WorldWideScience

Sample records for stance control orthosis

  1. Using an electrohydraulic ankle foot orthosis to study modifications in feedforward control during locomotor adaptation to force fields applied in stance.

    Science.gov (United States)

    Noel, Martin; Fortin, Karine; Bouyer, Laurent J

    2009-06-03

    Adapting to external forces during walking has been proposed as a tool to improve locomotion after central nervous system injury. However, sensorimotor integration during walking varies according to the timing in the gait cycle, suggesting that adaptation may also depend on gait phases. In this study, an ElectroHydraulic AFO (EHO) was used to apply forces specifically during mid-stance and push-off to evaluate if feedforward movement control can be adapted in these 2 gait phases. Eleven healthy subjects walked on a treadmill before (3 min), during (5 min) and after (5 min) exposure to 2 force fields applied by the EHO (mid-stance/push-off; approximately 10 Nm, towards dorsiflexion). To evaluate modifications in feedforward control, strides with no force field ('catch strides') were unexpectedly inserted during the force field walking period. When initially exposed to a mid-stance force field (FF 20%), subjects showed a significant increase in ankle dorsiflexion velocity. Catches applied early into the FF 20% were similar to baseline (P > 0.99). Subjects gradually adapted by returning ankle velocity to baseline over approximately 50 strides. Catches applied thereafter showed decreased ankle velocity where the force field was normally applied, indicating the presence of feedforward adaptation. When initially exposed to a push-off force field (FF 50%), plantarflexion velocity was reduced in the zone of force field application. No adaptation occurred over the 5 min exposure. Catch strides kinematics remained similar to control at all times, suggesting no feedforward adaptation. As a control, force fields assisting plantarflexion (-3.5 to -9.5 Nm) were applied and increased ankle plantarflexion during push-off, confirming that the lack of kinematic changes during FF 50% catch strides were not simply due to a large ankle impedance. Together these results show that ankle exoskeletons such as the EHO can be used to study phase-specific adaptive control of the ankle during

  2. Using an electrohydraulic ankle foot orthosis to study modifications in feedforward control during locomotor adaptation to force fields applied in stance

    Directory of Open Access Journals (Sweden)

    Bouyer Laurent J

    2009-06-01

    Full Text Available Abstract Background Adapting to external forces during walking has been proposed as a tool to improve locomotion after central nervous system injury. However, sensorimotor integration during walking varies according to the timing in the gait cycle, suggesting that adaptation may also depend on gait phases. In this study, an ElectroHydraulic AFO (EHO was used to apply forces specifically during mid-stance and push-off to evaluate if feedforward movement control can be adapted in these 2 gait phases. Methods Eleven healthy subjects walked on a treadmill before (3 min, during (5 min and after (5 min exposure to 2 force fields applied by the EHO (mid-stance/push-off; ~10 Nm, towards dorsiflexion. To evaluate modifications in feedforward control, strides with no force field ('catch strides' were unexpectedly inserted during the force field walking period. Results When initially exposed to a mid-stance force field (FF20%, subjects showed a significant increase in ankle dorsiflexion velocity. Catches applied early into the FF20% were similar to baseline (P > 0.99. Subjects gradually adapted by returning ankle velocity to baseline over ~50 strides. Catches applied thereafter showed decreased ankle velocity where the force field was normally applied, indicating the presence of feedforward adaptation. When initially exposed to a push-off force field (FF50%, plantarflexion velocity was reduced in the zone of force field application. No adaptation occurred over the 5 min exposure. Catch strides kinematics remained similar to control at all times, suggesting no feedforward adaptation. As a control, force fields assisting plantarflexion (-3.5 to -9.5 Nm were applied and increased ankle plantarflexion during push-off, confirming that the lack of kinematic changes during FF50% catch strides were not simply due to a large ankle impedance. Conclusion Together these results show that ankle exoskeletons such as the EHO can be used to study phase-specific adaptive

  3. Using an electrohydraulic ankle foot orthosis to study modifications in feedforward control during locomotor adaptation to force fields applied in stance

    Science.gov (United States)

    Noel, Martin; Fortin, Karine; Bouyer, Laurent J

    2009-01-01

    Background Adapting to external forces during walking has been proposed as a tool to improve locomotion after central nervous system injury. However, sensorimotor integration during walking varies according to the timing in the gait cycle, suggesting that adaptation may also depend on gait phases. In this study, an ElectroHydraulic AFO (EHO) was used to apply forces specifically during mid-stance and push-off to evaluate if feedforward movement control can be adapted in these 2 gait phases. Methods Eleven healthy subjects walked on a treadmill before (3 min), during (5 min) and after (5 min) exposure to 2 force fields applied by the EHO (mid-stance/push-off; ~10 Nm, towards dorsiflexion). To evaluate modifications in feedforward control, strides with no force field ('catch strides') were unexpectedly inserted during the force field walking period. Results When initially exposed to a mid-stance force field (FF20%), subjects showed a significant increase in ankle dorsiflexion velocity. Catches applied early into the FF20% were similar to baseline (P > 0.99). Subjects gradually adapted by returning ankle velocity to baseline over ~50 strides. Catches applied thereafter showed decreased ankle velocity where the force field was normally applied, indicating the presence of feedforward adaptation. When initially exposed to a push-off force field (FF50%), plantarflexion velocity was reduced in the zone of force field application. No adaptation occurred over the 5 min exposure. Catch strides kinematics remained similar to control at all times, suggesting no feedforward adaptation. As a control, force fields assisting plantarflexion (-3.5 to -9.5 Nm) were applied and increased ankle plantarflexion during push-off, confirming that the lack of kinematic changes during FF50% catch strides were not simply due to a large ankle impedance. Conclusion Together these results show that ankle exoskeletons such as the EHO can be used to study phase-specific adaptive control of the ankle

  4. Locomotor adaptation to a powered ankle-foot orthosis depends on control method

    Directory of Open Access Journals (Sweden)

    Gordon Keith E

    2007-12-01

    Full Text Available Abstract Background We studied human locomotor adaptation to powered ankle-foot orthoses with the intent of identifying differences between two different orthosis control methods. The first orthosis control method used a footswitch to provide bang-bang control (a kinematic control and the second orthosis control method used a proportional myoelectric signal from the soleus (a physiological control. Both controllers activated an artificial pneumatic muscle providing plantar flexion torque. Methods Subjects walked on a treadmill for two thirty-minute sessions spaced three days apart under either footswitch control (n = 6 or myoelectric control (n = 6. We recorded lower limb electromyography (EMG, joint kinematics, and orthosis kinetics. We compared stance phase EMG amplitudes, correlation of joint angle patterns, and mechanical work performed by the powered orthosis between the two controllers over time. Results During steady state at the end of the second session, subjects using proportional myoelectric control had much lower soleus and gastrocnemius activation than the subjects using footswitch control. The substantial decrease in triceps surae recruitment allowed the proportional myoelectric control subjects to walk with ankle kinematics close to normal and reduce negative work performed by the orthosis. The footswitch control subjects walked with substantially perturbed ankle kinematics and performed more negative work with the orthosis. Conclusion These results provide evidence that the choice of orthosis control method can greatly alter how humans adapt to powered orthosis assistance during walking. Specifically, proportional myoelectric control results in larger reductions in muscle activation and gait kinematics more similar to normal compared to footswitch control.

  5. A functional comparison of conventional knee-ankle-foot orthoses and a microprocessor-controlled leg orthosis system based on biomechanical parameters.

    Science.gov (United States)

    Schmalz, Thomas; Pröbsting, Eva; Auberger, Roland; Siewert, Gordon

    2016-04-01

    The microprocessor-controlled leg orthosis C-Brace enables patients with paretic or paralysed lower limb muscles to use dampened knee flexion under weight-bearing and speed-adapted control of the swing phase. The objective of the present study was to investigate the new technical functions of the C-Brace orthosis, based on biomechanical parameters. The study enrolled six patients. The C-Brace orthosis is compared with conventional leg orthoses (four stance control orthoses, two locked knee-ankle-foot orthoses) using biomechanical parameters of level walking, descending ramps and descending stairs. Ground reaction forces, joint moments and kinematic parameters were measured for level walking as well as ascending and descending ramps and stairs. With the C-Brace, a nearly natural stance phase knee flexion was measured during level walking (mean value 11° ± 5.6°). The maximum swing phase knee flexion angle of the C-Brace approached the normal value of 65° more closely than the stance control orthoses (66° ± 8.5° vs 74° ± 6.4°). No significant differences in the joint moments were found between the C-Brace and stance control orthosis conditions. In contrast to the conventional orthoses, all patients were able to ambulate ramps and stairs using a step-over-step technique with C-Brace (flexion angle 64.6° ± 8.2° and 70.5° ± 12.4°). The results show that the functions of the C-Brace for situation-dependent knee flexion under weight bearing have been used by patients with a high level of confidence. The functional benefits of the C-Brace in comparison with the conventional orthotic mechanisms could be demonstrated most clearly for descending ramps and stairs. The C-Brace orthosis is able to combine improved orthotic function with sustained orthotic safety. © The International Society for Prosthetics and Orthotics 2014.

  6. The effect of a knee ankle foot orthosis incorporating an active knee mechanism on gait of a person with poliomyelitis.

    Science.gov (United States)

    Arazpour, Mokhtar; Chitsazan, Ahmad; Bani, Monireh Ahmadi; Rouhi, Gholamreza; Ghomshe, Farhad Tabatabai; Hutchins, Stephen W

    2013-10-01

    The aim of this case study was to identify the effect of a powered stance control knee ankle foot orthosis on the kinematics and temporospatial parameters of walking by a person with poliomyelitis when compared to a knee ankle foot orthosis. A knee ankle foot orthosis was initially manufactured by incorporating drop lock knee joints and custom molded ankle foot orthoses and fitted to a person with poliomyelitis. The orthosis was then adapted by adding electrically activated powered knee joints to provide knee extension torque during stance and also flexion torque in swing phase. Lower limb kinematic and kinetic data plus data for temporospatial parameters were acquired from three test walks using each orthosis. Walking speed, step length, and vertical and horizontal displacement of the pelvis decreased when walking with the powered stance control knee ankle foot orthosis compared to the knee ankle foot orthosis. When using the powered stance control knee ankle foot orthosis, the knee flexion achieved during swing and also the overall pattern of walking more closely matched that of normal human walking. The reduced walking speed may have caused the smaller compensatory motions detected when the powered stance control knee ankle foot orthosis was used. The new powered SCKAFO facilitated controlled knee flexion and extension during ambulation for a volunteer poliomyelitis person.

  7. Design and Evaluation of the AIRGAIT Exoskeleton: Leg Orthosis Control for Assistive Gait Rehabilitation

    Directory of Open Access Journals (Sweden)

    Mohd Azuwan Mat Dzahir

    2013-01-01

    Full Text Available This paper introduces the body weight support gait training system known as the AIRGAIT exoskeleton and delves into the design and evaluation of its leg orthosis control algorithm. The implementation of the mono- and biarticular pneumatic muscle actuators (PMAs as the actuation system was initiated to generate more power and precisely control the leg orthosis. This research proposes a simple paradigm for controlling the mono- and bi-articular actuator movements cocontractively by introducing a cocontraction model. Three tests were performed. The first test involved control of the orthosis with monoarticular actuators alone without a subject (WO/S; the second involved control of the orthosis with mono- and bi-articular actuators tested WO/S; and the third test involved control of the orthosis with mono- and bi-articular actuators tested with a subject (W/S. Full body weight support (BWS was implemented in this study during the test W/S as the load supported by the orthosis was at its maximum capacity. This assessment will optimize the control system strategy so that the system operates to its full capacity. The results revealed that the proposed control strategy was able to co-contractively actuate the mono- and bi-articular actuators simultaneously and increase stiffness at both hip and knee joints.

  8. Fully embedded myoelectric control for a wearable robotic hand orthosis.

    Science.gov (United States)

    Ryser, Franziska; Butzer, Tobias; Held, Jeremia P; Lambercy, Olivier; Gassert, Roger

    2017-07-01

    To prevent learned non-use of the affected hand in chronic stroke survivors, rehabilitative training should be continued after discharge from the hospital. Robotic hand orthoses are a promising approach for home rehabilitation. When combined with intuitive control based on electromyography, the therapy outcome can be improved. However, such systems often require extensive cabling, experience in electrode placement and connection to external computers. This paper presents the framework for a stand-alone, fully wearable and real-time myoelectric intention detection system based on the Myo armband. The hard and software for real-time gesture classification were developed and combined with a routine to train and customize the classifier, leading to a unique ease of use. The system including training of the classifier can be set up within less than one minute. Results demonstrated that: (1) the proposed algorithm can classify five gestures with an accuracy of 98%, (2) the final system can online classify three gestures with an accuracy of 94.3% and, in a preliminary test, (3) classify three gestures from data acquired from mildly to severely impaired stroke survivors with an accuracy of over 78.8%. These results highlight the potential of the presented system for electromyography-based intention detection for stroke survivors and, with the integration of the system into a robotic hand orthosis, the potential for a wearable platform for all day robot-assisted home rehabilitation.

  9. Assist-as-Needed Control of a Robotic Orthosis Actuated by Pneumatic Artificial Muscle for Gait Rehabilitation

    Directory of Open Access Journals (Sweden)

    Quy-Thinh Dao

    2018-03-01

    Full Text Available Rehabilitation robots are designed to help patients improve their recovery from injury by supporting them to perform repetitive and systematic training sessions. These robots are not only able to guide the subjects’ lower-limb to a designate trajectory, but also estimate their disability and adapt the compliance accordingly. In this research, a new control strategy for a high compliant lower-limb rehabilitation orthosis system named AIRGAIT is developed. The AIRGAIT orthosis is powered by pneumatic artificial muscle actuators. The trajectory tracking controller based on a modified computed torque control which employs a fractional derivative is proposed for the tracking purpose. In addition, a new method is proposed for compliance control of the robotic orthosis which results in the successful implementation of the assist-as-needed training strategy. Finally, various subject-based experiments are carried out to verify the effectiveness of the developed control system.

  10. Postural control of typical developing boys during the transition from double-leg stance to single-leg stance.

    Science.gov (United States)

    Deschamps, Kevin; Staes, Filip; Peerlinck, Kathelijne; Van Geet, Kristel; Hermans, Cedric; Lobet, Sebastien

    2017-02-01

    Literature is lacking information about postural control performance of typically developing children during a transition task from double-leg stance to single-leg stance. The purpose of the present study was therefore to evaluate the clinical feasibility of a transition task in typical developing age groups as well as to study the correlation between associated balance measures and age.Thirty-three typically developing boys aged 6-20 years performed a standard transition task from DLS to SLS with eyes open (EO) and eyes closed (EC). Balance features derived from the center of pressure displacement captured by a single force platform were correlated with age on the one hand and considered for differences in the perspective of limb dominance on the other hand.All TDB (typically developing boys) were able to perform the transition task with EO. With respect to EC condition, all TDB from the age group 6-7 years and the youngest of the age group 8-12 years (N = 4) were unable to perform the task. No significant differences were observed between the balance measures of the dominant and non-dominant limbs.With respect to EO condition, correlation analyses indicated that time to new stability point (TNSP) as well as the sway measure after this TNSP were correlated with age (p postural balance of typically developing children during walking, running, sit-to-stand, and bipodal and unipodal stance has been well documented in the literature. • These reference data provided not only insight into the maturation process of the postural control system, but also served in diagnosing and managing functional repercussions of neurological and orthopedic pathologies. What is New: • Objective data regarding postural balance of typical developing children during a transition task from double-leg stance to single-leg stance. • Insight into the role of maturation on the postural control system.

  11. Immediate effect of a functional wrist orthosis for children with cerebral palsy or brain injury: A randomized controlled trial.

    Science.gov (United States)

    Jackman, Michelle; Novak, Iona; Lannin, Natasha; Galea, Claire

    2017-10-28

    Two-group randomized controlled trial. Upper limb orthoses worn during functional tasks are commonly used in pediatric neurologic rehabilitation, despite a paucity of high-level evidence. The purpose of this study was to investigate if a customized functional wrist orthosis, when placed on the limb, leads to an immediate improvement in hand function for children with cerebral palsy or brain injury. A 2-group randomized controlled trial involving 30 children was conducted. Participants were randomized to either receive a customized functional wrist orthosis (experimental, n = 15) or not receive an orthosis (control, n = 15). The box and blocks test was administered at baseline and repeated 1 hour after experimental intervention, with the orthosis on if randomized to the orthotic group. After intervention, there were no significant differences on the box and blocks test between the orthotic group (mean, 10.13; standard deviation, 11.476) and the no orthotic group (mean, 14.07; standard deviation, 11.106; t[28], -0.954; P = .348; and 95% confidence interval, -12.380 to 4.513). In contrast to the findings of previous studies, our results suggest that a functional wrist orthosis, when supporting the joint in a 'typical' position, may not lead to an immediate improvement in hand function. Wearing a functional wrist orthosis did not lead to an immediate improvement in the ability of children with cerebral palsy or brain injury to grasp and release. Further research is needed combining upper limb orthoses with task-specific training and measuring outcomes over the medium to long term. Copyright © 2017 Hanley & Belfus. All rights reserved.

  12. Three components of postural control associated with pushing in symmetrical and asymmetrical stance.

    Science.gov (United States)

    Lee, Yun-Ju; Aruin, Alexander S

    2013-07-01

    A number of occupational and leisure activities that involve pushing are performed in symmetrical or asymmetrical stance. The goal of this study was to investigate early postural adjustments (EPAs), anticipatory postural adjustments (APAs), and compensatory postural adjustments (CPAs) during pushing performed while standing. Ten healthy volunteers stood in symmetrical stance (with feet parallel) or in asymmetrical stance (staggered stance with one foot forward) and were instructed to use both hands to push forward the handle of a pendulum attached to the ceiling. Bilateral EMG activity of the trunk and leg muscles and the center of pressure (COP) displacements in the anterior-posterior (AP) and medial-lateral (ML) directions were recorded and analyzed during the EPAs, APAs, and CPAs. The EMG activity and the COP displacement were different between the symmetrical and asymmetrical stance conditions. The COP displacements in the ML direction were significantly larger in staggered stance than in symmetrical stance. In staggered stance, the EPAs and APAs in the thigh muscles of the backward leg were significantly larger, and the CPAs were smaller than in the forward leg. There was no difference in the EMG activity of the trunk muscles between the stance conditions. The study outcome confirmed the existence of the three components of postural control (EPAs, APAs, and CPAs) in pushing. Moreover, standing asymmetrically was associated with asymmetrical patterns of EMG activity in the lower extremities reflecting the stance-related postural control during pushing. The study outcome provides a basis for studying postural control during other daily activities involving pushing.

  13. Mechanical performance of artificial pneumatic muscles to power an ankle-foot orthosis.

    Science.gov (United States)

    Gordon, Keith E; Sawicki, Gregory S; Ferris, Daniel P

    2006-01-01

    We developed a powered ankle-foot orthosis that uses artificial pneumatic muscles to produce active plantar flexor torque. The purpose of this study was to quantify the mechanical performance of the orthosis during human walking. Three subjects walked at a range of speeds wearing ankle-foot orthoses with either one or two artificial muscles working in parallel. The orthosis produced similar total peak plantar flexor torque and network across speeds independent of the number of muscles used. The orthosis generated approximately 57% of the peak ankle plantar flexor torque during stance and performed approximately 70% of the positive plantar flexor work done during normal walking. Artificial muscle bandwidth and force-length properties were the two primary factors limiting torque production. The lack of peak force and work differences between single and double muscle conditions can be explained by force-length properties. Subjects altered their ankle kinematics between conditions resulting in changes in artificial muscle length. In the double muscle condition greater plantar flexion yielded shorter artificial muscles lengths and decreased muscle forces. This finding emphasizes the importance of human testing in the design and development of robotic exoskeleton devices for assisting human movement. The results of this study outline the mechanical performance limitations of an ankle-foot orthosis powered by artificial pneumatic muscles. This orthosis could be valuable for gait rehabilitation and for studies investigating neuromechanical control of human walking.

  14. Effect of ankle-foot orthosis on postural control after stroke: a systematic review.

    Science.gov (United States)

    Guerra Padilla, M; Molina Rueda, F; Alguacil Diego, I M

    2014-09-01

    Stroke is currently the main cause of permanent disability in adults. The impairments are a combination of sensory, motor, cognitive and emotional changes that result in restrictions on the ability to perform basic activities of daily living (BADL). Postural control is affected and causes problems with static and dynamic balance, thus increasing the risk of falls and secondary injuries. The purpose of this review was to compile the literature to date, and assess the impact of ankle-foot orthosis (AFO) on postural control and gait in individuals who have suffered a stroke. The review included randomised and controlled trials that examined the effects of AFO in stroke patients between 18 and 80 years old, with acute or chronic evolution. No search limits on the date of the studies were included, and the search lasted until April 2011. The following databases were used: Pubmed, Trip Database, Cochrane library, Embase, ISI Web Knowledge, CINHAL and PEDro. Intervention succeeded in improving some gait parameters, such as speed and cadence. However it is not clear if there was improvement in the symmetry, postural sway or balance. Because of the limitations of this systematic review, due to the clinical diversity of the studies and the methodological limitations, 0these results should be considered with caution. Copyright © 2011 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  15. Single Stance Stability and Proprioceptive Control in Older Adults Living at Home: Gender and Age Differences

    Directory of Open Access Journals (Sweden)

    Dario Riva

    2013-01-01

    Full Text Available In developed countries, falls in older people represent a rising problem. As effective prevention should start before the risk becomes evident, an early predictor is needed. Single stance instability would appear as a major risk factor. Aims of the study were to describe single stance stability, its sensory components, and their correlation with age and gender. A random sample of 597 older adults (319 men, 278 women living at home, aged 65–84, was studied. Stability tests were performed with an electronic postural station. The single stance test showed the impairment of single stance stability in older individuals (75–84 yrs. The significant decline of stability in the older subjects may be explained by the impairment of proprioceptive control together with the decrease in compensatory visual stabilization and emergency responses. Younger subjects (65–74 yrs exhibited better, but still inadequate, proprioceptive control with compensatory visual stabilization. Gender differences appeared in older subjects: women were significantly less stable than men. The measurement of the sensory components of single stance stability could aid in the early detection of a decay in antigravity movements many years before the risk of falling becomes evident. Adequate proprioceptive control could mitigate the effects of all other risks of falling.

  16. Single Stance Stability and Proprioceptive Control in Older Adults Living at Home: Gender and Age Differences

    Science.gov (United States)

    Riva, Dario; Mamo, Carlo; Fanì, Mara; Saccavino, Patrizia; Rocca, Flavio; Momenté, Manuel; Fratta, Marianna

    2013-01-01

    In developed countries, falls in older people represent a rising problem. As effective prevention should start before the risk becomes evident, an early predictor is needed. Single stance instability would appear as a major risk factor. Aims of the study were to describe single stance stability, its sensory components, and their correlation with age and gender. A random sample of 597 older adults (319 men, 278 women) living at home, aged 65–84, was studied. Stability tests were performed with an electronic postural station. The single stance test showed the impairment of single stance stability in older individuals (75–84 yrs). The significant decline of stability in the older subjects may be explained by the impairment of proprioceptive control together with the decrease in compensatory visual stabilization and emergency responses. Younger subjects (65–74 yrs) exhibited better, but still inadequate, proprioceptive control with compensatory visual stabilization. Gender differences appeared in older subjects: women were significantly less stable than men. The measurement of the sensory components of single stance stability could aid in the early detection of a decay in antigravity movements many years before the risk of falling becomes evident. Adequate proprioceptive control could mitigate the effects of all other risks of falling. PMID:23984068

  17. Development of body weight support gait training system using pneumatic Mckibben actuators -control of lower extremity orthosis.

    Science.gov (United States)

    Mat Dzahir, M A; Nobutomo, T; Yamamoto, S I

    2013-01-01

    Recently, robot assisted therapy devices are increasingly used for spinal cord injury (SCI) rehabilitation in assisting handicapped patients to regain their impaired movements. Assistive robotic systems may not be able to cure or fully compensate impairments, but it should be able to assist certain impaired functions and ease movements. In this study, the control system of lower extremity orthosis for the body weight support gait training system which implements pneumatic artificial muscle (PAM) is proposed. The hip and knee joint angles of the gait orthosis system are controlled based on the PAM coordinates information from the simulation. This information provides the contraction data for the mono- and bi-articular PAMs that are arranged as posterior and anterior actuators to simulate the human walking motion. The proposed control system estimates the actuators' contraction as a function of hip and knee joint angles. Based on the contraction model obtained, input pressures for each actuators are measured. The control system are performed at different gait cycles and two PMA settings for the mono- and bi-articular actuators are evaluated in this research. The results showed that the system was able to achieve the maximum muscle moment at the joints, and able to perform the heel contact movement. This explained that the antagonistic mono- and bi-articular actuators worked effectively.

  18. Recent Trends in Lower-Limb Robotic Rehabilitation Orthosis: Control Scheme and Strategy for Pneumatic Muscle Actuated Gait Trainers

    Directory of Open Access Journals (Sweden)

    Mohd Azuwan Mat Dzahir

    2014-04-01

    Full Text Available It is a general assumption that pneumatic muscle-type actuators will play an important role in the development of an assistive rehabilitation robotics system. In the last decade, the development of a pneumatic muscle actuated lower-limb leg orthosis has been rather slow compared to other types of actuated leg orthoses that use AC motors, DC motors, pneumatic cylinders, linear actuators, series elastic actuators (SEA and brushless servomotors. However, recent years have shown that the interest in this field has grown exponentially, mainly due to the demand for a more compliant and interactive human-robotics system. This paper presents a survey of existing lower-limb leg orthoses for rehabilitation, which implement pneumatic muscle-type actuators, such as McKibben artificial muscles, rubbertuators, air muscles, pneumatic artificial muscles (PAM or pneumatic muscle actuators (PMA. It reviews all the currently existing lower-limb rehabilitation orthosis systems in terms of comparison and evaluation of the design, as well as the control scheme and strategy, with the aim of clarifying the current and on-going research in the lower-limb robotic rehabilitation field.

  19. Quantifying balance control during stance : a multivariate system identification approach

    NARCIS (Netherlands)

    Engelhart, Denise

    2015-01-01

    Balance control involves the contribution of neural, muscular and sensory systems, which work together via complex feedback pathways in a closed loop. With age or disease, the underlying systems in balance control can deteriorate; e.g. muscle strength decreases, the sensory systems become less

  20. Postural control strategies during single limb stance following acute lateral ankle sprain.

    Science.gov (United States)

    Doherty, Cailbhe; Bleakley, Chris; Hertel, Jay; Caulfield, Brian; Ryan, John; Delahunt, Eamonn

    2014-06-01

    Single-limb stance is maintained via the integration of visual, vestibular and somatosensory afferents. Musculoskeletal injury challenges the somatosensory system to reweight distorted sensory afferents. This investigation supplements kinetic analysis of eyes-open and eyes-closed single-limb stance tasks with a kinematic profile of lower limb postural orientation in an acute lateral ankle sprain group to assess the adaptive capacity of the sensorimotor system to injury. Sixty-six participants with first-time acute lateral ankle sprain completed a 20-second eyes-open single-limb stance task on their injured and non-injured limbs (task 1). Twenty-three of these participants successfully completed the same 20-second single-limb stance task with their eyes closed (task 2). A non-injured control group of 19 participants completed task 1, with 16 completing task 2. 3-dimensional kinematics of the hip, knee and ankle joints, as well as associated fractal dimension of the center-of-pressure path were determined for each limb during these tasks. Between trial analyses revealed significant differences in stance limb kinematics and fractal dimension of the center-of-pressure path for task 2 only. The control group bilaterally assumed a position of greater hip flexion compared to injured participants on their side-matched "involved"(7.41 [6.1°] vs 1.44 [4.8]°; η(2)=.34) and "uninvolved" (9.59 [8.5°] vs 2.16 [5.6°]; η(2)=.31) limbs, with a greater fractal dimension of the center-of-pressure path (involved limb=1.39 [0.16°] vs 1.25 [0.14°]; uninvolved limb=1.37 [0.21°] vs 1.23 [0.14°]). Bilateral impairment in postural control strategies present following a first time acute lateral ankle sprain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. The influence of a powered knee-ankle-foot orthosis on walking in poliomyelitis subjects: A pilot study.

    Science.gov (United States)

    Arazpour, Mokhtar; Moradi, Alireza; Samadian, Mohammad; Bahramizadeh, Mahmood; Joghtaei, Mahmoud; Ahmadi Bani, Monireh; Hutchins, Stephen W; Mardani, Mohammad A

    2016-06-01

    Traditionally, the anatomical knee joint is locked in extension when walking with a conventional knee-ankle-foot orthosis. A powered knee-ankle-foot orthosis was developed to provide restriction of knee flexion during stance phase and active flexion and extension of the knee during swing phase of gait. The purpose of this study was to determine differences of the powered knee-ankle-foot orthosis compared to a locked knee-ankle-foot orthosis in kinematic data and temporospatial parameters during ambulation. Quasi-experimental design. Subjects with poliomyelitis (n = 7) volunteered for this study and undertook gait analysis with both the powered and the conventional knee-ankle-foot orthoses. Three trials per orthosis were collected while each subject walked along a 6-m walkway using a calibrated six-camera three-dimensional video-based motion analysis system. Walking with the powered knee-ankle-foot orthosis resulted in a significant reduction in both walking speed and step length (both 18%), but a significant increase in stance phase percentage compared to walking with the conventional knee-ankle-foot orthosis. Cadence was not significantly different between the two test conditions (p = 0.751). There was significantly higher knee flexion during swing phase and increased hip hiking when using the powered orthosis. The new powered orthosis permitted improved knee joint kinematic for knee-ankle-foot orthosis users while providing knee support in stance and active knee motion in swing in the gait cycle. Therefore, the new powered orthosis provided more natural knee flexion during swing for orthosis users compared to the locked knee-ankle-foot orthosis. This orthosis has the potential to improve knee joint kinematics and gait pattern in poliomyelitis subjects during walking activities. © The International Society for Prosthetics and Orthotics 2015.

  2. An ankle-foot orthosis powered by artificial pneumatic muscles.

    Science.gov (United States)

    Ferris, Daniel P; Czerniecki, Joseph M; Hannaford, Blake

    2005-05-01

    We developed a pneumatically powered orthosis for the human ankle joint. The orthosis consisted of a carbon fiber shell, hinge joint, and two artificial pneumatic muscles. One artificial pneumatic muscle provided plantar flexion torque and the second one provided dorsiflexion torque. Computer software adjusted air pressure in each artificial muscle independently so that artificial muscle force was proportional to rectified low-pass-filtered electromyography (EMG) amplitude (i.e., proportional myoelectric control). Tibialis anterior EMG activated the artificial dorsiflexor and soleus EMG activated the artificial plantar flexor. We collected joint kinematic and artificial muscle force data as one healthy participant walked on a treadmill with the orthosis. Peak plantar flexor torque provided by the orthosis was 70 Nm, and peak dorsiflexor torque provided by the orthosis was 38 Nm. The orthosis could be useful for basic science studies on human locomotion or possibly for gait rehabilitation after neurological injury.

  3. How can push-off be preserved during use of an ankle foot orthosis in children with hemiplegia? A prospective controlled study

    OpenAIRE

    Desloovere, Kaat; Molenaers, Guy; Van Gestel, Leen; Huenaerts, Catherine; Van Campenhout, Anja; Callewaert, Barbara; Van De Walle, Patricia; Seyler, J

    2006-01-01

    Several studies indicated that walking with an ankle foot orthosis (AFO) impaired third rocker. The purpose of this study was to evaluate the effects of two types of orthoses, with similar goal settings, on gait, in a homogeneous group of children, using both barefoot and shoe walking as control conditions. Fifteen children with hemiplegia, aged between 4 and 10 years, received two types of individually tuned AFOs: common posterior leaf-spring (PLS) and Dual Carbon Fiber Spring AFO (CFO) (wit...

  4. Tandem Stance Avoidance Using Adaptive and Asymmetric Admittance Control for Fall Prevention.

    Science.gov (United States)

    Nakagawa, Shotaro; Hasegawa, Yasuhisa; Fukuda, Toshio; Kondo, Izumi; Tanimoto, Masanori; Di, Pei; Huang, Jian; Huang, Qiang

    2016-05-01

    Fall prevention is one of the most important functions of walking assistance devices for user's safety. It is preferable that these devices prevent the user from being in the state where the risk of falling is high rather than helping them recovering from falling motion. During turning, when the user is in the tandem stance, a state where both legs form a line along walking direction, a support base that is surrounded by two legs becomes small, and a stability margin becomes small. This paper therefore aims to prevent the tandem stance by using nonwearable robot "intelligent cane" for the elderly or physically challenged person. Generally, the behavior of the lower limb follows the upper body turning. This paper therefore introduces a cane robot control method which constrains the behavior of user's upper body. By adjusting an admittance parameter of the robot according to the positions of a support leg, the robot resists to turn while a support leg is on the same side of the turning direction. A swing leg on the turning direction side therefore freely moves to the turning direction, while a swing leg on the opposite direction side of turning hardly move to the turning direction.

  5. A pneumatic power harvesting ankle-foot orthosis to prevent foot-drop

    Directory of Open Access Journals (Sweden)

    Chin Robin

    2009-06-01

    Full Text Available Abstract Background A self-contained, self-controlled, pneumatic power harvesting ankle-foot orthosis (PhAFO to manage foot-drop was developed and tested. Foot-drop is due to a disruption of the motor control pathway and may occur in numerous pathologies such as stroke, spinal cord injury, multiple sclerosis, and cerebral palsy. The objectives for the prototype PhAFO are to provide toe clearance during swing, permit free ankle motion during stance, and harvest the needed power with an underfoot bellow pump pressurized during the stance phase of walking. Methods The PhAFO was constructed from a two-part (tibia and foot carbon composite structure with an articulating ankle joint. Ankle motion control was accomplished through a cam-follower locking mechanism actuated via a pneumatic circuit connected to the bellow pump and embedded in the foam sole. Biomechanical performance of the prototype orthosis was assessed during multiple trials of treadmill walking of an able-bodied control subject (n = 1. Motion capture and pressure measurements were used to investigate the effect of the PhAFO on lower limb joint behavior and the capacity of the bellow pump to repeatedly generate the required pneumatic pressure for toe clearance. Results Toe clearance during swing was successfully achieved during all trials; average clearance 44 ± 5 mm. Free ankle motion was observed during stance and plantarflexion was blocked during swing. In addition, the bellow component repeatedly generated an average of 169 kPa per step of pressure during ten minutes of walking. Conclusion This study demonstrated that fluid power could be harvested with a pneumatic circuit built into an AFO, and used to operate an actuated cam-lock mechanism that controls ankle-foot motion at specific periods of the gait cycle.

  6. Long-Term Adaptations to Unexpected Surface Perturbations: Postural Control During Stance and Gait in Train Conductors.

    Science.gov (United States)

    Baumgart, Christian; Hoppe, Matthias Wilhelm; Freiwald, Jürgen

    2016-01-01

    The authors aimed to evaluate the differences in postural control during stance and gait between train conductors and controls. Twenty-one train conductors and 21 office workers performed 6 unilateral and bilateral balance tests on stable and unstable surfaces as well as a gait analysis. In the balance tests, the mean velocity of the center of pressure and unstable surface was measured. In the bilateral balance tests the selected stance width was measured. During gait the length, width, frequency, and velocity of the steps were calculated from the ground reaction forces. Train conductors showed a significantly greater step width during gait (15.4 ± 4.7 vs. 13.0 ± 3.4 cm; p = .035) and stance width during the bilateral stance on the unstable surface (21.0 ± 5.1 vs. 17.8 ± 3.7 cm; p = .026) than the office workers, while no differences were revealed in balance variables. The revealed differences between train conductors and office workers may represent task-specific feedforward control strategies, which increase the base of support and may be helpful to resist unexpected perturbations in trains.

  7. Hip orthosis powered by pneumatic artificial muscle: voluntary activation in absence of myoelectrical signal.

    Science.gov (United States)

    do Nascimento, Breno Gontijo; Vimieiro, Claysson Bruno Santos; Nagem, Danilo Alves Pinto; Pinotti, Marcos

    2008-04-01

    Powered orthosis is a special class of gait assist device that employs a mechanical or electromechanical actuator to enhance movement of hip, knee, or ankle articulations. Pneumatic artificial muscle (PAM) has been suggested as a pneumatic actuator because its performance is similar to biological muscle. The electromyography (EMG) signal interpretation is the most popular and simplest method to establish the patient voluntary control of the orthosis. However, this technique is not suitable for patients presenting neurological lesions causing absence or very low quality of EMG signal. For those cases, an alternative control strategy should be provided. The aim of the present study is to develop a gait assistance orthosis for lower limb powered by PAMs controlled by a voluntary activation method based on the angular behavior of hip joint. In the present study, an orthosis that has been molded in a patient was employed and, by taking her anthropometric parameters and movement constraints, the adaptation of the existing orthosis to the powered orthosis was planned. A control system was devised allowing voluntary control of a powered orthosis suitable for patients presenting neurological lesions causing absence or very low quality of EMG signal. A pilot clinical study was reported where a patient, victim of poliovirus, successfully tested a hip orthosis especially modified for the gait test evaluation in the parallel bar system. The hip orthosis design and the control circuitry parameters were able to be set to provide satisfactory and comfortable use of the orthosis during the gait cycle.

  8. Isolated and combined effects of asymmetric stance and pushing movement on the anticipatory and compensatory postural control.

    Science.gov (United States)

    Lee, Yun-Ju; Aruin, Alexander S

    2014-04-01

    To investigate effects of symmetric and asymmetric stance and pushing movement on anticipatory and compensatory postural adjustments (APAs and CPAs). Ten healthy volunteers stood symmetrically (feet parallel) or asymmetrically (one foot forward and the other backward) and pushed a handle with both hands or right or left hand. Bilateral EMG activity of the trunk and leg muscles and center of pressure (COP) displacements in the anterior-posterior (AP) and medial-lateral (ML) directions were recorded and analyzed during the APAs and CPAs. Isolated asymmetry of stance was associated with larger muscle activity of the backward leg while isolated asymmetry of pushing movement induced larger trunk muscle activity on the contralateral side. A combined asymmetry of stance and pushing movement resulted in the increase or decrease of the thigh muscle activity and ML COP displacement depending on whether both asymmetries were induced on the same side of the body or on opposite sides. Both isolated and combined asymmetries affect APAs and CPAs in pushing. Using combined asymmetry of stance and arm movement might be beneficial in performing pushing activity. The outcome of the study provides a basis for studying postural control in individuals with unilateral impairment while performing daily tasks involving pushing. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Electromyography-controlled exoskeletal upper-limb-powered orthosis for exercise training after stroke.

    Science.gov (United States)

    Stein, Joel; Narendran, Kailas; McBean, John; Krebs, Kathryn; Hughes, Richard

    2007-04-01

    Robot-assisted exercise shows promise as a means of providing exercise therapy for weakness that results from stroke or other neurological conditions. Exoskeletal or "wearable" robots can, in principle, provide therapeutic exercise and/or function as powered orthoses to help compensate for chronic weakness. We describe a novel electromyography (EMG)-controlled exoskeletal robotic brace for the elbow (the active joint brace) and the results of a pilot study conducted using this brace for exercise training in individuals with chronic hemiparesis after stroke. Eight stroke survivors with severe chronic hemiparesis were enrolled in this pilot study. One subject withdrew from the study because of scheduling conflicts. A second subject was unable to participate in the training protocol because of insufficient surface EMG activity to control the active joint brace. The six remaining subjects each underwent 18 hrs of exercise training using the device for a period of 6 wks. Outcome measures included the upper-extremity component of the Fugl-Meyer scale and the modified Ashworth scale of muscle hypertonicity. Analysis revealed that the mean upper-extremity component of the Fugl-Meyer scale increased from 15.5 (SD 3.88) to 19 (SD 3.95) (P = 0.04) at the conclusion of training for the six subjects who completed training. Combined (summated) modified Ashworth scale for the elbow flexors and extensors improved from 4.67 (+/-1.2 SD) to 2.33 (+/-0.653 SD) (P = 0.009) and improved for the entire upper limb as well. All subjects tolerated the device, and no complications occurred. EMG-controlled powered elbow orthoses can be successfully controlled by severely impaired hemiparetic stroke survivors. This technique shows promise as a new modality for assisted exercise training after stroke.

  10. Control Motion Approach of a Lower Limb Orthosis to Reduce Energy Consumption

    Directory of Open Access Journals (Sweden)

    Daniel Sanz-Merodio

    2012-12-01

    Full Text Available By analysing the dynamic principles of the human gait, an economic gait-control analysis is performed, and passive elements are included to increase the energy efficiency in the motion control of active orthoses. Traditional orthoses use position patterns from the clinical gait analyses (CGAs of healthy people, which are then de-normalized and adjusted to each user. These orthoses maintain a very rigid gait, and their energy cost is very high, reducing the autonomy of the user. First, to take advantage of the inherent dynamics of the legs, a state machine pattern with different gains in each state is applied to reduce the actuator energy consumption. Next, different passive elements, such as springs and brakes in the joints, are analysed to further reduce energy consumption. After an off-line parameter optimization and a heuristic improvement with genetic algorithms, a reduction in energy consumption of 16.8% is obtained by applying a state machine control pattern, and a reduction of 18.9% is obtained by using passive elements. Finally, by combining both strategies, a more natural gait is obtained, and energy consumption is reduced by 24.6% compared with a pure CGA pattern.

  11. Lower extremity fatigue increases complexity of postural control during a single-legged stance

    Directory of Open Access Journals (Sweden)

    Bailey Jerry J

    2011-08-01

    Full Text Available Abstract Background Non-linear approaches to assessment of postural control can provide insight that compliment linear approaches. Control entropy (CE is a recently developed statistical tool from non-linear dynamical systems used to assess the complexity of non-stationary signals. We have previously used CE of high resolution accelerometry in running to show decreased complexity with exhaustive exercise. The purpose of this study was to determine if complexity of postural control decreases following fatiguing exercise using CE. Methods Ten subjects (5 M/5 F; 25 ± 3 yr; 169.4 ± 11.7 cm; 79.0 ± 16.9 kg consented to participation approved by Western Oregon University IRB and completed two trials separated by 2-7 days. Trials consisted of two single-legged balance tests separated by two Wingate anaerobic tests (WAnT; PreFat/PostFat, or rest period (PreRest/PostRest. Balance tests consisted of a series of five single-legged stances, separated by 30 s rest, performed while standing on the dominant leg for 15-s with the participant crossing the arms over the chest and flexing the non-dominant knee to 90 degrees. High resolution accelerometers (HRA were fixed superficial to L3/L4 at the approximate center of mass (COM. Triaxial signals from the HRA were streamed in real time at 625 Hz. COM accelerations were recorded in g's for vertical (VT, medial/lateral (ML, and anterior/posterior (AP axes. A newly developed statistic (R-test was applied to group response shapes generated by Karhunen Loeve (KL transform modes resulting from Control Entropy (CE analysis. Results R-tests showed a significant mean vector difference (p p p p Conclusions These data indicate that fatiguing exercise eliminates the differential complexity response between axes, but increases complexity in all axes compared to the non-fatigued condition. This has implications with regard to the effects of fatigue on strategies of the control system to maintain postural control.

  12. A Powered Lower Limb Orthosis for Providing Legged Mobility in Paraplegic Individuals.

    Science.gov (United States)

    Quintero, Hugo A; Farris, Ryan J; Hartigan, Clare; Clesson, Ismari; Goldfarb, Michael

    2011-01-01

    This paper presents preliminary results on the development of a powered lower limb orthosis intended to provide legged mobility (with the use of a stability aid, such as forearm crutches) to paraplegic individuals. The orthosis contains electric motors at both hip and both knee joints, which in conjunction with ankle-foot orthoses, provides appropriate joint kinematics for legged locomotion. The paper describes the orthosis and the nature of the controller that enables the SCI patient to command the device, and presents data from preliminary trials that indicate the efficacy of the orthosis and controller in providing legged mobility.

  13. A Powered Lower Limb Orthosis for Providing Legged Mobility in Paraplegic Individuals

    OpenAIRE

    Quintero, Hugo A.; Farris, Ryan J.; Hartigan, Clare; Clesson, Ismari; Goldfarb, Michael

    2011-01-01

    This paper presents preliminary results on the development of a powered lower limb orthosis intended to provide legged mobility (with the use of a stability aid, such as forearm crutches) to paraplegic individuals. The orthosis contains electric motors at both hip and both knee joints, which in conjunction with ankle-foot orthoses, provides appropriate joint kinematics for legged locomotion. The paper describes the orthosis and the nature of the controller that enables the SCI patient to comm...

  14. Plantar pressures are higher in cases with diabetic foot ulcers compared to controls despite a longer stance phase duration.

    Science.gov (United States)

    Fernando, Malindu E; Crowther, Robert G; Lazzarini, Peter A; Sangla, Kunwarjit S; Wearing, Scott; Buttner, Petra; Golledge, Jonathan

    2016-09-15

    Current international guidelines advocate achieving at least a 30 % reduction in maximum plantar pressure to reduce the risk of foot ulcers in people with diabetes. However, whether plantar pressures differ in cases with foot ulcers to controls without ulcers is not clear. The aim of this study was to assess if plantar pressures were higher in patients with active plantar diabetic foot ulcers (cases) compared to patients with diabetes without a foot ulcer history (diabetes controls) and people without diabetes or a foot ulcer history (healthy controls). Twenty-one cases with diabetic foot ulcers, 69 diabetes controls and 56 healthy controls were recruited for this case-control study. Plantar pressures at ten sites on both feet and stance phase duration were measured using a pre-established protocol. Primary outcomes were mean peak plantar pressure, pressure-time integral and stance phase duration. Non-parametric analyses were used with Holm's correction to correct for multiple testing. Binary logistic regression models were used to adjust outcomes for age, sex and body mass index. Median differences with 95 % confidence intervals and Cohen's d values (standardised mean difference) were reported for all significant outcomes. The majority of ulcers were located on the plantar surface of the hallux and toes. When adjusted for age, sex and body mass index, the mean peak plantar pressure and pressure-time integral of toes and the mid-foot were significantly higher in cases compared to diabetes and healthy controls (p diabetic foot ulcers despite having a longer stance phase duration which would be expected to lower plantar pressure. Whether plantar pressure changes can predict ulcer healing should be the focus of future research. These results highlight the importance of offloading feet during active ulceration in addition to before ulceration.

  15. How can push-off be preserved during use of an ankle foot orthosis in children with hemiplegia? A prospective controlled study.

    Science.gov (United States)

    Desloovere, Kaat; Molenaers, Guy; Van Gestel, Leen; Huenaerts, Catherine; Van Campenhout, Anja; Callewaert, Barbara; Van de Walle, Patricia; Seyler, J

    2006-10-01

    Several studies indicated that walking with an ankle foot orthosis (AFO) impaired third rocker. The purpose of this study was to evaluate the effects of two types of orthoses, with similar goal settings, on gait, in a homogeneous group of children, using both barefoot and shoe walking as control conditions. Fifteen children with hemiplegia, aged between 4 and 10 years, received two types of individually tuned AFOs: common posterior leaf-spring (PLS) and Dual Carbon Fiber Spring AFO (CFO) (with carbon fibre at the dorsal part of the orthosis). Both orthoses were expected to prevent plantar flexion, thus improving first rocker, allowing dorsiflexion to improve second rocker, absorbing energy during second rocker, and returning it during the third rocker. The effect of the AFOs was studied using objective gait analysis, including 3D kinematics, and kinetics in four conditions: barefoot, shoes without AFO, and PLS and CFO combined with shoes. Several gait parameters significantly changed in shoe walking compared to barefoot walking (cadence, ankle ROM and velocity, knee shock absorption, and knee angle in swing). The CFO produced a significantly larger ankle ROM and ankle velocity during push-off, and an increased plantar flexion moment and power generation at pre-swing compared to the PLS (<0.01). The results of this study further support the findings of previous studies indicating that orthoses improve specific gait parameters compared to barefoot walking (velocity, step length, first and second ankle rocker, sagittal knee and hip ROM). However, compared to shoes, not all improvements were statistically significant.

  16. Comparison of the effect of selected muscle groups fatigue on postural control during bipedal stance in healthy young women.

    Science.gov (United States)

    Shirazi, Zahra Rojhani; Jahromi, Fatemeh Nikhalat

    2013-09-01

    The maintenance of balance is an essential requirement for the performance of daily tasks and sporting activities and muscular fatigue is a factor to impair postural control, so this study was done to compare the effect of selected muscle groups fatigue on postural control during bipedal stance in healthy subjects. Fifteen healthy female students (24.3 ± 2.6 years) completed three testing session with a break period of at least 2 days. During each session, postural control was assessed during two 30-s trials of bipedal stance with eyes close before and after the fatigue protocol. Fatigue protocols were performed by 60% of their unfatigued Maximum Voluntary Contraction of unilateral ankle plantar flexors, bilateral lumbar extensors and bilateral neck extensors. One of the three fatigue protocols was performed on each session. The result showed that fatigue had a significant effect on COP velocity and it increase COP velocity but there was not found any difference in postural sway between muscle groups. Localized muscle fatigue caused deficits in postural control regardless of the location of fatigue. Authors suggest the possibility of the contributions of central mechanisms to postural deficits due to fatigue and it seems that difference was not between muscle groups due to central fatigue.

  17. The physiological cost index of walking with a powered knee-ankle-foot orthosis in subjects with poliomyelitis: A pilot study.

    Science.gov (United States)

    Arazpour, Mokhtar; Ahmadi Bani, Monireh; Samadian, Mohammad; Mousavi, Mohammad E; Hutchins, Stephen W; Bahramizadeh, Mahmood; Curran, Sarah; Mardani, Mohammad A

    2016-08-01

    A powered knee-ankle-foot orthosis was developed to provide restriction of knee flexion during stance phase and active flexion and extension of the knee during swing phase of gait. The purpose of this study was to determine its effect on the physiological cost index, walking speed and the distance walked in people with poliomyelitis compared to when walking with a knee-ankle-foot orthosis with drop lock knee joints. Quasi experimental study. Seven subjects with poliomyelitis volunteered for the study and undertook gait analysis with both types of knee-ankle-foot orthosis. Walking with the powered knee-ankle-foot orthosis significantly reduced walking speed (p = 0.015) and the distance walked (p = 0.004), and also, it did not improve physiological cost index values (p = 0.009) compared to walking with the locked knee-ankle-foot orthosis. Using a powered knee-ankle-foot orthosis did not significantly improve any of the primary outcome measures during walking for poliomyelitis subjects. This powered knee-ankle-foot orthosis design did not improve the physiological cost index of walking for people with poliomyelitis when compared to walking with a knee-ankle-foot orthosis with drop lock knee joints. This may have been due to the short training period used or the bulky design and additional weight of the powered orthosis. Further research is therefore warranted. © The International Society for Prosthetics and Orthotics 2015.

  18. Biomechanics of an orthosis-managed cranial cruciate ligament-deficient canine stifle joint predicted by use of a computer model.

    Science.gov (United States)

    Bertocci, Gina E; Brown, Nathan P; Mich, Patrice M

    2017-01-01

    OBJECTIVE To evaluate effects of an orthosis on biomechanics of a cranial cruciate ligament (CrCL)-deficient canine stifle joint by use of a 3-D quasistatic rigid-body pelvic limb computer model simulating the stance phase of gait and to investigate influences of orthosis hinge stiffness (durometer). SAMPLE A previously developed computer simulation model for a healthy 33-kg 5-year-old neutered Golden Retriever. PROCEDURES A custom stifle joint orthosis was implemented in the CrCL-deficient pelvic limb computer simulation model. Ligament loads, relative tibial translation, and relative tibial rotation in the orthosis-stabilized stifle joint (baseline scenario; high-durometer hinge]) were determined and compared with values for CrCL-intact and CrCL-deficient stifle joints. Sensitivity analysis was conducted to evaluate the influence of orthosis hinge stiffness on model outcome measures. RESULTS The orthosis decreased loads placed on the caudal cruciate and lateral collateral ligaments and increased load placed on the medial collateral ligament, compared with loads for the CrCL-intact stifle joint. Ligament loads were decreased in the orthosis-managed CrCL-deficient stifle joint, compared with loads for the CrCL-deficient stifle joint. Relative tibial translation and rotation decreased but were not eliminated after orthosis management. Increased orthosis hinge stiffness reduced tibial translation and rotation, whereas decreased hinge stiffness increased internal tibial rotation, compared with values for the baseline scenario. CONCLUSIONS AND CLINICAL RELEVANCE Stifle joint biomechanics were improved following orthosis implementation, compared with biomechanics of the CrCL-deficient stifle joint. Orthosis hinge stiffness influenced stifle joint biomechanics. An orthosis may be a viable option to stabilize a CrCL-deficient canine stifle joint.

  19. The evaluation of off-loading using a new removable oRTHOsis in DIABetic foot (ORTHODIAB) randomized controlled trial: study design and rational.

