A parallel row-based algorithm for standard cell placement with integrated error control
Sargent, Jeff S.; Banerjee, Prith
1989-01-01
A new row-based parallel algorithm for standard-cell placement targeted for execution on a hypercube multiprocessor is presented. Key features of this implementation include a dynamic simulated-annealing schedule, row-partitioning of the VLSI chip image, and two novel approaches to control error in parallel cell-placement algorithms: (1) Heuristic Cell-Coloring; (2) Adaptive Sequence Length Control.
DEFF Research Database (Denmark)
Bron, Esther E.; Smits, Marion; van der Flier, Wiesje M.
2015-01-01
Abstract Algorithms for computer-aided diagnosis of dementia based on structural MRI have demonstrated high performance in the literature, but are difficult to compare as different data sets and methodology were used for evaluation. In addition, it is unclear how the algorithms would perform...... on previously unseen data, and thus, how they would perform in clinical practice when there is no real opportunity to adapt the algorithm to the data at hand. To address these comparability, generalizability and clinical applicability issues, we organized a grand challenge that aimed to objectively compare......, patients with mild cognitive impairment and healthy controls. The diagnosis based on clinical criteria was used as reference standard, as it was the best available reference despite its known limitations. For evaluation, a previously unseen test set was used consisting of 354 T1-weighted MRI scans...
Jha, Abhinav K; Kupinski, Matthew A; Rodríguez, Jeffrey J; Stephen, Renu M; Stopeck, Alison T
2012-07-07
In many studies, the estimation of the apparent diffusion coefficient (ADC) of lesions in visceral organs in diffusion-weighted (DW) magnetic resonance images requires an accurate lesion-segmentation algorithm. To evaluate these lesion-segmentation algorithms, region-overlap measures are used currently. However, the end task from the DW images is accurate ADC estimation, and the region-overlap measures do not evaluate the segmentation algorithms on this task. Moreover, these measures rely on the existence of gold-standard segmentation of the lesion, which is typically unavailable. In this paper, we study the problem of task-based evaluation of segmentation algorithms in DW imaging in the absence of a gold standard. We first show that using manual segmentations instead of gold-standard segmentations for this task-based evaluation is unreliable. We then propose a method to compare the segmentation algorithms that does not require gold-standard or manual segmentation results. The no-gold-standard method estimates the bias and the variance of the error between the true ADC values and the ADC values estimated using the automated segmentation algorithm. The method can be used to rank the segmentation algorithms on the basis of both the ensemble mean square error and precision. We also propose consistency checks for this evaluation technique.
Sargent, Jeff Scott
1988-01-01
A new row-based parallel algorithm for standard-cell placement targeted for execution on a hypercube multiprocessor is presented. Key features of this implementation include a dynamic simulated-annealing schedule, row-partitioning of the VLSI chip image, and two novel new approaches to controlling error in parallel cell-placement algorithms; Heuristic Cell-Coloring and Adaptive (Parallel Move) Sequence Control. Heuristic Cell-Coloring identifies sets of noninteracting cells that can be moved repeatedly, and in parallel, with no buildup of error in the placement cost. Adaptive Sequence Control allows multiple parallel cell moves to take place between global cell-position updates. This feedback mechanism is based on an error bound derived analytically from the traditional annealing move-acceptance profile. Placement results are presented for real industry circuits and the performance is summarized of an implementation on the Intel iPSC/2 Hypercube. The runtime of this algorithm is 5 to 16 times faster than a previous program developed for the Hypercube, while producing equivalent quality placement. An integrated place and route program for the Intel iPSC/2 Hypercube is currently being developed.
Directory of Open Access Journals (Sweden)
Ari Muzakir
2017-05-01
Full Text Available Ease of deployment of digital image through the internet has positive and negative sides, especially for owners of the original digital image. The positive side of the ease of rapid deployment is the owner of that image deploys digital image files to various sites in the world address. While the downside is that if there is no copyright that serves as protector of the image it will be very easily recognized ownership by other parties. Watermarking is one solution to protect the copyright and know the results of the digital image. With Digital Image Watermarking, copyright resulting digital image will be protected through the insertion of additional information such as owner information and the authenticity of the digital image. The least significant bit (LSB is one of the algorithm is simple and easy to understand. The results of the simulations carried out using android smartphone shows that the LSB watermarking technique is not able to be seen by naked human eye, meaning there is no significant difference in the image of the original files with images that have been inserted watermarking. The resulting image has dimensions of 640x480 with a bit depth of 32 bits. In addition, to determine the function of the ability of the device (smartphone in processing the image using this application used black box testing.
Balzi, Daniela; Barchielli, Alessandro; Battistella, Giuseppe; Gnavi, Roberto; Inio, Andrea; Tessari, Roberta; Picariello, Roberta; Canova, Cristina; Simonato, Lorenzo
2008-01-01
to define an algorithm to estimate prevalence of ischemic heart disease from health administrative datasets. four Italian areas: Venezia, Treviso, Torino, Firenze. resident population in the four areas in the period 2002-2004 (only 2003 for Firenze) for a total of 2,350,000 inhabitants in 2003. annual crude and standardized prevalence rate (x100 inhabitants), 95% confidence intervals by area. Quality (comparability and coherence) indicators are also reported the algorithm is based on record linkage of hospital discharges (SDO), pharmacological prescriptions (PF), exemptions from health-tax exemptions (ET) and causes of mortality (CM). From SDO we extracted discharges for ICD9-CM codes 410*-414* in all diagnoses in the estimation year and during the four years immediately preceding. We selected from PF subjects with at least two prescriptions of organic nitrates (ATC = C01DA*) in the estimation year. From ET subjects with a new exemption for ischemic heart disease (002.414) or who obtained exemption in the three years preceding, were selected. We also considered all deaths in the year for ischemic heart disease (ICD9 CM 410-414). Cases were defined as ischemic heart disease prevalent cases if they were extracted at least once from one of the datasets and if they were alive on January 1 of the estimation year. estimated crude prevalence ranges from 2.5 to 4%. The standardized prevalence led to a narrower range of values (2.8-3.3%). Venezia and Firenze show a higher standardized prevalence in both sexes (men 4.7% and 4.4%; women 2.3% and 2.2% respectively); Treviso and Torino present a lower standardized prevalence (men: 3.9%; women: 1.9%). The hospital discharges are the main source to identify prevalent subjects (34-48% of subjects are solely identified by SDO), pharmacological prescriptions are a relevant source in Firenze and Torino (27-28%), while they are less relevant in Venezia and Treviso (13-15%). ET shows a different contribution to prevalent case
Opposition-Based Adaptive Fireworks Algorithm
Directory of Open Access Journals (Sweden)
Chibing Gong
2016-07-01
Full Text Available A fireworks algorithm (FWA is a recent swarm intelligence algorithm that is inspired by observing fireworks explosions. An adaptive fireworks algorithm (AFWA proposes additional adaptive amplitudes to improve the performance of the enhanced fireworks algorithm (EFWA. The purpose of this paper is to add opposition-based learning (OBL to AFWA with the goal of further boosting performance and achieving global optimization. Twelve benchmark functions are tested in use of an opposition-based adaptive fireworks algorithm (OAFWA. The final results conclude that OAFWA significantly outperformed EFWA and AFWA in terms of solution accuracy. Additionally, OAFWA was compared with a bat algorithm (BA, differential evolution (DE, self-adapting control parameters in differential evolution (jDE, a firefly algorithm (FA, and a standard particle swarm optimization 2011 (SPSO2011 algorithm. The research results indicate that OAFWA ranks the highest of the six algorithms for both solution accuracy and runtime cost.
Directory of Open Access Journals (Sweden)
Wilke MH
2011-12-01
Full Text Available Abstract Introduction The management of bloodstream infections especially sepsis is a difficult task. An optimal antibiotic therapy (ABX is paramount for success. Procalcitonin (PCT is a well investigated biomarker that allows close monitoring of the infection and management of ABX. It has proven to be a cost-efficient diagnostic tool. In Diagnoses Related Groups (DRG based reimbursement systems, hospitals get only a fixed amount of money for certain treatments. Thus it's very important to obtain an optimal balance of clinical treatment and resource consumption namely the length of stay in hospital and especially in the Intensive Care Unit (ICU. We investigated which economic effects an optimized PCT-based algorithm for antibiotic management could have. Materials and methods We collected inpatient episode data from 16 hospitals. These data contain administrative and clinical information such as length of stay, days in the ICU or diagnoses and procedures. From various RCTs and reviews there are different algorithms for the use of PCT to manage ABX published. Moreover RCTs and meta-analyses have proven possible savings in days of ABX (ABD and length of stay in ICU (ICUD. As the meta-analyses use studies on different patient populations (pneumonia, sepsis, other bacterial infections, we undertook a short meta-analyses of 6 relevant studies investigating in sepsis or ventilator associated pneumonia (VAP. From this analyses we obtained savings in ABD and ICUD by calculating the weighted mean differences. Then we designed a new PCT-based algorithm using results from two very recent reviews. The algorithm contains evidence from several studies. From the patient data we calculated cost estimates using German National standard costing information for the German G-DRG system. We developed a simulation model where the possible savings and the extra costs for (in average 8 PCT tests due to our algorithm were brought into equation. Results We calculated ABD
PDES, Fips Standard Data Encryption Algorithm
International Nuclear Information System (INIS)
Nessett, D.N.
1991-01-01
Description of program or function: PDES performs the National Bureau of Standards FIPS Pub. 46 data encryption/decryption algorithm used for the cryptographic protection of computer data. The DES algorithm is designed to encipher and decipher blocks of data consisting of 64 bits under control of a 64-bit key. The key is generated in such a way that each of the 56 bits used directly by the algorithm are random and the remaining 8 error-detecting bits are set to make the parity of each 8-bit byte of the key odd, i. e. there is an odd number of '1' bits in each 8-bit byte. Each member of a group of authorized users of encrypted computer data must have the key that was used to encipher the data in order to use it. Data can be recovered from cipher only by using exactly the same key used to encipher it, but with the schedule of addressing the key bits altered so that the deciphering process is the reverse of the enciphering process. A block of data to be enciphered is subjected to an initial permutation, then to a complex key-dependent computation, and finally to a permutation which is the inverse of the initial permutation. Two PDES routines are included; both perform the same calculation. One, identified as FDES.MAR, is designed to achieve speed in execution, while the other identified as PDES.MAR, presents a clearer view of how the algorithm is executed
Water cycle algorithm: A detailed standard code
Sadollah, Ali; Eskandar, Hadi; Lee, Ho Min; Yoo, Do Guen; Kim, Joong Hoon
Inspired by the observation of the water cycle process and movements of rivers and streams toward the sea, a population-based metaheuristic algorithm, the water cycle algorithm (WCA) has recently been proposed. Lately, an increasing number of WCA applications have appeared and the WCA has been utilized in different optimization fields. This paper provides detailed open source code for the WCA, of which the performance and efficiency has been demonstrated for solving optimization problems. The WCA has an interesting and simple concept and this paper aims to use its source code to provide a step-by-step explanation of the process it follows.
Alignment of Custom Standards by Machine Learning Algorithms
Directory of Open Access Journals (Sweden)
Adela Sirbu
2010-09-01
Full Text Available Building an efficient model for automatic alignment of terminologies would bring a significant improvement to the information retrieval process. We have developed and compared two machine learning based algorithms whose aim is to align 2 custom standards built on a 3 level taxonomy, using kNN and SVM classifiers that work on a vector representation consisting of several similarity measures. The weights utilized by the kNN were optimized with an evolutionary algorithm, while the SVM classifier's hyper-parameters were optimized with a grid search algorithm. The database used for train was semi automatically obtained by using the Coma++ tool. The performance of our aligners is shown by the results obtained on the test set.
[Standard algorithm of molecular typing of Yersinia pestis strains].
Eroshenko, G A; Odinokov, G N; Kukleva, L M; Pavlova, A I; Krasnov, Ia M; Shavina, N Iu; Guseva, N P; Vinogradova, N A; Kutyrev, V V
2012-01-01
Development of the standard algorithm of molecular typing of Yersinia pestis that ensures establishing of subspecies, biovar and focus membership of the studied isolate. Determination of the characteristic strain genotypes of plague infectious agent of main and nonmain subspecies from various natural foci of plague of the Russian Federation and the near abroad. Genotyping of 192 natural Y. pestis strains of main and nonmain subspecies was performed by using PCR methods, multilocus sequencing and multilocus analysis of variable tandem repeat number. A standard algorithm of molecular typing of plague infectious agent including several stages of Yersinia pestis differentiation by membership: in main and nonmain subspecies, various biovars of the main subspecies, specific subspecies; natural foci and geographic territories was developed. The algorithm is based on 3 typing methods--PCR, multilocus sequence typing and multilocus analysis of variable tandem repeat number using standard DNA targets--life support genes (terC, ilvN, inv, glpD, napA, rhaS and araC) and 7 loci of variable tandem repeats (ms01, ms04, ms06, ms07, ms46, ms62, ms70). The effectiveness of the developed algorithm is shown on the large number of natural Y. pestis strains. Characteristic sequence types of Y. pestis strains of various subspecies and biovars as well as MLVA7 genotypes of strains from natural foci of plague of the Russian Federation and the near abroad were established. The application of the developed algorithm will increase the effectiveness of epidemiologic monitoring of plague infectious agent, and analysis of epidemics and outbreaks of plague with establishing the source of origin of the strain and routes of introduction of the infection.
Suzuki, Shigeru; Machida, Haruhiko; Tanaka, Isao; Ueno, Eiko
2013-03-01
The purpose of this study was to evaluate the performance of model-based iterative reconstruction (MBIR) in measurement of the inner diameter of models of blood vessels and compare performance between MBIR and a standard filtered back projection (FBP) algorithm. Vascular models with wall thicknesses of 0.5, 1.0, and 1.5 mm were scanned with a 64-MDCT unit and densities of contrast material yielding 275, 396, and 542 HU. Images were reconstructed images by MBIR and FBP, and the mean diameter of each model vessel was measured by software automation. Twenty separate measurements were repeated for each vessel, and variance among the repeated measures was analyzed for determination of measurement error. For all nine model vessels, CT attenuation profiles were compared along a line passing through the luminal center on axial images reconstructed with FBP and MBIR, and the 10-90% edge rise distances at the boundary between the vascular wall and the lumen were evaluated. For images reconstructed with FBP, measurement errors were smallest for models with 1.5-mm wall thickness, except those filled with 275-HU contrast material, and errors grew as the density of the contrast material decreased. Measurement errors with MBIR were comparable to or less than those with FBP. In CT attenuation profiles of images reconstructed with MBIR, the 10-90% edge rise distances at the boundary between the lumen and vascular wall were relatively short for each vascular model compared with those of the profile curves of FBP images. MBIR is better than standard FBP for reducing reconstruction blur and improving the accuracy of diameter measurement at CT angiography.
Raveh, Ira; Koichu, Boris; Peled, Irit; Zaslavsky, Orit
2016-01-01
In this article we present an integrative framework of knowledge for teaching the standard algorithms of the four basic arithmetic operations. The framework is based on a mathematical analysis of the algorithms, a connectionist perspective on teaching mathematics and an analogy with previous frameworks of knowledge for teaching arithmetic…
Directory of Open Access Journals (Sweden)
A. S. Poljakov
2014-01-01
Full Text Available The data on the characteristics of international standard algorithms «lightweight cryptography» while application in hardware implementation based on microchips of FPGA are provided. A compari-son of the characteristics of these algorithms with the characteristics of several widely-used standard encryption algorithms is made and possibilities of lightweight cryptography algorithms are evaluated.
DEFF Research Database (Denmark)
Jensen, Søren Tapdrup
2014-01-01
ISO 12647-2 specifies CIELAB values for primary and secondary colors, but only tolerances for the primary solid colors. Press operators in lithography still favor density measurements for process control to assure quality and reproducibility during a production run. Since there is no direct...... that the algorithm has high degree of accuracy in predicting the ink layer thickness that conforms to ISO 12647-2 aim point, but errors in the prediction occur when the measured sum of the secondary colors have a low ∆Eab to the standard....
Structure-Based Algorithms for Microvessel Classification
Smith, Amy F.
2015-02-01
© 2014 The Authors. Microcirculation published by John Wiley & Sons Ltd. Objective: Recent developments in high-resolution imaging techniques have enabled digital reconstruction of three-dimensional sections of microvascular networks down to the capillary scale. To better interpret these large data sets, our goal is to distinguish branching trees of arterioles and venules from capillaries. Methods: Two novel algorithms are presented for classifying vessels in microvascular anatomical data sets without requiring flow information. The algorithms are compared with a classification based on observed flow directions (considered the gold standard), and with an existing resistance-based method that relies only on structural data. Results: The first algorithm, developed for networks with one arteriolar and one venular tree, performs well in identifying arterioles and venules and is robust to parameter changes, but incorrectly labels a significant number of capillaries as arterioles or venules. The second algorithm, developed for networks with multiple inlets and outlets, correctly identifies more arterioles and venules, but is more sensitive to parameter changes. Conclusions: The algorithms presented here can be used to classify microvessels in large microvascular data sets lacking flow information. This provides a basis for analyzing the distinct geometrical properties and modelling the functional behavior of arterioles, capillaries, and venules.
Glatard, T; Pennec, X
2006-01-01
Medical image registration is pre-processing needed for many medical image analysis procedures. A very large number of registration algorithms are available today, but their performance is often not known and very difficult to assess due to the lack of gold standard. The Bronze Standard algorithm is a very data and compute intensive statistical approach for quantifying registration algorithms accuracy. In this paper, we describe the Bronze Standard application and we discuss the need for grids to tackle such computations on medical image databases. We demonstrate MOTEUR, a service-based workflow engine optimized for dealing with data intensive applications. MOTEUR eases the enactment of the Bronze Standard and similar applications on the EGEE production grid infrastructure. It is a generic workflow engine, based on current standards and freely available, that can be used to instrument legacy application code at low cost.
Hybrid employment recommendation algorithm based on Spark
Li, Zuoquan; Lin, Yubei; Zhang, Xingming
2017-08-01
Aiming at the real-time application of collaborative filtering employment recommendation algorithm (CF), a clustering collaborative filtering recommendation algorithm (CCF) is developed, which applies hierarchical clustering to CF and narrows the query range of neighbour items. In addition, to solve the cold-start problem of content-based recommendation algorithm (CB), a content-based algorithm with users’ information (CBUI) is introduced for job recommendation. Furthermore, a hybrid recommendation algorithm (HRA) which combines CCF and CBUI algorithms is proposed, and implemented on Spark platform. The experimental results show that HRA can overcome the problems of cold start and data sparsity, and achieve good recommendation accuracy and scalability for employment recommendation.
Opposition-Based Adaptive Fireworks Algorithm
Chibing Gong
2016-01-01
A fireworks algorithm (FWA) is a recent swarm intelligence algorithm that is inspired by observing fireworks explosions. An adaptive fireworks algorithm (AFWA) proposes additional adaptive amplitudes to improve the performance of the enhanced fireworks algorithm (EFWA). The purpose of this paper is to add opposition-based learning (OBL) to AFWA with the goal of further boosting performance and achieving global optimization. Twelve benchmark functions are tested in use of an opposition-based a...
Directory of Open Access Journals (Sweden)
Waqas Javaid
2014-09-01
Full Text Available Though there are a number of benefits associated with cellular manufacturing systems, its implementation (identification of part families and corresponding machine groups for real life problems is still a challenging task. To handle the complexity of optimizing multiple objectives and larger size of the problem, most of the researchers in the past two decades or so have focused on developing genetic algorithm (GA based techniques. Recently this trend has shifted from standard GA to hybrid GA (HGA based approaches in the quest for greater effectiveness as far as convergence on to the optimum solution is concerned. In order to prove the point, that HGAs possess better convergence abilities than standard GAs, a methodology, initially based on standard GA and later on hybridized with a local search heuristic (LSH, has been developed during this research. Computational experience shows that HGA maintains its accuracy level with increase in problem size, whereas standard GA looses its effectiveness as the problem size grows.
Normalization based K means Clustering Algorithm
Virmani, Deepali; Taneja, Shweta; Malhotra, Geetika
2015-01-01
K-means is an effective clustering technique used to separate similar data into groups based on initial centroids of clusters. In this paper, Normalization based K-means clustering algorithm(N-K means) is proposed. Proposed N-K means clustering algorithm applies normalization prior to clustering on the available data as well as the proposed approach calculates initial centroids based on weights. Experimental results prove the betterment of proposed N-K means clustering algorithm over existing...
A review of lossless audio compression standards and algorithms
Muin, Fathiah Abdul; Gunawan, Teddy Surya; Kartiwi, Mira; Elsheikh, Elsheikh M. A.
2017-09-01
Over the years, lossless audio compression has gained popularity as researchers and businesses has become more aware of the need for better quality and higher storage demand. This paper will analyse various lossless audio coding algorithm and standards that are used and available in the market focusing on Linear Predictive Coding (LPC) specifically due to its popularity and robustness in audio compression, nevertheless other prediction methods are compared to verify this. Advanced representation of LPC such as LSP decomposition techniques are also discussed within this paper.
Smell Detection Agent Based Optimization Algorithm
Vinod Chandra, S. S.
2016-09-01
In this paper, a novel nature-inspired optimization algorithm has been employed and the trained behaviour of dogs in detecting smell trails is adapted into computational agents for problem solving. The algorithm involves creation of a surface with smell trails and subsequent iteration of the agents in resolving a path. This algorithm can be applied in different computational constraints that incorporate path-based problems. Implementation of the algorithm can be treated as a shortest path problem for a variety of datasets. The simulated agents have been used to evolve the shortest path between two nodes in a graph. This algorithm is useful to solve NP-hard problems that are related to path discovery. This algorithm is also useful to solve many practical optimization problems. The extensive derivation of the algorithm can be enabled to solve shortest path problems.
Standard Sine Fitting Algorithms Applied To Blade Tip Timing Data
Directory of Open Access Journals (Sweden)
Kaźmierczak Krzysztof
2014-12-01
Full Text Available Blade Tip Timing (BTT is a non-intrusive method to measure blade vibration in turbomachinery. Time of Arrival (TOA is recorded when a blade is passing a stationary sensor. The measurement data, in form of undersampled (aliased tip-deflection signal, are difficult to analyze with standard signal processing methods like digital filters or Fourier Transform. Several indirect methods are applied to process TOA sequences, such as reconstruction of aliased spectrum and Least-Squares Fitting to harmonic oscillator model. We used standard sine fitting algorithms provided by IEEE-STD-1057 to estimate blade vibration parameters. Blade-tip displacement was simulated in time domain using SDOF model, sampled by stationary sensors and then processed by the sinefit.m toolkit. We evaluated several configurations of different sensor placement, noise level and number of data. Results of the linear sine fitting, performed with the frequency known a priori, were compared with the non-linear ones. Some of non-linear iterations were not convergent. The algorithms and testing results are aimed to be used in analysis of asynchronous blade vibration.
Eigenvalue Decomposition-Based Modified Newton Algorithm
Directory of Open Access Journals (Sweden)
Wen-jun Wang
2013-01-01
Full Text Available When the Hessian matrix is not positive, the Newton direction may not be the descending direction. A new method named eigenvalue decomposition-based modified Newton algorithm is presented, which first takes the eigenvalue decomposition of the Hessian matrix, then replaces the negative eigenvalues with their absolute values, and finally reconstructs the Hessian matrix and modifies the searching direction. The new searching direction is always the descending direction. The convergence of the algorithm is proven and the conclusion on convergence rate is presented qualitatively. Finally, a numerical experiment is given for comparing the convergence domains of the modified algorithm and the classical algorithm.
QPSO-Based Adaptive DNA Computing Algorithm
Directory of Open Access Journals (Sweden)
Mehmet Karakose
2013-01-01
Full Text Available DNA (deoxyribonucleic acid computing that is a new computation model based on DNA molecules for information storage has been increasingly used for optimization and data analysis in recent years. However, DNA computing algorithm has some limitations in terms of convergence speed, adaptability, and effectiveness. In this paper, a new approach for improvement of DNA computing is proposed. This new approach aims to perform DNA computing algorithm with adaptive parameters towards the desired goal using quantum-behaved particle swarm optimization (QPSO. Some contributions provided by the proposed QPSO based on adaptive DNA computing algorithm are as follows: (1 parameters of population size, crossover rate, maximum number of operations, enzyme and virus mutation rate, and fitness function of DNA computing algorithm are simultaneously tuned for adaptive process, (2 adaptive algorithm is performed using QPSO algorithm for goal-driven progress, faster operation, and flexibility in data, and (3 numerical realization of DNA computing algorithm with proposed approach is implemented in system identification. Two experiments with different systems were carried out to evaluate the performance of the proposed approach with comparative results. Experimental results obtained with Matlab and FPGA demonstrate ability to provide effective optimization, considerable convergence speed, and high accuracy according to DNA computing algorithm.
An accurate projection algorithm for array processor based SPECT systems
International Nuclear Information System (INIS)
King, M.A.; Schwinger, R.B.; Cool, S.L.
1985-01-01
A data re-projection algorithm has been developed for use in single photon emission computed tomography (SPECT) on an array processor based computer system. The algorithm makes use of an accurate representation of pixel activity (uniform square pixel model of intensity distribution), and is rapidly performed due to the efficient handling of an array based algorithm and the Fast Fourier Transform (FFT) on parallel processing hardware. The algorithm consists of using a pixel driven nearest neighbour projection operation to an array of subdivided projection bins. This result is then convolved with the projected uniform square pixel distribution before being compressed to original bin size. This distribution varies with projection angle and is explicitly calculated. The FFT combined with a frequency space multiplication is used instead of a spatial convolution for more rapid execution. The new algorithm was tested against other commonly used projection algorithms by comparing the accuracy of projections of a simulated transverse section of the abdomen against analytically determined projections of that transverse section. The new algorithm was found to yield comparable or better standard error and yet result in easier and more efficient implementation on parallel hardware. Applications of the algorithm include iterative reconstruction and attenuation correction schemes and evaluation of regions of interest in dynamic and gated SPECT
Swarm-based algorithm for phase unwrapping.
da Silva Maciel, Lucas; Albertazzi, Armando G
2014-08-20
A novel algorithm for phase unwrapping based on swarm intelligence is proposed. The algorithm was designed based on three main goals: maximum coverage of reliable information, focused effort for better efficiency, and reliable unwrapping. Experiments were performed, and a new agent was designed to follow a simple set of five rules in order to collectively achieve these goals. These rules consist of random walking for unwrapping and searching, ambiguity evaluation by comparing unwrapped regions, and a replication behavior responsible for the good distribution of agents throughout the image. The results were comparable with the results from established methods. The swarm-based algorithm was able to suppress ambiguities better than the flood-fill algorithm without relying on lengthy processing times. In addition, future developments such as parallel processing and better-quality evaluation present great potential for the proposed method.
Seizure detection algorithms based on EMG signals
DEFF Research Database (Denmark)
Conradsen, Isa
Background: the currently used non-invasive seizure detection methods are not reliable. Muscle fibers are directly connected to the nerves, whereby electric signals are generated during activity. Therefore, an alarm system on electromyography (EMG) signals is a theoretical possibility. Objective......: to show whether medical signal processing of EMG data is feasible for detection of epileptic seizures. Methods: EMG signals during generalised seizures were recorded from 3 patients (with 20 seizures in total). Two possible medical signal processing algorithms were tested. The first algorithm was based...... the frequency-based algorithm was efficient for detecting the seizures in the third patient. Conclusion: Our results suggest that EMG signals could be used to develop an automatic seizuredetection system. However, different patients might require different types of algorithms /approaches....
A scheduling algorithm based on Clara clustering
Kuang, Ling; Zhang, Lichen
2017-08-01
Task scheduling is a key issue in cloud computing. A new algorithm for queuing task scheduling based on Clara clustering and SJF cloud computing is proposed to introduce the Clara clustering for the shortcomings of SJF algorithm load imbalance. The Clara clustering method prepares the task clustering based on the task execution time and the waiting time of the task, and then divides the task into three groups according to the reference point obtained by the clustering. Based on the number of tasks per group in the proportion of the total number of tasks assigned to the implementation of the quota. Each queue team will perform task scheduling based on these quotas and SJF. The simulation results show that the algorithm has good load balancing and system performance.
Image segmentation algorithm based on improved PCNN
Chen, Hong; Wu, Chengdong; Yu, Xiaosheng; Wu, Jiahui
2017-11-01
A modified simplified Pulse Coupled Neural Network (PCNN) model is proposed in this article based on simplified PCNN. Some work have done to enrich this model, such as imposing restrictions items of the inputs, improving linking inputs and internal activity of PCNN. A self-adaptive parameter setting method of linking coefficient and threshold value decay time constant is proposed here, too. At last, we realized image segmentation algorithm for five pictures based on this proposed simplified PCNN model and PSO. Experimental results demonstrate that this image segmentation algorithm is much better than method of SPCNN and OTSU.
Performance evaluation of grid-enabled registration algorithms using bronze-standards
Glatard, T; Montagnat, J
2006-01-01
Evaluating registration algorithms is difficult due to the lack of gold standard in most clinical procedures. The bronze standard is a real-data based statistical method providing an alternative registration reference through a computationally intensive image database registration procedure. We propose in this paper an efficient implementation of this method through a grid-interfaced workflow enactor enabling the concurrent processing of hundreds of image registrations in a couple of hours only. The performances of two different grid infrastructures were compared. We computed the accuracy of 4 different rigid registration algorithms on longitudinal MRI images of brain tumors. Results showed an average subvoxel accuracy of 0.4 mm and 0.15 degrees in rotation.
Duality based optical flow algorithms with applications
DEFF Research Database (Denmark)
Rakêt, Lars Lau
We consider the popular TV-L1 optical flow formulation, and the so-called duality based algorithm for minimizing the TV-L1 energy. The original formulation is extended to allow for vector valued images, and minimization results are given. In addition we consider different definitions of total...... variation regularization, and related formulations of the optical flow problem that may be used with a duality based algorithm. We present a highly optimized algorithmic setup to estimate optical flows, and give five novel applications. The first application is registration of medical images, where X...... the motion estimation from the surrounding frames directly to the unknown frame by parametrizing the optical flow objective function such that the interpolation assumption is directly modeled. This reparametrization is a powerful trick that results in a number of appealing properties, in particular...
Model based development of engine control algorithms
Dekker, H.J.; Sturm, W.L.
1996-01-01
Model based development of engine control systems has several advantages. The development time and costs are strongly reduced because much of the development and optimization work is carried out by simulating both engine and control system. After optimizing the control algorithm it can be executed
An Improved FCM Medical Image Segmentation Algorithm Based on MMTD
Directory of Open Access Journals (Sweden)
Ningning Zhou
2014-01-01
Full Text Available Image segmentation plays an important role in medical image processing. Fuzzy c-means (FCM is one of the popular clustering algorithms for medical image segmentation. But FCM is highly vulnerable to noise due to not considering the spatial information in image segmentation. This paper introduces medium mathematics system which is employed to process fuzzy information for image segmentation. It establishes the medium similarity measure based on the measure of medium truth degree (MMTD and uses the correlation of the pixel and its neighbors to define the medium membership function. An improved FCM medical image segmentation algorithm based on MMTD which takes some spatial features into account is proposed in this paper. The experimental results show that the proposed algorithm is more antinoise than the standard FCM, with more certainty and less fuzziness. This will lead to its practicable and effective applications in medical image segmentation.
Patel, Sanjay R; Weng, Jia; Rueschman, Michael; Dudley, Katherine A; Loredo, Jose S; Mossavar-Rahmani, Yasmin; Ramirez, Maricelle; Ramos, Alberto R; Reid, Kathryn; Seiger, Ashley N; Sotres-Alvarez, Daniela; Zee, Phyllis C; Wang, Rui
2015-09-01
While actigraphy is considered objective, the process of setting rest intervals to calculate sleep variables is subjective. We sought to evaluate the reproducibility of actigraphy-derived measures of sleep using a standardized algorithm for setting rest intervals. Observational study. Community-based. A random sample of 50 adults aged 18-64 years free of severe sleep apnea participating in the Sueño sleep ancillary study to the Hispanic Community Health Study/Study of Latinos. N/A. Participants underwent 7 days of continuous wrist actigraphy and completed daily sleep diaries. Studies were scored twice by each of two scorers. Rest intervals were set using a standardized hierarchical approach based on event marker, diary, light, and activity data. Sleep/wake status was then determined for each 30-sec epoch using a validated algorithm, and this was used to generate 11 variables: mean nightly sleep duration, nap duration, 24-h sleep duration, sleep latency, sleep maintenance efficiency, sleep fragmentation index, sleep onset time, sleep offset time, sleep midpoint time, standard deviation of sleep duration, and standard deviation of sleep midpoint. Intra-scorer intraclass correlation coefficients (ICCs) were high, ranging from 0.911 to 0.995 across all 11 variables. Similarly, inter-scorer ICCs were high, also ranging from 0.911 to 0.995, and mean inter-scorer differences were small. Bland-Altman plots did not reveal any systematic disagreement in scoring. With use of a standardized algorithm to set rest intervals, scoring of actigraphy for the purpose of generating a wide array of sleep variables is highly reproducible. © 2015 Associated Professional Sleep Societies, LLC.
Mental Computation or Standard Algorithm? Children's Strategy Choices on Multi-Digit Subtractions
Torbeyns, Joke; Verschaffel, Lieven
2016-01-01
This study analyzed children's use of mental computation strategies and the standard algorithm on multi-digit subtractions. Fifty-eight Flemish 4th graders of varying mathematical achievement level were individually offered subtractions that either stimulated the use of mental computation strategies or the standard algorithm in one choice and two…
A graph spectrum based geometric biclustering algorithm.
Wang, Doris Z; Yan, Hong
2013-01-21
Biclustering is capable of performing simultaneous clustering on two dimensions of a data matrix and has many applications in pattern classification. For example, in microarray experiments, a subset of genes is co-expressed in a subset of conditions, and biclustering algorithms can be used to detect the coherent patterns in the data for further analysis of function. In this paper, we present a graph spectrum based geometric biclustering (GSGBC) algorithm. In the geometrical view, biclusters can be seen as different linear geometrical patterns in high dimensional spaces. Based on this, the modified Hough transform is used to find the Hough vector (HV) corresponding to sub-bicluster patterns in 2D spaces. A graph can be built regarding each HV as a node. The graph spectrum is utilized to identify the eigengroups in which the sub-biclusters are grouped naturally to produce larger biclusters. Through a comparative study, we find that the GSGBC achieves as good a result as GBC and outperforms other kinds of biclustering algorithms. Also, compared with the original geometrical biclustering algorithm, it reduces the computing time complexity significantly. We also show that biologically meaningful biclusters can be identified by our method from real microarray gene expression data. Copyright © 2012 Elsevier Ltd. All rights reserved.
Energy efficient data sorting using standard sorting algorithms
Bunse, Christian
2011-01-01
Protecting the environment by saving energy and thus reducing carbon dioxide emissions is one of todays hottest and most challenging topics. Although the perspective for reducing energy consumption, from ecological and business perspectives is clear, from a technological point of view, the realization especially for mobile systems still falls behind expectations. Novel strategies that allow (software) systems to dynamically adapt themselves at runtime can be effectively used to reduce energy consumption. This paper presents a case study that examines the impact of using an energy management component that dynamically selects and applies the "optimal" sorting algorithm, from an energy perspective, during multi-party mobile communication. Interestingly, the results indicate that algorithmic performance is not key and that dynamically switching algorithms at runtime does have a significant impact on energy consumption. © Springer-Verlag Berlin Heidelberg 2011.
LSB Based Quantum Image Steganography Algorithm
Jiang, Nan; Zhao, Na; Wang, Luo
2016-01-01
Quantum steganography is the technique which hides a secret message into quantum covers such as quantum images. In this paper, two blind LSB steganography algorithms in the form of quantum circuits are proposed based on the novel enhanced quantum representation (NEQR) for quantum images. One algorithm is plain LSB which uses the message bits to substitute for the pixels' LSB directly. The other is block LSB which embeds a message bit into a number of pixels that belong to one image block. The extracting circuits can regain the secret message only according to the stego cover. Analysis and simulation-based experimental results demonstrate that the invisibility is good, and the balance between the capacity and the robustness can be adjusted according to the needs of applications.
Network-based recommendation algorithms: A review
Yu, Fei; Zeng, An; Gillard, Sébastien; Medo, Matúš
2016-06-01
Recommender systems are a vital tool that helps us to overcome the information overload problem. They are being used by most e-commerce web sites and attract the interest of a broad scientific community. A recommender system uses data on users' past preferences to choose new items that might be appreciated by a given individual user. While many approaches to recommendation exist, the approach based on a network representation of the input data has gained considerable attention in the past. We review here a broad range of network-based recommendation algorithms and for the first time compare their performance on three distinct real datasets. We present recommendation topics that go beyond the mere question of which algorithm to use-such as the possible influence of recommendation on the evolution of systems that use it-and finally discuss open research directions and challenges.
Agent-Based Automated Algorithm Generator
2010-01-12
data snapshot from maintenance stations 2. Test conditions 3. Original performance expectations SQR Algorithm Training/ Upd ating (refinement...Fischer, and other Army researchers for valuable comments on this project. References: [1]. X . Zhang, Gruber, M. Salman, and K. Shin, “Automotive...release [3]. X . Zhang. Gruber, M. Salman, K. Shin, “Automotive Battery State-of-Health Monitoring: a Battery Cranking Voltage based Approach,” Proc
Gradient Evolution-based Support Vector Machine Algorithm for Classification
Zulvia, Ferani E.; Kuo, R. J.
2018-03-01
This paper proposes a classification algorithm based on a support vector machine (SVM) and gradient evolution (GE) algorithms. SVM algorithm has been widely used in classification. However, its result is significantly influenced by the parameters. Therefore, this paper aims to propose an improvement of SVM algorithm which can find the best SVMs’ parameters automatically. The proposed algorithm employs a GE algorithm to automatically determine the SVMs’ parameters. The GE algorithm takes a role as a global optimizer in finding the best parameter which will be used by SVM algorithm. The proposed GE-SVM algorithm is verified using some benchmark datasets and compared with other metaheuristic-based SVM algorithms. The experimental results show that the proposed GE-SVM algorithm obtains better results than other algorithms tested in this paper.
An Enhanced Differential Evolution Algorithm Based on Multiple Mutation Strategies
Directory of Open Access Journals (Sweden)
Wan-li Xiang
2015-01-01
Full Text Available Differential evolution algorithm is a simple yet efficient metaheuristic for global optimization over continuous spaces. However, there is a shortcoming of premature convergence in standard DE, especially in DE/best/1/bin. In order to take advantage of direction guidance information of the best individual of DE/best/1/bin and avoid getting into local trap, based on multiple mutation strategies, an enhanced differential evolution algorithm, named EDE, is proposed in this paper. In the EDE algorithm, an initialization technique, opposition-based learning initialization for improving the initial solution quality, and a new combined mutation strategy composed of DE/current/1/bin together with DE/pbest/bin/1 for the sake of accelerating standard DE and preventing DE from clustering around the global best individual, as well as a perturbation scheme for further avoiding premature convergence, are integrated. In addition, we also introduce two linear time-varying functions, which are used to decide which solution search equation is chosen at the phases of mutation and perturbation, respectively. Experimental results tested on twenty-five benchmark functions show that EDE is far better than the standard DE. In further comparisons, EDE is compared with other five state-of-the-art approaches and related results show that EDE is still superior to or at least equal to these methods on most of benchmark functions.
An assembly sequence planning method based on composite algorithm
Enfu LIU; Bo LIU; Xiaoyang LIU; Yi LI
2016-01-01
To solve the combination explosion problem and the blind searching problem in assembly sequence planning of complex products, an assembly sequence planning method based on composite algorithm is proposed. In the composite algorithm, a sufficient number of feasible assembly sequences are generated using formalization reasoning algorithm as the initial population of genetic algorithm. Then fuzzy knowledge of assembly is integrated into the planning process of genetic algorithm and ant algorithm...
CHAOS-BASED ADVANCED ENCRYPTION STANDARD
Abdulwahed, Naif B.
2013-05-01
This thesis introduces a new chaos-based Advanced Encryption Standard (AES). The AES is a well-known encryption algorithm that was standardized by U.S National Institute of Standard and Technology (NIST) in 2001. The thesis investigates and explores the behavior of the AES algorithm by replacing two of its original modules, namely the S-Box and the Key Schedule, with two other chaos- based modules. Three chaos systems are considered in designing the new modules which are Lorenz system with multiplication nonlinearity, Chen system with sign modules nonlinearity, and 1D multiscroll system with stair case nonlinearity. The three systems are evaluated on their sensitivity to initial conditions and as Pseudo Random Number Generators (PRNG) after applying a post-processing technique to their output then performing NIST SP. 800-22 statistical tests. The thesis presents a hardware implementation of dynamic S-Boxes for AES that are populated using the three chaos systems. Moreover, a full MATLAB package to analyze the chaos generated S-Boxes based on graphical analysis, Walsh-Hadamard spectrum analysis, and image encryption analysis is developed. Although these S-Boxes are dynamic, meaning they are regenerated whenever the encryption key is changed, the analysis results show that such S-Boxes exhibit good properties like the Strict Avalanche Criterion (SAC) and the nonlinearity and in the application of image encryption. Furthermore, the thesis presents a new Lorenz-chaos-based key expansion for the AES. Many researchers have pointed out that there are some defects in the original key expansion of AES and thus have motivated such chaos-based key expansion proposal. The new proposed key schedule is analyzed and assessed in terms of confusion and diffusion by performing the frequency and SAC test respectively. The obtained results show that the new proposed design is more secure than the original AES key schedule and other proposed designs in the literature. The proposed
Schwarz-Based Algorithms for Compressible Flows
Tidriri, M. D.
1996-01-01
We investigate in this paper the application of Schwarz-based algorithms to compressible flows. First we study the combination of these methods with defect-correction procedures. We then study the effect on the Schwarz-based methods of replacing the explicit treatment of the boundary conditions by an implicit one. In the last part of this paper we study the combination of these methods with Newton-Krylov matrix-free methods. Numerical experiments that show the performance of our approaches are then presented.
Linden, Michael; Muschalla, Beate
2012-09-01
There is a general consensus that diagnoses for mental disorders should be based on criteria and algorithms as given in ICD or DSM. Standardized clinical interviews are recommended as diagnostic methods. In ICD and DSM, much emphasis is put on algorithms, while the underlying criteria get much less attention. The question is how valid are the criteria that are collected by structured diagnostic interviews. 209 patients from a cardiology inpatient unit were interviewed with the Mini International Neuropsychiatric Interview (MINI). 32 (15.3%) were diagnosed as suffering from a major depressive episode or dysthymia. Additionally, a thorough clinical examination was done by a psychiatric expert in 15 patients. The standardized diagnosis of present major depression was reaffirmed in one. In total, four patients were suffering from some kind of depressive disorder presently or life time. Two patients were suffering from anxiety disorders, two from adjustment disorders, and four from different types of organic brain disorders. Most important, there are 3 out of 15 who are not mentally ill. Our observations show that standardized diagnostic interviews cannot be used to make specific differential diagnoses, but rather catch unspecific syndromes. This is partly due to the fact that the wording, definition, and understanding of the underlying criteria is rather vague. This is an even greater problem if there is any somatic comorbidity. In the revision of ICD and DSM, a glossary of psychopathological terms and guidelines for the training of clinicians should be included.
A hash-based image encryption algorithm
Cheddad, Abbas; Condell, Joan; Curran, Kevin; McKevitt, Paul
2010-03-01
There exist several algorithms that deal with text encryption. However, there has been little research carried out to date on encrypting digital images or video files. This paper describes a novel way of encrypting digital images with password protection using 1D SHA-2 algorithm coupled with a compound forward transform. A spatial mask is generated from the frequency domain by taking advantage of the conjugate symmetry of the complex imagery part of the Fourier Transform. This mask is then XORed with the bit stream of the original image. Exclusive OR (XOR), a logical symmetric operation, that yields 0 if both binary pixels are zeros or if both are ones and 1 otherwise. This can be verified simply by modulus (pixel1, pixel2, 2). Finally, confusion is applied based on the displacement of the cipher's pixels in accordance with a reference mask. Both security and performance aspects of the proposed method are analyzed, which prove that the method is efficient and secure from a cryptographic point of view. One of the merits of such an algorithm is to force a continuous tone payload, a steganographic term, to map onto a balanced bits distribution sequence. This bit balance is needed in certain applications, such as steganography and watermarking, since it is likely to have a balanced perceptibility effect on the cover image when embedding.
Algorithm Research of Individualized Travelling Route Recommendation Based on Similarity
Directory of Open Access Journals (Sweden)
Xue Shan
2015-01-01
Full Text Available Although commercial recommendation system has made certain achievement in travelling route development, the recommendation system is facing a series of challenges because of people’s increasing interest in travelling. It is obvious that the core content of the recommendation system is recommendation algorithm. The advantages of recommendation algorithm can bring great effect to the recommendation system. Based on this, this paper applies traditional collaborative filtering algorithm for analysis. Besides, illustrating the deficiencies of the algorithm, such as the rating unicity and rating matrix sparsity, this paper proposes an improved algorithm combing the multi-similarity algorithm based on user and the element similarity algorithm based on user, so as to compensate for the deficiencies that traditional algorithm has within a controllable range. Experimental results have shown that the improved algorithm has obvious advantages in comparison with the traditional one. The improved algorithm has obvious effect on remedying the rating matrix sparsity and rating unicity.
DIFFERENTIAL SEARCH ALGORITHM BASED EDGE DETECTION
Directory of Open Access Journals (Sweden)
M. A. Gunen
2016-06-01
Full Text Available In this paper, a new method has been presented for the extraction of edge information by using Differential Search Optimization Algorithm. The proposed method is based on using a new heuristic image thresholding method for edge detection. The success of the proposed method has been examined on fusion of two remote sensed images. The applicability of the proposed method on edge detection and image fusion problems have been analysed in detail and the empirical results exposed that the proposed method is useful for solving the mentioned problems.
Scatter-Reducing Sounding Filtration Using a Genetic Algorithm and Mean Monthly Standard Deviation
Mandrake, Lukas
2013-01-01
Retrieval algorithms like that used by the Orbiting Carbon Observatory (OCO)-2 mission generate massive quantities of data of varying quality and reliability. A computationally efficient, simple method of labeling problematic datapoints or predicting soundings that will fail is required for basic operation, given that only 6% of the retrieved data may be operationally processed. This method automatically obtains a filter designed to reduce scatter based on a small number of input features. Most machine-learning filter construction algorithms attempt to predict error in the CO2 value. By using a surrogate goal of Mean Monthly STDEV, the goal is to reduce the retrieved CO2 scatter rather than solving the harder problem of reducing CO2 error. This lends itself to improved interpretability and performance. This software reduces the scatter of retrieved CO2 values globally based on a minimum number of input features. It can be used as a prefilter to reduce the number of soundings requested, or as a post-filter to label data quality. The use of the MMS (Mean Monthly Standard deviation) provides a much cleaner, clearer filter than the standard ABS(CO2-truth) metrics previously employed by competitor methods. The software's main strength lies in a clearer (i.e., fewer features required) filter that more efficiently reduces scatter in retrieved CO2 rather than focusing on the more complex (and easily removed) bias issues.
DEFF Research Database (Denmark)
Nica, Florin Valentin Traian; Ritchie, Ewen; Leban, Krisztina Monika
2013-01-01
, genetic algorithm and particle swarm are shortly presented in this paper. These two algorithms are tested to determine their performance on five different benchmark test functions. The algorithms are tested based on three requirements: precision of the result, number of iterations and calculation time...
Research on AHP decision algorithms based on BP algorithm
Ma, Ning; Guan, Jianhe
2017-10-01
Decision making is the thinking activity that people choose or judge, and scientific decision-making has always been a hot issue in the field of research. Analytic Hierarchy Process (AHP) is a simple and practical multi-criteria and multi-objective decision-making method that combines quantitative and qualitative and can show and calculate the subjective judgment in digital form. In the process of decision analysis using AHP method, the rationality of the two-dimensional judgment matrix has a great influence on the decision result. However, in dealing with the real problem, the judgment matrix produced by the two-dimensional comparison is often inconsistent, that is, it does not meet the consistency requirements. BP neural network algorithm is an adaptive nonlinear dynamic system. It has powerful collective computing ability and learning ability. It can perfect the data by constantly modifying the weights and thresholds of the network to achieve the goal of minimizing the mean square error. In this paper, the BP algorithm is used to deal with the consistency of the two-dimensional judgment matrix of the AHP.
Development of GPT-based optimization algorithm
International Nuclear Information System (INIS)
White, J.R.; Chapman, D.M.; Biswas, D.
1985-01-01
The University of Lowell and Westinghouse Electric Corporation are involved in a joint effort to evaluate the potential benefits of generalized/depletion perturbation theory (GPT/DTP) methods for a variety of light water reactor (LWR) physics applications. One part of that work has focused on the development of a GPT-based optimization algorithm for the overall design, analysis, and optimization of LWR reload cores. The use of GPT sensitivity data in formulating the fuel management optimization problem is conceptually straightforward; it is the actual execution of the concept that is challenging. Thus, the purpose of this paper is to address some of the major difficulties, to outline our approach to these problems, and to present some illustrative examples of an efficient GTP-based optimization scheme
An assembly sequence planning method based on composite algorithm
Directory of Open Access Journals (Sweden)
Enfu LIU
2016-02-01
Full Text Available To solve the combination explosion problem and the blind searching problem in assembly sequence planning of complex products, an assembly sequence planning method based on composite algorithm is proposed. In the composite algorithm, a sufficient number of feasible assembly sequences are generated using formalization reasoning algorithm as the initial population of genetic algorithm. Then fuzzy knowledge of assembly is integrated into the planning process of genetic algorithm and ant algorithm to get the accurate solution. At last, an example is conducted to verify the feasibility of composite algorithm.
Cognitive radio resource allocation based on coupled chaotic genetic algorithm
International Nuclear Information System (INIS)
Zu Yun-Xiao; Zhou Jie; Zeng Chang-Chang
2010-01-01
A coupled chaotic genetic algorithm for cognitive radio resource allocation which is based on genetic algorithm and coupled Logistic map is proposed. A fitness function for cognitive radio resource allocation is provided. Simulations are conducted for cognitive radio resource allocation by using the coupled chaotic genetic algorithm, simple genetic algorithm and dynamic allocation algorithm respectively. The simulation results show that, compared with simple genetic and dynamic allocation algorithm, coupled chaotic genetic algorithm reduces the total transmission power and bit error rate in cognitive radio system, and has faster convergence speed
Spacecraft Angular Velocity Estimation Algorithm Based on Orientation Quaternion Measurements
Directory of Open Access Journals (Sweden)
M. V. Li
2016-01-01
Full Text Available The spacecraft (SC mission involves providing the appropriate orientation and stabilization of the associated axes in space. One of the main sources of information for the attitude control system is the angular rate sensor blocks. One way to improve a reliability of the system is to provide a back up of the control algorithms in case of failure of these blocks. To solve the problem of estimation of SP angular velocity vector in the inertial system of coordinates with a lack of information from the angular rate sensors is supposed the use of orientation data from the star sensors; in this case at each clock of the onboard digital computer. The equations in quaternions are used to describe the kinematics of rotary motion. Their approximate solution is used to estimate the angular velocity vector. Methods of modal control and multi-dimensional decomposition of a control object are used to solve the problem of observation and identification of the angular rates. These methods enabled us to synthesize the SP angular velocity vector estimation algorithm and obtain the equations, which relate the error quaternion with the calculated estimate of the angular velocity. Mathematical modeling was carried out to test the algorithm. Cases of different initial conditions were simulated. Time between orientation quaternion measurements and angular velocity of the model was varied. The algorithm was compared with a more accurate algorithm, built on more complete equations. Graphs of difference in angular velocity estimation depending on the number of iterations are presented. The difference in angular velocity estimation is calculated from results of the synthesized algorithm and the algorithm for more accurate equations. Graphs of error distribution for angular velocity estimation with initial conditions being changed are also presented, and standard deviations of estimation errors are calculated. The synthesized algorithm is inferior in accuracy assessment to
Adaptive radiation image enhancement based on different image quality evaluation standards
International Nuclear Information System (INIS)
Guo Xiaojing; Wu Zhifang
2012-01-01
Genetic algorithm based on incomplete Beta function was realized, and adaptive gray transform based on the said genetic algorithm was implemented, based as such, three image quality evaluation standards were applied in the adaptive gray transform of radiation images, and effects of processing time, stability, generation number and so on of the three standards were compared. The better algorithm scheme was applied in image processing module of container DR/CT inspection system to obtain effective adaptive image enhancement. (authors)
New calibration algorithms for dielectric-based microwave moisture sensors
New calibration algorithms for determining moisture content in granular and particulate materials from measurement of the dielectric properties at a single microwave frequency are proposed. The algorithms are based on identifying empirically correlations between the dielectric properties and the par...
Hybrid fuzzy charged system search algorithm based state estimation in distribution networks
Directory of Open Access Journals (Sweden)
Sachidananda Prasad
2017-06-01
Full Text Available This paper proposes a new hybrid charged system search (CSS algorithm based state estimation in radial distribution networks in fuzzy framework. The objective of the optimization problem is to minimize the weighted square of the difference between the measured and the estimated quantity. The proposed method of state estimation considers bus voltage magnitude and phase angle as state variable along with some equality and inequality constraints for state estimation in distribution networks. A rule based fuzzy inference system has been designed to control the parameters of the CSS algorithm to achieve better balance between the exploration and exploitation capability of the algorithm. The efficiency of the proposed fuzzy adaptive charged system search (FACSS algorithm has been tested on standard IEEE 33-bus system and Indian 85-bus practical radial distribution system. The obtained results have been compared with the conventional CSS algorithm, weighted least square (WLS algorithm and particle swarm optimization (PSO for feasibility of the algorithm.
Nanna, Robert J.
2016-01-01
Algorithms and representations have been an important aspect of the work of mathematics, especially for understanding concepts and communicating ideas about concepts and mathematical relationships. They have played a key role in various mathematics standards documents, including the Common Core State Standards for Mathematics. However, there have…
A Trust-region-based Sequential Quadratic Programming Algorithm
DEFF Research Database (Denmark)
Henriksen, Lars Christian; Poulsen, Niels Kjølstad
This technical note documents the trust-region-based sequential quadratic programming algorithm used in other works by the authors. The algorithm seeks to minimize a convex nonlinear cost function subject to linear inequalty constraints and nonlinear equality constraints.......This technical note documents the trust-region-based sequential quadratic programming algorithm used in other works by the authors. The algorithm seeks to minimize a convex nonlinear cost function subject to linear inequalty constraints and nonlinear equality constraints....
