serve approximately 6,000 travelers a year. Pre-travel medical services are provided by 11 nurses, including 10 registered nurses (RNs) and 1 licensed practical nurse (LPN). This trained nursing staff receives continuing travel medical education and participate in the training of new providers. All nurses have completed a full training program and 7 of the 11 (64%) of clinic nursing staff serve more than 10 patients a week. Quality assurance measures show that approximately 0.5% of charts reviewed contain a vaccine or prescription error which require patient notification for correction. Using an initial training program, standardized patient intake forms, vaccine and prescription protocols, preprinted prescriptions, and regular CME, highly trained nurses at travel clinics are able to provide standardized pre-travel care to

  9. Modification and validation of an analytical source model for external beam radiotherapy Monte Carlo dose calculations

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Scott E., E-mail: sedavids@utmb.edu [Radiation Oncology, The University of Texas Medical Branch, Galveston, Texas 77555 (United States); Cui, Jing [Radiation Oncology, University of Southern California, Los Angeles, California 90033 (United States); Kry, Stephen; Ibbott, Geoffrey S.; Followill, David S. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Deasy, Joseph O. [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York 10065 (United States); Vicic, Milos [Department of Applied Physics, University of Belgrade, Belgrade 11000 (Serbia); White, R. Allen [Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)

    2016-08-15

    Purpose: A dose calculation tool, which combines the accuracy of the dose planning method (DPM) Monte Carlo code and the versatility of a practical analytical multisource model, which was previously reported has been improved and validated for the Varian 6 and 10 MV linear accelerators (linacs). The calculation tool can be used to calculate doses in advanced clinical application studies. One shortcoming of current clinical trials that report dose from patient plans is the lack of a standardized dose calculation methodology. Because commercial treatment planning systems (TPSs) have their own dose calculation algorithms and the clinical trial participant who uses these systems is responsible for commissioning the beam model, variation exists in the reported calculated dose distributions. Today’s modern linac is manufactured to tight specifications so that variability within a linac model is quite low. The expectation is that a single dose calculation tool for a specific linac model can be used to accurately recalculate dose from patient plans that have been submitted to the clinical trial community from any institution. The calculation tool would provide for a more meaningful outcome analysis. Methods: The analytical source model was described by a primary point source, a secondary extra-focal source, and a contaminant electron source. Off-axis energy softening and fluence effects were also included. The additions of hyperbolic functions have been incorporated into the model to correct for the changes in output and in electron contamination with field size. A multileaf collimator (MLC) model is included to facilitate phantom and patient dose calculations. An offset to the MLC leaf positions was used to correct for the rudimentary assumed primary point source. Results: Dose calculations of the depth dose and profiles for field sizes 4 × 4 to 40 × 40 cm agree with measurement within 2% of the maximum dose or 2 mm distance to agreement (DTA) for 95% of the data

  10. Family Environment and Cognitive Development: Twelve Analytic Models

    Science.gov (United States)

    Walberg, Herbert J.; Marjoribanks, Kevin

    1976-01-01

    The review indicates that refined measures of the family environment and the use of complex statistical models increase the understanding of the relationships between socioeconomic status, sibling variables, family environment, and cognitive development. (RC)

  11. A semi-analytical bearing model considering outer race flexibility for model based bearing load monitoring

    Science.gov (United States)

    Kerst, Stijn; Shyrokau, Barys; Holweg, Edward

    2018-05-01

    This paper proposes a novel semi-analytical bearing model addressing flexibility of the bearing outer race structure. It furthermore presents the application of this model in a bearing load condition monitoring approach. The bearing model is developed as current computational low cost bearing models fail to provide an accurate description of the more and more common flexible size and weight optimized bearing designs due to their assumptions of rigidity. In the proposed bearing model raceway flexibility is described by the use of static deformation shapes. The excitation of the deformation shapes is calculated based on the modelled rolling element loads and a Fourier series based compliance approximation. The resulting model is computational low cost and provides an accurate description of the rolling element loads for flexible outer raceway structures. The latter is validated by a simulation-based comparison study with a well-established bearing simulation software tool. An experimental study finally shows the potential of the proposed model in a bearing load monitoring approach.