    Science.gov (United States)

    Mohammedi, Kamel; Potier, Louis; François, Maud; Dardari, Dured; Feron, Marilyne; Nobecourt-Dupuy, Estelle; Dolz, Manuel; Ducloux, Roxane; Chibani, Abdelkader; Eveno, Dominique-François; Crea Avila, Teresa; Sultan, Ariane; Baillet-Blanco, Laurence; Rigalleau, Vincent; Velho, Gilberto; Tubach, Florence; Roussel, Ronan; Dupré, Jean-Claude; Malgrange, Dominique; Marre, Michel

    2016-01-01

    Off-loading is essential for diabetic foot management, but remains understudied. The evaluation of Off-loading using a new removable oRTHOsis in DIABetic foot (ORTHODIAB) trial aims to evaluate the efficacy of a new removable device "Orthèse Diabète" in the healing of diabetic foot. ORTHODIAB is a French multi-centre randomized, open label trial, with a blinded end points evaluation by an adjudication committee according to the Prospective Randomized Open Blinded End-point. Main endpoints are adjudicated based on the analysis of diabetic foot photographs. Orthèse Diabète is a new removable off-loading orthosis (PROTEOR, France) allowing innovative functions including real-time evaluation of off-loading and estimation of patients' adherence. Diabetic patients with neuropathic plantar ulcer or amputation wounds (toes or transmetatarsal) are assigned to one of 2 parallel-groups: Orthèse Diabète or control group (any removable device) according to a central computer-based randomization. Study visits are scheduled for 6 months (days D7 and D14, and months M1, M2, M3, and M6). The primary endpoint is the proportion of patients whose principal ulcer is healed at M3. Secondary endpoints are: the proportion of patients whose principal ulcer is healed at M1, M2 and M6; the proportion of patients whose initial ulcers are all healed at M1, M2, M3, and M6; principal ulcer area reduction; time-related ulcer-free survival; development of new ulcers; new lower-extremity amputation; infectious complications; off-loading adherence; and patient satisfaction. The study protocol was approved by the French National Agency for Medicines and Health Products Safety, and by the ethics committee of Saint-Louis Hospital (Paris). Comprehensive study information including a Patient Information Sheet has been provided to each patient who must give written informed consent before enrolment. Monitoring, data management, and statistical analyses are providing by UMANIS Life Science (Paris

  20. Evidence for differential control of tibial position in perturbed unilateral stance after acute ACL rupture.

    Science.gov (United States)

    Chmielewski, T L; Ramsey, D K; Snyder-Mackler, L

    2005-01-01

    Functional outcomes in anterior cruciate ligament-deficient "potential copers" and "non-copers" may be related to their knee stabilization strategies. Therefore, the purpose of this study was to differentiate dynamic knee stabilization strategies of potential copers and non-copers through analysis of sagittal plane knee angle and tibia position during disturbed and undisturbed unilateral standing. Ten uninjured potential coper and non-coper subjects stood in unilateral stance on a platform that translated anteriorly, posteriorly and laterally. Knee angle and tibia position with reference to the femur were calculated before and after platform movement. During perturbation trials, potential copers maintained kinematics that were similar to uninjured subjects across conditions. Conversely, non-copers stood with greater knee flexion than uninjured subjects and a tibia position that was more posterior than the other groups. Both non-copers and potential copers demonstrated small changes in tibia position following platform movement, but direction of movement was not similar. The similarities between the knee kinematics of potential copers and uninjured subjects suggest that potential copers compensated well from their injury by utilizing analogous dynamic knee stabilization strategies. In comparison to the other groups, by keeping the knee in greater flexion and the tibia in a more posterior position, non-copers appear to constrain the tibia in response to a challenging task, which is consistent with a "stiffening strategy". Based on the poor functional outcomes of non-copers, a stiffening strategy does not lead to dynamic knee stability, and the strategy may increase compressive forces which could contribute to or exacerbate articular cartilage degeneration.

  1. Neural Correlates of Task Cost for Stance Control with an Additional Motor Task: Phase-Locked Electroencephalogram Responses

    Science.gov (United States)

    Hwang, Ing-Shiou; Huang, Cheng-Ya

    2016-01-01

    With appropriate reallocation of central resources, the ability to maintain an erect posture is not necessarily degraded by a concurrent motor task. This study investigated the neural control of a particular postural-suprapostural procedure involving brain mechanisms to solve crosstalk between posture and motor subtasks. Participants completed a single posture task and a dual-task while concurrently conducting force-matching and maintaining a tilted stabilometer stance at a target angle. Stabilometer movements and event-related potentials (ERPs) were recorded. The added force-matching task increased the irregularity of postural response rather than the size of postural response prior to force-matching. In addition, the added force-matching task during stabilometer stance led to marked topographic ERP modulation, with greater P2 positivity in the frontal and sensorimotor-parietal areas of the N1-P2 transitional phase and in the sensorimotor-parietal area of the late P2 phase. The time-frequency distribution of the ERP primary principal component revealed that the dual-task condition manifested more pronounced delta (1–4 Hz) and beta (13–35 Hz) synchronizations but suppressed theta activity (4–8 Hz) before force-matching. The dual-task condition also manifested coherent fronto-parietal delta activity in the P2 period. In addition to a decrease in postural regularity, this study reveals spatio-temporal and temporal-spectral reorganizations of ERPs in the fronto-sensorimotor-parietal network due to the added suprapostural motor task. For a particular set of postural-suprapostural task, the behavior and neural data suggest a facilitatory role of autonomous postural response and central resource expansion with increasing interregional interactions for task-shift and planning the motor-suprapostural task. PMID:27010634

  2. EFFECT OF KINESIO TAPING AND SOFT ORTHOSIS APPLICATION ON THE PAIN AND FUNCTIONAL DISABILITY IN LUMBAR REGION PATHOLOGIES WITHOUT NEUROLOGICAL DEFICITS: A RANDOMIZED CONTROLLED EXPERIMENTAL STUDY

    Directory of Open Access Journals (Sweden)

    Burcu TALU

    2016-12-01

    Full Text Available Background: Back pain caused by lumbar region pathologies is a condition that leads to loss of productivity and physical disability, with high costs of diagnosis and treatment. This study was planned to investigate the effect of taping and soft orthosis application on the pain and functional disability in the pathology of lumbar region without neurological deficit. Methods: This study is randomized controlled trial. Sixty-three volunteer patients were randomly divided into three groups of 21 people. Group I, soft orthotics and stabilization exercise program; Group II, Kinesio taping and stabilization exercise program; Group III, stabilization exercise program was applied. After obtaining demographic data of the participants; patients were evaluated in terms of range of motion and muscle strength. We used visual analog scale for pain level assessment, sit and reach test for flexibility assessment, timed up and go test (TUG for functional ambulation and balance, modified Schober test for lumbar spine flexibility, Oswestry Disability Index in the assessment of functional disability. They were assessed at the pretreatment, third (post treatment and six week (home programs and follow-up. Results: The results showed that significant differences (p<0.05 occurred over time in the study parameters such as functional ambulation, flexibility, lumbar flexibility, functional disability, pain, strength, range of motion in all groups. In comparisons between groups, there was a difference mainly in favor of Group II (p<0.05. Conclusions: We have concluded that in lumbar region pathologies without neurological deficits, stabilization exercises combined with orthotics and Kinesio taping applications reduces pain and functional disability.

  3. Evidence in Support of the Independent Channel Model Describing the Sensorimotor Control of Human Stance Using a Humanoid Robot.

    Science.gov (United States)

    Pasma, Jantsje H; Assländer, Lorenz; van Kordelaar, Joost; de Kam, Digna; Mergner, Thomas; Schouten, Alfred C

    2018-01-01

    The Independent Channel (IC) model is a commonly used linear balance control model in the frequency domain to analyze human balance control using system identification and parameter estimation. The IC model is a rudimentary and noise-free description of balance behavior in the frequency domain, where a stable model representation is not guaranteed. In this study, we conducted firstly time-domain simulations with added noise, and secondly robot experiments by implementing the IC model in a real-world robot (PostuRob II) to test the validity and stability of the model in the time domain and for real world situations. Balance behavior of seven healthy participants was measured during upright stance by applying pseudorandom continuous support surface rotations. System identification and parameter estimation were used to describe the balance behavior with the IC model in the frequency domain. The IC model with the estimated parameters from human experiments was implemented in Simulink for computer simulations including noise in the time domain and robot experiments using the humanoid robot PostuRob II. Again, system identification and parameter estimation were used to describe the simulated balance behavior. Time series, Frequency Response Functions, and estimated parameters from human experiments, computer simulations, and robot experiments were compared with each other. The computer simulations showed similar balance behavior and estimated control parameters compared to the human experiments, in the time and frequency domain. Also, the IC model was able to control the humanoid robot by keeping it upright, but showed small differences compared to the human experiments in the time and frequency domain, especially at high frequencies. We conclude that the IC model, a descriptive model in the frequency domain, can imitate human balance behavior also in the time domain, both in computer simulations with added noise and real world situations with a humanoid robot. This

  4. Evidence in Support of the Independent Channel Model Describing the Sensorimotor Control of Human Stance Using a Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Jantsje H. Pasma

    2018-03-01

    Full Text Available The Independent Channel (IC model is a commonly used linear balance control model in the frequency domain to analyze human balance control using system identification and parameter estimation. The IC model is a rudimentary and noise-free description of balance behavior in the frequency domain, where a stable model representation is not guaranteed. In this study, we conducted firstly time-domain simulations with added noise, and secondly robot experiments by implementing the IC model in a real-world robot (PostuRob II to test the validity and stability of the model in the time domain and for real world situations. Balance behavior of seven healthy participants was measured during upright stance by applying pseudorandom continuous support surface rotations. System identification and parameter estimation were used to describe the balance behavior with the IC model in the frequency domain. The IC model with the estimated parameters from human experiments was implemented in Simulink for computer simulations including noise in the time domain and robot experiments using the humanoid robot PostuRob II. Again, system identification and parameter estimation were used to describe the simulated balance behavior. Time series, Frequency Response Functions, and estimated parameters from human experiments, computer simulations, and robot experiments were compared with each other. The computer simulations showed similar balance behavior and estimated control parameters compared to the human experiments, in the time and frequency domain. Also, the IC model was able to control the humanoid robot by keeping it upright, but showed small differences compared to the human experiments in the time and frequency domain, especially at high frequencies. We conclude that the IC model, a descriptive model in the frequency domain, can imitate human balance behavior also in the time domain, both in computer simulations with added noise and real world situations with a

  5. Modelling of the Human Knee Joint Supported by Active Orthosis

    Science.gov (United States)

    Musalimov, V.; Monahov, Y.; Tamre, M.; Rõbak, D.; Sivitski, A.; Aryassov, G.; Penkov, I.

    2018-02-01

    The article discusses motion of a healthy knee joint in the sagittal plane and motion of an injured knee joint supported by an active orthosis. A kinematic scheme of a mechanism for the simulation of a knee joint motion is developed and motion of healthy and injured knee joints are modelled in Matlab. Angles between links, which simulate the femur and tibia are controlled by Simulink block of Model predictive control (MPC). The results of simulation have been compared with several samples of real motion of the human knee joint obtained from motion capture systems. On the basis of these analyses and also of the analysis of the forces in human lower limbs created at motion, an active smart orthosis is developed. The orthosis design was optimized to achieve an energy saving system with sufficient anatomy, necessary reliability, easy exploitation and low cost. With the orthosis it is possible to unload the knee joint, and also partially or fully compensate muscle forces required for the bending of the lower limb.

  6. Modelling of the Human Knee Joint Supported by Active Orthosis

    Directory of Open Access Journals (Sweden)

    Musalimov V.

    2018-02-01

    Full Text Available The article discusses motion of a healthy knee joint in the sagittal plane and motion of an injured knee joint supported by an active orthosis. A kinematic scheme of a mechanism for the simulation of a knee joint motion is developed and motion of healthy and injured knee joints are modelled in Matlab. Angles between links, which simulate the femur and tibia are controlled by Simulink block of Model predictive control (MPC. The results of simulation have been compared with several samples of real motion of the human knee joint obtained from motion capture systems. On the basis of these analyses and also of the analysis of the forces in human lower limbs created at motion, an active smart orthosis is developed. The orthosis design was optimized to achieve an energy saving system with sufficient anatomy, necessary reliability, easy exploitation and low cost. With the orthosis it is possible to unload the knee joint, and also partially or fully compensate muscle forces required for the bending of the lower limb.

  7. Effects of knee and ankle muscle fatigue on postural control in the unipedal stance.

    Science.gov (United States)

    Bizid, Riadh; Margnes, Eric; François, Yrieix; Jully, Jean Louis; Gonzalez, Gerard; Dupui, Philippe; Paillard, Thierry

    2009-06-01

    The aim of this study was to compare the effects of acute muscle fatigue of the ankle and knee musculature on postural control by immediate measures after performing fatiguing tasks (POST condition). One group of subjects (n = 8) performed a fatiguing task by voluntary contractions of the triceps surae (group TRI) and the other (n = 9) performed a fatiguing task by voluntary contractions of the quadriceps femoris (group QUA). Each muscle group was exercised until the loss of maximal voluntary contraction torque reached 50% (isokinetic dynamometer). Posture was assessed by measuring the centre of foot pressure (COP) with a force platform during a test of unipedal quiet standing posture with eyes closed. Initially (in PRE condition), the mean COP velocity was not significantly different between group TRI and group QUA. In POST condition, the mean COP velocity increased more in group QUA than in group TRI. The postural control was more impaired by knee muscle fatigue than by ankle muscle fatigue.

  8. Improvement of stance control and muscle performance induced by focal muscle vibration in young-elderly women: a randomized controlled trial.

    Science.gov (United States)

    Filippi, Guido M; Brunetti, Orazio; Botti, Fabio M; Panichi, Roberto; Roscini, Mauro; Camerota, Filippo; Cesari, Matteo; Pettorossi, Vito E

    2009-12-01

    Filippi GM, Brunetti O, Botti FM, Panichi R, Roscini M, Camerota F, Cesari M, Pettorossi VE. Improvement of stance control and muscle performance induced by focal muscle vibration in young-elderly women: a randomized controlled trial. To determine the effect of a particular protocol of mechanical vibration, applied focally and repeatedly (repeated muscle vibration [rMV]) on the quadriceps muscles, on stance and lower-extremity muscle power of young-elderly women. Double-blind randomized controlled trial; 3-month follow-up after intervention. Human Physiology Laboratories, University of Perugia, Italy. Sedentary women volunteers (N=60), randomized in 3 groups (mean age +/- SD, 65.3+/-4.2y; range, 60-72). rMV (100Hz, 300-500microm, in three 10-minute sessions a day for 3 consecutive days) was applied to voluntary contracted quadriceps (vibrated and contracted group) and relaxed quadriceps (vibrated and relaxed group). A third group received placebo stimulation (nonvibrated group). Area of sway of the center of pressure, vertical jump height, and leg power. Twenty-four hours after the end of the complete series of applications, the area of sway of the center of pressure decreased significantly by approximately 20%, vertical jump increased by approximately 55%, and leg power increased by approximately 35%. These effects were maintained for at least 90 days after treatment. rMV is a short-lasting and noninvasive protocol that can significantly and persistently improve muscle performance in sedentary young-elderly women.

  9. The Effect of Continuous and Discretized Presentations of Concurrent Augmented Visual Biofeedback on Postural Control in Quiet Stance.

    Directory of Open Access Journals (Sweden)

    Carmen D'Anna

    Full Text Available The purpose of this study was to evaluate the effect of a continuous and a discretized Visual Biofeedback (VBF on balance performance in upright stance. The coordinates of the Centre of Pressure (CoP, extracted from a force plate, were processed in real-time to implement the two VBFs, administered to two groups of 12 healthy participants. In the first group, a representation of the CoP was continuously shown, while in the second group, the discretized VBF was provided at an irregular frequency (that depended on the subject's performance by displaying one out of a set of five different emoticons, each corresponding to a specific area covered by the current position of the CoP. In the first case, participants were asked to maintain a white spot within a given square area, whereas in the second case they were asked to keep the smiling emoticon on. Trials with no VBF were administered as control. The effect of the two VBFs on balance was studied through classical postural parameters and a subset of stabilogram diffusion coefficients. To quantify the amount of time spent in stable conditions, the percentage of time during which the CoP was inside the stability area was calculated. Both VBFs improved balance maintainance as compared to the absence of any VBF. As compared to the continuous VBF, in the discretized VBF a significant decrease of sway path, diffusion and Hurst coefficients was found. These results seem to indicate that a discretized VBF favours a more natural postural behaviour by promoting a natural intermittent postural control strategy.

  10. Control of propulsion and body lift during the first two stances of sprint running: a simulation study.

    Science.gov (United States)

    Debaere, Sofie; Delecluse, Christophe; Aerenhouts, Dirk; Hagman, Friso; Jonkers, Ilse

    2015-01-01

    The aim of this study was to relate the contribution of lower limb joint moments and individual muscle forces to the body centre of mass (COM) vertical and horizontal acceleration during the initial two steps of sprint running. Start performance of seven well-trained sprinters was recorded using an optoelectronic motion analysis system and two force plates. Participant-specific torque-driven and muscle-driven simulations were conducted in OpenSim to quantify, respectively, the contributions of the individual joints and muscles to body propulsion and lift. The ankle is the major contributor to both actions during the first two stances, with an even larger contribution in the second compared to the first stance. Biarticular gastrocnemius is the main muscle contributor to propulsion in the second stance. The contribution of the hip and knee depends highly on the position of the athlete: During the first stance, where the athlete runs in a forward bending position, the knee contributes primarily to body lift and the hip contributes to propulsion and body lift. In conclusion, a small increase in ankle power generation seems to affect the body COM acceleration, whereas increases in hip and knee power generation tend to affect acceleration less.

  11. Simulations and experimental evaluation of an active orthosis for interaction in virtual environments

    Directory of Open Access Journals (Sweden)

    Tsveov Mihail

    2018-01-01

    Full Text Available In this work, the development of a human arm active orthosis is presented. The orthosis is designed primarily for training and rehabilitation in virtual environments.The orthosis system is intended for embodiment in virtual reality where it is allowing human to perceive forces at different body parts or the weight of lifted objects. In the paper the choice of a mechanical structure is shown equivalent to the structure of the human arm. A mechanical model of the orthosis arm as haptic device is built, where kinematic and dynamic parameters are evaluated. Impedance control scheme is selected as the most suitable for force refection at the hand or arm. An open-loop impedance controller is presented in the paper. Computer experiments are carried out using the dimensions of a real arm orthosis. Computer experiments have been carried out to provide force reflection by VR, according to virtual scenario. The conducted simulations show the range of the forces on the operator hand, orthosis can provide. The results of additional measurements and experimental evaluations of physical quantities in the interaction in a virtual environment are revealed in the paper.

  12. Robotic gait trainer in water: development of an underwater gait-training orthosis.

    Science.gov (United States)

    Miyoshi, Tasuku; Hiramatsu, Kazuaki; Yamamoto, Shin-Ichiro; Nakazawa, Kimitaka; Akai, Masami

    2008-01-01

    To develop a robotic gait trainer that can be used in water (RGTW) and achieve repetitive physiological gait patterns to improve the movement dysfunctions. The RGTW is a hip-knee-ankle-foot orthosis with pneumatic actuators; the control software was developed on the basis of the angular motions of the hip and knee joint of a healthy subject as he walked in water. Three-dimensional motions and electromyographic (EMG) activities were recorded in nine healthy subjects to evaluate the efficacy of using the RGTW while walking on a treadmill in water. The device could preserve the angular displacement patterns of the hip and knee and foot trajectories under all experimental conditions. The tibialis anterior EMG activities in the late swing phase and the biceps femoris throughout the stance phase were reduced whose joint torques were assisted by the RGTW while walking on a treadmill in water. Using the RGTW could expect not only the effect of the hydrotherapy but also the standard treadmill gait training, in particular, and may be particularly effective for treating individuals with hip joint movement dysfunction.

  13. A Motor Learning Oriented, Compliant and Mobile Gait Orthosis

    Directory of Open Access Journals (Sweden)

    A. Calanca

    2012-01-01

    Full Text Available People affected by Cerebral Palsy suffer from physical disabilities due to irreversible neural impairment since the very beginning of their life. Difficulties in motor control and coordination often relegate these patients to the use of a wheelchair and to the unavoidable upcoming of disuse syndromes. As pointed out in recent literature Damiano [7] physical exercise, especially in young ages, can have a deep impact on the patient health and quality of life. For training purposes is very important to keep an upright position, although in some severe cases this is not trivial. Many commercial mobile orthoses are designed to facilitate the standing, but not all the patients are able to deploy them. ARGO, the Active Reciprocated Gait Orthosis we developed, is a device that overcomes some of the limitations of these devices. It is an active device that is realized starting from a commercial reciprocated Gait Orthosis applying sensors and actuators to it. With ARGO we aim to develop a device for helping limbs in a non-coercive way accordingly to user’s intention. In this way patients can drive the orthosis by themselves, deploying augmented biofeedback over movements. In fact Cerebral Palsy patients usually have weak biofeedback mechanisms and consequently are hardly inclined to learn movements. To achieve this behavior ARGO deploys a torque planning algorithm and a force control system. Data collected from a single case of study shows benefits of the orthosis. We will show that our test patient reaches complete autonomous walking after few hour of training with prototype.

  14. A pneumatically powered knee-ankle-foot orthosis (KAFO with myoelectric activation and inhibition

    Directory of Open Access Journals (Sweden)

    Ferris Daniel P

    2009-06-01

    Full Text Available Abstract Background The goal of this study was to test the mechanical performance of a prototype knee-ankle-foot orthosis (KAFO powered by artificial pneumatic muscles during human walking. We had previously built a powered ankle-foot orthosis (AFO and used it effectively in studies on human motor adaptation, locomotion energetics, and gait rehabilitation. Extending the previous AFO to a KAFO presented additional challenges related to the force-length properties of the artificial pneumatic muscles and the presence of multiple antagonistic artificial pneumatic muscle pairs. Methods Three healthy males were fitted with custom KAFOs equipped with artificial pneumatic muscles to power ankle plantar flexion/dorsiflexion and knee extension/flexion. Subjects walked over ground at 1.25 m/s under four conditions without extensive practice: 1 without wearing the orthosis, 2 wearing the orthosis with artificial muscles turned off, 3 wearing the orthosis activated under direct proportional myoelectric control, and 4 wearing the orthosis activated under proportional myoelectric control with flexor inhibition produced by leg extensor muscle activation. We collected joint kinematics, ground reaction forces, electromyography, and orthosis kinetics. Results The KAFO produced ~22%–33% of the peak knee flexor moment, ~15%–33% of the peak extensor moment, ~42%–46% of the peak plantar flexor moment, and ~83%–129% of the peak dorsiflexor moment during normal walking. With flexor inhibition produced by leg extensor muscle activation, ankle (Pearson r-value = 0.74 ± 0.04 and knee ( r = 0.95 ± 0.04 joint kinematic profiles were more similar to the without orthosis condition compared to when there was no flexor inhibition (r = 0.49 ± 0.13 for ankle, p = 0.05, and r = 0.90 ± 0.03 for knee, p = 0.17. Conclusion The proportional myoelectric control with flexor inhibition allowed for a more normal gait than direct proportional myoelectric control. The current

  15. A pneumatically powered knee-ankle-foot orthosis (KAFO) with myoelectric activation and inhibition

    Science.gov (United States)

    Sawicki, Gregory S; Ferris, Daniel P

    2009-01-01

    Background The goal of this study was to test the mechanical performance of a prototype knee-ankle-foot orthosis (KAFO) powered by artificial pneumatic muscles during human walking. We had previously built a powered ankle-foot orthosis (AFO) and used it effectively in studies on human motor adaptation, locomotion energetics, and gait rehabilitation. Extending the previous AFO to a KAFO presented additional challenges related to the force-length properties of the artificial pneumatic muscles and the presence of multiple antagonistic artificial pneumatic muscle pairs. Methods Three healthy males were fitted with custom KAFOs equipped with artificial pneumatic muscles to power ankle plantar flexion/dorsiflexion and knee extension/flexion. Subjects walked over ground at 1.25 m/s under four conditions without extensive practice: 1) without wearing the orthosis, 2) wearing the orthosis with artificial muscles turned off, 3) wearing the orthosis activated under direct proportional myoelectric control, and 4) wearing the orthosis activated under proportional myoelectric control with flexor inhibition produced by leg extensor muscle activation. We collected joint kinematics, ground reaction forces, electromyography, and orthosis kinetics. Results The KAFO produced ~22%–33% of the peak knee flexor moment, ~15%–33% of the peak extensor moment, ~42%–46% of the peak plantar flexor moment, and ~83%–129% of the peak dorsiflexor moment during normal walking. With flexor inhibition produced by leg extensor muscle activation, ankle (Pearson r-value = 0.74 ± 0.04) and knee ( r = 0.95 ± 0.04) joint kinematic profiles were more similar to the without orthosis condition compared to when there was no flexor inhibition (r = 0.49 ± 0.13 for ankle, p = 0.05, and r = 0.90 ± 0.03 for knee, p = 0.17). Conclusion The proportional myoelectric control with flexor inhibition allowed for a more normal gait than direct proportional myoelectric control. The current orthosis design

  16. Development of an Active Ankle Foot Orthosis to Prevent Foot Drop and Toe Drag in Hemiplegic Patients: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Jungyoon Kim

    2011-01-01

    Full Text Available We developed an active ankle-foot orthosis (AAFO that controls dorsiflexion/plantarflexion of the ankle joint to prevent foot drop and toe drag during hemiplegic walking. To prevent foot slap after initial contact, the ankle joint must remain active to minimize forefoot collision against the ground. During late stance, the ankle joint must also remain active to provide toe clearance and to aid with push-off. We implemented a series elastic actuator in our AAFO to induce ankle dorsiflexion/plantarflexion. The activator was controlled by signals from force sensing register (FSR sensors that detected gait events. Three dimensional gait analyses were performed for three hemiplegic patients under three different gait conditions: gait without AFO (NAFO, gait with a conventional hinged AFO that did not control the ankle joint (HAFO, and gait with the newly-developed AFO (AAFO. Our results demonstrate that our newly-developed AAFO not only prevents foot drop by inducing plantarflexion during loading response, but also prevents toe drag by facilitating plantarflexion during pre-swing and dorsiflexion during swing phase, leading to improvement in most temporal-spatial parameters. However, only three hemiplegic patients were included in this gait analysis. Studies including more subjects will be required to evaluate the functionality of our newly developed AAFO.

  17. Weight transfer analysis in adults with hemiplegia using ankle foot orthosis.

    Science.gov (United States)

    Nolan, Karen J; Yarossi, Mathew

    2011-03-01

    Identifying and understanding the changes in transfer of momentum that are directly affected by orthotic intervention are significant factors related to the improvement of mobility in individuals with hemiplegia. The purpose of this investigation was to use a novel analysis technique to objectively measure weight transfer during double support (DS) in healthy individuals and individuals with hemiplegia secondary to stroke with and without an ankle foot orthosis. Prospective, Repeated measures, case-controlled trial. Participants included 25 adults with stroke-related hemiplegia >6 months using a prescribed ankle foot orthosis and 12 age-matched healthy controls. Main outcome measures included the weight transfer point timing (WTP, %DS), maximum total force timing (MTF, %DS), timing difference between WTP and MTF (MTF-WTP, %DS) and the linearity of loading (LOL, R(2)) during the DS phase of the gait cycle. The WTP and LOL were significantly different between conditions with and without the ankle foot orthosis for the affected and unaffected limb in post-stroke individuals, p ≤ 0.01. The MTF and difference in timing between MTF-WTP were significantly different during affected limb loading with and without the ankle foot orthosis in the stroke group, p ≤ 0.0001 and p = 0.03, respectively. MTF, MTF-WTP and LOL were significantly different between individuals with stroke (during affected limb loading) and healthy controls (during right limb loading). This research established a systematic method for analysing weight transfer during walking to evaluate the effect of an ankle foot orthosis on loading during double support in hemiplegic gait. This novel method can be used to elucidate biomechanical mechanisms behind orthosis-mediated changes in gait patterns and quantify functional mobility outcomes in rehabilitation. This novel approach to orthotic assessment will provide the clinician with needed objective evidence to select the most effective orthotic

  18. Examination of a muscular activity estimation model using a Bayesian network for the influence of an ankle foot orthosis.

    Science.gov (United States)

    Inoue, Jun; Kawamura, Kazuya; Fujie, Masakatsu G

    2012-01-01

    In the present paper, we examine the appropriateness of a new model to examine the activity of the foot in gait. We developed an estimation model for foot-ankle muscular activity in the design of an ankle-foot orthosis by means of a statistical method. We chose three muscles for measuring muscular activity and built a Bayesian network model to confirm the appropriateness of the estimation model. We experimentally examined the normal gait of a non-disabled subject. We measured the muscular activity of the lower foot muscles using electromyography, the joint angles, and the pressure on each part of the sole. From these data, we obtained the causal relationship at every 10% level for these factors and built models for the stance phase, control term, and propulsive term. Our model has three advantages. First, it can express the influences that change during gait because we use 10% level nodes for each factor. Second, it can express the influences of factors that differ for low and high muscular-activity levels. Third, we created divided models that are able to reflect the actual features of gait. In evaluating the new model, we confirmed it is able to estimate all muscular activity level with an accuracy of over 90%.

  19. Orthosis-Shaped Sandals Are as Efficacious as In-Shoe Orthoses and Better than Flat Sandals for Plantar Heel Pain: A Randomized Control Trial.

    Directory of Open Access Journals (Sweden)

    Bill Vicenzino

    Full Text Available To investigate efficacy of a contoured sandal being marketed for plantar heel pain with comparison to a flat flip-flop and contoured in-shoe insert/orthosis.150 volunteers aged 50 (SD: 12 years with plantar heel pain (>4 weeks were enrolled after responding to advertisements and eligibility determined by telephone and at first visit. Participants were randomly allocated to receive commercially available contoured sandals (n = 49, flat flip-flops (n = 50 or over the counter, pre-fabricated full-length foot orthotics (n = 51. Primary outcomes were a 15-point Global Rating of Change scale (GROC: 1 = a very great deal worse, 15 = a very great deal better, 13 to 15 representing an improvement and the 20-item Lower Extremity Function Scale (LEFS on which participants rate 20 common weight bearing activities and activities of daily living on a 5-point scale (0 = extreme difficulty, 4 = no difficulty. Secondary outcomes were worst level of heel pain in the preceding week, and the foot and ankle ability measure. Outcomes were collected blind to allocation. Analyses were done on an intention to treat basis with 12 weeks being the primary outcome time of interest.The contoured sandal was 68% more likely to report improvement in terms of GROC compared to flat flip-flop. On the LEFS the contoured sandal was 61% more likely than flat flip-flop to report improvement. The secondary outcomes in the main reflected the primary outcomes, and there were no differences between contoured sandal and shoe insert.Physicians can have confidence in supporting a patient's decision to wear contoured sandals or in-shoe orthoses as one of the first and simple strategies to manage their heel pain.The Australian New Zealand Clinical Trials Registry ACTRN12612000463875.

  20. Foot loading with an ankle-foot orthosis: the accuracy of an integrated physical strain trainer.

    Science.gov (United States)

    Pauser, Johannes; Jendrissek, Andreas; Brem, Matthias; Gelse, Kolja; Swoboda, Bernd; Carl, Hans-Dieter

    2012-07-01

    To investigate the value of a built-in physical strain trainer for the monitoring of partial weight bearing with an ankle-foot orthosis. 12 healthy volunteers were asked to perform three trials. Plantar peak pressure values from normal gait (trial one) were defined as 100% (baseline). The following trials were performed with the Vacoped® dynamic vacuum ankle orthosis worn in a neutral position with full weight bearing (trial two) and a restriction to 10% body weight (BW) (trial three), as monitored with an integrated physical strain trainer. Peak plantar pressure values were obtained using the pedar® X system. Peak pressure values were statistically significantly reduced wearing the Vacoped® shoe with full weight bearing for the hindfoot to 68% of the baseline (normal gait) and for the midfoot and forefoot to 83% and 60%, respectively. Limited weight bearing with 10% BW as controlled by physical strain trainer further reduced plantar peak pressure values for the hindfoot to 19%, for the midfoot to 43% of the baseline and the forefoot to 22% of the baseline. The Vacoped® vacuum ankle orthosis significantly reduces plantar peak pressure. The integrated physical strain trainer seems unsuitable to monitor a limitation to 10% BW adequately for the total foot. The concept of controlling partial weight bearing with the hindfoot-addressing device within the orthosis seems debatable but may be useful when the hindfoot in particular must be off-loaded.

  1. Specific Interference between a Cognitive Task and Sensory Organization for Stance Balance Control in Healthy Young Adults: Visuospatial Effects

    Science.gov (United States)

    Chong, Raymond K. Y.; Mills, Bradley; Dailey, Leanna; Lane, Elizabeth; Smith, Sarah; Lee, Kyoung-Hyun

    2010-01-01

    We tested the hypothesis that a computational overload results when two activities, one motor and the other cognitive that draw on the same neural processing pathways, are performed concurrently. Healthy young adult subjects carried out two seemingly distinct tasks of maintaining standing balance control under conditions of low (eyes closed),…

  2. Development of an orthosis for walking assistance using pneumatic artificial muscle: a quantitative assessment of the effect of assistance.

    Science.gov (United States)

    Kawamura, T; Takanaka, K; Nakamura, T; Osumi, H

    2013-06-01

    In recent years, there is an increase in the number of people that require support during walking as a result of a decrease in the leg muscle strength accompanying aging. An important index for evaluating walking ability is step length. A key cause for a decrease in step length is the loss of muscle strength in the legs. Many researchers have designed and developed orthoses for walking assistance. In this study, we advanced the design of an orthosis for walking assistance that assists the forward swing of the leg to increase step length. We employed a pneumatic artificial muscle as the actuator so that flexible assistance with low rigidity can be achieved. To evaluate the performance of the system, we measured the effect of assistance quantitatively. In this study, we constructed a prototype of the orthosis and measure EMG and step length on fitting it to a healthy subject so as to determine the effect of assistance, noting the increase in the obtained step length. Although there was an increase in EMG stemming from the need to maintain body balance during the stance phase, we observed that the EMG of the sartorius muscle, which helps swing the leg forward, decreased, and the strength of the semitendinosus muscle, which restrains the leg against over-assistance, did not increase but decreased. Our experiments showed that the assistance force provided by the developed orthosis is not adequate for the intended task, and the development of a mechanism that provides appropriate assistance is required in the future.

  3. A wearable vibrotactile biofeedback system improves balance control of healthy young adults following perturbations from quiet stance.

    Science.gov (United States)

    Ma, Christina Zong-Hao; Lee, Winson Chiu-Chun

    2017-10-01

    Maintaining postural equilibrium requires fast reactions and constant adjustments of the center of mass (CoM) position to prevent falls, especially when there is a sudden perturbation of the support surface. During this study, a newly developed wearable feedback system provided immediate vibrotactile clues to users based on plantar force measurement, in an attempt to reduce reaction time and CoM displacement in response to a perturbation of the floor. Ten healthy young adults participated in this study. They stood on a support surface, which suddenly moved in one of four horizontal directions (forward, backward, left and right), with the biofeedback system turned on or off. The testing sequence of the four perturbation directions and the two system conditions (turned on or off) was randomized. The resulting reaction time and CoM displacement were analysed. Results showed that the vibrotactile feedback system significantly improved balance control during translational perturbations. The positive results of this preliminary study highlight the potential of a plantar force measurement based biofeedback system in improving balance under perturbations of the support surface. Future system optimizations could facilitate its application in fall prevention in real life conditions, such as standing in buses or trains that suddenly decelerate or accelerate. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Effect of an ankle-foot orthosis on knee joint mechanics: a novel conservative treatment for knee osteoarthritis.

    Science.gov (United States)

    Fantini Pagani, Cynthia H; Willwacher, Steffen; Benker, Rita; Brüggemann, Gert-Peter

    2014-12-01

    Several conservative treatments for medial knee osteoarthritis such as knee orthosis and laterally wedged insoles have been shown to reduce the load in the medial knee compartment. However, those treatments also present limitations such as patient compliance and inconsistent results regarding the treatment success. To analyze the effect of an ankle-foot orthosis on the knee adduction moment and knee joint alignment in the frontal plane in subjects with knee varus alignment. Controlled laboratory study, repeated measurements. In total, 14 healthy subjects with knee varus alignment were analyzed in five different conditions: without orthotic, with laterally wedged insoles, and with an ankle-foot orthosis in three different adjustments. Three-dimensional kinetic and kinematic data were collected during gait analysis. Significant decreases in knee adduction moment, knee lever arm, and joint alignment in the frontal plane were observed with the ankle-foot orthosis in all three different adjustments. No significant differences could be found in any parameter while using the laterally wedged insoles. The ankle-foot orthosis was effective in reducing the knee adduction moment. The decreases in this parameter seem to be achieved by changing the knee joint alignment and thereby reducing the knee lever arm in the frontal plane. This study presents a novel approach for reducing the load in the medial knee compartment, which could be developed as a new treatment option for patients with medial knee osteoarthritis. © The International Society for Prosthetics and Orthotics 2013.

  5. Influence of Electrotactile Tongue Feedback on Controlling Upright Stance during Rotational and/or Translational Sway-referencing with Galvanic Vestibular Stimulation

    Science.gov (United States)

    Wood, Scott J.; Tyler, Mitchell E.; Bach-y-Rita, Paul; MacDougall, Hamish G.; Moore, Steven T.; Stallings, Valerie L.; Paloski, William H.; Black, F. Owen

    2007-01-01

    Integration of multi-sensory inputs to detect tilts relative to gravity is critical for sensorimotor control of upright orientation. Displaying body orientation using electrotactile feedback to the tongue has been developed by Bach-y-Rita and colleagues as a sensory aid to maintain upright stance with impaired vestibular feedback. MacDougall et al. (2006) recently demonstrated that unpredictably varying Galvanic vestibular stimulation (GVS) significantly increased anterior-posterior (AP) sway during rotational sway referencing with eyes closed. The purpose of this study was to assess the influence of electrotactile feedback on postural control performance with pseudorandom binaural bipolar GVS. Postural equilibrium was measured with a computerized hydraulic platform in 10 healthy adults (6M, 4F, 24-65 y). Tactile feedback (TF) of pitch and roll body orientation was derived from a two-axis linear accelerometer mounted on a torso belt and displayed on a 144-point electrotactile array held against the anterior dorsal tongue (BrainPort, Wicab, Inc., Middleton, WI). Subjects were trained to use TF by voluntarily swaying to draw figures on their tongue, both with and without GVS. Subjects were required to keep the intraoral display in their mouths on all trials, including those that did not provide TF. Subjects performed 24 randomized trials (20 s duration with eyes closed) including four support surface conditions (fixed, rotational sway-referenced, translating the support surface proportional to AP sway, and combined rotational-translational sway-referencing), each repeated twice with and without GVS, and with combined GVS and TF. Postural performance was assessed using deviations from upright (peak-to-peak and RMS sway) and convergence toward stability limits (time and distance to base of support boundaries). Postural stability was impaired with GVS in all platform conditions, with larger decrements in performance during trials with rotation sway

  6. Epistemic stance in courtroom interaction

    DEFF Research Database (Denmark)

    Mortensen, Sune Sønderberg; Mortensen, Janus

    2017-01-01

    The oral examination of defendants and witnesses is a cornerstone in most criminal trials, where the weight and credibility of what is said and the certainty with which testimony is delivered will often be decisive for the ruling of the court. This chapter presents a case study of the linguistic...... construction of certainty and uncertainty – or epistemic stance taking – in Danish courtroom interaction. Based on transcribed audio recordings from a criminal trial in Denmark in 2014, we examine the ways in which the defendant, the alleged victim and an eyewitness construct epistemic stances during...

  7. A computational simulated control system for a high-force pneumatic muscle actuator: system definition and application as an augmented orthosis.

    Science.gov (United States)

    Gerschutz, Maria J; Phillips, Chandler A; Reynolds, David B; Repperger, Daniel W

    2009-04-01

    High-force pneumatic muscle actuators (PMAs) are used for force assistance with minimal displacement applications. However, poor control due to dynamic nonlinearities has limited PMA applications. A simulated control system is developed consisting of: (1) a controller relating an input position angle to an output proportional pressure regulator voltage, (2) a phenomenological model of the PMA with an internal dynamic force loop (system time constant information), (3) a physical model of a human sit-to-stand task and (4) an external position angle feed-back loop. The results indicate that PMA assistance regarding the human sit-to-stand task is feasible within a specified PMA operational pressure range.

  8. Exoskeleton Technology in Rehabilitation: Towards an EMG-Based Orthosis System for Upper Limb Neuromotor Rehabilitation

    Directory of Open Access Journals (Sweden)

    Luis Manuel Vaca Benitez

    2013-01-01

    Full Text Available The rehabilitation of patients should not only be limited to the first phases during intense hospital care but also support and therapy should be guaranteed in later stages, especially during daily life activities if the patient’s state requires this. However, aid should only be given to the patient if needed and as much as it is required. To allow this, automatic self-initiated movement support and patient-cooperative control strategies have to be developed and integrated into assistive systems. In this work, we first give an overview of different kinds of neuromuscular diseases, review different forms of therapy, and explain possible fields of rehabilitation and benefits of robotic aided rehabilitation. Next, the mechanical design and control scheme of an upper limb orthosis for rehabilitation are presented. Two control models for the orthosis are explained which compute the triggering function and the level of assistance provided by the device. As input to the model fused sensor data from the orthosis and physiology data in terms of electromyography (EMG signals are used.

  9. Single DoF Hand Orthosis for Rehabilitation of Stroke and SCI Patients

    Science.gov (United States)

    Kannan Megalingam, Rajesh; Apuroop, K. G. S.; Boddupalli, Sricharan

    2017-08-01

    Many stroke and spinal cord injury patients suffer from paralysis which range from severe to nominal. Some of them, after therapy, could regain most of the motor control, particularly in hands if the severity level is not so high. In this paper we propose a hand orthosis for such patients whose stroke and spinal cord injury severity is nominal and the motor control in hands can be regained by therapy as part of their rehabilitation process. The patients can wear this orthosis and the therapy can be done with simple Human Computer Interface. The physicians, the physiotherapists and the patients themselves can carry out the therapy with the help of this device. The tests conducted in the lab and the results obtained are very promising that this can be an effective mechanism for stroke and spinal cord injury patients in their rehabilitation process. The hand orthosis is designed and fabricated locally so that it can be made available to such patients at an affordable cost.

  10. Prototyping of Individual Ankle Orthosis Using Additive Manufacturing Technologies

    Directory of Open Access Journals (Sweden)

    Natalia Wierzbicka

    2017-09-01

    Full Text Available The paper presents design and manufacturing process of an individualized ankle orthosis using additive manufacturing technologies and reverse engineering. Conventional processes of manufacturing of orthosesareexpensive and time consuming -an alternative method was proposed. The patient’s leg was 3D scanned and the orthosis was designed using a CAD system. It was then manufactured using the Fused Deposition Modelling technology, assembled and fully tested. Positive results were obtained.

  11. Ranking-based Method for News Stance Detection

    KAUST Repository

    Zhang, Qiang; Yilmaz, Emine; Liang, Shangsong

    2018-01-01

    A valuable step towards news veracity assessment is to understand stance from different information sources, and the process is known as the stance detection. Specifically, the stance detection is to detect four kinds of stances (

  12. Ranking-based Method for News Stance Detection

    KAUST Repository

    Zhang, Qiang

    2018-04-18

    A valuable step towards news veracity assessment is to understand stance from different information sources, and the process is known as the stance detection. Specifically, the stance detection is to detect four kinds of stances (

  13. Specificity of foot configuration during bipedal stance in ballet dancers.

    Science.gov (United States)

    Casabona, Antonino; Leonardi, Giuseppa; Aimola, Ettore; La Grua, Giovanni; Polizzi, Cristina Maria; Cioni, Matteo; Valle, Maria Stella

    2016-05-01

    Learning highly specialized upright postures may be of benefit for more common as well as for novel stances. In this study, we asked whether this generalization occurs with foot configurations previously trained or depends on a generic increase in balance difficulty. We also explored the possibility that the benefit may concern not only the level of postural performance but also the structural organization of the upright standing. Ten elite professional ballet dancers were compared to ten untrained subjects, measuring the motion of the center of pressure (COP) across a set of five stances with different foot configurations. The balance stability was measured computing the area, the sway path, and the root mean square of the COP motion, whereas the structure of the postural control was assessed by compute approximate entropy, fractal dimension and the mean power frequency. The foot position included common and challenging stances, with the level of difficulty changed across the configurations. Among these conditions, only one foot configuration was familiar to the dancers. Statistically significant differences between the two groups, for all the parameters, were observed only for the stance with the foot position familiar to the dancers. Stability and structural parameters exhibited comparable differences. We concluded that the benefit from classical ballet is limited to a specific foot configuration, regardless of the level of stance difficulty or the component of postural control. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Effect of New Kypho-Remainder Orthosis on Curve Intensity in Adults With Postural Hyper Kyphosis

    Directory of Open Access Journals (Sweden)

    Omid Torkaman

    2017-10-01

    Conclusion Considering the importance of maintaining a proper posture to optimize the muscles activity in preventing deformity and orthosis with a bio-feedback mechanism may be the solution. The long-term effect of using a bio-feedback orthosis indicated that kypho-remainder orthosis can significantly improve the kyphosis curve in individuals with postural hyper-kyphosis. 

  15. Comparison of a laboratory grade force platform with a Nintendo Wii Balance Board on measurement of postural control in single-leg stance balance tasks.

    Science.gov (United States)

    Huurnink, Arnold; Fransz, Duncan P; Kingma, Idsart; van Dieën, Jaap H

    2013-04-26

    Training and testing of balance have potential applications in sports and medicine. Laboratory grade force plates (FP) are considered the gold standard for the measurement of balance performance. Measurements in these systems are based on the parameterization of center of pressure (CoP) trajectories. Previous research validated the inexpensive, widely available and portable Nintendo Wii Balance Board (WBB). The novelty of the present study is that FP and WBB are compared on CoP data that was collected simultaneously, by placing the WBB on the FP. Fourteen healthy participants performed ten sequences of single-leg stance tasks with eyes open (EO), eyes closed (EC) and after a sideways hop (HOP). Within trial comparison of the two systems showed small root-mean-square differences for the CoP trajectories in the x and y direction during the three tasks (mean±SD; EO: 0.33±0.10 and 0.31±0.16 mm; EC: 0.58±0.17 and 0.63±0.19 mm; HOP: 0.74±0.34 and 0.74±0.27 mm, respectively). Additionally, during all 420 trials, comparison of FP and WBB revealed very high Pearson's correlation coefficients (r) of the CoP trajectories (x: 0.999±0.002; y: 0.998±0.003). A general overestimation was found on the WBB compared to the FP for 'CoP path velocity' (EO: 5.3±1.9%; EC: 4.0±1.4%; HOP: 4.6±1.6%) and 'mean absolute CoP sway' (EO: 3.5±0.7%; EC: 3.7±0.5%; HOP: 3.6±1.0%). This overestimation was highly consistent over the 140 trials per task (r>0.996). The present findings demonstrate that WBB is sufficiently accurate in quantifying CoP trajectory, and overall amplitude and velocity during single-leg stance balance tasks. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Values and stances towards expert knowledge

    OpenAIRE

    Ahola, Salla

    2016-01-01

    Laypeople’s stances towards expert knowledge and the relationships of personal values to such stances are little studied and remain less than clear. The purpose of this dissertation was to shed more light on these stances and their relationships to personal values, and thereby to contribute to a greater understanding of them. More specifically, this study focusses on the readiness of laypeople to question experts’ views, their non-adherence to doctors’ instructions, and their preferences to ...

  17. Long-term clinical evaluation of the automatic stance-phase lock-controlled prosthetic knee joint in young adults with unilateral above-knee amputation.

    Science.gov (United States)

    Andrysek, Jan; Wright, F Virginia; Rotter, Karin; Garcia, Daniela; Valdebenito, Rebeca; Mitchell, Carlos Alvarez; Rozbaczylo, Claudio; Cubillos, Rafael

    2017-05-01

    The purpose of this study was to clinically evaluate the automatic stance-phase lock (ASPL) knee mechanism against participants' existing weight-activated braking (WAB) prosthetic knee joint. This prospective crossover study involved 10 young adults with an above-knee amputation. Primary measurements consisted of tests of walking speeds and capacity. Heart rate was measured during the six-minute walk test and the Physiological Cost Index (PCI) which was calculated from heart rate estimated energy expenditure. Activity was measured with a pedometer. User function and quality of life were assessed using the Lower Limb Function Questionnaire (LLFQ) and Prosthetic Evaluation Questionnaire (PEQ). Long-term follow-up over 12 months were completed. Walking speeds were the same for WAB and APSL knees. Energy expenditure (PCI) was lower for the ASPL knees (p = 0.007). Step counts were the same for both knees, and questionnaires indicated ASPL knee preference attributed primarily to knee stability and improved walking, while limitations included terminal impact noise. Nine of 10 participants chose to keep using the ASPL knee as part of the long-term follow-up. Potential benefits of the ASPL knee were identified in this study by functional measures, questionnaires and user feedback, but not changes in activity or the PEQ.

  18. Mina: A Sensorimotor Robotic Orthosis for Mobility Assistance

    Directory of Open Access Journals (Sweden)

    Anil K. Raj

    2011-01-01

    Full Text Available While most mobility options for persons with paraplegia or paraparesis employ wheeled solutions, significant adverse health, psychological, and social consequences result from wheelchair confinement. Modern robotic exoskeleton devices for gait assistance and rehabilitation, however, can support legged locomotion systems for those with lower extremity weakness or paralysis. The Florida Institute for Human and Machine Cognition (IHMC has developed the Mina, a prototype sensorimotor robotic orthosis for mobility assistance that provides mobility capability for paraplegic and paraparetic users. This paper describes the initial concept, design goals, and methods of this wearable overground robotic mobility device, which uses compliant actuation to power the hip and knee joints. Paralyzed users can balance and walk using the device over level terrain with the assistance of forearm crutches employing a quadrupedal gait. We have initiated sensory substitution feedback mechanisms to augment user sensory perception of his or her lower extremities. Using this sensory feedback, we hypothesize that users will ambulate with a more natural, upright gait and will be able to directly control the gait parameters and respond to perturbations. This may allow bipedal (with minimal support gait in future prototypes.

  19. Effect of Posture Training with Weighted Kypho-Orthosis (WKO) on Improving Balance in Women with Osteoporosis

    OpenAIRE

    Raeissadat, Seyed Ahmad; Sedighipour, Leyla; Pournajaf, Safura; Vahab Kashani, Reza; Sadeghi, Shahram

    2014-01-01

    Objectives. To determine the effect of weighted kypho-orthosis (WKO) on improving balance in women with osteoporosis. In this nonrandomized controlled clinical trial, 31 patients with osteoporosis were included. The patients were assigned to two groups: (1) control group who received 4-week home-based daily exercise program including weight bearing, back strengthening, and balance exercises and (2) intervention group (WKO) who performed aforementioned exercises and wore WKO for one hour twice...

  20. The intentional stance and cultural learning

    DEFF Research Database (Denmark)

    Michael, John Andrew

    2015-01-01

    that (partially) explainsthe reliability of the intentional stance, and does so – contra Dennett’s realist critics – without appealing to a realist interpretation of the descriptions speakers attach to intentional terms. However, I also suggest that this developmental perspective provides grist to the mill...... conceptualize the assumption of rationality that is at the core of the intentional stance theory....

  1. [Influence of spinal orthosis on gait and physical functioning in women with postmenopausal osteoporosis].

    Science.gov (United States)

    Schmidt, K; Hübscher, M; Vogt, L; Klinkmüller, U; Hildebrandt, H D; Fink, M; Banzer, W

    2012-03-01

    Osteoporosis is a widespread chronic bone disease leading to an increased risk of bone fractures. The most common clinical consequences are back pain, hyperkyphosis, limitations of physical functioning and activities of daily living as well as reduced quality of life. Furthermore, osteoporosis is associated with decreased strength and deficits of gait and balance, all together resulting in an increased risk of falls and a subsequent aggravation of fracture risk. Besides pharmaceutical and exercise therapy, back orthoses are increasingly being used in the therapy of osteoporosis and rehabilitation after vertebral fractures. Previous studies have shown that wearing a spinal orthosis results in a reduction of pain as well as improvements of posture and back extensor strength. To date there is no study that has evaluated the effects of a spinal orthosis on gait stability and physical functioning in patients with osteoporosis. Therefore the purpose of the present study was to assess the effects of a spinal orthosis on gait and pain-induced limitations of activities of daily living (ADL) in women with osteoporosis. A total of 69 postmenopausal osteoporotic women with and without vertebral fractures were randomly assigned to receive either a spinal orthosis (Thämert Osteo-med intervention group n=35; average age 74 ± 8.3 years, height 158.3 ± 6.3 cm, weight 62.8 ± 9.6 kg, t-score -2.6  ± 1.0, number of vertebral fractures 1.4 ± 2.0) or to a waiting list control group (n= 34, age 74.1 ± 7.7 years, height 159.6 ± 5.9 cm, weight 65.4 ± 11.3 kg, t-score -2.9± 0.8, number of vertebral fractures: 0.9 ± 1.2). The following outcome measures were collected at baseline and at 3 and 6 months follow-up: gait parameters including gait analysis: velocity, stride length and width, double support time (% of gait cycle) and perceived limitations in activities of daily living (numeric rating scale 1-10; 1=best, 10= worst situation). The ANCOVA indicated a

  2. The smart Peano fluidic muscle: a low profile flexible orthosis actuator that feels pain

    Science.gov (United States)

    Veale, Allan J.; Anderson, Iain A.; Xie, Shane Q.

    2015-03-01

    Robotic orthoses have the potential to provide effective rehabilitation while overcoming the availability and cost constraints of therapists. These orthoses must be characterized by the naturally safe, reliable, and controlled motion of a human therapist's muscles. Such characteristics are only possible in the natural kingdom through the pain sensing realized by the interaction of an intelligent nervous system and muscles' embedded sensing organs. McKibben fluidic muscles or pneumatic muscle actuators (PMAs) are a popular orthosis actuator because of their inherent compliance, high force, and muscle-like load-displacement characteristics. However, the circular cross-section of PMA increases their profile. PMA are also notoriously unreliable and difficult to control, lacking the intelligent pain sensing systems of their biological muscle counterparts. Here the Peano fluidic muscle, a new low profile yet high-force soft actuator is introduced. This muscle is smart, featuring bioinspired embedded pressure and soft capacitive strain sensors. Given this pressure and strain feedback, experimental validation shows that a lumped parameter model based on the muscle geometry and material parameters can be used to predict its force for quasistatic motion with an average error of 10 - 15N. Combining this with a force threshold pain sensing algorithm sets a precedent for flexible orthosis actuation that uses embedded sensors to prevent damage to the actuator and its environment.

  3. Comparison of custom-moulded ankle orthosis with hinged joints and off-the-shelf ankle braces in preventing ankle sprain in lateral cutting movements.

    Science.gov (United States)

    Lee, Winson C C; Kobayashi, Toshiki; Choy, Barton T S; Leung, Aaron K L

    2012-06-01

    A custom moulded ankle orthosis with hinged joints potentially offers a better control over the subtalar joint and the ankle joint during lateral cutting movements, due to total contact design and increase in material strength. To test the above hypothesis by comparing it to three other available orthoses. Repeated measures. Eight subjects with a history of ankle sprains (Grade 2), and 11 subjects without such history performed lateral cutting movements in four test conditions: 1) non-orthotic, 2) custom-moulded ankle orthosis with hinges, 3) Sport-Stirrup, and 4) elastic ankle sleeve with plastic support. A VICON motion analysis system was used to study the motions at the ankle and subtalar joints. The custom-moulded ankle orthosis significantly lowered the inversion angle at initial contact (p = 0.006) and the peak inversion angle (p = 0.000) during lateral cutting movements in comparison to non-orthotic condition, while the other two orthoses did not. The three orthoses did not affect the plantarflexion motions, which had been suggested by previous studies to be important in shock wave attenuation. The custom-moulded ankle orthosis with hinges could better control inversion and thus expected to better prevent ankle sprain in lateral cutting movements. Custom-moulded ankle orthoses are not commonly used in preventing ankle sprains. This study raises the awareness of the use of custom-moulded ankle orthoses which are expected to better prevent ankle sprains.