Aubin, S; Beaulieu, L; Pouliot, S; Pouliot, J; Roy, R; Girouard, L M; Martel-Brisson, N; Vigneault, E; Laverdière, J
2003-07-01
An algorithm for the daily localization of the prostate using implanted markers and a standard video-based electronic portal imaging device (V-EPID) has been tested. Prior to planning, three gold markers were implanted in the prostate of seven patients. The clinical images were acquired with a BeamViewPlus 2.1 V-EPID for each field during the normal course radiotherapy treatment and are used off-line to determine the ability of the automatic marker detection algorithm to adequately and consistently detect the markers. Clinical images were obtained with various dose levels from ranging 2.5 to 75 MU. The algorithm is based on marker attenuation characterization in the portal image and spatial distribution. A total of 1182 clinical images were taken. The results show an average efficiency of 93% for the markers detected individually and 85% for the group of markers. This algorithm accomplishes the detection and validation in 0.20-0.40 s. When the center of mass of the group of implanted markers is used, then all displacements can be corrected to within 1.0 mm in 84% of the cases and within 1.5 mm in 97% of cases. The standard video-based EPID tested provides excellent marker detection capability even with low dose levels. The V-EPID can be used successfully with radiopaque markers and the automatic detection algorithm to track and correct the daily setup deviations due to organ motions.
A Novel Preferential Diffusion Recommendation Algorithm Based on User’s Nearest Neighbors
Directory of Open Access Journals (Sweden)
Fuguo Zhang
2017-01-01
Full Text Available Recommender system is a very efficient way to deal with the problem of information overload for online users. In recent years, network based recommendation algorithms have demonstrated much better performance than the standard collaborative filtering methods. However, most of network based algorithms do not give a high enough weight to the influence of the target user’s nearest neighbors in the resource diffusion process, while a user or an object with high degree will obtain larger influence in the standard mass diffusion algorithm. In this paper, we propose a novel preferential diffusion recommendation algorithm considering the significance of the target user’s nearest neighbors and evaluate it in the three real-world data sets: MovieLens 100k, MovieLens 1M, and Epinions. Experiments results demonstrate that the novel preferential diffusion recommendation algorithm based on user’s nearest neighbors can significantly improve the recommendation accuracy and diversity.
A New Aloha Anti-Collision Algorithm Based on CDMA
Bai, Enjian; Feng, Zhu
The tags' collision is a common problem in RFID (radio frequency identification) system. The problem has affected the integrity of the data transmission during the process of communication in the RFID system. Based on analysis of the existing anti-collision algorithm, a novel anti-collision algorithm is presented. The new algorithm combines the group dynamic frame slotted Aloha algorithm with code division multiple access technology. The algorithm can effectively reduce the collision probability between tags. Under the same number of tags, the algorithm is effective in reducing the reader recognition time and improve overall system throughput rate.
Compact Hilbert Curve Index Algorithm Based on Gray Code
Directory of Open Access Journals (Sweden)
CAO Xuefeng
2016-12-01
Full Text Available Hilbert curve has best clustering in various kinds of space filling curves, and has been used as an important tools in discrete global grid spatial index design field. But there are lots of redundancies in the standard Hilbert curve index when the data set has large differences between dimensions. In this paper, the construction features of Hilbert curve is analyzed based on Gray code, and then the compact Hilbert curve index algorithm is put forward, in which the redundancy problem has been avoided while Hilbert curve clustering preserved. Finally, experiment results shows that the compact Hilbert curve index outperforms the standard Hilbert index, their 1 computational complexity is nearly equivalent, but the real data set test shows the coding time and storage space decrease 40%, the speedup ratio of sorting speed is nearly 4.3.
MVDR Algorithm Based on Estimated Diagonal Loading for Beamforming
Directory of Open Access Journals (Sweden)
Yuteng Xiao
2017-01-01
Full Text Available Beamforming algorithm is widely used in many signal processing fields. At present, the typical beamforming algorithm is MVDR (Minimum Variance Distortionless Response. However, the performance of MVDR algorithm relies on the accurate covariance matrix. The MVDR algorithm declines dramatically with the inaccurate covariance matrix. To solve the problem, studying the beamforming array signal model and beamforming MVDR algorithm, we improve MVDR algorithm based on estimated diagonal loading for beamforming. MVDR optimization model based on diagonal loading compensation is established and the interval of the diagonal loading compensation value is deduced on the basis of the matrix theory. The optimal diagonal loading value in the interval is also determined through the experimental method. The experimental results show that the algorithm compared with existing algorithms is practical and effective.
Genetic based optimization for multicast routing algorithm for MANET
Indian Academy of Sciences (India)
In this paper, a Hybrid Genetic Based Optimization for Multicast Routing algorithm is proposed. The proposed algorithm uses the best features of Genetic Algorithm (GA) and particle swarm optimization (PSO) to improve the solution. Simulations were conducted by varying number of mobile nodes and results compared with ...
Fast image mosaic algorithm based on the improved Harris-SIFT algorithm
Jiang, Zetao; Liu, Min
2015-08-01
This paper proposes a fast image mosaic algorithm based on the improved Harris-SIFT algorithm, according to such problems as more memory consumption, greater redundancy quantity of feature points, slower operation speed, and so on, resulting from using the SIFT algorithm in the image matching stage of the image mosaic process. Firstly in the matching stage of the algorithm, the corner point is extracted by using the multi-scale Harris, feature descriptor is constructed by the 88-dimensional vector based on the SIFT feature, the coarse matching is carried out by the nearest neighbor matching method, and then the precise matching point pair and image transformation matrix are obtained by the RANSAC method. The seamless mosaic can be achieved by using the weighted average image fusion. The experimental results show that this algorithm can not only achieve precise seamless mosaic but also improve operation efficiency, compared with the traditional algorithm.
A voting-based star identification algorithm utilizing local and global distribution
Fan, Qiaoyun; Zhong, Xuyang; Sun, Junhua
2018-03-01
A novel star identification algorithm based on voting scheme is presented in this paper. In the proposed algorithm, the global distribution and local distribution of sensor stars are fully utilized, and the stratified voting scheme is adopted to obtain the candidates for sensor stars. The database optimization is employed to reduce its memory requirement and improve the robustness of the proposed algorithm. The simulation shows that the proposed algorithm exhibits 99.81% identification rate with 2-pixel standard deviations of positional noises and 0.322-Mv magnitude noises. Compared with two similar algorithms, the proposed algorithm is more robust towards noise, and the average identification time and required memory is less. Furthermore, the real sky test shows that the proposed algorithm performs well on the real star images.
Generalized phase retrieval algorithm based on information measures
Shioya, Hiroyuki; Gohara, Kazutoshi
2006-01-01
An iterative phase retrieval algorithm based on the maximum entropy method (MEM) is presented. Introducing a new generalized information measure, we derive a novel class of algorithms which includes the conventionally used error reduction algorithm and a MEM-type iterative algorithm which is presented for the first time. These different phase retrieval methods are unified on the basis of the framework of information measures used in information theory.
Assessing operating characteristics of CAD algorithms in the absence of a gold standard
International Nuclear Information System (INIS)
Roy Choudhury, Kingshuk; Paik, David S.; Yi, Chin A.; Napel, Sandy; Roos, Justus; Rubin, Geoffrey D.
2010-01-01
Purpose: The authors examine potential bias when using a reference reader panel as ''gold standard'' for estimating operating characteristics of CAD algorithms for detecting lesions. As an alternative, the authors propose latent class analysis (LCA), which does not require an external gold standard to evaluate diagnostic accuracy. Methods: A binomial model for multiple reader detections using different diagnostic protocols was constructed, assuming conditional independence of readings given true lesion status. Operating characteristics of all protocols were estimated by maximum likelihood LCA. Reader panel and LCA based estimates were compared using data simulated from the binomial model for a range of operating characteristics. LCA was applied to 36 thin section thoracic computed tomography data sets from the Lung Image Database Consortium (LIDC): Free search markings of four radiologists were compared to markings from four different CAD assisted radiologists. For real data, bootstrap-based resampling methods, which accommodate dependence in reader detections, are proposed to test of hypotheses of differences between detection protocols. Results: In simulation studies, reader panel based sensitivity estimates had an average relative bias (ARB) of -23% to -27%, significantly higher (p-value <0.0001) than LCA (ARB -2% to -6%). Specificity was well estimated by both reader panel (ARB -0.6% to -0.5%) and LCA (ARB 1.4%-0.5%). Among 1145 lesion candidates LIDC considered, LCA estimated sensitivity of reference readers (55%) was significantly lower (p-value 0.006) than CAD assisted readers' (68%). Average false positives per patient for reference readers (0.95) was not significantly lower (p-value 0.28) than CAD assisted readers' (1.27). Conclusions: Whereas a gold standard based on a consensus of readers may substantially bias sensitivity estimates, LCA may be a significantly more accurate and consistent means for evaluating diagnostic accuracy.
DEFF Research Database (Denmark)
Walden, K; Bélanger, L M; Biering-Sørensen, F
2016-01-01
STUDY DESIGN: Validation study. OBJECTIVES: To describe the development and validation of a computerized application of the international standards for neurological classification of spinal cord injury (ISNCSCI). SETTING: Data from acute and rehabilitation care. METHODS: The Rick Hansen Institute......-ISNCSCI Algorithm (RHI-ISNCSCI Algorithm) was developed based on the 2011 version of the ISNCSCI and the 2013 version of the worksheet. International experts developed the design and logic with a focus on usability and features to standardize the correct classification of challenging cases. A five-phased process...... a standardized method to accurately derive the level and severity of SCI from the raw data of the ISNCSCI examination. The web interface assists in maximizing usability while minimizing the impact of human error in classifying SCI. SPONSORSHIP: This study is sponsored by the Rick Hansen Institute and supported...
Adaptive Central Force Optimization Algorithm Based on the Stability Analysis
Directory of Open Access Journals (Sweden)
Weiyi Qian
2015-01-01
Full Text Available In order to enhance the convergence capability of the central force optimization (CFO algorithm, an adaptive central force optimization (ACFO algorithm is presented by introducing an adaptive weight and defining an adaptive gravitational constant. The adaptive weight and gravitational constant are selected based on the stability theory of discrete time-varying dynamic systems. The convergence capability of ACFO algorithm is compared with the other improved CFO algorithm and evolutionary-based algorithm using 23 unimodal and multimodal benchmark functions. Experiments results show that ACFO substantially enhances the performance of CFO in terms of global optimality and solution accuracy.
Algorithm of Particle Data Association for SLAM Based on Improved Ant Algorithm
Directory of Open Access Journals (Sweden)
KeKe Gen
2015-01-01
Full Text Available The article considers a problem of data association algorithm for simultaneous localization and mapping guidelines in determining the route of unmanned aerial vehicles (UAVs. Currently, these equipments are already widely used, but mainly controlled from the remote operator. An urgent task is to develop a control system that allows for autonomous flight. Algorithm SLAM (simultaneous localization and mapping, which allows to predict the location, speed, the ratio of flight parameters and the coordinates of landmarks and obstacles in an unknown environment, is one of the key technologies to achieve real autonomous UAV flight. The aim of this work is to study the possibility of solving this problem by using an improved ant algorithm.The data association for SLAM algorithm is meant to establish a matching set of observed landmarks and landmarks in the state vector. Ant algorithm is one of the widely used optimization algorithms with positive feedback and the ability to search in parallel, so the algorithm is suitable for solving the problem of data association for SLAM. But the traditional ant algorithm in the process of finding routes easily falls into local optimum. Adding random perturbations in the process of updating the global pheromone to avoid local optima. Setting limits pheromone on the route can increase the search space with a reasonable amount of calculations for finding the optimal route.The paper proposes an algorithm of the local data association for SLAM algorithm based on an improved ant algorithm. To increase the speed of calculation, local data association is used instead of the global data association. The first stage of the algorithm defines targets in the matching space and the observed landmarks with the possibility of association by the criterion of individual compatibility (IC. The second stage defines the matched landmarks and their coordinates using improved ant algorithm. Simulation results confirm the efficiency and
A community detection algorithm based on structural similarity
Guo, Xuchao; Hao, Xia; Liu, Yaqiong; Zhang, Li; Wang, Lu
2017-09-01
In order to further improve the efficiency and accuracy of community detection algorithm, a new algorithm named SSTCA (the community detection algorithm based on structural similarity with threshold) is proposed. In this algorithm, the structural similarities are taken as the weights of edges, and the threshold k is considered to remove multiple edges whose weights are less than the threshold, and improve the computational efficiency. Tests were done on the Zachary’s network, Dolphins’ social network and Football dataset by the proposed algorithm, and compared with GN and SSNCA algorithm. The results show that the new algorithm is superior to other algorithms in accuracy for the dense networks and the operating efficiency is improved obviously.
Unit Template Synchronous Reference Frame Theory Based Control Algorithm for DSTATCOM
Bangarraju, J.; Rajagopal, V.; Jayalaxmi, A.
2014-04-01
This article proposes new and simplified unit templates instead of standard phase locked loop (PLL) for Synchronous Reference Frame Theory Control Algorithm (SRFT). The extraction of synchronizing components (sinθ and cosθ) for parks and inverse parks transformation using standard PLL takes more execution time. This execution time in control algorithm delays the extraction of reference source current generation. The standard PLL not only takes more execution time but also increases the reactive power burden on the Distributed Static Compensator (DSTATCOM). This work proposes a unit template based SRFT control algorithm for four-leg insulated gate bipolar transistor based voltage source converter for DSTATCOM in distribution systems. This will reduce the execution time and reactive power burden on the DSTATCOM. The proposed DSTATCOM suppress harmonics, regulates the terminal voltage along with neutral current compensation. The DSTATCOM in distribution systems with proposed control algorithm is modeled and simulated using MATLAB using SIMULINK and Simpower systems toolboxes.
[A digital subtraction angiography system based on LUT algorithms].
Chen, Xiangan; Li, Kaiyang; Zhou, Li; Chen, Jiansheng
2006-04-01
Look-up table (LUT) algorithms have been widely used in digital signal processing, but the article on the application of LUT algorithms in digital subtraction angiography was rarely reported. In this article, the effect of different LUT algorithms on digital subtraction angiography images is introduced. The result reveals that different LUT algorithms can bring about different effects of image. Based on analysis and comparison, we deem it possible to acquire improved images of DSA by use of some LUT algorithms with image processing.
Star point centroid algorithm based on background forecast
Wang, Jin; Zhao, Rujin; Zhu, Nan
2014-09-01
The calculation of star point centroid is a key step of improving star tracker measuring error. A star map photoed by APS detector includes several noises which have a great impact on veracity of calculation of star point centroid. Through analysis of characteristic of star map noise, an algorithm of calculation of star point centroid based on background forecast is presented in this paper. The experiment proves the validity of the algorithm. Comparing with classic algorithm, this algorithm not only improves veracity of calculation of star point centroid, but also does not need calibration data memory. This algorithm is applied successfully in a certain star tracker.
Nie, Xiaohua; Nie, Haoyao
2017-01-01
This work presents a maximum power point tracking (MPPT) based on the particle swarm optimization (PSO) improved shuffled frog leaping algorithm (PSFLA). The swarm intelligence algorithm (SIA) has vast computing ability. The MPPT control strategies of PV array based on SIA are attracting considerable interests. Firstly, the PSFLA was proposed by adding the inertia weight factor w of PSO in standard SFLA to overcome the defect of falling into the partial optimal solutions and slow convergence ...
Parallel image encryption algorithm based on discretized chaotic map
International Nuclear Information System (INIS)
Zhou Qing; Wong Kwokwo; Liao Xiaofeng; Xiang Tao; Hu Yue
2008-01-01
Recently, a variety of chaos-based algorithms were proposed for image encryption. Nevertheless, none of them works efficiently in parallel computing environment. In this paper, we propose a framework for parallel image encryption. Based on this framework, a new algorithm is designed using the discretized Kolmogorov flow map. It fulfills all the requirements for a parallel image encryption algorithm. Moreover, it is secure and fast. These properties make it a good choice for image encryption on parallel computing platforms
GA-Based Membrane Evolutionary Algorithm for Ensemble Clustering
Wang, Yanhua; Liu, Xiyu; Xiang, Laisheng
2017-01-01
Ensemble clustering can improve the generalization ability of a single clustering algorithm and generate a more robust clustering result by integrating multiple base clusterings, so it becomes the focus of current clustering research. Ensemble clustering aims at finding a consensus partition which agrees as much as possible with base clusterings. Genetic algorithm is a highly parallel, stochastic, and adaptive search algorithm developed from the natural selection and evolutionary mechanism of...
Fuzzy Rules for Ant Based Clustering Algorithm
Directory of Open Access Journals (Sweden)
Amira Hamdi
2016-01-01
Full Text Available This paper provides a new intelligent technique for semisupervised data clustering problem that combines the Ant System (AS algorithm with the fuzzy c-means (FCM clustering algorithm. Our proposed approach, called F-ASClass algorithm, is a distributed algorithm inspired by foraging behavior observed in ant colonyT. The ability of ants to find the shortest path forms the basis of our proposed approach. In the first step, several colonies of cooperating entities, called artificial ants, are used to find shortest paths in a complete graph that we called graph-data. The number of colonies used in F-ASClass is equal to the number of clusters in dataset. Hence, the partition matrix of dataset founded by artificial ants is given in the second step, to the fuzzy c-means technique in order to assign unclassified objects generated in the first step. The proposed approach is tested on artificial and real datasets, and its performance is compared with those of K-means, K-medoid, and FCM algorithms. Experimental section shows that F-ASClass performs better according to the error rate classification, accuracy, and separation index.
Efficient sampling algorithms for Monte Carlo based treatment planning
International Nuclear Information System (INIS)
DeMarco, J.J.; Solberg, T.D.; Chetty, I.; Smathers, J.B.
1998-01-01
Efficient sampling algorithms are necessary for producing a fast Monte Carlo based treatment planning code. This study evaluates several aspects of a photon-based tracking scheme and the effect of optimal sampling algorithms on the efficiency of the code. Four areas were tested: pseudo-random number generation, generalized sampling of a discrete distribution, sampling from the exponential distribution, and delta scattering as applied to photon transport through a heterogeneous simulation geometry. Generalized sampling of a discrete distribution using the cutpoint method can produce speedup gains of one order of magnitude versus conventional sequential sampling. Photon transport modifications based upon the delta scattering method were implemented and compared with a conventional boundary and collision checking algorithm. The delta scattering algorithm is faster by a factor of six versus the conventional algorithm for a boundary size of 5 mm within a heterogeneous geometry. A comparison of portable pseudo-random number algorithms and exponential sampling techniques is also discussed
CFSO3: A New Supervised Swarm-Based Optimization Algorithm
Directory of Open Access Journals (Sweden)
Antonino Laudani
2013-01-01
Full Text Available We present CFSO3, an optimization heuristic within the class of the swarm intelligence, based on a synergy among three different features of the Continuous Flock-of-Starlings Optimization. One of the main novelties is that this optimizer is no more a classical numerical algorithm since it now can be seen as a continuous dynamic system, which can be treated by using all the mathematical instruments available for managing state equations. In addition, CFSO3 allows passing from stochastic approaches to supervised deterministic ones since the random updating of parameters, a typical feature for numerical swam-based optimization algorithms, is now fully substituted by a supervised strategy: in CFSO3 the tuning of parameters is a priori designed for obtaining both exploration and exploitation. Indeed the exploration, that is, the escaping from a local minimum, as well as the convergence and the refinement to a solution can be designed simply by managing the eigenvalues of the CFSO state equations. Virtually in CFSO3, just the initial values of positions and velocities of the swarm members have to be randomly assigned. Both standard and parallel versions of CFSO3 together with validations on classical benchmarks are presented.
Underwater Sensor Network Redeployment Algorithm Based on Wolf Search.
Jiang, Peng; Feng, Yang; Wu, Feng
2016-10-21
This study addresses the optimization of node redeployment coverage in underwater wireless sensor networks. Given that nodes could easily become invalid under a poor environment and the large scale of underwater wireless sensor networks, an underwater sensor network redeployment algorithm was developed based on wolf search. This study is to apply the wolf search algorithm combined with crowded degree control in the deployment of underwater wireless sensor networks. The proposed algorithm uses nodes to ensure coverage of the events, and it avoids the prematurity of the nodes. The algorithm has good coverage effects. In addition, considering that obstacles exist in the underwater environment, nodes are prevented from being invalid by imitating the mechanism of avoiding predators. Thus, the energy consumption of the network is reduced. Comparative analysis shows that the algorithm is simple and effective in wireless sensor network deployment. Compared with the optimized artificial fish swarm algorithm, the proposed algorithm exhibits advantages in network coverage, energy conservation, and obstacle avoidance.
Function-Based Algorithms for Biological Sequences
Mohanty, Pragyan Sheela P.
2015-01-01
Two problems at two different abstraction levels of computational biology are studied. At the molecular level, efficient pattern matching algorithms in DNA sequences are presented. For gene order data, an efficient data structure is presented capable of storing all gene re-orderings in a systematic manner. A common characteristic of presented…
Survey of gene splicing algorithms based on reads.
Si, Xiuhua; Wang, Qian; Zhang, Lei; Wu, Ruo; Ma, Jiquan
2017-11-02
Gene splicing is the process of assembling a large number of unordered short sequence fragments to the original genome sequence as accurately as possible. Several popular splicing algorithms based on reads are reviewed in this article, including reference genome algorithms and de novo splicing algorithms (Greedy-extension, Overlap-Layout-Consensus graph, De Bruijn graph). We also discuss a new splicing method based on the MapReduce strategy and Hadoop. By comparing these algorithms, some conclusions are drawn and some suggestions on gene splicing research are made.
Mixed-Integer Constrained Optimization Based on Memetic Algorithm
Directory of Open Access Journals (Sweden)
Y.C. Lin
2013-04-01
Full Text Available Evolutionary algorithms (EAs are population-based global search methods. They have been successfully applied to many complex optimization problems. However, EAs are frequently incapable of finding a convergence solution in default of local search mechanisms. Memetic Algorithms (MAs are hybrid EAs that combine genetic operators with local search methods. With global exploration and local exploitation in search space, MAs are capable of obtaining more high-quality solutions. On the other hand, mixed-integer hybrid differential evolution (MIHDE, as an EA-based search algorithm, has been successfully applied to many mixed-integer optimization problems. In this paper, a memetic algorithm based on MIHDE is developed for solving mixed-integer optimization problems. However, most of real-world mixed-integer optimization problems frequently consist of equality and/or inequality constraints. In order to effectively handle constraints, an evolutionary Lagrange method based on memetic algorithm is developed to solve the mixed-integer constrained optimization problems. The proposed algorithm is implemented and tested on two benchmark mixed-integer constrained optimization problems. Experimental results show that the proposed algorithm can find better optimal solutions compared with some other search algorithms. Therefore, it implies that the proposed memetic algorithm is a good approach to mixed-integer optimization problems.
Flexible Triangle Search Algorithm for Block-Based Motion Estimation
Directory of Open Access Journals (Sweden)
Andreas Antoniou
2007-01-01
Full Text Available A new fast algorithm for block-based motion estimation, the flexible triangle search (FTS algorithm, is presented. The algorithm is based on the simplex method of optimization adapted to an integer grid. The proposed algorithm is highly flexible due to its ability to quickly change its search direction and to move towards the target of the search criterion. It is also capable of increasing or decreasing its search step size to allow coarser or finer search. Unlike other fast search algorithms, the FTS can escape from inferior local minima and thus converge to better solutions. The FTS was implemented as part of the H.264 encoder and was compared with several other block matching algorithms. The results obtained show that the FTS can reduce the number of block matching comparisons by around 30–60% with negligible effect on the image quality and compression ratio.
Human resource recommendation algorithm based on ensemble learning and Spark
Cong, Zihan; Zhang, Xingming; Wang, Haoxiang; Xu, Hongjie
2017-08-01
Aiming at the problem of “information overload” in the human resources industry, this paper proposes a human resource recommendation algorithm based on Ensemble Learning. The algorithm considers the characteristics and behaviours of both job seeker and job features in the real business circumstance. Firstly, the algorithm uses two ensemble learning methods-Bagging and Boosting. The outputs from both learning methods are then merged to form user interest model. Based on user interest model, job recommendation can be extracted for users. The algorithm is implemented as a parallelized recommendation system on Spark. A set of experiments have been done and analysed. The proposed algorithm achieves significant improvement in accuracy, recall rate and coverage, compared with recommendation algorithms such as UserCF and ItemCF.
Compressive sensing based algorithms for electronic defence
Mishra, Amit Kumar
2017-01-01
This book details some of the major developments in the implementation of compressive sensing in radio applications for electronic defense and warfare communication use. It provides a comprehensive background to the subject and at the same time describes some novel algorithms. It also investigates application value and performance-related parameters of compressive sensing in scenarios such as direction finding, spectrum monitoring, detection, and classification.
Portfolio optimization by using linear programing models based on genetic algorithm
Sukono; Hidayat, Y.; Lesmana, E.; Putra, A. S.; Napitupulu, H.; Supian, S.
2018-01-01
In this paper, we discussed the investment portfolio optimization using linear programming model based on genetic algorithms. It is assumed that the portfolio risk is measured by absolute standard deviation, and each investor has a risk tolerance on the investment portfolio. To complete the investment portfolio optimization problem, the issue is arranged into a linear programming model. Furthermore, determination of the optimum solution for linear programming is done by using a genetic algorithm. As a numerical illustration, we analyze some of the stocks traded on the capital market in Indonesia. Based on the analysis, it is shown that the portfolio optimization performed by genetic algorithm approach produces more optimal efficient portfolio, compared to the portfolio optimization performed by a linear programming algorithm approach. Therefore, genetic algorithms can be considered as an alternative on determining the investment portfolio optimization, particularly using linear programming models.
Image contrast enhancement based on a local standard deviation model
International Nuclear Information System (INIS)
Chang, Dah-Chung; Wu, Wen-Rong
1996-01-01
The adaptive contrast enhancement (ACE) algorithm is a widely used image enhancement method, which needs a contrast gain to adjust high frequency components of an image. In the literature, the gain is usually inversely proportional to the local standard deviation (LSD) or is a constant. But these cause two problems in practical applications, i.e., noise overenhancement and ringing artifact. In this paper a new gain is developed based on Hunt's Gaussian image model to prevent the two defects. The new gain is a nonlinear function of LSD and has the desired characteristic emphasizing the LSD regions in which details are concentrated. We have applied the new ACE algorithm to chest x-ray images and the simulations show the effectiveness of the proposed algorithm
Disaster Monitoring using Grid Based Data Fusion Algorithms
Directory of Open Access Journals (Sweden)
Cătălin NAE
2010-12-01
Full Text Available This is a study of the application of Grid technology and high performance parallelcomputing to a candidate algorithm for jointly accomplishing data fusion from different sensors. Thisincludes applications for both image analysis and/or data processing for simultaneously trackingmultiple targets in real-time. The emphasis is on comparing the architectures of the serial andparallel algorithms, and characterizing the performance benefits achieved by the parallel algorithmwith both on-ground and in-space hardware implementations. The improved performance levelsachieved by the use of Grid technology (middleware for Parallel Data Fusion are presented for themain metrics of interest in near real-time applications, namely latency, total computation load, andtotal sustainable throughput. The objective of this analysis is, therefore, to demonstrate animplementation of multi-sensor data fusion and/or multi-target tracking functions within an integratedmulti-node portable HPC architecture based on emerging Grid technology. The key metrics to bedetermined in support of ongoing system analyses includes: required computational throughput inMFLOPS; latency between receipt of input data and resulting outputs; and scalability, processorutilization and memory requirements. Furthermore, the standard MPI functions are considered to beused for inter-node communications in order to promote code portability across multiple HPCcomputer platforms, both in space and on-ground.
Automatic Peak Selection by a Benjamini-Hochberg-Based Algorithm
Abbas, Ahmed
2013-01-07
A common issue in bioinformatics is that computational methods often generate a large number of predictions sorted according to certain confidence scores. A key problem is then determining how many predictions must be selected to include most of the true predictions while maintaining reasonably high precision. In nuclear magnetic resonance (NMR)-based protein structure determination, for instance, computational peak picking methods are becoming more and more common, although expert-knowledge remains the method of choice to determine how many peaks among thousands of candidate peaks should be taken into consideration to capture the true peaks. Here, we propose a Benjamini-Hochberg (B-H)-based approach that automatically selects the number of peaks. We formulate the peak selection problem as a multiple testing problem. Given a candidate peak list sorted by either volumes or intensities, we first convert the peaks into p-values and then apply the B-H-based algorithm to automatically select the number of peaks. The proposed approach is tested on the state-of-the-art peak picking methods, including WaVPeak [1] and PICKY [2]. Compared with the traditional fixed number-based approach, our approach returns significantly more true peaks. For instance, by combining WaVPeak or PICKY with the proposed method, the missing peak rates are on average reduced by 20% and 26%, respectively, in a benchmark set of 32 spectra extracted from eight proteins. The consensus of the B-H-selected peaks from both WaVPeak and PICKY achieves 88% recall and 83% precision, which significantly outperforms each individual method and the consensus method without using the B-H algorithm. The proposed method can be used as a standard procedure for any peak picking method and straightforwardly applied to some other prediction selection problems in bioinformatics. The source code, documentation and example data of the proposed method is available at http://sfb.kaust.edu.sa/pages/software.aspx. © 2013
Agent-based Algorithm for Spatial Distribution of Objects
Collier, Nathan
2012-06-02
In this paper we present an agent-based algorithm for the spatial distribution of objects. The algorithm is a generalization of the bubble mesh algorithm, initially created for the point insertion stage of the meshing process of the finite element method. The bubble mesh algorithm treats objects in space as bubbles, which repel and attract each other. The dynamics of each bubble are approximated by solving a series of ordinary differential equations. We present numerical results for a meshing application as well as a graph visualization application.
Optimization algorithm based on densification and dynamic canonical descent
Bousson, K.; Correia, S. D.
2006-07-01
Stochastic methods have gained some popularity in global optimization in that most of them do not assume the cost functions to be differentiable. They have capabilities to avoid being trapped by local optima, and may converge even faster than gradient-based optimization methods on some problems. The present paper proposes an optimization method, which reduces the search space by means of densification curves, coupled with the dynamic canonical descent algorithm. The performances of the new method are shown on several known problems classically used for testing optimization algorithms, and proved to outperform competitive algorithms such as simulated annealing and genetic algorithms.
Fast perceptual image hash based on cascade algorithm
Ruchay, Alexey; Kober, Vitaly; Yavtushenko, Evgeniya
2017-09-01
In this paper, we propose a perceptual image hash algorithm based on cascade algorithm, which can be applied in image authentication, retrieval, and indexing. Image perceptual hash uses for image retrieval in sense of human perception against distortions caused by compression, noise, common signal processing and geometrical modifications. The main disadvantage of perceptual hash is high time expenses. In the proposed cascade algorithm of image retrieval initializes with short hashes, and then a full hash is applied to the processed results. Computer simulation results show that the proposed hash algorithm yields a good performance in terms of robustness, discriminability, and time expenses.
A Vehicle Detection Algorithm Based on Deep Belief Network
Directory of Open Access Journals (Sweden)
Hai Wang
2014-01-01
Full Text Available Vision based vehicle detection is a critical technology that plays an important role in not only vehicle active safety but also road video surveillance application. Traditional shallow model based vehicle detection algorithm still cannot meet the requirement of accurate vehicle detection in these applications. In this work, a novel deep learning based vehicle detection algorithm with 2D deep belief network (2D-DBN is proposed. In the algorithm, the proposed 2D-DBN architecture uses second-order planes instead of first-order vector as input and uses bilinear projection for retaining discriminative information so as to determine the size of the deep architecture which enhances the success rate of vehicle detection. On-road experimental results demonstrate that the algorithm performs better than state-of-the-art vehicle detection algorithm in testing data sets.
Local Community Detection Algorithm Based on Minimal Cluster
Directory of Open Access Journals (Sweden)
Yong Zhou
2016-01-01
Full Text Available In order to discover the structure of local community more effectively, this paper puts forward a new local community detection algorithm based on minimal cluster. Most of the local community detection algorithms begin from one node. The agglomeration ability of a single node must be less than multiple nodes, so the beginning of the community extension of the algorithm in this paper is no longer from the initial node only but from a node cluster containing this initial node and nodes in the cluster are relatively densely connected with each other. The algorithm mainly includes two phases. First it detects the minimal cluster and then finds the local community extended from the minimal cluster. Experimental results show that the quality of the local community detected by our algorithm is much better than other algorithms no matter in real networks or in simulated networks.
Image Registration Algorithm Based on Parallax Constraint and Clustering Analysis
Wang, Zhe; Dong, Min; Mu, Xiaomin; Wang, Song
2018-01-01
To resolve the problem of slow computation speed and low matching accuracy in image registration, a new image registration algorithm based on parallax constraint and clustering analysis is proposed. Firstly, Harris corner detection algorithm is used to extract the feature points of two images. Secondly, use Normalized Cross Correlation (NCC) function to perform the approximate matching of feature points, and the initial feature pair is obtained. Then, according to the parallax constraint condition, the initial feature pair is preprocessed by K-means clustering algorithm, which is used to remove the feature point pairs with obvious errors in the approximate matching process. Finally, adopt Random Sample Consensus (RANSAC) algorithm to optimize the feature points to obtain the final feature point matching result, and the fast and accurate image registration is realized. The experimental results show that the image registration algorithm proposed in this paper can improve the accuracy of the image matching while ensuring the real-time performance of the algorithm.
Teaching learning based optimization algorithm and its engineering applications
Rao, R Venkata
2016-01-01
Describing a new optimization algorithm, the “Teaching-Learning-Based Optimization (TLBO),” in a clear and lucid style, this book maximizes reader insights into how the TLBO algorithm can be used to solve continuous and discrete optimization problems involving single or multiple objectives. As the algorithm operates on the principle of teaching and learning, where teachers influence the quality of learners’ results, the elitist version of TLBO algorithm (ETLBO) is described along with applications of the TLBO algorithm in the fields of electrical engineering, mechanical design, thermal engineering, manufacturing engineering, civil engineering, structural engineering, computer engineering, electronics engineering, physics and biotechnology. The book offers a valuable resource for scientists, engineers and practitioners involved in the development and usage of advanced optimization algorithms.
Analog Circuit Design Optimization Based on Evolutionary Algorithms
Directory of Open Access Journals (Sweden)
Mansour Barari
2014-01-01
Full Text Available This paper investigates an evolutionary-based designing system for automated sizing of analog integrated circuits (ICs. Two evolutionary algorithms, genetic algorithm and PSO (Parswal particle swarm optimization algorithm, are proposed to design analog ICs with practical user-defined specifications. On the basis of the combination of HSPICE and MATLAB, the system links circuit performances, evaluated through specific electrical simulation, to the optimization system in the MATLAB environment, for the selected topology. The system has been tested by typical and hard-to-design cases, such as complex analog blocks with stringent design requirements. The results show that the design specifications are closely met. Comparisons with available methods like genetic algorithms show that the proposed algorithm offers important advantages in terms of optimization quality and robustness. Moreover, the algorithm is shown to be efficient.
Influence of crossover methods used by genetic algorithm-based ...
Indian Academy of Sciences (India)
Home; Journals; Sadhana; Volume 40; Issue 8. Influence of crossover methods used by genetic algorithm-based heuristic to solve the selective harmonic ... Genetic Algorithms (GA) has always done justice to the art of optimization. One such endeavor has been made in employing the roots of GA in a most proficient way to ...
New MPPT algorithm based on hybrid dynamical theory
Elmetennani, Shahrazed
2014-11-01
This paper presents a new maximum power point tracking algorithm based on the hybrid dynamical theory. A multiceli converter has been considered as an adaptation stage for the photovoltaic chain. The proposed algorithm is a hybrid automata switching between eight different operating modes, which has been validated by simulation tests under different working conditions. © 2014 IEEE.
Algorithm for Concrete Mix Design Based on British Method | Ezeh ...
African Journals Online (AJOL)
The results obtained from the algorithm were compared with those obtained based on the British method and the differences between them were found to be less than 10% in each example. Hence, the algorithm developed in this paper is working with minimum error. It is recommended for use in obtaining good results for ...
Indian Academy of Sciences (India)
have been found in Vedic Mathematics which are dated much before Euclid's algorithm. A programming language Is used to describe an algorithm for execution on a computer. An algorithm expressed using a programming language Is called a program. From activities 1-3, we can observe that: • Each activity is a command.
Evaluating segmentation algorithms for diffusion-weighted MR images: a task-based approach
Jha, Abhinav K.; Kupinski, Matthew A.; Rodríguez, Jeffrey J.; Stephen, Renu M.; Stopeck, Alison T.
2010-02-01
Apparent Diffusion Coefficient (ADC) of lesions obtained from Diffusion Weighted Magnetic Resonance Imaging is an emerging biomarker for evaluating anti-cancer therapy response. To compute the lesion's ADC, accurate lesion segmentation must be performed. To quantitatively compare these lesion segmentation algorithms, standard methods are used currently. However, the end task from these images is accurate ADC estimation, and these standard methods don't evaluate the segmentation algorithms on this task-based measure. Moreover, standard methods rely on the highly unlikely scenario of there being perfectly manually segmented lesions. In this paper, we present two methods for quantitatively comparing segmentation algorithms on the above task-based measure; the first method compares them given good manual segmentations from a radiologist, the second compares them even in absence of good manual segmentations.
A Tomographic method based on genetic algorithms
International Nuclear Information System (INIS)
Turcanu, C.; Alecu, L.; Craciunescu, T.; Niculae, C.
1997-01-01
Computerized tomography being a non-destructive and non-evasive technique is frequently used in medical application to generate three dimensional images of objects. Genetic algorithms are efficient, domain independent for a large variety of problems. The proposed method produces good quality reconstructions even in case of very small number of projection angles. It requests no a priori knowledge about the solution and takes into account the statistical uncertainties. The main drawback of the method is the amount of computer memory and time needed. (author)
CUDT: A CUDA Based Decision Tree Algorithm
Directory of Open Access Journals (Sweden)
Win-Tsung Lo
2014-01-01
Full Text Available Decision tree is one of the famous classification methods in data mining. Many researches have been proposed, which were focusing on improving the performance of decision tree. However, those algorithms are developed and run on traditional distributed systems. Obviously the latency could not be improved while processing huge data generated by ubiquitous sensing node in the era without new technology help. In order to improve data processing latency in huge data mining, in this paper, we design and implement a new parallelized decision tree algorithm on a CUDA (compute unified device architecture, which is a GPGPU solution provided by NVIDIA. In the proposed system, CPU is responsible for flow control while the GPU is responsible for computation. We have conducted many experiments to evaluate system performance of CUDT and made a comparison with traditional CPU version. The results show that CUDT is 5∼55 times faster than Weka-j48 and is 18 times speedup than SPRINT for large data set.
A transport-based condensed history algorithm
International Nuclear Information System (INIS)
Tolar, D. R. Jr.
1999-01-01
Condensed history algorithms are approximate electron transport Monte Carlo methods in which the cumulative effects of multiple collisions are modeled in a single step of (user-specified) path length s 0 . This path length is the distance each Monte Carlo electron travels between collisions. Current condensed history techniques utilize a splitting routine over the range 0 le s le s 0 . For example, the PEnELOPE method splits each step into two substeps; one with length ξs 0 and one with length (1 minusξ)s 0 , where ξ is a random number from 0 0 is fixed (not sampled from an exponential distribution), conventional condensed history schemes are not transport processes. Here the authors describe a new condensed history algorithm that is a transport process. The method simulates a transport equation that approximates the exact Boltzmann equation. The new transport equation has a larger mean free path than, and preserves two angular moments of, the Boltzmann equation. Thus, the new process is solved more efficiently by Monte Carlo, and it conserves both particles and scattering power
Mixed-Integer Constrained Optimization Based on Memetic Algorithm
Directory of Open Access Journals (Sweden)
Y. C. Lin
2013-03-01
Full Text Available Evolutionary algorithms (EAs are population-based global search methods. They have been successfully applied tomany complex optimization problems. However, EAs are frequently incapable of finding a convergence solution indefault of local search mechanisms. Memetic Algorithms (MAs are hybrid EAs that combine genetic operators withlocal search methods. With global exploration and local exploitation in search space, MAs are capable of obtainingmore high-quality solutions. On the other hand, mixed-integer hybrid differential evolution (MIHDE, as an EA-basedsearch algorithm, has been successfully applied to many mixed-integer optimization problems. In this paper, amemetic algorithm based on MIHDE is developed for solving mixed-integer optimization problems. However, most ofreal-world mixed-integer optimization problems frequently consist of equality and/or inequality constraints. In order toeffectively handle constraints, an evolutionary Lagrange method based on memetic algorithm is developed to solvethe mixed-integer constrained optimization problems. The proposed algorithm is implemented and tested on twobenchmark mixed-integer constrained optimization problems. Experimental results show that the proposed algorithmcan find better optimal solutions compared with some other search algorithms. Therefore, it implies that the proposedmemetic algorithm is a good approach to mixed-integer optimization problems.
GA-Based Membrane Evolutionary Algorithm for Ensemble Clustering
Directory of Open Access Journals (Sweden)
Yanhua Wang
2017-01-01
Full Text Available Ensemble clustering can improve the generalization ability of a single clustering algorithm and generate a more robust clustering result by integrating multiple base clusterings, so it becomes the focus of current clustering research. Ensemble clustering aims at finding a consensus partition which agrees as much as possible with base clusterings. Genetic algorithm is a highly parallel, stochastic, and adaptive search algorithm developed from the natural selection and evolutionary mechanism of biology. In this paper, an improved genetic algorithm is designed by improving the coding of chromosome. A new membrane evolutionary algorithm is constructed by using genetic mechanisms as evolution rules and combines with the communication mechanism of cell-like P system. The proposed algorithm is used to optimize the base clusterings and find the optimal chromosome as the final ensemble clustering result. The global optimization ability of the genetic algorithm and the rapid convergence of the membrane system make membrane evolutionary algorithm perform better than several state-of-the-art techniques on six real-world UCI data sets.
GA-Based Membrane Evolutionary Algorithm for Ensemble Clustering.
Wang, Yanhua; Liu, Xiyu; Xiang, Laisheng
2017-01-01
Ensemble clustering can improve the generalization ability of a single clustering algorithm and generate a more robust clustering result by integrating multiple base clusterings, so it becomes the focus of current clustering research. Ensemble clustering aims at finding a consensus partition which agrees as much as possible with base clusterings. Genetic algorithm is a highly parallel, stochastic, and adaptive search algorithm developed from the natural selection and evolutionary mechanism of biology. In this paper, an improved genetic algorithm is designed by improving the coding of chromosome. A new membrane evolutionary algorithm is constructed by using genetic mechanisms as evolution rules and combines with the communication mechanism of cell-like P system. The proposed algorithm is used to optimize the base clusterings and find the optimal chromosome as the final ensemble clustering result. The global optimization ability of the genetic algorithm and the rapid convergence of the membrane system make membrane evolutionary algorithm perform better than several state-of-the-art techniques on six real-world UCI data sets.
Finite-sample based learning algorithms for feedforward networks
Energy Technology Data Exchange (ETDEWEB)
Rao, N.S.V.; Protopopescu, V.; Mann, R.C.; Oblow, E.M. [Oak Ridge National Lab., TN (United States); Iyengar, S.S. [Louisiana State Univ., Baton Rouge, LA (United States). Dept. of Computer Science
1995-04-01
We discuss two classes of convergent algorithms for learning continuous functions (and also regression functions) that are represented by FeedForward Networks (FFN). The first class of algorithms, applicable to networks with unknown weights located only in the output layer, is obtained by utilizing the potential function methods of Aizerman et al. The second class, applicable to general feedforward networks, is obtained by utilizing the classical Robbins-Monro style stochastic approximation methods. Conditions relating the sample sizes to the error bounds are derived for both classes of algorithms using martingale-type inequalities. For concreteness, the discussion is presented in terms of neural networks, but the results are applicable to general feedforward networks, in particular to wavelet networks. The algorithms can also be directly applied to concept learning problems. A main distinguishing feature of the this work is that the sample sizes are based on explicit algorithms rather than information-based methods.
A Novel Heuristic Algorithm Based on Clark and Wright Algorithm for Green Vehicle Routing Problem
Directory of Open Access Journals (Sweden)
Mehdi Alinaghian
2015-08-01
Full Text Available A significant portion of Gross Domestic Production (GDP in any country belongs to the transportation system. Transportation equipment, in the other hand, is supposed to be great consumer of oil products. Many attempts have been assigned to the vehicles to cut down Greenhouse Gas (GHG. In this paper a novel heuristic algorithm based on Clark and Wright Algorithm called Green Clark and Wright (GCW for Vehicle Routing Problem regarding to fuel consumption is presented. The objective function is fuel consumption, drivers, and the usage of vehicles. Being compared to exact methods solutions for small-sized problems and to Differential Evolution (DE algorithm solutions for large-scaled problems, the results show efficient performance of the proposed GCW algorithm.
Sensor Saturation Compensated Smoothing Algorithm for Inertial Sensor Based Motion Tracking
Directory of Open Access Journals (Sweden)
Quoc Khanh Dang
2014-05-01
Full Text Available In this paper, a smoothing algorithm for compensating inertial sensor saturation is proposed. The sensor saturation happens when a sensor measures a value that is larger than its dynamic range. This can lead to a considerable accumulated error. To compensate the lost information in saturated sensor data, we propose a smoothing algorithm in which the saturation compensation is formulated as an optimization problem. Based on a standard smoothing algorithm with zero velocity intervals, two saturation estimation methods were proposed. Simulation and experiments prove that the proposed methods are effective in compensating the sensor saturation.
Ogawa, Masakatsu; Hiraguri, Takefumi; Nishimori, Kentaro; Takaya, Kazuhiro; Murakawa, Kazuo
This paper proposes and investigates a distributed adaptive contention window adjustment algorithm based on the transmission history for wireless LANs called the transmission-history-based distributed adaptive contention window adjustment (THAW) algorithm. The objective of this paper is to reduce the transmission delay and improve the channel throughput compared to conventional algorithms. The feature of THAW is that it adaptively adjusts the initial contention window (CWinit) size in the binary exponential backoff (BEB) algorithm used in the IEEE 802.11 standard according to the transmission history and the automatic rate fallback (ARF) algorithm, which is the most basic algorithm in automatic rate controls. This effect is to keep CWinit at a high value in a congested state. Simulation results show that the THAW algorithm outperforms the conventional algorithms in terms of the channel throughput and delay, even if the timer in the ARF is changed.
Mikhaylova, E.; Kolstein, M.; De Lorenzo, G.; Chmeissani, M.
2014-01-01
A novel positron emission tomography (PET) scanner design based on a room-temperature pixelated CdTe solid-state detector is being developed within the framework of the Voxel Imaging PET (VIP) Pathfinder project [1]. The simulation results show a great potential of the VIP to produce high-resolution images even in extremely challenging conditions such as the screening of a human head [2]. With unprecedented high channel density (450 channels/cm3) image reconstruction is a challenge. Therefore optimization is needed to find the best algorithm in order to exploit correctly the promising detector potential. The following reconstruction algorithms are evaluated: 2-D Filtered Backprojection (FBP), Ordered Subset Expectation Maximization (OSEM), List-Mode OSEM (LM-OSEM), and the Origin Ensemble (OE) algorithm. The evaluation is based on the comparison of a true image phantom with a set of reconstructed images obtained by each algorithm. This is achieved by calculation of image quality merit parameters such as the bias, the variance and the mean square error (MSE). A systematic optimization of each algorithm is performed by varying the reconstruction parameters, such as the cutoff frequency of the noise filters and the number of iterations. The region of interest (ROI) analysis of the reconstructed phantom is also performed for each algorithm and the results are compared. Additionally, the performance of the image reconstruction methods is compared by calculating the modulation transfer function (MTF). The reconstruction time is also taken into account to choose the optimal algorithm. The analysis is based on GAMOS [3] simulation including the expected CdTe and electronic specifics. PMID:25018777
Warehouse Optimization Model Based on Genetic Algorithm
Directory of Open Access Journals (Sweden)
Guofeng Qin
2013-01-01
Full Text Available This paper takes Bao Steel logistics automated warehouse system as an example. The premise is to maintain the focus of the shelf below half of the height of the shelf. As a result, the cost time of getting or putting goods on the shelf is reduced, and the distance of the same kind of goods is also reduced. Construct a multiobjective optimization model, using genetic algorithm to optimize problem. At last, we get a local optimal solution. Before optimization, the average cost time of getting or putting goods is 4.52996 s, and the average distance of the same kinds of goods is 2.35318 m. After optimization, the average cost time is 4.28859 s, and the average distance is 1.97366 m. After analysis, we can draw the conclusion that this model can improve the efficiency of cargo storage.
A parallel simulated annealing algorithm for standard cell placement on a hypercube computer
Jones, Mark Howard
1987-01-01
A parallel version of a simulated annealing algorithm is presented which is targeted to run on a hypercube computer. A strategy for mapping the cells in a two dimensional area of a chip onto processors in an n-dimensional hypercube is proposed such that both small and large distance moves can be applied. Two types of moves are allowed: cell exchanges and cell displacements. The computation of the cost function in parallel among all the processors in the hypercube is described along with a distributed data structure that needs to be stored in the hypercube to support parallel cost evaluation. A novel tree broadcasting strategy is used extensively in the algorithm for updating cell locations in the parallel environment. Studies on the performance of the algorithm on example industrial circuits show that it is faster and gives better final placement results than the uniprocessor simulated annealing algorithms. An improved uniprocessor algorithm is proposed which is based on the improved results obtained from parallelization of the simulated annealing algorithm.
Wavelet-LMS algorithm-based echo cancellers
Seetharaman, Lalith K.; Rao, Sathyanarayana S.
2002-12-01
This paper presents Echo Cancellers based on the Wavelet-LMS Algorithm. The performance of the Least Mean Square Algorithm in Wavelet transform domain is observed and its application in Echo cancellation is analyzed. The Widrow-Hoff Least Mean Square Algorithm is most widely used algorithm for Adaptive filters that function as Echo Cancellers. The present day communication signals are widely non-stationary in nature and some errors crop up when Least Mean Square Algorithm is used for the Echo Cancellers handling such signals. The analysis of non-stationary signals often involves a compromise between how well transitions or discontinuities can be located. The multi-scale or multi-resolution of signal analysis, which is the essence of wavelet transform, makes Wavelets popular in non-stationary signal analysis. In this paper, we present a Wavelet-LMS algorithm wherein the wavelet coefficients of a signal are modified adaptively using the Least Mean Square Algorithm and then reconstructed to give an Echo-free signal. The Echo Canceller based on this Algorithm is found to have a better convergence and a comparatively lesser MSE (Mean Square error).
A SAT-Based Algorithm for Reparameterization in Symbolic Simulation
National Research Council Canada - National Science Library
Chauhan, Pankaj; Kroening, Daniel; Clarke, Edmund
2003-01-01
.... Efficient SAT solvers have been applied successfully for many verification problems. This paper presents a novel SAT-based reparameterization algorithm that is largely immune to the large number of input variables that need to be quantified...
A novel bit-quad-based Euler number computing algorithm.
Yao, Bin; He, Lifeng; Kang, Shiying; Chao, Yuyan; Zhao, Xiao
2015-01-01
The Euler number of a binary image is an important topological property in computer vision and pattern recognition. This paper proposes a novel bit-quad-based Euler number computing algorithm. Based on graph theory and analysis on bit-quad patterns, our algorithm only needs to count two bit-quad patterns. Moreover, by use of the information obtained during processing the previous bit-quad, the average number of pixels to be checked for processing a bit-quad is only 1.75. Experimental results demonstrated that our method outperforms significantly conventional Euler number computing algorithms.
A novel line segment detection algorithm based on graph search
Zhao, Hong-dan; Liu, Guo-ying; Song, Xu
2018-02-01
To overcome the problem of extracting line segment from an image, a method of line segment detection was proposed based on the graph search algorithm. After obtaining the edge detection result of the image, the candidate straight line segments are obtained in four directions. For the candidate straight line segments, their adjacency relationships are depicted by a graph model, based on which the depth-first search algorithm is employed to determine how many adjacent line segments need to be merged. Finally we use the least squares method to fit the detected straight lines. The comparative experimental results verify that the proposed algorithm has achieved better results than the line segment detector (LSD).
BFL: a node and edge betweenness based fast layout algorithm for large scale networks
Hashimoto, Tatsunori B; Nagasaki, Masao; Kojima, Kaname; Miyano, Satoru
2009-01-01
Background Network visualization would serve as a useful first step for analysis. However, current graph layout algorithms for biological pathways are insensitive to biologically important information, e.g. subcellular localization, biological node and graph attributes, or/and not available for large scale networks, e.g. more than 10000 elements. Results To overcome these problems, we propose the use of a biologically important graph metric, betweenness, a measure of network flow. This metric is highly correlated with many biological phenomena such as lethality and clusters. We devise a new fast parallel algorithm calculating betweenness to minimize the preprocessing cost. Using this metric, we also invent a node and edge betweenness based fast layout algorithm (BFL). BFL places the high-betweenness nodes to optimal positions and allows the low-betweenness nodes to reach suboptimal positions. Furthermore, BFL reduces the runtime by combining a sequential insertion algorim with betweenness. For a graph with n nodes, this approach reduces the expected runtime of the algorithm to O(n2) when considering edge crossings, and to O(n log n) when considering only density and edge lengths. Conclusion Our BFL algorithm is compared against fast graph layout algorithms and approaches requiring intensive optimizations. For gene networks, we show that our algorithm is faster than all layout algorithms tested while providing readability on par with intensive optimization algorithms. We achieve a 1.4 second runtime for a graph with 4000 nodes and 12000 edges on a standard desktop computer. PMID:19146673
An Emotion-Based Method to Perform Algorithmic Composition
Huang, Chih-Fang; Lin, En-Ju
2013-01-01
The generative music using algorithmic composition techniques has been developed in many years. However it usually lacks of emotion-based mechanism to generate music with specific affective features. In this article the automated music algorithm will be performed based on Prof. Phil Winosr’s “MusicSculptor” software with proper emotion parameter mapping to drive the music content with specific context using various music pa-rameters distribution with different probability control, in order to...
A Chinese text classification system based on Naive Bayes algorithm
Directory of Open Access Journals (Sweden)
Cui Wei
2016-01-01
Full Text Available In this paper, aiming at the characteristics of Chinese text classification, using the ICTCLAS(Chinese lexical analysis system of Chinese academy of sciences for document segmentation, and for data cleaning and filtering the Stop words, using the information gain and document frequency feature selection algorithm to document feature selection. Based on this, based on the Naive Bayesian algorithm implemented text classifier , and use Chinese corpus of Fudan University has carried on the experiment and analysis on the system.
