WorldWideScience

Sample records for standard algorithms based

  1. Task-based evaluation of segmentation algorithms for diffusion-weighted MRI without using a gold standard

    International Nuclear Information System (INIS)

    Jha, Abhinav K; Kupinski, Matthew A; Rodríguez, Jeffrey J; Stephen, Renu M; Stopeck, Alison T

    2012-01-01

    In many studies, the estimation of the apparent diffusion coefficient (ADC) of lesions in visceral organs in diffusion-weighted (DW) magnetic resonance images requires an accurate lesion-segmentation algorithm. To evaluate these lesion-segmentation algorithms, region-overlap measures are used currently. However, the end task from the DW images is accurate ADC estimation, and the region-overlap measures do not evaluate the segmentation algorithms on this task. Moreover, these measures rely on the existence of gold-standard segmentation of the lesion, which is typically unavailable. In this paper, we study the problem of task-based evaluation of segmentation algorithms in DW imaging in the absence of a gold standard. We first show that using manual segmentations instead of gold-standard segmentations for this task-based evaluation is unreliable. We then propose a method to compare the segmentation algorithms that does not require gold-standard or manual segmentation results. The no-gold-standard method estimates the bias and the variance of the error between the true ADC values and the ADC values estimated using the automated segmentation algorithm. The method can be used to rank the segmentation algorithms on the basis of both the ensemble mean square error and precision. We also propose consistency checks for this evaluation technique. (paper)

  2. A parallel row-based algorithm for standard cell placement with integrated error control

    Science.gov (United States)

    Sargent, Jeff S.; Banerjee, Prith

    1989-01-01

    A new row-based parallel algorithm for standard-cell placement targeted for execution on a hypercube multiprocessor is presented. Key features of this implementation include a dynamic simulated-annealing schedule, row-partitioning of the VLSI chip image, and two novel approaches to control error in parallel cell-placement algorithms: (1) Heuristic Cell-Coloring; (2) Adaptive Sequence Length Control.

  3. Opposition-Based Adaptive Fireworks Algorithm

    Directory of Open Access Journals (Sweden)

    Chibing Gong

    2016-07-01

    Full Text Available A fireworks algorithm (FWA is a recent swarm intelligence algorithm that is inspired by observing fireworks explosions. An adaptive fireworks algorithm (AFWA proposes additional adaptive amplitudes to improve the performance of the enhanced fireworks algorithm (EFWA. The purpose of this paper is to add opposition-based learning (OBL to AFWA with the goal of further boosting performance and achieving global optimization. Twelve benchmark functions are tested in use of an opposition-based adaptive fireworks algorithm (OAFWA. The final results conclude that OAFWA significantly outperformed EFWA and AFWA in terms of solution accuracy. Additionally, OAFWA was compared with a bat algorithm (BA, differential evolution (DE, self-adapting control parameters in differential evolution (jDE, a firefly algorithm (FA, and a standard particle swarm optimization 2011 (SPSO2011 algorithm. The research results indicate that OAFWA ranks the highest of the six algorithms for both solution accuracy and runtime cost.

  4. Alignment of Custom Standards by Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Adela Sirbu

    2010-09-01

    Full Text Available Building an efficient model for automatic alignment of terminologies would bring a significant improvement to the information retrieval process. We have developed and compared two machine learning based algorithms whose aim is to align 2 custom standards built on a 3 level taxonomy, using kNN and SVM classifiers that work on a vector representation consisting of several similarity measures. The weights utilized by the kNN were optimized with an evolutionary algorithm, while the SVM classifier's hyper-parameters were optimized with a grid search algorithm. The database used for train was semi automatically obtained by using the Coma++ tool. The performance of our aligners is shown by the results obtained on the test set.

  5. CHAOS-BASED ADVANCED ENCRYPTION STANDARD

    KAUST Repository

    Abdulwahed, Naif B.

    2013-01-01

    This thesis introduces a new chaos-based Advanced Encryption Standard (AES). The AES is a well-known encryption algorithm that was standardized by U.S National Institute of Standard and Technology (NIST) in 2001. The thesis investigates and explores

  6. A parallel row-based algorithm with error control for standard-cell replacement on a hypercube multiprocessor

    Science.gov (United States)

    Sargent, Jeff Scott

    1988-01-01

    A new row-based parallel algorithm for standard-cell placement targeted for execution on a hypercube multiprocessor is presented. Key features of this implementation include a dynamic simulated-annealing schedule, row-partitioning of the VLSI chip image, and two novel new approaches to controlling error in parallel cell-placement algorithms; Heuristic Cell-Coloring and Adaptive (Parallel Move) Sequence Control. Heuristic Cell-Coloring identifies sets of noninteracting cells that can be moved repeatedly, and in parallel, with no buildup of error in the placement cost. Adaptive Sequence Control allows multiple parallel cell moves to take place between global cell-position updates. This feedback mechanism is based on an error bound derived analytically from the traditional annealing move-acceptance profile. Placement results are presented for real industry circuits and the performance is summarized of an implementation on the Intel iPSC/2 Hypercube. The runtime of this algorithm is 5 to 16 times faster than a previous program developed for the Hypercube, while producing equivalent quality placement. An integrated place and route program for the Intel iPSC/2 Hypercube is currently being developed.

  7. ANALYSIS OF THE CHARACTERISTICS OF INTERNATIONAL STANDARD ALGORITHMS «LIGHTWEIGHT CRYPTOGRAPHY» – ISO/IEC 29192-3:2012

    Directory of Open Access Journals (Sweden)

    A. S. Poljakov

    2014-01-01

    Full Text Available The data on the characteristics of international standard algorithms «lightweight cryptography» while application in hardware implementation based on microchips of FPGA are provided. A compari-son of the characteristics of these algorithms with the characteristics of several widely-used standard encryption algorithms is made and possibilities of lightweight cryptography algorithms are evaluated.

  8. The Algorithm for Algorithms: An Evolutionary Algorithm Based on Automatic Designing of Genetic Operators

    Directory of Open Access Journals (Sweden)

    Dazhi Jiang

    2015-01-01

    Full Text Available At present there is a wide range of evolutionary algorithms available to researchers and practitioners. Despite the great diversity of these algorithms, virtually all of the algorithms share one feature: they have been manually designed. A fundamental question is “are there any algorithms that can design evolutionary algorithms automatically?” A more complete definition of the question is “can computer construct an algorithm which will generate algorithms according to the requirement of a problem?” In this paper, a novel evolutionary algorithm based on automatic designing of genetic operators is presented to address these questions. The resulting algorithm not only explores solutions in the problem space like most traditional evolutionary algorithms do, but also automatically generates genetic operators in the operator space. In order to verify the performance of the proposed algorithm, comprehensive experiments on 23 well-known benchmark optimization problems are conducted. The results show that the proposed algorithm can outperform standard differential evolution algorithm in terms of convergence speed and solution accuracy which shows that the algorithm designed automatically by computers can compete with the algorithms designed by human beings.

  9. Performance evaluation of grid-enabled registration algorithms using bronze-standards

    CERN Document Server

    Glatard, T; Montagnat, J

    2006-01-01

    Evaluating registration algorithms is difficult due to the lack of gold standard in most clinical procedures. The bronze standard is a real-data based statistical method providing an alternative registration reference through a computationally intensive image database registration procedure. We propose in this paper an efficient implementation of this method through a grid-interfaced workflow enactor enabling the concurrent processing of hundreds of image registrations in a couple of hours only. The performances of two different grid infrastructures were compared. We computed the accuracy of 4 different rigid registration algorithms on longitudinal MRI images of brain tumors. Results showed an average subvoxel accuracy of 0.4 mm and 0.15 degrees in rotation.

  10. [Standard algorithm of molecular typing of Yersinia pestis strains].

    Science.gov (United States)

    Eroshenko, G A; Odinokov, G N; Kukleva, L M; Pavlova, A I; Krasnov, Ia M; Shavina, N Iu; Guseva, N P; Vinogradova, N A; Kutyrev, V V

    2012-01-01

    Development of the standard algorithm of molecular typing of Yersinia pestis that ensures establishing of subspecies, biovar and focus membership of the studied isolate. Determination of the characteristic strain genotypes of plague infectious agent of main and nonmain subspecies from various natural foci of plague of the Russian Federation and the near abroad. Genotyping of 192 natural Y. pestis strains of main and nonmain subspecies was performed by using PCR methods, multilocus sequencing and multilocus analysis of variable tandem repeat number. A standard algorithm of molecular typing of plague infectious agent including several stages of Yersinia pestis differentiation by membership: in main and nonmain subspecies, various biovars of the main subspecies, specific subspecies; natural foci and geographic territories was developed. The algorithm is based on 3 typing methods--PCR, multilocus sequence typing and multilocus analysis of variable tandem repeat number using standard DNA targets--life support genes (terC, ilvN, inv, glpD, napA, rhaS and araC) and 7 loci of variable tandem repeats (ms01, ms04, ms06, ms07, ms46, ms62, ms70). The effectiveness of the developed algorithm is shown on the large number of natural Y. pestis strains. Characteristic sequence types of Y. pestis strains of various subspecies and biovars as well as MLVA7 genotypes of strains from natural foci of plague of the Russian Federation and the near abroad were established. The application of the developed algorithm will increase the effectiveness of epidemiologic monitoring of plague infectious agent, and analysis of epidemics and outbreaks of plague with establishing the source of origin of the strain and routes of introduction of the infection.

  11. Four (Algorithms) in One (Bag): An Integrative Framework of Knowledge for Teaching the Standard Algorithms of the Basic Arithmetic Operations

    Science.gov (United States)

    Raveh, Ira; Koichu, Boris; Peled, Irit; Zaslavsky, Orit

    2016-01-01

    In this article we present an integrative framework of knowledge for teaching the standard algorithms of the four basic arithmetic operations. The framework is based on a mathematical analysis of the algorithms, a connectionist perspective on teaching mathematics and an analogy with previous frameworks of knowledge for teaching arithmetic…

  12. Medical image registration algorithms assesment Bronze Standard application enactment on grids using the MOTEUR workflow engine

    CERN Document Server

    Glatard, T; Pennec, X

    2006-01-01

    Medical image registration is pre-processing needed for many medical image analysis procedures. A very large number of registration algorithms are available today, but their performance is often not known and very difficult to assess due to the lack of gold standard. The Bronze Standard algorithm is a very data and compute intensive statistical approach for quantifying registration algorithms accuracy. In this paper, we describe the Bronze Standard application and we discuss the need for grids to tackle such computations on medical image databases. We demonstrate MOTEUR, a service-based workflow engine optimized for dealing with data intensive applications. MOTEUR eases the enactment of the Bronze Standard and similar applications on the EGEE production grid infrastructure. It is a generic workflow engine, based on current standards and freely available, that can be used to instrument legacy application code at low cost.

  13. Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI

    DEFF Research Database (Denmark)

    Bron, Esther E.; Smits, Marion; van der Flier, Wiesje M.

    2015-01-01

    algorithms based on a clinically representative multi-center data set. Using clinical practice as the starting point, the goal was to reproduce the clinical diagnosis. Therefore, we evaluated algorithms for multi-class classification of three diagnostic groups: patients with probable Alzheimer's disease...... of aging). The best performing algorithm yielded an accuracy of 63.0% and an area under the receiver-operating-characteristic curve (AUC) of 78.8%. In general, the best performances were achieved using feature extraction based on voxel-based morphometry or a combination of features that included volume......Abstract Algorithms for computer-aided diagnosis of dementia based on structural MRI have demonstrated high performance in the literature, but are difficult to compare as different data sets and methodology were used for evaluation. In addition, it is unclear how the algorithms would perform...

  14. Improvement of Frequency Locking Algorithm for Atomic Frequency Standards

    Science.gov (United States)

    Park, Young-Ho; Kang, Hoonsoo; Heyong Lee, Soo; Eon Park, Sang; Lee, Jong Koo; Lee, Ho Seong; Kwon, Taeg Yong

    2010-09-01

    The authors describe a novel method of frequency locking algorithm for atomic frequency standards. The new algorithm for locking the microwave frequency to the Ramsey resonance is compared with the old one that had been employed in the cesium atomic beam frequency standards such as NIST-7 and KRISS-1. Numerical simulations for testing the performance of the algorithm show that the new method has a noise filtering performance superior to the old one by a factor of 1.2 for the flicker signal noise and 1.4 for random-walk signal noise. The new algorithm can readily be used to enhance the frequency stability for a digital servo employing the slow square wave frequency modulation.

  15. An improved recommended algorithm for network structure based on two partial graphs

    Directory of Open Access Journals (Sweden)

    Deng Song

    2017-08-01

    Full Text Available In this thesis,we introduce an improved algorithm based on network structure.Based on the standard material diffusion algorithm,considering the influence of the user's score on the recommendation,the adjustment factor of the initial resource allocation vector and the resource transfer matrix in the recommendation algorithm is improved.Using the practical data set from GroupLens webite to evaluate the performance of the proposed algorithm,we performed a series of experiments.The experimental results reveal that it can yield better recommendation accuracy and has higher hitting rate than collaborative filtering,network-based inference.It can solve the problem of cold start and scalability in the standard material diffusion algorithm.And it also can make the recommendation results diversified.

  16. A Novel Preferential Diffusion Recommendation Algorithm Based on User’s Nearest Neighbors

    Directory of Open Access Journals (Sweden)

    Fuguo Zhang

    2017-01-01

    Full Text Available Recommender system is a very efficient way to deal with the problem of information overload for online users. In recent years, network based recommendation algorithms have demonstrated much better performance than the standard collaborative filtering methods. However, most of network based algorithms do not give a high enough weight to the influence of the target user’s nearest neighbors in the resource diffusion process, while a user or an object with high degree will obtain larger influence in the standard mass diffusion algorithm. In this paper, we propose a novel preferential diffusion recommendation algorithm considering the significance of the target user’s nearest neighbors and evaluate it in the three real-world data sets: MovieLens 100k, MovieLens 1M, and Epinions. Experiments results demonstrate that the novel preferential diffusion recommendation algorithm based on user’s nearest neighbors can significantly improve the recommendation accuracy and diversity.

  17. Structure-Based Algorithms for Microvessel Classification

    KAUST Repository

    Smith, Amy F.

    2015-02-01

    © 2014 The Authors. Microcirculation published by John Wiley & Sons Ltd. Objective: Recent developments in high-resolution imaging techniques have enabled digital reconstruction of three-dimensional sections of microvascular networks down to the capillary scale. To better interpret these large data sets, our goal is to distinguish branching trees of arterioles and venules from capillaries. Methods: Two novel algorithms are presented for classifying vessels in microvascular anatomical data sets without requiring flow information. The algorithms are compared with a classification based on observed flow directions (considered the gold standard), and with an existing resistance-based method that relies only on structural data. Results: The first algorithm, developed for networks with one arteriolar and one venular tree, performs well in identifying arterioles and venules and is robust to parameter changes, but incorrectly labels a significant number of capillaries as arterioles or venules. The second algorithm, developed for networks with multiple inlets and outlets, correctly identifies more arterioles and venules, but is more sensitive to parameter changes. Conclusions: The algorithms presented here can be used to classify microvessels in large microvascular data sets lacking flow information. This provides a basis for analyzing the distinct geometrical properties and modelling the functional behavior of arterioles, capillaries, and venules.

  18. The use of a standardized PCT-algorithm reduces costs in intensive care in septic patients - a DRG-based simulation model

    Directory of Open Access Journals (Sweden)

    Wilke MH

    2011-12-01

    Full Text Available Abstract Introduction The management of bloodstream infections especially sepsis is a difficult task. An optimal antibiotic therapy (ABX is paramount for success. Procalcitonin (PCT is a well investigated biomarker that allows close monitoring of the infection and management of ABX. It has proven to be a cost-efficient diagnostic tool. In Diagnoses Related Groups (DRG based reimbursement systems, hospitals get only a fixed amount of money for certain treatments. Thus it's very important to obtain an optimal balance of clinical treatment and resource consumption namely the length of stay in hospital and especially in the Intensive Care Unit (ICU. We investigated which economic effects an optimized PCT-based algorithm for antibiotic management could have. Materials and methods We collected inpatient episode data from 16 hospitals. These data contain administrative and clinical information such as length of stay, days in the ICU or diagnoses and procedures. From various RCTs and reviews there are different algorithms for the use of PCT to manage ABX published. Moreover RCTs and meta-analyses have proven possible savings in days of ABX (ABD and length of stay in ICU (ICUD. As the meta-analyses use studies on different patient populations (pneumonia, sepsis, other bacterial infections, we undertook a short meta-analyses of 6 relevant studies investigating in sepsis or ventilator associated pneumonia (VAP. From this analyses we obtained savings in ABD and ICUD by calculating the weighted mean differences. Then we designed a new PCT-based algorithm using results from two very recent reviews. The algorithm contains evidence from several studies. From the patient data we calculated cost estimates using German National standard costing information for the German G-DRG system. We developed a simulation model where the possible savings and the extra costs for (in average 8 PCT tests due to our algorithm were brought into equation. Results We calculated ABD

  19. Evidence-based algorithm for heparin dosing before cardiopulmonary bypass. Part 1: Development of the algorithm.

    Science.gov (United States)

    McKinney, Mark C; Riley, Jeffrey B

    2007-12-01

    The incidence of heparin resistance during adult cardiac surgery with cardiopulmonary bypass has been reported at 15%-20%. The consistent use of a clinical decision-making algorithm may increase the consistency of patient care and likely reduce the total required heparin dose and other problems associated with heparin dosing. After a directed survey of practicing perfusionists regarding treatment of heparin resistance and a literature search for high-level evidence regarding the diagnosis and treatment of heparin resistance, an evidence-based decision-making algorithm was constructed. The face validity of the algorithm decisive steps and logic was confirmed by a second survey of practicing perfusionists. The algorithm begins with review of the patient history to identify predictors for heparin resistance. The definition for heparin resistance contained in the algorithm is an activated clotting time 450 IU/kg heparin loading dose. Based on the literature, the treatment for heparin resistance used in the algorithm is anti-thrombin III supplement. The algorithm seems to be valid and is supported by high-level evidence and clinician opinion. The next step is a human randomized clinical trial to test the clinical procedure guideline algorithm vs. current standard clinical practice.

  20. A difference tracking algorithm based on discrete sine transform

    Science.gov (United States)

    Liu, HaoPeng; Yao, Yong; Lei, HeBing; Wu, HaoKun

    2018-04-01

    Target tracking is an important field of computer vision. The template matching tracking algorithm based on squared difference matching (SSD) and standard correlation coefficient (NCC) matching is very sensitive to the gray change of image. When the brightness or gray change, the tracking algorithm will be affected by high-frequency information. Tracking accuracy is reduced, resulting in loss of tracking target. In this paper, a differential tracking algorithm based on discrete sine transform is proposed to reduce the influence of image gray or brightness change. The algorithm that combines the discrete sine transform and the difference algorithm maps the target image into a image digital sequence. The Kalman filter predicts the target position. Using the Hamming distance determines the degree of similarity between the target and the template. The window closest to the template is determined the target to be tracked. The target to be tracked updates the template. Based on the above achieve target tracking. The algorithm is tested in this paper. Compared with SSD and NCC template matching algorithms, the algorithm tracks target stably when image gray or brightness change. And the tracking speed can meet the read-time requirement.

  1. Prosthetic joint infection development of an evidence-based diagnostic algorithm.

    Science.gov (United States)

    Mühlhofer, Heinrich M L; Pohlig, Florian; Kanz, Karl-Georg; Lenze, Ulrich; Lenze, Florian; Toepfer, Andreas; Kelch, Sarah; Harrasser, Norbert; von Eisenhart-Rothe, Rüdiger; Schauwecker, Johannes

    2017-03-09

    Increasing rates of prosthetic joint infection (PJI) have presented challenges for general practitioners, orthopedic surgeons and the health care system in the recent years. The diagnosis of PJI is complex; multiple diagnostic tools are used in the attempt to correctly diagnose PJI. Evidence-based algorithms can help to identify PJI using standardized diagnostic steps. We reviewed relevant publications between 1990 and 2015 using a systematic literature search in MEDLINE and PUBMED. The selected search results were then classified into levels of evidence. The keywords were prosthetic joint infection, biofilm, diagnosis, sonication, antibiotic treatment, implant-associated infection, Staph. aureus, rifampicin, implant retention, pcr, maldi-tof, serology, synovial fluid, c-reactive protein level, total hip arthroplasty (THA), total knee arthroplasty (TKA) and combinations of these terms. From an initial 768 publications, 156 publications were stringently reviewed. Publications with class I-III recommendations (EAST) were considered. We developed an algorithm for the diagnostic approach to display the complex diagnosis of PJI in a clear and logically structured process according to ISO 5807. The evidence-based standardized algorithm combines modern clinical requirements and evidence-based treatment principles. The algorithm provides a detailed transparent standard operating procedure (SOP) for diagnosing PJI. Thus, consistently high, examiner-independent process quality is assured to meet the demands of modern quality management in PJI diagnosis.

  2. Mental Computation or Standard Algorithm? Children's Strategy Choices on Multi-Digit Subtractions

    Science.gov (United States)

    Torbeyns, Joke; Verschaffel, Lieven

    2016-01-01

    This study analyzed children's use of mental computation strategies and the standard algorithm on multi-digit subtractions. Fifty-eight Flemish 4th graders of varying mathematical achievement level were individually offered subtractions that either stimulated the use of mental computation strategies or the standard algorithm in one choice and two…

  3. Minimum Probability of Error-Based Equalization Algorithms for Fading Channels

    Directory of Open Access Journals (Sweden)

    Janos Levendovszky

    2007-06-01

    Full Text Available Novel channel equalizer algorithms are introduced for wireless communication systems to combat channel distortions resulting from multipath propagation. The novel algorithms are based on newly derived bounds on the probability of error (PE and guarantee better performance than the traditional zero forcing (ZF or minimum mean square error (MMSE algorithms. The new equalization methods require channel state information which is obtained by a fast adaptive channel identification algorithm. As a result, the combined convergence time needed for channel identification and PE minimization still remains smaller than the convergence time of traditional adaptive algorithms, yielding real-time equalization. The performance of the new algorithms is tested by extensive simulations on standard mobile channels.

  4. KM-FCM: A fuzzy clustering optimization algorithm based on Mahalanobis distance

    Directory of Open Access Journals (Sweden)

    Zhiwen ZU

    2018-04-01

    Full Text Available The traditional fuzzy clustering algorithm uses Euclidean distance as the similarity criterion, which is disadvantageous to the multidimensional data processing. In order to solve this situation, Mahalanobis distance is used instead of the traditional Euclidean distance, and the optimization of fuzzy clustering algorithm based on Mahalanobis distance is studied to enhance the clustering effect and ability. With making the initialization means by Heuristic search algorithm combined with k-means algorithm, and in terms of the validity function which could automatically adjust the optimal clustering number, an optimization algorithm KM-FCM is proposed. The new algorithm is compared with FCM algorithm, FCM-M algorithm and M-FCM algorithm in three standard data sets. The experimental results show that the KM-FCM algorithm is effective. It has higher clustering accuracy than FCM, FCM-M and M-FCM, recognizing high-dimensional data clustering well. It has global optimization effect, and the clustering number has no need for setting in advance. The new algorithm provides a reference for the optimization of fuzzy clustering algorithm based on Mahalanobis distance.

  5. PDES, Fips Standard Data Encryption Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Nessett, D N [Lawrence Livermore National Laboratory (United States)

    1991-03-26

    Description of program or function: PDES performs the National Bureau of Standards FIPS Pub. 46 data encryption/decryption algorithm used for the cryptographic protection of computer data. The DES algorithm is designed to encipher and decipher blocks of data consisting of 64 bits under control of a 64-bit key. The key is generated in such a way that each of the 56 bits used directly by the algorithm are random and the remaining 8 error-detecting bits are set to make the parity of each 8-bit byte of the key odd, i. e. there is an odd number of '1' bits in each 8-bit byte. Each member of a group of authorized users of encrypted computer data must have the key that was used to encipher the data in order to use it. Data can be recovered from cipher only by using exactly the same key used to encipher it, but with the schedule of addressing the key bits altered so that the deciphering process is the reverse of the enciphering process. A block of data to be enciphered is subjected to an initial permutation, then to a complex key-dependent computation, and finally to a permutation which is the inverse of the initial permutation. Two PDES routines are included; both perform the same calculation. One, identified as FDES.MAR, is designed to achieve speed in execution, while the other identified as PDES.MAR, presents a clearer view of how the algorithm is executed

  6. PDES, Fips Standard Data Encryption Algorithm

    International Nuclear Information System (INIS)

    Nessett, D.N.

    1991-01-01

    Description of program or function: PDES performs the National Bureau of Standards FIPS Pub. 46 data encryption/decryption algorithm used for the cryptographic protection of computer data. The DES algorithm is designed to encipher and decipher blocks of data consisting of 64 bits under control of a 64-bit key. The key is generated in such a way that each of the 56 bits used directly by the algorithm are random and the remaining 8 error-detecting bits are set to make the parity of each 8-bit byte of the key odd, i. e. there is an odd number of '1' bits in each 8-bit byte. Each member of a group of authorized users of encrypted computer data must have the key that was used to encipher the data in order to use it. Data can be recovered from cipher only by using exactly the same key used to encipher it, but with the schedule of addressing the key bits altered so that the deciphering process is the reverse of the enciphering process. A block of data to be enciphered is subjected to an initial permutation, then to a complex key-dependent computation, and finally to a permutation which is the inverse of the initial permutation. Two PDES routines are included; both perform the same calculation. One, identified as FDES.MAR, is designed to achieve speed in execution, while the other identified as PDES.MAR, presents a clearer view of how the algorithm is executed

  7. CHAOS-BASED ADVANCED ENCRYPTION STANDARD

    KAUST Repository

    Abdulwahed, Naif B.

    2013-05-01

    This thesis introduces a new chaos-based Advanced Encryption Standard (AES). The AES is a well-known encryption algorithm that was standardized by U.S National Institute of Standard and Technology (NIST) in 2001. The thesis investigates and explores the behavior of the AES algorithm by replacing two of its original modules, namely the S-Box and the Key Schedule, with two other chaos- based modules. Three chaos systems are considered in designing the new modules which are Lorenz system with multiplication nonlinearity, Chen system with sign modules nonlinearity, and 1D multiscroll system with stair case nonlinearity. The three systems are evaluated on their sensitivity to initial conditions and as Pseudo Random Number Generators (PRNG) after applying a post-processing technique to their output then performing NIST SP. 800-22 statistical tests. The thesis presents a hardware implementation of dynamic S-Boxes for AES that are populated using the three chaos systems. Moreover, a full MATLAB package to analyze the chaos generated S-Boxes based on graphical analysis, Walsh-Hadamard spectrum analysis, and image encryption analysis is developed. Although these S-Boxes are dynamic, meaning they are regenerated whenever the encryption key is changed, the analysis results show that such S-Boxes exhibit good properties like the Strict Avalanche Criterion (SAC) and the nonlinearity and in the application of image encryption. Furthermore, the thesis presents a new Lorenz-chaos-based key expansion for the AES. Many researchers have pointed out that there are some defects in the original key expansion of AES and thus have motivated such chaos-based key expansion proposal. The new proposed key schedule is analyzed and assessed in terms of confusion and diffusion by performing the frequency and SAC test respectively. The obtained results show that the new proposed design is more secure than the original AES key schedule and other proposed designs in the literature. The proposed

  8. Otsu Based Optimal Multilevel Image Thresholding Using Firefly Algorithm

    Directory of Open Access Journals (Sweden)

    N. Sri Madhava Raja

    2014-01-01

    Full Text Available Histogram based multilevel thresholding approach is proposed using Brownian distribution (BD guided firefly algorithm (FA. A bounded search technique is also presented to improve the optimization accuracy with lesser search iterations. Otsu’s between-class variance function is maximized to obtain optimal threshold level for gray scale images. The performances of the proposed algorithm are demonstrated by considering twelve benchmark images and are compared with the existing FA algorithms such as Lévy flight (LF guided FA and random operator guided FA. The performance assessment comparison between the proposed and existing firefly algorithms is carried using prevailing parameters such as objective function, standard deviation, peak-to-signal ratio (PSNR, structural similarity (SSIM index, and search time of CPU. The results show that BD guided FA provides better objective function, PSNR, and SSIM, whereas LF based FA provides faster convergence with relatively lower CPU time.

  9. Multiple Lookup Table-Based AES Encryption Algorithm Implementation

    Science.gov (United States)

    Gong, Jin; Liu, Wenyi; Zhang, Huixin

    Anew AES (Advanced Encryption Standard) encryption algorithm implementation was proposed in this paper. It is based on five lookup tables, which are generated from S-box(the substitution table in AES). The obvious advantages are reducing the code-size, improving the implementation efficiency, and helping new learners to understand the AES encryption algorithm and GF(28) multiplication which are necessary to correctly implement AES[1]. This method can be applied on processors with word length 32 or above, FPGA and others. And correspondingly we can implement it by VHDL, Verilog, VB and other languages.

  10. Validation of an algorithm-based definition of treatment resistance in patients with schizophrenia.

    Science.gov (United States)

    Ajnakina, Olesya; Horsdal, Henriette Thisted; Lally, John; MacCabe, James H; Murray, Robin M; Gasse, Christiane; Wimberley, Theresa

    2018-02-19

    Large-scale pharmacoepidemiological research on treatment resistance relies on accurate identification of people with treatment-resistant schizophrenia (TRS) based on data that are retrievable from administrative registers. This is usually approached by operationalising clinical treatment guidelines by using prescription and hospital admission information. We examined the accuracy of an algorithm-based definition of TRS based on clozapine prescription and/or meeting algorithm-based eligibility criteria for clozapine against a gold standard definition using case notes. We additionally validated a definition entirely based on clozapine prescription. 139 schizophrenia patients aged 18-65years were followed for a mean of 5years after first presentation to psychiatric services in South-London, UK. The diagnostic accuracy of the algorithm-based measure against the gold standard was measured with sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV). A total of 45 (32.4%) schizophrenia patients met the criteria for the gold standard definition of TRS; applying the algorithm-based definition to the same cohort led to 44 (31.7%) patients fulfilling criteria for TRS with sensitivity, specificity, PPV and NPV of 62.2%, 83.0%, 63.6% and 82.1%, respectively. The definition based on lifetime clozapine prescription had sensitivity, specificity, PPV and NPV of 40.0%, 94.7%, 78.3% and 76.7%, respectively. Although a perfect definition of TRS cannot be derived from available prescription and hospital registers, these results indicate that researchers can confidently use registries to identify individuals with TRS for research and clinical practices. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Portfolio optimization by using linear programing models based on genetic algorithm

    Science.gov (United States)

    Sukono; Hidayat, Y.; Lesmana, E.; Putra, A. S.; Napitupulu, H.; Supian, S.

    2018-01-01

    In this paper, we discussed the investment portfolio optimization using linear programming model based on genetic algorithms. It is assumed that the portfolio risk is measured by absolute standard deviation, and each investor has a risk tolerance on the investment portfolio. To complete the investment portfolio optimization problem, the issue is arranged into a linear programming model. Furthermore, determination of the optimum solution for linear programming is done by using a genetic algorithm. As a numerical illustration, we analyze some of the stocks traded on the capital market in Indonesia. Based on the analysis, it is shown that the portfolio optimization performed by genetic algorithm approach produces more optimal efficient portfolio, compared to the portfolio optimization performed by a linear programming algorithm approach. Therefore, genetic algorithms can be considered as an alternative on determining the investment portfolio optimization, particularly using linear programming models.

  12. A Novel Assembly Line Scheduling Algorithm Based on CE-PSO

    Directory of Open Access Journals (Sweden)

    Xiaomei Hu

    2015-01-01

    Full Text Available With the widespread application of assembly line in enterprises, assembly line scheduling is an important problem in the production since it directly affects the productivity of the whole manufacturing system. The mathematical model of assembly line scheduling problem is put forward and key data are confirmed. A double objective optimization model based on equipment utilization and delivery time loss is built, and optimization solution strategy is described. Based on the idea of solution strategy, assembly line scheduling algorithm based on CE-PSO is proposed to overcome the shortcomings of the standard PSO. Through the simulation experiments of two examples, the validity of the assembly line scheduling algorithm based on CE-PSO is proved.

  13. Implementation of an Evidence-Based and Content Validated Standardized Ostomy Algorithm Tool in Home Care: A Quality Improvement Project.

    Science.gov (United States)

    Bare, Kimberly; Drain, Jerri; Timko-Progar, Monica; Stallings, Bobbie; Smith, Kimberly; Ward, Naomi; Wright, Sandra

    Many nurses have limited experience with ostomy management. We sought to provide a standardized approach to ostomy education and management to support nurses in early identification of stomal and peristomal complications, pouching problems, and provide standardized solutions for managing ostomy care in general while improving utilization of formulary products. This article describes development and testing of an ostomy algorithm tool.

  14. A voting-based star identification algorithm utilizing local and global distribution

    Science.gov (United States)

    Fan, Qiaoyun; Zhong, Xuyang; Sun, Junhua

    2018-03-01

    A novel star identification algorithm based on voting scheme is presented in this paper. In the proposed algorithm, the global distribution and local distribution of sensor stars are fully utilized, and the stratified voting scheme is adopted to obtain the candidates for sensor stars. The database optimization is employed to reduce its memory requirement and improve the robustness of the proposed algorithm. The simulation shows that the proposed algorithm exhibits 99.81% identification rate with 2-pixel standard deviations of positional noises and 0.322-Mv magnitude noises. Compared with two similar algorithms, the proposed algorithm is more robust towards noise, and the average identification time and required memory is less. Furthermore, the real sky test shows that the proposed algorithm performs well on the real star images.

  15. An accurate projection algorithm for array processor based SPECT systems

    International Nuclear Information System (INIS)

    King, M.A.; Schwinger, R.B.; Cool, S.L.

    1985-01-01

    A data re-projection algorithm has been developed for use in single photon emission computed tomography (SPECT) on an array processor based computer system. The algorithm makes use of an accurate representation of pixel activity (uniform square pixel model of intensity distribution), and is rapidly performed due to the efficient handling of an array based algorithm and the Fast Fourier Transform (FFT) on parallel processing hardware. The algorithm consists of using a pixel driven nearest neighbour projection operation to an array of subdivided projection bins. This result is then convolved with the projected uniform square pixel distribution before being compressed to original bin size. This distribution varies with projection angle and is explicitly calculated. The FFT combined with a frequency space multiplication is used instead of a spatial convolution for more rapid execution. The new algorithm was tested against other commonly used projection algorithms by comparing the accuracy of projections of a simulated transverse section of the abdomen against analytically determined projections of that transverse section. The new algorithm was found to yield comparable or better standard error and yet result in easier and more efficient implementation on parallel hardware. Applications of the algorithm include iterative reconstruction and attenuation correction schemes and evaluation of regions of interest in dynamic and gated SPECT

  16. Hybrid fuzzy charged system search algorithm based state estimation in distribution networks

    Directory of Open Access Journals (Sweden)

    Sachidananda Prasad

    2017-06-01

    Full Text Available This paper proposes a new hybrid charged system search (CSS algorithm based state estimation in radial distribution networks in fuzzy framework. The objective of the optimization problem is to minimize the weighted square of the difference between the measured and the estimated quantity. The proposed method of state estimation considers bus voltage magnitude and phase angle as state variable along with some equality and inequality constraints for state estimation in distribution networks. A rule based fuzzy inference system has been designed to control the parameters of the CSS algorithm to achieve better balance between the exploration and exploitation capability of the algorithm. The efficiency of the proposed fuzzy adaptive charged system search (FACSS algorithm has been tested on standard IEEE 33-bus system and Indian 85-bus practical radial distribution system. The obtained results have been compared with the conventional CSS algorithm, weighted least square (WLS algorithm and particle swarm optimization (PSO for feasibility of the algorithm.

  17. Single-step reinitialization and extending algorithms for level-set based multi-phase flow simulations

    Science.gov (United States)

    Fu, Lin; Hu, Xiangyu Y.; Adams, Nikolaus A.

    2017-12-01

    We propose efficient single-step formulations for reinitialization and extending algorithms, which are critical components of level-set based interface-tracking methods. The level-set field is reinitialized with a single-step (non iterative) "forward tracing" algorithm. A minimum set of cells is defined that describes the interface, and reinitialization employs only data from these cells. Fluid states are extrapolated or extended across the interface by a single-step "backward tracing" algorithm. Both algorithms, which are motivated by analogy to ray-tracing, avoid multiple block-boundary data exchanges that are inevitable for iterative reinitialization and extending approaches within a parallel-computing environment. The single-step algorithms are combined with a multi-resolution conservative sharp-interface method and validated by a wide range of benchmark test cases. We demonstrate that the proposed reinitialization method achieves second-order accuracy in conserving the volume of each phase. The interface location is invariant to reapplication of the single-step reinitialization. Generally, we observe smaller absolute errors than for standard iterative reinitialization on the same grid. The computational efficiency is higher than for the standard and typical high-order iterative reinitialization methods. We observe a 2- to 6-times efficiency improvement over the standard method for serial execution. The proposed single-step extending algorithm, which is commonly employed for assigning data to ghost cells with ghost-fluid or conservative interface interaction methods, shows about 10-times efficiency improvement over the standard method while maintaining same accuracy. Despite their simplicity, the proposed algorithms offer an efficient and robust alternative to iterative reinitialization and extending methods for level-set based multi-phase simulations.

  18. Reconstruction algorithm in compressed sensing based on maximum a posteriori estimation

    International Nuclear Information System (INIS)

    Takeda, Koujin; Kabashima, Yoshiyuki

    2013-01-01

    We propose a systematic method for constructing a sparse data reconstruction algorithm in compressed sensing at a relatively low computational cost for general observation matrix. It is known that the cost of ℓ 1 -norm minimization using a standard linear programming algorithm is O(N 3 ). We show that this cost can be reduced to O(N 2 ) by applying the approach of posterior maximization. Furthermore, in principle, the algorithm from our approach is expected to achieve the widest successful reconstruction region, which is evaluated from theoretical argument. We also discuss the relation between the belief propagation-based reconstruction algorithm introduced in preceding works and our approach

  19. GPU-based fast pencil beam algorithm for proton therapy

    International Nuclear Information System (INIS)

    Fujimoto, Rintaro; Nagamine, Yoshihiko; Kurihara, Tsuneya

    2011-01-01

    Performance of a treatment planning system is an essential factor in making sophisticated plans. The dose calculation is a major time-consuming process in planning operations. The standard algorithm for proton dose calculations is the pencil beam algorithm which produces relatively accurate results, but is time consuming. In order to shorten the computational time, we have developed a GPU (graphics processing unit)-based pencil beam algorithm. We have implemented this algorithm and calculated dose distributions in the case of a water phantom. The results were compared to those obtained by a traditional method with respect to the computational time and discrepancy between the two methods. The new algorithm shows 5-20 times faster performance using the NVIDIA GeForce GTX 480 card in comparison with the Intel Core-i7 920 processor. The maximum discrepancy of the dose distribution is within 0.2%. Our results show that GPUs are effective for proton dose calculations.

  20. An administrative data validation study of the accuracy of algorithms for identifying rheumatoid arthritis: the influence of the reference standard on algorithm performance.

    Science.gov (United States)

    Widdifield, Jessica; Bombardier, Claire; Bernatsky, Sasha; Paterson, J Michael; Green, Diane; Young, Jacqueline; Ivers, Noah; Butt, Debra A; Jaakkimainen, R Liisa; Thorne, J Carter; Tu, Karen

    2014-06-23

    We have previously validated administrative data algorithms to identify patients with rheumatoid arthritis (RA) using rheumatology clinic records as the reference standard. Here we reassessed the accuracy of the algorithms using primary care records as the reference standard. We performed a retrospective chart abstraction study using a random sample of 7500 adult patients under the care of 83 family physicians contributing to the Electronic Medical Record Administrative data Linked Database (EMRALD) in Ontario, Canada. Using physician-reported diagnoses as the reference standard, we computed and compared the sensitivity, specificity, and predictive values for over 100 administrative data algorithms for RA case ascertainment. We identified 69 patients with RA for a lifetime RA prevalence of 0.9%. All algorithms had excellent specificity (>97%). However, sensitivity varied (75-90%) among physician billing algorithms. Despite the low prevalence of RA, most algorithms had adequate positive predictive value (PPV; 51-83%). The algorithm of "[1 hospitalization RA diagnosis code] or [3 physician RA diagnosis codes with ≥1 by a specialist over 2 years]" had a sensitivity of 78% (95% CI 69-88), specificity of 100% (95% CI 100-100), PPV of 78% (95% CI 69-88) and NPV of 100% (95% CI 100-100). Administrative data algorithms for detecting RA patients achieved a high degree of accuracy amongst the general population. However, results varied slightly from our previous report, which can be attributed to differences in the reference standards with respect to disease prevalence, spectrum of disease, and type of comparator group.

  1. A Path-Based Gradient Projection Algorithm for the Cost-Based System Optimum Problem in Networks with Continuously Distributed Value of Time

    Directory of Open Access Journals (Sweden)

    Wen-Xiang Wu

    2014-01-01

    Full Text Available The cost-based system optimum problem in networks with continuously distributed value of time is formulated as a path-based form, which cannot be solved by the Frank-Wolfe algorithm. In light of magnitude improvement in the availability of computer memory in recent years, path-based algorithms have been regarded as a viable approach for traffic assignment problems with reasonably large network sizes. We develop a path-based gradient projection algorithm for solving the cost-based system optimum model, based on Goldstein-Levitin-Polyak method which has been successfully applied to solve standard user equilibrium and system optimum problems. The Sioux Falls network tested is used to verify the effectiveness of the algorithm.

  2. Opposition-Based Adaptive Fireworks Algorithm

    OpenAIRE

    Chibing Gong

    2016-01-01

    A fireworks algorithm (FWA) is a recent swarm intelligence algorithm that is inspired by observing fireworks explosions. An adaptive fireworks algorithm (AFWA) proposes additional adaptive amplitudes to improve the performance of the enhanced fireworks algorithm (EFWA). The purpose of this paper is to add opposition-based learning (OBL) to AFWA with the goal of further boosting performance and achieving global optimization. Twelve benchmark functions are tested in use of an opposition-based a...

  3. Log-Linear Model Based Behavior Selection Method for Artificial Fish Swarm Algorithm

    Directory of Open Access Journals (Sweden)

    Zhehuang Huang

    2015-01-01

    Full Text Available Artificial fish swarm algorithm (AFSA is a population based optimization technique inspired by social behavior of fishes. In past several years, AFSA has been successfully applied in many research and application areas. The behavior of fishes has a crucial impact on the performance of AFSA, such as global exploration ability and convergence speed. How to construct and select behaviors of fishes are an important task. To solve these problems, an improved artificial fish swarm algorithm based on log-linear model is proposed and implemented in this paper. There are three main works. Firstly, we proposed a new behavior selection algorithm based on log-linear model which can enhance decision making ability of behavior selection. Secondly, adaptive movement behavior based on adaptive weight is presented, which can dynamically adjust according to the diversity of fishes. Finally, some new behaviors are defined and introduced into artificial fish swarm algorithm at the first time to improve global optimization capability. The experiments on high dimensional function optimization showed that the improved algorithm has more powerful global exploration ability and reasonable convergence speed compared with the standard artificial fish swarm algorithm.

  4. Log-linear model based behavior selection method for artificial fish swarm algorithm.

    Science.gov (United States)

    Huang, Zhehuang; Chen, Yidong

    2015-01-01

    Artificial fish swarm algorithm (AFSA) is a population based optimization technique inspired by social behavior of fishes. In past several years, AFSA has been successfully applied in many research and application areas. The behavior of fishes has a crucial impact on the performance of AFSA, such as global exploration ability and convergence speed. How to construct and select behaviors of fishes are an important task. To solve these problems, an improved artificial fish swarm algorithm based on log-linear model is proposed and implemented in this paper. There are three main works. Firstly, we proposed a new behavior selection algorithm based on log-linear model which can enhance decision making ability of behavior selection. Secondly, adaptive movement behavior based on adaptive weight is presented, which can dynamically adjust according to the diversity of fishes. Finally, some new behaviors are defined and introduced into artificial fish swarm algorithm at the first time to improve global optimization capability. The experiments on high dimensional function optimization showed that the improved algorithm has more powerful global exploration ability and reasonable convergence speed compared with the standard artificial fish swarm algorithm.

  5. Dynamic route guidance algorithm based algorithm based on artificial immune system

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To improve the performance of the K-shortest paths search in intelligent traffic guidance systems,this paper proposes an optimal search algorithm based on the intelligent optimization search theory and the memphor mechanism of vertebrate immune systems.This algorithm,applied to the urban traffic network model established by the node-expanding method,can expediently realize K-shortest paths search in the urban traffic guidance systems.Because of the immune memory and global parallel search ability from artificial immune systems,K shortest paths can be found without any repeat,which indicates evidently the superiority of the algorithm to the conventional ones.Not only does it perform a better parallelism,the algorithm also prevents premature phenomenon that often occurs in genetic algorithms.Thus,it is especially suitable for real-time requirement of the traffic guidance system and other engineering optimal applications.A case study verifies the efficiency and the practicability of the algorithm aforementioned.

  6. Robustness and precision of an automatic marker detection algorithm for online prostate daily targeting using a standard V-EPID.

    Science.gov (United States)

    Aubin, S; Beaulieu, L; Pouliot, S; Pouliot, J; Roy, R; Girouard, L M; Martel-Brisson, N; Vigneault, E; Laverdière, J

    2003-07-01

    An algorithm for the daily localization of the prostate using implanted markers and a standard video-based electronic portal imaging device (V-EPID) has been tested. Prior to planning, three gold markers were implanted in the prostate of seven patients. The clinical images were acquired with a BeamViewPlus 2.1 V-EPID for each field during the normal course radiotherapy treatment and are used off-line to determine the ability of the automatic marker detection algorithm to adequately and consistently detect the markers. Clinical images were obtained with various dose levels from ranging 2.5 to 75 MU. The algorithm is based on marker attenuation characterization in the portal image and spatial distribution. A total of 1182 clinical images were taken. The results show an average efficiency of 93% for the markers detected individually and 85% for the group of markers. This algorithm accomplishes the detection and validation in 0.20-0.40 s. When the center of mass of the group of implanted markers is used, then all displacements can be corrected to within 1.0 mm in 84% of the cases and within 1.5 mm in 97% of cases. The standard video-based EPID tested provides excellent marker detection capability even with low dose levels. The V-EPID can be used successfully with radiopaque markers and the automatic detection algorithm to track and correct the daily setup deviations due to organ motions.

  7. Archimedean copula estimation of distribution algorithm based on artificial bee colony algorithm

    Institute of Scientific and Technical Information of China (English)

    Haidong Xu; Mingyan Jiang; Kun Xu

    2015-01-01

    The artificial bee colony (ABC) algorithm is a com-petitive stochastic population-based optimization algorithm. How-ever, the ABC algorithm does not use the social information and lacks the knowledge of the problem structure, which leads to in-sufficiency in both convergent speed and searching precision. Archimedean copula estimation of distribution algorithm (ACEDA) is a relatively simple, time-economic and multivariate correlated EDA. This paper proposes a novel hybrid algorithm based on the ABC algorithm and ACEDA cal ed Archimedean copula estima-tion of distribution based on the artificial bee colony (ACABC) algorithm. The hybrid algorithm utilizes ACEDA to estimate the distribution model and then uses the information to help artificial bees to search more efficiently in the search space. Six bench-mark functions are introduced to assess the performance of the ACABC algorithm on numerical function optimization. Experimen-tal results show that the ACABC algorithm converges much faster with greater precision compared with the ABC algorithm, ACEDA and the global best (gbest)-guided ABC (GABC) algorithm in most of the experiments.

  8. Algorithms in Singular

    Directory of Open Access Journals (Sweden)

    Hans Schonemann

    1996-12-01

    Full Text Available Some algorithms for singularity theory and algebraic geometry The use of Grobner basis computations for treating systems of polynomial equations has become an important tool in many areas. This paper introduces of the concept of standard bases (a generalization of Grobner bases and the application to some problems from algebraic geometry. The examples are presented as SINGULAR commands. A general introduction to Grobner bases can be found in the textbook [CLO], an introduction to syzygies in [E] and [St1]. SINGULAR is a computer algebra system for computing information about singularities, for use in algebraic geometry. The basic algorithms in SINGULAR are several variants of a general standard basis algorithm for general monomial orderings (see [GG]. This includes wellorderings (Buchberger algorithm ([B1], [B2] and tangent cone orderings (Mora algorithm ([M1], [MPT] as special cases: It is able to work with non-homogeneous and homogeneous input and also to compute in the localization of the polynomial ring in 0. Recent versions include algorithms to factorize polynomials and a factorizing Grobner basis algorithm. For a complete description of SINGULAR see [Si].

  9. An Improved FCM Medical Image Segmentation Algorithm Based on MMTD

    Directory of Open Access Journals (Sweden)

    Ningning Zhou

    2014-01-01

    Full Text Available Image segmentation plays an important role in medical image processing. Fuzzy c-means (FCM is one of the popular clustering algorithms for medical image segmentation. But FCM is highly vulnerable to noise due to not considering the spatial information in image segmentation. This paper introduces medium mathematics system which is employed to process fuzzy information for image segmentation. It establishes the medium similarity measure based on the measure of medium truth degree (MMTD and uses the correlation of the pixel and its neighbors to define the medium membership function. An improved FCM medical image segmentation algorithm based on MMTD which takes some spatial features into account is proposed in this paper. The experimental results show that the proposed algorithm is more antinoise than the standard FCM, with more certainty and less fuzziness. This will lead to its practicable and effective applications in medical image segmentation.

  10. Scatter-Reducing Sounding Filtration Using a Genetic Algorithm and Mean Monthly Standard Deviation

    Science.gov (United States)

    Mandrake, Lukas

    2013-01-01

    Retrieval algorithms like that used by the Orbiting Carbon Observatory (OCO)-2 mission generate massive quantities of data of varying quality and reliability. A computationally efficient, simple method of labeling problematic datapoints or predicting soundings that will fail is required for basic operation, given that only 6% of the retrieved data may be operationally processed. This method automatically obtains a filter designed to reduce scatter based on a small number of input features. Most machine-learning filter construction algorithms attempt to predict error in the CO2 value. By using a surrogate goal of Mean Monthly STDEV, the goal is to reduce the retrieved CO2 scatter rather than solving the harder problem of reducing CO2 error. This lends itself to improved interpretability and performance. This software reduces the scatter of retrieved CO2 values globally based on a minimum number of input features. It can be used as a prefilter to reduce the number of soundings requested, or as a post-filter to label data quality. The use of the MMS (Mean Monthly Standard deviation) provides a much cleaner, clearer filter than the standard ABS(CO2-truth) metrics previously employed by competitor methods. The software's main strength lies in a clearer (i.e., fewer features required) filter that more efficiently reduces scatter in retrieved CO2 rather than focusing on the more complex (and easily removed) bias issues.

  11. A multipopulation PSO based memetic algorithm for permutation flow shop scheduling.

    Science.gov (United States)

    Liu, Ruochen; Ma, Chenlin; Ma, Wenping; Li, Yangyang

    2013-01-01

    The permutation flow shop scheduling problem (PFSSP) is part of production scheduling, which belongs to the hardest combinatorial optimization problem. In this paper, a multipopulation particle swarm optimization (PSO) based memetic algorithm (MPSOMA) is proposed in this paper. In the proposed algorithm, the whole particle swarm population is divided into three subpopulations in which each particle evolves itself by the standard PSO and then updates each subpopulation by using different local search schemes such as variable neighborhood search (VNS) and individual improvement scheme (IIS). Then, the best particle of each subpopulation is selected to construct a probabilistic model by using estimation of distribution algorithm (EDA) and three particles are sampled from the probabilistic model to update the worst individual in each subpopulation. The best particle in the entire particle swarm is used to update the global optimal solution. The proposed MPSOMA is compared with two recently proposed algorithms, namely, PSO based memetic algorithm (PSOMA) and hybrid particle swarm optimization with estimation of distribution algorithm (PSOEDA), on 29 well-known PFFSPs taken from OR-library, and the experimental results show that it is an effective approach for the PFFSP.

  12. A Multipopulation PSO Based Memetic Algorithm for Permutation Flow Shop Scheduling

    Directory of Open Access Journals (Sweden)

    Ruochen Liu

    2013-01-01

    Full Text Available The permutation flow shop scheduling problem (PFSSP is part of production scheduling, which belongs to the hardest combinatorial optimization problem. In this paper, a multipopulation particle swarm optimization (PSO based memetic algorithm (MPSOMA is proposed in this paper. In the proposed algorithm, the whole particle swarm population is divided into three subpopulations in which each particle evolves itself by the standard PSO and then updates each subpopulation by using different local search schemes such as variable neighborhood search (VNS and individual improvement scheme (IIS. Then, the best particle of each subpopulation is selected to construct a probabilistic model by using estimation of distribution algorithm (EDA and three particles are sampled from the probabilistic model to update the worst individual in each subpopulation. The best particle in the entire particle swarm is used to update the global optimal solution. The proposed MPSOMA is compared with two recently proposed algorithms, namely, PSO based memetic algorithm (PSOMA and hybrid particle swarm optimization with estimation of distribution algorithm (PSOEDA, on 29 well-known PFFSPs taken from OR-library, and the experimental results show that it is an effective approach for the PFFSP.

  13. Algorithm of Defect Segmentation for AFP Based on Prepregs

    Directory of Open Access Journals (Sweden)

    CAI Zhiqiang

    2017-04-01

    Full Text Available In order to ensure the performance of the automated fiber placement forming parts, according to the homogeneity of the image of the prepreg surface along the fiber direction, a defect segmentation algorithm which was the combination of gray compensation and substraction algorithm based on image processing technology was proposed. The gray compensation matrix of image was used to compensate the gray image, and the maximum error point of the image matrix was eliminated according to the characteristics that the gray error obeys the normal distribution. The standard image was established, using the allowed deviation coefficient K as a criterion for substraction segmentation. Experiments show that the algorithm has good effect, fast speed in segmenting two kinds of typical laying defect of bubbles or foreign objects, and provides a good theoretical basis to realize automatic laying defect online monitoring.

  14. A scalable method for parallelizing sampling-based motion planning algorithms

    KAUST Repository

    Jacobs, Sam Ade; Manavi, Kasra; Burgos, Juan; Denny, Jory; Thomas, Shawna; Amato, Nancy M.

    2012-01-01

    This paper describes a scalable method for parallelizing sampling-based motion planning algorithms. It subdivides configuration space (C-space) into (possibly overlapping) regions and independently, in parallel, uses standard (sequential) sampling-based planners to construct roadmaps in each region. Next, in parallel, regional roadmaps in adjacent regions are connected to form a global roadmap. By subdividing the space and restricting the locality of connection attempts, we reduce the work and inter-processor communication associated with nearest neighbor calculation, a critical bottleneck for scalability in existing parallel motion planning methods. We show that our method is general enough to handle a variety of planning schemes, including the widely used Probabilistic Roadmap (PRM) and Rapidly-exploring Random Trees (RRT) algorithms. We compare our approach to two other existing parallel algorithms and demonstrate that our approach achieves better and more scalable performance. Our approach achieves almost linear scalability on a 2400 core LINUX cluster and on a 153,216 core Cray XE6 petascale machine. © 2012 IEEE.

  15. A scalable method for parallelizing sampling-based motion planning algorithms

    KAUST Repository

    Jacobs, Sam Ade

    2012-05-01

    This paper describes a scalable method for parallelizing sampling-based motion planning algorithms. It subdivides configuration space (C-space) into (possibly overlapping) regions and independently, in parallel, uses standard (sequential) sampling-based planners to construct roadmaps in each region. Next, in parallel, regional roadmaps in adjacent regions are connected to form a global roadmap. By subdividing the space and restricting the locality of connection attempts, we reduce the work and inter-processor communication associated with nearest neighbor calculation, a critical bottleneck for scalability in existing parallel motion planning methods. We show that our method is general enough to handle a variety of planning schemes, including the widely used Probabilistic Roadmap (PRM) and Rapidly-exploring Random Trees (RRT) algorithms. We compare our approach to two other existing parallel algorithms and demonstrate that our approach achieves better and more scalable performance. Our approach achieves almost linear scalability on a 2400 core LINUX cluster and on a 153,216 core Cray XE6 petascale machine. © 2012 IEEE.

  16. The Algorithm of Continuous Optimization Based on the Modified Cellular Automaton

    Directory of Open Access Journals (Sweden)

    Oleg Evsutin

    2016-08-01

    Full Text Available This article is devoted to the application of the cellular automata mathematical apparatus to the problem of continuous optimization. The cellular automaton with an objective function is introduced as a new modification of the classic cellular automaton. The algorithm of continuous optimization, which is based on dynamics of the cellular automaton having the property of geometric symmetry, is obtained. The results of the simulation experiments with the obtained algorithm on standard test functions are provided, and a comparison between the analogs is shown.

  17. Covariance-Based Measurement Selection Criterion for Gaussian-Based Algorithms

    Directory of Open Access Journals (Sweden)

    Fernando A. Auat Cheein

    2013-01-01

    Full Text Available Process modeling by means of Gaussian-based algorithms often suffers from redundant information which usually increases the estimation computational complexity without significantly improving the estimation performance. In this article, a non-arbitrary measurement selection criterion for Gaussian-based algorithms is proposed. The measurement selection criterion is based on the determination of the most significant measurement from both an estimation convergence perspective and the covariance matrix associated with the measurement. The selection criterion is independent from the nature of the measured variable. This criterion is used in conjunction with three Gaussian-based algorithms: the EIF (Extended Information Filter, the EKF (Extended Kalman Filter and the UKF (Unscented Kalman Filter. Nevertheless, the measurement selection criterion shown herein can also be applied to other Gaussian-based algorithms. Although this work is focused on environment modeling, the results shown herein can be applied to other Gaussian-based algorithm implementations. Mathematical descriptions and implementation results that validate the proposal are also included in this work.

  18. The Optimal Wavelengths for Light Absorption Spectroscopy Measurements Based on Genetic Algorithm-Particle Swarm Optimization

    Science.gov (United States)

    Tang, Ge; Wei, Biao; Wu, Decao; Feng, Peng; Liu, Juan; Tang, Yuan; Xiong, Shuangfei; Zhang, Zheng

    2018-03-01

    To select the optimal wavelengths in the light extinction spectroscopy measurement, genetic algorithm-particle swarm optimization (GAPSO) based on genetic algorithm (GA) and particle swarm optimization (PSO) is adopted. The change of the optimal wavelength positions in different feature size parameters and distribution parameters is evaluated. Moreover, the Monte Carlo method based on random probability is used to identify the number of optimal wavelengths, and good inversion effects of the particle size distribution are obtained. The method proved to have the advantage of resisting noise. In order to verify the feasibility of the algorithm, spectra with bands ranging from 200 to 1000 nm are computed. Based on this, the measured data of standard particles are used to verify the algorithm.

  19. Novel Blind Recognition Algorithm of Frame Synchronization Words Based on Soft-Decision in Digital Communication Systems.

    Science.gov (United States)

    Qin, Jiangyi; Huang, Zhiping; Liu, Chunwu; Su, Shaojing; Zhou, Jing

    2015-01-01

    A novel blind recognition algorithm of frame synchronization words is proposed to recognize the frame synchronization words parameters in digital communication systems. In this paper, a blind recognition method of frame synchronization words based on the hard-decision is deduced in detail. And the standards of parameter recognition are given. Comparing with the blind recognition based on the hard-decision, utilizing the soft-decision can improve the accuracy of blind recognition. Therefore, combining with the characteristics of Quadrature Phase Shift Keying (QPSK) signal, an improved blind recognition algorithm based on the soft-decision is proposed. Meanwhile, the improved algorithm can be extended to other signal modulation forms. Then, the complete blind recognition steps of the hard-decision algorithm and the soft-decision algorithm are given in detail. Finally, the simulation results show that both the hard-decision algorithm and the soft-decision algorithm can recognize the parameters of frame synchronization words blindly. What's more, the improved algorithm can enhance the accuracy of blind recognition obviously.

  20. Pulse retrieval algorithm for interferometric frequency-resolved optical gating based on differential evolution.

    Science.gov (United States)

    Hyyti, Janne; Escoto, Esmerando; Steinmeyer, Günter

    2017-10-01

    A novel algorithm for the ultrashort laser pulse characterization method of interferometric frequency-resolved optical gating (iFROG) is presented. Based on a genetic method, namely, differential evolution, the algorithm can exploit all available information of an iFROG measurement to retrieve the complex electric field of a pulse. The retrieval is subjected to a series of numerical tests to prove the robustness of the algorithm against experimental artifacts and noise. These tests show that the integrated error-correction mechanisms of the iFROG method can be successfully used to remove the effect from timing errors and spectrally varying efficiency in the detection. Moreover, the accuracy and noise resilience of the new algorithm are shown to outperform retrieval based on the generalized projections algorithm, which is widely used as the standard method in FROG retrieval. The differential evolution algorithm is further validated with experimental data, measured with unamplified three-cycle pulses from a mode-locked Ti:sapphire laser. Additionally introducing group delay dispersion in the beam path, the retrieval results show excellent agreement with independent measurements with a commercial pulse measurement device based on spectral phase interferometry for direct electric-field retrieval. Further experimental tests with strongly attenuated pulses indicate resilience of differential-evolution-based retrieval against massive measurement noise.

  1. Normalization based K means Clustering Algorithm

    OpenAIRE

    Virmani, Deepali; Taneja, Shweta; Malhotra, Geetika

    2015-01-01

    K-means is an effective clustering technique used to separate similar data into groups based on initial centroids of clusters. In this paper, Normalization based K-means clustering algorithm(N-K means) is proposed. Proposed N-K means clustering algorithm applies normalization prior to clustering on the available data as well as the proposed approach calculates initial centroids based on weights. Experimental results prove the betterment of proposed N-K means clustering algorithm over existing...

  2. Research on fault diagnosis of nuclear power plants based on genetic algorithms and fuzzy logic

    International Nuclear Information System (INIS)

    Zhou Yangping; Zhao Bingquan

    2001-01-01

    Based on genetic algorithms and fuzzy logic and using expert knowledge, mini-knowledge tree model and standard signals from simulator, a new fuzzy-genetic method is developed to fault diagnosis in nuclear power plants. A new replacement method of genetic algorithms is adopted. Fuzzy logic is used to calculate the fitness of the strings in genetic algorithms. Experiments on the simulator show it can deal with the uncertainty and the fuzzy factor

  3. An Evaluation of the Sniffer Global Optimization Algorithm Using Standard Test Functions

    Science.gov (United States)

    Butler, Roger A. R.; Slaminka, Edward E.

    1992-03-01

    The performance of Sniffer—a new global optimization algorithm—is compared with that of Simulated Annealing. Using the number of function evaluations as a measure of efficiency, the new algorithm is shown to be significantly better at finding the global minimum of seven standard test functions. Several of the test functions used have many local minima and very steep walls surrounding the global minimum. Such functions are intended to thwart global minimization algorithms.

  4. Treatment Algorithms Based on Tumor Molecular Profiling: The Essence of Precision Medicine Trials.

    Science.gov (United States)

    Le Tourneau, Christophe; Kamal, Maud; Tsimberidou, Apostolia-Maria; Bedard, Philippe; Pierron, Gaëlle; Callens, Céline; Rouleau, Etienne; Vincent-Salomon, Anne; Servant, Nicolas; Alt, Marie; Rouzier, Roman; Paoletti, Xavier; Delattre, Olivier; Bièche, Ivan

    2016-04-01

    With the advent of high-throughput molecular technologies, several precision medicine (PM) studies are currently ongoing that include molecular screening programs and PM clinical trials. Molecular profiling programs establish the molecular profile of patients' tumors with the aim to guide therapy based on identified molecular alterations. The aim of prospective PM clinical trials is to assess the clinical utility of tumor molecular profiling and to determine whether treatment selection based on molecular alterations produces superior outcomes compared with unselected treatment. These trials use treatment algorithms to assign patients to specific targeted therapies based on tumor molecular alterations. These algorithms should be governed by fixed rules to ensure standardization and reproducibility. Here, we summarize key molecular, biological, and technical criteria that, in our view, should be addressed when establishing treatment algorithms based on tumor molecular profiling for PM trials. © The Author 2015. Published by Oxford University Press.