  4. Gait comparison of subjects with hemiplegia walking unbraced, with ankle-foot orthosis, and with Air-Stirrup brace.

    Science.gov (United States)

    Burdett, R G; Borello-France, D; Blatchly, C; Potter, C

    1988-08-01

    The effects of the Air-Stirrup (AS) standard ankle brace on the gait of 19 subjects with hemiplegia resulting from a cerebrovascular accident who exhibited excessive subtalar joint motion were studied. Videotaped trials and footprint analyses were used to measure subjects' hip, knee, and ankle sagittal plane angles; inversion and eversion of the calcaneus; and time-distance gait characteristics. A one-way analysis of variance for repeated measures was used to compare the gait of 19 subjects with the AS brace and unbraced and 11 subjects with the AS brace, unbraced, and with an ankle-foot orthosis. The AS brace was associated with more calcaneal stability during standing than the unbraced condition. The ankle-foot orthosis was associated with less plantar flexion at foot-strike than either the AS brace or unbraced condition. Both the AS brace and the ankle-foot orthosis were associated with less mid-swing plantar flexion and increased step length on the paretic side compared with no brace. These results support the effectiveness of the AS brace in controlling inversion and eversion instability in patients with hemiplegia.

  5. Counterforce Orthosis In The Management Of Lateral Epicondylitis.

    Science.gov (United States)

    Vellilappilly, Daison Varghese; Rai, Heroor Ravindranath; Varghese, Jaison; Renjith, Vishnu

    2017-01-01

    Lateral Epicondylitis (LE), is a condition characterized by the pain and tenderness over the lateral epicondyle of the humerus. LE is commonly seen among people who are involved in sports such as tennis and golf. Any activity that repeatedly overstrains the extensor carpi radialis brevis tendon can lead to LE. The management of lateral epicondylitis generally involves the use of counterforce orthosis. The aim of this review is to summarize the evidence regarding the effectiveness of counterforce orthoses on the clinical outcomes of patients with lateral epicondylitis. The PubMed, Ovid, and ProQuest databases were searched for potential studies which explored the use of counterforce orthosis in the management of lateral epicondylitis. To have a better understanding of the effectiveness of various types of orthoses, the review is organized into four sections. The first section explores the use of a single orthotic device, the second section focuses on the combined use of orthotic devices, the third section explore studies that compared the effect of local steroid injection along with orthosis and the last section narrate the studies that compared various types of orthotic devices. The studies support the use of orthotic devices as a treatment modality for lateral epicondylitis. There is rising evidence which supports the use of a comprehensive approach, (by combining routine physiotherapy with orthotic devices) in the management of LE. Orthosis alone or in combination with routine physical therapy can be considered as an evidence-based treatment strategy for patients with lateral epicondylitis. However, on the basis of the literature review conducted, the authors recommend that further high-quality clinical trials regarding the management of lateral epicondylitis are necessary to strengthen the evidence-based physiotherapy practice.

  6. Case report on the use of a functional electrical orthosis in rehabilitation of upper limb function in a chronic stroke patient

    Directory of Open Access Journals (Sweden)

    Catalin Moghioroiu

    2018-05-01

    Full Text Available Introduction. The increasing incidence of strokes and their occurrence in younger active people require the development of solutions that allow participation, despite the debilitating deficit that is not always solved by rehabilitation. The present report shows such a potential solution. Objective. In this presentation we will show the effects of using a functional electric orthosis, the high number of repetitions and daily electrostimulation in a young stroke patient with motor deficit in the upper limb, the difficulties encountered in attempting to use orthosis, the results and the course of its recovery over the years. Materials and Methods. The present report shows the evolution of a 31-year-old female patient with hemiplegia, resulting from a hemorrhagic stroke, from the moment of surgery to the moment of purchasing a functional electrical orthosis and a few months later, highlighting a 3-week period when the training method focused on performing a large number of repetitions of a single exercise helped by the orthosis – 3 weekly physical therapy sessions, with a duration of one hour and 15 minutes, plus 2 electrostimulation sessions lasting 20 minutes each and 100 elbow extension, daily, 6 times a week. The patient was evaluated and filmed at the beginning and end of the 3 week period. The patient's consent was obtained for the use of the data and images presented. Results. Invalidating motor deficiency and problems specific to the use of upper limb functional electrostimulation in patients with stroke sequelae (flexion synergy, exaggeration of reflex response, wrist position during stimulation, etc. made it impossible to use orthosis in functional activities within ADL although it allowed the achievement of a single task. Evaluation on the FuglMayer assessment does not show any quantifiable progress, although it is possible to have slightly improved the control of the shoulder and elbow and increased the speed of task execution

  7. Undisturbed stance control in healthy adults is achieved differently along anteroposterior and mediolateral axes: evidence from visual feedback of various signals from center of pressure trajectories.

    Science.gov (United States)

    Rougier, Patrice R

    2009-05-01

    Provided through the screen of a monitor, the participant's resultant center of pressure (CPRes) movements from a force platform device, modified the postural performance of a healthy individual. However, these effects could largely vary with the axis that researchers consider (mediolateral [ML] or anteroposterior [AP]), because they know these controls are involved in 2 distinct ankle and hip mechanisms. To demonstrate this organization, the author tested a group of healthy adults in several conditions that gave the whole or some part of the information in the CPRes displacements. Compared with the CPRes feedback, left and right plantar CP or body weight distribution feedback deteriorated the control of the vertically projected center of gravity (CGv) along the ML and AP axes, whose amplitudes increased, respectively. These data highlight the primary role of loading or unloading and pressure variations in the achievement of postural control along each ML or AP axis, respectively. It is interesting that merging these 2 pieces of information (CPRes displacements) helped participants optimize their postural performance.

  8. Balance (perceived and actual) and preferred stance width during pregnancy.

    Science.gov (United States)

    Jang, John; Hsiao, Katherine T; Hsiao-Wecksler, Elizabeth T

    2008-05-01

    Pregnant women often remark that their balance degrades during pregnancy; however, it appears that no studies have documented the gravida's perception of her balance nor measured direction-specific changes in balance throughout pregnancy or after delivery. Thirty women, fifteen pregnant and fifteen non-pregnant controls, were tested monthly and through 6-month postpartum. For each session, perceived degradation in sense of balance, laboratory-based balance measures, stance width, and the number of falls since the previous session were recorded. Laboratory-based balance measures, quantified by direction-specific measures of postural sway, were computed from ten 30s quiet-standing trials on a stationary force platform. Repeated-measures analysis of variance, paired t-tests, and Pearson correlations were use to examine group and time effects. For the pregnant group, perceived balance degradation and stance width were highly correlated (r = 0.94). Both increased during pregnancy (P r > 0.72) and also decreased significantly between the third trimester and postpartum (P pregnancy, but increased after delivery. Contrary to recent work suggesting fall rates of 25%, only 13% of our subjects (n = 2) fell during pregnancy. Perceived degradation in balance during pregnancy was strongly related to increasing postural sway instability in the anterior-posterior direction. Lateral stability was maintained during pregnancy and likely accomplished by increasing stance width.

  9. Exploring Individual Differences in Preschoolers' Causal Stance

    Science.gov (United States)

    Alvarez, Aubry; Booth, Amy E.

    2016-01-01

    Preschoolers, as a group, are highly attuned to causality, and this attunement is known to facilitate memory, learning, and problem solving. However, recent work reveals substantial individual variability in the strength of children's "causal stance," as demonstrated by their curiosity about and preference for new causal information. In…

  10. Interpersonal Stance in Conflict Conversation: Police Interviews

    NARCIS (Netherlands)

    Bruijnes, Merijn

    2013-01-01

    In this work we focus on the dynamics of the conflict that often arises in a police interview between suspects and police officers. Police interviews are a special type of social encounter, primarily because of the authority role of the police interviewer and the often uncooperative stance that the

  11. Pneumatic Muscles Actuated Lower-Limb Orthosis Model Verification with Actual Human Muscle Activation Patterns

    Directory of Open Access Journals (Sweden)

    Dzahir M.A.M

    2017-01-01

    Full Text Available A review study was conducted on existing lower-limb orthosis systems for rehabilitation which implemented pneumatic muscle type of actuators with the aim to clarify the current and on-going research in this field. The implementation of pneumatic artificial muscle will play an important role for the development of the advanced robotic system. In this research a derivation model for the antagonistic mono- and bi-articular muscles using pneumatic artificial muscles of a lower limb orthosis will be verified with actual human’s muscle activities models. A healthy and young male 29 years old subject with height 174cm and weight 68kg was used as a test subject. Two mono-articular muscles Vastus Medialis (VM and Vastus Lateralis (VL were selected to verify the mono-articular muscle models and muscle synergy between anterior muscles. Two biarticular muscles Rectus Femoris (RF and Bicep Femoris (BF were selected to verify the bi-articular muscle models and muscle co-contraction between anterior-posterior muscles. The test was carried out on a treadmill with a speed of 4.0 km/h, which approximately around 1.25 m/s for completing one cycle of walking motion. The data was collected for about one minute on a treadmill and 20 complete cycles of walking motion were successfully recorded. For the evaluations, the mathematical model obtained from the derivation and the actual human muscle activation patterns obtained using the surface electromyography (sEMG system were compared and analysed. The results shown that, high correlation values ranging from 0.83 up to 0.93 were obtained in between the derivation model and the actual human muscle’s model for both mono- and biarticular muscles. As a conclusion, based on the verification with the sEMG muscle activities data and its correlation values, the proposed derivation models of the antagonistic mono- and bi-articular muscles were suitable to simulate and controls the pneumatic muscles actuated lower limb

  12. Design a New Orthosis and Assessment of Its Effects on Knee Joint Kinetics and Kinematics During Gait

    Directory of Open Access Journals (Sweden)

    Mostafa Kamali

    2015-12-01

    Methods: Ten subjects without any neuromuscular disease participated in this study. New orhosis with the same structure of Scottish rite orthosis was designed. Qualysis system analyses with seven cameras as well as a Kistler force plate were used to measure the kinematics and kinetics variables during the gait with and without orthosis. For statistical analysis independent student-t test was used. The significance level was set at p0.05. There was significant difference between peak medio-lateral forces applied on knee during walking with and without orthosis (p<0.05. Conclusion: The new orthosis decreases the adductor moment on knee joint therefore, it can decrease the forces applied on medial compartment of the knee joint. This orthosis improves walking because it does not let inferior transition. This orthosis can improve femur alignment. It is recommended that physiotherapist prescribe this orthosis in order to decrease pain in patients with OA.

  13. Effectiveness of an Articulated Knee Hyperextension Orthosis in Genu Recurvatum

    Directory of Open Access Journals (Sweden)

    Rahul ASRM

    2014-08-01

    Full Text Available Genu Recurvatum is a deformity of knee joint that tends to push it backwards by excessive extension in tibio-femoral joints. This poses a significant challenge because of technical difficulties and a high incidence of recurrence. This report describes a 63 years old male diagnosed as post-polio residual paralysis who showed excessive genu recurvatum of his left knee during long standing and walking. An Articulated Knee Hyperextension Orthosis (KAFO was tried to check its effectiveness in terms of gait and energy expenditure.

  14. The Effect of Rocker Bar Ankle Foot Orthosis on Functional Mobility in Post-Stroke Hemiplegic Patients

    Directory of Open Access Journals (Sweden)

    Farzad Farmani

    2015-09-01

    Full Text Available Objectives: Ankle Foot Orthoses (AFOs are widely utilized to improve walking ability in hemiplegic patients. The present study aimed to evaluate the effect of Rocker bar Ankle Foot Orthosis (RAFO on functional mobility in post-stroke hemiplegic patients. Methods: Fifteen hemiplegic patients (men and women who were at least 6-months post-stroke and able to walk without assistive device for at least 10 meters voluntarily participated in this study. The patients were examined with and without RAFO. Their functional mobility was evaluated through 10-meter walk test and Timed Up and Go (TUG test. Also, paired t-test was used to analyze obtained data. Results: When patients used RAFO, their gait speed significantly increased (P<0.05. Also, the time of performing TUG test experienced a significant decrease using RAFO compared with utilizing shoe only (P<0.05. Discussion: RAFO led to a significant improvement in functional mobility in hemiplegic patient’s secondary to stroke. It seems that, it has been due to the positive effect of rocker modification on improving push off and transferring weight during stance phase of gait.

  15. Effects on foot external rotation of the modified ankle-foot orthosis on post-stroke hemiparetic gait.

    Science.gov (United States)

    Kim, Ha Jeong; Chun, Min Ho; Kim, Hong Min; Kim, Bo Ryun

    2013-08-01

    To evaluate the effects of heel-opened ankle foot orthosis (HOAFO) on hemiparetic gait after stroke, especially on external foot rotation, and to compare the effects of HOAFO with conventional plastic-AFO (pAFO) and barefoot during gait. This cross-over observational study involved 15 hemiparetic patients with external rotation of the affected foot. All subjects were able to walk independently, regardless of their usual use of a single cane, and had a less than fair-grade in ankle dorsiflexion power. Each patient was asked to walk in three conditions with randomized sequences: 1) barefoot, 2) with a pAFO, and 3) with an HOAFO. Their gait patterns were analyzed using a motion analysis system. Fifteen patients consisted of nine males and six females. On gait analysis, hip and foot external rotation were significantly greater in pAFO (-3.35° and -23.68°) than in barefoot and HOAFO conditions (pexternal rotation compared with pAFO; although there was no significant difference between HOAFO and barefoot walking. Walking speed and percentage of single limb support were significantly greater for HOAFO than in barefoot walking. HOAFO was superior to pAFO in reducing hip and foot external rotation during the stance phase in patients with post-stroke hemiparesis. HOAFO may, therefore, be useful in patients with excessive external rotation of the foot during conventional pAFO.

  16. Use and tolerability of a side pole static ankle foot orthosis in children with neurological disorders.

    Science.gov (United States)

    Delvert, Céline; Rippert, Pascal; Margirier, Françoise; Vadot, Jean-Pierre; Bérard, Carole; Poirot, Isabelle; Vuillerot, Carole

    2017-04-01

    Transverse-plane foot deformities are a frequently encountered issue in children with neurological disorders. They are the source of many symptoms, such as pain and walking difficulties, making their prevention very important. We aim to describe the use and tolerability of a side pole static ankle foot orthosis used to prevent transverse-plane foot deformities in children with neurologic disorders. Monocentric, retrospective, observational study. Medical data were collected from 103 children with transverse-plane foot deformities in one or both feet caused by a neurological impairment. All children were braced between 2001 and 2010. Unilateral orthosis was prescribed for 32 children and bilateral orthosis for 71. Transverse-plane foot deformities were varus in 66% of the cases and an equinus was associated in 59.2% of the cases. Mean age for the first prescription was 8.6 years. For the 23 patients present at the 4-year visit, 84.8% still wore the orthosis daily, and 64.7% wore the orthosis more than 6 h per day. The rate of permanent discontinuation of wearing the orthosis was 14.7%. The side pole static ankle foot orthosis is well tolerated with very few side effects, which promotes regular wearing and observance. Clinical relevance Side pole static ankle foot orthoses are well tolerated and can be safely used for children with foot abnormalities in the frontal plane that have a neurological pathology origin.

  17. The effects of a new designed forearm orthosis in treatment of lateral epicondylitis.

    Science.gov (United States)

    Forogh, Bijan; Khalighi, Mohsen; Javanshir, Mohammad Ali; Ghoseiri, Kamiar; Kamali, Mohammad; Raissi, Gholamreza

    2012-07-01

    This paper reports on the design and testing of a new designed forearm orthosis and explores its efficacious in comparison to the standard counterforce orthosis in patients with lateral epicondylitis. Twenty-four patients were enrolled in this assessor-blinded clinical trial and randomly assigned to two parallel treatment groups. The measures of pain and function, the pain threshold and grip strength were compared using patient rated tennis elbow evaluation (PRTEE) form, algometer and dynamometer respectively at baseline and 4 weeks after treatment. Paired and independent t-test statistical methods recruited for within and between groups comparisons respectively. The both orthoses, counterforce and new-designed, significantly relieved pain, and improved function, pain threshold and grip strength of all patients after 4 weeks application. The new-designed orthosis seemed to be more effective than the counterforce orthosis in pain relief, but there was not any significant difference in efficacious of two types of orthoses regarding function. The new-designed orthosis can significantly relieve pain, improve function, increase pain threshold and grip strength after application. This orthosis seemed to be more effective than counterforce orthosis in relieving pain and increasing the pain threshold probably due to the limitation of forearm supination.

  18. The expressive stance: intentionality, expression, and machine art

    OpenAIRE

    Linson, Adam

    2013-01-01

    This paper proposes a new interpretive stance for interpreting artistic works and performances that is relevant to artificial intelligence research but also has broader implications. Termed the expressive stance, this stance makes intelligible a critical distinction between present-day machine art and human art, but allows for the possibility that future machine art could find a place alongside our own. The expressive stance is elaborated as a response to Daniel Dennett's notion of the intent...

  19. Imaging the Intentional Stance in a Competitive Game

    DEFF Research Database (Denmark)

    Gallagher, Helen; Jack, Anthony I.; Roepstorff, Andreas

    2002-01-01

    a study that investigates the neural substrates of "on-line" mentalizing, using PET, by asking volunteers to second-guess an opponent. In order to identify brain activity specifically associated with adoption of an intentional stance, we used a paradigm that allowed tight control of other cognitive...... demands. Volunteers played a computerised version of the children's game "stone, paper, scissors." In the mentalizing condition volunteers believed they were playing against the experimenter. In the comparison condition, volunteers believed they were playing against a computer. In fact, during the actual...

  20. Can an ankle-foot orthosis change hearts and minds?

    Science.gov (United States)

    Patzkowski, Jeanne C; Blanck, Ryan V; Owens, Johnny G; Wilken, Jason M; Blair, James A; Hsu, Joseph R

    2011-01-01

    The current military conflicts of Operation Enduring Freedom and Operation Iraqi Freedom have been characterized by high-energy explosive wounding patterns, with the majority affecting the extremities. While many injuries have resulted in amputation, surgical advances have allowed the orthopaedic surgeon to pursue limb salvage in the face of injuries once considered unsalvageable. The military limb salvage patient is frequently highly active and motivated and expresses significant frustration with the slow nature of limb salvage rehabilitation and continued functional deficits. Inspired by these patients, efforts at this institution began to provide them with a more dynamic orthosis. Utilizing techniques and technology resulting from cerebral palsy, stroke, and amputation research, the Intrepid Dynamic Exoskeletal Orthosis was created. To date, this device has significantly improved the functional capabilities of the limb salvage wounded warrior population when combined with a high-intensity rehabilitation program. Clinical and biomechanical research is currently underway at this institution in order to fully characterize the device, its effect on patients, and what can be done to modify future generations of the device to best serve the combat-wounded limb salvage population.

  1. Stress distribution of the foot during mid-stance to push-off in barefoot gait: a 3-D finite element analysis.

    Science.gov (United States)

    Chen, W P; Tang, F T; Ju, C W

    2001-08-01

    To quantify stress distribution of the foot during mid-stance to push-off in barefoot gait using 3-D finite element analysis. To simulate the foot structure and facilitate later consideration of footwear. Finite element model was generated and loading condition simulating barefoot gait during mid-stance to push-off was used to quantify the stress distributions. A computational model can provide overall stress distributions of the foot subject to various loading conditions. A preliminary 3-D finite element foot model was generated based on the computed tomography data of a male subject and the bone and soft tissue structures were modeled. Analysis was performed for loading condition simulating barefoot gait during mid-stance to push-off. The peak plantar pressure ranged from 374 to 1003 kPa and the peak von Mises stress in the bone ranged from 2.12 to 6.91 MPa at different instants. The plantar pressure patterns were similar to measurement result from previous literature. The present study provides a preliminary computational model that is capable of estimating the overall plantar pressure and bone stress distributions. It can also provide quantitative analysis for normal and pathological foot motion. This model can identify areas of increased pressure and correlate the pressure with foot pathology. Potential applications can be found in the study of foot deformities, footwear, surgical interventions. It may assist pre-treatment planning, design of pedorthotic appliances, and predict the treatment effect of foot orthosis.

  2. Mesh three-dimensional arm orthosis with built-in ultrasound physiotherapy system

    Science.gov (United States)

    Kashapova, R. M.; Kashapov, R. N.; Kashapova, R. S.

    2017-09-01

    The possibility of using the built-in ultrasound physiotherapy system of the hand orthosis is explored in the work. The individual mesh orthosis from nylon 12 was manufactured by the 3D prototyping method on the installation of selective laser sintering SLS SPro 60HD. The applied technology of three-dimensional scanning made it possible to obtain a model of the patient’s hand and on the basis of it to build a virtual model of the mesh frame. In the course of the research, the developed system of ultrasound exposure was installed on the orthosis and its tests were carried out. As a result, the acceleration of the healing process and the reduction in the time of wearing orthosis were found.

  3. Polymer optical fiber strain gauge for human-robot interaction forces assessment on an active knee orthosis

    Science.gov (United States)

    Leal-Junior, Arnaldo G.; Frizera, Anselmo; Marques, Carlos; Sánchez, Manuel R. A.; Botelho, Thomaz R.; Segatto, Marcelo V.; Pontes, Maria José

    2018-03-01

    This paper presents the development of a polymer optical fiber (POF) strain gauge based on the light coupling principle, which the power attenuation is created by the misalignment between two POFs. The misalignment, in this case, is proportional to the strain on the structure that the fibers are attached. This principle has the advantages of low cost, ease of implementation, temperature insensitiveness, electromagnetic fields immunity and simplicity on the sensor interrogation and signal processing. Such advantages make the proposed solution an interesting alternative to the electronic strain gauges. For this reason, an analytical model for the POF strain gauge is proposed and validated. Furthermore, the proposed POF sensor is applied on an active orthosis for knee rehabilitation exercises through flexion/extension cycles. The controller of the orthosis provides 10 different levels of robotic assistance on the flexion/extension movement. The POF strain gauge is tested at each one of these levels. Results show good correlation between the optical and electronic strain gauges with root mean squared deviation (RMSD) of 1.87 Nm when all cycles are analyzed, which represents a deviation of less than 8%. For the application, the proposed sensor presented higher stability than the electronic one, which can provide advantages on the rehabilitation exercises and on the inner controller of the device.

  4. [Recognition of walking stance phase and swing phase based on moving window].

    Science.gov (United States)

    Geng, Xiaobo; Yang, Peng; Wang, Xinran; Geng, Yanli; Han, Yu

    2014-04-01

    Wearing transfemoral prosthesis is the only way to complete daily physical activity for amputees. Motion pattern recognition is important for the control of prosthesis, especially in the recognizing swing phase and stance phase. In this paper, it is reported that surface electromyography (sEMG) signal is used in swing and stance phase recognition. sEMG signal of related muscles was sampled by Infiniti of a Canadian company. The sEMG signal was then filtered by weighted filtering window and analyzed by height permitted window. The starting time of stance phase and swing phase is determined through analyzing special muscles. The sEMG signal of rectus femoris was used in stance phase recognition and sEMG signal of tibialis anterior is used in swing phase recognition. In a certain tolerating range, the double windows theory, including weighted filtering window and height permitted window, can reach a high accuracy rate. Through experiments, the real walking consciousness of the people was reflected by sEMG signal of related muscles. Using related muscles to recognize swing and stance phase is reachable. The theory used in this paper is useful for analyzing sEMG signal and actual prosthesis control.

  5. The effect of ankle foot orthosis stiffness on the energy cost of walking: a simulation study.

    Science.gov (United States)

    Bregman, D J J; van der Krogt, M M; de Groot, V; Harlaar, J; Wisse, M; Collins, S H

    2011-11-01

    In stroke and multiple sclerosis patients, gait is frequently hampered by a reduced ability to push-off with the ankle caused by weakness of the plantar-flexor muscles. To enhance ankle push-off and to decrease the high energy cost of walking, spring-like carbon-composite Ankle Foot Orthoses are frequently prescribed. However, it is unknown what Ankle Foot Orthoses stiffness should be used to obtain the most efficient gait. The aim of this simulation study was to gain insights into the effect of variation in Ankle Foot Orthosis stiffness on the amount of energy stored in the Ankle Foot Orthosis and the energy cost of walking. We developed a two-dimensional forward-dynamic walking model with a passive spring at the ankle representing the Ankle Foot Orthosis and two constant torques at the hip for propulsion. We varied Ankle Foot Orthosis stiffness while keeping speed and step length constant. We found an optimal stiffness, at which the energy delivered at the hip joint was minimal. Energy cost decreased with increasing energy storage in the ankle foot orthosis, but the most efficient gait did not occur with maximal energy storage. With maximum storage, push-off occurred too late to reduce the impact of the contralateral leg with the floor. Maximum return prior to foot strike was also suboptimal, as push-off occurred too early and its effects were subsequently counteracted by gravity. The optimal Ankle Foot Orthosis stiffness resulted in significant push-off timed just prior to foot strike and led to greater ankle plantar-flexion velocity just before contralateral foot strike. Our results suggest that patient energy cost might be reduced by the proper choice of Ankle Foot Orthosis stiffness. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Performance of spinal cord injury individuals while standing with the Mohammad Taghi Karimi reciprocal gait orthosis (MTK-RGO)

    International Nuclear Information System (INIS)

    Karimi, Mohammad Taghi; Amiri, Pouya; Esrafilian, Amir; Sedigh, Jafar; Fatoye, Francis

    2013-01-01

    Most patients with spinal cord injury use a wheelchair to transfer from place to place, however they need to stand and walk with orthosis to improve their health status. Although many orthoses have been designed for paraplegic patients, they have experienced various problems while in use. A new type of reciprocal gait orthosis was designed in the Bioengineering Unit of Strathclyde University to solve the problems of the available orthoses. Since there was no research undertaken regarding testing of the new orthosis on paraplegic subjects, this study was aimed to evaluate the new orthosis during standing of paraplegic subjects. Five paraplegic patients with lesion level between T12 and L1 and aged matched normal subjects were recruited into this study. The stability of subjects was evaluated during quiet standing and while undertaking hand tasks during standing with the new orthosis and the knee ankle foot orthosis (KAFO). The difference between the performances of paraplegic subjects while standing with both orthoses, and between the function of normal and paraplegic subjects were compared using the paired t test and independent sample t test, respectively. The stability of paraplegic subjects in standing with the new orthosis was better than that of the KAFO orthosis (p < 0.05). Moreover, the force applied on the crutch differed between the orthoses. The functional performance of paraplegic subjects was better with the new orthosis compared with normal subjects. The performance of paraplegic subjects while standing with the new orthosis was better than the KAFO. Therefore, the new orthosis may be useful to improve standing and walking in patients with paraplegia.

  7. The influence of the reciprocal hip joint link in the advanced reciprocating gait orthosis on standing performance in paraplegia

    NARCIS (Netherlands)

    Baardman, G.; IJzerman, Maarten Joost; Hermens, Hermanus J.; Veltink, Petrus H.; Boom, H.B.K.; Zilvold, G.; Zilvold, G.

    1997-01-01

    The effect of reciprocally linking the hip hinges of a hip-knee-ankle-foot orthosis on standing performance was studied in a comparative trial of the Advanced Reciprocating Gait Orthosis (ARGO) and an ARGO in which the Bowden cable was removed (A_GO). Six male subjects with spinal cord injury (SCI)

  8. [Effect of abducens orthosis combined with walker on developmental dysplasia of the hip].

    Science.gov (United States)

    Hu, Zhiyong; Xu, Yongqiang; Liang, Jieyu; Li, Kanghua; Liao, Qiande

    2009-07-01

    To evaluate the effect of abducens orthosis combined with walker on developmental dysplasia of the hip (DDH). A total of 126 patients (224 hips) with DDH aged 6-36 months in Xiangya Hospital was randomly divided into 2 groups: an orthosis combined with walker group and an improved hip frog cast fixation group. Seventy patients (130 hips) were treated by the orthosis combined with walker and 56 patients (94 hips) were treated by the improved hip frog cast fixation. We compared the effect and complications of the 2 groups. The fineness rates of the orthosis combined with walker group and the improved hip frog cast fixation group were 89.2% and 90.4%, respectively, with no significant difference (P>0.05). The rate of femoral head osteonecrosis in the orthosis combined with walker group was significantly lower than that in the improved hip frog cast fixation group (1.5% vs. 5.3%,Pwalker has a lower proportion of femoral head osteonecrosis, but a higher proportion of re-dislocation.

  9. Active lower limb orthosis with one degree of freedom for people with paraplegia.

    Science.gov (United States)

    Gloger, Michal; Obinata, Goro; Genda, Eiichi; Babjak, Jan; Pei, Yanling

    2017-07-01

    The main challenges of designing devices for paraplegic walking can be summarized into three groups, stability and comfort, high efficiency or low energy consumption, dimensions and weight. A new economical device for people with paraplegia which tackles all problems of the three groups is introduced in this paper. The main idea of this device is based on HALO mechanism. HALO is compact passive medial hip joint orthosis with contralateral hip and ankle linkage, which keeps the feet always parallel to the ground and assists swinging the leg. The medial hip joint is equipped with one actuator in the new design and the new orthosis is called @halo. Due to this update, we can achieve more stable and smoother walking patterns with decreased energy consumption of the users, yet maintain its compact and lightweight features. It is proven by the results from preliminary experiments with able-bodied subjects during which the same device with and without actuator was evaluated. Waddling and excessive vertical elevation of the center of gravity were decreased by 40% with significantly smaller standard deviations in case of the active orthosis. There was 52% less energy spent by the user wearing @halo which was calculated from the vertical excursion difference. There was measured 38.5% bigger impulse in crutches while using passive orthosis. The new @halo device is the first active orthosis for lower limbs with just one actuated degree of freedom for users with paraplegia.

  10. Scoliosis curve analysis with Milwaukee orthosis based on Open SIMM modeling

    Directory of Open Access Journals (Sweden)

    Mohammad Karimi

    2015-01-01

    Full Text Available Background: Scoliosis is a three-dimensional spinal deformity characterized by lateral curvature and rotational deformity of the spine. Various methods have been used to investigate the performance of the subjects during walking with an orthosis, but nobody study the biomechanics of orthotic use by understanding the length of the muscles and the force produced by them. Therefore, the aim of this research is to test the effect of the orthosis on the muscular force, tendon length during walking with and without orthosis. Materials and Methods: A 12-year-old scoliosis subject was recruited in this study. The forces produced by trunk musculature, joint reaction force, length of trunk musculature were some parameters selected in this study. Open SIMM and Visual 3D software were used to model the subject. Results: The results of this research showed that the length of erector spine muscles increased follow the use of orthosis. Moreover, the force produced by trunk muscles differed during walking with and without orthosis and also between right and left sides. Discussion: It seems that Open SIMM software can be used to predict the length of muscles, active-passive forces produced by muscles in scoliotic subjects. Therefore, it is recommended this research be done on more number of subjects.

  11. Scoliosis curve analysis with Milwaukee orthosis based on Open SIMM modeling.

    Science.gov (United States)

    Karimi, Mohammad; Kavyani, Mahsa

    2015-01-01

    Scoliosis is a three-dimensional spinal deformity characterized by lateral curvature and rotational deformity of the spine. Various methods have been used to investigate the performance of the subjects during walking with an orthosis, but nobody study the biomechanics of orthotic use by understanding the length of the muscles and the force produced by them. Therefore, the aim of this research is to test the effect of the orthosis on the muscular force, tendon length during walking with and without orthosis. A 12-year-old scoliosis subject was recruited in this study. The forces produced by trunk musculature, joint reaction force, length of trunk musculature were some parameters selected in this study. Open SIMM and Visual 3D software were used to model the subject. The results of this research showed that the length of erector spine muscles increased follow the use of orthosis. Moreover, the force produced by trunk muscles differed during walking with and without orthosis and also between right and left sides. It seems that Open SIMM software can be used to predict the length of muscles, active-passive forces produced by muscles in scoliotic subjects. Therefore, it is recommended this research be done on more number of subjects.

  12. Unipedal stance testing in the assessment of peripheral neuropathy.

    Science.gov (United States)

    Hurvitz, E A; Richardson, J K; Werner, R A

    2001-02-01

    To define further the relation between unipedal stance testing and peripheral neuropathy. Prospective cohort. Electroneuromyography laboratory of a Veterans Affairs medical center and a university hospital. Ninety-two patients referred for lower extremity electrodiagnostic studies. A standardized history and physical examination designed to detect peripheral neuropathy, 3 trials of unipedal stance, and electrodiagnostic studies. Peripheral neuropathy was identified by electrodiagnostic testing in 32%. These subjects had a significantly shorter (p unipedal stance time (15.7s, longest of 3 trials) than the patients without peripheral neuropathy (37.1s). Abnormal unipedal stance time (unipedal stance time had a negative predictive value of 90%. Abnormal unipedal stance time was associated with an increased risk of having peripheral neuropathy on univariate analysis (odds ratio = 8.8, 95% confidence interval = 2.5--31), and was the only significant predictor of peripheral neuropathy in the regression model. Aspects of the neurologic examination did not add to the regression model compared with abnormal unipedal stance time. Unipedal stance testing is useful in the clinical setting both to identify and to exclude the presence of peripheral neuropathy.

  13. Design and evaluation of Mina: a robotic orthosis for paraplegics.

    Science.gov (United States)

    Neuhaus, Peter D; Noorden, Jerryll H; Craig, Travis J; Torres, Tecalote; Kirschbaum, Justin; Pratt, Jerry E

    2011-01-01

    Mobility options for persons suffering from paraplegia or paraparesis are limited to mainly wheeled devices. There are significant health, psychological, and social consequences related to being confined to a wheelchair. We present the Mina, a robotic orthosis for assisting mobility, which offers a legged mobility option for these persons. Mina is an overground robotic device that is worn on the back and around the legs to provide mobility assistance for people suffering from paraplegia or paraparesis. Mina uses compliant actuation to power the hip and knee joints. For paralyzed users, balance is provided with the assistance of forearm crutches. This paper presents the evaluation of Mina with two paraplegics (SCI ASIA-A). We confirmed that with a few hours of training and practice, Mina is currently able to provide paraplegics walking mobility at speeds of up to 0.20 m/s. We further confirmed that using Mina is not physically taxing and requires little cognitive effort, allowing the user to converse and maintain eye contact while walking. © 2011 IEEE

  14. Wearing an active spinal orthosis improves back extensor strength in women with osteoporotic vertebral fractures

    DEFF Research Database (Denmark)

    Valentin, Gitte Hoff; Pedersen, Louise Nymann; Maribo, Thomas

    2014-01-01

    .Study design:Experimental follow-up.Methods:The women used the active spinal orthosis for 3 months. Outcomes were changes in isometric back extensor strength, changes in back pain and changes in physical functioning.Results:A total of 13 women were included in the trial. Wearing the orthosis during a 3-month......Background:Vertebral fractures are the most common clinical manifestations of osteoporosis. Vertebral fractures and reduced back extensor strength can result in hyperkyphosis. Hyperkyphosis is associated with diminished daily functioning and an increased risk of falling. Improvements in back...... extensor strength can result in decreased kyphosis and thus a decreased risk of falls and fractures.Objectives:The aim was to examine the effects of an active spinal orthosis - Spinomed III - on back extensor strength, back pain and physical functioning in women with osteoporotic vertebral fractures...

  15. Gastrocnemius tendon strain in a dog treated with autologous mesenchymal stem cells and a custom orthosis.

    Science.gov (United States)

    Case, J Brad; Palmer, Ross; Valdes-Martinez, Alex; Egger, Erick L; Haussler, Kevin K

    2013-05-01

    To report clinical findings and outcome in a dog with gastrocnemius tendon strain treated with autologous mesenchymal stem cells and a custom orthosis. Clinical report. A 4-year-old spayed female Border Collie. Bone-marrow derived, autologous mesenchymal stem cells were transplanted into the tendon core lesion. A custom, progressive, dynamic orthosis was fit to the tarsus. Serial orthopedic examinations and ultrasonography as well as long-term force-plate gait analysis were utilized for follow up. Lameness subjectively resolved and peak vertical force increased from 43% to 92% of the contralateral pelvic limb. Serial ultrasonographic examinations revealed improved but incomplete restoration of normal linear fiber pattern of the gastrocnemius tendon. Findings suggest that autologous mesenchymal stem cell transplantation with custom, progressive, dynamic orthosis may be a viable, minimally invasive technique for treatment of calcaneal tendon injuries in dogs. © Copyright 2013 by The American College of Veterinary Surgeons.

  16. Towards a Moderate Stance on Human Enhancement

    Directory of Open Access Journals (Sweden)

    Nikil Mukerji

    2014-05-01

    Full Text Available In this essay, we argue against radical ethical views about human enhancement that either dismiss or endorse it tout court. Instead, we advocate the moderate stance that issues of enhancement should be examined with an open mind and on a case-by-case basis. To make this view plausible, we offer three reasons. The first lies in the fact that it is difficult to delineate enhancement conceptually, which makes it hard to argue for general ethical conclusions about it. The second is that an appropriate view of the edifice of moral theory suggests that tenable moral judgements about human enhancement are the result of a careful consideration of the pros and cons that attach to the use of a specific enhancement technology. Lastly, we show that important normative factors in the enhancement debate can be used both in arguments for and in arguments against enhancement. The bottom line of our discussion is that we should treat issues of human enhancement like we do any other ethical issue, viz. by weighing up the reasons pro and con.

  17. Distal muscle activity alterations during the stance phase of gait in restless leg syndrome (RLS) patients.

    Science.gov (United States)

    Dafkin, Chloe; Green, Andrew; Olivier, Benita; McKinon, Warrick; Kerr, Samantha

    2018-05-01

    To assess if there is a circadian variation in electromyographical (EMG) muscle activity during gait in restless legs syndrome (RLS) patients and healthy control participants. Gait assessment was done in 14 RLS patients and 13 healthy control participants in the evening (PM) and the morning (AM). Muscle activity was recorded bilaterally from the tibialis anterior (TA), lateral gastrocnemius (GL), rectus femoris (RF) and biceps femoris (BF) muscles. A circadian variation during the stance phase in only TA (PM > AM, p  Controls, p < 0.05) during early stance and decreased GL activity (RLS < Controls, p < 0.01) during terminal stance in comparison to control participants in the evening. No other significant differences were noted between RLS patients and control participants. Activation of GL during the swing phase was noted in 79% of RLS patients and in 23% of control participants in the morning compared to 71% and 38% in the evening, respectively. EMG muscle activity shows no circadian variation in RLS patients. Evening differences in gait muscle activation patterns between RLS patients and control participants are evident. These results extend our knowledge about alterations in spinal processing during gait in RLS. A possible explanation for these findings is central pattern generator sensitization caused by increased sensitivity in cutaneous afferents in RLS patients. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Defining the mechanical properties of a spring-hinged ankle foot orthosis to assess its potential use in children with spastic cerebral palsy.

    Science.gov (United States)

    Kerkum, Yvette L; Brehm, Merel-Anne; Buizer, Annemieke I; van den Noort, Josien C; Becher, Jules G; Harlaar, Jaap

    2014-12-01

    A rigid ventral shelf ankle foot orthosis (AFO) may improve gait in children with spastic cerebral palsy (SCP) whose gait is characterized by excessive knee flexion in stance. However, these AFOs can also impede ankle range of motion (ROM) and thereby inhibit push-off power. A more spring-like AFO can enhance push-off and may potentially reduce walking energy cost. The recent development of an adjustable spring-hinged AFO now allows adjustment of AFO stiffness, enabling tuning toward optimal gait performance. This study aims to quantify the mechanical properties of this spring-hinged AFO for each of its springs and settings. Using an AFO stiffness tester, two AFO hinges and their accompanying springs were measured. The springs showed a stiffness range of 0.01-1.82 N · m · deg(-1). The moment-threshold increased with increasing stiffness (1.13-12.1 N · m), while ROM decreased (4.91-16.5°). Energy was returned by all springs (11.5-116.3 J). These results suggest that the two stiffest available springs should improve joint kinematics and enhance push-off in children with SCP walking with excessive knee flexion.

  19. Resistant metatarsus adductus: prospective randomized trial of casting versus orthosis.

    Science.gov (United States)

    Herzenberg, John E; Burghardt, Rolf D

    2014-03-01

    Metatarsus adductus is a common pediatric foot deformity related to intrauterine molding. It is usually a mild deformity that responds well to simple observation or minimal treatment with a home program of stretching. Resistant cases may need a more aggressive approach such as serial casting or special bracing to avoid the need for surgical intervention. We compared clinical outcomes using serial casting with orthoses for resistant metatarsus adductus. We prospectively treated 27 infants (43 feet) between the ages 3 and 9 months who failed home stretching treatment. Patients were randomized to either serial plaster casting or Bebax orthoses. Footprints and simulated weight-bearing anteroposterior and lateral view radiographs were made at entry and follow-up. There was no statistical difference between casting and Bebax for the following parameters: age at study entry, length of treatment, number of clinic visits, follow-up, and follow-up maintenance treatments. Both groups showed improvement in footprint and radiographic measurements post-treatment, without worsening of heel valgus. The Bebax group had greater improvement in the footprint heel bisector measurement than the casting group. The Bebax treatment requires more active parental cooperation. A simulated cost analysis of materials and office visit charges, however, revealed that Bebax treatment was significantly less expensive, about half the cost of casting. Because of the cost savings and virtually identical clinical results, we recommend the Bebax orthosis for resistant metatarsus in pre-walking infants with parents who are compliant. Other considerations include specific insurance plans, which may pay for casts but not orthoses.

  20. Inter-joint coordination strategies during unilateral stance following first-time, acute lateral ankle sprain: A brief report.

    Science.gov (United States)

    Doherty, Cailbhe; Bleakley, Chris; Hertel, Jay; Caulfield, Brian; Ryan, John; Sweeney, Kevin; Delahunt, Eamonn

    2015-07-01

    This investigation combined measures of inter-joint coordination and stabilometry to evaluate eyes-open (condition 1) and eyes-closed (condition 2) static unilateral stance performance in a group of participants with an acute, first-time lateral ankle sprain injury in comparison to a control group. Sixty-six participants with an acute first-time lateral ankle sprain and 19 non-injured controls completed three 20-second unilateral stance task trials in conditions 1 and 2. An adjusted coefficient of multiple determination statistic was used to compare stance limb 3-D kinematic data for similarity in the aim of establishing patterns of inter-joint coordination for these groups. Between-group analyses revealed significant differences in stance limb inter-joint coordination strategies for conditions 1 and 2. Injured participants displayed increases in ankle-hip linked coordination compared to controls in condition 1 (sagittal/frontal plane: 0.12 [0.09] vs 0.06 [0.04]; η(2)=.16) and condition 2 (sagittal/frontal plane: 0.18 [0.13] vs 0.08 [0.06]; η(2)=0.37). Participants with acute first-time lateral ankle sprain exhibit a hip-dominant coordination strategy for static unilateral stance compared to non-injured controls. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Ankle foot orthosis-footwear combination tuning: an investigation into common clinical practice in the United Kingdom.

    Science.gov (United States)

    Eddison, Nicola; Chockalingam, Nachiappan; Osborne, Stephen

    2015-04-01

    Ankle foot orthoses are used to treat a wide variety of gait pathologies. Ankle foot orthosis-footwear combination tuning should be routine clinical practice when prescribing an ankle foot orthosis. Current research suggests that failure to tune ankle foot orthosis-footwear combinations can lead to immediate detrimental effect on function, and in the longer term, it may actually contribute to deterioration. The purpose of this preliminary study was to identify the current level of knowledge clinicians have in the United Kingdom regarding ankle foot orthosis-footwear combination tuning and to investigate common clinical practice regarding ankle foot orthosis-footwear combination tuning among UK orthotists. Cross-sectional survey. A prospective study employing a multi-item questionnaire was sent out to registered orthotists and uploaded on to the official website of British Association of Prosthetists and Orthotists to be accessed by their members. A total of 41 completed questionnaires were received. The results demonstrate that only 50% of participants use ankle foot orthosis-footwear combination tuning as standard clinical practice. The most prevalent factors preventing participants from carrying out ankle foot orthosis-footwear combination tuning are a lack of access to three-dimensional gait analysis equipment (37%) and a lack of time available in their clinics (27%). Although, ankle foot orthosis-footwear combination tuning has been identified as an essential aspect of the prescription of ankle foot orthoses, the results of this study show a lack of understanding of the key principles behind ankle foot orthosis-footwear combination tuning. © The International Society for Prosthetics and Orthotics 2014.

  2. Three dimensional design, simulation and optimization of a novel, universal diabetic foot offloading orthosis

    Science.gov (United States)

    Sukumar, Chand; Ramachandran, K. I.

    2016-09-01

    Leg amputation is a major consequence of aggregated foot ulceration in diabetic patients. A common sense based treatment approach for diabetic foot ulceration is foot offloading where the patient is required to wear a foot offloading orthosis during the entire treatment course. Removable walker is an excellent foot offloading modality compared to the golden standard solution - total contact cast and felt padding. Commercially available foot offloaders are generally customized with huge cost and less patient compliance. This work suggests an optimized 3D model of a new type light weight removable foot offloading orthosis for diabetic patients. The device has simple adjustable features which make this suitable for wide range of patients with weight of 35 to 74 kg and height of 137 to 180 cm. Foot plate of this orthosis is unisexual, with a size adjustability of (US size) 6 to 10. Materials like Aluminum alloy 6061-T6, Acrylonitrile Butadiene Styrene (ABS) and Polyurethane acted as the key player in reducing weight of the device to 0.804 kg. Static analysis of this device indicated that maximum stress developed in this device under a load of 1000 N is only 37.8 MPa, with a small deflection of 0.150 cm and factor of safety of 3.28, keeping the safety limits, whereas dynamic analysis results assures the load bearing capacity of this device. Thus, the proposed device can be safely used as an orthosis for offloading diabetic ulcerated foot.

  3. Role of three side support ankle–foot orthosis in improving the ...

    African Journals Online (AJOL)

    Cerebral palsy (CP) is a heterogeneous group of permanent, non-progressive motor disorders of movement and posture. Ankle–foot orthoses (AFOs) are frequently prescribed to correct skeletal misalignments in spastic CP. The present study aims to evaluate the effect of the three side support ankle–foot orthosis on ...

  4. The effectiveness of combined prescription of ankle–foot orthosis and stretching program for the treatment of recalcitrant plantar fasciitis

    Directory of Open Access Journals (Sweden)

    Rehab A.E. Sallam

    2016-01-01

    Combined prescription of night-stretch ankle–foot orthosis and stretching exercises for plantar flexors and fascia had greater therapeutic effects compared with each treatment alone. Stretching exercises alone are not beneficial in the treatment of recalcitrant plantar fasciitis.

  5. Assessment of the Sheffield Support Snood, an innovative cervical orthosis designed for people affected by neck muscle weakness

    OpenAIRE

    Pancani, Silvia; Rowson, Jennifer; Tindale, Wendy; Heron, Nicola; Langley, Joe; McCarthy, Avril D.; Quinn, Ann; Reed, Heath; Stanton, Andrew; Shaw, Pamela J.; McDermott, Christopher J.; Mazzà, Claudia

    2016-01-01

    The aim of this study was to quantify the biomechanical features of the Sheffield Support Snood (SSS), a cervical orthosis specifically designed for patients with neck weakness. The orthosis is designed to be adaptable to a patient’s level of functional limitation using adjustable removable supports, which contribute support and restrict movement only in desired anatomical planes. \\ud Methods: The SSS was evaluated along with two commercially available orthoses, the Vista and Headmaster. The ...

  6. Effect of Ankle-foot Orthosis on Lower Limb Muscle Activities and Static Balance of Stroke Patients Authors’ Names

    OpenAIRE

    Lee, Youngmin; Her, Jin Gang; Choi, Youngeun; Kim, Heesoo

    2014-01-01

    [Purpose] This study examined the effects of an ankle-foot orthosis worn during balance training on lower limb muscle activity and static balance of chronic stroke patients. [Subjects] The subjects were twenty-five inpatients receiving physical therapy for chronic stroke. [Methods] The chronic stroke patients were divided into two groups: thirteen patients were assigned to the ankle-foot orthosis group, while the remaining twelve patients wore only their shoes. Each group performed balance tr...

  7. Stance disturbance in multiple sclerosis: brainstem lesions and posturographic assessment

    Directory of Open Access Journals (Sweden)

    Peter Schalek

    2012-01-01

    Full Text Available

    Background. Balance disorders are commonly evidenced during the course of multiple sclerosis (MS. The aim of this study is to report characteristics of MS patient stance control disorders, measured by means of posturography and related to the brainstem lesions.

    Methods. Thirty-eight patients affected by MS, mildly to moderately disable according to Kurtzke’s Expanded Disability Status Scale, underwent a complete clinical neurological and vestibular evaluation and brain MRI scanning. All patients were then tested on a static posturography platform (Tetrax, Israel in four conditions: eyes open and closed standing on a firm surface and on a foam pad.

    Results. Clinical and/or MRI evidence of brainstem involvement was observed in 55.3 % of patients. When brainstem lesion was detected, Fourier analysis showed a typical pattern characterized by inversion of the  0- 0.1 Hz and  0.1 - 0.25 Hz. frequency bands.

    Conclusions. MS leads to pervasive postural disturbances in the majority of subjects, including the visuo-vestibular loops and proprioception involving vestibulo-spinal pathways in at least 55.3 % of patients. Our results may also suggest the presence of Fourier inversion in patients with brainstem lesions.


  8. [Unipedal stance time and fall risk in the elderly].

    Science.gov (United States)

    Domínguez-Carrillo, Luis Gerardo; Arellano-Aguilar, Gregorio; Leos-Zierold, Héctor

    2007-01-01

    We undertook this study to relate unipodal stance time (UST) as a falls indicator in the elderly and to corroborate with UST exercise increments. One hundred sixty eight elderly subjects (age >70 years) with two or more falls during the previous 12 months were compared with 150 similar subjects without falls. UST chronometry and quadriceps and triceps brachialis strength dynamometry were used. Equilibrium and antigravity muscle-strengthening exercise program with 20 work sessions were carried out. Results were analyzed with chi(2), Student's t-test, and Fisher tests. UST of the control group showed 28.84 +/- 4.73 sec (mean +/- SD). The UST sample showed 19.18 +/- 4.24 sec. The test was initially impossible to carry out in 42 cases (p = 0.05). The final evaluation showed 142 cases with 30 sec of UST (p = 0.00001), isometric force increased in 70% and 30%, respectively (p = 0.05). At 6-month follow-up, 53 falls were reported, 29 were in patients who could not accomplish UST measurement on initial evaluation. UST falls in elderly people, and exercise programs increase UST.

  9. The single-leg-stance test in Parkinson's disease.

    Science.gov (United States)

    Chomiak, Taylor; Pereira, Fernando Vieira; Hu, Bin

    2015-03-01

    Timed single-leg-stance test (SLST) is widely used to assess postural control in the elderly. In Parkinson's disease (PD), it has been shown that an SLST around 10 seconds or below may be a sensitive indicator of future falls. However, despite its role in fall risk, whether SLST times around 10 seconds marks a clinically important stage of disease progression has largely remained unexplored. A cross-sectional study where 27 people with PD were recruited and instructed to undertake timed SLST for both legs was conducted. Disease motor impairment was assessed with the Unified Parkinson's Disease Rating Scale Part 3 (UPDRS-III). This study found that: 1) the SLST in people with PD shows good test-retest reliability; 2) SLST values can be attributed to two non-overlapping clusters: a low (10.4 ± 6.3 seconds) and a high (47.6 ± 11.7 seconds) value SLST group; 3) only the low value SLST group can be considered abnormal when age-matched normative SLST data are taken into account for comparison; and 4) lower UPDRS-III motor performance, and the bradykinesia sub-score in particular, are only associated with the low SLST group. These results lend further support that a low SLST time around 10 seconds marks a clinically important stage of disease progression with significant worsening of postural stability in PD.

  10. Evaluation of gait performance of a participant with Perthes disease while walking with and without a Scottish-Rite orthosis.

    Science.gov (United States)

    Karimi, Mohammad; Sedigh, Jafar; Fatoye, Francis

    2013-06-01

    Scottish-Rite orthosis is one of the conservative methods used to treat Legg-Calvé-Perthes disease. As there was not enough evidence to show the effects of using this orthosis on reducing the loads applied on the limb, this research aimed to find the influence of this orthosis. A participant with Perthes disease on the left hip joint was recruited into this study to walk with and without the orthosis. The kinetic and kinematic parameters were collected by a motion analysis system and a Kistler force platform. No significant differences were noted between the hip joint flexion/extension range of motion and the moments between the sound side and the side affected by Legg-Calvé-Perthes disease. It may be concluded that use of orthosis may not have any positive effects to decrease the loads or to improve the alignment of the hip joint in participants with Perthes disease, as expected. The use of Scottish-Rite orthosis not only does not improve the containment of the hip joint, but also does not have any significant influence on loads applied on the joint during walking of the subject with Perthes disease. The results of this research can be used by clinicians involved in treatment of patients with Legg-Calvé-Perthes disease.