An ICP algorithm based on block path closest point search
Wang, Kuisheng; Li, Xing; Lei, Hongwei; Zhang, Xiaorui
2017-08-01
At present, the traditional ICP algorithm has the problems of low efficiency and low precision. To solve these two problems, an ICP algorithm based on block path closest point search is proposed in this paper. The idea of the algorithm is as follows: firstly, the point cloud data is divided into blocks, and the nearest point block corresponding to the target point cloud is searched by the path method. Secondly, according to the global method, the nearest point can be determined only by finding the nearest point block, and complete all the closest match. The experimental results show that the improved ICP algorithm has faster speed and higher precision than the traditional ICP algorithm, for a large number of point cloud data advantage is more obvious.
A novel clustering algorithm based on quantum games
International Nuclear Information System (INIS)
Li Qiang; He Yan; Jiang Jingping
2009-01-01
Enormous successes have been made by quantum algorithms during the last decade. In this paper, we combine the quantum game with the problem of data clustering, and then develop a quantum-game-based clustering algorithm, in which data points in a dataset are considered as players who can make decisions and implement quantum strategies in quantum games. After each round of a quantum game, each player's expected payoff is calculated. Later, he uses a link-removing-and-rewiring (LRR) function to change his neighbors and adjust the strength of links connecting to them in order to maximize his payoff. Further, algorithms are discussed and analyzed in two cases of strategies, two payoff matrixes and two LRR functions. Consequently, the simulation results have demonstrated that data points in datasets are clustered reasonably and efficiently, and the clustering algorithms have fast rates of convergence. Moreover, the comparison with other algorithms also provides an indication of the effectiveness of the proposed approach.
Random Walk Quantum Clustering Algorithm Based on Space
Xiao, Shufen; Dong, Yumin; Ma, Hongyang
2018-01-01
In the random quantum walk, which is a quantum simulation of the classical walk, data points interacted when selecting the appropriate walk strategy by taking advantage of quantum-entanglement features; thus, the results obtained when the quantum walk is used are different from those when the classical walk is adopted. A new quantum walk clustering algorithm based on space is proposed by applying the quantum walk to clustering analysis. In this algorithm, data points are viewed as walking participants, and similar data points are clustered using the walk function in the pay-off matrix according to a certain rule. The walk process is simplified by implementing a space-combining rule. The proposed algorithm is validated by a simulation test and is proved superior to existing clustering algorithms, namely, Kmeans, PCA + Kmeans, and LDA-Km. The effects of some of the parameters in the proposed algorithm on its performance are also analyzed and discussed. Specific suggestions are provided.
Haplotyping a single triploid individual based on genetic algorithm.
Wu, Jingli; Chen, Xixi; Li, Xianchen
2014-01-01
The minimum error correction model is an important combinatorial model for haplotyping a single individual. In this article, triploid individual haplotype reconstruction problem is studied by using the model. A genetic algorithm based method GTIHR is presented for reconstructing the triploid individual haplotype. A novel coding method and an effectual hill-climbing operator are introduced for the GTIHR algorithm. This relatively short chromosome code can lead to a smaller solution space, which plays a positive role in speeding up the convergence process. The hill-climbing operator ensures algorithm GTIHR converge at a good solution quickly, and prevents premature convergence simultaneously. The experimental results prove that algorithm GTIHR can be implemented efficiently, and can get higher reconstruction rate than previous algorithms.
Fingerprint Image Segmentation Algorithm Based on Contourlet Transform Technology
Directory of Open Access Journals (Sweden)
Guanghua Zhang
2016-09-01
Full Text Available This paper briefly introduces two classic algorithms for fingerprint image processing, which include the soft threshold denoise algorithm of wavelet domain based on wavelet domain and the fingerprint image enhancement algorithm based on Gabor function. Contourlet transform has good texture sensitivity and can be used for the segmentation enforcement of the fingerprint image. The method proposed in this paper has attained the final fingerprint segmentation image through utilizing a modified denoising for a high-frequency coefficient after Contourlet decomposition, highlighting the fingerprint ridge line through modulus maxima detection and finally connecting the broken fingerprint line using a value filter in direction. It can attain richer direction information than the method based on wavelet transform and Gabor function and can make the positioning of detailed features more accurate. However, its ridge should be more coherent. Experiments have shown that this algorithm is obviously superior in fingerprint features detection.
Guidelines for Interactive Reliability-Based Structural Optimization using Quasi-Newton Algorithms
DEFF Research Database (Denmark)
Pedersen, C.; Thoft-Christensen, Palle
Guidelines for interactive reliability-based structural optimization problems are outlined in terms of modifications of standard quasi-Newton algorithms. The proposed modifications minimize the condition number of the approximate Hessian matrix in each iteration, restrict the relative and absolute...
Indian Academy of Sciences (India)
algorithms such as synthetic (polynomial) division have been found in Vedic Mathematics which are dated much before Euclid's algorithm. A programming language ... ·1 x:=sln(theta) x : = sm(theta) 1. ~. Idl d.t Read A.B,C. ~ lei ~ Print x.y.z. L;;;J. Figure 2 Symbols used In flowchart language to rep- resent Assignment, Read.
Indian Academy of Sciences (India)
In the previous articles, we have discussed various common data-structures such as arrays, lists, queues and trees and illustrated the widely used algorithm design paradigm referred to as 'divide-and-conquer'. Although there has been a large effort in realizing efficient algorithms, there are not many universally accepted ...
AdaBoost-based algorithm for network intrusion detection.
Hu, Weiming; Hu, Wei; Maybank, Steve
2008-04-01
Network intrusion detection aims at distinguishing the attacks on the Internet from normal use of the Internet. It is an indispensable part of the information security system. Due to the variety of network behaviors and the rapid development of attack fashions, it is necessary to develop fast machine-learning-based intrusion detection algorithms with high detection rates and low false-alarm rates. In this correspondence, we propose an intrusion detection algorithm based on the AdaBoost algorithm. In the algorithm, decision stumps are used as weak classifiers. The decision rules are provided for both categorical and continuous features. By combining the weak classifiers for continuous features and the weak classifiers for categorical features into a strong classifier, the relations between these two different types of features are handled naturally, without any forced conversions between continuous and categorical features. Adaptable initial weights and a simple strategy for avoiding overfitting are adopted to improve the performance of the algorithm. Experimental results show that our algorithm has low computational complexity and error rates, as compared with algorithms of higher computational complexity, as tested on the benchmark sample data.
A Flocking Based algorithm for Document Clustering Analysis
Energy Technology Data Exchange (ETDEWEB)
Cui, Xiaohui [ORNL; Gao, Jinzhu [ORNL; Potok, Thomas E [ORNL
2006-01-01
Social animals or insects in nature often exhibit a form of emergent collective behavior known as flocking. In this paper, we present a novel Flocking based approach for document clustering analysis. Our Flocking clustering algorithm uses stochastic and heuristic principles discovered from observing bird flocks or fish schools. Unlike other partition clustering algorithm such as K-means, the Flocking based algorithm does not require initial partitional seeds. The algorithm generates a clustering of a given set of data through the embedding of the high-dimensional data items on a two-dimensional grid for easy clustering result retrieval and visualization. Inspired by the self-organized behavior of bird flocks, we represent each document object with a flock boid. The simple local rules followed by each flock boid result in the entire document flock generating complex global behaviors, which eventually result in a clustering of the documents. We evaluate the efficiency of our algorithm with both a synthetic dataset and a real document collection that includes 100 news articles collected from the Internet. Our results show that the Flocking clustering algorithm achieves better performance compared to the K- means and the Ant clustering algorithm for real document clustering.
Compressive Sensing Image Fusion Based on Particle Swarm Optimization Algorithm
Li, X.; Lv, J.; Jiang, S.; Zhou, H.
2017-09-01
In order to solve the problem that the spatial matching is difficult and the spectral distortion is large in traditional pixel-level image fusion algorithm. We propose a new method of image fusion that utilizes HIS transformation and the recently developed theory of compressive sensing that is called HIS-CS image fusion. In this algorithm, the particle swarm optimization algorithm is used to select the fusion coefficient ω. In the iterative process, the image fusion coefficient ω is taken as particle, and the optimal value is obtained by combining the optimal objective function. Then we use the compression-aware weighted fusion algorithm for remote sensing image fusion, taking the coefficient ω as the weight value. The algorithm ensures the optimal selection of fusion effect with a certain degree of self-adaptability. To evaluate the fused images, this paper uses five kinds of index parameters such as Entropy, Standard Deviation, Average Gradient, Degree of Distortion and Peak Signal-to-Noise Ratio. The experimental results show that the image fusion effect of the algorithm in this paper is better than that of traditional methods.
A Novel Image Encryption Algorithm Based on DNA Subsequence Operation
Directory of Open Access Journals (Sweden)
Qiang Zhang
2012-01-01
Full Text Available We present a novel image encryption algorithm based on DNA subsequence operation. Different from the traditional DNA encryption methods, our algorithm does not use complex biological operation but just uses the idea of DNA subsequence operations (such as elongation operation, truncation operation, deletion operation, etc. combining with the logistic chaotic map to scramble the location and the value of pixel points from the image. The experimental results and security analysis show that the proposed algorithm is easy to be implemented, can get good encryption effect, has a wide secret key's space, strong sensitivity to secret key, and has the abilities of resisting exhaustive attack and statistic attack.
Heuristic-based scheduling algorithm for high level synthesis
Mohamed, Gulam; Tan, Han-Ngee; Chng, Chew-Lye
1992-01-01
A new scheduling algorithm is proposed which uses a combination of a resource utilization chart, a heuristic algorithm to estimate the minimum number of hardware units based on operator mobilities, and a list-scheduling technique to achieve fast and near optimal schedules. The schedule time of this algorithm is almost independent of the length of mobilities of operators as can be seen from the benchmark example (fifth order digital elliptical wave filter) presented when the cycle time was increased from 17 to 18 and then to 21 cycles. It is implemented in C on a SUN3/60 workstation.
Restart-Based Genetic Algorithm for the Quadratic Assignment Problem
Misevicius, Alfonsas
The power of genetic algorithms (GAs) has been demonstrated for various domains of the computer science, including combinatorial optimization. In this paper, we propose a new conceptual modification of the genetic algorithm entitled a "restart-based genetic algorithm" (RGA). An effective implementation of RGA for a well-known combinatorial optimization problem, the quadratic assignment problem (QAP), is discussed. The results obtained from the computational experiments on the QAP instances from the publicly available library QAPLIB show excellent performance of RGA. This is especially true for the real-life like QAPs.
Device to device power control algorithm based on interference alignment
Directory of Open Access Journals (Sweden)
WANG Zhen
2016-04-01
Full Text Available In this paper,we present a power control algorithm based on interference alignment (IA for device to device(D2D network.The algorithm provides the opportunity for all D2D Links to share the available subcarriers simultaneously using IA technique.Besides,it controls the power budget of each D2D pair in order to maximize the sum-rate of the system without inducing excessive interference to cellular users(CU.Simulations show that the proposed power control algorithm achieves a significant sum-rate increase up to 6 bit·s-1·Hz-1 when the interference treshold is 10 dBm,which is compared with traditional prower control algorithm based on frequency division multiple access(FDMA.
A Developed Artificial Bee Colony Algorithm Based on Cloud Model
Directory of Open Access Journals (Sweden)
Ye Jin
2018-04-01
Full Text Available The Artificial Bee Colony (ABC algorithm is a bionic intelligent optimization method. The cloud model is a kind of uncertainty conversion model between a qualitative concept T ˜ that is presented by nature language and its quantitative expression, which integrates probability theory and the fuzzy mathematics. A developed ABC algorithm based on cloud model is proposed to enhance accuracy of the basic ABC algorithm and avoid getting trapped into local optima by introducing a new select mechanism, replacing the onlooker bees’ search formula and changing the scout bees’ updating formula. Experiments on CEC15 show that the new algorithm has a faster convergence speed and higher accuracy than the basic ABC and some cloud model based ABC variants.
Cryptanalysis of an image encryption algorithm based on DNA encoding
Akhavan, A.; Samsudin, A.; Akhshani, A.
2017-10-01
Recently an image encryption algorithm based on DNA encoding and the Elliptic Curve Cryptography (ECC) is proposed. This paper aims to investigate the security the DNA-based image encryption algorithm and its resistance against chosen plaintext attack. The results of the analysis demonstrate that security of the algorithm mainly relies on one static shuffling step, with a simple confusion operation. In this study, a practical plain image recovery method is proposed, and it is shown that the images encrypted with the same key could easily be recovered using the suggested cryptanalysis method with as low as two chosen plain images. Also, a strategy to improve the security of the algorithm is presented in this paper.
A joint tracking method for NSCC based on WLS algorithm
Luo, Ruidan; Xu, Ying; Yuan, Hong
2017-12-01
Navigation signal based on compound carrier (NSCC), has the flexible multi-carrier scheme and various scheme parameters configuration, which enables it to possess significant efficiency of navigation augmentation in terms of spectral efficiency, tracking accuracy, multipath mitigation capability and anti-jamming reduction compared with legacy navigation signals. Meanwhile, the typical scheme characteristics can provide auxiliary information for signal synchronism algorithm design. This paper, based on the characteristics of NSCC, proposed a kind of joint tracking method utilizing Weighted Least Square (WLS) algorithm. In this method, the LS algorithm is employed to jointly estimate each sub-carrier frequency shift with the frequency-Doppler linear relationship, by utilizing the known sub-carrier frequency. Besides, the weighting matrix is set adaptively according to the sub-carrier power to ensure the estimation accuracy. Both the theory analysis and simulation results illustrate that the tracking accuracy and sensitivity of this method outperforms the single-carrier algorithm with lower SNR.
Visual Perception Based Rate Control Algorithm for HEVC
Feng, Zeqi; Liu, PengYu; Jia, Kebin
2018-01-01
For HEVC, rate control is an indispensably important video coding technology to alleviate the contradiction between video quality and the limited encoding resources during video communication. However, the rate control benchmark algorithm of HEVC ignores subjective visual perception. For key focus regions, bit allocation of LCU is not ideal and subjective quality is unsatisfied. In this paper, a visual perception based rate control algorithm for HEVC is proposed. First bit allocation weight of LCU level is optimized based on the visual perception of luminance and motion to ameliorate video subjective quality. Then λ and QP are adjusted in combination with the bit allocation weight to improve rate distortion performance. Experimental results show that the proposed algorithm reduces average 0.5% BD-BR and maximum 1.09% BD-BR at no cost in bitrate accuracy compared with HEVC (HM15.0). The proposed algorithm devotes to improving video subjective quality under various video applications.
Validation of Agent Based Distillation Movement Algorithms
National Research Council Canada - National Science Library
Gill, Andrew
2003-01-01
Agent based distillations (ABD) are low-resolution abstract models, which can be used to explore questions associated with land combat operations in a short period of time Movement of agents within the EINSTein and MANA ABDs...
An Automated Energy Detection Algorithm Based on Consecutive Mean Excision
2018-01-01
ARL-TR-8268 ● JAN 2018 US Army Research Laboratory An Automated Energy Detection Algorithm Based on Consecutive Mean Excision...not return it to the originator. ARL-TR-8268 ● JAN 2018 US Army Research Laboratory An Automated Energy Detection Algorithm...2018 2. REPORT TYPE Technical Report 3. DATES COVERED (From - To) 1 October 2016–30 September 2017 4. TITLE AND SUBTITLE An Automated Energy
Study on Privacy Protection Algorithm Based on K-Anonymity
FeiFei, Zhao; LiFeng, Dong; Kun, Wang; Yang, Li
Basing on the study of K-Anonymity algorithm in privacy protection issue, this paper proposed a "Degree Priority" method of visiting Lattice nodes on the generalization tree to improve the performance of K-Anonymity algorithm. This paper also proposed a "Two Times K-anonymity" methods to reduce the information loss in the process of K-Anonymity. Finally, we used experimental results to demonstrate the effectiveness of these methods.
Algorithmic Algebraic Combinatorics and Gröbner Bases
Klin, Mikhail; Jurisic, Aleksandar
2009-01-01
This collection of tutorial and research papers introduces readers to diverse areas of modern pure and applied algebraic combinatorics and finite geometries with a special emphasis on algorithmic aspects and the use of the theory of Grobner bases. Topics covered include coherent configurations, association schemes, permutation groups, Latin squares, the Jacobian conjecture, mathematical chemistry, extremal combinatorics, coding theory, designs, etc. Special attention is paid to the description of innovative practical algorithms and their implementation in software packages such as GAP and MAGM
The Research and Application of SURF Algorithm Based on Feature Point Selection Algorithm
Directory of Open Access Journals (Sweden)
Zhang Fang Hu
2014-04-01
Full Text Available As the pixel information of depth image is derived from the distance information, when implementing SURF algorithm with KINECT sensor for static sign language recognition, there can be some mismatched pairs in palm area. This paper proposes a feature point selection algorithm, by filtering the SURF feature points step by step based on the number of feature points within adaptive radius r and the distance between the two points, it not only greatly improves the recognition rate, but also ensures the robustness under the environmental factors, such as skin color, illumination intensity, complex background, angle and scale changes. The experiment results show that the improved SURF algorithm can effectively improve the recognition rate, has a good robustness.
List-Based Simulated Annealing Algorithm for Traveling Salesman Problem
Directory of Open Access Journals (Sweden)
Shi-hua Zhan
2016-01-01
Full Text Available Simulated annealing (SA algorithm is a popular intelligent optimization algorithm which has been successfully applied in many fields. Parameters’ setting is a key factor for its performance, but it is also a tedious work. To simplify parameters setting, we present a list-based simulated annealing (LBSA algorithm to solve traveling salesman problem (TSP. LBSA algorithm uses a novel list-based cooling schedule to control the decrease of temperature. Specifically, a list of temperatures is created first, and then the maximum temperature in list is used by Metropolis acceptance criterion to decide whether to accept a candidate solution. The temperature list is adapted iteratively according to the topology of the solution space of the problem. The effectiveness and the parameter sensitivity of the list-based cooling schedule are illustrated through benchmark TSP problems. The LBSA algorithm, whose performance is robust on a wide range of parameter values, shows competitive performance compared with some other state-of-the-art algorithms.
Research-based standards for accessible housing
DEFF Research Database (Denmark)
Helle, Tina; Iwarsson, Susanne; Brandt, Åse
Since standards for accessible housing seldom are manifestly based on research and vary cross nationally, it is important to examine if there exists any scientific evidence, supporting these standards. Thus, one aim of this study was to review the literature in search of such scientific evidence...... to inform research-based accessibility standards is available?, a descriptive literature review was conducted. The studies should be empirically based, published during 1990 to 2010, target adult persons, published in peer reviewed journals or, as architectural competitions, PhD-thesis or conference...... presentations. We contacted 22 leading researchers and resource persons, conducted a database search in CINAHL, PubMed, PsyINFO, socINDEX, ISI and Google Scholar, using 28 search terms in 81 combinations and hand searched 22 relevant scientific journals. The explorative part of this study was based on empirical...
Fuzzy logic-based diagnostic algorithm for implantable cardioverter defibrillators.
Bárdossy, András; Blinowska, Aleksandra; Kuzmicz, Wieslaw; Ollitrault, Jacky; Lewandowski, Michał; Przybylski, Andrzej; Jaworski, Zbigniew
2014-02-01
The paper presents a diagnostic algorithm for classifying cardiac tachyarrhythmias for implantable cardioverter defibrillators (ICDs). The main aim was to develop an algorithm that could reduce the rate of occurrence of inappropriate therapies, which are often observed in existing ICDs. To achieve low energy consumption, which is a critical factor for implantable medical devices, very low computational complexity of the algorithm was crucial. The study describes and validates such an algorithm and estimates its clinical value. The algorithm was based on the heart rate variability (HRV) analysis. The input data for our algorithm were: RR-interval (I), as extracted from raw intracardiac electrogram (EGM), and in addition two other features of HRV called here onset (ONS) and instability (INST). 6 diagnostic categories were considered: ventricular fibrillation (VF), ventricular tachycardia (VT), sinus tachycardia (ST), detection artifacts and irregularities (including extrasystoles) (DAI), atrial tachyarrhythmias (ATF) and no tachycardia (i.e. normal sinus rhythm) (NT). The initial set of fuzzy rules based on the distributions of I, ONS and INST in the 6 categories was optimized by means of a software tool for automatic rule assessment using simulated annealing. A training data set with 74 EGM recordings was used during optimization, and the algorithm was validated with a validation data set with 58 EGM recordings. Real life recordings stored in defibrillator memories were used. Additionally the algorithm was tested on 2 sets of recordings from the PhysioBank databases: MIT-BIH Arrhythmia Database and MIT-BIH Supraventricular Arrhythmia Database. A custom CMOS integrated circuit implementing the diagnostic algorithm was designed in order to estimate the power consumption. A dedicated Web site, which provides public online access to the algorithm, has been created and is available for testing it. The total number of events in our training and validation sets was 132. In
Approximation Algorithms for Model-Based Diagnosis
Feldman, A.B.
2010-01-01
Model-based diagnosis is an area of abductive inference that uses a system model, together with observations about system behavior, to isolate sets of faulty components (diagnoses) that explain the observed behavior, according to some minimality criterion. This thesis presents greedy approximation
Fuzzy 2-partition entropy threshold selection based on Big Bang–Big Crunch Optimization algorithm
Directory of Open Access Journals (Sweden)
Baljit Singh Khehra
2015-03-01
Full Text Available The fuzzy 2-partition entropy approach has been widely used to select threshold value for image segmenting. This approach used two parameterized fuzzy membership functions to form a fuzzy 2-partition of the image. The optimal threshold is selected by searching an optimal combination of parameters of the membership functions such that the entropy of fuzzy 2-partition is maximized. In this paper, a new fuzzy 2-partition entropy thresholding approach based on the technology of the Big Bang–Big Crunch Optimization (BBBCO is proposed. The new proposed thresholding approach is called the BBBCO-based fuzzy 2-partition entropy thresholding algorithm. BBBCO is used to search an optimal combination of parameters of the membership functions for maximizing the entropy of fuzzy 2-partition. BBBCO is inspired by the theory of the evolution of the universe; namely the Big Bang and Big Crunch Theory. The proposed algorithm is tested on a number of standard test images. For comparison, three different algorithms included Genetic Algorithm (GA-based, Biogeography-based Optimization (BBO-based and recursive approaches are also implemented. From experimental results, it is observed that the performance of the proposed algorithm is more effective than GA-based, BBO-based and recursion-based approaches.
Designers' Cognitive Thinking Based on Evolutionary Algorithms
Zhang Shutao; Jianning Su; Chibing Hu; Peng Wang
2013-01-01
The research on cognitive thinking is important to construct the efficient intelligent design systems. But it is difficult to describe the model of cognitive thinking with reasonable mathematical theory. Based on the analysis of design strategy and innovative thinking, we investigated the design cognitive thinking model that included the external guide thinking of "width priority - depth priority" and the internal dominated thinking of "divergent thinking - convergent thinking", built a reaso...
Naef, Rudolf; Acree, William E
2017-06-25
The calculation of the standard enthalpies of vaporization, sublimation and solvation of organic molecules is presented using a common computer algorithm on the basis of a group-additivity method. The same algorithm is also shown to enable the calculation of their entropy of fusion as well as the total phase-change entropy of liquid crystals. The present method is based on the complete breakdown of the molecules into their constituting atoms and their immediate neighbourhood; the respective calculations of the contribution of the atomic groups by means of the Gauss-Seidel fitting method is based on experimental data collected from literature. The feasibility of the calculations for each of the mentioned descriptors was verified by means of a 10-fold cross-validation procedure proving the good to high quality of the predicted values for the three mentioned enthalpies and for the entropy of fusion, whereas the predictive quality for the total phase-change entropy of liquid crystals was poor. The goodness of fit ( Q ²) and the standard deviation (σ) of the cross-validation calculations for the five descriptors was as follows: 0.9641 and 4.56 kJ/mol ( N = 3386 test molecules) for the enthalpy of vaporization, 0.8657 and 11.39 kJ/mol ( N = 1791) for the enthalpy of sublimation, 0.9546 and 4.34 kJ/mol ( N = 373) for the enthalpy of solvation, 0.8727 and 17.93 J/mol/K ( N = 2637) for the entropy of fusion and 0.5804 and 32.79 J/mol/K ( N = 2643) for the total phase-change entropy of liquid crystals. The large discrepancy between the results of the two closely related entropies is discussed in detail. Molecules for which both the standard enthalpies of vaporization and sublimation were calculable, enabled the estimation of their standard enthalpy of fusion by simple subtraction of the former from the latter enthalpy. For 990 of them the experimental enthalpy-of-fusion values are also known, allowing their comparison with predictions, yielding a correlation coefficient R
Research on machine learning framework based on random forest algorithm
Ren, Qiong; Cheng, Hui; Han, Hai
2017-03-01
With the continuous development of machine learning, industry and academia have released a lot of machine learning frameworks based on distributed computing platform, and have been widely used. However, the existing framework of machine learning is limited by the limitations of machine learning algorithm itself, such as the choice of parameters and the interference of noises, the high using threshold and so on. This paper introduces the research background of machine learning framework, and combined with the commonly used random forest algorithm in machine learning classification algorithm, puts forward the research objectives and content, proposes an improved adaptive random forest algorithm (referred to as ARF), and on the basis of ARF, designs and implements the machine learning framework.
An improved pattern synthesis algorithm based on metric modes
Tan, Yongqian; Zeng, Fanju; Zhang, Song; Yang, Yongliang
2017-08-01
Based on the principle of texture image synthesis of block splicing, the application of texture synthesis algorithm in pattern synthesis is studied. Through the study of the characteristics of texture image and texture pattern, it is found that texture is a special image with both localization and stability, and the pattern is a kind of whole structure with stronger structure. Texture synthesis algorithm in the more texture image synthesis, can achieve a more satisfactory results, but the synthesis of the pattern cannot achieve better synthesis results. In this paper, through the study of the characteristics of the pattern, on the basis of the texture synthesis algorithm, by improving the measurement method, when judging the similarity of two matching blocks, while the color and gradient of the image block as the two matching blocks are similar between the important parameters. Experiments show that the improved algorithm can achieve better synthesis effect when synthesizing most of the patterns.
Facial Affect Recognition Using Regularized Discriminant Analysis-Based Algorithms
Directory of Open Access Journals (Sweden)
Cheng-Yuan Shih
2010-01-01
Full Text Available This paper presents a novel and effective method for facial expression recognition including happiness, disgust, fear, anger, sadness, surprise, and neutral state. The proposed method utilizes a regularized discriminant analysis-based boosting algorithm (RDAB with effective Gabor features to recognize the facial expressions. Entropy criterion is applied to select the effective Gabor feature which is a subset of informative and nonredundant Gabor features. The proposed RDAB algorithm uses RDA as a learner in the boosting algorithm. The RDA combines strengths of linear discriminant analysis (LDA and quadratic discriminant analysis (QDA. It solves the small sample size and ill-posed problems suffered from QDA and LDA through a regularization technique. Additionally, this study uses the particle swarm optimization (PSO algorithm to estimate optimal parameters in RDA. Experiment results demonstrate that our approach can accurately and robustly recognize facial expressions.
Quantum Image Encryption Algorithm Based on Image Correlation Decomposition
Hua, Tianxiang; Chen, Jiamin; Pei, Dongju; Zhang, Wenquan; Zhou, Nanrun
2015-02-01
A novel quantum gray-level image encryption and decryption algorithm based on image correlation decomposition is proposed. The correlation among image pixels is established by utilizing the superposition and measurement principle of quantum states. And a whole quantum image is divided into a series of sub-images. These sub-images are stored into a complete binary tree array constructed previously and then randomly performed by one of the operations of quantum random-phase gate, quantum revolving gate and Hadamard transform. The encrypted image can be obtained by superimposing the resulting sub-images with the superposition principle of quantum states. For the encryption algorithm, the keys are the parameters of random phase gate, rotation angle, binary sequence and orthonormal basis states. The security and the computational complexity of the proposed algorithm are analyzed. The proposed encryption algorithm can resist brute force attack due to its very large key space and has lower computational complexity than its classical counterparts.
A particle tracking velocimetry algorithm based on the Voronoi diagram
Zhang, Yang; Wang, Yuan; Yang, Bin; He, Wenbo
2015-07-01
Particle tracking velocimetry (PTV) algorithms have great applications in tracking discrete particles across successive images. In managing complex flows, classic PTV algorithms typically follow delicate concepts that may lead to a higher risk of disturbance caused by the parameter settings. To avoid such a ‘closure problem’, a PTV algorithm based on the Voronoi diagram (VD-PTV) is developed. This algorithm has a simple structure, as it is designed to possess only one controlling parameter. The VD-PTV is tested using two types of synthetic flows. The result shows that the VD-PTV exhibits a stable performance with good accuracy level and is independent of parameter pre-setting. Moreover, the VD-PTV demonstrates satisfactory computing speed.
Target Image Matching Algorithm Based on Binocular CCD Ranging
Directory of Open Access Journals (Sweden)
Dongming Li
2014-01-01
Full Text Available This paper proposed target image in a subpixel level matching algorithm for binocular CCD ranging, which is based on the principle of binocular CCD ranging. In the paper, firstly, we introduced the ranging principle of the binocular ranging system and deduced a binocular parallax formula. Secondly, we deduced the algorithm which was named improved cross-correlation matching algorithm and cubic surface fitting algorithm for target images matched, and it could achieve a subpixel level matching for binocular CCD ranging images. Lastly, through experiment we have analyzed and verified the actual CCD ranging images, then analyzed the errors of the experimental results and corrected the formula of calculating system errors. Experimental results showed that the actual measurement accuracy of a target within 3 km was higher than 0.52%, which meet the accuracy requirements of the high precision binocular ranging.
Adaptation of evidence-based surgical wound care algorithm.
Han, Jung Yeon; Choi-Kwon, Smi
2011-12-01
This study was designed to adapt a surgical wound care algorithm that is used to provide evidence-based surgical wound care in a critical care unit. This study used, the 'ADAPTE process', an international clinical practice guideline development method. The 'Bonnie Sue wound care algorithm' was used as a draft for the new algorithm. A content validity index (CVI) targeting 135 critical care nurses was conducted. A 5-point Likert scale was applied to the CVI test using a statistical criterion of .75. A surgical wound care algorithm comprised 9 components: wound assessment, infection control, necrotic tissue management, wound classification by exudates and depths, dressing selection, consideration of systemic factors, wound expected outcome, reevaluate non-healing wounds, and special treatment for non-healing wounds. All of the CVI tests were ≥.75. Compared to existing wound care guidelines, the new wound care algorithm provides precise wound assessment, reliabilities of wound care, expands applicability of wound care to critically ill patients, and provides evidence and strength of recommendations. The new surgical wound care algorithm will contribute to the advancement of evidence-based nursing care, and its use is expected as a nursing intervention in critical care.
Application of genetic algorithm to hexagon-based motion estimation.
Kung, Chih-Ming; Cheng, Wan-Shu; Jeng, Jyh-Horng
2014-01-01
With the improvement of science and technology, the development of the network, and the exploitation of the HDTV, the demands of audio and video become more and more important. Depending on the video coding technology would be the solution for achieving these requirements. Motion estimation, which removes the redundancy in video frames, plays an important role in the video coding. Therefore, many experts devote themselves to the issues. The existing fast algorithms rely on the assumption that the matching error decreases monotonically as the searched point moves closer to the global optimum. However, genetic algorithm is not fundamentally limited to this restriction. The character would help the proposed scheme to search the mean square error closer to the algorithm of full search than those fast algorithms. The aim of this paper is to propose a new technique which focuses on combing the hexagon-based search algorithm, which is faster than diamond search, and genetic algorithm. Experiments are performed to demonstrate the encoding speed and accuracy of hexagon-based search pattern method and proposed method.
Plagiarism Detection Based on SCAM Algorithm
DEFF Research Database (Denmark)
Anzelmi, Daniele; Carlone, Domenico; Rizzello, Fabio
2011-01-01
Plagiarism is a complex problem and considered one of the biggest in publishing of scientific, engineering and other types of documents. Plagiarism has also increased with the widespread use of the Internet as large amount of digital data is available. Plagiarism is not just direct copy but also...... paraphrasing, rewording, adapting parts, missing references or wrong citations. This makes the problem more difficult to handle adequately. Plagiarism detection techniques are applied by making a distinction between natural and programming languages. Our proposed detection process is based on natural language...... document. Our plagiarism detection system, like many Information Retrieval systems, is evaluated with metrics of precision and recall....
Hyyti, Janne; Escoto, Esmerando; Steinmeyer, Günter
2017-10-01
A novel algorithm for the ultrashort laser pulse characterization method of interferometric frequency-resolved optical gating (iFROG) is presented. Based on a genetic method, namely, differential evolution, the algorithm can exploit all available information of an iFROG measurement to retrieve the complex electric field of a pulse. The retrieval is subjected to a series of numerical tests to prove the robustness of the algorithm against experimental artifacts and noise. These tests show that the integrated error-correction mechanisms of the iFROG method can be successfully used to remove the effect from timing errors and spectrally varying efficiency in the detection. Moreover, the accuracy and noise resilience of the new algorithm are shown to outperform retrieval based on the generalized projections algorithm, which is widely used as the standard method in FROG retrieval. The differential evolution algorithm is further validated with experimental data, measured with unamplified three-cycle pulses from a mode-locked Ti:sapphire laser. Additionally introducing group delay dispersion in the beam path, the retrieval results show excellent agreement with independent measurements with a commercial pulse measurement device based on spectral phase interferometry for direct electric-field retrieval. Further experimental tests with strongly attenuated pulses indicate resilience of differential-evolution-based retrieval against massive measurement noise.
Log-linear model based behavior selection method for artificial fish swarm algorithm.
Huang, Zhehuang; Chen, Yidong
2015-01-01
Artificial fish swarm algorithm (AFSA) is a population based optimization technique inspired by social behavior of fishes. In past several years, AFSA has been successfully applied in many research and application areas. The behavior of fishes has a crucial impact on the performance of AFSA, such as global exploration ability and convergence speed. How to construct and select behaviors of fishes are an important task. To solve these problems, an improved artificial fish swarm algorithm based on log-linear model is proposed and implemented in this paper. There are three main works. Firstly, we proposed a new behavior selection algorithm based on log-linear model which can enhance decision making ability of behavior selection. Secondly, adaptive movement behavior based on adaptive weight is presented, which can dynamically adjust according to the diversity of fishes. Finally, some new behaviors are defined and introduced into artificial fish swarm algorithm at the first time to improve global optimization capability. The experiments on high dimensional function optimization showed that the improved algorithm has more powerful global exploration ability and reasonable convergence speed compared with the standard artificial fish swarm algorithm.
Techniques based on genetic algorithms for large deflection ...
Indian Academy of Sciences (India)
A couple of non-convex search strategies, based on the genetic algorithm, are suggested and numerically explored in the context of large-deﬂection analysis of planar, elastic beams. The ﬁrst of these strategies is based on the stationarity of the energy functional in the equilibrium state and may therefore be considered ...
Acoustic Environments: Applying Evolutionary Algorithms for Sound based Morphogenesis
DEFF Research Database (Denmark)
Foged, Isak Worre; Pasold, Anke; Jensen, Mads Brath
2012-01-01
. Additional algorithms are created and used to organise the entire set of 200 refl ector components and manufacturing constraints based upon the GA studies. An architectural pavilion is created based upon the studies illustrating the applicability of both developed methods and techniques....
Genetic based optimization for multicast routing algorithm for MANET
Indian Academy of Sciences (India)
Algorithm (GA) and particle swarm optimization (PSO) to improve the solution. Sim- ulations were conducted by varying number of mobile nodes and results compared with Multicast AODV (MAODV) protocol, PSO based and GA based solution. The proposed optimization improves jitter, end to end delay and Packet Delivery ...
van der Lee, J H; Svrcek, W Y; Young, B R
2008-01-01
Model Predictive Control is a valuable tool for the process control engineer in a wide variety of applications. Because of this the structure of an MPC can vary dramatically from application to application. There have been a number of works dedicated to MPC tuning for specific cases. Since MPCs can differ significantly, this means that these tuning methods become inapplicable and a trial and error tuning approach must be used. This can be quite time consuming and can result in non-optimum tuning. In an attempt to resolve this, a generalized automated tuning algorithm for MPCs was developed. This approach is numerically based and combines a genetic algorithm with multi-objective fuzzy decision-making. The key advantages to this approach are that genetic algorithms are not problem specific and only need to be adapted to account for the number and ranges of tuning parameters for a given MPC. As well, multi-objective fuzzy decision-making can handle qualitative statements of what optimum control is, in addition to being able to use multiple inputs to determine tuning parameters that best match the desired results. This is particularly useful for multi-input, multi-output (MIMO) cases where the definition of "optimum" control is subject to the opinion of the control engineer tuning the system. A case study will be presented in order to illustrate the use of the tuning algorithm. This will include how different definitions of "optimum" control can arise, and how they are accounted for in the multi-objective decision making algorithm. The resulting tuning parameters from each of the definition sets will be compared, and in doing so show that the tuning parameters vary in order to meet each definition of optimum control, thus showing the generalized automated tuning algorithm approach for tuning MPCs is feasible.
Algorithms for Hardware-Based Pattern Recognition
Directory of Open Access Journals (Sweden)
Müller Dietmar
2004-01-01
Full Text Available Nonlinear spatial transforms and fuzzy pattern classification with unimodal potential functions are established in signal processing. They have proved to be excellent tools in feature extraction and classification. In this paper, we will present a hardware-accelerated image processing and classification system which is implemented on one field-programmable gate array (FPGA. Nonlinear discrete circular transforms generate a feature vector. The features are analyzed by a fuzzy classifier. This principle can be used for feature extraction, pattern recognition, and classification tasks. Implementation in radix-2 structures is possible, allowing fast calculations with a computational complexity of up to . Furthermore, the pattern separability properties of these transforms are better than those achieved with the well-known method based on the power spectrum of the Fourier Transform, or on several other transforms. Using different signal flow structures, the transforms can be adapted to different image and signal processing applications.
Development of web-based reliability data analysis algorithm model and its application
International Nuclear Information System (INIS)
Hwang, Seok-Won; Oh, Ji-Yong; Moosung-Jae
2010-01-01
For this study, a database model of plant reliability was developed for the effective acquisition and management of plant-specific data that can be used in various applications of plant programs as well as in Probabilistic Safety Assessment (PSA). Through the development of a web-based reliability data analysis algorithm, this approach systematically gathers specific plant data such as component failure history, maintenance history, and shift diary. First, for the application of the developed algorithm, this study reestablished the raw data types, data deposition procedures and features of the Enterprise Resource Planning (ERP) system process. The component codes and system codes were standardized to make statistical analysis between different types of plants possible. This standardization contributes to the establishment of a flexible database model that allows the customization of reliability data for the various applications depending on component types and systems. In addition, this approach makes it possible for users to perform trend analyses and data comparisons for the significant plant components and systems. The validation of the algorithm is performed through a comparison of the importance measure value (Fussel-Vesely) of the mathematical calculation and that of the algorithm application. The development of a reliability database algorithm is one of the best approaches for providing systemic management of plant-specific reliability data with transparency and continuity. This proposed algorithm reinforces the relationships between raw data and application results so that it can provide a comprehensive database that offers everything from basic plant-related data to final customized data.
Dynamic reconstruction algorithm of temperature field based on Kalman filter
Li, Yanqiu; Liu, Shi; Han, Ren
2017-05-01
Development of temperature reconstruction algorithm plays an important role in the application of temperature field measurement by acoustic tomography. A dynamic model of temperature field reconstruction by acoustic tomography is established. A dynamic reconstruction algorithm based on Kalman Filter (KF) is proposed considering both acoustic measurement and the dynamic evolution information. An objective function fusing space constrain with dynamic evolution information is designed. Simulation results of three temperature field distribution models show that the reconstruction quality of dynamic reconstruction method based on KF is better than those of static reconstruction methods.
Web page sorting algorithm based on query keyword distance relation
Yang, Han; Cui, Hong Gang; Tang, Hao
2017-08-01
In order to optimize the problem of page sorting, according to the search keywords in the web page in the relationship between the characteristics of the proposed query keywords clustering ideas. And it is converted into the degree of aggregation of the search keywords in the web page. Based on the PageRank algorithm, the clustering degree factor of the query keyword is added to make it possible to participate in the quantitative calculation. This paper proposes an improved algorithm for PageRank based on the distance relation between search keywords. The experimental results show the feasibility and effectiveness of the method.
A Novel Multiobjective Evolutionary Algorithm Based on Regression Analysis
Directory of Open Access Journals (Sweden)
Zhiming Song
2015-01-01
Full Text Available As is known, the Pareto set of a continuous multiobjective optimization problem with m objective functions is a piecewise continuous (m-1-dimensional manifold in the decision space under some mild conditions. However, how to utilize the regularity to design multiobjective optimization algorithms has become the research focus. In this paper, based on this regularity, a model-based multiobjective evolutionary algorithm with regression analysis (MMEA-RA is put forward to solve continuous multiobjective optimization problems with variable linkages. In the algorithm, the optimization problem is modelled as a promising area in the decision space by a probability distribution, and the centroid of the probability distribution is (m-1-dimensional piecewise continuous manifold. The least squares method is used to construct such a model. A selection strategy based on the nondominated sorting is used to choose the individuals to the next generation. The new algorithm is tested and compared with NSGA-II and RM-MEDA. The result shows that MMEA-RA outperforms RM-MEDA and NSGA-II on the test instances with variable linkages. At the same time, MMEA-RA has higher efficiency than the other two algorithms. A few shortcomings of MMEA-RA have also been identified and discussed in this paper.
Wavelets based algorithm for the evaluation of enhanced liver areas
Alvarez, Matheus; Rodrigues de Pina, Diana; Giacomini, Guilherme; Gomes Romeiro, Fernando; Barbosa Duarte, Sérgio; Yamashita, Seizo; de Arruda Miranda, José Ricardo
2014-03-01
Hepatocellular carcinoma (HCC) is a primary tumor of the liver. After local therapies, the tumor evaluation is based on the mRECIST criteria, which involves the measurement of the maximum diameter of the viable lesion. This paper describes a computed methodology to measure through the contrasted area of the lesions the maximum diameter of the tumor by a computational algorithm. 63 computed tomography (CT) slices from 23 patients were assessed. Noncontrasted liver and HCC typical nodules were evaluated, and a virtual phantom was developed for this purpose. Optimization of the algorithm detection and quantification was made using the virtual phantom. After that, we compared the algorithm findings of maximum diameter of the target lesions against radiologist measures. Computed results of the maximum diameter are in good agreement with the results obtained by radiologist evaluation, indicating that the algorithm was able to detect properly the tumor limits. A comparison of the estimated maximum diameter by radiologist versus the algorithm revealed differences on the order of 0.25 cm for large-sized tumors (diameter > 5 cm), whereas agreement lesser than 1.0cm was found for small-sized tumors. Differences between algorithm and radiologist measures were accurate for small-sized tumors with a trend to a small increase for tumors greater than 5 cm. Therefore, traditional methods for measuring lesion diameter should be complemented with non-subjective measurement methods, which would allow a more correct evaluation of the contrast-enhanced areas of HCC according to the mRECIST criteria.
Hybrid Genetic Algorithm Optimization for Case Based Reasoning Systems
International Nuclear Information System (INIS)
Mohamed, A.H.
2008-01-01
The success of a CBR system largely depen ds on an effective retrieval of useful prior case for the problem. Nearest neighbor and induction are the main CBR retrieval algorithms. Each of them can be more suitable in different situations. Integrated the two retrieval algorithms can catch the advantages of both of them. But, they still have some limitations facing the induction retrieval algorithm when dealing with a noisy data, a large number of irrelevant features, and different types of data. This research utilizes a hybrid approach using genetic algorithms (GAs) to case-based induction retrieval of the integrated nearest neighbor - induction algorithm in an attempt to overcome these limitations and increase the overall classification accuracy. GAs can be used to optimize the search space of all the possible subsets of the features set. It can deal with the irrelevant and noisy features while still achieving a significant improvement of the retrieval accuracy. Therefore, the proposed CBR-GA introduces an effective general purpose retrieval algorithm that can improve the performance of CBR systems. It can be applied in many application areas. CBR-GA has proven its success when applied for different problems in real-life
Quantum Behaved Particle Swarm Optimization Algorithm Based on Artificial Fish Swarm
Yumin, Dong; Li, Zhao
2014-01-01
Quantum behaved particle swarm algorithm is a new intelligent optimization algorithm; the algorithm has less parameters and is easily implemented. In view of the existing quantum behaved particle swarm optimization algorithm for the premature convergence problem, put forward a quantum particle swarm optimization algorithm based on artificial fish swarm. The new algorithm based on quantum behaved particle swarm algorithm, introducing the swarm and following activities, meanwhile using the a...
Po-Chen Cheng; Bo-Rei Peng; Yi-Hua Liu; Yu-Shan Cheng; Jia-Wei Huang
2015-01-01
In this paper, an asymmetrical fuzzy-logic-control (FLC)-based maximum power point tracking (MPPT) algorithm for photovoltaic (PV) systems is presented. Two membership function (MF) design methodologies that can improve the effectiveness of the proposed asymmetrical FLC-based MPPT methods are then proposed. The first method can quickly determine the input MF setting values via the power–voltage (P–V) curve of solar cells under standard test conditions (STC). The second method uses the particl...
Characterization and Comparison of the 10-2 SITA-Standard and Fast Algorithms
Directory of Open Access Journals (Sweden)
Yaniv Barkana
2012-01-01
Full Text Available Purpose: To compare the 10-2 SITA-standard and SITA-fast visual field programs in patients with glaucoma. Methods: We enrolled 26 patients with open angle glaucoma with involvement of at least one paracentral location on 24-2 SITA-standard field test. Each subject performed 10-2 SITA-standard and SITA-fast tests. Within 2 months this sequence of tests was repeated. Results: SITA-fast was 30% shorter than SITA-standard (5.5±1.1 vs 7.9±1.1 minutes, <0.001. Mean MD was statistically significantly higher for SITA-standard compared with SITA-fast at first visit (Δ=0.3 dB, =0.017 but not second visit. Inter-visit difference in MD or in number of depressed points was not significant for both programs. Bland-Altman analysis showed that clinically significant variations can exist in individual instances between the 2 programs and between repeat tests with the same program. Conclusions: The 10-2 SITA-fast algorithm is significantly shorter than SITA-standard. The two programs have similar long-term variability. Average same-visit between-program and same-program between-visit sensitivity results were similar for the study population, but clinically significant variability was observed for some individual test pairs. Group inter- and intra-program test results may be comparable, but in the management of the individual patient field change should be verified by repeat testing.
Research of beam hardening correction method for CL system based on SART algorithm
International Nuclear Information System (INIS)
Cao Daquan; Wang Yaxiao; Que Jiemin; Sun Cuili; Wei Cunfeng; Wei Long
2014-01-01
Computed laminography (CL) is a non-destructive testing technique for large objects, especially for planar objects. Beam hardening artifacts were wildly observed in the CL system and significantly reduce the image quality. This study proposed a novel simultaneous algebraic reconstruction technique (SART) based beam hardening correction (BHC) method for the CL system, namely the SART-BHC algorithm in short. The SART-BHC algorithm took the polychromatic attenuation process in account to formulate the iterative reconstruction update. A novel projection matrix calculation method which was different from the conventional cone-beam or fan-beam geometry was also studied for the CL system. The proposed method was evaluated with simulation data and experimental data, which was generated using the Monte Carlo simulation toolkit Geant4 and a bench-top CL system, respectively. All projection data were reconstructed with SART-BHC algorithm and the standard filtered back projection (FBP) algorithm. The reconstructed images show that beam hardening artifacts are greatly reduced with the SART-BHC algorithm compared to the FBP algorithm. The SART-BHC algorithm doesn't need any prior know-ledge about the object or the X-ray spectrum and it can also mitigate the interlayer aliasing. (authors)
Image segmentation algorithm based on T-junctions cues
Qian, Yanyu; Cao, Fengyun; Wang, Lu; Yang, Xuejie
2016-03-01
To improve the over-segmentation and over-merge phenomenon of single image segmentation algorithm,a novel approach of combing Graph-Based algorithm and T-junctions cues is proposed in this paper. First, a method by L0 gradient minimization is applied to the smoothing of the target image eliminate artifacts caused by noise and texture detail; Then, the initial over-segmentation result of the smoothing image using the graph-based algorithm; Finally, the final results via a region fusion strategy by t-junction cues. Experimental results on a variety of images verify the new approach's efficiency in eliminating artifacts caused by noise,segmentation accuracy and time complexity has been significantly improved.
CBFS: high performance feature selection algorithm based on feature clearness.
Directory of Open Access Journals (Sweden)
Minseok Seo
Full Text Available BACKGROUND: The goal of feature selection is to select useful features and simultaneously exclude garbage features from a given dataset for classification purposes. This is expected to bring reduction of processing time and improvement of classification accuracy. METHODOLOGY: In this study, we devised a new feature selection algorithm (CBFS based on clearness of features. Feature clearness expresses separability among classes in a feature. Highly clear features contribute towards obtaining high classification accuracy. CScore is a measure to score clearness of each feature and is based on clustered samples to centroid of classes in a feature. We also suggest combining CBFS and other algorithms to improve classification accuracy. CONCLUSIONS/SIGNIFICANCE: From the experiment we confirm that CBFS is more excellent than up-to-date feature selection algorithms including FeaLect. CBFS can be applied to microarray gene selection, text categorization, and image classification.
Node-Dependence-Based Dynamic Incentive Algorithm in Opportunistic Networks
Directory of Open Access Journals (Sweden)
Ruiyun Yu
2014-01-01
Full Text Available Opportunistic networks lack end-to-end paths between source nodes and destination nodes, so the communications are mainly carried out by the “store-carry-forward” strategy. Selfish behaviors of rejecting packet relay requests will severely worsen the network performance. Incentive is an efficient way to reduce selfish behaviors and hence improves the reliability and robustness of the networks. In this paper, we propose the node-dependence-based dynamic gaming incentive (NDI algorithm, which exploits the dynamic repeated gaming to motivate nodes relaying packets for other nodes. The NDI algorithm presents a mechanism of tolerating selfish behaviors of nodes. Reward and punishment methods are also designed based on the node dependence degree. Simulation results show that the NDI algorithm is effective in increasing the delivery ratio and decreasing average latency when there are a lot of selfish nodes in the opportunistic networks.
Algorithm for Wireless Sensor Networks Based on Grid Management
Directory of Open Access Journals (Sweden)
Geng Zhang
2014-05-01
Full Text Available This paper analyzes the key issues for wireless sensor network trust model and describes a method to build a wireless sensor network, such as the definition of trust for wireless sensor networks, computing and credibility of trust model application. And for the problem that nodes are vulnerable to attack, this paper proposed a grid-based trust algorithm by deep exploration trust model within the framework of credit management. Algorithm for node reliability screening and rotation schedule to cover parallel manner based on the implementation of the nodes within the area covered by trust. And analyze the results of the size of trust threshold has great influence on the safety and quality of coverage throughout the coverage area. The simulation tests the validity and correctness of the algorithm.
A Graph Based Backtracking Algorithm for Solving General CSPs
Pang, Wanlin; Goodwin, Scott D.
2003-01-01
Many AI tasks can be formalized as constraint satisfaction problems (CSPs), which involve finding values for variables subject to constraints. While solving a CSP is an NP-complete task in general, tractable classes of CSPs have been identified based on the structure of the underlying constraint graphs. Much effort has been spent on exploiting structural properties of the constraint graph to improve the efficiency of finding a solution. These efforts contributed to development of a class of CSP solving algorithms called decomposition algorithms. The strength of CSP decomposition is that its worst-case complexity depends on the structural properties of the constraint graph and is usually better than the worst-case complexity of search methods. Its practical application is limited, however, since it cannot be applied if the CSP is not decomposable. In this paper, we propose a graph based backtracking algorithm called omega-CDBT, which shares merits and overcomes the weaknesses of both decomposition and search approaches.
Secondary Coordinated Control of Islanded Microgrids Based on Consensus Algorithms
DEFF Research Database (Denmark)
Wu, Dan; Dragicevic, Tomislav; Vasquez, Juan Carlos
2014-01-01
This paper proposes a decentralized secondary control for islanded microgrids based on consensus algorithms. In a microgrid, the secondary control is implemented in order to eliminate the frequency changes caused by the primary control when coordinating renewable energy sources and energy storage...... systems. Nevertheless, the conventional decentralized secondary control, although does not need to be implemented in a microgrid central controller (MGCC), it has the limitation that all decentralized controllers must be mutually synchronized. In a clear cut contrast, the proposed secondary control...... requires only a more simplified communication protocol and a sparse communication network. Moreover, the proposed approach based on dynamic consensus algorithms is able to achieve the coordinated secondary performance even when all units are initially out-of-synchronism. The control algorithm implemented...
Dynamic Keypoint-Based Algorithm of Object Tracking
Morgacheva, A. I.; Kulikov, V. A.; Kosykh, V. P.
2017-05-01
The model of the observed object plays the key role in the task of object tracking. Models as a set of image parts, in particular, keypoints, is more resistant to the changes in shape, texture, angle of view, because local changes apply only to specific parts of the object. On the other hand, any model requires updating as the appearance of the object changes with respect to the camera. In this paper, we propose a dynamic (time-varying) model, based on a set of keypoints. To update the data this model uses the algorithm of rating keypoints and the decision rule, based on a Function of Rival Similarity (FRiS). As a result, at the test set of image sequences the improvement was achieved on average by 9.3% compared to the original algorithm. On some sequences, the improvement was 16% compared to the original algorithm.
A fast image encryption algorithm based on chaotic map
Liu, Wenhao; Sun, Kehui; Zhu, Congxu
2016-09-01
Derived from Sine map and iterative chaotic map with infinite collapse (ICMIC), a new two-dimensional Sine ICMIC modulation map (2D-SIMM) is proposed based on a close-loop modulation coupling (CMC) model, and its chaotic performance is analyzed by means of phase diagram, Lyapunov exponent spectrum and complexity. It shows that this map has good ergodicity, hyperchaotic behavior, large maximum Lyapunov exponent and high complexity. Based on this map, a fast image encryption algorithm is proposed. In this algorithm, the confusion and diffusion processes are combined for one stage. Chaotic shift transform (CST) is proposed to efficiently change the image pixel positions, and the row and column substitutions are applied to scramble the pixel values simultaneously. The simulation and analysis results show that this algorithm has high security, low time complexity, and the abilities of resisting statistical analysis, differential, brute-force, known-plaintext and chosen-plaintext attacks.