  12. Standard Model Constraints from the LHC

    International Nuclear Information System (INIS)

    Boonekamp, M.

    2007-01-01

    With our current knowledge limited by the absence of physics data, I review our expectations from standard processes measurements at the LHC. Focusing on charged and neutral current processes, I illustrate how their measurement will constrain our uncertainties on discovery physics, and give some arguments about our precision goal for the W mass measurement. Detailed analysis reveals that there is no reason to believe we can not measure this fundamental parameter to about 5 MeV. This sets a natural goal of about 500 MeV for the top mass; to decide whether this is realistic requires further investigation. (author)

  13. Advanced Video Activity Analytics (AVAA): Human Performance Model Report

    Science.gov (United States)

    2017-12-01

    effectively. The goal of the modeling effort is to provide an understanding of the current state of the system with respect to the impact on human ...representation of the human ‒ machine system. Third, task network modeling is relatively easy to use and understand . Lastly, it is more cost effective and can...and communication issues. Proceedings of the Human Factors and Ergonomics Society Annual Meeting. 2006;48(2):2396–2400. Reid GB, Colle HA

  14. Human performance modeling for system of systems analytics :soldier fatigue.

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, Craig R.; Campbell, James E.; Miller, Dwight Peter

    2005-10-01

    The military has identified Human Performance Modeling (HPM) as a significant requirement and challenge of future systems modeling and analysis initiatives as can be seen in the Department of Defense's (DoD) Defense Modeling and Simulation Office's (DMSO) Master Plan (DoD 5000.59-P 1995). To this goal, the military is currently spending millions of dollars on programs devoted to HPM in various military contexts. Examples include the Human Performance Modeling Integration (HPMI) program within the Air Force Research Laboratory, which focuses on integrating HPMs with constructive models of systems (e.g. cockpit simulations) and the Navy's Human Performance Center (HPC) established in September 2003. Nearly all of these initiatives focus on the interface between humans and a single system. This is insufficient in the era of highly complex network centric SoS. This report presents research and development in the area of HPM in a system-of-systems (SoS). Specifically, this report addresses modeling soldier fatigue and the potential impacts soldier fatigue can have on SoS performance.

  15. The role of analytical models: Issues and frontiers

    Energy Technology Data Exchange (ETDEWEB)

    Blair, P.

    1991-03-01

    A number of modeling attempts to analyze the implications of increasing competition in the electric power industry appeared in the early 1970s and occasionally throughout the early 1980s. Most of these of these analyses, however, considered only modest mechanisms to facilitate increased bulk power transactions between utility systems. More fundamental changes in market structure, such as the existence of independent power producers or wheeling transactions between customers and utility producers, were not considered. More recently in the course of the policy debate over increasing competition, a number of models have been used to analyze altemative scenarios of industry structure and regulation. In this Energy Modeling Forum (EMF) exercise, we attempted to challenge existing modeling frameworks beyond their original design capabilities. We tried to interpret altemative scenarios or other means of increasing competition in the electric power industry in the terms of existing modeling frameworks, to gain perspective using such models on how the different market players would interact, and to predict how electricity prices and other indicators of industry behavior might evolve under the altemative scenarios.

  16. The role of analytical models: Issues and frontiers

    International Nuclear Information System (INIS)

    Blair, P.