  11. Dynamic Determinants of the Uncontrolled Manifold during Human Quiet Stance.

    Science.gov (United States)

    Suzuki, Yasuyuki; Morimoto, Hiroki; Kiyono, Ken; Morasso, Pietro G; Nomura, Taishin

    2016-01-01

    Human postural sway during stance arises from coordinated multi-joint movements. Thus, a sway trajectory represented by a time-varying postural vector in the multiple-joint-angle-space tends to be constrained to a low-dimensional subspace. It has been proposed that the subspace corresponds to a manifold defined by a kinematic constraint, such that the position of the center of mass (CoM) of the whole body is constant in time, referred to as the kinematic uncontrolled manifold ( kinematic-UCM ). A control strategy related to this hypothesis ( CoM-control-strategy ) claims that the central nervous system (CNS) aims to keep the posture close to the kinematic-UCM using a continuous feedback controller, leading to sway patterns that mostly occur within the kinematic-UCM, where no corrective control is exerted. An alternative strategy proposed by the authors ( intermittent control-strategy ) claims that the CNS stabilizes posture by intermittently suspending the active feedback controller, in such a way to allow the CNS to exploit a stable manifold of the saddle-type upright equilibrium in the state-space of the system, referred to as the dynamic-UCM , when the state point is on or near the manifold. Although the mathematical definitions of the kinematic- and dynamic-UCM are completely different, both UCMs play similar roles in the stabilization of multi-joint upright posture. The purpose of this study was to compare the dynamic performance of the two control strategies. In particular, we considered a double-inverted-pendulum-model of postural control, and analyzed the two UCMs defined above. We first showed that the geometric configurations of the two UCMs are almost identical. We then investigated whether the UCM-component of experimental sway could be considered as passive dynamics with no active control, and showed that such UCM-component mainly consists of high frequency oscillations above 1 Hz, corresponding to anti-phase coordination between the ankle and hip. We

  12. Dynamic determinants of the uncontrolled manifold during human quiet stance

    Directory of Open Access Journals (Sweden)

    Yasuyuki Suzuki

    2016-12-01

    Full Text Available Human postural sway during stance arises from coordinated multi-joint movements. Thus, a sway trajectory represented by a time-varying postural vector in the multiple-joint-angle-space tends to be constrained to a low-dimensional subspace. It has been proposed that the subspace corresponds to a manifold defined by a kinematic constraint, such that the position of the center of mass (CoM of the whole body is constant in time, referred to as the kinematic uncontrolled manifold (kinematic-UCM. A control strategy related to this hypothesis (CoM-control-strategy claims that the central nervous system (CNS aims to keep the posture close to the kinematic-UCM using a continuous feedback controller, leading to sway patterns that mostly occur within the kinematic-UCM, where no corrective control is exerted. An alternative strategy proposed by the authors (intermittent control-strategy claims that the CNS stabilizes posture by intermittently suspending the active feedback controller, in such a way to allow the CNS to exploit a stable manifold of the saddle-type upright equilibrium in the state-space of the system, referred to as the dynamic-UCM, when the state point is on or near the manifold. Although the mathematical definitions of the kinematic- and dynamic-UCM are completely different, both UCMs play similar roles in the stabilization of multi-joint upright posture. The purpose of this study was to compare the dynamic performance of the two control strategies. In particular, we considered a double-inverted-pendulum-model of postural control, and analyzed the two UCMs defined above. We first showed that the geometric configurations of the two UCMs are almost identical. We then investigated whether the UCM-component of experimental sway could be considered as passive dynamics with no active control, and showed that such UCM-component mainly consists of high frequency oscillations above 1 Hz, corresponding to anti-phase coordination between the ankle and

  13. Mobility function of a prosthetic knee joint with an automatic stance phase lock.

    Science.gov (United States)

    Andrysek, Jan; Klejman, Susan; Torres-Moreno, Ricardo; Heim, Winfried; Steinnagel, Bryan; Glasford, Shane

    2011-06-01

    There is a need for a prosthetic knee joint design that is technologically and functionally appropriate for use in developing countries. To develop and clinically evaluate a new type of stance phase controlled prosthetic knee joint that provides stance phase stability without inhibiting swing phase flexion. A crossover repeated measures study design comparing the new knee joint to the participant's conventional low- or high-end prosthetic knee joint. The new knee joint was fitted to fourteen individuals aged 15 to 67 years with unilateral lower limb amputations. Walk tests were performed to measure walking speed. Energy expenditure was estimated using the physiological cost index (PCI). Walking speeds with the new knee joint were on average 0.14 m/s faster than conventional low-end knees (p < 0.0001), but 0.07 m/s slower than conventional high-end prosthetic knees (p = 0.008). The PCI was similar across all three knee joint technologies (p = 0.276). Mobility function with the new knee joint, in terms of walking speed, was more closely matched to high-end than low-end prosthetic knee joints. Therefore, given its relatively simple design, the new stance phase control mechanism may offer a functional and cost effective solution for active transfemoral amputees. This paper describes a new type of prosthetic knee joint mechanism that is intended to be cost-effective while providing high-level stance phase function to active individuals with a transfemoral amputation. Initial clinical testing suggests that the new knee joint may have some functional advantages over existing technologies in this category.

  14. Effects of Initial Stance of Quadruped Trotting on Walking Stability

    Directory of Open Access Journals (Sweden)

    Peisun Ma

    2008-11-01

    Full Text Available It is very important for quadruped walking machine to keep its stability in high speed walking. It has been indicated that moment around the supporting diagonal line of quadruped in trotting gait largely influences walking stability. In this paper, moment around the supporting diagonal line of quadruped in trotting gait is modeled and its effects on body attitude are analyzed. The degree of influence varies with different initial stances of quadruped and we get the optimal initial stance of quadruped in trotting gait with maximal walking stability. Simulation results are presented.

  15. A new approach to implement a customized anatomic insole in orthopaedic footwear of lower limb orthosis

    Science.gov (United States)

    Peixoto, J.; Flores, P.; Souto, A. P.

    2017-10-01

    This paper concerns the development of a new approach for orthopaedic footwear to apply in KAFO orthosis (acronym for Knee Ankle Foot Orthosis). This procedure starts with full characterization of the problem with the purpose to characterize a plantar of a patient’s foot with polio. A 3D Scanner was used to collect their feet’s data to produce an anatomic insole. After this step, the patient performs a study of his gait using a static and dynamic study with the aim of characterizing the parameters to improve quality in the footwear. The insole was produced using a 3D printing technology. It was essential to optimize manufacturing processes and it was developed a footwear prototype with innovative characteristics, which is 25% lighter, allowing the user to consume less energy in daily routines.

  16. A Novel Approach For Ankle Foot Orthosis Developed By Three Dimensional Technologies

    Science.gov (United States)

    Belokar, R. M.; Banga, H. K.; Kumar, R.

    2017-12-01

    This study presents a novel approach for testing mechanical properties of medical orthosis developed by three dimensional (3D) technologies. A hand-held type 3D laser scanner is used for generating 3D mesh geometry directly from patient’s limb. Subsequently 3D printable orthotic design is produced from crude input model by means of Computer Aided Design (CAD) software. Fused Deposition Modelling (FDM) method in Additive Manufacturing (AM) technologies is used to fabricate the 3D printable Ankle Foot Orthosis (AFO) prototype in order to test the mechanical properties on printout. According to test results, printed Acrylonitrile Butadiene Styrene (ABS) AFO prototype has sufficient elasticity modulus and durability for patient-specific medical device manufactured by the 3D technologies.

  17. Design and Development of Effective Transmission Mechanisms on a Tendon Driven Hand Orthosis for Stroke Patients

    OpenAIRE

    Park, Sangwoo; Weber, Lynne; Bishop, Lauri; Stein, Joel; Ciocarlie, Matei

    2018-01-01

    Tendon-driven hand orthoses have advantages over exoskeletons with respect to wearability and safety because of their low-profile design and ability to fit a range of patients without requiring custom joint alignment. However, no existing study on a wearable tendon-driven hand orthosis for stroke patients presents evidence that such devices can overcome spasticity given repeated use and fatigue, or discusses transmission efficiency. In this study, we propose two designs that provide effective...

  18. iGrab: hand orthosis powered by twisted and coiled polymer muscles

    Science.gov (United States)

    Saharan, Lokesh; de Andrade, Monica Jung; Saleem, Wahaj; Baughman, Ray H.; Tadesse, Yonas

    2017-10-01

    Several works have been reported in powered hand orthosis in the last ten years for assistive or rehabilitative purposes. However, most of these approaches uses conventional actuators such as servo motors to power orthosis. In this work, we demonstrate the recently reported twisted and coiled polymeric (TCP) muscles to drive a compact, light, inexpensive and wearable upper extremity device, iGrab. A 3D printed orthotic hand module was designed, developed and tested for the performance. The device has six 2-ply muscles of diameter 1.35 mm with a length of 380 mm. We used a single 2-ply muscle for each finger and two 2-ply muscles for the thumb. Pulsed actuation of the muscles at 1.8 A current for 25 s with 7% duty cycle under natural cooling showed full flexion of the fingers within 2 s. Modeling and simulation were performed on the device using standard Euler-Lagrangian equations. Our artificial muscles powered hand orthosis demonstrated the capability of pinching and picking objects of different shapes, weights, and sizes.

  19. A Critical Analysis of a Hand Orthosis Reverse Engineering and 3D Printing Process

    Directory of Open Access Journals (Sweden)

    Gabriele Baronio

    2016-01-01

    Full Text Available The possibility to realize highly customized orthoses is receiving boost thanks to the widespread diffusion of low-cost 3D printing technologies. However, rapid prototyping (RP with 3D printers is only the final stage of patient personalized orthotics processes. A reverse engineering (RE process is in fact essential before RP, to digitize the 3D anatomy of interest and to process the obtained surface with suitable modeling software, in order to produce the virtual solid model of the orthosis to be printed. In this paper, we focus on the specific and demanding case of the customized production of hand orthosis. We design and test the essential steps of the entire production process with particular emphasis on the accurate acquisition of the forearm geometry and on the subsequent production of a printable model of the orthosis. The choice of the various hardware and software tools (3D scanner, modeling software, and FDM printer is aimed at the mitigation of the design and production costs while guaranteeing suitable levels of data accuracy, process efficiency, and design versatility. Eventually, the proposed method is critically analyzed so that the residual issues and critical aspects are highlighted in order to discuss possible alternative approaches and to derive insightful observations that could guide future research activities.

  20. Effect of Posture Training with Weighted Kypho-Orthosis (WKO on Improving Balance in Women with Osteoporosis

    Directory of Open Access Journals (Sweden)

    Seyed Ahmad Raeissadat

    2014-01-01

    Full Text Available Objectives. To determine the effect of weighted kypho-orthosis (WKO on improving balance in women with osteoporosis. In this nonrandomized controlled clinical trial, 31 patients with osteoporosis were included. The patients were assigned to two groups: (1 control group who received 4-week home-based daily exercise program including weight bearing, back strengthening, and balance exercises and (2 intervention group (WKO who performed aforementioned exercises and wore WKO for one hour twice a day. Patients were assessed using clinical balance tests (timed up and go test, functional reach test, and unilateral balance test before and 4 weeks after start of treatment. Results. Functional reach and timed up and go test were improved significantly in both groups compared to baseline. The improvement in intervention group was more significant in comparison to control group (P<0.05. Discussion. Posture training with WKO together with exercise program improved two clinical balance tests in women with osteoporosis. Conclusion. Posture training support (PTS applied as WKO together with back extension exercises can be prescribed as an intervention in elderly women in order to reduce the risk of falling.

  1. One- or Two-Legged Standing: What Is the More Suitable Protocol to Assess the Postural Effects of the Rigid Ankle Orthosis?

    Science.gov (United States)

    Rougier, Patrice; Genthon, Nicolas; Gallois-Montbrun, Thibault; Brugiere, Steve; Bouvat, Eric

    2009-01-01

    To highlight the capacity of one- and two-legged standing protocols when assessing postural behavior induced by a rigid ankle orthosis, 14 healthy individuals stood upright barefoot and wore either an elastic stocking on the preferred leg or a rigid orthosis with or without additional taping in one- or two-legged (TL) conditions. Traditional…

  2. A Newly Designed Tennis Elbow Orthosis With a Traditional Tennis Elbow Strap in Patients With Lateral Epicondylitis

    Science.gov (United States)

    Saremi, Hossein; Chamani, Vahid; Vahab-Kashani, Reza

    2016-01-01

    Background Lateral epicondylitis is a common cause of pain and upper limb dysfunction. The use of counterforce straps for treatment of lateral epicondylitis is widespread. This kind of orthosis can be modified to have a greater effect on relieving pain by reducing tension on the origin of the extensor pronator muscles. Objectives To determine the immediate effects of a newly designed orthosis on pain and grip strength in patients with lateral epicondylitis. Materials and Methods Twelve participants (six men and six women) were recruited (mean age = 41 ± 6.7 years) and evaluated for pain and grip strength in three sessions. A 48-hour break was taken between each session. The first session was without any orthosis, the second session was with the new modified tennis elbow orthosis, and the third session was with a conventional tennis elbow strap. Results Both counterforce straps were effective. However, significantly more improvement was observed in pain and grip strength after using the newly modified orthosis (P < 0.05). Conclusions The newly designed strap reduces pain more effectively and improves grip strength by causing greater localized pressure on two regions with different force applications (two component vectors versus one). PMID:28180116

  3. A Newly Designed Tennis Elbow Orthosis With a Traditional Tennis Elbow Strap in Patients With Lateral Epicondylitis.

    Science.gov (United States)

    Saremi, Hossein; Chamani, Vahid; Vahab-Kashani, Reza

    2016-07-01

    Lateral epicondylitis is a common cause of pain and upper limb dysfunction. The use of counterforce straps for treatment of lateral epicondylitis is widespread. This kind of orthosis can be modified to have a greater effect on relieving pain by reducing tension on the origin of the extensor pronator muscles. To determine the immediate effects of a newly designed orthosis on pain and grip strength in patients with lateral epicondylitis. Twelve participants (six men and six women) were recruited (mean age = 41 ± 6.7 years) and evaluated for pain and grip strength in three sessions. A 48-hour break was taken between each session. The first session was without any orthosis, the second session was with the new modified tennis elbow orthosis, and the third session was with a conventional tennis elbow strap. Both counterforce straps were effective. However, significantly more improvement was observed in pain and grip strength after using the newly modified orthosis (P < 0.05). The newly designed strap reduces pain more effectively and improves grip strength by causing greater localized pressure on two regions with different force applications (two component vectors versus one).

  4. Asymmetric sensory reweighting in human upright stance.

    Directory of Open Access Journals (Sweden)

    David Logan

    Full Text Available To investigate sensory reweighting as a fundamental property of sensor fusion during standing, we probed postural control with simultaneous rotations of the visual scene and surface of support. Nineteen subjects were presented with pseudo-random pitch rotations of visual scene and platform at the ankle to test for amplitude dependencies in the following conditions: low amplitude vision: high amplitude platform, low amplitude vision: low amplitude platform, and high amplitude vision: low amplitude platform. Gain and phase of frequency response functions (FRFs to each stimulus were computed for two body sway angles and a single weighted EMG signal recorded from seven muscles. When platform stimulus amplitude was increased while visual stimulus amplitude remained constant, gain to vision increased, providing strong evidence for inter-modal reweighting between vision and somatosensation during standing. Intra-modal reweighting of vision was also observed as gains to vision decreased as visual stimulus amplitude increased. Such intra-modal and inter-modal amplitude dependent changes in gain were also observed in muscular activity. Gains of leg segment angle and muscular activity relative to the platform, on the other hand, showed only intra-modal reweighting. That is, changing platform motion amplitude altered the responses to both visual and support surface motion whereas changing visual scene motion amplitude did not significantly affect responses to support surface motion, indicating that the sensory integration scheme between somatosensation (at the support surface and vision is asymmetric.

  5. Detection of Gait Modes Using an Artificial Neural Network during Walking with a Powered Ankle-Foot Orthosis

    Science.gov (United States)

    2016-01-01

    This paper presents an algorithm, for use with a Portable Powered Ankle-Foot Orthosis (i.e., PPAFO) that can automatically detect changes in gait modes (level ground, ascent and descent of stairs or ramps), thus allowing for appropriate ankle actuation control during swing phase. An artificial neural network (ANN) algorithm used input signals from an inertial measurement unit and foot switches, that is, vertical velocity and segment angle of the foot. Output from the ANN was filtered and adjusted to generate a final data set used to classify different gait modes. Five healthy male subjects walked with the PPAFO on the right leg for two test scenarios (walking over level ground and up and down stairs or a ramp; three trials per scenario). Success rate was quantified by the number of correctly classified steps with respect to the total number of steps. The results indicated that the proposed algorithm's success rate was high (99.3%, 100%, and 98.3% for level, ascent, and descent modes in the stairs scenario, respectively; 98.9%, 97.8%, and 100% in the ramp scenario). The proposed algorithm continuously detected each step's gait mode with faster timing and higher accuracy compared to a previous algorithm that used a decision tree based on maximizing the reliability of the mode recognition. PMID:28070188

  6. House Prices and the stance of Monetary Policy.

    OpenAIRE

    Jarociński, Marek; Smets, Frank

    2008-01-01

    This paper estimates a Bayesian VAR for the US economy which includes a housing sector and addresses the following questions. Can developments in the housing sector be explained on the basis of developments in real and nominal GDP and interest rates? What are the effects of housing demand shocks on the economy? How does monetary policy affect the housing market? What are the implications of house price developments for the stance of monetary policy? Regarding the latter question, we implement...

  7. Two Mechanisms of Sensorimotor Set Adaptation to Inclined Stance

    Directory of Open Access Journals (Sweden)

    Kyoung-Hyun Lee

    2017-10-01

    Full Text Available Orientation of posture relative to the environment depends on the contributions from the somatosensory, vestibular, and visual systems mixed in varying proportions to produce a sensorimotor set. Here, we probed the sensorimotor set composition using a postural adaptation task in which healthy adults stood on an inclined surface for 3 min. Upon returning to a horizontal surface, participants displayed a range of postural orientations – from an aftereffect that consisted of a large forward postural lean to an upright stance with little or no aftereffect. It has been hypothesized that the post-incline postural change depends on each individual’s sensorimotor set: whether the set was dominated by the somatosensory or vestibular system: Somatosensory dominance would cause the lean aftereffect whereas vestibular dominance should steer stance posture toward upright orientation. We investigated the individuals who displayed somatosensory dominance by manipulating their attention to spatial orientation. We introduced a distraction condition in which subjects concurrently performed a difficult arithmetic subtraction task. This manipulation altered the time course of their post-incline aftereffect. When not distracted, participants returned to upright stance within the 3-min period. However, they continued leaning forward when distracted. These results suggest that the mechanism of sensorimotor set adaptation to inclined stance comprises at least two components. The first component reflects the dominant contribution from the somatosensory system. Since the postural lean was observed among these subjects even when they were not distracted, it suggests that the aftereffect is difficult to overcome. The second component includes a covert attentional component which manifests as the dissipation of the aftereffect and the return of posture to upright orientation.

  8. Clinical practice guidelines for rest orthosis, knee sleeves, and unloading knee braces in knee osteoarthritis.

    Science.gov (United States)

    Beaudreuil, Johann; Bendaya, Samy; Faucher, Marc; Coudeyre, Emmanuel; Ribinik, Patricia; Revel, Michel; Rannou, François

    2009-12-01

    To develop clinical practice guidelines concerning the use of bracing--rest orthosis, knee sleeves and unloading knee braces--for knee osteoarthritis. The French Physical Medicine and Rehabilitation Society (SOFMER) methodology, associating a systematic literature review, collection of everyday clinical practice, and external review by multidisciplinary expert panel, was used. Few high-level studies of bracing for knee osteoarthritis were found. No evidence exists for the effectiveness of rest orthosis. Evidence for knee sleeves suggests that they decrease pain in knee osteoarthritis, and their use is associated with subjective improvement. These actions do not appear to depend on a local thermal effect. The effectiveness of knee sleeves for disability is not demonstrated for knee osteoarthritis. Short- and mid-term follow-up indicates that valgus knee bracing decreases pain and disability in medial knee osteoarthritis, appears to be more effective than knee sleeves, and improves quality of life, knee proprioception, quadriceps strength, and gait symmetry, and decreases compressive loads in the medial femoro-tibial compartment. However, results of response to valgus knee bracing remain inconsistent; discomfort and side effects can result. Thrombophlebitis of the lower limbs has been reported with the braces. Braces, whatever kind, are infrequently prescribed in clinical practice for osteoarthritis of the lower limbs. Modest evidence exists for the effectiveness of bracing--rest orthosis, knee sleeves and unloading knee braces--for knee osteoarthritis, with only low level recommendations for its use. Braces are prescribed infrequently in French clinical practice for osteoarthritis of the knee. Randomized clinical trials concerning bracing in knee osteoarthritis are still necessary.

  9. The cat vertebral column: stance configuration and range of motion

    Science.gov (United States)

    Macpherson, J. M.; Ye, Y.; Peterson, B. W. (Principal Investigator)

    1998-01-01

    This study examined the configuration of the vertebral column of the cat during independent stance and in various flexed positions. The range of motion in the sagittal plane is similar across most thoracic and lumbar joints, with the exception of a lesser range at the transition region from thoracic-type to lumbar-type vertebrae. The upper thoracic column exhibits most of its range in dorsiflexion and the lower thoracic and lumbar in ventroflexion. Lateral flexion is limited to less than 5 degrees at all segments. The range in torsion is almost 180 degrees and occurs primarily in the midthoracic region, T4-T11. Contrary to the depiction in most atlases, the standing cat exhibits several curvatures, including a mild dorsiflexion in the lower lumbar segments, a marked ventroflexion in the lower thoracic and upper lumbar segments, and a profound dorsiflexion in the upper thoracic (above T9) and cervical segments. The curvatures are not significantly changed by altering stance distance but are affected by head posture. During stance, the top of the scapula lies well above the spines of the thoracic vertebrae, and the glenohumeral joint is just below the bodies of vertebrae T3-T5. Using a simple static model of the vertebral column in the sagittal plane, it was estimated that the bending moment due to gravity is bimodal with a dorsiflexion moment in the lower thoracic and lumbar region and a ventroflexion moment in the upper thoracic and cervical region. Given the bending moments and the position of the scapula during stance, it is proposed that two groups of scapular muscles provide the major antigravity support for the head and anterior trunk. Levator scapulae and serratus ventralis form the lateral group, inserting on the lateral processes of cervical vertebrae and on the ribs. The major and minor rhomboids form the medial group, inserting on the spinous tips of vertebrae from C4 to T4. It is also proposed that the hypaxial muscles, psoas major, minor, and quadratus

  10. Inter-joint coordination strategies during unilateral stance 6-months following first-time lateral ankle sprain.

    Science.gov (United States)

    Doherty, Cailbhe; Bleakley, Chris; Hertel, Jay; Caulfield, Brian; Ryan, John; Sweeney, Kevin; Delahunt, Eamonn

    2015-02-01

    Longitudinal analyses of participants with a history of lateral ankle sprain are lacking. This investigation combined measures of inter-joint coordination and stabilometry to evaluate eyes-open (condition 1) and eyes-closed (condition 2) static unilateral stance performance in a group of participants, 6-months after they sustained an acute, first-time lateral ankle sprain in comparison to a control group. Sixty-nine participants with a 6-month history of first-time lateral ankle sprain and 20 non-injured controls completed three 20-second unilateral stance task trials in conditions 1 and 2. An adjusted coefficient of multiple determination statistic was used to compare stance limb 3-dimensional kinematic data for similarity in the aim of establishing patterns of lower-limb inter-joint coordination. The fractal dimension of the stance limb centre of pressure path was also calculated. Between-group analyses revealed significant differences in stance limb inter-joint coordination strategies for conditions 1 and 2, and in the fractal dimension of the centre-of-pressure path for condition 2 only. Injured participants displayed increases in ankle-hip linked coordination compared to controls in condition 1 (sagittal/frontal plane: 0.15 [0.14] vs 0.06 [0.04]; η(2)=.19; sagittal/transverse plane: 0.14 [0.11] vs 0.09 [0.05]; η(2)=0.14) and condition 2 (sagittal/frontal plane: 0.15 [0.12] vs 0.08 [0.06]; η(2)=0.23), with an associated decrease in the fractal dimension of the centre-of-pressure path (injured limb: 1.23 [0.13] vs 1.36 [0.13]; η(2)=0.20). Participants with a 6-month history of first-time lateral ankle sprain exhibit a hip-dominant coordination strategy for static unilateral stance compared to non-injured controls. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. TENS to the Lateral Aspect of the Knees During Stance Attenuates Postural Sway in Young Adults

    Directory of Open Access Journals (Sweden)

    Yocheved Laufer

    2007-01-01

    Full Text Available Somatosensory input is known to be essential for postural control. The present study examined the effects on postural sway of sensory input delivered via transcutaneous electrical nerve stimulation (TENS applied to the knees during stance. Electrodes from a dual-channel portable TENS unit were adhered to the skin overlying the lateral and medial aspect of both knees of 20 young healthy volunteers (mean age 24.0 years, standard deviation 4.0. Postural sway parameters were obtained during static bipedal stance with an AMTI force platform. Four stimulation conditions were tested with eyes open and with eyes closed: no TENS; TENS applied bilaterally; and TENS applied to either the right or the left knee. Participants underwent two eight-trial blocks, with each trial lasting 30 seconds. The order of conditions was randomized for each participant. Stimulation consisted of a biphasic symmetrical stimulus delivered at the sensory detection level, with a pulse duration of 200μsec and a pulse frequency of 100Hz. The application of TENS induced significant reductions in mean sway velocity and in the medio-lateral dispersion of the center of pressure, with no corresponding effect on the anterior-posterior dispersion. These findings suggest that electrical stimulation delivered at the sensory detection level to the lateral aspects of the knees may be effective in improving balance control, and that this effect may be directionally specific.

  12. Folk-Psychological Interpretation of Human vs. Humanoid Robot Behavior: Exploring the Intentional Stance toward Robots.

    Science.gov (United States)

    Thellman, Sam; Silvervarg, Annika; Ziemke, Tom

    2017-01-01

    People rely on shared folk-psychological theories when judging behavior. These theories guide people's social interactions and therefore need to be taken into consideration in the design of robots and other autonomous systems expected to interact socially with people. It is, however, not yet clear to what degree the mechanisms that underlie people's judgments of robot behavior overlap or differ from the case of human or animal behavior. To explore this issue, participants ( N = 90) were exposed to images and verbal descriptions of eight different behaviors exhibited either by a person or a humanoid robot. Participants were asked to rate the intentionality, controllability and desirability of the behaviors, and to judge the plausibility of seven different types of explanations derived from a recently proposed psychological model of lay causal explanation of human behavior. Results indicate: substantially similar judgments of human and robot behavior, both in terms of (1a) ascriptions of intentionality/controllability/desirability and in terms of (1b) plausibility judgments of behavior explanations; (2a) high level of agreement in judgments of robot behavior - (2b) slightly lower but still largely similar to agreement over human behaviors; (3) systematic differences in judgments concerning the plausibility of goals and dispositions as explanations of human vs. humanoid behavior. Taken together, these results suggest that people's intentional stance toward the robot was in this case very similar to their stance toward the human.

  13. Frontal Plane Modelling of Human Dynamics during Standing in Narrow-Stance

    Science.gov (United States)

    Sonobe, M.; Yamaguchi, H.; Hino, J.

    2016-09-01

    Standing ride type vehicles like electric skateboards have been developed in recent years. Although these vehicles have advantages as being compact and low cost due to their simple structure, it is necessary to improve the riding quality. Therefore, the system aiding riders to keep their balance on a skateboard by feedback control or feedforward control has been required. To achieve it, a human balance model should be built as simple as possible. In this study, we focus on the human balance modelling during standing when the support surface moves largely. We restricted the model on frontal plane and narrow stance because the restrictions allow us to assume single-degree-of-freedom model. The balance control system is generally assumed as a delayed feedback control system. The model was identified through impulse response test and frequency response test. As a result, we found the phase between acceleration of the skateboard and posture angle become opposite phase in low frequency range.

  14. Effect of pneumatic compressing powered orthosis in stroke patients: preliminary study.

    Science.gov (United States)

    Kim, Eun Sil; Yoon, Yong-Soon; Sohn, Min Kyun; Kwak, Soo-Hyun; Choi, Jong Ho; Oh, Ji Sun

    2015-04-01

    To evaluate the feasibility and effectiveness of a knee-ankle-foot orthosis powered by artificial pneumatic muscles (PKAFO). Twenty-three hemiplegic patients (age, 59.6±13.7 years) were assessed 19.7±36.6 months after brain lesion. The 10-m walking time was measured as a gait parameter while the individual walked on a treadmill. Walking speed (m/s), step cycle (cycle/s), and step length (m) were also measured on a treadmill with and without PKAFO, and before and after gait training. Clinical parameters measured before and after gait training included Korean version of Modified Bathel Index (K-MBI), manual muscle test (MMT), and Modified Ashworth Scale (MAS) of hemiplegic ankle. Gait training comprised treadmill walking for 20 minutes, 5 days a week for 3 weeks at a comfortable speed. The 10-m walking time, walking speed, step length, and step cycle were significantly greater with PKAFO than without PKAFO, and after gait training (both p<0.05). K-MBI was improved after gait training (p<0.05), but MMT and MAS were not. PKAFO may improve gait function in hemiplegic patients. It can be a useful orthosis for gait training in hemiplegic patients.

  15. Toward a Critical Stance: Citizenship Education in the Classroom

    Directory of Open Access Journals (Sweden)

    Diane M. Vetter

    2008-01-01

    Full Text Available In this paper the author presents the argument that through the use of rich classroom talk, students can be motivated to take a critical stance on issues of citizenship, such as social justice, equity and environmental concern. Suggesting that students who are not part of the solution are, indeed, part of the problem, the author advocates giving young children a voice through the integration of citizenship education and critical literacy across the curriculum to promote student awareness and to empower students to become pro active global citizens.

  16. "It's a wild thing, waiting to get me": stance analysis of African Americans with diabetes.

    Science.gov (United States)

    Davis, Boyd H; Pope, Charlene; Mason, Peyton R; Magwood, Gayenell; Jenkins, Carolyn M

    2011-01-01

    This mixed methods study uses a unique approach from social science and linguistics methodologies, a combination of positioning theory and stance analysis, to examine how 20 African Americans with type 2 diabetes make sense of the practices that led to recurrent emergency department visits to identify needs for more effective intervention. In a purposive sample of postemergency department visit interviews with a same-race interviewer, people responded to open-ended questions reflecting on the decision to seek emergency department care. As applied to diabetes education, positioning theory explains that people use their language to position themselves toward their disease, their medications, and the changes in their lives. Transcriptions were coded using discourse analysis to categorize themes. As a form of triangulation, stance analysis measured language patterns using factor analysis to see when and how speakers revealed affect, attitude, and agentive choices for action. Final analysis revealed that one third of the sample exhibited high scores for positive agency or capacity for decision-making and self-management, while the rest expressed less control and more negative emotions and fears that may preclude self-management. This approach suggests a means to tailor diabetes education considering alternative approaches focused on communication for those facing barriers.

  17. foot orthosis in improving the balance in children with spastic

    African Journals Online (AJOL)

    Khaled A. Olama

    2012-11-02

    Nov 2, 2012 ... The present study aims to evaluate the effect of the three side ... enabled them to gain more balance control and postural reactions . © 2012 Ain Shams ..... sis on balance board to stimulate the child postural .... plantar-flexion improved gait efficiency by improving stability .... Older adults often adopt a.

  18. Visual analysis of online social media to open up the investigation of stance phenomena.

    Science.gov (United States)

    Kucher, Kostiantyn; Schamp-Bjerede, Teri; Kerren, Andreas; Paradis, Carita; Sahlgren, Magnus

    2016-04-01

    Online social media are a perfect text source for stance analysis. Stance in human communication is concerned with speaker attitudes, beliefs, feelings and opinions. Expressions of stance are associated with the speakers' view of what they are talking about and what is up for discussion and negotiation in the intersubjective exchange. Taking stance is thus crucial for the social construction of meaning. Increased knowledge of stance can be useful for many application fields such as business intelligence, security analytics, or social media monitoring. In order to process large amounts of text data for stance analyses, linguists need interactive tools to explore the textual sources as well as the processed data based on computational linguistics techniques. Both original texts and derived data are important for refining the analyses iteratively. In this work, we present a visual analytics tool for online social media text data that can be used to open up the investigation of stance phenomena. Our approach complements traditional linguistic analysis techniques and is based on the analysis of utterances associated with two stance categories: sentiment and certainty. Our contributions include (1) the description of a novel web-based solution for analyzing the use and patterns of stance meanings and expressions in human communication over time; and (2) specialized techniques used for visualizing analysis provenance and corpus overview/navigation. We demonstrate our approach by means of text media on a highly controversial scandal with regard to expressions of anger and provide an expert review from linguists who have been using our tool.

  19. Effect of medial arch support foot orthosis on plantar pressure distribution in females with mild-to-moderate hallux valgus after one month of follow-up.

    Science.gov (United States)

    Farzadi, Maede; Safaeepour, Zahra; Mousavi, Mohammad E; Saeedi, Hassan

    2015-04-01

    Higher plantar pressures at the medial forefoot are reported in hallux valgus. Foot orthoses with medial arch support are considered as an intervention in this pathology. However, little is known about the effect of foot orthoses on plantar pressure distribution in hallux valgus. To investigate the effect of a foot orthosis with medial arch support on pressure distribution in females with mild-to-moderate hallux valgus. Quasi-experimental. Sixteen female volunteers with mild-to-moderate hallux valgus participated in this study and used a medial arch support foot orthosis for 4 weeks. Plantar pressure for each participant was assessed using the Pedar-X(®) in-shoe system in four conditions including shoe-only and foot orthosis before and after the intervention. The use of the foot orthosis for 1 month led to a decrease in peak pressure and maximum force under the hallux, first metatarsal, and metatarsals 3-5 (p hallux and the first metatarsal head by transferring the load to the other regions. It would appear that this type of foot orthosis can be an effective method of intervention in this pathology. Findings of this study will improve the clinical knowledge about the effect of the medial arch support foot orthosis used on plantar pressure distribution in hallux valgus pathology. © The International Society for Prosthetics and Orthotics 2014.

  20. Powered Upper Limb Orthosis Actuation System Based on Pneumatic Artificial Muscles

    Science.gov (United States)

    Chakarov, Dimitar; Veneva, Ivanka; Tsveov, Mihail; Venev, Pavel

    2018-03-01

    The actuation system of a powered upper limb orthosis is studied in the work. To create natural safety in the mutual "man-robot" interaction, an actuation system based on pneumatic artificial muscles (PAM) is selected. Experimentally obtained force/contraction diagrams for bundles, consisting of different number of muscles are shown in the paper. The pooling force and the stiffness of the pneumatic actuators is assessed as a function of the number of muscles in the bundle and the supply pressure. Joint motion and torque is achieved by antagonistic actions through pulleys, driven by bundles of pneumatic muscles. Joint stiffness and joint torques are determined on condition of a power balance, as a function of the joint position, pressure, number of muscles and muscles

  1. Development and simulation of a passive upper extremity orthosis for amyoplasia

    DEFF Research Database (Denmark)

    Jensen, Erik Føge; Raunsbæk, Joakim; Lund, Jan Nørgaard

    2018-01-01

    Introduction People who are born with arthrogryposis multiplex congenita are typically not able to perform activities of daily living (ADL) due to decreased muscle mass, joint contractures and unnatural upper extremity positioning. They are, therefore, potential users of an assistive device capable....... Results For a given configuration using a mono- and a bi-articular spring, the simulations showed that spring stiffnesses of 400?Nm?1 and of 1029?Nm?1, respectively, were able to lower the maximal muscle activity estimated by the musculoskeletal model to a level in which the 10 postures can be realized....... Conclusion By augmenting residual muscle strength with a partially gravity-balanced passive orthosis, ADLs may be achievable for people with arthrogryposis multiplex congenita....

  2. Development of Ankle Foot Orthosis (AFO Using Pneumatic Artificial Muscle for Disabled Children

    Directory of Open Access Journals (Sweden)

    Ishak N.Z.

    2017-01-01

    Full Text Available Ankle foot orthosis (AFO are commonly used to correct the instabilities and joint weakness of lower limb. In this research, AFO was developed by using pneumatic artificial muscle (PAM to prevent plantarflexion to occur and also to correct the foot from the inversion syndrome. The research started with designing the AFO by using SolidWorks software based on anthropometry measurement data (n=5, age=12 years old. The mechanical simulation was conducted by using Autodesk Inventor software to obtain a safety factor before the fabrication process was conducted. The AFO was fabricated using 3D printer and the thermoplastic elastomer (TPE rubber was selected as the material. PAM was tested by using test bed machine to generate the force and contraction by muscle. The result shows that the PAM was suitable for low speed as the displacement was greater. The AFO could be valuable for the gait rehabilitation.

  3. Students' Resources for Stance-Taking in the Literature Classroom

    DEFF Research Database (Denmark)

    Kabel, Kristine

    of specialization within LCT (Maton, 2007, 2010), my analyses show a variation in students’ interpersonal meaning-making choices, linking their literary response texts within the same task to either primarily a knower or a knowledge code. This variation suggests a tension in the literature education at this time......Making aspects of privileged ways of participating visible is central to support students’ literacy development within different educational disciplines (Hasan, 1996, 2011). In my doctoral work I focus on the discipline of literature in lower secondary school in the school subject of Danish......, exploring students’ resources for stance-taking in their written literary response texts. In my presentation on Friday I will outline the theoretical grounding of the study and the preliminary findings. Drawing on the appraisal system within SFL (Hood, 2011; Martin & White, 2005) and the dimension...

  4. The effect of vision elimination during quiet stance tasks with different feet positions.

    Science.gov (United States)

    Sarabon, Nejc; Rosker, Jernej; Loefler, Stefan; Kern, Helmut

    2013-09-01

    Literature confirms the effects of vision and stance on body sway and indicates possible interactions between the two. However, no attempts have been made to systematically compare the effect of vision on the different types of stance which are frequently used in clinical and research practice. The biomechanical changes that occur after changing shape and size of the support surface suggest possible sensory re-weighting might take place. The purpose of this study was to assess the effect of vision on body sway in relation to different stance configurations and width. Thirty-eight volunteers performed four quiet stance configurations (parallel, semi-tandem, tandem and single leg), repeating them with open and closed eyes. Traditional parameters, recurrence quantification analysis and sample entropy were analyzed from the CoP trajectory signal. Traditional and recurrence quantification analysis parameters were affected by vision removal and stance type. Exceptions were frequency of oscillation, entropy and trapping time. The most prominent effect of vision elimination on traditional parameters was observed for narrower stances. A significant interaction effect between vision removal and stance type was present for most of the parameters observed (p<0.05). The interaction effect between medio-lateral and antero-posterior traditional parameters differed in linearity between stances. The results confirm the effect of vision removal on the body sway. However, for the medio-lateral traditional parameters, the effects did not increase linearly with the change in width and stance type. This suggests that removal of vision could be more effectively compensated by other sensory systems in semi-tandem stance, tandem and single legged stance. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Balance in single-limb stance after surgically treated ankle fractures: a 14-month follow-up

    Directory of Open Access Journals (Sweden)

    Ageberg Eva

    2006-04-01

    Full Text Available Abstract Background The maintenance of postural control is fundamental for different types of physical activity. This can be measured by having subjects stand on one leg on a force plate. Many studies assessing standing balance have previously been carried out in patients with ankle ligament injuries but not in patients with ankle fractures. The aim of this study was to evaluate whether patients operated on because of an ankle fracture had impaired postural control compared to an uninjured age- and gender-matched control group. Methods Fifty-four individuals (patients operated on because of an ankle fracture were examined 14 months postoperatively. Muscle strength, ankle mobility, and single-limb stance on a force-platform were measured. Average speed of centre of pressure movements and number of movements exceeding 10 mm from the mean value of centre of pressure were registered in the frontal and sagittal planes on a force-platform. Fifty-four age- and gender-matched uninjured individuals (controls were examined in the single-limb stance test only. The paired Student t-test was used for comparisons between patients' injured and uninjured legs and between side-matched legs within the controls. The independent Student t-test was used for comparisons between patients and controls. The Chi-square test, and when applicable, Fisher's exact test were used for comparisons between groups. Multiple logistic regression was performed to identify factors associated with belonging to the group unable to complete the single-limb stance test on the force-platform. Results Fourteen of the 54 patients (26% did not manage to complete the single-limb stance test on the force-platform, whereas all controls managed this (p Conclusion One in four patients operated on because of an ankle fracture had impaired postural control compared to an age- and gender-matched control group. Age over 45 years and decreased strength in the ankle plantar flexors and dorsiflexors

  6. Body sway at sea for two visual tasks and three stance widths.

    Science.gov (United States)

    Stoffregen, Thomas A; Villard, Sebastien; Yu, Yawen

    2009-12-01

    On land, body sway is influenced by stance width (the distance between the feet) and by visual tasks engaged in during stance. While wider stance can be used to stabilize the body against ship motion and crewmembers are obliged to carry out many visual tasks while standing, the influence of these factors on the kinematics of body sway has not been studied at sea. Crewmembers of the RN Atlantis stood on a force plate from which we obtained data on the positional variability of the center of pressure (COP). The sea state was 2 on the Beaufort scale. We varied stance width (5 cm, 17 cm, and 30 cm) and the nature of the visual tasks. In the Inspection task, participants viewed a plain piece of white paper, while in the Search task they counted the number of target letters that appeared in a block of text. Search task performance was similar to reports from terrestrial studies. Variability of the COP position was reduced during the Search task relative to the Inspection task. Variability was also reduced during wide stance relative to narrow stance. The influence of stance width was greater than has been observed in terrestrial studies. These results suggest that two factors that influence postural sway on land (variations in stance width and in the nature of visual tasks) also influence sway at sea. We conclude that--in mild sea states--the influence of these factors is not suppressed by ship motion.

  7. Linguistic Markers of Stance in Early and Advanced Academic Writing: A Corpus-Based Comparison

    Science.gov (United States)

    Aull, Laura L.; Lancaster, Zak

    2014-01-01

    This article uses corpus methods to examine linguistic expressions of stance in over 4,000 argumentative essays written by incoming first-year university students in comparison with the writing of upper-level undergraduate students and published academics. The findings reveal linguistic stance markers shared across the first-year essays despite…

  8. Brought-Along Identities and the Dynamics of Ideology: Accomplishing Bivalent Stances in a Multilingual Interaction

    Science.gov (United States)

    Williams, Ashley M.

    2008-01-01

    This paper examines how the interconnected aspects of the stance triangle (Du Bois 2007) allow speakers to tap into multiple ideological layers as they take a stance and reveal intra-ethnic group tensions. Using a detailed interaction analysis of a Chinese American family's multilingual interaction, the paper explores how such ideological dynamics…

  9. The influence of the boxing stance on performance in professional boxers

    Directory of Open Access Journals (Sweden)

    Sorokowski Piotr

    2014-12-01

    Full Text Available In boxing, athletes choose between two strategies: the orthodox stance characteristic of right handed competitors, or the southpaw stance characteristic of left-handers. Despite a conviction popular among the practitioners of this sport that fighting against a southpaw opponent constitutes a handicap, the effectiveness of the type of stance has so far not been examined. We extracted the statistics of the top twenty active male professionals boxing in each of the seventeen weight divisions. Out of the 340 boxers who composed our group, 75% used the orthodox stance and 25% were southpaw. Generally, we found that boxing stance had no effect on the percentage of 340 top professional boxers’ victories. However, both the southpaw and the orthodox athletes had a higher percentage of victories against orthodox boxers than against southpaws.

  10. Consequences of lower oil prices and stranded assets for Russia's sustainable fiscal stance

    International Nuclear Information System (INIS)

    Malova, Aleksandra; Ploeg, Frederick van der

    2017-01-01

    Despite substantial oil and gas revenue Russia's fiscal stance is unsustainable. Under our benchmark assumptions the permanent-income rule requires a permanent tightening of the fiscal stance by 4.6%-points of GDP. Delaying it by a decade implies that the fiscal stance needs to be tightened by a further 0.9%-point. This benchmark optimal policy ensures that depletion of oil and gas wealth is matched by an equal increase in above-ground financial wealth. Its merits are highlighted by comparing it with the tougher alternative of the bird-in-hand rule and with projecting the current fiscal stance. If oil and gas revenue rises by a half due to higher prices or more discoveries, the fiscal stance needs to be tightened by only 3.2%-points of GDP. However, if a large chunk of oil and gas has to be kept in the soil to meet international agreements to keep global warming below 2 °C, the permanent transfer drops to 2.0% of GDP and the fiscal stance needs to be tightened by 5.5%-points of GDP. - Highlights: • Sustained lower oil prices mean that Russia has to tighten its fiscal stance by 4.6%-points of GDP. • If oil & gas revenue rise by half, the fiscal stance only needs to be tightened by 3.2%-points of GDP. • Delaying by a decade means that the fiscal stance has to be tightened by a further 0.9%-points of GDP. • If Russia commits to Paris COP21, a large chunk of reserves cannot be burnt. • The fiscal stance then needs to be tightened by 5.5%-points of GDP.

  11. Characteristics of the muscle activities of the elderly for various pressures in the pneumatic actuator of lower limb orthosis

    Science.gov (United States)

    Kim, Kyong; Yu, Chang-Ho; Kwon, Tae-Kyu; Hong, Chul-Un; Kim, Nam-Gyun

    2005-12-01

    There developed a lower limb orthosis with a pneumatic rubber actuator, which can assist and improve the muscular activities in the lower limb of the elderly. For this purpose, the characteristics of the lower limbs muscle activities for various pressures in the pneumatic actuator for the lower limb orthosis was investigated. To find out the characteristics of the muscle activities for various pneumatic pressures, it analyzed the flexing and extending movement of the knees, and measured the lower limbs muscular power. The subjects wearing the lower limbs orthosis were instructed to perform flexing and extending movement of the knees. The variation in the air pressure of the pneumatic actuator was varies from one kgf/cm2 to four kgf/cm2. The muscular power was measured by monitoring electromyogram using MP100 (BIOPAC Systems, Inc.) and detailed three-dimensional motions of the lower limbs were collected by APAS 3D Motion Analysis system. Through this study, it expected to find the most suitable air pressure for the improvement of the muscular power of the aged.

  12. On the road to a neuroprosthetic hand: a novel hand grasp orthosis based on functional electrical stimulation.

    Science.gov (United States)

    Leeb, Robert; Gubler, Miguel; Tavella, Michele; Miller, Heather; Del Millan, Jose R

    2010-01-01

    To patients who have lost the functionality of their hands as a result of a severe spinal cord injury or brain stroke, the development of new techniques for grasping is indispensable for reintegration and independency in daily life. Functional Electrical Stimulation (FES) of residual muscles can reproduce the most dominant grasping tasks and can be initialized by brain signals. However, due to the very complex hand anatomy and current limitations in FES-technology with surface electrodes, these grasp patterns cannot be smoothly executed. In this paper, we present an adaptable passive hand orthosis which is capable of producing natural and smooth movements when coupled with FES. It evenly synchronizes the grasping movements and applied forces on all fingers, allowing for naturalistic gestures and functional grasps of everyday objects. The orthosis is also equipped with a lock, which allows it to remain in the desired position without the need for long-term stimulation. Furthermore, we quantify improvements offered by the orthosis compare them with natural grasps on healthy subjects.

  13. COMPARISON BETWEEN PHYSIOLOGICAL COST INDEX IN HEALTHY NORMAL CHILDREN AS AGAINST AMBULATORY SPASTIC DIPLEGIC CEREBRAL PALSY (WITH AND WITHOUT ORTHOSIS IN THE AGE GROUP 6 TO 18 YEARS

    Directory of Open Access Journals (Sweden)

    Swatia Bhise

    2016-08-01

    Full Text Available Background: Efficacy of rehabilitation program for subjects with orthosis with objective measurement. The study aiming to objectively compare the PCI and walking speed of normal children with ambulatory spastic diaplegic. Also we aimed to analyze whether BMIhad impact on energy cost. Methods: 41 normal children and 41 community walking spastic diaplegic aged between 6 to 18 yrs. were assessed to compare the PCI. Speed of walking and heart rate were checked constantlyboth barefoot and in shoes in normal children and with and without conventional AFO in children with spastic diaplegic at their chosen velocities over four consecutive lengths of a 12.5m walkway i.e. total 50m.,Pre and Post readings are taken. Heart rate is affected by speed; PCI with speed of walking and heart rate was calculated for each child. Results: The mean PCI in shoes and barefoot was same in normal children i.e. 0.05 ±0.039beats/meter. The PCI for children with pathological gait i.e. spastic diaplegic without orthosis and with orthosis is 0.199 ±0.176 and 0.104± 0.093beats/meter appreciably greater than that for normal children(p less than 0.05. Conclusion: This study showed that walking with orthosis in spastic diplegic CP children showed higher costs of energy and slower walking speed compared normal children with age matched. The PCI of walking, with orthosis in children with spastic Diplegic cerebral palsy is less as compared to without orthosis i.e. gait is more energy efficient with orthosis. BMI doesn’t show any correlation with PCI further study may require.

  14. Ankle muscle activity modulation during single-leg stance differs between children, young adults and seniors.

    Science.gov (United States)

    Kurz, Eduard; Faude, Oliver; Roth, Ralf; Zahner, Lukas; Donath, Lars

    2018-02-01

    Incomplete maturation and aging-induced declines of the neuromuscular system affect postural control both in children and older adults and lead to high fall rates. Age-specific comparisons of the modulation of ankle muscle activation and behavioral center of pressure (COP) indices during upright stance have been rarely conducted. The objective of the present study was to quantify aging effects on a neuromuscular level. Thus, surface electromyography (SEMG) modulation and co-activity of ankle muscles during single-leg standing was compared in healthy children, young adults and seniors. Postural steadiness (velocity and mean sway frequency of COP), relative muscle activation (SEMG modulation) and co-activation of two ankle muscles (tibialis anterior, TA; soleus, SO) were examined during single-leg stance in 19 children [age, 9.7 (SD 0.5) years], 30 adults [23.3 (1.5) years] and 29 seniors [62.7 (6.1) years]. Velocity of COP in medio-lateral and anterior-posterior directions, mean sway frequency in anterior-posterior direction, relative muscle activation (TA and SO) and co-activation revealed large age effects (P  0.14). Post-hoc comparisons indicated higher COP velocities, anterior-posterior frequencies, relative SO activation and co-activation in children and seniors when compared with adults. Relative TA activation was higher in children and adults compared with seniors (P seniors seems to be counteracted with higher TA/SO co-activity and SO modulation. However, TA modulation is higher in children and adults, whereas seniors' TA modulation capacity is diminished. An aging-induced decline of TA motor units might account for deteriorations of TA modulation in seniors.

  15. Ninth Grade Students' Negotiation of Aesthetic, Efferent, and Critical Stances in Response to a Novel Set in Afghanistan

    Science.gov (United States)

    Taliaferro, Cheryl

    2011-01-01

    This qualitative, action research study was guided by two primary research questions. First, how do students negotiate aesthetic, efferent, and critical stances when reading a novel set in Afghanistan? Second, how do aesthetic and efferent stances contribute to or hinder the adoption of a critical stance? A large body of research exists that…

  16. Investigation of Anticipatory Postural Adjustments during One-Leg Stance Using Inertial Sensors: Evidence from Subjects with Parkinsonism

    OpenAIRE

    Gianluca Bonora; Martina Mancini; Ilaria Carpinella; Lorenzo Chiari; Maurizio Ferrarin; John G. Nutt; Fay B. Horak; Fay B. Horak

    2017-01-01

    The One-Leg Stance (OLS) test is a widely adopted tool for the clinical assessment of balance in the elderly and in subjects with neurological disorders. It was previously showed that the ability to control anticipatory postural adjustments (APAs) prior to lifting one leg is significantly impaired by idiopathic Parkinson’s disease (iPD). However, it is not known how APAs are affected by other types of parkinsonism, such as frontal gait disorders (FGD). In this study, an instrumented OLS test ...

  17. Electro-tactile stimulation of the posterior neck induces body anteropulsion during upright stance.

    Science.gov (United States)

    De Nunzio, A M; Yavuz, U S; Martinez-Valdes, E; Farina, D; Falla, D

    2018-05-01

    Sensory information conveyed along afferent fibers from muscle and joint proprioceptors play an important role in the control of posture and gait in humans. In particular, proprioceptive information from the neck is fundamental in supplying the central nervous system with information about the orientation and movement of the head relative to the rest of the body. The previous studies have confirmed that proprioceptive afferences originating from the neck region, evoked via muscle vibration, lead to strong body-orienting effects during static conditions (e.g., leaning of the body forwards or backwards, depending on location of vibration). However, it is not yet certain in humans, whether the somatosensory receptors located in the deep skin (cutaneous mechanoreceptors) have a substantive contribution to postural control, as vibratory stimulation encompasses the receptive field of all the somatosensory receptors from the skin to the muscles. The aim of this study was to investigate the postural effect of cutaneous mechanoreceptor afferences using electro-tactile stimulation applied to the neck. Ten healthy volunteers (8M, 2F) were evaluated. The average position of their centre of foot pressure (CoP) was acquired before, during, and after a subtle electro-tactile stimulation over their posterior neck (mean ± SD = 5.1 ± 2.3 mA at 100 Hz-140% of the perception threshold) during upright stance with their eyes closed. The electro-tactile stimulation led to a body-orienting effect with the subjects consistently leaning forward. An average shift of the CoP of 12.1 ± 11.9 mm (mean ± SD) was reported, which significantly (p < 0.05) differed from its average position under a control condition (no stimulation). These results indicate that cutaneous mechanoreceptive inflow from the neck is integrated to control stance. The findings are relevant for the exploitation of electro-tactile stimulation for rehabilitation interventions where induced

  18. Effects of joint alignment and type on mechanical properties of thermoplastic articulated ankle-foot orthosis.

    Science.gov (United States)

    Gao, Fan; Carlton, William; Kapp, Susan

    2011-06-01

    Articulated or hinged ankle-foot orthosis (AFO) allow more range of motion. However, quantitative investigation on articulated AFO is still sparse. The objective of the study was to quantitatively investigate effects of alignment and joint types on mechanical properties of the thermoplastic articulated AFO. Tamarack dorsiflexion assist flexure joints with three durometers (75, 85 and 95) and free motion joint were tested. The AFO joint was aligned with the center of the motor shaft (surrogate ankle joint), 10 mm superior, inferior, anterior and posterior with respect to the motor shaft center. The AFO was passively moved from 20° plantar flexion to 15° dorsiflexion at a speed of 10°/s using a motorized device. Mechanical properties including index of hysteresis, passive resistance torque and quasi-static stiffness (at neutral, 5°, 10° and 15° in plantar flexion) were quantified. Significant effects of joint types and joint alignment on the mechanical properties of an articulated thermoplastic AFO were revealed. Specifically, center alignment showed minimum resistance and stiffness while anterior and posterior alignment showed significantly higher resistance and stiffness. The dorsiflexion assist torques at neutral position ranged from 0.69 ± 0.09 to 1.88 ± 0.10 Nm. Anterior and posterior alignment should be avoided as much as possible. The current study suggested that anterior and posterior alignment be avoided as much as possible in clinical practice due to potential skin irritation and increase in stress around the ankle joint.