  5. Fuzzy 2-partition entropy threshold selection based on Big Bang–Big Crunch Optimization algorithm

    Directory of Open Access Journals (Sweden)

    Baljit Singh Khehra

    2015-03-01

    Full Text Available The fuzzy 2-partition entropy approach has been widely used to select threshold value for image segmenting. This approach used two parameterized fuzzy membership functions to form a fuzzy 2-partition of the image. The optimal threshold is selected by searching an optimal combination of parameters of the membership functions such that the entropy of fuzzy 2-partition is maximized. In this paper, a new fuzzy 2-partition entropy thresholding approach based on the technology of the Big Bang–Big Crunch Optimization (BBBCO is proposed. The new proposed thresholding approach is called the BBBCO-based fuzzy 2-partition entropy thresholding algorithm. BBBCO is used to search an optimal combination of parameters of the membership functions for maximizing the entropy of fuzzy 2-partition. BBBCO is inspired by the theory of the evolution of the universe; namely the Big Bang and Big Crunch Theory. The proposed algorithm is tested on a number of standard test images. For comparison, three different algorithms included Genetic Algorithm (GA-based, Biogeography-based Optimization (BBO-based and recursive approaches are also implemented. From experimental results, it is observed that the performance of the proposed algorithm is more effective than GA-based, BBO-based and recursion-based approaches.

  6. A Line-Based Adaptive-Weight Matching Algorithm Using Loopy Belief Propagation

    Directory of Open Access Journals (Sweden)

    Hui Li

    2015-01-01

    Full Text Available In traditional adaptive-weight stereo matching, the rectangular shaped support region requires excess memory consumption and time. We propose a novel line-based stereo matching algorithm for obtaining a more accurate disparity map with low computation complexity. This algorithm can be divided into two steps: disparity map initialization and disparity map refinement. In the initialization step, a new adaptive-weight model based on the linear support region is put forward for cost aggregation. In this model, the neural network is used to evaluate the spatial proximity, and the mean-shift segmentation method is used to improve the accuracy of color similarity; the Birchfield pixel dissimilarity function and the census transform are adopted to establish the dissimilarity measurement function. Then the initial disparity map is obtained by loopy belief propagation. In the refinement step, the disparity map is optimized by iterative left-right consistency checking method and segmentation voting method. The parameter values involved in this algorithm are determined with many simulation experiments to further improve the matching effect. Simulation results indicate that this new matching method performs well on standard stereo benchmarks and running time of our algorithm is remarkably lower than that of algorithm with rectangle-shaped support region.

  7. Novel Blind Recognition Algorithm of Frame Synchronization Words Based on Soft-Decision in Digital Communication Systems.

    Directory of Open Access Journals (Sweden)

    Jiangyi Qin

    Full Text Available A novel blind recognition algorithm of frame synchronization words is proposed to recognize the frame synchronization words parameters in digital communication systems. In this paper, a blind recognition method of frame synchronization words based on the hard-decision is deduced in detail. And the standards of parameter recognition are given. Comparing with the blind recognition based on the hard-decision, utilizing the soft-decision can improve the accuracy of blind recognition. Therefore, combining with the characteristics of Quadrature Phase Shift Keying (QPSK signal, an improved blind recognition algorithm based on the soft-decision is proposed. Meanwhile, the improved algorithm can be extended to other signal modulation forms. Then, the complete blind recognition steps of the hard-decision algorithm and the soft-decision algorithm are given in detail. Finally, the simulation results show that both the hard-decision algorithm and the soft-decision algorithm can recognize the parameters of frame synchronization words blindly. What's more, the improved algorithm can enhance the accuracy of blind recognition obviously.

  8. Patent Keyword Extraction Algorithm Based on Distributed Representation for Patent Classification

    Directory of Open Access Journals (Sweden)

    Jie Hu

    2018-02-01

    Full Text Available Many text mining tasks such as text retrieval, text summarization, and text comparisons depend on the extraction of representative keywords from the main text. Most existing keyword extraction algorithms are based on discrete bag-of-words type of word representation of the text. In this paper, we propose a patent keyword extraction algorithm (PKEA based on the distributed Skip-gram model for patent classification. We also develop a set of quantitative performance measures for keyword extraction evaluation based on information gain and cross-validation, based on Support Vector Machine (SVM classification, which are valuable when human-annotated keywords are not available. We used a standard benchmark dataset and a homemade patent dataset to evaluate the performance of PKEA. Our patent dataset includes 2500 patents from five distinct technological fields related to autonomous cars (GPS systems, lidar systems, object recognition systems, radar systems, and vehicle control systems. We compared our method with Frequency, Term Frequency-Inverse Document Frequency (TF-IDF, TextRank and Rapid Automatic Keyword Extraction (RAKE. The experimental results show that our proposed algorithm provides a promising way to extract keywords from patent texts for patent classification.

  9. Wavelet-LMS algorithm-based echo cancellers

    Science.gov (United States)

    Seetharaman, Lalith K.; Rao, Sathyanarayana S.

    2002-12-01

    This paper presents Echo Cancellers based on the Wavelet-LMS Algorithm. The performance of the Least Mean Square Algorithm in Wavelet transform domain is observed and its application in Echo cancellation is analyzed. The Widrow-Hoff Least Mean Square Algorithm is most widely used algorithm for Adaptive filters that function as Echo Cancellers. The present day communication signals are widely non-stationary in nature and some errors crop up when Least Mean Square Algorithm is used for the Echo Cancellers handling such signals. The analysis of non-stationary signals often involves a compromise between how well transitions or discontinuities can be located. The multi-scale or multi-resolution of signal analysis, which is the essence of wavelet transform, makes Wavelets popular in non-stationary signal analysis. In this paper, we present a Wavelet-LMS algorithm wherein the wavelet coefficients of a signal are modified adaptively using the Least Mean Square Algorithm and then reconstructed to give an Echo-free signal. The Echo Canceller based on this Algorithm is found to have a better convergence and a comparatively lesser MSE (Mean Square error).

  10. Monte Carlo simulation methods in moment-based scale-bridging algorithms for thermal radiative-transfer problems

    Energy Technology Data Exchange (ETDEWEB)

    Densmore, J.D., E-mail: jeffery.densmore@unnpp.gov [Bettis Atomic Power Laboratory, P.O. Box 79, West Mifflin, PA 15122 (United States); Park, H., E-mail: hkpark@lanl.gov [Fluid Dynamics and Solid Mechanics Group, Los Alamos National Laboratory, P.O. Box 1663, MS B216, Los Alamos, NM 87545 (United States); Wollaber, A.B., E-mail: wollaber@lanl.gov [Computational Physics and Methods Group, Los Alamos National Laboratory, P.O. Box 1663, MS D409, Los Alamos, NM 87545 (United States); Rauenzahn, R.M., E-mail: rick@lanl.gov [Fluid Dynamics and Solid Mechanics Group, Los Alamos National Laboratory, P.O. Box 1663, MS B216, Los Alamos, NM 87545 (United States); Knoll, D.A., E-mail: nol@lanl.gov [Fluid Dynamics and Solid Mechanics Group, Los Alamos National Laboratory, P.O. Box 1663, MS B216, Los Alamos, NM 87545 (United States)

    2015-03-01

    We present a moment-based acceleration algorithm applied to Monte Carlo simulation of thermal radiative-transfer problems. Our acceleration algorithm employs a continuum system of moments to accelerate convergence of stiff absorption–emission physics. The combination of energy-conserving tallies and the use of an asymptotic approximation in optically thick regions remedy the difficulties of local energy conservation and mitigation of statistical noise in such regions. We demonstrate the efficiency and accuracy of the developed method. We also compare directly to the standard linearization-based method of Fleck and Cummings [1]. A factor of 40 reduction in total computational time is achieved with the new algorithm for an equivalent (or more accurate) solution as compared with the Fleck–Cummings algorithm.

  11. Monte Carlo simulation methods in moment-based scale-bridging algorithms for thermal radiative-transfer problems

    International Nuclear Information System (INIS)

    Densmore, J.D.; Park, H.; Wollaber, A.B.; Rauenzahn, R.M.; Knoll, D.A.

    2015-01-01

    We present a moment-based acceleration algorithm applied to Monte Carlo simulation of thermal radiative-transfer problems. Our acceleration algorithm employs a continuum system of moments to accelerate convergence of stiff absorption–emission physics. The combination of energy-conserving tallies and the use of an asymptotic approximation in optically thick regions remedy the difficulties of local energy conservation and mitigation of statistical noise in such regions. We demonstrate the efficiency and accuracy of the developed method. We also compare directly to the standard linearization-based method of Fleck and Cummings [1]. A factor of 40 reduction in total computational time is achieved with the new algorithm for an equivalent (or more accurate) solution as compared with the Fleck–Cummings algorithm

  12. Study on distributed generation algorithm of variable precision concept lattice based on ontology heterogeneous database

    Science.gov (United States)

    WANG, Qingrong; ZHU, Changfeng

    2017-06-01

    Integration of distributed heterogeneous data sources is the key issues under the big data applications. In this paper the strategy of variable precision is introduced to the concept lattice, and the one-to-one mapping mode of variable precision concept lattice and ontology concept lattice is constructed to produce the local ontology by constructing the variable precision concept lattice for each subsystem, and the distributed generation algorithm of variable precision concept lattice based on ontology heterogeneous database is proposed to draw support from the special relationship between concept lattice and ontology construction. Finally, based on the standard of main concept lattice of the existing heterogeneous database generated, a case study has been carried out in order to testify the feasibility and validity of this algorithm, and the differences between the main concept lattice and the standard concept lattice are compared. Analysis results show that this algorithm above-mentioned can automatically process the construction process of distributed concept lattice under the heterogeneous data sources.

  13. DATA SECURITY IN LOCAL AREA NETWORK BASED ON FAST ENCRYPTION ALGORITHM

    Directory of Open Access Journals (Sweden)

    G. Ramesh

    2010-06-01

    Full Text Available Hacking is one of the greatest problems in the wireless local area networks. Many algorithms have been used to prevent the outside attacks to eavesdrop or prevent the data to be transferred to the end-user safely and correctly. In this paper, a new symmetrical encryption algorithm is proposed that prevents the outside attacks. The new algorithm avoids key exchange between users and reduces the time taken for the encryption and decryption. It operates at high data rate in comparison with The Data Encryption Standard (DES, Triple DES (TDES, Advanced Encryption Standard (AES-256, and RC6 algorithms. The new algorithm is applied successfully on both text file and voice message.

  14. A pipelined FPGA implementation of an encryption algorithm based on genetic algorithm

    Science.gov (United States)

    Thirer, Nonel

    2013-05-01

    With the evolution of digital data storage and exchange, it is essential to protect the confidential information from every unauthorized access. High performance encryption algorithms were developed and implemented by software and hardware. Also many methods to attack the cipher text were developed. In the last years, the genetic algorithm has gained much interest in cryptanalysis of cipher texts and also in encryption ciphers. This paper analyses the possibility to use the genetic algorithm as a multiple key sequence generator for an AES (Advanced Encryption Standard) cryptographic system, and also to use a three stages pipeline (with four main blocks: Input data, AES Core, Key generator, Output data) to provide a fast encryption and storage/transmission of a large amount of data.

  15. Design of intelligent locks based on the triple KeeLoq algorithm

    Directory of Open Access Journals (Sweden)

    Huibin Chen

    2016-04-01

    Full Text Available KeeLoq algorithm with high security was usually used in wireless codec. Its security lack is indicated in this article according to the detailed rationale and the introduction of previous attack researches. Taking examples from Triple Data Encryption Standard algorithm, the triple KeeLoq codec algorithm was first proposed. Experimental results showed that the algorithm would not reduce powerful rolling effect and in consideration of limited computing power of embedded microcontroller three 64-bit keys were suitable to increase the crack difficulties and further improved its security. The method was applied to intelligent door access system for experimental verification. 16F690 extended Bluetooth or WiFi interface was employed to design the lock system on door. Key application was constructed on Android platform. The wireless communication between the lock on door and Android key application employed triple KeeLoq algorithm to ensure the higher security. Due to flexibility and multiformity (an Android key application with various keys of software-based keys, the solution owned overwhelmed advantages of low cost, high security, humanity, and green environmental protection.

  16. Hybrid employment recommendation algorithm based on Spark

    Science.gov (United States)

    Li, Zuoquan; Lin, Yubei; Zhang, Xingming

    2017-08-01

    Aiming at the real-time application of collaborative filtering employment recommendation algorithm (CF), a clustering collaborative filtering recommendation algorithm (CCF) is developed, which applies hierarchical clustering to CF and narrows the query range of neighbour items. In addition, to solve the cold-start problem of content-based recommendation algorithm (CB), a content-based algorithm with users’ information (CBUI) is introduced for job recommendation. Furthermore, a hybrid recommendation algorithm (HRA) which combines CCF and CBUI algorithms is proposed, and implemented on Spark platform. The experimental results show that HRA can overcome the problems of cold start and data sparsity, and achieve good recommendation accuracy and scalability for employment recommendation.

  17. Transmission History Based Distributed Adaptive Contention Window Adjustment Algorithm Cooperating with Automatic Rate Fallback for Wireless LANs

    Science.gov (United States)

    Ogawa, Masakatsu; Hiraguri, Takefumi; Nishimori, Kentaro; Takaya, Kazuhiro; Murakawa, Kazuo

    This paper proposes and investigates a distributed adaptive contention window adjustment algorithm based on the transmission history for wireless LANs called the transmission-history-based distributed adaptive contention window adjustment (THAW) algorithm. The objective of this paper is to reduce the transmission delay and improve the channel throughput compared to conventional algorithms. The feature of THAW is that it adaptively adjusts the initial contention window (CWinit) size in the binary exponential backoff (BEB) algorithm used in the IEEE 802.11 standard according to the transmission history and the automatic rate fallback (ARF) algorithm, which is the most basic algorithm in automatic rate controls. This effect is to keep CWinit at a high value in a congested state. Simulation results show that the THAW algorithm outperforms the conventional algorithms in terms of the channel throughput and delay, even if the timer in the ARF is changed.

  18. Cloud Computing Security Model with Combination of Data Encryption Standard Algorithm (DES) and Least Significant Bit (LSB)

    Science.gov (United States)

    Basri, M.; Mawengkang, H.; Zamzami, E. M.

    2018-03-01

    Limitations of storage sources is one option to switch to cloud storage. Confidentiality and security of data stored on the cloud is very important. To keep up the confidentiality and security of such data can be done one of them by using cryptography techniques. Data Encryption Standard (DES) is one of the block cipher algorithms used as standard symmetric encryption algorithm. This DES will produce 8 blocks of ciphers combined into one ciphertext, but the ciphertext are weak against brute force attacks. Therefore, the last 8 block cipher will be converted into 8 random images using Least Significant Bit (LSB) algorithm which later draws the result of cipher of DES algorithm to be merged into one.

  19. Public Conceptions of Algorithms and Representations in the Common Core State Standards for Mathematics

    Science.gov (United States)

    Nanna, Robert J.

    2016-01-01

    Algorithms and representations have been an important aspect of the work of mathematics, especially for understanding concepts and communicating ideas about concepts and mathematical relationships. They have played a key role in various mathematics standards documents, including the Common Core State Standards for Mathematics. However, there have…

  20. Image contrast enhancement based on a local standard deviation model

    International Nuclear Information System (INIS)

    Chang, Dah-Chung; Wu, Wen-Rong

    1996-01-01

    The adaptive contrast enhancement (ACE) algorithm is a widely used image enhancement method, which needs a contrast gain to adjust high frequency components of an image. In the literature, the gain is usually inversely proportional to the local standard deviation (LSD) or is a constant. But these cause two problems in practical applications, i.e., noise overenhancement and ringing artifact. In this paper a new gain is developed based on Hunt's Gaussian image model to prevent the two defects. The new gain is a nonlinear function of LSD and has the desired characteristic emphasizing the LSD regions in which details are concentrated. We have applied the new ACE algorithm to chest x-ray images and the simulations show the effectiveness of the proposed algorithm

  1. A pragmatic evidence-based clinical management algorithm for burning mouth syndrome.

    Science.gov (United States)

    Kim, Yohanan; Yoo, Timothy; Han, Peter; Liu, Yuan; Inman, Jared C

    2018-04-01

    Burning mouth syndrome is a poorly understood disease process with no current standard of treatment. The goal of this article is to provide an evidence-based, practical, clinical algorithm as a guideline for the treatment of burning mouth syndrome. Using available evidence and clinical experience, a multi-step management algorithm was developed. A retrospective cohort study was then performed, following STROBE statement guidelines, comparing outcomes of patients who were managed using the algorithm and those who were managed without. Forty-seven patients were included in the study, with 21 (45%) managed using the algorithm and 26 (55%) managed without. The mean age overall was 60.4 ±16.5 years, and most patients (39, 83%) were female. Cohorts showed no statistical difference in age, sex, overall follow-up time, dysgeusia, geographic tongue, or psychiatric disorder; xerostomia, however, was significantly different, skewed toward the algorithm group. Significantly more non-algorithm patients did not continue care (69% vs. 29%, p =0.001). The odds ratio of not continuing care for the non-algorithm group compared to the algorithm group was 5.6 [1.6, 19.8]. Improvement in pain was significantly more likely in the algorithm group ( p =0.001), with an odds ratio of 27.5 [3.1, 242.0]. We present a basic clinical management algorithm for burning mouth syndrome which may increase the likelihood of pain improvement and patient follow-up. Key words: Burning mouth syndrome, burning tongue, glossodynia, oral pain, oral burning, therapy, treatment.

  2. Novel search algorithms for a mid-infrared spectral library of cotton contaminants.

    Science.gov (United States)

    Loudermilk, J Brian; Himmelsbach, David S; Barton, Franklin E; de Haseth, James A

    2008-06-01

    During harvest, a variety of plant based contaminants are collected along with cotton lint. The USDA previously created a mid-infrared, attenuated total reflection (ATR), Fourier transform infrared (FT-IR) spectral library of cotton contaminants for contaminant identification as the contaminants have negative impacts on yarn quality. This library has shown impressive identification rates for extremely similar cellulose based contaminants in cases where the library was representative of the samples searched. When spectra of contaminant samples from crops grown in different geographic locations, seasons, and conditions and measured with a different spectrometer and accessories were searched, identification rates for standard search algorithms decreased significantly. Six standard algorithms were examined: dot product, correlation, sum of absolute values of differences, sum of the square root of the absolute values of differences, sum of absolute values of differences of derivatives, and sum of squared differences of derivatives. Four categories of contaminants derived from cotton plants were considered: leaf, stem, seed coat, and hull. Experiments revealed that the performance of the standard search algorithms depended upon the category of sample being searched and that different algorithms provided complementary information about sample identity. These results indicated that choosing a single standard algorithm to search the library was not possible. Three voting scheme algorithms based on result frequency, result rank, category frequency, or a combination of these factors for the results returned by the standard algorithms were developed and tested for their capability to overcome the unpredictability of the standard algorithms' performances. The group voting scheme search was based on the number of spectra from each category of samples represented in the library returned in the top ten results of the standard algorithms. This group algorithm was able to identify

  3. Development of web-based reliability data analysis algorithm model and its application

    International Nuclear Information System (INIS)

    Hwang, Seok-Won; Oh, Ji-Yong; Moosung-Jae

    2010-01-01

    For this study, a database model of plant reliability was developed for the effective acquisition and management of plant-specific data that can be used in various applications of plant programs as well as in Probabilistic Safety Assessment (PSA). Through the development of a web-based reliability data analysis algorithm, this approach systematically gathers specific plant data such as component failure history, maintenance history, and shift diary. First, for the application of the developed algorithm, this study reestablished the raw data types, data deposition procedures and features of the Enterprise Resource Planning (ERP) system process. The component codes and system codes were standardized to make statistical analysis between different types of plants possible. This standardization contributes to the establishment of a flexible database model that allows the customization of reliability data for the various applications depending on component types and systems. In addition, this approach makes it possible for users to perform trend analyses and data comparisons for the significant plant components and systems. The validation of the algorithm is performed through a comparison of the importance measure value (Fussel-Vesely) of the mathematical calculation and that of the algorithm application. The development of a reliability database algorithm is one of the best approaches for providing systemic management of plant-specific reliability data with transparency and continuity. This proposed algorithm reinforces the relationships between raw data and application results so that it can provide a comprehensive database that offers everything from basic plant-related data to final customized data.

  4. Development of web-based reliability data analysis algorithm model and its application

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Seok-Won, E-mail: swhwang@khnp.co.k [Korea Hydro and Nuclear Power Co. Ltd., Jang-Dong 25-1, Yuseong-Gu, 305-343 Daejeon (Korea, Republic of); Oh, Ji-Yong [Korea Hydro and Nuclear Power Co. Ltd., Jang-Dong 25-1, Yuseong-Gu, 305-343 Daejeon (Korea, Republic of); Moosung-Jae [Department of Nuclear Engineering Hanyang University 17 Haengdang, Sungdong, Seoul (Korea, Republic of)

    2010-02-15

    For this study, a database model of plant reliability was developed for the effective acquisition and management of plant-specific data that can be used in various applications of plant programs as well as in Probabilistic Safety Assessment (PSA). Through the development of a web-based reliability data analysis algorithm, this approach systematically gathers specific plant data such as component failure history, maintenance history, and shift diary. First, for the application of the developed algorithm, this study reestablished the raw data types, data deposition procedures and features of the Enterprise Resource Planning (ERP) system process. The component codes and system codes were standardized to make statistical analysis between different types of plants possible. This standardization contributes to the establishment of a flexible database model that allows the customization of reliability data for the various applications depending on component types and systems. In addition, this approach makes it possible for users to perform trend analyses and data comparisons for the significant plant components and systems. The validation of the algorithm is performed through a comparison of the importance measure value (Fussel-Vesely) of the mathematical calculation and that of the algorithm application. The development of a reliability database algorithm is one of the best approaches for providing systemic management of plant-specific reliability data with transparency and continuity. This proposed algorithm reinforces the relationships between raw data and application results so that it can provide a comprehensive database that offers everything from basic plant-related data to final customized data.

  5. A new spirometry-based algorithm to predict occupational pulmonary restrictive impairment.

    Science.gov (United States)

    De Matteis, S; Iridoy-Zulet, A A; Aaron, S; Swann, A; Cullinan, P

    2016-01-01

    Spirometry is often included in workplace-based respiratory surveillance programmes but its performance in the identification of restrictive lung disease is poor, especially when the prevalence of this condition is low in the tested population. To improve the specificity (Sp) and positive predictive value (PPV) of current spirometry-based algorithms in the diagnosis of restrictive pulmonary impairment in the workplace and to reduce the proportion of false positives findings and, as a result, unnecessary referrals for lung volume measurements. We re-analysed two studies of hospital patients, respectively used to derive and validate a recommended spirometry-based algorithm [forced vital capacity (FVC) 55%] for the recognition of restrictive pulmonary impairment. We used true lung restrictive cases as a reference standard in 2×2 contingency tables to estimate sensitivity (Sn), Sp and PPV and negative predictive values for each diagnostic cut-off. We simulated a working population aged spirometry-based algorithm may be adopted to accurately exclude pulmonary restriction and to possibly reduce unnecessary lung volume testing in an occupational health setting. © The Author 2015. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Automatic Circuit Design and Optimization Using Modified PSO Algorithm

    Directory of Open Access Journals (Sweden)

    Subhash Patel

    2016-04-01

    Full Text Available In this work, we have proposed modified PSO algorithm based optimizer for automatic circuit design. The performance of the modified PSO algorithm is compared with two other evolutionary algorithms namely ABC algorithm and standard PSO algorithm by designing two stage CMOS operational amplifier and bulk driven OTA in 130nm technology. The results show the robustness of the proposed algorithm. With modified PSO algorithm, the average design error for two stage op-amp is only 0.054% in contrast to 3.04% for standard PSO algorithm and 5.45% for ABC algorithm. For bulk driven OTA, average design error is 1.32% with MPSO compared to 4.70% with ABC algorithm and 5.63% with standard PSO algorithm.

  7. A review of lossless audio compression standards and algorithms

    Science.gov (United States)

    Muin, Fathiah Abdul; Gunawan, Teddy Surya; Kartiwi, Mira; Elsheikh, Elsheikh M. A.

    2017-09-01

    Over the years, lossless audio compression has gained popularity as researchers and businesses has become more aware of the need for better quality and higher storage demand. This paper will analyse various lossless audio coding algorithm and standards that are used and available in the market focusing on Linear Predictive Coding (LPC) specifically due to its popularity and robustness in audio compression, nevertheless other prediction methods are compared to verify this. Advanced representation of LPC such as LSP decomposition techniques are also discussed within this paper.

  8. Validation of a knowledge-based boundary detection algorithm: a multicenter study

    International Nuclear Information System (INIS)

    Groch, M.W.; Erwin, W.D.; Murphy, P.H.; Ali, A.; Moore, W.; Ford, P.; Qian Jianzhong; Barnett, C.A.; Lette, J.

    1996-01-01

    A completely operator-independent boundary detection algorithm for multigated blood pool (MGBP) studies has been evaluated at four medical centers. The knowledge-based boundary detector (KBBD) algorithm is nondeterministic, utilizing a priori domain knowledge in the form of rule sets for the localization of cardiac chambers and image features, providing a case-by-case method for the identification and boundary definition of the left ventricle (LV). The nondeterministic algorithm employs multiple processing pathways, where KBBD rules have been designed for conventional (CONV) imaging geometries (nominal 45 LAO, nonzoom) as well as for highly zoomed and/or caudally tilted (ZOOM) studies. The resultant ejection fractions (LVEF) from the KBBD program have been compared with the standard LVEF calculations in 253 total cases in four institutions, 157 utilizing CONV geometry and 96 utilizing ZOOM geometries. The criteria for success was a KBBD boundary adequately defined over the LV as judged by an experienced observer, and the correlation of KBBD LVEFs to the standard calculation of LVEFs for the institution. The overall success rate for all institutions combined was 99.2%, with an overall correlation coefficient of r=0.95 (P<0.001). The individual success rates and EF correlations (r), for CONV and ZOOM geometers were: 98%, r=0.93 (CONV) and 100%, r=0.95 (ZOOM). The KBBD algorithm can be adapted to varying clinical situations, employing automatic processing using artificial intelligence, with performance close to that of a human operator. (orig.)

  9. Robust MST-Based Clustering Algorithm.

    Science.gov (United States)

    Liu, Qidong; Zhang, Ruisheng; Zhao, Zhili; Wang, Zhenghai; Jiao, Mengyao; Wang, Guangjing

    2018-06-01

    Minimax similarity stresses the connectedness of points via mediating elements rather than favoring high mutual similarity. The grouping principle yields superior clustering results when mining arbitrarily-shaped clusters in data. However, it is not robust against noises and outliers in the data. There are two main problems with the grouping principle: first, a single object that is far away from all other objects defines a separate cluster, and second, two connected clusters would be regarded as two parts of one cluster. In order to solve such problems, we propose robust minimum spanning tree (MST)-based clustering algorithm in this letter. First, we separate the connected objects by applying a density-based coarsening phase, resulting in a low-rank matrix in which the element denotes the supernode by combining a set of nodes. Then a greedy method is presented to partition those supernodes through working on the low-rank matrix. Instead of removing the longest edges from MST, our algorithm groups the data set based on the minimax similarity. Finally, the assignment of all data points can be achieved through their corresponding supernodes. Experimental results on many synthetic and real-world data sets show that our algorithm consistently outperforms compared clustering algorithms.

  10. A Survey on Evolutionary Algorithm Based Hybrid Intelligence in Bioinformatics

    Directory of Open Access Journals (Sweden)

    Shan Li

    2014-01-01

    Full Text Available With the rapid advance in genomics, proteomics, metabolomics, and other types of omics technologies during the past decades, a tremendous amount of data related to molecular biology has been produced. It is becoming a big challenge for the bioinformatists to analyze and interpret these data with conventional intelligent techniques, for example, support vector machines. Recently, the hybrid intelligent methods, which integrate several standard intelligent approaches, are becoming more and more popular due to their robustness and efficiency. Specifically, the hybrid intelligent approaches based on evolutionary algorithms (EAs are widely used in various fields due to the efficiency and robustness of EAs. In this review, we give an introduction about the applications of hybrid intelligent methods, in particular those based on evolutionary algorithm, in bioinformatics. In particular, we focus on their applications to three common problems that arise in bioinformatics, that is, feature selection, parameter estimation, and reconstruction of biological networks.

  11. VIRTEX-5 Fpga Implementation of Advanced Encryption Standard Algorithm

    Science.gov (United States)

    Rais, Muhammad H.; Qasim, Syed M.

    2010-06-01

    In this paper, we present an implementation of Advanced Encryption Standard (AES) cryptographic algorithm using state-of-the-art Virtex-5 Field Programmable Gate Array (FPGA). The design is coded in Very High Speed Integrated Circuit Hardware Description Language (VHDL). Timing simulation is performed to verify the functionality of the designed circuit. Performance evaluation is also done in terms of throughput and area. The design implemented on Virtex-5 (XC5VLX50FFG676-3) FPGA achieves a maximum throughput of 4.34 Gbps utilizing a total of 399 slices.

  12. Low Cost Design of an Advanced Encryption Standard (AES) Processor Using a New Common-Subexpression-Elimination Algorithm

    Science.gov (United States)

    Chen, Ming-Chih; Hsiao, Shen-Fu

    In this paper, we propose an area-efficient design of Advanced Encryption Standard (AES) processor by applying a new common-expression-elimination (CSE) method to the sub-functions of various transformations required in AES. The proposed method reduces the area cost of realizing the sub-functions by extracting the common factors in the bit-level XOR/AND-based sum-of-product expressions of these sub-functions using a new CSE algorithm. Cell-based implementation results show that the AES processor with our proposed CSE method has significant area improvement compared with previous designs.

  13. AES Encryption Algorithm Optimization Based on 64-bit Processor Android Platform

    Directory of Open Access Journals (Sweden)

    ZHAO Jun

    2017-06-01

    Full Text Available Algorithm implemented on the mobile phone is different from one on PC. It requires little storage space and low power consumption. Standard AES S-box design uses look up table,and has high complexity and high power consumption,so it needs to be optimized when used in mobile phones. In our optimization AES encryption algorithm,the packet length is expanded to 256 bits,which would increase the security of our algorithm; look up table is replaced by adding the affine transformation based on inversion,which would reduce the storage space; operation is changed into 16-bit input and 64-bit output by merging the three steps,namely SubWords,ShiftRows MixColumns and AddRoundKey,which would improve the operation efficiency of the algorithm. The experimental results show that our algorithm not only can greatly enhance the encryption strength,but also maintain high computing efficiency.

  14. Deriving causes of child mortality by re–analyzing national verbal autopsy data applying a standardized computer algorithm in Uganda, Rwanda and Ghana

    Directory of Open Access Journals (Sweden)

    Li Liu

    2015-06-01

    Full Text Available Background To accelerate progress toward the Millennium Development Goal 4, reliable information on causes of child mortality is critical. With more national verbal autopsy (VA studies becoming available, how to improve consistency of national VA derived child causes of death should be considered for the purpose of global comparison. We aimed to adapt a standardized computer algorithm to re–analyze national child VA studies conducted in Uganda, Rwanda and Ghana recently, and compare our results with those derived from physician review to explore issues surrounding the application of the standardized algorithm in place of physician review. Methods and Findings We adapted the standardized computer algorithm considering the disease profile in Uganda, Rwanda and Ghana. We then derived cause–specific mortality fractions applying the adapted algorithm and compared the results with those ascertained by physician review by examining the individual– and population–level agreement. Our results showed that the leading causes of child mortality in Uganda, Rwanda and Ghana were pneumonia (16.5–21.1% and malaria (16.8–25.6% among children below five years and intrapartum–related complications (6.4–10.7% and preterm birth complications (4.5–6.3% among neonates. The individual level agreement was poor to substantial across causes (kappa statistics: –0.03 to 0.83, with moderate to substantial agreement observed for injury, congenital malformation, preterm birth complications, malaria and measles. At the population level, despite fairly different cause–specific mortality fractions, the ranking of the leading causes was largely similar. Conclusions The standardized computer algorithm produced internally consistent distribution of causes of child mortality. The results were also qualitatively comparable to those based on physician review from the perspective of public health policy. The standardized computer algorithm has the advantage of

  15. Voltage Profile Enhancement and Reduction of Real Power loss by Hybrid Biogeography Based Artificial Bee Colony algorithm

    Directory of Open Access Journals (Sweden)

    K. Lenin

    2014-04-01

    Full Text Available This paper presents Hybrid Biogeography algorithm for solving the multi-objective reactive power dispatch problem in a power system. Real Power Loss minimization and maximization of voltage stability margin are taken as the objectives. Artificial bee colony optimization (ABC is quick and forceful algorithm for global optimization. Biogeography-Based Optimization (BBO is a new-fangled biogeography inspired algorithm. It mainly utilizes the biogeography-based relocation operator to share the information among solutions. In this work, a hybrid algorithm with BBO and ABC is projected, and named as HBBABC (Hybrid Biogeography based Artificial Bee Colony Optimization, for the universal numerical optimization problem. HBBABC merge the searching behavior of ABC with that of BBO. Both the algorithms have different solution probing tendency like ABC have good exploration probing tendency while BBO have good exploitation probing tendency.  HBBABC used to solve the reactive power dispatch problem and the proposed technique has been tested in standard IEEE30 bus test system.

  16. STAR Algorithm Integration Team - Facilitating operational algorithm development

    Science.gov (United States)

    Mikles, V. J.

    2015-12-01

    The NOAA/NESDIS Center for Satellite Research and Applications (STAR) provides technical support of the Joint Polar Satellite System (JPSS) algorithm development and integration tasks. Utilizing data from the S-NPP satellite, JPSS generates over thirty Environmental Data Records (EDRs) and Intermediate Products (IPs) spanning atmospheric, ocean, cryosphere, and land weather disciplines. The Algorithm Integration Team (AIT) brings technical expertise and support to product algorithms, specifically in testing and validating science algorithms in a pre-operational environment. The AIT verifies that new and updated algorithms function in the development environment, enforces established software development standards, and ensures that delivered packages are functional and complete. AIT facilitates the development of new JPSS-1 algorithms by implementing a review approach based on the Enterprise Product Lifecycle (EPL) process. Building on relationships established during the S-NPP algorithm development process and coordinating directly with science algorithm developers, the AIT has implemented structured reviews with self-contained document suites. The process has supported algorithm improvements for products such as ozone, active fire, vegetation index, and temperature and moisture profiles.

  17. FPSoC-Based Architecture for a Fast Motion Estimation Algorithm in H.264/AVC

    Directory of Open Access Journals (Sweden)

    Obianuju Ndili

    2009-01-01

    Full Text Available There is an increasing need for high quality video on low power, portable devices. Possible target applications range from entertainment and personal communications to security and health care. While H.264/AVC answers the need for high quality video at lower bit rates, it is significantly more complex than previous coding standards and thus results in greater power consumption in practical implementations. In particular, motion estimation (ME, in H.264/AVC consumes the largest power in an H.264/AVC encoder. It is therefore critical to speed-up integer ME in H.264/AVC via fast motion estimation (FME algorithms and hardware acceleration. In this paper, we present our hardware oriented modifications to a hybrid FME algorithm, our architecture based on the modified algorithm, and our implementation and prototype on a PowerPC-based Field Programmable System on Chip (FPSoC. Our results show that the modified hybrid FME algorithm on average, outperforms previous state-of-the-art FME algorithms, while its losses when compared with FSME, in terms of PSNR performance and computation time, are insignificant. We show that although our implementation platform is FPGA-based, our implementation results compare favourably with previous architectures implemented on ASICs. Finally we also show an improvement over some existing architectures implemented on FPGAs.

  18. Chaotic queue-based genetic algorithm for design of a self-tuning fuzzy logic controller

    Science.gov (United States)

    Saini, Sanju; Saini, J. S.

    2012-11-01

    This paper employs a chaotic queue-based method using logistic equation in a non-canonical genetic algorithm for optimizing the performance of a self-tuning Fuzzy Logic Controller, used for controlling a nonlinear double-coupled system. A comparison has been made with a standard canonical genetic algorithm implemented on the same plant. It has been shown that chaotic queue-method brings an improvement in the performance of the FLC for wide range of set point changes by a more profound initial population spread in the search space.

  19. Imaging reconstruction based on improved wavelet denoising combined with parallel-beam filtered back-projection algorithm

    Science.gov (United States)

    Ren, Zhong; Liu, Guodong; Huang, Zhen

    2012-11-01

    The image reconstruction is a key step in medical imaging (MI) and its algorithm's performance determinates the quality and resolution of reconstructed image. Although some algorithms have been used, filter back-projection (FBP) algorithm is still the classical and commonly-used algorithm in clinical MI. In FBP algorithm, filtering of original projection data is a key step in order to overcome artifact of the reconstructed image. Since simple using of classical filters, such as Shepp-Logan (SL), Ram-Lak (RL) filter have some drawbacks and limitations in practice, especially for the projection data polluted by non-stationary random noises. So, an improved wavelet denoising combined with parallel-beam FBP algorithm is used to enhance the quality of reconstructed image in this paper. In the experiments, the reconstructed effects were compared between the improved wavelet denoising and others (directly FBP, mean filter combined FBP and median filter combined FBP method). To determine the optimum reconstruction effect, different algorithms, and different wavelet bases combined with three filters were respectively test. Experimental results show the reconstruction effect of improved FBP algorithm is better than that of others. Comparing the results of different algorithms based on two evaluation standards i.e. mean-square error (MSE), peak-to-peak signal-noise ratio (PSNR), it was found that the reconstructed effects of the improved FBP based on db2 and Hanning filter at decomposition scale 2 was best, its MSE value was less and the PSNR value was higher than others. Therefore, this improved FBP algorithm has potential value in the medical imaging.

  20. Seizure detection algorithms based on EMG signals

    DEFF Research Database (Denmark)

    Conradsen, Isa

    Background: the currently used non-invasive seizure detection methods are not reliable. Muscle fibers are directly connected to the nerves, whereby electric signals are generated during activity. Therefore, an alarm system on electromyography (EMG) signals is a theoretical possibility. Objective...... on the amplitude of the signal. The other algorithm was based on information of the signal in the frequency domain, and it focused on synchronisation of the electrical activity in a single muscle during the seizure. Results: The amplitude-based algorithm reliably detected seizures in 2 of the patients, while...... the frequency-based algorithm was efficient for detecting the seizures in the third patient. Conclusion: Our results suggest that EMG signals could be used to develop an automatic seizuredetection system. However, different patients might require different types of algorithms /approaches....

  1. Research of beam hardening correction method for CL system based on SART algorithm

    International Nuclear Information System (INIS)

    Cao Daquan; Wang Yaxiao; Que Jiemin; Sun Cuili; Wei Cunfeng; Wei Long

    2014-01-01

    Computed laminography (CL) is a non-destructive testing technique for large objects, especially for planar objects. Beam hardening artifacts were wildly observed in the CL system and significantly reduce the image quality. This study proposed a novel simultaneous algebraic reconstruction technique (SART) based beam hardening correction (BHC) method for the CL system, namely the SART-BHC algorithm in short. The SART-BHC algorithm took the polychromatic attenuation process in account to formulate the iterative reconstruction update. A novel projection matrix calculation method which was different from the conventional cone-beam or fan-beam geometry was also studied for the CL system. The proposed method was evaluated with simulation data and experimental data, which was generated using the Monte Carlo simulation toolkit Geant4 and a bench-top CL system, respectively. All projection data were reconstructed with SART-BHC algorithm and the standard filtered back projection (FBP) algorithm. The reconstructed images show that beam hardening artifacts are greatly reduced with the SART-BHC algorithm compared to the FBP algorithm. The SART-BHC algorithm doesn't need any prior know-ledge about the object or the X-ray spectrum and it can also mitigate the interlayer aliasing. (authors)

  2. Validation of the Welch Allyn SureBP (inflation) and StepBP (deflation) algorithms by AAMI standard testing and BHS data analysis.

    Science.gov (United States)

    Alpert, Bruce S

    2011-04-01

    We evaluated two new Welch Allyn automated blood pressure (BP) algorithms. The first, SureBP, estimates BP during cuff inflation; the second, StepBP, does so during deflation. We followed the American National Standards Institute/Association for the Advancement of Medical Instrumentation SP10:2006 standard for testing and data analysis. The data were also analyzed using the British Hypertension Society analysis strategy. We tested children, adolescents, and adults. The requirements of the American National Standards Institute/Association for the Advancement of Medical Instrumentation SP10:2006 standard were fulfilled with respect to BP levels, arm sizes, and ages. Association for the Advancement of Medical Instrumentation SP10 Method 1 data analysis was used. The mean±standard deviation for the device readings compared with auscultation by paired, trained, blinded observers in the SureBP mode were -2.14±7.44 mmHg for systolic BP (SBP) and -0.55±5.98 mmHg for diastolic BP (DBP). In the StepBP mode, the differences were -3.61±6.30 mmHg for SBP and -2.03±5.30 mmHg for DBP. Both algorithms achieved an A grade for both SBP and DBP by British Hypertension Society analysis. The SureBP inflation-based algorithm will be available in many new-generation Welch Allyn monitors. Its use will reduce the time it takes to estimate BP in critical patient care circumstances. The device will not need to inflate to excessive suprasystolic BPs to obtain the SBP values. Deflation is rapid once SBP has been determined, thus reducing the total time of cuff inflation and reducing patient discomfort. If the SureBP fails to obtain a BP value, the StepBP algorithm is activated to estimate BP by traditional deflation methodology.

  3. Verification-Based Interval-Passing Algorithm for Compressed Sensing

    OpenAIRE

    Wu, Xiaofu; Yang, Zhen

    2013-01-01

    We propose a verification-based Interval-Passing (IP) algorithm for iteratively reconstruction of nonnegative sparse signals using parity check matrices of low-density parity check (LDPC) codes as measurement matrices. The proposed algorithm can be considered as an improved IP algorithm by further incorporation of the mechanism of verification algorithm. It is proved that the proposed algorithm performs always better than either the IP algorithm or the verification algorithm. Simulation resul...

  4. Gradient Evolution-based Support Vector Machine Algorithm for Classification

    Science.gov (United States)

    Zulvia, Ferani E.; Kuo, R. J.

    2018-03-01

    This paper proposes a classification algorithm based on a support vector machine (SVM) and gradient evolution (GE) algorithms. SVM algorithm has been widely used in classification. However, its result is significantly influenced by the parameters. Therefore, this paper aims to propose an improvement of SVM algorithm which can find the best SVMs’ parameters automatically. The proposed algorithm employs a GE algorithm to automatically determine the SVMs’ parameters. The GE algorithm takes a role as a global optimizer in finding the best parameter which will be used by SVM algorithm. The proposed GE-SVM algorithm is verified using some benchmark datasets and compared with other metaheuristic-based SVM algorithms. The experimental results show that the proposed GE-SVM algorithm obtains better results than other algorithms tested in this paper.

  5. A Trust-region-based Sequential Quadratic Programming Algorithm

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian; Poulsen, Niels Kjølstad

    This technical note documents the trust-region-based sequential quadratic programming algorithm used in other works by the authors. The algorithm seeks to minimize a convex nonlinear cost function subject to linear inequalty constraints and nonlinear equality constraints.......This technical note documents the trust-region-based sequential quadratic programming algorithm used in other works by the authors. The algorithm seeks to minimize a convex nonlinear cost function subject to linear inequalty constraints and nonlinear equality constraints....

  6. A New Modified Firefly Algorithm

    Directory of Open Access Journals (Sweden)

    Medha Gupta

    2016-07-01

    Full Text Available Nature inspired meta-heuristic algorithms studies the emergent collective intelligence of groups of simple agents. Firefly Algorithm is one of the new such swarm-based metaheuristic algorithm inspired by the flashing behavior of fireflies. The algorithm was first proposed in 2008 and since then has been successfully used for solving various optimization problems. In this work, we intend to propose a new modified version of Firefly algorithm (MoFA and later its performance is compared with the standard firefly algorithm along with various other meta-heuristic algorithms. Numerical studies and results demonstrate that the proposed algorithm is superior to existing algorithms.

  7. Design of SVC Controller Based on Improved Biogeography-Based Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Feifei Dong

    2014-01-01

    Full Text Available Considering that common subsynchronous resonance controllers cannot adapt to the characteristics of the time-varying and nonlinear behavior of a power system, the cosine migration model, the improved migration operator, and the mutative scale of chaos and Cauchy mutation strategy are introduced into an improved biogeography-based optimization (IBBO algorithm in order to design an optimal subsynchronous damping controller based on the mechanism of suppressing SSR by static var compensator (SVC. The effectiveness of the improved controller is verified by eigenvalue analysis and electromagnetic simulations. The simulation results of Jinjie plant indicate that the subsynchronous damping controller optimized by the IBBO algorithm can remarkably improve the damping of torsional modes and thus effectively depress SSR, and ensure the safety and stability of units and power grid operation. Moreover, the IBBO algorithm has the merits of a faster searching speed and higher searching accuracy in seeking the optimal control parameters over traditional algorithms, such as BBO algorithm, PSO algorithm, and GA algorithm.

  8. Compact Hilbert Curve Index Algorithm Based on Gray Code

    Directory of Open Access Journals (Sweden)

    CAO Xuefeng

    2016-12-01

    Full Text Available Hilbert curve has best clustering in various kinds of space filling curves, and has been used as an important tools in discrete global grid spatial index design field. But there are lots of redundancies in the standard Hilbert curve index when the data set has large differences between dimensions. In this paper, the construction features of Hilbert curve is analyzed based on Gray code, and then the compact Hilbert curve index algorithm is put forward, in which the redundancy problem has been avoided while Hilbert curve clustering preserved. Finally, experiment results shows that the compact Hilbert curve index outperforms the standard Hilbert index, their 1 computational complexity is nearly equivalent, but the real data set test shows the coding time and storage space decrease 40%, the speedup ratio of sorting speed is nearly 4.3.

  9. ALGEBRA: ALgorithm for the heterogeneous dosimetry based on GEANT4 for BRAchytherapy.

    Science.gov (United States)

    Afsharpour, H; Landry, G; D'Amours, M; Enger, S; Reniers, B; Poon, E; Carrier, J-F; Verhaegen, F; Beaulieu, L

    2012-06-07

    Task group 43 (TG43)-based dosimetry algorithms are efficient for brachytherapy dose calculation in water. However, human tissues have chemical compositions and densities different than water. Moreover, the mutual shielding effect of seeds on each other (interseed attenuation) is neglected in the TG43-based dosimetry platforms. The scientific community has expressed the need for an accurate dosimetry platform in brachytherapy. The purpose of this paper is to present ALGEBRA, a Monte Carlo platform for dosimetry in brachytherapy which is sufficiently fast and accurate for clinical and research purposes. ALGEBRA is based on the GEANT4 Monte Carlo code and is capable of handling the DICOM RT standard to recreate a virtual model of the treated site. Here, the performance of ALGEBRA is presented for the special case of LDR brachytherapy in permanent prostate and breast seed implants. However, the algorithm is also capable of handling other treatments such as HDR brachytherapy.

  10. Assessing operating characteristics of CAD algorithms in the absence of a gold standard

    International Nuclear Information System (INIS)

    Roy Choudhury, Kingshuk; Paik, David S.; Yi, Chin A.; Napel, Sandy; Roos, Justus; Rubin, Geoffrey D.

    2010-01-01

    Purpose: The authors examine potential bias when using a reference reader panel as ''gold standard'' for estimating operating characteristics of CAD algorithms for detecting lesions. As an alternative, the authors propose latent class analysis (LCA), which does not require an external gold standard to evaluate diagnostic accuracy. Methods: A binomial model for multiple reader detections using different diagnostic protocols was constructed, assuming conditional independence of readings given true lesion status. Operating characteristics of all protocols were estimated by maximum likelihood LCA. Reader panel and LCA based estimates were compared using data simulated from the binomial model for a range of operating characteristics. LCA was applied to 36 thin section thoracic computed tomography data sets from the Lung Image Database Consortium (LIDC): Free search markings of four radiologists were compared to markings from four different CAD assisted radiologists. For real data, bootstrap-based resampling methods, which accommodate dependence in reader detections, are proposed to test of hypotheses of differences between detection protocols. Results: In simulation studies, reader panel based sensitivity estimates had an average relative bias (ARB) of -23% to -27%, significantly higher (p-value <0.0001) than LCA (ARB -2% to -6%). Specificity was well estimated by both reader panel (ARB -0.6% to -0.5%) and LCA (ARB 1.4%-0.5%). Among 1145 lesion candidates LIDC considered, LCA estimated sensitivity of reference readers (55%) was significantly lower (p-value 0.006) than CAD assisted readers' (68%). Average false positives per patient for reference readers (0.95) was not significantly lower (p-value 0.28) than CAD assisted readers' (1.27). Conclusions: Whereas a gold standard based on a consensus of readers may substantially bias sensitivity estimates, LCA may be a significantly more accurate and consistent means for evaluating diagnostic accuracy.

  11. A universal algorithm to generate pseudo-random numbers based on uniform mapping as homeomorphism

    International Nuclear Information System (INIS)

    Fu-Lai, Wang

    2010-01-01

    A specific uniform map is constructed as a homeomorphism mapping chaotic time series into [0,1] to obtain sequences of standard uniform distribution. With the uniform map, a chaotic orbit and a sequence orbit obtained are topologically equivalent to each other so the map can preserve the most dynamic properties of chaotic systems such as permutation entropy. Based on the uniform map, a universal algorithm to generate pseudo random numbers is proposed and the pseudo random series is tested to follow the standard 0–1 random distribution both theoretically and experimentally. The algorithm is not complex, which does not impose high requirement on computer hard ware and thus computation speed is fast. The method not only extends the parameter spaces but also avoids the drawback of small function space caused by constraints on chaotic maps used to generate pseudo random numbers. The algorithm can be applied to any chaotic system and can produce pseudo random sequence of high quality, thus can be a good universal pseudo random number generator. (general)

  12. A universal algorithm to generate pseudo-random numbers based on uniform mapping as homeomorphism

    Science.gov (United States)

    Wang, Fu-Lai

    2010-09-01

    A specific uniform map is constructed as a homeomorphism mapping chaotic time series into [0,1] to obtain sequences of standard uniform distribution. With the uniform map, a chaotic orbit and a sequence orbit obtained are topologically equivalent to each other so the map can preserve the most dynamic properties of chaotic systems such as permutation entropy. Based on the uniform map, a universal algorithm to generate pseudo random numbers is proposed and the pseudo random series is tested to follow the standard 0-1 random distribution both theoretically and experimentally. The algorithm is not complex, which does not impose high requirement on computer hard ware and thus computation speed is fast. The method not only extends the parameter spaces but also avoids the drawback of small function space caused by constraints on chaotic maps used to generate pseudo random numbers. The algorithm can be applied to any chaotic system and can produce pseudo random sequence of high quality, thus can be a good universal pseudo random number generator.

  13. Application of the Levenberg-Marquardt Scheme to the MUSIC Algorithm for AOA Estimation

    Directory of Open Access Journals (Sweden)

    Joon-Ho Lee

    2013-01-01

    can be expressed in a least squares form. Based on this observation, we present a rigorous Levenberg-Marquardt (LM formulation of the MUSIC algorithm for simultaneous estimation of an azimuth and an elevation. We show a convergence property and compare the performance of the LM-based MUSIC algorithm with that of the standard MUSIC algorithm via Monte-Carlo simulation. We also compare the performance of the MUSIC algorithm with that of the Capon algorithm both for the standard implementation and for the LM-based implementation.

  14. Simple sorting algorithm test based on CUDA

    OpenAIRE

    Meng, Hongyu; Guo, Fangjin

    2015-01-01

    With the development of computing technology, CUDA has become a very important tool. In computer programming, sorting algorithm is widely used. There are many simple sorting algorithms such as enumeration sort, bubble sort and merge sort. In this paper, we test some simple sorting algorithm based on CUDA and draw some useful conclusions.

  15. The island model for parallel implementation of evolutionary algorithm of Population-Based Incremental Learning (PBIL) optimization

    International Nuclear Information System (INIS)

    Lima, Alan M.M. de; Schirru, Roberto

    2000-01-01

    Genetic algorithms are biologically motivated adaptive systems which have been used, with good results, for function optimization. The purpose of this work is to introduce a new parallelization method to be applied to the Population-Based Incremental Learning (PBIL) algorithm. PBIL combines standard genetic algorithm mechanisms with simple competitive learning and has ben successfully used in combinatorial optimization problems. The development of this algorithm aims its application to the reload optimization of PWR nuclear reactors. Tests have been performed with combinatorial optimization problems similar to the reload problem. Results are compared to the serial PBIL ones, showing the new method's superiority and its viability as a tool for the nuclear core reload problem solution. (author)

  16. SIFT based algorithm for point feature tracking

    Directory of Open Access Journals (Sweden)

    Adrian BURLACU

    2007-12-01

    Full Text Available In this paper a tracking algorithm for SIFT features in image sequences is developed. For each point feature extracted using SIFT algorithm a descriptor is computed using information from its neighborhood. Using an algorithm based on minimizing the distance between two descriptors tracking point features throughout image sequences is engaged. Experimental results, obtained from image sequences that capture scaling of different geometrical type object, reveal the performances of the tracking algorithm.

  17. Real-Coded Quantum-Inspired Genetic Algorithm-Based BP Neural Network Algorithm

    Directory of Open Access Journals (Sweden)

    Jianyong Liu

    2015-01-01

    Full Text Available The method that the real-coded quantum-inspired genetic algorithm (RQGA used to optimize the weights and threshold of BP neural network is proposed to overcome the defect that the gradient descent method makes the algorithm easily fall into local optimal value in the learning process. Quantum genetic algorithm (QGA is with good directional global optimization ability, but the conventional QGA is based on binary coding; the speed of calculation is reduced by the coding and decoding processes. So, RQGA is introduced to explore the search space, and the improved varied learning rate is adopted to train the BP neural network. Simulation test shows that the proposed algorithm is effective to rapidly converge to the solution conformed to constraint conditions.

  18. Guidelines for Interactive Reliability-Based Structural Optimization using Quasi-Newton Algorithms

    DEFF Research Database (Denmark)

    Pedersen, C.; Thoft-Christensen, Palle

    increase of the condition number and preserve positive definiteness without discarding previously obtained information. All proposed modifications are also valid for non-interactive optimization problems. Heuristic rules from various optimization problems concerning when and how to impose interactions......Guidelines for interactive reliability-based structural optimization problems are outlined in terms of modifications of standard quasi-Newton algorithms. The proposed modifications minimize the condition number of the approximate Hessian matrix in each iteration, restrict the relative and absolute...

  19. Eigenvalue Decomposition-Based Modified Newton Algorithm

    Directory of Open Access Journals (Sweden)

    Wen-jun Wang

    2013-01-01

    Full Text Available When the Hessian matrix is not positive, the Newton direction may not be the descending direction. A new method named eigenvalue decomposition-based modified Newton algorithm is presented, which first takes the eigenvalue decomposition of the Hessian matrix, then replaces the negative eigenvalues with their absolute values, and finally reconstructs the Hessian matrix and modifies the searching direction. The new searching direction is always the descending direction. The convergence of the algorithm is proven and the conclusion on convergence rate is presented qualitatively. Finally, a numerical experiment is given for comparing the convergence domains of the modified algorithm and the classical algorithm.

  20. Novel density-based and hierarchical density-based clustering algorithms for uncertain data.

    Science.gov (United States)

    Zhang, Xianchao; Liu, Han; Zhang, Xiaotong

    2017-09-01

    Uncertain data has posed a great challenge to traditional clustering algorithms. Recently, several algorithms have been proposed for clustering uncertain data, and among them density-based techniques seem promising for handling data uncertainty. However, some issues like losing uncertain information, high time complexity and nonadaptive threshold have not been addressed well in the previous density-based algorithm FDBSCAN and hierarchical density-based algorithm FOPTICS. In this paper, we firstly propose a novel density-based algorithm PDBSCAN, which improves the previous FDBSCAN from the following aspects: (1) it employs a more accurate method to compute the probability that the distance between two uncertain objects is less than or equal to a boundary value, instead of the sampling-based method in FDBSCAN; (2) it introduces new definitions of probability neighborhood, support degree, core object probability, direct reachability probability, thus reducing the complexity and solving the issue of nonadaptive threshold (for core object judgement) in FDBSCAN. Then, we modify the algorithm PDBSCAN to an improved version (PDBSCANi), by using a better cluster assignment strategy to ensure that every object will be assigned to the most appropriate cluster, thus solving the issue of nonadaptive threshold (for direct density reachability judgement) in FDBSCAN. Furthermore, as PDBSCAN and PDBSCANi have difficulties for clustering uncertain data with non-uniform cluster density, we propose a novel hierarchical density-based algorithm POPTICS by extending the definitions of PDBSCAN, adding new definitions of fuzzy core distance and fuzzy reachability distance, and employing a new clustering framework. POPTICS can reveal the cluster structures of the datasets with different local densities in different regions better than PDBSCAN and PDBSCANi, and it addresses the issues in FOPTICS. Experimental results demonstrate the superiority of our proposed algorithms over the existing

  1. Complex-based OCT angiography algorithm recovers microvascular information better than amplitude- or phase-based algorithms in phase-stable systems.

    Science.gov (United States)

    Xu, Jingjiang; Song, Shaozhen; Li, Yuandong; Wang, Ruikang K

    2017-12-19

    Optical coherence tomography angiography (OCTA) is increasingly becoming a popular inspection tool for biomedical imaging applications. By exploring the amplitude, phase and complex information available in OCT signals, numerous algorithms have been proposed that contrast functional vessel networks within microcirculatory tissue beds. However, it is not clear which algorithm delivers optimal imaging performance. Here, we investigate systematically how amplitude and phase information have an impact on the OCTA imaging performance, to establish the relationship of amplitude and phase stability with OCT signal-to-noise ratio (SNR), time interval and particle dynamics. With either repeated A-scan or repeated B-scan imaging protocols, the amplitude noise increases with the increase of OCT SNR; however, the phase noise does the opposite, i.e. it increases with the decrease of OCT SNR. Coupled with experimental measurements, we utilize a simple Monte Carlo (MC) model to simulate the performance of amplitude-, phase- and complex-based algorithms for OCTA imaging, the results of which suggest that complex-based algorithms deliver the best performance when the phase noise is  algorithm delivers better performance than either the amplitude- or phase-based algorithms for both the repeated A-scan and the B-scan imaging protocols, which agrees well with the conclusion drawn from the MC simulations.

  2. An independent dose calculation algorithm for MLC-based stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Lorenz, Friedlieb; Killoran, Joseph H.; Wenz, Frederik; Zygmanski, Piotr

    2007-01-01

    We have developed an algorithm to calculate dose in a homogeneous phantom for radiotherapy fields defined by multi-leaf collimator (MLC) for both static and dynamic MLC delivery. The algorithm was developed to supplement the dose algorithms of the commercial treatment planning systems (TPS). The motivation for this work is to provide an independent dose calculation primarily for quality assurance (QA) and secondarily for the development of static MLC field based inverse planning. The dose calculation utilizes a pencil-beam kernel. However, an explicit analytical integration results in a closed form for rectangular-shaped beamlets, defined by single leaf pairs. This approach reduces spatial integration to summation, and leads to a simple method of determination of model parameters. The total dose for any static or dynamic MLC field is obtained by summing over all individual rectangles from each segment which offers faster speed to calculate two-dimensional dose distributions at any depth in the phantom. Standard beam data used in the commissioning of the TPS was used as input data for the algorithm. The calculated results were compared with the TPS and measurements for static and dynamic MLC. The agreement was very good (<2.5%) for all tested cases except for very small static MLC sizes of 0.6 cmx0.6 cm (<6%) and some ion chamber measurements in a high gradient region (<4.4%). This finding enables us to use the algorithm for routine QA as well as for research developments

  3. Electronic Health Record Based Algorithm to Identify Patients with Autism Spectrum Disorder.

    Directory of Open Access Journals (Sweden)

    Todd Lingren

    Full Text Available Cohort selection is challenging for large-scale electronic health record (EHR analyses, as International Classification of Diseases 9th edition (ICD-9 diagnostic codes are notoriously unreliable disease predictors. Our objective was to develop, evaluate, and validate an automated algorithm for determining an Autism Spectrum Disorder (ASD patient cohort from EHR. We demonstrate its utility via the largest investigation to date of the co-occurrence patterns of medical comorbidities in ASD.We extracted ICD-9 codes and concepts derived from the clinical notes. A gold standard patient set was labeled by clinicians at Boston Children's Hospital (BCH (N = 150 and Cincinnati Children's Hospital and Medical Center (CCHMC (N = 152. Two algorithms were created: (1 rule-based implementing the ASD criteria from Diagnostic and Statistical Manual of Mental Diseases 4th edition, (2 predictive classifier. The positive predictive values (PPV achieved by these algorithms were compared to an ICD-9 code baseline. We clustered the patients based on grouped ICD-9 codes and evaluated subgroups.The rule-based algorithm produced the best PPV: (a BCH: 0.885 vs. 0.273 (baseline; (b CCHMC: 0.840 vs. 0.645 (baseline; (c combined: 0.864 vs. 0.460 (baseline. A validation at Children's Hospital of Philadelphia yielded 0.848 (PPV. Clustering analyses of comorbidities on the three-site large cohort (N = 20,658 ASD patients identified psychiatric, developmental, and seizure disorder clusters.In a large cross-institutional cohort, co-occurrence patterns of comorbidities in ASDs provide further hypothetical evidence for distinct courses in ASD. The proposed automated algorithms for cohort selection open avenues for other large-scale EHR studies and individualized treatment of ASD.

  4. An Efficient Biometric-Based Algorithm Using Heart Rate Variability for Securing Body Sensor Networks.

    Science.gov (United States)

    Pirbhulal, Sandeep; Zhang, Heye; Mukhopadhyay, Subhas Chandra; Li, Chunyue; Wang, Yumei; Li, Guanglin; Wu, Wanqing; Zhang, Yuan-Ting

    2015-06-26

    Body Sensor Network (BSN) is a network of several associated sensor nodes on, inside or around the human body to monitor vital signals, such as, Electroencephalogram (EEG), Photoplethysmography (PPG), Electrocardiogram (ECG), etc. Each sensor node in BSN delivers major information; therefore, it is very significant to provide data confidentiality and security. All existing approaches to secure BSN are based on complex cryptographic key generation procedures, which not only demands high resource utilization and computation time, but also consumes large amount of energy, power and memory during data transmission. However, it is indispensable to put forward energy efficient and computationally less complex authentication technique for BSN. In this paper, a novel biometric-based algorithm is proposed, which utilizes Heart Rate Variability (HRV) for simple key generation process to secure BSN. Our proposed algorithm is compared with three data authentication techniques, namely Physiological Signal based Key Agreement (PSKA), Data Encryption Standard (DES) and Rivest Shamir Adleman (RSA). Simulation is performed in Matlab and results suggest that proposed algorithm is quite efficient in terms of transmission time utilization, average remaining energy and total power consumption.

  5. Analysis of the Chirplet Transform-Based Algorithm for Radar Detection of Accelerated Targets

    Science.gov (United States)

    Galushko, V. G.; Vavriv, D. M.

    2017-06-01

    Purpose: Efficiency analysis of an optimal algorithm of chirp signal processing based on the chirplet transform as applied to detection of radar targets in uniformly accelerated motion. Design/methodology/approach: Standard methods of the optimal filtration theory are used to investigate the ambiguity function of chirp signals. Findings: An analytical expression has been derived for the ambiguity function of chirp signals that is analyzed with respect to detection of radar targets moving at a constant acceleration. Sidelobe level and characteristic width of the ambiguity function with respect to the coordinates frequency and rate of its change have been estimated. The gain in the signal-to-noise ratio has been assessed that is provided by the algorithm under consideration as compared with application of the standard Fourier transform to detection of chirp signals against a “white” noise background. It is shown that already with a comparatively small (processing channels (elementary filters with respect to the frequency change rate) the gain in the signal-tonoise ratio exceeds 10 dB. A block diagram of implementation of the algorithm under consideration is suggested on the basis of a multichannel weighted Fourier transform. Recommendations as for selection of the detection algorithm parameters have been developed. Conclusions: The obtained results testify to efficiency of application of the algorithm under consideration to detection of radar targets moving at a constant acceleration. Nevertheless, it seems expedient to perform computer simulations of its operability with account for the noise impact along with trial measurements in real conditions.

  6. Pilot-based parametric channel estimation algorithm for DCO-OFDM-based visual light communications

    Science.gov (United States)

    Qian, Xuewen; Deng, Honggui; He, Hailang

    2017-10-01

    Due to wide modulation bandwidth in optical communication, multipath channels may be non-sparse and deteriorate communication performance heavily. Traditional compressive sensing-based channel estimation algorithm cannot be employed in this kind of situation. In this paper, we propose a practical parametric channel estimation algorithm for orthogonal frequency division multiplexing (OFDM)-based visual light communication (VLC) systems based on modified zero correlation code (ZCC) pair that has the impulse-like correlation property. Simulation results show that the proposed algorithm achieves better performances than existing least squares (LS)-based algorithm in both bit error ratio (BER) and frequency response estimation.