    1991-03-01

    A number of modeling attempts to analyze the implications of increasing competition in the electric power industry appeared in the early 1970s and occasionally throughout the early 1980s. Most of these of these analyses, however, considered only modest mechanisms to facilitate increased bulk power transactions between utility systems. More fundamental changes in market structure, such as the existence of independent power producers or wheeling transactions between customers and utility producers, were not considered. More recently in the course of the policy debate over increasing competition, a number of models have been used to analyze altemative scenarios of industry structure and regulation. In this Energy Modeling Forum (EMF) exercise, we attempted to challenge existing modeling frameworks beyond their original design capabilities. We tried to interpret altemative scenarios or other means of increasing competition in the electric power industry in the terms of existing modeling frameworks, to gain perspective using such models on how the different market players would interact, and to predict how electricity prices and other indicators of industry behavior might evolve under the altemative scenarios

  17. Analytical models approximating individual processes: a validation method.

    Science.gov (United States)

    Favier, C; Degallier, N; Menkès, C E

    2010-12-01

    Upscaling population models from fine to coarse resolutions, in space, time and/or level of description, allows the derivation of fast and tractable models based on a thorough knowledge of individual processes. The validity of such approximations is generally tested only on a limited range of parameter sets. A more general validation test, over a range of parameters, is proposed; this would estimate the error induced by the approximation, using the original model's stochastic variability as a reference. This method is illustrated by three examples taken from the field of epidemics transmitted by vectors that bite in a temporally cyclical pattern, that illustrate the use of the method: to estimate if an approximation over- or under-fits the original model; to invalidate an approximation; to rank possible approximations for their qualities. As a result, the application of the validation method to this field emphasizes the need to account for the vectors' biology in epidemic prediction models and to validate these against finer scale models. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. An analytical model for the description of the full-polarimetric sea surface Doppler signature

    NARCIS (Netherlands)

    Fois, F.; Hoogeboom, P.; Le Chevalier, F.; Stoffelen, A.

    2015-01-01

    This paper describes an analytical model of the full-polarimetric sea surface scattering and Doppler signature. The model combines the small-slope-approximation theory (at the second order) with a weak nonlinear sea surface representation. Such a model is used to examine the variation of the Doppler

  19. A hybrid analytical model for open-circuit field calculation of multilayer interior permanent magnet machines

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhen [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China); Xia, Changliang [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China); Tianjin Engineering Center of Electric Machine System Design and Control, Tianjin 300387 (China); Yan, Yan, E-mail: yanyan@tju.edu.cn [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China); Geng, Qiang [Tianjin Engineering Center of Electric Machine System Design and Control, Tianjin 300387 (China); Shi, Tingna [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)

    2017-08-01

    Highlights: • A hybrid analytical model is developed for field calculation of multilayer IPM machines. • The rotor magnetic field is calculated by the magnetic equivalent circuit method. • The field in the stator and air-gap is calculated by subdomain technique. • The magnetic scalar potential on rotor surface is modeled as trapezoidal distribution. - Abstract: Due to the complicated rotor structure and nonlinear saturation of rotor bridges, it is difficult to build a fast and accurate analytical field calculation model for multilayer interior permanent magnet (IPM) machines. In this paper, a hybrid analytical model suitable for the open-circuit field calculation of multilayer IPM machines is proposed by coupling the magnetic equivalent circuit (MEC) method and the subdomain technique. In the proposed analytical model, the rotor magnetic field is calculated by the MEC method based on the Kirchhoff’s law, while the field in the stator slot, slot opening and air-gap is calculated by subdomain technique based on the Maxwell’s equation. To solve the whole field distribution of the multilayer IPM machines, the coupled boundary conditions on the rotor surface are deduced for the coupling of the rotor MEC and the analytical field distribution of the stator slot, slot opening and air-gap. The hybrid analytical model can be used to calculate the open-circuit air-gap field distribution, back electromotive force (EMF) and cogging torque of multilayer IPM machines. Compared with finite element analysis (FEA), it has the advantages of faster modeling, less computation source occupying and shorter time consuming, and meanwhile achieves the approximate accuracy. The analytical model is helpful and applicable for the open-circuit field calculation of multilayer IPM machines with any size and pole/slot number combination.