  19. Ankle-Foot Orthosis Made by 3D Printing Technique and Automated Design Software

    Directory of Open Access Journals (Sweden)

    Yong Ho Cha

    2017-01-01

    Full Text Available We described 3D printing technique and automated design software and clinical results after the application of this AFO to a patient with a foot drop. After acquiring a 3D modelling file of a patient’s lower leg with peroneal neuropathy by a 3D scanner, we loaded this file on the automated orthosis software and created the “STL” file. The designed AFO was printed using a fused filament fabrication type 3D printer, and a mechanical stress test was performed. The patient alternated between the 3D-printed and conventional AFOs for 2 months. There was no crack or damage, and the shape and stiffness of the AFO did not change after the durability test. The gait speed increased after wearing the conventional AFO (56.5 cm/sec and 3D-printed AFO (56.5 cm/sec compared to that without an AFO (42.2 cm/sec. The patient was more satisfied with the 3D-printed AFO than the conventional AFO in terms of the weight and ease of use. The 3D-printed AFO exhibited similar functionality as the conventional AFO and considerably satisfied the patient in terms of the weight and ease of use. We suggest the possibility of the individualized AFO with 3D printing techniques and automated design software.

  20. Development of an assistive motorized hip orthosis: kinematics analysis and mechanical design.

    Science.gov (United States)

    Olivier, Jeremy; Bouri, Mohamed; Ortlieb, Amalric; Bleuler, Hannes; Clavel, Reymond

    2013-06-01

    With the increase of life expectancy, a higher number of elderly need assistance to maintain their mobility and their independance. The hip joint is crucial for walking and is problematic for a large number of aged people. In this paper we present a novel design of a motorized hip orthosis to assist elderly people while walking, stair climbing and during the sit-to-stand transistions. The kinematics was developed based on biomechanics considerations. To be able to achieve a large assistance rate, velocity and torques of the hip joint were studied from the literature. In order to fit with these requirements, an amplification mechanism inspired by excavators was developed and implemented. Comfort considerations were also taken into account and a custom interface was designed with the collaboration of a professional orthopaedic technician. First tests with the prototype showed that the workspace is sufficient for walking, for stair climbing as well as for sit-to-stand transitions. The assistance rate can go up to 30% for a 70 kg subject during walking at a cadence of 100 steps/min. The comfort is guaranteed despite the important weight (4.3 kg) of this first prototype.

  1. Physical human-robot interaction of an active pelvis orthosis: toward ergonomic assessment of wearable robots.

    Science.gov (United States)

    d'Elia, Nicolò; Vanetti, Federica; Cempini, Marco; Pasquini, Guido; Parri, Andrea; Rabuffetti, Marco; Ferrarin, Maurizio; Molino Lova, Raffaele; Vitiello, Nicola

    2017-04-14

    In human-centered robotics, exoskeletons are becoming relevant for addressing needs in the healthcare and industrial domains. Owing to their close interaction with the user, the safety and ergonomics of these systems are critical design features that require systematic evaluation methodologies. Proper transfer of mechanical power requires optimal tuning of the kinematic coupling between the robotic and anatomical joint rotation axes. We present the methods and results of an experimental evaluation of the physical interaction with an active pelvis orthosis (APO). This device was designed to effectively assist in hip flexion-extension during locomotion with a minimum impact on the physiological human kinematics, owing to a set of passive degrees of freedom for self-alignment of the human and robotic hip flexion-extension axes. Five healthy volunteers walked on a treadmill at different speeds without and with the APO under different levels of assistance. The user-APO physical interaction was evaluated in terms of: (i) the deviation of human lower-limb joint kinematics when wearing the APO with respect to the physiological behavior (i.e., without the APO); (ii) relative displacements between the APO orthotic shells and the corresponding body segments; and (iii) the discrepancy between the kinematics of the APO and the wearer's hip joints. The results show: (i) negligible interference of the APO in human kinematics under all the experimented conditions; (ii) small (i.e., ergonomics assessment of wearable robots.

  2. Explanations pertaining to the Hip Joint Flexor Moment During the Stance Phase of Human Walking

    DEFF Research Database (Denmark)

    Simonsen, Erik B; Cappelen, Katrine L; Skorini, Ragnhild

    2012-01-01

    A hip joint flexor moment in the last half of the stance phase during walking has repeatedly been reported. However, the purpose of this moment remains uncertain and it is unknown how it is generated. Nine male subjects were instructed to walk at 4.5 km/h with their upper body in three different...... positions: normal, inclined and reclined. Net joint moments were calculated about the hip, knee and ankle joint. The peak hip joint flexor moment during late stance was significantly lower during inclined walking than in the two other conditions. During normal walking the iliacus muscle showed no or very...... weak activity and first at the transition from stance to swing. When walking reclined, a clear but rather low activity level of the iliacus muscle was seen in the first half of the stance phase, which could contribute to the hip moment. In the inclined condition the iliacus showed much increased...

  3. Interpreting the need for initial support to perform tandem stance tests of balance

    NARCIS (Netherlands)

    Hile, E.S.; Brach, J.S.; Perera, S.; Wert, D.M.; VanSwearingen, J.M.; Studenski, S.A.

    2012-01-01

    BACKGROUND: Geriatric rehabilitation reimbursement increasingly requires documented deficits on standardized measures. Tandem stance performance can characterize balance, but protocols are not standardized. Objective The purpose of this study was to explore the impact of: (1) initial support to

  4. Effects of body lean and visual information on the equilibrium maintenance during stance.

    Science.gov (United States)

    Duarte, Marcos; Zatsiorsky, Vladimir M

    2002-09-01

    Maintenance of equilibrium was tested in conditions when humans assume different leaning postures during upright standing. Subjects ( n=11) stood in 13 different body postures specified by visual center of pressure (COP) targets within their base of support (BOS). Different types of visual information were tested: continuous presentation of visual target, no vision after target presentation, and with simultaneous visual feedback of the COP. The following variables were used to describe the equilibrium maintenance: the mean of the COP position, the area of the ellipse covering the COP sway, and the resultant median frequency of the power spectral density of the COP displacement. The variability of the COP displacement, quantified by the COP area variable, increased when subjects occupied leaning postures, irrespective of the kind of visual information provided. This variability also increased when vision was removed in relation to when vision was present. Without vision, drifts in the COP data were observed which were larger for COP targets farther away from the neutral position. When COP feedback was given in addition to the visual target, the postural control system did not control stance better than in the condition with only visual information. These results indicate that the visual information is used by the postural control system at both short and long time scales.

  5. Epistemic stance marking in the use of English as a lingua franca

    DEFF Research Database (Denmark)

    Mortensen, Janus

    A comparative study of the pragmatic functions of epistemic stance marking in problem-solving sequences at student project group meetings, with special emphasis on meetings where English is used as a lingua franca......A comparative study of the pragmatic functions of epistemic stance marking in problem-solving sequences at student project group meetings, with special emphasis on meetings where English is used as a lingua franca...

  6. Homunculi, the mereological fallacy and crypto-dualism. Two dilemmas for the intentional stance

    OpenAIRE

    Balderas-Rosas, G.C. (Gloria del Carmen)

    2014-01-01

    Neuroscientist Maxwell Bennett and philosopher Peter Hacker defend the need to eradicate the mereological fallacy of cognitive neuroscience. This fallacy attributes to the parts of an animal psychological predicates that make sense only when applied to the whole animal. In contrast, philosopher Daniel Dennett argues that it is possible to explain behavior and cognitive abilities by applying the Intentional Stance (IS) to the brain, a stance that attributes increasingly simple psychological ca...

  7. Evaluating stance-annotated sentences from the Brexit Blog Corpus: A quantitative linguistic analysis

    Directory of Open Access Journals (Sweden)

    Simaki Vasiliki

    2018-03-01

    Full Text Available This paper offers a formally driven quantitative analysis of stance-annotated sentences in the Brexit Blog Corpus (BBC. Our goal is to identify features that determine the formal profiles of six stance categories (contrariety, hypotheticality, necessity, prediction, source of knowledge and uncertainty in a subset of the BBC. The study has two parts: firstly, it examines a large number of formal linguistic features, such as punctuation, words and grammatical categories that occur in the sentences in order to describe the specific characteristics of each category, and secondly, it compares characteristics in the entire data set in order to determine stance similarities in the data set. We show that among the six stance categories in the corpus, contrariety and necessity are the most discriminative ones, with the former using longer sentences, more conjunctions, more repetitions and shorter forms than the sentences expressing other stances. necessity has longer lexical forms but shorter sentences, which are syntactically more complex. We show that stance in our data set is expressed in sentences with around 21 words per sentence. The sentences consist mainly of alphabetical characters forming a varied vocabulary without special forms, such as digits or special characters.

  8. Climate Literacy for Kids: Finding Medium, Message, and Stance

    Science.gov (United States)

    Fisher, D. K.; Leon, N.; Jackson, R.; Greene, M. P.

    2011-12-01

    . Various recycling bins (glass, plastic, metal, and paper) are lined up on the left and right sides of the screen, with a trash bin at the bottom. As an item drops, the player must quickly decide what kind of material it is made of and whether it is recyclable, then guide it into the appropriate bin. As the rate of items entering play increases, any missed items fall into the trash and stay there for a length of time proportional to their decomposition time. If the trash bin gets full, the game is over. While enjoying the increasing challenge of the game, players learn to identify many items as recyclable that they may not have recognized as recyclable before. Another feature on Climate Kids is "Climate Tales," a slightly edgy animated cartoon series (two episodes so far) about the adventures of a blundering polar bear, a chirpy tamarin monkey, and a grumpy old fish as "accidental tourists" around the planet, observing and dealing with the environmental conditions they encounter. Fairly complex concepts (such as reasons and implications of the declining abundance of phytoplankton) are woven into the tales. Climate Kids is a fun site for kids, educational and realistic, and yet positive and hopeful-the only reasonable stance to present to this young audience.

  9. Pedunculopontine nucleus area oscillations during stance, stepping and freezing in Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Valerie Fraix

    Full Text Available The pedunculopontine area (PPNa including the pedunculopontine and cuneiform nuclei, belongs to the mesencephalic locomotor region. Little is known about the oscillatory mechanisms underlying the function of this region in postural and gait control. We examined the modulations of the oscillatory activity of the PPNa and cortex during stepping, a surrogate of gait, and stance in seven Parkinson's disease patients who received bilateral PPNa implantation for disabling freezing of gait (FOG. In the days following the surgery, we recorded behavioural data together with the local field potentials of the PPNa during sitting, standing and stepping-in-place, under two dopaminergic medication conditions (OFF and ON levodopa. Our results showed that OFF levodopa, all subjects had FOG during step-in-place trials, while ON levodopa, stepping was effective (mean duration of FOG decreasing from 61.7±36.1% to 7.3±10.1% of trial duration. ON levodopa, there was an increase in PPNa alpha (5-12 Hz oscillatory activity and a decrease in beta (13-35 Hz and gamma (65-90 Hz bands activity. PPNa activity was not modulated during quiet standing and sitting. Our results confirm the role of the PPNa in the regulation of gait and suggest that, in Parkinson disease, gait difficulties could be related to an imbalance between low and higher frequencies.

  10. Shoe drop reduction influences the lower limb biomechanics of children tennis players during an open stance forehand: A longitudinal study.

    Science.gov (United States)

    Herbaut, Alexis; Simoneau-Buessinger, Emilie; Barbier, Franck; Gillet, Christophe; Roux, Maxime; Guéguen, Nils; Chavet, Pascale

    2017-11-01

    Compared to traditional tennis shoes, using 0-drop shoes was shown to induce an immediate switch from rear- to forefoot strike pattern to perform an open stance tennis forehand for 30% of children tennis players. The purpose of the study was to examine the long-term effects of a gradual reduction in the shoe drop on the biomechanics of children tennis players performing open stance forehands. Thirty children tennis players participated in 2 laboratory biomechanical test sessions (intermediate: +4 months and final: +8 months) after an inclusion visit where they were randomly assigned to control (CON) or experimental (EXP) group. CON received 12-mm-drop shoes twice, whereas EXP received 8 mm then 4-mm-drop shoes. Strike index indicated that all CON were rearfoot strikers in intermediate and final test sessions. All EXP were rearfoot strikers in intermediate test session, but half the group switched towards a forefoot strike pattern in final test session. This switch resulted in a decreased loading rate of the ground reaction force (-73%, p = .005) but increased peak ankle plantarflexors moment (+47%, p = .050) and peak ankle power absorption (+107%, p = .005) for these participants compared with CON. Biomechanical changes associated with the long-term use of partial minimalist shoes suggest a reduction in heel compressive forces but an increase in Achilles tendon tensile forces.

  11. Motor Imagery-Based Brain-Computer Interface Coupled to a Robotic Hand Orthosis Aimed for Neurorehabilitation of Stroke Patients

    Directory of Open Access Journals (Sweden)

    Jessica Cantillo-Negrete

    2018-01-01

    Full Text Available Motor imagery-based brain-computer interfaces (BCI have shown potential for the rehabilitation of stroke patients; however, low performance has restricted their application in clinical environments. Therefore, this work presents the implementation of a BCI system, coupled to a robotic hand orthosis and driven by hand motor imagery of healthy subjects and the paralysed hand of stroke patients. A novel processing stage was designed using a bank of temporal filters, the common spatial pattern algorithm for feature extraction and particle swarm optimisation for feature selection. Offline tests were performed for testing the proposed processing stage, and results were compared with those computed with common spatial patterns. Afterwards, online tests with healthy subjects were performed in which the orthosis was activated by the system. Stroke patients’ average performance was 74.1 ± 11%. For 4 out of 6 patients, the proposed method showed a statistically significant higher performance than the common spatial pattern method. Healthy subjects’ average offline and online performances were of 76.2 ± 7.6% and 70 ± 6.7, respectively. For 3 out of 8 healthy subjects, the proposed method showed a statistically significant higher performance than the common spatial pattern method. System’s performance showed that it has a potential to be used for hand rehabilitation of stroke patients.

  12. Guillain-Barre Syndrome – rehabilitation outcome, residual deficits and requirement of lower limb orthosis for locomotion at 1 year follow-up.

    Science.gov (United States)

    Gupta, Anupam; Taly, Arun B; Srivastava, Abhishek; Murali, Thyloth

    2010-01-01

    To analyse long-term functional recovery, deficits and requirement of lower limb orthosis (LLO) for locomotion in patients with Guillain-Barre Syndrome (GBS). Prospective longitudinal follow-up study. Neurological Rehabilitation unit of university hospital. Sixty-nine patients of GBS admitted for inpatient rehabilitation. Thirty-five patients (M:F, 19:16) reporting after 1 year follow-up (50.72%) were included in study (between September 2005 and July 2009). Their residual deficits and requirement of LLO were recorded and analysed. Age ranged from 4 to 65 year (29.74 ± 15.75). Twenty-seven patients had typical GBS and eight patients had acute motor axonal neuropathy variant. Twenty-eight patients (80%) had neuropathic pain needing medication with 11 required more than one drug. Twenty-one patients (60%) had foot drop and advised ankle-foot orthosis-AFO (20 bilateral AFO). Thirty patients (85.71%) needed assistive devices also for locomotion at discharge. After 1 year, foot drop was still present in 12 patients (34.28%) using orthosis. Modified Barthel Index scores, Modified Rankin Scale and Hughes Disability Scale were used to assess functional disabilities. Significant recovery was observed at the time of discharge and after 1 year (p < 0.001 each). Patients with GBS continue to show significant functional recovery for long period. They have residual deficits even after 1 year with requirement of orthosis in large number of patients.

  13. Design and Evaluation of a New Type of Knee Orthosis to Align the Mediolateral Angle of the Knee Joint with Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Amir Esrafilian

    2012-01-01

    Full Text Available Background. Osteoarthritis (OA is a disease which influences the performance of the knee joint. Moreover, the force and moments applied on the joint increase in contrast to normal subjects. Various types of knee orthoses have been designed to solve the mentioned problems. However, there are other problems in terms of distal migration during walking and the alignment of the orthosis which cannot be changed following the use of brace. Therefore, the main aim of the research was to design an orthosis to solve the aforementioned problems. Method. A new type of knee orthosis was designed with a modular structure. Two patients with knee OA participated in this research project. The force applied on the foot, moment transmitted through the knee joint, and spatiotemporal gait parameters were measured by use of a motion analysis system. Results. The results of the research showed that the adduction moment applied on the knee joint decreased while subjects walked with the new knee orthosis (P-value < 0.05. Conclusion. The new design of the knee brace can be used as an effective treatment to decrease the loads applied on the knee joint and to improve the alignment whilst walking.

  14. Enhancing Organizational Survivability in a Crisis: Perceived Organizational Crisis Responsibility, Stance, and Strategy

    Directory of Open Access Journals (Sweden)

    JiYeon Jeong

    2015-08-01

    Full Text Available For the purpose of enhancing organizational sustainability during a crisis, an organization takes a position in decision-making, how to respond toward its public, and that is supposed to determine which stance or tactic to employ. This study aims to examine whether publics’ perceptions of organizational crisis responsibility affect their expectations that an organization should choose certain stances and strategies toward the public in a crisis. To address these concerns, an experiment was conducted. As the specific public of this research, health journalists were selected, since they affect public perceptions significantly and public opinion can ultimately put pressure on an organization. Results from an analysis of the experimental data with health journalists confirm that they expect a more accommodative stance/strategy when they perceive that the organization is highly responsible for a health-related crisis. Conversely, when the journalists perceive that an organization has a low level of responsibility for a crisis, they expect a more advocative stance/strategy. By taking into account the health journalists’ expectations along with the needs of the organization, public relations practitioners are better able to make optimal decisions regarding their client organizations’ adopted stance and strategy, and finally, enhance organizational sustainability in a crisis.

  15. A COMPARATIVE STUDY TO FIND OUT IMMEDIATE EFFECTIVENESS OF MOVEMENT WITH MOBILIZATION VERSUS ELBOW ORTHOSIS ON PAIN AND GRIP STRENGTH IN LATERAL EPICONDYLITIS IN HOUSEWIVES

    Directory of Open Access Journals (Sweden)

    Trishna Kakati

    2015-12-01

    Full Text Available Background: There are various studies using Mulligan’s MWM with or without combining with electrotherapy modalities and proved the efficacy of the technique in immediately decreasing pain and improving grip strength in patients with lateral epicondylitis. Orthotic as a treatment is also proved to be beneficial in decreasing pain and improving grip strength. There is evidence that housewives are prone to develop lateral epicondylitis due to their routine household work. But there is lack of evidence which compare initial effects of MWM and orthosis in housewives bringing up better outcome measures. The purpose of this study is to compare the initial effectiveness of Mulligan’s MWM and elbow orthosis on pain and grip strength in housewives with lateral epicondylitis. The aim of the study is to evaluate the effectiveness of Mulligan’s MWM technique versus counterforce elbow orthosis in immediately reducing pain and improving grip strength in lateral epicondylitis in housewives. Methodos: All subjects underwent a pre-treatment examination to assess pain and pain free hand grip strength with the help of outcome measures. Subjects were randomly assigned into two groups, A and B respectively; having 25 subjects in each group. Group A was treated with one session of Mulligan’s MWM technique. Group B was treated with Counterforce elbow strap orthosis. Data was assessed pre-treatment and immediately after treatment. Visual Analogue Scale (VAS and hand grip on Hand Grip Dynamometer (HGD were used as outcome measures. Results: Independent t-test was performed to see the effectiveness between Mulligan’s MWM and elbow orthosis. For VAS, t = - 2.243 which is significant at 5% level of significance. It has been inferred that VAS decreases more when Mulligan’s MWM was applied. For HGD, t = 0.878 which is not significant implying that increase in HGD do not differ remarkably for the two treatments. Conclusion: It has been recorded from the study that

  16. Immediate effects of the trunk stabilizing exercise on static balance parameters in double-leg and one-leg stances

    OpenAIRE

    Kim, Jwa-jun; Park, Se-yeon

    2016-01-01

    [Purpose] The purpose of this study was to evaluate the immediate effect of stabilizing exercise using the PNF technique on standing balance in one-leg and double-leg stances. [Subjects and Methods] The present study recruited 34 healthy participants from a local university. The Participants performed four balance tests (double-leg stance with and without vision, one-leg stance with and without vision), before and after exercise. The exercise consisted of exercises performed using PNF techniq...

  17. The influence of ankle joint mobility when using an orthosis on stability in patients with spinal cord injury: a pilot study.

    Science.gov (United States)

    Arazpour, M; Bani, M A; Hutchins, S W; Curran, S; Javanshir, M A

    2013-10-01

    Perceived risk of falling is an important factor for people with spinal cord injury (SCI). This study investigated the influence of ankle joint motion on postural stability and walking in people with SCI when using an orthosis. Volunteer subjects with SCI (n=5) participated in this study. Each subject was fitted with an advanced reciprocating gait orthosis (ARGO) equipped with either solid or dorsiflexion-assist type ankle-foot orthosis (AFOs) and walked at their self-selected speed along a flat walkway to enable the comparison of walking speed, cadence and endurance. A force plate system and a modified Falls Efficacy Scale (MFES) were utilized to measure postural sway and the perceived fear of falling, respectively. There were significant differences in the mean MFES scores between two types of orthosis (P=0.023). When using two crutches, there was no significant difference in static standing postural sway in the medio-lateral (M/L) direction (P=0.799), but significant difference in the antero-posterior (A/P) direction (P=0.014). However, during single crutch support, there was a significant difference in both M/L (P=0.019) and A/P (P=0.022) directions. Walking speed (7%) and endurance (5%) significantly increased when using the ARGO with dorsi flexion assisted AFOs. There was no significant deference between two types of orthoses in cadence (P=0.54). Using an ARGO with dorsiflexion-assisted AFOs increased the fear of falling, but improved static postural stability and increased walking speed and endurance, and should therefore be considered as an effective orthosis during the rehabilitation of people with SCI.

  18. Intersession reliability of self-selected and narrow stance balance testing in older adults.

    Science.gov (United States)

    Riemann, Bryan L; Piersol, Kelsey

    2017-10-01

    Despite the common practice of using force platforms to assess balance of older adults, few investigations have examined the reliability of postural screening tests in this population. We sought to determine the test-retest reliability of self-selected and narrow stance balance testing with eyes open and eyes closed in healthy older adults. Thirty older adults (>65 years) completed 45 s trials of eyes open and eyes closed stability tests using self-selected and narrow stances on two separate days (1.9 ± .7 days). Average medial-lateral center of pressure velocity was computed. The ICC results ranged from .74 to .86, and no significant systematic changes (P eyes open and closed balance testing using self-selected and narrow stances in older adults was established which should provide a foundation for the development of fall risk screening tests.

  19. Adolescent social media interaction and authorial stance in Indonesian teen fiction

    Directory of Open Access Journals (Sweden)

    Dwi Noverini Djenar

    2013-04-01

    Full Text Available This article examines representations of adolescent social media interaction in two Indonesian teen novels to show how adolescent communication styles are typified. It is argued that public discourse on the potential danger of social media interaction is resounded in the novels. The article demonstrates that the authors of both novels take a similar moral stance on the issue of social media but use different rhetorical strategies for indexing that stance. Both draw on the social values of registers to communicate the stance. In Online addicted, standard Indonesian is used in narration to convey an authoritative voice and a stern moral tone, while the gaul register indexes an alignment with favourable aspects of the protagonist’s character. In Jurnal Jo online, gaul is similarly given a positive value by virtue of its juxtaposition with the Alay register. In this novel, gaul is the preferred, standard register. In both novels, there is a strong orientation toward “standardness”.

  20. Organization position statements and the stance of "studied neutrality" on euthanasia in palliative care.

    Science.gov (United States)

    Johnstone, Megan-Jane

    2012-12-01

    In recent years, palliative care and related organizations have increasingly adopted a stance of "studied neutrality" on the question of whether euthanasia should be legalized as a bona fide medical regimen in palliative care contexts. This stance, however, has attracted criticism from both opponents and proponents of euthanasia. Pro-euthanasia activists see the stance as an official position of indecision that is fundamentally disrespectful of a patient's right to "choose death" when life has become unbearable. Some palliative care constituents, in turn, are opposed to the stance, contending that it reflects an attitude of "going soft" on euthanasia and as weakening the political resistance that has hitherto been successful in preventing euthanasia from becoming more widely legalized. In this article, attention is given to examining critically the notion and possible unintended consequences of adopting a stance of studied neutrality on euthanasia in palliative care. It is argued that although palliative care and related organizations have an obvious stake in the outcome of the euthanasia debate, it is neither unreasonable nor inconsistent for such organizations to be unwilling to take a definitive stance on the issue. It is further contended that, given the long-standing tenets of palliative care, palliative care organizations have both a right and a responsibility to defend the integrity of the principles and practice of palliative care and to resist demands for euthanasia to be positioned either as an integral part or logical extension of palliative care. Copyright © 2012 U.S. Cancer Pain Relief Committee. Published by Elsevier Inc. All rights reserved.

  1. An EMG-Controlled SMA Device for the Rehabilitation of the Ankle Joint in Post-Acute Stroke

    Science.gov (United States)

    Pittaccio, S.; Viscuso, S.

    2011-07-01

    The capacity of flexing one's ankle is an indispensible segment of gait re-learning, as imbalance, wrong compensatory use of other joints and risk of falling may depend on the so-called drop-foot. The rehabilitation of ankle dorsiflexion may be achieved through active exercising of the relevant musculature (especially tibialis anterior, TA). This can be troublesome for patients affected by weakness and flaccid paresis. Thus, as needs evolve during patient's improvements, a therapeutic device should be able to guide and sustain gradual recovery by providing commensurate aid. This includes exploiting even initial attempts at voluntary motion and turns those into effective workout. An active orthosis powered by two rotary actuators containing NiTi wire was designed to obtain ankle dorsiflexion. A computer routine that analyzes the electromyographic (sEMG) signal from TA muscle is used to control the orthosis and trigger its activation. The software also provides instructions and feed-back for the patient. Tests on the orthosis proved that it can produce strokes up to 36° against resisting torques exceeding 180 Ncm. Three healthy subjects were able to control the orthosis by modulating their TA sEMG activity. The movement produced in the preliminary tests is interesting for lower limb rehabilitation, and will be further improved by optimizing body-orthosis interface. It is hoped that this device will enhance early rehabilitation and recovery of ankle mobility in stroke patients.

  2. Relationships between the center of pressure and the movements of the ankle and knee joints during the stance phase in patients with severe medial knee osteoarthritis.

    Science.gov (United States)

    Fukaya, Takashi; Mutsuzaki, Hirotaka; Okubo, Tomoyuki; Mori, Koichi; Wadano, Yasuyoshi

    2016-08-01

    The knee joint movement during the stance phase is affected by altered ankle movement and the center of pressure (COP). However the relationships between changes in the center of pressure (COP) and the altered kinematics and kinetics of the ankle and knee joints in patients with osteoarthritis (OA) of the knee are not well understood. The purpose of this study was to determine the relationships between changes in the COP and the altered kinematic and kinetic variables in ankle and knee joints during the stance phase in patients with medial knee OA. Fourteen patients with knee OA (21 knees) and healthy subjects were assessed by gait analysis using an eight-camera motion analysis system to record forward and lateral shifts in the COP and the angle and net internal moments of the knee and ankle joint. Spearman rank-correlation coefficients were used to determine the relationship between these results. In knees with medial OA, lateral shifts in the COP were correlated with knee flexion angle. Lateral shifts in the COP were correlated with the second peak of the knee extensor moment and correlated with the knee abductor moment. In patients with medial knee OA, lateral shifts in the COP were negatively correlated with the kinematic and kinetic variables in the sagittal plane of the knee joints. Controlling such lateral shifts in the COP may thus be an effective intervention for mechanical loads on the knee during the stance phase in patients with knee OA. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Postural responses to multidirectional stance perturbations in cerebellar ataxia

    NARCIS (Netherlands)

    Bakker, Maaike; Allum, John H J; Visser, Jasper E; Grüneberg, Christian; van de Warrenburg, Bart P; Kremer, H P H; Bloem, Bastiaan R

    Previous studies of patients with focal cerebellar damage underscored the importance of the cerebellum for balance control. These studies were restricted to postural control in the pitch plane, and focused mainly on leg muscle responses. Here, we examined the effect of degenerative cerebellar

  4. Postural responses to multidirectional stance perturbations in cerebellar ataxia

    NARCIS (Netherlands)

    Bakker, Maaike; Allum, John H J; Visser, Jasper E; Grüneberg, Christian; van de Warrenburg, Bart P; Kremer, H P H; Bloem, Bastiaan R

    2006-01-01

    Previous studies of patients with focal cerebellar damage underscored the importance of the cerebellum for balance control. These studies were restricted to postural control in the pitch plane, and focused mainly on leg muscle responses. Here, we examined the effect of degenerative cerebellar

  5. Communicating Epistemic Stance: How Speech and Gesture Patterns Reflect Epistemicity and Evidentiality

    Science.gov (United States)

    Roseano, Paolo; González, Montserrat; Borràs-Comes, Joan; Prieto, Pilar

    2016-01-01

    This study investigates how epistemic stance is encoded and perceived in face-to-face communication when language is regarded as comprised by speech and gesture. Two studies were conducted with this goal in mind. The first study consisted of a production task in which participants performed opinion reports. Results showed that speakers communicate…

  6. Stance and Engagement in Pure Mathematics Research Articles: Linking Discourse Features to Disciplinary Practices

    Science.gov (United States)

    McGrath, Lisa; Kuteeva, Maria

    2012-01-01

    Recent ESP research into academic writing has shown how writers convey their stance and interact with readers across different disciplines. However, little research has been carried out into the disciplinary writing practices of the pure mathematics academic community from an ESP genre analysis perspective. This study begins to address this gap by…

  7. Afferent-mediated modulation of the soleus muscle activity during the stance phase of human walking

    DEFF Research Database (Denmark)

    Nazarena, Mazzaro; Grey, Michael James; do Nascimento, Omar Feix

    2006-01-01

    The aim of this study was to investigate the contribution of proprioceptive feedback to the amplitude modulation of the soleus muscle activity during human walking. We have previously shown that slow-velocity, small-amplitude ankle dorsiflexion enhancements and reductions applied during the stance...

  8. Pedagogical Stances of High School ESL Teachers: "Huelgas" in High School ESL Classrooms

    Science.gov (United States)

    del Carmen Salazar, Maria

    2010-01-01

    This article presents a qualitative case study of the pedagogical stances of high school English as a Second Language (ESL) teachers, and the subsequent responses of resistance or conformity by their English Language Learners (ELLs). The participants include three high school ESL teachers and 60 high school ESL students of Mexican origin. Findings…

  9. Influence of virtual reality on postural stability during movements of quiet stance.

    Science.gov (United States)

    Horlings, Corinne G C; Carpenter, Mark G; Küng, Ursula M; Honegger, Flurin; Wiederhold, Brenda; Allum, John H J

    2009-02-27

    Balance problems during virtual reality (VR) have been mentioned in the literature but seldom investigated despite the increased use of VR systems as a training or rehabilitation tool. We examined the influence of VR on body sway under different stance conditions. Seventeen young subjects performed four tasks (standing with feet close together or tandem stance on firm and foam surfaces for 60s) under three visual conditions: eyes open without VR, eyes closed, or while viewing a virtual reality scene which moved with body movements. Angular velocity transducers mounted on the shoulder provided measures of body sway in the roll and pitch plane. VR caused increased pitch and roll angles and angular velocities compared to EO. The effects of VR were, for the most part, indistinguishable from eyes closed conditions. Use of a foam surface increased sway compared to a firm surface under eyes closed and VR conditions. During the movements of quiet stance, VR causes an increase in postural sway in amplitude similar to that caused by closing the eyes. This increased sway was present irrespective of stance surface, but was greatest on foam.

  10. How Can a Taxonomy of Stances Help Clarify Classical Debates on Scientific Change?

    Directory of Open Access Journals (Sweden)

    Hakob Barseghyan

    2017-11-01

    Full Text Available In this paper, we demonstrate how a systematic taxonomy of stances can help elucidate two classic debates of the historical turn—the Lakatos–Feyerabend debate concerning theory rejection and the Feyerabend–Kuhn debate about pluralism during normal science. We contend that Kuhn, Feyerabend, and Lakatos were often talking at cross-purposes due to the lack of an agreed upon taxonomy of stances. Specifically, we provide three distinct stances that scientists take towards theories: acceptance of a theory as the best available description of its domain, use of a theory in practical applications, and pursuit (elaboration of a theory. We argue that in the Lakatos–Feyerabend debate, Lakatos was concerned with acceptance whereas Feyerabend was mainly concerned with pursuit. Additionally, we show how Feyerabend and Kuhn’s debate on the role of pluralism/monism in normal science involved a crucial conflation of all three stances. Finally, we outline a few general lessons concerning the process of scientific change.

  11. Tibialis anterior stretch reflex in early stance is suppressed by repetitive transcranial magnetic stimulation

    DEFF Research Database (Denmark)

    Zuur, Abraham T; Christensen, Mark Schram; Sinkjær, Thomas

    2009-01-01

    Abstract A rapid plantar flexion perturbation in the early stance phase of walking elicits a large stretch reflex in tibialis anterior (TA). In this study we use repetitive Transcranial Magnetic Stimulation (rTMS) to test if this response is mediated through a transcortical pathway. TA stretch...

  12. Turkish Language Teachers' Stance Taking Movements in the Discourse on Globalization and Language

    Science.gov (United States)

    Coskun, Ibrahim

    2013-01-01

    This study investigates how Turkish teachers take and give stances in the discourse on globalization and language by using linguistic resources. According to the findings obtained through the discourse analysis of the corpus that consisted of 36 h of recording of the discussion among 4 teachers with 5 to 10 years of teaching experience, the…

  13. Towards a Critical Health Equity Research Stance: Why Epistemology and Methodology Matter More than Qualitative Methods

    Science.gov (United States)

    Bowleg, Lisa

    2017-01-01

    Qualitative methods are not intrinsically progressive. Methods are simply tools to conduct research. Epistemology, the justification of knowledge, shapes methodology and methods, and thus is a vital starting point for a critical health equity research stance, regardless of whether the methods are qualitative, quantitative, or mixed. In line with…

  14. Changing and Changed Stance toward Norm Selection in Philippine Universities: Its Pedagogical Implications

    Science.gov (United States)

    Bernardo, Alejandro S.

    2014-01-01

    This paper reports the results of a survey which involved College English teachers from three leading universities in the Philippines. The results point to one conclusion--College English teachers now have a changing and changed stance toward norm selection in Philippine Universities. The results give the impression that a good number of College…

  15. The recognition of acted interpersonal stance in police interrogations and the influence of actor proficiency

    NARCIS (Netherlands)

    Bruijnes, Merijn; op den Akker, Hendrikus J.A.; Spitters, Sophie; Sanders, Merijn; Fu, Quihua

    2015-01-01

    This paper reports on judgement studies regarding the perception of interpersonal stances taken by humans playing the role of a suspect in a police interrogation setting. Our project aims at building believable embodied conversational characters to play the role of suspects in a serious game for

  16. Symposium Introduction: Stepping into Their Power--The Development of a Teacher Leadership Stance

    Science.gov (United States)

    Smulyan, Lisa

    2016-01-01

    This introduction to the symposium on Teacher Leadership describes how a group of teachers have developed a definition of teacher leadership as a stance. The article explores how prior definitions of teacher leadership tend to focus on individual skills or roles. Neoliberal educational policies that emphasize market-based policy, privatization,…

  17. Elementary Students' Roles and Epistemic Stances during Document-Based History Lessons

    Science.gov (United States)

    Nokes, Jeffery D.

    2014-01-01

    This article reports on a study that repositioned elementary students in new roles as active, critical participants in historical inquiry--roles that required a more mature epistemic stance. It reports 5th-grade students' responses to instructional methods intended to help them understand the nature of historical knowledge, appreciate the work of…

  18. Changes in the fiscal stance and the composition of public spending

    Czech Academy of Sciences Publication Activity Database

    Stančík, Juraj; Välilä, T.

    -, č. 394 (2009), s. 1-22 ISSN 1211-3298 R&D Projects: GA MŠk LC542 Institutional research plan: CEZ:AV0Z70850503 Keywords : fiscal policy * public expenditure * fiscal stance Subject RIV: AH - Economics http://www.cerge-ei.cz/pdf/wp/Wp394.pdf

  19. Changes in the fiscal stance and the composition of public spending

    Czech Academy of Sciences Publication Activity Database

    Stančík, Juraj; Välilä, T.

    2012-01-01

    Roč. 43, č. 1 (2012), s. 199-217 ISSN 0377-7332 Institutional research plan: CEZ:AV0Z70850503 Keywords : fiscal policy * public expenditure * fiscal stance Subject RIV: AH - Economics Impact factor: 0.614, year: 2012

  20. EFL Doctoral Students' Conceptions of Authorial Stance in Academic Knowledge Claims and the Tie to Epistemic Beliefs

    Science.gov (United States)

    Chang, Peichin; Tsai, Chin-Chung

    2014-01-01

    Taking an effective authorial stance in research argumentation has been designated as both vitally important and challenging. The study investigated English as a foreign language (EFL) doctoral students' conceptions of authorial stance, the role of domains in affecting their conceptions, and the ties of the conceptions to the participants'…

  1. "Seeing the Everyday through New Lenses": Pedagogies and Practices of Literacy Teacher Educators with a Critical Stance

    Science.gov (United States)

    Dharamshi, Pooja

    2018-01-01

    This article explores the practices and pedagogies of six literacy teacher educators with a critical stance. In this qualitative research study, three semi-structured interviews were conducted with each participant over a three-year period. They were able to negotiate a critical stance into their teacher education courses in several ways: using an…

  2. Phase synchronisation of the three leg joints in quiet human stance.

    Science.gov (United States)

    Günther, Michael; Putsche, Peter; Leistritz, Lutz; Grimmer, Sten

    2011-03-01

    Quiet human stance is a dynamic multi-segment phenomenon. In literature, coupled ankle and hip actions are in the focus and examinations are usually restricted to frequency contributions below 4 Hz. Very few studies point to the knee playing an active role, and just one study gives evidence of higher frequency contributions. In order to investigate the dynamic coupling of all three leg joints in more depth, we revisited an experimental data set on quiet human stance. Since phase synchronisation is a strong indicator of non-linear coupling behind, we used the phase synchronisation index (PSI) to quantify the degree of leg joint coupling as a function of frequency. One main result is that we did not find any synchronisation between ankle and hip across the whole frequency range examined up to 8 Hz. In contrast, there is significant synchronisation between ankle and knee at a couple of frequencies between 1.25 Hz and 8 Hz when looking at the kinematics. Their joint torques rather synchronise below 2 Hz. There is also synchronisation between knee and hip kinematics above 6 Hz, however, only significant at one frequency bin in our data set. From this, we would infer that the multiple mechanical degrees of freedom contributing to quiet human stance should be chosen according to, thus map, physiology. Thereby, the knee is indispensable and bi-articular muscles play a central role in organising quiet human stance. Examining the non-stationarity of phase synchronisations will probably advance the understanding of self-organisation of quiet human stance. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. The impact of the initial stance position on lower limb joint kinetics in the taekwondo roundhouse kick

    Directory of Open Access Journals (Sweden)

    Daniel Jandačka

    2013-06-01

    Full Text Available BACKGROUND: To achieve good performance, taekwondo athletes should optimize the stance position of the foot on the ground. OBJECTIVE: The aim of this study is to compare generated net joint power (hip, knee and ankle during stance phase, magnitude of peak foot velocity of the attacking lower extremity and execution stance time produced from three stance positions (forward "0°", diagonal "45°", orthogonal "90°" in the taekwondo roundhouse kick. METHODS: Ten taekwondo athletes participated in the study; their experience of practicing taekwondo ranged between 13.8 ± 5.8 years. The kinetics and kinematics of the athletes’ movement during the roundhouse kick were recorded. The execution stance time and the magnitude of peak foot velocity were determined. The net joint power of the kicking lower extremity during the stance phase was calculated using the inverse dynamics method. Then the peak net joint power was determined. RESULTS: The analysis of variance for repeated measures showed that there is a significant main effect of the stance position on the peak net hip joint power in the three planes. In addition, the stance position does not affect the magnitude of the peak foot velocity of the kicking lower extremity and execution stance time. CONCLUSIONS: The necessity to produce a higher net hip joint power in the stance phase of the roundhouse kick from the position when the feet are placed orthogonal to the target of the kick, compared with the execution of the kick from the forward or diagonal position, must be taken into account for purposes of rationalizing strength training of taekwondo athletes or for selecting the technique of the roundhouse kick.

  4. Determining the activation of gluteus medius and the validity of the single leg stance test in chronic, nonspecific low back pain.

    Science.gov (United States)

    Penney, Tracy; Ploughman, Michelle; Austin, Mark W; Behm, David G; Byrne, Jeannette M

    2014-10-01

    To determine the activation of the gluteus medius in persons with chronic, nonspecific low back pain compared with that in control subjects, and to determine the association of the clinical rating of the single leg stance (SLS) with chronic low back pain (CLBP) and gluteus medius weakness. Cohort-control comparison. Academic research laboratory. Convenience sample of people (n=21) with CLBP (>12wk) recruited by local physiotherapists, and age- and sex-matched controls (n=22). Subjects who received specific pain diagnoses were excluded. Not applicable. Back pain using the visual analog scale (mm); back-related disability using the Oswestry Back Disability Index (%); strength of gluteus medius measured using a hand dynamometer (N/kg); SLS test; gluteus medius onset and activation using electromyography during unipedal stance on a forceplate. Individuals in the CLBP group exhibited significant weakness in the gluteus medius compared with controls (right, P=.04; left, P=.002). They also had more pain (CLBP: mean, 20.50mm; 95% confidence interval [CI], 13.11-27.9mm; control subjects: mean, 1.77mm; 95% CI, -.21 to 3.75mm) and back-related disability (CLBP: mean, 18.52%; 95% CI, 14.46%-22.59%; control subjects: mean, .68%; 95% CI, -.41% to 1.77%), and reported being less physically active. Weakness was accompanied by increased gluteus medius activation during unipedal stance (R=.50, P=.001) but by no difference in muscle onset times. Although greater gluteus medius weakness was associated with greater pain and disability, there was no difference in muscle strength between those scoring positive and negative on the SLS test (right: F=.002, P=.96; left: F=.1.75, P=.19). Individuals with CLBP had weaker gluteus medius muscles than control subjects without back pain. Even though there was no significant difference in onset time of the gluteus medius when moving to unipedal stance between the groups, the CLBP group had greater gluteus medius activation. A key finding was that

  5. Effect of two Backpack Designs on Cop Displacement and Plantar Force Distribution in Children during Upright Stance

    Directory of Open Access Journals (Sweden)

    Mastalerz Andrzej

    2016-09-01

    Full Text Available Introduction. Many studies have compared different backpack designs and their influence on the carrier; however, no data referring to school students aged 7-8 years are currently available. Therefore, the aim of the research was to assess the influence of backpack design on centre of pressure (COP displacement and plantar force distribution in children during an upright stance. Material and methods. Nineteen school students (9 males and 10 females volunteered for the study. Two Polish backpacks intended for school use were evaluated: backpack A, which had two main compartments, and backpack B, which had one main compartment. The backpack load was composed of books, binders, and regular school equipment. During the measurements, the subjects were asked to look ahead with the head straight and arms at the sides in a comfortable position and to stand barefoot on the F-Scan® sensors (Tekscan, F-Scan® attached to the force platform (Kistler, carrying a load corresponding to 10% of their body mass. Results. The study found insignificant differences between the two backpack designs. Moreover, COP parameters increased significantly during an upright stance while carrying backpack B in comparison to the empty backpack condition. Additionally, we observed significantly higher values of plantar force distribution in the heel region for the condition without load and insignificantly higher ones for carrying backpack A. Conclusions. The results of the current study suggest that the differences between the two backpack designs are too marginal to be detected through COP displacement. Disturbances in plantar force distribution suggest a lack of posture control and a lower stability of the standing position with a backpack, but these disturbances were significant only when the backpack with one main compartment was used.

  6. A Social Cognitive Neuroscience Stance on Human-Robot Interactions

    Directory of Open Access Journals (Sweden)

    Chaminade Thierry

    2011-12-01

    Full Text Available Robotic devices, thanks to the controlled variations in their appearance and behaviors, provide useful tools to test hypotheses pertaining to social interactions. These agents were used to investigate one theoretical framework, resonance, which is defined, at the behavioral and neural levels, as an overlap between first- and third- person representations of mental states such as motor intentions or emotions. Behaviorally, we found a reduced, but significant, resonance towards a humanoid robot displaying biological motion, compared to a human. Using neuroimaging, we've reported that while perceptual processes in the human occipital and temporal lobe are more strongly engaged when perceiving a humanoid robot than a human action, activity in areas involved in motor resonance depends on attentional modulation for artificial agent more strongly than for human agents. Altogether, these studies using artificial agents offer valuable insights into the interaction of bottom-up and top-down processes in the perception of artificial agents.

  7. Early functional postoperative therapy of distal radius fracture with a dynamic orthosis: results of a prospective randomized cross-over comparative study.

    Directory of Open Access Journals (Sweden)

    Fabian M Stuby

    Full Text Available This study was conducted according to GCP criteria as a prospective randomized cross-over study. The primary goal of the study was to determine clinical findings and patient satisfaction with postoperative treatment. 29 patients with a distal radius fracture that was surgically stabilized from volar and who met the inclusion criteria were enrolled over a 12-month period. Each patient randomly received either a dorsal plaster splint or a vacuum-fit flexible but blocked orthosis applied postoperatively in the operating theatre to achieve postoperative immobilization. After one week all patients were crossed over to the complementary device maintaining the immobilization until end of week 2. After week 2 both groups were allowed to exercise wrist mobility with a physiotherapist, in the orthosis group the device was deblocked, thus allowing limited wrist mobility. After week 4 the devices were removed in both groups. Follow-up exams were performed after postoperative weeks 1, 2, 4 and 12.Results were determined after week 1 and 2 using SF 36 and a personally compiled questionnaire; after weeks 4 and 12 with a clinical check-up, calculation of ROM and the DASH Score. Comparison of the two groups showed a significant difference in ROM for volar flexion after 4 weeks, but no significant differences in DASH Score, duration of disability or x-ray findings. With regard to satisfaction with comfort and hygiene, patients were significantly more satisfied with the dynamic orthosis, and 23 of the 29 patients would prefer the flexible vacuum orthosis in future.German Clinical Trials Register (DRKS DRKS00006097.

  8. Evaluation of the magnitude of hip joint deformation in subjects with avascular necrosis of the hip joint during walking with and without Scottish Rite orthosis.

    Science.gov (United States)

    Karimi, Mohammad Taghi; Mohammadi, Ali; Ebrahimi, Mohammad Hossein; McGarry, Anthony

    2017-02-01

    The femoral head in subjects with leg calve perthes disease (LCPD) is generally considerably deformed. It is debatable whether this deformation is due to an increase in applied loads, a decrease in bone mineral density or a change in containment of articular surfaces. The aim of this study was to determine the influence of these factors on deformation of the femoral head. Two subjects with LCPD participated in this study. Subject motion and the forces applied on the affected leg were recorded using a motion analysis system (Qualsis TM ) and a Kistler force plate. OpenSim software was used to determine joint contact force of the hip joint whilst walking with and without a Scottish Rite orthosis. 3D Models of hip joints of both subjects were produced by Mimics software. The deformation of femoral bone was determined by Abaqus. Mean values of the force applied on the leg increased while walking with the orthosis. There was no difference between bone mineral density (BMD) of the femoral bone of normal and LCPD sides (p-value>0.05) and no difference between hip joint contact force of normal and LCPD sides. Hip joint containment appeared to decrease follow the use of the orthosis. It can be concluded that the deformation of femoral head in LCPD may not be due to change in BMD or applied load. Although the Scottish Rite orthosis is used mostly to increase hip joint containment, it appears to reduce hip joint contact area. It is recommended that a similar study is conducted using a higher number of subjects. Copyright © 2016 IPEM. All rights reserved.

  9. Early functional outcome of two different orthotic concepts in ankle sprains: a randomized controlled trial.

    Science.gov (United States)

    Best, Raymond; Böhle, Caroline; Schiffer, Thorsten; Petersen, Wolf; Ellermann, Andree; Brueggemann, Gert Peter; Liebau, Christian

    2015-07-01

    Purpose of the study was the evaluation of the early functional outcome of patients with an acute ankle sprain treated either with a semirigid, variable, phase-adapted modular ankle orthosis or an invariable orthotic reference device. Forty-seven patients with acute ankle sprain grade II or more were included. In addition, 77 healthy controls as a reference were investigated. The injured subjects were treated with one of the two devices by random for 6 weeks. Ankle scores (FAOS, AOFAS) were taken at baseline after injury, 1 and 3 months after injury. Functional performance tests (balance platform, zig zag run, shuttle run, vertical drop jump) were performed at 1 and 3 months after injury. No significant score differences could be found between the two intervention groups except for achieving a preinjury activity level after 3 months only in the modular orthosis group. Postural functional performances (balance test) also showed no significant differences whereas the results of the agility tests revealed small but significant better results in the modular orthosis group in comparison to the invariable orthosis group. Cohen's effect sizes were high. Differences between the two intervention groups were marginal and very small but significant and--regarding Cohen's effect sizes--effective. Especially relating to functional performance, this might be a careful indication that a more effective strategy for promoting a protected, rapid recovery to physical activity after ankle sprains might be achieved by applying a phase-adapted ankle orthosis. Especially in athletic patients, phase-adapted orthosis should be further investigated and considered to ensure fully protected ligament healing as well as to regain early functional recovery.

  10. Towards a Critical Health Equity Research Stance: Why Epistemology and Methodology Matter More Than Qualitative Methods.

    Science.gov (United States)

    Bowleg, Lisa

    2017-10-01

    Qualitative methods are not intrinsically progressive. Methods are simply tools to conduct research. Epistemology, the justification of knowledge, shapes methodology and methods, and thus is a vital starting point for a critical health equity research stance, regardless of whether the methods are qualitative, quantitative, or mixed. In line with this premise, I address four themes in this commentary. First, I criticize the ubiquitous and uncritical use of the term health disparities in U.S. public health. Next, I advocate for the increased use of qualitative methodologies-namely, photovoice and critical ethnography-that, pursuant to critical approaches, prioritize dismantling social-structural inequities as a prerequisite to health equity. Thereafter, I discuss epistemological stance and its influence on all aspects of the research process. Finally, I highlight my critical discourse analysis HIV prevention research based on individual interviews and focus groups with Black men, as an example of a critical health equity research approach.

  11. Liberating literacies: L1-students resources for stance-taking in the literature classroom

    DEFF Research Database (Denmark)

    Kabel, Kristine; Brok, Lene Storgaard

    2015-01-01

    a pattern in students’ linguistic choices in the literature classroom and their metadiscourses. Moreover, privileged ways of participating in group work about text production involve strategies that enhance students’ development of an independent voice and of resources for stance-taking. Such strategies can...... by approaches to the importance of explorative meaning-making processes in the classroom (Flower, 1994; Aadahl et al., 2010) and by social semiotic notions of reflection literacy (Hasan, 1996, 2011) as well as critical literacy (Gee, 2012; Gibbons, 2006;), which emphasize students’ meta knowledge and agency...... 5 classes) and consist of students’ written texts, student interviews, video recorded classroom observations and field notes. Preliminary results show a variety in students’ resources for stance-taking, specifically in regard to what extent other voices are integrated in texts, and they show...

  12. Unipedal stance testing as an indicator of fall risk among older outpatients.

    Science.gov (United States)

    Hurvitz, E A; Richardson, J K; Werner, R A; Ruhl, A M; Dixon, M R

    2000-05-01

    To test the hypothesis that a decreased unipedal stance time (UST) is associated with a history of falling among older persons. Fifty-three subjects underwent a standardized history and physical examination and three trials of timed unipedal stance. The electroneuromyography laboratories of tertiary care Veterans Administration and university hospitals. Ambulatory outpatients 50 years and older referred for electrodiagnostic studies. UST and fall histories during the previous year. Twenty subjects (38%) reported falling. Compared with the subjects who had not fallen, those who fell had a significantly shorter UST (9.6 [SD 11.6] vs 31.3 [SD 16.3] seconds, using the longest of the three trials, p risk of having fallen on univariate analysis and in a regression model (odds ratio 108; 95% confidence interval 3.8, >100; p falls. UST of falling, while a UST of > or = 30sec is associated with a low risk of falling.

  13. The Sacrifice and the Ludic Stances Reflected Through the Theatre Practice of the 20th Century

    Czech Academy of Sciences Publication Activity Database

    Koubová, Alice

    2017-01-01

    Roč. 72, č. 6 (2017), s. 451-462 ISSN 0046-385X R&D Projects: GA ČR(CZ) GA16-23046S Institutional support: RVO:67985955 Keywords : performative turn * performance * sacrifice * ludic stance * play * postmodern condition * Brecht * Benjamin * Grotowski Subject RIV: AA - Philosophy ; Religion OBOR OECD: Philosophy , History and Philosophy of science and technology http://www.klemens.sav.sk/fiusav/doc/filozofia/2017/6/451-462.pdf

  14. Mosaic structures in living beings in the light of several modern stances

    OpenAIRE

    Chapouthier , Georges

    2012-01-01

    International audience; Biocosmology implies that the laws of the microcosm (i.e. the laws governing living beings and their minds) mimic the laws of the macrocosm. These laws are based on a mosaic structure and triune organisation, with some roots that may be in the classical dialectical movement. A number of modern stances can be seen in relation to the Biocosmological perspective. The relationship to the mosaic structure may be direct, as with the experimental work of Michod, or indirect, ...

  15. Stance and strategy: post-structural perspective and post-colonial engagement to develop nursing knowledge.

    Science.gov (United States)

    Sochan, Anne M

    2011-07-01

    How should nursing knowledge advance? This exploration contextualizes its evolution past and present. In addressing how it evolved in the past, a probable historical evolution of its development draws on the perspectives of Frank & Gills's World System Theory, Kuhn's treatise on Scientific Revolutions, and Foucault's notions of Discontinuities in scientific knowledge development. By describing plausible scenarios of how nursing knowledge evolved, I create a case for why nursing knowledge developers should adopt a post-structural stance in prioritizing their research agenda(s). Further, by adopting a post-structural stance, I create a case on how nurses can advance their disciplinary knowledge using an engaging post-colonial strategy. Given an interrupted history caused by influence(s) constraining nursing's knowledge development by power structures external, and internal, to nursing, knowledge development can evolve in the future by drawing on post-structural interpretation, and post-colonial strategy. The post-structural writings of Deleuze & Guattari's understanding of 'Nomadology' as a subtle means to resist being constrained by existing knowledge development structures, might be a useful stance to understanding the urgency of why nursing knowledge should advance addressing the structural influences on its development. Furthermore, Bhabha's post-colonial elucidation of 'Hybridity' as an equally discreet means to change the culture of those constraining structures is an appropriate strategy to enact how nursing knowledge developers can engage with existing power structures, and simultaneously influence that engagement. Taken together, 'post-structural stance' and 'post-colonial strategy' can refocus nursing scholarship to learn from its past, in order to develop relevant disciplinary knowledge in its future. © 2011 Blackwell Publishing Ltd.