  7. Comparison of primary productivity estimates in the Baltic Sea based on the DESAMBEM algorithm with estimates based on other similar algorithms

    Directory of Open Access Journals (Sweden)

    Małgorzata Stramska

    2013-02-01

    Full Text Available The quasi-synoptic view available from satellites has been broadly used in recent years to observe in near-real time the large-scale dynamics of marine ecosystems and to estimate primary productivity in the world ocean. However, the standard global NASA ocean colour algorithms generally do not produce good results in the Baltic Sea. In this paper, we compare the ability of seven algorithms to estimate depth-integrated daily primary production (PP, mg C m-2 in the Baltic Sea. All the algorithms use surface chlorophyll concentration, sea surface temperature, photosynthetic available radiation, latitude, longitude and day of the year as input data. Algorithm-derived PP is then compared with PP estimates obtained from 14C uptake measurements. The results indicate that the best agreement between the modelled and measured PP in the Baltic Sea is obtained with the DESAMBEM algorithm. This result supports the notion that a regional approach should be used in the interpretation of ocean colour satellite data in the Baltic Sea.

  8. Novel prediction- and subblock-based algorithm for fractal image compression

    International Nuclear Information System (INIS)

    Chung, K.-L.; Hsu, C.-H.

    2006-01-01

    Fractal encoding is the most consuming part in fractal image compression. In this paper, a novel two-phase prediction- and subblock-based fractal encoding algorithm is presented. Initially the original gray image is partitioned into a set of variable-size blocks according to the S-tree- and interpolation-based decomposition principle. In the first phase, each current block of variable-size range block tries to find the best matched domain block based on the proposed prediction-based search strategy which utilizes the relevant neighboring variable-size domain blocks. The first phase leads to a significant computation-saving effect. If the domain block found within the predicted search space is unacceptable, in the second phase, a subblock strategy is employed to partition the current variable-size range block into smaller blocks to improve the image quality. Experimental results show that our proposed prediction- and subblock-based fractal encoding algorithm outperforms the conventional full search algorithm and the recently published spatial-correlation-based algorithm by Truong et al. in terms of encoding time and image quality. In addition, the performance comparison among our proposed algorithm and the other two algorithms, the no search-based algorithm and the quadtree-based algorithm, are also investigated

  9. Are decisions using cost-utility analyses robust to choice of SF-36/SF-12 preference-based algorithm?

    Directory of Open Access Journals (Sweden)

    Walton Surrey M

    2005-03-01

    Full Text Available Abstract Background Cost utility analysis (CUA using SF-36/SF-12 data has been facilitated by the development of several preference-based algorithms. The purpose of this study was to illustrate how decision-making could be affected by the choice of preference-based algorithms for the SF-36 and SF-12, and provide some guidance on selecting an appropriate algorithm. Methods Two sets of data were used: (1 a clinical trial of adult asthma patients; and (2 a longitudinal study of post-stroke patients. Incremental costs were assumed to be $2000 per year over standard treatment, and QALY gains realized over a 1-year period. Ten published algorithms were identified, denoted by first author: Brazier (SF-36, Brazier (SF-12, Shmueli, Fryback, Lundberg, Nichol, Franks (3 algorithms, and Lawrence. Incremental cost-utility ratios (ICURs for each algorithm, stated in dollars per quality-adjusted life year ($/QALY, were ranked and compared between datasets. Results In the asthma patients, estimated ICURs ranged from Lawrence's SF-12 algorithm at $30,769/QALY (95% CI: 26,316 to 36,697 to Brazier's SF-36 algorithm at $63,492/QALY (95% CI: 48,780 to 83,333. ICURs for the stroke cohort varied slightly more dramatically. The MEPS-based algorithm by Franks et al. provided the lowest ICUR at $27,972/QALY (95% CI: 20,942 to 41,667. The Fryback and Shmueli algorithms provided ICURs that were greater than $50,000/QALY and did not have confidence intervals that overlapped with most of the other algorithms. The ICUR-based ranking of algorithms was strongly correlated between the asthma and stroke datasets (r = 0.60. Conclusion SF-36/SF-12 preference-based algorithms produced a wide range of ICURs that could potentially lead to different reimbursement decisions. Brazier's SF-36 and SF-12 algorithms have a strong methodological and theoretical basis and tended to generate relatively higher ICUR estimates, considerations that support a preference for these algorithms over the

  10. A framelet-based iterative maximum-likelihood reconstruction algorithm for spectral CT

    Science.gov (United States)

    Wang, Yingmei; Wang, Ge; Mao, Shuwei; Cong, Wenxiang; Ji, Zhilong; Cai, Jian-Feng; Ye, Yangbo

    2016-11-01

    Standard computed tomography (CT) cannot reproduce spectral information of an object. Hardware solutions include dual-energy CT which scans the object twice in different x-ray energy levels, and energy-discriminative detectors which can separate lower and higher energy levels from a single x-ray scan. In this paper, we propose a software solution and give an iterative algorithm that reconstructs an image with spectral information from just one scan with a standard energy-integrating detector. The spectral information obtained can be used to produce color CT images, spectral curves of the attenuation coefficient μ (r,E) at points inside the object, and photoelectric images, which are all valuable imaging tools in cancerous diagnosis. Our software solution requires no change on hardware of a CT machine. With the Shepp-Logan phantom, we have found that although the photoelectric and Compton components were not perfectly reconstructed, their composite effect was very accurately reconstructed as compared to the ground truth and the dual-energy CT counterpart. This means that our proposed method has an intrinsic benefit in beam hardening correction and metal artifact reduction. The algorithm is based on a nonlinear polychromatic acquisition model for x-ray CT. The key technique is a sparse representation of iterations in a framelet system. Convergence of the algorithm is studied. This is believed to be the first application of framelet imaging tools to a nonlinear inverse problem.

  11. MVDR Algorithm Based on Estimated Diagonal Loading for Beamforming

    Directory of Open Access Journals (Sweden)

    Yuteng Xiao

    2017-01-01

    Full Text Available Beamforming algorithm is widely used in many signal processing fields. At present, the typical beamforming algorithm is MVDR (Minimum Variance Distortionless Response. However, the performance of MVDR algorithm relies on the accurate covariance matrix. The MVDR algorithm declines dramatically with the inaccurate covariance matrix. To solve the problem, studying the beamforming array signal model and beamforming MVDR algorithm, we improve MVDR algorithm based on estimated diagonal loading for beamforming. MVDR optimization model based on diagonal loading compensation is established and the interval of the diagonal loading compensation value is deduced on the basis of the matrix theory. The optimal diagonal loading value in the interval is also determined through the experimental method. The experimental results show that the algorithm compared with existing algorithms is practical and effective.

  12. A standard deviation selection in evolutionary algorithm for grouper fish feed formulation

    Science.gov (United States)

    Cai-Juan, Soong; Ramli, Razamin; Rahman, Rosshairy Abdul

    2016-10-01

    Malaysia is one of the major producer countries for fishery production due to its location in the equatorial environment. Grouper fish is one of the potential markets in contributing to the income of the country due to its desirable taste, high demand and high price. However, the demand of grouper fish is still insufficient from the wild catch. Therefore, there is a need to farm grouper fish to cater to the market demand. In order to farm grouper fish, there is a need to have prior knowledge of the proper nutrients needed because there is no exact data available. Therefore, in this study, primary data and secondary data are collected even though there is a limitation of related papers and 30 samples are investigated by using standard deviation selection in Evolutionary algorithm. Thus, this study would unlock frontiers for an extensive research in respect of grouper fish feed formulation. Results shown that the fitness of standard deviation selection in evolutionary algorithm is applicable. The feasible and low fitness, quick solution can be obtained. These fitness can be further predicted to minimize cost in farming grouper fish.

  13. Evaluation of GMI and PMI diffeomorphic-based demons algorithms for aligning PET and CT Images.

    Science.gov (United States)

    Yang, Juan; Wang, Hongjun; Zhang, You; Yin, Yong

    2015-07-08

    Fusion of anatomic information in computed tomography (CT) and functional information in 18F-FDG positron emission tomography (PET) is crucial for accurate differentiation of tumor from benign masses, designing radiotherapy treatment plan and staging of cancer. Although current PET and CT images can be acquired from combined 18F-FDG PET/CT scanner, the two acquisitions are scanned separately and take a long time, which may induce potential positional errors in global and local caused by respiratory motion or organ peristalsis. So registration (alignment) of whole-body PET and CT images is a prerequisite for their meaningful fusion. The purpose of this study was to assess the performance of two multimodal registration algorithms for aligning PET and CT images. The proposed gradient of mutual information (GMI)-based demons algorithm, which incorporated the GMI between two images as an external force to facilitate the alignment, was compared with the point-wise mutual information (PMI) diffeomorphic-based demons algorithm whose external force was modified by replacing the image intensity difference in diffeomorphic demons algorithm with the PMI to make it appropriate for multimodal image registration. Eight patients with esophageal cancer(s) were enrolled in this IRB-approved study. Whole-body PET and CT images were acquired from a combined 18F-FDG PET/CT scanner for each patient. The modified Hausdorff distance (d(MH)) was used to evaluate the registration accuracy of the two algorithms. Of all patients, the mean values and standard deviations (SDs) of d(MH) were 6.65 (± 1.90) voxels and 6.01 (± 1.90) after the GMI-based demons and the PMI diffeomorphic-based demons registration algorithms respectively. Preliminary results on oncological patients showed that the respiratory motion and organ peristalsis in PET/CT esophageal images could not be neglected, although a combined 18F-FDG PET/CT scanner was used for image acquisition. The PMI diffeomorphic-based demons

  14. Algorithm Research of Individualized Travelling Route Recommendation Based on Similarity

    Directory of Open Access Journals (Sweden)

    Xue Shan

    2015-01-01

    Full Text Available Although commercial recommendation system has made certain achievement in travelling route development, the recommendation system is facing a series of challenges because of people’s increasing interest in travelling. It is obvious that the core content of the recommendation system is recommendation algorithm. The advantages of recommendation algorithm can bring great effect to the recommendation system. Based on this, this paper applies traditional collaborative filtering algorithm for analysis. Besides, illustrating the deficiencies of the algorithm, such as the rating unicity and rating matrix sparsity, this paper proposes an improved algorithm combing the multi-similarity algorithm based on user and the element similarity algorithm based on user, so as to compensate for the deficiencies that traditional algorithm has within a controllable range. Experimental results have shown that the improved algorithm has obvious advantages in comparison with the traditional one. The improved algorithm has obvious effect on remedying the rating matrix sparsity and rating unicity.

  15. Duality based optical flow algorithms with applications

    DEFF Research Database (Denmark)

    Rakêt, Lars Lau

    We consider the popular TV-L1 optical flow formulation, and the so-called duality based algorithm for minimizing the TV-L1 energy. The original formulation is extended to allow for vector valued images, and minimization results are given. In addition we consider different definitions of total...... variation regularization, and related formulations of the optical flow problem that may be used with a duality based algorithm. We present a highly optimized algorithmic setup to estimate optical flows, and give five novel applications. The first application is registration of medical images, where X......-ray images of different hands, taken using different imaging devices are registered using a TV-L1 optical flow algorithm. We propose to regularize the input images, using sparsity enhancing regularization of the image gradient to improve registration results. The second application is registration of 2D...

  16. Modified Firefly Algorithm based controller design for integrating and unstable delay processes

    Directory of Open Access Journals (Sweden)

    A. Gupta

    2016-03-01

    Full Text Available In this paper, Modified Firefly Algorithm has been used for optimizing the controller parameters of Smith predictor structure. The proposed algorithm modifies the position formula of the standard Firefly Algorithm in order to achieve faster convergence rate. Performance criteria Integral Square Error (ISE is optimized using this optimization technique. Simulation results show high performance for Modified Firefly Algorithm as compared to conventional Firefly Algorithm in terms of convergence rate. Integrating and unstable delay processes are taken as examples to indicate the performance of the proposed method.

  17. A range-based predictive localization algorithm for WSID networks

    Science.gov (United States)

    Liu, Yuan; Chen, Junjie; Li, Gang

    2017-11-01

    Most studies on localization algorithms are conducted on the sensor networks with densely distributed nodes. However, the non-localizable problems are prone to occur in the network with sparsely distributed sensor nodes. To solve this problem, a range-based predictive localization algorithm (RPLA) is proposed in this paper for the wireless sensor networks syncretizing the RFID (WSID) networks. The Gaussian mixture model is established to predict the trajectory of a mobile target. Then, the received signal strength indication is used to reduce the residence area of the target location based on the approximate point-in-triangulation test algorithm. In addition, collaborative localization schemes are introduced to locate the target in the non-localizable situations. Simulation results verify that the RPLA achieves accurate localization for the network with sparsely distributed sensor nodes. The localization accuracy of the RPLA is 48.7% higher than that of the APIT algorithm, 16.8% higher than that of the single Gaussian model-based algorithm and 10.5% higher than that of the Kalman filtering-based algorithm.

  18. Time-domain analysis of planar microstrip devices using a generalized Yee-algorithm based on unstructured grids

    Science.gov (United States)

    Gedney, Stephen D.; Lansing, Faiza

    1993-01-01

    The generalized Yee-algorithm is presented for the temporal full-wave analysis of planar microstrip devices. This algorithm has the significant advantage over the traditional Yee-algorithm in that it is based on unstructured and irregular grids. The robustness of the generalized Yee-algorithm is that structures that contain curved conductors or complex three-dimensional geometries can be more accurately, and much more conveniently modeled using standard automatic grid generation techniques. This generalized Yee-algorithm is based on the the time-marching solution of the discrete form of Maxwell's equations in their integral form. To this end, the electric and magnetic fields are discretized over a dual, irregular, and unstructured grid. The primary grid is assumed to be composed of general fitted polyhedra distributed throughout the volume. The secondary grid (or dual grid) is built up of the closed polyhedra whose edges connect the centroid's of adjacent primary cells, penetrating shared faces. Faraday's law and Ampere's law are used to update the fields normal to the primary and secondary grid faces, respectively. Subsequently, a correction scheme is introduced to project the normal fields onto the grid edges. It is shown that this scheme is stable, maintains second-order accuracy, and preserves the divergenceless nature of the flux densities. Finally, for computational efficiency the algorithm is structured as a series of sparse matrix-vector multiplications. Based on this scheme, the generalized Yee-algorithm has been implemented on vector and parallel high performance computers in a highly efficient manner.

  19. DE and NLP Based QPLS Algorithm

    Science.gov (United States)

    Yu, Xiaodong; Huang, Dexian; Wang, Xiong; Liu, Bo

    As a novel evolutionary computing technique, Differential Evolution (DE) has been considered to be an effective optimization method for complex optimization problems, and achieved many successful applications in engineering. In this paper, a new algorithm of Quadratic Partial Least Squares (QPLS) based on Nonlinear Programming (NLP) is presented. And DE is used to solve the NLP so as to calculate the optimal input weights and the parameters of inner relationship. The simulation results based on the soft measurement of diesel oil solidifying point on a real crude distillation unit demonstrate that the superiority of the proposed algorithm to linear PLS and QPLS which is based on Sequential Quadratic Programming (SQP) in terms of fitting accuracy and computational costs.

  20. ANFIS Based Time Series Prediction Method of Bank Cash Flow Optimized by Adaptive Population Activity PSO Algorithm

    Directory of Open Access Journals (Sweden)

    Jie-Sheng Wang

    2015-06-01

    Full Text Available In order to improve the accuracy and real-time of all kinds of information in the cash business, and solve the problem which accuracy and stability is not high of the data linkage between cash inventory forecasting and cash management information in the commercial bank, a hybrid learning algorithm is proposed based on adaptive population activity particle swarm optimization (APAPSO algorithm combined with the least squares method (LMS to optimize the adaptive network-based fuzzy inference system (ANFIS model parameters. Through the introduction of metric function of population diversity to ensure the diversity of population and adaptive changes in inertia weight and learning factors, the optimization ability of the particle swarm optimization (PSO algorithm is improved, which avoids the premature convergence problem of the PSO algorithm. The simulation comparison experiments are carried out with BP-LMS algorithm and standard PSO-LMS by adopting real commercial banks’ cash flow data to verify the effectiveness of the proposed time series prediction of bank cash flow based on improved PSO-ANFIS optimization method. Simulation results show that the optimization speed is faster and the prediction accuracy is higher.

  1. Multi-objective hybrid PSO-APO algorithm based security constrained optimal power flow with wind and thermal generators

    Directory of Open Access Journals (Sweden)

    Kiran Teeparthi

    2017-04-01

    Full Text Available In this paper, a new low level with teamwork heterogeneous hybrid particle swarm optimization and artificial physics optimization (HPSO-APO algorithm is proposed to solve the multi-objective security constrained optimal power flow (MO-SCOPF problem. Being engaged with the environmental and total production cost concerns, wind energy is highly penetrating to the main grid. The total production cost, active power losses and security index are considered as the objective functions. These are simultaneously optimized using the proposed algorithm for base case and contingency cases. Though PSO algorithm exhibits good convergence characteristic, fails to give near optimal solution. On the other hand, the APO algorithm shows the capability of improving diversity in search space and also to reach a near global optimum point, whereas, APO is prone to premature convergence. The proposed hybrid HPSO-APO algorithm combines both individual algorithm strengths, to get balance between global and local search capability. The APO algorithm is improving diversity in the search space of the PSO algorithm. The hybrid optimization algorithm is employed to alleviate the line overloads by generator rescheduling during contingencies. The standard IEEE 30-bus and Indian 75-bus practical test systems are considered to evaluate the robustness of the proposed method. The simulation results reveal that the proposed HPSO-APO method is more efficient and robust than the standard PSO and APO methods in terms of getting diverse Pareto optimal solutions. Hence, the proposed hybrid method can be used for the large interconnected power system to solve MO-SCOPF problem with integration of wind and thermal generators.

  2. Improved retrieval of cloud base heights from ceilometer using a non-standard instrument method

    Science.gov (United States)

    Wang, Yang; Zhao, Chuanfeng; Dong, Zipeng; Li, Zhanqing; Hu, Shuzhen; Chen, Tianmeng; Tao, Fa; Wang, Yuzhao

    2018-04-01

    Cloud-base height (CBH) is a basic cloud parameter but has not been measured accurately, especially under polluted conditions due to the interference of aerosol. Taking advantage of a comprehensive field experiment in northern China in which a variety of advanced cloud probing instruments were operated, different methods of detecting CBH are assessed. The Micro-Pulse Lidar (MPL) and the Vaisala ceilometer (CL51) provided two types of backscattered profiles. The latter has been employed widely as a standard means of measuring CBH using the manufacturer's operational algorithm to generate standard CBH products (CL51 MAN) whose quality is rigorously assessed here, in comparison with a research algorithm that we developed named value distribution equalization (VDE) algorithm. It was applied to both the profiles of lidar backscattering data from the two instruments. The VDE algorithm is found to produce more accurate estimates of CBH for both instruments and can cope with heavy aerosol loading conditions well. By contrast, CL51 MAN overestimates CBH by 400 m and misses many low level clouds under such conditions. These findings are important given that CL51 has been adopted operationally by many meteorological stations in China.

  3. Generalized phase retrieval algorithm based on information measures

    OpenAIRE

    Shioya, Hiroyuki; Gohara, Kazutoshi

    2006-01-01

    An iterative phase retrieval algorithm based on the maximum entropy method (MEM) is presented. Introducing a new generalized information measure, we derive a novel class of algorithms which includes the conventionally used error reduction algorithm and a MEM-type iterative algorithm which is presented for the first time. These different phase retrieval methods are unified on the basis of the framework of information measures used in information theory.

  4. Efficient sampling algorithms for Monte Carlo based treatment planning

    International Nuclear Information System (INIS)

    DeMarco, J.J.; Solberg, T.D.; Chetty, I.; Smathers, J.B.

    1998-01-01

    Efficient sampling algorithms are necessary for producing a fast Monte Carlo based treatment planning code. This study evaluates several aspects of a photon-based tracking scheme and the effect of optimal sampling algorithms on the efficiency of the code. Four areas were tested: pseudo-random number generation, generalized sampling of a discrete distribution, sampling from the exponential distribution, and delta scattering as applied to photon transport through a heterogeneous simulation geometry. Generalized sampling of a discrete distribution using the cutpoint method can produce speedup gains of one order of magnitude versus conventional sequential sampling. Photon transport modifications based upon the delta scattering method were implemented and compared with a conventional boundary and collision checking algorithm. The delta scattering algorithm is faster by a factor of six versus the conventional algorithm for a boundary size of 5 mm within a heterogeneous geometry. A comparison of portable pseudo-random number algorithms and exponential sampling techniques is also discussed

  5. List-Based Simulated Annealing Algorithm for Traveling Salesman Problem

    Directory of Open Access Journals (Sweden)

    Shi-hua Zhan

    2016-01-01

    Full Text Available Simulated annealing (SA algorithm is a popular intelligent optimization algorithm which has been successfully applied in many fields. Parameters’ setting is a key factor for its performance, but it is also a tedious work. To simplify parameters setting, we present a list-based simulated annealing (LBSA algorithm to solve traveling salesman problem (TSP. LBSA algorithm uses a novel list-based cooling schedule to control the decrease of temperature. Specifically, a list of temperatures is created first, and then the maximum temperature in list is used by Metropolis acceptance criterion to decide whether to accept a candidate solution. The temperature list is adapted iteratively according to the topology of the solution space of the problem. The effectiveness and the parameter sensitivity of the list-based cooling schedule are illustrated through benchmark TSP problems. The LBSA algorithm, whose performance is robust on a wide range of parameter values, shows competitive performance compared with some other state-of-the-art algorithms.

  6. Research on personalized recommendation algorithm based on spark

    Science.gov (United States)

    Li, Zeng; Liu, Yu

    2018-04-01

    With the increasing amount of data in the past years, the traditional recommendation algorithm has been unable to meet people's needs. Therefore, how to better recommend their products to users of interest, become the opportunities and challenges of the era of big data development. At present, each platform enterprise has its own recommendation algorithm, but how to make efficient and accurate push information is still an urgent problem for personalized recommendation system. In this paper, a hybrid algorithm based on user collaborative filtering and content-based recommendation algorithm is proposed on Spark to improve the efficiency and accuracy of recommendation by weighted processing. The experiment shows that the recommendation under this scheme is more efficient and accurate.

  7. Evaluation of a Cross Layer Scheduling Algorithm for LTE Downlink

    Directory of Open Access Journals (Sweden)

    A. Popovska Avramova

    2013-06-01

    Full Text Available The LTE standard is a leading standard in the wireless broadband market. The Radio Resource Management at the base station plays a major role in satisfying users demand for high data rates and quality of service. This paper evaluates a cross layer scheduling algorithm that aims at minimizing the resource utilization. The algorithm makes decisions based on channel conditions, the size of transmission buffers and different quality of service demands. Simulation results show that the new algorithm improves the resource utilization and provides better guarantees for service quality.

  8. FIREWORKS ALGORITHM FOR UNCONSTRAINED FUNCTION OPTIMIZATION PROBLEMS

    Directory of Open Access Journals (Sweden)

    Evans BAIDOO

    2017-03-01

    Full Text Available Modern real world science and engineering problems can be classified as multi-objective optimisation problems which demand for expedient and efficient stochastic algorithms to respond to the optimization needs. This paper presents an object-oriented software application that implements a firework optimization algorithm for function optimization problems. The algorithm, a kind of parallel diffuse optimization algorithm is based on the explosive phenomenon of fireworks. The algorithm presented promising results when compared to other population or iterative based meta-heuristic algorithm after it was experimented on five standard benchmark problems. The software application was implemented in Java with interactive interface which allow for easy modification and extended experimentation. Additionally, this paper validates the effect of runtime on the algorithm performance.

  9. Fast image matching algorithm based on projection characteristics

    Science.gov (United States)

    Zhou, Lijuan; Yue, Xiaobo; Zhou, Lijun

    2011-06-01

    Based on analyzing the traditional template matching algorithm, this paper identified the key factors restricting the speed of matching and put forward a brand new fast matching algorithm based on projection. Projecting the grayscale image, this algorithm converts the two-dimensional information of the image into one-dimensional one, and then matches and identifies through one-dimensional correlation, meanwhile, because of normalization has been done, when the image brightness or signal amplitude increasing in proportion, it could also perform correct matching. Experimental results show that the projection characteristics based image registration method proposed in this article could greatly improve the matching speed, which ensuring the matching accuracy as well.

  10. GPU-based parallel algorithm for blind image restoration using midfrequency-based methods

    Science.gov (United States)

    Xie, Lang; Luo, Yi-han; Bao, Qi-liang

    2013-08-01

    GPU-based general-purpose computing is a new branch of modern parallel computing, so the study of parallel algorithms specially designed for GPU hardware architecture is of great significance. In order to solve the problem of high computational complexity and poor real-time performance in blind image restoration, the midfrequency-based algorithm for blind image restoration was analyzed and improved in this paper. Furthermore, a midfrequency-based filtering method is also used to restore the image hardly with any recursion or iteration. Combining the algorithm with data intensiveness, data parallel computing and GPU execution model of single instruction and multiple threads, a new parallel midfrequency-based algorithm for blind image restoration is proposed in this paper, which is suitable for stream computing of GPU. In this algorithm, the GPU is utilized to accelerate the estimation of class-G point spread functions and midfrequency-based filtering. Aiming at better management of the GPU threads, the threads in a grid are scheduled according to the decomposition of the filtering data in frequency domain after the optimization of data access and the communication between the host and the device. The kernel parallelism structure is determined by the decomposition of the filtering data to ensure the transmission rate to get around the memory bandwidth limitation. The results show that, with the new algorithm, the operational speed is significantly increased and the real-time performance of image restoration is effectively improved, especially for high-resolution images.

  11. Quantum Behaved Particle Swarm Optimization Algorithm Based on Artificial Fish Swarm

    OpenAIRE

    Yumin, Dong; Li, Zhao

    2014-01-01

    Quantum behaved particle swarm algorithm is a new intelligent optimization algorithm; the algorithm has less parameters and is easily implemented. In view of the existing quantum behaved particle swarm optimization algorithm for the premature convergence problem, put forward a quantum particle swarm optimization algorithm based on artificial fish swarm. The new algorithm based on quantum behaved particle swarm algorithm, introducing the swarm and following activities, meanwhile using the a...

  12. An Efficient Biometric-Based Algorithm Using Heart Rate Variability for Securing Body Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sandeep Pirbhulal

    2015-06-01

    Full Text Available Body Sensor Network (BSN is a network of several associated sensor nodes on, inside or around the human body to monitor vital signals, such as, Electroencephalogram (EEG, Photoplethysmography (PPG, Electrocardiogram (ECG, etc. Each sensor node in BSN delivers major information; therefore, it is very significant to provide data confidentiality and security. All existing approaches to secure BSN are based on complex cryptographic key generation procedures, which not only demands high resource utilization and computation time, but also consumes large amount of energy, power and memory during data transmission. However, it is indispensable to put forward energy efficient and computationally less complex authentication technique for BSN. In this paper, a novel biometric-based algorithm is proposed, which utilizes Heart Rate Variability (HRV for simple key generation process to secure BSN. Our proposed algorithm is compared with three data authentication techniques, namely Physiological Signal based Key Agreement (PSKA, Data Encryption Standard (DES and Rivest Shamir Adleman (RSA. Simulation is performed in Matlab and results suggest that proposed algorithm is quite efficient in terms of transmission time utilization, average remaining energy and total power consumption.

  13. An Efficient Biometric-Based Algorithm Using Heart Rate Variability for Securing Body Sensor Networks

    Science.gov (United States)

    Pirbhulal, Sandeep; Zhang, Heye; Mukhopadhyay, Subhas Chandra; Li, Chunyue; Wang, Yumei; Li, Guanglin; Wu, Wanqing; Zhang, Yuan-Ting

    2015-01-01

    Body Sensor Network (BSN) is a network of several associated sensor nodes on, inside or around the human body to monitor vital signals, such as, Electroencephalogram (EEG), Photoplethysmography (PPG), Electrocardiogram (ECG), etc. Each sensor node in BSN delivers major information; therefore, it is very significant to provide data confidentiality and security. All existing approaches to secure BSN are based on complex cryptographic key generation procedures, which not only demands high resource utilization and computation time, but also consumes large amount of energy, power and memory during data transmission. However, it is indispensable to put forward energy efficient and computationally less complex authentication technique for BSN. In this paper, a novel biometric-based algorithm is proposed, which utilizes Heart Rate Variability (HRV) for simple key generation process to secure BSN. Our proposed algorithm is compared with three data authentication techniques, namely Physiological Signal based Key Agreement (PSKA), Data Encryption Standard (DES) and Rivest Shamir Adleman (RSA). Simulation is performed in Matlab and results suggest that proposed algorithm is quite efficient in terms of transmission time utilization, average remaining energy and total power consumption. PMID:26131666

  14. Algorithm of Particle Data Association for SLAM Based on Improved Ant Algorithm

    Directory of Open Access Journals (Sweden)

    KeKe Gen

    2015-01-01

    Full Text Available The article considers a problem of data association algorithm for simultaneous localization and mapping guidelines in determining the route of unmanned aerial vehicles (UAVs. Currently, these equipments are already widely used, but mainly controlled from the remote operator. An urgent task is to develop a control system that allows for autonomous flight. Algorithm SLAM (simultaneous localization and mapping, which allows to predict the location, speed, the ratio of flight parameters and the coordinates of landmarks and obstacles in an unknown environment, is one of the key technologies to achieve real autonomous UAV flight. The aim of this work is to study the possibility of solving this problem by using an improved ant algorithm.The data association for SLAM algorithm is meant to establish a matching set of observed landmarks and landmarks in the state vector. Ant algorithm is one of the widely used optimization algorithms with positive feedback and the ability to search in parallel, so the algorithm is suitable for solving the problem of data association for SLAM. But the traditional ant algorithm in the process of finding routes easily falls into local optimum. Adding random perturbations in the process of updating the global pheromone to avoid local optima. Setting limits pheromone on the route can increase the search space with a reasonable amount of calculations for finding the optimal route.The paper proposes an algorithm of the local data association for SLAM algorithm based on an improved ant algorithm. To increase the speed of calculation, local data association is used instead of the global data association. The first stage of the algorithm defines targets in the matching space and the observed landmarks with the possibility of association by the criterion of individual compatibility (IC. The second stage defines the matched landmarks and their coordinates using improved ant algorithm. Simulation results confirm the efficiency and

  15. A Robust Automated Cataract Detection Algorithm Using Diagnostic Opinion Based Parameter Thresholding for Telemedicine Application

    Directory of Open Access Journals (Sweden)

    Shashwat Pathak

    2016-09-01

    Full Text Available This paper proposes and evaluates an algorithm to automatically detect the cataracts from color images in adult human subjects. Currently, methods available for cataract detection are based on the use of either fundus camera or Digital Single-Lens Reflex (DSLR camera; both are very expensive. The main motive behind this work is to develop an inexpensive, robust and convenient algorithm which in conjugation with suitable devices will be able to diagnose the presence of cataract from the true color images of an eye. An algorithm is proposed for cataract screening based on texture features: uniformity, intensity and standard deviation. These features are first computed and mapped with diagnostic opinion by the eye expert to define the basic threshold of screening system and later tested on real subjects in an eye clinic. Finally, a tele-ophthamology model using our proposed system has been suggested, which confirms the telemedicine application of the proposed system.

  16. Parameter Selection for Ant Colony Algorithm Based on Bacterial Foraging Algorithm

    Directory of Open Access Journals (Sweden)

    Peng Li

    2016-01-01

    Full Text Available The optimal performance of the ant colony algorithm (ACA mainly depends on suitable parameters; therefore, parameter selection for ACA is important. We propose a parameter selection method for ACA based on the bacterial foraging algorithm (BFA, considering the effects of coupling between different parameters. Firstly, parameters for ACA are mapped into a multidimensional space, using a chemotactic operator to ensure that each parameter group approaches the optimal value, speeding up the convergence for each parameter set. Secondly, the operation speed for optimizing the entire parameter set is accelerated using a reproduction operator. Finally, the elimination-dispersal operator is used to strengthen the global optimization of the parameters, which avoids falling into a local optimal solution. In order to validate the effectiveness of this method, the results were compared with those using a genetic algorithm (GA and a particle swarm optimization (PSO, and simulations were conducted using different grid maps for robot path planning. The results indicated that parameter selection for ACA based on BFA was the superior method, able to determine the best parameter combination rapidly, accurately, and effectively.

  17. Research on distributed QOS routing algorithm based on TCP/IP

    Science.gov (United States)

    Liu, Xiaoyue; Chen, Yongqiang

    2011-10-01

    At present, network environment follow protocol standard of IPV4 is intended to do the best effort of network to provide network applied service for users, however, not caring about service quality.Thus the packet loss rate is high, it cannot reach an ideal applied results. This article through the establishment of mathematical model, put forward a new distributed multi QOS routing algorithm, given the realization process of this distributed QOS routing algorithm, and simulation was carried out by simulation software. The results show the proposed algorithm can improve the utilization rate of network resources and the service quality of network application.

  18. A Flocking Based algorithm for Document Clustering Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xiaohui [ORNL; Gao, Jinzhu [ORNL; Potok, Thomas E [ORNL

    2006-01-01

    Social animals or insects in nature often exhibit a form of emergent collective behavior known as flocking. In this paper, we present a novel Flocking based approach for document clustering analysis. Our Flocking clustering algorithm uses stochastic and heuristic principles discovered from observing bird flocks or fish schools. Unlike other partition clustering algorithm such as K-means, the Flocking based algorithm does not require initial partitional seeds. The algorithm generates a clustering of a given set of data through the embedding of the high-dimensional data items on a two-dimensional grid for easy clustering result retrieval and visualization. Inspired by the self-organized behavior of bird flocks, we represent each document object with a flock boid. The simple local rules followed by each flock boid result in the entire document flock generating complex global behaviors, which eventually result in a clustering of the documents. We evaluate the efficiency of our algorithm with both a synthetic dataset and a real document collection that includes 100 news articles collected from the Internet. Our results show that the Flocking clustering algorithm achieves better performance compared to the K- means and the Ant clustering algorithm for real document clustering.

  19. AdaBoost-based algorithm for network intrusion detection.

    Science.gov (United States)

    Hu, Weiming; Hu, Wei; Maybank, Steve

    2008-04-01

    Network intrusion detection aims at distinguishing the attacks on the Internet from normal use of the Internet. It is an indispensable part of the information security system. Due to the variety of network behaviors and the rapid development of attack fashions, it is necessary to develop fast machine-learning-based intrusion detection algorithms with high detection rates and low false-alarm rates. In this correspondence, we propose an intrusion detection algorithm based on the AdaBoost algorithm. In the algorithm, decision stumps are used as weak classifiers. The decision rules are provided for both categorical and continuous features. By combining the weak classifiers for continuous features and the weak classifiers for categorical features into a strong classifier, the relations between these two different types of features are handled naturally, without any forced conversions between continuous and categorical features. Adaptable initial weights and a simple strategy for avoiding overfitting are adopted to improve the performance of the algorithm. Experimental results show that our algorithm has low computational complexity and error rates, as compared with algorithms of higher computational complexity, as tested on the benchmark sample data.

  20. Q-learning-based adjustable fixed-phase quantum Grover search algorithm

    International Nuclear Information System (INIS)

    Guo Ying; Shi Wensha; Wang Yijun; Hu, Jiankun

    2017-01-01

    We demonstrate that the rotation phase can be suitably chosen to increase the efficiency of the phase-based quantum search algorithm, leading to a dynamic balance between iterations and success probabilities of the fixed-phase quantum Grover search algorithm with Q-learning for a given number of solutions. In this search algorithm, the proposed Q-learning algorithm, which is a model-free reinforcement learning strategy in essence, is used for performing a matching algorithm based on the fraction of marked items λ and the rotation phase α. After establishing the policy function α = π(λ), we complete the fixed-phase Grover algorithm, where the phase parameter is selected via the learned policy. Simulation results show that the Q-learning-based Grover search algorithm (QLGA) enables fewer iterations and gives birth to higher success probabilities. Compared with the conventional Grover algorithms, it avoids the optimal local situations, thereby enabling success probabilities to approach one. (author)

  1. An efficient randomized algorithm for contact-based NMR backbone resonance assignment.

    Science.gov (United States)

    Kamisetty, Hetunandan; Bailey-Kellogg, Chris; Pandurangan, Gopal

    2006-01-15

    Backbone resonance assignment is a critical bottleneck in studies of protein structure, dynamics and interactions by nuclear magnetic resonance (NMR) spectroscopy. A minimalist approach to assignment, which we call 'contact-based', seeks to dramatically reduce experimental time and expense by replacing the standard suite of through-bond experiments with the through-space (nuclear Overhauser enhancement spectroscopy, NOESY) experiment. In the contact-based approach, spectral data are represented in a graph with vertices for putative residues (of unknown relation to the primary sequence) and edges for hypothesized NOESY interactions, such that observed spectral peaks could be explained if the residues were 'close enough'. Due to experimental ambiguity, several incorrect edges can be hypothesized for each spectral peak. An assignment is derived by identifying consistent patterns of edges (e.g. for alpha-helices and beta-sheets) within a graph and by mapping the vertices to the primary sequence. The key algorithmic challenge is to be able to uncover these patterns even when they are obscured by significant noise. This paper develops, analyzes and applies a novel algorithm for the identification of polytopes representing consistent patterns of edges in a corrupted NOESY graph. Our randomized algorithm aggregates simplices into polytopes and fixes inconsistencies with simple local modifications, called rotations, that maintain most of the structure already uncovered. In characterizing the effects of experimental noise, we employ an NMR-specific random graph model in proving that our algorithm gives optimal performance in expected polynomial time, even when the input graph is significantly corrupted. We confirm this analysis in simulation studies with graphs corrupted by up to 500% noise. Finally, we demonstrate the practical application of the algorithm on several experimental beta-sheet datasets. Our approach is able to eliminate a large majority of noise edges and to

  2. Analysis and Improvement of Fireworks Algorithm

    Directory of Open Access Journals (Sweden)

    Xi-Guang Li

    2017-02-01

    Full Text Available The Fireworks Algorithm is a recently developed swarm intelligence algorithm to simulate the explosion process of fireworks. Based on the analysis of each operator of Fireworks Algorithm (FWA, this paper improves the FWA and proves that the improved algorithm converges to the global optimal solution with probability 1. The proposed algorithm improves the goal of further boosting performance and achieving global optimization where mainly include the following strategies. Firstly using the opposition-based learning initialization population. Secondly a new explosion amplitude mechanism for the optimal firework is proposed. In addition, the adaptive t-distribution mutation for non-optimal individuals and elite opposition-based learning for the optimal individual are used. Finally, a new selection strategy, namely Disruptive Selection, is proposed to reduce the running time of the algorithm compared with FWA. In our simulation, we apply the CEC2013 standard functions and compare the proposed algorithm (IFWA with SPSO2011, FWA, EFWA and dynFWA. The results show that the proposed algorithm has better overall performance on the test functions.

  3. Research on Modified Root-MUSIC Algorithm of DOA Estimation Based on Covariance Matrix Reconstruction

    Directory of Open Access Journals (Sweden)

    Changgan SHU

    2014-09-01

    Full Text Available In the standard root multiple signal classification algorithm, the performance of direction of arrival estimation will reduce and even lose effect in circumstances that a low signal noise ratio and a small signals interval. By reconstructing and weighting the covariance matrix of received signal, the modified algorithm can provide more accurate estimation results. The computer simulation and performance analysis are given next, which show that under the condition of lower signal noise ratio and stronger correlation between signals, the proposed modified algorithm could provide preferable azimuth estimating performance than the standard method.

  4. Reliability-Based Design Optimization of Trusses with Linked-Discrete Design Variables using the Improved Firefly Algorithm

    Directory of Open Access Journals (Sweden)

    N. M. Okasha

    2016-04-01

    Full Text Available In this paper, an approach for conducting a Reliability-Based Design Optimization (RBDO of truss structures with linked-discrete design variables is proposed. The sections of the truss members are selected from the AISC standard tables and thus the design variables that represent the properties of each section are linked. Latin hypercube sampling is used in the evaluation of the structural reliability. The improved firefly algorithm is used for the optimization solution process. It was found that in order to use the improved firefly algorithm for efficiently solving problems of reliability-based design optimization with linked-discrete design variables; it needs to be modified as proposed in this paper to accelerate its convergence.

  5. An accelerated threshold-based back-projection algorithm for Compton camera image reconstruction

    International Nuclear Information System (INIS)

    Mundy, Daniel W.; Herman, Michael G.

    2011-01-01

    parallel to the image plane. This effect decreases the sum of the image, thereby also affecting the mean, standard deviation, and SNR of the image. All back-projected events associated with a simulated point source intersected the voxel containing the source and the FWHM of the back-projected image was similar to that obtained from the marching method. Conclusions: The slight deficit to image quality observed with the threshold-based back-projection algorithm described here is outweighed by the 75% reduction in computation time. The implementation of this method requires the development of an optimum threshold function, which determines the overall accuracy of the method. This makes the algorithm well-suited to applications involving the reconstruction of many large images, where the time invested in threshold development is offset by the decreased image reconstruction time. Implemented in a parallel-computing environment, the threshold-based algorithm has the potential to provide real-time dose verification for radiation therapy.

  6. Algorithmic complexity of quantum capacity

    Science.gov (United States)

    Oskouei, Samad Khabbazi; Mancini, Stefano

    2018-04-01

    We analyze the notion of quantum capacity from the perspective of algorithmic (descriptive) complexity. To this end, we resort to the concept of semi-computability in order to describe quantum states and quantum channel maps. We introduce algorithmic entropies (like algorithmic quantum coherent information) and derive relevant properties for them. Then we show that quantum capacity based on semi-computable concept equals the entropy rate of algorithmic coherent information, which in turn equals the standard quantum capacity. Thanks to this, we finally prove that the quantum capacity, for a given semi-computable channel, is limit computable.

  7. Wireless Sensor Network Congestion Control Based on Standard Particle Swarm Optimization and Single Neuron PID.

    Science.gov (United States)

    Yang, Xiaoping; Chen, Xueying; Xia, Riting; Qian, Zhihong

    2018-04-19

    Aiming at the problem of network congestion caused by the large number of data transmissions in wireless routing nodes of wireless sensor network (WSN), this paper puts forward an algorithm based on standard particle swarm⁻neural PID congestion control (PNPID). Firstly, PID control theory was applied to the queue management of wireless sensor nodes. Then, the self-learning and self-organizing ability of neurons was used to achieve online adjustment of weights to adjust the proportion, integral and differential parameters of the PID controller. Finally, the standard particle swarm optimization to neural PID (NPID) algorithm of initial values of proportion, integral and differential parameters and neuron learning rates were used for online optimization. This paper describes experiments and simulations which show that the PNPID algorithm effectively stabilized queue length near the expected value. At the same time, network performance, such as throughput and packet loss rate, was greatly improved, which alleviated network congestion and improved network QoS.

  8. Wireless Sensor Network Congestion Control Based on Standard Particle Swarm Optimization and Single Neuron PID

    Science.gov (United States)

    Yang, Xiaoping; Chen, Xueying; Xia, Riting; Qian, Zhihong

    2018-01-01

    Aiming at the problem of network congestion caused by the large number of data transmissions in wireless routing nodes of wireless sensor network (WSN), this paper puts forward an algorithm based on standard particle swarm–neural PID congestion control (PNPID). Firstly, PID control theory was applied to the queue management of wireless sensor nodes. Then, the self-learning and self-organizing ability of neurons was used to achieve online adjustment of weights to adjust the proportion, integral and differential parameters of the PID controller. Finally, the standard particle swarm optimization to neural PID (NPID) algorithm of initial values of proportion, integral and differential parameters and neuron learning rates were used for online optimization. This paper describes experiments and simulations which show that the PNPID algorithm effectively stabilized queue length near the expected value. At the same time, network performance, such as throughput and packet loss rate, was greatly improved, which alleviated network congestion and improved network QoS. PMID:29671822

  9. An assembly sequence planning method based on composite algorithm

    Directory of Open Access Journals (Sweden)

    Enfu LIU

    2016-02-01

    Full Text Available To solve the combination explosion problem and the blind searching problem in assembly sequence planning of complex products, an assembly sequence planning method based on composite algorithm is proposed. In the composite algorithm, a sufficient number of feasible assembly sequences are generated using formalization reasoning algorithm as the initial population of genetic algorithm. Then fuzzy knowledge of assembly is integrated into the planning process of genetic algorithm and ant algorithm to get the accurate solution. At last, an example is conducted to verify the feasibility of composite algorithm.

  10. A systematic review of gait analysis methods based on inertial sensors and adaptive algorithms.

    Science.gov (United States)

    Caldas, Rafael; Mundt, Marion; Potthast, Wolfgang; Buarque de Lima Neto, Fernando; Markert, Bernd

    2017-09-01

    The conventional methods to assess human gait are either expensive or complex to be applied regularly in clinical practice. To reduce the cost and simplify the evaluation, inertial sensors and adaptive algorithms have been utilized, respectively. This paper aims to summarize studies that applied adaptive also called artificial intelligence (AI) algorithms to gait analysis based on inertial sensor data, verifying if they can support the clinical evaluation. Articles were identified through searches of the main databases, which were encompassed from 1968 to October 2016. We have identified 22 studies that met the inclusion criteria. The included papers were analyzed due to their data acquisition and processing methods with specific questionnaires. Concerning the data acquisition, the mean score is 6.1±1.62, what implies that 13 of 22 papers failed to report relevant outcomes. The quality assessment of AI algorithms presents an above-average rating (8.2±1.84). Therefore, AI algorithms seem to be able to support gait analysis based on inertial sensor data. Further research, however, is necessary to enhance and standardize the application in patients, since most of the studies used distinct methods to evaluate healthy subjects. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A Matlab-Based Testbed for Integration, Evaluation and Comparison of Heterogeneous Stereo Vision Matching Algorithms

    Directory of Open Access Journals (Sweden)

    Raul Correal

    2016-11-01

    Full Text Available Stereo matching is a heavily researched area with a prolific published literature and a broad spectrum of heterogeneous algorithms available in diverse programming languages. This paper presents a Matlab-based testbed that aims to centralize and standardize this variety of both current and prospective stereo matching approaches. The proposed testbed aims to facilitate the application of stereo-based methods to real situations. It allows for configuring and executing algorithms, as well as comparing results, in a fast, easy and friendly setting. Algorithms can be combined so that a series of processes can be chained and executed consecutively, using the output of a process as input for the next; some additional filtering and image processing techniques have been included within the testbed for this purpose. A use case is included to illustrate how these processes are sequenced and its effect on the results for real applications. The testbed has been conceived as a collaborative and incremental open-source project, where its code is accessible and modifiable, with the objective of receiving contributions and releasing future versions to include new algorithms and features. It is currently available online for the research community.

  12. Disaster Monitoring using Grid Based Data Fusion Algorithms

    Directory of Open Access Journals (Sweden)

    Cătălin NAE

    2010-12-01

    Full Text Available This is a study of the application of Grid technology and high performance parallelcomputing to a candidate algorithm for jointly accomplishing data fusion from different sensors. Thisincludes applications for both image analysis and/or data processing for simultaneously trackingmultiple targets in real-time. The emphasis is on comparing the architectures of the serial andparallel algorithms, and characterizing the performance benefits achieved by the parallel algorithmwith both on-ground and in-space hardware implementations. The improved performance levelsachieved by the use of Grid technology (middleware for Parallel Data Fusion are presented for themain metrics of interest in near real-time applications, namely latency, total computation load, andtotal sustainable throughput. The objective of this analysis is, therefore, to demonstrate animplementation of multi-sensor data fusion and/or multi-target tracking functions within an integratedmulti-node portable HPC architecture based on emerging Grid technology. The key metrics to bedetermined in support of ongoing system analyses includes: required computational throughput inMFLOPS; latency between receipt of input data and resulting outputs; and scalability, processorutilization and memory requirements. Furthermore, the standard MPI functions are considered to beused for inter-node communications in order to promote code portability across multiple HPCcomputer platforms, both in space and on-ground.

  13. A hybrid Jaya algorithm for reliability-redundancy allocation problems

    Science.gov (United States)

    Ghavidel, Sahand; Azizivahed, Ali; Li, Li

    2018-04-01

    This article proposes an efficient improved hybrid Jaya algorithm based on time-varying acceleration coefficients (TVACs) and the learning phase introduced in teaching-learning-based optimization (TLBO), named the LJaya-TVAC algorithm, for solving various types of nonlinear mixed-integer reliability-redundancy allocation problems (RRAPs) and standard real-parameter test functions. RRAPs include series, series-parallel, complex (bridge) and overspeed protection systems. The search power of the proposed LJaya-TVAC algorithm for finding the optimal solutions is first tested on the standard real-parameter unimodal and multi-modal functions with dimensions of 30-100, and then tested on various types of nonlinear mixed-integer RRAPs. The results are compared with the original Jaya algorithm and the best results reported in the recent literature. The optimal results obtained with the proposed LJaya-TVAC algorithm provide evidence for its better and acceptable optimization performance compared to the original Jaya algorithm and other reported optimal results.

  14. Evaluation of GMI and PMI diffeomorphic‐based demons algorithms for aligning PET and CT Images

    Science.gov (United States)

    Yang, Juan; Zhang, You; Yin, Yong

    2015-01-01

    Fusion of anatomic information in computed tomography (CT) and functional information in F18‐FDG positron emission tomography (PET) is crucial for accurate differentiation of tumor from benign masses, designing radiotherapy treatment plan and staging of cancer. Although current PET and CT images can be acquired from combined F18‐FDG PET/CT scanner, the two acquisitions are scanned separately and take a long time, which may induce potential positional errors in global and local caused by respiratory motion or organ peristalsis. So registration (alignment) of whole‐body PET and CT images is a prerequisite for their meaningful fusion. The purpose of this study was to assess the performance of two multimodal registration algorithms for aligning PET and CT images. The proposed gradient of mutual information (GMI)‐based demons algorithm, which incorporated the GMI between two images as an external force to facilitate the alignment, was compared with the point‐wise mutual information (PMI) diffeomorphic‐based demons algorithm whose external force was modified by replacing the image intensity difference in diffeomorphic demons algorithm with the PMI to make it appropriate for multimodal image registration. Eight patients with esophageal cancer(s) were enrolled in this IRB‐approved study. Whole‐body PET and CT images were acquired from a combined F18‐FDG PET/CT scanner for each patient. The modified Hausdorff distance (dMH) was used to evaluate the registration accuracy of the two algorithms. Of all patients, the mean values and standard deviations (SDs) of dMH were 6.65 (± 1.90) voxels and 6.01 (± 1.90) after the GMI‐based demons and the PMI diffeomorphic‐based demons registration algorithms respectively. Preliminary results on oncological patients showed that the respiratory motion and organ peristalsis in PET/CT esophageal images could not be neglected, although a combined F18‐FDG PET/CT scanner was used for image acquisition. The PMI

  15. BFL: a node and edge betweenness based fast layout algorithm for large scale networks

    Science.gov (United States)

    Hashimoto, Tatsunori B; Nagasaki, Masao; Kojima, Kaname; Miyano, Satoru

    2009-01-01

    Background Network visualization would serve as a useful first step for analysis. However, current graph layout algorithms for biological pathways are insensitive to biologically important information, e.g. subcellular localization, biological node and graph attributes, or/and not available for large scale networks, e.g. more than 10000 elements. Results To overcome these problems, we propose the use of a biologically important graph metric, betweenness, a measure of network flow. This metric is highly correlated with many biological phenomena such as lethality and clusters. We devise a new fast parallel algorithm calculating betweenness to minimize the preprocessing cost. Using this metric, we also invent a node and edge betweenness based fast layout algorithm (BFL). BFL places the high-betweenness nodes to optimal positions and allows the low-betweenness nodes to reach suboptimal positions. Furthermore, BFL reduces the runtime by combining a sequential insertion algorim with betweenness. For a graph with n nodes, this approach reduces the expected runtime of the algorithm to O(n2) when considering edge crossings, and to O(n log n) when considering only density and edge lengths. Conclusion Our BFL algorithm is compared against fast graph layout algorithms and approaches requiring intensive optimizations. For gene networks, we show that our algorithm is faster than all layout algorithms tested while providing readability on par with intensive optimization algorithms. We achieve a 1.4 second runtime for a graph with 4000 nodes and 12000 edges on a standard desktop computer. PMID:19146673

  16. Higher-order force gradient symplectic algorithms

    Science.gov (United States)

    Chin, Siu A.; Kidwell, Donald W.

    2000-12-01

    We show that a recently discovered fourth order symplectic algorithm, which requires one evaluation of force gradient in addition to three evaluations of the force, when iterated to higher order, yielded algorithms that are far superior to similarly iterated higher order algorithms based on the standard Forest-Ruth algorithm. We gauge the accuracy of each algorithm by comparing the step-size independent error functions associated with energy conservation and the rotation of the Laplace-Runge-Lenz vector when solving a highly eccentric Kepler problem. For orders 6, 8, 10, and 12, the new algorithms are approximately a factor of 103, 104, 104, and 105 better.

  17. A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data

    International Nuclear Information System (INIS)

    Wan, Z.; Li, Z.L.

    1997-01-01

    The authors have developed a physics-based land-surface temperature (LST) algorithm for simultaneously retrieving surface band-averaged emissivities and temperatures from day/night pairs of MODIS (Moderate Resolution Imaging Spectroradiometer) data in seven thermal infrared bands. The set of 14 nonlinear equations in the algorithm is solved with the statistical regression method and the least-squares fit method. This new LST algorithm was tested with simulated MODIS data for 80 sets of band-averaged emissivities calculated from published spectral data of terrestrial materials in wide ranges of atmospheric and surface temperature conditions. Comprehensive sensitivity and error analysis has been made to evaluate the performance of the new LST algorithm and its dependence on variations in surface emissivity and temperature, upon atmospheric conditions, as well as the noise-equivalent temperature difference (NEΔT) and calibration accuracy specifications of the MODIS instrument. In cases with a systematic calibration error of 0.5%, the standard deviations of errors in retrieved surface daytime and nighttime temperatures fall between 0.4--0.5 K over a wide range of surface temperatures for mid-latitude summer conditions. The standard deviations of errors in retrieved emissivities in bands 31 and 32 (in the 10--12.5 microm IR spectral window region) are 0.009, and the maximum error in retrieved LST values falls between 2--3 K

  18. Multi-objective mixture-based iterated density estimation evolutionary algorithms

    NARCIS (Netherlands)

    Thierens, D.; Bosman, P.A.N.

    2001-01-01

    We propose an algorithm for multi-objective optimization using a mixture-based iterated density estimation evolutionary algorithm (MIDEA). The MIDEA algorithm is a prob- abilistic model building evolutionary algo- rithm that constructs at each generation a mixture of factorized probability

  19. Vibration-Based Damage Detection in Beams by Cooperative Coevolutionary Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Kittipong Boonlong

    2014-03-01

    Full Text Available Vibration-based damage detection, a nondestructive method, is based on the fact that vibration characteristics such as natural frequencies and mode shapes of structures are changed when the damage happens. This paper presents cooperative coevolutionary genetic algorithm (CCGA, which is capable for an optimization problem with a large number of decision variables, as the optimizer for the vibration-based damage detection in beams. In the CCGA, a minimized objective function is a numerical indicator of differences between vibration characteristics of the actual damage and those of the anticipated damage. The damage detection in a uniform cross-section cantilever beam, a uniform strength cantilever beam, and a uniform cross-section simply supported beam is used as the test problems. Random noise in the vibration characteristics is also considered in the damage detection. In the simulation analysis, the CCGA provides the superior solutions to those that use standard genetic algorithms presented in previous works, although it uses less numbers of the generated solutions in solution search. The simulation results reveal that the CCGA can efficiently identify the occurred damage in beams for all test problems including the damage detection in a beam with a large number of divided elements such as 300 elements.

  20. A Novel Quad Harmony Search Algorithm for Grid-Based Path Finding

    Directory of Open Access Journals (Sweden)

    Saso Koceski

    2014-09-01

    Full Text Available A novel approach to the problem of grid-based path finding has been introduced. The method is a block-based search algorithm, founded on the bases of two algorithms, namely the quad-tree algorithm, which offered a great opportunity for decreasing the time needed to compute the solution, and the harmony search (HS algorithm, a meta-heuristic algorithm used to obtain the optimal solution. This quad HS algorithm uses the quad-tree decomposition of free space in the grid to mark the free areas and treat them as a single node, which greatly improves the execution. The results of the quad HS algorithm have been compared to other meta-heuristic algorithms, i.e., ant colony, genetic algorithm, particle swarm optimization and simulated annealing, and it was proved to obtain the best results in terms of time and giving the optimal path.

  1. Text Clustering Algorithm Based on Random Cluster Core

    Directory of Open Access Journals (Sweden)

    Huang Long-Jun

    2016-01-01

    Full Text Available Nowadays clustering has become a popular text mining algorithm, but the huge data can put forward higher requirements for the accuracy and performance of text mining. In view of the performance bottleneck of traditional text clustering algorithm, this paper proposes a text clustering algorithm with random features. This is a kind of clustering algorithm based on text density, at the same time using the neighboring heuristic rules, the concept of random cluster is introduced, which effectively reduces the complexity of the distance calculation.

  2. Agent-based Algorithm for Spatial Distribution of Objects

    KAUST Repository

    Collier, Nathan

    2012-06-02

    In this paper we present an agent-based algorithm for the spatial distribution of objects. The algorithm is a generalization of the bubble mesh algorithm, initially created for the point insertion stage of the meshing process of the finite element method. The bubble mesh algorithm treats objects in space as bubbles, which repel and attract each other. The dynamics of each bubble are approximated by solving a series of ordinary differential equations. We present numerical results for a meshing application as well as a graph visualization application.

  3. NLSE: Parameter-Based Inversion Algorithm

    Science.gov (United States)

    Sabbagh, Harold A.; Murphy, R. Kim; Sabbagh, Elias H.; Aldrin, John C.; Knopp, Jeremy S.

    Chapter 11 introduced us to the notion of an inverse problem and gave us some examples of the value of this idea to the solution of realistic industrial problems. The basic inversion algorithm described in Chap. 11 was based upon the Gauss-Newton theory of nonlinear least-squares estimation and is called NLSE in this book. In this chapter we will develop the mathematical background of this theory more fully, because this algorithm will be the foundation of inverse methods and their applications during the remainder of this book. We hope, thereby, to introduce the reader to the application of sophisticated mathematical concepts to engineering practice without introducing excessive mathematical sophistication.

  4. Star point centroid algorithm based on background forecast

    Science.gov (United States)

    Wang, Jin; Zhao, Rujin; Zhu, Nan

    2014-09-01

    The calculation of star point centroid is a key step of improving star tracker measuring error. A star map photoed by APS detector includes several noises which have a great impact on veracity of calculation of star point centroid. Through analysis of characteristic of star map noise, an algorithm of calculation of star point centroid based on background forecast is presented in this paper. The experiment proves the validity of the algorithm. Comparing with classic algorithm, this algorithm not only improves veracity of calculation of star point centroid, but also does not need calibration data memory. This algorithm is applied successfully in a certain star tracker.

  5. Optimization, evaluation, and comparison of standard algorithms for image reconstruction with the VIP-PET.

    Science.gov (United States)

    Mikhaylova, E; Kolstein, M; De Lorenzo, G; Chmeissani, M

    2014-07-01

    A novel positron emission tomography (PET) scanner design based on a room-temperature pixelated CdTe solid-state detector is being developed within the framework of the Voxel Imaging PET (VIP) Pathfinder project [1]. The simulation results show a great potential of the VIP to produce high-resolution images even in extremely challenging conditions such as the screening of a human head [2]. With unprecedented high channel density (450 channels/cm 3 ) image reconstruction is a challenge. Therefore optimization is needed to find the best algorithm in order to exploit correctly the promising detector potential. The following reconstruction algorithms are evaluated: 2-D Filtered Backprojection (FBP), Ordered Subset Expectation Maximization (OSEM), List-Mode OSEM (LM-OSEM), and the Origin Ensemble (OE) algorithm. The evaluation is based on the comparison of a true image phantom with a set of reconstructed images obtained by each algorithm. This is achieved by calculation of image quality merit parameters such as the bias, the variance and the mean square error (MSE). A systematic optimization of each algorithm is performed by varying the reconstruction parameters, such as the cutoff frequency of the noise filters and the number of iterations. The region of interest (ROI) analysis of the reconstructed phantom is also performed for each algorithm and the results are compared. Additionally, the performance of the image reconstruction methods is compared by calculating the modulation transfer function (MTF). The reconstruction time is also taken into account to choose the optimal algorithm. The analysis is based on GAMOS [3] simulation including the expected CdTe and electronic specifics.

  6. Improved Savitzky-Golay-method-based fluorescence subtraction algorithm for rapid recovery of Raman spectra.

    Science.gov (United States)

    Chen, Kun; Zhang, Hongyuan; Wei, Haoyun; Li, Yan

    2014-08-20

    In this paper, we propose an improved subtraction algorithm for rapid recovery of Raman spectra that can substantially reduce the computation time. This algorithm is based on an improved Savitzky-Golay (SG) iterative smoothing method, which involves two key novel approaches: (a) the use of the Gauss-Seidel method and (b) the introduction of a relaxation factor into the iterative procedure. By applying a novel successive relaxation (SG-SR) iterative method to the relaxation factor, additional improvement in the convergence speed over the standard Savitzky-Golay procedure is realized. The proposed improved algorithm (the RIA-SG-SR algorithm), which uses SG-SR-based iteration instead of Savitzky-Golay iteration, has been optimized and validated with a mathematically simulated Raman spectrum, as well as experimentally measured Raman spectra from non-biological and biological samples. The method results in a significant reduction in computing cost while yielding consistent rejection of fluorescence and noise for spectra with low signal-to-fluorescence ratios and varied baselines. In the simulation, RIA-SG-SR achieved 1 order of magnitude improvement in iteration number and 2 orders of magnitude improvement in computation time compared with the range-independent background-subtraction algorithm (RIA). Furthermore the computation time of the experimentally measured raw Raman spectrum processing from skin tissue decreased from 6.72 to 0.094 s. In general, the processing of the SG-SR method can be conducted within dozens of milliseconds, which can provide a real-time procedure in practical situations.

  7. Research on compressive sensing reconstruction algorithm based on total variation model

    Science.gov (United States)

    Gao, Yu-xuan; Sun, Huayan; Zhang, Tinghua; Du, Lin

    2017-12-01

    Compressed sensing for breakthrough Nyquist sampling theorem provides a strong theoretical , making compressive sampling for image signals be carried out simultaneously. In traditional imaging procedures using compressed sensing theory, not only can it reduces the storage space, but also can reduce the demand for detector resolution greatly. Using the sparsity of image signal, by solving the mathematical model of inverse reconfiguration, realize the super-resolution imaging. Reconstruction algorithm is the most critical part of compression perception, to a large extent determine the accuracy of the reconstruction of the image.The reconstruction algorithm based on the total variation (TV) model is more suitable for the compression reconstruction of the two-dimensional image, and the better edge information can be obtained. In order to verify the performance of the algorithm, Simulation Analysis the reconstruction result in different coding mode of the reconstruction algorithm based on the TV reconstruction algorithm. The reconstruction effect of the reconfigurable algorithm based on TV based on the different coding methods is analyzed to verify the stability of the algorithm. This paper compares and analyzes the typical reconstruction algorithm in the same coding mode. On the basis of the minimum total variation algorithm, the Augmented Lagrangian function term is added and the optimal value is solved by the alternating direction method.Experimental results show that the reconstruction algorithm is compared with the traditional classical algorithm based on TV has great advantages, under the low measurement rate can be quickly and accurately recovers target image.