Effective ANT based Routing Algorithm for Data Replication in MANETs
Directory of Open Access Journals (Sweden)
N.J. Nithya Nandhini
2013-12-01
Full Text Available In mobile ad hoc network, the nodes often move and keep on change its topology. Data packets can be forwarded from one node to another on demand. To increase the data accessibility data are replicated at nodes and made as sharable to other nodes. Assuming that all mobile host cooperative to share their memory and allow forwarding the data packets. But in reality, all nodes do not share the resources for the benefits of others. These nodes may act selfishly to share memory and to forward the data packets. This paper focuses on selfishness of mobile nodes in replica allocation and routing protocol based on Ant colony algorithm to improve the efficiency. The Ant colony algorithm is used to reduce the overhead in the mobile network, so that it is more efficient to access the data than with other routing protocols. This result shows the efficiency of ant based routing algorithm in the replication allocation.
Indian Academy of Sciences (India)
In the program shown in Figure 1, we have repeated the algorithm. M times and we can make the following observations. Each block is essentially a different instance of "code"; that is, the objects differ by the value to which N is initialized before the execution of the. "code" block. Thus, we can now avoid the repetition of the ...
Indian Academy of Sciences (India)
algorithms built into the computer corresponding to the logic- circuit rules that are used to .... For the purpose of carrying ou t ari thmetic or logical operations the memory is organized in terms .... In fixed point representation, one essentially uses integer arithmetic operators assuming the binary point to be at some point other ...
A genetic algorithm based method for neutron spectrum unfolding
International Nuclear Information System (INIS)
Suman, Vitisha; Sarkar, P.K.
2013-03-01
An approach to neutron spectrum unfolding based on a stochastic evolutionary search mechanism - Genetic Algorithm (GA) is presented. It is tested to unfold a set of simulated spectra, the unfolded spectra is compared to the output of a standard code FERDOR. The method was then applied to a set of measured pulse height spectrum of neutrons from the AmBe source as well as of emitted neutrons from Li(p,n) and Ag(C,n) nuclear reactions carried out in the accelerator environment. The unfolded spectra compared to the output of FERDOR show good agreement in the case of AmBe spectra and Li(p,n) spectra. In the case of Ag(C,n) spectra GA method results in some fluctuations. Necessity of carrying out smoothening of the obtained solution is also studied, which leads to approximation of the solution yielding an appropriate solution finally. Few smoothing techniques like second difference smoothing, Monte Carlo averaging, combination of both and gaussian based smoothing methods are also studied. Unfolded results obtained after inclusion of the smoothening criteria are in close agreement with the output obtained from the FERDOR code. The present method is also tested on a set of underdetermined problems, the outputs of which is compared to the unfolded spectra obtained from the FERDOR applied to a completely determined problem, shows a good match. The distribution of the unfolded spectra is also studied. Uncertainty propagation in the unfolded spectra due to the errors present in the measurement as well as the response function is also carried out. The method appears to be promising for unfolding the completely determined as well as underdetermined problems. It also has provisions to carry out the uncertainty analysis. (author)
DEFF Research Database (Denmark)
Kowalska, Justyna D; Mocroft, Amanda; Ledergerber, Bruno
2011-01-01
cohort classification (LCC) as reported by the site investigator, and 4 algorithms (ALG) created based on survival times after specific AIDS events. Results: A total of 2,783 deaths occurred, 540 CoDe forms were collected, and 488 were used to evaluate agreements. The agreement between CC and LCC...... are a natural consequence of an increased awareness and knowledge in the field. To monitor and analyze changes in mortality over time, we have explored this issue within the EuroSIDA study and propose a standardized protocol unifying data collected and allowing for classification of all deaths as AIDS or non-AIDS...... related, including events with missing cause of death. Methods: Several classifications of the underlying cause of death as AIDS or non-AIDS related within the EuroSIDA study were compared: central classification (CC-reference group) based on an externally standardised method (the CoDe procedures), local...
Research on Forest Flame Recognition Algorithm Based on Image Feature
Wang, Z.; Liu, P.; Cui, T.
2017-09-01
In recent years, fire recognition based on image features has become a hotspot in fire monitoring. However, due to the complexity of forest environment, the accuracy of forest fireworks recognition based on image features is low. Based on this, this paper proposes a feature extraction algorithm based on YCrCb color space and K-means clustering. Firstly, the paper prepares and analyzes the color characteristics of a large number of forest fire image samples. Using the K-means clustering algorithm, the forest flame model is obtained by comparing the two commonly used color spaces, and the suspected flame area is discriminated and extracted. The experimental results show that the extraction accuracy of flame area based on YCrCb color model is higher than that of HSI color model, which can be applied in different scene forest fire identification, and it is feasible in practice.
RESEARCH ON FOREST FLAME RECOGNITION ALGORITHM BASED ON IMAGE FEATURE
Directory of Open Access Journals (Sweden)
Z. Wang
2017-09-01
Full Text Available In recent years, fire recognition based on image features has become a hotspot in fire monitoring. However, due to the complexity of forest environment, the accuracy of forest fireworks recognition based on image features is low. Based on this, this paper proposes a feature extraction algorithm based on YCrCb color space and K-means clustering. Firstly, the paper prepares and analyzes the color characteristics of a large number of forest fire image samples. Using the K-means clustering algorithm, the forest flame model is obtained by comparing the two commonly used color spaces, and the suspected flame area is discriminated and extracted. The experimental results show that the extraction accuracy of flame area based on YCrCb color model is higher than that of HSI color model, which can be applied in different scene forest fire identification, and it is feasible in practice.
Parameter Selection for Ant Colony Algorithm Based on Bacterial Foraging Algorithm
Directory of Open Access Journals (Sweden)
Peng Li
2016-01-01
Full Text Available The optimal performance of the ant colony algorithm (ACA mainly depends on suitable parameters; therefore, parameter selection for ACA is important. We propose a parameter selection method for ACA based on the bacterial foraging algorithm (BFA, considering the effects of coupling between different parameters. Firstly, parameters for ACA are mapped into a multidimensional space, using a chemotactic operator to ensure that each parameter group approaches the optimal value, speeding up the convergence for each parameter set. Secondly, the operation speed for optimizing the entire parameter set is accelerated using a reproduction operator. Finally, the elimination-dispersal operator is used to strengthen the global optimization of the parameters, which avoids falling into a local optimal solution. In order to validate the effectiveness of this method, the results were compared with those using a genetic algorithm (GA and a particle swarm optimization (PSO, and simulations were conducted using different grid maps for robot path planning. The results indicated that parameter selection for ACA based on BFA was the superior method, able to determine the best parameter combination rapidly, accurately, and effectively.
Cryptanalysis of a chaos-based image encryption algorithm
International Nuclear Information System (INIS)
Cokal, Cahit; Solak, Ercan
2009-01-01
A chaos-based image encryption algorithm was proposed in [Z.-H. Guan, F. Huang, W. Guan, Phys. Lett. A 346 (2005) 153]. In this Letter, we analyze the security weaknesses of the proposal. By applying chosen-plaintext and known-plaintext attacks, we show that all the secret parameters can be revealed
Techniques based on genetic algorithms for large deflection ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
with 'exact' solutions, if available, are provided. Keywords. Genetic algorithms; large deflection analysis; analysis of beams. 1. Introduction. The beam is one of the most common structural elements used in a variety of aerospace, civil and mechanical engineering structures. Linear beam theories based on a linear moment-.
Influence of crossover methods used by genetic algorithm-based ...
Indian Academy of Sciences (India)
Influence of crossover methods used by genetic algorithm-based heuristic to solve the selective harmonic equations (SHE) in multi-level voltage source inverter. SANGEETHA S1,∗ and S JEEVANANTHAN2. 1Department of Electrical and Electronics Engineering, Jawaharlal Nehru. Technological University, Hyderabad 500 ...
Non-Guard Interval based and Genetic Algorithm Assisted ...
African Journals Online (AJOL)
USER
ABSTRACT: In this work, a genetic algorithm (GA) based frequency domain equalization (FDE-GA) scheme was proposed for direct sequence ultra wideband (DS-UWB) wireless communication systems. The proposed FDE-GA scheme does not require a guard interval (GI) and the output of the RAKE receiver is used as the ...
An Efficient 16-Bit Multiplier based on Booth Algorithm
Khan, M. Zamin Ali; Saleem, Hussain; Afzal, Shiraz; Naseem, Jawed
2012-11-01
Multipliers are key components of many high performance systems such as microprocessors, digital signal processors, etc. Optimizing the speed and area of the multiplier is major design issue which is usually conflicting constraint so that improving speed results mostly in bigger areas. A VHDL designed architecture based on booth multiplication algorithm is proposed which not only optimize speed but also efficient on energy use.
DWT-based blind and robust watermarking using SPIHT algorithm ...
Indian Academy of Sciences (India)
DWT-based blind and robust watermarking using SPIHT algorithm with applications in tele-medicine. TOSHANLAL MEENPAL. Volume 43 Issue 1 January 2018 ... Keywords. Arnold transform; discrete wavelet transform (DWT); tele-medicine; Noise Visibility Function (NVF); Set Partitioning In Hierarchical Trees (SPIHT).
Security Analysis of A Chaos-based Image Encryption Algorithm
Lian, Shiguo; Sun, Jinsheng; Wang, Zhiquan
2006-01-01
The security of Fridrich Image Encryption Algorithm against brute-force attack, statistical attack, known-plaintext attack and select-plaintext attack is analyzed by investigating the properties of the involved chaotic maps and diffusion functions. Based on the given analyses, some means are proposed to strengthen the overall performance of the focused cryptosystem.
Security analysis of a chaos-based image encryption algorithm
Lian, Shiguo; Sun, Jinsheng; Wang, Zhiquan
2005-06-01
The security of Fridrich's algorithm against brute-force attack, statistical attack, known-plaintext attack and select-plaintext attack is analyzed by investigating the properties of the involved chaotic maps and diffusion functions. Based on the given analyses, some means are proposed to strengthen the overall performance of the focused cryptosystem.
Exploring Sequence Alignment Algorithms on FPGA-based Heterogeneous Architectures
Chang, Xin; Escobar, Fernando A.; Valderrama, Carlos; Robert, Vincent; Ortuno, F.; Rojas, I.
2014-01-01
With the rapid development of DNA sequencer, the rate of data generation is rapidly outpacing the rate at which it can be computationally processed. Traditional sequence alignment based on PC cannot fulfill the increasing demand. Accelerating the algorithm using FPGA provides the better performance
Model-based remote sensing algorithms for particulate organic ...
Indian Academy of Sciences (India)
PCA algorithms based on the first three, four, and five modes accounted for 90, 95, and 98% of total variance and yielded significant correlations with POC with 2 = 0.89, 0.92, and 0.93. These full waveband approaches provided robust estimates of POC in various water types. Three different analyses (root mean square ...
DWT-based blind and robust watermarking using SPIHT algorithm ...
Indian Academy of Sciences (India)
TOSHANLAL MEENPAL
2018-02-07
Feb 7, 2018 ... DWT-based blind and robust watermarking using SPIHT algorithm with applications in tele-medicine. TOSHANLAL MEENPAL. Department of Electronics and Telecommunication, National Institute of Technology Raipur, Raipur 492010,. India e-mail: tmeenpal.etc@nitrr.ac.in. MS received 14 June 2016; ...
Chaotic queue-based genetic algorithm for design of a self-tuning fuzzy logic controller
Saini, Sanju; Saini, J. S.
2012-11-01
This paper employs a chaotic queue-based method using logistic equation in a non-canonical genetic algorithm for optimizing the performance of a self-tuning Fuzzy Logic Controller, used for controlling a nonlinear double-coupled system. A comparison has been made with a standard canonical genetic algorithm implemented on the same plant. It has been shown that chaotic queue-method brings an improvement in the performance of the FLC for wide range of set point changes by a more profound initial population spread in the search space.
The Algorithm of Continuous Optimization Based on the Modified Cellular Automaton
Directory of Open Access Journals (Sweden)
Oleg Evsutin
2016-08-01
Full Text Available This article is devoted to the application of the cellular automata mathematical apparatus to the problem of continuous optimization. The cellular automaton with an objective function is introduced as a new modification of the classic cellular automaton. The algorithm of continuous optimization, which is based on dynamics of the cellular automaton having the property of geometric symmetry, is obtained. The results of the simulation experiments with the obtained algorithm on standard test functions are provided, and a comparison between the analogs is shown.
A Multipopulation PSO Based Memetic Algorithm for Permutation Flow Shop Scheduling
Directory of Open Access Journals (Sweden)
Ruochen Liu
2013-01-01
Full Text Available The permutation flow shop scheduling problem (PFSSP is part of production scheduling, which belongs to the hardest combinatorial optimization problem. In this paper, a multipopulation particle swarm optimization (PSO based memetic algorithm (MPSOMA is proposed in this paper. In the proposed algorithm, the whole particle swarm population is divided into three subpopulations in which each particle evolves itself by the standard PSO and then updates each subpopulation by using different local search schemes such as variable neighborhood search (VNS and individual improvement scheme (IIS. Then, the best particle of each subpopulation is selected to construct a probabilistic model by using estimation of distribution algorithm (EDA and three particles are sampled from the probabilistic model to update the worst individual in each subpopulation. The best particle in the entire particle swarm is used to update the global optimal solution. The proposed MPSOMA is compared with two recently proposed algorithms, namely, PSO based memetic algorithm (PSOMA and hybrid particle swarm optimization with estimation of distribution algorithm (PSOEDA, on 29 well-known PFFSPs taken from OR-library, and the experimental results show that it is an effective approach for the PFFSP.
A multipopulation PSO based memetic algorithm for permutation flow shop scheduling.
Liu, Ruochen; Ma, Chenlin; Ma, Wenping; Li, Yangyang
2013-01-01
The permutation flow shop scheduling problem (PFSSP) is part of production scheduling, which belongs to the hardest combinatorial optimization problem. In this paper, a multipopulation particle swarm optimization (PSO) based memetic algorithm (MPSOMA) is proposed in this paper. In the proposed algorithm, the whole particle swarm population is divided into three subpopulations in which each particle evolves itself by the standard PSO and then updates each subpopulation by using different local search schemes such as variable neighborhood search (VNS) and individual improvement scheme (IIS). Then, the best particle of each subpopulation is selected to construct a probabilistic model by using estimation of distribution algorithm (EDA) and three particles are sampled from the probabilistic model to update the worst individual in each subpopulation. The best particle in the entire particle swarm is used to update the global optimal solution. The proposed MPSOMA is compared with two recently proposed algorithms, namely, PSO based memetic algorithm (PSOMA) and hybrid particle swarm optimization with estimation of distribution algorithm (PSOEDA), on 29 well-known PFFSPs taken from OR-library, and the experimental results show that it is an effective approach for the PFFSP.
Model-based Bayesian signal extraction algorithm for peripheral nerves
Eggers, Thomas E.; Dweiri, Yazan M.; McCallum, Grant A.; Durand, Dominique M.
2017-10-01
Objective. Multi-channel cuff electrodes have recently been investigated for extracting fascicular-level motor commands from mixed neural recordings. Such signals could provide volitional, intuitive control over a robotic prosthesis for amputee patients. Recent work has demonstrated success in extracting these signals in acute and chronic preparations using spatial filtering techniques. These extracted signals, however, had low signal-to-noise ratios and thus limited their utility to binary classification. In this work a new algorithm is proposed which combines previous source localization approaches to create a model based method which operates in real time. Approach. To validate this algorithm, a saline benchtop setup was created to allow the precise placement of artificial sources within a cuff and interference sources outside the cuff. The artificial source was taken from five seconds of chronic neural activity to replicate realistic recordings. The proposed algorithm, hybrid Bayesian signal extraction (HBSE), is then compared to previous algorithms, beamforming and a Bayesian spatial filtering method, on this test data. An example chronic neural recording is also analyzed with all three algorithms. Main results. The proposed algorithm improved the signal to noise and signal to interference ratio of extracted test signals two to three fold, as well as increased the correlation coefficient between the original and recovered signals by 10–20%. These improvements translated to the chronic recording example and increased the calculated bit rate between the recovered signals and the recorded motor activity. Significance. HBSE significantly outperforms previous algorithms in extracting realistic neural signals, even in the presence of external noise sources. These results demonstrate the feasibility of extracting dynamic motor signals from a multi-fascicled intact nerve trunk, which in turn could extract motor command signals from an amputee for the end goal of
a SAR Image Registration Method Based on Sift Algorithm
Lu, W.; Yue, X.; Zhao, Y.; Han, C.
2017-09-01
In order to improve the stability and rapidity of synthetic aperture radar (SAR) images matching, an effective method was presented. Firstly, the adaptive smoothing filtering was employed for image denoising in image processing based on Wallis filtering to avoid the follow-up noise is amplified. Secondly, feature points were extracted by a simplified SIFT algorithm. Finally, the exact matching of the images was achieved with these points. Compared with the existing methods, it not only maintains the richness of features, but a-lso reduces the noise of the image. The simulation results show that the proposed algorithm can achieve better matching effect.
An Optimal Seed Based Compression Algorithm for DNA Sequences
Directory of Open Access Journals (Sweden)
Pamela Vinitha Eric
2016-01-01
Full Text Available This paper proposes a seed based lossless compression algorithm to compress a DNA sequence which uses a substitution method that is similar to the LempelZiv compression scheme. The proposed method exploits the repetition structures that are inherent in DNA sequences by creating an offline dictionary which contains all such repeats along with the details of mismatches. By ensuring that only promising mismatches are allowed, the method achieves a compression ratio that is at par or better than the existing lossless DNA sequence compression algorithms.
Analysis of velocity planning interpolation algorithm based on NURBS curve
Zhang, Wanjun; Gao, Shanping; Cheng, Xiyan; Zhang, Feng
2017-04-01
To reduce interpolation time and Max interpolation error in NURBS (Non-Uniform Rational B-Spline) inter-polation caused by planning Velocity. This paper proposed a velocity planning interpolation algorithm based on NURBS curve. Firstly, the second-order Taylor expansion is applied on the numerator in NURBS curve representation with parameter curve. Then, velocity planning interpolation algorithm can meet with NURBS curve interpolation. Finally, simulation results show that the proposed NURBS curve interpolator meet the high-speed and high-accuracy interpolation requirements of CNC systems. The interpolation of NURBS curve should be finished.
Core Business Selection Based on Ant Colony Clustering Algorithm
Directory of Open Access Journals (Sweden)
Yu Lan
2014-01-01
Full Text Available Core business is the most important business to the enterprise in diversified business. In this paper, we first introduce the definition and characteristics of the core business and then descript the ant colony clustering algorithm. In order to test the effectiveness of the proposed method, Tianjin Port Logistics Development Co., Ltd. is selected as the research object. Based on the current situation of the development of the company, the core business of the company can be acquired by ant colony clustering algorithm. Thus, the results indicate that the proposed method is an effective way to determine the core business for company.
An Optimal Seed Based Compression Algorithm for DNA Sequences.
Eric, Pamela Vinitha; Gopalakrishnan, Gopakumar; Karunakaran, Muralikrishnan
2016-01-01
This paper proposes a seed based lossless compression algorithm to compress a DNA sequence which uses a substitution method that is similar to the LempelZiv compression scheme. The proposed method exploits the repetition structures that are inherent in DNA sequences by creating an offline dictionary which contains all such repeats along with the details of mismatches. By ensuring that only promising mismatches are allowed, the method achieves a compression ratio that is at par or better than the existing lossless DNA sequence compression algorithms.
Algorithms for Quantum Branching Programs Based on Fingerprinting
Directory of Open Access Journals (Sweden)
Farid Ablayev
2009-11-01
Full Text Available In the paper we develop a method for constructing quantum algorithms for computing Boolean functions by quantum ordered read-once branching programs (quantum OBDDs. Our method is based on fingerprinting technique and representation of Boolean functions by their characteristic polynomials. We use circuit notation for branching programs for desired algorithms presentation. For several known functions our approach provides optimal QOBDDs. Namely we consider such functions as Equality, Palindrome, and Permutation Matrix Test. We also propose a generalization of our method and apply it to the Boolean variant of the Hidden Subgroup Problem.
A Sumudu based algorithm for solving differential equations
Directory of Open Access Journals (Sweden)
Jun Zhang
2007-11-01
Full Text Available An algorithm based on Sumudu transform is developed. The algorithm can be implemented in computer algebra systems like Maple. It can be used to solve differential equations of the following form automatically without human interaction \\begin{displaymath} \\sum_{i=0}^{m} p_i(xy^{(i}(x = \\sum_{j=0}^{k}q_j(xh_j(x \\end{displaymath} where pi(x(i=0, 1, 2, ..., m and qj(x(j=0, 1, 2, ..., k are polynomials. hj(x are non-rational functions, but their Sumudu transforms are rational. m, k are nonnegative integers.
Directory of Open Access Journals (Sweden)
Shashwat Pathak
2016-09-01
Full Text Available This paper proposes and evaluates an algorithm to automatically detect the cataracts from color images in adult human subjects. Currently, methods available for cataract detection are based on the use of either fundus camera or Digital Single-Lens Reflex (DSLR camera; both are very expensive. The main motive behind this work is to develop an inexpensive, robust and convenient algorithm which in conjugation with suitable devices will be able to diagnose the presence of cataract from the true color images of an eye. An algorithm is proposed for cataract screening based on texture features: uniformity, intensity and standard deviation. These features are first computed and mapped with diagnostic opinion by the eye expert to define the basic threshold of screening system and later tested on real subjects in an eye clinic. Finally, a tele-ophthamology model using our proposed system has been suggested, which confirms the telemedicine application of the proposed system.
Design and implementation of a vision-based hovering and feature tracking algorithm for a quadrotor
Lee, Y. H.; Chahl, J. S.
2016-10-01
This paper demonstrates an approach to the vision-based control of the unmanned quadrotors for hover and object tracking. The algorithms used the Speed Up Robust Features (SURF) algorithm to detect objects. The pose of the object in the image was then calculated in order to pass the pose information to the flight controller. Finally, the flight controller steered the quadrotor to approach the object based on the calculated pose data. The above processes was run using standard onboard resources found in the 3DR Solo quadrotor in an embedded computing environment. The obtained results showed that the algorithm behaved well during its missions, tracking and hovering, although there were significant latencies due to low CPU performance of the onboard image processing system.
Pilot-based parametric channel estimation algorithm for DCO-OFDM-based visual light communications
Qian, Xuewen; Deng, Honggui; He, Hailang
2017-10-01
Due to wide modulation bandwidth in optical communication, multipath channels may be non-sparse and deteriorate communication performance heavily. Traditional compressive sensing-based channel estimation algorithm cannot be employed in this kind of situation. In this paper, we propose a practical parametric channel estimation algorithm for orthogonal frequency division multiplexing (OFDM)-based visual light communication (VLC) systems based on modified zero correlation code (ZCC) pair that has the impulse-like correlation property. Simulation results show that the proposed algorithm achieves better performances than existing least squares (LS)-based algorithm in both bit error ratio (BER) and frequency response estimation.
Container Swap Trailer Transportation Routing Problem Based on Genetic Algorithm
Directory of Open Access Journals (Sweden)
Hua-wei Ma
2018-01-01
Full Text Available In swap trailer transportation routing problems, trucks and trailers conduct swap operations at special positions called trailer points. The parallelization of stevedoring and transportation can be achieved by means of these trailer points. This logistics organization mode can be more effective than the others. In this paper, an integer programming model with capacity and time-window constraints was established. A repairing strategy is embedded in the genetic algorithm (GA to solve the model. The repairing strategy is executed after the crossover and mutation operation to eliminate the illegal routes. Furthermore, a parameter self-adaptive adjustment policy is designed to improve the convergence. Then numerical experiments are implemented based on the generated datasets; the performance and robustness of the algorithm parameter self-adaptive adjustment policy are discussed. Finally, the results show that the improved algorithm performs better than elementary GA.
A Multi-Scale Settlement Matching Algorithm Based on ARG
Directory of Open Access Journals (Sweden)
H. Yue
2016-06-01
Full Text Available Homonymous entity matching is an important part of multi-source spatial data integration, automatic updating and change detection. Considering the low accuracy of existing matching methods in dealing with matching multi-scale settlement data, an algorithm based on Attributed Relational Graph (ARG is proposed. The algorithm firstly divides two settlement scenes at different scales into blocks by small-scale road network and constructs local ARGs in each block. Then, ascertains candidate sets by merging procedures and obtains the optimal matching pairs by comparing the similarity of ARGs iteratively. Finally, the corresponding relations between settlements at large and small scales are identified. At the end of this article, a demonstration is presented and the results indicate that the proposed algorithm is capable of handling sophisticated cases.
AN Information Text Classification Algorithm Based on DBN
Directory of Open Access Journals (Sweden)
LU Shu-bao
2017-04-01
Full Text Available Aiming at the problem of low categorization accuracy and uneven distribution of the traditional text classification algorithms，a text classification algorithm based on deep learning has been put forward. Deep belief networks have very strong feature learning ability，which can be extracted from the high dimension of the original feature，so that the text classification can not only be considered，but also can be used to train classification model. The formula of TF-IDF is used to compute text eigenvalues，and the deep belief networks are used to construct the classifier. The experimental results show that compared with the commonly used classification algorithms such as support vector machine，neural network and extreme learning machine，the algorithm has higher accuracy and practicability，and it has opened up new ideas for the research of text classification.
Wavelet-Based MPNLMS Adaptive Algorithm for Network Echo Cancellation
Directory of Open Access Journals (Sweden)
Doroslovački Miloš
2007-01-01
Full Text Available The μ-law proportionate normalized least mean square (MPNLMS algorithm has been proposed recently to solve the slow convergence problem of the proportionate normalized least mean square (PNLMS algorithm after its initial fast converging period. But for the color input, it may become slow in the case of the big eigenvalue spread of the input signal's autocorrelation matrix. In this paper, we use the wavelet transform to whiten the input signal. Due to the good time-frequency localization property of the wavelet transform, a sparse impulse response in the time domain is also sparse in the wavelet domain. By applying the MPNLMS technique in the wavelet domain, fast convergence for the color input is observed. Furthermore, we show that some nonsparse impulse responses may become sparse in the wavelet domain. This motivates the usage of the wavelet-based MPNLMS algorithm. Advantages of this approach are documented.
Wavelet-Based MPNLMS Adaptive Algorithm for Network Echo Cancellation
Directory of Open Access Journals (Sweden)
Hongyang Deng
2007-03-01
Full Text Available The ÃŽÂ¼-law proportionate normalized least mean square (MPNLMS algorithm has been proposed recently to solve the slow convergence problem of the proportionate normalized least mean square (PNLMS algorithm after its initial fast converging period. But for the color input, it may become slow in the case of the big eigenvalue spread of the input signal's autocorrelation matrix. In this paper, we use the wavelet transform to whiten the input signal. Due to the good time-frequency localization property of the wavelet transform, a sparse impulse response in the time domain is also sparse in the wavelet domain. By applying the MPNLMS technique in the wavelet domain, fast convergence for the color input is observed. Furthermore, we show that some nonsparse impulse responses may become sparse in the wavelet domain. This motivates the usage of the wavelet-based MPNLMS algorithm. Advantages of this approach are documented.
Research on image retrieval algorithm based on LBP and LSH
Wu, Hongliang; Wu, Weimin; Zhang, Junyuan; Peng, Jiajin
2017-08-01
Using LBP (local binary pattern) to extract texture feature in the area of image recognition and retrieval has achieved good results. LSH (locality sensitive hashing) in the information retrieval, especially to solve the ANN (approximate nearest neighbor) problem has a more important Status. LSH has a solid theoretical basis and excellent performance in high-dimensional data space. Under the trend of cloud computing and Big Data, this paper proposes an image retrieval algorithm based on LBP and LSH. Firstly, LBP is used to extract the texture feature vector of the image. Then, the LBP texture feature is reduced dimensionally and indexed into different buckets using LSH. Finally, the image corresponding to the index value in the bucket is extracted for second retrieval by using LBP. This algorithm can adapt to the massive image retrieval and ensures the high accuracy of the image retrieval and reduces the time complexity. This algorithm is of great significance.
Community Clustering Algorithm in Complex Networks Based on Microcommunity Fusion
Directory of Open Access Journals (Sweden)
Jin Qi
2015-01-01
Full Text Available With the further research on physical meaning and digital features of the community structure in complex networks in recent years, the improvement of effectiveness and efficiency of the community mining algorithms in complex networks has become an important subject in this area. This paper puts forward a concept of the microcommunity and gets final mining results of communities through fusing different microcommunities. This paper starts with the basic definition of the network community and applies Expansion to the microcommunity clustering which provides prerequisites for the microcommunity fusion. The proposed algorithm is more efficient and has higher solution quality compared with other similar algorithms through the analysis of test results based on network data set.
APPECT: An Approximate Backbone-Based Clustering Algorithm for Tags
DEFF Research Database (Denmark)
Zong, Yu; Xu, Guandong; Jin, Pin
2011-01-01
resulting from the severe difficulty of ambiguity, redundancy and less semantic nature of tags. Clustering method is a useful tool to address the aforementioned difficulties. Most of the researches on tag clustering are directly using traditional clustering algorithms such as K-means or Hierarchical...... algorithm for Tags (APPECT). The main steps of APPECT are: (1) we execute the K-means algorithm on a tag similarity matrix for M times and collect a set of tag clustering results Z={C1,C2,…,Cm}; (2) we form the approximate backbone of Z by executing a greedy search; (3) we fix the approximate backbone...... Agglomerative Clustering on tagging data, which possess the inherent drawbacks, such as the sensitivity of initialization. In this paper, we instead make use of the approximate backbone of tag clustering results to find out better tag clusters. In particular, we propose an APProximate backbonE-based Clustering...
Evolving Stochastic Learning Algorithm based on Tsallis entropic index
Anastasiadis, A. D.; Magoulas, G. D.
2006-03-01
In this paper, inspired from our previous algorithm, which was based on the theory of Tsallis statistical mechanics, we develop a new evolving stochastic learning algorithm for neural networks. The new algorithm combines deterministic and stochastic search steps by employing a different adaptive stepsize for each network weight, and applies a form of noise that is characterized by the nonextensive entropic index q, regulated by a weight decay term. The behavior of the learning algorithm can be made more stochastic or deterministic depending on the trade off between the temperature T and the q values. This is achieved by introducing a formula that defines a time-dependent relationship between these two important learning parameters. Our experimental study verifies that there are indeed improvements in the convergence speed of this new evolving stochastic learning algorithm, which makes learning faster than using the original Hybrid Learning Scheme (HLS). In addition, experiments are conducted to explore the influence of the entropic index q and temperature T on the convergence speed and stability of the proposed method.
Wideband Array Signal Detection Algorithm Based on Power Focusing
Directory of Open Access Journals (Sweden)
Gong Bin
2012-09-01
Full Text Available Aiming at the requirement of real-time signal detection in the passive surveillance system, a wideband array signal detection algorithm is proposed based on the concept of power focusing. By making use of the phase difference of the signal received by a uniform linear array, the algorithm makes the power of the received signal focused in the Direction Of Arrival (DOA with improved cascade FFT. Subsequently, the probability density function of the output noise at each angle is derived. Furthermore, a Constant False Alarm Rate (CFAR test statistic and the corresponding detection threshold are constructed. The theoretical probability of detection is also derived for different false alarm rate and Signal-to-Noise Ratio (SNR. The proposed algorithm is computationally efficient, and the detection process is independent of the prior information. Meanwhile, the results can act as the initial value for other algorithms with higher precision. Simulation results show that the proposed algorithm achieves good performance for weak signal detection.
Fuzzy Fireworks Algorithm Based on a Sparks Dispersion Measure
Directory of Open Access Journals (Sweden)
Juan Barraza
2017-07-01
Full Text Available The main goal of this paper is to improve the performance of the Fireworks Algorithm (FWA. To improve the performance of the FWA we propose three modifications: the first modification is to change the stopping criteria, this is to say, previously, the number of function evaluations was utilized as a stopping criteria, and we decided to change this to specify a particular number of iterations; the second and third modifications consist on introducing a dispersion metric (dispersion percent, and both modifications were made with the goal of achieving dynamic adaptation of the two parameters in the algorithm. The parameters that were controlled are the explosion amplitude and the number of sparks, and it is worth mentioning that the control of these parameters is based on a fuzzy logic approach. To measure the impact of these modifications, we perform experiments with 14 benchmark functions and a comparative study shows the advantage of the proposed approach. We decided to call the proposed algorithms Iterative Fireworks Algorithm (IFWA and two variants of the Dispersion Percent Iterative Fuzzy Fireworks Algorithm (DPIFWA-I and DPIFWA-II, respectively.
Localized Ambient Solidity Separation Algorithm Based Computer User Segmentation
Sun, Xiao; Zhang, Tongda; Chai, Yueting; Liu, Yi
2015-01-01
Most of popular clustering methods typically have some strong assumptions of the dataset. For example, the k-means implicitly assumes that all clusters come from spherical Gaussian distributions which have different means but the same covariance. However, when dealing with datasets that have diverse distribution shapes or high dimensionality, these assumptions might not be valid anymore. In order to overcome this weakness, we proposed a new clustering algorithm named localized ambient solidity separation (LASS) algorithm, using a new isolation criterion called centroid distance. Compared with other density based isolation criteria, our proposed centroid distance isolation criterion addresses the problem caused by high dimensionality and varying density. The experiment on a designed two-dimensional benchmark dataset shows that our proposed LASS algorithm not only inherits the advantage of the original dissimilarity increments clustering method to separate naturally isolated clusters but also can identify the clusters which are adjacent, overlapping, and under background noise. Finally, we compared our LASS algorithm with the dissimilarity increments clustering method on a massive computer user dataset with over two million records that contains demographic and behaviors information. The results show that LASS algorithm works extremely well on this computer user dataset and can gain more knowledge from it. PMID:26221133
Remote triage support algorithm based on fuzzy logic.
Achkoski, Jugoslav; Koceski, S; Bogatinov, D; Temelkovski, B; Stevanovski, G; Kocev, I
2017-06-01
This paper presents a remote triage support algorithm as a part of a complex military telemedicine system which provides continuous monitoring of soldiers' vital sign data gathered on-site using unobtrusive set of sensors. The proposed fuzzy logic-based algorithm takes physiological data and classifies the casualties according to their health risk level, calculated following the Modified Early Warning Score (MEWS) methodology. To verify the algorithm, eight different evaluation scenarios using random vital sign data have been created. In each scenario, the hypothetical condition of the victims was assessed in parallel both by the system as well as by 50 doctors with significant experience in the field. The results showed that there is high (0.928) average correlation of the classification results. This suggests that the proposed algorithm can be used for automated remote triage in real life-saving situations even before the medical team arrives at the spot, and shorten the response times. Moreover, an additional study has been conducted in order to increase the computational efficiency of the algorithm, without compromising the quality of the classification results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
A high-performance spatial database based approach for pathology imaging algorithm evaluation
Directory of Open Access Journals (Sweden)
Fusheng Wang
2013-01-01
Full Text Available Background: Algorithm evaluation provides a means to characterize variability across image analysis algorithms, validate algorithms by comparison with human annotations, combine results from multiple algorithms for performance improvement, and facilitate algorithm sensitivity studies. The sizes of images and image analysis results in pathology image analysis pose significant challenges in algorithm evaluation. We present an efficient parallel spatial database approach to model, normalize, manage, and query large volumes of analytical image result data. This provides an efficient platform for algorithm evaluation. Our experiments with a set of brain tumor images demonstrate the application, scalability, and effectiveness of the platform. Context: The paper describes an approach and platform for evaluation of pathology image analysis algorithms. The platform facilitates algorithm evaluation through a high-performance database built on the Pathology Analytic Imaging Standards (PAIS data model. Aims: (1 Develop a framework to support algorithm evaluation by modeling and managing analytical results and human annotations from pathology images; (2 Create a robust data normalization tool for converting, validating, and fixing spatial data from algorithm or human annotations; (3 Develop a set of queries to support data sampling and result comparisons; (4 Achieve high performance computation capacity via a parallel data management infrastructure, parallel data loading and spatial indexing optimizations in this infrastructure. Materials and Methods: We have considered two scenarios for algorithm evaluation: (1 algorithm comparison where multiple result sets from different methods are compared and consolidated; and (2 algorithm validation where algorithm results are compared with human annotations. We have developed a spatial normalization toolkit to validate and normalize spatial boundaries produced by image analysis algorithms or human annotations. The
A high-performance spatial database based approach for pathology imaging algorithm evaluation.
Wang, Fusheng; Kong, Jun; Gao, Jingjing; Cooper, Lee A D; Kurc, Tahsin; Zhou, Zhengwen; Adler, David; Vergara-Niedermayr, Cristobal; Katigbak, Bryan; Brat, Daniel J; Saltz, Joel H
2013-01-01
Algorithm evaluation provides a means to characterize variability across image analysis algorithms, validate algorithms by comparison with human annotations, combine results from multiple algorithms for performance improvement, and facilitate algorithm sensitivity studies. The sizes of images and image analysis results in pathology image analysis pose significant challenges in algorithm evaluation. We present an efficient parallel spatial database approach to model, normalize, manage, and query large volumes of analytical image result data. This provides an efficient platform for algorithm evaluation. Our experiments with a set of brain tumor images demonstrate the application, scalability, and effectiveness of the platform. The paper describes an approach and platform for evaluation of pathology image analysis algorithms. The platform facilitates algorithm evaluation through a high-performance database built on the Pathology Analytic Imaging Standards (PAIS) data model. (1) Develop a framework to support algorithm evaluation by modeling and managing analytical results and human annotations from pathology images; (2) Create a robust data normalization tool for converting, validating, and fixing spatial data from algorithm or human annotations; (3) Develop a set of queries to support data sampling and result comparisons; (4) Achieve high performance computation capacity via a parallel data management infrastructure, parallel data loading and spatial indexing optimizations in this infrastructure. WE HAVE CONSIDERED TWO SCENARIOS FOR ALGORITHM EVALUATION: (1) algorithm comparison where multiple result sets from different methods are compared and consolidated; and (2) algorithm validation where algorithm results are compared with human annotations. We have developed a spatial normalization toolkit to validate and normalize spatial boundaries produced by image analysis algorithms or human annotations. The validated data were formatted based on the PAIS data model and
Local Competition-Based Superpixel Segmentation Algorithm in Remote Sensing.
Liu, Jiayin; Tang, Zhenmin; Cui, Ying; Wu, Guoxing
2017-06-12
Remote sensing technologies have been widely applied in urban environments' monitoring, synthesis and modeling. Incorporating spatial information in perceptually coherent regions, superpixel-based approaches can effectively eliminate the "salt and pepper" phenomenon which is common in pixel-wise approaches. Compared with fixed-size windows, superpixels have adaptive sizes and shapes for different spatial structures. Moreover, superpixel-based algorithms can significantly improve computational efficiency owing to the greatly reduced number of image primitives. Hence, the superpixel algorithm, as a preprocessing technique, is more and more popularly used in remote sensing and many other fields. In this paper, we propose a superpixel segmentation algorithm called Superpixel Segmentation with Local Competition (SSLC), which utilizes a local competition mechanism to construct energy terms and label pixels. The local competition mechanism leads to energy terms locality and relativity, and thus, the proposed algorithm is less sensitive to the diversity of image content and scene layout. Consequently, SSLC could achieve consistent performance in different image regions. In addition, the Probability Density Function (PDF), which is estimated by Kernel Density Estimation (KDE) with the Gaussian kernel, is introduced to describe the color distribution of superpixels as a more sophisticated and accurate measure. To reduce computational complexity, a boundary optimization framework is introduced to only handle boundary pixels instead of the whole image. We conduct experiments to benchmark the proposed algorithm with the other state-of-the-art ones on the Berkeley Segmentation Dataset (BSD) and remote sensing images. Results demonstrate that the SSLC algorithm yields the best overall performance, while the computation time-efficiency is still competitive.
Segment-based dose optimization using a genetic algorithm
International Nuclear Information System (INIS)
Cotrutz, Cristian; Xing Lei
2003-01-01
Intensity modulated radiation therapy (IMRT) inverse planning is conventionally done in two steps. Firstly, the intensity maps of the treatment beams are optimized using a dose optimization algorithm. Each of them is then decomposed into a number of segments using a leaf-sequencing algorithm for delivery. An alternative approach is to pre-assign a fixed number of field apertures and optimize directly the shapes and weights of the apertures. While the latter approach has the advantage of eliminating the leaf-sequencing step, the optimization of aperture shapes is less straightforward than that of beamlet-based optimization because of the complex dependence of the dose on the field shapes, and their weights. In this work we report a genetic algorithm for segment-based optimization. Different from a gradient iterative approach or simulated annealing, the algorithm finds the optimum solution from a population of candidate plans. In this technique, each solution is encoded using three chromosomes: one for the position of the left-bank leaves of each segment, the second for the position of the right-bank and the third for the weights of the segments defined by the first two chromosomes. The convergence towards the optimum is realized by crossover and mutation operators that ensure proper exchange of information between the three chromosomes of all the solutions in the population. The algorithm is applied to a phantom and a prostate case and the results are compared with those obtained using beamlet-based optimization. The main conclusion drawn from this study is that the genetic optimization of segment shapes and weights can produce highly conformal dose distribution. In addition, our study also confirms previous findings that fewer segments are generally needed to generate plans that are comparable with the plans obtained using beamlet-based optimization. Thus the technique may have useful applications in facilitating IMRT treatment planning
Analysis of the Chirplet Transform-Based Algorithm for Radar Detection of Accelerated Targets
Galushko, V. G.; Vavriv, D. M.
2017-06-01
Purpose: Efficiency analysis of an optimal algorithm of chirp signal processing based on the chirplet transform as applied to detection of radar targets in uniformly accelerated motion. Design/methodology/approach: Standard methods of the optimal filtration theory are used to investigate the ambiguity function of chirp signals. Findings: An analytical expression has been derived for the ambiguity function of chirp signals that is analyzed with respect to detection of radar targets moving at a constant acceleration. Sidelobe level and characteristic width of the ambiguity function with respect to the coordinates frequency and rate of its change have been estimated. The gain in the signal-to-noise ratio has been assessed that is provided by the algorithm under consideration as compared with application of the standard Fourier transform to detection of chirp signals against a “white” noise background. It is shown that already with a comparatively small (processing channels (elementary filters with respect to the frequency change rate) the gain in the signal-tonoise ratio exceeds 10 dB. A block diagram of implementation of the algorithm under consideration is suggested on the basis of a multichannel weighted Fourier transform. Recommendations as for selection of the detection algorithm parameters have been developed. Conclusions: The obtained results testify to efficiency of application of the algorithm under consideration to detection of radar targets moving at a constant acceleration. Nevertheless, it seems expedient to perform computer simulations of its operability with account for the noise impact along with trial measurements in real conditions.
Interactive Consistency Algorithms Based on Voting and Error-Correding Codes
Krol, Th.
1995-01-01
This paper presents a new class of synchronous deterministic non authenticated algorithms for reaching interactive consistency (Byzantine agreement). The algorithms are based on voting and error correcting codes and require considerably less data communication than the original algorithm, whereas
Effective pathfinding for four-wheeled robot based on combining Theta* and hybrid A* algorithms
Directory of Open Access Journals (Sweden)
Віталій Геннадійович Михалько
2016-07-01
Full Text Available Effective pathfinding algorithm based on Theta* and Hybrid A* algorithms was developed for four-wheeled robot. Pseudocode for algorithm was showed and explained. Algorithm and simulator for four-wheeled robot were implemented using Java programming language. Algorithm was tested on U-obstacles, complex maps and for parking problem
Learning-based meta-algorithm for MRI brain extraction.
Shi, Feng; Wang, Li; Gilmore, John H; Lin, Weili; Shen, Dinggang
2011-01-01
Multiple-segmentation-and-fusion method has been widely used for brain extraction, tissue segmentation, and region of interest (ROI) localization. However, such studies are hindered in practice by their computational complexity, mainly coming from the steps of template selection and template-to-subject nonlinear registration. In this study, we address these two issues and propose a novel learning-based meta-algorithm for MRI brain extraction. Specifically, we first use exemplars to represent the entire template library, and assign the most similar exemplar to the test subject. Second, a meta-algorithm combining two existing brain extraction algorithms (BET and BSE) is proposed to conduct multiple extractions directly on test subject. Effective parameter settings for the meta-algorithm are learned from the training data and propagated to subject through exemplars. We further develop a level-set based fusion method to combine multiple candidate extractions together with a closed smooth surface, for obtaining the final result. Experimental results show that, with only a small portion of subjects for training, the proposed method is able to produce more accurate and robust brain extraction results, at Jaccard Index of 0.956 +/- 0.010 on total 340 subjects under 6-fold cross validation, compared to those by the BET and BSE even using their best parameter combinations.
Nearby Search Indekos Based Android Using A Star (A*) Algorithm
Siregar, B.; Nababan, EB; Rumahorbo, JA; Andayani, U.; Fahmi, F.
2018-03-01
Indekos or rented room is a temporary residence for months or years. Society of academicians who come from out of town need a temporary residence, such as Indekos or rented room during their education, teaching, or duties. They are often found difficulty in finding a Indekos because lack of information about the Indekos. Besides, new society of academicians don’t recognize the areas around the campus and desire the shortest path from Indekos to get to the campus. The problem can be solved by implementing A Star (A*) algorithm. This algorithm is one of the shortest path algorithm to a finding shortest path from campus to the Indekos application, where the faculties in the campus as the starting point of the finding. Determination of the starting point used in this study aims to allow students to determine the starting point in finding the Indekos. The mobile based application facilitates the finding anytime and anywhere. Based on the experimental results, A* algorithm can find the shortest path with 86,67% accuracy.
A Novel Assembly Line Balancing Method Based on PSO Algorithm
Directory of Open Access Journals (Sweden)
Xiaomei Hu
2014-01-01
Full Text Available Assembly line is widely used in manufacturing system. Assembly line balancing problem is a crucial question during design and management of assembly lines since it directly affects the productivity of the whole manufacturing system. The model of assembly line balancing problem is put forward and a general optimization method is proposed. The key data on assembly line balancing problem is confirmed, and the precedence relations diagram is described. A double objective optimization model based on takt time and smoothness index is built, and balance optimization scheme based on PSO algorithm is proposed. Through the simulation experiments of examples, the feasibility and validity of the assembly line balancing method based on PSO algorithm is proved.
FPSoC-Based Architecture for a Fast Motion Estimation Algorithm in H.264/AVC
Directory of Open Access Journals (Sweden)
Obianuju Ndili
2009-01-01
Full Text Available There is an increasing need for high quality video on low power, portable devices. Possible target applications range from entertainment and personal communications to security and health care. While H.264/AVC answers the need for high quality video at lower bit rates, it is significantly more complex than previous coding standards and thus results in greater power consumption in practical implementations. In particular, motion estimation (ME, in H.264/AVC consumes the largest power in an H.264/AVC encoder. It is therefore critical to speed-up integer ME in H.264/AVC via fast motion estimation (FME algorithms and hardware acceleration. In this paper, we present our hardware oriented modifications to a hybrid FME algorithm, our architecture based on the modified algorithm, and our implementation and prototype on a PowerPC-based Field Programmable System on Chip (FPSoC. Our results show that the modified hybrid FME algorithm on average, outperforms previous state-of-the-art FME algorithms, while its losses when compared with FSME, in terms of PSNR performance and computation time, are insignificant. We show that although our implementation platform is FPGA-based, our implementation results compare favourably with previous architectures implemented on ASICs. Finally we also show an improvement over some existing architectures implemented on FPGAs.
Directory of Open Access Journals (Sweden)
Xiaohua Nie
2017-01-01
Full Text Available This work presents a maximum power point tracking (MPPT based on the particle swarm optimization (PSO improved shuffled frog leaping algorithm (PSFLA. The swarm intelligence algorithm (SIA has vast computing ability. The MPPT control strategies of PV array based on SIA are attracting considerable interests. Firstly, the PSFLA was proposed by adding the inertia weight factor w of PSO in standard SFLA to overcome the defect of falling into the partial optimal solutions and slow convergence speed. The proposed PSFLA algorithm increased calculation speed and excellent global search capability of MPPT. Then, the PSFLA was applied to MPPT to solve the multiple extreme point problems of nonlinear optimization. Secondly, for the problems of MPPT under complex environments, a new MPPT strategy of the PSFLA combined with recursive least square filtering was proposed to overcome the measurement noise effects on MPPT accuracy. Finally, the simulation comparisons between PSFLA and SFLA algorithm were developed. The experiment and comparison between PSLFA and PSO algorithm under complex environment were executed. The simulation and experiment results indicate that the proposed MPPT control strategy based on PSFLA can suppress the measurement noise effects effectively and improve the PV array efficiency.
Basri, M.; Mawengkang, H.; Zamzami, E. M.
2018-03-01
Limitations of storage sources is one option to switch to cloud storage. Confidentiality and security of data stored on the cloud is very important. To keep up the confidentiality and security of such data can be done one of them by using cryptography techniques. Data Encryption Standard (DES) is one of the block cipher algorithms used as standard symmetric encryption algorithm. This DES will produce 8 blocks of ciphers combined into one ciphertext, but the ciphertext are weak against brute force attacks. Therefore, the last 8 block cipher will be converted into 8 random images using Least Significant Bit (LSB) algorithm which later draws the result of cipher of DES algorithm to be merged into one.
Xue, Zhong; Shen, Dinggang; Karacali, Bilge; Stern, Joshua; Rottenberg, David; Davatzikos, Christos
2006-01-01
Simulated deformations and images can act as the gold standard for evaluating various template-based image segmentation and registration algorithms. Traditional deformable simulation methods, such as the use of analytic deformation fields or the displacement of landmarks followed by some form of interpolation, are often unable to construct rich (complex) and/or realistic deformations of anatomical organs. This paper presents new methods aiming to automatically simulate realistic inter- and in...
A test sheet generating algorithm based on intelligent genetic algorithm and hierarchical planning
Gu, Peipei; Niu, Zhendong; Chen, Xuting; Chen, Wei
2013-03-01
In recent years, computer-based testing has become an effective method to evaluate students' overall learning progress so that appropriate guiding strategies can be recommended. Research has been done to develop intelligent test assembling systems which can automatically generate test sheets based on given parameters of test items. A good multisubject test sheet depends on not only the quality of the test items but also the construction of the sheet. Effective and efficient construction of test sheets according to multiple subjects and criteria is a challenging problem. In this paper, a multi-subject test sheet generation problem is formulated and a test sheet generating approach based on intelligent genetic algorithm and hierarchical planning (GAHP) is proposed to tackle this problem. The proposed approach utilizes hierarchical planning to simplify the multi-subject testing problem and adopts genetic algorithm to process the layered criteria, enabling the construction of good test sheets according to multiple test item requirements. Experiments are conducted and the results show that the proposed approach is capable of effectively generating multi-subject test sheets that meet specified requirements and achieve good performance.
Directory of Open Access Journals (Sweden)
Vivek Patel
2012-08-01
Full Text Available Nature inspired population based algorithms is a research field which simulates different natural phenomena to solve a wide range of problems. Researchers have proposed several algorithms considering different natural phenomena. Teaching-Learning-based optimization (TLBO is one of the recently proposed population based algorithm which simulates the teaching-learning process of the class room. This algorithm does not require any algorithm-specific control parameters. In this paper, elitism concept is introduced in the TLBO algorithm and its effect on the performance of the algorithm is investigated. The effects of common controlling parameters such as the population size and the number of generations on the performance of the algorithm are also investigated. The proposed algorithm is tested on 35 constrained benchmark functions with different characteristics and the performance of the algorithm is compared with that of other well known optimization algorithms. The proposed algorithm can be applied to various optimization problems of the industrial environment.
Citizen Observatories: A Standards Based Architecture
Simonis, Ingo
2015-04-01
A number of large-scale research projects are currently under way exploring the various components of citizen observatories, e.g. CITI-SENSE (http://www.citi-sense.eu), Citclops (http://citclops.eu), COBWEB (http://cobwebproject.eu), OMNISCIENTIS (http://www.omniscientis.eu), and WeSenseIt (http://www.wesenseit.eu). Common to all projects is the motivation to develop a platform enabling effective participation by citizens in environmental projects, while considering important aspects such as security, privacy, long-term storage and availability, accessibility of raw and processed data and its proper integration into catalogues and international exchange and collaboration systems such as GEOSS or INSPIRE. This paper describes the software architecture implemented for setting up crowdsourcing campaigns using standardized components, interfaces, security features, and distribution capabilities. It illustrates the Citizen Observatory Toolkit, a software suite that allows defining crowdsourcing campaigns, to invite registered and unregistered participants to participate in crowdsourcing campaigns, and to analyze, process, and visualize raw and quality enhanced crowd sourcing data and derived products. The Citizen Observatory Toolkit is not a single software product. Instead, it is a framework of components that are built using internationally adopted standards wherever possible (e.g. OGC standards from Sensor Web Enablement, GeoPackage, and Web Mapping and Processing Services, as well as security and metadata/cataloguing standards), defines profiles of those standards where necessary (e.g. SWE O&M profile, SensorML profile), and implements design decisions based on the motivation to maximize interoperability and reusability of all components. The toolkit contains tools to set up, manage and maintain crowdsourcing campaigns, allows building on-demand apps optimized for the specific sampling focus, supports offline and online sampling modes using modern cell phones with
Multi-objective community detection based on memetic algorithm.
Directory of Open Access Journals (Sweden)
Peng Wu
Full Text Available Community detection has drawn a lot of attention as it can provide invaluable help in understanding the function and visualizing the structure of networks. Since single objective optimization methods have intrinsic drawbacks to identifying multiple significant community structures, some methods formulate the community detection as multi-objective problems and adopt population-based evolutionary algorithms to obtain multiple community structures. Evolutionary algorithms have strong global search ability, but have difficulty in locating local optima efficiently. In this study, in order to identify multiple significant community structures more effectively, a multi-objective memetic algorithm for community detection is proposed by combining multi-objective evolutionary algorithm with a local search procedure. The local search procedure is designed by addressing three issues. Firstly, nondominated solutions generated by evolutionary operations and solutions in dominant population are set as initial individuals for local search procedure. Then, a new direction vector named as pseudonormal vector is proposed to integrate two objective functions together to form a fitness function. Finally, a network specific local search strategy based on label propagation rule is expanded to search the local optimal solutions efficiently. The extensive experiments on both artificial and real-world networks evaluate the proposed method from three aspects. Firstly, experiments on influence of local search procedure demonstrate that the local search procedure can speed up the convergence to better partitions and make the algorithm more stable. Secondly, comparisons with a set of classic community detection methods illustrate the proposed method can find single partitions effectively. Finally, the method is applied to identify hierarchical structures of networks which are beneficial for analyzing networks in multi-resolution levels.