  16. A reliable unipedal stance test for the assessment of balance using a force platform.

    Science.gov (United States)

    Ponce-González, J G; Sanchis-Moysi, J; González-Henriquez, J J; Arteaga-Ortiz, R; Calbet, J A L; Dorado, C

    2014-02-01

    The aim was to develop a unipedal stance test for the assessment of balance using a force platform. A single-leg balance test was conducted in 23 students (mean ± SD) age: 23 ± 3 years) in a standard position limiting the movement of the arms and non-supporting leg. Six attempts, with both the jumping (JL) and the contralateral leg (CL), were performed under 3 conditions: 1) eyes opened; 2) eyes closed; 3) eyes opened and executing a precision task. The same protocol was repeated two-week apart. The mean and the best result of the six attempts performed each day were taken as representative of balance. The speed of the centre of pressure (CP-Speed) showed excellent reliability for the "best result" analysis in all tests (ICCs 0.87-0.97), except in the test with the eyes closed performed on the CL (ICCtest. The single-leg stance balance test proposed is a reliable method to assess balance, especially when performed in a static position, with the eyes opened and using the best result of six attempts as reference, independently of the stance leg.

  17. A systematic review of the relationship between physical activities in sports or daily life and postural sway in upright stance.

    Science.gov (United States)

    Kiers, Henri; van Dieën, Jaap; Dekkers, Henk; Wittink, Harriët; Vanhees, Luc

    2013-11-01

    In many sports, maintaining balance is necessary to compete at a high level. Also, in many health problems, balance is impaired. Postural sway (PS) is often used as an indicator of upright balance control, and physical activity (PA) might enhance balance control. However, the relationship between PS and PA has never been systematically reviewed. Our objective was to summarize the evidence regarding the relationship between PS in upright bipedal and unipedal standing and PA. We conducted a literature search in MEDLINE, EmBase, CINAHL, the Cochrane Database, and PEDro, up to March 2012, with no limit on the starting date. Characteristics and methodological aspects of each article were extracted by two reviewers. We used centre of pressure (CoP) velocity, and variables related to the CoP area, to compare studies. A total of 39 articles were reviewed from an initial yield of 2,058. Of these 39 studies, 37 used a comparative design, one was a cohort study, and one was a randomized controlled trial. The main conclusion was that in general, sport practitioners sway less than controls, and high-level athletes sway less than low-level athletes. Additionally, we identified specific effects dependent on the use of vision, sport-specific postures, and frequency and duration of the (sports) activity. PS in unperturbed bipedal stance appears to have limited sensitivity to detect subtle differences between groups of healthy people.

  18. Stabilometric response during single-leg stance after lower limb muscle fatigue

    Directory of Open Access Journals (Sweden)

    Carlos A. V. Bruniera

    2013-10-01

    Full Text Available OBJECTIVE: This study sought to analyze the effect of muscle fatigue induced by active isotonic resistance training at a moderate intensity by measuring the knee extension motion during the stabilometric response in a single-leg stance among healthy university students who perform resistance training on a regular basis. METHOD: Eleven healthy university students were subjected to a one-repetition maximum (1RM test. In addition, stabilometric assessment was performed before and after the intervention and consisted of a muscle fatiguing protocol, in which knee extension was selected as the fatiguing task. The Shapiro-Wilk test was used to investigate the normality of the data, and the Wilcoxon test was used to compare the stabilometric parameters before and after induction of muscle fatigue, at a significance level of p≤0.05. Descriptive statistics were used in the analysis of the volunteers' age, height, body mass, and body mass index (BMI. RESULTS: The sample population was 23.1±2.7 years of age, averaged 1.79.2±0.07 m in height and 75.6±8.0 Kg in weight, and had a BMI of 23.27±3.71 Kg.m-2. The volunteers performed exercises 3.36±1.12 days/week and achieved a load of 124.54±22.07 Kg on 1RM and 74.72±13.24 Kg on 60% 1RM. The center of pressure (CoP oscillation on the mediolateral plane before and after fatigue induction was 2.89±0.89 mm and 4.09±0.59 mm, respectively, while the corresponding values on the anteroposterior plane were 2.5±2.2 mm and 4.09±2.26 mm, respectively. The CoP oscillation amplitude on the anteroposterior and mediolateral planes exhibited a significant difference before and after fatigue induction (p=0.04 and p=0.05, respectively. CONCLUSIONS: The present study showed that muscle fatigue affects postural control, particularly with the mediolateral and anteroposterior CoP excursion.

  19. Postural instability detection: aging and the complexity of spatial-temporal distributional patterns for virtually contacting the stability boundary in human stance.

    Directory of Open Access Journals (Sweden)

    Melissa C Kilby

    Full Text Available Falls among the older population can severely restrict their functional mobility and even cause death. Therefore, it is crucial to understand the mechanisms and conditions that cause falls, for which it is important to develop a predictive model of falls. One critical quantity for postural instability detection and prediction is the instantaneous stability of quiet upright stance based on motion data. However, well-established measures in the field of motor control that quantify overall postural stability using center-of-pressure (COP or center-of-mass (COM fluctuations are inadequate predictors of instantaneous stability. For this reason, 2D COP/COM virtual-time-to-contact (VTC is investigated to detect the postural stability deficits of healthy older people compared to young adults. VTC predicts the temporal safety margin to the functional stability boundary ( =  limits of the region of feasible COP or COM displacement and, therefore, provides an index of the risk of losing postural stability. The spatial directions with increased instability were also determined using quantities of VTC that have not previously been considered. Further, Lempel-Ziv-Complexity (LZC, a measure suitable for on-line monitoring of stability/instability, was applied to explore the temporal structure or complexity of VTC and the predictability of future postural instability based on previous behavior. These features were examined as a function of age, vision and different load weighting on the legs. The primary findings showed that for old adults the stability boundary was contracted and VTC reduced. Furthermore, the complexity decreased with aging and the direction with highest postural instability also changed in aging compared to the young adults. The findings reveal the sensitivity of the time dependent properties of 2D VTC to the detection of postural instability in aging, availability of visual information and postural stance and potential applicability as a

  20. Effect of Five-Finger Shoes on Vertical Ground Reaction Force Loading Rates and Perceived Comfort during the Stance Phase of the Running

    Directory of Open Access Journals (Sweden)

    Seyede Zeynab Hoseini

    2016-06-01

    Full Text Available Objective:  Increased vertical ground reaction force loading rates and lack of comfort footwear in the early stance phase can increase the risk of overuse injuries. The purpose of this study was to investigate the effect of Five-finger shoes on vertical ground reaction force loading rate and perceived comfort during the stance phase of running. Methods: 15 male students (aged 24 ± 5/24 years, weight 75/8 ± 4/61 kg, height 178/6 ± 6/64 cm were selected. Subjects were asked to run over a force plate, in control shoe, five finger shoe and barefoot conditions. Loading rate using the slope of the vertical reaction force and perceived comfort were determined using a visual analogue scale. One factor repeated measures ANOVA was used to test the loading rate hypothesis and Paired t-tests was used to test the meaningfulness of perceived comfort (P<0/05. Results: The effect of shoes on loading rate was found to be not significant (P=0.1. However, comfort of control shoes increased by 10. 92% as compared to that of five-finger shoes (P=0.001.  Conclusion: The loading rate of five-finger shoes is the same as that of barefoot during running; however, as subjects did not perceive them as comfortable as regular shoes are five-finger shoes cannot be advised as a desirable choice in exercises.

  1. Balance in Astronauts Performing Jumps, Walking and Quiet Stance Following Spaceflight

    Science.gov (United States)

    Reschke, Millard F.; Bloomberg, J. J.; Wood, S. J.; Harm, D. L.

    2011-01-01

    Introduction: Both balance and locomotor ataxia is severe in astronauts returning from spaceflight with serious implications for unassisted landings. As a part of an ongoing effort to demonstrate the functional significance of the postflight ataxia problem our laboratory has evaluated jumping, walking heel-to-toe and quite stance balance immediately following spaceflight. Methods: Six astronauts from 12-16 day flights and three from 6-month flights were asked to perform three self-initiated two-footed jumps from a 30-cm-high platform, walking for 10 steps (three trials) placing the feet heel to toe in tandem, arms folded across the chest and the eyes closed, and lastly, recover from a simulated fall by standing from a prone position on the floor and with eyes open maintain a quiet stance for 3 min with arms relaxed along the side of the body and feet comfortably positioned on a force plate. Crewmembers were tested twice before flight, on landing day (short-duration), and days 1, 6, and 30 following all flight durations. Results/Conclusions: Many of astronauts tested fell on their first postflight jump but recovered by the third jump showing a rapid learning progression. Changes in take-off strategy were clearly evident in duration of time in the air between the platform and the ground (significant reduction in time to land), and also in increased asymmetry in foot latencies on take-off postflight. During the tandem heel-to-toe walking task there was a significant decrease in percentage of correct steps on landing day (short-duration crew) and on first day following landing (long-duration) with only partial recovery the following day. Astronauts for both short and long duration flight times appeared to be unaware of foot position relative to their bodies or the floor. During quite stance most of crewmembers tested exhibited increased stochastic activity (larger short-term COP diffusion coefficients postflight in all planes and increases in mean sway speed).

  2. Limb-bone scaling indicates diverse stance and gait in quadrupedal ornithischian dinosaurs.

    Directory of Open Access Journals (Sweden)

    Susannah C R Maidment

    Full Text Available BACKGROUND: The most primitive ornithischian dinosaurs were small bipeds, but quadrupedality evolved three times independently in the clade. The transition to quadrupedality from bipedal ancestors is rare in the history of terrestrial vertebrate evolution, and extant analogues do not exist. Constraints imposed on quadrupedal ornithischians by their ancestral bipedal bauplan remain unexplored, and consequently, debate continues about their stance and gait. For example, it has been proposed that some ornithischians could run, while others consider that none were cursorial. METHODOLOGY/PRINCIPAL FINDINGS: Drawing on biomechanical concepts of limb bone scaling and locomotor theory developed for extant taxa, we use the largest dataset of ornithischian postcranial measurements so far compiled to examine stance and gait in quadrupedal ornithischians. Differences in femoral midshaft eccentricity in hadrosaurs and ceratopsids may indicate that hadrosaurs placed their feet on the midline during locomotion, while ceratopsids placed their feet more laterally, under the hips. More robust humeri in the largest ceratopsids relative to smaller taxa may be due to positive allometry in skull size with body mass in ceratopsids, while slender humeri in the largest stegosaurs may be the result of differences in dermal armor distribution within the clade. Hadrosaurs are found to display the most cursorial morphologies of the quadrupedal ornithischian cades, indicating higher locomotor performance than in ceratopsids and thyreophorans. CONCLUSIONS/SIGNIFICANCE: Limb bone scaling indicates that a previously unrealised diversity of stances and gaits were employed by quadrupedal ornithischians despite apparent convergence in limb morphology. Grouping quadrupedal ornithischians together as a single functional group hides this disparity. Differences in limb proportions and scaling are likely due to the possession of display structures such as horns, frills and dermal armor

  3. How Joint Torques Affect Hamstring Injury Risk in Sprinting Swing–Stance Transition

    Science.gov (United States)

    SUN, YULIANG; WEI, SHUTAO; ZHONG, YUNJIAN; FU, WEIJIE; LI, LI; LIU, YU

    2015-01-01

    ABSTRACT Purpose The potential mechanisms of hamstring strain injuries in athletes are not well understood. The study, therefore, was aimed at understanding hamstring mechanics by studying loading conditions during maximum-effort overground sprinting. Methods Three-dimensional kinematics and ground reaction force data were collected from eight elite male sprinters sprinting at their maximum effort. Maximal isometric torques of the hip and knee were also collected. Data from the sprinting gait cycle were analyzed via an intersegmental dynamics approach, and the different joint torque components were calculated. Results During the initial stance phase, the ground reaction force passed anteriorly to the knee and hip, producing an extension torque at the knee and a flexion torque at the hip joint. Thus, the active muscle torque functioned to produce flexion torque at the knee and extension torque at the hip. The maximal muscle torque at the knee joint was 1.4 times the maximal isometric knee flexion torque. During the late swing phase, the muscle torque counterbalanced the motion-dependent torque and acted to flex the knee joint and extend the hip joint. The loading conditions on the hamstring muscles were similar to those of the initial stance phase. Conclusions During both the initial stance and late swing phases, the large passive torques at both the knee and hip joints acted to lengthen the hamstring muscles. The active muscle torques generated mainly by the hamstrings functioned to counteract those passive effects. As a result, during sprinting or high-speed locomotion, the hamstring muscles may be more susceptible to high risk of strain injury during these two phases. PMID:24911288

  4. [Variables determining the amount of care for very preterm neonates: the concept of medical stance].

    Science.gov (United States)

    Burguet, A; Menget, A; Chary-Tardy, A-C; Savajols, E; Abed, N; Thiriez, G

    2014-02-01

    To compare the amount of medical interventions on very preterm neonates (24-31 weeks of gestation) in two French university tertiary care centers, one of which is involved in a Neonatal Developmental Care program. A secondary objective is to assess whether this difference in medical interventions can be linked to a difference in mortality and morbidity rates. We prospectively included all very preterm neonates free from lethal malformation born live in these two centers between 2006 and 2010. These inclusion criteria were met by 1286 patients, for whom we compared the rate of five selected medical interventions: birth by caesarean section, chest intubation in the delivery room, surfactant therapy, pharmacological treatment of patent ductus arteriosus, and red blood cell transfusion. The rates of the five medical interventions were systematically lower in the center that is involved in Neonatal Developmental Care. There was no significant difference in survival at discharge with no severe cerebral ultrasound scan abnormalities between the two centers. There were, however, significantly higher rates of bronchopulmonary dysplasia and nosocomial sepsis and longer hospital stays when the patients were not involved in a Neonatal Developmental Care program. This benchmarking study shows that in France, in the first decade of the 21st century, there are as many ways to handle very preterm neonates as there are centers in which they are born. This brings to light the concept of medical stance, which is the general care approach prior to the treatment itself. This medical stance creates the overall framework for the staff's decision-making regarding neonate care. The different parameters structuring medical stance are discussed. Moreover, this study raises the problematic issue of the aftermath of benchmarking studies when the conclusion is an increase of morbidity in cases where procedure leads to more interventions. Copyright © 2013 Elsevier Masson SAS. All rights

  5. How joint torques affect hamstring injury risk in sprinting swing-stance transition.

    Science.gov (United States)

    Sun, Yuliang; Wei, Shutao; Zhong, Yunjian; Fu, Weijie; Li, Li; Liu, Yu

    2015-02-01

    The potential mechanisms of hamstring strain injuries in athletes are not well understood. The study, therefore, was aimed at understanding hamstring mechanics by studying loading conditions during maximum-effort overground sprinting. Three-dimensional kinematics and ground reaction force data were collected from eight elite male sprinters sprinting at their maximum effort. Maximal isometric torques of the hip and knee were also collected. Data from the sprinting gait cycle were analyzed via an intersegmental dynamics approach, and the different joint torque components were calculated. During the initial stance phase, the ground reaction force passed anteriorly to the knee and hip, producing an extension torque at the knee and a flexion torque at the hip joint. Thus, the active muscle torque functioned to produce flexion torque at the knee and extension torque at the hip. The maximal muscle torque at the knee joint was 1.4 times the maximal isometric knee flexion torque. During the late swing phase, the muscle torque counterbalanced the motion-dependent torque and acted to flex the knee joint and extend the hip joint. The loading conditions on the hamstring muscles were similar to those of the initial stance phase. During both the initial stance and late swing phases, the large passive torques at both the knee and hip joints acted to lengthen the hamstring muscles. The active muscle torques generated mainly by the hamstrings functioned to counteract those passive effects. As a result, during sprinting or high-speed locomotion, the hamstring muscles may be more susceptible to high risk of strain injury during these two phases.

  6. Use of physical therapy in a dog with bilateral severe plantigrade stance.

    Science.gov (United States)

    Ree, Jennifer; Hayashi, Kei; Woelz, Jacqueline; Kim, Sun Young

    2015-01-01

    A 3.5 yr old spayed female Staffordshire terrier weighing 25.5 kg was presented with a 7 wk history of bilateral plantigrade stance in the pelvic limbs directly following an ovariohysterectomy procedure. Upon presentation, the dog had bilateral atrophy of the distal pelvic limb muscles, enlarged popliteal lymph nodes, and ulcerative wounds on the dorsa of her rear paws. Orthopedic examination revealed intact calcaneal tendons bilaterally and neurologic examination localized the lesion to the distal sciatic nerve. A diagnosis of compressive and stretch neuropathy was made affecting the distal sciatic nerve branches. Physical therapy modalities included neuromuscular electrical stimulation, ultrasound, and low-level laser therapy. Other therapeutic modalities included the use of orthotics and progressive wound care. The dog had increased muscle mass, return of segmental reflexes, return of nociception, and the ability to walk on pelvic limbs with higher carriage of the hock 15 mo following presentation. The use of custom orthotics greatly increased the quality of life and other physical therapy modalities may have improved the prognosis in this dog with severe bilateral plantigrade stance due to neuropathy.

  7. Irony as a figure of speech and moral stance (with regard to Wittlin and Kierkegaard

    Directory of Open Access Journals (Sweden)

    Katarzyna Szewczyk-Haake

    2015-12-01

    Full Text Available In his work as a writer, Józef Wittlin searched for literature able to grant the   reader moral support, while at the same time being artistically successful. In his novel Salt of the Earth, the way to com-bine these two, to a certain extent contradictionary aims, is found in the use of irony. An analysis of the classical types of irony appearing in the novel (naive irony, irony of the sender, verbal irony leads to the conclusion that each of those was remarkably modified by the author. As a result, the “ironical anthropology” created by Wittlin in his novel lacks any elements of simple moralizing or giving ready-made moral solutions, but brings a striking image of a human commu-nity, unified not by a common status, but by a common fate. In the novel, irony turns out to be not only a textual figure, but first and foremost a moral stance, approximate to that of Socrates as described by Kierkegaard. Thanks to this stance, Wittlin enthuses his readers with the longing for the ideal, shaping their moral sensibility, at the same time granting them the sovereignty to which the reader of a literary work should be entitled.

  8. Muscle activity of leg muscles during unipedal stance on therapy devices with different stability properties.

    Science.gov (United States)

    Wolburg, Thomas; Rapp, Walter; Rieger, Jochen; Horstmann, Thomas

    2016-01-01

    To test the hypotheses that less stable therapy devices require greater muscle activity and that lower leg muscles will have greater increases in muscle activity with less stable therapy devices than upper leg muscles. Cross-sectional laboratory study. Laboratory setting. Twenty-five healthy subjects. Electromyographic activity of four lower (gastrocnemius medialis, soleus, tibialis anterior, peroneus longus) and four upper leg muscles (vastus medialis and lateralis, biceps femoris, semitendinosus) during unipedal quiet barefoot stance on the dominant leg on a flat rigid surface and on five therapy devices with varying stability properties. Muscle activity during unipedal stance differed significantly between therapy devices (P < 0.001). The order from lowest to highest relative muscle activity matched the order from most to least stable therapy device. There was no significant interaction between muscle location (lower versus upper leg) and therapy device (P = 0.985). Magnitudes of additional relative muscle activity for the respective therapy devices differed substantially among lower extremity muscles. The therapy devices offer a progressive increase in training intensity, and thus may be useful for incremental training programs in physiotherapeutic practice and sports training programs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Investigation of Anticipatory Postural Adjustments during One-Leg Stance Using Inertial Sensors: Evidence from Subjects with Parkinsonism.

    Science.gov (United States)

    Bonora, Gianluca; Mancini, Martina; Carpinella, Ilaria; Chiari, Lorenzo; Ferrarin, Maurizio; Nutt, John G; Horak, Fay B

    2017-01-01

    The One-Leg Stance (OLS) test is a widely adopted tool for the clinical assessment of balance in the elderly and in subjects with neurological disorders. It was previously showed that the ability to control anticipatory postural adjustments (APAs) prior to lifting one leg is significantly impaired by idiopathic Parkinson's disease (iPD). However, it is not known how APAs are affected by other types of parkinsonism, such as frontal gait disorders (FGD). In this study, an instrumented OLS test based on wearable inertial sensors is proposed to investigate both the initial anticipatory phase and the subsequent unipedal balance. The sensitivity and the validity of the test have been evaluated. Twenty-five subjects with iPD presenting freezing of gait (FOG), 33 with iPD without FOG, 13 with FGD, and 32 healthy elderly controls were recruited. All subjects wore three inertial sensors positioned on the posterior trunk (L4-L5), and on the left and right frontal face of the tibias. Participants were asked to lift a foot and stand on a single leg as long as possible with eyes open, as proposed by the mini-BESTest. Temporal parameters and trunk acceleration were extracted from sensors and compared among groups. The results showed that, regarding the anticipatory phase, the peak of mediolateral trunk acceleration was significantly reduced compared to healthy controls ( p   0.74), demonstrating the method's validity. Our findings support the validity of the proposed method for assessing the OLS test and its sensitivity in distinguishing among the tested groups. The instrumented test discriminated between healthy controls and people with parkinsonism and among the three groups with parkinsonism. The objective characterization of the initial anticipatory phase represents an interesting improvement compared to most clinical OLS tests.

  10. A physiological exploration on operational stance and occupational musculoskeletal problem manifestations amongst construction labourers of West Bengal, India.

    Science.gov (United States)

    Chatterjee, Arijit; Sahu, Subhashis

    2018-03-29

    A huge number of labourers engaged in construction industry in India both in organized and unorganized sectors. The construction labourers most often work for an extended period of time and they are compelled to uphold altered static and dynamic operational stance in awkward positions during the complete period of work which raises the demand on the musculoskeletal system and may lead to work related musculoskeletal disorders (WRMSDs). This study is intended to explore the operational stance and occupation related musculoskeletal manifestations amongst the construction labourers. One sixty four male labourers from different construction sites of West Bengal was randomly taken for this study. A modified Nordic questionnaire on MSD and the 12 item General Health Questionnaire (GHQ12) were administered on the construction labourers. Rapid Entire Body Assessment [REBA] and Ovako Work Analysis System [OWAS] methods were applied to analyze the operational stance. Finally, discomfort levels of the specific operational stance were calculated by the use of risk level and BPD scale. From the study it was revealed that most of the construction labourers habitually in awkward operational stance and were affected by altering musculoskeletal manifestations like pain in low back, neck, and wrist. It has been also found that there is a significant (pconstruction labourers in unorganized sectors.

  11. Application of the Superelastic NiTi Spring in Ankle Foot Orthosis (AFO to Create Normal Ankle Joint Behavior

    Directory of Open Access Journals (Sweden)

    Amirhesam Amerinatanzi

    2017-12-01

    Full Text Available Hinge-based Ankle Foot Orthosis (HAFO is one of the most common non-surgical solutions for the foot drop. In conventional HAFOs, the ankle joint is almost locked, and plantar flexion is restricted due to the high stiffness of the hinge mechanism. This often leads to a rigid walking gate cycle, poor muscle activity, and muscle atrophy. Since the ankle torque-angle loop has a non-linear profile, the use of a superelastic NiTi spring within the hinge, due to its nonlinear behavior, could recreate a close-to-normal stiffness of the normal ankle joint, which, in turn, could create a more natural walk. The focus of this study is to evaluate the performance of a superelastic NiTi spring versus a conventional Stainless Steel spring in a hinge mechanism of a custom-fit HAFO. To this aim, a custom-fit HAFO was fabricated via the fast casting technique. Then, motion analysis was performed for two healthy subjects (Case I and Case II: (i subjects with bare foot; (ii subjects wearing a conventional HAFO with no spring; (iii subjects wearing a conventional Stainless Steel-based HAFO; and (iv subjects wearing a NiTi spring-based HAFO. The data related to the ankle angle and the amount of moment applied to the ankle during walking were recorded using Cortex software and used for the evaluations. Finally, Finite Element Analysis (FEA was performed to evaluate the safety of the designed HAFO. The NiTi spring offers a higher range of motion (7.9 versus 4.14 degree and an increased level of moment (0.55 versus 0.36 N·m/kg. Furthermore, a NiTi spring offers an ankle torque-angle loop closer to that of the healthy subjects.

  12. Application of the Superelastic NiTi Spring in Ankle Foot Orthosis (AFO) to Create Normal Ankle Joint Behavior.

    Science.gov (United States)

    Amerinatanzi, Amirhesam; Zamanian, Hashem; Shayesteh Moghaddam, Narges; Jahadakbar, Ahmadreza; Elahinia, Mohammad

    2017-12-07

    Hinge-based Ankle Foot Orthosis (HAFO) is one of the most common non-surgical solutions for the foot drop. In conventional HAFOs, the ankle joint is almost locked, and plantar flexion is restricted due to the high stiffness of the hinge mechanism. This often leads to a rigid walking gate cycle, poor muscle activity, and muscle atrophy. Since the ankle torque-angle loop has a non-linear profile, the use of a superelastic NiTi spring within the hinge, due to its nonlinear behavior, could recreate a close-to-normal stiffness of the normal ankle joint, which, in turn, could create a more natural walk. The focus of this study is to evaluate the performance of a superelastic NiTi spring versus a conventional Stainless Steel spring in a hinge mechanism of a custom-fit HAFO. To this aim, a custom-fit HAFO was fabricated via the fast casting technique. Then, motion analysis was performed for two healthy subjects (Case I and Case II): (i) subjects with bare foot; (ii) subjects wearing a conventional HAFO with no spring; (iii) subjects wearing a conventional Stainless Steel-based HAFO; and (iv) subjects wearing a NiTi spring-based HAFO. The data related to the ankle angle and the amount of moment applied to the ankle during walking were recorded using Cortex software and used for the evaluations. Finally, Finite Element Analysis (FEA) was performed to evaluate the safety of the designed HAFO. The NiTi spring offers a higher range of motion (7.9 versus 4.14 degree) and an increased level of moment (0.55 versus 0.36 N·m/kg). Furthermore, a NiTi spring offers an ankle torque-angle loop closer to that of the healthy subjects.

  13. Postural control during one-leg stance in active and sedentary older people

    Directory of Open Access Journals (Sweden)

    Leonardo George Victorio Victor

    2014-09-01

    Full Text Available Physical inactivity and aging are functional disability factors for older individuals, causing loss of balance and increasing the risk of falls. The purpose of this study was to compare the balance of physically independent older individuals, both participants and non-participants in a regular exercise program. Fifty six physically independent older participants were divided into G1ACTIVE = 28 individuals who participate in a regular exercise program and G2SEDENTARY = 28 individuals who did not participate in any physical exercise program. All participants underwent an eyes-open during one-leg balance test on a force platform. The postural oscillation parameters included center of pressure (COP; sway mean velocity and frequency of COP oscillations. G2 SEDENTARY showed higher postural instability than G1ACTIVE. Significant differences were observed for the main balance parameters. The results of this study support the concept that participation in regular physical activity is beneficial for postural balance of older individuals.

  14. Propulsion System with Pneumatic Artificial Muscles for Powering Ankle-Foot Orthosis

    Science.gov (United States)

    Veneva, Ivanka; Vanderborght, Bram; Lefeber, Dirk; Cherelle, Pierre

    2013-12-01

    The aim of this paper is to present the design of device for control of new propulsion system with pneumatic artificial muscles. The propulsion system can be used for ankle joint articulation, for assisting and rehabilitation in cases of injured ankle-foot complex, stroke patients or elderly with functional weakness. Proposed device for control is composed by microcontroller, generator for muscles contractions and sensor system. The microcontroller receives the control signals from sensors and modulates ankle joint flex- ion and extension during human motion. The local joint control with a PID (Proportional-Integral Derivative) position feedback directly calculates desired pressure levels and dictates the necessary contractions. The main goal is to achieve an adaptation of the system and provide the necessary joint torque using position control with feedback.

  15. Design of a 3D printed lightweight orthotic device based on twisted and coiled polymer muscle: iGrab hand orthosis

    Science.gov (United States)

    Saharan, Lokesh; Sharma, Ashvath; Jung de Andrade, Monica; Baughman, Ray H.; Tadesse, Yonas

    2017-04-01

    Partial or total upper extremity impairment affects the quality of life of a vast number of people due to stroke, neuromuscular disease, or trauma. Many researchers have presented hand orthosis to address the needs of rehabilitation or assistance on upper extremity function. Most of the devices available commercially and in literature are powered by conventional actuators such as DC motors, servomotors or pneumatic actuators. Some prototypes are developed based on shape memory alloy (SMA) and dielectric elastomers (DE). This study presents a customizable, 3D printed, a lightweight exoskeleton (iGrab) based on recently reported Twisted and Coiled Polymer (TCP) muscles, which are lightweight, provide high power to weight ratio and large stroke. We used silver coated nylon 6, 6 threads to make the TCP muscles, which can be easily actuated electrothermally. We reviewed briefly hand orthosis created with various actuation technologies and present our design of tendon-driven exoskeleton with the muscles confined in the forearm area. A single muscle is used to facilitate the motion of all three joints namely DIP (Distal interphalangeal), PIP (Proximal Interphalangeal) and MCP (Metacarpophalangeal) using passive tendons though circular rings. The grasping capabilities, along with TCP muscle properties utilized in the design such as life cycle, actuation under load and power inputs are discussed.

  16. Ambulatory Function and Perception of Confidence in Persons with Stroke with a Custom-Made Hinged versus a Standard Ankle Foot Orthosis

    Directory of Open Access Journals (Sweden)

    Angélique Slijper

    2012-01-01

    Full Text Available Objective. The aim was to compare walking with an individually designed dynamic hinged ankle foot orthosis (DAFO and a standard carbon composite ankle foot orthosis (C-AFO. Methods. Twelve participants, mean age 56 years (range 26–72, with hemiparesis due to stroke were included in the study. During the six-minute walk test (6MW, walking velocity, the Physiological Cost Index (PCI, and the degree of experienced exertion were measured with a DAFO and C-AFO, respectively, followed by a Stairs Test velocity and perceived confidence was rated. Results. The mean differences in favor for the DAFO were in 6MW 24.3 m (95% confidence interval [CI] 4.90, 43.76, PCI −0.09 beats/m (95% CI −0.27, 0.95, velocity 0.04 m/s (95% CI −0.01, 0.097, and in the Stairs Test −11.8 s (95% CI −19.05, −4.48. All participants except one perceived the degree of experienced exertion lower and felt more confident when walking with the DAFO. Conclusions. Wearing a DAFO resulted in longer walking distance and faster stair climbing compared to walking with a C-AFO. Eleven of twelve participants felt more confident with the DAFO, which may be more important than speed and distance and the most important reason for prescribing an AFO.

  17. Is transcutaneous peroneal stimulation beneficial to patients with chronic stroke using an ankle-foot orthosis? A within-subjects study of patients' satisfaction, walking speed and physical activity level.

    NARCIS (Netherlands)

    Swigchem, R. van; Vloothuis, J.; Boer, J. de; Weerdesteijn, V.G.M.; Geurts, A.C.H.

    2010-01-01

    OBJECTIVE: The aim of this study was to evaluate whether community-dwelling chronic stroke patients wearing an ankle-foot orthosis would benefit from changing to functional electrical stimulation of the peroneal nerve. METHODS: In 26 community-dwelling chronic (> 6 months post-onset) patients after

  18. The smart Peano fluidic muscle : A low profile flexible orthosis actuator that feels pain

    NARCIS (Netherlands)

    Veale, Allan Joshua; Anderson, Iain Alexander; Xie, Shane Q.; Lynch, Jerome P.

    2015-01-01

    Robotic orthoses have the potential to provide effective rehabilitation while overcoming the availability and cost constraints of therapists. These orthoses must be characterized by the naturally safe, reliable, and controlled motion of a human therapist's muscles. Such characteristics are only

  19. [Outcomes vs. Attributable Outcomes: Rational Choice Theory Must Take a Stance Towards Action Theory].

    Science.gov (United States)

    Lübbe, Weyma

    2017-07-01

    The reply concentrates on advancing again my third thesis, which has not directly been taken up by Breyer and Kliemt. The thesis says that both criticisms against the Rule of Rescue - the irrationality objection, which Breyer and Kliemt try to defend, and the objection that the Rule is discriminatory, which they do not defend - are the results of insufficient action-theoretical reflection. I argue that Breyer's and Kliemt's objection to the Rule, unstable as it is in their comment, is not even clearly identifiable if they do not take a stance towards the central question: Do they want to - and, if so, can they consistently - incorporate people's interest in taking account of the attributability of an outcome to a decision maker into their utility concept? © Georg Thieme Verlag KG Stuttgart · New York.

  20. Adaptive behaviour of the spinal cord in the transition from quiet stance to walking

    Directory of Open Access Journals (Sweden)

    Serrao Mariano

    2012-07-01

    Full Text Available Abstract Background Modulation of nociceptive withdrawal reflex (NWR excitability was evaluated during gait initiation in 10 healthy subjects to investigate how load- and movement-related joint inputs activate lower spinal centres in the transition from quiet stance to walking. A motion analysis system integrated with a surface EMG device was used to acquire kinematic, kinetic and EMG variables. Starting from a quiet stance, subjects were asked to walk forward, at their natural speed. The sural nerve was stimulated and EMG responses were recorded from major hip, knee and ankle muscles. Gait initiation was divided into four subphases based on centre of pressure and centre of mass behaviours, while joint displacements were used to categorise joint motion as flexion or extension. The reflex parameters were measured and compared between subphases and in relation to the joint kinematics. Results The NWR was found to be subphase-dependent. NWR excitability was increased in the hip and knee flexor muscles of the starting leg, just prior to the occurrence of any movement, and in the knee flexor muscles of the same leg as soon as it was unloaded. The NWR was hip joint kinematics-dependent in a crossed manner. The excitability of the reflex was enhanced in the extensor muscles of the standing leg during the hip flexion of the starting leg, and in the hip flexors of the standing leg during the hip extension of the starting leg. No notable reflex modulation was observed in the ankle muscles. Conclusions Our findings show that the NWR is modulated during the gait initiation phase. Leg unloading and hip joint motion are the main sources of the observed modulation and work in concert to prepare and assist the starting leg in the first step while supporting the contralateral leg, thereby possibly predisposing the lower limbs to the cyclical pattern of walking.

  1. Postural steadiness during quiet stance does not associate with ability to recover balance in older women.

    Science.gov (United States)

    Mackey, Dawn C; Robinovitch, Stephen N

    2005-10-01

    Fall risk depends on ability to maintain balance during daily activities, and on ability to recover balance following a perturbation such as a slip or trip. We examined whether similar neuromuscular variables govern these two domains of postural stability. We conducted experiments with 25 older women (mean age=78 yrs, SD=7 yrs). We acquired measures of postural steadiness during quiet stance (mean amplitude, velocity, and frequency of centre-of-pressure movement when standing with eyes open or closed, on a rigid or compliant surface). We also measured ability to recover balance using the ankle strategy after release from a forward leaning position (based on the maximum release angle where recovery was possible, and corresponding values of reaction time, rate of ankle torque generation, and peak ankle torque). We found that balance recovery variables were not strongly or consistently correlated with postural steadiness variables. The maximum release angle associated with only three of the sixteen postural steadiness variables (mean frequency in rigid, eyes open condition (r=0.36, P=.041), and mean amplitude (r=0.41, P=.038) and velocity (r=0.49, P=.015) in compliant, eyes closed condition). Reaction time and peak torque did not correlate with any steadiness variables, and rate of torque generation correlated moderately with the mean amplitude and velocity of the centre-of-pressure in the compliant, eyes closed condition (r=0.48-0.60). Our results indicate that postural steadiness during quiet stance is not predictive of ability to recover balance with the ankle strategy. Accordingly, balance assessment and fall prevention programs should individually target these two components of postural stability.

  2. Assessing Muscle-Strength Asymmetry via a Unilateral-Stance Isometric Midthigh Pull.

    Science.gov (United States)

    Dos'Santos, Thomas; Thomas, Christopher; Jones, Paul A; Comfort, Paul

    2017-04-01

    To investigate the within-session reliability of bilateral- and unilateral-stance isometric midthigh-pull (IMTP) force-time characteristics including peak force (PF), relative PF, and impulse at time bands (0-100, 0-200, 0-250, and 0-300 milliseconds) and to compare isometric force-time characteristics between right and left and dominant (D) and nondominant (ND) limbs. Professional male rugby league and multisport male college athletes (N = 54; age, 23.4 ± 4.2 y; height, 1.80 ± 0.05 m; mass, 88.9 ± 12.9 kg) performed 3 bilateral IMTP trials and 6 unilateral-stance IMTP trials (3 per leg) on a force plate sampling at 600 Hz. Intraclass correlation coefficients (ICCs) and coefficients of variation (CVs) demonstrated high within-session reliability for bilateral and unilateral IMTP PF (ICC = .94, CV = 4.7-5.5%). Lower reliability measures and greater variability were observed for bilateral and unilateral IMTP impulse at time bands (ICC = .81-.88, CV = 7.7-11.8%). Paired-sample t tests and Cohen d effect sizes revealed no significant differences for all isometric force-time characteristics between right and left limbs in male college athletes (P >.05, d ≤ 0.32) and professional rugby league players (P > .05, d ≤ 0.11); however, significant differences were found between D and ND limbs in male college athletes (P isometric force-time characteristics between D and ND limbs in male athletes.

  3. Reading Sacred Texts in the Classroom: The Alignment between Students and Their Teacher's Interpretive Stances When Reading the Hebrew Bible

    Science.gov (United States)

    Hassenfeld, Ziva R.

    2016-01-01

    This study investigated the voices of students interpreting Hebrew Bible texts in one fourth-grade classroom. Through think-alouds on the Biblical text with each student, exit interviews, teacher interviews, and classroom observations, this study found that those students whose interpretive stances were more aligned with the teacher's were given…

  4. The Transformative Power of Taking an Inquiry Stance on Practice: Practitioner Research as Narrative and Counter-Narrative

    Science.gov (United States)

    Ravitch, Sharon M.

    2014-01-01

    Within the ever-developing, intersecting, and overlapping contexts of globalization, top-down policy, mandates, and standardization of public and higher education, many conceptualize and position practitioner research as a powerful stance and a tool of social, communal, and educational transformation, a set of methodological processes that…

  5. Outdoor Urban Propagation Experiment of a Handset MIMO Antenna with a Human Phantom located in a Browsing Stance

    DEFF Research Database (Denmark)

    Yamamoto, Atsushi; Hayashi, Toshiteru; Ogawa, Koichi

    2007-01-01

    Outdoor radio propagation experiments are presented at 2.4 GHz, using a handset MIMO antenna with two monopoles and two planar inverted-F antennas (PIFAs), adjacent to a human phantom in browsing stance. The propagation test was performed in an urban area of a city, which resulted in non lineof...

  6. Exoskeleton Technology in Rehabilitation: Towards an EMG-Based Orthosis System for Upper Limb Neuromotor Rehabilitation

    OpenAIRE

    Luis Manuel Vaca Benitez; Marc Tabie; Niels Will; Steffen Schmidt; Mathias Jordan; Elsa Andrea Kirchner

    2013-01-01

    The rehabilitation of patients should not only be limited to the first phases during intense hospital care but also support and therapy should be guaranteed in later stages, especially during daily life activities if the patient’s state requires this. However, aid should only be given to the patient if needed and as much as it is required. To allow this, automatic self-initiated movement support and patient-cooperative control strategies have to be developed and integrated into assistive syst...

  7. Gastrocnemius myoelectric control of a robotic hip exoskeleton.

    Science.gov (United States)

    Grazi, Lorenzo; Crea, Simona; Parri, Andrea; Yan, Tingfang; Cortese, Mario; Giovacchini, Francesco; Cempini, Marco; Pasquini, Guido; Micera, Silvestro; Vitiello, Nicola

    2015-01-01

    In this paper we present a novel EMG-based assistive control strategy for lower-limb exoskeletons. An active pelvis orthosis (APO) generates torque profiles for the hip flexion motion assistance, according to the Gastrocnemius Medialis EMG signal. The strategy has been tested on one healthy subject: experimental results show that the user is able to reduce his muscular activation when the assistance is switched on with respect to the free walking condition.

  8. Investigation of Anticipatory Postural Adjustments during One-Leg Stance Using Inertial Sensors: Evidence from Subjects with Parkinsonism

    Directory of Open Access Journals (Sweden)

    Gianluca Bonora

    2017-07-01

    Full Text Available The One-Leg Stance (OLS test is a widely adopted tool for the clinical assessment of balance in the elderly and in subjects with neurological disorders. It was previously showed that the ability to control anticipatory postural adjustments (APAs prior to lifting one leg is significantly impaired by idiopathic Parkinson’s disease (iPD. However, it is not known how APAs are affected by other types of parkinsonism, such as frontal gait disorders (FGD. In this study, an instrumented OLS test based on wearable inertial sensors is proposed to investigate both the initial anticipatory phase and the subsequent unipedal balance. The sensitivity and the validity of the test have been evaluated. Twenty-five subjects with iPD presenting freezing of gait (FOG, 33 with iPD without FOG, 13 with FGD, and 32 healthy elderly controls were recruited. All subjects wore three inertial sensors positioned on the posterior trunk (L4–L5, and on the left and right frontal face of the tibias. Participants were asked to lift a foot and stand on a single leg as long as possible with eyes open, as proposed by the mini-BESTest. Temporal parameters and trunk acceleration were extracted from sensors and compared among groups. The results showed that, regarding the anticipatory phase, the peak of mediolateral trunk acceleration was significantly reduced compared to healthy controls (p < 0.05 in subjects with iPD with and without FOG, but not in FGD group (p = 0.151. Regarding the balance phase duration, a significant shortening was found in the three parkinsonian groups compared to controls (p < 0.001. Moreover, balance was significantly longer (p < 0.001 in iPD subjects without FOG compared to subjects with FGD and iPD subjects presenting FOG. Strong correlations between balance duration extracted by sensors and clinical mini-BESTest scores were found (ρ > 0.74, demonstrating the method’s validity. Our findings support the validity of the proposed

  9. Kinematics and Kinetics of Squat and Deadlift Exercises with Varying Stance Widths

    Science.gov (United States)

    DeWitt, John K.; Fincke, Renita S.; Logan, Rachel L.

    2011-01-01

    The primary motion of squat and deadlift exercise involves flexion and extension of the hips, knees, and ankles, but each exercise can be performed with variations in stance width. These variations may result in differing kinematics and ground reaction forces (GRF), which may in turn affect joint loading. PURPOSE: The purpose of this investigation was to compare ankle, knee, and hip kinematics and kinetics of normal squat (NS), wide-stance squat (WS), normal deadlift (ND), and sumo deadlift (SD). We hypothesized that hip joint kinematics and work at each joint would differ between exercise variations. METHODS: Six subjects (3 m/3 f; 70.0 plus or minus 13.7 kg; 168 plus or minus 9.9 cm) performed each lift in normal gravity on the ground-based version of the Advanced Resistive Exercise Device (ARED) used on the International Space Station. The ARED provided resistance with a combination vacuum tube/flywheel mechanism designed to replicate the gravitational and inertial forces of free weights. Subjects completed each lift with their 10-repetition maximum load. Kinematic data were collected at 250 Hz by a 12-camera motion-capture system (Smart-D, BTS Bioengineering, Milan, Italy), and GRF data were collected at 1000 Hz with independent force platforms for each leg (Model 9261, Kistler Instruments AG, Winterhur, Switzerland). All data were captured simultaneously on a single workstation. The right leg of a single lift for each motion was analyzed. Modeling software (OpenSim 2.2.0, Simbios, Palo Alto, CA) determined joint kinematics and net positive and negative work at each lower extremity joint. Total work was found as the sum of work across all joints and was normalized by system mass. Effect sizes and their 95% confidence intervals were computed between conditions. RESULTS: Peak GRF were similar for each lift. There were no differences between conditions in hip flexion range of motion (ROM). For hip adduction ROM, there were no differences between the NS, WS, and SD

  10. Expressing epistemic stance in University lectures and TED talks: a contrastive corpu-based analysis

    Directory of Open Access Journals (Sweden)

    Giuditta Caliendo

    2014-07-01

    Full Text Available Abstract – This study explores the web-mediated genre of TED (Technology, Entertainment, Design talks, speech events whereby experts in their field disseminate knowledge from different domains (e.g. science, technology, design, global issues addressing an audience of both co-present participants and web-users all over the world. The aim of this study is to investigate the way academics convey epistemic stance (Conrad, Biber 2000 and build up their image as experts on the TED stage. To this purpose, a contrastive analysis was carried out comparing two corpora of spoken discourse, i.e. a corpus of TED talks and a corpus of MICASE university lectures from different disciplines. Although in both genres the speaker is an academic, both the communicative purpose and audience expectations differ substantially in the two contexts under scrutiny. This comparison highlights some distinguishing traits of TED talks and provides a better insight into this genre. Adopting a corpus-based approach, attention is first paid to the most recurrent epistemic lexical verbs (ELVs and to the use of first and second person pronouns in the two corpora. The qualitative analysis then focuses on similarities and differences in the discourse functions of the four most frequent ELVs (see, show, know, think and of their clusters when they combine with first and second person pronouns in the two corpora. Previous studies in the field of English for Academic Purposes (Rounds 1987; Fortanet 2004; Walsh 2004; Artiga León 2006; Bamford 2009 are referred to as a starting point to investigate a novel, unexplored pragmatic space (i.e. that of TED wherein academics accomplish purposes other than merely disseminating knowledge and training students, such as promoting their research and building up their image as experts. Keywords: Languages for Special Purposes, popularization, web-mediated genres, evidentiality, epistemic stance  Abstract – I generi mediati dalla rete svolgono un

  11. FY1995 development of rehabilitation system for promoting social integration of people with disabilities. Development of a robotic orthosis assisting motion capabilities; 1995 nendo shogaino aru hito no shakai shinshutsu wo sokushinsuru rehabilitation system no kaihatsu. Rehabilitation kino wo yusuru doryoku sogu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    People with slight disabilities on motion. capability can be active in daily life using properly designed motion-assisting devices. Using these device in various cases would help the disabled participate in production activities, and would promote social integration of the disabled as rehabilitation in a broad sense. This research aims at developing such a device capable to help human motion by forearm based on technology and science in robotics. Two different methods are discussed in this research in order to develop robotic orthosis with good performance for assisting human motion by forearm. The first method is constructing a robotic orthosis with electronic motors and force sensors to produce a desired mechanical impedance. This orthosis was carefully designed such that mechanical safety for human is realized. The validity of the mechanism is illustrated by several experiments. The second method is constructing a low cost robotic orthosis with pneumatic actuators. A new type of pneumatic actuator is developed to realize this orthosis. Experimental results show that physical therapy can be performed effectively using this orthosis operated by direct teaching. (NEDO)

  12. The Effects of Varying Ankle Foot Orthosis Stiffness on Gait in Children with Spastic Cerebral Palsy Who Walk with Excessive Knee Flexion

    NARCIS (Netherlands)

    Kerkum, Yvette L.; Buizer, Annemieke I.; van den Noort, Josien C.; Becher, Jules G.; Harlaar, Jaap; Brehm, Merel-Anne

    2015-01-01

    Rigid Ankle-Foot Orthoses (AFOs) are commonly prescribed to counteract excessive knee flexion during the stance phase of gait in children with cerebral palsy (CP). While rigid AFOs may normalize knee kinematics and kinetics effectively, it has the disadvantage of impeding push-off power. A

  13. The Effects of Varying Ankle Foot Orthosis Stiffness on Gait in Children with Spastic Cerebral Palsy Who Walk with Excessive Knee Flexion

    NARCIS (Netherlands)

    Kerkum, Y.L.; Buizer, A.I.; van den Noort, J.C.; Becher, J.G.; Harlaar, J.; Brehm, M.A.

    2015-01-01

    Introduction: Rigid Ankle-Foot Orthoses (AFOs) are commonly prescribed to counteract excessive knee flexion during the stance phase of gait in children with cerebral palsy (CP). While rigid AFOs may normalize knee kinematics and kinetics effectively, it has the disadvantage of impeding push-off

  14. Effect of Rocker Bar Ankle Foot Orthosis on Functional Mobility in Post-Stroke Hemiplegic Patients: Timed Up and Go and Gait Speed Assessments

    Directory of Open Access Journals (Sweden)

    Farzad Farmani

    2016-03-01

    Discussion: RAFO led to a significant improvement in functional mobility in hemiplegic patients post stroke. This may be due to the positive effect of rocker modification on improving push off and transferring weight during the stance phase of gait.

  15. The good, the bad and the ugly: The shifting ethical stance of Malaysian consumers

    Directory of Open Access Journals (Sweden)

    Teck-Chai Lau

    2010-10-01

    Full Text Available Due to the recent business ethical problems in Malaysia such as tax fraud, deceptive advertising, production of unsafe products and copyright piracy, the current research aim to examine ethical issues in the marketplace from the perspective of consumers. There are three objectives of this research. The first objective is to investigate the effect of moral ideologies and Machiavellianism on consumer ethical beliefs. The second objective is to determine which of these ideologies exert the greatest influence on consumer ethical beliefs and the third objective is to discover whether Malaysian consumers have evolved in their ethical stance over the last ten years. The dependent variable in this research is the recently modified consumer ethics scale developed by Vitell and Muncy (2005. An online survey was adopted as data collection method as it was inexpensive, fast and could ensure high response rates. However it has several limitations such as the possible non-representativeness of Internet respondents to the Malaysian population and higher non-response error. The results indicated that idealism exerted the greatest influence on all the four dimensions of consumer ethics. It was also revealed that Malaysian consumers had evolved over the past ten years in their moral ideology: from relativism to idealism.

  16. [Relationship between unipedal stance test score and center of pressure velocity in elderly].

    Science.gov (United States)

    Rodrigo Antonio, Guzmán; Rony, Silvestre; Francisco Aniceto, Rodríguez; David Andrés, Arriagada; Pablo Andrés, Ortega

    2011-01-01

    Frequent falls are one of the most important health problems in the elderly population. The unipedal stance test (UPST), asses postural stability and is used in fall risk measures. Despite this, there is little information about its relationship with posturographic parameters (PP) that characterizes postural stability. Center of pressure velocity (CoPV) is one of the best PP that describes postural stability. The aim of this study was to analyze the relation between UST score and CoPV in elderly population. A sample of 38 healthy elderly subjects where divided in two groups according to their UPST score, low performance (LP, n=11) and high performance (HP, n=27). The correlation between UPST score and COP mean velocity (CoPmV), recorded from a posturographic test, was analyzed between both groups. An inverse correlation between UPST score and CoPmV was found in both groups. However, this was higher in the LP group (r=-0.69, P=.02) compared to the HP (r=-0.39, P=.04). Based on the results of this investigation, it may be concluded that the achievement on UPST has an inverse relationship with CoPmV, especially in subjects with low performance in the UPST. Copyright © 2010 SEGG. Published by Elsevier Espana. All rights reserved.

  17. Normative values for the unipedal stance test with eyes open and closed.

    Science.gov (United States)

    Springer, Barbara A; Marin, Raul; Cyhan, Tamara; Roberts, Holly; Gill, Norman W

    2007-01-01

    Limited normative data are available for the unipedal stance test (UPST), making it difficult for clinicians to use it confidently to detect subtle balance impairments. The purpose of this study was to generate normative values for repeated trials of the UPST with eyes opened and eyes closed across age groups and gender. This prospective, mixed-model design was set in a tertiary care medical center. Healthy subjects (n= 549), 18 years or older, performed the UPST with eyes open and closed. Mean and best of 3 UPST times for males and females of 6 age groups (18-39, 40-49, 50-59, 60-69, 70-79, and 80+) were documented and inter-rater reliability was tested. There was a significant age dependent decrease in UPST time during both conditions. Inter-rater reliability for the best of 3 trials was determined to be excellent with an intra-class correlation coefficient of 0.994 (95% confidence interval 0.989-0.996) for eyes open and 0.998 (95% confidence interval 0.996-0.999) for eyes closed. This study adds to the understanding of typical performance on the UPST. Performance is age-specific and not related to gender. Clinicians now have more extensive normative values to which individuals can be compared.

  18. Frontal plane hip and ankle sensorimotor function, not age, predicts unipedal stance time

    Science.gov (United States)

    Allet, Lara; Kim, Hogene; Ashton-Miller, James; De Mott, Trina; Richardson, James K.

    2011-01-01

    Introduction Changes occur in muscles and nerves with aging. This study aimed to explore the relationship between unipedal stance time (UST) and frontal plane hip and ankle sensorimotor function in subjects with diabetic neuropathy. Methods UST, quantitative measures of frontal plane ankle proprioceptive thresholds, and ankle and hip motor function were tested in forty-one persons with a spectrum of lower limb sensorimotor function, ranging from healthy to moderately severe diabetic neuropathy. Results Frontal plane hip and ankle sensorimotor function demonstrated significant relationships with UST. Multivariate analysis identified only composite hip strength, composite ankle proprioceptive threshold, and age to be significant predictors of UST (R2=0.73); they explained 46%, 24% and 3% of the variance, respectively. Discussion/Conclusions Frontal plane hip strength was the single best predictor of UST and appeared to compensate for less precise ankle proprioceptive thresholds. This finding is clinically relevant given the possibility of strengthening the hip, even in patients with significant PN. . PMID:22431092

  19. AN ANALYSIS OF THE MANUFACTURING POSSIBILITY OF SPECIAL ANKLE FOOT ORTHOSIS COMPONENTS BY OMPARISON BETWEEN THE REQUIRED PRECISION AND THE VAILABLE PRECISION ON A VERTICAL MACHINING CENTER PROGRAMED WITH TOPSOLID

    Directory of Open Access Journals (Sweden)

    Alexandru STANIMIR

    2010-06-01

    Full Text Available Validation of different solutions adopted to achieve new ankle foot orthosis involves among others their prototyping. In these paper we developed a representative part for two axis machining that requires the use of the main features of TopSolid Cad and Cam modules, and that assumes the use of the main manufacturing processes that usually may be met on a vertical machining center. Also, in order to determine the dimensional and geometrical deviations of the part this was done on the YMC 1050 machining center. After comparing the measured deviations with the requirements of various components of orthesis, we concluded that the available precision meets the requirements and that the machining center with TopSolid software that we have will enable us to realize special ankle foot orthosis of quality, for experimental research .