  8. Parallel image encryption algorithm based on discretized chaotic map

    International Nuclear Information System (INIS)

    Zhou Qing; Wong Kwokwo; Liao Xiaofeng; Xiang Tao; Hu Yue

    2008-01-01

    Recently, a variety of chaos-based algorithms were proposed for image encryption. Nevertheless, none of them works efficiently in parallel computing environment. In this paper, we propose a framework for parallel image encryption. Based on this framework, a new algorithm is designed using the discretized Kolmogorov flow map. It fulfills all the requirements for a parallel image encryption algorithm. Moreover, it is secure and fast. These properties make it a good choice for image encryption on parallel computing platforms

  9. A Modularity Degree Based Heuristic Community Detection Algorithm

    Directory of Open Access Journals (Sweden)

    Dongming Chen

    2014-01-01

    Full Text Available A community in a complex network can be seen as a subgroup of nodes that are densely connected. Discovery of community structures is a basic problem of research and can be used in various areas, such as biology, computer science, and sociology. Existing community detection methods usually try to expand or collapse the nodes partitions in order to optimize a given quality function. These optimization function based methods share the same drawback of inefficiency. Here we propose a heuristic algorithm (MDBH algorithm based on network structure which employs modularity degree as a measure function. Experiments on both synthetic benchmarks and real-world networks show that our algorithm gives competitive accuracy with previous modularity optimization methods, even though it has less computational complexity. Furthermore, due to the use of modularity degree, our algorithm naturally improves the resolution limit in community detection.

  10. An Innovative Thinking-Based Intelligent Information Fusion Algorithm

    Directory of Open Access Journals (Sweden)

    Huimin Lu

    2013-01-01

    Full Text Available This study proposes an intelligent algorithm that can realize information fusion in reference to the relative research achievements in brain cognitive theory and innovative computation. This algorithm treats knowledge as core and information fusion as a knowledge-based innovative thinking process. Furthermore, the five key parts of this algorithm including information sense and perception, memory storage, divergent thinking, convergent thinking, and evaluation system are simulated and modeled. This algorithm fully develops innovative thinking skills of knowledge in information fusion and is a try to converse the abstract conception of brain cognitive science to specific and operable research routes and strategies. Furthermore, the influences of each parameter of this algorithm on algorithm performance are analyzed and compared with those of classical intelligent algorithms trough test. Test results suggest that the algorithm proposed in this study can obtain the optimum problem solution by less target evaluation times, improve optimization effectiveness, and achieve the effective fusion of information.

  11. A new chest compression depth feedback algorithm for high-quality CPR based on smartphone.

    Science.gov (United States)

    Song, Yeongtak; Oh, Jaehoon; Chee, Youngjoon

    2015-01-01

    Although many smartphone application (app) programs provide education and guidance for basic life support, they do not commonly provide feedback on the chest compression depth (CCD) and rate. The validation of its accuracy has not been reported to date. This study was a feasibility assessment of use of the smartphone as a CCD feedback device. In this study, we proposed the concept of a new real-time CCD estimation algorithm using a smartphone and evaluated the accuracy of the algorithm. Using the double integration of the acceleration signal, which was obtained from the accelerometer in the smartphone, we estimated the CCD in real time. Based on its periodicity, we removed the bias error from the accelerometer. To evaluate this instrument's accuracy, we used a potentiometer as the reference depth measurement. The evaluation experiments included three levels of CCD (insufficient, adequate, and excessive) and four types of grasping orientations with various compression directions. We used the difference between the reference measurement and the estimated depth as the error. The error was calculated for each compression. When chest compressions were performed with adequate depth for the patient who was lying on a flat floor, the mean (standard deviation) of the errors was 1.43 (1.00) mm. When the patient was lying on an oblique floor, the mean (standard deviation) of the errors was 3.13 (1.88) mm. The error of the CCD estimation was tolerable for the algorithm to be used in the smartphone-based CCD feedback app to compress more than 51 mm, which is the 2010 American Heart Association guideline.

  12. Image segmentation algorithm based on T-junctions cues

    Science.gov (United States)

    Qian, Yanyu; Cao, Fengyun; Wang, Lu; Yang, Xuejie

    2016-03-01

    To improve the over-segmentation and over-merge phenomenon of single image segmentation algorithm,a novel approach of combing Graph-Based algorithm and T-junctions cues is proposed in this paper. First, a method by L0 gradient minimization is applied to the smoothing of the target image eliminate artifacts caused by noise and texture detail; Then, the initial over-segmentation result of the smoothing image using the graph-based algorithm; Finally, the final results via a region fusion strategy by t-junction cues. Experimental results on a variety of images verify the new approach's efficiency in eliminating artifacts caused by noise,segmentation accuracy and time complexity has been significantly improved.

  13. Multiple-algorithm parallel fusion of infrared polarization and intensity images based on algorithmic complementarity and synergy

    Science.gov (United States)

    Zhang, Lei; Yang, Fengbao; Ji, Linna; Lv, Sheng

    2018-01-01

    Diverse image fusion methods perform differently. Each method has advantages and disadvantages compared with others. One notion is that the advantages of different image methods can be effectively combined. A multiple-algorithm parallel fusion method based on algorithmic complementarity and synergy is proposed. First, in view of the characteristics of the different algorithms and difference-features among images, an index vector-based feature-similarity is proposed to define the degree of complementarity and synergy. This proposed index vector is a reliable evidence indicator for algorithm selection. Second, the algorithms with a high degree of complementarity and synergy are selected. Then, the different degrees of various features and infrared intensity images are used as the initial weights for the nonnegative matrix factorization (NMF). This avoids randomness of the NMF initialization parameter. Finally, the fused images of different algorithms are integrated using the NMF because of its excellent data fusing performance on independent features. Experimental results demonstrate that the visual effect and objective evaluation index of the fused images obtained using the proposed method are better than those obtained using traditional methods. The proposed method retains all the advantages that individual fusion algorithms have.

  14. Spectrum sensing algorithm based on autocorrelation energy in cognitive radio networks

    Science.gov (United States)

    Ren, Shengwei; Zhang, Li; Zhang, Shibing

    2016-10-01

    Cognitive radio networks have wide applications in the smart home, personal communications and other wireless communication. Spectrum sensing is the main challenge in cognitive radios. This paper proposes a new spectrum sensing algorithm which is based on the autocorrelation energy of signal received. By taking the autocorrelation energy of the received signal as the statistics of spectrum sensing, the effect of the channel noise on the detection performance is reduced. Simulation results show that the algorithm is effective and performs well in low signal-to-noise ratio. Compared with the maximum generalized eigenvalue detection (MGED) algorithm, function of covariance matrix based detection (FMD) algorithm and autocorrelation-based detection (AD) algorithm, the proposed algorithm has 2 11 dB advantage.

  15. Digital Image Encryption Algorithm Design Based on Genetic Hyperchaos

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2016-01-01

    Full Text Available In view of the present chaotic image encryption algorithm based on scrambling (diffusion is vulnerable to choosing plaintext (ciphertext attack in the process of pixel position scrambling, we put forward a image encryption algorithm based on genetic super chaotic system. The algorithm, by introducing clear feedback to the process of scrambling, makes the scrambling effect related to the initial chaos sequence and the clear text itself; it has realized the image features and the organic fusion of encryption algorithm. By introduction in the process of diffusion to encrypt plaintext feedback mechanism, it improves sensitivity of plaintext, algorithm selection plaintext, and ciphertext attack resistance. At the same time, it also makes full use of the characteristics of image information. Finally, experimental simulation and theoretical analysis show that our proposed algorithm can not only effectively resist plaintext (ciphertext attack, statistical attack, and information entropy attack but also effectively improve the efficiency of image encryption, which is a relatively secure and effective way of image communication.

  16. Betweenness-based algorithm for a partition scale-free graph

    International Nuclear Information System (INIS)

    Zhang Bai-Da; Wu Jun-Jie; Zhou Jing; Tang Yu-Hua

    2011-01-01

    Many real-world networks are found to be scale-free. However, graph partition technology, as a technology capable of parallel computing, performs poorly when scale-free graphs are provided. The reason for this is that traditional partitioning algorithms are designed for random networks and regular networks, rather than for scale-free networks. Multilevel graph-partitioning algorithms are currently considered to be the state of the art and are used extensively. In this paper, we analyse the reasons why traditional multilevel graph-partitioning algorithms perform poorly and present a new multilevel graph-partitioning paradigm, top down partitioning, which derives its name from the comparison with the traditional bottom—up partitioning. A new multilevel partitioning algorithm, named betweenness-based partitioning algorithm, is also presented as an implementation of top—down partitioning paradigm. An experimental evaluation of seven different real-world scale-free networks shows that the betweenness-based partitioning algorithm significantly outperforms the existing state-of-the-art approaches. (interdisciplinary physics and related areas of science and technology)

  17. Channel Access Algorithm Design for Automatic Identification System

    Institute of Scientific and Technical Information of China (English)

    Oh Sang-heon; Kim Seung-pum; Hwang Dong-hwan; Park Chan-sik; Lee Sang-jeong

    2003-01-01

    The Automatic Identification System (AIS) is a maritime equipment to allow an efficient exchange of the navigational data between ships and between ships and shore stations. It utilizes a channel access algorithm which can quickly resolve conflicts without any intervention from control stations. In this paper, a design of channel access algorithm for the AIS is presented. The input/output relationship of each access algorithm module is defined by drawing the state transition diagram, dataflow diagram and flowchart based on the technical standard, ITU-R M.1371. In order to verify the designed channel access algorithm, the simulator was developed using the C/C++ programming language. The results show that the proposed channel access algorithm can properly allocate transmission slots and meet the operational performance requirements specified by the technical standard.

  18. A high-performance spatial database based approach for pathology imaging algorithm evaluation.

    Science.gov (United States)

    Wang, Fusheng; Kong, Jun; Gao, Jingjing; Cooper, Lee A D; Kurc, Tahsin; Zhou, Zhengwen; Adler, David; Vergara-Niedermayr, Cristobal; Katigbak, Bryan; Brat, Daniel J; Saltz, Joel H

    2013-01-01

    Algorithm evaluation provides a means to characterize variability across image analysis algorithms, validate algorithms by comparison with human annotations, combine results from multiple algorithms for performance improvement, and facilitate algorithm sensitivity studies. The sizes of images and image analysis results in pathology image analysis pose significant challenges in algorithm evaluation. We present an efficient parallel spatial database approach to model, normalize, manage, and query large volumes of analytical image result data. This provides an efficient platform for algorithm evaluation. Our experiments with a set of brain tumor images demonstrate the application, scalability, and effectiveness of the platform. The paper describes an approach and platform for evaluation of pathology image analysis algorithms. The platform facilitates algorithm evaluation through a high-performance database built on the Pathology Analytic Imaging Standards (PAIS) data model. (1) Develop a framework to support algorithm evaluation by modeling and managing analytical results and human annotations from pathology images; (2) Create a robust data normalization tool for converting, validating, and fixing spatial data from algorithm or human annotations; (3) Develop a set of queries to support data sampling and result comparisons; (4) Achieve high performance computation capacity via a parallel data management infrastructure, parallel data loading and spatial indexing optimizations in this infrastructure. WE HAVE CONSIDERED TWO SCENARIOS FOR ALGORITHM EVALUATION: (1) algorithm comparison where multiple result sets from different methods are compared and consolidated; and (2) algorithm validation where algorithm results are compared with human annotations. We have developed a spatial normalization toolkit to validate and normalize spatial boundaries produced by image analysis algorithms or human annotations. The validated data were formatted based on the PAIS data model and

  19. Analog Circuit Design Optimization Based on Evolutionary Algorithms

    Directory of Open Access Journals (Sweden)

    Mansour Barari

    2014-01-01

    Full Text Available This paper investigates an evolutionary-based designing system for automated sizing of analog integrated circuits (ICs. Two evolutionary algorithms, genetic algorithm and PSO (Parswal particle swarm optimization algorithm, are proposed to design analog ICs with practical user-defined specifications. On the basis of the combination of HSPICE and MATLAB, the system links circuit performances, evaluated through specific electrical simulation, to the optimization system in the MATLAB environment, for the selected topology. The system has been tested by typical and hard-to-design cases, such as complex analog blocks with stringent design requirements. The results show that the design specifications are closely met. Comparisons with available methods like genetic algorithms show that the proposed algorithm offers important advantages in terms of optimization quality and robustness. Moreover, the algorithm is shown to be efficient.

  20. Controlling for Frailty in Pharmacoepidemiologic Studies of Older Adults: Validation of an Existing Medicare Claims-based Algorithm.

    Science.gov (United States)

    Cuthbertson, Carmen C; Kucharska-Newton, Anna; Faurot, Keturah R; Stürmer, Til; Jonsson Funk, Michele; Palta, Priya; Windham, B Gwen; Thai, Sydney; Lund, Jennifer L

    2018-07-01

    Frailty is a geriatric syndrome characterized by weakness and weight loss and is associated with adverse health outcomes. It is often an unmeasured confounder in pharmacoepidemiologic and comparative effectiveness studies using administrative claims data. Among the Atherosclerosis Risk in Communities (ARIC) Study Visit 5 participants (2011-2013; n = 3,146), we conducted a validation study to compare a Medicare claims-based algorithm of dependency in activities of daily living (or dependency) developed as a proxy for frailty with a reference standard measure of phenotypic frailty. We applied the algorithm to the ARIC participants' claims data to generate a predicted probability of dependency. Using the claims-based algorithm, we estimated the C-statistic for predicting phenotypic frailty. We further categorized participants by their predicted probability of dependency (<5%, 5% to <20%, and ≥20%) and estimated associations with difficulties in physical abilities, falls, and mortality. The claims-based algorithm showed good discrimination of phenotypic frailty (C-statistic = 0.71; 95% confidence interval [CI] = 0.67, 0.74). Participants classified with a high predicted probability of dependency (≥20%) had higher prevalence of falls and difficulty in physical ability, and a greater risk of 1-year all-cause mortality (hazard ratio = 5.7 [95% CI = 2.5, 13]) than participants classified with a low predicted probability (<5%). Sensitivity and specificity varied across predicted probability of dependency thresholds. The Medicare claims-based algorithm showed good discrimination of phenotypic frailty and high predictive ability with adverse health outcomes. This algorithm can be used in future Medicare claims analyses to reduce confounding by frailty and improve study validity.

  1. Improved dynamic-programming-based algorithms for segmentation of masses in mammograms

    International Nuclear Information System (INIS)

    Dominguez, Alfonso Rojas; Nandi, Asoke K.

    2007-01-01

    In this paper, two new boundary tracing algorithms for segmentation of breast masses are presented. These new algorithms are based on the dynamic programming-based boundary tracing (DPBT) algorithm proposed in Timp and Karssemeijer, [S. Timp and N. Karssemeijer, Med. Phys. 31, 958-971 (2004)] The DPBT algorithm contains two main steps: (1) construction of a local cost function, and (2) application of dynamic programming to the selection of the optimal boundary based on the local cost function. The validity of some assumptions used in the design of the DPBT algorithm is tested in this paper using a set of 349 mammographic images. Based on the results of the tests, modifications to the computation of the local cost function have been designed and have resulted in the Improved-DPBT (IDPBT) algorithm. A procedure for the dynamic selection of the strength of the components of the local cost function is presented that makes these parameters independent of the image dataset. Incorporation of this dynamic selection procedure has produced another new algorithm which we have called ID 2 PBT. Methods for the determination of some other parameters of the DPBT algorithm that were not covered in the original paper are presented as well. The merits of the new IDPBT and ID 2 PBT algorithms are demonstrated experimentally by comparison against the DPBT algorithm. The segmentation results are evaluated with base on the area overlap measure and other segmentation metrics. Both of the new algorithms outperform the original DPBT; the improvements in the algorithms performance are more noticeable around the values of the segmentation metrics corresponding to the highest segmentation accuracy, i.e., the new algorithms produce more optimally segmented regions, rather than a pronounced increase in the average quality of all the segmented regions

  2. Vascular diameter measurement in CT angiography: comparison of model-based iterative reconstruction and standard filtered back projection algorithms in vitro.

    Science.gov (United States)

    Suzuki, Shigeru; Machida, Haruhiko; Tanaka, Isao; Ueno, Eiko

    2013-03-01

    The purpose of this study was to evaluate the performance of model-based iterative reconstruction (MBIR) in measurement of the inner diameter of models of blood vessels and compare performance between MBIR and a standard filtered back projection (FBP) algorithm. Vascular models with wall thicknesses of 0.5, 1.0, and 1.5 mm were scanned with a 64-MDCT unit and densities of contrast material yielding 275, 396, and 542 HU. Images were reconstructed images by MBIR and FBP, and the mean diameter of each model vessel was measured by software automation. Twenty separate measurements were repeated for each vessel, and variance among the repeated measures was analyzed for determination of measurement error. For all nine model vessels, CT attenuation profiles were compared along a line passing through the luminal center on axial images reconstructed with FBP and MBIR, and the 10-90% edge rise distances at the boundary between the vascular wall and the lumen were evaluated. For images reconstructed with FBP, measurement errors were smallest for models with 1.5-mm wall thickness, except those filled with 275-HU contrast material, and errors grew as the density of the contrast material decreased. Measurement errors with MBIR were comparable to or less than those with FBP. In CT attenuation profiles of images reconstructed with MBIR, the 10-90% edge rise distances at the boundary between the lumen and vascular wall were relatively short for each vascular model compared with those of the profile curves of FBP images. MBIR is better than standard FBP for reducing reconstruction blur and improving the accuracy of diameter measurement at CT angiography.

  3. LSB Based Quantum Image Steganography Algorithm

    Science.gov (United States)

    Jiang, Nan; Zhao, Na; Wang, Luo

    2016-01-01

    Quantum steganography is the technique which hides a secret message into quantum covers such as quantum images. In this paper, two blind LSB steganography algorithms in the form of quantum circuits are proposed based on the novel enhanced quantum representation (NEQR) for quantum images. One algorithm is plain LSB which uses the message bits to substitute for the pixels' LSB directly. The other is block LSB which embeds a message bit into a number of pixels that belong to one image block. The extracting circuits can regain the secret message only according to the stego cover. Analysis and simulation-based experimental results demonstrate that the invisibility is good, and the balance between the capacity and the robustness can be adjusted according to the needs of applications.

  4. Human resource recommendation algorithm based on ensemble learning and Spark

    Science.gov (United States)

    Cong, Zihan; Zhang, Xingming; Wang, Haoxiang; Xu, Hongjie

    2017-08-01

    Aiming at the problem of “information overload” in the human resources industry, this paper proposes a human resource recommendation algorithm based on Ensemble Learning. The algorithm considers the characteristics and behaviours of both job seeker and job features in the real business circumstance. Firstly, the algorithm uses two ensemble learning methods-Bagging and Boosting. The outputs from both learning methods are then merged to form user interest model. Based on user interest model, job recommendation can be extracted for users. The algorithm is implemented as a parallelized recommendation system on Spark. A set of experiments have been done and analysed. The proposed algorithm achieves significant improvement in accuracy, recall rate and coverage, compared with recommendation algorithms such as UserCF and ItemCF.

  5. Secure image encryption algorithm design using a novel chaos based S-Box

    International Nuclear Information System (INIS)

    Çavuşoğlu, Ünal; Kaçar, Sezgin; Pehlivan, Ihsan; Zengin, Ahmet

    2017-01-01

    Highlights: • A new chaotic system is developed for creating S-Box and image encryption algorithm. • Chaos based random number generator is designed with the help of the new chaotic system. NIST tests are run on generated random numbers to verify randomness. • A new S-Box design algorithm is developed to create the chaos based S-Box to be utilized in encryption algorithm and performance tests are made. • The new developed S-Box based image encryption algorithm is introduced and image encryption application is carried out. • To show the quality and strong of the encryption process, security analysis are performed and compared with the AES and chaos algorithms. - Abstract: In this study, an encryption algorithm that uses chaos based S-BOX is developed for secure and speed image encryption. First of all, a new chaotic system is developed for creating S-Box and image encryption algorithm. Chaos based random number generator is designed with the help of the new chaotic system. Then, NIST tests are run on generated random numbers to verify randomness. A new S-Box design algorithm is developed to create the chaos based S-Box to be utilized in encryption algorithm and performance tests are made. As the next step, the new developed S-Box based image encryption algorithm is introduced in detail. Finally, image encryption application is carried out. To show the quality and strong of the encryption process, security analysis are performed. Proposed algorithm is compared with the AES and chaos algorithms. According to tests results, the proposed image encryption algorithm is secure and speed for image encryption application.

  6. Genetic algorithms with memory- and elitism-based immigrants in dynamic environments.

    Science.gov (United States)

    Yang, Shengxiang

    2008-01-01

    In recent years the genetic algorithm community has shown a growing interest in studying dynamic optimization problems. Several approaches have been devised. The random immigrants and memory schemes are two major ones. The random immigrants scheme addresses dynamic environments by maintaining the population diversity while the memory scheme aims to adapt genetic algorithms quickly to new environments by reusing historical information. This paper investigates a hybrid memory and random immigrants scheme, called memory-based immigrants, and a hybrid elitism and random immigrants scheme, called elitism-based immigrants, for genetic algorithms in dynamic environments. In these schemes, the best individual from memory or the elite from the previous generation is retrieved as the base to create immigrants into the population by mutation. This way, not only can diversity be maintained but it is done more efficiently to adapt genetic algorithms to the current environment. Based on a series of systematically constructed dynamic problems, experiments are carried out to compare genetic algorithms with the memory-based and elitism-based immigrants schemes against genetic algorithms with traditional memory and random immigrants schemes and a hybrid memory and multi-population scheme. The sensitivity analysis regarding some key parameters is also carried out. Experimental results show that the memory-based and elitism-based immigrants schemes efficiently improve the performance of genetic algorithms in dynamic environments.

  7. TaDb: A time-aware diffusion-based recommender algorithm

    Science.gov (United States)

    Li, Wen-Jun; Xu, Yuan-Yuan; Dong, Qiang; Zhou, Jun-Lin; Fu, Yan

    2015-02-01

    Traditional recommender algorithms usually employ the early and recent records indiscriminately, which overlooks the change of user interests over time. In this paper, we show that the interests of a user remain stable in a short-term interval and drift during a long-term period. Based on this observation, we propose a time-aware diffusion-based (TaDb) recommender algorithm, which assigns different temporal weights to the leading links existing before the target user's collection and the following links appearing after that in the diffusion process. Experiments on four real datasets, Netflix, MovieLens, FriendFeed and Delicious show that TaDb algorithm significantly improves the prediction accuracy compared with the algorithms not considering temporal effects.

  8. Incident Light Frequency-Based Image Defogging Algorithm

    Directory of Open Access Journals (Sweden)

    Wenbo Zhang

    2017-01-01

    Full Text Available To solve the color distortion problem produced by the dark channel prior algorithm, an improved method for calculating transmittance of all channels, respectively, was proposed in this paper. Based on the Beer-Lambert Law, the influence between the frequency of the incident light and the transmittance was analyzed, and the ratios between each channel’s transmittance were derived. Then, in order to increase efficiency, the input image was resized to a smaller size before acquiring the refined transmittance which will be resized to the same size of original image. Finally, all the transmittances were obtained with the help of the proportion between each color channel, and then they were used to restore the defogging image. Experiments suggest that the improved algorithm can produce a much more natural result image in comparison with original algorithm, which means the problem of high color saturation was eliminated. What is more, the improved algorithm speeds up by four to nine times compared to the original algorithm.

  9. General-purpose parallel algorithm based on CUDA for source pencils' deployment of large γ irradiator

    International Nuclear Information System (INIS)

    Yang Lei; Gong Xueyu; Wang Ling

    2013-01-01

    Combined with standard mathematical model for evaluating quality of deploying results, a new high-performance parallel algorithm for source pencils' deployment was obtained by using parallel plant growth simulation algorithm which was completely parallelized with CUDA execute model, and the corresponding code can run on GPU. Based on such work, several instances in various scales were used to test the new version of algorithm. The results show that, based on the advantage of old versions. the performance of new one is improved more than 500 times comparing with the CPU version, and also 30 times with the CPU plus GPU hybrid version. The computation time of new version is less than ten minutes for the irradiator of which the activity is less than 111 PBq. For a single GTX275 GPU, the maximum computing power of new version is no more than 167 PBq as well as the computation time is no more than 25 minutes, and for multiple GPUs, the power can be improved more. Overall, the new version of algorithm running on GPU can satisfy the requirement of source pencils' deployment of any domestic irradiator, and it is of high competitiveness. (authors)

  10. Amodified probabilistic genetic algorithm for the solution of complex constrained optimization problems

    OpenAIRE

    Vorozheikin, A.; Gonchar, T.; Panfilov, I.; Sopov, E.; Sopov, S.

    2009-01-01

    A new algorithm for the solution of complex constrained optimization problems based on the probabilistic genetic algorithm with optimal solution prediction is proposed. The efficiency investigation results in comparison with standard genetic algorithm are presented.

  11. A Turn-Projected State-Based Conflict Resolution Algorithm

    Science.gov (United States)

    Butler, Ricky W.; Lewis, Timothy A.

    2013-01-01

    State-based conflict detection and resolution (CD&R) algorithms detect conflicts and resolve them on the basis on current state information without the use of additional intent information from aircraft flight plans. Therefore, the prediction of the trajectory of aircraft is based solely upon the position and velocity vectors of the traffic aircraft. Most CD&R algorithms project the traffic state using only the current state vectors. However, the past state vectors can be used to make a better prediction of the future trajectory of the traffic aircraft. This paper explores the idea of using past state vectors to detect traffic turns and resolve conflicts caused by these turns using a non-linear projection of the traffic state. A new algorithm based on this idea is presented and validated using a fast-time simulator developed for this study.

  12. Solving SAT Problem Based on Hybrid Differential Evolution Algorithm

    Science.gov (United States)

    Liu, Kunqi; Zhang, Jingmin; Liu, Gang; Kang, Lishan

    Satisfiability (SAT) problem is an NP-complete problem. Based on the analysis about it, SAT problem is translated equally into an optimization problem on the minimum of objective function. A hybrid differential evolution algorithm is proposed to solve the Satisfiability problem. It makes full use of strong local search capacity of hill-climbing algorithm and strong global search capability of differential evolution algorithm, which makes up their disadvantages, improves the efficiency of algorithm and avoids the stagnation phenomenon. The experiment results show that the hybrid algorithm is efficient in solving SAT problem.

  13. Comparison of 30-2 Standard and Fast programs of Swedish Interactive Threshold Algorithm of Humphrey Field Analyzer for perimetry in patients with intracranial tumors.

    Science.gov (United States)

    Singh, Manav Deep; Jain, Kanika

    2017-11-01

    To find out whether 30-2 Swedish Interactive Threshold Algorithm (SITA) Fast is comparable to 30-2 SITA Standard as a tool for perimetry among the patients with intracranial tumors. This was a prospective cross-sectional study involving 80 patients aged ≥18 years with imaging proven intracranial tumors and visual acuity better than 20/60. The patients underwent multiple visual field examinations using the two algorithms till consistent and repeatable results were obtained. A total of 140 eyes of 80 patients were analyzed. Almost 60% of patients undergoing perimetry with SITA Standard required two or more sessions to obtain consistent results, whereas the same could be obtained in 81.42% with SITA Fast in the first session itself. Of 140 eyes, 70 eyes had recordable field defects and the rest had no defects as detected by either of the two algorithms. Mean deviation (MD) (P = 0.56), pattern standard deviation (PSD) (P = 0.22), visual field index (P = 0.83) and number of depressed points at P 0.5% on MD and PSD probability plots showed no statistically significant difference between two algorithms. Bland-Altman test showed that considerable variability existed between two algorithms. Perimetry performed by SITA Standard and SITA Fast algorithm of Humphrey Field Analyzer gives comparable results among the patients of intracranial tumors. Being more time efficient and with a shorter learning curve, SITA Fast my be recommended as a standard test for the purpose of perimetry among these patients.

  14. Development of a BWR loading pattern design system based on modified genetic algorithms and knowledge

    International Nuclear Information System (INIS)

    Martin-del-Campo, Cecilia; Francois, Juan Luis; Avendano, Linda; Gonzalez, Mario

    2004-01-01

    An optimization system based on Genetic Algorithms (GAs), in combination with expert knowledge coded in heuristics rules, was developed for the design of optimized boiling water reactor (BWR) fuel loading patterns. The system was coded in a computer program named Loading Pattern Optimization System based on Genetic Algorithms, in which the optimization code uses GAs to select candidate solutions, and the core simulator code CM-PRESTO to evaluate them. A multi-objective function was built to maximize the cycle energy length while satisfying power and reactivity constraints used as BWR design parameters. Heuristic rules were applied to satisfy standard fuel management recommendations as the Control Cell Core and Low Leakage loading strategies, and octant symmetry. To test the system performance, an optimized cycle was designed and compared against an actual operating cycle of Laguna Verde Nuclear Power Plant, Unit I

  15. Analysis and improvement of a chaos-based image encryption algorithm

    International Nuclear Information System (INIS)

    Xiao Di; Liao Xiaofeng; Wei Pengcheng

    2009-01-01

    The security of digital image attracts much attention recently. In Guan et al. [Guan Z, Huang F, Guan W. Chaos-based image encryption algorithm. Phys Lett A 2005; 346: 153-7.], a chaos-based image encryption algorithm has been proposed. In this paper, the cause of potential flaws in the original algorithm is analyzed in detail, and then the corresponding enhancement measures are proposed. Both theoretical analysis and computer simulation indicate that the improved algorithm can overcome these flaws and maintain all the merits of the original one.

  16. Improving performance of wavelet-based image denoising algorithm using complex diffusion process

    DEFF Research Database (Denmark)

    Nadernejad, Ehsan; Sharifzadeh, Sara; Korhonen, Jari

    2012-01-01

    using a variety of standard images and its performance has been compared against several de-noising algorithms known from the prior art. Experimental results show that the proposed algorithm preserves the edges better and in most cases, improves the measured visual quality of the denoised images......Image enhancement and de-noising is an essential pre-processing step in many image processing algorithms. In any image de-noising algorithm, the main concern is to keep the interesting structures of the image. Such interesting structures often correspond to the discontinuities (edges...... in comparison to the existing methods known from the literature. The improvement is obtained without excessive computational cost, and the algorithm works well on a wide range of different types of noise....

  17. Standardized evaluation framework for evaluating coronary artery stenosis detection, stenosis quantification and lumen segmentation algorithms in computed tomography angiography.

    Science.gov (United States)

    Kirişli, H A; Schaap, M; Metz, C T; Dharampal, A S; Meijboom, W B; Papadopoulou, S L; Dedic, A; Nieman, K; de Graaf, M A; Meijs, M F L; Cramer, M J; Broersen, A; Cetin, S; Eslami, A; Flórez-Valencia, L; Lor, K L; Matuszewski, B; Melki, I; Mohr, B; Oksüz, I; Shahzad, R; Wang, C; Kitslaar, P H; Unal, G; Katouzian, A; Örkisz, M; Chen, C M; Precioso, F; Najman, L; Masood, S; Ünay, D; van Vliet, L; Moreno, R; Goldenberg, R; Vuçini, E; Krestin, G P; Niessen, W J; van Walsum, T

    2013-12-01

    Though conventional coronary angiography (CCA) has been the standard of reference for diagnosing coronary artery disease in the past decades, computed tomography angiography (CTA) has rapidly emerged, and is nowadays widely used in clinical practice. Here, we introduce a standardized evaluation framework to reliably evaluate and compare the performance of the algorithms devised to detect and quantify the coronary artery stenoses, and to segment the coronary artery lumen in CTA data. The objective of this evaluation framework is to demonstrate the feasibility of dedicated algorithms to: (1) (semi-)automatically detect and quantify stenosis on CTA, in comparison with quantitative coronary angiography (QCA) and CTA consensus reading, and (2) (semi-)automatically segment the coronary lumen on CTA, in comparison with expert's manual annotation. A database consisting of 48 multicenter multivendor cardiac CTA datasets with corresponding reference standards are described and made available. The algorithms from 11 research groups were quantitatively evaluated and compared. The results show that (1) some of the current stenosis detection/quantification algorithms may be used for triage or as a second-reader in clinical practice, and that (2) automatic lumen segmentation is possible with a precision similar to that obtained by experts. The framework is open for new submissions through the website, at http://coronary.bigr.nl/stenoses/. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. An Agent-Based Co-Evolutionary Multi-Objective Algorithm for Portfolio Optimization

    Directory of Open Access Journals (Sweden)

    Rafał Dreżewski

    2017-08-01

    Full Text Available Algorithms based on the process of natural evolution are widely used to solve multi-objective optimization problems. In this paper we propose the agent-based co-evolutionary algorithm for multi-objective portfolio optimization. The proposed technique is compared experimentally to the genetic algorithm, co-evolutionary algorithm and a more classical approach—the trend-following algorithm. During the experiments historical data from the Warsaw Stock Exchange is used in order to assess the performance of the compared algorithms. Finally, we draw some conclusions from these experiments, showing the strong and weak points of all the techniques.

  19. An NMR log echo data de-noising method based on the wavelet packet threshold algorithm

    International Nuclear Information System (INIS)

    Meng, Xiangning; Xie, Ranhong; Li, Changxi; Hu, Falong; Li, Chaoliu; Zhou, Cancan

    2015-01-01

    To improve the de-noising effects of low signal-to-noise ratio (SNR) nuclear magnetic resonance (NMR) log echo data, this paper applies the wavelet packet threshold algorithm to the data. The principle of the algorithm is elaborated in detail. By comparing the properties of a series of wavelet packet bases and the relevance between them and the NMR log echo train signal, ‘sym7’ is found to be the optimal wavelet packet basis of the wavelet packet threshold algorithm to de-noise the NMR log echo train signal. A new method is presented to determine the optimal wavelet packet decomposition scale; this is within the scope of its maximum, using the modulus maxima and the Shannon entropy minimum standards to determine the global and local optimal wavelet packet decomposition scales, respectively. The results of applying the method to the simulated and actual NMR log echo data indicate that compared with the wavelet threshold algorithm, the wavelet packet threshold algorithm, which shows higher decomposition accuracy and better de-noising effect, is much more suitable for de-noising low SNR–NMR log echo data. (paper)

  20. Visual Perception Based Rate Control Algorithm for HEVC

    Science.gov (United States)

    Feng, Zeqi; Liu, PengYu; Jia, Kebin

    2018-01-01

    For HEVC, rate control is an indispensably important video coding technology to alleviate the contradiction between video quality and the limited encoding resources during video communication. However, the rate control benchmark algorithm of HEVC ignores subjective visual perception. For key focus regions, bit allocation of LCU is not ideal and subjective quality is unsatisfied. In this paper, a visual perception based rate control algorithm for HEVC is proposed. First bit allocation weight of LCU level is optimized based on the visual perception of luminance and motion to ameliorate video subjective quality. Then λ and QP are adjusted in combination with the bit allocation weight to improve rate distortion performance. Experimental results show that the proposed algorithm reduces average 0.5% BD-BR and maximum 1.09% BD-BR at no cost in bitrate accuracy compared with HEVC (HM15.0). The proposed algorithm devotes to improving video subjective quality under various video applications.

  1. A parallel simulated annealing algorithm for standard cell placement on a hypercube computer

    Science.gov (United States)

    Jones, Mark Howard

    1987-01-01

    A parallel version of a simulated annealing algorithm is presented which is targeted to run on a hypercube computer. A strategy for mapping the cells in a two dimensional area of a chip onto processors in an n-dimensional hypercube is proposed such that both small and large distance moves can be applied. Two types of moves are allowed: cell exchanges and cell displacements. The computation of the cost function in parallel among all the processors in the hypercube is described along with a distributed data structure that needs to be stored in the hypercube to support parallel cost evaluation. A novel tree broadcasting strategy is used extensively in the algorithm for updating cell locations in the parallel environment. Studies on the performance of the algorithm on example industrial circuits show that it is faster and gives better final placement results than the uniprocessor simulated annealing algorithms. An improved uniprocessor algorithm is proposed which is based on the improved results obtained from parallelization of the simulated annealing algorithm.

  2. A novel algorithm for segmentation of brain MR images

    International Nuclear Information System (INIS)

    Sial, M.Y.; Yu, L.; Chowdhry, B.S.; Rajput, A.Q.K.; Bhatti, M.I.

    2006-01-01

    Accurate and fully automatic segmentation of brain from magnetic resonance (MR) scans is a challenging problem that has received an enormous amount of . attention lately. Many researchers have applied various techniques however a standard fuzzy c-means algorithm has produced better results compared to other methods. In this paper, we present a modified fuzzy c-means (FCM) based algorithm for segmentation of brain MR images. Our algorithm is formulated by modifying the objective function of the standard FCM and uses a special spread method to get a smooth and slow varying bias field This method has the advantage that it can be applied at an early stage in an automated data analysis before a tissue model is available. The results on MRI images show that this method provides better results compared to standard FCM algorithms. (author)

  3. Cognitive radio resource allocation based on coupled chaotic genetic algorithm

    International Nuclear Information System (INIS)

    Zu Yun-Xiao; Zhou Jie; Zeng Chang-Chang

    2010-01-01

    A coupled chaotic genetic algorithm for cognitive radio resource allocation which is based on genetic algorithm and coupled Logistic map is proposed. A fitness function for cognitive radio resource allocation is provided. Simulations are conducted for cognitive radio resource allocation by using the coupled chaotic genetic algorithm, simple genetic algorithm and dynamic allocation algorithm respectively. The simulation results show that, compared with simple genetic and dynamic allocation algorithm, coupled chaotic genetic algorithm reduces the total transmission power and bit error rate in cognitive radio system, and has faster convergence speed

  4. Local Community Detection Algorithm Based on Minimal Cluster

    Directory of Open Access Journals (Sweden)

    Yong Zhou

    2016-01-01

    Full Text Available In order to discover the structure of local community more effectively, this paper puts forward a new local community detection algorithm based on minimal cluster. Most of the local community detection algorithms begin from one node. The agglomeration ability of a single node must be less than multiple nodes, so the beginning of the community extension of the algorithm in this paper is no longer from the initial node only but from a node cluster containing this initial node and nodes in the cluster are relatively densely connected with each other. The algorithm mainly includes two phases. First it detects the minimal cluster and then finds the local community extended from the minimal cluster. Experimental results show that the quality of the local community detected by our algorithm is much better than other algorithms no matter in real networks or in simulated networks.

  5. A high-performance spatial database based approach for pathology imaging algorithm evaluation

    Directory of Open Access Journals (Sweden)

    Fusheng Wang

    2013-01-01

    Full Text Available Background: Algorithm evaluation provides a means to characterize variability across image analysis algorithms, validate algorithms by comparison with human annotations, combine results from multiple algorithms for performance improvement, and facilitate algorithm sensitivity studies. The sizes of images and image analysis results in pathology image analysis pose significant challenges in algorithm evaluation. We present an efficient parallel spatial database approach to model, normalize, manage, and query large volumes of analytical image result data. This provides an efficient platform for algorithm evaluation. Our experiments with a set of brain tumor images demonstrate the application, scalability, and effectiveness of the platform. Context: The paper describes an approach and platform for evaluation of pathology image analysis algorithms. The platform facilitates algorithm evaluation through a high-performance database built on the Pathology Analytic Imaging Standards (PAIS data model. Aims: (1 Develop a framework to support algorithm evaluation by modeling and managing analytical results and human annotations from pathology images; (2 Create a robust data normalization tool for converting, validating, and fixing spatial data from algorithm or human annotations; (3 Develop a set of queries to support data sampling and result comparisons; (4 Achieve high performance computation capacity via a parallel data management infrastructure, parallel data loading and spatial indexing optimizations in this infrastructure. Materials and Methods: We have considered two scenarios for algorithm evaluation: (1 algorithm comparison where multiple result sets from different methods are compared and consolidated; and (2 algorithm validation where algorithm results are compared with human annotations. We have developed a spatial normalization toolkit to validate and normalize spatial boundaries produced by image analysis algorithms or human annotations. The

  6. Application of hybrid artificial fish swarm algorithm based on similar fragments in VRP

    Science.gov (United States)

    Che, Jinnuo; Zhou, Kang; Zhang, Xueyu; Tong, Xin; Hou, Lingyun; Jia, Shiyu; Zhen, Yiting

    2018-03-01

    Focused on the issue that the decrease of convergence speed and the precision of calculation at the end of the process in Artificial Fish Swarm Algorithm(AFSA) and instability of results, a hybrid AFSA based on similar fragments is proposed. Traditional AFSA enjoys a lot of obvious advantages in solving complex optimization problems like Vehicle Routing Problem(VRP). AFSA have a few limitations such as low convergence speed, low precision and instability of results. In this paper, two improvements are introduced. On the one hand, change the definition of the distance for artificial fish, as well as increase vision field of artificial fish, and the problem of speed and precision can be improved when solving VRP. On the other hand, mix artificial bee colony algorithm(ABC) into AFSA - initialize the population of artificial fish by the ABC, and it solves the problem of instability of results in some extend. The experiment results demonstrate that the optimal solution of the hybrid AFSA is easier to approach the optimal solution of the standard database than the other two algorithms. In conclusion, the hybrid algorithm can effectively solve the problem that instability of results and decrease of convergence speed and the precision of calculation at the end of the process.

  7. Multi-User Identification-Based Eye-Tracking Algorithm Using Position Estimation

    Directory of Open Access Journals (Sweden)

    Suk-Ju Kang

    2016-12-01

    Full Text Available This paper proposes a new multi-user eye-tracking algorithm using position estimation. Conventional eye-tracking algorithms are typically suitable only for a single user, and thereby cannot be used for a multi-user system. Even though they can be used to track the eyes of multiple users, their detection accuracy is low and they cannot identify multiple users individually. The proposed algorithm solves these problems and enhances the detection accuracy. Specifically, the proposed algorithm adopts a classifier to detect faces for the red, green, and blue (RGB and depth images. Then, it calculates features based on the histogram of the oriented gradient for the detected facial region to identify multiple users, and selects the template that best matches the users from a pre-determined face database. Finally, the proposed algorithm extracts the final eye positions based on anatomical proportions. Simulation results show that the proposed algorithm improved the average F1 score by up to 0.490, compared with benchmark algorithms.

  8. Algorithms of maximum likelihood data clustering with applications

    Science.gov (United States)

    Giada, Lorenzo; Marsili, Matteo

    2002-12-01

    We address the problem of data clustering by introducing an unsupervised, parameter-free approach based on maximum likelihood principle. Starting from the observation that data sets belonging to the same cluster share a common information, we construct an expression for the likelihood of any possible cluster structure. The likelihood in turn depends only on the Pearson's coefficient of the data. We discuss clustering algorithms that provide a fast and reliable approximation to maximum likelihood configurations. Compared to standard clustering methods, our approach has the advantages that (i) it is parameter free, (ii) the number of clusters need not be fixed in advance and (iii) the interpretation of the results is transparent. In order to test our approach and compare it with standard clustering algorithms, we analyze two very different data sets: time series of financial market returns and gene expression data. We find that different maximization algorithms produce similar cluster structures whereas the outcome of standard algorithms has a much wider variability.

  9. Performance comparison between total variation (TV)-based compressed sensing and statistical iterative reconstruction algorithms

    International Nuclear Information System (INIS)

    Tang Jie; Nett, Brian E; Chen Guanghong

    2009-01-01

    Of all available reconstruction methods, statistical iterative reconstruction algorithms appear particularly promising since they enable accurate physical noise modeling. The newly developed compressive sampling/compressed sensing (CS) algorithm has shown the potential to accurately reconstruct images from highly undersampled data. The CS algorithm can be implemented in the statistical reconstruction framework as well. In this study, we compared the performance of two standard statistical reconstruction algorithms (penalized weighted least squares and q-GGMRF) to the CS algorithm. In assessing the image quality using these iterative reconstructions, it is critical to utilize realistic background anatomy as the reconstruction results are object dependent. A cadaver head was scanned on a Varian Trilogy system at different dose levels. Several figures of merit including the relative root mean square error and a quality factor which accounts for the noise performance and the spatial resolution were introduced to objectively evaluate reconstruction performance. A comparison is presented between the three algorithms for a constant undersampling factor comparing different algorithms at several dose levels. To facilitate this comparison, the original CS method was formulated in the framework of the statistical image reconstruction algorithms. Important conclusions of the measurements from our studies are that (1) for realistic neuro-anatomy, over 100 projections are required to avoid streak artifacts in the reconstructed images even with CS reconstruction, (2) regardless of the algorithm employed, it is beneficial to distribute the total dose to more views as long as each view remains quantum noise limited and (3) the total variation-based CS method is not appropriate for very low dose levels because while it can mitigate streaking artifacts, the images exhibit patchy behavior, which is potentially harmful for medical diagnosis.

  10. Simulating Deformations of MR Brain Images for Validation of Atlas-based Segmentation and Registration Algorithms

    OpenAIRE

    Xue, Zhong; Shen, Dinggang; Karacali, Bilge; Stern, Joshua; Rottenberg, David; Davatzikos, Christos

    2006-01-01

    Simulated deformations and images can act as the gold standard for evaluating various template-based image segmentation and registration algorithms. Traditional deformable simulation methods, such as the use of analytic deformation fields or the displacement of landmarks followed by some form of interpolation, are often unable to construct rich (complex) and/or realistic deformations of anatomical organs. This paper presents new methods aiming to automatically simulate realistic inter- and in...

  11. Seismic active control by a heuristic-based algorithm

    International Nuclear Information System (INIS)

    Tang, Yu.

    1996-01-01

    A heuristic-based algorithm for seismic active control is generalized to permit consideration of the effects of control-structure interaction and actuator dynamics. Control force is computed at onetime step ahead before being applied to the structure. Therefore, the proposed control algorithm is free from the problem of time delay. A numerical example is presented to show the effectiveness of the proposed control algorithm. Also, two indices are introduced in the paper to assess the effectiveness and efficiency of control laws

  12. Aggregation Algorithms in Heterogeneous Tables

    Directory of Open Access Journals (Sweden)

    Titus Felix FURTUNA

    2006-01-01

    Full Text Available The heterogeneous tables are most used in the problem of aggregation. A solution for this problem is to standardize these tables of figures. In this paper, we proposed some methods of aggregation based on the hierarchical algorithms.

  13. Characterization and Comparison of the 10-2 SITA-Standard and Fast Algorithms

    Directory of Open Access Journals (Sweden)

    Yaniv Barkana

    2012-01-01

    Full Text Available Purpose: To compare the 10-2 SITA-standard and SITA-fast visual field programs in patients with glaucoma. Methods: We enrolled 26 patients with open angle glaucoma with involvement of at least one paracentral location on 24-2 SITA-standard field test. Each subject performed 10-2 SITA-standard and SITA-fast tests. Within 2 months this sequence of tests was repeated. Results: SITA-fast was 30% shorter than SITA-standard (5.5±1.1 vs 7.9±1.1 minutes, <0.001. Mean MD was statistically significantly higher for SITA-standard compared with SITA-fast at first visit (Δ=0.3 dB, =0.017 but not second visit. Inter-visit difference in MD or in number of depressed points was not significant for both programs. Bland-Altman analysis showed that clinically significant variations can exist in individual instances between the 2 programs and between repeat tests with the same program. Conclusions: The 10-2 SITA-fast algorithm is significantly shorter than SITA-standard. The two programs have similar long-term variability. Average same-visit between-program and same-program between-visit sensitivity results were similar for the study population, but clinically significant variability was observed for some individual test pairs. Group inter- and intra-program test results may be comparable, but in the management of the individual patient field change should be verified by repeat testing.

  14. A Parallel Encryption Algorithm Based on Piecewise Linear Chaotic Map

    Directory of Open Access Journals (Sweden)

    Xizhong Wang

    2013-01-01

    Full Text Available We introduce a parallel chaos-based encryption algorithm for taking advantage of multicore processors. The chaotic cryptosystem is generated by the piecewise linear chaotic map (PWLCM. The parallel algorithm is designed with a master/slave communication model with the Message Passing Interface (MPI. The algorithm is suitable not only for multicore processors but also for the single-processor architecture. The experimental results show that the chaos-based cryptosystem possesses good statistical properties. The parallel algorithm provides much better performance than the serial ones and would be useful to apply in encryption/decryption file with large size or multimedia.

  15. An Improved Image Encryption Algorithm Based on Cyclic Rotations and Multiple Chaotic Sequences: Application to Satellite Images

    Directory of Open Access Journals (Sweden)

    MADANI Mohammed

    2017-10-01

    Full Text Available In this paper, a new satellite image encryption algorithm based on the combination of multiple chaotic systems and a random cyclic rotation technique is proposed. Our contribution consists in implementing three different chaotic maps (logistic, sine, and standard combined to improve the security of satellite images. Besides enhancing the encryption, the proposed algorithm also focuses on advanced efficiency of the ciphered images. Compared with classical encryption schemes based on multiple chaotic maps and the Rubik's cube rotation, our approach has not only the same merits of chaos systems like high sensitivity to initial values, unpredictability, and pseudo-randomness, but also other advantages like a higher number of permutations, better performances in Peak Signal to Noise Ratio (PSNR and a Maximum Deviation (MD.

  16. The CARPEDIEM Algorithm: A Rule-Based System for Identifying Heart Failure Phenotype with a Precision Public Health Approach

    Directory of Open Access Journals (Sweden)

    Michela Franchini

    2018-01-01

    Full Text Available Modern medicine remains dependent on the accurate evaluation of a patient’s health state, recognizing that disease is a process that evolves over time and interacts with many factors unique to that patient. The CARPEDIEM project represents a concrete attempt to address these issues by developing reproducible algorithms to support the accuracy in detection of complex diseases. This study aims to establish and validate the CARPEDIEM approach and algorithm for identifying those patients presenting with or at risk of heart failure (HF by studying 153,393 subjects in Italy, based on patient information flow databases and is not reliant on the electronic health record to accomplish its goals. The resulting algorithm has been validated in a two-stage process, comparing predicted results with (1 HF diagnosis as identified by general practitioners (GPs among the reference cohort and (2 HF diagnosis as identified by cardiologists within a randomly sampled subpopulation of 389 patients. The sources of data used to detect HF cases are numerous and were standardized for this study. The accuracy and the predictive values of the algorithm with respect to the GPs and the clinical standards are highly consistent with those from previous studies. In particular, the algorithm is more efficient in detecting the more severe cases of HF according to the GPs’ validation (specificity increases according to the number of comorbidities and external validation (NYHA: II–IV; HF severity index: 2, 3. Positive and negative predictive values reveal that the CARPEDIEM algorithm is most consistent with clinical evaluation performed in the specialist setting, while it presents a greater ability to rule out false-negative HF cases within the GP practice, probably as a consequence of the different HF prevalence in the two different care settings. Further development includes analyzing the clinical features of false-positive and -negative predictions, to explore the natural

  17. Parallel GPU implementation of iterative PCA algorithms.

    Science.gov (United States)

    Andrecut, M

    2009-11-01

    Principal component analysis (PCA) is a key statistical technique for multivariate data analysis. For large data sets, the common approach to PCA computation is based on the standard NIPALS-PCA algorithm, which unfortunately suffers from loss of orthogonality, and therefore its applicability is usually limited to the estimation of the first few components. Here we present an algorithm based on Gram-Schmidt orthogonalization (called GS-PCA), which eliminates this shortcoming of NIPALS-PCA. Also, we discuss the GPU (Graphics Processing Unit) parallel implementation of both NIPALS-PCA and GS-PCA algorithms. The numerical results show that the GPU parallel optimized versions, based on CUBLAS (NVIDIA), are substantially faster (up to 12 times) than the CPU optimized versions based on CBLAS (GNU Scientific Library).

  18. Radioactivity nuclide identification based on BP and LM algorithm neural network

    International Nuclear Information System (INIS)

    Wang Jihong; Sun Jian; Wang Lianghou

    2012-01-01

    The paper provides the method which can identify radioactive nuclide based on the BP and LM algorithm neural network. Then, this paper compares the above-mentioned method with FR algorithm. Through the result of the Matlab simulation, the method of radioactivity nuclide identification based on the BP and LM algorithm neural network is superior to the FR algorithm. With the better effect and the higher accuracy, it will be the best choice. (authors)

  19. A new edge detection algorithm based on Canny idea

    Science.gov (United States)

    Feng, Yingke; Zhang, Jinmin; Wang, Siming

    2017-10-01

    The traditional Canny algorithm has poor self-adaptability threshold, and it is more sensitive to noise. In order to overcome these drawbacks, this paper proposed a new edge detection method based on Canny algorithm. Firstly, the media filtering and filtering based on the method of Euclidean distance are adopted to process it; secondly using the Frei-chen algorithm to calculate gradient amplitude; finally, using the Otsu algorithm to calculate partial gradient amplitude operation to get images of thresholds value, then find the average of all thresholds that had been calculated, half of the average is high threshold value, and the half of the high threshold value is low threshold value. Experiment results show that this new method can effectively suppress noise disturbance, keep the edge information, and also improve the edge detection accuracy.

  20. A flexible fuzzy regression algorithm for forecasting oil consumption estimation

    International Nuclear Information System (INIS)

    Azadeh, A.; Khakestani, M.; Saberi, M.

    2009-01-01

    Oil consumption plays a vital role in socio-economic development of most countries. This study presents a flexible fuzzy regression algorithm for forecasting oil consumption based on standard economic indicators. The standard indicators are annual population, cost of crude oil import, gross domestic production (GDP) and annual oil production in the last period. The proposed algorithm uses analysis of variance (ANOVA) to select either fuzzy regression or conventional regression for future demand estimation. The significance of the proposed algorithm is three fold. First, it is flexible and identifies the best model based on the results of ANOVA and minimum absolute percentage error (MAPE), whereas previous studies consider the best fitted fuzzy regression model based on MAPE or other relative error results. Second, the proposed model may identify conventional regression as the best model for future oil consumption forecasting because of its dynamic structure, whereas previous studies assume that fuzzy regression always provide the best solutions and estimation. Third, it utilizes the most standard independent variables for the regression models. To show the applicability and superiority of the proposed flexible fuzzy regression algorithm the data for oil consumption in Canada, United States, Japan and Australia from 1990 to 2005 are used. The results show that the flexible algorithm provides accurate solution for oil consumption estimation problem. The algorithm may be used by policy makers to accurately foresee the behavior of oil consumption in various regions.

  1. A Coupled User Clustering Algorithm Based on Mixed Data for Web-Based Learning Systems

    Directory of Open Access Journals (Sweden)

    Ke Niu

    2015-01-01

    Full Text Available In traditional Web-based learning systems, due to insufficient learning behaviors analysis and personalized study guides, a few user clustering algorithms are introduced. While analyzing the behaviors with these algorithms, researchers generally focus on continuous data but easily neglect discrete data, each of which is generated from online learning actions. Moreover, there are implicit coupled interactions among the data but are frequently ignored in the introduced algorithms. Therefore, a mass of significant information which can positively affect clustering accuracy is neglected. To solve the above issues, we proposed a coupled user clustering algorithm for Wed-based learning systems by taking into account both discrete and continuous data, as well as intracoupled and intercoupled interactions of the data. The experiment result in this paper demonstrates the outperformance of the proposed algorithm.

  2. Automation of Algorithmic Tasks for Virtual Laboratories Based on Automata Theory

    Directory of Open Access Journals (Sweden)

    Evgeniy A. Efimchik

    2016-03-01

    Full Text Available In the work a description of an automata model of standard algorithm for constructing a correct solution of algorithmic tests is given. The described model allows a formal determination of the variant complexity of algorithmic test and serves as a basis for determining the complexity functions, including the collision concept – the situation of uncertainty, when a choice must be made upon fulfilling the task between the alternatives with various priorities. The influence of collisions on the automata model and its inner structure is described. The model and complexity functions are applied for virtual laboratories upon designing the algorithms of constructing variant with a predetermined complexity in real time and algorithms of the estimation procedures of students’ solution with respect to collisions. The results of the work are applied to the development of virtual laboratories, which are used in the practical part of massive online course on graph theory.

  3. Computer-Based Algorithmic Determination of Muscle Movement Onset Using M-Mode Ultrasonography

    Science.gov (United States)

    2017-05-01

    statistical analysis. Given the large number of MO algorithms, poorly performing algorithms were systematically eliminated from further evaluation. First...very large data sets (Kaufman and Rousseeuw 2005). The three algo- rithms with the closest proximity (i.e., highest similarity) to the gold-standard...but lowering the thresholds will likely increase the chances of premature onset detection. Additionally, although theFig. 4. Forest plot of mean

  4. Network-based recommendation algorithms: A review

    Science.gov (United States)

    Yu, Fei; Zeng, An; Gillard, Sébastien; Medo, Matúš

    2016-06-01

    Recommender systems are a vital tool that helps us to overcome the information overload problem. They are being used by most e-commerce web sites and attract the interest of a broad scientific community. A recommender system uses data on users' past preferences to choose new items that might be appreciated by a given individual user. While many approaches to recommendation exist, the approach based on a network representation of the input data has gained considerable attention in the past. We review here a broad range of network-based recommendation algorithms and for the first time compare their performance on three distinct real datasets. We present recommendation topics that go beyond the mere question of which algorithm to use-such as the possible influence of recommendation on the evolution of systems that use it-and finally discuss open research directions and challenges.

  5. The Robot Path Planning Based on Improved Artificial Fish Swarm Algorithm

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    2016-01-01

    Full Text Available Path planning is critical to the efficiency and fidelity of robot navigation. The solution of robot path planning is to seek a collision-free and the shortest path from the start node to target node. In this paper, we propose a new improved artificial fish swarm algorithm (IAFSA to process the mobile robot path planning problem in a real environment. In IAFSA, an attenuation function is introduced to improve the visual of standard AFSA and get the balance of global search and local search; also, an adaptive operator is introduced to enhance the adaptive ability of step. Besides, a concept of inertia weight factor is proposed in IAFSA inspired by PSO intelligence algorithm to improve the convergence rate and accuracy of IAFSA. Five unconstrained optimization test functions are given to illustrate the strong searching ability and ideal convergence of IAFSA. Finally, the ROS (robot operation system based experiment is carried out on a Pioneer 3-DX mobile robot; the experiment results also show the superiority of IAFSA.

  6. Trellises and Trellis-Based Decoding Algorithms for Linear Block Codes

    Science.gov (United States)

    Lin, Shu

    1998-01-01

    A code trellis is a graphical representation of a code, block or convolutional, in which every path represents a codeword (or a code sequence for a convolutional code). This representation makes it possible to implement Maximum Likelihood Decoding (MLD) of a code with reduced decoding complexity. The most well known trellis-based MLD algorithm is the Viterbi algorithm. The trellis representation was first introduced and used for convolutional codes [23]. This representation, together with the Viterbi decoding algorithm, has resulted in a wide range of applications of convolutional codes for error control in digital communications over the last two decades. There are two major reasons for this inactive period of research in this area. First, most coding theorists at that time believed that block codes did not have simple trellis structure like convolutional codes and maximum likelihood decoding of linear block codes using the Viterbi algorithm was practically impossible, except for very short block codes. Second, since almost all of the linear block codes are constructed algebraically or based on finite geometries, it was the belief of many coding theorists that algebraic decoding was the only way to decode these codes. These two reasons seriously hindered the development of efficient soft-decision decoding methods for linear block codes and their applications to error control in digital communications. This led to a general belief that block codes are inferior to convolutional codes and hence, that they were not useful. Chapter 2 gives a brief review of linear block codes. The goal is to provide the essential background material for the development of trellis structure and trellis-based decoding algorithms for linear block codes in the later chapters. Chapters 3 through 6 present the fundamental concepts, finite-state machine model, state space formulation, basic structural properties, state labeling, construction procedures, complexity, minimality, and

  7. Optimization of a Fuzzy-Logic-Control-Based MPPT Algorithm Using the Particle Swarm Optimization Technique

    Directory of Open Access Journals (Sweden)

    Po-Chen Cheng

    2015-06-01

    Full Text Available In this paper, an asymmetrical fuzzy-logic-control (FLC-based maximum power point tracking (MPPT algorithm for photovoltaic (PV systems is presented. Two membership function (MF design methodologies that can improve the effectiveness of the proposed asymmetrical FLC-based MPPT methods are then proposed. The first method can quickly determine the input MF setting values via the power–voltage (P–V curve of solar cells under standard test conditions (STC. The second method uses the particle swarm optimization (PSO technique to optimize the input MF setting values. Because the PSO approach must target and optimize a cost function, a cost function design methodology that meets the performance requirements of practical photovoltaic generation systems (PGSs is also proposed. According to the simulated and experimental results, the proposed asymmetrical FLC-based MPPT method has the highest fitness value, therefore, it can successfully address the tracking speed/tracking accuracy dilemma compared with the traditional perturb and observe (P&O and symmetrical FLC-based MPPT algorithms. Compared to the conventional FLC-based MPPT method, the obtained optimal asymmetrical FLC-based MPPT can improve the transient time and the MPPT tracking accuracy by 25.8% and 0.98% under STC, respectively.

  8. Teaching learning based optimization algorithm and its engineering applications

    CERN Document Server

    Rao, R Venkata

    2016-01-01

    Describing a new optimization algorithm, the “Teaching-Learning-Based Optimization (TLBO),” in a clear and lucid style, this book maximizes reader insights into how the TLBO algorithm can be used to solve continuous and discrete optimization problems involving single or multiple objectives. As the algorithm operates on the principle of teaching and learning, where teachers influence the quality of learners’ results, the elitist version of TLBO algorithm (ETLBO) is described along with applications of the TLBO algorithm in the fields of electrical engineering, mechanical design, thermal engineering, manufacturing engineering, civil engineering, structural engineering, computer engineering, electronics engineering, physics and biotechnology. The book offers a valuable resource for scientists, engineers and practitioners involved in the development and usage of advanced optimization algorithms.

  9. The Research and Application of SURF Algorithm Based on Feature Point Selection Algorithm

    Directory of Open Access Journals (Sweden)

    Zhang Fang Hu

    2014-04-01

    Full Text Available As the pixel information of depth image is derived from the distance information, when implementing SURF algorithm with KINECT sensor for static sign language recognition, there can be some mismatched pairs in palm area. This paper proposes a feature point selection algorithm, by filtering the SURF feature points step by step based on the number of feature points within adaptive radius r and the distance between the two points, it not only greatly improves the recognition rate, but also ensures the robustness under the environmental factors, such as skin color, illumination intensity, complex background, angle and scale changes. The experiment results show that the improved SURF algorithm can effectively improve the recognition rate, has a good robustness.

  10. Differential standard deviation of log-scale intensity based optical coherence tomography angiography.

    Science.gov (United States)

    Shi, Weisong; Gao, Wanrong; Chen, Chaoliang; Yang, Victor X D

    2017-12-01

    In this paper, a differential standard deviation of log-scale intensity (DSDLI) based optical coherence tomography angiography (OCTA) is presented for calculating microvascular images of human skin. The DSDLI algorithm calculates the variance in difference images of two consecutive log-scale intensity based structural images from the same position along depth direction to contrast blood flow. The en face microvascular images were then generated by calculating the standard deviation of the differential log-scale intensities within the specific depth range, resulting in an improvement in spatial resolution and SNR in microvascular images compared to speckle variance OCT and power intensity differential method. The performance of DSDLI was testified by both phantom and in vivo experiments. In in vivo experiments, a self-adaptive sub-pixel image registration algorithm was performed to remove the bulk motion noise, where 2D Fourier transform was utilized to generate new images with spatial interval equal to half of the distance between two pixels in both fast-scanning and depth directions. The SNRs of signals of flowing particles are improved by 7.3 dB and 6.8 dB on average in phantom and in vivo experiments, respectively, while the average spatial resolution of images of in vivo blood vessels is increased by 21%. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A Novel Multiobjective Evolutionary Algorithm Based on Regression Analysis

    Directory of Open Access Journals (Sweden)

    Zhiming Song

    2015-01-01

    Full Text Available As is known, the Pareto set of a continuous multiobjective optimization problem with m objective functions is a piecewise continuous (m-1-dimensional manifold in the decision space under some mild conditions. However, how to utilize the regularity to design multiobjective optimization algorithms has become the research focus. In this paper, based on this regularity, a model-based multiobjective evolutionary algorithm with regression analysis (MMEA-RA is put forward to solve continuous multiobjective optimization problems with variable linkages. In the algorithm, the optimization problem is modelled as a promising area in the decision space by a probability distribution, and the centroid of the probability distribution is (m-1-dimensional piecewise continuous manifold. The least squares method is used to construct such a model. A selection strategy based on the nondominated sorting is used to choose the individuals to the next generation. The new algorithm is tested and compared with NSGA-II and RM-MEDA. The result shows that MMEA-RA outperforms RM-MEDA and NSGA-II on the test instances with variable linkages. At the same time, MMEA-RA has higher efficiency than the other two algorithms. A few shortcomings of MMEA-RA have also been identified and discussed in this paper.

  12. A cross-disciplinary introduction to quantum annealing-based algorithms

    Science.gov (United States)

    Venegas-Andraca, Salvador E.; Cruz-Santos, William; McGeoch, Catherine; Lanzagorta, Marco

    2018-04-01

    A central goal in quantum computing is the development of quantum hardware and quantum algorithms in order to analyse challenging scientific and engineering problems. Research in quantum computation involves contributions from both physics and computer science; hence this article presents a concise introduction to basic concepts from both fields that are used in annealing-based quantum computation, an alternative to the more familiar quantum gate model. We introduce some concepts from computer science required to define difficult computational problems and to realise the potential relevance of quantum algorithms to find novel solutions to those problems. We introduce the structure of quantum annealing-based algorithms as well as two examples of this kind of algorithms for solving instances of the max-SAT and Minimum Multicut problems. An overview of the quantum annealing systems manufactured by D-Wave Systems is also presented.