  20. Coupling Numerical Methods and Analytical Models for Ducted Turbines to Evaluate Designs

    Directory of Open Access Journals (Sweden)

    Bradford Knight

    2018-04-01

    Full Text Available Hydrokinetic turbines extract energy from currents in oceans, rivers, and streams. Ducts can be used to accelerate the flow across the turbine to improve performance. The objective of this work is to couple an analytical model with a Reynolds averaged Navier–Stokes (RANS computational fluid dynamics (CFD solver to evaluate designs. An analytical model is derived for ducted turbines. A steady-state moving reference frame solver is used to analyze both the freestream and ducted turbine. A sliding mesh solver is examined for the freestream turbine. An efficient duct is introduced to accelerate the flow at the turbine. Since the turbine is optimized for operation in the freestream and not within the duct, there is a decrease in efficiency due to duct-turbine interaction. Despite the decrease in efficiency, the power extracted by the turbine is increased. The analytical model under-predicts the flow rejection from the duct that is predicted by CFD since the CFD predicts separation but the analytical model does not. Once the mass flow rate is corrected, the model can be used as a design tool to evaluate how the turbine-duct pair reduces mass flow efficiency. To better understand this phenomenon, the turbine is also analyzed within a tube with the analytical model and CFD. The analytical model shows that the duct’s mass flow efficiency reduces as a function of loading, showing that the system will be more efficient when lightly loaded. Using the conclusions of the analytical model, a more efficient ducted turbine system is designed. The turbine is pitched more heavily and the twist profile is adapted to the radial throat velocity profile.

  1. The thermal evolution of universe: standard model

    International Nuclear Information System (INIS)

    Nascimento, L.C.S. do.

    1975-08-01

    A description of the dynamical evolution of the Universe following a model based on the theory of General Relativity is made. The model admits the Cosmological principle,the principle of Equivalence and the Robertson-Walker metric (of which an original derivation is presented). In this model, the universe is considered as a perfect fluid, ideal and symmetric relatively to the number of particles and antiparticles. The thermodynamic relations deriving from these hypothesis are derived, and from them the several eras of the thermal evolution of the universe are established. Finally, the problems arising from certain specific predictions of the model are studied, and the predictions of the abundances of the elements according to nucleosynthesis and the actual behavior of the universe are analysed in detail. (author) [pt

  2. A Semi-Analytical Model for Dispersion Modelling Studies in the Atmospheric Boundary Layer

    Science.gov (United States)

    Gupta, A.; Sharan, M.

    2017-12-01

    The severe impact of harmful air pollutants has always been a cause of concern for a wide variety of air quality analysis. The analytical models based on the solution of the advection-diffusion equation have been the first and remain the convenient way for modeling air pollutant dispersion as it is easy to handle the dispersion parameters and related physics in it. A mathematical model describing the crosswind integrated concentration is presented. The analytical solution to the resulting advection-diffusion equation is limited to a constant and simple profiles of eddy diffusivity and wind speed. In practice, the wind speed depends on the vertical height above the ground and eddy diffusivity profiles on the downwind distance from the source as well as the vertical height. In the present model, a method of eigen-function expansion is used to solve the resulting partial differential equation with the appropriate boundary conditions. This leads to a system of first order ordinary differential equations with a coefficient matrix depending on the downwind distance. The solution of this system, in general, can be expressed in terms of Peano-baker series which is not easy to compute, particularly when the coefficient matrix becomes non-commutative (Martin et al., 1967). An approach based on Taylor's series expansion is introduced to find the numerical solution of first order system. The method is applied to various profiles of wind speed and eddy diffusivities. The solution computed from the proposed methodology is found to be efficient and accurate in comparison to those available in the literature. The performance of the model is evaluated with the diffusion datasets from Copenhagen (Gryning et al., 1987) and Hanford (Doran et al., 1985). In addition, the proposed method is used to deduce three dimensional concentrations by considering the Gaussian distribution in crosswind direction, which is also evaluated with diffusion data corresponding to a continuous point source.

  3. Analytical and regression models of glass rod drawing process

    Science.gov (United States)

    Alekseeva, L. B.