  20. "We make choices we think are going to save us": Debate and stance identification for online breast cancer CAM discussions.

    Science.gov (United States)

    Zhang, Shaodian; Qiu, Lin; Chen, Frank; Zhang, Weinan; Yu, Yong; Elhadad, Noémie

    2017-04-01

    Patients discuss complementary and alternative medicine (CAM) in online health communities. Sometimes, patients' conflicting opinions toward CAM-related issues trigger debates in the community. The objectives of this paper are to identify such debates, identify controversial CAM therapies in a popular online breast cancer community, as well as patients' stances towards them. To scale our analysis, we trained a set of classifiers. We first constructed a supervised classifier based on a long short-term memory neural network (LSTM) stacked over a convolutional neural network (CNN) to detect automatically CAM-related debates from a popular breast cancer forum. Members' stances in these debates were also identified by a CNN-based classifier. Finally, posts automatically flagged as debates by the classifier were analyzed to explore which specific CAM therapies trigger debates more often than others. Our methods are able to detect CAM debates with F score of 77%, and identify stances with F score of 70%. The debate classifier identified about 1/6 of all CAM-related posts as debate. About 60% of CAM-related debate posts represent the supportive stance toward CAM usage. Qualitative analysis shows that some specific therapies, such as Gerson therapy and usage of laetrile, trigger debates frequently among members of the breast cancer community. This study demonstrates that neural networks can effectively locate debates on usage and effectiveness of controversial CAM therapies, and can help make sense of patients' opinions on such issues under dispute. As to CAM for breast cancer, perceptions of their effectiveness vary among patients. Many of the specific therapies trigger debates frequently and are worth more exploration in future work.

  1. Computerized identification and classification of stance phases as made by front og hind feet of walking cows based on 3-dimensional ground reaction forces

    DEFF Research Database (Denmark)

    Skjøth, F; Thorup, Vivi Mørkøre; do Nascimento, Omar Feix

    2013-01-01

    Lameness is a frequent disorder in dairy cows and in large dairy herds manual lameness detection is a time-consuming task. This study describes a method for automatic identification of stance phases in walking cows, and their classification as made by a front or a hind foot based on ground reaction...... phases, of these 1146 (62%) were automatically identified as full stance phases and classified as made by a front or hind foot. As intended, the procedures did not favour identification of stance phases of healthy cows over lame cows. In addition, a human observer evaluated the stance phases by visual...... inspection, revealing a very low discrepancy (3.5%) between manual and automated approaches. Further, a sensitivity test indicated large robustness in the automatic procedures. In conclusion, the experimental setup combined with the computerized procedures described in the present study resulted in a high...

  2. The effect of short-duration sub-maximal cycling on balance in single-limb stance in patients with anterior cruciate ligament injury: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Roberts David

    2004-11-01

    Full Text Available Abstract Background It has previously been shown that an anterior cruciate ligament (ACL injury may lead to impaired postural control, and that the ability to maintain postural control is decreased by fatigue in healthy subjects. To our knowledge, no studies have reported the effect of fatigue on postural control in subjects with ACL injury. This study was aimed at examining the effect of fatigue on balance in single-limb stance in subjects with ACL injury, and to compare the effects, and the ability to maintain balance, with that of a control group of uninjured subjects. Methods Thirty-six patients with unilateral, non-operated, non-acute ACL injury, and 24 uninjured subjects were examined with stabilometry before (pre-exercise and immediately after (post-exercise short-duration, sub-maximal cycling. In addition, the post-exercise measurements were compared, to evaluate the instantaneous ability to maintain balance and any possible recovery. The amplitude and average speed of center of pressure movements were registered in the frontal and sagittal planes. The paired t-test was used for the intra-group comparisons, and the independent t-test for the inter-group comparisons, with Bonferroni correction for multiple comparisons. Results No differences were found in the effects of exercise between the patients and the controls. Analysis of the post-exercise measurements revealed greater effects or a tendency towards greater effects on the injured leg than in the control group. The average speed was lower among the patients than in the control group. Conclusions The results of the present study showed no differences in the effects of exercise between the patients and the controls. However, the patients seemed to react differently regarding ability to maintain balance in single-limb stance directly after exercise than the control group. The lower average speed among the patients may be an expression of different neuromuscular adaptive strategies than

  3. Different ankle muscle coordination patterns and co-activation during quiet stance between young adults and seniors do not change after a bout of high intensity training.

    Science.gov (United States)

    Donath, Lars; Kurz, Eduard; Roth, Ralf; Zahner, Lukas; Faude, Oliver

    2015-03-04

    Available evidence suggests that young adults and seniors use different strategies to adjust for increasing body sway during quiet standing. Altered antagonist muscle co-activation and different ankle muscle coordination patterns may account for this finding. Consequently, we aimed at addressing whether aging leads to changes in neuromuscular coordination patterns as well as co-activation during quiet stance. We additionally investigated whether a bout of high intensity interval training additionally alters these patterns. Twenty healthy seniors (age: 70 ± 4 y) and twenty young adults (age: 27 ± 3 y) were enrolled in the present study. In between the testing procedures, four consecutive high-intensity intervals of 4 min duration at a target exercise intensity of 90 to 95% HRmax were completed on a treadmill. The total center of pressure (COP) path length displacement served as standing balance performance outcome. In order to assess ankle muscle coordination patterns, amplitude ratios (AR) were calculated for each muscle (e.g. tibialis anterior (TA) [%] = (TA × 100)/(gastrocnemius medialis (GM) + soleus (SOL) + peroneus longus (PL) + TA). The co-activation was calculated for the SOL and TA muscles computing the co-activation index (CAI = 2 × TA/TA + SOL). Seniors showed an inverted ankle muscle coordination pattern during single limb stance with eyes open (SLEO), compared to young adults (rest: GM, S: 15 ± 8% vs Y: 24 ± 9%; p = 0.03; SOL, S: 27 ± 14% vs Y: 37 ± 18%; p = 0.009; TA, S: 31 ± 13% vs Y: 13 ± 7%; p = 0.003). These patterns did not change after a high-intensity training session. A moderate correlation between amplitude ratios of the TA-contribution and postural sway was observed for seniors during SLEO (r = 0.61). Ankle co-activation was twofold elevated in seniors compared to young adults during SLEO (p Seniors with decreased postural control showed higher TA

  4. Initiation of movement from quiet stance: comparison of gait and stepping in elderly subjects of different levels of functional ability.

    Science.gov (United States)

    Brunt, Denis; Santos, Valeria; Kim, Hyeong Dong; Light, Kathye; Levy, Charles

    2005-04-01

    This study describes how elderly subjects initiate gait, and step from a position of quiet stance. Based on scores from selected standardized tests subjects were placed in either a high (HFL) or low functional level (LFL) group and were asked to initiate gait, step onto a 10 cm high, 1.22 m wide curb and step over a 10 cm high, 9 cm wide obstacle at a self paced speed. Stepping conditions affected the velocity of movement. It was clear that all subjects decreased initiation velocity for both curb and obstacle compared to gait initiation. Swing and stance limb acceleration ground reaction forces and EMG amplitude were modulated according to initiation velocity. Toe clearance was greater for obstacle than curb and gait initiation. Swing toe-off was significantly earlier and there was a trend for obstacle clearance to be greater for the HFL group. Those in the LFL group appear to be at a greater risk for falling due to the possible effect of slower rate of toe-off that could influence toe clearance over the obstacle.

  5. Computational stability of human knee joint at early stance in Gait: Effects of muscle coactivity and anterior cruciate ligament deficiency.

    Science.gov (United States)

    Sharifi, M; Shirazi-Adl, A; Marouane, H

    2017-10-03

    As one of the most complex and vulnerable structures of body, the human knee joint should maintain dynamic equilibrium and stability in occupational and recreational activities. The evaluation of its stability and factors affecting it is vital in performance evaluation/enhancement, injury prevention and treatment managements. Knee stability often manifests itself by pain, hypermobility and giving-way sensations and is usually assessed by the passive joint laxity tests. Mechanical stability of both the human knee joint and the lower extremity at early stance periods of gait (0% and 5%) were quantified here for the first time using a hybrid musculoskeletal model of the lower extremity. The roles of muscle coactivity, simulated by setting minimum muscle activation at 0-10% levels and ACL deficiency, simulated by reducing ACL resistance by up to 85%, on the stability margin as well as joint biomechanics (contact/muscle/ligament forces) were investigated. Dynamic stability was analyzed using both linear buckling and perturbation approaches at the final deformed configurations in gait. The knee joint was much more stable at 0% stance than at 5% due to smaller ground reaction and contact forces. Muscle coactivity, when at lower intensities (knee joint at the heel strike. It also markedly diminishes forces in lateral hamstrings (by up to 39%) and contact forces on the lateral plateau (by up to 17%). Current work emphasizes the need for quantification of the lower extremity stability margin in gait. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Relationship between activation of ankle muscles and quasi-joint stiffness in early and middle stances during gait in patients with hemiparesis.

    Science.gov (United States)

    Sekiguchi, Yusuke; Muraki, Takayuki; Tanaka, Naofumi; Izumi, Shin-Ichi

    2015-09-01

    It is unclear whether muscle contraction is necessary to increase quasi-joint stiffness (QJS) of the ankle joint during gait in patients with hemiparesis. The purpose of the present study was to investigate the relationship between QJS and muscle activation at the ankle joint in the stance phase during gait in patients with hemiparesis. Spatiotemporal and kinetic gait parameters and activation of the medial head of the gastrocnemius (MG), soleus (SOL), and tibialis anterior (TA) muscles were measured using a 3-dimensional motion analysis system and surface electromyography, in 21 patients with hemiparesis due to stroke and 10 healthy individuals. In the early stance, the QJS on the paretic side (PS) of patients was greater than that on the non-PS (phemiparesis, plantarflexor activation may not contribute to QJS in the early stance. On the other hand, QJS in the middle stance may be attributed to activation of the MG and SOL. Our findings suggest that activation of the MG and SOL in the middle stance on the PS may require to be enhanced to increase QJS during gait in patients with hemiparesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Radiosteriometric analysis of movement in the sacroiliac joint during a single-leg stance in patients with long-lasting pelvic girdle pain.

    Science.gov (United States)

    Kibsgård, Thomas J; Røise, Olav; Sturesson, Bengt; Röhrl, Stephan M; Stuge, Britt

    2014-04-01

    Chamberlain's projections (anterior-posterior X-ray of the pubic symphysis) have been used to diagnose sacroiliac joint mobility during the single-leg stance test. This study examined the movement in the sacroiliac joint during the single-leg stance test with precise radiostereometric analysis. Under general anesthesia, tantalum markers were inserted into the dorsal sacrum and the ilium of 11 patients with long-lasting and severe pelvic girdle pain. After two to three weeks, a radiostereometric analysis was conducted while the subjects performed a single-leg stance. Small movements were detected in the sacroiliac joint during the single-leg stance. In both the standing- and hanging-leg sacroiliac join, a total of 0.5 degree rotation was observed; however, no translations were detected. There were no differences in total movement between the standing- and hanging-leg sacroiliac joint. The movement in the sacroiliac joint during the single-leg stance is small and almost undetectable by the precise radiostereometric analysis. A complex movement pattern was seen during the test, with a combination of movements in the two joints. The interpretation of the results of this study is that, the Chamberlain examination likely is inadequate in the examination of sacroiliac joint movement in patients with pelvic girdle pain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. The Effects of Varying Ankle Foot Orthosis Stiffness on Gait in Children with Spastic Cerebral Palsy Who Walk with Excessive Knee Flexion.

    Science.gov (United States)

    Kerkum, Yvette L; Buizer, Annemieke I; van den Noort, Josien C; Becher, Jules G; Harlaar, Jaap; Brehm, Merel-Anne

    2015-01-01

    Rigid Ankle-Foot Orthoses (AFOs) are commonly prescribed to counteract excessive knee flexion during the stance phase of gait in children with cerebral palsy (CP). While rigid AFOs may normalize knee kinematics and kinetics effectively, it has the disadvantage of impeding push-off power. A spring-like AFO may enhance push-off power, which may come at the cost of reducing the knee flexion less effectively. Optimizing this trade-off between enhancing push-off power and normalizing knee flexion in stance is expected to maximize gait efficiency. This study investigated the effects of varying AFO stiffness on gait biomechanics and efficiency in children with CP who walk with excessive knee flexion in stance. Fifteen children with spastic CP (11 boys, 10±2 years) were prescribed with a ventral shell spring-hinged AFO (vAFO). The hinge was set into a rigid, or spring-like setting, using both a stiff and flexible performance. At baseline (i.e. shoes-only) and for each vAFO, a 3D-gait analysis and 6-minute walk test with breath-gas analysis were performed at comfortable speed. Lower limb joint kinematics and kinetics were calculated. From the 6-minute walk test, walking speed and the net energy cost were determined. A generalized estimation equation (ppush-off power did not lead to greater reductions in walking energy cost. These findings suggest that, in this specific group of children with spastic CP, the vAFO stiffness that maximizes gait efficiency is primarily determined by its effect on knee kinematics and kinetics rather than by its effect on push-off power. Dutch Trial Register NTR3418.

  9. Influence of physicians' life stances on attitudes to end-of-life decisions and actual end-of-life decision-making in six countries

    DEFF Research Database (Denmark)

    Cohen, J; van Delden, J; Mortier, F

    2008-01-01

    AIM: To examine how physicians' life stances affect their attitudes to end-of-life decisions and their actual end-of-life decision-making. METHODS: Practising physicians from various specialties involved in the care of dying patients in Belgium, Denmark, The Netherlands, Sweden, Switzerland......) and Protestants (up to 20.4% in The Netherlands) reported ever having made such a decision. DISCUSSION: The results suggest that religious teachings influence to some extent end-of-life decision-making, but are certainly not blankly accepted by physicians, especially when dealing with real patients...... large life-stance groups in each country. RESULTS: Only small differences in life stance were found in all countries in general attitudes and intended and actual behaviour with regard to various end-of-life decisions. However, with regard to the administration of drugs explicitly intended to hasten...

  10. Reliability of the measures of weight-bearing distribution obtained during quiet stance by digital scales in subjects with and without hemiparesis.

    Science.gov (United States)

    de Araujo-Barbosa, Paulo Henrique Ferreira; de Menezes, Lidiane Teles; Costa, Abraão Souza; Couto Paz, Clarissa Cardoso Dos Santos; Fachin-Martins, Emerson

    2015-05-01

    Described as an alternative way of assessing weight-bearing asymmetries, the measures obtained from digital scales have been used as an index to classify weight-bearing distribution. This study aimed to describe the intra-test and the test/retest reliability of measures in subjects with and without hemiparesis during quiet stance. The percentage of body weight borne by one limb was calculated for a sample of subjects with hemiparesis and for a control group that was matched by gender and age. A two-way analysis of variance was used to verify the intra-test reliability. This analysis was calculated using the differences between the averages of the measures obtained during single, double or triple trials. The intra-class correlation coefficient (ICC) was utilized and data plotted using the Bland-Altman method. The intra-test analysis showed significant differences, only observed in the hemiparesis group, between the measures obtained by single and triple trials. Excellent and moderate ICC values (0.69-0.84) between test and retest were observed in the hemiparesis group, while for control groups ICC values (0.41-0.74) were classified as moderate, progressing from almost poor for measures obtained by a single trial to almost excellent for those obtained by triple trials. In conclusion, good reliability ranging from moderate to excellent classifications was found for participants with and without hemiparesis. Moreover, an improvement of the repeatability was observed with fewer trials for participants with hemiparesis, and with more trials for participants without hemiparesis.

  11. Balance failure in single limb stance due to ankle sprain injury: an analysis of center of pressure using the fractal dimension method.

    Science.gov (United States)

    Doherty, Cailbhe; Bleakley, Chris; Hertel, Jay; Caulfield, Brian; Ryan, John; Delahunt, Eamonn

    2014-01-01

    Instrumented postural control analysis plays an important role in evaluating the effects of injury on dynamic stability during balance tasks, and is often conveyed with measures based on the displacement of the center-of-pressure (COP) assessed with a force platform. However, the desired outcome of the task is frequently characterized by a loss of dynamic stability, secondary to injury. Typically, these failed trials are discarded during research investigations, with the potential loss of informative data pertaining to task success. The novelty of the present study is that COP characteristics of failed trials in injured participants are compared to successful trial data in another injured group, and a control group of participants, using the fractal dimension (FD) method. Three groups of participants attempted a task of eyes closed single limb stance (SLS): twenty-nine participants with acute ankle sprain successfully completed the task on their non-injured limb (successful injury group); twenty eight participants with acute ankle sprain failed their attempt on their injured limb (failed injury group); sixteen participants with no current injury successfully completed the task on their non-dominant limb (successful non-injured group). Between trial analyses of these groups revealed significant differences in COP trajectory FD (successful injury group: 1.58±0.06; failed injury group: 1.54±0.07; successful non-injured group: 1.64±0.06) with a large effect size (0.27). These findings demonstrate that successful eyes-closed SLS is characterized by a larger FD of the COP path when compared to failed trials, and that injury causes a decrease in COP path FD. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. The Effect of Shoe Insole Stiffness on Leg Stiffness during Stance Phase of Running in Two Different Speeds ‎among Active Men

    Directory of Open Access Journals (Sweden)

    Zeinab Tazike-Lemeski

    2016-08-01

    Full Text Available Introduction: The effect of shoe insoles with different characteristics and in different running speeds on lower-limb stiffness is still ‎controversial. The aim of this study was to investigate the effect of two types of insoles (soft and semi-rigid in two ‎different running speeds on leg stiffness during stance phase of running among active men.‎ Materials and Methods: ‎15 male students without any background of lower extremity injury were selected. Subjects were asked to run with ‎two controlled velocities of 3.0 ± 0.2 and 5.0 ± 0.1 m/s in control and insole conditions (soft and semi-rigid on a ‎force plate, placed on the middle of 15-meter runway. The cinematics and cinetics of motion were measured and ‎calculated using 5 video cameras and one force plate. The leg stiffness was achieved via dividing the vertical ‎ground reaction force by leg compression. Two-factor repeated measures ANOVA was used to test the hypothesis at ‎the significance level of P £ 0.050.‎ Results: There was a significant difference between the two types of insoles on leg stiffness. In fact, semi-rigid insole significantly increased leg stiffness (P < 0.001. However, this discrepancy was not related to the running speed (P = 0.999. In addition, there was no significant difference between the two different speeds on leg stiffness (P = 0.632. Conclusion: It seems that the increase in shoe insole stiffness may increase the leg stiffness. Furthermore, the effect of insole ‎stiffness is not related to the running speed, and leg stiffness will remains constant in low to medium running speeds.‎

  13. Ethical Considerations for Psychologists Taking a Public Stance on Controversial Issues: The Balance Between Personal and Professional Life.

    Science.gov (United States)

    Haeny, Angela M

    2014-07-01

    Previous literature has documented the general issues psychologists often face while balancing their personal and professional lives. The struggle stems from attempting to satisfy the need to maintain a life outside of work while having the professional obligation to follow the American Psychological Association's (APA's) Ethical Principles of Psychologists and Code of Conduct (Ethics Code) to prevent their personal lives from interfering with their professional roles and relationships. The present paper analyzes the subject of psychologists taking a public position on controversial public issues. Although the APA Ethics Code does not restrict how psychologists conduct themselves during their personal time, taking a public stance on a controversial issue could potentially strain professional relationships and inadvertently reflect negatively on the profession. The present paper examines ethical issues that a) should be taken into account before psychologists take a public position on a controversial issue, and b) are in conflict with APA's Ethics Code or current research.

  14. The development of intention-based sociomoral judgment and distribution behavior from a third-party stance.

    Science.gov (United States)

    Li, Jing; Tomasello, Michael

    2018-03-01

    The current study investigated children's intention-based sociomoral judgments and distribution behavior from a third-party stance. An actor puppet showed either positive or negative intention toward a target puppet, which had previously performed a prosocial or antisocial action toward others (i.e., children witnessed various types of indirect reciprocity). Children (3- and 5-year-olds) were asked to make sociomoral judgments and to distribute resources to the actor puppet. Results showed that 5-year-olds were more likely than 3-year-olds to be influenced by intention when they made their judgment and distributed resources. The target's previous actions affected only 5-year-olds' intent-based social preference. These results suggest that children's judgments about intent-based indirect reciprocity develop from ages 3 to 5 years. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Effects of external loads on postural sway during quiet stance in adults aged 20-80 years.

    Science.gov (United States)

    Hill, M W; Duncan, M J; Oxford, S W; Kay, A D; Price, M J

    2018-01-01

    The purpose of this study was to investigate the effects of holding external loads on postural sway during upright stance across age decades. Sixty-five healthy adults (females, n = 35), aged 18-80 years were assessed in four conditions; (1) standing without holding a load, holding a load corresponding to 5% body mass in the (2) left hand, (3) right hand and (4) both hands. The centre of pressure (COP) path length and anteroposterior and mediolateral COP displacement were used to indirectly assess postural sway. External loading elicited reductions in COP measures of postural sway in older age groups only (P  0.05). Holding external loads during standing is relevant to many activities of daily living (i.e. holding groceries). The reduction in postural sway may suggest this type of loading has a stabilising effect during quiet standing among older adults. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Ethical Considerations for Psychologists Taking a Public Stance on Controversial Issues: The Balance Between Personal and Professional Life

    Science.gov (United States)

    Haeny, Angela M.

    2014-01-01

    Previous literature has documented the general issues psychologists often face while balancing their personal and professional lives. The struggle stems from attempting to satisfy the need to maintain a life outside of work while having the professional obligation to follow the American Psychological Association’s (APA’s) Ethical Principles of Psychologists and Code of Conduct (Ethics Code) to prevent their personal lives from interfering with their professional roles and relationships. The present paper analyzes the subject of psychologists taking a public position on controversial public issues. Although the APA Ethics Code does not restrict how psychologists conduct themselves during their personal time, taking a public stance on a controversial issue could potentially strain professional relationships and inadvertently reflect negatively on the profession. The present paper examines ethical issues that a) should be taken into account before psychologists take a public position on a controversial issue, and b) are in conflict with APA’s Ethics Code or current research. PMID:25342876

  17. Testing the assumption of normality in body sway area calculations during unipedal stance tests with an inertial sensor.

    Science.gov (United States)

    Kyoung Jae Kim; Lucarevic, Jennifer; Bennett, Christopher; Gaunaurd, Ignacio; Gailey, Robert; Agrawal, Vibhor

    2016-08-01

    The quantification of postural sway during the unipedal stance test is one of the essentials of posturography. A shift of center of pressure (CoP) is an indirect measure of postural sway and also a measure of a person's ability to maintain balance. A widely used method in laboratory settings to calculate the sway of body center of mass (CoM) is through an ellipse that encloses 95% of CoP trajectory. The 95% ellipse can be computed under the assumption that the spatial distribution of the CoP points recorded from force platforms is normal. However, to date, this assumption of normality has not been demonstrated for sway measurements recorded from a sacral inertial measurement unit (IMU). This work provides evidence for non-normality of sway trajectories calculated at a sacral IMU with injured subjects as well as healthy subjects.

  18. Repeatability of stance phase kinematics from a multi-segment foot model in people aged 50 years and older.

    Science.gov (United States)

    Arnold, John B; Mackintosh, Shylie; Jones, Sara; Thewlis, Dominic

    2013-06-01

    Confidence in 3D multi-segment foot models has been limited by a lack of repeatability data, particularly in older populations that may display unique functional foot characteristics. This study aimed to determine the intra and inter-observer repeatability of stance phase kinematic data from a multi-segment foot model described by Leardini et al. [2] in people aged 50 years or older. Twenty healthy adults participated (mean age 65.4 years SD 8.4). A repeated measures study design was used with data collected from four testing sessions on two days from two observers. Intra (within-day and between-day) and inter-observer coefficient of multiple correlations revealed moderate to excellent similarity of stance phase joint range of motion (0.621-0.975). Relative to the joint range of motion (ROM), mean differences (MD) between sessions were highest for the within-day comparison for all planar ROM at the metatarsus-midfoot articulation (sagittal plane ROM 5.2° vs. 3.9°, MD 3.1°; coronal plane ROM 3.9 vs. 3.1°, MD 2.3°; transverse plane ROM 6.8° vs. 5.16°, MD 3.5°). Consequently, data from the metatarsus-midfoot articulation in the Istituto Ortopedico Rizzoli (IOR) foot model in adults aged over 50 years needs to be considered with respect to the findings of this study. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  19. Trunk's natural inclination influences stance limb kinetics, but not body kinematics, during gait initiation in able men.

    Directory of Open Access Journals (Sweden)

    Sébastien Leteneur

    Full Text Available The imposing mass of the trunk in relation to the whole body has an important impact on human motion. The objective of this study is to determine the influence of trunk's natural inclination--forward (FW or backward (BW with respect to the vertical--on body kinematics and stance limb kinetics during gait initiation.Twenty-five healthy males were divided based on their natural trunk inclination (FW or BW during gait initiation. Instantaneous speed was calculated at the center of mass at the first heel strike. The antero-posterior impulse was calculated by integrating the antero-posterior ground reaction force in time. Ankle, knee, hip and thoraco-lumbar (L5 moments were calculated using inverse dynamics and only peaks of the joint moments were analyzed. Among all the investigated parameters, only joint moments present significant differences between the two groups. The knee extensor moment is 1.4 times higher (P<0.001 for the BW group, before the heel contact. At the hip, although the BW group displays a flexor moment 2.4 times higher (P<0.001 before the swing limb's heel-off, the FW group displays an extensor moment 3.1 times higher (P<0.01 during the swing phase. The three L5 extensor peaks after the toe-off are respectively 1.7 (P<0.001, 1.4 (P<0.001 and 1.7 (P<0.01 times higher for the FW group. The main results support the idea that the patterns described during steady-state gait are already observable during gait initiation. This study also provides reference data to further investigate stance limb kinetics in specific or pathologic populations during gait initiation. It will be of particular interest for elderly people, knowing that this population displays atypical trunk postures and present a high risk of falling during this forward stepping.

  20. International law and arms control: Soviet Union and Russia’s stance on nuclear test ban treaties

    Directory of Open Access Journals (Sweden)

    Renata Hessmann Dalaqua

    2013-12-01

    Full Text Available The long-lasting struggle against nuclear tests can be examined through different perspectives. In this paper, the focus will be on the part played by the USSR and Russia in the international efforts aimed at establishing legal instruments to outlaw nuclear explosions in space, underground, under water and in the atmosphere.  A luta contra os testes nucleares pode ser examinada sob diferentes perspectivas. Aqui, o foco recairá sobre o papel desempenhado pela União Soviética e Rússia na criação de instrumentos legais para proibir explosões nucleares no espaço, no subsolo, debaixo da água e na atmosfera.

  1. The Effects of Varying Ankle Foot Orthosis Stiffness on Gait in Children with Spastic Cerebral Palsy Who Walk with Excessive Knee Flexion.

    Directory of Open Access Journals (Sweden)

    Yvette L Kerkum

    Full Text Available Rigid Ankle-Foot Orthoses (AFOs are commonly prescribed to counteract excessive knee flexion during the stance phase of gait in children with cerebral palsy (CP. While rigid AFOs may normalize knee kinematics and kinetics effectively, it has the disadvantage of impeding push-off power. A spring-like AFO may enhance push-off power, which may come at the cost of reducing the knee flexion less effectively. Optimizing this trade-off between enhancing push-off power and normalizing knee flexion in stance is expected to maximize gait efficiency. This study investigated the effects of varying AFO stiffness on gait biomechanics and efficiency in children with CP who walk with excessive knee flexion in stance. Fifteen children with spastic CP (11 boys, 10±2 years were prescribed with a ventral shell spring-hinged AFO (vAFO. The hinge was set into a rigid, or spring-like setting, using both a stiff and flexible performance. At baseline (i.e. shoes-only and for each vAFO, a 3D-gait analysis and 6-minute walk test with breath-gas analysis were performed at comfortable speed. Lower limb joint kinematics and kinetics were calculated. From the 6-minute walk test, walking speed and the net energy cost were determined. A generalized estimation equation (p<0.05 was used to analyze the effects of different conditions. Compared to shoes-only, all vAFOs improved the knee angle and net moment similarly. Ankle power generation and work were preserved only by the spring-like vAFOs. All vAFOs decreased the net energy cost compared to shoes-only, but no differences were found between vAFOs, showing that the effects of spring-like vAFOs to promote push-off power did not lead to greater reductions in walking energy cost. These findings suggest that, in this specific group of children with spastic CP, the vAFO stiffness that maximizes gait efficiency is primarily determined by its effect on knee kinematics and kinetics rather than by its effect on push-off power

  2. Peak medial (but not lateral) hamstring activity is significantly lower during stance phase of running. An EMG investigation using a reduced gravity treadmill.

    Science.gov (United States)

    Hansen, Clint; Einarson, Einar; Thomson, Athol; Whiteley, Rodney

    2017-09-01

    The hamstrings are seen to work during late swing phase (presumably to decelerate the extending shank) then during stance phase (presumably stabilizing the knee and contributing to horizontal force production during propulsion) of running. A better understanding of this hamstring activation during running may contribute to injury prevention and performance enhancement (targeting the specific role via specific contraction mode). Twenty active adult males underwent surface EMG recordings of their medial and lateral hamstrings while running on a reduced gravity treadmill. Participants underwent 36 different conditions for combinations of 50%-100% altering bodyweight (10% increments) & 6-16km/h (2km/h increments, i.e.: 36 conditions) for a minimum of 6 strides of each leg (maximum 32). EMG was normalized to the peak value seen for each individual during any stride in any trial to describe relative activation levels during gait. Increasing running speed effected greater increases in EMG for all muscles than did altering bodyweight. Peak EMG for the lateral hamstrings during running trials was similar for both swing and stance phase whereas the medial hamstrings showed an approximate 20% reduction during stance compared to swing phase. It is suggested that the lateral hamstrings work equally hard during swing and stance phase however the medial hamstrings are loaded slightly less every stance phase. Likely this helps explain the higher incidence of lateral hamstring injury. Hamstring injury prevention and rehabilitation programs incorporating running should consider running speed as more potent stimulus for increasing hamstring muscle activation than impact loading. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Cross-correlation between EMG and center of gravity during quiet stance: theory and simulations.

    Science.gov (United States)

    Kohn, André Fabio

    2005-11-01

    Several signal processing tools have been employed in the experimental study of the postural control system in humans. Among them, the cross-correlation function has been used to analyze the time relationship between signals such as the electromyogram and the horizontal projection of the center of gravity. The common finding is that the electromyogram precedes the biomechanical signal, a result that has been interpreted in different ways, for example, the existence of feedforward control or the preponderance of a velocity feedback. It is shown here, analytically and by simulation, that the cross-correlation function is dependent in a complicated way on system parameters and on noise spectra. Results similar to those found experimentally, e.g., electromyogram preceding the biomechanical signal may be obtained in a postural control model without any feedforward control and without any velocity feedback. Therefore, correct interpretations of experimentally obtained cross-correlation functions may require additional information about the system. The results extend to other biomedical applications where two signals from a closed loop system are cross-correlated.

  4. A Study on the Defensive Stance and Position of Handball Goalkeepers: Facing a Forward Jump Shot Made from 9 Meters.

    Science.gov (United States)

    Yang, Jong Hyun; Lee, Young Suk

    2016-10-01

    The purpose of this study was to find the defensive stance and calculate an optimal defense position for goalkeepers while blocking forward jump shots made from a distance of 9 m. Nine men's handball matches were recorded and 78 video clips were selected for analysis. These are the top class goalkeepers, which included players from the national team and reserve team of Korea. The goalkeeper's actual defensive position was significantly different from instructional suggestions; the width of both feet of the goalkeeper was approximately 2.5 times the width of the shoulders, and the hands were at waist height. The goalkeeper's actual defense position was about 1.10 (± 0.3) m from the goal line and also significantly different than instructional material (0.75 m). The optimal defense position, which was calculated from the goalkeeper's actual movement, was 1.44 m from the goal line, because the ratio of goalkeeper's defensive area in relation to the total area to be defended is highest at this point. In summary, we recommended that handball goalkeepers move forward, about a half step (0.34 m), when defending a forward jump shot made from 9 m, and instructional material should be modified according to the findings from this study.

  5. Using the Technology of the Confessional as an Analytical Resource: Four Analytical Stances Towards Research Interviews in Discourse Analysis

    Directory of Open Access Journals (Sweden)

    Brendan K. O'Rourke

    2007-05-01

    Full Text Available Among the various approaches that have developed from FOUCAULT's work is an Anglophone discourse analysis that has attempted to combine FOUCAULTian insights with the techniques of Conversation Analysis. An important current methodological issue in this discourse analytical approach is its theoretical preference for "naturally occurring" rather than research interview data. A FOUCAULTian perspective on the interview as a research instrument, questions the idea of "naturally-occurring discourse". The "technology of the confessional" operates, not only within research interviews, but permeates other interactions as well. Drawing on FOUCAULT does not dismiss the problems of the interview as research instrument rather it shows they cannot be escaped by simply switching to more "natural" interactions. Combining these insights with recent developments within discourse analysis can provide analytical resources for, rather than barriers to, the discourse analysis of research interviews. To aid such an approach, we develop a four-way categorisation of analytical stances towards the research interview in discourse analysis. A demonstration of how a research interview might be subjected to a discourse analysis using elements of this approach is then provided. URN: urn:nbn:de:0114-fqs070238

  6. Understanding developing country stances on post-2012 climate change negotiations. Comparative analysis of Brazil, China, India, Mexico, and South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Rong, Fang [Laboratory on International Law and Regulation, School of International Relations and Pacific Studies, University of California, San Diego, 92093 (United States); Center for Industrial Development and Environmental Governance, School of Public Policy and Management, Tsinghua University, Beijing 100084 (China)

    2010-08-15

    An essential issue in future climate negotiations is how to bring developing countries on board. This paper proposes and applies the two-level interest-based model to analyze the factors that affect the likely stances of the Plus Five countries (Brazil, China, India, Mexico, and South Africa) on international climate negotiations. This study finds mitigation capability to be a crucial factor which consists of at least such sub-factors as per capita income, energy endowment, and economic structure, while ecological vulnerability does not seem to play an important role which includes reductions in agricultural outputs, sea-level rise, climate-related natural disasters, and others. The paper proposes six options in an ascending order of stringency that the Plus Five are likely to adopt. The paper suggests that the Basic Four (the Plus Five excluding Mexico), particularly China and India, are less likely to adopt a voluntary commitment to an emissions cap on the national economy in the near future than Mexico, which has the highest mitigation capability among all five. The Basic Four are likely to adopt more stringent climate polices with increasing mitigation capabilities, suggesting the importance of effective international financial and technology transfer mechanisms and further tighten emission reduction targets from developed countries. (author)

  7. Forefoot-rearfoot coupling patterns and tibial internal rotation during stance phase of barefoot versus shod running.

    Science.gov (United States)

    Eslami, Mansour; Begon, Mickaël; Farahpour, Nader; Allard, Paul

    2007-01-01

    Based on twisted plate and mitered hinge models of the foot and ankle, forefoot-rearfoot coupling motion patterns can contribute to the amount of tibial rotation. The present study determined the differences of forefoot-rearfoot coupling patterns as well as excessive excursion of tibial internal rotation in shod versus barefoot conditions during running. Sixteen male subjects ran 10 times at 170 steps per minute under the barefoot and shod conditions. Forefoot-rearfoot coupling motions were assessed by measuring mean relative phase angle during five intervals of stance phase for the main effect of five time intervals and two conditions (ANOVA, PForefoot adduction/abduction and rearfoot eversion/inversion coupling motion patterns were significantly different between the conditions and among the intervals (Pstrike of running with shoe wears. No significant differences were noted in the tibial internal rotation excursion between shod and barefoot conditions. Significant variations in the forefoot adduction/abduction and rearfoot eversion/inversion coupling patterns could have little effect on the amount of tibial internal rotation excursion. Yet it remains to be determined whether changes in the frontal plane forefoot-rearfoot coupling patterns influence the tibia kinematics for different shoe wears or foot orthotic interventions. The findings question the rational for the prophylactic use of forefoot posting in foot orthoses.

  8. Trunk's natural inclination influences stance limb kinetics, but not body kinematics, during gait initiation in able men.

    Science.gov (United States)

    Leteneur, Sébastien; Simoneau, Emilie; Gillet, Christophe; Dessery, Yoann; Barbier, Franck

    2013-01-01

    The imposing mass of the trunk in relation to the whole body has an important impact on human motion. The objective of this study is to determine the influence of trunk's natural inclination--forward (FW) or backward (BW) with respect to the vertical--on body kinematics and stance limb kinetics during gait initiation.Twenty-five healthy males were divided based on their natural trunk inclination (FW or BW) during gait initiation. Instantaneous speed was calculated at the center of mass at the first heel strike. The antero-posterior impulse was calculated by integrating the antero-posterior ground reaction force in time. Ankle, knee, hip and thoraco-lumbar (L5) moments were calculated using inverse dynamics and only peaks of the joint moments were analyzed. Among all the investigated parameters, only joint moments present significant differences between the two groups. The knee extensor moment is 1.4 times higher (Ppostures and present a high risk of falling during this forward stepping.

  9. Understanding developing country stances on post-2012 climate change negotiations: Comparative analysis of Brazil, China, India, Mexico, and South Africa

    International Nuclear Information System (INIS)

    Rong Fang

    2010-01-01

    An essential issue in future climate negotiations is how to bring developing countries on board. This paper proposes and applies the two-level interest-based model to analyze the factors that affect the likely stances of the 'Plus Five' countries (Brazil, China, India, Mexico, and South Africa) on international climate negotiations. This study finds mitigation capability to be a crucial factor which consists of at least such sub-factors as per capita income, energy endowment, and economic structure, while ecological vulnerability does not seem to play an important role which includes reductions in agricultural outputs, sea-level rise, climate-related natural disasters, and others. The paper proposes six options in an ascending order of stringency that the Plus Five are likely to adopt. The paper suggests that the 'Basic Four' (the Plus Five excluding Mexico), particularly China and India, are less likely to adopt a voluntary commitment to an emissions cap on the national economy in the near future than Mexico, which has the highest mitigation capability among all five. The Basic Four are likely to adopt more stringent climate polices with increasing mitigation capabilities, suggesting the importance of effective international financial and technology transfer mechanisms and further tighten emission reduction targets from developed countries.

  10. "Not Brain-washed, but Heart-washed": A Qualitative Analysis of Benevolent Sexism in the Anti-Choice Stance.

    Science.gov (United States)

    Duerksen, Kari N; Lawson, Karen L

    2017-12-01

    In recent years, anti-choice dialog has shifted from a focus on the fetus to a focus on the woman. This new movement constructs itself as positive and pro-woman, while perpetuating harmful stereotypes about women and the effects of abortion. Research has shown a relationship between benevolent sexism (beliefs that women are morally pure creatures in need of protection and nurturing) and restrictive attitudes towards abortion, although no research has qualitatively explored this relationship. The present study seeks to explore this by interpreting the content of one-on-one interviews with Canadian individuals holding an anti-choice stance through the theoretical framework of benevolent sexism. Thematic analysis of the interviews revealed three main themes: (1) protective paternalism, (2) complementary gender differentiation, and (3) the categorization of women. These themes connect strongly with benevolent sexism, providing evidence that abortion is still a stigmatized procedure. This stigma has shifted from viewing women who have abortions in an overtly negative way to viewing them as pitiable and poor decision makers.

  11. The effects of transverse rotation angle on compression and effective lever arm of prosthetic feet during simulated stance.

    Science.gov (United States)

    Major, Matthew J; Howard, David; Jones, Rebecca; Twiste, Martin

    2012-06-01

    Unlike sagittal plane prosthesis alignment, few studies have observed the effects of transverse plane alignment on gait and prosthesis behaviour. Changes in transverse plane rotation angle will rotate the points of loading on the prosthesis during stance and may alter its mechanical behaviour. This study observed the effects of increasing the external transverse plane rotation angle, or toe-out, on foot compression and effective lever arm of three commonly prescribed prosthetic feet. The roll-over shape of a SACH, Flex and single-axis foot was measured at four external rotation angle conditions (0°, 5°, 7° and 12° relative to neutral). Differences in foot compression between conditions were measured as average distance between roll-over shapes. Increasing the transverse plane rotation angle did not affect foot compression. However, it did affect the effective lever arm, which was maximized with the 5° condition, although differences between conditions were small. Increasing the transverse plane rotation angle of prosthetic feet by up to 12° beyond neutral has minimal effects on their mechanical behaviour in the plane of walking progression during weight-bearing.

  12. Understanding developing country stances on post-2012 climate change negotiations: Comparative analysis of Brazil, China, India, Mexico, and South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Rong Fang, E-mail: rongfang98@hotmail.co [Laboratory on International Law and Regulation, School of International Relations and Pacific Studies, University of California, San Diego, 92093 (United States); Center for Industrial Development and Environmental Governance, School of Public Policy and Management, Tsinghua University, Beijing 100084 (China)

    2010-08-15

    An essential issue in future climate negotiations is how to bring developing countries on board. This paper proposes and applies the two-level interest-based model to analyze the factors that affect the likely stances of the 'Plus Five' countries (Brazil, China, India, Mexico, and South Africa) on international climate negotiations. This study finds mitigation capability to be a crucial factor which consists of at least such sub-factors as per capita income, energy endowment, and economic structure, while ecological vulnerability does not seem to play an important role which includes reductions in agricultural outputs, sea-level rise, climate-related natural disasters, and others. The paper proposes six options in an ascending order of stringency that the Plus Five are likely to adopt. The paper suggests that the 'Basic Four' (the Plus Five excluding Mexico), particularly China and India, are less likely to adopt a voluntary commitment to an emissions cap on the national economy in the near future than Mexico, which has the highest mitigation capability among all five. The Basic Four are likely to adopt more stringent climate polices with increasing mitigation capabilities, suggesting the importance of effective international financial and technology transfer mechanisms and further tighten emission reduction targets from developed countries.

  13. Postural performance and strategy in the unipedal stance of soccer players at different levels of competition.

    Science.gov (United States)

    Paillard, Thierry; Noé, Frédéric; Rivière, Terence; Marion, Vincent; Montoya, Richard; Dupui, Philippe

    2006-01-01

    Sport training enhances the ability to use somatosensory and otolithic information, which improves postural capabilities. Postural changes are different according to the sport practiced, but few authors have analyzed subjects' postural performances to discriminate the expertise level among highly skilled athletes within a specific discipline. To compare the postural performance and the postural strategy between soccer players at different levels of competition (national and regional). Repeated measures with 1 between-groups factor (level of competition: national or regional) and 1 within-groups factor (vision: eyes open or eyes closed). Dependent variables were center-of-pressure surface area and velocity; total spectral energy; and percentage of low-, medium-, and high-frequency band. Sports performance laboratory. Fifteen national male soccer players (age = 24 +/- 3 years, height = 179 +/- 5 cm, mass = 72 +/- 3 kg) and 15 regional male soccer players (age = 23 +/- 3 years, height = 174 +/- 4 cm, mass = 68 +/- 5 kg) participated in the study. The subjects performed posturographic tests with eyes open and closed. While subjects performed static and dynamic posturographic tests, we measured the center of foot pressure on a force platform. Spatiotemporal center-of-pressure measurements were used to evaluate the postural performance, and a frequency analysis of the center-of-pressure excursions (fast Fourier transform) was conducted to estimate the postural strategy. Within a laboratory task, national soccer players produced better postural performances than regional players and had a different postural strategy. The national players were more stable than the regional players and used proprioception and vision information differently. In the test conditions specific to playing soccer, level of playing experience influenced postural control performance measures and strategies.

  14. Intra-oral orthosis vs amitriptyline in chronic tension-type headache: a clinical and laser evoked potentials study

    Directory of Open Access Journals (Sweden)

    Sardaro Michele

    2006-05-01

    Full Text Available Abstract Background In the present study, we examined clinical and laser-evoked potentials (LEP features in two groups of chronic tension-type headache (CTTH patients treated with two different approaches: intra-oral appliance of prosthesis, aiming to reduce muscular tenderness, and 10 mg daily amitriptyline. Methods Eighteen patients with diagnosed CTTH participated in this open label, controlled study. A baseline evaluation was performed for clinical features, Total Tenderness Score (TTS and a topographic analysis of LEPs obtained manually and the pericranial points stimulation in all patients vs. healthy subjects. Thereafter, patients were randomly assigned to a two-month treatment by either amitriptyline or intra-oral appliance. Results and discussion Both the intra-oral appliance and amitriptyline significantly reduced headache frequency. The TTS was significantly reduced in the group treated with the appliance. The amplitude of P2 response elicited by stimulation of pericranial zones showed a reduction after amitriptyline treatment. Both therapies were effective in reducing headache severity, the appliance with a prevalent action on the pericranial muscular tenderness, amitriptyline reducing the activity of the central cortical structures subtending pain elaboration Conclusion The results of this study may suggest that in CTTH both the interventions at the peripheral and central levels improve the outcome of headache.

  15. Design and experimental evaluation of a lightweight, high-torque and compliant actuator for an active ankle foot orthosis.

    Science.gov (United States)

    Moltedo, Marta; Bacek, Tomislav; Langlois, Kevin; Junius, Karen; Vanderborght, Bram; Lefeber, Dirk

    2017-07-01

    The human ankle joint plays a crucial role during walking. At the push-off phase the ankle plantarflexors generate the highest torque among the lower limb joints during this activity. The potential of the ankle plantarflexors is affected by numerous pathologies and injuries, which cause a decrease in the ability of the subject to achieve a natural gait pattern. Active orthoses have shown to have potential in assisting these subjects. The design of such robots is very challenging due to the contrasting design requirements of wearability (light weight and compact) and high torques capacity. This paper presents the development of a high-torque ankle actuator to assist the ankle joint in both dorsiflexion and plantarflexion. The compliant actuator is a spindle-driven MACCEPA (Mechanically Adjustable Compliance and Controllable Equilibrium Position Actuator). The design of the actuator was made to keep its weight as low as possible, while being able to provide high torques. As a result of this novel design, the actuator weighs 1.18kg. Some static characterization tests were perfomed on the actuator and their results are shown in the paper.

  16. Acceptance of Serious Games in Psychotherapy: An Inquiry into the Stance of Therapists and Patients.

    Science.gov (United States)

    Eichenberg, Christiane; Grabmayer, Gloria; Green, Nikos

    2016-11-01

    Serious games are computer or video games that contain elements that are specifically designed for the purpose of education or training. Serious games are increasingly being used within healthcare, but their introduction into and application in psychotherapeutic settings as an e-mental health treatment modality raises questions for both patients and therapists. Current research demonstrates the potential role and effectiveness of serious games within a psychotherapeutic context. However, a limited understanding of patients' and therapists' existing knowledge and experience of serious games, as well as of their readiness to utilize and apply them for the treatment of psychological conditions, requires further investigation. Acceptance, experience, and requirements for the utilization of serious games in therapeutic contexts were assessed through online surveys with German-speaking patients (n = 260) and psychotherapists (n = 234). Respondents' answers were analyzed by a combination of descriptive and inferential statistics by using SPSS. Current knowledge regarding serious games was very limited, with only 10.4% of patients and 11.5% of therapists reporting existing knowledge. However, a general openness toward the concept was observed: 88% of patients and 90% of therapists could envisage a therapeutic use. Patients (rs = 0.169, p = 0.006) who self-rated their level of computer and video game expertise as high were more likely to consider use within psychotherapy, compared with patients who self-rated their expertise as low. Therapists who currently play computer and video games perceive fewer disadvantages of serious game application in a psychotherapeutic context (p = 0.097). Consideration of serious game use was differentiated by the therapeutic approach (p = 0.003), specific mental disorders (highest rated relevant cases: anxiety disorders, affective disorders, disorders regarding impulse control, and adjustment disorders), and patient

  17. Comparison of the Percentage Stance and Swing Phases and Ground Reaction Force between Young and Older Adults during Walking at different speeds

    Directory of Open Access Journals (Sweden)

    Neda Brooshak

    2017-09-01

    Conclusion: In general, the percentage of stance and swing phases of a gait cycle is similar between young and older adults. Lower VGRFs of weight acceptance and push off phases in the elders reflects the weakness of the knee extensor, hip extensors and ankle plantar flexors. It seems that older adults reduce the rate of force production during fast gait to achieve the necessary capacity for power generation and thereby, overcome the weakness of the lower extremity muscles.

  18. “We make choices we think are going to save us”: Debate and stance identification for online breast cancer CAM discussions

    Science.gov (United States)

    Zhang, Shaodian; Qiu, Lin; Chen, Frank; Zhang, Weinan; Yu, Yong; Elhadad, Noémie

    2017-01-01

    Patients discuss complementary and alternative medicine (CAM) in online health communities. Sometimes, patients’ conflicting opinions toward CAM-related issues trigger debates in the community. The objectives of this paper are to identify such debates, identify controversial CAM therapies in a popular online breast cancer community, as well as patients’ stances towards them. To scale our analysis, we trained a set of classifiers. We first constructed a supervised classifier based on a long short-term memory neural network (LSTM) stacked over a convolutional neural network (CNN) to detect automatically CAM-related debates from a popular breast cancer forum. Members’ stances in these debates were also identified by a CNN-based classifier. Finally, posts automatically flagged as debates by the classifier were analyzed to explore which specific CAM therapies trigger debates more often than others. Our methods are able to detect CAM debates with F score of 77%, and identify stances with F score of 70%. The debate classifier identified about 1/6 of all CAM-related posts as debate. About 60% of CAM-related debate posts represent the supportive stance toward CAM usage. Qualitative analysis shows that some specific therapies, such as Gerson therapy and usage of laetrile, trigger debates frequently among members of the breast cancer community. This study demonstrates that neural networks can effectively locate debates on usage and effectiveness of controversial CAM therapies, and can help make sense of patients’ opinions on such issues under dispute. As to CAM for breast cancer, perceptions of their effectiveness vary among patients. Many of the specific therapies trigger debates frequently and are worth more exploration in future work. PMID:28967000

  19. Plantar-flexion of the ankle joint complex in terminal stance is initiated by subtalar plantar-flexion: A bi-planar fluoroscopy study.

    Science.gov (United States)

    Koo, Seungbum; Lee, Kyoung Min; Cha, Young Joo

    2015-10-01

    Gross motion of the ankle joint complex (AJC) is a summation of the ankle and subtalar joints. Although AJC kinematics have been widely used to evaluate the function of the AJC, the coordinated movements of the ankle and subtalar joints are not well understood. The purpose of this study was to accurately quantify the individual kinematics of the ankle and subtalar joints in the intact foot during ground walking by using a bi-planar fluoroscopic system. Bi-planar fluoroscopic images of the foot and ankle during walking and standing were acquired from 10 healthy subjects. The three-dimensional movements of the tibia, talus, and calcaneus were calculated with a three-dimensional/two-dimensional registration method. The skeletal kinematics were quantified from 9% to 86% of the full stance phase because of the limited camera speed of the X-ray system. At the beginning of terminal stance, plantar-flexion of the AJC was initiated in the subtalar joint on average at 75% ranging from 62% to 76% of the stance phase, and plantar-flexion of the ankle joint did not start until 86% of the stance phase. The earlier change to plantar-flexion in the AJC than the ankle joint due to the early plantar-flexion in the subtalar joint was observed in 8 of the 10 subjects. This phenomenon could be explained by the absence of direct muscle insertion on the talus. Preceding subtalar plantar-flexion could contribute to efficient and stable ankle plantar-flexion by locking the midtarsal joint, but this explanation needs further investigation. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Olecranon orientation as an indicator of elbow joint angle in the stance phase, and estimation of forelimb posture in extinct quadruped animals.

    Science.gov (United States)

    Fujiwara, Shin-Ichi

    2009-09-01

    Reconstruction of limb posture is a challenging task in assessing functional morphology and biomechanics of extinct tetrapods, mainly because of the wide range of motions possible at each limb joint and because of our poor knowledge of the relationship between posture and musculoskeletal structure, even in the extant taxa. This is especially true for extinct mammals such as the desmostylian taxa Desmostylus and Paleoparadoxia. This study presents a procedure that how the elbow joint angles of extinct quadruped mammals can be inferred from osteological characteristics. A survey of 67 dried skeletons and 113 step cycles of 32 extant genera, representing 25 families and 13 orders, showed that the olecranon of the ulna and the shaft of the humerus were oriented approximately perpendicular to each other during the stance phase. At this angle, the major extensor muscles maximize their torque at the elbow joint. Based on this survey, I suggest that olecranon orientation can be used for inferring the elbow joint angles of quadruped mammals with prominent olecranons, regardless of taxon, body size, and locomotor guild. By estimating the elbow joint angle, it is inferred that Desmostylus would have had more upright forelimbs than Paleoparadoxia, because their elbow joint angles during the stance phase were approximately 165 degrees and 130 degrees , respectively. Difference in elbow joint angles between these two genera suggests possible differences in stance and gait of these two mammals. Copyright 2009 Wiley-Liss, Inc.

  1. A Secure Base from which to Cooperate: Security, Child and Parent Willing Stance, and Adaptive and Maladaptive Outcomes in two Longitudinal Studies.

    Science.gov (United States)

    Goffin, Kathryn C; Boldt, Lea J; Kochanska, Grazyna

    2017-10-17

    Early secure attachment plays a key role in socialization by inaugurating a long-term mutual positive, collaborative interpersonal orientation within the parent-child dyad. We report findings from Family Study (community mothers, fathers, and children, from age 2 to 12, N = 102, 51 girls) and Play Study (exclusively low-income mothers and children, from age 3.5 to 7, N = 186, 90 girls). We examined links among observed secure attachment at toddler age, child and parent receptive, willing stance to each other, observed in parent-child contexts at early school age, and developmental outcomes. The developmental outcomes included parent-rated child antisocial behavior problems and observed positive mutuality with regard to conflict issues at age 12 in Family Study, and mother-rated child antisocial behavior problems and observed child regard for rules and moral self at age 7 in Play Study. In mother-child relationships, the child's willing stance mediated indirect effects of child security on positive mutuality in Family Study and on all outcomes in Play Study. In father-child relationships, both the child's and the parent's willing stance mediated indirect effects of child security on both outcomes. Early security initiates an adaptive developmental cascade by enlisting the child and the parent as active, willingly receptive and cooperative agents in the socialization process. Implications for children's parenting interventions are noted.

  2. [The stance of abortion in the Brazilian printed media ahead of the 2010 presidential elections: the exclusion of public health from the debate].