  13. New MPPT algorithm based on hybrid dynamical theory

    KAUST Repository

    Elmetennani, Shahrazed

    2014-11-01

    This paper presents a new maximum power point tracking algorithm based on the hybrid dynamical theory. A multiceli converter has been considered as an adaptation stage for the photovoltaic chain. The proposed algorithm is a hybrid automata switching between eight different operating modes, which has been validated by simulation tests under different working conditions. © 2014 IEEE.

  14. New MPPT algorithm based on hybrid dynamical theory

    KAUST Repository

    Elmetennani, Shahrazed; Laleg-Kirati, Taous-Meriem; Benmansour, K.; Boucherit, M. S.; Tadjine, M.

    2014-01-01

    This paper presents a new maximum power point tracking algorithm based on the hybrid dynamical theory. A multiceli converter has been considered as an adaptation stage for the photovoltaic chain. The proposed algorithm is a hybrid automata switching between eight different operating modes, which has been validated by simulation tests under different working conditions. © 2014 IEEE.

  15. Segment-based dose optimization using a genetic algorithm

    International Nuclear Information System (INIS)

    Cotrutz, Cristian; Xing Lei

    2003-01-01

    Intensity modulated radiation therapy (IMRT) inverse planning is conventionally done in two steps. Firstly, the intensity maps of the treatment beams are optimized using a dose optimization algorithm. Each of them is then decomposed into a number of segments using a leaf-sequencing algorithm for delivery. An alternative approach is to pre-assign a fixed number of field apertures and optimize directly the shapes and weights of the apertures. While the latter approach has the advantage of eliminating the leaf-sequencing step, the optimization of aperture shapes is less straightforward than that of beamlet-based optimization because of the complex dependence of the dose on the field shapes, and their weights. In this work we report a genetic algorithm for segment-based optimization. Different from a gradient iterative approach or simulated annealing, the algorithm finds the optimum solution from a population of candidate plans. In this technique, each solution is encoded using three chromosomes: one for the position of the left-bank leaves of each segment, the second for the position of the right-bank and the third for the weights of the segments defined by the first two chromosomes. The convergence towards the optimum is realized by crossover and mutation operators that ensure proper exchange of information between the three chromosomes of all the solutions in the population. The algorithm is applied to a phantom and a prostate case and the results are compared with those obtained using beamlet-based optimization. The main conclusion drawn from this study is that the genetic optimization of segment shapes and weights can produce highly conformal dose distribution. In addition, our study also confirms previous findings that fewer segments are generally needed to generate plans that are comparable with the plans obtained using beamlet-based optimization. Thus the technique may have useful applications in facilitating IMRT treatment planning

  16. Reproducibility of UAV-based earth surface topography based on structure-from-motion algorithms.

    Science.gov (United States)

    Clapuyt, François; Vanacker, Veerle; Van Oost, Kristof

    2014-05-01

    A representation of the earth surface at very high spatial resolution is crucial to accurately map small geomorphic landforms with high precision. Very high resolution digital surface models (DSM) can then be used to quantify changes in earth surface topography over time, based on differencing of DSMs taken at various moments in time. However, it is compulsory to have both high accuracy for each topographic representation and consistency between measurements over time, as DSM differencing automatically leads to error propagation. This study investigates the reproducibility of reconstructions of earth surface topography based on structure-from-motion (SFM) algorithms. To this end, we equipped an eight-propeller drone with a standard reflex camera. This equipment can easily be deployed in the field, as it is a lightweight, low-cost system in comparison with classic aerial photo surveys and terrestrial or airborne LiDAR scanning. Four sets of aerial photographs were created for one test field. The sets of airphotos differ in focal length, and viewing angles, i.e. nadir view and ground-level view. In addition, the importance of the accuracy of ground control points for the construction of a georeferenced point cloud was assessed using two different GPS devices with horizontal accuracy at resp. the sub-meter and sub-decimeter level. Airphoto datasets were processed with SFM algorithm and the resulting point clouds were georeferenced. Then, the surface representations were compared with each other to assess the reproducibility of the earth surface topography. Finally, consistency between independent datasets is discussed.

  17. An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems

    Directory of Open Access Journals (Sweden)

    Vivek Patel

    2012-08-01

    Full Text Available Nature inspired population based algorithms is a research field which simulates different natural phenomena to solve a wide range of problems. Researchers have proposed several algorithms considering different natural phenomena. Teaching-Learning-based optimization (TLBO is one of the recently proposed population based algorithm which simulates the teaching-learning process of the class room. This algorithm does not require any algorithm-specific control parameters. In this paper, elitism concept is introduced in the TLBO algorithm and its effect on the performance of the algorithm is investigated. The effects of common controlling parameters such as the population size and the number of generations on the performance of the algorithm are also investigated. The proposed algorithm is tested on 35 constrained benchmark functions with different characteristics and the performance of the algorithm is compared with that of other well known optimization algorithms. The proposed algorithm can be applied to various optimization problems of the industrial environment.

  18. Electron dose map inversion based on several algorithms

    International Nuclear Information System (INIS)

    Li Gui; Zheng Huaqing; Wu Yican; Fds Team

    2010-01-01

    The reconstruction to the electron dose map in radiation therapy was investigated by constructing the inversion model of electron dose map with different algorithms. The inversion model of electron dose map based on nonlinear programming was used, and this model was applied the penetration dose map to invert the total space one. The realization of this inversion model was by several inversion algorithms. The test results with seven samples show that except the NMinimize algorithm, which worked for just one sample, with great error,though,all the inversion algorithms could be realized to our inversion model rapidly and accurately. The Levenberg-Marquardt algorithm, having the greatest accuracy and speed, could be considered as the first choice in electron dose map inversion.Further tests show that more error would be created when the data close to the electron range was used (tail error). The tail error might be caused by the approximation of mean energy spectra, and this should be considered to improve the method. The time-saving and accurate algorithms could be used to achieve real-time dose map inversion. By selecting the best inversion algorithm, the clinical need in real-time dose verification can be satisfied. (authors)

  19. New calibration algorithms for dielectric-based microwave moisture sensors

    Science.gov (United States)

    New calibration algorithms for determining moisture content in granular and particulate materials from measurement of the dielectric properties at a single microwave frequency are proposed. The algorithms are based on identifying empirically correlations between the dielectric properties and the par...

  20. A Data Forward Stepwise Fitting Algorithm Based on Orthogonal Function System

    Directory of Open Access Journals (Sweden)

    Li Han-Ju

    2017-01-01

    Full Text Available Data fitting is the main method of functional data analysis, and it is widely used in the fields of economy, social science, engineering technology and so on. Least square method is the main method of data fitting, but the least square method is not convergent, no memory property, big fitting error and it is easy to over fitting. Based on the orthogonal trigonometric function system, this paper presents a data forward stepwise fitting algorithm. This algorithm takes forward stepwise fitting strategy, each time using the nearest base function to fit the residual error generated by the previous base function fitting, which makes the residual mean square error minimum. In this paper, we theoretically prove the convergence, the memory property and the fitting error diminishing character for the algorithm. Experimental results show that the proposed algorithm is effective, and the fitting performance is better than that of the least square method and the forward stepwise fitting algorithm based on the non-orthogonal function system.

  1. Automated Vectorization of Decision-Based Algorithms

    Science.gov (United States)

    James, Mark

    2006-01-01

    Virtually all existing vectorization algorithms are designed to only analyze the numeric properties of an algorithm and distribute those elements across multiple processors. This advances the state of the practice because it is the only known system, at the time of this reporting, that takes high-level statements and analyzes them for their decision properties and converts them to a form that allows them to automatically be executed in parallel. The software takes a high-level source program that describes a complex decision- based condition and rewrites it as a disjunctive set of component Boolean relations that can then be executed in parallel. This is important because parallel architectures are becoming more commonplace in conventional systems and they have always been present in NASA flight systems. This technology allows one to take existing condition-based code and automatically vectorize it so it naturally decomposes across parallel architectures.

  2. Convergence and Applications of a Gossip-Based Gauss-Newton Algorithm

    Science.gov (United States)

    Li, Xiao; Scaglione, Anna

    2013-11-01

    The Gauss-Newton algorithm is a popular and efficient centralized method for solving non-linear least squares problems. In this paper, we propose a multi-agent distributed version of this algorithm, named Gossip-based Gauss-Newton (GGN) algorithm, which can be applied in general problems with non-convex objectives. Furthermore, we analyze and present sufficient conditions for its convergence and show numerically that the GGN algorithm achieves performance comparable to the centralized algorithm, with graceful degradation in case of network failures. More importantly, the GGN algorithm provides significant performance gains compared to other distributed first order methods.

  3. Self-Adaptive Step Firefly Algorithm

    Directory of Open Access Journals (Sweden)

    Shuhao Yu

    2013-01-01

    Full Text Available In the standard firefly algorithm, each firefly has the same step settings and its values decrease from iteration to iteration. Therefore, it may fall into the local optimum. Furthermore, the decreasing of step is restrained by the maximum of iteration, which has an influence on the convergence speed and precision. In order to avoid falling into the local optimum and reduce the impact of the maximum of iteration, a self-adaptive step firefly algorithm is proposed in the paper. Its core idea is setting the step of each firefly varying with the iteration, according to each firefly’s historical information and current situation. Experiments are made to show the performance of our approach compared with the standard FA, based on sixteen standard testing benchmark functions. The results reveal that our method can prevent the premature convergence and improve the convergence speed and accurateness.

  4. Coarse Alignment Technology on Moving base for SINS Based on the Improved Quaternion Filter Algorithm.

    Science.gov (United States)

    Zhang, Tao; Zhu, Yongyun; Zhou, Feng; Yan, Yaxiong; Tong, Jinwu

    2017-06-17

    Initial alignment of the strapdown inertial navigation system (SINS) is intended to determine the initial attitude matrix in a short time with certain accuracy. The alignment accuracy of the quaternion filter algorithm is remarkable, but the convergence rate is slow. To solve this problem, this paper proposes an improved quaternion filter algorithm for faster initial alignment based on the error model of the quaternion filter algorithm. The improved quaternion filter algorithm constructs the K matrix based on the principle of optimal quaternion algorithm, and rebuilds the measurement model by containing acceleration and velocity errors to make the convergence rate faster. A doppler velocity log (DVL) provides the reference velocity for the improved quaternion filter alignment algorithm. In order to demonstrate the performance of the improved quaternion filter algorithm in the field, a turntable experiment and a vehicle test are carried out. The results of the experiments show that the convergence rate of the proposed improved quaternion filter is faster than that of the tradition quaternion filter algorithm. In addition, the improved quaternion filter algorithm also demonstrates advantages in terms of correctness, effectiveness, and practicability.

  5. Ant-Based Phylogenetic Reconstruction (ABPR: A new distance algorithm for phylogenetic estimation based on ant colony optimization

    Directory of Open Access Journals (Sweden)

    Karla Vittori

    2008-12-01

    Full Text Available We propose a new distance algorithm for phylogenetic estimation based on Ant Colony Optimization (ACO, named Ant-Based Phylogenetic Reconstruction (ABPR. ABPR joins two taxa iteratively based on evolutionary distance among sequences, while also accounting for the quality of the phylogenetic tree built according to the total length of the tree. Similar to optimization algorithms for phylogenetic estimation, the algorithm allows exploration of a larger set of nearly optimal solutions. We applied the algorithm to four empirical data sets of mitochondrial DNA ranging from 12 to 186 sequences, and from 898 to 16,608 base pairs, and covering taxonomic levels from populations to orders. We show that ABPR performs better than the commonly used Neighbor-Joining algorithm, except when sequences are too closely related (e.g., population-level sequences. The phylogenetic relationships recovered at and above species level by ABPR agree with conventional views. However, like other algorithms of phylogenetic estimation, the proposed algorithm failed to recover expected relationships when distances are too similar or when rates of evolution are very variable, leading to the problem of long-branch attraction. ABPR, as well as other ACO-based algorithms, is emerging as a fast and accurate alternative method of phylogenetic estimation for large data sets.

  6. A Gaussian Process Based Online Change Detection Algorithm for Monitoring Periodic Time Series

    Energy Technology Data Exchange (ETDEWEB)

    Chandola, Varun [ORNL; Vatsavai, Raju [ORNL

    2011-01-01

    Online time series change detection is a critical component of many monitoring systems, such as space and air-borne remote sensing instruments, cardiac monitors, and network traffic profilers, which continuously analyze observations recorded by sensors. Data collected by such sensors typically has a periodic (seasonal) component. Most existing time series change detection methods are not directly applicable to handle such data, either because they are not designed to handle periodic time series or because they cannot operate in an online mode. We propose an online change detection algorithm which can handle periodic time series. The algorithm uses a Gaussian process based non-parametric time series prediction model and monitors the difference between the predictions and actual observations within a statistically principled control chart framework to identify changes. A key challenge in using Gaussian process in an online mode is the need to solve a large system of equations involving the associated covariance matrix which grows with every time step. The proposed algorithm exploits the special structure of the covariance matrix and can analyze a time series of length T in O(T^2) time while maintaining a O(T) memory footprint, compared to O(T^4) time and O(T^2) memory requirement of standard matrix manipulation methods. We experimentally demonstrate the superiority of the proposed algorithm over several existing time series change detection algorithms on a set of synthetic and real time series. Finally, we illustrate the effectiveness of the proposed algorithm for identifying land use land cover changes using Normalized Difference Vegetation Index (NDVI) data collected for an agricultural region in Iowa state, USA. Our algorithm is able to detect different types of changes in a NDVI validation data set (with ~80% accuracy) which occur due to crop type changes as well as disruptive changes (e.g., natural disasters).

  7. A Branch-and-bound Algorithm for the Network Diversion Problem

    National Research Council Canada - National Science Library

    Erken, Ozgur

    2002-01-01

    ...). We develop and test a specialized branch-and-hound algorithm for this NP-complete problem. The algorithm is based on partitioning the solution space with respect to edges in certain s-t cuts and yields a non- standard, non-binary enumeration tree...

  8. A chaos-based image encryption algorithm with variable control parameters

    International Nuclear Information System (INIS)

    Wang Yong; Wong, K.-W.; Liao Xiaofeng; Xiang Tao; Chen Guanrong

    2009-01-01

    In recent years, a number of image encryption algorithms based on the permutation-diffusion structure have been proposed. However, the control parameters used in the permutation stage are usually fixed in the whole encryption process, which favors attacks. In this paper, a chaos-based image encryption algorithm with variable control parameters is proposed. The control parameters used in the permutation stage and the keystream employed in the diffusion stage are generated from two chaotic maps related to the plain-image. As a result, the algorithm can effectively resist all known attacks against permutation-diffusion architectures. Theoretical analyses and computer simulations both confirm that the new algorithm possesses high security and fast encryption speed for practical image encryption.

  9. Sensitivity study of voxel-based PET image comparison to image registration algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Yip, Stephen, E-mail: syip@lroc.harvard.edu; Chen, Aileen B.; Berbeco, Ross [Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States); Aerts, Hugo J. W. L. [Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 and Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2014-11-01

    Purpose: Accurate deformable registration is essential for voxel-based comparison of sequential positron emission tomography (PET) images for proper adaptation of treatment plan and treatment response assessment. The comparison may be sensitive to the method of deformable registration as the optimal algorithm is unknown. This study investigated the impact of registration algorithm choice on therapy response evaluation. Methods: Sixteen patients with 20 lung tumors underwent a pre- and post-treatment computed tomography (CT) and 4D FDG-PET scans before and after chemoradiotherapy. All CT images were coregistered using a rigid and ten deformable registration algorithms. The resulting transformations were then applied to the respective PET images. Moreover, the tumor region defined by a physician on the registered PET images was classified into progressor, stable-disease, and responder subvolumes. Particularly, voxels with standardized uptake value (SUV) decreases >30% were classified as responder, while voxels with SUV increases >30% were progressor. All other voxels were considered stable-disease. The agreement of the subvolumes resulting from difference registration algorithms was assessed by Dice similarity index (DSI). Coefficient of variation (CV) was computed to assess variability of DSI between individual tumors. Root mean square difference (RMS{sub rigid}) of the rigidly registered CT images was used to measure the degree of tumor deformation. RMS{sub rigid} and DSI were correlated by Spearman correlation coefficient (R) to investigate the effect of tumor deformation on DSI. Results: Median DSI{sub rigid} was found to be 72%, 66%, and 80%, for progressor, stable-disease, and responder, respectively. Median DSI{sub deformable} was 63%–84%, 65%–81%, and 82%–89%. Variability of DSI was substantial and similar for both rigid and deformable algorithms with CV > 10% for all subvolumes. Tumor deformation had moderate to significant impact on DSI for progressor

  10. Noise filtering algorithm for the MFTF-B computer based control system

    International Nuclear Information System (INIS)

    Minor, E.G.

    1983-01-01

    An algorithm to reduce the message traffic in the MFTF-B computer based control system is described. The algorithm filters analog inputs to the control system. Its purpose is to distinguish between changes in the inputs due to noise and changes due to significant variations in the quantity being monitored. Noise is rejected while significant changes are reported to the control system data base, thus keeping the data base updated with a minimum number of messages. The algorithm is memory efficient, requiring only four bytes of storage per analog channel, and computationally simple, requiring only subtraction and comparison. Quantitative analysis of the algorithm is presented for the case of additive Gaussian noise. It is shown that the algorithm is stable and tends toward the mean value of the monitored variable over a wide variety of additive noise distributions

  11. An algorithm to construct Groebner bases for solving integration by parts relations

    International Nuclear Information System (INIS)

    Smirnov, Alexander V.

    2006-01-01

    This paper is a detailed description of an algorithm based on a generalized Buchberger algorithm for constructing Groebner-type bases associated with polynomials of shift operators. The algorithm is used to calculate Feynman integrals and has proved to be efficient in several complicated cases

  12. An Adaptive Filtering Algorithm Based on Genetic Algorithm-Backpropagation Network

    Directory of Open Access Journals (Sweden)

    Kai Hu

    2013-01-01

    Full Text Available A new image filtering algorithm is proposed. GA-BPN algorithm uses genetic algorithm (GA to decide weights in a back propagation neural network (BPN. It has better global optimal characteristics than traditional optimal algorithm. In this paper, we used GA-BPN to do image noise filter researching work. Firstly, this paper uses training samples to train GA-BPN as the noise detector. Then, we utilize the well-trained GA-BPN to recognize noise pixels in target image. And at last, an adaptive weighted average algorithm is used to recover noise pixels recognized by GA-BPN. Experiment data shows that this algorithm has better performance than other filters.

  13. Optimization algorithm based on densification and dynamic canonical descent

    Science.gov (United States)

    Bousson, K.; Correia, S. D.

    2006-07-01

    Stochastic methods have gained some popularity in global optimization in that most of them do not assume the cost functions to be differentiable. They have capabilities to avoid being trapped by local optima, and may converge even faster than gradient-based optimization methods on some problems. The present paper proposes an optimization method, which reduces the search space by means of densification curves, coupled with the dynamic canonical descent algorithm. The performances of the new method are shown on several known problems classically used for testing optimization algorithms, and proved to outperform competitive algorithms such as simulated annealing and genetic algorithms.

  14. Evaluation of a treatment-based classification algorithm for low back pain: a cross-sectional study.

    Science.gov (United States)

    Stanton, Tasha R; Fritz, Julie M; Hancock, Mark J; Latimer, Jane; Maher, Christopher G; Wand, Benedict M; Parent, Eric C

    2011-04-01

    Several studies have investigated criteria for classifying patients with low back pain (LBP) into treatment-based subgroups. A comprehensive algorithm was created to translate these criteria into a clinical decision-making guide. This study investigated the translation of the individual subgroup criteria into a comprehensive algorithm by studying the prevalence of patients meeting the criteria for each treatment subgroup and the reliability of the classification. This was a cross-sectional, observational study. Two hundred fifty patients with acute or subacute LBP were recruited from the United States and Australia to participate in the study. Trained physical therapists performed standardized assessments on all participants. The researchers used these findings to classify participants into subgroups. Thirty-one participants were reassessed to determine interrater reliability of the algorithm decision. Based on individual subgroup criteria, 25.2% (95% confidence interval [CI]=19.8%-30.6%) of the participants did not meet the criteria for any subgroup, 49.6% (95% CI=43.4%-55.8%) of the participants met the criteria for only one subgroup, and 25.2% (95% CI=19.8%-30.6%) of the participants met the criteria for more than one subgroup. The most common combination of subgroups was manipulation + specific exercise (68.4% of the participants who met the criteria for 2 subgroups). Reliability of the algorithm decision was moderate (kappa=0.52, 95% CI=0.27-0.77, percentage of agreement=67%). Due to a relatively small patient sample, reliability estimates are somewhat imprecise. These findings provide important clinical data to guide future research and revisions to the algorithm. The finding that 25% of the participants met the criteria for more than one subgroup has important implications for the sequencing of treatments in the algorithm. Likewise, the finding that 25% of the participants did not meet the criteria for any subgroup provides important information regarding

  15. A novel clustering algorithm based on quantum games

    International Nuclear Information System (INIS)

    Li Qiang; He Yan; Jiang Jingping

    2009-01-01

    Enormous successes have been made by quantum algorithms during the last decade. In this paper, we combine the quantum game with the problem of data clustering, and then develop a quantum-game-based clustering algorithm, in which data points in a dataset are considered as players who can make decisions and implement quantum strategies in quantum games. After each round of a quantum game, each player's expected payoff is calculated. Later, he uses a link-removing-and-rewiring (LRR) function to change his neighbors and adjust the strength of links connecting to them in order to maximize his payoff. Further, algorithms are discussed and analyzed in two cases of strategies, two payoff matrixes and two LRR functions. Consequently, the simulation results have demonstrated that data points in datasets are clustered reasonably and efficiently, and the clustering algorithms have fast rates of convergence. Moreover, the comparison with other algorithms also provides an indication of the effectiveness of the proposed approach.

  16. A Plagiarism Detection Algorithm based on Extended Winnowing

    Directory of Open Access Journals (Sweden)

    Duan Xuliang

    2017-01-01

    Full Text Available Plagiarism is a common problem faced by academia and education. Mature commercial plagiarism detection system has the advantages of comprehensive and high accuracy, but the expensive detection costs make it unsuitable for real-time, lightweight application environment such as the student assignments plagiarism detection. This paper introduces the method of extending classic Winnowing plagiarism detection algorithm, expands the algorithm in functionality. The extended algorithm can retain the text location and length information in original document while extracting the fingerprints of a document, so that the locating and marking for plagiarism text fragment are much easier to achieve. The experimental results and several years of running practice show that the expansion of the algorithm has little effect on its performance, normal hardware configuration of PC will be able to meet small and medium-sized applications requirements. Based on the characteristics of lightweight, high efficiency, reliability and flexibility of Winnowing, the extended algorithm further enhances the adaptability and extends the application areas.

  17. A similarity based agglomerative clustering algorithm in networks

    Science.gov (United States)

    Liu, Zhiyuan; Wang, Xiujuan; Ma, Yinghong

    2018-04-01

    The detection of clusters is benefit for understanding the organizations and functions of networks. Clusters, or communities, are usually groups of nodes densely interconnected but sparsely linked with any other clusters. To identify communities, an efficient and effective community agglomerative algorithm based on node similarity is proposed. The proposed method initially calculates similarities between each pair of nodes, and form pre-partitions according to the principle that each node is in the same community as its most similar neighbor. After that, check each partition whether it satisfies community criterion. For the pre-partitions who do not satisfy, incorporate them with others that having the biggest attraction until there are no changes. To measure the attraction ability of a partition, we propose an attraction index that based on the linked node's importance in networks. Therefore, our proposed method can better exploit the nodes' properties and network's structure. To test the performance of our algorithm, both synthetic and empirical networks ranging in different scales are tested. Simulation results show that the proposed algorithm can obtain superior clustering results compared with six other widely used community detection algorithms.

  18. Optimization of submerged arc welding process parameters using quasi-oppositional based Jaya algorithm

    International Nuclear Information System (INIS)

    Rao, R. Venkata; Rai, Dhiraj P.

    2017-01-01

    Submerged arc welding (SAW) is characterized as a multi-input process. Selection of optimum combination of process parameters of SAW process is a vital task in order to achieve high quality of weld and productivity. The objective of this work is to optimize the SAW process parameters using a simple optimization algorithm, which is fast, robust and convenient. Therefore, in this work a very recently proposed optimization algorithm named Jaya algorithm is applied to solve the optimization problems in SAW process. In addition, a modified version of Jaya algorithm with oppositional based learning, named “Quasi-oppositional based Jaya algorithm” (QO-Jaya) is proposed in order to improve the performance of the Jaya algorithm. Three optimization case studies are considered and the results obtained by Jaya algorithm and QO-Jaya algorithm are compared with the results obtained by well-known optimization algorithms such as Genetic algorithm (GA), Particle swarm optimization (PSO), Imperialist competitive algorithm (ICA) and Teaching learning based optimization (TLBO).

  19. Optimization of submerged arc welding process parameters using quasi-oppositional based Jaya algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Rao, R. Venkata; Rai, Dhiraj P. [Sardar Vallabhbhai National Institute of Technology, Gujarat (India)

    2017-05-15

    Submerged arc welding (SAW) is characterized as a multi-input process. Selection of optimum combination of process parameters of SAW process is a vital task in order to achieve high quality of weld and productivity. The objective of this work is to optimize the SAW process parameters using a simple optimization algorithm, which is fast, robust and convenient. Therefore, in this work a very recently proposed optimization algorithm named Jaya algorithm is applied to solve the optimization problems in SAW process. In addition, a modified version of Jaya algorithm with oppositional based learning, named “Quasi-oppositional based Jaya algorithm” (QO-Jaya) is proposed in order to improve the performance of the Jaya algorithm. Three optimization case studies are considered and the results obtained by Jaya algorithm and QO-Jaya algorithm are compared with the results obtained by well-known optimization algorithms such as Genetic algorithm (GA), Particle swarm optimization (PSO), Imperialist competitive algorithm (ICA) and Teaching learning based optimization (TLBO).

  20. Evaluation of the performance of existing non-laboratory based cardiovascular risk assessment algorithms

    Science.gov (United States)

    2013-01-01

    Background The high burden and rising incidence of cardiovascular disease (CVD) in resource constrained countries necessitates implementation of robust and pragmatic primary and secondary prevention strategies. Many current CVD management guidelines recommend absolute cardiovascular (CV) risk assessment as a clinically sound guide to preventive and treatment strategies. Development of non-laboratory based cardiovascular risk assessment algorithms enable absolute risk assessment in resource constrained countries. The objective of this review is to evaluate the performance of existing non-laboratory based CV risk assessment algorithms using the benchmarks for clinically useful CV risk assessment algorithms outlined by Cooney and colleagues. Methods A literature search to identify non-laboratory based risk prediction algorithms was performed in MEDLINE, CINAHL, Ovid Premier Nursing Journals Plus, and PubMed databases. The identified algorithms were evaluated using the benchmarks for clinically useful cardiovascular risk assessment algorithms outlined by Cooney and colleagues. Results Five non-laboratory based CV risk assessment algorithms were identified. The Gaziano and Framingham algorithms met the criteria for appropriateness of statistical methods used to derive the algorithms and endpoints. The Swedish Consultation, Framingham and Gaziano algorithms demonstrated good discrimination in derivation datasets. Only the Gaziano algorithm was externally validated where it had optimal discrimination. The Gaziano and WHO algorithms had chart formats which made them simple and user friendly for clinical application. Conclusion Both the Gaziano and Framingham non-laboratory based algorithms met most of the criteria outlined by Cooney and colleagues. External validation of the algorithms in diverse samples is needed to ascertain their performance and applicability to different populations and to enhance clinicians’ confidence in them. PMID:24373202

  1. Teaching AI Search Algorithms in a Web-Based Educational System

    Science.gov (United States)

    Grivokostopoulou, Foteini; Hatzilygeroudis, Ioannis

    2013-01-01

    In this paper, we present a way of teaching AI search algorithms in a web-based adaptive educational system. Teaching is based on interactive examples and exercises. Interactive examples, which use visualized animations to present AI search algorithms in a step-by-step way with explanations, are used to make learning more attractive. Practice…

  2. A Developed Artificial Bee Colony Algorithm Based on Cloud Model

    Directory of Open Access Journals (Sweden)

    Ye Jin

    2018-04-01

    Full Text Available The Artificial Bee Colony (ABC algorithm is a bionic intelligent optimization method. The cloud model is a kind of uncertainty conversion model between a qualitative concept T ˜ that is presented by nature language and its quantitative expression, which integrates probability theory and the fuzzy mathematics. A developed ABC algorithm based on cloud model is proposed to enhance accuracy of the basic ABC algorithm and avoid getting trapped into local optima by introducing a new select mechanism, replacing the onlooker bees’ search formula and changing the scout bees’ updating formula. Experiments on CEC15 show that the new algorithm has a faster convergence speed and higher accuracy than the basic ABC and some cloud model based ABC variants.

  3. A Greedy Algorithm for Neighborhood Overlap-Based Community Detection

    Directory of Open Access Journals (Sweden)

    Natarajan Meghanathan

    2016-01-01

    Full Text Available The neighborhood overlap (NOVER of an edge u-v is defined as the ratio of the number of nodes who are neighbors for both u and v to that of the number of nodes who are neighbors of at least u or v. In this paper, we hypothesize that an edge u-v with a lower NOVER score bridges two or more sets of vertices, with very few edges (other than u-v connecting vertices from one set to another set. Accordingly, we propose a greedy algorithm of iteratively removing the edges of a network in the increasing order of their neighborhood overlap and calculating the modularity score of the resulting network component(s after the removal of each edge. The network component(s that have the largest cumulative modularity score are identified as the different communities of the network. We evaluate the performance of the proposed NOVER-based community detection algorithm on nine real-world network graphs and compare the performance against the multi-level aggregation-based Louvain algorithm, as well as the original and time-efficient versions of the edge betweenness-based Girvan-Newman (GN community detection algorithm.

  4. Parallel Directionally Split Solver Based on Reformulation of Pipelined Thomas Algorithm

    Science.gov (United States)

    Povitsky, A.

    1998-01-01

    In this research an efficient parallel algorithm for 3-D directionally split problems is developed. The proposed algorithm is based on a reformulated version of the pipelined Thomas algorithm that starts the backward step computations immediately after the completion of the forward step computations for the first portion of lines This algorithm has data available for other computational tasks while processors are idle from the Thomas algorithm. The proposed 3-D directionally split solver is based on the static scheduling of processors where local and non-local, data-dependent and data-independent computations are scheduled while processors are idle. A theoretical model of parallelization efficiency is used to define optimal parameters of the algorithm, to show an asymptotic parallelization penalty and to obtain an optimal cover of a global domain with subdomains. It is shown by computational experiments and by the theoretical model that the proposed algorithm reduces the parallelization penalty about two times over the basic algorithm for the range of the number of processors (subdomains) considered and the number of grid nodes per subdomain.

  5. FAST (Four chamber view And Swing Technique) Echo: a Novel and Simple Algorithm to Visualize Standard Fetal Echocardiographic Planes

    Science.gov (United States)

    Yeo, Lami; Romero, Roberto; Jodicke, Cristiano; Oggè, Giovanna; Lee, Wesley; Kusanovic, Juan Pedro; Vaisbuch, Edi; Hassan, Sonia S.

    2010-01-01

    Objective To describe a novel and simple algorithm (FAST Echo: Four chamber view And Swing Technique) to visualize standard diagnostic planes of fetal echocardiography from dataset volumes obtained with spatiotemporal image correlation (STIC) and applying a new display technology (OmniView). Methods We developed an algorithm to image standard fetal echocardiographic planes by drawing four dissecting lines through the longitudinal view of the ductal arch contained in a STIC volume dataset. Three of the lines are locked to provide simultaneous visualization of targeted planes, and the fourth line (unlocked) “swings” through the ductal arch image (“swing technique”), providing an infinite number of cardiac planes in sequence. Each line generated the following plane(s): 1) Line 1: three-vessels and trachea view; 2) Line 2: five-chamber view and long axis view of the aorta (obtained by rotation of the five-chamber view on the y-axis); 3) Line 3: four-chamber view; and 4) “Swing” line: three-vessels and trachea view, five-chamber view and/or long axis view of the aorta, four-chamber view, and stomach. The algorithm was then tested in 50 normal hearts (15.3 – 40 weeks of gestation) and visualization rates for cardiac diagnostic planes were calculated. To determine if the algorithm could identify planes that departed from the normal images, we tested the algorithm in 5 cases with proven congenital heart defects. Results In normal cases, the FAST Echo algorithm (3 locked lines and rotation of the five-chamber view on the y-axis) was able to generate the intended planes (longitudinal view of the ductal arch, pulmonary artery, three-vessels and trachea view, five-chamber view, long axis view of the aorta, four-chamber view): 1) individually in 100% of cases [except for the three-vessel and trachea view, which was seen in 98% (49/50)]; and 2) simultaneously in 98% (49/50). The “swing technique” was able to generate the three-vessels and trachea view, five

  6. Four-chamber view and 'swing technique' (FAST) echo: a novel and simple algorithm to visualize standard fetal echocardiographic planes.

    Science.gov (United States)

    Yeo, L; Romero, R; Jodicke, C; Oggè, G; Lee, W; Kusanovic, J P; Vaisbuch, E; Hassan, S

    2011-04-01

    To describe a novel and simple algorithm (four-chamber view and 'swing technique' (FAST) echo) for visualization of standard diagnostic planes of fetal echocardiography from dataset volumes obtained with spatiotemporal image correlation (STIC) and applying a new display technology (OmniView). We developed an algorithm to image standard fetal echocardiographic planes by drawing four dissecting lines through the longitudinal view of the ductal arch contained in a STIC volume dataset. Three of the lines are locked to provide simultaneous visualization of targeted planes, and the fourth line (unlocked) 'swings' through the ductal arch image (swing technique), providing an infinite number of cardiac planes in sequence. Each line generates the following plane(s): (a) Line 1: three-vessels and trachea view; (b) Line 2: five-chamber view and long-axis view of the aorta (obtained by rotation of the five-chamber view on the y-axis); (c) Line 3: four-chamber view; and (d) 'swing line': three-vessels and trachea view, five-chamber view and/or long-axis view of the aorta, four-chamber view and stomach. The algorithm was then tested in 50 normal hearts in fetuses at 15.3-40 weeks' gestation and visualization rates for cardiac diagnostic planes were calculated. To determine whether the algorithm could identify planes that departed from the normal images, we tested the algorithm in five cases with proven congenital heart defects. In normal cases, the FAST echo algorithm (three locked lines and rotation of the five-chamber view on the y-axis) was able to generate the intended planes (longitudinal view of the ductal arch, pulmonary artery, three-vessels and trachea view, five-chamber view, long-axis view of the aorta, four-chamber view) individually in 100% of cases (except for the three-vessels and trachea view, which was seen in 98% (49/50)) and simultaneously in 98% (49/50). The swing technique was able to generate the three-vessels and trachea view, five-chamber view and/or long

  7. Tolerance based algorithms for the ATSP

    NARCIS (Netherlands)

    Goldengorin, B; Sierksma, G; Turkensteen, M; Hromkovic, J; Nagl, M; Westfechtel, B

    2004-01-01

    In this paper we use arc tolerances, instead of arc costs, to improve Branch-and-Bound type algorithms for the Asymmetric Traveling Salesman Problem (ATSP). We derive new tighter lower bounds based on exact and approximate bottleneck upper tolerance values of the Assignment Problem (AP). It is shown

  8. Analysis of energy-based algorithms for RNA secondary structure prediction

    Directory of Open Access Journals (Sweden)

    Hajiaghayi Monir

    2012-02-01

    Full Text Available Abstract Background RNA molecules play critical roles in the cells of organisms, including roles in gene regulation, catalysis, and synthesis of proteins. Since RNA function depends in large part on its folded structures, much effort has been invested in developing accurate methods for prediction of RNA secondary structure from the base sequence. Minimum free energy (MFE predictions are widely used, based on nearest neighbor thermodynamic parameters of Mathews, Turner et al. or those of Andronescu et al. Some recently proposed alternatives that leverage partition function calculations find the structure with maximum expected accuracy (MEA or pseudo-expected accuracy (pseudo-MEA methods. Advances in prediction methods are typically benchmarked using sensitivity, positive predictive value and their harmonic mean, namely F-measure, on datasets of known reference structures. Since such benchmarks document progress in improving accuracy of computational prediction methods, it is important to understand how measures of accuracy vary as a function of the reference datasets and whether advances in algorithms or thermodynamic parameters yield statistically significant improvements. Our work advances such understanding for the MFE and (pseudo-MEA-based methods, with respect to the latest datasets and energy parameters. Results We present three main findings. First, using the bootstrap percentile method, we show that the average F-measure accuracy of the MFE and (pseudo-MEA-based algorithms, as measured on our largest datasets with over 2000 RNAs from diverse families, is a reliable estimate (within a 2% range with high confidence of the accuracy of a population of RNA molecules represented by this set. However, average accuracy on smaller classes of RNAs such as a class of 89 Group I introns used previously in benchmarking algorithm accuracy is not reliable enough to draw meaningful conclusions about the relative merits of the MFE and MEA-based algorithms

  9. Parameter identification of piezoelectric hysteresis model based on improved artificial bee colony algorithm

    Science.gov (United States)

    Wang, Geng; Zhou, Kexin; Zhang, Yeming

    2018-04-01

    The widely used Bouc-Wen hysteresis model can be utilized to accurately simulate the voltage-displacement curves of piezoelectric actuators. In order to identify the unknown parameters of the Bouc-Wen model, an improved artificial bee colony (IABC) algorithm is proposed in this paper. A guiding strategy for searching the current optimal position of the food source is proposed in the method, which can help balance the local search ability and global exploitation capability. And the formula for the scout bees to search for the food source is modified to increase the convergence speed. Some experiments were conducted to verify the effectiveness of the IABC algorithm. The results show that the identified hysteresis model agreed well with the actual actuator response. Moreover, the identification results were compared with the standard particle swarm optimization (PSO) method, and it can be seen that the search performance in convergence rate of the IABC algorithm is better than that of the standard PSO method.

  10. Key Distribution and Changing Key Cryptosystem Based on Phase Retrieval Algorithm and RSA Public-Key Algorithm

    Directory of Open Access Journals (Sweden)

    Tieyu Zhao

    2015-01-01

    Full Text Available The optical image encryption has attracted more and more researchers’ attention, and the various encryption schemes have been proposed. In existing optical cryptosystem, the phase functions or images are usually used as the encryption keys, and it is difficult that the traditional public-key algorithm (such as RSA, ECC, etc. is used to complete large numerical key transfer. In this paper, we propose a key distribution scheme based on the phase retrieval algorithm and the RSA public-key algorithm, which solves the problem for the key distribution in optical image encryption system. Furthermore, we also propose a novel image encryption system based on the key distribution principle. In the system, the different keys can be used in every encryption process, which greatly improves the security of the system.

  11. Multi-objective Reactive Power Optimization Based on Improved Particle Swarm Algorithm

    Science.gov (United States)

    Cui, Xue; Gao, Jian; Feng, Yunbin; Zou, Chenlu; Liu, Huanlei

    2018-01-01

    In this paper, an optimization model with the minimum active power loss and minimum voltage deviation of node and maximum static voltage stability margin as the optimization objective is proposed for the reactive power optimization problems. By defining the index value of reactive power compensation, the optimal reactive power compensation node was selected. The particle swarm optimization algorithm was improved, and the selection pool of global optimal and the global optimal of probability (p-gbest) were introduced. A set of Pareto optimal solution sets is obtained by this algorithm. And by calculating the fuzzy membership value of the pareto optimal solution sets, individuals with the smallest fuzzy membership value were selected as the final optimization results. The above improved algorithm is used to optimize the reactive power of IEEE14 standard node system. Through the comparison and analysis of the results, it has been proven that the optimization effect of this algorithm was very good.

  12. Automatic Peak Selection by a Benjamini-Hochberg-Based Algorithm

    KAUST Repository

    Abbas, Ahmed; Kong, Xin-Bing; Liu, Zhi; Jing, Bing-Yi; Gao, Xin

    2013-01-01

    A common issue in bioinformatics is that computational methods often generate a large number of predictions sorted according to certain confidence scores. A key problem is then determining how many predictions must be selected to include most of the true predictions while maintaining reasonably high precision. In nuclear magnetic resonance (NMR)-based protein structure determination, for instance, computational peak picking methods are becoming more and more common, although expert-knowledge remains the method of choice to determine how many peaks among thousands of candidate peaks should be taken into consideration to capture the true peaks. Here, we propose a Benjamini-Hochberg (B-H)-based approach that automatically selects the number of peaks. We formulate the peak selection problem as a multiple testing problem. Given a candidate peak list sorted by either volumes or intensities, we first convert the peaks into p-values and then apply the B-H-based algorithm to automatically select the number of peaks. The proposed approach is tested on the state-of-the-art peak picking methods, including WaVPeak [1] and PICKY [2]. Compared with the traditional fixed number-based approach, our approach returns significantly more true peaks. For instance, by combining WaVPeak or PICKY with the proposed method, the missing peak rates are on average reduced by 20% and 26%, respectively, in a benchmark set of 32 spectra extracted from eight proteins. The consensus of the B-H-selected peaks from both WaVPeak and PICKY achieves 88% recall and 83% precision, which significantly outperforms each individual method and the consensus method without using the B-H algorithm. The proposed method can be used as a standard procedure for any peak picking method and straightforwardly applied to some other prediction selection problems in bioinformatics. The source code, documentation and example data of the proposed method is available at http://sfb.kaust.edu.sa/pages/software.aspx. © 2013

  13. Automatic Peak Selection by a Benjamini-Hochberg-Based Algorithm

    KAUST Repository

    Abbas, Ahmed

    2013-01-07

    A common issue in bioinformatics is that computational methods often generate a large number of predictions sorted according to certain confidence scores. A key problem is then determining how many predictions must be selected to include most of the true predictions while maintaining reasonably high precision. In nuclear magnetic resonance (NMR)-based protein structure determination, for instance, computational peak picking methods are becoming more and more common, although expert-knowledge remains the method of choice to determine how many peaks among thousands of candidate peaks should be taken into consideration to capture the true peaks. Here, we propose a Benjamini-Hochberg (B-H)-based approach that automatically selects the number of peaks. We formulate the peak selection problem as a multiple testing problem. Given a candidate peak list sorted by either volumes or intensities, we first convert the peaks into p-values and then apply the B-H-based algorithm to automatically select the number of peaks. The proposed approach is tested on the state-of-the-art peak picking methods, including WaVPeak [1] and PICKY [2]. Compared with the traditional fixed number-based approach, our approach returns significantly more true peaks. For instance, by combining WaVPeak or PICKY with the proposed method, the missing peak rates are on average reduced by 20% and 26%, respectively, in a benchmark set of 32 spectra extracted from eight proteins. The consensus of the B-H-selected peaks from both WaVPeak and PICKY achieves 88% recall and 83% precision, which significantly outperforms each individual method and the consensus method without using the B-H algorithm. The proposed method can be used as a standard procedure for any peak picking method and straightforwardly applied to some other prediction selection problems in bioinformatics. The source code, documentation and example data of the proposed method is available at http://sfb.kaust.edu.sa/pages/software.aspx. © 2013

  14. Loop algorithms for quantum simulations of fermion models on lattices

    International Nuclear Information System (INIS)

    Kawashima, N.; Gubernatis, J.E.; Evertz, H.G.

    1994-01-01

    Two cluster algorithms, based on constructing and flipping loops, are presented for world-line quantum Monte Carlo simulations of fermions and are tested on the one-dimensional repulsive Hubbard model. We call these algorithms the loop-flip and loop-exchange algorithms. For these two algorithms and the standard world-line algorithm, we calculated the autocorrelation times for various physical quantities and found that the ordinary world-line algorithm, which uses only local moves, suffers from very long correlation times that makes not only the estimate of the error difficult but also the estimate of the average values themselves difficult. These difficulties are especially severe in the low-temperature, large-U regime. In contrast, we find that new algorithms, when used alone or in combinations with themselves and the standard algorithm, can have significantly smaller autocorrelation times, in some cases being smaller by three orders of magnitude. The new algorithms, which use nonlocal moves, are discussed from the point of view of a general prescription for developing cluster algorithms. The loop-flip algorithm is also shown to be ergodic and to belong to the grand canonical ensemble. Extensions to other models and higher dimensions are briefly discussed

  15. Multirate-based fast parallel algorithms for 2-D DHT-based real-valued discrete Gabor transform.

    Science.gov (United States)

    Tao, Liang; Kwan, Hon Keung

    2012-07-01

    Novel algorithms for the multirate and fast parallel implementation of the 2-D discrete Hartley transform (DHT)-based real-valued discrete Gabor transform (RDGT) and its inverse transform are presented in this paper. A 2-D multirate-based analysis convolver bank is designed for the 2-D RDGT, and a 2-D multirate-based synthesis convolver bank is designed for the 2-D inverse RDGT. The parallel channels in each of the two convolver banks have a unified structure and can apply the 2-D fast DHT algorithm to speed up their computations. The computational complexity of each parallel channel is low and is independent of the Gabor oversampling rate. All the 2-D RDGT coefficients of an image are computed in parallel during the analysis process and can be reconstructed in parallel during the synthesis process. The computational complexity and time of the proposed parallel algorithms are analyzed and compared with those of the existing fastest algorithms for 2-D discrete Gabor transforms. The results indicate that the proposed algorithms are the fastest, which make them attractive for real-time image processing.

  16. Design and evaluation of basic standard encryption algorithm modules using nanosized complementary metal oxide semiconductor molecular circuits

    Science.gov (United States)

    Masoumi, Massoud; Raissi, Farshid; Ahmadian, Mahmoud; Keshavarzi, Parviz

    2006-01-01

    We are proposing that the recently proposed semiconductor-nanowire-molecular architecture (CMOL) is an optimum platform to realize encryption algorithms. The basic modules for the advanced encryption standard algorithm (Rijndael) have been designed using CMOL architecture. The performance of this design has been evaluated with respect to chip area and speed. It is observed that CMOL provides considerable improvement over implementation with regular CMOS architecture even with a 20% defect rate. Pseudo-optimum gate placement and routing are provided for Rijndael building blocks and the possibility of designing high speed, attack tolerant and long key encryptions are discussed.

  17. Collaborative filtering recommendation model based on fuzzy clustering algorithm

    Science.gov (United States)

    Yang, Ye; Zhang, Yunhua

    2018-05-01

    As one of the most widely used algorithms in recommender systems, collaborative filtering algorithm faces two serious problems, which are the sparsity of data and poor recommendation effect in big data environment. In traditional clustering analysis, the object is strictly divided into several classes and the boundary of this division is very clear. However, for most objects in real life, there is no strict definition of their forms and attributes of their class. Concerning the problems above, this paper proposes to improve the traditional collaborative filtering model through the hybrid optimization of implicit semantic algorithm and fuzzy clustering algorithm, meanwhile, cooperating with collaborative filtering algorithm. In this paper, the fuzzy clustering algorithm is introduced to fuzzy clustering the information of project attribute, which makes the project belong to different project categories with different membership degrees, and increases the density of data, effectively reduces the sparsity of data, and solves the problem of low accuracy which is resulted from the inaccuracy of similarity calculation. Finally, this paper carries out empirical analysis on the MovieLens dataset, and compares it with the traditional user-based collaborative filtering algorithm. The proposed algorithm has greatly improved the recommendation accuracy.

  18. Learning-based meta-algorithm for MRI brain extraction.

    Science.gov (United States)

    Shi, Feng; Wang, Li; Gilmore, John H; Lin, Weili; Shen, Dinggang

    2011-01-01

    Multiple-segmentation-and-fusion method has been widely used for brain extraction, tissue segmentation, and region of interest (ROI) localization. However, such studies are hindered in practice by their computational complexity, mainly coming from the steps of template selection and template-to-subject nonlinear registration. In this study, we address these two issues and propose a novel learning-based meta-algorithm for MRI brain extraction. Specifically, we first use exemplars to represent the entire template library, and assign the most similar exemplar to the test subject. Second, a meta-algorithm combining two existing brain extraction algorithms (BET and BSE) is proposed to conduct multiple extractions directly on test subject. Effective parameter settings for the meta-algorithm are learned from the training data and propagated to subject through exemplars. We further develop a level-set based fusion method to combine multiple candidate extractions together with a closed smooth surface, for obtaining the final result. Experimental results show that, with only a small portion of subjects for training, the proposed method is able to produce more accurate and robust brain extraction results, at Jaccard Index of 0.956 +/- 0.010 on total 340 subjects under 6-fold cross validation, compared to those by the BET and BSE even using their best parameter combinations.

  19. Energy efficient data sorting using standard sorting algorithms

    KAUST Repository

    Bunse, Christian; Hö pfner, Hagen; Roychoudhury, Suman; Mansour, Essam

    2011-01-01

    Protecting the environment by saving energy and thus reducing carbon dioxide emissions is one of todays hottest and most challenging topics. Although the perspective for reducing energy consumption, from ecological and business perspectives is clear, from a technological point of view, the realization especially for mobile systems still falls behind expectations. Novel strategies that allow (software) systems to dynamically adapt themselves at runtime can be effectively used to reduce energy consumption. This paper presents a case study that examines the impact of using an energy management component that dynamically selects and applies the "optimal" sorting algorithm, from an energy perspective, during multi-party mobile communication. Interestingly, the results indicate that algorithmic performance is not key and that dynamically switching algorithms at runtime does have a significant impact on energy consumption. © Springer-Verlag Berlin Heidelberg 2011.

  20. a Voxel-Based Filtering Algorithm for Mobile LIDAR Data

    Science.gov (United States)

    Qin, H.; Guan, G.; Yu, Y.; Zhong, L.

    2018-04-01

    This paper presents a stepwise voxel-based filtering algorithm for mobile LiDAR data. In the first step, to improve computational efficiency, mobile LiDAR points, in xy-plane, are first partitioned into a set of two-dimensional (2-D) blocks with a given block size, in each of which all laser points are further organized into an octree partition structure with a set of three-dimensional (3-D) voxels. Then, a voxel-based upward growing processing is performed to roughly separate terrain from non-terrain points with global and local terrain thresholds. In the second step, the extracted terrain points are refined by computing voxel curvatures. This voxel-based filtering algorithm is comprehensively discussed in the analyses of parameter sensitivity and overall performance. An experimental study performed on multiple point cloud samples, collected by different commercial mobile LiDAR systems, showed that the proposed algorithm provides a promising solution to terrain point extraction from mobile point clouds.

  1. Fidelity-Based Ant Colony Algorithm with Q-learning of Quantum System

    Science.gov (United States)

    Liao, Qin; Guo, Ying; Tu, Yifeng; Zhang, Hang

    2018-03-01

    Quantum ant colony algorithm (ACA) has potential applications in quantum information processing, such as solutions of traveling salesman problem, zero-one knapsack problem, robot route planning problem, and so on. To shorten the search time of the ACA, we suggest the fidelity-based ant colony algorithm (FACA) for the control of quantum system. Motivated by structure of the Q-learning algorithm, we demonstrate the combination of a FACA with the Q-learning algorithm and suggest the design of a fidelity-based ant colony algorithm with the Q-learning to improve the performance of the FACA in a spin-1/2 quantum system. The numeric simulation results show that the FACA with the Q-learning can efficiently avoid trapping into local optimal policies and increase the speed of convergence process of quantum system.

  2. Implementation of software-based sensor linearization algorithms on low-cost microcontrollers.

    Science.gov (United States)

    Erdem, Hamit

    2010-10-01

    Nonlinear sensors and microcontrollers are used in many embedded system designs. As the input-output characteristic of most sensors is nonlinear in nature, obtaining data from a nonlinear sensor by using an integer microcontroller has always been a design challenge. This paper discusses the implementation of six software-based sensor linearization algorithms for low-cost microcontrollers. The comparative study of the linearization algorithms is performed by using a nonlinear optical distance-measuring sensor. The performance of the algorithms is examined with respect to memory space usage, linearization accuracy and algorithm execution time. The implementation and comparison results can be used for selection of a linearization algorithm based on the sensor transfer function, expected linearization accuracy and microcontroller capacity. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Development of Base Transceiver Station Selection Algorithm for ...

    African Journals Online (AJOL)

    TEMS) equipment was carried out on the existing BTSs, and a linear algorithm optimization program based on the spectral link efficiency of each BTS was developed, the output of this site optimization gives the selected number of base station sites ...

  4. Fault detection and isolation in GPS receiver autonomous integrity monitoring based on chaos particle swarm optimization-particle filter algorithm

    Science.gov (United States)

    Wang, Ershen; Jia, Chaoying; Tong, Gang; Qu, Pingping; Lan, Xiaoyu; Pang, Tao

    2018-03-01

    The receiver autonomous integrity monitoring (RAIM) is one of the most important parts in an avionic navigation system. Two problems need to be addressed to improve this system, namely, the degeneracy phenomenon and lack of samples for the standard particle filter (PF). However, the number of samples cannot adequately express the real distribution of the probability density function (i.e., sample impoverishment). This study presents a GPS receiver autonomous integrity monitoring (RAIM) method based on a chaos particle swarm optimization particle filter (CPSO-PF) algorithm with a log likelihood ratio. The chaos sequence generates a set of chaotic variables, which are mapped to the interval of optimization variables to improve particle quality. This chaos perturbation overcomes the potential for the search to become trapped in a local optimum in the particle swarm optimization (PSO) algorithm. Test statistics are configured based on a likelihood ratio, and satellite fault detection is then conducted by checking the consistency between the state estimate of the main PF and those of the auxiliary PFs. Based on GPS data, the experimental results demonstrate that the proposed algorithm can effectively detect and isolate satellite faults under conditions of non-Gaussian measurement noise. Moreover, the performance of the proposed novel method is better than that of RAIM based on the PF or PSO-PF algorithm.

  5. Optimization in optical systems revisited: Beyond genetic algorithms

    Science.gov (United States)

    Gagnon, Denis; Dumont, Joey; Dubé, Louis

    2013-05-01

    Designing integrated photonic devices such as waveguides, beam-splitters and beam-shapers often requires optimization of a cost function over a large solution space. Metaheuristics - algorithms based on empirical rules for exploring the solution space - are specifically tailored to those problems. One of the most widely used metaheuristics is the standard genetic algorithm (SGA), based on the evolution of a population of candidate solutions. However, the stochastic nature of the SGA sometimes prevents access to the optimal solution. Our goal is to show that a parallel tabu search (PTS) algorithm is more suited to optimization problems in general, and to photonics in particular. PTS is based on several search processes using a pool of diversified initial solutions. To assess the performance of both algorithms (SGA and PTS), we consider an integrated photonics design problem, the generation of arbitrary beam profiles using a two-dimensional waveguide-based dielectric structure. The authors acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC).

  6. A Pilot-Pattern Based Algorithm for MIMO-OFDM Channel Estimation

    Directory of Open Access Journals (Sweden)

    Guomin Li

    2016-12-01

    Full Text Available An improved pilot pattern algorithm for facilitating the channel estimation in multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM systems is proposed in this paper. The presented algorithm reconfigures the parameter in the least square (LS algorithm, which belongs to the space-time block-coded (STBC category for channel estimation in pilot-based MIMO-OFDM system. Simulation results show that the algorithm has better performance in contrast to the classical single symbol scheme. In contrast to the double symbols scheme, the proposed algorithm can achieve nearly the same performance with only half of the complexity of the double symbols scheme.

  7. A Sparse Self-Consistent Field Algorithm and Its Parallel Implementation: Application to Density-Functional-Based Tight Binding.

    Science.gov (United States)

    Scemama, Anthony; Renon, Nicolas; Rapacioli, Mathias

    2014-06-10

    We present an algorithm and its parallel implementation for solving a self-consistent problem as encountered in Hartree-Fock or density functional theory. The algorithm takes advantage of the sparsity of matrices through the use of local molecular orbitals. The implementation allows one to exploit efficiently modern symmetric multiprocessing (SMP) computer architectures. As a first application, the algorithm is used within the density-functional-based tight binding method, for which most of the computational time is spent in the linear algebra routines (diagonalization of the Fock/Kohn-Sham matrix). We show that with this algorithm (i) single point calculations on very large systems (millions of atoms) can be performed on large SMP machines, (ii) calculations involving intermediate size systems (1000-100 000 atoms) are also strongly accelerated and can run efficiently on standard servers, and (iii) the error on the total energy due to the use of a cutoff in the molecular orbital coefficients can be controlled such that it remains smaller than the SCF convergence criterion.

  8. Algorithm for Wireless Sensor Networks Based on Grid Management

    Directory of Open Access Journals (Sweden)

    Geng Zhang

    2014-05-01

    Full Text Available This paper analyzes the key issues for wireless sensor network trust model and describes a method to build a wireless sensor network, such as the definition of trust for wireless sensor networks, computing and credibility of trust model application. And for the problem that nodes are vulnerable to attack, this paper proposed a grid-based trust algorithm by deep exploration trust model within the framework of credit management. Algorithm for node reliability screening and rotation schedule to cover parallel manner based on the implementation of the nodes within the area covered by trust. And analyze the results of the size of trust threshold has great influence on the safety and quality of coverage throughout the coverage area. The simulation tests the validity and correctness of the algorithm.

  9. Multi-robot task allocation based on two dimensional artificial fish swarm algorithm

    Science.gov (United States)

    Zheng, Taixiong; Li, Xueqin; Yang, Liangyi

    2007-12-01

    The problem of task allocation for multiple robots is to allocate more relative-tasks to less relative-robots so as to minimize the processing time of these tasks. In order to get optimal multi-robot task allocation scheme, a twodimensional artificial swarm algorithm based approach is proposed in this paper. In this approach, the normal artificial fish is extended to be two dimension artificial fish. In the two dimension artificial fish, each vector of primary artificial fish is extended to be an m-dimensional vector. Thus, each vector can express a group of tasks. By redefining the distance between artificial fish and the center of artificial fish, the behavior of two dimension fish is designed and the task allocation algorithm based on two dimension artificial swarm algorithm is put forward. At last, the proposed algorithm is applied to the problem of multi-robot task allocation and comparer with GA and SA based algorithm is done. Simulation and compare result shows the proposed algorithm is effective.

  10. Identifying Psoriasis and Psoriatic Arthritis Patients in Retrospective Databases When Diagnosis Codes Are Not Available: A Validation Study Comparing Medication/Prescriber Visit-Based Algorithms with Diagnosis Codes.

    Science.gov (United States)

    Dobson-Belaire, Wendy; Goodfield, Jason; Borrelli, Richard; Liu, Fei Fei; Khan, Zeba M

    2018-01-01

    Using diagnosis code-based algorithms is the primary method of identifying patient cohorts for retrospective studies; nevertheless, many databases lack reliable diagnosis code information. To develop precise algorithms based on medication claims/prescriber visits (MCs/PVs) to identify psoriasis (PsO) patients and psoriatic patients with arthritic conditions (PsO-AC), a proxy for psoriatic arthritis, in Canadian databases lacking diagnosis codes. Algorithms were developed using medications with narrow indication profiles in combination with prescriber specialty to define PsO and PsO-AC. For a 3-year study period from July 1, 2009, algorithms were validated using the PharMetrics Plus database, which contains both adjudicated medication claims and diagnosis codes. Positive predictive value (PPV), negative predictive value (NPV), sensitivity, and specificity of the developed algorithms were assessed using diagnosis code as the reference standard. Chosen algorithms were then applied to Canadian drug databases to profile the algorithm-identified PsO and PsO-AC cohorts. In the selected database, 183,328 patients were identified for validation. The highest PPVs for PsO (85%) and PsO-AC (65%) occurred when a predictive algorithm of two or more MCs/PVs was compared with the reference standard of one or more diagnosis codes. NPV and specificity were high (99%-100%), whereas sensitivity was low (≤30%). Reducing the number of MCs/PVs or increasing diagnosis claims decreased the algorithms' PPVs. We have developed an MC/PV-based algorithm to identify PsO patients with a high degree of accuracy, but accuracy for PsO-AC requires further investigation. Such methods allow researchers to conduct retrospective studies in databases in which diagnosis codes are absent. Copyright © 2018 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  11. A novel image encryption algorithm based on a 3D chaotic map

    Science.gov (United States)

    Kanso, A.; Ghebleh, M.

    2012-07-01

    Recently [Solak E, Çokal C, Yildiz OT Biyikoǧlu T. Cryptanalysis of Fridrich's chaotic image encryption. Int J Bifur Chaos 2010;20:1405-1413] cryptanalyzed the chaotic image encryption algorithm of [Fridrich J. Symmetric ciphers based on two-dimensional chaotic maps. Int J Bifur Chaos 1998;8(6):1259-1284], which was considered a benchmark for measuring security of many image encryption algorithms. This attack can also be applied to other encryption algorithms that have a structure similar to Fridrich's algorithm, such as that of [Chen G, Mao Y, Chui, C. A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos Soliton Fract 2004;21:749-761]. In this paper, we suggest a novel image encryption algorithm based on a three dimensional (3D) chaotic map that can defeat the aforementioned attack among other existing attacks. The design of the proposed algorithm is simple and efficient, and based on three phases which provide the necessary properties for a secure image encryption algorithm including the confusion and diffusion properties. In phase I, the image pixels are shuffled according to a search rule based on the 3D chaotic map. In phases II and III, 3D chaotic maps are used to scramble shuffled pixels through mixing and masking rules, respectively. Simulation results show that the suggested algorithm satisfies the required performance tests such as high level security, large key space and acceptable encryption speed. These characteristics make it a suitable candidate for use in cryptographic applications.

  12. Temporal high-pass non-uniformity correction algorithm based on grayscale mapping and hardware implementation

    Science.gov (United States)

    Jin, Minglei; Jin, Weiqi; Li, Yiyang; Li, Shuo

    2015-08-01

    In this paper, we propose a novel scene-based non-uniformity correction algorithm for infrared image processing-temporal high-pass non-uniformity correction algorithm based on grayscale mapping (THP and GM). The main sources of non-uniformity are: (1) detector fabrication inaccuracies; (2) non-linearity and variations in the read-out electronics and (3) optical path effects. The non-uniformity will be reduced by non-uniformity correction (NUC) algorithms. The NUC algorithms are often divided into calibration-based non-uniformity correction (CBNUC) algorithms and scene-based non-uniformity correction (SBNUC) algorithms. As non-uniformity drifts temporally, CBNUC algorithms must be repeated by inserting a uniform radiation source which SBNUC algorithms do not need into the view, so the SBNUC algorithm becomes an essential part of infrared imaging system. The SBNUC algorithms' poor robustness often leads two defects: artifacts and over-correction, meanwhile due to complicated calculation process and large storage consumption, hardware implementation of the SBNUC algorithms is difficult, especially in Field Programmable Gate Array (FPGA) platform. The THP and GM algorithm proposed in this paper can eliminate the non-uniformity without causing defects. The hardware implementation of the algorithm only based on FPGA has two advantages: (1) low resources consumption, and (2) small hardware delay: less than 20 lines, it can be transplanted to a variety of infrared detectors equipped with FPGA image processing module, it can reduce the stripe non-uniformity and the ripple non-uniformity.

  13. Cloud Computing Task Scheduling Based on Cultural Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Li Jian-Wen

    2016-01-01

    Full Text Available The task scheduling strategy based on cultural genetic algorithm(CGA is proposed in order to improve the efficiency of task scheduling in the cloud computing platform, which targets at minimizing the total time and cost of task scheduling. The improved genetic algorithm is used to construct the main population space and knowledge space under cultural framework which get independent parallel evolution, forming a mechanism of mutual promotion to dispatch the cloud task. Simultaneously, in order to prevent the defects of the genetic algorithm which is easy to fall into local optimum, the non-uniform mutation operator is introduced to improve the search performance of the algorithm. The experimental results show that CGA reduces the total time and lowers the cost of the scheduling, which is an effective algorithm for the cloud task scheduling.