    2018-03-01

    The process of drawing glass rods (light guides) is being studied. The parameters of the process affecting the quality of the light guide have been determined. To solve the problem, mathematical models based on general equations of continuum mechanics are used. The conditions for the stable flow of the drawing process have been found, which are determined by the stability of the motion of the glass mass in the formation zone to small uncontrolled perturbations. The sensitivity of the formation zone to perturbations of the drawing speed and viscosity is estimated. Experimental models of the drawing process, based on the regression analysis methods, have been obtained. These models make it possible to customize a specific production process to obtain light guides of the required quality. They allow one to find the optimum combination of process parameters in the chosen area and to determine the required accuracy of maintaining them at a specified level.

  4. A splitting technique for analytical modelling of two-phase multicomponent flow in porous media

    DEFF Research Database (Denmark)

    Pires, A.P.; Bedrikovetsky, P.G.; Shapiro, Alexander

    2006-01-01

    In this paper we discuss one-dimensional models for two-phase Enhanced Oil Recovery (EOR) floods (oil displacement by gases, polymers, carbonized water, hot water, etc.). The main result presented here is the splitting of the EOR mathematical model into thermodynamical and hydrodynamical parts...... formation water for chemical flooding can be calculated from the reduced auxiliary system. Reduction of the number of equations allows the generation of new analytical models for EOR. The analytical model for displacement of oil by a polymer slug with water drive is presented....

  5. An Analytic Approach to Developing Transport Threshold Models of Neoclassical Tearing Modes in Tokamaks

    International Nuclear Information System (INIS)

    Mikhailovskii, A.B.; Shirokov, M.S.; Konovalov, S.V.; Tsypin, V.S.

    2005-01-01

    Transport threshold models of neoclassical tearing modes in tokamaks are investigated analytically. An analysis is made of the competition between strong transverse heat transport, on the one hand, and longitudinal heat transport, longitudinal heat convection, longitudinal inertial transport, and rotational transport, on the other hand, which leads to the establishment of the perturbed temperature profile in magnetic islands. It is shown that, in all these cases, the temperature profile can be found analytically by using rigorous solutions to the heat conduction equation in the near and far regions of a chain of magnetic islands and then by matching these solutions. Analytic expressions for the temperature profile are used to calculate the contribution of the bootstrap current to the generalized Rutherford equation for the island width evolution with the aim of constructing particular transport threshold models of neoclassical tearing modes. Four transport threshold models, differing in the underlying competing mechanisms, are analyzed: collisional, convective, inertial, and rotational models. The collisional model constructed analytically is shown to coincide exactly with that calculated numerically; the reason is that the analytical temperature profile turns out to be the same as the numerical profile. The results obtained can be useful in developing the next generation of general threshold models. The first steps toward such models have already been made

  6. Semi-analytical wave functions in relativistic average atom model for high-temperature plasmas

    International Nuclear Information System (INIS)

    Guo Yonghui; Duan Yaoyong; Kuai Bin

    2007-01-01

    The semi-analytical method is utilized for solving a relativistic average atom model for high-temperature plasmas. Semi-analytical wave function and the corresponding energy eigenvalue, containing only a numerical factor, are obtained by fitting the potential function in the average atom into hydrogen-like one. The full equations for the model are enumerated, and more attentions are paid upon the detailed procedures including the numerical techniques and computer code design. When the temperature of plasmas is comparatively high, the semi-analytical results agree quite well with those obtained by using a full numerical method for the same model and with those calculated by just a little different physical models, and the result's accuracy and computation efficiency are worthy of note. The drawbacks for this model are also analyzed. (authors)

  7. Analytical results for the Sznajd model of opinion formation

    Czech Academy of Sciences Publication Activity Database

    Slanina, František; Lavička, H.

    2003-01-01

    Roč. 35, - (2003), s. 279-288 ISSN 1434-6028 R&D Projects: GA ČR GA202/01/1091 Institutional research plan: CEZ:AV0Z1010914 Keywords : agent models * sociophysics Subject RIV: BE - Theoretical Physics Impact factor: 1.457, year: 2003

  8. New decision analytical models for management of intracranial aneurysms

    NARCIS (Netherlands)

    Koffijberg, H.