A street rubbish detection algorithm based on Sift and RCNN
Yu, XiPeng; Chen, Zhong; Zhang, Shuo; Zhang, Ting
2018-02-01
This paper presents a street rubbish detection algorithm based on image registration with Sift feature and RCNN. Firstly, obtain the rubbish region proposal on the real-time street image and set up the CNN convolution neural network trained by the rubbish samples set consists of rubbish and non-rubbish images; Secondly, for every clean street image, obtain the Sift feature and do image registration with the real-time street image to obtain the differential image, the differential image filters a lot of background information, obtain the rubbish region proposal rect where the rubbish may appear on the differential image by the selective search algorithm. Then, the CNN model is used to detect the image pixel data in each of the region proposal on the real-time street image. According to the output vector of the CNN, it is judged whether the rubbish is in the region proposal or not. If it is rubbish, the region proposal on the real-time street image is marked. This algorithm avoids the large number of false detection caused by the detection on the whole image because the CNN is used to identify the image only in the region proposal on the real-time street image that may appear rubbish. Different from the traditional object detection algorithm based on the region proposal, the region proposal is obtained on the differential image not whole real-time street image, and the number of the invalid region proposal is greatly reduced. The algorithm has the high mean average precision (mAP).
Directory of Open Access Journals (Sweden)
Walton Surrey M
2005-03-01
Full Text Available Abstract Background Cost utility analysis (CUA using SF-36/SF-12 data has been facilitated by the development of several preference-based algorithms. The purpose of this study was to illustrate how decision-making could be affected by the choice of preference-based algorithms for the SF-36 and SF-12, and provide some guidance on selecting an appropriate algorithm. Methods Two sets of data were used: (1 a clinical trial of adult asthma patients; and (2 a longitudinal study of post-stroke patients. Incremental costs were assumed to be $2000 per year over standard treatment, and QALY gains realized over a 1-year period. Ten published algorithms were identified, denoted by first author: Brazier (SF-36, Brazier (SF-12, Shmueli, Fryback, Lundberg, Nichol, Franks (3 algorithms, and Lawrence. Incremental cost-utility ratios (ICURs for each algorithm, stated in dollars per quality-adjusted life year ($/QALY, were ranked and compared between datasets. Results In the asthma patients, estimated ICURs ranged from Lawrence's SF-12 algorithm at $30,769/QALY (95% CI: 26,316 to 36,697 to Brazier's SF-36 algorithm at $63,492/QALY (95% CI: 48,780 to 83,333. ICURs for the stroke cohort varied slightly more dramatically. The MEPS-based algorithm by Franks et al. provided the lowest ICUR at $27,972/QALY (95% CI: 20,942 to 41,667. The Fryback and Shmueli algorithms provided ICURs that were greater than $50,000/QALY and did not have confidence intervals that overlapped with most of the other algorithms. The ICUR-based ranking of algorithms was strongly correlated between the asthma and stroke datasets (r = 0.60. Conclusion SF-36/SF-12 preference-based algorithms produced a wide range of ICURs that could potentially lead to different reimbursement decisions. Brazier's SF-36 and SF-12 algorithms have a strong methodological and theoretical basis and tended to generate relatively higher ICUR estimates, considerations that support a preference for these algorithms over the
R P, Meenaakshi Sundhari
2018-01-27
Objective: The method to treating cancer that combines light and light-sensitive drugs to selectively destroy tumour cells without harming healthy tissue is called photodynamic therapy (PDT). It requires accurate data for light dose distribution, generated with scalable algorithms. One of the benchmark approaches involves Monte Carlo (MC) simulations. This gives an accurate assessment of light dose distribution, but is very demanding in computation time, which prevents routine application for treatment planning. Methods: In order to resolve this problem, a design for MC simulation based on the gold standard software in biophotonics was implemented with a large modern wavelet based genetic algorithm search (WGAS). Result: The accuracy of the proposed method was compared to that with the standard optimization method using a realistic skin model. The maximum stop band attenuation of the designed LP, HP, BP and BS filters was assessed using the proposed WGAS algorithm as well as with other methods. Conclusion: In this paper, the proposed methodology employs intermediate wavelets which improve the diversification rate of the charged genetic algorithm search and that leads to significant improvement in design effort efficiency. Creative Commons Attribution License
Single-Pass Clustering Algorithm Based on Storm
Fang, LI; Longlong, DAI; Zhiying, JIANG; Shunzi, LI
2017-02-01
The dramatically increasing volume of data makes the computational complexity of traditional clustering algorithm rise rapidly accordingly, which leads to the longer time. So as to improve the efficiency of the stream data clustering, a distributed real-time clustering algorithm (S-Single-Pass) based on the classic Single-Pass [1] algorithm and Storm [2] computation framework was designed in this paper. By employing this kind of method in the Topic Detection and Tracking (TDT) [3], the real-time performance of topic detection arises effectively. The proposed method splits the clustering process into two parts: one part is to form clusters for the multi-thread parallel clustering, the other part is to merge the generated clusters in the previous process and update the global clusters. Through the experimental results, the conclusion can be drawn that the proposed method have the nearly same clustering accuracy as the traditional Single-Pass algorithm and the clustering accuracy remains steady, computing rate increases linearly when increasing the number of cluster machines and nodes (processing threads).
Iris Segmentation and Normalization Algorithm Based on Zigzag Collarette
Rizky Faundra, M.; Ratna Sulistyaningrum, Dwi
2017-01-01
In this paper, we proposed iris segmentation and normalization algorithm based on the zigzag collarette. First of all, iris images are processed by using Canny Edge Detection to detect pupil edge, then finding the center and the radius of the pupil with the Hough Transform Circle. Next, isolate important part in iris based zigzag collarette area. Finally, Daugman Rubber Sheet Model applied to get the fixed dimensions or normalization iris by transforming cartesian into polar format and thresholding technique to remove eyelid and eyelash. This experiment will be conducted with a grayscale eye image data taken from a database of iris-Chinese Academy of Sciences Institute of Automation (CASIA). Data iris taken is the data reliable and widely used to study the iris biometrics. The result show that specific threshold level is 0.3 have better accuracy than other, so the present algorithm can be used to segmentation and normalization zigzag collarette with accuracy is 98.88%
Quantum Cryptography Based on the Deutsch-Jozsa Algorithm
Nagata, Koji; Nakamura, Tadao; Farouk, Ahmed
2017-09-01
Recently, secure quantum key distribution based on Deutsch's algorithm using the Bell state is reported (Nagata and Nakamura, Int. J. Theor. Phys. doi: 10.1007/s10773-017-3352-4, 2017). Our aim is of extending the result to a multipartite system. In this paper, we propose a highly speedy key distribution protocol. We present sequre quantum key distribution based on a special Deutsch-Jozsa algorithm using Greenberger-Horne-Zeilinger states. Bob has promised to use a function f which is of one of two kinds; either the value of f( x) is constant for all values of x, or else the value of f( x) is balanced, that is, equal to 1 for exactly half of the possible x, and 0 for the other half. Here, we introduce an additional condition to the function when it is balanced. Our quantum key distribution overcomes a classical counterpart by a factor O(2 N ).
Variable Step Size Maximum Correntropy Criteria Based Adaptive Filtering Algorithm
Directory of Open Access Journals (Sweden)
S. Radhika
2016-04-01
Full Text Available Maximum correntropy criterion (MCC based adaptive filters are found to be robust against impulsive interference. This paper proposes a novel MCC based adaptive filter with variable step size in order to obtain improved performance in terms of both convergence rate and steady state error with robustness against impulsive interference. The optimal variable step size is obtained by minimizing the Mean Square Deviation (MSD error from one iteration to the other. Simulation results in the context of a highly impulsive system identification scenario show that the proposed algorithm has faster convergence and lesser steady state error than the conventional MCC based adaptive filters.
Adaboost-based algorithm for human action recognition
Zerrouki, Nabil
2017-11-28
This paper presents a computer vision-based methodology for human action recognition. First, the shape based pose features are constructed based on area ratios to identify the human silhouette in images. The proposed features are invariance to translation and scaling. Once the human body features are extracted from videos, different human actions are learned individually on the training frames of each class. Then, we apply the Adaboost algorithm for the classification process. We assessed the proposed approach using the UR Fall Detection dataset. In this study six classes of activities are considered namely: walking, standing, bending, lying, squatting, and sitting. Results demonstrate the efficiency of the proposed methodology.
Physics-based signal processing algorithms for micromachined cantilever arrays
Candy, James V; Clague, David S; Lee, Christopher L; Rudd, Robert E; Burnham, Alan K; Tringe, Joseph W
2013-11-19
A method of using physics-based signal processing algorithms for micromachined cantilever arrays. The methods utilize deflection of a micromachined cantilever that represents the chemical, biological, or physical element being detected. One embodiment of the method comprises the steps of modeling the deflection of the micromachined cantilever producing a deflection model, sensing the deflection of the micromachined cantilever and producing a signal representing the deflection, and comparing the signal representing the deflection with the deflection model.
Gaussian beam shooting algorithm based on iterative frame decomposition
Ghannoum, Ihssan; Letrou, Christine; Beauquet, Gilles
2010-01-01
International audience; Adaptive beam re-shooting is proposed as a solution to overcome essential limitations of the Gaussian Beam Shooting technique. The proposed algorithm is based on iterative frame decompositions of beam fields in situations where usual paraxial formulas fail to give accurate enough results, such as interactions with finite obstacle edges. Collimated beam fields are successively re-expanded on narrow and wide window frames, allowing for re-shooting and further propagation...
Evolutionary Algorithm Based Centralized Congestion Management for Multilateral Transactions
T. Mathumathi; S. Ganesh; R. Gunabalan
2014-01-01
This work presents an approach for AC load flow based centralized model for congestion management in the forward markets. In this model, transaction maximizes its profit under the limits of transmission line capacities allocated by Independent System Operator (ISO). The voltage and reactive power impact of the system are also incorporated in this model. Genetic algorithm is used to solve centralized congestion management problem for multilateral transactions. Results obtained for centralized ...
Adaptive algorithm for mobile user positioning based on environment estimation
Directory of Open Access Journals (Sweden)
Grujović Darko
2014-01-01
Full Text Available This paper analyzes the challenges to realize an infrastructure independent and a low-cost positioning method in cellular networks based on RSS (Received Signal Strength parameter, auxiliary timing parameter and environment estimation. The proposed algorithm has been evaluated using field measurements collected from GSM (Global System for Mobile Communications network, but it is technology independent and can be applied in UMTS (Universal Mobile Telecommunication Systems and LTE (Long-Term Evolution networks, also.
Development of hybrid artificial intelligent based handover decision algorithm
Directory of Open Access Journals (Sweden)
A.M. Aibinu
2017-04-01
Full Text Available The possibility of seamless handover remains a mirage despite the plethora of existing handover algorithms. The underlying factor responsible for this has been traced to the Handover decision module in the Handover process. Hence, in this paper, the development of novel hybrid artificial intelligent handover decision algorithm has been developed. The developed model is made up of hybrid of Artificial Neural Network (ANN based prediction model and Fuzzy Logic. On accessing the network, the Received Signal Strength (RSS was acquired over a period of time to form a time series data. The data was then fed to the newly proposed k-step ahead ANN-based RSS prediction system for estimation of prediction model coefficients. The synaptic weights and adaptive coefficients of the trained ANN was then used to compute the k-step ahead ANN based RSS prediction model coefficients. The predicted RSS value was later codified as Fuzzy sets and in conjunction with other measured network parameters were fed into the Fuzzy logic controller in order to finalize handover decision process. The performance of the newly developed k-step ahead ANN based RSS prediction algorithm was evaluated using simulated and real data acquired from available mobile communication networks. Results obtained in both cases shows that the proposed algorithm is capable of predicting ahead the RSS value to about ±0.0002 dB. Also, the cascaded effect of the complete handover decision module was also evaluated. Results obtained show that the newly proposed hybrid approach was able to reduce ping-pong effect associated with other handover techniques.
Support vector machines optimization based theory, algorithms, and extensions
Deng, Naiyang; Zhang, Chunhua
2013-01-01
Support Vector Machines: Optimization Based Theory, Algorithms, and Extensions presents an accessible treatment of the two main components of support vector machines (SVMs)-classification problems and regression problems. The book emphasizes the close connection between optimization theory and SVMs since optimization is one of the pillars on which SVMs are built.The authors share insight on many of their research achievements. They give a precise interpretation of statistical leaning theory for C-support vector classification. They also discuss regularized twi
A Line-Based Adaptive-Weight Matching Algorithm Using Loopy Belief Propagation
Directory of Open Access Journals (Sweden)
Hui Li
2015-01-01
Full Text Available In traditional adaptive-weight stereo matching, the rectangular shaped support region requires excess memory consumption and time. We propose a novel line-based stereo matching algorithm for obtaining a more accurate disparity map with low computation complexity. This algorithm can be divided into two steps: disparity map initialization and disparity map refinement. In the initialization step, a new adaptive-weight model based on the linear support region is put forward for cost aggregation. In this model, the neural network is used to evaluate the spatial proximity, and the mean-shift segmentation method is used to improve the accuracy of color similarity; the Birchfield pixel dissimilarity function and the census transform are adopted to establish the dissimilarity measurement function. Then the initial disparity map is obtained by loopy belief propagation. In the refinement step, the disparity map is optimized by iterative left-right consistency checking method and segmentation voting method. The parameter values involved in this algorithm are determined with many simulation experiments to further improve the matching effect. Simulation results indicate that this new matching method performs well on standard stereo benchmarks and running time of our algorithm is remarkably lower than that of algorithm with rectangle-shaped support region.
Multifeature Fusion Vehicle Detection Algorithm Based on Choquet Integral
Directory of Open Access Journals (Sweden)
Wenhui Li
2014-01-01
Full Text Available Vision-based multivehicle detection plays an important role in Forward Collision Warning Systems (FCWS and Blind Spot Detection Systems (BSDS. The performance of these systems depends on the real-time capability, accuracy, and robustness of vehicle detection methods. To improve the accuracy of vehicle detection algorithm, we propose a multifeature fusion vehicle detection algorithm based on Choquet integral. This algorithm divides the vehicle detection problem into two phases: feature similarity measure and multifeature fusion. In the feature similarity measure phase, we first propose a taillight-based vehicle detection method, and then vehicle taillight feature similarity measure is defined. Second, combining with the definition of Choquet integral, the vehicle symmetry similarity measure and the HOG + AdaBoost feature similarity measure are defined. Finally, these three features are fused together by Choquet integral. Being evaluated on public test collections and our own test images, the experimental results show that our method has achieved effective and robust multivehicle detection in complicated environments. Our method can not only improve the detection rate but also reduce the false alarm rate, which meets the engineering requirements of Advanced Driving Assistance Systems (ADAS.
ALGORITHMS FOR TENNIS RACKET ANALYSIS BASED ON MOTION DATA
Directory of Open Access Journals (Sweden)
Maria Skublewska-Paszkowska
2016-09-01
Full Text Available Modern technologies, such as motion capture systems (both optical and markerless, are more and more frequently used for athlete performance analysis due to their great precision. Optical systems based on the retro-reflective markers allow for tracking motion of multiple objects of various types. These systems compute human kinetic and kinematic parameters based on biomechanical models. Tracking additional objects like a tennis racket is also a very important aspect for analysing the player’s technique and precision. The motion data gathered by motion capture systems may be used for analysing various aspects that may not be recognised by the human eye or a video camera. This paper presents algorithms for analysis of a tennis racket motion during two of the most important tennis strokes: forehand and backhand. An optical Vicon system was used for obtaining the motion data which was the input for the algorithms. They indicate: the velocity of a tennis racket’s head and the racket’s handle based on the trajectories of attached markers as well as the racket’s orientation. The algorithms were implemented and tested on the data obtained from a professional trainer who participated in the research and performed a series of ten strikes, separately for: 1 forehand without a ball, 2 backhand without a ball, 3 forehand with a ball and 4 backhand with a ball. The computed parameters are gathered in tables and visualised in a graph.
Inverse halftoning algorithm using edge-based lookup table approach.
Chung, Kuo-Liang; Wu, Shih-Tung
2005-10-01
The inverse halftoning algorithm is used to reconstruct a gray image from an input halftone image. Based on the recently published lookup table (LUT) technique, this paper presents a novel edge-based LUT method for inverse halftoning which improves the quality of the reconstructed gray image. The proposed method first uses the LUT-based inverse halftoning method as a preprocessing step to transform the given halftone image to a base gray image, and then the edges are extracted and classified from the base gray image. According to these classified edges, a novel edge-based LUT is built up to reconstruct the gray image. Based on a set of 30 real training images with both low-and high-frequency contents, experimental results demonstrated that the proposed method achieves a better image quality when compared to the currently published two methods, by Chang et al. and Meşe and Vaidyanathan.
Brain-Based Learning and Standards-Based Elementary Science.
Konecki, Loretta R.; Schiller, Ellen
This paper explains how brain-based learning has become an area of interest to elementary school science teachers, focusing on the possible relationships between, and implications of, research on brain-based learning to the teaching of science education standards. After describing research on the brain, the paper looks at three implications from…
Liu, Dong-sheng; Fan, Shu-jiang
2014-01-01
In order to offer mobile customers better service, we should classify the mobile user firstly. Aimed at the limitations of previous classification methods, this paper puts forward a modified decision tree algorithm for mobile user classification, which introduced genetic algorithm to optimize the results of the decision tree algorithm. We also take the context information as a classification attributes for the mobile user and we classify the context into public context and private context classes. Then we analyze the processes and operators of the algorithm. At last, we make an experiment on the mobile user with the algorithm, we can classify the mobile user into Basic service user, E-service user, Plus service user, and Total service user classes and we can also get some rules about the mobile user. Compared to C4.5 decision tree algorithm and SVM algorithm, the algorithm we proposed in this paper has higher accuracy and more simplicity.
CSIR Research Space (South Africa)
Mlambo, CS
2015-01-01
Full Text Available In this paper, implementations of three Hough Transform based fingerprint alignment algorithms are analyzed with respect to time complexity on Java Card environment. Three algorithms are: Local Match Based Approach (LMBA), Discretized Rotation Based...
A Location-Based Business Information Recommendation Algorithm
Directory of Open Access Journals (Sweden)
Shudong Liu
2015-01-01
Full Text Available Recently, many researches on information (e.g., POI, ADs recommendation based on location have been done in both research and industry. In this paper, we firstly construct a region-based location graph (RLG, in which region node respectively connects with user node and business information node, and then we propose a location-based recommendation algorithm based on RLG, which can combine with user short-ranged mobility formed by daily activity and long-distance mobility formed by social network ties and sequentially can recommend local business information and long-distance business information to users. Moreover, it can combine user-based collaborative filtering with item-based collaborative filtering, and it can alleviate cold start problem which traditional recommender systems often suffer from. Empirical studies from large-scale real-world data from Yelp demonstrate that our method outperforms other methods on the aspect of recommendation accuracy.
Fan, Desheng; Meng, Xiangfeng; Wang, Yurong; Yang, Xiulun; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi
2013-08-10
An optical identity authentication scheme based on the elliptic curve digital signature algorithm (ECDSA) and phase retrieval algorithm (PRA) is proposed. In this scheme, a user's certification image and the quick response code of the user identity's keyed-hash message authentication code (HMAC) with added noise, serving as the amplitude and phase restriction, respectively, are digitally encoded into two phase keys using a PRA in the Fresnel domain. During the authentication process, when the two phase keys are presented to the system and illuminated by a plane wave of correct wavelength, an output image is generated in the output plane. By identifying whether there is a match between the amplitude of the output image and all the certification images pre-stored in the database, the system can thus accomplish a first-level verification. After the confirmation of first-level verification, the ECDSA signature is decoded from the phase part of the output image and verified to allege whether the user's identity is legal or not. Moreover, the introduction of HMAC makes it almost impossible to forge the signature and hence the phase keys thanks to the HMAC's irreversible property. Theoretical analysis and numerical simulations both validate the feasibility of our proposed scheme.
Saliency detection algorithm based on LSC-RC
Wu, Wei; Tian, Weiye; Wang, Ding; Luo, Xin; Wu, Yingfei; Zhang, Yu
2018-02-01
Image prominence is the most important region in an image, which can cause the visual attention and response of human beings. Preferentially allocating the computer resources for the image analysis and synthesis by the significant region is of great significance to improve the image area detecting. As a preprocessing of other disciplines in image processing field, the image prominence has widely applications in image retrieval and image segmentation. Among these applications, the super-pixel segmentation significance detection algorithm based on linear spectral clustering (LSC) has achieved good results. The significance detection algorithm proposed in this paper is better than the regional contrast ratio by replacing the method of regional formation in the latter with the linear spectral clustering image is super-pixel block. After combining with the latest depth learning method, the accuracy of the significant region detecting has a great promotion. At last, the superiority and feasibility of the super-pixel segmentation detection algorithm based on linear spectral clustering are proved by the comparative test.
A Radio-Map Automatic Construction Algorithm Based on Crowdsourcing
Yu, Ning; Xiao, Chenxian; Wu, Yinfeng; Feng, Renjian
2016-01-01
Traditional radio-map-based localization methods need to sample a large number of location fingerprints offline, which requires huge amount of human and material resources. To solve the high sampling cost problem, an automatic radio-map construction algorithm based on crowdsourcing is proposed. The algorithm employs the crowd-sourced information provided by a large number of users when they are walking in the buildings as the source of location fingerprint data. Through the variation characteristics of users’ smartphone sensors, the indoor anchors (doors) are identified and their locations are regarded as reference positions of the whole radio-map. The AP-Cluster method is used to cluster the crowdsourced fingerprints to acquire the representative fingerprints. According to the reference positions and the similarity between fingerprints, the representative fingerprints are linked to their corresponding physical locations and the radio-map is generated. Experimental results demonstrate that the proposed algorithm reduces the cost of fingerprint sampling and radio-map construction and guarantees the localization accuracy. The proposed method does not require users’ explicit participation, which effectively solves the resource-consumption problem when a location fingerprint database is established. PMID:27070623
Matched field localization based on CS-MUSIC algorithm
Guo, Shuangle; Tang, Ruichun; Peng, Linhui; Ji, Xiaopeng
2016-04-01
The problem caused by shortness or excessiveness of snapshots and by coherent sources in underwater acoustic positioning is considered. A matched field localization algorithm based on CS-MUSIC (Compressive Sensing Multiple Signal Classification) is proposed based on the sparse mathematical model of the underwater positioning. The signal matrix is calculated through the SVD (Singular Value Decomposition) of the observation matrix. The observation matrix in the sparse mathematical model is replaced by the signal matrix, and a new concise sparse mathematical model is obtained, which means not only the scale of the localization problem but also the noise level is reduced; then the new sparse mathematical model is solved by the CS-MUSIC algorithm which is a combination of CS (Compressive Sensing) method and MUSIC (Multiple Signal Classification) method. The algorithm proposed in this paper can overcome effectively the difficulties caused by correlated sources and shortness of snapshots, and it can also reduce the time complexity and noise level of the localization problem by using the SVD of the observation matrix when the number of snapshots is large, which will be proved in this paper.
Creating Very True Quantum Algorithms for Quantum Energy Based Computing
Nagata, Koji; Nakamura, Tadao; Geurdes, Han; Batle, Josep; Abdalla, Soliman; Farouk, Ahmed; Diep, Do Ngoc
2018-04-01
An interpretation of quantum mechanics is discussed. It is assumed that quantum is energy. An algorithm by means of the energy interpretation is discussed. An algorithm, based on the energy interpretation, for fast determining a homogeneous linear function f( x) := s. x = s 1 x 1 + s 2 x 2 + ⋯ + s N x N is proposed. Here x = ( x 1, … , x N ), x j ∈ R and the coefficients s = ( s 1, … , s N ), s j ∈ N. Given the interpolation values (f(1), f(2),...,f(N))=ěc {y}, the unknown coefficients s = (s1(ěc {y}),\\dots , sN(ěc {y})) of the linear function shall be determined, simultaneously. The speed of determining the values is shown to outperform the classical case by a factor of N. Our method is based on the generalized Bernstein-Vazirani algorithm to qudit systems. Next, by using M parallel quantum systems, M homogeneous linear functions are determined, simultaneously. The speed of obtaining the set of M homogeneous linear functions is shown to outperform the classical case by a factor of N × M.
FPGA-Based Implementation of Lithuanian Isolated Word Recognition Algorithm
Directory of Open Access Journals (Sweden)
Tomyslav Sledevič
2013-05-01
Full Text Available The paper describes the FPGA-based implementation of Lithuanian isolated word recognition algorithm. FPGA is selected for parallel process implementation using VHDL to ensure fast signal processing at low rate clock signal. Cepstrum analysis was applied to features extraction in voice. The dynamic time warping algorithm was used to compare the vectors of cepstrum coefficients. A library of 100 words features was created and stored in the internal FPGA BRAM memory. Experimental testing with speaker dependent records demonstrated the recognition rate of 94%. The recognition rate of 58% was achieved for speaker-independent records. Calculation of cepstrum coefficients lasted for 8.52 ms at 50 MHz clock, while 100 DTWs took 66.56 ms at 25 MHz clock.Article in Lithuanian
Vision-Based Object Tracking Algorithm With AR. Drone
Directory of Open Access Journals (Sweden)
It Nun Thiang
2015-08-01
Full Text Available This paper presents a simple and effective vision-based algorithm for autonomous object tracking of a low-cost AR.Drone quadrotor for moving ground and flying targets. The Open-CV is used for computer vision to estimate the position of the object considering the environmental lighting effect. This is also an off-board control as the visual tracking and control process are performed in the laptop with the help of Wi-Fi link. The information obtained from vision algorithm is used to control roll angle and pitch angle of the drone in the case using bottom camera and to control yaw angle and altitude of the drone when the front camera is used as vision sensor. The experimental results from real tests are presented.
Image Retrieval Algorithm Based on Discrete Fractional Transforms
Jindal, Neeru; Singh, Kulbir
2013-06-01
The discrete fractional transforms is a signal processing tool which suggests computational algorithms and solutions to various sophisticated applications. In this paper, a new technique to retrieve the encrypted and scrambled image based on discrete fractional transforms has been proposed. Two-dimensional image was encrypted using discrete fractional transforms with three fractional orders and two random phase masks placed in the two intermediate planes. The significant feature of discrete fractional transforms benefits from its extra degree of freedom that is provided by its fractional orders. Security strength was enhanced (1024!)4 times by scrambling the encrypted image. In decryption process, image retrieval is sensitive for both correct fractional order keys and scrambling algorithm. The proposed approach make the brute force attack infeasible. Mean square error and relative error are the recital parameters to verify validity of proposed method.
An approach of traffic signal control based on NLRSQP algorithm
Zou, Yuan-Yang; Hu, Yu
2017-11-01
This paper presents a linear program model with linear complementarity constraints (LPLCC) to solve traffic signal optimization problem. The objective function of the model is to obtain the minimization of total queue length with weight factors at the end of each cycle. Then, a combination algorithm based on the nonlinear least regression and sequence quadratic program (NLRSQP) is proposed, by which the local optimal solution can be obtained. Furthermore, four numerical experiments are proposed to study how to set the initial solution of the algorithm that can get a better local optimal solution more quickly. In particular, the results of numerical experiments show that: The model is effective for different arrival rates and weight factors; and the lower bound of the initial solution is, the better optimal solution can be obtained.
Multirobot FastSLAM Algorithm Based on Landmark Consistency Correction
Directory of Open Access Journals (Sweden)
Shi-Ming Chen
2014-01-01
Full Text Available Considering the influence of uncertain map information on multirobot SLAM problem, a multirobot FastSLAM algorithm based on landmark consistency correction is proposed. Firstly, electromagnetism-like mechanism is introduced to the resampling procedure in single-robot FastSLAM, where we assume that each sampling particle is looked at as a charged electron and attraction-repulsion mechanism in electromagnetism field is used to simulate interactive force between the particles to improve the distribution of particles. Secondly, when multiple robots observe the same landmarks, every robot is regarded as one node and Kalman-Consensus Filter is proposed to update landmark information, which further improves the accuracy of localization and mapping. Finally, the simulation results show that the algorithm is suitable and effective.
An OFDMA resource allocation algorithm based on coalitional games
Directory of Open Access Journals (Sweden)
Bacci Giacomo
2011-01-01
Full Text Available Abstract This work investigates a fair adaptive resource management criterion (in terms of transmit powers and subchannel assignment for the uplink of an orthogonal frequency-division multiple access network, populated by mobile users with constraints in terms of target data rates. The inherent optimization problem is tackled with the analytical tools of coalitional game theory, and a practical algorithm based on Markov modeling is introduced. The proposed scheme allows the mobile devices to fulfill their rate demands exactly with a minimum utilization of network resources. Simulation results show that the average number of operations of the proposed iterative algorithm are much lower than K · N, where N and K are the number of allocated subcarriers and of mobile terminals.
Genetic algorithm based reactive power dispatch for voltage stability improvement
Energy Technology Data Exchange (ETDEWEB)
Devaraj, D. [Department of Electrical and Electronics, Kalasalingam University, Krishnankoil 626 190 (India); Roselyn, J. Preetha [Department of Electrical and Electronics, SRM University, Kattankulathur 603 203, Chennai (India)
2010-12-15
Voltage stability assessment and control form the core function in a modern energy control centre. This paper presents an improved Genetic algorithm (GA) approach for voltage stability enhancement. The proposed technique is based on the minimization of the maximum of L-indices of load buses. Generator voltages, switchable VAR sources and transformer tap changers are used as optimization variables of this problem. The proposed approach permits the optimization variables to be represented in their natural form in the genetic population. For effective genetic processing, the crossover and mutation operators which can directly deal with the floating point numbers and integers are used. The proposed algorithm has been tested on IEEE 30-bus and IEEE 57-bus test systems and successful results have been obtained. (author)
Machine learning based global particle indentification algorithms at LHCb experiment
Derkach, Denis; Likhomanenko, Tatiana; Rogozhnikov, Aleksei; Ratnikov, Fedor
2017-01-01
One of the most important aspects of data processing at LHC experiments is the particle identification (PID) algorithm. In LHCb, several different sub-detector systems provide PID information: the Ring Imaging CHerenkov (RICH) detector, the hadronic and electromagnetic calorimeters, and the muon chambers. To improve charged particle identification, several neural networks including a deep architecture and gradient boosting have been applied to data. These new approaches provide higher identification efficiencies than existing implementations for all charged particle types. It is also necessary to achieve a flat dependency between efficiencies and spectator variables such as particle momentum, in order to reduce systematic uncertainties during later stages of data analysis. For this purpose, "flat” algorithms that guarantee the flatness property for efficiencies have also been developed. This talk presents this new approach based on machine learning and its performance.
Missile placement analysis based on improved SURF feature matching algorithm
Yang, Kaida; Zhao, Wenjie; Li, Dejun; Gong, Xiran; Sheng, Qian
2015-03-01
The precious battle damage assessment by use of video images to analysis missile placement is a new study area. The article proposed an improved speeded up robust features algorithm named restricted speeded up robust features, which combined the combat application of TV-command-guided missiles and the characteristics of video image. Its restrictions mainly reflected in two aspects, one is to restrict extraction area of feature point; the second is to restrict the number of feature points. The process of missile placement analysis based on video image was designed and a video splicing process and random sample consensus purification were achieved. The RSURF algorithm is proved that has good realtime performance on the basis of guarantee the accuracy.
Lu, Chunhong; Zhu, Zhaomin; Gu, Xiaofeng
2014-09-01
In this paper, we develop a novel feature selection algorithm based on the genetic algorithm (GA) using a specifically devised trace-based separability criterion. According to the scores of class separability and variable separability, this criterion measures the significance of feature subset, independent of any specific classification. In addition, a mutual information matrix between variables is used as features for classification, and no prior knowledge about the cardinality of feature subset is required. Experiments are performed by using a standard lung cancer dataset. The obtained solutions are verified with three different classifiers, including the support vector machine (SVM), the back-propagation neural network (BPNN), and the K-nearest neighbor (KNN), and compared with those obtained by the whole feature set, the F-score and the correlation-based feature selection methods. The comparison results show that the proposed intelligent system has a good diagnosis performance and can be used as a promising tool for lung cancer diagnosis.
An Incremental Support Vector Machine based Speech Activity Detection Algorithm.
Xianbo, Xiao; Guangshu, Hu
2005-01-01
Traditional voice activity detection algorithms are mostly threshold-based or statistical model-based. All those methods are absent of the ability to react quickly to variations of environments. This paper describes an incremental SVM (Support Vector Machine) method for speech activity detection. The proposed incremental procedure makes it adaptive to variation of environments and the special construction of incremental training data set decreases computing consumption effectively. Experiments results demonstrated its higher end point detection accuracy. Further work will be focused on decreasing computing consumption and importing multi-class SVM classifiers.
Fitchi: haplotype genealogy graphs based on the Fitch algorithm.
Matschiner, Michael
2016-04-15
: In population genetics and phylogeography, haplotype genealogy graphs are important tools for the visualization of population structure based on sequence data. In this type of graph, node sizes are often drawn in proportion to haplotype frequencies and edge lengths represent the minimum number of mutations separating adjacent nodes. I here present Fitchi, a new program that produces publication-ready haplotype genealogy graphs based on the Fitch algorithm. http://www.evoinformatics.eu/fitchi.htm : michaelmatschiner@mac.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Research of Video Steganalysis Algorithm Based on H265 Protocol
Directory of Open Access Journals (Sweden)
Wu Kaicheng
2015-01-01
This paper researches LSB matching VSA based on H265 protocol with the research background of 26 original Video sequences, it firstly extracts classification features out from training samples as input of SVM, and trains in SVM to obtain high-quality category classification model, and then tests whether there is suspicious information in the video sample. The experimental results show that VSA algorithm based on LSB matching can be more practical to obtain all frame embedded secret information and carrier and video of local frame embedded. In addition, VSA adopts the method of frame by frame with a strong robustness in resisting attack in the corresponding time domain.
A New Modified Firefly Algorithm
Directory of Open Access Journals (Sweden)
Medha Gupta
2016-07-01
Full Text Available Nature inspired meta-heuristic algorithms studies the emergent collective intelligence of groups of simple agents. Firefly Algorithm is one of the new such swarm-based metaheuristic algorithm inspired by the flashing behavior of fireflies. The algorithm was first proposed in 2008 and since then has been successfully used for solving various optimization problems. In this work, we intend to propose a new modified version of Firefly algorithm (MoFA and later its performance is compared with the standard firefly algorithm along with various other meta-heuristic algorithms. Numerical studies and results demonstrate that the proposed algorithm is superior to existing algorithms.
Watterson, Peter A
Improvement in real-time electrocardiogram (ECG) interpretation is still needed, especially for QT estimation. This paper proposes a fast algorithm for ECG feature recognition, based on locating turning points in the waveform gradient. The algorithm places the fiducial point at the maximal value of a probabilistic decision function, assessing line intervals of best fit before and after the point and the point location relative to R-wave peaks already found. Fiducial points were successfully located for the 30 heartbeats annotated by a cardiologist of all 10 normal sinus rhythm records from the PhysioNet QT Database. For a given subject, the algorithm's QT estimation had superior repeatability, with intrasubject QT standard deviation just 5.42ms, 60% lower than the cardiologist's 13.57ms. Initial tests suggest immunity to noise of standard deviation up to about 9% of the signal, depending on noise type. The proposed algorithm is fast to calculate and noise-tolerant, and has shown improved repeatability in its QT estimation compared to a cardiologist. Copyright © 2017 Elsevier Inc. All rights reserved.
Vision Based Autonomous Robot Navigation Algorithms and Implementations
Chatterjee, Amitava; Nirmal Singh, N
2013-01-01
This book is devoted to the theory and development of autonomous navigation of mobile robots using computer vision based sensing mechanism. The conventional robot navigation systems, utilizing traditional sensors like ultrasonic, IR, GPS, laser sensors etc., suffer several drawbacks related to either the physical limitations of the sensor or incur high cost. Vision sensing has emerged as a popular alternative where cameras can be used to reduce the overall cost, maintaining high degree of intelligence, flexibility and robustness. This book includes a detailed description of several new approaches for real life vision based autonomous navigation algorithms and SLAM. It presents the concept of how subgoal based goal-driven navigation can be carried out using vision sensing. The development concept of vision based robots for path/line tracking using fuzzy logic is presented, as well as how a low-cost robot can be indigenously developed in the laboratory with microcontroller based sensor systems. The book descri...
Design of intelligent locks based on the triple KeeLoq algorithm
Directory of Open Access Journals (Sweden)
Huibin Chen
2016-04-01
Full Text Available KeeLoq algorithm with high security was usually used in wireless codec. Its security lack is indicated in this article according to the detailed rationale and the introduction of previous attack researches. Taking examples from Triple Data Encryption Standard algorithm, the triple KeeLoq codec algorithm was first proposed. Experimental results showed that the algorithm would not reduce powerful rolling effect and in consideration of limited computing power of embedded microcontroller three 64-bit keys were suitable to increase the crack difficulties and further improved its security. The method was applied to intelligent door access system for experimental verification. 16F690 extended Bluetooth or WiFi interface was employed to design the lock system on door. Key application was constructed on Android platform. The wireless communication between the lock on door and Android key application employed triple KeeLoq algorithm to ensure the higher security. Due to flexibility and multiformity (an Android key application with various keys of software-based keys, the solution owned overwhelmed advantages of low cost, high security, humanity, and green environmental protection.
Analysis of image content recognition algorithm based on sparse coding and machine learning
Xiao, Yu
2017-03-01
This paper presents an image classification algorithm based on spatial sparse coding model and random forest. Firstly, SIFT feature extraction of the image; and then use the sparse encoding theory to generate visual vocabulary based on SIFT features, and using the visual vocabulary of SIFT features into a sparse vector; through the combination of regional integration and spatial sparse vector, the sparse vector gets a fixed dimension is used to represent the image; at last random forest classifier for image sparse vectors for training and testing, using the experimental data set for standard test Caltech-101 and Scene-15. The experimental results show that the proposed algorithm can effectively represent the features of the image and improve the classification accuracy. In this paper, we propose an innovative image recognition algorithm based on image segmentation, sparse coding and multi instance learning. This algorithm introduces the concept of multi instance learning, the image as a multi instance bag, sparse feature transformation by SIFT images as instances, sparse encoding model generation visual vocabulary as the feature space is mapped to the feature space through the statistics on the number of instances in bags, and then use the 1-norm SVM to classify images and generate sample weights to select important image features.
Evaluation of GMI and PMI diffeomorphic‐based demons algorithms for aligning PET and CT Images
Yang, Juan; Zhang, You; Yin, Yong
2015-01-01
Fusion of anatomic information in computed tomography (CT) and functional information in F18‐FDG positron emission tomography (PET) is crucial for accurate differentiation of tumor from benign masses, designing radiotherapy treatment plan and staging of cancer. Although current PET and CT images can be acquired from combined F18‐FDG PET/CT scanner, the two acquisitions are scanned separately and take a long time, which may induce potential positional errors in global and local caused by respiratory motion or organ peristalsis. So registration (alignment) of whole‐body PET and CT images is a prerequisite for their meaningful fusion. The purpose of this study was to assess the performance of two multimodal registration algorithms for aligning PET and CT images. The proposed gradient of mutual information (GMI)‐based demons algorithm, which incorporated the GMI between two images as an external force to facilitate the alignment, was compared with the point‐wise mutual information (PMI) diffeomorphic‐based demons algorithm whose external force was modified by replacing the image intensity difference in diffeomorphic demons algorithm with the PMI to make it appropriate for multimodal image registration. Eight patients with esophageal cancer(s) were enrolled in this IRB‐approved study. Whole‐body PET and CT images were acquired from a combined F18‐FDG PET/CT scanner for each patient. The modified Hausdorff distance (dMH) was used to evaluate the registration accuracy of the two algorithms. Of all patients, the mean values and standard deviations (SDs) of dMH were 6.65 (± 1.90) voxels and 6.01 (± 1.90) after the GMI‐based demons and the PMI diffeomorphic‐based demons registration algorithms respectively. Preliminary results on oncological patients showed that the respiratory motion and organ peristalsis in PET/CT esophageal images could not be neglected, although a combined F18‐FDG PET/CT scanner was used for image acquisition. The PMI
Evaluation of GMI and PMI diffeomorphic-based demons algorithms for aligning PET and CT Images.
Yang, Juan; Wang, Hongjun; Zhang, You; Yin, Yong
2015-07-08
Fusion of anatomic information in computed tomography (CT) and functional information in 18F-FDG positron emission tomography (PET) is crucial for accurate differentiation of tumor from benign masses, designing radiotherapy treatment plan and staging of cancer. Although current PET and CT images can be acquired from combined 18F-FDG PET/CT scanner, the two acquisitions are scanned separately and take a long time, which may induce potential positional errors in global and local caused by respiratory motion or organ peristalsis. So registration (alignment) of whole-body PET and CT images is a prerequisite for their meaningful fusion. The purpose of this study was to assess the performance of two multimodal registration algorithms for aligning PET and CT images. The proposed gradient of mutual information (GMI)-based demons algorithm, which incorporated the GMI between two images as an external force to facilitate the alignment, was compared with the point-wise mutual information (PMI) diffeomorphic-based demons algorithm whose external force was modified by replacing the image intensity difference in diffeomorphic demons algorithm with the PMI to make it appropriate for multimodal image registration. Eight patients with esophageal cancer(s) were enrolled in this IRB-approved study. Whole-body PET and CT images were acquired from a combined 18F-FDG PET/CT scanner for each patient. The modified Hausdorff distance (d(MH)) was used to evaluate the registration accuracy of the two algorithms. Of all patients, the mean values and standard deviations (SDs) of d(MH) were 6.65 (± 1.90) voxels and 6.01 (± 1.90) after the GMI-based demons and the PMI diffeomorphic-based demons registration algorithms respectively. Preliminary results on oncological patients showed that the respiratory motion and organ peristalsis in PET/CT esophageal images could not be neglected, although a combined 18F-FDG PET/CT scanner was used for image acquisition. The PMI diffeomorphic-based demons
An Improved Dynamic Joint Resource Allocation Algorithm Based on SFR
Directory of Open Access Journals (Sweden)
Yibing Li
2016-04-01
Full Text Available Inter-cell interference (ICI is the main factor affecting system capacity and spectral efficiency. Effective spectrum resource management is an important and challenging issue for the design of wireless communication systems. The soft frequency reuse (SFR is regarded as an interesting approach to significantly eliminate ICI. However, the allocation of resource is fixed prior to system deployment in static SFR. To overcome this drawback, this paper adopts a distributed method and proposes an improved dynamic joint resource allocation algorithm (DJRA. The improved scheme adaptively adjusts resource allocation based on the real-time user distribution. DJRA first detects the edge-user distribution vector to determine the optimal scheme, which guarantees that all the users have available resources and the number of iterations is reduced. Then, the DJRA maximizes the throughput for each cell via optimizing resource and power allocation. Due to further eliminate interference, the sector partition method is used in the center region and in view of fairness among users, the novel approach adds the proportional fair algorithm at the end of DJRA. Simulation results show that the proposed algorithm outperforms previous approaches for improving the system capacity and cell edge user performance.
Feature extraction algorithm for space targets based on fractal theory
Tian, Balin; Yuan, Jianping; Yue, Xiaokui; Ning, Xin
2007-11-01
In order to offer a potential for extending the life of satellites and reducing the launch and operating costs, satellite servicing including conducting repairs, upgrading and refueling spacecraft on-orbit become much more frequently. Future space operations can be more economically and reliably executed using machine vision systems, which can meet real time and tracking reliability requirements for image tracking of space surveillance system. Machine vision was applied to the research of relative pose for spacecrafts, the feature extraction algorithm was the basis of relative pose. In this paper fractal geometry based edge extraction algorithm which can be used in determining and tracking the relative pose of an observed satellite during proximity operations in machine vision system was presented. The method gets the gray-level image distributed by fractal dimension used the Differential Box-Counting (DBC) approach of the fractal theory to restrain the noise. After this, we detect the consecutive edge using Mathematical Morphology. The validity of the proposed method is examined by processing and analyzing images of space targets. The edge extraction method not only extracts the outline of the target, but also keeps the inner details. Meanwhile, edge extraction is only processed in moving area to reduce computation greatly. Simulation results compared edge detection using the method which presented by us with other detection methods. The results indicate that the presented algorithm is a valid method to solve the problems of relative pose for spacecrafts.
Factorization algorithm based on the periodicity measurement of a CTES
International Nuclear Information System (INIS)
Tamma, Vincenzo; Zhang Heyi; He Xuehua; Yanhua Shih; Garuccio, Augusto
2010-01-01
We introduce a new factorization algorithm based on the measurement of the periodicity of a determined function, similar to Shor's algorithm. In particular, such a function is given by a generalized continuous truncated exponential sum (CTES). The CTES interference pattern satisfies a remarkable scaling property, which allows one to plot the interferogram as a function of a suitable continuous variable depending on the number to factorize. This allows one, in principle, to factorize arbitrary numbers with a single interferogram. In particular, information about the factors is encoded in the location of the interference maxima, which repeat periodically in the interferogram. A possible analogue computer for the implementation of such an algorithm can be realized using multi-path optical interferometers, with polychromatic light sources and a high-resolution spectrometer. The experimental accuracy in the realization of the CTES interferogram and the bandwidth of the polychromatic sources determine the largest number N max factorable. Once the CTES interferogram is recorded, all the numbers with value up to N max can be factorable, without performing any further measurement.
Ship Block Transportation Scheduling Problem Based on Greedy Algorithm
Directory of Open Access Journals (Sweden)
Chong Wang
2016-05-01
Full Text Available Ship block transportation problems are crucial issues to address in reducing the construction cost and improving the productivity of shipyards. Shipyards aim to maximize the workload balance of transporters with time constraint such that all blocks should be transported during the planning horizon. This process leads to three types of penalty time: empty transporter travel time, delay time, and tardy time. This study aims to minimize the sum of the penalty time. First, this study presents the problem of ship block transportation with the generalization of the block transportation restriction on the multi-type transporter. Second, the problem is transformed into the classical traveling salesman problem and assignment problem through a reasonable model simplification and by adding a virtual node to the proposed directed graph. Then, a heuristic algorithm based on greedy algorithm is proposed to assign blocks to available transporters and sequencing blocks for each transporter simultaneously. Finally, the numerical experiment method is used to validate the model, and its result shows that the proposed algorithm is effective in realizing the efficient use of the transporters in shipyards. Numerical simulation results demonstrate the promising application of the proposed method to efficiently improve the utilization of transporters and to reduce the cost of ship block logistics for shipyards.
A Gaussian Process Based Online Change Detection Algorithm for Monitoring Periodic Time Series
Energy Technology Data Exchange (ETDEWEB)
Chandola, Varun [ORNL; Vatsavai, Raju [ORNL
2011-01-01
Online time series change detection is a critical component of many monitoring systems, such as space and air-borne remote sensing instruments, cardiac monitors, and network traffic profilers, which continuously analyze observations recorded by sensors. Data collected by such sensors typically has a periodic (seasonal) component. Most existing time series change detection methods are not directly applicable to handle such data, either because they are not designed to handle periodic time series or because they cannot operate in an online mode. We propose an online change detection algorithm which can handle periodic time series. The algorithm uses a Gaussian process based non-parametric time series prediction model and monitors the difference between the predictions and actual observations within a statistically principled control chart framework to identify changes. A key challenge in using Gaussian process in an online mode is the need to solve a large system of equations involving the associated covariance matrix which grows with every time step. The proposed algorithm exploits the special structure of the covariance matrix and can analyze a time series of length T in O(T^2) time while maintaining a O(T) memory footprint, compared to O(T^4) time and O(T^2) memory requirement of standard matrix manipulation methods. We experimentally demonstrate the superiority of the proposed algorithm over several existing time series change detection algorithms on a set of synthetic and real time series. Finally, we illustrate the effectiveness of the proposed algorithm for identifying land use land cover changes using Normalized Difference Vegetation Index (NDVI) data collected for an agricultural region in Iowa state, USA. Our algorithm is able to detect different types of changes in a NDVI validation data set (with ~80% accuracy) which occur due to crop type changes as well as disruptive changes (e.g., natural disasters).
Buddala, Raviteja; Mahapatra, Siba Sankar
2017-11-01
Flexible flow shop (or a hybrid flow shop) scheduling problem is an extension of classical flow shop scheduling problem. In a simple flow shop configuration, a job having `g' operations is performed on `g' operation centres (stages) with each stage having only one machine. If any stage contains more than one machine for providing alternate processing facility, then the problem becomes a flexible flow shop problem (FFSP). FFSP which contains all the complexities involved in a simple flow shop and parallel machine scheduling problems is a well-known NP-hard (Non-deterministic polynomial time) problem. Owing to high computational complexity involved in solving these problems, it is not always possible to obtain an optimal solution in a reasonable computation time. To obtain near-optimal solutions in a reasonable computation time, a large variety of meta-heuristics have been proposed in the past. However, tuning algorithm-specific parameters for solving FFSP is rather tricky and time consuming. To address this limitation, teaching-learning-based optimization (TLBO) and JAYA algorithm are chosen for the study because these are not only recent meta-heuristics but they do not require tuning of algorithm-specific parameters. Although these algorithms seem to be elegant, they lose solution diversity after few iterations and get trapped at the local optima. To alleviate such drawback, a new local search procedure is proposed in this paper to improve the solution quality. Further, mutation strategy (inspired from genetic algorithm) is incorporated in the basic algorithm to maintain solution diversity in the population. Computational experiments have been conducted on standard benchmark problems to calculate makespan and computational time. It is found that the rate of convergence of TLBO is superior to JAYA. From the results, it is found that TLBO and JAYA outperform many algorithms reported in the literature and can be treated as efficient methods for solving the FFSP.
Contrast Enhancement Algorithm Based on Gap Adjustment for Histogram Equalization
Directory of Open Access Journals (Sweden)
Chung-Cheng Chiu
2016-06-01
Full Text Available Image enhancement methods have been widely used to improve the visual effects of images. Owing to its simplicity and effectiveness histogram equalization (HE is one of the methods used for enhancing image contrast. However, HE may result in over-enhancement and feature loss problems that lead to unnatural look and loss of details in the processed images. Researchers have proposed various HE-based methods to solve the over-enhancement problem; however, they have largely ignored the feature loss problem. Therefore, a contrast enhancement algorithm based on gap adjustment for histogram equalization (CegaHE is proposed. It refers to a visual contrast enhancement algorithm based on histogram equalization (VCEA, which generates visually pleasing enhanced images, and improves the enhancement effects of VCEA. CegaHE adjusts the gaps between two gray values based on the adjustment equation, which takes the properties of human visual perception into consideration, to solve the over-enhancement problem. Besides, it also alleviates the feature loss problem and further enhances the textures in the dark regions of the images to improve the quality of the processed images for human visual perception. Experimental results demonstrate that CegaHE is a reliable method for contrast enhancement and that it significantly outperforms VCEA and other methods.
Contrast Enhancement Algorithm Based on Gap Adjustment for Histogram Equalization.
Chiu, Chung-Cheng; Ting, Chih-Chung
2016-06-22
Image enhancement methods have been widely used to improve the visual effects of images. Owing to its simplicity and effectiveness histogram equalization (HE) is one of the methods used for enhancing image contrast. However, HE may result in over-enhancement and feature loss problems that lead to unnatural look and loss of details in the processed images. Researchers have proposed various HE-based methods to solve the over-enhancement problem; however, they have largely ignored the feature loss problem. Therefore, a contrast enhancement algorithm based on gap adjustment for histogram equalization (CegaHE) is proposed. It refers to a visual contrast enhancement algorithm based on histogram equalization (VCEA), which generates visually pleasing enhanced images, and improves the enhancement effects of VCEA. CegaHE adjusts the gaps between two gray values based on the adjustment equation, which takes the properties of human visual perception into consideration, to solve the over-enhancement problem. Besides, it also alleviates the feature loss problem and further enhances the textures in the dark regions of the images to improve the quality of the processed images for human visual perception. Experimental results demonstrate that CegaHE is a reliable method for contrast enhancement and that it significantly outperforms VCEA and other methods.
Mehdipour Ataee, Shahin; Bayram, Zeki
2018-01-01
We identify significant weaknesses in the original Abstract State Machine (ASM) based choreography algorithm of Web Service Modeling Ontology (WSMO), which make it impractical for use in semantic web service choreography engines. We present an improved algorithm which rectifies the weaknesses of the original algorithm, as well as a practical, fully functional choreography engine implementation in Flora-2 based on the improved algorithm. Our improvements to the choreography algorithm include (...
Visual tracking method based on cuckoo search algorithm
Gao, Ming-Liang; Yin, Li-Ju; Zou, Guo-Feng; Li, Hai-Tao; Liu, Wei
2015-07-01
Cuckoo search (CS) is a new meta-heuristic optimization algorithm that is based on the obligate brood parasitic behavior of some cuckoo species in combination with the Lévy flight behavior of some birds and fruit flies. It has been found to be efficient in solving global optimization problems. An application of CS is presented to solve the visual tracking problem. The relationship between optimization and visual tracking is comparatively studied and the parameters' sensitivity and adjustment of CS in the tracking system are experimentally studied. To demonstrate the tracking ability of a CS-based tracker, a comparative study of tracking accuracy and speed of the CS-based tracker with six "state-of-art" trackers, namely, particle filter, meanshift, PSO, ensemble tracker, fragments tracker, and compressive tracker are presented. Comparative results show that the CS-based tracker outperforms the other trackers.
An Efficient Sleepy Algorithm for Particle-Based Fluids
Directory of Open Access Journals (Sweden)
Xiao Nie
2014-01-01
Full Text Available We present a novel Smoothed Particle Hydrodynamics (SPH based algorithm for efficiently simulating compressible and weakly compressible particle fluids. Prior particle-based methods simulate all fluid particles; however, in many cases some particles appearing to be at rest can be safely ignored without notably affecting the fluid flow behavior. To identify these particles, a novel sleepy strategy is introduced. By utilizing this strategy, only a portion of the fluid particles requires computational resources; thus an obvious performance gain can be achieved. In addition, in order to resolve unphysical clumping issue due to tensile instability in SPH based methods, a new artificial repulsive force is provided. We demonstrate that our approach can be easily integrated with existing SPH based methods to improve the efficiency without sacrificing visual quality.