  14. Micro-Doppler Signal Time-Frequency Algorithm Based on STFRFT

    Directory of Open Access Journals (Sweden)

    Cunsuo Pang

    2016-09-01

    Full Text Available This paper proposes a time-frequency algorithm based on short-time fractional order Fourier transformation (STFRFT for identification of a complicated movement targets. This algorithm, consisting of a STFRFT order-changing and quick selection method, is effective in reducing the computation load. A multi-order STFRFT time-frequency algorithm is also developed that makes use of the time-frequency feature of each micro-Doppler component signal. This algorithm improves the estimation accuracy of time-frequency curve fitting through multi-order matching. Finally, experiment data were used to demonstrate STFRFT’s performance in micro-Doppler time-frequency analysis. The results validated the higher estimate accuracy of the proposed algorithm. It may be applied to an LFM (Linear frequency modulated pulse radar, SAR (Synthetic aperture radar, or ISAR (Inverse synthetic aperture radar, for improving the probability of target recognition.

  15. Micro-Doppler Signal Time-Frequency Algorithm Based on STFRFT.

    Science.gov (United States)

    Pang, Cunsuo; Han, Yan; Hou, Huiling; Liu, Shengheng; Zhang, Nan

    2016-09-24

    This paper proposes a time-frequency algorithm based on short-time fractional order Fourier transformation (STFRFT) for identification of a complicated movement targets. This algorithm, consisting of a STFRFT order-changing and quick selection method, is effective in reducing the computation load. A multi-order STFRFT time-frequency algorithm is also developed that makes use of the time-frequency feature of each micro-Doppler component signal. This algorithm improves the estimation accuracy of time-frequency curve fitting through multi-order matching. Finally, experiment data were used to demonstrate STFRFT's performance in micro-Doppler time-frequency analysis. The results validated the higher estimate accuracy of the proposed algorithm. It may be applied to an LFM (Linear frequency modulated) pulse radar, SAR (Synthetic aperture radar), or ISAR (Inverse synthetic aperture radar), for improving the probability of target recognition.

  16. A Superresolution Image Reconstruction Algorithm Based on Landweber in Electrical Capacitance Tomography

    Directory of Open Access Journals (Sweden)

    Chen Deyun

    2013-01-01

    Full Text Available According to the image reconstruction accuracy influenced by the “soft field” nature and ill-conditioned problems in electrical capacitance tomography, a superresolution image reconstruction algorithm based on Landweber is proposed in the paper, which is based on the working principle of the electrical capacitance tomography system. The method uses the algorithm which is derived by regularization of solutions derived and derives closed solution by fast Fourier transform of the convolution kernel. So, it ensures the certainty of the solution and improves the stability and quality of image reconstruction results. Simulation results show that the imaging precision and real-time imaging of the algorithm are better than Landweber algorithm, and this algorithm proposes a new method for the electrical capacitance tomography image reconstruction algorithm.

  17. K-Nearest Neighbor Intervals Based AP Clustering Algorithm for Large Incomplete Data

    Directory of Open Access Journals (Sweden)

    Cheng Lu

    2015-01-01

    Full Text Available The Affinity Propagation (AP algorithm is an effective algorithm for clustering analysis, but it can not be directly applicable to the case of incomplete data. In view of the prevalence of missing data and the uncertainty of missing attributes, we put forward a modified AP clustering algorithm based on K-nearest neighbor intervals (KNNI for incomplete data. Based on an Improved Partial Data Strategy, the proposed algorithm estimates the KNNI representation of missing attributes by using the attribute distribution information of the available data. The similarity function can be changed by dealing with the interval data. Then the improved AP algorithm can be applicable to the case of incomplete data. Experiments on several UCI datasets show that the proposed algorithm achieves impressive clustering results.

  18. Blind Source Separation Based on Covariance Ratio and Artificial Bee Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2014-01-01

    Full Text Available The computation amount in blind source separation based on bioinspired intelligence optimization is high. In order to solve this problem, we propose an effective blind source separation algorithm based on the artificial bee colony algorithm. In the proposed algorithm, the covariance ratio of the signals is utilized as the objective function and the artificial bee colony algorithm is used to solve it. The source signal component which is separated out, is then wiped off from mixtures using the deflation method. All the source signals can be recovered successfully by repeating the separation process. Simulation experiments demonstrate that significant improvement of the computation amount and the quality of signal separation is achieved by the proposed algorithm when compared to previous algorithms.

  19. A new algorithm for 3D reconstruction from support functions

    DEFF Research Database (Denmark)

    Gardner, Richard; Kiderlen, Markus

    2009-01-01

    We introduce a new algorithm for reconstructing an unknown shape from a finite number of noisy measurements of its support function. The algorithm, based on a least squares procedure, is very easy to program in standard software such as Matlab and allows, for the first time, good 3D reconstructio...

  20. A Cancer Gene Selection Algorithm Based on the K-S Test and CFS

    Directory of Open Access Journals (Sweden)

    Qiang Su

    2017-01-01

    Full Text Available Background. To address the challenging problem of selecting distinguished genes from cancer gene expression datasets, this paper presents a gene subset selection algorithm based on the Kolmogorov-Smirnov (K-S test and correlation-based feature selection (CFS principles. The algorithm selects distinguished genes first using the K-S test, and then, it uses CFS to select genes from those selected by the K-S test. Results. We adopted support vector machines (SVM as the classification tool and used the criteria of accuracy to evaluate the performance of the classifiers on the selected gene subsets. This approach compared the proposed gene subset selection algorithm with the K-S test, CFS, minimum-redundancy maximum-relevancy (mRMR, and ReliefF algorithms. The average experimental results of the aforementioned gene selection algorithms for 5 gene expression datasets demonstrate that, based on accuracy, the performance of the new K-S and CFS-based algorithm is better than those of the K-S test, CFS, mRMR, and ReliefF algorithms. Conclusions. The experimental results show that the K-S test-CFS gene selection algorithm is a very effective and promising approach compared to the K-S test, CFS, mRMR, and ReliefF algorithms.

  1. Comparison between Genetic Algorithms and Particle Swarm Optimization Methods on Standard Test Functions and Machine Design

    DEFF Research Database (Denmark)

    Nica, Florin Valentin Traian; Ritchie, Ewen; Leban, Krisztina Monika

    2013-01-01

    , genetic algorithm and particle swarm are shortly presented in this paper. These two algorithms are tested to determine their performance on five different benchmark test functions. The algorithms are tested based on three requirements: precision of the result, number of iterations and calculation time....... Both algorithms are also tested on an analytical design process of a Transverse Flux Permanent Magnet Generator to observe their performances in an electrical machine design application.......Nowadays the requirements imposed by the industry and economy ask for better quality and performance while the price must be maintained in the same range. To achieve this goal optimization must be introduced in the design process. Two of the best known optimization algorithms for machine design...

  2. Genetic algorithm-based improved DOA estimation using fourth-order cumulants

    Science.gov (United States)

    Ahmed, Ammar; Tufail, Muhammad

    2017-05-01

    Genetic algorithm (GA)-based direction of arrival (DOA) estimation is proposed using fourth-order cumulants (FOC) and ESPRIT principle which results in Multiple Invariance Cumulant ESPRIT algorithm. In the existing FOC ESPRIT formulations, only one invariance is utilised to estimate DOAs. The unused multiple invariances (MIs) must be exploited simultaneously in order to improve the estimation accuracy. In this paper, a fitness function based on a carefully designed cumulant matrix is developed which incorporates MIs present in the sensor array. Better DOA estimation can be achieved by minimising this fitness function. Moreover, the effectiveness of Newton's method as well as GA for this optimisation problem has been illustrated. Simulation results show that the proposed algorithm provides improved estimation accuracy compared to existing algorithms, especially in the case of low SNR, less number of snapshots, closely spaced sources and high signal and noise correlation. Moreover, it is observed that the optimisation using Newton's method is more likely to converge to false local optima resulting in erroneous results. However, GA-based optimisation has been found attractive due to its global optimisation capability.

  3. A grammar-based semantic similarity algorithm for natural language sentences.

    Science.gov (United States)

    Lee, Ming Che; Chang, Jia Wei; Hsieh, Tung Cheng

    2014-01-01

    This paper presents a grammar and semantic corpus based similarity algorithm for natural language sentences. Natural language, in opposition to "artificial language", such as computer programming languages, is the language used by the general public for daily communication. Traditional information retrieval approaches, such as vector models, LSA, HAL, or even the ontology-based approaches that extend to include concept similarity comparison instead of cooccurrence terms/words, may not always determine the perfect matching while there is no obvious relation or concept overlap between two natural language sentences. This paper proposes a sentence similarity algorithm that takes advantage of corpus-based ontology and grammatical rules to overcome the addressed problems. Experiments on two famous benchmarks demonstrate that the proposed algorithm has a significant performance improvement in sentences/short-texts with arbitrary syntax and structure.

  4. A test sheet generating algorithm based on intelligent genetic algorithm and hierarchical planning

    Science.gov (United States)

    Gu, Peipei; Niu, Zhendong; Chen, Xuting; Chen, Wei

    2013-03-01

    In recent years, computer-based testing has become an effective method to evaluate students' overall learning progress so that appropriate guiding strategies can be recommended. Research has been done to develop intelligent test assembling systems which can automatically generate test sheets based on given parameters of test items. A good multisubject test sheet depends on not only the quality of the test items but also the construction of the sheet. Effective and efficient construction of test sheets according to multiple subjects and criteria is a challenging problem. In this paper, a multi-subject test sheet generation problem is formulated and a test sheet generating approach based on intelligent genetic algorithm and hierarchical planning (GAHP) is proposed to tackle this problem. The proposed approach utilizes hierarchical planning to simplify the multi-subject testing problem and adopts genetic algorithm to process the layered criteria, enabling the construction of good test sheets according to multiple test item requirements. Experiments are conducted and the results show that the proposed approach is capable of effectively generating multi-subject test sheets that meet specified requirements and achieve good performance.

  5. Research and Application on Fractional-Order Darwinian PSO Based Adaptive Extended Kalman Filtering Algorithm

    Directory of Open Access Journals (Sweden)

    Qiguang Zhu

    2014-05-01

    Full Text Available To resolve the difficulty in establishing accurate priori noise model for the extended Kalman filtering algorithm, propose the fractional-order Darwinian particle swarm optimization (PSO algorithm has been proposed and introduced into the fuzzy adaptive extended Kalman filtering algorithm. The natural selection method has been adopted to improve the standard particle swarm optimization algorithm, which enhanced the diversity of particles and avoided the premature. In addition, the fractional calculus has been used to improve the evolution speed of particles. The PSO algorithm after improved has been applied to train fuzzy adaptive extended Kalman filter and achieve the simultaneous localization and mapping. The simulation results have shown that compared with the geese particle swarm optimization training of fuzzy adaptive extended Kalman filter localization and mapping algorithm, has been greatly improved in terms of localization and mapping.

  6. Competitive Swarm Optimizer Based Gateway Deployment Algorithm in Cyber-Physical Systems.

    Science.gov (United States)

    Huang, Shuqiang; Tao, Ming

    2017-01-22

    Wireless sensor network topology optimization is a highly important issue, and topology control through node selection can improve the efficiency of data forwarding, while saving energy and prolonging lifetime of the network. To address the problem of connecting a wireless sensor network to the Internet in cyber-physical systems, here we propose a geometric gateway deployment based on a competitive swarm optimizer algorithm. The particle swarm optimization (PSO) algorithm has a continuous search feature in the solution space, which makes it suitable for finding the geometric center of gateway deployment; however, its search mechanism is limited to the individual optimum (pbest) and the population optimum (gbest); thus, it easily falls into local optima. In order to improve the particle search mechanism and enhance the search efficiency of the algorithm, we introduce a new competitive swarm optimizer (CSO) algorithm. The CSO search algorithm is based on an inter-particle competition mechanism and can effectively avoid trapping of the population falling into a local optimum. With the improvement of an adaptive opposition-based search and its ability to dynamically parameter adjustments, this algorithm can maintain the diversity of the entire swarm to solve geometric K -center gateway deployment problems. The simulation results show that this CSO algorithm has a good global explorative ability as well as convergence speed and can improve the network quality of service (QoS) level of cyber-physical systems by obtaining a minimum network coverage radius. We also find that the CSO algorithm is more stable, robust and effective in solving the problem of geometric gateway deployment as compared to the PSO or Kmedoids algorithms.

  7. Competitive Swarm Optimizer Based Gateway Deployment Algorithm in Cyber-Physical Systems

    Directory of Open Access Journals (Sweden)

    Shuqiang Huang

    2017-01-01

    Full Text Available Wireless sensor network topology optimization is a highly important issue, and topology control through node selection can improve the efficiency of data forwarding, while saving energy and prolonging lifetime of the network. To address the problem of connecting a wireless sensor network to the Internet in cyber-physical systems, here we propose a geometric gateway deployment based on a competitive swarm optimizer algorithm. The particle swarm optimization (PSO algorithm has a continuous search feature in the solution space, which makes it suitable for finding the geometric center of gateway deployment; however, its search mechanism is limited to the individual optimum (pbest and the population optimum (gbest; thus, it easily falls into local optima. In order to improve the particle search mechanism and enhance the search efficiency of the algorithm, we introduce a new competitive swarm optimizer (CSO algorithm. The CSO search algorithm is based on an inter-particle competition mechanism and can effectively avoid trapping of the population falling into a local optimum. With the improvement of an adaptive opposition-based search and its ability to dynamically parameter adjustments, this algorithm can maintain the diversity of the entire swarm to solve geometric K-center gateway deployment problems. The simulation results show that this CSO algorithm has a good global explorative ability as well as convergence speed and can improve the network quality of service (QoS level of cyber-physical systems by obtaining a minimum network coverage radius. We also find that the CSO algorithm is more stable, robust and effective in solving the problem of geometric gateway deployment as compared to the PSO or Kmedoids algorithms.

  8. Competitive Swarm Optimizer Based Gateway Deployment Algorithm in Cyber-Physical Systems

    Science.gov (United States)

    Huang, Shuqiang; Tao, Ming

    2017-01-01

    Wireless sensor network topology optimization is a highly important issue, and topology control through node selection can improve the efficiency of data forwarding, while saving energy and prolonging lifetime of the network. To address the problem of connecting a wireless sensor network to the Internet in cyber-physical systems, here we propose a geometric gateway deployment based on a competitive swarm optimizer algorithm. The particle swarm optimization (PSO) algorithm has a continuous search feature in the solution space, which makes it suitable for finding the geometric center of gateway deployment; however, its search mechanism is limited to the individual optimum (pbest) and the population optimum (gbest); thus, it easily falls into local optima. In order to improve the particle search mechanism and enhance the search efficiency of the algorithm, we introduce a new competitive swarm optimizer (CSO) algorithm. The CSO search algorithm is based on an inter-particle competition mechanism and can effectively avoid trapping of the population falling into a local optimum. With the improvement of an adaptive opposition-based search and its ability to dynamically parameter adjustments, this algorithm can maintain the diversity of the entire swarm to solve geometric K-center gateway deployment problems. The simulation results show that this CSO algorithm has a good global explorative ability as well as convergence speed and can improve the network quality of service (QoS) level of cyber-physical systems by obtaining a minimum network coverage radius. We also find that the CSO algorithm is more stable, robust and effective in solving the problem of geometric gateway deployment as compared to the PSO or Kmedoids algorithms. PMID:28117735

  9. Multiparametric programming based algorithms for pure integer and mixed-integer bilevel programming problems

    KAUST Repository

    Domínguez, Luis F.

    2010-12-01

    This work introduces two algorithms for the solution of pure integer and mixed-integer bilevel programming problems by multiparametric programming techniques. The first algorithm addresses the integer case of the bilevel programming problem where integer variables of the outer optimization problem appear in linear or polynomial form in the inner problem. The algorithm employs global optimization techniques to convexify nonlinear terms generated by a reformulation linearization technique (RLT). A continuous multiparametric programming algorithm is then used to solve the reformulated convex inner problem. The second algorithm addresses the mixed-integer case of the bilevel programming problem where integer and continuous variables of the outer problem appear in linear or polynomial forms in the inner problem. The algorithm relies on the use of global multiparametric mixed-integer programming techniques at the inner optimization level. In both algorithms, the multiparametric solutions obtained are embedded in the outer problem to form a set of single-level (M)(I)(N)LP problems - which are then solved to global optimality using standard fixed-point (global) optimization methods. Numerical examples drawn from the open literature are presented to illustrate the proposed algorithms. © 2010 Elsevier Ltd.

  10. Shockwave-Based Automated Vehicle Longitudinal Control Algorithm for Nonrecurrent Congestion Mitigation

    Directory of Open Access Journals (Sweden)

    Liuhui Zhao

    2017-01-01

    Full Text Available A shockwave-based speed harmonization algorithm for the longitudinal movement of automated vehicles is presented in this paper. In the advent of Connected/Automated Vehicle (C/AV environment, the proposed algorithm can be applied to capture instantaneous shockwaves constructed from vehicular speed profiles shared by individual equipped vehicles. With a continuous wavelet transform (CWT method, the algorithm detects abnormal speed drops in real-time and optimizes speed to prevent the shockwave propagating to the upstream traffic. A traffic simulation model is calibrated to evaluate the applicability and efficiency of the proposed algorithm. Based on 100% C/AV market penetration, the simulation results show that the CWT-based algorithm accurately detects abnormal speed drops. With the improved accuracy of abnormal speed drop detection, the simulation results also demonstrate that the congestion can be mitigated by reducing travel time and delay up to approximately 9% and 18%, respectively. It is also found that the shockwave caused by nonrecurrent congestion is quickly dissipated even with low market penetration.

  11. DNA-based watermarks using the DNA-Crypt algorithm

    Directory of Open Access Journals (Sweden)

    Barnekow Angelika

    2007-05-01

    Full Text Available Abstract Background The aim of this paper is to demonstrate the application of watermarks based on DNA sequences to identify the unauthorized use of genetically modified organisms (GMOs protected by patents. Predicted mutations in the genome can be corrected by the DNA-Crypt program leaving the encrypted information intact. Existing DNA cryptographic and steganographic algorithms use synthetic DNA sequences to store binary information however, although these sequences can be used for authentication, they may change the target DNA sequence when introduced into living organisms. Results The DNA-Crypt algorithm and image steganography are based on the same watermark-hiding principle, namely using the least significant base in case of DNA-Crypt and the least significant bit in case of the image steganography. It can be combined with binary encryption algorithms like AES, RSA or Blowfish. DNA-Crypt is able to correct mutations in the target DNA with several mutation correction codes such as the Hamming-code or the WDH-code. Mutations which can occur infrequently may destroy the encrypted information, however an integrated fuzzy controller decides on a set of heuristics based on three input dimensions, and recommends whether or not to use a correction code. These three input dimensions are the length of the sequence, the individual mutation rate and the stability over time, which is represented by the number of generations. In silico experiments using the Ypt7 in Saccharomyces cerevisiae shows that the DNA watermarks produced by DNA-Crypt do not alter the translation of mRNA into protein. Conclusion The program is able to store watermarks in living organisms and can maintain the original information by correcting mutations itself. Pairwise or multiple sequence alignments show that DNA-Crypt produces few mismatches between the sequences similar to all steganographic algorithms.

  12. DNA-based watermarks using the DNA-Crypt algorithm.

    Science.gov (United States)

    Heider, Dominik; Barnekow, Angelika

    2007-05-29

    The aim of this paper is to demonstrate the application of watermarks based on DNA sequences to identify the unauthorized use of genetically modified organisms (GMOs) protected by patents. Predicted mutations in the genome can be corrected by the DNA-Crypt program leaving the encrypted information intact. Existing DNA cryptographic and steganographic algorithms use synthetic DNA sequences to store binary information however, although these sequences can be used for authentication, they may change the target DNA sequence when introduced into living organisms. The DNA-Crypt algorithm and image steganography are based on the same watermark-hiding principle, namely using the least significant base in case of DNA-Crypt and the least significant bit in case of the image steganography. It can be combined with binary encryption algorithms like AES, RSA or Blowfish. DNA-Crypt is able to correct mutations in the target DNA with several mutation correction codes such as the Hamming-code or the WDH-code. Mutations which can occur infrequently may destroy the encrypted information, however an integrated fuzzy controller decides on a set of heuristics based on three input dimensions, and recommends whether or not to use a correction code. These three input dimensions are the length of the sequence, the individual mutation rate and the stability over time, which is represented by the number of generations. In silico experiments using the Ypt7 in Saccharomyces cerevisiae shows that the DNA watermarks produced by DNA-Crypt do not alter the translation of mRNA into protein. The program is able to store watermarks in living organisms and can maintain the original information by correcting mutations itself. Pairwise or multiple sequence alignments show that DNA-Crypt produces few mismatches between the sequences similar to all steganographic algorithms.

  13. DNA-based watermarks using the DNA-Crypt algorithm

    Science.gov (United States)

    Heider, Dominik; Barnekow, Angelika

    2007-01-01

    Background The aim of this paper is to demonstrate the application of watermarks based on DNA sequences to identify the unauthorized use of genetically modified organisms (GMOs) protected by patents. Predicted mutations in the genome can be corrected by the DNA-Crypt program leaving the encrypted information intact. Existing DNA cryptographic and steganographic algorithms use synthetic DNA sequences to store binary information however, although these sequences can be used for authentication, they may change the target DNA sequence when introduced into living organisms. Results The DNA-Crypt algorithm and image steganography are based on the same watermark-hiding principle, namely using the least significant base in case of DNA-Crypt and the least significant bit in case of the image steganography. It can be combined with binary encryption algorithms like AES, RSA or Blowfish. DNA-Crypt is able to correct mutations in the target DNA with several mutation correction codes such as the Hamming-code or the WDH-code. Mutations which can occur infrequently may destroy the encrypted information, however an integrated fuzzy controller decides on a set of heuristics based on three input dimensions, and recommends whether or not to use a correction code. These three input dimensions are the length of the sequence, the individual mutation rate and the stability over time, which is represented by the number of generations. In silico experiments using the Ypt7 in Saccharomyces cerevisiae shows that the DNA watermarks produced by DNA-Crypt do not alter the translation of mRNA into protein. Conclusion The program is able to store watermarks in living organisms and can maintain the original information by correcting mutations itself. Pairwise or multiple sequence alignments show that DNA-Crypt produces few mismatches between the sequences similar to all steganographic algorithms. PMID:17535434

  14. Reactive power and voltage control based on general quantum genetic algorithms

    DEFF Research Database (Denmark)

    Vlachogiannis, Ioannis (John); Østergaard, Jacob

    2009-01-01

    This paper presents an improved evolutionary algorithm based on quantum computing for optima l steady-state performance of power systems. However, the proposed general quantum genetic algorithm (GQ-GA) can be applied in various combinatorial optimization problems. In this study the GQ-GA determines...... techniques such as enhanced GA, multi-objective evolutionary algorithm and particle swarm optimization algorithms, as well as the classical primal-dual interior-point optimal power flow algorithm. The comparison demonstrates the ability of the GQ-GA in reaching more optimal solutions....

  15. CAS algorithm-based optimum design of PID controller in AVR system

    International Nuclear Information System (INIS)

    Zhu Hui; Li Lixiang; Zhao Ying; Guo Yu; Yang Yixian

    2009-01-01

    This paper presents a novel design method for determining the optimal PID controller parameters of an automatic voltage regulator (AVR) system using the chaotic ant swarm (CAS) algorithm. In the tuning process of parameters, the CAS algorithm is iterated to give the optimal parameters of the PID controller based on the fitness theory, where the position vector of each ant in the CAS algorithm corresponds to the parameter vector of the PID controller. The proposed CAS-PID controllers can ensure better control system performance with respect to the reference input in comparison with GA-PID controllers. Numerical simulations are provided to verify the effectiveness and feasibility of PID controller based on CAS algorithm.

  16. An Improved Iris Recognition Algorithm Based on Hybrid Feature and ELM

    Science.gov (United States)

    Wang, Juan

    2018-03-01

    The iris image is easily polluted by noise and uneven light. This paper proposed an improved extreme learning machine (ELM) based iris recognition algorithm with hybrid feature. 2D-Gabor filters and GLCM is employed to generate a multi-granularity hybrid feature vector. 2D-Gabor filter and GLCM feature work for capturing low-intermediate frequency and high frequency texture information, respectively. Finally, we utilize extreme learning machine for iris recognition. Experimental results reveal our proposed ELM based multi-granularity iris recognition algorithm (ELM-MGIR) has higher accuracy of 99.86%, and lower EER of 0.12% under the premise of real-time performance. The proposed ELM-MGIR algorithm outperforms other mainstream iris recognition algorithms.

  17. A Novel Entropy-Based Decoding Algorithm for a Generalized High-Order Discrete Hidden Markov Model

    Directory of Open Access Journals (Sweden)

    Jason Chin-Tiong Chan

    2018-01-01

    Full Text Available The optimal state sequence of a generalized High-Order Hidden Markov Model (HHMM is tracked from a given observational sequence using the classical Viterbi algorithm. This classical algorithm is based on maximum likelihood criterion. We introduce an entropy-based Viterbi algorithm for tracking the optimal state sequence of a HHMM. The entropy of a state sequence is a useful quantity, providing a measure of the uncertainty of a HHMM. There will be no uncertainty if there is only one possible optimal state sequence for HHMM. This entropy-based decoding algorithm can be formulated in an extended or a reduction approach. We extend the entropy-based algorithm for computing the optimal state sequence that was developed from a first-order to a generalized HHMM with a single observational sequence. This extended algorithm performs the computation exponentially with respect to the order of HMM. The computational complexity of this extended algorithm is due to the growth of the model parameters. We introduce an efficient entropy-based decoding algorithm that used reduction approach, namely, entropy-based order-transformation forward algorithm (EOTFA to compute the optimal state sequence of any generalized HHMM. This EOTFA algorithm involves a transformation of a generalized high-order HMM into an equivalent first-order HMM and an entropy-based decoding algorithm is developed based on the equivalent first-order HMM. This algorithm performs the computation based on the observational sequence and it requires OTN~2 calculations, where N~ is the number of states in an equivalent first-order model and T is the length of observational sequence.

  18. Machine-Learning Algorithms to Code Public Health Spending Accounts.

    Science.gov (United States)

    Brady, Eoghan S; Leider, Jonathon P; Resnick, Beth A; Alfonso, Y Natalia; Bishai, David

    Government public health expenditure data sets require time- and labor-intensive manipulation to summarize results that public health policy makers can use. Our objective was to compare the performances of machine-learning algorithms with manual classification of public health expenditures to determine if machines could provide a faster, cheaper alternative to manual classification. We used machine-learning algorithms to replicate the process of manually classifying state public health expenditures, using the standardized public health spending categories from the Foundational Public Health Services model and a large data set from the US Census Bureau. We obtained a data set of 1.9 million individual expenditure items from 2000 to 2013. We collapsed these data into 147 280 summary expenditure records, and we followed a standardized method of manually classifying each expenditure record as public health, maybe public health, or not public health. We then trained 9 machine-learning algorithms to replicate the manual process. We calculated recall, precision, and coverage rates to measure the performance of individual and ensembled algorithms. Compared with manual classification, the machine-learning random forests algorithm produced 84% recall and 91% precision. With algorithm ensembling, we achieved our target criterion of 90% recall by using a consensus ensemble of ≥6 algorithms while still retaining 93% coverage, leaving only 7% of the summary expenditure records unclassified. Machine learning can be a time- and cost-saving tool for estimating public health spending in the United States. It can be used with standardized public health spending categories based on the Foundational Public Health Services model to help parse public health expenditure information from other types of health-related spending, provide data that are more comparable across public health organizations, and evaluate the impact of evidence-based public health resource allocation.

  19. An enhanced fractal image denoising algorithm

    International Nuclear Information System (INIS)

    Lu Jian; Ye Zhongxing; Zou Yuru; Ye Ruisong

    2008-01-01

    In recent years, there has been a significant development in image denoising using fractal-based method. This paper presents an enhanced fractal predictive denoising algorithm for denoising the images corrupted by an additive white Gaussian noise (AWGN) by using quadratic gray-level function. Meanwhile, a quantization method for the fractal gray-level coefficients of the quadratic function is proposed to strictly guarantee the contractivity requirement of the enhanced fractal coding, and in terms of the quality of the fractal representation measured by PSNR, the enhanced fractal image coding using quadratic gray-level function generally performs better than the standard fractal coding using linear gray-level function. Based on this enhanced fractal coding, the enhanced fractal image denoising is implemented by estimating the fractal gray-level coefficients of the quadratic function of the noiseless image from its noisy observation. Experimental results show that, compared with other standard fractal-based image denoising schemes using linear gray-level function, the enhanced fractal denoising algorithm can improve the quality of the restored image efficiently

  20. Fuzzy Sets-based Control Rules for Terminating Algorithms

    Directory of Open Access Journals (Sweden)

    Jose L. VERDEGAY

    2002-01-01

    Full Text Available In this paper some problems arising in the interface between two different areas, Decision Support Systems and Fuzzy Sets and Systems, are considered. The Model-Base Management System of a Decision Support System which involves some fuzziness is considered, and in that context the questions on the management of the fuzziness in some optimisation models, and then of using fuzzy rules for terminating conventional algorithms are presented, discussed and analyzed. Finally, for the concrete case of the Travelling Salesman Problem, and as an illustration of determination, management and using the fuzzy rules, a new algorithm easy to implement in the Model-Base Management System of any oriented Decision Support System is shown.

  1. The research of automatic speed control algorithm based on Green CBTC

    Science.gov (United States)

    Lin, Ying; Xiong, Hui; Wang, Xiaoliang; Wu, Youyou; Zhang, Chuanqi

    2017-06-01

    Automatic speed control algorithm is one of the core technologies of train operation control system. It’s a typical multi-objective optimization control algorithm, which achieve the train speed control for timing, comfort, energy-saving and precise parking. At present, the train speed automatic control technology is widely used in metro and inter-city railways. It has been found that the automatic speed control technology can effectively reduce the driver’s intensity, and improve the operation quality. However, the current used algorithm is poor at energy-saving, even not as good as manual driving. In order to solve the problem of energy-saving, this paper proposes an automatic speed control algorithm based on Green CBTC system. Based on the Green CBTC system, the algorithm can adjust the operation status of the train to improve the efficient using rate of regenerative braking feedback energy while ensuring the timing, comfort and precise parking targets. Due to the reason, the energy-using of Green CBTC system is lower than traditional CBTC system. The simulation results show that the algorithm based on Green CBTC system can effectively reduce the energy-using due to the improvement of the using rate of regenerative braking feedback energy.

  2. Low-dose multiple-information retrieval algorithm for X-ray grating-based imaging

    International Nuclear Information System (INIS)

    Wang Zhentian; Huang Zhifeng; Chen Zhiqiang; Zhang Li; Jiang Xiaolei; Kang Kejun; Yin Hongxia; Wang Zhenchang; Stampanoni, Marco

    2011-01-01

    The present work proposes a low dose information retrieval algorithm for X-ray grating-based multiple-information imaging (GB-MII) method, which can retrieve the attenuation, refraction and scattering information of samples by only three images. This algorithm aims at reducing the exposure time and the doses delivered to the sample. The multiple-information retrieval problem in GB-MII is solved by transforming a nonlinear equations set to a linear equations and adopting the nature of the trigonometric functions. The proposed algorithm is validated by experiments both on conventional X-ray source and synchrotron X-ray source, and compared with the traditional multiple-image-based retrieval algorithm. The experimental results show that our algorithm is comparable with the traditional retrieval algorithm and especially suitable for high Signal-to-Noise system.

  3. A Sustainable City Planning Algorithm Based on TLBO and Local Search

    Science.gov (United States)

    Zhang, Ke; Lin, Li; Huang, Xuanxuan; Liu, Yiming; Zhang, Yonggang

    2017-09-01

    Nowadays, how to design a city with more sustainable features has become a center problem in the field of social development, meanwhile it has provided a broad stage for the application of artificial intelligence theories and methods. Because the design of sustainable city is essentially a constraint optimization problem, the swarm intelligence algorithm of extensive research has become a natural candidate for solving the problem. TLBO (Teaching-Learning-Based Optimization) algorithm is a new swarm intelligence algorithm. Its inspiration comes from the “teaching” and “learning” behavior of teaching class in the life. The evolution of the population is realized by simulating the “teaching” of the teacher and the student “learning” from each other, with features of less parameters, efficient, simple thinking, easy to achieve and so on. It has been successfully applied to scheduling, planning, configuration and other fields, which achieved a good effect and has been paid more and more attention by artificial intelligence researchers. Based on the classical TLBO algorithm, we propose a TLBO_LS algorithm combined with local search. We design and implement the random generation algorithm and evaluation model of urban planning problem. The experiments on the small and medium-sized random generation problem showed that our proposed algorithm has obvious advantages over DE algorithm and classical TLBO algorithm in terms of convergence speed and solution quality.

  4. Effectiveness of firefly algorithm based neural network in time series ...

    African Journals Online (AJOL)

    Effectiveness of firefly algorithm based neural network in time series forecasting. ... In the experiments, three well known time series were used to evaluate the performance. Results obtained were compared with ... Keywords: Time series, Artificial Neural Network, Firefly Algorithm, Particle Swarm Optimization, Overfitting ...

  5. Prototype Implementation of Two Efficient Low-Complexity Digital Predistortion Algorithms

    Directory of Open Access Journals (Sweden)

    Timo I. Laakso

    2008-01-01

    Full Text Available Predistortion (PD lineariser for microwave power amplifiers (PAs is an important topic of research. With larger and larger bandwidth as it appears today in modern WiMax standards as well as in multichannel base stations for 3GPP standards, the relatively simple nonlinear effect of a PA becomes a complex memory-including function, severely distorting the output signal. In this contribution, two digital PD algorithms are investigated for the linearisation of microwave PAs in mobile communications. The first one is an efficient and low-complexity algorithm based on a memoryless model, called the simplicial canonical piecewise linear (SCPWL function that describes the static nonlinear characteristic of the PA. The second algorithm is more general, approximating the pre-inverse filter of a nonlinear PA iteratively using a Volterra model. The first simpler algorithm is suitable for compensation of amplitude compression and amplitude-to-phase conversion, for example, in mobile units with relatively small bandwidths. The second algorithm can be used to linearise PAs operating with larger bandwidths, thus exhibiting memory effects, for example, in multichannel base stations. A measurement testbed which includes a transmitter-receiver chain with a microwave PA is built for testing and prototyping of the proposed PD algorithms. In the testing phase, the PD algorithms are implemented using MATLAB (floating-point representation and tested in record-and-playback mode. The iterative PD algorithm is then implemented on a Field Programmable Gate Array (FPGA using fixed-point representation. The FPGA implementation allows the pre-inverse filter to be tested in a real-time mode. Measurement results show excellent linearisation capabilities of both the proposed algorithms in terms of adjacent channel power suppression. It is also shown that the fixed-point FPGA implementation of the iterative algorithm performs as well as the floating-point implementation.

  6. Controller Parameter Optimization for Nonlinear Systems Using Enhanced Bacteria Foraging Algorithm

    Directory of Open Access Journals (Sweden)

    V. Rajinikanth

    2012-01-01

    Full Text Available An enhanced bacteria foraging optimization (EBFO algorithm-based Proportional + integral + derivative (PID controller tuning is proposed for a class of nonlinear process models. The EBFO algorithm is a modified form of standard BFO algorithm. A multiobjective performance index is considered to guide the EBFO algorithm for discovering the best possible value of controller parameters. The efficiency of the proposed scheme has been validated through a comparative study with classical BFO, adaptive BFO, PSO, and GA based controller tuning methods proposed in the literature. The proposed algorithm is tested in real time on a nonlinear spherical tank system. The real-time results show that, EBFO tuned PID controller gives a smooth response for setpoint tracking performance.

  7. The Heeger & Bergen Pyramid Based Texture Synthesis Algorithm

    Directory of Open Access Journals (Sweden)

    Thibaud Briand

    2014-11-01

    Full Text Available This contribution deals with the Heeger-Bergen pyramid-based texture analysis/synthesis algorithm. It brings a detailed explanation of the original algorithm tested on many characteristic examples. Our analysis reproduces the original results, but also brings a minor improvement concerning non-periodic textures. Inspired by visual perception theories, Heeger and Bergen proposed to characterize a texture by its first-order statistics of both its color and its responses to multiscale and multi-orientation filters, namely the steerable pyramid. The Heeger-Bergen algorithm consists in the following procedure: starting from a white noise image, histogram matchings are performed to the noise alternatively in both the image domain and steerable pyramid domain, so that the corresponding histograms match the ones of the input texture.

  8. Flowbca : A flow-based cluster algorithm in Stata

    NARCIS (Netherlands)

    Meekes, J.; Hassink, W.H.J.

    In this article, we introduce the Stata implementation of a flow-based cluster algorithm written in Mata. The main purpose of the flowbca command is to identify clusters based on relational data of flows. We illustrate the command by providing multiple applications, from the research fields of

  9. Local Competition-Based Superpixel Segmentation Algorithm in Remote Sensing.

    Science.gov (United States)

    Liu, Jiayin; Tang, Zhenmin; Cui, Ying; Wu, Guoxing

    2017-06-12

    Remote sensing technologies have been widely applied in urban environments' monitoring, synthesis and modeling. Incorporating spatial information in perceptually coherent regions, superpixel-based approaches can effectively eliminate the "salt and pepper" phenomenon which is common in pixel-wise approaches. Compared with fixed-size windows, superpixels have adaptive sizes and shapes for different spatial structures. Moreover, superpixel-based algorithms can significantly improve computational efficiency owing to the greatly reduced number of image primitives. Hence, the superpixel algorithm, as a preprocessing technique, is more and more popularly used in remote sensing and many other fields. In this paper, we propose a superpixel segmentation algorithm called Superpixel Segmentation with Local Competition (SSLC), which utilizes a local competition mechanism to construct energy terms and label pixels. The local competition mechanism leads to energy terms locality and relativity, and thus, the proposed algorithm is less sensitive to the diversity of image content and scene layout. Consequently, SSLC could achieve consistent performance in different image regions. In addition, the Probability Density Function (PDF), which is estimated by Kernel Density Estimation (KDE) with the Gaussian kernel, is introduced to describe the color distribution of superpixels as a more sophisticated and accurate measure. To reduce computational complexity, a boundary optimization framework is introduced to only handle boundary pixels instead of the whole image. We conduct experiments to benchmark the proposed algorithm with the other state-of-the-art ones on the Berkeley Segmentation Dataset (BSD) and remote sensing images. Results demonstrate that the SSLC algorithm yields the best overall performance, while the computation time-efficiency is still competitive.

  10. A novel line segment detection algorithm based on graph search

    Science.gov (United States)

    Zhao, Hong-dan; Liu, Guo-ying; Song, Xu

    2018-02-01

    To overcome the problem of extracting line segment from an image, a method of line segment detection was proposed based on the graph search algorithm. After obtaining the edge detection result of the image, the candidate straight line segments are obtained in four directions. For the candidate straight line segments, their adjacency relationships are depicted by a graph model, based on which the depth-first search algorithm is employed to determine how many adjacent line segments need to be merged. Finally we use the least squares method to fit the detected straight lines. The comparative experimental results verify that the proposed algorithm has achieved better results than the line segment detector (LSD).

  11. A Grammar-Based Semantic Similarity Algorithm for Natural Language Sentences

    Science.gov (United States)

    Chang, Jia Wei; Hsieh, Tung Cheng

    2014-01-01

    This paper presents a grammar and semantic corpus based similarity algorithm for natural language sentences. Natural language, in opposition to “artificial language”, such as computer programming languages, is the language used by the general public for daily communication. Traditional information retrieval approaches, such as vector models, LSA, HAL, or even the ontology-based approaches that extend to include concept similarity comparison instead of cooccurrence terms/words, may not always determine the perfect matching while there is no obvious relation or concept overlap between two natural language sentences. This paper proposes a sentence similarity algorithm that takes advantage of corpus-based ontology and grammatical rules to overcome the addressed problems. Experiments on two famous benchmarks demonstrate that the proposed algorithm has a significant performance improvement in sentences/short-texts with arbitrary syntax and structure. PMID:24982952

  12. A Grammar-Based Semantic Similarity Algorithm for Natural Language Sentences

    Directory of Open Access Journals (Sweden)

    Ming Che Lee

    2014-01-01

    Full Text Available This paper presents a grammar and semantic corpus based similarity algorithm for natural language sentences. Natural language, in opposition to “artificial language”, such as computer programming languages, is the language used by the general public for daily communication. Traditional information retrieval approaches, such as vector models, LSA, HAL, or even the ontology-based approaches that extend to include concept similarity comparison instead of cooccurrence terms/words, may not always determine the perfect matching while there is no obvious relation or concept overlap between two natural language sentences. This paper proposes a sentence similarity algorithm that takes advantage of corpus-based ontology and grammatical rules to overcome the addressed problems. Experiments on two famous benchmarks demonstrate that the proposed algorithm has a significant performance improvement in sentences/short-texts with arbitrary syntax and structure.

  13. Algorithmic Algebraic Combinatorics and Gröbner Bases

    CERN Document Server

    Klin, Mikhail; Jurisic, Aleksandar

    2009-01-01

    This collection of tutorial and research papers introduces readers to diverse areas of modern pure and applied algebraic combinatorics and finite geometries with a special emphasis on algorithmic aspects and the use of the theory of Grobner bases. Topics covered include coherent configurations, association schemes, permutation groups, Latin squares, the Jacobian conjecture, mathematical chemistry, extremal combinatorics, coding theory, designs, etc. Special attention is paid to the description of innovative practical algorithms and their implementation in software packages such as GAP and MAGM

  14. Improved artificial bee colony algorithm based gravity matching navigation method.

    Science.gov (United States)

    Gao, Wei; Zhao, Bo; Zhou, Guang Tao; Wang, Qiu Ying; Yu, Chun Yang

    2014-07-18

    Gravity matching navigation algorithm is one of the key technologies for gravity aided inertial navigation systems. With the development of intelligent algorithms, the powerful search ability of the Artificial Bee Colony (ABC) algorithm makes it possible to be applied to the gravity matching navigation field. However, existing search mechanisms of basic ABC algorithms cannot meet the need for high accuracy in gravity aided navigation. Firstly, proper modifications are proposed to improve the performance of the basic ABC algorithm. Secondly, a new search mechanism is presented in this paper which is based on an improved ABC algorithm using external speed information. At last, modified Hausdorff distance is introduced to screen the possible matching results. Both simulations and ocean experiments verify the feasibility of the method, and results show that the matching rate of the method is high enough to obtain a precise matching position.

  15. Cryptographic protocol security analysis based on bounded constructing algorithm

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    An efficient approach to analyzing cryptographic protocols is to develop automatic analysis tools based on formal methods. However, the approach has encountered the high computational complexity problem due to reasons that participants of protocols are arbitrary, their message structures are complex and their executions are concurrent. We propose an efficient automatic verifying algorithm for analyzing cryptographic protocols based on the Cryptographic Protocol Algebra (CPA) model proposed recently, in which algebraic techniques are used to simplify the description of cryptographic protocols and their executions. Redundant states generated in the analysis processes are much reduced by introducing a new algebraic technique called Universal Polynomial Equation and the algorithm can be used to verify the correctness of protocols in the infinite states space. We have implemented an efficient automatic analysis tool for cryptographic protocols, called ACT-SPA, based on this algorithm, and used the tool to check more than 20 cryptographic protocols. The analysis results show that this tool is more efficient, and an attack instance not offered previously is checked by using this tool.

  16. Submillisievert Computed Tomography of the Chest Using Model-Based Iterative Algorithm: Optimization of Tube Voltage With Regard to Patient Size.

    Science.gov (United States)

    Deák, Zsuzsanna; Maertz, Friedrich; Meurer, Felix; Notohamiprodjo, Susan; Mueck, Fabian; Geyer, Lucas L; Reiser, Maximilian F; Wirth, Stefan

    The aim of this study was to define optimal tube potential for soft tissue and vessel visualization in dose-reduced chest CT protocols using model-based iterative algorithm in average and overweight patients. Thirty-six patients receiving chest CT according to 3 protocols (120 kVp/noise index [NI], 60; 100 kVp/NI, 65; 80 kVp/NI, 70) were included in this prospective study, approved by the ethics committee. Patients' physical parameters and dose descriptors were recorded. Images were reconstructed with model-based algorithm. Two radiologists evaluated image quality and lesion conspicuity; the protocols were intraindividually compared with preceding control CT reconstructed with statistical algorithm (120 kVp/NI, 20). Mean and standard deviation of attenuation of the muscle and fat tissues and signal-to-noise ratio of the aorta were measured. Diagnostic images (lesion conspicuity, 95%-100%) were acquired in average and overweight patients at 1.34, 1.02, and 1.08 mGy and at 3.41, 3.20, and 2.88 mGy at 120, 100, and 80 kVp, respectively. Data are given as CT dose index volume values. Model-based algorithm allows for submillisievert chest CT in average patients; the use of 100 kVp is recommended.

  17. COOBBO: A Novel Opposition-Based Soft Computing Algorithm for TSP Problems

    Directory of Open Access Journals (Sweden)

    Qingzheng Xu

    2014-12-01

    Full Text Available In this paper, we propose a novel definition of opposite path. Its core feature is that the sequence of candidate paths and the distances between adjacent nodes in the tour are considered simultaneously. In a sense, the candidate path and its corresponding opposite path have the same (or similar at least distance to the optimal path in the current population. Based on an accepted framework for employing opposition-based learning, Oppositional Biogeography-Based Optimization using the Current Optimum, called COOBBO algorithm, is introduced to solve traveling salesman problems. We demonstrate its performance on eight benchmark problems and compare it with other optimization algorithms. Simulation results illustrate that the excellent performance of our proposed algorithm is attributed to the distinct definition of opposite path. In addition, its great strength lies in exploitation for enhancing the solution accuracy, not exploration for improving the population diversity. Finally, by comparing different version of COOBBO, another conclusion is that each successful opposition-based soft computing algorithm needs to adjust and remain a good balance between backward adjacent node and forward adjacent node.

  18. Symmetric encryption algorithms using chaotic and non-chaotic generators: A review.

    Science.gov (United States)

    Radwan, Ahmed G; AbdElHaleem, Sherif H; Abd-El-Hafiz, Salwa K

    2016-03-01

    This paper summarizes the symmetric image encryption results of 27 different algorithms, which include substitution-only, permutation-only or both phases. The cores of these algorithms are based on several discrete chaotic maps (Arnold's cat map and a combination of three generalized maps), one continuous chaotic system (Lorenz) and two non-chaotic generators (fractals and chess-based algorithms). Each algorithm has been analyzed by the correlation coefficients between pixels (horizontal, vertical and diagonal), differential attack measures, Mean Square Error (MSE), entropy, sensitivity analyses and the 15 standard tests of the National Institute of Standards and Technology (NIST) SP-800-22 statistical suite. The analyzed algorithms include a set of new image encryption algorithms based on non-chaotic generators, either using substitution only (using fractals) and permutation only (chess-based) or both. Moreover, two different permutation scenarios are presented where the permutation-phase has or does not have a relationship with the input image through an ON/OFF switch. Different encryption-key lengths and complexities are provided from short to long key to persist brute-force attacks. In addition, sensitivities of those different techniques to a one bit change in the input parameters of the substitution key as well as the permutation key are assessed. Finally, a comparative discussion of this work versus many recent research with respect to the used generators, type of encryption, and analyses is presented to highlight the strengths and added contribution of this paper.

  19. An Adaptive Connectivity-based Centroid Algorithm for Node Positioning in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Aries Pratiarso

    2015-06-01

    Full Text Available In wireless sensor network applications, the position of nodes is randomly distributed following the contour of the observation area. A simple solution without any measurement tools is provided by range-free method. However, this method yields the coarse estimating position of the nodes. In this paper, we propose Adaptive Connectivity-based (ACC algorithm. This algorithm is a combination of Centroid as range-free based algorithm, and hop-based connectivity algorithm. Nodes have a possibility to estimate their own position based on the connectivity level between them and their reference nodes. Each node divides its communication range into several regions where each of them has a certain weight depends on the received signal strength. The weighted value is used to obtain the estimated position of nodes. Simulation result shows that the proposed algorithm has up to 3 meter error of estimated position on 100x100 square meter observation area, and up to 3 hop counts for 80 meters' communication range. The proposed algorithm performs an average error positioning up to 10 meters better than Weighted Centroid algorithm. Keywords: adaptive, connectivity, centroid, range-free.

  20. Kriging-based algorithm for nuclear reactor neutronic design optimization

    International Nuclear Information System (INIS)

    Kempf, Stephanie; Forget, Benoit; Hu, Lin-Wen

    2012-01-01

    Highlights: ► A Kriging-based algorithm was selected to guide research reactor optimization. ► We examined impacts of parameter values upon the algorithm. ► The best parameter values were incorporated into a set of best practices. ► Algorithm with best practices used to optimize thermal flux of concept. ► Final design produces thermal flux 30% higher than other 5 MW reactors. - Abstract: Kriging, a geospatial interpolation technique, has been used in the present work to drive a search-and-optimization algorithm which produces the optimum geometric parameters for a 5 MW research reactor design. The technique has been demonstrated to produce an optimal neutronic solution after a relatively small number of core calculations. It has additionally been successful in producing a design which significantly improves thermal neutron fluxes by 30% over existing reactors of the same power rating. Best practices for use of this algorithm in reactor design were identified and indicated the importance of selecting proper correlation functions.

  1. Resizing Technique-Based Hybrid Genetic Algorithm for Optimal Drift Design of Multistory Steel Frame Buildings

    Directory of Open Access Journals (Sweden)

    Hyo Seon Park

    2014-01-01

    Full Text Available Since genetic algorithm-based optimization methods are computationally expensive for practical use in the field of structural optimization, a resizing technique-based hybrid genetic algorithm for the drift design of multistory steel frame buildings is proposed to increase the convergence speed of genetic algorithms. To reduce the number of structural analyses required for the convergence, a genetic algorithm is combined with a resizing technique that is an efficient optimal technique to control the drift of buildings without the repetitive structural analysis. The resizing technique-based hybrid genetic algorithm proposed in this paper is applied to the minimum weight design of three steel frame buildings. To evaluate the performance of the algorithm, optimum weights, computational times, and generation numbers from the proposed algorithm are compared with those from a genetic algorithm. Based on the comparisons, it is concluded that the hybrid genetic algorithm shows clear improvements in convergence properties.

  2. Performance-based seismic design of steel frames utilizing colliding bodies algorithm.

    Science.gov (United States)

    Veladi, H

    2014-01-01

    A pushover analysis method based on semirigid connection concept is developed and the colliding bodies optimization algorithm is employed to find optimum seismic design of frame structures. Two numerical examples from the literature are studied. The results of the new algorithm are compared to the conventional design methods to show the power or weakness of the algorithm.

  3. Development of hybrid artificial intelligent based handover decision algorithm

    Directory of Open Access Journals (Sweden)

    A.M. Aibinu

    2017-04-01

    Full Text Available The possibility of seamless handover remains a mirage despite the plethora of existing handover algorithms. The underlying factor responsible for this has been traced to the Handover decision module in the Handover process. Hence, in this paper, the development of novel hybrid artificial intelligent handover decision algorithm has been developed. The developed model is made up of hybrid of Artificial Neural Network (ANN based prediction model and Fuzzy Logic. On accessing the network, the Received Signal Strength (RSS was acquired over a period of time to form a time series data. The data was then fed to the newly proposed k-step ahead ANN-based RSS prediction system for estimation of prediction model coefficients. The synaptic weights and adaptive coefficients of the trained ANN was then used to compute the k-step ahead ANN based RSS prediction model coefficients. The predicted RSS value was later codified as Fuzzy sets and in conjunction with other measured network parameters were fed into the Fuzzy logic controller in order to finalize handover decision process. The performance of the newly developed k-step ahead ANN based RSS prediction algorithm was evaluated using simulated and real data acquired from available mobile communication networks. Results obtained in both cases shows that the proposed algorithm is capable of predicting ahead the RSS value to about ±0.0002 dB. Also, the cascaded effect of the complete handover decision module was also evaluated. Results obtained show that the newly proposed hybrid approach was able to reduce ping-pong effect associated with other handover techniques.

  4. Model based development of engine control algorithms

    NARCIS (Netherlands)

    Dekker, H.J.; Sturm, W.L.

    1996-01-01

    Model based development of engine control systems has several advantages. The development time and costs are strongly reduced because much of the development and optimization work is carried out by simulating both engine and control system. After optimizing the control algorithm it can be executed

  5. Fuzzy Weight Cluster-Based Routing Algorithm for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Teng Gao

    2015-01-01

    Full Text Available Cluster-based protocol is a kind of important routing in wireless sensor networks. However, due to the uneven distribution of cluster heads in classical clustering algorithm, some nodes may run out of energy too early, which is not suitable for large-scale wireless sensor networks. In this paper, a distributed clustering algorithm based on fuzzy weighted attributes is put forward to ensure both energy efficiency and extensibility. On the premise of a comprehensive consideration of all attributes, the corresponding weight of each parameter is assigned by using the direct method of fuzzy engineering theory. Then, each node works out property value. These property values will be mapped to the time axis and be triggered by a timer to broadcast cluster headers. At the same time, the radio coverage method is adopted, in order to avoid collisions and to ensure the symmetrical distribution of cluster heads. The aggregated data are forwarded to the sink node in the form of multihop. The simulation results demonstrate that clustering algorithm based on fuzzy weighted attributes has a longer life expectancy and better extensibility than LEACH-like algorithms.

  6. The Physics of Compressive Sensing and the Gradient-Based Recovery Algorithms

    OpenAIRE

    Dai, Qi; Sha, Wei

    2009-01-01

    The physics of compressive sensing (CS) and the gradient-based recovery algorithms are presented. First, the different forms for CS are summarized. Second, the physical meanings of coherence and measurement are given. Third, the gradient-based recovery algorithms and their geometry explanations are provided. Finally, we conclude the report and give some suggestion for future work.

  7. Multi-stage phase retrieval algorithm based upon the gyrator transform.

    Science.gov (United States)

    Rodrigo, José A; Duadi, Hamootal; Alieva, Tatiana; Zalevsky, Zeev

    2010-01-18

    The gyrator transform is a useful tool for optical information processing applications. In this work we propose a multi-stage phase retrieval approach based on this operation as well as on the well-known Gerchberg-Saxton algorithm. It results in an iterative algorithm able to retrieve the phase information using several measurements of the gyrator transform power spectrum. The viability and performance of the proposed algorithm is demonstrated by means of several numerical simulations and experimental results.

  8. Multi-stage phase retrieval algorithm based upon the gyrator transform

    OpenAIRE

    Rodrigo Martín-Romo, José Augusto; Duadi, Hamootal; Alieva, Tatiana Krasheninnikova; Zalevsky, Zeev

    2010-01-01

    The gyrator transform is a useful tool for optical information processing applications. In this work we propose a multi-stage phase retrieval approach based on this operation as well as on the well-known Gerchberg-Saxton algorithm. It results in an iterative algorithm able to retrieve the phase information using several measurements of the gyrator transform power spectrum. The viability and performance of the proposed algorithm is demonstrated by means of several numerical simulations and exp...

  9. An opposition-based harmony search algorithm for engineering optimization problems

    Directory of Open Access Journals (Sweden)

    Abhik Banerjee

    2014-03-01

    Full Text Available Harmony search (HS is a derivative-free real parameter optimization algorithm. It draws inspiration from the musical improvisation process of searching for a perfect state of harmony. The proposed opposition-based HS (OHS of the present work employs opposition-based learning for harmony memory initialization and also for generation jumping. The concept of opposite number is utilized in OHS to improve the convergence rate of the HS algorithm. The potential of the proposed algorithm is assessed by means of an extensive comparative study of the numerical results on sixteen benchmark test functions. Additionally, the effectiveness of the proposed algorithm is tested for reactive power compensation of an autonomous power system. For real-time reactive power compensation of the studied model, Takagi Sugeno fuzzy logic (TSFL is employed. Time-domain simulation reveals that the proposed OHS-TSFL yields on-line, off-nominal model parameters, resulting in real-time incremental change in terminal voltage response profile.

  10. Node-Dependence-Based Dynamic Incentive Algorithm in Opportunistic Networks

    Directory of Open Access Journals (Sweden)

    Ruiyun Yu

    2014-01-01

    Full Text Available Opportunistic networks lack end-to-end paths between source nodes and destination nodes, so the communications are mainly carried out by the “store-carry-forward” strategy. Selfish behaviors of rejecting packet relay requests will severely worsen the network performance. Incentive is an efficient way to reduce selfish behaviors and hence improves the reliability and robustness of the networks. In this paper, we propose the node-dependence-based dynamic gaming incentive (NDI algorithm, which exploits the dynamic repeated gaming to motivate nodes relaying packets for other nodes. The NDI algorithm presents a mechanism of tolerating selfish behaviors of nodes. Reward and punishment methods are also designed based on the node dependence degree. Simulation results show that the NDI algorithm is effective in increasing the delivery ratio and decreasing average latency when there are a lot of selfish nodes in the opportunistic networks.

  11. A fast image encryption algorithm based on chaotic map

    Science.gov (United States)

    Liu, Wenhao; Sun, Kehui; Zhu, Congxu

    2016-09-01

    Derived from Sine map and iterative chaotic map with infinite collapse (ICMIC), a new two-dimensional Sine ICMIC modulation map (2D-SIMM) is proposed based on a close-loop modulation coupling (CMC) model, and its chaotic performance is analyzed by means of phase diagram, Lyapunov exponent spectrum and complexity. It shows that this map has good ergodicity, hyperchaotic behavior, large maximum Lyapunov exponent and high complexity. Based on this map, a fast image encryption algorithm is proposed. In this algorithm, the confusion and diffusion processes are combined for one stage. Chaotic shift transform (CST) is proposed to efficiently change the image pixel positions, and the row and column substitutions are applied to scramble the pixel values simultaneously. The simulation and analysis results show that this algorithm has high security, low time complexity, and the abilities of resisting statistical analysis, differential, brute-force, known-plaintext and chosen-plaintext attacks.

  12. The Effect of Swarming on a Voltage Potential-Based Conflict Resolution Algorithm

    NARCIS (Netherlands)

    Maas, J.B.; Sunil, E.; Ellerbroek, J.; Hoekstra, J.M.; Tra, M.A.P.

    2016-01-01

    Several conflict resolution algorithms for airborne self-separation rely on principles derived from the repulsive forces that exist between similarly charged particles. This research investigates whether the performance of the Modified Voltage Potential algorithm, which is based on this algorithm,

  13. Technical Note: Modification of the standard gain correction algorithm to compensate for the number of used reference flat frames in detector performance studies

    International Nuclear Information System (INIS)

    Konstantinidis, Anastasios C.; Olivo, Alessandro; Speller, Robert D.

    2011-01-01

    Purpose: The x-ray performance evaluation of digital x-ray detectors is based on the calculation of the modulation transfer function (MTF), the noise power spectrum (NPS), and the resultant detective quantum efficiency (DQE). The flat images used for the extraction of the NPS should not contain any fixed pattern noise (FPN) to avoid contamination from nonstochastic processes. The ''gold standard'' method used for the reduction of the FPN (i.e., the different gain between pixels) in linear x-ray detectors is based on normalization with an average reference flat-field. However, the noise in the corrected image depends on the number of flat frames used for the average flat image. The aim of this study is to modify the standard gain correction algorithm to make it independent on the used reference flat frames. Methods: Many publications suggest the use of 10-16 reference flat frames, while other studies use higher numbers (e.g., 48 frames) to reduce the propagated noise from the average flat image. This study quantifies experimentally the effect of the number of used reference flat frames on the NPS and DQE values and appropriately modifies the gain correction algorithm to compensate for this effect. Results: It is shown that using the suggested gain correction algorithm a minimum number of reference flat frames (i.e., down to one frame) can be used to eliminate the FPN from the raw flat image. This saves computer memory and time during the x-ray performance evaluation. Conclusions: The authors show that the method presented in the study (a) leads to the maximum DQE value that one would have by using the conventional method and very large number of frames and (b) has been compared to an independent gain correction method based on the subtraction of flat-field images, leading to identical DQE values. They believe this provides robust validation of the proposed method.

  14. Quantum signature scheme based on a quantum search algorithm

    International Nuclear Information System (INIS)

    Yoon, Chun Seok; Kang, Min Sung; Lim, Jong In; Yang, Hyung Jin

    2015-01-01

    We present a quantum signature scheme based on a two-qubit quantum search algorithm. For secure transmission of signatures, we use a quantum search algorithm that has not been used in previous quantum signature schemes. A two-step protocol secures the quantum channel, and a trusted center guarantees non-repudiation that is similar to other quantum signature schemes. We discuss the security of our protocol. (paper)

  15. Data analysis algorithms for flaw sizing based on eddy current rotating probe examination of steam generator tubes

    International Nuclear Information System (INIS)

    Bakhtiari, S.; Elmer, T.W.

    2009-01-01

    Computer-aided data analysis tools can help improve the efficiency and reliability of flaw sizing based on nondestructive examination data. They can further help produce more consistent results, which is important for both in-service inspection applications and for engineering assessments associated with steam generator tube integrity. Results of recent investigations at Argonne on the development of various algorithms for sizing of flaws in steam generator tubes based on eddy current rotating probe data are presented. The research was carried out as part of the activities under the International Steam Generator Tube Integrity Program (ISG-TIP) sponsored by the U.S. Nuclear Regulatory Commission. A computer-aided data analysis tool has been developed for off-line processing of eddy current inspection data. The main objectives of the work have been to a) allow all data processing stages to be performed under the same user interface, b) simplify modification and testing of signal processing and data analysis scripts, and c) allow independent evaluation of viable flaw sizing algorithms. The focus of most recent studies at Argonne has been on the processing of data acquired with the +Point probe, which is one of the more widely used eddy current rotating probes for steam generator tube examinations in the U.S. The probe employs a directional surface riding differential coil, which helps reduce the influence of tubing artifacts and in turn helps improve the signal-to-noise ratio. Various algorithms developed under the MATLAB environment for the conversion, segmentation, calibration, and analysis of data have been consolidated within a single user interface. Data acquired with a number of standard eddy current test equipment are automatically recognized and converted to a standard format for further processing. Because of its modular structure, the graphical user interface allows user-developed routines to be easily incorporated, modified, and tested independent of the

  16. Film based verification of calculation algorithms used for brachytherapy planning-getting ready for upcoming challenges of MBDCA

    Directory of Open Access Journals (Sweden)

    Grzegorz Zwierzchowski

    2016-08-01

    Full Text Available Purpose: Well-known defect of TG-43 based algorithms used in brachytherapy is a lack of information about interaction cross-sections, which are determined not only by electron density but also by atomic number. TG-186 recommendations with using of MBDCA (model-based dose calculation algorithm, accurate tissues segmentation, and the structure’s elemental composition continue to create difficulties in brachytherapy dosimetry. For the clinical use of new algorithms, it is necessary to introduce reliable and repeatable methods of treatment planning systems (TPS verification. The aim of this study is the verification of calculation algorithm used in TPS for shielded vaginal applicators as well as developing verification procedures for current and further use, based on the film dosimetry method. Material and methods : Calibration data was collected by separately irradiating 14 sheets of Gafchromic® EBT films with the doses from 0.25 Gy to 8.0 Gy using HDR 192Ir source. Standard vaginal cylinders of three diameters were used in the water phantom. Measurements were performed without any shields and with three shields combination. Gamma analyses were performed using the VeriSoft® package. Results : Calibration curve was determined as third-degree polynomial type. For all used diameters of unshielded cylinder and for all shields combinations, Gamma analysis were performed and showed that over 90% of analyzed points meets Gamma criteria (3%, 3 mm. Conclusions : Gamma analysis showed good agreement between dose distributions calculated using TPS and measured by Gafchromic films, thus showing the viability of using film dosimetry in brachytherapy.

  17. An Initialization Method Based on Hybrid Distance for k-Means Algorithm.

    Science.gov (United States)

    Yang, Jie; Ma, Yan; Zhang, Xiangfen; Li, Shunbao; Zhang, Yuping

    2017-11-01

    The traditional [Formula: see text]-means algorithm has been widely used as a simple and efficient clustering method. However, the performance of this algorithm is highly dependent on the selection of initial cluster centers. Therefore, the method adopted for choosing initial cluster centers is extremely important. In this letter, we redefine the density of points according to the number of its neighbors, as well as the distance between points and their neighbors. In addition, we define a new distance measure that considers both Euclidean distance and density. Based on that, we propose an algorithm for selecting initial cluster centers that can dynamically adjust the weighting parameter. Furthermore, we propose a new internal clustering validation measure, the clustering validation index based on the neighbors (CVN), which can be exploited to select the optimal result among multiple clustering results. Experimental results show that the proposed algorithm outperforms existing initialization methods on real-world data sets and demonstrates the adaptability of the proposed algorithm to data sets with various characteristics.