    2008-01-01

    This thesis addresses decision analysis, cost-effectiveness models and the analysis of heterogeneity, applied to intracranial aneurysms and subarachnoid hemorrhage (SAH). Subarachnoid hemorrhage is a subset of stroke that usually occurs at relatively young age and has poor prognosis. Although, the

  9. An Analytic Model Approach to the Frequency of Exoplanets

    Science.gov (United States)

    Traub, Wesley A.

    2016-10-01

    The underlying population of exoplanets around stars in the Kepler sample can be inferred by a simulation that includes binning the Kepler planets in radius and period, invoking an empirical noise model, assuming a model exoplanet distribution function, randomly assigning planets to each of the Kepler target stars, asking whether each planet's transit signal could be detected by Kepler, binning the resulting simulated detections, comparing the simulations with the observed data sample, and iterating on the model parameters until a satisfactory fit is obtained. The process is designed to simulate the Kepler observing procedure. The key assumption is that the distribution function is the product of separable functions of period and radius. Any additional suspected biases in the sample can be handled by adjusting the noise model or selective editing of the range of input planets. An advantage of this overall procedure is that it is a forward calculation designed to simulate the observed data, subject to a presumed underlying population distribution, minimizing the effect of bin-to-bin fluctuations. Another advantage is that the resulting distribution function can be extended to values of period and radius that go beyond the sample space, including, for example, application to estimating eta-sub-Earth, and also estimating the expected science yields of future direct-imaging exoplanet missions such as WFIRST-AFTA.

  10. An improved analytical model of diffusion through the RIST target

    CERN Document Server

    Bennett, J R J

    2003-01-01

    The diffusion and effusion through the RIST target is calculated using a more realistic model than previously. Extremely good fits to the data are obtained and new values of the time constants of effusion through the target and the ioniser are found.

  11. An Analytical Model for Fatigue Life Prediction Based on Fracture Mechanics and Crack Closure

    DEFF Research Database (Denmark)

    Ibsø, Jan Behrend; Agerskov, Henning

    1996-01-01

    test specimens are compared with fatigue life predictions using a fracture mechanics approach. In the calculation of the fatigue life, the influence of the welding residual stresses and crack closure on the fatigue crack growth is considered. A description of the crack closure model for analytical...... determination of the fatigue life is included. Furthermore, the results obtained in studies of the various parameters that have an influence on the fatigue life, are given. A very good agreement between experimental and analytical results is obtained, when the crack closure model is used in determination...... of the analytical fatigue lives. Both the analytical and experimental results obtained show that the Miner rule may give quite unconservative predictions of the fatigue life for the types of stochastic loading studied....

  12. An Analytical Model for Fatigue Life Prediction Based on Fracture Mechanics and Crack Closure

    DEFF Research Database (Denmark)

    Ibsø, Jan Behrend; Agerskov, Henning

    1996-01-01

    test specimens are compared with fatigue life predictions using a fracture mechanics approach. In the calculation of the fatigue life, the influence of the welding residual stresses and crack closure on the fatigue crack growth is considered. A description of the crack closure model for analytical...... of the analytical fatigue lives. Both the analytical and experimental results obtained show that the Miner rule may give quite unconservative predictions of the fatigue life for the types of stochastic loading studied....... determination of the fatigue life is included. Furthermore, the results obtained in studies of the various parameters that have an influence on the fatigue life, are given. A very good agreement between experimental and analytical results is obtained, when the crack closure model is used in determination...

  13. A 'theory of everything'? [Extending the Standard Model

    International Nuclear Information System (INIS)

    Ross, G.G.

    1993-01-01

    The Standard Model provides us with an amazingly successful theory of the strong, weak and electromagnetic interactions. Despite this, many physicists believe it represents only a step towards understanding the ultimate ''theory of everything''. In this article we describe why the Standard Model is thought to be incomplete and some of the suggestions for its extension. (Author)

  14. Standard Model Higgs boson searches with the ATLAS detector

    Indian Academy of Sciences (India)

    The experimental results on the search of the Standard Model Higgs boson with 1 to 2 fb-1 of proton–proton collision data at s = 7 TeV recorded by the ATLAS detector are presented and discussed. No significant excess of events is found with respect to the expectations from Standard Model processes, and the production ...