Directory of Open Access Journals (Sweden)
Jiangyi Qin
Full Text Available A novel blind recognition algorithm of frame synchronization words is proposed to recognize the frame synchronization words parameters in digital communication systems. In this paper, a blind recognition method of frame synchronization words based on the hard-decision is deduced in detail. And the standards of parameter recognition are given. Comparing with the blind recognition based on the hard-decision, utilizing the soft-decision can improve the accuracy of blind recognition. Therefore, combining with the characteristics of Quadrature Phase Shift Keying (QPSK signal, an improved blind recognition algorithm based on the soft-decision is proposed. Meanwhile, the improved algorithm can be extended to other signal modulation forms. Then, the complete blind recognition steps of the hard-decision algorithm and the soft-decision algorithm are given in detail. Finally, the simulation results show that both the hard-decision algorithm and the soft-decision algorithm can recognize the parameters of frame synchronization words blindly. What's more, the improved algorithm can enhance the accuracy of blind recognition obviously.
Research on Palmprint Identification Method Based on Quantum Algorithms
Directory of Open Access Journals (Sweden)
Hui Li
2014-01-01
Full Text Available Quantum image recognition is a technology by using quantum algorithm to process the image information. It can obtain better effect than classical algorithm. In this paper, four different quantum algorithms are used in the three stages of palmprint recognition. First, quantum adaptive median filtering algorithm is presented in palmprint filtering processing. Quantum filtering algorithm can get a better filtering result than classical algorithm through the comparison. Next, quantum Fourier transform (QFT is used to extract pattern features by only one operation due to quantum parallelism. The proposed algorithm exhibits an exponential speed-up compared with discrete Fourier transform in the feature extraction. Finally, quantum set operations and Grover algorithm are used in palmprint matching. According to the experimental results, quantum algorithm only needs to apply square of N operations to find out the target palmprint, but the traditional method needs N times of calculation. At the same time, the matching accuracy of quantum algorithm is almost 100%.
An Adaptive Filtering Algorithm Based on Genetic Algorithm-Backpropagation Network
Directory of Open Access Journals (Sweden)
Kai Hu
2013-01-01
Full Text Available A new image filtering algorithm is proposed. GA-BPN algorithm uses genetic algorithm (GA to decide weights in a back propagation neural network (BPN. It has better global optimal characteristics than traditional optimal algorithm. In this paper, we used GA-BPN to do image noise filter researching work. Firstly, this paper uses training samples to train GA-BPN as the noise detector. Then, we utilize the well-trained GA-BPN to recognize noise pixels in target image. And at last, an adaptive weighted average algorithm is used to recover noise pixels recognized by GA-BPN. Experiment data shows that this algorithm has better performance than other filters.
A Coupled User Clustering Algorithm Based on Mixed Data for Web-Based Learning Systems
Directory of Open Access Journals (Sweden)
Ke Niu
2015-01-01
Full Text Available In traditional Web-based learning systems, due to insufficient learning behaviors analysis and personalized study guides, a few user clustering algorithms are introduced. While analyzing the behaviors with these algorithms, researchers generally focus on continuous data but easily neglect discrete data, each of which is generated from online learning actions. Moreover, there are implicit coupled interactions among the data but are frequently ignored in the introduced algorithms. Therefore, a mass of significant information which can positively affect clustering accuracy is neglected. To solve the above issues, we proposed a coupled user clustering algorithm for Wed-based learning systems by taking into account both discrete and continuous data, as well as intracoupled and intercoupled interactions of the data. The experiment result in this paper demonstrates the outperformance of the proposed algorithm.
Directory of Open Access Journals (Sweden)
Wen-Xiang Wu
2014-01-01
Full Text Available The cost-based system optimum problem in networks with continuously distributed value of time is formulated as a path-based form, which cannot be solved by the Frank-Wolfe algorithm. In light of magnitude improvement in the availability of computer memory in recent years, path-based algorithms have been regarded as a viable approach for traffic assignment problems with reasonably large network sizes. We develop a path-based gradient projection algorithm for solving the cost-based system optimum model, based on Goldstein-Levitin-Polyak method which has been successfully applied to solve standard user equilibrium and system optimum problems. The Sioux Falls network tested is used to verify the effectiveness of the algorithm.
Calibration system of underwater robot sensor based on CID algorithm
Wang, Xiaolong; Wang, Sen; Gao, Lifu; Wu, Shan; Wei, Shuheng
2017-06-01
In the calibration of static characteristic of the sensor, the original measured data are usually a nonlinear distribution. Based on this situation, underwater robot sensor static calibration system is designed. The system consists of four parts: a sensor, I-V conversion with amplifying circuit, microcontroller STM32F107 and a PC. The lower computer and the upper computer communicate by USB. A kind of adaptive cyclic iterative denoising (CID) algorithm is presented for data processing. Finally the curve will be fitted with compensation processing.
International Nuclear Information System (INIS)
Kainberger, Franz; Pokieser, Peter; Imhof, Herwig; Czembirek, Heinrich; Fruehwald, Franz
2002-01-01
Guidelines can be regarded as special forms of algorithms and have been shown to be useful tools for supporting medical decision making. With the Council Directive 97/43/Euratom recommendations concerning referral criteria for medical exposure have to be implemented into national law of all EU member states. The time- and cost-consuming efforts of developing, implementing, and updating such guidelines are balanced by the acceptance in clinical practice and eventual better health outcomes. Clearly defined objectives with special attention drawn on national and regional differences among potential users, support from organisations with expertise in evidence-based medicine, separated development of the evidence component and the recommendations component, and large-scale strategies for distribution and implementation are necessary. Editors as well as users of guidelines for referral criteria have to be aware which expectations can be met and which cannot be fulfilled with this instrument; thus, dealing with guidelines requires a new form of ''diagnostic reasoning'' based on medical ethics. (orig.)
Earthquake forecast models for Italy based on the RI algorithm
Directory of Open Access Journals (Sweden)
Kazuyoshi Z. Nanjo
2010-11-01
Full Text Available This study provides an overview of relative-intensity (RI-based earthquake forecast models that have been submitted for the 5-year and 10-year testing classes and the 3-month class of the Italian experiment within the Collaboratory for the Study of Earthquake Predictability (CSEP. The RI algorithm starts as a binary forecast system based on the working assumption that future large earthquakes are considered likely to occur at sites of higher seismic activity in the past. The measure of RI is the simply counting of the number of past earthquakes, which is known as the RI of seismicity. To improve the RI forecast performance, we first expand the RI algorithm to become part of a general class of smoothed seismicity models. We then convert the RI representation from a binary system into a testable CSEP model that forecasts the numbers of earthquakes for the predefined magnitudes. Our parameter tuning for the CSEP models is based on the past seismicity. The final submission is a set of two numerical data files that were created by tuned 5-year and 10-year models and an executable computer code of a tuned 3-month model, to examine which testing class is more meaningful in terms of the RI hypothesis. The main purpose of our participation is to better understand the importance (or lack of importance of RI of seismicity for earthquake forecastability.
Human emotion detector based on genetic algorithm using lip features
Brown, Terrence; Fetanat, Gholamreza; Homaifar, Abdollah; Tsou, Brian; Mendoza-Schrock, Olga
2010-04-01
We predicted human emotion using a Genetic Algorithm (GA) based lip feature extractor from facial images to classify all seven universal emotions of fear, happiness, dislike, surprise, anger, sadness and neutrality. First, we isolated the mouth from the input images using special methods, such as Region of Interest (ROI) acquisition, grayscaling, histogram equalization, filtering, and edge detection. Next, the GA determined the optimal or near optimal ellipse parameters that circumvent and separate the mouth into upper and lower lips. The two ellipses then went through fitness calculation and were followed by training using a database of Japanese women's faces expressing all seven emotions. Finally, our proposed algorithm was tested using a published database consisting of emotions from several persons. The final results were then presented in confusion matrices. Our results showed an accuracy that varies from 20% to 60% for each of the seven emotions. The errors were mainly due to inaccuracies in the classification, and also due to the different expressions in the given emotion database. Detailed analysis of these errors pointed to the limitation of detecting emotion based on the lip features alone. Similar work [1] has been done in the literature for emotion detection in only one person, we have successfully extended our GA based solution to include several subjects.
Directory of Open Access Journals (Sweden)
Raul Correal
2016-11-01
Full Text Available Stereo matching is a heavily researched area with a prolific published literature and a broad spectrum of heterogeneous algorithms available in diverse programming languages. This paper presents a Matlab-based testbed that aims to centralize and standardize this variety of both current and prospective stereo matching approaches. The proposed testbed aims to facilitate the application of stereo-based methods to real situations. It allows for configuring and executing algorithms, as well as comparing results, in a fast, easy and friendly setting. Algorithms can be combined so that a series of processes can be chained and executed consecutively, using the output of a process as input for the next; some additional filtering and image processing techniques have been included within the testbed for this purpose. A use case is included to illustrate how these processes are sequenced and its effect on the results for real applications. The testbed has been conceived as a collaborative and incremental open-source project, where its code is accessible and modifiable, with the objective of receiving contributions and releasing future versions to include new algorithms and features. It is currently available online for the research community.
Shen, Yan; Ge, Jin-ming; Zhang, Guo-qing; Yu, Wen-bin; Liu, Rui-tong; Fan, Wei; Yang, Ying-xuan
2018-01-01
This paper explores the problem of signal processing in optical current transformers (OCTs). Based on the noise characteristics of OCTs, such as overlapping signals, noise frequency bands, low signal-to-noise ratios, and difficulties in acquiring statistical features of noise power, an improved standard Kalman filtering algorithm was proposed for direct current (DC) signal processing. The state-space model of the OCT DC measurement system is first established, and then mixed noise can be processed by adding mixed noise into measurement and state parameters. According to the minimum mean squared error criterion, state predictions and update equations of the improved Kalman algorithm could be deduced based on the established model. An improved central difference Kalman filter was proposed for alternating current (AC) signal processing, which improved the sampling strategy and noise processing of colored noise. Real-time estimation and correction of noise were achieved by designing AC and DC noise recursive filters. Experimental results show that the improved signal processing algorithms had a good filtering effect on the AC and DC signals with mixed noise of OCT. Furthermore, the proposed algorithm was able to achieve real-time correction of noise during the OCT filtering process.
An adaptive metamodel-based global optimization algorithm for black-box type problems
Jie, Haoxiang; Wu, Yizhong; Ding, Jianwan
2015-11-01
In this article, an adaptive metamodel-based global optimization (AMGO) algorithm is presented to solve unconstrained black-box problems. In the AMGO algorithm, a type of hybrid model composed of kriging and augmented radial basis function (RBF) is used as the surrogate model. The weight factors of hybrid model are adaptively selected in the optimization process. To balance the local and global search, a sub-optimization problem is constructed during each iteration to determine the new iterative points. As numerical experiments, six standard two-dimensional test functions are selected to show the distributions of iterative points. The AMGO algorithm is also tested on seven well-known benchmark optimization problems and contrasted with three representative metamodel-based optimization methods: efficient global optimization (EGO), GutmannRBF and hybrid and adaptive metamodel (HAM). The test results demonstrate the efficiency and robustness of the proposed method. The AMGO algorithm is finally applied to the structural design of the import and export chamber of a cycloid gear pump, achieving satisfactory results.
A systematic review of gait analysis methods based on inertial sensors and adaptive algorithms.
Caldas, Rafael; Mundt, Marion; Potthast, Wolfgang; Buarque de Lima Neto, Fernando; Markert, Bernd
2017-09-01
The conventional methods to assess human gait are either expensive or complex to be applied regularly in clinical practice. To reduce the cost and simplify the evaluation, inertial sensors and adaptive algorithms have been utilized, respectively. This paper aims to summarize studies that applied adaptive also called artificial intelligence (AI) algorithms to gait analysis based on inertial sensor data, verifying if they can support the clinical evaluation. Articles were identified through searches of the main databases, which were encompassed from 1968 to October 2016. We have identified 22 studies that met the inclusion criteria. The included papers were analyzed due to their data acquisition and processing methods with specific questionnaires. Concerning the data acquisition, the mean score is 6.1±1.62, what implies that 13 of 22 papers failed to report relevant outcomes. The quality assessment of AI algorithms presents an above-average rating (8.2±1.84). Therefore, AI algorithms seem to be able to support gait analysis based on inertial sensor data. Further research, however, is necessary to enhance and standardize the application in patients, since most of the studies used distinct methods to evaluate healthy subjects. Copyright © 2017 Elsevier B.V. All rights reserved.
Novel density-based and hierarchical density-based clustering algorithms for uncertain data.
Zhang, Xianchao; Liu, Han; Zhang, Xiaotong
2017-09-01
Uncertain data has posed a great challenge to traditional clustering algorithms. Recently, several algorithms have been proposed for clustering uncertain data, and among them density-based techniques seem promising for handling data uncertainty. However, some issues like losing uncertain information, high time complexity and nonadaptive threshold have not been addressed well in the previous density-based algorithm FDBSCAN and hierarchical density-based algorithm FOPTICS. In this paper, we firstly propose a novel density-based algorithm PDBSCAN, which improves the previous FDBSCAN from the following aspects: (1) it employs a more accurate method to compute the probability that the distance between two uncertain objects is less than or equal to a boundary value, instead of the sampling-based method in FDBSCAN; (2) it introduces new definitions of probability neighborhood, support degree, core object probability, direct reachability probability, thus reducing the complexity and solving the issue of nonadaptive threshold (for core object judgement) in FDBSCAN. Then, we modify the algorithm PDBSCAN to an improved version (PDBSCANi), by using a better cluster assignment strategy to ensure that every object will be assigned to the most appropriate cluster, thus solving the issue of nonadaptive threshold (for direct density reachability judgement) in FDBSCAN. Furthermore, as PDBSCAN and PDBSCANi have difficulties for clustering uncertain data with non-uniform cluster density, we propose a novel hierarchical density-based algorithm POPTICS by extending the definitions of PDBSCAN, adding new definitions of fuzzy core distance and fuzzy reachability distance, and employing a new clustering framework. POPTICS can reveal the cluster structures of the datasets with different local densities in different regions better than PDBSCAN and PDBSCANi, and it addresses the issues in FOPTICS. Experimental results demonstrate the superiority of our proposed algorithms over the existing
Alpert, Bruce S
2011-04-01
We evaluated two new Welch Allyn automated blood pressure (BP) algorithms. The first, SureBP, estimates BP during cuff inflation; the second, StepBP, does so during deflation. We followed the American National Standards Institute/Association for the Advancement of Medical Instrumentation SP10:2006 standard for testing and data analysis. The data were also analyzed using the British Hypertension Society analysis strategy. We tested children, adolescents, and adults. The requirements of the American National Standards Institute/Association for the Advancement of Medical Instrumentation SP10:2006 standard were fulfilled with respect to BP levels, arm sizes, and ages. Association for the Advancement of Medical Instrumentation SP10 Method 1 data analysis was used. The mean±standard deviation for the device readings compared with auscultation by paired, trained, blinded observers in the SureBP mode were -2.14±7.44 mmHg for systolic BP (SBP) and -0.55±5.98 mmHg for diastolic BP (DBP). In the StepBP mode, the differences were -3.61±6.30 mmHg for SBP and -2.03±5.30 mmHg for DBP. Both algorithms achieved an A grade for both SBP and DBP by British Hypertension Society analysis. The SureBP inflation-based algorithm will be available in many new-generation Welch Allyn monitors. Its use will reduce the time it takes to estimate BP in critical patient care circumstances. The device will not need to inflate to excessive suprasystolic BPs to obtain the SBP values. Deflation is rapid once SBP has been determined, thus reducing the total time of cuff inflation and reducing patient discomfort. If the SureBP fails to obtain a BP value, the StepBP algorithm is activated to estimate BP by traditional deflation methodology.
Calculation of electromagnetic parameter based on interpolation algorithm
International Nuclear Information System (INIS)
Zhang, Wenqiang; Yuan, Liming; Zhang, Deyuan
2015-01-01
Wave-absorbing material is an important functional material of electromagnetic protection. The wave-absorbing characteristics depend on the electromagnetic parameter of mixed media. In order to accurately predict the electromagnetic parameter of mixed media and facilitate the design of wave-absorbing material, based on the electromagnetic parameters of spherical and flaky carbonyl iron mixture of paraffin base, this paper studied two different interpolation methods: Lagrange interpolation and Hermite interpolation of electromagnetic parameters. The results showed that Hermite interpolation is more accurate than the Lagrange interpolation, and the reflectance calculated with the electromagnetic parameter obtained by interpolation is consistent with that obtained through experiment on the whole. - Highlights: • We use interpolation algorithm on calculation of EM-parameter with limited samples. • Interpolation method can predict EM-parameter well with different particles added. • Hermite interpolation is more accurate than Lagrange interpolation. • Calculating RL based on interpolation is consistent with calculating RL from experiment
TPSLVM: a dimensionality reduction algorithm based on thin plate splines.
Jiang, Xinwei; Gao, Junbin; Wang, Tianjiang; Shi, Daming
2014-10-01
Dimensionality reduction (DR) has been considered as one of the most significant tools for data analysis. One type of DR algorithms is based on latent variable models (LVM). LVM-based models can handle the preimage problem easily. In this paper we propose a new LVM-based DR model, named thin plate spline latent variable model (TPSLVM). Compared to the well-known Gaussian process latent variable model (GPLVM), our proposed TPSLVM is more powerful especially when the dimensionality of the latent space is low. Also, TPSLVM is robust to shift and rotation. This paper investigates two extensions of TPSLVM, i.e., the back-constrained TPSLVM (BC-TPSLVM) and TPSLVM with dynamics (TPSLVM-DM) as well as their combination BC-TPSLVM-DM. Experimental results show that TPSLVM and its extensions provide better data visualization and more efficient dimensionality reduction compared to PCA, GPLVM, ISOMAP, etc.
Vision-based vehicle detection and tracking algorithm design
Hwang, Junyeon; Huh, Kunsoo; Lee, Donghwi
2009-12-01
The vision-based vehicle detection in front of an ego-vehicle is regarded as promising for driver assistance as well as for autonomous vehicle guidance. The feasibility of vehicle detection in a passenger car requires accurate and robust sensing performance. A multivehicle detection system based on stereo vision has been developed for better accuracy and robustness. This system utilizes morphological filter, feature detector, template matching, and epipolar constraint techniques in order to detect the corresponding pairs of vehicles. After the initial detection, the system executes the tracking algorithm for the vehicles. The proposed system can detect front vehicles such as the leading vehicle and side-lane vehicles. The position parameters of the vehicles located in front are obtained based on the detection information. The proposed vehicle detection system is implemented on a passenger car, and its performance is verified experimentally.
WANG, Qingrong; ZHU, Changfeng
2017-06-01
Integration of distributed heterogeneous data sources is the key issues under the big data applications. In this paper the strategy of variable precision is introduced to the concept lattice, and the one-to-one mapping mode of variable precision concept lattice and ontology concept lattice is constructed to produce the local ontology by constructing the variable precision concept lattice for each subsystem, and the distributed generation algorithm of variable precision concept lattice based on ontology heterogeneous database is proposed to draw support from the special relationship between concept lattice and ontology construction. Finally, based on the standard of main concept lattice of the existing heterogeneous database generated, a case study has been carried out in order to testify the feasibility and validity of this algorithm, and the differences between the main concept lattice and the standard concept lattice are compared. Analysis results show that this algorithm above-mentioned can automatically process the construction process of distributed concept lattice under the heterogeneous data sources.
A class of kernel based real-time elastography algorithms.
Kibria, Md Golam; Hasan, Md Kamrul
2015-08-01
In this paper, a novel real-time kernel-based and gradient-based Phase Root Seeking (PRS) algorithm for ultrasound elastography is proposed. The signal-to-noise ratio of the strain image resulting from this method is improved by minimizing the cross-correlation discrepancy between the pre- and post-compression radio frequency signals with an adaptive temporal stretching method and employing built-in smoothing through an exponentially weighted neighborhood kernel in the displacement calculation. Unlike conventional PRS algorithms, displacement due to tissue compression is estimated from the root of the weighted average of the zero-lag cross-correlation phases of the pair of corresponding analytic pre- and post-compression windows in the neighborhood kernel. In addition to the proposed one, the other time- and frequency-domain elastography algorithms (Ara et al., 2013; Hussain et al., 2012; Hasan et al., 2012) proposed by our group are also implemented in real-time using Java where the computations are serially executed or parallely executed in multiple processors with efficient memory management. Simulation results using finite element modeling simulation phantom show that the proposed method significantly improves the strain image quality in terms of elastographic signal-to-noise ratio (SNRe), elastographic contrast-to-noise ratio (CNRe) and mean structural similarity (MSSIM) for strains as high as 4% as compared to other reported techniques in the literature. Strain images obtained for the experimental phantom as well as in vivo breast data of malignant or benign masses also show the efficacy of our proposed method over the other reported techniques in the literature. Copyright © 2015 Elsevier B.V. All rights reserved.
The Parallel Algorithm Based on Genetic Algorithm for Improving the Performance of Cognitive Radio
Directory of Open Access Journals (Sweden)
Liu Miao
2018-01-01
Full Text Available The intercarrier interference (ICI problem of cognitive radio (CR is severe. In this paper, the machine learning algorithm is used to obtain the optimal interference subcarriers of an unlicensed user (un-LU. Masking the optimal interference subcarriers can suppress the ICI of CR. Moreover, the parallel ICI suppression algorithm is designed to improve the calculation speed and meet the practical requirement of CR. Simulation results show that the data transmission rate threshold of un-LU can be set, the data transmission quality of un-LU can be ensured, the ICI of a licensed user (LU is suppressed, and the bit error rate (BER performance of LU is improved by implementing the parallel suppression algorithm. The ICI problem of CR is solved well by the new machine learning algorithm. The computing performance of the algorithm is improved by designing a new parallel structure and the communication performance of CR is enhanced.
Directory of Open Access Journals (Sweden)
Xuemei Sun
2015-01-01
Full Text Available Degree constrained minimum spanning tree (DCMST refers to constructing a spanning tree of minimum weight in a complete graph with weights on edges while the degree of each node in the spanning tree is no more than d (d ≥ 2. The paper proposes an improved multicolony ant algorithm for degree constrained minimum spanning tree searching which enables independent search for optimal solutions among various colonies and achieving information exchanges between different colonies by information entropy. Local optimal algorithm is introduced to improve constructed spanning tree. Meanwhile, algorithm strategies in dynamic ant, random perturbations ant colony, and max-min ant system are adapted in this paper to optimize the proposed algorithm. Finally, multiple groups of experimental data show the superiority of the improved algorithm in solving the problems of degree constrained minimum spanning tree.
The Research of Disease Spots Extraction Based on Evolutionary Algorithm
Directory of Open Access Journals (Sweden)
Kangshun Li
2017-01-01
Full Text Available According to the characteristics of maize disease spot performance in the image, this paper designs two-histogram segmentation method based on evolutionary algorithm, which combined with the analysis of image of maize diseases and insect pests, with full consideration of color and texture characteristic of the lesion of pests and diseases, the chroma and gray image, composed of two tuples to build a two-dimensional histogram, solves the problem of one-dimensional histograms that cannot be clearly divided into target and background bimodal distribution and improved the traditional two-dimensional histogram application in pest damage lesion extraction. The chromosome coding suitable for the characteristics of lesion image is designed based on second segmentation of the genetic algorithm Otsu. Determining initial population with analysis results of lesion image, parallel selection, optimal preservation strategy, and adaptive mutation operator are used to improve the search efficiency. Finally, by setting the fluctuation threshold, we continue to search for the best threshold in the range of fluctuations for implementation of global search and local search.
A cooperative control algorithm for camera based observational systems.
Energy Technology Data Exchange (ETDEWEB)
Young, Joseph G.
2012-01-01
Over the last several years, there has been considerable growth in camera based observation systems for a variety of safety, scientific, and recreational applications. In order to improve the effectiveness of these systems, we frequently desire the ability to increase the number of observed objects, but solving this problem is not as simple as adding more cameras. Quite often, there are economic or physical restrictions that prevent us from adding additional cameras to the system. As a result, we require methods that coordinate the tracking of objects between multiple cameras in an optimal way. In order to accomplish this goal, we present a new cooperative control algorithm for a camera based observational system. Specifically, we present a receding horizon control where we model the underlying optimal control problem as a mixed integer linear program. The benefit of this design is that we can coordinate the actions between each camera while simultaneously respecting its kinematics. In addition, we further improve the quality of our solution by coupling our algorithm with a Kalman filter. Through this integration, we not only add a predictive component to our control, but we use the uncertainty estimates provided by the filter to encourage the system to periodically observe any outliers in the observed area. This combined approach allows us to intelligently observe the entire region of interest in an effective and thorough manner.
Chaos Time Series Prediction Based on Membrane Optimization Algorithms
Directory of Open Access Journals (Sweden)
Meng Li
2015-01-01
Full Text Available This paper puts forward a prediction model based on membrane computing optimization algorithm for chaos time series; the model optimizes simultaneously the parameters of phase space reconstruction (τ,m and least squares support vector machine (LS-SVM (γ,σ by using membrane computing optimization algorithm. It is an important basis for spectrum management to predict accurately the change trend of parameters in the electromagnetic environment, which can help decision makers to adopt an optimal action. Then, the model presented in this paper is used to forecast band occupancy rate of frequency modulation (FM broadcasting band and interphone band. To show the applicability and superiority of the proposed model, this paper will compare the forecast model presented in it with conventional similar models. The experimental results show that whether single-step prediction or multistep prediction, the proposed model performs best based on three error measures, namely, normalized mean square error (NMSE, root mean square error (RMSE, and mean absolute percentage error (MAPE.
Warehouse stocking optimization based on dynamic ant colony genetic algorithm
Xiao, Xiaoxu
2018-04-01
In view of the various orders of FAW (First Automotive Works) International Logistics Co., Ltd., the SLP method is used to optimize the layout of the warehousing units in the enterprise, thus the warehouse logistics is optimized and the external processing speed of the order is improved. In addition, the relevant intelligent algorithms for optimizing the stocking route problem are analyzed. The ant colony algorithm and genetic algorithm which have good applicability are emphatically studied. The parameters of ant colony algorithm are optimized by genetic algorithm, which improves the performance of ant colony algorithm. A typical path optimization problem model is taken as an example to prove the effectiveness of parameter optimization.
Glatthorn, Jonas; Beckschäfer, Philip
2014-01-01
Hemispherical photography is a well-established method to optically assess ecological parameters related to plant canopies; e.g. ground-level light regimes and the distribution of foliage within the crown space. Interpreting hemispherical photographs involves classifying pixels as either sky or vegetation. A wide range of automatic thresholding or binarization algorithms exists to classify the photographs. The variety in methodology hampers ability to compare results across studies. To identify an optimal threshold selection method, this study assessed the accuracy of seven binarization methods implemented in software currently available for the processing of hemispherical photographs. Therefore, binarizations obtained by the algorithms were compared to reference data generated through a manual binarization of a stratified random selection of pixels. This approach was adopted from the accuracy assessment of map classifications known from remote sensing studies. Percentage correct (Pc) and kappa-statistics (K) were calculated. The accuracy of the algorithms was assessed for photographs taken with automatic exposure settings (auto-exposure) and photographs taken with settings which avoid overexposure (histogram-exposure). In addition, gap fraction values derived from hemispherical photographs were compared with estimates derived from the manually classified reference pixels. All tested algorithms were shown to be sensitive to overexposure. Three of the algorithms showed an accuracy which was high enough to be recommended for the processing of histogram-exposed hemispherical photographs: "Minimum" (Pc 98.8%; K 0.952), "Edge Detection" (Pc 98.1%; K 0.950), and "Minimum Histogram" (Pc 98.1%; K 0.947). The Minimum algorithm overestimated gap fraction least of all (11%). The overestimation by the algorithms Edge Detection (63%) and Minimum Histogram (67%) were considerably larger. For the remaining four evaluated algorithms (IsoData, Maximum Entropy, MinError, and Otsu
Diwakar, S. V.; Das, Sarit K.; Sundararajan, T.
2009-12-01
A new Quadratic Spline based Interface (QUASI) reconstruction algorithm is presented which provides an accurate and continuous representation of the interface in a multiphase domain and facilitates the direct estimation of local interfacial curvature. The fluid interface in each of the mixed cells is represented by piecewise parabolic curves and an initial discontinuous PLIC approximation of the interface is progressively converted into a smooth quadratic spline made of these parabolic curves. The conversion is achieved by a sequence of predictor-corrector operations enforcing function ( C0) and derivative ( C1) continuity at the cell boundaries using simple analytical expressions for the continuity requirements. The efficacy and accuracy of the current algorithm has been demonstrated using standard test cases involving reconstruction of known static interface shapes and dynamically evolving interfaces in prescribed flow situations. These benchmark studies illustrate that the present algorithm performs excellently as compared to the other interface reconstruction methods available in literature. Quadratic rate of error reduction with respect to grid size has been observed in all the cases with curved interface shapes; only in situations where the interface geometry is primarily flat, the rate of convergence becomes linear with the mesh size. The flow algorithm implemented in the current work is designed to accurately balance the pressure gradients with the surface tension force at any location. As a consequence, it is able to minimize spurious flow currents arising from imperfect normal stress balance at the interface. This has been demonstrated through the standard test problem of an inviscid droplet placed in a quiescent medium. Finally, the direct curvature estimation ability of the current algorithm is illustrated through the coupled multiphase flow problem of a deformable air bubble rising through a column of water.
Ontology-based information standards development
Heravi, Bahareh Rahmanzadeh
2012-01-01
This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. Standards may be argued to be important enablers for achieving interoperability as they aim to provide unambiguous specifications for error-free exchange of documents and information. By implication, therefore, it is important to model and represent the concept of a standard in a clear, precise and unambiguous way. Although standards development organisations usually provide guidelines for th...
Zhang, Lei; Yang, Fengbao; Ji, Linna; Lv, Sheng
2018-01-01
Diverse image fusion methods perform differently. Each method has advantages and disadvantages compared with others. One notion is that the advantages of different image methods can be effectively combined. A multiple-algorithm parallel fusion method based on algorithmic complementarity and synergy is proposed. First, in view of the characteristics of the different algorithms and difference-features among images, an index vector-based feature-similarity is proposed to define the degree of complementarity and synergy. This proposed index vector is a reliable evidence indicator for algorithm selection. Second, the algorithms with a high degree of complementarity and synergy are selected. Then, the different degrees of various features and infrared intensity images are used as the initial weights for the nonnegative matrix factorization (NMF). This avoids randomness of the NMF initialization parameter. Finally, the fused images of different algorithms are integrated using the NMF because of its excellent data fusing performance on independent features. Experimental results demonstrate that the visual effect and objective evaluation index of the fused images obtained using the proposed method are better than those obtained using traditional methods. The proposed method retains all the advantages that individual fusion algorithms have.
Controller design based on μ analysis and PSO algorithm.
Lari, Ali; Khosravi, Alireza; Rajabi, Farshad
2014-03-01
In this paper an evolutionary algorithm is employed to address the controller design problem based on μ analysis. Conventional solutions to μ synthesis problem such as D-K iteration method often lead to high order, impractical controllers. In the proposed approach, a constrained optimization problem based on μ analysis is defined and then an evolutionary approach is employed to solve the optimization problem. The goal is to achieve a more practical controller with lower order. A benchmark system named two-tank system is considered to evaluate performance of the proposed approach. Simulation results show that the proposed controller performs more effective than high order H(∞) controller and has close responses to the high order D-K iteration controller as the common solution to μ synthesis problem. © 2013 ISA Published by ISA All rights reserved.
A dual-adaptive support-based stereo matching algorithm
Zhang, Yin; Zhang, Yun
2017-07-01
Many stereo matching algorithms use fixed color thresholds and a rigid cross skeleton to segment supports (viz., Cross method), which, however, does not work well for different images. To address this issue, this paper proposes a novel dual adaptive support (viz., DAS)-based stereo matching method, which uses both appearance and shape information of a local region to segment supports automatically, and, then, integrates the DAS-based cost aggregation with the absolute difference plus census transform cost, scanline optimization and disparity refinement to develop a stereo matching system. The performance of the DAS method is also evaluated in the Middlebury benchmark and by comparing with the Cross method. The results show that the average error for the DAS method 25.06% lower than that for the Cross method, indicating that the proposed method is more accurate, with fewer parameters and suitable for parallel computing.
A Lagrange multiplier based divide and conquer finite element algorithm
Farhat, C.
1991-01-01
A novel domain decomposition method based on a hybrid variational principle is presented. Prior to any computation, a given finite element mesh is torn into a set of totally disconnected submeshes. First, an incomplete solution is computed in each subdomain. Next, the compatibility of the displacement field at the interface nodes is enforced via discrete, polynomial and/or piecewise polynomial Lagrange multipliers. In the static case, each floating subdomain induces a local singularity that is resolved very efficiently. The interface problem associated with this domain decomposition method is, in general, indefinite and of variable size. A dedicated conjugate projected gradient algorithm is developed for solving the latter problem when it is not feasible to explicitly assemble the interface operator. When implemented on local memory multiprocessors, the proposed methodology requires less interprocessor communication than the classical method of substructuring. It is also suitable for parallel/vector computers with shared memory and compares favorably with factorization based parallel direct methods.
Research on variant design based on topological entity compression algorithm
Directory of Open Access Journals (Sweden)
Shuai Yulin
2017-01-01
Full Text Available In order to improve the efficiency of product design and shorten the design cycle of product, the research progress in recent years is introduced. The basics of variant design such as the entities of topology, the equation’s structure and the compression/decompression are analyzed. An algorithm, which can compress redundant parts, based on the conditions of algebraic equations completely is put forward. A variant design system of volumetric heat exchanger is designed by using VB and SolidWorks API (Application Programing Interface. The results show that the variant design system based on algebraic equations can be quickly and accurately modeled according to different process parameters, which can improve the efficiency of product design and shorten the design period.
A new spirometry-based algorithm to predict occupational pulmonary restrictive impairment.
De Matteis, S; Iridoy-Zulet, A A; Aaron, S; Swann, A; Cullinan, P
2016-01-01
Spirometry is often included in workplace-based respiratory surveillance programmes but its performance in the identification of restrictive lung disease is poor, especially when the prevalence of this condition is low in the tested population. To improve the specificity (Sp) and positive predictive value (PPV) of current spirometry-based algorithms in the diagnosis of restrictive pulmonary impairment in the workplace and to reduce the proportion of false positives findings and, as a result, unnecessary referrals for lung volume measurements. We re-analysed two studies of hospital patients, respectively used to derive and validate a recommended spirometry-based algorithm [forced vital capacity (FVC) 55%] for the recognition of restrictive pulmonary impairment. We used true lung restrictive cases as a reference standard in 2×2 contingency tables to estimate sensitivity (Sn), Sp and PPV and negative predictive values for each diagnostic cut-off. We simulated a working population aged spirometry-based algorithm may be adopted to accurately exclude pulmonary restriction and to possibly reduce unnecessary lung volume testing in an occupational health setting. © The Author 2015. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Patent Keyword Extraction Algorithm Based on Distributed Representation for Patent Classification
Directory of Open Access Journals (Sweden)
Jie Hu
2018-02-01
Full Text Available Many text mining tasks such as text retrieval, text summarization, and text comparisons depend on the extraction of representative keywords from the main text. Most existing keyword extraction algorithms are based on discrete bag-of-words type of word representation of the text. In this paper, we propose a patent keyword extraction algorithm (PKEA based on the distributed Skip-gram model for patent classification. We also develop a set of quantitative performance measures for keyword extraction evaluation based on information gain and cross-validation, based on Support Vector Machine (SVM classification, which are valuable when human-annotated keywords are not available. We used a standard benchmark dataset and a homemade patent dataset to evaluate the performance of PKEA. Our patent dataset includes 2500 patents from five distinct technological fields related to autonomous cars (GPS systems, lidar systems, object recognition systems, radar systems, and vehicle control systems. We compared our method with Frequency, Term Frequency-Inverse Document Frequency (TF-IDF, TextRank and Rapid Automatic Keyword Extraction (RAKE. The experimental results show that our proposed algorithm provides a promising way to extract keywords from patent texts for patent classification.
A study of Hough Transform-based fingerprint alignment algorithms
CSIR Research Space (South Africa)
Mlambo, CS
2014-10-01
Full Text Available the implementation of each algorithm. The comparison is performed by considering the alignment results computed using each group of algorithms when varying number of minutiae points, rotation angle, and translation. In addition, the memory usage, computing time...
A PSO-Based Subtractive Data Clustering Algorithm
Gamal Abdel-Azeem; Mahmoud Marie; Rehab Abdel-Kader; Mariam El-Tarabily
2013-01-01
There is a tremendous proliferation in the amount of information available on the largest shared information source, the World Wide Web. Fast and high-quality clustering algorithms play an important role in helping users to effectively navigate, summarize, and organize the information. Recent studies have shown that partitional clustering algorithms such as the k-means algorithm are the most popular algorithms for clustering large datasets. The major problem with partitional clustering algori...
Effective arithmetic in finite fields based on Chudnovsky's multiplication algorithm
Atighehchi , Kévin; Ballet , Stéphane; Bonnecaze , Alexis; Rolland , Robert
2016-01-01
International audience; Thanks to a new construction of the Chudnovsky and Chudnovsky multiplication algorithm, we design efficient algorithms for both the exponentiation and the multiplication in finite fields. They are tailored to hardware implementation and they allow computations to be parallelized, while maintaining a low number of bilinear multiplications.À partir d'une nouvelle construction de l'algorithme de multiplication de Chudnovsky et Chudnovsky, nous concevons des algorithmes ef...
Robot Path Planning Method Based on Improved Genetic Algorithm
Mingyang Jiang; Xiaojing Fan; Zhili Pei; Jingqing Jiang; Yulan Hu; Qinghu Wang
2014-01-01
This paper presents an improved genetic algorithm for mobile robot path planning. The algorithm uses artificial potential method to establish the initial population, and increases value weights in the fitness function, which increases the controllability of robot path length and path smoothness. In the new algorithm, a flip mutation operator is added, which ensures the individual population collision path. Simulation results show that the proposed algorithm can get a smooth, collision-free pa...
International Nuclear Information System (INIS)
Densmore, J.D.; Park, H.; Wollaber, A.B.; Rauenzahn, R.M.; Knoll, D.A.
2015-01-01
We present a moment-based acceleration algorithm applied to Monte Carlo simulation of thermal radiative-transfer problems. Our acceleration algorithm employs a continuum system of moments to accelerate convergence of stiff absorption–emission physics. The combination of energy-conserving tallies and the use of an asymptotic approximation in optically thick regions remedy the difficulties of local energy conservation and mitigation of statistical noise in such regions. We demonstrate the efficiency and accuracy of the developed method. We also compare directly to the standard linearization-based method of Fleck and Cummings [1]. A factor of 40 reduction in total computational time is achieved with the new algorithm for an equivalent (or more accurate) solution as compared with the Fleck–Cummings algorithm
SEGMENTATION OF HYPERSPECTRAL IMAGE USING JSEG BASED ON UNSUPERVISED CLUSTERING ALGORITHMS
Directory of Open Access Journals (Sweden)
V. Saravana Kumar
2016-11-01
Full Text Available Hyperspectral image analysis is a complicated and challenging task due to the inherent nature of the image. The main aim of this work is to segment the object in hyperspectral scene using image processing technique. This paper address a novel approach entitled as Segmentation of hyperspectral image using JSEG based on unsupervised cluster methods. In the preprocessing part, single band is picked out from the hyperspectral image and then converts into false color image. The JSEG algorithm is segregate the false color image properly without manual parameter adjustment. The segmentation has carried in two major stages. To begin with, colors in the image are quantized to represent several classes which can be used to differentiate regions in the image. Besides, hit rate regions with cognate color regions merging algorithm is used. In region merging part, K-means, Fuzzy C-Means (FCM and Fast K-Means weighted option (FWKM algorithm are used to segregate the image in accordance with the color for each cluster and its neighborhoods. Experiment results of above clustering method could be analyzed in terms of mean, standard deviation, number of cluster, number of pixels, time taken, number of objects occur in the resultant image. FWKM algorithm results yields good performance than its counterparts.
Directory of Open Access Journals (Sweden)
A. Soria-Lorente
2017-01-01
Full Text Available This contribution proposes a novel steganographic method based on the compression standard according to the Joint Photographic Expert Group and an Entropy Thresholding technique. The steganographic algorithm uses one public key and one private key to generate a binary sequence of pseudorandom numbers that indicate where the elements of the binary sequence of a secret message will be inserted. The insertion takes eventually place at the first seven AC coefficients in the transformed DCT domain. Before the insertion of the message the image undergoes several transformations. After the insertion the inverse transformations are applied in reverse order to the original transformations. The insertion itself takes only place if an entropy threshold of the corresponding block is satisfied and if the pseudorandom number indicates to do so. The experimental work on the validation of the algorithm consists of the calculation of the peak signal-to-noise ratio (PSNR, the difference and correlation distortion metrics, the histogram analysis, and the relative entropy, comparing the same characteristics for the cover and stego image. The proposed algorithm improves the level of imperceptibility analyzed through the PSNR values. A steganalysis experiment shows that the proposed algorithm is highly resistant against the Chi-square attack.
Application of hybrid artificial fish swarm algorithm based on similar fragments in VRP
Che, Jinnuo; Zhou, Kang; Zhang, Xueyu; Tong, Xin; Hou, Lingyun; Jia, Shiyu; Zhen, Yiting
2018-03-01
Focused on the issue that the decrease of convergence speed and the precision of calculation at the end of the process in Artificial Fish Swarm Algorithm(AFSA) and instability of results, a hybrid AFSA based on similar fragments is proposed. Traditional AFSA enjoys a lot of obvious advantages in solving complex optimization problems like Vehicle Routing Problem(VRP). AFSA have a few limitations such as low convergence speed, low precision and instability of results. In this paper, two improvements are introduced. On the one hand, change the definition of the distance for artificial fish, as well as increase vision field of artificial fish, and the problem of speed and precision can be improved when solving VRP. On the other hand, mix artificial bee colony algorithm(ABC) into AFSA - initialize the population of artificial fish by the ABC, and it solves the problem of instability of results in some extend. The experiment results demonstrate that the optimal solution of the hybrid AFSA is easier to approach the optimal solution of the standard database than the other two algorithms. In conclusion, the hybrid algorithm can effectively solve the problem that instability of results and decrease of convergence speed and the precision of calculation at the end of the process.
Directory of Open Access Journals (Sweden)
Li Liu
2015-06-01
Full Text Available Background To accelerate progress toward the Millennium Development Goal 4, reliable information on causes of child mortality is critical. With more national verbal autopsy (VA studies becoming available, how to improve consistency of national VA derived child causes of death should be considered for the purpose of global comparison. We aimed to adapt a standardized computer algorithm to re–analyze national child VA studies conducted in Uganda, Rwanda and Ghana recently, and compare our results with those derived from physician review to explore issues surrounding the application of the standardized algorithm in place of physician review. Methods and Findings We adapted the standardized computer algorithm considering the disease profile in Uganda, Rwanda and Ghana. We then derived cause–specific mortality fractions applying the adapted algorithm and compared the results with those ascertained by physician review by examining the individual– and population–level agreement. Our results showed that the leading causes of child mortality in Uganda, Rwanda and Ghana were pneumonia (16.5–21.1% and malaria (16.8–25.6% among children below five years and intrapartum–related complications (6.4–10.7% and preterm birth complications (4.5–6.3% among neonates. The individual level agreement was poor to substantial across causes (kappa statistics: –0.03 to 0.83, with moderate to substantial agreement observed for injury, congenital malformation, preterm birth complications, malaria and measles. At the population level, despite fairly different cause–specific mortality fractions, the ranking of the leading causes was largely similar. Conclusions The standardized computer algorithm produced internally consistent distribution of causes of child mortality. The results were also qualitatively comparable to those based on physician review from the perspective of public health policy. The standardized computer algorithm has the advantage of
A Knowledge-Based Service Composition Algorithm with Better QoS in Semantic Overlay
Directory of Open Access Journals (Sweden)
Huijun Dai
2015-01-01
Full Text Available A semantic overlay network (SON is a visual framework clustered under similar metaknowledge units such as ontologies, algorithms, and rule engines. Knowledge-based service composition (KC has become a prominent aspect of building new and creative composed service through a combination of semantically similar information at the knowledge level. In this study, a promising approach to construct a standard knowledge model is developed to utilize the progress of KC. To evaluate and optimize the composition, we define the quantity of service (QoS regarding user requirements in the KC instance, and a KC instance path with better QoS is found in the model using the KC algorithm. Simulation results prove that our approach has a tradeoff between efficiency and equality.
ANNIT - An Efficient Inversion Algorithm based on Prediction Principles
Růžek, B.; Kolář, P.
2009-04-01
Solution of inverse problems represents meaningful job in geophysics. The amount of data is continuously increasing, methods of modeling are being improved and the computer facilities are also advancing great technical progress. Therefore the development of new and efficient algorithms and computer codes for both forward and inverse modeling is still up to date. ANNIT is contributing to this stream since it is a tool for efficient solution of a set of non-linear equations. Typical geophysical problems are based on parametric approach. The system is characterized by a vector of parameters p, the response of the system is characterized by a vector of data d. The forward problem is usually represented by unique mapping F(p)=d. The inverse problem is much more complex and the inverse mapping p=G(d) is available in an analytical or closed form only exceptionally and generally it may not exist at all. Technically, both forward and inverse mapping F and G are sets of non-linear equations. ANNIT solves such situation as follows: (i) joint subspaces {pD, pM} of original data and model spaces D, M, resp. are searched for, within which the forward mapping F is sufficiently smooth that the inverse mapping G does exist, (ii) numerical approximation of G in subspaces {pD, pM} is found, (iii) candidate solution is predicted by using this numerical approximation. ANNIT is working in an iterative way in cycles. The subspaces {pD, pM} are searched for by generating suitable populations of individuals (models) covering data and model spaces. The approximation of the inverse mapping is made by using three methods: (a) linear regression, (b) Radial Basis Function Network technique, (c) linear prediction (also known as "Kriging"). The ANNIT algorithm has built in also an archive of already evaluated models. Archive models are re-used in a suitable way and thus the number of forward evaluations is minimized. ANNIT is now implemented both in MATLAB and SCILAB. Numerical tests show good
Neighborhood Hypergraph Based Classification Algorithm for Incomplete Information System
Directory of Open Access Journals (Sweden)
Feng Hu
2015-01-01
Full Text Available The problem of classification in incomplete information system is a hot issue in intelligent information processing. Hypergraph is a new intelligent method for machine learning. However, it is hard to process the incomplete information system by the traditional hypergraph, which is due to two reasons: (1 the hyperedges are generated randomly in traditional hypergraph model; (2 the existing methods are unsuitable to deal with incomplete information system, for the sake of missing values in incomplete information system. In this paper, we propose a novel classification algorithm for incomplete information system based on hypergraph model and rough set theory. Firstly, we initialize the hypergraph. Second, we classify the training set by neighborhood hypergraph. Third, under the guidance of rough set, we replace the poor hyperedges. After that, we can obtain a good classifier. The proposed approach is tested on 15 data sets from UCI machine learning repository. Furthermore, it is compared with some existing methods, such as C4.5, SVM, NavieBayes, and KNN. The experimental results show that the proposed algorithm has better performance via Precision, Recall, AUC, and F-measure.
Genetic Algorithm-Based Identification of Fractional-Order Systems
Directory of Open Access Journals (Sweden)
Shengxi Zhou
2013-05-01
Full Text Available Fractional calculus has become an increasingly popular tool for modeling the complex behaviors of physical systems from diverse domains. One of the key issues to apply fractional calculus to engineering problems is to achieve the parameter identification of fractional-order systems. A time-domain identification algorithm based on a genetic algorithm (GA is proposed in this paper. The multi-variable parameter identification is converted into a parameter optimization by applying GA to the identification of fractional-order systems. To evaluate the identification accuracy and stability, the time-domain output error considering the condition variation is designed as the fitness function for parameter optimization. The identification process is established under various noise levels and excitation levels. The effects of external excitation and the noise level on the identification accuracy are analyzed in detail. The simulation results show that the proposed method could identify the parameters of both commensurate rate and non-commensurate rate fractional-order systems from the data with noise. It is also observed that excitation signal is an important factor influencing the identification accuracy of fractional-order systems.
Evolutionary algorithm based heuristic scheme for nonlinear heat transfer equations.
Ullah, Azmat; Malik, Suheel Abdullah; Alimgeer, Khurram Saleem
2018-01-01
In this paper, a hybrid heuristic scheme based on two different basis functions i.e. Log Sigmoid and Bernstein Polynomial with unknown parameters is used for solving the nonlinear heat transfer equations efficiently. The proposed technique transforms the given nonlinear ordinary differential equation into an equivalent global error minimization problem. Trial solution for the given nonlinear differential equation is formulated using a fitness function with unknown parameters. The proposed hybrid scheme of Genetic Algorithm (GA) with Interior Point Algorithm (IPA) is opted to solve the minimization problem and to achieve the optimal values of unknown parameters. The effectiveness of the proposed scheme is validated by solving nonlinear heat transfer equations. The results obtained by the proposed scheme are compared and found in sharp agreement with both the exact solution and solution obtained by Haar Wavelet-Quasilinearization technique which witnesses the effectiveness and viability of the suggested scheme. Moreover, the statistical analysis is also conducted for investigating the stability and reliability of the presented scheme.
Statistical algorithms for ontology-based annotation of scientific literature.
Chakrabarti, Chayan; Jones, Thomas B; Luger, George F; Xu, Jiawei F; Turner, Matthew D; Laird, Angela R; Turner, Jessica A
2014-01-01
Ontologies encode relationships within a domain in robust data structures that can be used to annotate data objects, including scientific papers, in ways that ease tasks such as search and meta-analysis. However, the annotation process requires significant time and effort when performed by humans. Text mining algorithms can facilitate this process, but they render an analysis mainly based upon keyword, synonym and semantic matching. They do not leverage information embedded in an ontology's structure. We present a probabilistic framework that facilitates the automatic annotation of literature by indirectly modeling the restrictions among the different classes in the ontology. Our research focuses on annotating human functional neuroimaging literature within the Cognitive Paradigm Ontology (CogPO). We use an approach that combines the stochastic simplicity of naïve Bayes with the formal transparency of decision trees. Our data structure is easily modifiable to reflect changing domain knowledge. We compare our results across naïve Bayes, Bayesian Decision Trees, and Constrained Decision Tree classifiers that keep a human expert in the loop, in terms of the quality measure of the F1-mirco score. Unlike traditional text mining algorithms, our framework can model the knowledge encoded by the dependencies in an ontology, albeit indirectly. We successfully exploit the fact that CogPO has explicitly stated restrictions, and implicit dependencies in the form of patterns in the expert curated annotations.
A self-cited pixel summation based image encryption algorithm
International Nuclear Information System (INIS)
Ye Guo-Dong; Huang Xiao-Ling; Zhang Leo Yu; Wang Zheng-Xia
2017-01-01
In this paper, a novel image encryption algorithm is presented based on self-cited pixel summation. With the classical mechanism of permutation plus diffusion, a pixel summation of the plain image is employed to make a gravity influence on the pixel positions in the permutation stage. Then, for each pixel in every step of the diffusion stage, the pixel summation calculated from the permuted image is updated. The values from a chaotic sequence generated by an intertwining logistic map are selected by this summation. Consequently, the keystreams generated in both stages are dependent on both the plain image and the permuted image. Because of the sensitivity of the chaotic map to its initial conditions and the plain-image-dependent keystreams, any tiny change in the secret key or the plain image would lead to a significantly different cipher image. As a result, the proposed encryption algorithm is immune to the known plaintext attack (KPA) and the chosen plaintext attack (CPA). Moreover, experimental simulations and security analyses show that the proposed permutation-diffusion encryption scheme can achieve a satisfactory level of security. (paper)
New algorithm for iris recognition based on video sequences
Bourennane, Salah; Fossati, Caroline; Ketchantang, William
2010-07-01
Among existing biometrics, iris recognition systems are among the most accurate personal biometric identification systems. However, the acquisition of a workable iris image requires strict cooperation of the user; otherwise, the image will be rejected by a verification module because of its poor quality, inducing a high false reject rate (FRR). The FRR may also increase when iris localization fails or when the pupil is too dilated. To improve the existing methods, we propose to use video sequences acquired in real time by a camera. In order to keep the same computational load to identify the iris, we propose a new method to estimate the iris characteristics. First, we propose a new iris texture characterization based on Fourier-Mellin transform, which is less sensitive to pupil dilatations than previous methods. Then, we develop a new iris localization algorithm that is robust to variations of quality (partial occlusions due to eyelids and eyelashes, light reflects, etc.), and finally, we introduce a fast and new criterion of suitable image selection from an iris video sequence for an accurate recognition. The accuracy of each step of the algorithm in the whole proposed recognition process is tested and evaluated using our own iris video database and several public image databases, such as CASIA, UBIRIS, and BATH.
A universal algorithm to generate pseudo-random numbers based on uniform mapping as homeomorphism
International Nuclear Information System (INIS)
Fu-Lai, Wang
2010-01-01
A specific uniform map is constructed as a homeomorphism mapping chaotic time series into [0,1] to obtain sequences of standard uniform distribution. With the uniform map, a chaotic orbit and a sequence orbit obtained are topologically equivalent to each other so the map can preserve the most dynamic properties of chaotic systems such as permutation entropy. Based on the uniform map, a universal algorithm to generate pseudo random numbers is proposed and the pseudo random series is tested to follow the standard 0–1 random distribution both theoretically and experimentally. The algorithm is not complex, which does not impose high requirement on computer hard ware and thus computation speed is fast. The method not only extends the parameter spaces but also avoids the drawback of small function space caused by constraints on chaotic maps used to generate pseudo random numbers. The algorithm can be applied to any chaotic system and can produce pseudo random sequence of high quality, thus can be a good universal pseudo random number generator. (general)
A universal algorithm to generate pseudo-random numbers based on uniform mapping as homeomorphism
Wang, Fu-Lai
2010-09-01
A specific uniform map is constructed as a homeomorphism mapping chaotic time series into [0,1] to obtain sequences of standard uniform distribution. With the uniform map, a chaotic orbit and a sequence orbit obtained are topologically equivalent to each other so the map can preserve the most dynamic properties of chaotic systems such as permutation entropy. Based on the uniform map, a universal algorithm to generate pseudo random numbers is proposed and the pseudo random series is tested to follow the standard 0-1 random distribution both theoretically and experimentally. The algorithm is not complex, which does not impose high requirement on computer hard ware and thus computation speed is fast. The method not only extends the parameter spaces but also avoids the drawback of small function space caused by constraints on chaotic maps used to generate pseudo random numbers. The algorithm can be applied to any chaotic system and can produce pseudo random sequence of high quality, thus can be a good universal pseudo random number generator.