  18. An algorithm for calculating exam quality as a basis for performance-based allocation of funds at medical schools.

    Science.gov (United States)

    Kirschstein, Timo; Wolters, Alexander; Lenz, Jan-Hendrik; Fröhlich, Susanne; Hakenberg, Oliver; Kundt, Günther; Darmüntzel, Martin; Hecker, Michael; Altiner, Attila; Müller-Hilke, Brigitte

    2016-01-01

    The amendment of the Medical Licensing Act (ÄAppO) in Germany in 2002 led to the introduction of graded assessments in the clinical part of medical studies. This, in turn, lent new weight to the importance of written tests, even though the minimum requirements for exam quality are sometimes difficult to reach. Introducing exam quality as a criterion for the award of performance-based allocation of funds is expected to steer the attention of faculty members towards more quality and perpetuate higher standards. However, at present there is a lack of suitable algorithms for calculating exam quality. In the spring of 2014, the students' dean commissioned the "core group" for curricular improvement at the University Medical Center in Rostock to revise the criteria for the allocation of performance-based funds for teaching. In a first approach, we developed an algorithm that was based on the results of the most common type of exam in medical education, multiple choice tests. It included item difficulty and discrimination, reliability as well as the distribution of grades achieved. This algorithm quantitatively describes exam quality of multiple choice exams. However, it can also be applied to exams involving short assay questions and the OSCE. It thus allows for the quantitation of exam quality in the various subjects and - in analogy to impact factors and third party grants - a ranking among faculty. Our algorithm can be applied to all test formats in which item difficulty, the discriminatory power of the individual items, reliability of the exam and the distribution of grades are measured. Even though the content validity of an exam is not considered here, we believe that our algorithm is suitable as a general basis for performance-based allocation of funds.

  19. An algorithm for calculating exam quality as a basis for performance-based allocation of funds at medical schools

    Directory of Open Access Journals (Sweden)

    Kirschstein, Timo

    2016-05-01

    Full Text Available Objective: The amendment of the Medical Licensing Act (ÄAppO in Germany in 2002 led to the introduction of graded assessments in the clinical part of medical studies. This, in turn, lent new weight to the importance of written tests, even though the minimum requirements for exam quality are sometimes difficult to reach. Introducing exam quality as a criterion for the award of performance-based allocation of funds is expected to steer the attention of faculty members towards more quality and perpetuate higher standards. However, at present there is a lack of suitable algorithms for calculating exam quality.Methods: In the spring of 2014, the students‘ dean commissioned the „core group“ for curricular improvement at the University Medical Center in Rostock to revise the criteria for the allocation of performance-based funds for teaching. In a first approach, we developed an algorithm that was based on the results of the most common type of exam in medical education, multiple choice tests. It included item difficulty and discrimination, reliability as well as the distribution of grades achieved. Results: This algorithm quantitatively describes exam quality of multiple choice exams. However, it can also be applied to exams involving short assay questions and the OSCE. It thus allows for the quantitation of exam quality in the various subjects and – in analogy to impact factors and third party grants – a ranking among faculty. Conclusion: Our algorithm can be applied to all test formats in which item difficulty, the discriminatory power of the individual items, reliability of the exam and the distribution of grades are measured. Even though the content validity of an exam is not considered here, we believe that our algorithm is suitable as a general basis for performance-based allocation of funds.

  20. A Novel Integrated Algorithm for Wind Vector Retrieval from Conically Scanning Scatterometers

    Directory of Open Access Journals (Sweden)

    Xuetong Xie

    2013-11-01

    Full Text Available Due to the lower efficiency and the larger wind direction error of traditional algorithms, a novel integrated wind retrieval algorithm is proposed for conically scanning scatterometers. The proposed algorithm has the dual advantages of less computational cost and higher wind direction retrieval accuracy by integrating the wind speed standard deviation (WSSD algorithm and the wind direction interval retrieval (DIR algorithm. It adopts wind speed standard deviation as a criterion for searching possible wind vector solutions and retrieving a potential wind direction interval based on the change rate of the wind speed standard deviation. Moreover, a modified three-step ambiguity removal method is designed to let more wind directions be selected in the process of nudging and filtering. The performance of the new algorithm is illustrated by retrieval experiments using 300 orbits of SeaWinds/QuikSCAT L2A data (backscatter coefficients at 25 km resolution and co-located buoy data. Experimental results indicate that the new algorithm can evidently enhance the wind direction retrieval accuracy, especially in the nadir region. In comparison with the SeaWinds L2B Version 2 25 km selected wind product (retrieved wind fields, an improvement of 5.1° in wind direction retrieval can be made by the new algorithm for that region.

  1. Acute appendicitis: prospective evaluation of a diagnostic algorithm integrating ultrasound and low-dose CT to reduce the need of standard CT

    International Nuclear Information System (INIS)

    Poletti, Pierre-Alexandre; Platon, Alexandra; Perrot, Thomas de; Becker, Christoph D.; Sarasin, Francois; Rutschmann, Olivier; Andereggen, Elisabeth; Dupuis-Lozeron, Elise; Perneger, Thomas; Gervaz, Pascal

    2011-01-01

    To evaluate an algorithm integrating ultrasound and low-dose unenhanced CT with oral contrast medium (LDCT) in the assessment of acute appendicitis, to reduce the need of conventional CT. Ultrasound was performed upon admission in 183 consecutive adult patients (111 women, 72 men, mean age 32) with suspicion of acute appendicitis and a BMI between 18.5 and 30 (step 1). No further examination was recommended when ultrasound was positive for appendicitis, negative with low clinical suspicion, or demonstrated an alternative diagnosis. All other patients underwent LDCT (30 mAs) (step 2). Standard intravenously enhanced CT (180 mAs) was performed after indeterminate LDCT (step 3). No further imaging was recommended after ultrasound in 84 (46%) patients; LDCT was obtained in 99 (54%). LDCT was positive or negative for appendicitis in 81 (82%) of these 99 patients, indeterminate in 18 (18%) who underwent standard CT. Eighty-six (47%) of the 183 patients had a surgically proven appendicitis. The sensitivity and specificity of the algorithm were 98.8% and 96.9%. The proposed algorithm achieved high sensitivity and specificity for detection of acute appendicitis, while reducing the need for standard CT and thus limiting exposition to radiation and to intravenous contrast media. (orig.)

  2. Acute appendicitis: prospective evaluation of a diagnostic algorithm integrating ultrasound and low-dose CT to reduce the need of standard CT

    Energy Technology Data Exchange (ETDEWEB)

    Poletti, Pierre-Alexandre; Platon, Alexandra [University Hospital of Geneva, Department of Radiology, Geneva (Switzerland); University Hospital of Geneva, Emergency Center, Geneva (Switzerland); Perrot, Thomas de; Becker, Christoph D. [University Hospital of Geneva, Department of Radiology, Geneva (Switzerland); Sarasin, Francois; Rutschmann, Olivier [University Hospital of Geneva, Emergency Center, Geneva (Switzerland); Andereggen, Elisabeth [University Hospital of Geneva, Emergency Center, Geneva (Switzerland); University Hospital of Geneva, Department of Surgery, Geneva (Switzerland); Dupuis-Lozeron, Elise; Perneger, Thomas [University Hospital of Geneva, Division of Clinical Epidemiology, Geneva (Switzerland); Gervaz, Pascal [University Hospital of Geneva, Department of Surgery, Geneva (Switzerland)

    2011-12-15

    To evaluate an algorithm integrating ultrasound and low-dose unenhanced CT with oral contrast medium (LDCT) in the assessment of acute appendicitis, to reduce the need of conventional CT. Ultrasound was performed upon admission in 183 consecutive adult patients (111 women, 72 men, mean age 32) with suspicion of acute appendicitis and a BMI between 18.5 and 30 (step 1). No further examination was recommended when ultrasound was positive for appendicitis, negative with low clinical suspicion, or demonstrated an alternative diagnosis. All other patients underwent LDCT (30 mAs) (step 2). Standard intravenously enhanced CT (180 mAs) was performed after indeterminate LDCT (step 3). No further imaging was recommended after ultrasound in 84 (46%) patients; LDCT was obtained in 99 (54%). LDCT was positive or negative for appendicitis in 81 (82%) of these 99 patients, indeterminate in 18 (18%) who underwent standard CT. Eighty-six (47%) of the 183 patients had a surgically proven appendicitis. The sensitivity and specificity of the algorithm were 98.8% and 96.9%. The proposed algorithm achieved high sensitivity and specificity for detection of acute appendicitis, while reducing the need for standard CT and thus limiting exposition to radiation and to intravenous contrast media. (orig.)

  3. Optimization of an NLEO-based algorithm for automated detection of spontaneous activity transients in early preterm EEG

    International Nuclear Information System (INIS)

    Palmu, Kirsi; Vanhatalo, Sampsa; Stevenson, Nathan; Wikström, Sverre; Hellström-Westas, Lena; Palva, J Matias

    2010-01-01

    We propose here a simple algorithm for automated detection of spontaneous activity transients (SATs) in early preterm electroencephalography (EEG). The parameters of the algorithm were optimized by supervised learning using a gold standard created from visual classification data obtained from three human raters. The generalization performance of the algorithm was estimated by leave-one-out cross-validation. The mean sensitivity of the optimized algorithm was 97% (range 91–100%) and specificity 95% (76–100%). The optimized algorithm makes it possible to systematically study brain state fluctuations of preterm infants. (note)

  4. Optimum Performance-Based Seismic Design Using a Hybrid Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    S. Talatahari

    2014-01-01

    Full Text Available A hybrid optimization method is presented to optimum seismic design of steel frames considering four performance levels. These performance levels are considered to determine the optimum design of structures to reduce the structural cost. A pushover analysis of steel building frameworks subject to equivalent-static earthquake loading is utilized. The algorithm is based on the concepts of the charged system search in which each agent is affected by local and global best positions stored in the charged memory considering the governing laws of electrical physics. Comparison of the results of the hybrid algorithm with those of other metaheuristic algorithms shows the efficiency of the hybrid algorithm.

  5. Secondary Coordinated Control of Islanded Microgrids Based on Consensus Algorithms

    DEFF Research Database (Denmark)

    Wu, Dan; Dragicevic, Tomislav; Vasquez, Juan Carlos

    2014-01-01

    systems. Nevertheless, the conventional decentralized secondary control, although does not need to be implemented in a microgrid central controller (MGCC), it has the limitation that all decentralized controllers must be mutually synchronized. In a clear cut contrast, the proposed secondary control......This paper proposes a decentralized secondary control for islanded microgrids based on consensus algorithms. In a microgrid, the secondary control is implemented in order to eliminate the frequency changes caused by the primary control when coordinating renewable energy sources and energy storage...... requires only a more simplified communication protocol and a sparse communication network. Moreover, the proposed approach based on dynamic consensus algorithms is able to achieve the coordinated secondary performance even when all units are initially out-of-synchronism. The control algorithm implemented...

  6. Optimizing graph algorithms on pregel-like systems

    KAUST Repository

    Salihoglu, Semih

    2014-03-01

    We study the problem of implementing graph algorithms efficiently on Pregel-like systems, which can be surprisingly challenging. Standard graph algorithms in this setting can incur unnecessary inefficiencies such as slow convergence or high communication or computation cost, typically due to structural properties of the input graphs such as large diameters or skew in component sizes. We describe several optimization techniques to address these inefficiencies. Our most general technique is based on the idea of performing some serial computation on a tiny fraction of the input graph, complementing Pregel\\'s vertex-centric parallelism. We base our study on thorough implementations of several fundamental graph algorithms, some of which have, to the best of our knowledge, not been implemented on Pregel-like systems before. The algorithms and optimizations we describe are fully implemented in our open-source Pregel implementation. We present detailed experiments showing that our optimization techniques improve runtime significantly on a variety of very large graph datasets.

  7. Group-SMA Algorithm Based Joint Estimation of Train Parameter and State

    Directory of Open Access Journals (Sweden)

    Wei Zheng

    2015-03-01

    Full Text Available The braking rate and train arresting operation is important in the train braking performance. It is difficult to obtain the states of the train on time because of the measurement noise and a long calculation time. A type of Group Stochastic M-algorithm (GSMA based on Rao-Blackwellization Particle Filter (RBPF algorithm and Stochastic M-algorithm (SMA is proposed in this paper. Compared with RBPF, GSMA based estimation precisions for the train braking rate and the control accelerations were improved by 78% and 62%, respectively. The calculation time of the GSMA was decreased by 70% compared with SMA.

  8. Hybrid Genetic Algorithm Optimization for Case Based Reasoning Systems

    International Nuclear Information System (INIS)

    Mohamed, A.H.

    2008-01-01

    The success of a CBR system largely depen ds on an effective retrieval of useful prior case for the problem. Nearest neighbor and induction are the main CBR retrieval algorithms. Each of them can be more suitable in different situations. Integrated the two retrieval algorithms can catch the advantages of both of them. But, they still have some limitations facing the induction retrieval algorithm when dealing with a noisy data, a large number of irrelevant features, and different types of data. This research utilizes a hybrid approach using genetic algorithms (GAs) to case-based induction retrieval of the integrated nearest neighbor - induction algorithm in an attempt to overcome these limitations and increase the overall classification accuracy. GAs can be used to optimize the search space of all the possible subsets of the features set. It can deal with the irrelevant and noisy features while still achieving a significant improvement of the retrieval accuracy. Therefore, the proposed CBR-GA introduces an effective general purpose retrieval algorithm that can improve the performance of CBR systems. It can be applied in many application areas. CBR-GA has proven its success when applied for different problems in real-life

  9. Texture orientation-based algorithm for detecting infrared maritime targets.

    Science.gov (United States)

    Wang, Bin; Dong, Lili; Zhao, Ming; Wu, Houde; Xu, Wenhai

    2015-05-20

    Infrared maritime target detection is a key technology for maritime target searching systems. However, in infrared maritime images (IMIs) taken under complicated sea conditions, background clutters, such as ocean waves, clouds or sea fog, usually have high intensity that can easily overwhelm the brightness of real targets, which is difficult for traditional target detection algorithms to deal with. To mitigate this problem, this paper proposes a novel target detection algorithm based on texture orientation. This algorithm first extracts suspected targets by analyzing the intersubband correlation between horizontal and vertical wavelet subbands of the original IMI on the first scale. Then the self-adaptive wavelet threshold denoising and local singularity analysis of the original IMI is combined to remove false alarms further. Experiments show that compared with traditional algorithms, this algorithm can suppress background clutter much better and realize better single-frame detection for infrared maritime targets. Besides, in order to guarantee accurate target extraction further, the pipeline-filtering algorithm is adopted to eliminate residual false alarms. The high practical value and applicability of this proposed strategy is backed strongly by experimental data acquired under different environmental conditions.

  10. Local Competition-Based Superpixel Segmentation Algorithm in Remote Sensing

    Directory of Open Access Journals (Sweden)

    Jiayin Liu

    2017-06-01

    Full Text Available Remote sensing technologies have been widely applied in urban environments’ monitoring, synthesis and modeling. Incorporating spatial information in perceptually coherent regions, superpixel-based approaches can effectively eliminate the “salt and pepper” phenomenon which is common in pixel-wise approaches. Compared with fixed-size windows, superpixels have adaptive sizes and shapes for different spatial structures. Moreover, superpixel-based algorithms can significantly improve computational efficiency owing to the greatly reduced number of image primitives. Hence, the superpixel algorithm, as a preprocessing technique, is more and more popularly used in remote sensing and many other fields. In this paper, we propose a superpixel segmentation algorithm called Superpixel Segmentation with Local Competition (SSLC, which utilizes a local competition mechanism to construct energy terms and label pixels. The local competition mechanism leads to energy terms locality and relativity, and thus, the proposed algorithm is less sensitive to the diversity of image content and scene layout. Consequently, SSLC could achieve consistent performance in different image regions. In addition, the Probability Density Function (PDF, which is estimated by Kernel Density Estimation (KDE with the Gaussian kernel, is introduced to describe the color distribution of superpixels as a more sophisticated and accurate measure. To reduce computational complexity, a boundary optimization framework is introduced to only handle boundary pixels instead of the whole image. We conduct experiments to benchmark the proposed algorithm with the other state-of-the-art ones on the Berkeley Segmentation Dataset (BSD and remote sensing images. Results demonstrate that the SSLC algorithm yields the best overall performance, while the computation time-efficiency is still competitive.

  11. New segmentation-based tone mapping algorithm for high dynamic range image

    Science.gov (United States)

    Duan, Weiwei; Guo, Huinan; Zhou, Zuofeng; Huang, Huimin; Cao, Jianzhong

    2017-07-01

    The traditional tone mapping algorithm for the display of high dynamic range (HDR) image has the drawback of losing the impression of brightness, contrast and color information. To overcome this phenomenon, we propose a new tone mapping algorithm based on dividing the image into different exposure regions in this paper. Firstly, the over-exposure region is determined using the Local Binary Pattern information of HDR image. Then, based on the peak and average gray of the histogram, the under-exposure and normal-exposure region of HDR image are selected separately. Finally, the different exposure regions are mapped by differentiated tone mapping methods to get the final result. The experiment results show that the proposed algorithm achieve the better performance both in visual quality and objective contrast criterion than other algorithms.

  12. AlgoRun: a Docker-based packaging system for platform-agnostic implemented algorithms.

    Science.gov (United States)

    Hosny, Abdelrahman; Vera-Licona, Paola; Laubenbacher, Reinhard; Favre, Thibauld

    2016-08-01

    There is a growing need in bioinformatics for easy-to-use software implementations of algorithms that are usable across platforms. At the same time, reproducibility of computational results is critical and often a challenge due to source code changes over time and dependencies. The approach introduced in this paper addresses both of these needs with AlgoRun, a dedicated packaging system for implemented algorithms, using Docker technology. Implemented algorithms, packaged with AlgoRun, can be executed through a user-friendly interface directly from a web browser or via a standardized RESTful web API to allow easy integration into more complex workflows. The packaged algorithm includes the entire software execution environment, thereby eliminating the common problem of software dependencies and the irreproducibility of computations over time. AlgoRun-packaged algorithms can be published on http://algorun.org, a centralized searchable directory to find existing AlgoRun-packaged algorithms. AlgoRun is available at http://algorun.org and the source code under GPL license is available at https://github.com/algorun laubenbacher@uchc.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Advanced hybrid query tree algorithm based on slotted backoff mechanism in RFID

    Directory of Open Access Journals (Sweden)

    XIE Xiaohui

    2013-12-01

    Full Text Available The merits of performance quality for a RFID system are determined by the effectiveness of tag anti-collision algorithm.Many algorithms for RFID system of tag identification have been proposed,but they all have obvious weaknesses,such as slow speed of identification,unstable and so on.The existing algorithms can be divided into two groups,one is based on ALOHA and another is based on query tree.This article is based on the hybrid query tree algorithm,combined with a slotted backoff mechanism and a specific encoding (Manchester encoding.The number of value“1” in every three consecutive bits of tags is used to determine the tag response time slots,which will greatly reduce the time slot of the collision and improve the recognition efficiency.

  14. Improved teaching-learning-based and JAYA optimization algorithms for solving flexible flow shop scheduling problems

    Science.gov (United States)

    Buddala, Raviteja; Mahapatra, Siba Sankar

    2017-11-01

    Flexible flow shop (or a hybrid flow shop) scheduling problem is an extension of classical flow shop scheduling problem. In a simple flow shop configuration, a job having `g' operations is performed on `g' operation centres (stages) with each stage having only one machine. If any stage contains more than one machine for providing alternate processing facility, then the problem becomes a flexible flow shop problem (FFSP). FFSP which contains all the complexities involved in a simple flow shop and parallel machine scheduling problems is a well-known NP-hard (Non-deterministic polynomial time) problem. Owing to high computational complexity involved in solving these problems, it is not always possible to obtain an optimal solution in a reasonable computation time. To obtain near-optimal solutions in a reasonable computation time, a large variety of meta-heuristics have been proposed in the past. However, tuning algorithm-specific parameters for solving FFSP is rather tricky and time consuming. To address this limitation, teaching-learning-based optimization (TLBO) and JAYA algorithm are chosen for the study because these are not only recent meta-heuristics but they do not require tuning of algorithm-specific parameters. Although these algorithms seem to be elegant, they lose solution diversity after few iterations and get trapped at the local optima. To alleviate such drawback, a new local search procedure is proposed in this paper to improve the solution quality. Further, mutation strategy (inspired from genetic algorithm) is incorporated in the basic algorithm to maintain solution diversity in the population. Computational experiments have been conducted on standard benchmark problems to calculate makespan and computational time. It is found that the rate of convergence of TLBO is superior to JAYA. From the results, it is found that TLBO and JAYA outperform many algorithms reported in the literature and can be treated as efficient methods for solving the FFSP.

  15. Multiscale Distance Coherence Vector Algorithm for Content-Based Image Retrieval

    Science.gov (United States)

    Jiexian, Zeng; Xiupeng, Liu

    2014-01-01

    Multiscale distance coherence vector algorithm for content-based image retrieval (CBIR) is proposed due to the same descriptor with different shapes and the shortcomings of antinoise performance of the distance coherence vector algorithm. By this algorithm, the image contour curve is evolved by Gaussian function first, and then the distance coherence vector is, respectively, extracted from the contour of the original image and evolved images. Multiscale distance coherence vector was obtained by reasonable weight distribution of the distance coherence vectors of evolved images contour. This algorithm not only is invariable to translation, rotation, and scaling transformation but also has good performance of antinoise. The experiment results show us that the algorithm has a higher recall rate and precision rate for the retrieval of images polluted by noise. PMID:24883416

  16. Opposition-Based Memetic Algorithm and Hybrid Approach for Sorting Permutations by Reversals.

    Science.gov (United States)

    Soncco-Álvarez, José Luis; Muñoz, Daniel M; Ayala-Rincón, Mauricio

    2018-02-21

    Sorting unsigned permutations by reversals is a difficult problem; indeed, it was proved to be NP-hard by Caprara (1997). Because of its high complexity, many approximation algorithms to compute the minimal reversal distance were proposed until reaching the nowadays best-known theoretical ratio of 1.375. In this article, two memetic algorithms to compute the reversal distance are proposed. The first one uses the technique of opposition-based learning leading to an opposition-based memetic algorithm; the second one improves the previous algorithm by applying the heuristic of two breakpoint elimination leading to a hybrid approach. Several experiments were performed with one-hundred randomly generated permutations, single benchmark permutations, and biological permutations. Results of the experiments showed that the proposed OBMA and Hybrid-OBMA algorithms achieve the best results for practical cases, that is, for permutations of length up to 120. Also, Hybrid-OBMA showed to improve the results of OBMA for permutations greater than or equal to 60. The applicability of our proposed algorithms was checked processing permutations based on biological data, in which case OBMA gave the best average results for all instances.

  17. Modified Bat Algorithm Based on Lévy Flight and Opposition Based Learning

    Directory of Open Access Journals (Sweden)

    Xian Shan

    2016-01-01

    Full Text Available Bat Algorithm (BA is a swarm intelligence algorithm which has been intensively applied to solve academic and real life optimization problems. However, due to the lack of good balance between exploration and exploitation, BA sometimes fails at finding global optimum and is easily trapped into local optima. In order to overcome the premature problem and improve the local searching ability of Bat Algorithm for optimization problems, we propose an improved BA called OBMLBA. In the proposed algorithm, a modified search equation with more useful information from the search experiences is introduced to generate a candidate solution, and Lévy Flight random walk is incorporated with BA in order to avoid being trapped into local optima. Furthermore, the concept of opposition based learning (OBL is embedded to BA to enhance the diversity and convergence capability. To evaluate the performance of the proposed approach, 16 benchmark functions have been employed. The results obtained by the experiments demonstrate the effectiveness and efficiency of OBMLBA for global optimization problems. Comparisons with some other BA variants and other state-of-the-art algorithms have shown the proposed approach significantly improves the performance of BA. Performances of the proposed algorithm on large scale optimization problems and real world optimization problems are not discussed in the paper, and it will be studied in the future work.

  18. A new JPEG-based steganographic algorithm for mobile devices

    Science.gov (United States)

    Agaian, Sos S.; Cherukuri, Ravindranath C.; Schneider, Erik C.; White, Gregory B.

    2006-05-01

    Currently, cellular phones constitute a significant portion of the global telecommunications market. Modern cellular phones offer sophisticated features such as Internet access, on-board cameras, and expandable memory which provide these devices with excellent multimedia capabilities. Because of the high volume of cellular traffic, as well as the ability of these devices to transmit nearly all forms of data. The need for an increased level of security in wireless communications is becoming a growing concern. Steganography could provide a solution to this important problem. In this article, we present a new algorithm for JPEG-compressed images which is applicable to mobile platforms. This algorithm embeds sensitive information into quantized discrete cosine transform coefficients obtained from the cover JPEG. These coefficients are rearranged based on certain statistical properties and the inherent processing and memory constraints of mobile devices. Based on the energy variation and block characteristics of the cover image, the sensitive data is hidden by using a switching embedding technique proposed in this article. The proposed system offers high capacity while simultaneously withstanding visual and statistical attacks. Based on simulation results, the proposed method demonstrates an improved retention of first-order statistics when compared to existing JPEG-based steganographic algorithms, while maintaining a capacity which is comparable to F5 for certain cover images.

  19. Trends in causes of death among children under 5 in Bangladesh, 1993-2004: an exercise applying a standardized computer algorithm to assign causes of death using verbal autopsy data

    Directory of Open Access Journals (Sweden)

    Walker Neff

    2011-08-01

    Full Text Available Abstract Background Trends in the causes of child mortality serve as important global health information to guide efforts to improve child survival. With child mortality declining in Bangladesh, the distribution of causes of death also changes. The three verbal autopsy (VA studies conducted with the Bangladesh Demographic and Health Surveys provide a unique opportunity to study these changes in child causes of death. Methods To ensure comparability of these trends, we developed a standardized algorithm to assign causes of death using symptoms collected through the VA studies. The original algorithms applied were systematically reviewed and key differences in cause categorization, hierarchy, case definition, and the amount of data collected were compared to inform the development of the standardized algorithm. Based primarily on the 2004 cause categorization and hierarchy, the standardized algorithm guarantees comparability of the trends by only including symptom data commonly available across all three studies. Results Between 1993 and 2004, pneumonia remained the leading cause of death in Bangladesh, contributing to 24% to 33% of deaths among children under 5. The proportion of neonatal mortality increased significantly from 36% (uncertainty range [UR]: 31%-41% to 56% (49%-62% during the same period. The cause-specific mortality fractions due to birth asphyxia/birth injury and prematurity/low birth weight (LBW increased steadily, with both rising from 3% (2%-5% to 13% (10%-17% and 10% (7%-15%, respectively. The cause-specific mortality rates decreased significantly due to neonatal tetanus and several postneonatal causes (tetanus: from 7 [4-11] to 2 [0.4-4] per 1,000 live births (LB; pneumonia: from 26 [20-33] to 15 [11-20] per 1,000 LB; diarrhea: from 12 [8-17] to 4 [2-7] per 1,000 LB; measles: from 5 [2-8] to 0.2 [0-0.7] per 1,000 LB; injury: from 11 [7-17] to 3 [1-5] per 1,000 LB; and malnutrition: from 9 [6-13] to 5 [2-7]. Conclusions

  20. Research on E-Commerce Platform-Based Personalized Recommendation Algorithm

    Directory of Open Access Journals (Sweden)

    Zhijun Zhang

    2016-01-01

    Full Text Available Aiming at data sparsity and timeliness in traditional E-commerce collaborative filtering recommendation algorithms, when constructing user-item rating matrix, this paper utilizes the feature that commodities in E-commerce system belong to different levels to fill in nonrated items by calculating RF/IRF of the commodity’s corresponding level. In the recommendation prediction stage, considering timeliness of the recommendation system, time weighted based recommendation prediction formula is adopted to design a personalized recommendation model by integrating level filling method and rating time. The experimental results on real dataset verify the feasibility and validity of the algorithm and it owns higher predicting accuracy compared with present recommendation algorithms.

  1. Prognostics 101: A tutorial for particle filter-based prognostics algorithm using Matlab

    International Nuclear Information System (INIS)

    An, Dawn; Choi, Joo-Ho; Kim, Nam Ho

    2013-01-01

    This paper presents a Matlab-based tutorial for model-based prognostics, which combines a physical model with observed data to identify model parameters, from which the remaining useful life (RUL) can be predicted. Among many model-based prognostics algorithms, the particle filter is used in this tutorial for parameter estimation of damage or a degradation model. The tutorial is presented using a Matlab script with 62 lines, including detailed explanations. As examples, a battery degradation model and a crack growth model are used to explain the updating process of model parameters, damage progression, and RUL prediction. In order to illustrate the results, the RUL at an arbitrary cycle are predicted in the form of distribution along with the median and 90% prediction interval. This tutorial will be helpful for the beginners in prognostics to understand and use the prognostics method, and we hope it provides a standard of particle filter based prognostics. -- Highlights: ► Matlab-based tutorial for model-based prognostics is presented. ► A battery degradation model and a crack growth model are used as examples. ► The RUL at an arbitrary cycle are predicted using the particle filter

  2. Optimal Control of Complex Systems Based on Improved Dual Heuristic Dynamic Programming Algorithm

    Directory of Open Access Journals (Sweden)

    Hui Li

    2017-01-01

    Full Text Available When applied to solving the data modeling and optimal control problems of complex systems, the dual heuristic dynamic programming (DHP technique, which is based on the BP neural network algorithm (BP-DHP, has difficulty in prediction accuracy, slow convergence speed, poor stability, and so forth. In this paper, a dual DHP technique based on Extreme Learning Machine (ELM algorithm (ELM-DHP was proposed. Through constructing three kinds of network structures, the paper gives the detailed realization process of the DHP technique in the ELM. The controller designed upon the ELM-DHP algorithm controlled a molecular distillation system with complex features, such as multivariability, strong coupling, and nonlinearity. Finally, the effectiveness of the algorithm is verified by the simulation that compares DHP and HDP algorithms based on ELM and BP neural network. The algorithm can also be applied to solve the data modeling and optimal control problems of similar complex systems.

  3. Facial Affect Recognition Using Regularized Discriminant Analysis-Based Algorithms

    Directory of Open Access Journals (Sweden)

    Cheng-Yuan Shih

    2010-01-01

    Full Text Available This paper presents a novel and effective method for facial expression recognition including happiness, disgust, fear, anger, sadness, surprise, and neutral state. The proposed method utilizes a regularized discriminant analysis-based boosting algorithm (RDAB with effective Gabor features to recognize the facial expressions. Entropy criterion is applied to select the effective Gabor feature which is a subset of informative and nonredundant Gabor features. The proposed RDAB algorithm uses RDA as a learner in the boosting algorithm. The RDA combines strengths of linear discriminant analysis (LDA and quadratic discriminant analysis (QDA. It solves the small sample size and ill-posed problems suffered from QDA and LDA through a regularization technique. Additionally, this study uses the particle swarm optimization (PSO algorithm to estimate optimal parameters in RDA. Experiment results demonstrate that our approach can accurately and robustly recognize facial expressions.

  4. A Spherical Model Based Keypoint Descriptor and Matching Algorithm for Omnidirectional Images

    Directory of Open Access Journals (Sweden)

    Guofeng Tong

    2014-04-01

    Full Text Available Omnidirectional images generally have nonlinear distortion in radial direction. Unfortunately, traditional algorithms such as scale-invariant feature transform (SIFT and Descriptor-Nets (D-Nets do not work well in matching omnidirectional images just because they are incapable of dealing with the distortion. In order to solve this problem, a new voting algorithm is proposed based on the spherical model and the D-Nets algorithm. Because the spherical-based keypoint descriptor contains the distortion information of omnidirectional images, the proposed matching algorithm is invariant to distortion. Keypoint matching experiments are performed on three pairs of omnidirectional images, and comparison is made among the proposed algorithm, the SIFT and the D-Nets. The result shows that the proposed algorithm is more robust and more precise than the SIFT, and the D-Nets in matching omnidirectional images. Comparing with the SIFT and the D-Nets, the proposed algorithm has two main advantages: (a there are more real matching keypoints; (b the coverage range of the matching keypoints is wider, including the seriously distorted areas.

  5. New Secure E-mail System Based on Bio-Chaos Key Generation and Modified AES Algorithm

    Science.gov (United States)

    Hoomod, Haider K.; Radi, A. M.

    2018-05-01

    The E-mail messages exchanged between sender’s Mailbox and recipient’s Mailbox over the open systems and insecure Networks. These messages may be vulnerable to eavesdropping and itself poses a real threat to the privacy and data integrity from unauthorized persons. The E-mail Security includes the following properties (Confidentiality, Authentication, Message integrity). We need a safe encryption algorithm to encrypt Email messages such as the algorithm Advanced Encryption Standard (AES) or Data Encryption Standard DES, as well as biometric recognition and chaotic system. The proposed E-mail system security uses modified AES algorithm and uses secret key-bio-chaos that consist of biometric (Fingerprint) and chaotic system (Lu and Lorenz). This modification makes the proposed system more sensitive and random. The execution time for both encryption and decryption of the proposed system is much less from original AES, in addition to being compatible with all Mail Servers.

  6. Spike sorting based upon machine learning algorithms (SOMA).

    Science.gov (United States)

    Horton, P M; Nicol, A U; Kendrick, K M; Feng, J F

    2007-02-15

    We have developed a spike sorting method, using a combination of various machine learning algorithms, to analyse electrophysiological data and automatically determine the number of sampled neurons from an individual electrode, and discriminate their activities. We discuss extensions to a standard unsupervised learning algorithm (Kohonen), as using a simple application of this technique would only identify a known number of clusters. Our extra techniques automatically identify the number of clusters within the dataset, and their sizes, thereby reducing the chance of misclassification. We also discuss a new pre-processing technique, which transforms the data into a higher dimensional feature space revealing separable clusters. Using principal component analysis (PCA) alone may not achieve this. Our new approach appends the features acquired using PCA with features describing the geometric shapes that constitute a spike waveform. To validate our new spike sorting approach, we have applied it to multi-electrode array datasets acquired from the rat olfactory bulb, and from the sheep infero-temporal cortex, and using simulated data. The SOMA sofware is available at http://www.sussex.ac.uk/Users/pmh20/spikes.

  7. RB Particle Filter Time Synchronization Algorithm Based on the DPM Model.

    Science.gov (United States)

    Guo, Chunsheng; Shen, Jia; Sun, Yao; Ying, Na

    2015-09-03

    Time synchronization is essential for node localization, target tracking, data fusion, and various other Wireless Sensor Network (WSN) applications. To improve the estimation accuracy of continuous clock offset and skew of mobile nodes in WSNs, we propose a novel time synchronization algorithm, the Rao-Blackwellised (RB) particle filter time synchronization algorithm based on the Dirichlet process mixture (DPM) model. In a state-space equation with a linear substructure, state variables are divided into linear and non-linear variables by the RB particle filter algorithm. These two variables can be estimated using Kalman filter and particle filter, respectively, which improves the computational efficiency more so than if only the particle filter was used. In addition, the DPM model is used to describe the distribution of non-deterministic delays and to automatically adjust the number of Gaussian mixture model components based on the observational data. This improves the estimation accuracy of clock offset and skew, which allows achieving the time synchronization. The time synchronization performance of this algorithm is also validated by computer simulations and experimental measurements. The results show that the proposed algorithm has a higher time synchronization precision than traditional time synchronization algorithms.

  8. A Chinese text classification system based on Naive Bayes algorithm

    Directory of Open Access Journals (Sweden)

    Cui Wei

    2016-01-01

    Full Text Available In this paper, aiming at the characteristics of Chinese text classification, using the ICTCLAS(Chinese lexical analysis system of Chinese academy of sciences for document segmentation, and for data cleaning and filtering the Stop words, using the information gain and document frequency feature selection algorithm to document feature selection. Based on this, based on the Naive Bayesian algorithm implemented text classifier , and use Chinese corpus of Fudan University has carried on the experiment and analysis on the system.

  9. Emergency ultrasound-based algorithms for diagnosing blunt abdominal trauma.

    Science.gov (United States)

    Stengel, Dirk; Rademacher, Grit; Ekkernkamp, Axel; Güthoff, Claas; Mutze, Sven

    2015-09-14

    incidence of MDCT scans which, given the low sensitivity of FAST (or reliability of negative results), may adversely affect the diagnostic yield of the trauma survey. At best, US has no negative impact on mortality or morbidity. Assuming that major blunt abdominal or multiple trauma is associated with 15% mortality and a CT-based diagnostic work-up is considered the current standard of care, 874, 3495, or 21,838 patients are needed per intervention group to demonstrate non-inferiority of FAST to CT-based algorithms with non-inferiority margins of 5%, 2.5%, and 1%, power of 90%, and a type-I error alpha of 5%.

  10. Study on the algorithm of computational ghost imaging based on discrete fourier transform measurement matrix

    Science.gov (United States)

    Zhang, Leihong; Liang, Dong; Li, Bei; Kang, Yi; Pan, Zilan; Zhang, Dawei; Gao, Xiumin; Ma, Xiuhua

    2016-07-01

    On the basis of analyzing the cosine light field with determined analytic expression and the pseudo-inverse method, the object is illuminated by a presetting light field with a determined discrete Fourier transform measurement matrix, and the object image is reconstructed by the pseudo-inverse method. The analytic expression of the algorithm of computational ghost imaging based on discrete Fourier transform measurement matrix is deduced theoretically, and compared with the algorithm of compressive computational ghost imaging based on random measurement matrix. The reconstruction process and the reconstruction error are analyzed. On this basis, the simulation is done to verify the theoretical analysis. When the sampling measurement number is similar to the number of object pixel, the rank of discrete Fourier transform matrix is the same as the one of the random measurement matrix, the PSNR of the reconstruction image of FGI algorithm and PGI algorithm are similar, the reconstruction error of the traditional CGI algorithm is lower than that of reconstruction image based on FGI algorithm and PGI algorithm. As the decreasing of the number of sampling measurement, the PSNR of reconstruction image based on FGI algorithm decreases slowly, and the PSNR of reconstruction image based on PGI algorithm and CGI algorithm decreases sharply. The reconstruction time of FGI algorithm is lower than that of other algorithms and is not affected by the number of sampling measurement. The FGI algorithm can effectively filter out the random white noise through a low-pass filter and realize the reconstruction denoising which has a higher denoising capability than that of the CGI algorithm. The FGI algorithm can improve the reconstruction accuracy and the reconstruction speed of computational ghost imaging.

  11. Image Registration Algorithm Based on Parallax Constraint and Clustering Analysis

    Science.gov (United States)

    Wang, Zhe; Dong, Min; Mu, Xiaomin; Wang, Song

    2018-01-01

    To resolve the problem of slow computation speed and low matching accuracy in image registration, a new image registration algorithm based on parallax constraint and clustering analysis is proposed. Firstly, Harris corner detection algorithm is used to extract the feature points of two images. Secondly, use Normalized Cross Correlation (NCC) function to perform the approximate matching of feature points, and the initial feature pair is obtained. Then, according to the parallax constraint condition, the initial feature pair is preprocessed by K-means clustering algorithm, which is used to remove the feature point pairs with obvious errors in the approximate matching process. Finally, adopt Random Sample Consensus (RANSAC) algorithm to optimize the feature points to obtain the final feature point matching result, and the fast and accurate image registration is realized. The experimental results show that the image registration algorithm proposed in this paper can improve the accuracy of the image matching while ensuring the real-time performance of the algorithm.

  12. INTEGRATING CASE-BASED REASONING, KNOWLEDGE-BASED APPROACH AND TSP ALGORITHM FOR MINIMUM TOUR FINDING

    Directory of Open Access Journals (Sweden)

    Hossein Erfani

    2009-07-01

    Full Text Available Imagine you have traveled to an unfamiliar city. Before you start your daily tour around the city, you need to know a good route. In Network Theory (NT, this is the traveling salesman problem (TSP. A dynamic programming algorithm is often used for solving this problem. However, when the road network of the city is very complicated and dense, which is usually the case, it will take too long for the algorithm to find the shortest path. Furthermore, in reality, things are not as simple as those stated in AT. For instance, the cost of travel for the same part of the city at different times may not be the same. In this project, we have integrated TSP algorithm with AI knowledge-based approach and case-based reasoning in solving the problem. With this integration, knowledge about the geographical information and past cases are used to help TSP algorithm in finding a solution. This approach dramatically reduces the computation time required for minimum tour finding.

  13. Multi-sparse dictionary colorization algorithm based on the feature classification and detail enhancement

    Science.gov (United States)

    Yan, Dan; Bai, Lianfa; Zhang, Yi; Han, Jing

    2018-02-01

    For the problems of missing details and performance of the colorization based on sparse representation, we propose a conceptual model framework for colorizing gray-scale images, and then a multi-sparse dictionary colorization algorithm based on the feature classification and detail enhancement (CEMDC) is proposed based on this framework. The algorithm can achieve a natural colorized effect for a gray-scale image, and it is consistent with the human vision. First, the algorithm establishes a multi-sparse dictionary classification colorization model. Then, to improve the accuracy rate of the classification, the corresponding local constraint algorithm is proposed. Finally, we propose a detail enhancement based on Laplacian Pyramid, which is effective in solving the problem of missing details and improving the speed of image colorization. In addition, the algorithm not only realizes the colorization of the visual gray-scale image, but also can be applied to the other areas, such as color transfer between color images, colorizing gray fusion images, and infrared images.

  14. Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm

    International Nuclear Information System (INIS)

    Sun, Zhe; Wang, Ning; Bi, Yunrui; Srinivasan, Dipti

    2015-01-01

    In this paper, a HADE (hybrid adaptive differential evolution) algorithm is proposed for the identification problem of PEMFC (proton exchange membrane fuel cell). Inspired by biological genetic strategy, a novel adaptive scaling factor and a dynamic crossover probability are presented to improve the adaptive and dynamic performance of differential evolution algorithm. Moreover, two kinds of neighborhood search operations based on the bee colony foraging mechanism are introduced for enhancing local search efficiency. Through testing the benchmark functions, the proposed algorithm exhibits better performance in convergent accuracy and speed. Finally, the HADE algorithm is applied to identify the nonlinear parameters of PEMFC stack model. Through experimental comparison with other identified methods, the PEMFC model based on the HADE algorithm shows better performance. - Highlights: • We propose a hybrid adaptive differential evolution algorithm (HADE). • The search efficiency is enhanced in low and high dimension search space. • The effectiveness is confirmed by testing benchmark functions. • The identification of the PEMFC model is conducted by adopting HADE.

  15. Cluster-Based Multipolling Sequencing Algorithm for Collecting RFID Data in Wireless LANs

    Science.gov (United States)

    Choi, Woo-Yong; Chatterjee, Mainak

    2015-03-01

    With the growing use of RFID (Radio Frequency Identification), it is becoming important to devise ways to read RFID tags in real time. Access points (APs) of IEEE 802.11-based wireless Local Area Networks (LANs) are being integrated with RFID networks that can efficiently collect real-time RFID data. Several schemes, such as multipolling methods based on the dynamic search algorithm and random sequencing, have been proposed. However, as the number of RFID readers associated with an AP increases, it becomes difficult for the dynamic search algorithm to derive the multipolling sequence in real time. Though multipolling methods can eliminate the polling overhead, we still need to enhance the performance of the multipolling methods based on random sequencing. To that extent, we propose a real-time cluster-based multipolling sequencing algorithm that drastically eliminates more than 90% of the polling overhead, particularly so when the dynamic search algorithm fails to derive the multipolling sequence in real time.

  16. Multifeature Fusion Vehicle Detection Algorithm Based on Choquet Integral

    Directory of Open Access Journals (Sweden)

    Wenhui Li

    2014-01-01

    Full Text Available Vision-based multivehicle detection plays an important role in Forward Collision Warning Systems (FCWS and Blind Spot Detection Systems (BSDS. The performance of these systems depends on the real-time capability, accuracy, and robustness of vehicle detection methods. To improve the accuracy of vehicle detection algorithm, we propose a multifeature fusion vehicle detection algorithm based on Choquet integral. This algorithm divides the vehicle detection problem into two phases: feature similarity measure and multifeature fusion. In the feature similarity measure phase, we first propose a taillight-based vehicle detection method, and then vehicle taillight feature similarity measure is defined. Second, combining with the definition of Choquet integral, the vehicle symmetry similarity measure and the HOG + AdaBoost feature similarity measure are defined. Finally, these three features are fused together by Choquet integral. Being evaluated on public test collections and our own test images, the experimental results show that our method has achieved effective and robust multivehicle detection in complicated environments. Our method can not only improve the detection rate but also reduce the false alarm rate, which meets the engineering requirements of Advanced Driving Assistance Systems (ADAS.

  17. Modified Monkey Optimization Algorithm for Solving Optimal Reactive Power Dispatch Problem

    Directory of Open Access Journals (Sweden)

    Kanagasabai Lenin

    2015-04-01

    Full Text Available In this paper, a novel approach Modified Monkey optimization (MMO algorithm for solving optimal reactive power dispatch problem has been presented. MMO is a population based stochastic meta-heuristic algorithm and it is inspired by intelligent foraging behaviour of monkeys. This paper improves both local leader and global leader phases.  The proposed (MMO algorithm has been tested in standard IEEE 30 bus test system and simulation results show the worthy performance of the proposed algorithm in reducing the real power loss.

  18. A density based algorithm to detect cavities and holes from planar points

    Science.gov (United States)

    Zhu, Jie; Sun, Yizhong; Pang, Yueyong

    2017-12-01

    Delaunay-based shape reconstruction algorithms are widely used in approximating the shape from planar points. However, these algorithms cannot ensure the optimality of varied reconstructed cavity boundaries and hole boundaries. This inadequate reconstruction can be primarily attributed to the lack of efficient mathematic formulation for the two structures (hole and cavity). In this paper, we develop an efficient algorithm for generating cavities and holes from planar points. The algorithm yields the final boundary based on an iterative removal of the Delaunay triangulation. Our algorithm is mainly divided into two steps, namely, rough and refined shape reconstructions. The rough shape reconstruction performed by the algorithm is controlled by a relative parameter. Based on the rough result, the refined shape reconstruction mainly aims to detect holes and pure cavities. Cavity and hole are conceptualized as a structure with a low-density region surrounded by the high-density region. With this structure, cavity and hole are characterized by a mathematic formulation called as compactness of point formed by the length variation of the edges incident to point in Delaunay triangulation. The boundaries of cavity and hole are then found by locating a shape gradient change in compactness of point set. The experimental comparison with other shape reconstruction approaches shows that the proposed algorithm is able to accurately yield the boundaries of cavity and hole with varying point set densities and distributions.

  19. Evolving Stochastic Learning Algorithm based on Tsallis entropic index

    Science.gov (United States)

    Anastasiadis, A. D.; Magoulas, G. D.

    2006-03-01

    In this paper, inspired from our previous algorithm, which was based on the theory of Tsallis statistical mechanics, we develop a new evolving stochastic learning algorithm for neural networks. The new algorithm combines deterministic and stochastic search steps by employing a different adaptive stepsize for each network weight, and applies a form of noise that is characterized by the nonextensive entropic index q, regulated by a weight decay term. The behavior of the learning algorithm can be made more stochastic or deterministic depending on the trade off between the temperature T and the q values. This is achieved by introducing a formula that defines a time-dependent relationship between these two important learning parameters. Our experimental study verifies that there are indeed improvements in the convergence speed of this new evolving stochastic learning algorithm, which makes learning faster than using the original Hybrid Learning Scheme (HLS). In addition, experiments are conducted to explore the influence of the entropic index q and temperature T on the convergence speed and stability of the proposed method.

  20. Development of antibiotic regimens using graph based evolutionary algorithms.

    Science.gov (United States)

    Corns, Steven M; Ashlock, Daniel A; Bryden, Kenneth M

    2013-12-01

    This paper examines the use of evolutionary algorithms in the development of antibiotic regimens given to production animals. A model is constructed that combines the lifespan of the animal and the bacteria living in the animal's gastro-intestinal tract from the early finishing stage until the animal reaches market weight. This model is used as the fitness evaluation for a set of graph based evolutionary algorithms to assess the impact of diversity control on the evolving antibiotic regimens. The graph based evolutionary algorithms have two objectives: to find an antibiotic treatment regimen that maintains the weight gain and health benefits of antibiotic use and to reduce the risk of spreading antibiotic resistant bacteria. This study examines different regimens of tylosin phosphate use on bacteria populations divided into Gram positive and Gram negative types, with a focus on Campylobacter spp. Treatment regimens were found that provided decreased antibiotic resistance relative to conventional methods while providing nearly the same benefits as conventional antibiotic regimes. By using a graph to control the information flow in the evolutionary algorithm, a variety of solutions along the Pareto front can be found automatically for this and other multi-objective problems. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Algorithms and procedures in the model based control of accelerators

    International Nuclear Information System (INIS)

    Bozoki, E.

    1987-10-01

    The overall design of a Model Based Control system was presented. The system consists of PLUG-IN MODULES, governed by a SUPERVISORY PROGRAM and communicating via SHARED DATA FILES. Models can be ladded or replaced without affecting the oveall system. There can be more then one module (algorithm) to perform the same task. The user can choose the most appropriate algorithm or can compare the results using different algorithms. Calculations, algorithms, file read and write, etc. which are used in more than one module, will be in a subroutine library. This feature will simplify the maintenance of the system. A partial list of modules is presented, specifying the task they perform. 19 refs., 1 fig

  2. Research on machine learning framework based on random forest algorithm

    Science.gov (United States)

    Ren, Qiong; Cheng, Hui; Han, Hai

    2017-03-01

    With the continuous development of machine learning, industry and academia have released a lot of machine learning frameworks based on distributed computing platform, and have been widely used. However, the existing framework of machine learning is limited by the limitations of machine learning algorithm itself, such as the choice of parameters and the interference of noises, the high using threshold and so on. This paper introduces the research background of machine learning framework, and combined with the commonly used random forest algorithm in machine learning classification algorithm, puts forward the research objectives and content, proposes an improved adaptive random forest algorithm (referred to as ARF), and on the basis of ARF, designs and implements the machine learning framework.

  3. An international consensus report on a new algorithm for the management of infant diarrhoea

    NARCIS (Netherlands)

    Lo Vecchio, Andrea; Vandenplas, Yvan; Benninga, Marc; Broekaert, Ilse; Falconer, Jackie; Gottrand, Frederic; Lifschitz, Carlos; Lionetti, Paolo; Orel, Rok; Papadopoulou, Alexandra; Ribes-Koninckx, Carmen; Salvatore, Silvia; Shamir, Raanan; Schäppi, Michela; Staiano, Annamaria; Szajewska, Hania; Thapar, Nikhil; Wilschanski, Michael; Guarino, Alfredo

    2016-01-01

    Implementing international guidelines guarantees high standards of clinical care. A group of experts developed an algorithm to drive the management of common gastrointestinal symptoms in infancy by paediatricians and general practitioners. The algorithm started from the evidence-based

  4. Programming Non-Trivial Algorithms in the Measurement Based Quantum Computation Model

    Energy Technology Data Exchange (ETDEWEB)

    Alsing, Paul [United States Air Force Research Laboratory, Wright-Patterson Air Force Base; Fanto, Michael [United States Air Force Research Laboratory, Wright-Patterson Air Force Base; Lott, Capt. Gordon [United States Air Force Research Laboratory, Wright-Patterson Air Force Base; Tison, Christoper C. [United States Air Force Research Laboratory, Wright-Patterson Air Force Base

    2014-01-01

    We provide a set of prescriptions for implementing a quantum circuit model algorithm as measurement based quantum computing (MBQC) algorithm1, 2 via a large cluster state. As means of illustration we draw upon our numerical modeling experience to describe a large graph state capable of searching a logical 8 element list (a non-trivial version of Grover's algorithm3 with feedforward). We develop several prescriptions based on analytic evaluation of cluster states and graph state equations which can be generalized into any circuit model operations. Such a resulting cluster state will be able to carry out the desired operation with appropriate measurements and feed forward error correction. We also discuss the physical implementation and the analysis of the principal 3-qubit entangling gate (Toffoli) required for a non-trivial feedforward realization of an 8-element Grover search algorithm.

  5. An Enhanced Hybrid Social Based Routing Algorithm for MANET-DTN

    Directory of Open Access Journals (Sweden)

    Martin Matis

    2016-01-01

    Full Text Available A new routing algorithm for mobile ad hoc networks is proposed in this paper: an Enhanced Hybrid Social Based Routing (HSBR algorithm for MANET-DTN as optimal solution for well-connected multihop mobile networks (MANET and/or worse connected MANET with small density of the nodes and/or due to mobility fragmented MANET into two or more subnetworks or islands. This proposed HSBR algorithm is fully decentralized combining main features of both Dynamic Source Routing (DSR and Social Based Opportunistic Routing (SBOR algorithms. The proposed scheme is simulated and evaluated by replaying real life traces which exhibit this highly dynamic topology. Evaluation of new proposed HSBR algorithm was made by comparison with DSR and SBOR. All methods were simulated with different levels of velocity. The results show that HSBR has the highest success of packet delivery, but with higher delay in comparison with DSR, and much lower in comparison with SBOR. Simulation results indicate that HSBR approach can be applicable in networks, where MANET or DTN solutions are separately useless or ineffective. This method provides delivery of the message in every possible situation in areas without infrastructure and can be used as backup method for disaster situation when infrastructure is destroyed.

  6. Error Estimation for the Linearized Auto-Localization Algorithm

    Directory of Open Access Journals (Sweden)

    Fernando Seco

    2012-02-01

    Full Text Available The Linearized Auto-Localization (LAL algorithm estimates the position of beacon nodes in Local Positioning Systems (LPSs, using only the distance measurements to a mobile node whose position is also unknown. The LAL algorithm calculates the inter-beacon distances, used for the estimation of the beacons’ positions, from the linearized trilateration equations. In this paper we propose a method to estimate the propagation of the errors of the inter-beacon distances obtained with the LAL algorithm, based on a first order Taylor approximation of the equations. Since the method depends on such approximation, a confidence parameter τ is defined to measure the reliability of the estimated error. Field evaluations showed that by applying this information to an improved weighted-based auto-localization algorithm (WLAL, the standard deviation of the inter-beacon distances can be improved by more than 30% on average with respect to the original LAL method.

  7. Aircraft target detection algorithm based on high resolution spaceborne SAR imagery

    Science.gov (United States)

    Zhang, Hui; Hao, Mengxi; Zhang, Cong; Su, Xiaojing

    2018-03-01

    In this paper, an image classification algorithm for airport area is proposed, which based on the statistical features of synthetic aperture radar (SAR) images and the spatial information of pixels. The algorithm combines Gamma mixture model and MRF. The algorithm using Gamma mixture model to obtain the initial classification result. Pixel space correlation based on the classification results are optimized by the MRF technique. Additionally, morphology methods are employed to extract airport (ROI) region where the suspected aircraft target samples are clarified to reduce the false alarm and increase the detection performance. Finally, this paper presents the plane target detection, which have been verified by simulation test.

  8. Nearby Search Indekos Based Android Using A Star (A*) Algorithm

    Science.gov (United States)

    Siregar, B.; Nababan, EB; Rumahorbo, JA; Andayani, U.; Fahmi, F.

    2018-03-01

    Indekos or rented room is a temporary residence for months or years. Society of academicians who come from out of town need a temporary residence, such as Indekos or rented room during their education, teaching, or duties. They are often found difficulty in finding a Indekos because lack of information about the Indekos. Besides, new society of academicians don’t recognize the areas around the campus and desire the shortest path from Indekos to get to the campus. The problem can be solved by implementing A Star (A*) algorithm. This algorithm is one of the shortest path algorithm to a finding shortest path from campus to the Indekos application, where the faculties in the campus as the starting point of the finding. Determination of the starting point used in this study aims to allow students to determine the starting point in finding the Indekos. The mobile based application facilitates the finding anytime and anywhere. Based on the experimental results, A* algorithm can find the shortest path with 86,67% accuracy.

  9. Detection algorithm of infrared small target based on improved SUSAN operator

    Science.gov (United States)

    Liu, Xingmiao; Wang, Shicheng; Zhao, Jing

    2010-10-01

    The methods of detecting small moving targets in infrared image sequences that contain moving nuisance objects and background noise is analyzed in this paper. A novel infrared small target detection algorithm based on improved SUSAN operator is put forward. The algorithm selects double templates for the infrared small target detection: one size is greater than the small target point size and another size is equal to the small target point size. First, the algorithm uses the big template to calculate the USAN of each pixel in the image and detect the small target, the edge of the image and isolated noise pixels; Then the algorithm uses the another template to calculate the USAN of pixels detected in the first step and improves the principles of SUSAN algorithm based on the characteristics of the small target so that the algorithm can only detect small targets and don't sensitive to the edge pixels of the image and isolated noise pixels. So the interference of the edge of the image and isolate noise points are removed and the candidate target points can be identified; At last, the target is detected by utilizing the continuity and consistency of target movement. The experimental results indicate that the improved SUSAN detection algorithm can quickly and effectively detect the infrared small targets.

  10. A Total Variation Regularization Based Super-Resolution Reconstruction Algorithm for Digital Video

    Directory of Open Access Journals (Sweden)

    Zhang Liangpei

    2007-01-01

    Full Text Available Super-resolution (SR reconstruction technique is capable of producing a high-resolution image from a sequence of low-resolution images. In this paper, we study an efficient SR algorithm for digital video. To effectively deal with the intractable problems in SR video reconstruction, such as inevitable motion estimation errors, noise, blurring, missing regions, and compression artifacts, the total variation (TV regularization is employed in the reconstruction model. We use the fixed-point iteration method and preconditioning techniques to efficiently solve the associated nonlinear Euler-Lagrange equations of the corresponding variational problem in SR. The proposed algorithm has been tested in several cases of motion and degradation. It is also compared with the Laplacian regularization-based SR algorithm and other TV-based SR algorithms. Experimental results are presented to illustrate the effectiveness of the proposed algorithm.

  11. A Fast Robot Identification and Mapping Algorithm Based on Kinect Sensor

    Directory of Open Access Journals (Sweden)

    Liang Zhang

    2015-08-01

    Full Text Available Internet of Things (IoT is driving innovation in an ever-growing set of application domains such as intelligent processing for autonomous robots. For an autonomous robot, one grand challenge is how to sense its surrounding environment effectively. The Simultaneous Localization and Mapping with RGB-D Kinect camera sensor on robot, called RGB-D SLAM, has been developed for this purpose but some technical challenges must be addressed. Firstly, the efficiency of the algorithm cannot satisfy real-time requirements; secondly, the accuracy of the algorithm is unacceptable. In order to address these challenges, this paper proposes a set of novel improvement methods as follows. Firstly, the ORiented Brief (ORB method is used in feature detection and descriptor extraction. Secondly, a bidirectional Fast Library for Approximate Nearest Neighbors (FLANN k-Nearest Neighbor (KNN algorithm is applied to feature match. Then, the improved RANdom SAmple Consensus (RANSAC estimation method is adopted in the motion transformation. In the meantime, high precision General Iterative Closest Points (GICP is utilized to register a point cloud in the motion transformation optimization. To improve the accuracy of SLAM, the reduced dynamic covariance scaling (DCS algorithm is formulated as a global optimization problem under the G2O framework. The effectiveness of the improved algorithm has been verified by testing on standard data and comparing with the ground truth obtained on Freiburg University’s datasets. The Dr Robot X80 equipped with a Kinect camera is also applied in a building corridor to verify the correctness of the improved RGB-D SLAM algorithm. With the above experiments, it can be seen that the proposed algorithm achieves higher processing speed and better accuracy.

  12. A Fast Robot Identification and Mapping Algorithm Based on Kinect Sensor.

    Science.gov (United States)

    Zhang, Liang; Shen, Peiyi; Zhu, Guangming; Wei, Wei; Song, Houbing

    2015-08-14

    Internet of Things (IoT) is driving innovation in an ever-growing set of application domains such as intelligent processing for autonomous robots. For an autonomous robot, one grand challenge is how to sense its surrounding environment effectively. The Simultaneous Localization and Mapping with RGB-D Kinect camera sensor on robot, called RGB-D SLAM, has been developed for this purpose but some technical challenges must be addressed. Firstly, the efficiency of the algorithm cannot satisfy real-time requirements; secondly, the accuracy of the algorithm is unacceptable. In order to address these challenges, this paper proposes a set of novel improvement methods as follows. Firstly, the ORiented Brief (ORB) method is used in feature detection and descriptor extraction. Secondly, a bidirectional Fast Library for Approximate Nearest Neighbors (FLANN) k-Nearest Neighbor (KNN) algorithm is applied to feature match. Then, the improved RANdom SAmple Consensus (RANSAC) estimation method is adopted in the motion transformation. In the meantime, high precision General Iterative Closest Points (GICP) is utilized to register a point cloud in the motion transformation optimization. To improve the accuracy of SLAM, the reduced dynamic covariance scaling (DCS) algorithm is formulated as a global optimization problem under the G2O framework. The effectiveness of the improved algorithm has been verified by testing on standard data and comparing with the ground truth obtained on Freiburg University's datasets. The Dr Robot X80 equipped with a Kinect camera is also applied in a building corridor to verify the correctness of the improved RGB-D SLAM algorithm. With the above experiments, it can be seen that the proposed algorithm achieves higher processing speed and better accuracy.

  13. Wolf Search Algorithm for Solving Optimal Reactive Power Dispatch Problem

    Directory of Open Access Journals (Sweden)

    Kanagasabai Lenin

    2015-03-01

    Full Text Available This paper presents a new bio-inspired heuristic optimization algorithm called the Wolf Search Algorithm (WSA for solving the multi-objective reactive power dispatch problem. Wolf Search algorithm is a new bio – inspired heuristic algorithm which based on wolf preying behaviour. The way wolves search for food and survive by avoiding their enemies has been imitated to formulate the algorithm for solving the reactive power dispatches. And the speciality  of wolf is  possessing  both individual local searching ability and autonomous flocking movement and this special property has been utilized to formulate the search algorithm .The proposed (WSA algorithm has been tested on standard IEEE 30 bus test system and simulation results shows clearly about the good performance of the proposed algorithm .

  14. An adaptive clustering algorithm for image matching based on corner feature

    Science.gov (United States)

    Wang, Zhe; Dong, Min; Mu, Xiaomin; Wang, Song

    2018-04-01

    The traditional image matching algorithm always can not balance the real-time and accuracy better, to solve the problem, an adaptive clustering algorithm for image matching based on corner feature is proposed in this paper. The method is based on the similarity of the matching pairs of vector pairs, and the adaptive clustering is performed on the matching point pairs. Harris corner detection is carried out first, the feature points of the reference image and the perceived image are extracted, and the feature points of the two images are first matched by Normalized Cross Correlation (NCC) function. Then, using the improved algorithm proposed in this paper, the matching results are clustered to reduce the ineffective operation and improve the matching speed and robustness. Finally, the Random Sample Consensus (RANSAC) algorithm is used to match the matching points after clustering. The experimental results show that the proposed algorithm can effectively eliminate the most wrong matching points while the correct matching points are retained, and improve the accuracy of RANSAC matching, reduce the computation load of whole matching process at the same time.

  15. Optimal battery sizing in photovoltaic based distributed generation using enhanced opposition-based firefly algorithm for voltage rise mitigation.

    Science.gov (United States)

    Wong, Ling Ai; Shareef, Hussain; Mohamed, Azah; Ibrahim, Ahmad Asrul

    2014-01-01

    This paper presents the application of enhanced opposition-based firefly algorithm in obtaining the optimal battery energy storage systems (BESS) sizing in photovoltaic generation integrated radial distribution network in order to mitigate the voltage rise problem. Initially, the performance of the original firefly algorithm is enhanced by utilizing the opposition-based learning and introducing inertia weight. After evaluating the performance of the enhanced opposition-based firefly algorithm (EOFA) with fifteen benchmark functions, it is then adopted to determine the optimal size for BESS. Two optimization processes are conducted where the first optimization aims to obtain the optimal battery output power on hourly basis and the second optimization aims to obtain the optimal BESS capacity by considering the state of charge constraint of BESS. The effectiveness of the proposed method is validated by applying the algorithm to the 69-bus distribution system and by comparing the performance of EOFA with conventional firefly algorithm and gravitational search algorithm. Results show that EOFA has the best performance comparatively in terms of mitigating the voltage rise problem.

  16. Optimal Battery Sizing in Photovoltaic Based Distributed Generation Using Enhanced Opposition-Based Firefly Algorithm for Voltage Rise Mitigation

    Directory of Open Access Journals (Sweden)

    Ling Ai Wong

    2014-01-01

    Full Text Available This paper presents the application of enhanced opposition-based firefly algorithm in obtaining the optimal battery energy storage systems (BESS sizing in photovoltaic generation integrated radial distribution network in order to mitigate the voltage rise problem. Initially, the performance of the original firefly algorithm is enhanced by utilizing the opposition-based learning and introducing inertia weight. After evaluating the performance of the enhanced opposition-based firefly algorithm (EOFA with fifteen benchmark functions, it is then adopted to determine the optimal size for BESS. Two optimization processes are conducted where the first optimization aims to obtain the optimal battery output power on hourly basis and the second optimization aims to obtain the optimal BESS capacity by considering the state of charge constraint of BESS. The effectiveness of the proposed method is validated by applying the algorithm to the 69-bus distribution system and by comparing the performance of EOFA with conventional firefly algorithm and gravitational search algorithm. Results show that EOFA has the best performance comparatively in terms of mitigating the voltage rise problem.