  15. Can An Amended Standard Model Account For Cold Dark Matter?

    International Nuclear Information System (INIS)

    Goldhaber, Maurice

    2004-01-01

    It is generally believed that one has to invoke theories beyond the Standard Model to account for cold dark matter particles. However, there may be undiscovered universal interactions that, if added to the Standard Model, would lead to new members of the three generations of elementary fermions that might be candidates for cold dark matter particles

  16. Electroweak symmetry breaking beyond the Standard Model

    International Nuclear Information System (INIS)

    Bhattacharyya, Gautam

    2012-01-01

    In this paper, two key issues related to electroweak symmetry breaking are addressed. First, how fine-tuned different models are that trigger this phenomenon? Second, even if a light Higgs boson exists, does it have to be necessarily elementary? After a brief introduction, the fine-tuning aspects of the MSSM, NMSSM, generalized NMSSM and GMSB scenarios shall be reviewed, then the little Higgs, composite Higgs and the Higgsless models shall be compared. Finally, a broad overview will be given on where we stand at the end of 2011. (author)

  17. A Model-Driven Methodology for Big Data Analytics-as-a-Service

    OpenAIRE

    Damiani, Ernesto; Ardagna, Claudio Agostino; Ceravolo, Paolo; Bellandi, Valerio; Bezzi, Michele; Hebert, Cedric

    2017-01-01

    The Big Data revolution has promised to build a data-driven ecosystem where better decisions are supported by enhanced analytics and data management. However, critical issues still need to be solved in the road that leads to commodization of Big Data Analytics, such as the management of Big Data complexity and the protection of data security and privacy. In this paper, we focus on the first issue and propose a methodology based on Model Driven Engineering (MDE) that aims to substantially lowe...

  18. Analytic properties of the Ruelle ζ-function for mean field models of phase transition

    International Nuclear Information System (INIS)

    Hallerberg, Sarah; Just, Wolfram; Radons, Guenter

    2005-01-01

    We evaluate by analytical means the Ruelle ζ-function for a spin model with global coupling. The implications of the ferromagnetic phase transitions for the analytical properties of the ζ-function are discussed in detail. In the paramagnetic phase the ζ-function develops a single branch point. In the low-temperature regime two branch points appear which correspond to the ferromagnetic state and the metastable state. The results are typical for any Ginsburg-Landau-type phase transition

  19. Analytical study for Japan's energy system with MARKAL model

    International Nuclear Information System (INIS)

    Koyama, Shigeo; Kashihara, Toshinori; Endo, Eiichi

    1984-01-01

    Taking part in the 1982 collaboration activity of the Energy Technology Systems Analysis Project (ETSAP), which was started in November, 1980 by the International Energy Agency (IEA), the authors have analyzed extensive scenarios, including common scenarios of the Project, using a version of energy system model MARKAL programmed by their group and input data set up with various ideas. Important points to be considered in conducting the analysis and noteworthy results obtained from the analysis of Japan's energy systems are given. (AUTHOR)

  20. Analytical modeling for thermal errors of motorized spindle unit

    OpenAIRE

    Liu, Teng; Gao, Weiguo; Zhang, Dawei; Zhang, Yifan; Chang, Wenfen; Liang, Cunman; Tian, Yanling

    2017-01-01

    Modeling method investigation about spindle thermal errors is significant for spindle thermal optimization in design phase. To accurately analyze the thermal errors of motorized spindle unit, this paper assumes approximately that 1) spindle linear thermal error on axial direction is ascribed to shaft thermal elongation for its heat transfer from bearings, and 2) spindle linear thermal errors on radial directions and angular thermal errors are attributed to thermal variations of bearing relati...