Fu, Lin; Hu, Xiangyu Y.; Adams, Nikolaus A.
2017-12-01
We propose efficient single-step formulations for reinitialization and extending algorithms, which are critical components of level-set based interface-tracking methods. The level-set field is reinitialized with a single-step (non iterative) "forward tracing" algorithm. A minimum set of cells is defined that describes the interface, and reinitialization employs only data from these cells. Fluid states are extrapolated or extended across the interface by a single-step "backward tracing" algorithm. Both algorithms, which are motivated by analogy to ray-tracing, avoid multiple block-boundary data exchanges that are inevitable for iterative reinitialization and extending approaches within a parallel-computing environment. The single-step algorithms are combined with a multi-resolution conservative sharp-interface method and validated by a wide range of benchmark test cases. We demonstrate that the proposed reinitialization method achieves second-order accuracy in conserving the volume of each phase. The interface location is invariant to reapplication of the single-step reinitialization. Generally, we observe smaller absolute errors than for standard iterative reinitialization on the same grid. The computational efficiency is higher than for the standard and typical high-order iterative reinitialization methods. We observe a 2- to 6-times efficiency improvement over the standard method for serial execution. The proposed single-step extending algorithm, which is commonly employed for assigning data to ghost cells with ghost-fluid or conservative interface interaction methods, shows about 10-times efficiency improvement over the standard method while maintaining same accuracy. Despite their simplicity, the proposed algorithms offer an efficient and robust alternative to iterative reinitialization and extending methods for level-set based multi-phase simulations.
Robot Path Planning Method Based on Improved Genetic Algorithm
Directory of Open Access Journals (Sweden)
Mingyang Jiang
2014-03-01
Full Text Available This paper presents an improved genetic algorithm for mobile robot path planning. The algorithm uses artificial potential method to establish the initial population, and increases value weights in the fitness function, which increases the controllability of robot path length and path smoothness. In the new algorithm, a flip mutation operator is added, which ensures the individual population collision path. Simulation results show that the proposed algorithm can get a smooth, collision-free path to the global optimum, the path planning algorithm which is used to solve the problem is effective and feasible.
Carver, Robert L; Sprunger, Conrad P; Hogstrom, Kenneth R; Popple, Richard A; Antolak, John A
2016-05-08
The purpose of this study was to evaluate the accuracy and calculation speed of electron dose distributions calculated by the Eclipse electron Monte Carlo (eMC) algorithm for use with bolus electron conformal therapy (ECT). The recent com-mercial availability of bolus ECT technology requires further validation of the eMC dose calculation algorithm. eMC-calculated electron dose distributions for bolus ECT have been compared to previously measured TLD-dose points throughout patient-based cylindrical phantoms (retromolar trigone and nose), whose axial cross sections were based on the mid-PTV (planning treatment volume) CT anatomy. The phantoms consisted of SR4 muscle substitute, SR4 bone substitute, and air. The treatment plans were imported into the Eclipse treatment planning system, and electron dose distributions calculated using 1% and pencil beam algorithm (PBA). The eMC has comparable accuracy to the pencil beam redefinition algorithm (PBRA) used for bolus ECT planning and has acceptably low dose calculation times. The eMC accuracy decreased when smoothing was used in high-gradient dose regions. The eMC accuracy was consistent with that previously reported for accuracy of the eMC electron dose algorithm and shows that the algorithm is suitable for clinical implementation of bolus ECT.
Dell'Aquila, C. R.; Cañadas, G. E.; Correa, L. S.; Laciar, E.
2016-04-01
This work describes the design of an algorithm for detecting apnea episodes, based on analysis of thorax respiratory effort signal. Inspiration and expiration time, and range amplitude of respiratory cycle were evaluated. For range analysis the standard deviation statistical tool was used over respiratory signal temporal windows. The validity of its performance was carried out in 8 records of Apnea-ECG database that has annotations of apnea episodes. The results are: sensitivity (Se) 73%, specificity (Sp) 83%. These values can be improving eliminating artifact of signal records.
International Nuclear Information System (INIS)
Lapa, Celso M. Franklin; Pereira, Claudio M.N.A.; Mol, Antonio C. de Abreu
1999-01-01
This paper presents a solution based on genetic algorithm and probabilistic safety analysis that can be applied in the optimization of the preventive maintenance politic of nuclear power plant safety systems. The goal of this approach is to improve the average availability of the system through the optimization of the preventive maintenance scheduling politic. The auxiliary feed water system of a two loops pressurized water reactor is used as a sample case, in order to demonstrate the effectiveness of the proposed method. The results, when compared to those obtained by some standard maintenance politics, reveal quantitative gains and operational safety levels. (author)
An accelerated threshold-based back-projection algorithm for Compton camera image reconstruction
International Nuclear Information System (INIS)
Mundy, Daniel W.; Herman, Michael G.
2011-01-01
parallel to the image plane. This effect decreases the sum of the image, thereby also affecting the mean, standard deviation, and SNR of the image. All back-projected events associated with a simulated point source intersected the voxel containing the source and the FWHM of the back-projected image was similar to that obtained from the marching method. Conclusions: The slight deficit to image quality observed with the threshold-based back-projection algorithm described here is outweighed by the 75% reduction in computation time. The implementation of this method requires the development of an optimum threshold function, which determines the overall accuracy of the method. This makes the algorithm well-suited to applications involving the reconstruction of many large images, where the time invested in threshold development is offset by the decreased image reconstruction time. Implemented in a parallel-computing environment, the threshold-based algorithm has the potential to provide real-time dose verification for radiation therapy.
Directory of Open Access Journals (Sweden)
Sandeep Pirbhulal
2015-06-01
Full Text Available Body Sensor Network (BSN is a network of several associated sensor nodes on, inside or around the human body to monitor vital signals, such as, Electroencephalogram (EEG, Photoplethysmography (PPG, Electrocardiogram (ECG, etc. Each sensor node in BSN delivers major information; therefore, it is very significant to provide data confidentiality and security. All existing approaches to secure BSN are based on complex cryptographic key generation procedures, which not only demands high resource utilization and computation time, but also consumes large amount of energy, power and memory during data transmission. However, it is indispensable to put forward energy efficient and computationally less complex authentication technique for BSN. In this paper, a novel biometric-based algorithm is proposed, which utilizes Heart Rate Variability (HRV for simple key generation process to secure BSN. Our proposed algorithm is compared with three data authentication techniques, namely Physiological Signal based Key Agreement (PSKA, Data Encryption Standard (DES and Rivest Shamir Adleman (RSA. Simulation is performed in Matlab and results suggest that proposed algorithm is quite efficient in terms of transmission time utilization, average remaining energy and total power consumption.
Pirbhulal, Sandeep; Zhang, Heye; Mukhopadhyay, Subhas Chandra; Li, Chunyue; Wang, Yumei; Li, Guanglin; Wu, Wanqing; Zhang, Yuan-Ting
2015-06-26
Body Sensor Network (BSN) is a network of several associated sensor nodes on, inside or around the human body to monitor vital signals, such as, Electroencephalogram (EEG), Photoplethysmography (PPG), Electrocardiogram (ECG), etc. Each sensor node in BSN delivers major information; therefore, it is very significant to provide data confidentiality and security. All existing approaches to secure BSN are based on complex cryptographic key generation procedures, which not only demands high resource utilization and computation time, but also consumes large amount of energy, power and memory during data transmission. However, it is indispensable to put forward energy efficient and computationally less complex authentication technique for BSN. In this paper, a novel biometric-based algorithm is proposed, which utilizes Heart Rate Variability (HRV) for simple key generation process to secure BSN. Our proposed algorithm is compared with three data authentication techniques, namely Physiological Signal based Key Agreement (PSKA), Data Encryption Standard (DES) and Rivest Shamir Adleman (RSA). Simulation is performed in Matlab and results suggest that proposed algorithm is quite efficient in terms of transmission time utilization, average remaining energy and total power consumption.
Basile, Vito; Guadagno, Gianluca; Ferrario, Maddalena; Fassi, Irene
2018-03-01
In this paper a parametric, modular and scalable algorithm allowing a fully automated assembly of a backplane fiber-optic interconnection circuit is presented. This approach guarantees the optimization of the optical fiber routing inside the backplane with respect to specific criteria (i.e. bending power losses), addressing both transmission performance and overall costs issues. Graph theory has been exploited to simplify the complexity of the NxN full-mesh backplane interconnection topology, firstly, into N independent sub-circuits and then, recursively, into a limited number of loops easier to be generated. Afterwards, the proposed algorithm selects a set of geometrical and architectural parameters whose optimization allows to identify the optimal fiber optic routing for each sub-circuit of the backplane. The topological and numerical information provided by the algorithm are then exploited to control a robot which performs the automated assembly of the backplane sub-circuits. The proposed routing algorithm can be extended to any array architecture and number of connections thanks to its modularity and scalability. Finally, the algorithm has been exploited for the automated assembly of an 8x8 optical backplane realized with standard multimode (MM) 12-fiber ribbons.
Singular point detection algorithm based on the transition line of the fingerprint orientation image
CSIR Research Space (South Africa)
Mathekga, ME
2009-11-01
Full Text Available A new algorithm for identifying and locating singular points on a fingerprint image is presented. This algorithm is based on properties of the fingerprint orientation image, including a feature defined as a transition line. The transition line...
Scheduling with Group Dynamics: a Multi-Robot Task Allocation Algorithm based on Vacancy Chains
National Research Council Canada - National Science Library
Dahl, Torbjorn S; Mataric, Maja J; Sukhatme, Gaurav S
2002-01-01
.... We present a multi-robot task allocation algorithm that is sensitive to group dynamics. Our algorithm is based on vacancy chains, a resource distribution process common in human and animal societies...
The guitar chord-generating algorithm based on complex network
Ren, Tao; Wang, Yi-fan; Du, Dan; Liu, Miao-miao; Siddiqi, Awais
2016-02-01
This paper aims to generate chords for popular songs automatically based on complex network. Firstly, according to the characteristics of guitar tablature, six chord networks of popular songs by six pop singers are constructed and the properties of all networks are concluded. By analyzing the diverse chord networks, the accompaniment regulations and features are shown, with which the chords can be generated automatically. Secondly, in terms of the characteristics of popular songs, a two-tiered network containing a verse network and a chorus network is constructed. With this network, the verse and chorus can be composed respectively with the random walk algorithm. Thirdly, the musical motif is considered for generating chords, with which the bad chord progressions can be revised. This method can make the accompaniments sound more melodious. Finally, a popular song is chosen for generating chords and the new generated accompaniment sounds better than those done by the composers.
GENETIC ALGORITHM BASED CONCEPT DESIGN TO OPTIMIZE NETWORK LOAD BALANCE
Directory of Open Access Journals (Sweden)
Ashish Jain
2012-07-01
Full Text Available Multiconstraints optimal network load balancing is an NP-hard problem and it is an important part of traffic engineering. In this research we balance the network load using classical method (brute force approach and dynamic programming is used but result shows the limitation of this method but at a certain level we recognized that the optimization of balanced network load with increased number of nodes and demands is intractable using the classical method because the solution set increases exponentially. In such case the optimization techniques like evolutionary techniques can employ for optimizing network load balance. In this paper we analyzed proposed classical algorithm and evolutionary based genetic approach is devise as well as proposed in this paper for optimizing the balance network load.
Chaotic Image Scrambling Algorithm Based on S-DES
International Nuclear Information System (INIS)
Yu, X Y; Zhang, J; Ren, H E; Xu, G S; Luo, X Y
2006-01-01
With the security requirement improvement of the image on the network, some typical image encryption methods can't meet the demands of encryption, such as Arnold cat map and Hilbert transformation. S-DES system can encrypt the input binary flow of image, but the fixed system structure and few keys will still bring some risks. However, the sensitivity of initial value that Logistic chaotic map can be well applied to the system of S-DES, which makes S-DES have larger random and key quantities. A dual image encryption algorithm based on S-DES and Logistic map is proposed. Through Matlab simulation experiments, the key quantities will attain 10 17 and the encryption speed of one image doesn't exceed one second. Compared to traditional methods, it has some merits such as easy to understand, rapid encryption speed, large keys and sensitivity to initial value
Simulation-based algorithms for Markov decision processes
Chang, Hyeong Soo; Fu, Michael C; Marcus, Steven I
2013-01-01
Markov decision process (MDP) models are widely used for modeling sequential decision-making problems that arise in engineering, economics, computer science, and the social sciences. Many real-world problems modeled by MDPs have huge state and/or action spaces, giving an opening to the curse of dimensionality and so making practical solution of the resulting models intractable. In other cases, the system of interest is too complex to allow explicit specification of some of the MDP model parameters, but simulation samples are readily available (e.g., for random transitions and costs). For these settings, various sampling and population-based algorithms have been developed to overcome the difficulties of computing an optimal solution in terms of a policy and/or value function. Specific approaches include adaptive sampling, evolutionary policy iteration, evolutionary random policy search, and model reference adaptive search. This substantially enlarged new edition reflects the latest developments in novel ...
DDoS Attack Detection Algorithms Based on Entropy Computing
Li, Liying; Zhou, Jianying; Xiao, Ning
Distributed Denial of Service (DDoS) attack poses a severe threat to the Internet. It is difficult to find the exact signature of attacking. Moreover, it is hard to distinguish the difference of an unusual high volume of traffic which is caused by the attack or occurs when a huge number of users occasionally access the target machine at the same time. The entropy detection method is an effective method to detect the DDoS attack. It is mainly used to calculate the distribution randomness of some attributes in the network packets' headers. In this paper, we focus on the detection technology of DDoS attack. We improve the previous entropy detection algorithm, and propose two enhanced detection methods based on cumulative entropy and time, respectively. Experiment results show that these methods could lead to more accurate and effective DDoS detection.
Fuzzy Genetic Algorithm Based on Principal Operation and Inequity Degree
Li, Fachao; Jin, Chenxia
In this paper, starting from the structure of fuzzy information, by distinguishing principal indexes and assistant indexes, give comparison of fuzzy information on synthesizing effect and operation of fuzzy optimization on principal indexes transformation, further, propose axiom system of fuzzy inequity degree from essence of constraint, and give an instructive metric method; Then, combining genetic algorithm, give fuzzy optimization methods based on principal operation and inequity degree (denoted by BPO&ID-FGA, for short); Finally, consider its convergence using Markov chain theory and analyze its performance through an example. All these indicate, BPO&ID-FGA can not only effectively merge decision consciousness into the optimization process, but possess better global convergence, so it can be applied to many fuzzy optimization problems.
Spacial gyroscope calibration algorithm base on fusion filter
Xu, Fan; You, Taihua; Guo, Kang
2017-10-01
When space homing aerocraft long term flighting on orbit, the accuracy and rapidity of its attitude and orientation are the key factors for its combat effectiveness and survivability. Fiber optic gyro is suitable for the navigation requirements of space vehicles, but in the long run, it is necessary to calibrate the fog. Aiming at the problem, A self calibration method based on fusion filter is presented. According to the observation of the star sensor, the gyro drift and the four part number vector of the attitude are used as the state estimation by UKF. The gyro axis misalignment error and scale factor error are used as the model error to be estimated by the prediction filter. This method can guarantee the precision, decrease the computation and improve the algorithm speed.
Head pose estimation algorithm based on deep learning
Cao, Yuanming; Liu, Yijun
2017-05-01
Head pose estimation has been widely used in the field of artificial intelligence, pattern recognition and intelligent human-computer interaction and so on. Good head pose estimation algorithm should deal with light, noise, identity, shelter and other factors robustly, but so far how to improve the accuracy and robustness of attitude estimation remains a major challenge in the field of computer vision. A method based on deep learning for pose estimation is presented. Deep learning with a strong learning ability, it can extract high-level image features of the input image by through a series of non-linear operation, then classifying the input image using the extracted feature. Such characteristics have greater differences in pose, while they are robust of light, identity, occlusion and other factors. The proposed head pose estimation is evaluated on the CAS-PEAL data set. Experimental results show that this method is effective to improve the accuracy of pose estimation.
Chaotic Image Encryption Algorithm Based on Circulant Operation
Directory of Open Access Journals (Sweden)
Xiaoling Huang
2013-01-01
Full Text Available A novel chaotic image encryption scheme based on the time-delay Lorenz system is presented in this paper with the description of Circulant matrix. Making use of the chaotic sequence generated by the time-delay Lorenz system, the pixel permutation is carried out in diagonal and antidiagonal directions according to the first and second components. Then, a pseudorandom chaotic sequence is generated again from time-delay Lorenz system using all components. Modular operation is further employed for diffusion by blocks, in which the control parameter is generated depending on the plain-image. Numerical experiments show that the proposed scheme possesses the properties of a large key space to resist brute-force attack, sensitive dependence on secret keys, uniform distribution of gray values in the cipher-image, and zero correlation between two adjacent cipher-image pixels. Therefore, it can be adopted as an effective and fast image encryption algorithm.
Road Network Vulnerability Analysis Based on Improved Ant Colony Algorithm
Directory of Open Access Journals (Sweden)
Yunpeng Wang
2014-01-01
Full Text Available We present an improved ant colony algorithm-based approach to assess the vulnerability of a road network and identify the critical infrastructures. This approach improves computational efficiency and allows for its applications in large-scale road networks. This research involves defining the vulnerability conception, modeling the traffic utility index and the vulnerability of the road network, and identifying the critical infrastructures of the road network. We apply the approach to a simple test road network and a real road network to verify the methodology. The results show that vulnerability is directly related to traffic demand and increases significantly when the demand approaches capacity. The proposed approach reduces the computational burden and may be applied in large-scale road network analysis. It can be used as a decision-supporting tool for identifying critical infrastructures in transportation planning and management.
Yang, Xiaoping; Chen, Xueying; Xia, Riting; Qian, Zhihong
2018-04-19
Aiming at the problem of network congestion caused by the large number of data transmissions in wireless routing nodes of wireless sensor network (WSN), this paper puts forward an algorithm based on standard particle swarm⁻neural PID congestion control (PNPID). Firstly, PID control theory was applied to the queue management of wireless sensor nodes. Then, the self-learning and self-organizing ability of neurons was used to achieve online adjustment of weights to adjust the proportion, integral and differential parameters of the PID controller. Finally, the standard particle swarm optimization to neural PID (NPID) algorithm of initial values of proportion, integral and differential parameters and neuron learning rates were used for online optimization. This paper describes experiments and simulations which show that the PNPID algorithm effectively stabilized queue length near the expected value. At the same time, network performance, such as throughput and packet loss rate, was greatly improved, which alleviated network congestion and improved network QoS.
International Nuclear Information System (INIS)
Niknam, Taher; Azadfarsani, Ehsan; Jabbari, Masoud
2012-01-01
Highlights: ► Network reconfiguration is a very important way to save the electrical energy. ► This paper proposes a new algorithm to solve the DFR. ► The algorithm combines NFAPSO with NM. ► The proposed algorithm is tested on two distribution test feeders. - Abstract: Network reconfiguration for loss reduction in distribution system is a very important way to save the electrical energy. This paper proposes a new hybrid evolutionary algorithm to solve the Distribution Feeder Reconfiguration problem (DFR). The algorithm is based on combination of a New Fuzzy Adaptive Particle Swarm Optimization (NFAPSO) and Nelder–Mead simplex search method (NM) called NFAPSO–NM. In the proposed algorithm, a new fuzzy adaptive particle swarm optimization includes two parts. The first part is Fuzzy Adaptive Binary Particle Swarm Optimization (FABPSO) that determines the status of tie switches (open or close) and second part is Fuzzy Adaptive Discrete Particle Swarm Optimization (FADPSO) that determines the sectionalizing switch number. In other side, due to the results of binary PSO(BPSO) and discrete PSO(DPSO) algorithms highly depends on the values of their parameters such as the inertia weight and learning factors, a fuzzy system is employed to adaptively adjust the parameters during the search process. Moreover, the Nelder–Mead simplex search method is combined with the NFAPSO algorithm to improve its performance. Finally, the proposed algorithm is tested on two distribution test feeders. The results of simulation show that the proposed method is very powerful and guarantees to obtain the global optimization.
Covariance-Based Measurement Selection Criterion for Gaussian-Based Algorithms
Directory of Open Access Journals (Sweden)
Fernando A. Auat Cheein
2013-01-01
Full Text Available Process modeling by means of Gaussian-based algorithms often suffers from redundant information which usually increases the estimation computational complexity without significantly improving the estimation performance. In this article, a non-arbitrary measurement selection criterion for Gaussian-based algorithms is proposed. The measurement selection criterion is based on the determination of the most significant measurement from both an estimation convergence perspective and the covariance matrix associated with the measurement. The selection criterion is independent from the nature of the measured variable. This criterion is used in conjunction with three Gaussian-based algorithms: the EIF (Extended Information Filter, the EKF (Extended Kalman Filter and the UKF (Unscented Kalman Filter. Nevertheless, the measurement selection criterion shown herein can also be applied to other Gaussian-based algorithms. Although this work is focused on environment modeling, the results shown herein can be applied to other Gaussian-based algorithm implementations. Mathematical descriptions and implementation results that validate the proposal are also included in this work.
Driver Distraction Using Visual-Based Sensors and Algorithms
Directory of Open Access Journals (Sweden)
Alberto Fernández
2016-10-01
Full Text Available Driver distraction, defined as the diversion of attention away from activities critical for safe driving toward a competing activity, is increasingly recognized as a significant source of injuries and fatalities on the roadway. Additionally, the trend towards increasing the use of in-vehicle information systems is critical because they induce visual, biomechanical and cognitive distraction and may affect driving performance in qualitatively different ways. Non-intrusive methods are strongly preferred for monitoring distraction, and vision-based systems have appeared to be attractive for both drivers and researchers. Biomechanical, visual and cognitive distractions are the most commonly detected types in video-based algorithms. Many distraction detection systems only use a single visual cue and therefore, they may be easily disturbed when occlusion or illumination changes appear. Moreover, the combination of these visual cues is a key and challenging aspect in the development of robust distraction detection systems. These visual cues can be extracted mainly by using face monitoring systems but they should be completed with more visual cues (e.g., hands or body information or even, distraction detection from specific actions (e.g., phone usage. Additionally, these algorithms should be included in an embedded device or system inside a car. This is not a trivial task and several requirements must be taken into account: reliability, real-time performance, low cost, small size, low power consumption, flexibility and short time-to-market. The key points for the development and implementation of sensors to carry out the detection of distraction will also be reviewed. This paper shows a review of the role of computer vision technology applied to the development of monitoring systems to detect distraction. Some key points considered as both future work and challenges ahead yet to be solved will also be addressed.
Driver Distraction Using Visual-Based Sensors and Algorithms.
Fernández, Alberto; Usamentiaga, Rubén; Carús, Juan Luis; Casado, Rubén
2016-10-28
Driver distraction, defined as the diversion of attention away from activities critical for safe driving toward a competing activity, is increasingly recognized as a significant source of injuries and fatalities on the roadway. Additionally, the trend towards increasing the use of in-vehicle information systems is critical because they induce visual, biomechanical and cognitive distraction and may affect driving performance in qualitatively different ways. Non-intrusive methods are strongly preferred for monitoring distraction, and vision-based systems have appeared to be attractive for both drivers and researchers. Biomechanical, visual and cognitive distractions are the most commonly detected types in video-based algorithms. Many distraction detection systems only use a single visual cue and therefore, they may be easily disturbed when occlusion or illumination changes appear. Moreover, the combination of these visual cues is a key and challenging aspect in the development of robust distraction detection systems. These visual cues can be extracted mainly by using face monitoring systems but they should be completed with more visual cues (e.g., hands or body information) or even, distraction detection from specific actions (e.g., phone usage). Additionally, these algorithms should be included in an embedded device or system inside a car. This is not a trivial task and several requirements must be taken into account: reliability, real-time performance, low cost, small size, low power consumption, flexibility and short time-to-market. The key points for the development and implementation of sensors to carry out the detection of distraction will also be reviewed. This paper shows a review of the role of computer vision technology applied to the development of monitoring systems to detect distraction. Some key points considered as both future work and challenges ahead yet to be solved will also be addressed.
POTENTIAL OF UAV BASED CONVERGENT PHOTOGRAMMETRY IN MONITORING REGENERATION STANDARDS
Directory of Open Access Journals (Sweden)
U. Vepakomma
2015-08-01
Full Text Available Several thousand hectares of forest blocks are regenerating after harvest in Canada. Monitoring their performance over different stages of growth is critical in ensuring future productivity and ecological balance. Tools for rapid evaluation can support timely and reliable planning of interventions. Conventional ground surveys or visual image assessments are either time intensive or inaccurate, while alternate operational remote sensing tools are unavailable. In this study, we test the feasibility and strength of UAV-based photogrammetry with an EO camera on a UAV platform in assessing regeneration performance. Specifically we evaluated stocking, spatial density and height distribution of naturally growing (irregularly spaced stems or planted (regularly spaced stems conifer regeneration in different phases of growth. Standard photogrammetric workflow was applied on the 785 acquired images for 3D reconstruction of the study sites. The required parameters were derived based on automated single stem detection algorithm developed in-house. Comparing with field survey data, preliminary results hold promise. Future studies are planned to expand the scope to larger areas and different stand conditions.
Neutron Sources for Standard-Based Testing
Energy Technology Data Exchange (ETDEWEB)
Radev, Radoslav [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McLean, Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2014-11-10
The DHS TC Standards and the consensus ANSI Standards use ^{252}Cf as the neutron source for performance testing because its energy spectrum is similar to the ^{235}U and ^{239}Pu fission sources used in nuclear weapons. An emission rate of 20,000 ± 20% neutrons per second is used for testing of the radiological requirements both in the ANSI standards and the TCS. Determination of the accurate neutron emission rate of the test source is important for maintaining consistency and agreement between testing results obtained at different testing facilities. Several characteristics in the manufacture and the decay of the source need to be understood and accounted for in order to make an accurate measurement of the performance of the neutron detection instrument. Additionally, neutron response characteristics of the particular instrument need to be known and taken into account as well as neutron scattering in the testing environment.
An Intelligent Nonparametric GS Detection Algorithm Based on Adaptive Threshold Selection
Directory of Open Access Journals (Sweden)
Zhang Lin
2012-12-01
Full Text Available In modern radar systems, the clutter’s statistic characters are unknown. With this clutter, the capability of CFAR of parametric detection algorithms will decline. So nonparametric detection algorithms become very important. An intelligent nonparametric Generalized Sign (GS detection algorithm Variability Index-Generalized Sign (VI-GS based on adaptive threshold selection is proposed. The VI-GS detection algorithm comploys a composite approach based on the GS detection algorithm, the Trimmed GS detection algorithm (TGS and the Greatest Of GS detection algorithm (GO-GS. The performance of this detection algorithm in the nonhomogenous clutter background is analyzed respectively based on simulated Gaussian distributed clutter and real radar data. These results show that it performs robustly in the homogeneous background as well as the nonhomogeneous background.
Q-learning-based adjustable fixed-phase quantum Grover search algorithm
International Nuclear Information System (INIS)
Guo Ying; Shi Wensha; Wang Yijun; Hu, Jiankun
2017-01-01
We demonstrate that the rotation phase can be suitably chosen to increase the efficiency of the phase-based quantum search algorithm, leading to a dynamic balance between iterations and success probabilities of the fixed-phase quantum Grover search algorithm with Q-learning for a given number of solutions. In this search algorithm, the proposed Q-learning algorithm, which is a model-free reinforcement learning strategy in essence, is used for performing a matching algorithm based on the fraction of marked items λ and the rotation phase α. After establishing the policy function α = π(λ), we complete the fixed-phase Grover algorithm, where the phase parameter is selected via the learned policy. Simulation results show that the Q-learning-based Grover search algorithm (QLGA) enables fewer iterations and gives birth to higher success probabilities. Compared with the conventional Grover algorithms, it avoids the optimal local situations, thereby enabling success probabilities to approach one. (author)
Optimization of Pressurizer Based on Genetic-Simplex Algorithm
Energy Technology Data Exchange (ETDEWEB)
Wang, Cheng; Yan, Chang Qi; Wang, Jian Jun [Harbin Engineering University, Harbin (China)
2014-08-15
Pressurizer is one of key components in nuclear power system. It's important to control the dimension in the design of pressurizer through optimization techniques. In this work, a mathematic model of a vertical electric heating pressurizer was established. A new Genetic-Simplex Algorithm (GSA) that combines genetic algorithm and simplex algorithm was developed to enhance the searching ability, and the comparison among modified and original algorithms is conducted by calculating the benchmark function. Furthermore, the optimization design of pressurizer, taking minimization of volume and net weight as objectives, was carried out considering thermal-hydraulic and geometric constraints through GSA. The results indicate that the mathematical model is agreeable for the pressurizer and the new algorithm is more effective than the traditional genetic algorithm. The optimization design shows obvious validity and can provide guidance for real engineering design.
Maintenance of Process Control Algorithms based on Dynamic Program Slicing
DEFF Research Database (Denmark)
Hansen, Ole Fink; Andersen, Nils Axel; Ravn, Ole
2010-01-01
Today’s industrial control systems gradually lose performance after installation and must be regularly maintained by means of adjusting parameters and modifying the control algorithm, in order to regain high performance. Industrial control algorithms are complex software systems, and it is partic...... modifying the existing control algorithm, which makes the solution well suited for industrial applications.......Today’s industrial control systems gradually lose performance after installation and must be regularly maintained by means of adjusting parameters and modifying the control algorithm, in order to regain high performance. Industrial control algorithms are complex software systems......, and it is particularly difficult to locate causes of performance loss, while readjusting the algorithm once the cause of performance loss is actually realized and found is relatively simple. In this paper we present a software-engineering approach to the maintenance problem, which provides tools for exploring...
Optimization of Pressurizer Based on Genetic-Simplex Algorithm
International Nuclear Information System (INIS)
Wang, Cheng; Yan, Chang Qi; Wang, Jian Jun
2014-01-01
Pressurizer is one of key components in nuclear power system. It's important to control the dimension in the design of pressurizer through optimization techniques. In this work, a mathematic model of a vertical electric heating pressurizer was established. A new Genetic-Simplex Algorithm (GSA) that combines genetic algorithm and simplex algorithm was developed to enhance the searching ability, and the comparison among modified and original algorithms is conducted by calculating the benchmark function. Furthermore, the optimization design of pressurizer, taking minimization of volume and net weight as objectives, was carried out considering thermal-hydraulic and geometric constraints through GSA. The results indicate that the mathematical model is agreeable for the pressurizer and the new algorithm is more effective than the traditional genetic algorithm. The optimization design shows obvious validity and can provide guidance for real engineering design
Directory of Open Access Journals (Sweden)
Hongping Hu
2017-01-01
Full Text Available Gravitational Search Algorithm (GSA is a widely used metaheuristic algorithm. Although fewer parameters in GSA were adjusted, GSA has a slow convergence rate. In this paper, we change the constant acceleration coefficients to be the exponential function on the basis of combination of GSA and PSO (PSO-GSA and propose an improved PSO-GSA algorithm (written as I-PSO-GSA for solving two kinds of classifications: surface water quality and the moving direction of robots. I-PSO-GSA is employed to optimize weights and biases of backpropagation (BP neural network. The experimental results show that, being compared with combination of PSO and GSA (PSO-GSA, single PSO, and single GSA for optimizing the parameters of BP neural network, I-PSO-GSA outperforms PSO-GSA, PSO, and GSA and has better classification accuracy for these two actual problems.
A genetic-based algorithm for personalized resistance training
Directory of Open Access Journals (Sweden)
N Jones
2016-04-01
Full Text Available Association studies have identified dozens of genetic variants linked to training responses and sport-related traits. However, no intervention studies utilizing the idea of personalised training based on athlete’s genetic profile have been conducted. Here we propose an algorithm that allows achieving greater results in response to high- or low-intensity resistance training programs by predicting athlete’s potential for the development of power and endurance qualities with the panel of 15 performance-associated gene polymorphisms. To develop and validate such an algorithm we performed two studies in independent cohorts of male athletes (study 1: athletes from different sports (n=28; study 2: soccer players (n=39. In both studies athletes completed an eight-week high- or low-intensity resistance training program, which either matched or mismatched their individual genotype. Two variables of explosive power and aerobic fitness, as measured by the countermovement jump (CMJ and aerobic 3-min cycle test (Aero3 were assessed pre and post 8 weeks of resistance training. In study 1, the athletes from the matched groups (i.e. high-intensity trained with power genotype or low-intensity trained with endurance genotype significantly increased results in CMJ (P=0.0005 and Aero3 (P=0.0004. Whereas, athletes from the mismatched group (i.e. high-intensity trained with endurance genotype or low-intensity trained with power genotype demonstrated non-significant improvements in CMJ (P=0.175 and less prominent results in Aero3 (P=0.0134. In study 2, soccer players from the matched group also demonstrated significantly greater (P<0.0001 performance changes in both tests compared to the mismatched group. Among non- or low responders of both studies, 82% of athletes (both for CMJ and Aero3 were from the mismatched group (P<0.0001. Our results indicate that matching the individual’s genotype with the appropriate training modality leads to more effective resistance
Hardware Accelerators Targeting a Novel Group Based Packet Classification Algorithm
Directory of Open Access Journals (Sweden)
O. Ahmed
2013-01-01
Full Text Available Packet classification is a ubiquitous and key building block for many critical network devices. However, it remains as one of the main bottlenecks faced when designing fast network devices. In this paper, we propose a novel Group Based Search packet classification Algorithm (GBSA that is scalable, fast, and efficient. GBSA consumes an average of 0.4 megabytes of memory for a 10 k rule set. The worst-case classification time per packet is 2 microseconds, and the preprocessing speed is 3 M rules/second based on an Xeon processor operating at 3.4 GHz. When compared with other state-of-the-art classification techniques, the results showed that GBSA outperforms the competition with respect to speed, memory usage, and processing time. Moreover, GBSA is amenable to implementation in hardware. Three different hardware implementations are also presented in this paper including an Application Specific Instruction Set Processor (ASIP implementation and two pure Register-Transfer Level (RTL implementations based on Impulse-C and Handel-C flows, respectively. Speedups achieved with these hardware accelerators ranged from 9x to 18x compared with a pure software implementation running on an Xeon processor.
An Improved PDR Indoor Locaion Algorithm Based on Probabilistic Constraints
You, Y.; Zhang, T.; Liu, Y.; Lu, Y.; Chu, X.; Feng, C.; Liu, S.
2017-09-01
In this paper, we proposed an indoor pedestrian positioning method which is probabilistic constrained by "multi-target encounter" when the initial position is known. The method is based on the Pedestrian Dead Reckoning (PDR) method. According to the PDR method of positioning error size and indoor road network structure, the buffer distance is determined reasonably and the buffer centering on the PDR location is generated. At the same time, key nodes are selected based on indoor network. In the premise of knowing the distance between multiple key nodes, the forward distance of pedestrians which entered from different nodes can be calculated and then we sum their distances and compared with the known distance between the key nodes, which determines whether pedestrians meet. When pedestrians meet, each two are seen as a cluster. The algorithm determines whether the range of the intersection of the buffer meet the conditions. When the condition is satisfied, the centre of the intersection area is taken as the pedestrian position. At the same time, based on the angle mutation of pedestrian which caused by the special structure of the indoor staircase, the pedestrian's location is matched to the real location of the key landmark (staircase). Then the cumulative error of the PDR method is eliminated. The method can locate more than one person at the same time, as long as you know the true location of a person, you can also know everyone's real location in the same cluster and efficiently achieve indoor pedestrian positioning.
Genetic Algorithm-based Affine Parameter Estimation for Shape Recognition
Directory of Open Access Journals (Sweden)
Yuxing Mao
2014-06-01
Full Text Available Shape recognition is a classically difficult problem because of the affine transformation between two shapes. The current study proposes an affine parameter estimation method for shape recognition based on a genetic algorithm (GA. The contributions of this study are focused on the extraction of affine-invariant features, the individual encoding scheme, and the fitness function construction policy for a GA. First, the affine-invariant characteristics of the centroid distance ratios (CDRs of any two opposite contour points to the barycentre are analysed. Using different intervals along the azimuth angle, the different numbers of CDRs of two candidate shapes are computed as representations of the shapes, respectively. Then, the CDRs are selected based on predesigned affine parameters to construct the fitness function. After that, a GA is used to search for the affine parameters with optimal matching between candidate shapes, which serve as actual descriptions of the affine transformation between the shapes. Finally, the CDRs are resampled based on the estimated parameters to evaluate the similarity of the shapes for classification. The experimental results demonstrate the robust performance of the proposed method in shape recognition with translation, scaling, rotation and distortion.
AN IMPROVED PDR INDOOR LOCAION ALGORITHM BASED ON PROBABILISTIC CONSTRAINTS
Directory of Open Access Journals (Sweden)
Y. You
2017-09-01
Full Text Available In this paper, we proposed an indoor pedestrian positioning method which is probabilistic constrained by "multi-target encounter" when the initial position is known. The method is based on the Pedestrian Dead Reckoning (PDR method. According to the PDR method of positioning error size and indoor road network structure, the buffer distance is determined reasonably and the buffer centering on the PDR location is generated. At the same time, key nodes are selected based on indoor network. In the premise of knowing the distance between multiple key nodes, the forward distance of pedestrians which entered from different nodes can be calculated and then we sum their distances and compared with the known distance between the key nodes, which determines whether pedestrians meet. When pedestrians meet, each two are seen as a cluster. The algorithm determines whether the range of the intersection of the buffer meet the conditions. When the condition is satisfied, the centre of the intersection area is taken as the pedestrian position. At the same time, based on the angle mutation of pedestrian which caused by the special structure of the indoor staircase, the pedestrian's location is matched to the real location of the key landmark (staircase. Then the cumulative error of the PDR method is eliminated. The method can locate more than one person at the same time, as long as you know the true location of a person, you can also know everyone’s real location in the same cluster and efficiently achieve indoor pedestrian positioning.
Using PSO-Based Hierarchical Feature Selection Algorithm
Directory of Open Access Journals (Sweden)
Zhiwei Ji
2014-01-01
Full Text Available Hepatocellular carcinoma (HCC is one of the most common malignant tumors. Clinical symptoms attributable to HCC are usually absent, thus often miss the best therapeutic opportunities. Traditional Chinese Medicine (TCM plays an active role in diagnosis and treatment of HCC. In this paper, we proposed a particle swarm optimization-based hierarchical feature selection (PSOHFS model to infer potential syndromes for diagnosis of HCC. Firstly, the hierarchical feature representation is developed by a three-layer tree. The clinical symptoms and positive score of patient are leaf nodes and root in the tree, respectively, while each syndrome feature on the middle layer is extracted from a group of symptoms. Secondly, an improved PSO-based algorithm is applied in a new reduced feature space to search an optimal syndrome subset. Based on the result of feature selection, the causal relationships of symptoms and syndromes are inferred via Bayesian networks. In our experiment, 147 symptoms were aggregated into 27 groups and 27 syndrome features were extracted. The proposed approach discovered 24 syndromes which obviously improved the diagnosis accuracy. Finally, the Bayesian approach was applied to represent the causal relationships both at symptom and syndrome levels. The results show that our computational model can facilitate the clinical diagnosis of HCC.
DEFF Research Database (Denmark)
Cook, Gerald; Lin, Ching-Fang
1980-01-01
The local linearization algorithm is presented as a possible numerical integration scheme to be used in real-time simulation. A second-order nonlinear example problem is solved using different methods. The local linearization approach is shown to require less computing time and give significant...... improvement in accuracy over the classical second-order integration methods....
A scalable method for parallelizing sampling-based motion planning algorithms
Jacobs, Sam Ade
2012-05-01
This paper describes a scalable method for parallelizing sampling-based motion planning algorithms. It subdivides configuration space (C-space) into (possibly overlapping) regions and independently, in parallel, uses standard (sequential) sampling-based planners to construct roadmaps in each region. Next, in parallel, regional roadmaps in adjacent regions are connected to form a global roadmap. By subdividing the space and restricting the locality of connection attempts, we reduce the work and inter-processor communication associated with nearest neighbor calculation, a critical bottleneck for scalability in existing parallel motion planning methods. We show that our method is general enough to handle a variety of planning schemes, including the widely used Probabilistic Roadmap (PRM) and Rapidly-exploring Random Trees (RRT) algorithms. We compare our approach to two other existing parallel algorithms and demonstrate that our approach achieves better and more scalable performance. Our approach achieves almost linear scalability on a 2400 core LINUX cluster and on a 153,216 core Cray XE6 petascale machine. © 2012 IEEE.
Research of image matching algorithm based on local features
Sun, Wei
2015-07-01
For the problem of low efficiency in SIFT algorithm while using exhaustive method to search the nearest neighbor and next nearest neighbor of feature points, this paper introduces K-D tree algorithm, to index the feature points extracted in database images according to the tree structure, at the same time, using the concept of a weighted priority, further improves the algorithm, to further enhance the efficiency of feature matching.
Directory of Open Access Journals (Sweden)
Kiran Teeparthi
2017-04-01
Full Text Available In this paper, a new low level with teamwork heterogeneous hybrid particle swarm optimization and artificial physics optimization (HPSO-APO algorithm is proposed to solve the multi-objective security constrained optimal power flow (MO-SCOPF problem. Being engaged with the environmental and total production cost concerns, wind energy is highly penetrating to the main grid. The total production cost, active power losses and security index are considered as the objective functions. These are simultaneously optimized using the proposed algorithm for base case and contingency cases. Though PSO algorithm exhibits good convergence characteristic, fails to give near optimal solution. On the other hand, the APO algorithm shows the capability of improving diversity in search space and also to reach a near global optimum point, whereas, APO is prone to premature convergence. The proposed hybrid HPSO-APO algorithm combines both individual algorithm strengths, to get balance between global and local search capability. The APO algorithm is improving diversity in the search space of the PSO algorithm. The hybrid optimization algorithm is employed to alleviate the line overloads by generator rescheduling during contingencies. The standard IEEE 30-bus and Indian 75-bus practical test systems are considered to evaluate the robustness of the proposed method. The simulation results reveal that the proposed HPSO-APO method is more efficient and robust than the standard PSO and APO methods in terms of getting diverse Pareto optimal solutions. Hence, the proposed hybrid method can be used for the large interconnected power system to solve MO-SCOPF problem with integration of wind and thermal generators.
An Association Rule Mining Algorithm Based on a Boolean Matrix
Directory of Open Access Journals (Sweden)
Hanbing Liu
2007-09-01
Full Text Available Association rule mining is a very important research topic in the field of data mining. Discovering frequent itemsets is the key process in association rule mining. Traditional association rule algorithms adopt an iterative method to discovery, which requires very large calculations and a complicated transaction process. Because of this, a new association rule algorithm called ABBM is proposed in this paper. This new algorithm adopts a Boolean vector "relational calculus" method to discovering frequent itemsets. Experimental results show that this algorithm can quickly discover frequent itemsets and effectively mine potential association rules.
Directory of Open Access Journals (Sweden)
E. E. Miandoab
2016-06-01
Full Text Available The inherent uncertainty to factors such as technology and creativity in evolving software development is a major challenge for the management of software projects. To address these challenges the project manager, in addition to examining the project progress, may cope with problems such as increased operating costs, lack of resources, and lack of implementation of key activities to better plan the project. Software Cost Estimation (SCE models do not fully cover new approaches. And this lack of coverage is causing problems in the consumer and producer ends. In order to avoid these problems, many methods have already been proposed. Model-based methods are the most familiar solving technique. But it should be noted that model-based methods use a single formula and constant values, and these methods are not responsive to the increasing developments in the field of software engineering. Accordingly, researchers have tried to solve the problem of SCE using machine learning algorithms, data mining algorithms, and artificial neural networks. In this paper, a hybrid algorithm that combines COA-Cuckoo optimization and K-Nearest Neighbors (KNN algorithms is used. The so-called composition algorithm runs on six different data sets and is evaluated based on eight evaluation criteria. The results show an improved accuracy of estimated cost.
General Quantum Meet-in-the-Middle Search Algorithm Based on Target Solution of Fixed Weight
Fu, Xiang-Qun; Bao, Wan-Su; Wang, Xiang; Shi, Jian-Hong
2016-10-01
Similar to the classical meet-in-the-middle algorithm, the storage and computation complexity are the key factors that decide the efficiency of the quantum meet-in-the-middle algorithm. Aiming at the target vector of fixed weight, based on the quantum meet-in-the-middle algorithm, the algorithm for searching all n-product vectors with the same weight is presented, whose complexity is better than the exhaustive search algorithm. And the algorithm can reduce the storage complexity of the quantum meet-in-the-middle search algorithm. Then based on the algorithm and the knapsack vector of the Chor-Rivest public-key crypto of fixed weight d, we present a general quantum meet-in-the-middle search algorithm based on the target solution of fixed weight, whose computational complexity is \\sumj = 0d {(O(\\sqrt {Cn - k + 1d - j }) + O(C_kj log C_k^j))} with Σd i =0 Ck i memory cost. And the optimal value of k is given. Compared to the quantum meet-in-the-middle search algorithm for knapsack problem and the quantum algorithm for searching a target solution of fixed weight, the computational complexity of the algorithm is lower. And its storage complexity is smaller than the quantum meet-in-the-middle-algorithm. Supported by the National Basic Research Program of China under Grant No. 2013CB338002 and the National Natural Science Foundation of China under Grant No. 61502526
Gui, Chun; Zhang, Ruisheng; Zhao, Zhili; Wei, Jiaxuan; Hu, Rongjing
In order to deal with stochasticity in center node selection and instability in community detection of label propagation algorithm, this paper proposes an improved label propagation algorithm named label propagation algorithm based on community belonging degree (LPA-CBD) that employs community belonging degree to determine the number and the center of community. The general process of LPA-CBD is that the initial community is identified by the nodes with the maximum degree, and then it is optimized or expanded by community belonging degree. After getting the rough structure of network community, the remaining nodes are labeled by using label propagation algorithm. The experimental results on 10 real-world networks and three synthetic networks show that LPA-CBD achieves reasonable community number, better algorithm accuracy and higher modularity compared with other four prominent algorithms. Moreover, the proposed algorithm not only has lower algorithm complexity and higher community detection quality, but also improves the stability of the original label propagation algorithm.
Research on Algorithm of Indoor Positioning System Based on Low Energy Bluetooth 4.0
Directory of Open Access Journals (Sweden)
Zhang De-Yi
2017-01-01
Full Text Available This paper mainly analyzes and compares several well-known algorithms for indoor positioning. By many nodes jump tests, relation between RSSI and distance and relation between LQI and packet error rate can be obtained. Then based on the relations, LQI confidence coefficient is classified. By comparing these different kinds of algorithms, this paper perfects the algorithm of fuzzy fingerprint indoor positioning, which can shorten the time required to process off-line data. At last, this algorithm was verified by indoor and outdoor experiments, by which we can know that this algorithm greatly lower RSSI error. And it is concluded that this algorithm has a better positioning accuracy.
On the vulnerability of iris-based systems to a software attack based on a genetic algorithm
Gómez-Barrero, Marta; Galbally Herrero, Javier; Tomé González, Pedro; Fiérrez, Julián
2012-01-01
The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-33275-3_14 Proceedings of 17th Iberoamerican Congress, CIARP 2012, Buenos Aires, Argentina The vulnerabilities of a standard iris verification system to a novel indirect attack based on a binary genetic algorithm are studied. The experiments are carried out on the iris subcorpus of the publicly available BioSecure DB. The attack has shown a remarkable performance, thus proving the lack of robustness o...
An Active Sensor Algorithm for Corn Nitrogen Recommendations Based on a Chlorophyll Meter Algorithm
In previous work we found active canopy sensor reflectance assessments of corn (Zea mays L.) N status acquired at two growth stages (V11 and V15) have the greatest potential for directing in-season N applications, but emphasized an algorithm was needed to translate sensor readings into appropriate N...
Visual Contrast Enhancement Algorithm Based on Histogram Equalization.
Ting, Chih-Chung; Wu, Bing-Fei; Chung, Meng-Liang; Chiu, Chung-Cheng; Wu, Ya-Ching
2015-07-13
Image enhancement techniques primarily improve the contrast of an image to lend it a better appearance. One of the popular enhancement methods is histogram equalization (HE) because of its simplicity and effectiveness. However, it is rarely applied to consumer electronics products because it can cause excessive contrast enhancement and feature loss problems. These problems make the images processed by HE look unnatural and introduce unwanted artifacts in them. In this study, a visual contrast enhancement algorithm (VCEA) based on HE is proposed. VCEA considers the requirements of the human visual perception in order to address the drawbacks of HE. It effectively solves the excessive contrast enhancement problem by adjusting the spaces between two adjacent gray values of the HE histogram. In addition, VCEA reduces the effects of the feature loss problem by using the obtained spaces. Furthermore, VCEA enhances the detailed textures of an image to generate an enhanced image with better visual quality. Experimental results show that images obtained by applying VCEA have higher contrast and are more suited to human visual perception than those processed by HE and other HE-based methods.
Visual Contrast Enhancement Algorithm Based on Histogram Equalization
Directory of Open Access Journals (Sweden)
Chih-Chung Ting
2015-07-01
Full Text Available Image enhancement techniques primarily improve the contrast of an image to lend it a better appearance. One of the popular enhancement methods is histogram equalization (HE because of its simplicity and effectiveness. However, it is rarely applied to consumer electronics products because it can cause excessive contrast enhancement and feature loss problems. These problems make the images processed by HE look unnatural and introduce unwanted artifacts in them. In this study, a visual contrast enhancement algorithm (VCEA based on HE is proposed. VCEA considers the requirements of the human visual perception in order to address the drawbacks of HE. It effectively solves the excessive contrast enhancement problem by adjusting the spaces between two adjacent gray values of the HE histogram. In addition, VCEA reduces the effects of the feature loss problem by using the obtained spaces. Furthermore, VCEA enhances the detailed textures of an image to generate an enhanced image with better visual quality. Experimental results show that images obtained by applying VCEA have higher contrast and are more suited to human visual perception than those processed by HE and other HE-based methods.
A MATLAB GUI based algorithm for modelling Magnetotelluric data
Timur, Emre; Onsen, Funda
2016-04-01
The magnetotelluric method is an electromagnetic survey technique that images the electrical resistivity distribution of layers in subsurface depths. Magnetotelluric method measures simultaneously total electromagnetic field components such as both time-varying magnetic field B(t) and induced electric field E(t). At the same time, forward modeling of magnetotelluric method is so beneficial for survey planning purpose, for comprehending the method, especially for students, and as part of an iteration process in inverting measured data. The MTINV program can be used to model and to interpret geophysical electromagnetic (EM) magnetotelluric (MT) measurements using a horizontally layered earth model. This program uses either the apparent resistivity and phase components of the MT data together or the apparent resistivity data alone. Parameter optimization, which is based on linearized inversion method, can be utilized in 1D interpretations. In this study, a new MATLAB GUI based algorithm has been written for the 1D-forward modeling of magnetotelluric response function for multiple layers to use in educational studies. The code also includes an automatic Gaussian noise option for a demanded ratio value. Numerous applications were carried out and presented for 2,3 and 4 layer models and obtained theoretical data were interpreted using MTINV, in order to evaluate the initial parameters and effect of noise. Keywords: Education, Forward Modelling, Inverse Modelling, Magnetotelluric
Smoothing and enhancement algorithms for underwater images based on partial differential equations
Nnolim, Uche A.
2017-03-01
The formulation and application of an algorithm based on partial differential equations for processing underwater images are presented. The proposed algorithm performs simultaneous smoothing and enhancement operations on the image and yields better contrast enhancement, color correction, and rendition compared to conventional algorithms. Further modification of the proposed algorithm and its combination with the powerful contrast-limited adaptive histogram equalization (CLAHE) method using an adaptive computation of the clip limit enhances the local enhancement results while mitigating the color distortion and intrinsic noise enhancement observed in the CLAHE algorithm. Ultimately, an optimized version of the algorithm based on image information metric is developed for best possible results for all images. The method is compared with existing algorithms from the literature using subjective and objective measures, and results indicate considerable improvement over several well-known algorithms.
Multi-objective mixture-based iterated density estimation evolutionary algorithms
Thierens, D.; Bosman, P.A.N.
2001-01-01
We propose an algorithm for multi-objective optimization using a mixture-based iterated density estimation evolutionary algorithm (MIDEA). The MIDEA algorithm is a prob- abilistic model building evolutionary algo- rithm that constructs at each generation a mixture of factorized probability
The Effect of Swarming on a Voltage Potential-Based Conflict Resolution Algorithm
Maas, J.B.; Sunil, E.; Ellerbroek, J.; Hoekstra, J.M.; Tra, M.A.P.
2016-01-01
Several conflict resolution algorithms for airborne self-separation rely on principles derived from the repulsive forces that exist between similarly charged particles. This research investigates whether the performance of the Modified Voltage Potential algorithm, which is based on this algorithm,
Energy Technology Data Exchange (ETDEWEB)
Kamph, Jerome Henri; Robinson, Darren; Wetter, Michael
2009-09-01
There is an increasing interest in the use of computer algorithms to identify combinations of parameters which optimise the energy performance of buildings. For such problems, the objective function can be multi-modal and needs to be approximated numerically using building energy simulation programs. As these programs contain iterative solution algorithms, they introduce discontinuities in the numerical approximation to the objective function. Metaheuristics often work well for such problems, but their convergence to a global optimum cannot be established formally. Moreover, different algorithms tend to be suited to particular classes of optimization problems. To shed light on this issue we compared the performance of two metaheuristics, the hybrid CMA-ES/HDE and the hybrid PSO/HJ, in minimizing standard benchmark functions and real-world building energy optimization problems of varying complexity. From this we find that the CMA-ES/HDE performs well on more complex objective functions, but that the PSO/HJ more consistently identifies the global minimum for simpler objective functions. Both identified similar values in the objective functions arising from energy simulations, but with different combinations of model parameters. This may suggest that the objective function is multi-modal. The algorithms also correctly identified some non-intuitive parameter combinations that were caused by a simplified control sequence of the building energy system that does not represent actual practice, further reinforcing their utility.