  17. PCA-based algorithm for calibration of spectrophotometric analysers of food

    International Nuclear Information System (INIS)

    Morawski, Roman Z; Miekina, Andrzej

    2013-01-01

    Spectrophotometric analysers of food, being instruments for determination of the composition of food products and ingredients, are today of growing importance for food industry, as well as for food distributors and consumers. Their metrological performance significantly depends of the numerical performance of available means for spectrophotometric data processing; in particular – the means for calibration of analysers. In this paper, a new algorithm for this purpose is proposed, viz. the algorithm using principal components analysis (PCA). It is almost as efficient as PLS-based algorithms of calibration, but much simpler

  18. A homology sound-based algorithm for speech signal interference

    Science.gov (United States)

    Jiang, Yi-jiao; Chen, Hou-jin; Li, Ju-peng; Zhang, Zhan-song

    2015-12-01

    Aiming at secure analog speech communication, a homology sound-based algorithm for speech signal interference is proposed in this paper. We first split speech signal into phonetic fragments by a short-term energy method and establish an interference noise cache library with the phonetic fragments. Then we implement the homology sound interference by mixing the randomly selected interferential fragments and the original speech in real time. The computer simulation results indicated that the interference produced by this algorithm has advantages of real time, randomness, and high correlation with the original signal, comparing with the traditional noise interference methods such as white noise interference. After further studies, the proposed algorithm may be readily used in secure speech communication.

  19. A Dynamic Neighborhood Learning-Based Gravitational Search Algorithm.

    Science.gov (United States)

    Zhang, Aizhu; Sun, Genyun; Ren, Jinchang; Li, Xiaodong; Wang, Zhenjie; Jia, Xiuping

    2018-01-01

    Balancing exploration and exploitation according to evolutionary states is crucial to meta-heuristic search (M-HS) algorithms. Owing to its simplicity in theory and effectiveness in global optimization, gravitational search algorithm (GSA) has attracted increasing attention in recent years. However, the tradeoff between exploration and exploitation in GSA is achieved mainly by adjusting the size of an archive, named , which stores those superior agents after fitness sorting in each iteration. Since the global property of remains unchanged in the whole evolutionary process, GSA emphasizes exploitation over exploration and suffers from rapid loss of diversity and premature convergence. To address these problems, in this paper, we propose a dynamic neighborhood learning (DNL) strategy to replace the model and thereby present a DNL-based GSA (DNLGSA). The method incorporates the local and global neighborhood topologies for enhancing the exploration and obtaining adaptive balance between exploration and exploitation. The local neighborhoods are dynamically formed based on evolutionary states. To delineate the evolutionary states, two convergence criteria named limit value and population diversity, are introduced. Moreover, a mutation operator is designed for escaping from the local optima on the basis of evolutionary states. The proposed algorithm was evaluated on 27 benchmark problems with different characteristic and various difficulties. The results reveal that DNLGSA exhibits competitive performances when compared with a variety of state-of-the-art M-HS algorithms. Moreover, the incorporation of local neighborhood topology reduces the numbers of calculations of gravitational force and thus alleviates the high computational cost of GSA.

  20. Discrete size optimization of steel trusses using a refined big bang-big crunch algorithm

    Science.gov (United States)

    Hasançebi, O.; Kazemzadeh Azad, S.

    2014-01-01

    This article presents a methodology that provides a method for design optimization of steel truss structures based on a refined big bang-big crunch (BB-BC) algorithm. It is shown that a standard formulation of the BB-BC algorithm occasionally falls short of producing acceptable solutions to problems from discrete size optimum design of steel trusses. A reformulation of the algorithm is proposed and implemented for design optimization of various discrete truss structures according to American Institute of Steel Construction Allowable Stress Design (AISC-ASD) specifications. Furthermore, the performance of the proposed BB-BC algorithm is compared to its standard version as well as other well-known metaheuristic techniques. The numerical results confirm the efficiency of the proposed algorithm in practical design optimization of truss structures.

  1. Color Image Encryption Algorithm Based on TD-ERCS System and Wavelet Neural Network

    Directory of Open Access Journals (Sweden)

    Kun Zhang

    2015-01-01

    Full Text Available In order to solve the security problem of transmission image across public networks, a new image encryption algorithm based on TD-ERCS system and wavelet neural network is proposed in this paper. According to the permutation process and the binary XOR operation from the chaotic series by producing TD-ERCS system and wavelet neural network, it can achieve image encryption. This encryption algorithm is a reversible algorithm, and it can achieve original image in the rule inverse process of encryption algorithm. Finally, through computer simulation, the experiment results show that the new chaotic encryption algorithm based on TD-ERCS system and wavelet neural network is valid and has higher security.

  2. A hybrid flower pollination algorithm based modified randomized location for multi-threshold medical image segmentation.

    Science.gov (United States)

    Wang, Rui; Zhou, Yongquan; Zhao, Chengyan; Wu, Haizhou

    2015-01-01

    Multi-threshold image segmentation is a powerful image processing technique that is used for the preprocessing of pattern recognition and computer vision. However, traditional multilevel thresholding methods are computationally expensive because they involve exhaustively searching the optimal thresholds to optimize the objective functions. To overcome this drawback, this paper proposes a flower pollination algorithm with a randomized location modification. The proposed algorithm is used to find optimal threshold values for maximizing Otsu's objective functions with regard to eight medical grayscale images. When benchmarked against other state-of-the-art evolutionary algorithms, the new algorithm proves itself to be robust and effective through numerical experimental results including Otsu's objective values and standard deviations.

  3. An optimized routing algorithm for the automated assembly of standard multimode ribbon fibers in a full-mesh optical backplane

    Science.gov (United States)

    Basile, Vito; Guadagno, Gianluca; Ferrario, Maddalena; Fassi, Irene

    2018-03-01

    In this paper a parametric, modular and scalable algorithm allowing a fully automated assembly of a backplane fiber-optic interconnection circuit is presented. This approach guarantees the optimization of the optical fiber routing inside the backplane with respect to specific criteria (i.e. bending power losses), addressing both transmission performance and overall costs issues. Graph theory has been exploited to simplify the complexity of the NxN full-mesh backplane interconnection topology, firstly, into N independent sub-circuits and then, recursively, into a limited number of loops easier to be generated. Afterwards, the proposed algorithm selects a set of geometrical and architectural parameters whose optimization allows to identify the optimal fiber optic routing for each sub-circuit of the backplane. The topological and numerical information provided by the algorithm are then exploited to control a robot which performs the automated assembly of the backplane sub-circuits. The proposed routing algorithm can be extended to any array architecture and number of connections thanks to its modularity and scalability. Finally, the algorithm has been exploited for the automated assembly of an 8x8 optical backplane realized with standard multimode (MM) 12-fiber ribbons.

  4. Sampling-Based Motion Planning Algorithms for Replanning and Spatial Load Balancing

    Energy Technology Data Exchange (ETDEWEB)

    Boardman, Beth Leigh [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-12

    The common theme of this dissertation is sampling-based motion planning with the two key contributions being in the area of replanning and spatial load balancing for robotic systems. Here, we begin by recalling two sampling-based motion planners: the asymptotically optimal rapidly-exploring random tree (RRT*), and the asymptotically optimal probabilistic roadmap (PRM*). We also provide a brief background on collision cones and the Distributed Reactive Collision Avoidance (DRCA) algorithm. The next four chapters detail novel contributions for motion replanning in environments with unexpected static obstacles, for multi-agent collision avoidance, and spatial load balancing. First, we show improved performance of the RRT* when using the proposed Grandparent-Connection (GP) or Focused-Refinement (FR) algorithms. Next, the Goal Tree algorithm for replanning with unexpected static obstacles is detailed and proven to be asymptotically optimal. A multi-agent collision avoidance problem in obstacle environments is approached via the RRT*, leading to the novel Sampling-Based Collision Avoidance (SBCA) algorithm. The SBCA algorithm is proven to guarantee collision free trajectories for all of the agents, even when subject to uncertainties in the knowledge of the other agents’ positions and velocities. Given that a solution exists, we prove that livelocks and deadlock will lead to the cost to the goal being decreased. We introduce a new deconfliction maneuver that decreases the cost-to-come at each step. This new maneuver removes the possibility of livelocks and allows a result to be formed that proves convergence to the goal configurations. Finally, we present a limited range Graph-based Spatial Load Balancing (GSLB) algorithm which fairly divides a non-convex space among multiple agents that are subject to differential constraints and have a limited travel distance. The GSLB is proven to converge to a solution when maximizing the area covered by the agents. The analysis

  5. A hash-based image encryption algorithm

    Science.gov (United States)

    Cheddad, Abbas; Condell, Joan; Curran, Kevin; McKevitt, Paul

    2010-03-01

    There exist several algorithms that deal with text encryption. However, there has been little research carried out to date on encrypting digital images or video files. This paper describes a novel way of encrypting digital images with password protection using 1D SHA-2 algorithm coupled with a compound forward transform. A spatial mask is generated from the frequency domain by taking advantage of the conjugate symmetry of the complex imagery part of the Fourier Transform. This mask is then XORed with the bit stream of the original image. Exclusive OR (XOR), a logical symmetric operation, that yields 0 if both binary pixels are zeros or if both are ones and 1 otherwise. This can be verified simply by modulus (pixel1, pixel2, 2). Finally, confusion is applied based on the displacement of the cipher's pixels in accordance with a reference mask. Both security and performance aspects of the proposed method are analyzed, which prove that the method is efficient and secure from a cryptographic point of view. One of the merits of such an algorithm is to force a continuous tone payload, a steganographic term, to map onto a balanced bits distribution sequence. This bit balance is needed in certain applications, such as steganography and watermarking, since it is likely to have a balanced perceptibility effect on the cover image when embedding.

  6. Research on loss of coolant accident of pressurized-water reactor based on PSO algorithm

    International Nuclear Information System (INIS)

    Ma Jie; Guo Lifeng; Peng Qiao

    2012-01-01

    In order to improve the diagnosis performance of Loss of Coolant Accident (LOCA), based on Back Propagation (BP) algorithm study, a fault diagnosis network is established based on Particle Swarm Optimization (PSO) algorithm in this paper. The PSO algorithm is used to train the weights and the thresholds of neural network, which can conquer part convergence problem of BP algorithm. The test results show that the diagnosis network has higher accuracy of LOCA. (authors)

  7. Solving Multiobjective Optimization Problems Using Artificial Bee Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Wenping Zou

    2011-01-01

    Full Text Available Multiobjective optimization has been a difficult problem and focus for research in fields of science and engineering. This paper presents a novel algorithm based on artificial bee colony (ABC to deal with multi-objective optimization problems. ABC is one of the most recently introduced algorithms based on the intelligent foraging behavior of a honey bee swarm. It uses less control parameters, and it can be efficiently used for solving multimodal and multidimensional optimization problems. Our algorithm uses the concept of Pareto dominance to determine the flight direction of a bee, and it maintains nondominated solution vectors which have been found in an external archive. The proposed algorithm is validated using the standard test problems, and simulation results show that the proposed approach is highly competitive and can be considered a viable alternative to solve multi-objective optimization problems.

  8. A novel artificial bee colony based clustering algorithm for categorical data.

    Science.gov (United States)

    Ji, Jinchao; Pang, Wei; Zheng, Yanlin; Wang, Zhe; Ma, Zhiqiang

    2015-01-01

    Data with categorical attributes are ubiquitous in the real world. However, existing partitional clustering algorithms for categorical data are prone to fall into local optima. To address this issue, in this paper we propose a novel clustering algorithm, ABC-K-Modes (Artificial Bee Colony clustering based on K-Modes), based on the traditional k-modes clustering algorithm and the artificial bee colony approach. In our approach, we first introduce a one-step k-modes procedure, and then integrate this procedure with the artificial bee colony approach to deal with categorical data. In the search process performed by scout bees, we adopt the multi-source search inspired by the idea of batch processing to accelerate the convergence of ABC-K-Modes. The performance of ABC-K-Modes is evaluated by a series of experiments in comparison with that of the other popular algorithms for categorical data.

  9. Extreme-Scale Algorithms & Software Resilience (EASIR) Architecture-Aware Algorithms for Scalable Performance and Resilience on Heterogeneous Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Demmel, James W. [Univ. of California, Berkeley, CA (United States)

    2017-09-14

    subset of the IEEE Floating Point Standard 754-2008, uses just 6 words to represent a “reproducible accumulator,” and requires just one read-only pass over the data, or one reduction in parallel. New instructions based on this work are being considered for inclusion in the future IEEE 754-2018 floating-point standard, and new reproducible BLAS are being considered for the next version of the BLAS standard.

  10. A Learning Algorithm based on High School Teaching Wisdom

    OpenAIRE

    Philip, Ninan Sajeeth

    2010-01-01

    A learning algorithm based on primary school teaching and learning is presented. The methodology is to continuously evaluate a student and to give them training on the examples for which they repeatedly fail, until, they can correctly answer all types of questions. This incremental learning procedure produces better learning curves by demanding the student to optimally dedicate their learning time on the failed examples. When used in machine learning, the algorithm is found to train a machine...

  11. A feature extraction algorithm based on corner and spots in self-driving vehicles

    Directory of Open Access Journals (Sweden)

    Yupeng FENG

    2017-06-01

    Full Text Available To solve the poor real-time performance problem of the visual odometry based on embedded system with limited computing resources, an image matching method based on Harris and SIFT is proposed, namely the Harris-SIFT algorithm. On the basis of the review of SIFT algorithm, the principle of Harris-SIFT algorithm is provided. First, Harris algorithm is used to extract the corners of the image as candidate feature points, and scale invariant feature transform (SIFT features are extracted from those candidate feature points. At last, through an example, the algorithm is simulated by Matlab, then the complexity and other performance of the algorithm are analyzed. The experimental results show that the proposed method reduces the computational complexity and improves the speed of feature extraction. Harris-SIFT algorithm can be used in the real-time vision odometer system, and will bring about a wide application of visual odometry in embedded navigation system.

  12. Implementation of an Algorithm for Prosthetic Joint Infection: Deviations and Problems.

    Science.gov (United States)

    Mühlhofer, Heinrich M L; Kanz, Karl-Georg; Pohlig, Florian; Lenze, Ulrich; Lenze, Florian; Toepfer, Andreas; von Eisenhart-Rothe, Ruediger; Schauwecker, Johannes

    The outcome of revision surgery in arthroplasty is based on a precise diagnosis. In addition, the treatment varies based on whether the prosthetic failure is caused by aseptic or septic loosening. Algorithms can help to identify periprosthetic joint infections (PJI) and standardize diagnostic steps, however, algorithms tend to oversimplify the treatment of complex cases. We conducted a process analysis during the implementation of a PJI algorithm to determine problems and deviations associated with the implementation of this algorithm. Fifty patients who were treated after implementing a standardized algorithm were monitored retrospectively. Their treatment plans and diagnostic cascades were analyzed for deviations from the implemented algorithm. Each diagnostic procedure was recorded, compared with the algorithm, and evaluated statistically. We detected 52 deviations while treating 50 patients. In 25 cases, no discrepancy was observed. Synovial fluid aspiration was not performed in 31.8% of patients (95% confidence interval [CI], 18.1%-45.6%), while white blood cell counts (WBCs) and neutrophil differentiation were assessed in 54.5% of patients (95% CI, 39.8%-69.3%). We also observed that the prolonged incubation of cultures was not requested in 13.6% of patients (95% CI, 3.5%-23.8%). In seven of 13 cases (63.6%; 95% CI, 35.2%-92.1%), arthroscopic biopsy was performed; 6 arthroscopies were performed in discordance with the algorithm (12%; 95% CI, 3%-21%). Self-critical analysis of diagnostic processes and monitoring of deviations using algorithms are important and could increase the quality of treatment by revealing recurring faults.

  13. Comparative performance analysis of the artificial-intelligence-based thermal control algorithms for the double-skin building

    International Nuclear Information System (INIS)

    Moon, Jin Woo

    2015-01-01

    This study aimed at developing artificial-intelligence-(AI)-theory-based optimal control algorithms for improving the indoor temperature conditions and heating energy efficiency of the double-skin buildings. For this, one conventional rule-based and four AI-based algorithms were developed, including artificial neural network (ANN), fuzzy logic (FL), and adaptive neuro fuzzy inference systems (ANFIS), for operating the surface openings of the double skin and the heating system. A numerical computer simulation method incorporating the matrix laboratory (MATLAB) and the transient systems simulation (TRNSYS) software was used for the comparative performance tests. The analysis results revealed that advanced thermal-environment comfort and stability can be provided by the AI-based algorithms. In particular, the FL and ANFIS algorithms were superior to the ANN algorithm in terms of providing better thermal conditions. The ANN-based algorithm, however, proved its potential to be the most energy-efficient and stable strategy among the four AI-based algorithms. It can be concluded that the optimal algorithm can be differently determined according to the major focus of the strategy. If comfortable thermal condition is the principal interest, then the FL or ANFIS algorithm could be the proper solution, and if energy saving for space heating and system operation stability is the main concerns, then the ANN-based algorithm may be applicable. - Highlights: • Integrated control algorithms were developed for the heating system and surface openings. • AI theories were applied to the control algorithms. • ANN, FL, and ANFIS were the applied AI theories. • Comparative performance tests were conducted using computer simulation. • AI algorithms presented superior temperature environment.

  14. Research on multirobot pursuit task allocation algorithm based on emotional cooperation factor.

    Science.gov (United States)

    Fang, Baofu; Chen, Lu; Wang, Hao; Dai, Shuanglu; Zhong, Qiubo

    2014-01-01

    Multirobot task allocation is a hot issue in the field of robot research. A new emotional model is used with the self-interested robot, which gives a new way to measure self-interested robots' individual cooperative willingness in the problem of multirobot task allocation. Emotional cooperation factor is introduced into self-interested robot; it is updated based on emotional attenuation and external stimuli. Then a multirobot pursuit task allocation algorithm is proposed, which is based on emotional cooperation factor. Combined with the two-step auction algorithm recruiting team leaders and team collaborators, set up pursuit teams, and finally use certain strategies to complete the pursuit task. In order to verify the effectiveness of this algorithm, some comparing experiments have been done with the instantaneous greedy optimal auction algorithm; the results of experiments show that the total pursuit time and total team revenue can be optimized by using this algorithm.

  15. Performance evaluation of PCA-based spike sorting algorithms.

    Science.gov (United States)

    Adamos, Dimitrios A; Kosmidis, Efstratios K; Theophilidis, George

    2008-09-01

    Deciphering the electrical activity of individual neurons from multi-unit noisy recordings is critical for understanding complex neural systems. A widely used spike sorting algorithm is being evaluated for single-electrode nerve trunk recordings. The algorithm is based on principal component analysis (PCA) for spike feature extraction. In the neuroscience literature it is generally assumed that the use of the first two or most commonly three principal components is sufficient. We estimate the optimum PCA-based feature space by evaluating the algorithm's performance on simulated series of action potentials. A number of modifications are made to the open source nev2lkit software to enable systematic investigation of the parameter space. We introduce a new metric to define clustering error considering over-clustering more favorable than under-clustering as proposed by experimentalists for our data. Both the program patch and the metric are available online. Correlated and white Gaussian noise processes are superimposed to account for biological and artificial jitter in the recordings. We report that the employment of more than three principal components is in general beneficial for all noise cases considered. Finally, we apply our results to experimental data and verify that the sorting process with four principal components is in agreement with a panel of electrophysiology experts.

  16. Evaluation of the Eclipse eMC algorithm for bolus electron conformal therapy using a standard verification dataset.

    Science.gov (United States)

    Carver, Robert L; Sprunger, Conrad P; Hogstrom, Kenneth R; Popple, Richard A; Antolak, John A

    2016-05-08

    The purpose of this study was to evaluate the accuracy and calculation speed of electron dose distributions calculated by the Eclipse electron Monte Carlo (eMC) algorithm for use with bolus electron conformal therapy (ECT). The recent com-mercial availability of bolus ECT technology requires further validation of the eMC dose calculation algorithm. eMC-calculated electron dose distributions for bolus ECT have been compared to previously measured TLD-dose points throughout patient-based cylindrical phantoms (retromolar trigone and nose), whose axial cross sections were based on the mid-PTV (planning treatment volume) CT anatomy. The phantoms consisted of SR4 muscle substitute, SR4 bone substitute, and air. The treatment plans were imported into the Eclipse treatment planning system, and electron dose distributions calculated using 1% and processors (Intel Xeon E5-2690, 2.9 GHz) on a framework agent server (FAS). In comparison, the eMC was significantly more accurate than the pencil beam algorithm (PBA). The eMC has comparable accuracy to the pencil beam redefinition algorithm (PBRA) used for bolus ECT planning and has acceptably low dose calculation times. The eMC accuracy decreased when smoothing was used in high-gradient dose regions. The eMC accuracy was consistent with that previously reported for accuracy of the eMC electron dose algorithm and shows that the algorithm is suitable for clinical implementation of bolus ECT.

  17. Reverse Universal Resolving Algorithm and inverse driving

    DEFF Research Database (Denmark)

    Pécseli, Thomas

    2012-01-01

    Inverse interpretation is a semantics based, non-standard interpretation of programs. Given a program and a value, an inverse interpreter finds all or one of the inputs, that would yield the given value as output with normal forward evaluation. The Reverse Universal Resolving Algorithm is a new...... variant of the Universal Resolving Algorithm for inverse interpretation. The new variant outperforms the original algorithm in several cases, e.g., when unpacking a list using inverse interpretation of a pack program. It uses inverse driving as its main technique, which has not been described in detail...... before. Inverse driving may find application with, e.g., supercompilation, thus suggesting a new kind of program inverter....

  18. Effective pathfinding for four-wheeled robot based on combining Theta* and hybrid A* algorithms

    Directory of Open Access Journals (Sweden)

    Віталій Геннадійович Михалько

    2016-07-01

    Full Text Available Effective pathfinding algorithm based on Theta* and Hybrid A* algorithms was developed for four-wheeled robot. Pseudocode for algorithm was showed and explained. Algorithm and simulator for four-wheeled robot were implemented using Java programming language. Algorithm was tested on U-obstacles, complex maps and for parking problem

  19. Robust and unobtrusive algorithm based on position independence for step detection

    Science.gov (United States)

    Qiu, KeCheng; Li, MengYang; Luo, YiHan

    2018-04-01

    Running is becoming one of the most popular exercises among the people, monitoring steps can help users better understand their running process and improve exercise efficiency. In this paper, we design and implement a robust and unobtrusive algorithm based on position independence for step detection under real environment. It applies Butterworth filter to suppress high frequency interference and then employs the projection based on mathematics to transform system to solve the problem of unknown position of smartphone. Finally, using sliding window to suppress the false peak. The algorithm was tested for eight participants on the Android 7.0 platform. In our experiments, the results show that the proposed algorithm can achieve desired effect in spite of device pose.

  20. Performance Analysis of Different Backoff Algorithms for WBAN-Based Emerging Sensor Networks.

    Science.gov (United States)

    Khan, Pervez; Ullah, Niamat; Ali, Farman; Ullah, Sana; Hong, Youn-Sik; Lee, Ki-Young; Kim, Hoon

    2017-03-02

    The Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) procedure of IEEE 802.15.6 Medium Access Control (MAC) protocols for the Wireless Body Area Network (WBAN) use an Alternative Binary Exponential Backoff (ABEB) procedure. The backoff algorithm plays an important role to avoid collision in wireless networks. The Binary Exponential Backoff (BEB) algorithm used in different standards does not obtain the optimum performance due to enormous Contention Window (CW) gaps induced from packet collisions. Therefore, The IEEE 802.15.6 CSMA/CA has developed the ABEB procedure to avoid the large CW gaps upon each collision. However, the ABEB algorithm may lead to a high collision rate (as the CW size is incremented on every alternative collision) and poor utilization of the channel due to the gap between the subsequent CW. To minimize the gap between subsequent CW sizes, we adopted the Prioritized Fibonacci Backoff (PFB) procedure. This procedure leads to a smooth and gradual increase in the CW size, after each collision, which eventually decreases the waiting time, and the contending node can access the channel promptly with little delay; while ABEB leads to irregular and fluctuated CW values, which eventually increase collision and waiting time before a re-transmission attempt. We analytically approach this problem by employing a Markov chain to design the PFB scheme for the CSMA/CA procedure of the IEEE 80.15.6 standard. The performance of the PFB algorithm is compared against the ABEB function of WBAN CSMA/CA. The results show that the PFB procedure adopted for IEEE 802.15.6 CSMA/CA outperforms the ABEB procedure.

  1. Performance Analysis of Different Backoff Algorithms for WBAN-Based Emerging Sensor Networks

    Directory of Open Access Journals (Sweden)

    Pervez Khan

    2017-03-01

    Full Text Available The Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA procedure of IEEE 802.15.6 Medium Access Control (MAC protocols for the Wireless Body Area Network (WBAN use an Alternative Binary Exponential Backoff (ABEB procedure. The backoff algorithm plays an important role to avoid collision in wireless networks. The Binary Exponential Backoff (BEB algorithm used in different standards does not obtain the optimum performance due to enormous Contention Window (CW gaps induced from packet collisions. Therefore, The IEEE 802.15.6 CSMA/CA has developed the ABEB procedure to avoid the large CW gaps upon each collision. However, the ABEB algorithm may lead to a high collision rate (as the CW size is incremented on every alternative collision and poor utilization of the channel due to the gap between the subsequent CW. To minimize the gap between subsequent CW sizes, we adopted the Prioritized Fibonacci Backoff (PFB procedure. This procedure leads to a smooth and gradual increase in the CW size, after each collision, which eventually decreases the waiting time, and the contending node can access the channel promptly with little delay; while ABEB leads to irregular and fluctuated CW values, which eventually increase collision and waiting time before a re-transmission attempt. We analytically approach this problem by employing a Markov chain to design the PFB scheme for the CSMA/CA procedure of the IEEE 80.15.6 standard. The performance of the PFB algorithm is compared against the ABEB function of WBAN CSMA/CA. The results show that the PFB procedure adopted for IEEE 802.15.6 CSMA/CA outperforms the ABEB procedure.

  2. Algorithm of reducing the false positives in IDS based on correlation Analysis

    Science.gov (United States)

    Liu, Jianyi; Li, Sida; Zhang, Ru

    2018-03-01

    This paper proposes an algorithm of reducing the false positives in IDS based on correlation Analysis. Firstly, the algorithm analyzes the distinguishing characteristics of false positives and real alarms, and preliminary screen the false positives; then use the method of attribute similarity clustering to the alarms and further reduces the amount of alarms; finally, according to the characteristics of multi-step attack, associated it by the causal relationship. The paper also proposed a reverse causation algorithm based on the attack association method proposed by the predecessors, turning alarm information into a complete attack path. Experiments show that the algorithm simplifies the number of alarms, improve the efficiency of alarm processing, and contribute to attack purposes identification and alarm accuracy improvement.

  3. Quantum Image Encryption Algorithm Based on Image Correlation Decomposition

    Science.gov (United States)

    Hua, Tianxiang; Chen, Jiamin; Pei, Dongju; Zhang, Wenquan; Zhou, Nanrun

    2015-02-01

    A novel quantum gray-level image encryption and decryption algorithm based on image correlation decomposition is proposed. The correlation among image pixels is established by utilizing the superposition and measurement principle of quantum states. And a whole quantum image is divided into a series of sub-images. These sub-images are stored into a complete binary tree array constructed previously and then randomly performed by one of the operations of quantum random-phase gate, quantum revolving gate and Hadamard transform. The encrypted image can be obtained by superimposing the resulting sub-images with the superposition principle of quantum states. For the encryption algorithm, the keys are the parameters of random phase gate, rotation angle, binary sequence and orthonormal basis states. The security and the computational complexity of the proposed algorithm are analyzed. The proposed encryption algorithm can resist brute force attack due to its very large key space and has lower computational complexity than its classical counterparts.

  4. Explicit symplectic algorithms based on generating functions for charged particle dynamics

    Science.gov (United States)

    Zhang, Ruili; Qin, Hong; Tang, Yifa; Liu, Jian; He, Yang; Xiao, Jianyuan

    2016-07-01

    Dynamics of a charged particle in the canonical coordinates is a Hamiltonian system, and the well-known symplectic algorithm has been regarded as the de facto method for numerical integration of Hamiltonian systems due to its long-term accuracy and fidelity. For long-term simulations with high efficiency, explicit symplectic algorithms are desirable. However, it is generally believed that explicit symplectic algorithms are only available for sum-separable Hamiltonians, and this restriction limits the application of explicit symplectic algorithms to charged particle dynamics. To overcome this difficulty, we combine the familiar sum-split method and a generating function method to construct second- and third-order explicit symplectic algorithms for dynamics of charged particle. The generating function method is designed to generate explicit symplectic algorithms for product-separable Hamiltonian with form of H (x ,p ) =pif (x ) or H (x ,p ) =xig (p ) . Applied to the simulations of charged particle dynamics, the explicit symplectic algorithms based on generating functions demonstrate superiorities in conservation and efficiency.

  5. Analysis of computational complexity for HT-based fingerprint alignment algorithms on java card environment

    CSIR Research Space (South Africa)

    Mlambo, CS

    2015-01-01

    Full Text Available In this paper, implementations of three Hough Transform based fingerprint alignment algorithms are analyzed with respect to time complexity on Java Card environment. Three algorithms are: Local Match Based Approach (LMBA), Discretized Rotation Based...

  6. Randomized algorithms in automatic control and data mining

    CERN Document Server

    Granichin, Oleg; Toledano-Kitai, Dvora

    2015-01-01

    In the fields of data mining and control, the huge amount of unstructured data and the presence of uncertainty in system descriptions have always been critical issues. The book Randomized Algorithms in Automatic Control and Data Mining introduces the readers to the fundamentals of randomized algorithm applications in data mining (especially clustering) and in automatic control synthesis. The methods proposed in this book guarantee that the computational complexity of classical algorithms and the conservativeness of standard robust control techniques will be reduced. It is shown that when a problem requires "brute force" in selecting among options, algorithms based on random selection of alternatives offer good results with certain probability for a restricted time and significantly reduce the volume of operations.

  7. A fast sparse reconstruction algorithm for electrical tomography

    International Nuclear Information System (INIS)

    Zhao, Jia; Xu, Yanbin; Tan, Chao; Dong, Feng

    2014-01-01

    Electrical tomography (ET) has been widely investigated due to its advantages of being non-radiative, low-cost and high-speed. However, the image reconstruction of ET is a nonlinear and ill-posed inverse problem and the imaging results are easily affected by measurement noise. A sparse reconstruction algorithm based on L 1 regularization is robust to noise and consequently provides a high quality of reconstructed images. In this paper, a sparse reconstruction by separable approximation algorithm (SpaRSA) is extended to solve the ET inverse problem. The algorithm is competitive with the fastest state-of-the-art algorithms in solving the standard L 2 −L 1 problem. However, it is computationally expensive when the dimension of the matrix is large. To further improve the calculation speed of solving inverse problems, a projection method based on the Krylov subspace is employed and combined with the SpaRSA algorithm. The proposed algorithm is tested with image reconstruction of electrical resistance tomography (ERT). Both simulation and experimental results demonstrate that the proposed method can reduce the computational time and improve the noise robustness for the image reconstruction. (paper)

  8. a Universal De-Noising Algorithm for Ground-Based LIDAR Signal

    Science.gov (United States)

    Ma, Xin; Xiang, Chengzhi; Gong, Wei

    2016-06-01

    Ground-based lidar, working as an effective remote sensing tool, plays an irreplaceable role in the study of atmosphere, since it has the ability to provide the atmospheric vertical profile. However, the appearance of noise in a lidar signal is unavoidable, which leads to difficulties and complexities when searching for more information. Every de-noising method has its own characteristic but with a certain limitation, since the lidar signal will vary with the atmosphere changes. In this paper, a universal de-noising algorithm is proposed to enhance the SNR of a ground-based lidar signal, which is based on signal segmentation and reconstruction. The signal segmentation serving as the keystone of the algorithm, segments the lidar signal into three different parts, which are processed by different de-noising method according to their own characteristics. The signal reconstruction is a relatively simple procedure that is to splice the signal sections end to end. Finally, a series of simulation signal tests and real dual field-of-view lidar signal shows the feasibility of the universal de-noising algorithm.

  9. A Multi-Scale Settlement Matching Algorithm Based on ARG

    Science.gov (United States)

    Yue, Han; Zhu, Xinyan; Chen, Di; Liu, Lingjia

    2016-06-01

    Homonymous entity matching is an important part of multi-source spatial data integration, automatic updating and change detection. Considering the low accuracy of existing matching methods in dealing with matching multi-scale settlement data, an algorithm based on Attributed Relational Graph (ARG) is proposed. The algorithm firstly divides two settlement scenes at different scales into blocks by small-scale road network and constructs local ARGs in each block. Then, ascertains candidate sets by merging procedures and obtains the optimal matching pairs by comparing the similarity of ARGs iteratively. Finally, the corresponding relations between settlements at large and small scales are identified. At the end of this article, a demonstration is presented and the results indicate that the proposed algorithm is capable of handling sophisticated cases.

  10. FPGA Based Low Power DES Algorithm Design And Implementation using HTML Technology

    DEFF Research Database (Denmark)

    Thind, Vandana; Pandey, Bishwajeet; Kalia, Kartik

    2016-01-01

    In this particular work, we have done power analysis of DES algorithm implemented on 28nm FPGA using HTML (H-HSUL, T-TTL, M-MOBILE_DDR, L-LVCMOS) technology. In this research, we have used high performance software Xilinx ISE where we have selected four different IO Standards i.e. MOBILE_DDR, HSUL...

  11. A Linked List-Based Algorithm for Blob Detection on Embedded Vision-Based Sensors

    Directory of Open Access Journals (Sweden)

    Ricardo Acevedo-Avila

    2016-05-01

    Full Text Available Blob detection is a common task in vision-based applications. Most existing algorithms are aimed at execution on general purpose computers; while very few can be adapted to the computing restrictions present in embedded platforms. This paper focuses on the design of an algorithm capable of real-time blob detection that minimizes system memory consumption. The proposed algorithm detects objects in one image scan; it is based on a linked-list data structure tree used to label blobs depending on their shape and node information. An example application showing the results of a blob detection co-processor has been built on a low-powered field programmable gate array hardware as a step towards developing a smart video surveillance system. The detection method is intended for general purpose application. As such, several test cases focused on character recognition are also examined. The results obtained present a fair trade-off between accuracy and memory requirements; and prove the validity of the proposed approach for real-time implementation on resource-constrained computing platforms.

  12. A Linked List-Based Algorithm for Blob Detection on Embedded Vision-Based Sensors.

    Science.gov (United States)

    Acevedo-Avila, Ricardo; Gonzalez-Mendoza, Miguel; Garcia-Garcia, Andres

    2016-05-28

    Blob detection is a common task in vision-based applications. Most existing algorithms are aimed at execution on general purpose computers; while very few can be adapted to the computing restrictions present in embedded platforms. This paper focuses on the design of an algorithm capable of real-time blob detection that minimizes system memory consumption. The proposed algorithm detects objects in one image scan; it is based on a linked-list data structure tree used to label blobs depending on their shape and node information. An example application showing the results of a blob detection co-processor has been built on a low-powered field programmable gate array hardware as a step towards developing a smart video surveillance system. The detection method is intended for general purpose application. As such, several test cases focused on character recognition are also examined. The results obtained present a fair trade-off between accuracy and memory requirements; and prove the validity of the proposed approach for real-time implementation on resource-constrained computing platforms.

  13. Management and prevention of refeeding syndrome in medical inpatients: An evidence-based and consensus-supported algorithm.

    Science.gov (United States)

    Friedli, Natalie; Stanga, Zeno; Culkin, Alison; Crook, Martin; Laviano, Alessandro; Sobotka, Lubos; Kressig, Reto W; Kondrup, Jens; Mueller, Beat; Schuetz, Philipp

    2018-03-01

    Refeeding syndrome (RFS) can be a life-threatening metabolic condition after nutritional replenishment if not recognized early and treated adequately. There is a lack of evidence-based treatment and monitoring algorithm for daily clinical practice. The aim of the study was to propose an expert consensus guideline for RFS for the medical inpatient (not including anorexic patients) regarding risk factors, diagnostic criteria, and preventive and therapeutic measures based on a previous systematic literature search. Based on a recent qualitative systematic review on the topic, we developed clinically relevant recommendations as well as a treatment and monitoring algorithm for the clinical management of inpatients regarding RFS. With international experts, these recommendations were discussed and agreement with the recommendation was rated. Upon hospital admission, we recommend the use of specific screening criteria (i.e., low body mass index, large unintentional weight loss, little or no nutritional intake, history of alcohol or drug abuse) for risk assessment regarding the occurrence of RFS. According to the patient's individual risk for RFS, a careful start of nutritional therapy with a stepwise increase in energy and fluids goals and supplementation of electrolyte and vitamins, as well as close clinical monitoring, is recommended. We also propose criteria for the diagnosis of imminent and manifest RFS with practical treatment recommendations with adoption of the nutritional therapy. Based on the available evidence, we developed a practical algorithm for risk assessment, treatment, and monitoring of RFS in medical inpatients. In daily routine clinical care, this may help to optimize and standardize the management of this vulnerable patient population. We encourage future quality studies to further refine these recommendations. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Using an improved association rules mining optimization algorithm in web-based mobile-learning system

    Science.gov (United States)

    Huang, Yin; Chen, Jianhua; Xiong, Shaojun

    2009-07-01

    Mobile-Learning (M-learning) makes many learners get the advantages of both traditional learning and E-learning. Currently, Web-based Mobile-Learning Systems have created many new ways and defined new relationships between educators and learners. Association rule mining is one of the most important fields in data mining and knowledge discovery in databases. Rules explosion is a serious problem which causes great concerns, as conventional mining algorithms often produce too many rules for decision makers to digest. Since Web-based Mobile-Learning System collects vast amounts of student profile data, data mining and knowledge discovery techniques can be applied to find interesting relationships between attributes of learners, assessments, the solution strategies adopted by learners and so on. Therefore ,this paper focus on a new data-mining algorithm, combined with the advantages of genetic algorithm and simulated annealing algorithm , called ARGSA(Association rules based on an improved Genetic Simulated Annealing Algorithm), to mine the association rules. This paper first takes advantage of the Parallel Genetic Algorithm and Simulated Algorithm designed specifically for discovering association rules. Moreover, the analysis and experiment are also made to show the proposed method is superior to the Apriori algorithm in this Mobile-Learning system.

  15. A Novel Assembly Line Balancing Method Based on PSO Algorithm

    Directory of Open Access Journals (Sweden)

    Xiaomei Hu

    2014-01-01

    Full Text Available Assembly line is widely used in manufacturing system. Assembly line balancing problem is a crucial question during design and management of assembly lines since it directly affects the productivity of the whole manufacturing system. The model of assembly line balancing problem is put forward and a general optimization method is proposed. The key data on assembly line balancing problem is confirmed, and the precedence relations diagram is described. A double objective optimization model based on takt time and smoothness index is built, and balance optimization scheme based on PSO algorithm is proposed. Through the simulation experiments of examples, the feasibility and validity of the assembly line balancing method based on PSO algorithm is proved.

  16. Development and Validation of a Diabetic Retinopathy Referral Algorithm Based on Single-Field Fundus Photography.

    Directory of Open Access Journals (Sweden)

    Sangeetha Srinivasan

    Full Text Available To develop a simplified algorithm to identify and refer diabetic retinopathy (DR from single-field retinal images specifically for sight-threatening diabetic retinopathy for appropriate care (ii to determine the agreement and diagnostic accuracy of the algorithm as a pilot study among optometrists versus "gold standard" (retinal specialist grading.The severity of DR was scored based on colour photo using a colour coded algorithm, which included the lesions of DR and number of quadrants involved. A total of 99 participants underwent training followed by evaluation. Data of the 99 participants were analyzed. Fifty posterior pole 45 degree retinal images with all stages of DR were presented. Kappa scores (κ, areas under the receiver operating characteristic curves (AUCs, sensitivity and specificity were determined, with further comparison between working optometrists and optometry students.Mean age of the participants was 22 years (range: 19-43 years, 87% being women. Participants correctly identified 91.5% images that required immediate referral (κ = 0.696, 62.5% of images as requiring review after 6 months (κ = 0.462, and 51.2% of those requiring review after 1 year (κ = 0.532. The sensitivity and specificity of the optometrists were 91% and 78% for immediate referral, 62% and 84% for review after 6 months, and 51% and 95% for review after 1 year, respectively. The AUC was the highest (0.855 for immediate referral, second highest (0.824 for review after 1 year, and 0.727 for review after 6 months criteria. Optometry students performed better than the working optometrists for all grades of referral.The diabetic retinopathy algorithm assessed in this work is a simple and a fairly accurate method for appropriate referral based on single-field 45 degree posterior pole retinal images.

  17. A chaos-based evolutionary algorithm for general nonlinear programming problems

    International Nuclear Information System (INIS)

    El-Shorbagy, M.A.; Mousa, A.A.; Nasr, S.M.

    2016-01-01

    In this paper we present a chaos-based evolutionary algorithm (EA) for solving nonlinear programming problems named chaotic genetic algorithm (CGA). CGA integrates genetic algorithm (GA) and chaotic local search (CLS) strategy to accelerate the optimum seeking operation and to speed the convergence to the global solution. The integration of global search represented in genetic algorithm and CLS procedures should offer the advantages of both optimization methods while offsetting their disadvantages. By this way, it is intended to enhance the global convergence and to prevent to stick on a local solution. The inherent characteristics of chaos can enhance optimization algorithms by enabling it to escape from local solutions and increase the convergence to reach to the global solution. Twelve chaotic maps have been analyzed in the proposed approach. The simulation results using the set of CEC’2005 show that the application of chaotic mapping may be an effective strategy to improve the performances of EAs.

  18. Nonuniform Sparse Data Clustering Cascade Algorithm Based on Dynamic Cumulative Entropy

    Directory of Open Access Journals (Sweden)

    Ning Li

    2016-01-01

    Full Text Available A small amount of prior knowledge and randomly chosen initial cluster centers have a direct impact on the accuracy of the performance of iterative clustering algorithm. In this paper we propose a new algorithm to compute initial cluster centers for k-means clustering and the best number of the clusters with little prior knowledge and optimize clustering result. It constructs the Euclidean distance control factor based on aggregation density sparse degree to select the initial cluster center of nonuniform sparse data and obtains initial data clusters by multidimensional diffusion density distribution. Multiobjective clustering approach based on dynamic cumulative entropy is adopted to optimize the initial data clusters and the best number of the clusters. The experimental results show that the newly proposed algorithm has good performance to obtain the initial cluster centers for the k-means algorithm and it effectively improves the clustering accuracy of nonuniform sparse data by about 5%.

  19. Algorithm for image retrieval based on edge gradient orientation statistical code.

    Science.gov (United States)

    Zeng, Jiexian; Zhao, Yonggang; Li, Weiye; Fu, Xiang

    2014-01-01

    Image edge gradient direction not only contains important information of the shape, but also has a simple, lower complexity characteristic. Considering that the edge gradient direction histograms and edge direction autocorrelogram do not have the rotation invariance, we put forward the image retrieval algorithm which is based on edge gradient orientation statistical code (hereinafter referred to as EGOSC) by sharing the application of the statistics method in the edge direction of the chain code in eight neighborhoods to the statistics of the edge gradient direction. Firstly, we construct the n-direction vector and make maximal summation restriction on EGOSC to make sure this algorithm is invariable for rotation effectively. Then, we use Euclidean distance of edge gradient direction entropy to measure shape similarity, so that this method is not sensitive to scaling, color, and illumination change. The experimental results and the algorithm analysis demonstrate that the algorithm can be used for content-based image retrieval and has good retrieval results.

  20. Fast intersection detection algorithm for PC-based robot off-line programming

    Science.gov (United States)

    Fedrowitz, Christian H.

    1994-11-01

    This paper presents a method for fast and reliable collision detection in complex production cells. The algorithm is part of the PC-based robot off-line programming system of the University of Siegen (Ropsus). The method is based on a solid model which is managed by a simplified constructive solid geometry model (CSG-model). The collision detection problem is divided in two steps. In the first step the complexity of the problem is reduced in linear time. In the second step the remaining solids are tested for intersection. For this the Simplex algorithm, which is known from linear optimization, is used. It computes a point which is common to two convex polyhedra. The polyhedra intersect, if such a point exists. Regarding the simplified geometrical model of Ropsus the algorithm runs also in linear time. In conjunction with the first step a resultant collision detection algorithm is found which requires linear time in all. Moreover it computes the resultant intersection polyhedron using the dual transformation.

  1. Segmentation of Handwritten Chinese Character Strings Based on improved Algorithm Liu

    Directory of Open Access Journals (Sweden)

    Zhihua Cai

    2014-09-01

    Full Text Available Algorithm Liu attracts high attention because of its high accuracy in segmentation of Japanese postal address. But the disadvantages, such as complexity and difficult implementation of algorithm, etc. have an adverse effect on its popularization and application. In this paper, the author applies the principles of algorithm Liu to handwritten Chinese character segmentation according to the characteristics of the handwritten Chinese characters, based on deeply study on algorithm Liu.In the same time, the author put forward the judgment criterion of Segmentation block classification and adhering mode of the handwritten Chinese characters.In the process of segmentation, text images are seen as the sequence made up of Connected Components (CCs, while the connected components are made up of several horizontal itinerary set of black pixels in image. The author determines whether these parts will be merged into segmentation through analyzing connected components. And then the author does image segmentation through adhering mode based on the analysis of outline edges. Finally cut the text images into character segmentation. Experimental results show that the improved Algorithm Liu obtains high segmentation accuracy and produces a satisfactory segmentation result.

  2. Research on Multirobot Pursuit Task Allocation Algorithm Based on Emotional Cooperation Factor

    Directory of Open Access Journals (Sweden)

    Baofu Fang

    2014-01-01

    Full Text Available Multirobot task allocation is a hot issue in the field of robot research. A new emotional model is used with the self-interested robot, which gives a new way to measure self-interested robots’ individual cooperative willingness in the problem of multirobot task allocation. Emotional cooperation factor is introduced into self-interested robot; it is updated based on emotional attenuation and external stimuli. Then a multirobot pursuit task allocation algorithm is proposed, which is based on emotional cooperation factor. Combined with the two-step auction algorithm recruiting team leaders and team collaborators, set up pursuit teams, and finally use certain strategies to complete the pursuit task. In order to verify the effectiveness of this algorithm, some comparing experiments have been done with the instantaneous greedy optimal auction algorithm; the results of experiments show that the total pursuit time and total team revenue can be optimized by using this algorithm.

  3. A triangle voting algorithm based on double feature constraints for star sensors

    Science.gov (United States)

    Fan, Qiaoyun; Zhong, Xuyang

    2018-02-01

    A novel autonomous star identification algorithm is presented in this study. In the proposed algorithm, each sensor star constructs multi-triangle with its bright neighbor stars and obtains its candidates by triangle voting process, in which the triangle is considered as the basic voting element. In order to accelerate the speed of this algorithm and reduce the required memory for star database, feature extraction is carried out to reduce the dimension of triangles and each triangle is described by its base and height. During the identification period, the voting scheme based on double feature constraints is proposed to implement triangle voting. This scheme guarantees that only the catalog star satisfying two features can vote for the sensor star, which improves the robustness towards false stars. The simulation and real star image test demonstrate that compared with the other two algorithms, the proposed algorithm is more robust towards position noise, magnitude noise and false stars.

  4. A rule-based electronic phenotyping algorithm for detecting clinically relevant cardiovascular disease cases.

    Science.gov (United States)

    Esteban, Santiago; Rodríguez Tablado, Manuel; Ricci, Ricardo Ignacio; Terrasa, Sergio; Kopitowski, Karin

    2017-07-14

    The implementation of electronic medical records (EMR) is becoming increasingly common. Error and data loss reduction, patient-care efficiency increase, decision-making assistance and facilitation of event surveillance, are some of the many processes that EMRs help improve. In addition, they show a lot of promise in terms of data collection to facilitate observational epidemiological studies and their use for this purpose has increased significantly over the recent years. Even though the quantity and availability of the data are clearly improved thanks to EMRs, still, the problem of the quality of the data remains. This is especially important when attempting to determine if an event has actually occurred or not. We sought to assess the sensitivity, specificity, and agreement level of a codes-based algorithm for the detection of clinically relevant cardiovascular (CaVD) and cerebrovascular (CeVD) disease cases, using data from EMRs. Three family physicians from the research group selected clinically relevant CaVD and CeVD terms from the international classification of primary care, Second Edition (ICPC-2), the ICD 10 version 2015 and SNOMED-CT 2015 Edition. These terms included both signs, symptoms, diagnoses and procedures associated with CaVD and CeVD. Terms not related to symptoms, signs, diagnoses or procedures of CaVD or CeVD and also those describing incidental findings without clinical relevance were excluded. The algorithm yielded a positive result if the patient had at least one of the selected terms in their medical records, as long as it was not recorded as an error. Else, if no terms were found, the patient was classified as negative. This algorithm was applied to a randomly selected sample of the active patients within the hospital's HMO by 1/1/2005 that were 40-79 years old, had at least one year of seniority in the HMO and at least one clinical encounter. Thus, patients were classified into four groups: (1) Negative patients (2) Patients with Ca

  5. LAI inversion algorithm based on directional reflectance kernels.

    Science.gov (United States)

    Tang, S; Chen, J M; Zhu, Q; Li, X; Chen, M; Sun, R; Zhou, Y; Deng, F; Xie, D

    2007-11-01

    Leaf area index (LAI) is an important ecological and environmental parameter. A new LAI algorithm is developed using the principles of ground LAI measurements based on canopy gap fraction. First, the relationship between LAI and gap fraction at various zenith angles is derived from the definition of LAI. Then, the directional gap fraction is acquired from a remote sensing bidirectional reflectance distribution function (BRDF) product. This acquisition is obtained by using a kernel driven model and a large-scale directional gap fraction algorithm. The algorithm has been applied to estimate a LAI distribution in China in mid-July 2002. The ground data acquired from two field experiments in Changbai Mountain and Qilian Mountain were used to validate the algorithm. To resolve the scale discrepancy between high resolution ground observations and low resolution remote sensing data, two TM images with a resolution approaching the size of ground plots were used to relate the coarse resolution LAI map to ground measurements. First, an empirical relationship between the measured LAI and a vegetation index was established. Next, a high resolution LAI map was generated using the relationship. The LAI value of a low resolution pixel was calculated from the area-weighted sum of high resolution LAIs composing the low resolution pixel. The results of this comparison showed that the inversion algorithm has an accuracy of 82%. Factors that may influence the accuracy are also discussed in this paper.

  6. Comparative performance of an elitist teaching-learning-based optimization algorithm for solving unconstrained optimization problems

    Directory of Open Access Journals (Sweden)

    R. Venkata Rao

    2013-01-01

    Full Text Available Teaching-Learning-based optimization (TLBO is a recently proposed population based algorithm, which simulates the teaching-learning process of the class room. This algorithm requires only the common control parameters and does not require any algorithm-specific control parameters. In this paper, the effect of elitism on the performance of the TLBO algorithm is investigated while solving unconstrained benchmark problems. The effects of common control parameters such as the population size and the number of generations on the performance of the algorithm are also investigated. The proposed algorithm is tested on 76 unconstrained benchmark functions with different characteristics and the performance of the algorithm is compared with that of other well known optimization algorithms. A statistical test is also performed to investigate the results obtained using different algorithms. The results have proved the effectiveness of the proposed elitist TLBO algorithm.

  7. A High-Performance FPGA-Based Image Feature Detector and Matcher Based on the FAST and BRIEF Algorithms

    Directory of Open Access Journals (Sweden)

    Michał Fularz

    2015-10-01

    Full Text Available Image feature detection and matching is a fundamental operation in image processing. As the detected and matched features are used as input data for high-level computer vision algorithms, the matching accuracy directly influences the quality of the results of the whole computer vision system. Moreover, as the algorithms are frequently used as a part of a real-time processing pipeline, the speed at which the input image data are handled is also a concern. The paper proposes an embedded system architecture for feature detection and matching. The architecture implements the FAST feature detector and the BRIEF feature descriptor and is capable of establishing key point correspondences in the input image data stream coming from either an external sensor or memory at a speed of hundreds of frames per second, so that it can cope with most demanding applications. Moreover, the proposed design is highly flexible and configurable, and facilitates the trade-off between the processing speed and programmable logic resource utilization. All the designed hardware blocks are designed to use standard, widely adopted hardware interfaces based on the AMBA AXI4 interface protocol and are connected using an underlying direct memory access (DMA architecture, enabling bottleneck-free inter-component data transfers.

  8. An algorithm based on OmniView technology to reconstruct sagittal and coronal planes of the fetal brain from volume datasets acquired by three-dimensional ultrasound.

    Science.gov (United States)

    Rizzo, G; Capponi, A; Pietrolucci, M E; Capece, A; Aiello, E; Mammarella, S; Arduini, D

    2011-08-01

    To describe a novel algorithm, based on the new display technology 'OmniView', developed to visualize diagnostic sagittal and coronal planes of the fetal brain from volumes obtained by three-dimensional (3D) ultrasonography. We developed an algorithm to image standard neurosonographic planes by drawing dissecting lines through the axial transventricular view of 3D volume datasets acquired transabdominally. The algorithm was tested on 106 normal fetuses at 18-24 weeks of gestation and the visualization rates of brain diagnostic planes were evaluated by two independent reviewers. The algorithm was also applied to nine cases with proven brain defects. The two reviewers, using the algorithm on normal fetuses, found satisfactory images with visualization rates ranging between 71.7% and 96.2% for sagittal planes and between 76.4% and 90.6% for coronal planes. The agreement rate between the two reviewers, as expressed by Cohen's kappa coefficient, was > 0.93 for sagittal planes and > 0.89 for coronal planes. All nine abnormal volumes were identified by a single observer from among a series including normal brains, and eight of these nine cases were diagnosed correctly. This novel algorithm can be used to visualize standard sagittal and coronal planes in the fetal brain. This approach may simplify the examination of the fetal brain and reduce dependency of success on operator skill. Copyright © 2011 ISUOG. Published by John Wiley & Sons, Ltd.

  9. Web page sorting algorithm based on query keyword distance relation

    Science.gov (United States)

    Yang, Han; Cui, Hong Gang; Tang, Hao

    2017-08-01

    In order to optimize the problem of page sorting, according to the search keywords in the web page in the relationship between the characteristics of the proposed query keywords clustering ideas. And it is converted into the degree of aggregation of the search keywords in the web page. Based on the PageRank algorithm, the clustering degree factor of the query keyword is added to make it possible to participate in the quantitative calculation. This paper proposes an improved algorithm for PageRank based on the distance relation between search keywords. The experimental results show the feasibility and effectiveness of the method.

  10. A parallel algorithm for the non-symmetric eigenvalue problem

    International Nuclear Information System (INIS)

    Sidani, M.M.

    1991-01-01

    An algorithm is presented for the solution of the non-symmetric eigenvalue problem. The algorithm is based on a divide-and-conquer procedure that provides initial approximations to the eigenpairs, which are then refined using Newton iterations. Since the smaller subproblems can be solved independently, and since Newton iterations with different initial guesses can be started simultaneously, the algorithm - unlike the standard QR method - is ideal for parallel computers. The author also reports on his investigation of deflation methods designed to obtain further eigenpairs if needed. Numerical results from implementations on a host of parallel machines (distributed and shared-memory) are presented

  11. A Method Based on Dial's Algorithm for Multi-time Dynamic Traffic Assignment

    Directory of Open Access Journals (Sweden)

    Rongjie Kuang

    2014-03-01

    Full Text Available Due to static traffic assignment has poor performance in reflecting actual case and dynamic traffic assignment may incurs excessive compute cost, method of multi-time dynamic traffic assignment combining static and dynamic traffic assignment balances factors of precision and cost effectively. A method based on Dial's logit algorithm is proposed in the article to solve the dynamic stochastic user equilibrium problem in dynamic traffic assignment. Before that, a fitting function that can proximately reflect overloaded traffic condition of link is proposed and used to give corresponding model. Numerical example is given to illustrate heuristic procedure of method and to compare results with one of same example solved by other literature's algorithm. Results show that method based on Dial's algorithm is preferable to algorithm from others.

  12. Time Reversal Reconstruction Algorithm Based on PSO Optimized SVM Interpolation for Photoacoustic Imaging

    Directory of Open Access Journals (Sweden)

    Mingjian Sun

    2015-01-01

    Full Text Available Photoacoustic imaging is an innovative imaging technique to image biomedical tissues. The time reversal reconstruction algorithm in which a numerical model of the acoustic forward problem is run backwards in time is widely used. In the paper, a time reversal reconstruction algorithm based on particle swarm optimization (PSO optimized support vector machine (SVM interpolation method is proposed for photoacoustics imaging. Numerical results show that the reconstructed images of the proposed algorithm are more accurate than those of the nearest neighbor interpolation, linear interpolation, and cubic convolution interpolation based time reversal algorithm, which can provide higher imaging quality by using significantly fewer measurement positions or scanning times.

  13. An Orthogonal Multi-Swarm Cooperative PSO Algorithm with a Particle Trajectory Knowledge Base

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2017-01-01

    Full Text Available A novel orthogonal multi-swarm cooperative particle swarm optimization (PSO algorithm with a particle trajectory knowledge base is presented in this paper. Different from the traditional PSO algorithms and other variants of PSO, the proposed orthogonal multi-swarm cooperative PSO algorithm not only introduces an orthogonal initialization mechanism and a particle trajectory knowledge base for multi-dimensional optimization problems, but also conceives a new adaptive cooperation mechanism to accomplish the information interaction among swarms and particles. Experiments are conducted on a set of benchmark functions, and the results show its better performance compared with traditional PSO algorithm in aspects of convergence, computational efficiency and avoiding premature convergence.

  14. A generic EEG artifact removal algorithm based on the multi-channel Wiener filter

    Science.gov (United States)

    Somers, Ben; Francart, Tom; Bertrand, Alexander

    2018-06-01

    Objective. The electroencephalogram (EEG) is an essential neuro-monitoring tool for both clinical and research purposes, but is susceptible to a wide variety of undesired artifacts. Removal of these artifacts is often done using blind source separation techniques, relying on a purely data-driven transformation, which may sometimes fail to sufficiently isolate artifacts in only one or a few components. Furthermore, some algorithms perform well for specific artifacts, but not for others. In this paper, we aim to develop a generic EEG artifact removal algorithm, which allows the user to annotate a few artifact segments in the EEG recordings to inform the algorithm. Approach. We propose an algorithm based on the multi-channel Wiener filter (MWF), in which the artifact covariance matrix is replaced by a low-rank approximation based on the generalized eigenvalue decomposition. The algorithm is validated using both hybrid and real EEG data, and is compared to other algorithms frequently used for artifact removal. Main results. The MWF-based algorithm successfully removes a wide variety of artifacts with better performance than current state-of-the-art methods. Significance. Current EEG artifact removal techniques often have limited applicability due to their specificity to one kind of artifact, their complexity, or simply because they are too ‘blind’. This paper demonstrates a fast, robust and generic algorithm for removal of EEG artifacts of various types, i.e. those that were annotated as unwanted by the user.

  15. An optimized outlier detection algorithm for jury-based grading of engineering design projects

    DEFF Research Database (Denmark)

    Thompson, Mary Kathryn; Espensen, Christina; Clemmensen, Line Katrine Harder

    2016-01-01

    This work characterizes and optimizes an outlier detection algorithm to identify potentially invalid scores produced by jury members while grading engineering design projects. The paper describes the original algorithm and the associated adjudication process in detail. The impact of the various...... (the base rule and the three additional conditions) play a role in the algorithm's performance and should be included in the algorithm. Because there is significant interaction between the base rule and the additional conditions, many acceptable combinations that balance the FPR and FNR can be found......, but no true optimum seems to exist. The performance of the best optimizations and the original algorithm are similar. Therefore, it should be possible to choose new coefficient values for jury populations in other cultures and contexts logically and empirically without a full optimization as long...

  16. An efficient CU partition algorithm for HEVC based on improved Sobel operator

    Science.gov (United States)

    Sun, Xuebin; Chen, Xiaodong; Xu, Yong; Sun, Gang; Yang, Yunsheng

    2018-04-01

    As the latest video coding standard, High Efficiency Video Coding (HEVC) achieves over 50% bit rate reduction with similar video quality compared with previous standards H.264/AVC. However, the higher compression efficiency is attained at the cost of significantly increasing computational load. In order to reduce the complexity, this paper proposes a fast coding unit (CU) partition technique to speed up the process. To detect the edge features of each CU, a more accurate improved Sobel filtering is developed and performed By analyzing the textural features of CU, an early CU splitting termination is proposed to decide whether a CU should be decomposed into four lower-dimensions CUs or not. Compared with the reference software HM16.7, experimental results indicate the proposed algorithm can lessen the encoding time up to 44.09% on average, with a negligible bit rate increase of 0.24%, and quality losses lower 0.03 dB, respectively. In addition, the proposed algorithm gets a better trade-off between complexity and rate-distortion among the other proposed works.

  17. A neural network based implementation of an MPC algorithm applied in the control systems of electromechanical plants

    Science.gov (United States)

    Marusak, Piotr M.; Kuntanapreeda, Suwat

    2018-01-01

    The paper considers application of a neural network based implementation of a model predictive control (MPC) control algorithm to electromechanical plants. Properties of such control plants implicate that a relatively short sampling time should be used. However, in such a case, finding the control value numerically may be too time-consuming. Therefore, the current paper tests the solution based on transforming the MPC optimization problem into a set of differential equations whose solution is the same as that of the original optimization problem. This set of differential equations can be interpreted as a dynamic neural network. In such an approach, the constraints can be introduced into the optimization problem with relative ease. Moreover, the solution of the optimization problem can be obtained faster than when the standard numerical quadratic programming routine is used. However, a very careful tuning of the algorithm is needed to achieve this. A DC motor and an electrohydraulic actuator are taken as illustrative examples. The feasibility and effectiveness of the proposed approach are demonstrated through numerical simulations.

  18. The Improved Locating Algorithm of Particle Filter Based on ROS Robot

    Science.gov (United States)

    Fang, Xun; Fu, Xiaoyang; Sun, Ming

    2018-03-01

    This paperanalyzes basic theory and primary algorithm of the real-time locating system and SLAM technology based on ROS system Robot. It proposes improved locating algorithm of particle filter effectively reduces the matching time of laser radar and map, additional ultra-wideband technology directly accelerates the global efficiency of FastSLAM algorithm, which no longer needs searching on the global map. Meanwhile, the re-sampling has been largely reduced about 5/6 that directly cancels the matching behavior on Roboticsalgorithm.

  19. A fast identification algorithm for Box-Cox transformation based radial basis function neural network.

    Science.gov (United States)

    Hong, Xia

    2006-07-01

    In this letter, a Box-Cox transformation-based radial basis function (RBF) neural network is introduced using the RBF neural network to represent the transformed system output. Initially a fixed and moderate sized RBF model base is derived based on a rank revealing orthogonal matrix triangularization (QR decomposition). Then a new fast identification algorithm is introduced using Gauss-Newton algorithm to derive the required Box-Cox transformation, based on a maximum likelihood estimator. The main contribution of this letter is to explore the special structure of the proposed RBF neural network for computational efficiency by utilizing the inverse of matrix block decomposition lemma. Finally, the Box-Cox transformation-based RBF neural network, with good generalization and sparsity, is identified based on the derived optimal Box-Cox transformation and a D-optimality-based orthogonal forward regression algorithm. The proposed algorithm and its efficacy are demonstrated with an illustrative example in comparison with support vector machine regression.

  20. Analog Group Delay Equalizers Design Based on Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    M. Laipert

    2006-04-01

    Full Text Available This paper deals with a design method of the analog all-pass filter designated for equalization of the group delay frequency response of the analog filter. This method is based on usage of evolutionary algorithm, the Differential Evolution algorithm in particular. We are able to design such equalizers to be obtained equal-ripple group delay frequency response in the pass-band of the low-pass filter. The procedure works automatically without an input estimation. The method is presented on solving practical examples.