Standardized quality in MOOC based learning
Directory of Open Access Journals (Sweden)
Maiorescu Irina
2015-04-01
Full Text Available Quality in the field of e-learning and, particularly, in the field of MOOC( Massive Open Online Courses, is a topic of growing importance in both academic institutions and in the private sector as it has generally been proved that quality management can contribute to improving the performance of organizations, regardless of their object of activity. Despite the fact that there are standards relating to quality management in a general manner, professionals, academic staff, specialists and bodies felt the need for having a standardized approach of the quality in the sector of e-learning. Therefore, in the last years, in different countries quality guidelines have been developed and used for e-Learning or distance education (for example the ASTD criteria for e- Learning, the BLA Quality Mark, Quality Platform Learning by D-ELAN etc.. The current paper aims to give insights to this new form of online education provided by MOOC platforms using the specific quality standard approach.
Research and Applications of Shop Scheduling Based on Genetic Algorithms
Directory of Open Access Journals (Sweden)
Hang ZHAO
Full Text Available ABSTRACT Shop Scheduling is an important factor affecting the efficiency of production, efficient scheduling method and a research and application for optimization technology play an important role for manufacturing enterprises to improve production efficiency, reduce production costs and many other aspects. Existing studies have shown that improved genetic algorithm has solved the limitations that existed in the genetic algorithm, the objective function is able to meet customers' needs for shop scheduling, and the future research should focus on the combination of genetic algorithm with other optimized algorithms. In this paper, in order to overcome the shortcomings of early convergence of genetic algorithm and resolve local minimization problem in search process,aiming at mixed flow shop scheduling problem, an improved cyclic search genetic algorithm is put forward, and chromosome coding method and corresponding operation are given.The operation has the nature of inheriting the optimal individual ofthe previous generation and is able to avoid the emergence of local minimum, and cyclic and crossover operation and mutation operation can enhance the diversity of the population and then quickly get the optimal individual, and the effectiveness of the algorithm is validated. Experimental results show that the improved algorithm can well avoid the emergency of local minimum and is rapid in convergence.
An Improved Direction Finding Algorithm Based on Toeplitz Approximation
Directory of Open Access Journals (Sweden)
Qing Wang
2013-01-01
Full Text Available In this paper, a novel direction of arrival (DOA estimation algorithm called the Toeplitz fourth order cumulants multiple signal classification method (TFOC-MUSIC algorithm is proposed through combining a fast MUSIC-like algorithm termed the modified fourth order cumulants MUSIC (MFOC-MUSIC algorithm and Toeplitz approximation. In the proposed algorithm, the redundant information in the cumulants is removed. Besides, the computational complexity is reduced due to the decreased dimension of the fourth-order cumulants matrix, which is equal to the number of the virtual array elements. That is, the effective array aperture of a physical array remains unchanged. However, due to finite sampling snapshots, there exists an estimation error of the reduced-rank FOC matrix and thus the capacity of DOA estimation degrades. In order to improve the estimation performance, Toeplitz approximation is introduced to recover the Toeplitz structure of the reduced-dimension FOC matrix just like the ideal one which has the Toeplitz structure possessing optimal estimated results. The theoretical formulas of the proposed algorithm are derived, and the simulations results are presented. From the simulations, in comparison with the MFOC-MUSIC algorithm, it is concluded that the TFOC-MUSIC algorithm yields an excellent performance in both spatially-white noise and in spatially-color noise environments.
Computation of watersheds based on parallel graph algorithms
Meijster, A.; Roerdink, J.B.T.M.; Maragos, P; Schafer, RW; Butt, MA
1996-01-01
In this paper the implementation of a parallel watershed algorithm is described. The algorithm has been implemented on a Cray J932, which is a shared memory architecture with 32 processors. The watershed transform has generally been considered to be inherently sequential, but recently a few research
On Chudnovsky-Based Arithmetic Algorithms in Finite Fields
Atighehchi, Kevin; Ballet, Stéphane; Bonnecaze, Alexis; Rolland, Robert
2015-01-01
Thanks to a new construction of the so-called Chudnovsky-Chudnovsky multiplication algorithm, we design efficient algorithms for both the exponentiation and the multiplication in finite fields. They are tailored to hardware implementation and they allow computations to be parallelized while maintaining a low number of bilinear multiplications. We give an example with the finite field ${\\mathbb F}_{16^{13}}$.
Comparing Random-based and k-Anonymity-Based Algorithms for Graph Anonymization
Casas Roma, Jordi; Torra, Vicenç; Herrera Joancomartí, Jordi
2012-01-01
Recently, several anonymization algorithms have appeared for privacy preservation on graphs. Some of them are based on random- ization techniques and on k-anonymity concepts. We can use both of them to obtain an anonymized graph with a given k-anonymity value. In this paper we compare algorithms based on both techniques in order to obtain an anonymized graph with a desired k-anonymity value. We want to analyze the complexity of these methods to generate anonymized graphs and the quality...
Directory of Open Access Journals (Sweden)
Ari Shawakat Tahir
2015-12-01
Full Text Available The Steganography is an art and science of hiding information by embedding messages within other, seemingly harmless messages and lots of researches are working in it. Proposed system is using AES Algorithm and Lossy technique to overcome the limitation of previous work and increasing the process’s speed. The sender uses AES Algorithm to encrypt message and image, then using LSB technique to hide encrypted data in encrypted message. The receive get the original data using the keys that had been used in encryption process. The proposed system has been implemented in NetBeans 7.3 software uses image and data in different size to find the system’s speed.
Kim, Seonah; Orendt, Anita M; Ferraro, Marta B; Facelli, Julio C
2009-10-01
This article describes the application of our distributed computing framework for crystal structure prediction (CSP) the modified genetic algorithms for crystal and cluster prediction (MGAC), to predict the crystal structure of flexible molecules using the general Amber force field (GAFF) and the CHARMM program. The MGAC distributed computing framework includes a series of tightly integrated computer programs for generating the molecule's force field, sampling crystal structures using a distributed parallel genetic algorithm and local energy minimization of the structures followed by the classifying, sorting, and archiving of the most relevant structures. Our results indicate that the method can consistently find the experimentally known crystal structures of flexible molecules, but the number of missing structures and poor ranking observed in some crystals show the need for further improvement of the potential. Copyright 2009 Wiley Periodicals, Inc.
Research and Implementation of Signature Detection Based on Matching Algorithm
Shi, Jie; Tang, YingJie; Chen, ShiBin
2018-03-01
Errors such as wrong signature or upside down signature occur mostly during gathering in a bookbinding production line, and affect the quality of bookbinding. This paper presents a new algorithm for signature detection to detect these errors rapidly and accurately. The algorithm constructs scale space firstly by making use of pyramid method in morphology, then creates a region of interest by selecting a appropriate Pyramid image, extracts features from regions of interest, and make them matching templates, furthermore, filters the sample image and extracts the contour, finally selects the appropriate similarity coefficient for template matching, and obtain the matching results. This algorithm is implemented with MVtec Haclon software. Experiments show that the algorithm can anti-rotation, has strong robustness. The matching accuracy is 100%, meanwhile, the low time consumption of the algorithm can meet the demand of high-speed production.
Multilevel Image Segmentation Based on an Improved Firefly Algorithm
Directory of Open Access Journals (Sweden)
Kai Chen
2016-01-01
Full Text Available Multilevel image segmentation is time-consuming and involves large computation. The firefly algorithm has been applied to enhancing the efficiency of multilevel image segmentation. However, in some cases, firefly algorithm is easily trapped into local optima. In this paper, an improved firefly algorithm (IFA is proposed to search multilevel thresholds. In IFA, in order to help fireflies escape from local optima and accelerate the convergence, two strategies (i.e., diversity enhancing strategy with Cauchy mutation and neighborhood strategy are proposed and adaptively chosen according to different stagnation stations. The proposed IFA is compared with three benchmark optimal algorithms, that is, Darwinian particle swarm optimization, hybrid differential evolution optimization, and firefly algorithm. The experimental results show that the proposed method can efficiently segment multilevel images and obtain better performance than the other three methods.
Energy conservation in Newmark based time integration algorithms
DEFF Research Database (Denmark)
Krenk, Steen
2006-01-01
Energy balance equations are established for the Newmark time integration algorithm, and for the derived algorithms with algorithmic damping introduced via averaging, the so-called a-methods. The energy balance equations form a sequence applicable to: Newmark integration of the undamped equations...... by the algorithm. The magnitude and character of these terms as well as the associated damping terms are discussed in relation to energy conservation and stability of the algorithms. It is demonstrated that the additional terms in the energy lead to periodic fluctuations of the mechanical energy and are the cause......, and that energy fluctuations take place for integration intervals close to the stability limit. (c) 2006 Elsevier B.V. All rights reserved....
Appraisal of jump distributions in ensemble-based sampling algorithms
Dejanic, Sanda; Scheidegger, Andreas; Rieckermann, Jörg; Albert, Carlo
2017-04-01
Sampling Bayesian posteriors of model parameters is often required for making model-based probabilistic predictions. For complex environmental models, standard Monte Carlo Markov Chain (MCMC) methods are often infeasible because they require too many sequential model runs. Therefore, we focused on ensemble methods that use many Markov chains in parallel, since they can be run on modern cluster architectures. Little is known about how to choose the best performing sampler, for a given application. A poor choice can lead to an inappropriate representation of posterior knowledge. We assessed two different jump moves, the stretch and the differential evolution move, underlying, respectively, the software packages EMCEE and DREAM, which are popular in different scientific communities. For the assessment, we used analytical posteriors with features as they often occur in real posteriors, namely high dimensionality, strong non-linear correlations or multimodality. For posteriors with non-linear features, standard convergence diagnostics based on sample means can be insufficient. Therefore, we resorted to an entropy-based convergence measure. We assessed the samplers by means of their convergence speed, robustness and effective sample sizes. For posteriors with strongly non-linear features, we found that the stretch move outperforms the differential evolution move, w.r.t. all three aspects.
Joint Interference Detection Method for DSSS Communications Based on the OMP Algorithm and CA-CFAR
Zhang Yongshun; Jia Xin; Song Ge
2016-01-01
The existing direct sequence spread spectrum (DSSS) communications interference detection algorithms are confined to the high sampling rate. In order to solve this problem, algorithm for DSSS communications interference detection was designed based on compressive sensing (CS). First of all, the orthogonal matching pursuit (OMP) algorithm was applied to the interference detection in DSSS communications, the advantages and weaknesses of the algorithm were analyzed; Secondly, according to the we...
Multi-stage Fuzzy Power System Stabilizer Based on Modified Shuffled Frog Leaping Algorithm
Yousefi, Nasser
2015-01-01
This paper presents a new strategy based on Multi-stage Fuzzy (MSF) PID controller for damping Power System Stabilizer (PSS) in multi-machine environment using Modified Shuffled Frog Leaping (MSFL) algorithm. The proposed technique is a new meta-heuristic algorithm which is inspired by mating procedure of the honey bee. Actually, the mentioned algorithm is used recently in power systems which demonstrate the good reflex of this algorithm. Also, finding the parameters of PID controller in powe...
Hynes, Martin; Wang, Han; Kilmartin, Liam
2009-01-01
Over the last decade, there has been substantial research interest in the application of accelerometry data for many forms of automated gait and activity analysis algorithms. This paper introduces a summary of new "of-the-shelf" mobile phone handset platforms containing embedded accelerometers which support the development of custom software to implement real time analysis of the accelerometer data. An overview of the main software programming environments which support the development of such software, including Java ME based JSR 256 API, C++ based Motion Sensor API and the Python based "aXYZ" module, is provided. Finally, a sample application is introduced and its performance evaluated in order to illustrate how a standard mobile phone can be used to detect gait activity using such a non-intrusive and easily accepted sensing platform.
Research on compressive sensing reconstruction algorithm based on total variation model
Gao, Yu-xuan; Sun, Huayan; Zhang, Tinghua; Du, Lin
2017-12-01
Compressed sensing for breakthrough Nyquist sampling theorem provides a strong theoretical , making compressive sampling for image signals be carried out simultaneously. In traditional imaging procedures using compressed sensing theory, not only can it reduces the storage space, but also can reduce the demand for detector resolution greatly. Using the sparsity of image signal, by solving the mathematical model of inverse reconfiguration, realize the super-resolution imaging. Reconstruction algorithm is the most critical part of compression perception, to a large extent determine the accuracy of the reconstruction of the image.The reconstruction algorithm based on the total variation (TV) model is more suitable for the compression reconstruction of the two-dimensional image, and the better edge information can be obtained. In order to verify the performance of the algorithm, Simulation Analysis the reconstruction result in different coding mode of the reconstruction algorithm based on the TV reconstruction algorithm. The reconstruction effect of the reconfigurable algorithm based on TV based on the different coding methods is analyzed to verify the stability of the algorithm. This paper compares and analyzes the typical reconstruction algorithm in the same coding mode. On the basis of the minimum total variation algorithm, the Augmented Lagrangian function term is added and the optimal value is solved by the alternating direction method.Experimental results show that the reconstruction algorithm is compared with the traditional classical algorithm based on TV has great advantages, under the low measurement rate can be quickly and accurately recovers target image.
A new chest compression depth feedback algorithm for high-quality CPR based on smartphone.
Song, Yeongtak; Oh, Jaehoon; Chee, Youngjoon
2015-01-01
Although many smartphone application (app) programs provide education and guidance for basic life support, they do not commonly provide feedback on the chest compression depth (CCD) and rate. The validation of its accuracy has not been reported to date. This study was a feasibility assessment of use of the smartphone as a CCD feedback device. In this study, we proposed the concept of a new real-time CCD estimation algorithm using a smartphone and evaluated the accuracy of the algorithm. Using the double integration of the acceleration signal, which was obtained from the accelerometer in the smartphone, we estimated the CCD in real time. Based on its periodicity, we removed the bias error from the accelerometer. To evaluate this instrument's accuracy, we used a potentiometer as the reference depth measurement. The evaluation experiments included three levels of CCD (insufficient, adequate, and excessive) and four types of grasping orientations with various compression directions. We used the difference between the reference measurement and the estimated depth as the error. The error was calculated for each compression. When chest compressions were performed with adequate depth for the patient who was lying on a flat floor, the mean (standard deviation) of the errors was 1.43 (1.00) mm. When the patient was lying on an oblique floor, the mean (standard deviation) of the errors was 3.13 (1.88) mm. The error of the CCD estimation was tolerable for the algorithm to be used in the smartphone-based CCD feedback app to compress more than 51 mm, which is the 2010 American Heart Association guideline.
Wang, Zhun; Cheng, Feiyan; Shi, Junsheng; Huang, Xiaoqiao
2018-01-01
In a low-light scene, capturing color images needs to be at a high-gain setting or a long-exposure setting to avoid a visible flash. However, such these setting will lead to color images with serious noise or motion blur. Several methods have been proposed to improve a noise-color image through an invisible near infrared flash image. A novel method is that the luminance component and the chroma component of the improved color image are estimated from different image sources [1]. The luminance component is estimated mainly from the NIR image via a spectral estimation, and the chroma component is estimated from the noise-color image by denoising. However, it is challenging to estimate the luminance component. This novel method to estimate the luminance component needs to generate the learning data pairs, and the processes and algorithm are complex. It is difficult to achieve practical application. In order to reduce the complexity of the luminance estimation, an improved luminance estimation algorithm is presented in this paper, which is to weight the NIR image and the denoised-color image and the weighted coefficients are based on the mean value and standard deviation of both images. Experimental results show that the same fusion effect at aspect of color fidelity and texture quality is achieved, compared the proposed method with the novel method, however, the algorithm is more simple and practical.
MTRC compensation in high-resolution ISAR imaging via improved polar format algorithm based on ICPF
Liu, Yang; Xu, Shiyou; Chen, Zengping; Yuan, Bin
2014-12-01
In this paper, we present a detailed analysis on the performance degradation of inverse synthetic aperture radar (ISAR) imagery with the polar format algorithm (PFA) due to the inaccurate rotation center. And a novel algorithm is developed to estimate the rotation center for ISAR targets to overcome the degradation. In real ISAR scenarios, the real rotation center shift is usually not coincided with the gravity center of the high-resolution range profile (HRRP), due to the data-driven translational motion compensation. Because of the imprecise information of rotation center, PFA image yields model errors and severe blurring in the cross-range direction. To tackle this problem, an improved PFA based on integrated cubic phase function (ICPF) is proposed. In the method, the rotation center in the slant range is estimated firstly by ICPF, and the signal is shifted accordingly. Finally, the standard PFA algorithm can be carried out straightforwardly. With the proposed method, wide-angle ISAR imagery of non-cooperative targets can be achieved by PFA with improved focus quality. Simulation and real-data experiments confirm the effectiveness of the proposal.
A Modified MinMaxk-Means Algorithm Based on PSO.
Wang, Xiaoyan; Bai, Yanping
The MinMax k -means algorithm is widely used to tackle the effect of bad initialization by minimizing the maximum intraclustering errors. Two parameters, including the exponent parameter and memory parameter, are involved in the executive process. Since different parameters have different clustering errors, it is crucial to choose appropriate parameters. In the original algorithm, a practical framework is given. Such framework extends the MinMax k -means to automatically adapt the exponent parameter to the data set. It has been believed that if the maximum exponent parameter has been set, then the programme can reach the lowest intraclustering errors. However, our experiments show that this is not always correct. In this paper, we modified the MinMax k -means algorithm by PSO to determine the proper values of parameters which can subject the algorithm to attain the lowest clustering errors. The proposed clustering method is tested on some favorite data sets in several different initial situations and is compared to the k -means algorithm and the original MinMax k -means algorithm. The experimental results indicate that our proposed algorithm can reach the lowest clustering errors automatically.
Geomagnetic matching navigation algorithm based on robust estimation
Xie, Weinan; Huang, Liping; Qu, Zhenshen; Wang, Zhenhuan
2017-08-01
The outliers in the geomagnetic survey data seriously affect the precision of the geomagnetic matching navigation and badly disrupt its reliability. A novel algorithm which can eliminate the outliers influence is investigated in this paper. First, the weight function is designed and its principle of the robust estimation is introduced. By combining the relation equation between the matching trajectory and the reference trajectory with the Taylor series expansion for geomagnetic information, a mathematical expression of the longitude, latitude and heading errors is acquired. The robust target function is obtained by the weight function and the mathematical expression. Then the geomagnetic matching problem is converted to the solutions of nonlinear equations. Finally, Newton iteration is applied to implement the novel algorithm. Simulation results show that the matching error of the novel algorithm is decreased to 7.75% compared to the conventional mean square difference (MSD) algorithm, and is decreased to 18.39% to the conventional iterative contour matching algorithm when the outlier is 40nT. Meanwhile, the position error of the novel algorithm is 0.017° while the other two algorithms fail to match when the outlier is 400nT.
Hao, Zi-long; Liu, Yong; Chen, Ruo-wang
2016-11-01
In view of the histogram equalizing algorithm to enhance image in digital image processing, an Infrared Image Gray adaptive adjusting Enhancement Algorithm Based on Gray Redundancy Histogram-dealing Technique is proposed. The algorithm is based on the determination of the entire image gray value, enhanced or lowered the image's overall gray value by increasing appropriate gray points, and then use gray-level redundancy HE method to compress the gray-scale of the image. The algorithm can enhance image detail information. Through MATLAB simulation, this paper compares the algorithm with the histogram equalization method and the algorithm based on gray redundancy histogram-dealing technique , and verifies the effectiveness of the algorithm.
Genetic Algorithm (GA)-Based Inclinometer Layout Optimization.
Liang, Weijie; Zhang, Ping; Chen, Xianping; Cai, Miao; Yang, Daoguo
2015-04-17
This paper presents numerical simulation results of an airflow inclinometer with sensitivity studies and thermal optimization of the printed circuit board (PCB) layout for an airflow inclinometer based on a genetic algorithm (GA). Due to the working principle of the gas sensor, the changes of the ambient temperature may cause dramatic voltage drifts of sensors. Therefore, eliminating the influence of the external environment for the airflow is essential for the performance and reliability of an airflow inclinometer. In this paper, the mechanism of an airflow inclinometer and the influence of different ambient temperatures on the sensitivity of the inclinometer will be examined by the ANSYS-FLOTRAN CFD program. The results show that with changes of the ambient temperature on the sensing element, the sensitivity of the airflow inclinometer is inversely proportional to the ambient temperature and decreases when the ambient temperature increases. GA is used to optimize the PCB thermal layout of the inclinometer. The finite-element simulation method (ANSYS) is introduced to simulate and verify the results of our optimal thermal layout, and the results indicate that the optimal PCB layout greatly improves (by more than 50%) the sensitivity of the inclinometer. The study may be useful in the design of PCB layouts that are related to sensitivity improvement of gas sensors.
Level-1 pixel based tracking trigger algorithm for LHC upgrade
Moon, Chang-Seong
2015-01-01
The Pixel Detector is the innermost detector of the tracking system of the Compact Muon Solenoid (CMS) experiment at CERN Large Hadron Collider (LHC). It precisely determines the interaction point (primary vertex) of the events and the possible secondary vertexes due to heavy flavours ($b$ and $c$ quarks); it is part of the overall tracking system that allows reconstructing the tracks of the charged particles in the events and combined with the magnetic field to measure their impulsion. The pixel detector allows measuring the tracks in the region closest to the interaction point. The Level-1 (real-time) pixel based tracking trigger is a novel trigger system that is currently being studied for the LHC upgrade. An important goal is developing real-time track reconstruction algorithms able to cope with very high rates and high flux of data in a very harsh environment. The pixel detector has an especially crucial role in precisely identifying the primary vertex of the rare physics events from the large pile-up (P...
Parallelization of the model-based iterative reconstruction algorithm DIRA
International Nuclear Information System (INIS)
Oertenberg, A.; Sandborg, M.; Alm Carlsson, G.; Malusek, A.; Magnusson, M.
2016-01-01
New paradigms for parallel programming have been devised to simplify software development on multi-core processors and many-core graphical processing units (GPU). Despite their obvious benefits, the parallelization of existing computer programs is not an easy task. In this work, the use of the Open Multiprocessing (OpenMP) and Open Computing Language (OpenCL) frameworks is considered for the parallelization of the model-based iterative reconstruction algorithm DIRA with the aim to significantly shorten the code's execution time. Selected routines were parallelized using OpenMP and OpenCL libraries; some routines were converted from MATLAB to C and optimised. Parallelization of the code with the OpenMP was easy and resulted in an overall speedup of 15 on a 16-core computer. Parallelization with OpenCL was more difficult owing to differences between the central processing unit and GPU architectures. The resulting speedup was substantially lower than the theoretical peak performance of the GPU; the cause was explained. (authors)
ECG based Myocardial Infarction detection using Hybrid Firefly Algorithm.
Kora, Padmavathi
2017-12-01
Myocardial Infarction (MI) is one of the most frequent diseases, and can also cause demise, disability and monetary loss in patients who suffer from cardiovascular disorder. Diagnostic methods of this ailment by physicians are typically invasive, even though they do not fulfill the required detection accuracy. Recent feature extraction methods, for example, Auto Regressive (AR) modelling; Magnitude Squared Coherence (MSC); Wavelet Coherence (WTC) using Physionet database, yielded a collection of huge feature set. A large number of these features may be inconsequential containing some excess and non-discriminative components that present excess burden in computation and loss of execution performance. So Hybrid Firefly and Particle Swarm Optimization (FFPSO) is directly used to optimise the raw ECG signal instead of extracting features using the above feature extraction techniques. Provided results in this paper show that, for the detection of MI class, the FFPSO algorithm with ANN gives 99.3% accuracy, sensitivity of 99.97%, and specificity of 98.7% on MIT-BIH database by including NSR database also. The proposed approach has shown that methods that are based on the feature optimization of the ECG signals are the perfect to diagnosis the condition of the heart patients. Copyright © 2017 Elsevier B.V. All rights reserved.
Energy Optimal Control Strategy of PHEV Based on PMP Algorithm
Directory of Open Access Journals (Sweden)
Tiezhou Wu
2017-01-01
Full Text Available Under the global voice of “energy saving” and the current boom in the development of energy storage technology at home and abroad, energy optimal control of the whole hybrid electric vehicle power system, as one of the core technologies of electric vehicles, is bound to become a hot target of “clean energy” vehicle development and research. This paper considers the constraints to the performance of energy storage system in Parallel Hybrid Electric Vehicle (PHEV, from which lithium-ion battery frequently charges/discharges, PHEV largely consumes energy of fuel, and their are difficulty in energy recovery and other issues in a single cycle; the research uses lithium-ion battery combined with super-capacitor (SC, which is hybrid energy storage system (Li-SC HESS, working together with internal combustion engine (ICE to drive PHEV. Combined with PSO-PI controller and Li-SC HESS internal power limited management approach, the research proposes the PHEV energy optimal control strategy. It is based on revised Pontryagin’s minimum principle (PMP algorithm, which establishes the PHEV vehicle simulation model through ADVISOR software and verifies the effectiveness and feasibility. Finally, the results show that the energy optimization control strategy can improve the instantaneity of tracking PHEV minimum fuel consumption track, implement energy saving, and prolong the life of lithium-ion batteries and thereby can improve hybrid energy storage system performance.
Route Selection with Unspecified Sites Using Knowledge Based Genetic Algorithm
Kanoh, Hitoshi; Nakamura, Nobuaki; Nakamura, Tomohiro
This paper addresses the problem of selecting a route to a given destination that traverses several non-specific sites (e.g. a bank, a gas station) as requested by a driver. The proposed solution uses a genetic algorithm that includes viral infection. The method is to generate two populations of viruses as domain specific knowledge in addition to a population of routes. A part of an arterial road is regarded as a main virus, and a road that includes a site is regarded as a site virus. An infection occurs between two points common to a candidate route and the virus, and involves the substitution of the intersections carried by the virus for those on the existing candidate route. Crossover and infection determine the easiest-to-drive and quasi-shortest route through the objective landmarks. Experiments using actual road maps show that this infection-based mechanism is an effective way of solving the problem. Our strategy is general, and can be effectively used in other optimization problems.
2018-01-01
ARL-TR-8271 ● JAN 2018 US Army Research Laboratory An Automated Energy Detection Algorithm Based on Morphological Filter... Energy Detection Algorithm Based on Morphological Filter Processing with a Semi-Disk Structure by Kwok F Tom Sensors and Electron Devices...September 2017 4. TITLE AND SUBTITLE An Automated Energy Detection Algorithm Based on Morphological Filter Processing with a Semi-Disk Structure 5a
2018-01-01
ARL-TR-8270 ● JAN 2018 US Army Research Laboratory An Automated Energy Detection Algorithm Based on Morphological Filter...Automated Energy Detection Algorithm Based on Morphological Filter Processing with a Modified Watershed Transform by Kwok F Tom Sensors and Electron...1 October 2016–30 September 2017 4. TITLE AND SUBTITLE An Automated Energy Detection Algorithm Based on Morphological Filter Processing with a
Reliability Based Spare Parts Management Using Genetic Algorithm
Directory of Open Access Journals (Sweden)
Rahul Upadhyay
2015-08-01
Full Text Available Effective and efficient inventory management is the key to the economic sustainability of capital intensive modern industries. Inventory grows exponentially with complexity and size of the equipment fleet. Substantial amount of capital is required for maintaining an inventory and therefore its optimization is beneficial for smooth operation of the project at minimum cost of inventory. The size and hence the cost of the inventory is influenced by a large no of factors. This makes the optimization problem complex. This work presents a model to solve the problem of optimization of spare parts inventory. The novelty of this study lies with the fact that the developed method could tackle not only the artificial test case but also a real-world industrial problem. Various investigators developed several methods and semi-analytical tools for obtaining optimum solutions for this problem. In this study non-traditional optimization tool namely genetic algorithms GA are utilized. Apart from this Coxs regression analysis is also used to incorporate the effect of some environmental factors on the demand of spares. It shows the efficacy of the applicability of non-traditional optimization tool like GA to solve these problems. This research illustrates the proposed model with the analysis of data taken from a fleet of dumper operated in a large surface coal mine. The optimum time schedules so suggested by this GA-based model are found to be cost effective. A sensitivity analysis is also conducted for this industrial problem. Objective function is developed and the factors like the effect of season and production pressure overloading towards financial year-ending is included in the equations. Statistical analysis of the collected operational and performance data were carried out with the help of Easy-Fit Ver-5.5.The analysis gives the shape and scale parameter of theoretical Weibull distribution. The Coxs regression coefficient corresponding to excessive loading
77 FR 39385 - Receipts-Based, Small Business Size Standard
2012-07-03
... Business Size Standard AGENCY: Nuclear Regulatory Commission. ACTION: Direct final rule. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC or the Commission) is amending the size standard that it uses to.... The NRC is increasing its receipts-based, small business size standard from $6.5 million to $7 million...
An Improved Seeding Algorithm of Magnetic Flux Lines Based on Data in 3D Space
Directory of Open Access Journals (Sweden)
Jia Zhong
2015-05-01
Full Text Available This paper will propose an approach to increase the accuracy and efficiency of seeding algorithms of magnetic flux lines in magnetic field visualization. To obtain accurate and reliable visualization results, the density of the magnetic flux lines should map the magnetic induction intensity, and seed points should determine the density of the magnetic flux lines. However, the traditional seeding algorithm, which is a statistical algorithm based on data, will produce errors when computing magnetic flux through subdivision of the plane. To achieve higher accuracy, more subdivisions should be made, which will reduce efficiency. This paper analyzes the errors made when the traditional seeding algorithm is used and gives an improved algorithm. It then validates the accuracy and efficiency of the improved algorithm by comparing the results of the two algorithms with results from the equivalent magnetic flux algorithm.
A New DG Multiobjective Optimization Method Based on an Improved Evolutionary Algorithm
Directory of Open Access Journals (Sweden)
Wanxing Sheng
2013-01-01
Full Text Available A distribution generation (DG multiobjective optimization method based on an improved Pareto evolutionary algorithm is investigated in this paper. The improved Pareto evolutionary algorithm, which introduces a penalty factor in the objective function constraints, uses an adaptive crossover and a mutation operator in the evolutionary process and combines a simulated annealing iterative process. The proposed algorithm is utilized to the optimize DG injection models to maximize DG utilization while minimizing system loss and environmental pollution. A revised IEEE 33-bus system with multiple DG units was used to test the multiobjective optimization algorithm in a distribution power system. The proposed algorithm was implemented and compared with the strength Pareto evolutionary algorithm 2 (SPEA2, a particle swarm optimization (PSO algorithm, and nondominated sorting genetic algorithm II (NGSA-II. The comparison of the results demonstrates the validity and practicality of utilizing DG units in terms of economic dispatch and optimal operation in a distribution power system.
Directory of Open Access Journals (Sweden)
Changgan SHU
2014-09-01
Full Text Available In the standard root multiple signal classification algorithm, the performance of direction of arrival estimation will reduce and even lose effect in circumstances that a low signal noise ratio and a small signals interval. By reconstructing and weighting the covariance matrix of received signal, the modified algorithm can provide more accurate estimation results. The computer simulation and performance analysis are given next, which show that under the condition of lower signal noise ratio and stronger correlation between signals, the proposed modified algorithm could provide preferable azimuth estimating performance than the standard method.
An AK-LDMeans algorithm based on image clustering
Chen, Huimin; Li, Xingwei; Zhang, Yongbin; Chen, Nan
2018-03-01
Clustering is an effective analytical technique for handling unmarked data for value mining. Its ultimate goal is to mark unclassified data quickly and correctly. We use the roadmap for the current image processing as the experimental background. In this paper, we propose an AK-LDMeans algorithm to automatically lock the K value by designing the Kcost fold line, and then use the long-distance high-density method to select the clustering centers to further replace the traditional initial clustering center selection method, which further improves the efficiency and accuracy of the traditional K-Means Algorithm. And the experimental results are compared with the current clustering algorithm and the results are obtained. The algorithm can provide effective reference value in the fields of image processing, machine vision and data mining.
A Constrained Algorithm Based NMFα for Image Representation
Directory of Open Access Journals (Sweden)
Chenxue Yang
2014-01-01
Full Text Available Nonnegative matrix factorization (NMF is a useful tool in learning a basic representation of image data. However, its performance and applicability in real scenarios are limited because of the lack of image information. In this paper, we propose a constrained matrix decomposition algorithm for image representation which contains parameters associated with the characteristics of image data sets. Particularly, we impose label information as additional hard constraints to the α-divergence-NMF unsupervised learning algorithm. The resulted algorithm is derived by using Karush-Kuhn-Tucker (KKT conditions as well as the projected gradient and its monotonic local convergence is proved by using auxiliary functions. In addition, we provide a method to select the parameters to our semisupervised matrix decomposition algorithm in the experiment. Compared with the state-of-the-art approaches, our method with the parameters has the best classification accuracy on three image data sets.
A time domain phase-gradient based ISAR autofocus algorithm
CSIR Research Space (South Africa)
Nel, W
2011-10-01
Full Text Available Autofocus is a well known required step in ISAR (and SAR) processing to compensate translational motion. This research proposes a time domain autofocus algorithm and discusses its relation to the well known phase gradient autofocus (PGA) technique...
A Fast DOA Estimation Algorithm Based on Polarization MUSIC
Directory of Open Access Journals (Sweden)
R. Guo
2015-04-01
Full Text Available A fast DOA estimation algorithm developed from MUSIC, which also benefits from the processing of the signals' polarization information, is presented. Besides performance enhancement in precision and resolution, the proposed algorithm can be exerted on various forms of polarization sensitive arrays, without specific requirement on the array's pattern. Depending on the continuity property of the space spectrum, a huge amount of computation incurred in the calculation of 4-D space spectrum is averted. Performance and computation complexity analysis of the proposed algorithm is discussed and the simulation results are presented. Compared with conventional MUSIC, it is indicated that the proposed algorithm has considerable advantage in aspects of precision and resolution, with a low computation complexity proportional to a conventional 2-D MUSIC.
Learning algorithms for feedforward networks based on finite samples
Energy Technology Data Exchange (ETDEWEB)
Rao, N.S.V.; Protopopescu, V.; Mann, R.C.; Oblow, E.M.; Iyengar, S.S.
1994-09-01
Two classes of convergent algorithms for learning continuous functions (and also regression functions) that are represented by feedforward networks, are discussed. The first class of algorithms, applicable to networks with unknown weights located only in the output layer, is obtained by utilizing the potential function methods of Aizerman et al. The second class, applicable to general feedforward networks, is obtained by utilizing the classical Robbins-Monro style stochastic approximation methods. Conditions relating the sample sizes to the error bounds are derived for both classes of algorithms using martingale-type inequalities. For concreteness, the discussion is presented in terms of neural networks, but the results are applicable to general feedforward networks, in particular to wavelet networks. The algorithms can be directly adapted to concept learning problems.
A new algorithm for agile satellite-based acquisition operations
Bunkheila, Federico; Ortore, Emiliano; Circi, Christian
2016-06-01
Taking advantage of the high manoeuvrability and the accurate pointing of the so-called agile satellites, an algorithm which allows efficient management of the operations concerning optical acquisitions is described. Fundamentally, this algorithm can be subdivided into two parts: in the first one the algorithm operates a geometric classification of the areas of interest and a partitioning of these areas into stripes which develop along the optimal scan directions; in the second one it computes the succession of the time windows in which the acquisition operations of the areas of interest are feasible, taking into consideration the potential restrictions associated with these operations and with the geometric and stereoscopic constraints. The results and the performances of the proposed algorithm have been determined and discussed considering the case of the Periodic Sun-Synchronous Orbits.
DATA SECURITY IN LOCAL AREA NETWORK BASED ON FAST ENCRYPTION ALGORITHM
Directory of Open Access Journals (Sweden)
G. Ramesh
2010-06-01
Full Text Available Hacking is one of the greatest problems in the wireless local area networks. Many algorithms have been used to prevent the outside attacks to eavesdrop or prevent the data to be transferred to the end-user safely and correctly. In this paper, a new symmetrical encryption algorithm is proposed that prevents the outside attacks. The new algorithm avoids key exchange between users and reduces the time taken for the encryption and decryption. It operates at high data rate in comparison with The Data Encryption Standard (DES, Triple DES (TDES, Advanced Encryption Standard (AES-256, and RC6 algorithms. The new algorithm is applied successfully on both text file and voice message.
Research of spatial filtering algorithms based on MATLAB
Wu, Fuxi; Li, Chuanjun; Li, Xingcheng
2017-10-01
In order to solve the problem that the satellite signal power is very weak and susceptible to interference, try to use the spatial filtering algorithm to produce a deeper null in the direction of the interference signal, so as to suppress the interference. In this paper, we will compare the least mean square (LMS), normalized LMS (NLMS) and Recursive least square (RLS) adaptive algorithms for spatial filtering. Finally, the content of the study will be verified by simulation.
DATA ANALYSIS BASED ON DATA MINING ALGORITHMS USING WEKA WORKBENCH
Layla Safwat Jamil*
2016-01-01
In this paper, machine learning algorithms and artificial neural networks classification from instances in the breast cancer data set are applied by Weka (Data Mining Workbench). The data set were donated in 1988. This is one of three domains provided by the Oncology Institute that has repeatedly appeared in the machine learning literature. The different algorithms and their results were compared with received calculations on Weka.
González, Diego; Botella, Guillermo; García, Carlos; Prieto, Manuel; Tirado, Francisco
2013-12-01
This contribution focuses on the optimization of matching-based motion estimation algorithms widely used for video coding standards using an Altera custom instruction-based paradigm and a combination of synchronous dynamic random access memory (SDRAM) with on-chip memory in Nios II processors. A complete profile of the algorithms is achieved before the optimization, which locates code leaks, and afterward, creates a custom instruction set, which is then added to the specific design, enhancing the original system. As well, every possible memory combination between on-chip memory and SDRAM has been tested to achieve the best performance. The final throughput of the complete designs are shown. This manuscript outlines a low-cost system, mapped using very large scale integration technology, which accelerates software algorithms by converting them into custom hardware logic blocks and showing the best combination between on-chip memory and SDRAM for the Nios II processor.
Semantic based cluster content discovery in description first clustering algorithm
International Nuclear Information System (INIS)
Khan, M.W.; Asif, H.M.S.
2017-01-01
In the field of data analytics grouping of like documents in textual data is a serious problem. A lot of work has been done in this field and many algorithms have purposed. One of them is a category of algorithms which firstly group the documents on the basis of similarity and then assign the meaningful labels to those groups. Description first clustering algorithm belong to the category in which the meaningful description is deduced first and then relevant documents are assigned to that description. LINGO (Label Induction Grouping Algorithm) is the algorithm of description first clustering category which is used for the automatic grouping of documents obtained from search results. It uses LSI (Latent Semantic Indexing); an IR (Information Retrieval) technique for induction of meaningful labels for clusters and VSM (Vector Space Model) for cluster content discovery. In this paper we present the LINGO while it is using LSI during cluster label induction and cluster content discovery phase. Finally, we compare results obtained from the said algorithm while it uses VSM and Latent semantic analysis during cluster content discovery phase. (author)
Semantic Based Cluster Content Discovery in Description First Clustering Algorithm
Directory of Open Access Journals (Sweden)
MUHAMMAD WASEEM KHAN
2017-01-01
Full Text Available In the field of data analytics grouping of like documents in textual data is a serious problem. A lot of work has been done in this field and many algorithms have purposed. One of them is a category of algorithms which firstly group the documents on the basis of similarity and then assign the meaningful labels to those groups. Description first clustering algorithm belong to the category in which the meaningful description is deduced first and then relevant documents are assigned to that description. LINGO (Label Induction Grouping Algorithm is the algorithm of description first clustering category which is used for the automatic grouping of documents obtained from search results. It uses LSI (Latent Semantic Indexing; an IR (Information Retrieval technique for induction of meaningful labels for clusters and VSM (Vector Space Model for cluster content discovery. In this paper we present the LINGO while it is using LSI during cluster label induction and cluster content discovery phase. Finally, we compare results obtained from the said algorithm while it uses VSM and Latent semantic analysis during cluster content discovery phase.
Research on retailer data clustering algorithm based on Spark
Huang, Qiuman; Zhou, Feng
2017-03-01
Big data analysis is a hot topic in the IT field now. Spark is a high-reliability and high-performance distributed parallel computing framework for big data sets. K-means algorithm is one of the classical partition methods in clustering algorithm. In this paper, we study the k-means clustering algorithm on Spark. Firstly, the principle of the algorithm is analyzed, and then the clustering analysis is carried out on the supermarket customers through the experiment to find out the different shopping patterns. At the same time, this paper proposes the parallelization of k-means algorithm and the distributed computing framework of Spark, and gives the concrete design scheme and implementation scheme. This paper uses the two-year sales data of a supermarket to validate the proposed clustering algorithm and achieve the goal of subdividing customers, and then analyze the clustering results to help enterprises to take different marketing strategies for different customer groups to improve sales performance.
2013-01-01
Background The high burden and rising incidence of cardiovascular disease (CVD) in resource constrained countries necessitates implementation of robust and pragmatic primary and secondary prevention strategies. Many current CVD management guidelines recommend absolute cardiovascular (CV) risk assessment as a clinically sound guide to preventive and treatment strategies. Development of non-laboratory based cardiovascular risk assessment algorithms enable absolute risk assessment in resource constrained countries. The objective of this review is to evaluate the performance of existing non-laboratory based CV risk assessment algorithms using the benchmarks for clinically useful CV risk assessment algorithms outlined by Cooney and colleagues. Methods A literature search to identify non-laboratory based risk prediction algorithms was performed in MEDLINE, CINAHL, Ovid Premier Nursing Journals Plus, and PubMed databases. The identified algorithms were evaluated using the benchmarks for clinically useful cardiovascular risk assessment algorithms outlined by Cooney and colleagues. Results Five non-laboratory based CV risk assessment algorithms were identified. The Gaziano and Framingham algorithms met the criteria for appropriateness of statistical methods used to derive the algorithms and endpoints. The Swedish Consultation, Framingham and Gaziano algorithms demonstrated good discrimination in derivation datasets. Only the Gaziano algorithm was externally validated where it had optimal discrimination. The Gaziano and WHO algorithms had chart formats which made them simple and user friendly for clinical application. Conclusion Both the Gaziano and Framingham non-laboratory based algorithms met most of the criteria outlined by Cooney and colleagues. External validation of the algorithms in diverse samples is needed to ascertain their performance and applicability to different populations and to enhance clinicians’ confidence in them. PMID:24373202
Directory of Open Access Journals (Sweden)
Bili Chen
2014-01-01
Full Text Available An enhanced differential evolution based algorithm, named multi-objective differential evolution with simulated annealing algorithm (MODESA, is presented for solving multiobjective optimization problems (MOPs. The proposed algorithm utilizes the advantage of simulated annealing for guiding the algorithm to explore more regions of the search space for a better convergence to the true Pareto-optimal front. In the proposed simulated annealing approach, a new acceptance probability computation function based on domination is proposed and some potential solutions are assigned a life cycle to have a priority to be selected entering the next generation. Moreover, it incorporates an efficient diversity maintenance approach, which is used to prune the obtained nondominated solutions for a good distributed Pareto front. The feasibility of the proposed algorithm is investigated on a set of five biobjective and two triobjective optimization problems and the results are compared with three other algorithms. The experimental results illustrate the effectiveness of the proposed algorithm.
Joint Interference Detection Method for DSSS Communications Based on the OMP Algorithm and CA-CFAR
Directory of Open Access Journals (Sweden)
Zhang Yongshun
2016-01-01
Full Text Available The existing direct sequence spread spectrum (DSSS communications interference detection algorithms are confined to the high sampling rate. In order to solve this problem, algorithm for DSSS communications interference detection was designed based on compressive sensing (CS. First of all, the orthogonal matching pursuit (OMP algorithm was applied to the interference detection in DSSS communications, the advantages and weaknesses of the algorithm were analyzed; Secondly, according to the weaknesses of the OMP algorithm, a joint interference detection method based on the OMP algorithm and cell average constant false alarm rate (CA-CFAR was proposed. The theoretical analyze and computer simulation all proved the effectiveness of the new algorithm. The simulation results show that the new method not only could achieve the interference detection, but also could estimate the interference quantity effectively.
Directory of Open Access Journals (Sweden)
Qiguang Zhu
2014-05-01
Full Text Available To resolve the difficulty in establishing accurate priori noise model for the extended Kalman filtering algorithm, propose the fractional-order Darwinian particle swarm optimization (PSO algorithm has been proposed and introduced into the fuzzy adaptive extended Kalman filtering algorithm. The natural selection method has been adopted to improve the standard particle swarm optimization algorithm, which enhanced the diversity of particles and avoided the premature. In addition, the fractional calculus has been used to improve the evolution speed of particles. The PSO algorithm after improved has been applied to train fuzzy adaptive extended Kalman filter and achieve the simultaneous localization and mapping. The simulation results have shown that compared with the geese particle swarm optimization training of fuzzy adaptive extended Kalman filter localization and mapping algorithm, has been greatly improved in terms of localization and mapping.
A hierarchical network-based algorithm for multi-scale watershed delineation
Castronova, Anthony M.; Goodall, Jonathan L.
2014-11-01
Watershed delineation is a process for defining a land area that contributes surface water flow to a single outlet point. It is a commonly used in water resources analysis to define the domain in which hydrologic process calculations are applied. There has been a growing effort over the past decade to improve surface elevation measurements in the U.S., which has had a significant impact on the accuracy of hydrologic calculations. Traditional watershed processing on these elevation rasters, however, becomes more burdensome as data resolution increases. As a result, processing of these datasets can be troublesome on standard desktop computers. This challenge has resulted in numerous works that aim to provide high performance computing solutions to large data, high resolution data, or both. This work proposes an efficient watershed delineation algorithm for use in desktop computing environments that leverages existing data, U.S. Geological Survey (USGS) National Hydrography Dataset Plus (NHD+), and open source software tools to construct watershed boundaries. This approach makes use of U.S. national-level hydrography data that has been precomputed using raster processing algorithms coupled with quality control routines. Our approach uses carefully arranged data and mathematical graph theory to traverse river networks and identify catchment boundaries. We demonstrate this new watershed delineation technique, compare its accuracy with traditional algorithms that derive watershed solely from digital elevation models, and then extend our approach to address subwatershed delineation. Our findings suggest that the open-source hierarchical network-based delineation procedure presented in the work is a promising approach to watershed delineation that can be used summarize publicly available datasets for hydrologic model input pre-processing. Through our analysis, we explore the benefits of reusing the NHD+ datasets for watershed delineation, and find that the our technique
Simulated Annealing-Based Krill Herd Algorithm for Global Optimization
Directory of Open Access Journals (Sweden)
Gai-Ge Wang
2013-01-01
Full Text Available Recently, Gandomi and Alavi proposed a novel swarm intelligent method, called krill herd (KH, for global optimization. To enhance the performance of the KH method, in this paper, a new improved meta-heuristic simulated annealing-based krill herd (SKH method is proposed for optimization tasks. A new krill selecting (KS operator is used to refine krill behavior when updating krill’s position so as to enhance its reliability and robustness dealing with optimization problems. The introduced KS operator involves greedy strategy and accepting few not-so-good solutions with a low probability originally used in simulated annealing (SA. In addition, a kind of elitism scheme is used to save the best individuals in the population in the process of the krill updating. The merits of these improvements are verified by fourteen standard benchmarking functions and experimental results show that, in most cases, the performance of this improved meta-heuristic SKH method is superior to, or at least highly competitive with, the standard KH and other optimization methods.
Reactive power and voltage control based on general quantum genetic algorithms
DEFF Research Database (Denmark)
Vlachogiannis, Ioannis (John); Østergaard, Jacob
2009-01-01
This paper presents an improved evolutionary algorithm based on quantum computing for optima l steady-state performance of power systems. However, the proposed general quantum genetic algorithm (GQ-GA) can be applied in various combinatorial optimization problems. In this study the GQ-GA determines...... techniques such as enhanced GA, multi-objective evolutionary algorithm and particle swarm optimization algorithms, as well as the classical primal-dual interior-point optimal power flow algorithm. The comparison demonstrates the ability of the GQ-GA in reaching more optimal solutions....
A family of solution algorithms for nonlinear structural analysis based on relaxation equations
Park, K. C.
1981-01-01
A family of hierarchical algorithms for nonlinear structural equations are presented. The algorithms are based on the Davidenko-Branin type homotopy and shown to yield consistent hierarchical perturbation equations. The algorithms appear to be particularly suitable to problems involving bifurcation and limit point calculations. An important by-product of the algorithms is that it provides a systematic and economical means for computing the stepsize at each iteration stage when a Newton-like method is employed to solve the systems of equations. Some sample problems are provided to illustrate the characteristics of the algorithms.
Research on Parallelization of GPU-based K-Nearest Neighbor Algorithm
Jiang, Hao; Wu, Yulin
2017-10-01
Based on the analysis of the K-Nearest Neighbor Algorithm, the feasibility of parallelization is studied from the steps of the algorithm, the operation efficiency and the data structure of each step, and the part of parallel execution is determined. A K-Nearest Neighbor Algorithm parallelization scheme is designed and the parallel G-KNN algorithm is implemented in the CUDA environment. The experimental results show that the K-Nearest Neighbor Algorithm has a significant improvement in efficiency after parallelization, especially on large-scale data.
Fast adaptive particle spectrum fitting algorithm based on moment-estimated initial parameters.
Shi, Rui; Tuo, Xianguo; Zheng, Honglong; Li, Huailiang; Xu, Yangyang; Wang, Qibiao; Deng, Chao
2017-11-01
An algorithm based on moment estimation is presented to determine the initial parameters of the particle spectrum peak shape function for the iteration fitting procedure. The algorithm calculates the mean value, variance, and third-order central moment by using the spectrum peak data, solves the parameters of the fitting function, and then provides them as the initial values to the Levenberg-Marquardt algorithm to ensure convergence and optimized fitting. The effectiveness of the proposed algorithm was tested by gamma and alpha spectra. The algorithm can be used in automated peak curve fitting and spectral analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Transmission control unit drive based on the AUTOSAR standard
Guo, Xiucai; Qin, Zhen
2018-03-01
It is a trend of automotive electronics industry in the future that automotive electronics embedded system development based on the AUTOSAR standard. AUTOSAR automotive architecture standard has proposed the transmission control unit (TCU) development architecture and designed its interfaces and configurations in detail. This essay has discussed that how to drive the TCU based on AUTOSAR standard architecture. The results show that driving the TCU with the AUTOSAR system improves reliability and shortens development cycles.
A weight based genetic algorithm for selecting views
Talebian, Seyed H.; Kareem, Sameem A.
2013-03-01
Data warehouse is a technology designed for supporting decision making. Data warehouse is made by extracting large amount of data from different operational systems; transforming it to a consistent form and loading it to the central repository. The type of queries in data warehouse environment differs from those in operational systems. In contrast to operational systems, the analytical queries that are issued in data warehouses involve summarization of large volume of data and therefore in normal circumstance take a long time to be answered. On the other hand, the result of these queries must be answered in a short time to enable managers to make decisions as short time as possible. As a result, an essential need in this environment is in improving the performances of queries. One of the most popular methods to do this task is utilizing pre-computed result of queries. In this method, whenever a new query is submitted by the user instead of calculating the query on the fly through a large underlying database, the pre-computed result or views are used to answer the queries. Although, the ideal option would be pre-computing and saving all possible views, but, in practice due to disk space constraint and overhead due to view updates it is not considered as a feasible choice. Therefore, we need to select a subset of possible views to save on disk. The problem of selecting the right subset of views is considered as an important challenge in data warehousing. In this paper we suggest a Weighted Based Genetic Algorithm (WBGA) for solving the view selection problem with two objectives.
77 FR 37587 - Updating OSHA Standards Based on National Consensus Standards; Head Protection
2012-06-22
..., 1918, and 1926 [Docket No. OSHA-2011-0184] RIN 1218-AC65 Updating OSHA Standards Based on National Consensus Standards; Head Protection AGENCY: Occupational Safety and Health Administration (OSHA), Department of Labor. ACTION: Direct final rule; request for comments. SUMMARY: OSHA is issuing this direct...
77 FR 68717 - Updating OSHA Standards Based on National Consensus Standards; Head Protection
2012-11-16
..., 1918, and 1926 [Docket No. OSH-2011-0184] RIN 1218-AC65 Updating OSHA Standards Based on National Consensus Standards; Head Protection AGENCY: Occupational Safety and Health Administration (OSHA), Labor. ACTION: Proposed rule; withdrawal. SUMMARY: With this notice, OSHA is withdrawing the proposed rule that...
77 FR 37617 - Updating OSHA Standards Based on National Consensus Standards; Head Protection
2012-06-22
..., 1918, and 1926 [Docket No. OSHA-2011-0184] RIN 1218-AC65 Updating OSHA Standards Based on National Consensus Standards; Head Protection AGENCY: Occupational Safety and Health Administration (OSHA), Department of Labor. ACTION: Notice of proposed rulemaking; request for comments. SUMMARY: OSHA is proposing...
77 FR 68684 - Updating OSHA Standards Based on National Consensus Standards; Head Protection
2012-11-16
..., 1918, and 1926 [Docket No. OSHA-2011-0184] RIN 1218-AC65 Updating OSHA Standards Based on National Consensus Standards; Head Protection AGENCY: Occupational Safety and Health Administration (OSHA), Labor. ACTION: Final rule; confirmation of effective date. SUMMARY: OSHA is confirming the effective date of its...
78 FR 65932 - Updating OSHA Standards Based on National Consensus Standards; Signage
2013-11-04
... [Docket No. OSH-2013-0005] RIN No. 1218-AC77 Updating OSHA Standards Based on National Consensus Standards; Signage AGENCY: Occupational Safety and Health Administration (OSHA), Department of Labor. ACTION: Proposed rule; withdrawal. SUMMARY: With this notice, OSHA is withdrawing the proposed rule that...
78 FR 66642 - Updating OSHA Standards Based on National Consensus Standards; Signage
2013-11-06
... [Docket No. OSHA-2013-0005] RIN 1218-AC77 Updating OSHA Standards Based on National Consensus Standards; Signage AGENCY: Occupational Safety and Health Administration (OSHA), Department of Labor. ACTION: Final rule; confirmation of effective date. SUMMARY: On June 13, 2013, OSHA published in the Federal Register...
AUDIT OF FINANCIAL REPORTS, BASED ON INTERNATIONAL ACCOUNTING STANDARDS
Islom Kuziev
2011-01-01
In this article are given main notion about international standard of financial reporting, order of the auditing on the base of IFRS, scheduling the report of the auditor, auditor conclusions and are given analysis of reporting based on the auditor procedures. At the audit of financial reporting are taken into account international standard to financial reporting 29 "Financial reporting in hyperinflationary economies".
Fofonoff, N. P.; Millard, R. C., Jr.
Algorithms for computation of fundamental properties of seawater, based on the practicality salinity scale (PSS-78) and the international equation of state for seawater (EOS-80), are compiled in the present report for implementing and standardizing computer programs for oceanographic data processing. Sample FORTRAN subprograms and tables are given…