    Science.gov (United States)

    Fontes, Maria Lucineide Andrade

    2012-07-01

    this article presents the results of research to monitor the Brazilian printed media in order to identify the stance of the abortion issue during the period from July 6 to October 29, 2010, which was the period of the official presidential campaign in Brazil. based on the monitoring of 28 printed media vehicles (newspapers and magazines) with nationwide circulation, the research selected 464 texts, of which 434 were considered valid for the study. The media studied included stories, reports, notes, opinion columns, interviews and letters from readers. although abortion was widely mentioned in Brazilian news coverage of the presidential campaign in 2010, with an average of four texts published per day, the stance adopted for the issue was not from the standpoint of public health. Among the 434 texts analyzed, only one report explicitly addressed epidemiological data linking abortion to women's health. In the other texts, the positioning of abortion was guided by the electoral stance that associated it with the dispute for the votes of the religious communities and conservative voters.

  3. Rehabilitation after hallux valgus surgery: importance of physical therapy to restore weight bearing of the first ray during the stance phase.

    Science.gov (United States)

    Schuh, Reinhard; Hofstaetter, Stefan G; Adams, Samuel B; Pichler, Florian; Kristen, Karl-Heinz; Trnka, Hans-Joerg

    2009-09-01

    Operative treatment of people with hallux valgus can yield favorable clinical and radiographic results. However, plantar pressure analysis has demonstrated that physiologic gait patterns are not restored after hallux valgus surgery. The purpose of this study was to illustrate the changes of plantar pressure distribution during the stance phase of gait in patients who underwent hallux valgus surgery and received a multimodal rehabilitation program. This was a prospective descriptive study. Thirty patients who underwent Austin (n=20) and scarf (n=10) osteotomy for correction of mild to moderate hallux valgus deformity were included in this study. Four weeks postoperatively they received a multimodal rehabilitation program once per week for 4 to 6 weeks. Plantar pressure analysis was performed preoperatively and 4 weeks, 8 weeks, and 6 months postoperatively. In addition, range of motion of the first metatarsophalangeal joint was measured, and the American Orthopaedic Foot and Ankle Society (AOFAS) forefoot questionnaire was administered preoperatively and at 6 months after surgery. The mean AOFAS score significantly increased from 60.7 points (SD=11.9) preoperatively to 94.5 points (SD=4.5) 6 months after surgery. First metatarsophalangeal joint range of motion increased at 6 months postoperatively, with a significant increase in isolated dorsiflexion. In the first metatarsal head region, maximum force increased from 117.8 N to 126.4 N and the force-time integral increased from 37.9 N.s to 55.6 N.s between the preoperative and 6-month assessments. In the great toe region, maximum force increased from 66.1 N to 87.2 N and the force-time integral increased from 18.7 N.s to 24.2 N.s between the preoperative and 6-month assessments. A limitation of the study was the absence of a control group due to the descriptive nature of the study. The results suggest that postoperative physical therapy and gait training may lead to improved function and weight bearing of the first

  4. Dual arm master controller concept

    International Nuclear Information System (INIS)

    Kuban, D.P.; Perkins, G.S.

    1984-01-01

    The Advanced Servomanipulator (ASM) slave was designed with an anthropomorphic stance, gear/torque tube power drives, and modular construction. These features resulted in increased inertia, friction, and backlash relative to tape-driven manipulators. Studies were performed which addressed the human factors design and performance trade-offs associated with the corresponding master controller best suited for the ASM. The results of these studies, as well as the conceptual design of the dual arm master controller, are presented. 6 references, 3 figures

  5. Dual arm master controller development

    Science.gov (United States)

    Kuban, D. P.; Perkins, G. S.

    1985-01-01

    The advanced servomanipulator (ASM) slave was designed with an anthropomorphic stance gear/torque tube power drives, and modular construction. These features resulted in increased inertia, friction, and backlash relative to tape driven manipulators. Studies were performed which addressed to human factor design and performance tradeoffs associated with the corresponding master controller best suited for the ASM. The results of these studies, as well as the conceptual design of the dual arm master controller, are presented.

  6. Effect of expertise in shooting and Taekwondo on bipedal and unipedal postural control isolated or concurrent with a reaction-time task.

    Science.gov (United States)

    Negahban, Hossein; Aryan, Najmolhoda; Mazaheri, Masood; Norasteh, Ali Asghar; Sanjari, Mohammad Ali

    2013-06-01

    It was hypothesized that training in 'static balance' or 'dynamic balance' sports has differential effects on postural control and its attention demands during quiet standing. In order to test this hypothesis, two groups of female athletes practicing shooting, as a 'static balance' sport, and Taekwondo, as a 'dynamic balance' sport, and a control group of non-physically active females voluntarily participated in this study. Postural control was assessed during bipedal and unipedal stance with and without performing a Go/No-go reaction time task. Visual and/or support surface conditions were manipulated in bipedal and unipedal stances in order to modify postural difficulty. Mixed model analysis of variance was used to determine the effects of dual tasking on postural and cognitive performance. Similar pattern of results were found in bipedal and unipedal stances, with Taekwondo practitioners displaying larger sway, shooters displaying lower sway and non-athletes displaying sway characteristics intermediate to Taekwondo and shooting athletes. Larger effect was found in bipedal stance. Single to dual-task comparison of postural control showed no significant effect of mental task on sway velocity in shooters, indicating less cognitive effort invested in balance control during bipedal stance. We suggest that expertise in shooting has a more pronounced effect on decreased sway in static balance conditions. Furthermore, shooters invest less attention in postures that are more specific to their training, i.e. bipedal stance. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Assessing Somatosensory Utilization during Unipedal Postural Control

    OpenAIRE

    Goel, Rahul; De Dios, Yiri E.; Gadd, Nichole E.; Caldwell, Erin E.; Peters, Brian T.; Reschke, Millard F.; Bloomberg, Jacob J.; Oddsson, Lars I. E.; Mulavara, Ajitkumar P.

    2017-01-01

    Multisensory—visual, vestibular and somatosensory information is integrated for appropriate postural control. The primary goal of this study was to assess somatosensory utilization during a functional motor task of unipedal postural control, in normal healthy adults. Assessing individual bias in the utilization of individual sensory contributions during postural control may help customization of rehabilitation protocols. In this study, a test paradigm of unipedal stance control in supine orie...

  8. Force control in the absence of visual and tactile feedback

    NARCIS (Netherlands)

    Mugge, W.; Abbink, D.A.; Schouten, Alfred Christiaan; van der Helm, F.C.T.; Arendzen, J.H.; Meskers, C.G.M.

    2013-01-01

    Motor control tasks like stance or object handling require sensory feedback from proprioception, vision and touch. The distinction between tactile and proprioceptive sensors is not frequently made in dynamic motor control tasks, and if so, mostly based on signal latency. We previously found that

  9. Effect of body mass index and fat mass on balance force platform measurements during a one-legged stance in older adults.

    Science.gov (United States)

    Pereira, Camila; Silva, Rubens A da; de Oliveira, Marcio R; Souza, Rejane D N; Borges, Renata J; Vieira, Edgar R

    2018-05-01

    The purpose of this study was to evaluate the impact of body mass index (BMI) and fat mass on balance force platform measurements in older adults. The sample consisted of 257 participants who were stratified into four groups by BMI: low weight, normal weight, pre-obesity and obesity. For fat mass variables, older individuals were classified into low and high-fat mass. All groups investigated performed three trials of one-legged stance balance on a force platform. Center of pressure (COP) domain parameters were computed from the mean across trials. Analysis of variance results revealed no significant interactions for groups and sexes for all COP parameters. Comparable balance results were found for BMI and fat groups for all COP parameters. A statistical effect (P < 0.05) was only reported for sex differences for COP parameters, regardless of BMI and fat mass variables. Overall, women presented better balance than men. In conclusion, BMI and fat mass do not seem to influence the balance of older adults during a one-leg stance task.

  10. The Comparison of two models of marker – placement for identifying the rear foot angle in normal people with and without shoes during the stance phase of walking

    Directory of Open Access Journals (Sweden)

    2016-09-01

    Full Text Available Objective: The purpose of this study was to compare the two models of marker placement for identifying of rear foot angle in normal people with and without shoes during the different stage of stance phase of walking. Methods: Fifteen male students in Birjand University were selected based on Navicular Drop Index. After marker placement based on Clarke and Nigg models, the rear foot angle were recorded with two-dimensional analysis (Panasonic Camera from behind position while subjects walked with 1.7 m/s on a treadmill with and without shoes. For statistical analysis, independent samples t-test was used (p≤0.05. Results: The Results showed a significant difference in rear foot angle during the stance phase between the two models of Clarke and Nigg during walking with and without shoes (p≤0.001. Conclusion: Based on the results of the present study, due to their specific features care must be considered when using any of these two models to investigate the angular kinematics of the foot.

  11. “I Feel a Deep Sense of Responsibility for the People we have Hurt…” – Explicit Stance Attribution in Crisis Communication Contested

    Directory of Open Access Journals (Sweden)

    Rachfał Edyta

    2014-07-01

    Full Text Available The theme of crisis, and consequently of crisis response, has been extensively studied within the disciplines of crisis communication (see Rachfał (2013a for an overview of crisis communication as an independent academic discipline and its place among other allied sub-disciplines of public relations and public relations with the aim of protecting organisations or reducing the damage caused by a crisis episode (Fediuk, Pace and Botero, 2010. Nowadays, with the growing recognition of crisis response as persuasive communication there is a need for an interdisciplinary approach which would help researchers understand the effects that crisis messages have on the perceptions and behaviours of stakeholders. Therefore, this paper seeks to bridge the aforementioned disciplines and examines crisis from the perspective of linguistics. Thus, it analyses grammatical stance-marking devices (Biber, et al., 1999, which might provide insights into how speakers manipulate linguistic resources for persuasive purposes. The paper focuses on explicit stance attribution and explores how the first-person plural pronoun we is used in crisis response to alter the stakeholders’ perceptions concerning people and events. The analysis draws on statements issued in 2011 by people in top public positions in the wake of the phone-hacking scandal at the News of the World.

  12. Adiposity and postural balance control: correlations between bioelectrical impedance and stabilometric signals in elderly Brazilian women

    Directory of Open Access Journals (Sweden)

    Míriam Raquel Meira Mainenti

    2011-01-01

    Full Text Available OBJECTIVE: The purpose of this study was to investigate the correlation between body adiposity and postural control in elderly women. INTRODUCTION: Aging and obesity account for a significant portion of healthcare spending. Life expectancy is increasing worldwide, and Rio de Janeiro has the largest proportion of elderly residents of all Brazilian states. METHODS: A total of 45 women underwent bioelectrical impedance analysis, waist circumference measurements, weight and height measurements, and stabilometric tests in eight different stance conditions (opened and closed bases with both eyes opened and closed and right and left tandem and unilateral stances with eyes opened. During unilateral stances, the number of hand or foot contacts was counted. RESULTS: Weight, body mass index, waist circumference, fat percentage, and fat mass showed statistically significant (p,0.05 and positive correlations with the number of contacts made during unilateral stances. The subjects with greater fat mass showed significantly higher anterior-posterior standard deviation and range when their eyes were closed. The sway area was also greater for this group in opened base when their eyes were closed. DISCUSSION: The results relating body adiposity and postural control can be explained by the difficulty of maintaining a greater quantity of body fat mass within the limits of the individual support base, especially while assuming a unilateral stance. CONCLUSION: The subjects with a greater fat mass exhibited poor balance control, indicating that body adiposity level was associated with postural control in the elderly women examined in the present study.

  13. Ankylosing Spondylitis and Posture Control: The Role of Visual Input

    OpenAIRE

    De Nunzio, Alessandro Marco; Iervolino, Salvatore; Zincarelli, Carmela; Di Gioia, Luisa; Rengo, Giuseppe; Multari, Vincenzo; Peluso, Rosario; Di Minno, Matteo Nicola Dario; Pappone, Nicola

    2015-01-01

    Objectives. To assess the motor control during quiet stance in patients with established ankylosing spondylitis (AS) and to evaluate the effect of visual input on the maintenance of a quiet posture. Methods. 12 male AS patients (mean age 50.1 ± 13.2 years) and 12 matched healthy subjects performed 2 sessions of 3 trials in quiet stance, with eyes open (EO) and with eyes closed (EC) on a baropodometric platform. The oscillation of the centre of feet pressure (CoP) was acquired. Indices of stab...

  14. The postural stability of children with foetal alcohol spectrum disorders during one-leg stance: A feasibility study

    Directory of Open Access Journals (Sweden)

    Yolandi Brink

    2018-03-01

    Conclusions: The recruitment of children with and without FASD in a rural, small town and the administration of measurement instruments in a real-life, school-based setting was feasible. However, the verbal instructions for the task require revision. The male control group took longer to achieve postural control because the task was performed differently between the two groups. However, the case girls were slower to achieve postural control than control girls though performing the task similarly.

  15. Whole-body vibration versus proprioceptive training on postural control in post-menopausal osteopenic women.

    Science.gov (United States)

    Stolzenberg, Nils; Belavý, Daniel L; Rawer, Rainer; Felsenberg, Dieter

    2013-07-01

    To prevent falls in the elderly, especially those with low bone density, is it necessary to maintain muscle coordination and balance. The aim of this study was to examine the effect of classical balance training (BAL) and whole-body vibration training (VIB) on postural control in post-menopausal women with low bone density. Sixty-eight subjects began the study and 57 completed the nine-month intervention program. All subjects performed resistive exercise and were randomized to either the BAL- (N=31) or VIB-group (N=26). The BAL-group performed progressive balance and coordination training and the VIB-group underwent, in total, four minutes of vibration (depending on exercise; 24-26Hz and 4-8mm range) on the Galileo Fitness. Every month, the performance of a single leg stance task on a standard unstable surface (Posturomed) was tested. At baseline and end of the study only, single leg stance, Romberg-stance, semi-tandem-stance and tandem-stance were tested on a ground reaction force platform (Leonardo). The velocity of movement on the Posturomed improved by 28.3 (36.1%) (ppostural control in post-menopausal women with low bone density. The current study could not provide evidence for a significantly different impact of whole-body vibration or balance training on postural control. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Attention Demand and Postural Control in Children with Hearing Deficit

    Science.gov (United States)

    Derlich, Malgorzata; Krecisz, Krzysztof; Kuczynski, Michal

    2011-01-01

    To elucidate the mechanisms responsible for deteriorated postural control in children with hearing deficit (CwHD), we measured center-of-pressure (COP) variability, mean velocity and entropy in bipedal quiet stance (feet together) with or without the concurrent cognitive task (reaction to visual stimulus) on hard or foam surface in 29 CwHD and a…

  17. Philip Morris's website and television commercials use new language to mislead the public into believing it has changed its stance on smoking and disease.

    Science.gov (United States)

    Friedman, Lissy C

    2007-12-01

    This paper analyses Philip Morris's evolving website and the legal strategies employed in its creation and dissemination. Internal tobacco documents were searched and examined and their substance verified and triangulated using media accounts, legal and public health research papers, and visits to Philip Morris's website. Various drafts of website language, as well as informal discussion of the website's creation, were located in internal Philip Morris documents. I compared website statements pertaining to Philip Morris's stance on cigarette smoking and disease with statements made in tobacco trials. Philip Morris created and disseminated its website's message that it agreed that smoking causes disease and is addictive in an effort to sway public opinion, while maintaining in a litigation setting its former position that it cannot be proved that smoking causes disease or is addictive. Philip Morris has not changed its position on smoking and health or addiction in the one arena where it has the most to lose-in the courtroom, under oath.

  18. A systematic review of the relationship between physical activities in sports or daily life and postural sway in upright stance

    NARCIS (Netherlands)

    Kiers, H.; van Dieen, J.H.; Dekkers, H.; Wittink, H.; Vanhees, L.

    2013-01-01

    Background: In many sports, maintaining balance is necessary to compete at a high level. Also, in many health problems, balance is impaired. Postural sway (PS) is often used as an indicator of upright balance control, and physical activity (PA) might enhance balance control. However, the

  19. The classification of Dutch controller graduates by activities : Images of a profession

    NARCIS (Netherlands)

    Verstegen, B.; De Loo, I.G.M.; Mol, P.; Slagter, K.; Geerkens, H.

    2005-01-01

    There is conflicting evidence about the current stance of the controller profession. Some researchers say that controllers have evolved into strategic partners of their managers, while others assert that they are still mainly concerned with internal and external reporting. In order to assess the

  20. Is there a relationship between complaints of impaired balance and postural control disorder in community-dwelling elderly women? A cross-sectional study with the use of posturography

    Directory of Open Access Journals (Sweden)

    Erika H. Tanaka

    2015-06-01

    Full Text Available Background: Risk of falls increases as age advances. Complaints of impaired balance are very common in the elderly age group. Objectives: The objective of this study was to investigate whether the subjective perception of impaired balance was associated with deficits in postural control (objective analysis in elderly community-dwelling women. Method: Static posturography was used in two groups: elderly women with (WC group and without (NC group complaints of impaired balance. The area, mean sway amplitude and mean speed of the center of pressure (COP in the anterior-posterior (AP and medial-lateral (ML directions were analyzed in three stances: single-leg stance, double-leg stance and tandem stance, with eyes open or closed on two different surfaces: stable (firm and unstable (foam. A digital chronometer was activated to measure the time limit (Tlimit in the single-leg stance. Kruskal-Wallis tests followed by Mann-Whitney tests, Friedman analyses followed by post hoc Wilcoxon tests and Bonferroni corrections, and Spearman statistical tests were used in the data analysis. Differences of p<0.05 were considered statistically significant. Results: The results of posturography variables revealed no differences between groups. The timed single-leg stance test revealed a shorter Tlimit in the left single-leg stance (p=0.01 in WC group compared to NC group. A negative correlation between posturography variables and Tlimit was detected. Conclusions: Posturography did not show any differences between the groups; however, the timed single-leg stance allowed the authors to observe differences in postural control performance between elderly women with and those without complaints of impaired balance.

  1. People with chronic low back pain have poorer balance than controls in challenging tasks.

    Science.gov (United States)

    da Silva, Rubens A; Vieira, Edgar R; Fernandes, Karen B P; Andraus, Rodrigo A; Oliveira, Marcio R; Sturion, Leandro A; Calderon, Mariane G

    2018-06-01

    To compare the balance of individuals with and without chronic low back pain during five tasks. The participants were 20 volunteers, 10 with and 10 without nonspecific chronic low back pain, mean age 34 years, 50% females. The participants completed the following balance tasks on a force platform in random order: (1) two-legged stance with eyes open, (2) two-legged stance with eyes closed, (3) semi-tandem with eyes open, (4) semi-tandem with eyes closed and (5) one-legged stance with eyes open. The participants completed three 60-s trials of tasks 1-4, and three 30-s trials of task 5 with 30-s rests between trials. The center of pressure area, velocity and frequency in the antero-posterior and medio-lateral directions were computed during each task, and compared between groups and tasks. Participants with chronic low back pain presented significantly larger center of pressure area and higher velocity than the healthy controls (p chronic low back pain group than two-legged stance tasks 1 and 2 (effect size >1.37 vs. effect size chronic low back pain presented poorer postural control using center of pressure measurements than the healthy controls, mainly during more challenging balance tasks such as semi-tandem and one-legged stance conditions. Implications for Rehabilitation People with chronic low back had poorer balance than those without it. Balance tasks need to be sensitive to capture impairments. Balance assessments during semi-tandem and one-legged stance were the most sensitive tasks to determine postural control deficit in people with chronic low back. Balance assessment should be included during rehabilitation programs for individuals with chronic low back pain for better clinical decision making related to balance re-training as necessary.

  2. Lumbopelvic muscle activation patterns in three stances under graded loading conditions: Proposing a tensegrity model for load transfer through the sacroiliac joints.

    Science.gov (United States)

    Pardehshenas, Hamed; Maroufi, Nader; Sanjari, Mohammad Ali; Parnianpour, Mohamad; Levin, Stephen M

    2014-10-01

    According to the conventional arch model of the pelvis, stability of the sacroiliac joints may require a predominance of form and force closure mechanisms: the greater the vertical shear force at the sacroiliac joints, the greater the reliance on self-bracing by horizontally or obliquely oriented muscles (such as the internal oblique). But what happens to the arch model when a person stands on one leg? In such cases, the pelvis no longer has imposts, leaving both the arch, and the arch model theory, without support. Do lumbopelvic muscle activation patterns in one-legged stances under load suggest compatibility with a different model? This study compares lumbopelvic muscle activation patterns in two-legged and one-legged stances in response to four levels of graded trunk loading in order to further our understanding the stabilization of the sacroiliac joints. Thirty male subjects experienced four levels of trunk loading (0%, 5%, 10% and 15% of body weight) by holding a bucket at one side, at three conditions: 1) two-legged standing with the bucket in the dominant hand, 2) ipsilateral loading: one-legged standing with the bucket in the dominant hand while using the same-side leg, and 3) contralateral loading: one-legged standing using the same leg used in condition 2, but with the bucket in the non-dominant hand. During these tasks, EMG signals from eight lumbopelvic muscles were collected. ANOVA with repeated design was performed on normalized EMG's to test the main effect of load and condition, and interaction effects of load by condition. Latissimus dorsi and erector spinae muscles showed an antagonistic pattern of activity toward the direction of load which may suggest these muscles as lateral trunk stabilizers. Internal oblique muscles showed a co-activation pattern with increasing task demand, which may function to increase lumbopelvic stability (P sacroiliac joint dysfunctions must be taken into consideration. Our hypothetical model may initiate thinking and

  3. Feedback Control Design for a Walking Athlete Robot

    Directory of Open Access Journals (Sweden)

    Xuan Vu Trien Nguyen

    2017-06-01

    Full Text Available In the paper, authors generalized the dynamic model of an athlete robot with elastic legs through Lagrange method. Then, a feed-back controller was designed to control the robot through a step-walking. The research just focused on stance phase – the period that robot just touched one leg on the ground. The simulation results showed that system worked well with the designed controller.

  4. Reactive Balance Control in Response to Perturbation in Unilateral Stance: Interaction Effects of Direction, Displacement and Velocity on Compensatory Neuromuscular and Kinematic Responses.

    Directory of Open Access Journals (Sweden)

    Kathrin Freyler

    Full Text Available Unexpected sudden perturbations challenge postural equilibrium and require reactive compensation. This study aimed to assess interaction effects of the direction, displacement and velocity of perturbations on electromyographic (EMG activity, centre of pressure (COP displacement and joint kinematics to detect neuromuscular characteristics (phasic and segmental and kinematic strategies of compensatory reactions in an unilateral balance paradigm. In 20 subjects, COP displacement and velocity, ankle, knee and hip joint excursions and EMG during short (SLR, medium (MLR and long latency response (LLR of four shank and five thigh muscles were analysed during random surface translations varying in direction (anterior-posterior (sagittal plane, medial-lateral (frontal plane, displacement (2 vs. 3 cm and velocity (0.11 vs. 0.18 m/s of perturbation when balancing on one leg on a movable platform. Phases: SLR and MLR were scaled to increased velocity (P<0.05; LLR was scaled to increased displacement (P<0.05. Segments: phasic interrelationships were accompanied by segmental distinctions: distal muscles were used for fast compensation in SLR (P<0.05 and proximal muscles to stabilise in LLR (P<0.05. Kinematics: ankle joints compensated for both increasing displacement and velocity in all directions (P<0.05, whereas knee joint deflections were particularly sensitive to increasing displacement in the sagittal (P<0.05 and hip joint deflections to increasing velocity in the frontal plane (P<0.05. COP measures increased with increasing perturbation velocity and displacement (P<0.05. Interaction effects indicate that compensatory responses are based on complex processes, including different postural strategies characterised by phasic and segmental specifications, precisely adjusted to the type of balance disturbance. To regain balance after surface translation, muscles of the distal segment govern the quick regain of equilibrium; the muscles of the proximal limb serve as delayed stabilisers after a balance disturbance. Further, a kinematic distinction regarding the compensation for balance disturbance indicated different plane- and segment-specific sensitivities with respect to the determinants displacement and velocity.

  5. Reactive Balance Control in Response to Perturbation in Unilateral Stance: Interaction Effects of Direction, Displacement and Velocity on Compensatory Neuromuscular and Kinematic Responses

    Science.gov (United States)

    Freyler, Kathrin; Gollhofer, Albert; Colin, Ralf; Brüderlin, Uli; Ritzmann, Ramona

    2015-01-01

    Unexpected sudden perturbations challenge postural equilibrium and require reactive compensation. This study aimed to assess interaction effects of the direction, displacement and velocity of perturbations on electromyographic (EMG) activity, centre of pressure (COP) displacement and joint kinematics to detect neuromuscular characteristics (phasic and segmental) and kinematic strategies of compensatory reactions in an unilateral balance paradigm. In 20 subjects, COP displacement and velocity, ankle, knee and hip joint excursions and EMG during short (SLR), medium (MLR) and long latency response (LLR) of four shank and five thigh muscles were analysed during random surface translations varying in direction (anterior-posterior (sagittal plane), medial-lateral (frontal plane)), displacement (2 vs. 3cm) and velocity (0.11 vs. 0.18m/s) of perturbation when balancing on one leg on a movable platform. Phases: SLR and MLR were scaled to increased velocity (Pjoints compensated for both increasing displacement and velocity in all directions (Pjoint deflections were particularly sensitive to increasing displacement in the sagittal (Pjoint deflections to increasing velocity in the frontal plane (P<0.05). COP measures increased with increasing perturbation velocity and displacement (P<0.05). Interaction effects indicate that compensatory responses are based on complex processes, including different postural strategies characterised by phasic and segmental specifications, precisely adjusted to the type of balance disturbance. To regain balance after surface translation, muscles of the distal segment govern the quick regain of equilibrium; the muscles of the proximal limb serve as delayed stabilisers after a balance disturbance. Further, a kinematic distinction regarding the compensation for balance disturbance indicated different plane- and segment-specific sensitivities with respect to the determinants displacement and velocity. PMID:26678061

  6. Comparison of a laboratory grade force platform with a Nintendo Wii balance board in measurement of postural control in single-legged stance balance tasks

    NARCIS (Netherlands)

    Huurnink, A.; Fransz, D.P.; Kingma, I.; van Dieen, J.H.

    2013-01-01

    Training and testing of balance have potential applications in sports and medicine. Laboratory grade force plates (FP) are considered the gold standard for the measurement of balance performance. Measurements in these systems are based on the parameterization of center of pressure (CoP)

  7. The benefits of a critical stance: a reflection on past papers on the theories of reasoned action and planned behaviour.

    Science.gov (United States)

    Manstead, Antony S R

    2011-09-01

    In this paper, I reflect on past papers published in the British Journal of Social Psychology (BJSP) that have played a role in the development of the theory of reasoned action (TRA) and the theory of planned behaviour (TPB). I focus on seven papers that fall into five categories: (1) those that critique the TRA/TPB for taking insufficient account of social factors; (2) those that critique the models on the grounds that many social behaviours are 'habitual'; (3) those that critically examine the construct of perceived behavioural control; (4) those that argue for the importance of affective factors, which appear to be overlooked in the TRA/TPB; and (5) those that argue for the importance of studying the role of moderating factors and interaction effects in the TRA/TPB. I conclude that BJSP's traditional focus on criticism and theory development is one that benefits the journal and the field. ©2011 The British Psychological Society.

  8. What variables influence the ability of an AFO to improve function and when are they indicated?

    Science.gov (United States)

    Malas, Bryan S

    2011-05-01

    Children with spina bifida often present with functional deficits of the lower limb associated with neurosegmental lesion levels and require orthotic management. The most used orthosis for children with spina bifida is the ankle-foot orthosis (AFO). The AFO improves ambulation and reduces energy cost while walking. Despite the apparent benefits of using an AFO, limited evidence documents the influence of factors predicting the ability of an AFO to improve function and when they are indicated. These variables include AFO design, footwear, AFO-footwear combination, and data acquisition. When these variables are not adequately considered in clinical decision-making, there is a risk the AFO will be abandoned prematurely or the patient's stability, function, and safety compromised. The purposes of this study are to (1) describe the functional deficits based on lesion levels; (2) identify and describe variables that influence the ability of an AFO to control deformities; and (3) describe what variables are indicated for the AFO to control knee flexion during stance, hyperpronation, and valgus stress at the knee. A selective literature review was undertaken searching MEDLINE and Cochrane databases using terms related to "orthosis" and "spina bifida." Based on previous studies and gait analysis data, suggestions can be made regarding material selection/geometric configuration, sagittal alignment, footplate length, and trim lines of an AFO for reducing knee flexion, hyperpronation, and valgus stress at the knee. Further research is required to determine what variables allow an AFO to improve function.

  9. Postural control and cognitive task performance in healthy participants while balancing on different support-surface configurations

    NARCIS (Netherlands)

    Dault, MC; Mulder, TW; Duysens, J

    2001-01-01

    Postural control during normal upright stance in humans is a well-learned task. Hence, it has often been argued that it requires very little attention. However, many studies have recently shown that postural control is modified when a cognitive task is executed simultaneously especially in the

  10. Dual arm master controller development

    International Nuclear Information System (INIS)

    Kuban, D.P.; Perkins, G.S.

    1985-01-01

    The advanced servomanipulator (ASM) slave was designed with an anthropomorphic stance, gear/torque tube power drives, and modular construction. These features resulted in increased inertia, friction, and backlash relative to tape-driven manipulators. Studies were performed which addressed the human factors design and performance trade-offs associated with the corresponding master controller best suited for the ASM. The results of these studies, as well as the conceptual design of the dual arm master controller, are presented. This work was performed as part of the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory. 5 refs., 7 figs., 1 tab

  11. Volition-adaptive control for gait training using wearable exoskeleton: preliminary tests with incomplete spinal cord injury individuals.

    Science.gov (United States)

    Rajasekaran, Vijaykumar; López-Larraz, Eduardo; Trincado-Alonso, Fernando; Aranda, Joan; Montesano, Luis; Del-Ama, Antonio J; Pons, Jose L

    2018-01-03

    Gait training for individuals with neurological disorders is challenging in providing the suitable assistance and more adaptive behaviour towards user needs. The user specific adaptation can be defined based on the user interaction with the orthosis and by monitoring the user intentions. In this paper, an adaptive control model, commanded by the user intention, is evaluated using a lower limb exoskeleton with incomplete spinal cord injury individuals (SCI). A user intention based adaptive control model has been developed and evaluated with 4 incomplete SCI individuals across 3 sessions of training per individual. The adaptive control model modifies the joint impedance properties of the exoskeleton as a function of the human-orthosis interaction torques and the joint trajectory evolution along the gait sequence, in real time. The volitional input of the user is identified by monitoring the neural signals, pertaining to the user's motor activity. These volitional inputs are used as a trigger to initiate the gait movement, allowing the user to control the initialization of the exoskeleton movement, independently. A Finite-state machine based control model is used in this set-up which helps in combining the volitional orders with the gait adaptation. The exoskeleton demonstrated an adaptive assistance depending on the patients' performance without guiding them to follow an imposed trajectory. The exoskeleton initiated the trajectory based on the user intention command received from the brain machine interface, demonstrating it as a reliable trigger. The exoskeleton maintained the equilibrium by providing suitable assistance throughout the experiments. A progressive change in the maximum flexion of the knee joint was observed at the end of each session which shows improvement in the patient performance. Results of the adaptive impedance were evaluated by comparing with the application of a constant impedance value. Participants reported that the movement of the

  12. Young, healthy subjects can reduce the activity of calf muscles when provided with EMG biofeedback in upright stance

    Directory of Open Access Journals (Sweden)

    Taian M. Vieira

    2016-04-01

    assisting subjects in more efficiently controlling leg muscle activity during standing.

  13. The effects of common footwear on stance-phase mechanical properties of the prosthetic foot-shoe system.

    Science.gov (United States)

    Major, Matthew J; Scham, Joel; Orendurff, Michael

    2018-04-01

    Prosthetic feet are prescribed based on their mechanical function and user functional level. Subtle changes to the stiffness and hysteresis of heel, midfoot, and forefoot regions can influence the dynamics and economy of gait in prosthesis users. However, the user's choice of shoes may alter the prosthetic foot-shoe system mechanical characteristics, compromising carefully prescribed and rigorously engineered performance of feet. Observe the effects of footwear on the mechanical properties of the prosthetic foot-shoe system including commonly prescribed prosthetic feet. Repeated-measures, Mechanical characterization. The stiffness and energy return was measured using a hydraulic-driven materials test machine across combinations of five prosthetic feet and four common shoes as well as a barefoot condition. Heel energy return decreased by an average 4%-9% across feet in all shoes compared to barefoot, with a cushioned trainer displaying the greatest effect. Foot designs that may improve perceived stability by providing low heel stiffness and rapid foot-flat were compromised by the addition of shoes. Shoes altered prosthesis mechanical characteristics in the sagittal and frontal planes, suggesting that shoe type should be controlled or reported in research comparing prostheses. Understanding of how different shoes could alter certain gait-related characteristics of prostheses may aid decisions on footwear made by clinicians and prosthesis users. Clinical relevance Shoes can alter function of the prosthetic foot-shoe system in unexpected and sometimes undesirable ways, often causing similar behavior across setups despite differences in foot design, and prescribing clinicians should carefully consider these effects on prosthesis performance.

  14. Adaptation of center of mass control under microgravity in a whole-body lifting task

    NARCIS (Netherlands)

    Kingma, I.; Toussaint, H.M.; Commissaris, D.A.C.M.; Savelsbergh, G.J.P.

    1999-01-01

    Human balance in stance is usually defined as the preservation of the vertical projection of the center of mass (COM) on the support area formed by the feet. Under microgravity conditions, the control of equilibrium seems to be no longer required. However, several reports indicate preservation of

  15. The influence of artificially increased hip and trunk stiffness on balance control in man.

    NARCIS (Netherlands)

    Grüneberg, C.; Bloem, B.R.; Honegger, F.; Allum, J.H.J.

    2004-01-01

    Lightweight corsets were used to produce mid-body stiffening, rendering the hip and trunk joints practically inflexible. To examine the effect of this artificially increased stiffness on balance control, we perturbed the upright stance of young subjects (20-34 years of age) while they wore one of

  16. Identification of the contribution of the ankle and hip joints to multi-segmental balance control

    NARCIS (Netherlands)

    Boonstra, T.A.; Schouten, A.C.; Van der Kooij, H.

    2013-01-01

    Background Human stance involves multiple segments, including the legs and trunk, and requires coordinated actions of both. A novel method was developed that reliably estimates the contribution of the left and right leg (i.e., the ankle and hip joints) to the balance control of individual subjects.

  17. The effects of mirror therapy on the gait of subacute stroke patients: a randomized controlled trial.

    Science.gov (United States)

    Ji, Sang Gu; Kim, Myoung Kwon

    2015-04-01

    To investigate the effect of mirror therapy on the gait of patients with subacute stroke. Randomized controlled experimental study. Outpatient rehabilitation hospital. Thirty-four patients with stroke were randomly assigned to two groups: a mirror therapy group (experimental) and a control group. The stroke patients in the experimental group underwent comprehensive rehabilitation therapy and mirror therapy for the lower limbs. The stroke patients in the control group underwent sham therapy and comprehensive rehabilitation therapy. Participants in both groups received therapy five days per week for four weeks. Temporospatial gait characteristics, such as single stance, stance phase, step length, stride, swing phase, velocity, and cadence, were assessed before and after the four weeks therapy period. A significant difference was observed in post-training gains for the single stance (10.32 SD 4.14 vs. 6.54 SD 3.23), step length (8.47 SD 4.12 vs. 4.83 SD 2.14), and stride length (17.03 SD 6.57 vs 10.54 SD 4.34) between the experimental group and the control group (p two groups on stance phase, swing phase, velocity, cadence, and step width (P > 0.05). We conclude that mirror therapy may be beneficial in improving the effects of stroke on gait ability. © The Author(s) 2014.

  18. Dual arm master controller concept: consolidated fuel reprocessing program

    International Nuclear Information System (INIS)

    Kuban, D.P.; Perkins, G.S.

    1984-04-01

    The Advanced Servomanipulator (ASM) slave was designed with an anthropomorphic stance, gear/torque tube power drives, and modular construction. These features result in increased inertia, friction, and backlash relative to tape-driven manipulators. Studies were performed which addressed the human factors design and performance trade-offs associated with corresponding master controller best suited for the ASM. The results of these studies, as well as the conceptual design of the dual arm master controller, are presented. 6 references, 3 figures

  19. Effects of external pelvic compression on electromyographic activity of the hamstring muscles during unipedal stance in sportsmen with and without hamstring injuries.

    Science.gov (United States)

    Arumugam, Ashokan; Milosavljevic, Stephan; Woodley, Stephanie; Sole, Gisela

    2015-06-01

    There is some evidence that hamstring function can be influenced by interventions focusing on the pelvis via an anatomic and neurophysiologic link between these two segments. Previous research demonstrated increased electromyographic activity from injured hamstrings during transition from bipedal to unipedal stance (BUS). The aim of this study was to investigate the effects of a pelvic compression belt (PCB) on electromyographic activity of selected muscles during BUS in sportsmen with and without hamstring injury. Electromyographic amplitudes (normalised to maximum voluntary isometric contraction [MVIC]) of the hamstrings, gluteus maximus, gluteus medius and lumbar multifidus were obtained during BUS from 20 hamstring-injured participants (both sides) and 30 healthy participants (one side, randomly selected). There was an increase in biceps femoris (by 1.23 ± 2.87 %MVIC; p = 0.027) and gluteus maximus (by 0.63 ± 1.13 %MVIC; p = 0.023) electromyographic activity for the hamstring-injured side but no significant differences other than a decrease in multifidus activity (by 1.36 ± 2.92 %MVIC; p = 0.023) were evident for healthy participants while wearing the PCB. However, the effect sizes for these findings were small. Wearing the PCB did not significantly change electromyographic activity of other muscles in either participant group (p > 0.050). Moreover, the magnitude of change induced by the PCB was not significantly different between groups (p > 0.050) for the investigated muscles. Thus, application of a PCB to decrease electromyographic activity of injured hamstrings during BUS is likely to have little effect. Similar research is warranted in participants with acute hamstring injury. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Assessing Somatosensory Utilization during Unipedal Postural Control.

    Science.gov (United States)

    Goel, Rahul; De Dios, Yiri E; Gadd, Nichole E; Caldwell, Erin E; Peters, Brian T; Reschke, Millard F; Bloomberg, Jacob J; Oddsson, Lars I E; Mulavara, Ajitkumar P

    2017-01-01

    Multisensory-visual, vestibular and somatosensory information is integrated for appropriate postural control. The primary goal of this study was to assess somatosensory utilization during a functional motor task of unipedal postural control, in normal healthy adults. Assessing individual bias in the utilization of individual sensory contributions during postural control may help customization of rehabilitation protocols. In this study, a test paradigm of unipedal stance control in supine orientation with and without vision was assessed. Postural control in this test paradigm was hypothesized to utilize predominantly contributions of somatosensory information from the feet and ankle joint, with minimal vestibular input. Fourteen healthy subjects "stood" supine on their dominant leg while strapped to a backpack frame that was freely moving on air-bearings, to remove available otolith tilt cues with respect to gravity that influences postural control when standing upright. The backpack was attached through a cable to a pneumatic cylinder that provided a gravity-like load. Subjects performed three trials each with Eyes-open (EO) and Eyes-closed (EC) while loaded with 60% body weight. There was no difference in unipedal stance time (UST) across the two conditions with EC condition challenging the postural control system greater than the EO condition. Stabilogram-diffusion analysis (SDA) indicated that the critical mean square displacement was significantly different between the two conditions. Vestibular cues, both in terms of magnitude and the duration for which relevant information was available for postural control in this test paradigm, were minimized. These results support our hypothesis that maintaining unipedal stance in supine orientation without vision, minimizes vestibular contribution and thus predominantly utilizes somatosensory information for postural control.

  1. 21 CFR 890.3490 - Truncal orthosis.

    Science.gov (United States)

    2010-04-01

    ... fractures, strains, or sprains of the neck or trunk of the body. Examples of truncal orthoses are the following: Abdominal, cervical, cervical-thoracic, lumbar, lumbo-sacral, rib fracture, sacroiliac, and...

  2. Sensorimotor posture control in the blind: superior ankle proprioceptive acuity does not compensate for vision loss.

    Science.gov (United States)

    Ozdemir, Recep A; Pourmoghaddam, Amir; Paloski, William H

    2013-09-01

    To better understand sensorimotor posture control differences between blind and sighted individuals, we examined the role of ankle joint proprioception and ankle muscle strength on postural control in healthy blind (n=13, 25-58 years) and age- and sex-matched sighted (n=15, 20-65 years) volunteers. We measured ankle joint proprioceptive acuity and isokinetic muscle strength in plantarflexion and dorsiflexion using an isokinetic dynamometer. We also assessed postural control performance during quiet bipedal stance with and without sudden postural perturbations, and during quiet unipedal stance. We found that while our blind subjects exhibited significantly better proprioceptive acuity than our sighted subjects their postural control performance was significantly poorer than that of the sighted group with eyes open, and no different from that of the sighted group with eyes closed suggesting that their superior proprioceptive acuity does not translate to improved balance control. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Determinantes Sociales de la Salud: postura oficial y perspectivas críticas / Social Determinants of Health: official stance and critical views

    Directory of Open Access Journals (Sweden)

    Myriam Acero A

    2013-08-01

    Full Text Available La relación entre las desigualdades socioeconómicas y el proceso salud enfermedad ha sido demostrada desde hace ya algún tiempo. Su estudio y posibilidades de intervención, han sido motivo de análisis de actores académicos e institucionales que asumen posturas según la ideología o corriente de pensamiento en la que se inscriben. Con el ánimo de analizar las causas de las inequidades en salud y hacer algunas recomendaciones, la Organización Mundial de la Salud estableció en el año 2005 la Comisión sobre Determinantes Sociales de la Salud. Perspectivas latinoamericanas como la Medicina Social y la Salud Colectiva reconocen la preocupación de la Organización Mundial de la Salud, sin embargo critican la posición asumida por la Comisión y organizan la discusión alrededor de los ejes conceptual, ético y de acción política, proponiendo, a diferencia de la Comisión, buscar las causas de la inequidad y sus vías de solución en lo que significa la determinación social. Cuestionamientos al enfoque de los determinantes sociales de la Comisión llegaron también desde autores como Vicente Navarro, para quien no son las desigualdades las que matan, sino los responsables de esas desigualdades, llamando la atención sobre las relaciones de poder que se ocultan y sobre los responsables y beneficiarios de la inequidad. Finalmente con el objetivo de analizar la determinación social y la ubicación jerárquica de los determinantes sociales, se presenta el problema del hambre, inscrito en un circuito de reproducción y determinación que permite ubicar la particularidad y la generalidad en permanente interrelación The relationship between socioeconomic inequalities and the health-disease process has long been demonstrated. Its study and possibilities for intervention have been submitted to analysis by academic and institutional actors which take more or less critical stances depending on their paradigms. In order to analyze the causes of

  4. Influence of fear of falling on anticipatory postural control of medio-lateral stability during rapid leg flexion.

    Science.gov (United States)

    Yiou, E; Deroche, T; Do, M C; Woodman, T

    2011-04-01

    During leg flexion from erect posture, postural stability is organized in advance during "anticipatory postural adjustments" (APA). During these APA, inertial forces are generated that propel the centre of gravity (CoG) laterally towards stance leg side. This study examined how fear of falling (FoF) may influence this anticipatory postural control of medio-lateral (ML) stability. Ten young healthy participants performed a series of leg flexions at maximal velocity from low and high surface heights (6 and 66 cm above ground, respectively). In this latter condition with increased FoF, stance foot was placed at the lateral edge of the support surface to induce maximal postural threat. Results showed that the amplitude of ML inertial forces generated during APA decreased with FoF; this decrease was compensated by an increase in APA duration so that the CoG position at time of swing foot-off was located further towards stance leg side. With these changes in ML APA, the CoG was propelled in the same final (unipodal) position above stance foot as in condition with low FoF. These results contrast with those obtained in the literature during quiet standing which showed that FoF did not have any influence on the ML component of postural control. It is proposed that ML APA are modified with increased FoF, in such a way that the risk of a sideway fall induced by the large CoG motion is attenuated.

  5. Visualisation to enhance biomechanical tuning of ankle-foot orthoses (AFOs in stroke: study protocol for a randomised controlled trial

    Directory of Open Access Journals (Sweden)

    Carse Bruce

    2011-12-01

    Full Text Available Abstract Background There are a number of gaps in the evidence base for the use of ankle-foot orthoses for stroke patients. Three dimensional motion analysis offers an ideal method for objectively obtaining biomechanical gait data from stroke patients, however there are a number of major barriers to its use in routine clinical practice. One significant problem is the way in which the biomechanical data generated by these systems is presented. Through the careful design of bespoke biomechanical visualisation software it may be possible to present such data in novel ways to improve clinical decision making, track progress and increase patient understanding in the context of ankle-foot orthosis tuning. Methods A single-blind randomised controlled trial will be used to compare the use of biomechanical visualisation software in ankle-foot orthosis tuning against standard care (tuning using observation alone. Participants (n = 70 will have experienced a recent hemiplegia (1-12 months and will be identified by their care team as being suitable candidates for a rigid ankle-foot orthosis. The primary outcome measure will be walking velocity. Secondary outcome measures include; lower limb joint kinematics (thigh and shank global orientations & kinetics (knee and hip flexion/extension moments, ground reaction force FZ2 peak magnitude, step length, symmetry ratio based on step length, Modified Ashworth Scale, Modified Rivermead Mobility Index and EuroQol (EQ-5D. Additional qualitative measures will also be taken from participants (patients and clinicians at the beginning and end of their participation in the study. The main aim of the study is to determine whether or not the visualisation of biomechanical data can be used to improve the outcomes of tuning ankle-foot orthoses for stroke patients. Discussion In addition to answering the primary research question the broad range of measures that will be taken during this study are likely to contribute to a

  6. Effects of affective picture viewing on postural control

    Directory of Open Access Journals (Sweden)

    Beek Peter J

    2007-10-01

    Full Text Available Abstract Background Emotion theory holds that unpleasant events prime withdrawal actions, whereas pleasant events prime approach actions. Recent studies have suggested that passive viewing of emotion eliciting images results in postural adjustments, which become manifest as changes in body center of pressure (COP trajectories. From those studies it appears that posture is modulated most when viewing pictures with negative valence. The present experiment was conducted to test the hypothesis that pictures with negative valence have a greater impact on postural control than neutral or positive ones. Thirty-four healthy subjects passively viewed a series of emotion eliciting images, while standing either in a bipedal or unipedal stance on a force plate. The images were adopted from the International Affective Picture System (IAPS. We analysed mean and variability of the COP and the length of the associated sway path as a function of emotion. Results The mean position of the COP was unaffected by emotion, but unipedal stance resulted in overall greater body sway than bipedal stance. We found a modest effect of emotion on COP: viewing pictures of mutilation resulted in a smaller sway path, but only in unipedal stance. We obtained valence and arousal ratings of the images with an independent sample of viewers. These subjects rated the unpleasant images as significantly less pleasant than neutral images, and the pleasant images as significantly more pleasant than neutral images. However, the subjects rated the images as overall less pleasant and less arousing than viewers in a closely comparable American study, pointing to unknown differences in viewer characteristics. Conclusion Overall, viewing emotion eliciting images had little effect on body sway. Our finding of a reduction in sway path length when viewing pictures of mutilation was indicative of a freezing strategy, i.e. fear bradycardia. The results are consistent with current knowledge about the

  7. Effects of affective picture viewing on postural control.

    Science.gov (United States)

    Stins, John F; Beek, Peter J

    2007-10-04

    Emotion theory holds that unpleasant events prime withdrawal actions, whereas pleasant events prime approach actions. Recent studies have suggested that passive viewing of emotion eliciting images results in postural adjustments, which become manifest as changes in body center of pressure (COP) trajectories. From those studies it appears that posture is modulated most when viewing pictures with negative valence. The present experiment was conducted to test the hypothesis that pictures with negative valence have a greater impact on postural control than neutral or positive ones. Thirty-four healthy subjects passively viewed a series of emotion eliciting images, while standing either in a bipedal or unipedal stance on a force plate. The images were adopted from the International Affective Picture System (IAPS). We analysed mean and variability of the COP and the length of the associated sway path as a function of emotion. The mean position of the COP was unaffected by emotion, but unipedal stance resulted in overall greater body sway than bipedal stance. We found a modest effect of emotion on COP: viewing pictures of mutilation resulted in a smaller sway path, but only in unipedal stance. We obtained valence and arousal ratings of the images with an independent sample of viewers. These subjects rated the unpleasant images as significantly less pleasant than neutral images, and the pleasant images as significantly more pleasant than neutral images. However, the subjects rated the images as overall less pleasant and less arousing than viewers in a closely comparable American study, pointing to unknown differences in viewer characteristics. Overall, viewing emotion eliciting images had little effect on body sway. Our finding of a reduction in sway path length when viewing pictures of mutilation was indicative of a freezing strategy, i.e. fear bradycardia. The results are consistent with current knowledge about the neuroanatomical organization of the emotion system and

  8. Dynamic plantar pressure distribution, strength capacity and postural control after Lisfranc fracture-dislocation

    DEFF Research Database (Denmark)

    Mehlhorn, Alexander T; Walther, Markus; Yilmaz, Tayfun

    2017-01-01

    of life. 17 consecutive patients suffering from a Lisfranc fracture dislocation were registered, underwent open reduction and internal fixation and were followed-up for 50.5±25.7months (Mean±SDM). Biomechanical analysis of muscle strength capacities, postural control and plantar pressure distribution......Substantial progress has been made in the operative treatment of Lisfranc fractures, however, the prognosis remains poor. We hypothesized that Lisfranc injuries change the postural control and muscle strength of the lower limb. Both are suggested to correlate with the clinical outcome and quality...... correlated well with clinical outcome. Altered postural control was evident by a significant reduction in unilateral stance time, from which we calculated a strong correlation between stance time and the isokinetic strength measurement. Plantar pressure measurements revealed a significant reduction in peak...

  9. Biomechanics of normal and pathological gait: implications for understanding human locomotor control.

    Science.gov (United States)

    Winter, D A

    1989-12-01

    The biomechanical (kinetic) analysis of human gait reveals the integrated and detailed motor patterns that are essential in pinpointing the abnormal patterns in pathological gait. In a similar manner, these motor patterns (moments, powers, and EMGs) can be used to identify synergies and to validate theories of CNS control. Based on kinetic and EMG patterns for a wide range of normal subjects and cadences, evidence is presented that both supports and negates the central pattern generator theory of locomotion. Adaptive motor patterns that are evident in peripheral gait pathologies reinforce a strong peripheral rather than a central control. Finally, a three-component subtask theory of human gait is presented and is supported by reference to the motor patterns seen in a normal gait. The identified subtasks are (a) support (against collapse during stance); (b) dynamic balance of the upper body, also during stance; and (c) feedforward control of the foot trajectory to achieve safe ground clearance and a gentle heel contact.

  10. The Effects of Slackline Balance Training on Postural Control in Older Adults.

    Science.gov (United States)

    Thomas, Monika; Kalicinski, Michael

    2016-07-01

    The present study investigated whether slackline training enhances postural control in older adults. Twenty-four participants were randomized into an intervention and a control group. The intervention group received 6 weeks of slackline training, two times per week. Pre-post measurement included the time of different standing positions on a balance platform with and without an external disturbance and the acceleration of the balance platform. Results showed significantly improved standing times during one-leg stance without external disturbance and a significantly reduced acceleration of the balance platform for the intervention group after the training period during tandem stance with and without an external disturbance. We conclude that slackline training in older adults has a positive impact on postural control and thus on the reduction of fall risk.

  11. Avaliação das propriedades mecânicas de atadura gessada de três diferentes fabricantes, utilizada para confecção de órteses Evaluation of the mechanical properties of plaster bandages used for orthosis manufacture, marketed by three different manufacturers

    Directory of Open Access Journals (Sweden)

    Gustavo Cardoso Vieira

    2006-01-01

    Full Text Available Foram realizados testes mecânicos com atadura gessada de três diferentes fabricantes, utilizada para confecção de órteses. Para isso, foram confeccionados corpos de provas (CDPs na forma de placas e de cilindros. Os CDPs foram submetidos a dois tipos de ensaios mecânicos: para o grupo das placas foi realizado ensaio de flexão em três pontos e para o grupo dos cilindros, ensaio de compressão. Os ensaios mecânicos foram realizados na Máquina Universal de Ensaios EMIC®. Três propriedades mecânicas foram avaliadas após os ensaios: carga no limite máximo, carga no limite de proporcionalidade e rigidez. Os resultados mostraram que um fabricante foi superior aos demais para as propriedades avaliadas.Mechanical tests have been performed in plaster bandages used in orthosis supplied by three different manufacturers. For this, bodies of evidence (BOEs were made with plates and cylinders shapes. BOEs were submitted to two kinds of mechanical assays: for the plate group, a flexion assay was performed at three points, and, for the cylinder group, a compression assay was performed. Mechanical assays were performed on the Universal Assay Machine EMIC®. Three mechanical properties were assessed after assays: maximum limit load, proportional limit load and stiffness. Results show that a manufacturer was superior over the others for the properties assessed.

  12. Clinical correlates of between-limb synchronization of standing balance control and falls during inpatient stroke rehabilitation.

    Science.gov (United States)

    Mansfield, Avril; Mochizuki, George; Inness, Elizabeth L; McIlroy, William E

    2012-01-01

    Stroke-related sensorimotor impairment potentially contributes to impaired balance. Balance measures that reveal underlying limb-specific control problems, such as a measure of the synchronization of both lower limbs to maintain standing balance, may be uniquely informative about poststroke balance control. This study aimed to determine the relationships between clinical measures of sensorimotor control, functional balance, and fall risk and between-limb synchronization of balance control. The authors conducted a retrospective chart review of 100 individuals with stroke admitted to inpatient rehabilitation. Force plate-based measures were obtained while standing on 2 force plates, including postural sway (root mean square of anteroposterior and mediolateral center of pressure [COP]), stance load asymmetry (percentage of body weight borne on the less-loaded limb), and between-limb synchronization (cross-correlation of the COP recordings under each foot). Clinical measures obtained were motor impairment (Chedoke-McMaster Stroke Assessment), plantar cutaneous sensation, functional balance (Berg Balance Scale), and falls experienced in rehabilitation. Synchronization was significantly related to motor impairment and prospective falls, even when controlling for other force plate-based measures of standing balance control (ie, postural sway and stance load symmetry). Between-limb COP synchronization for standing balance appears to be a uniquely important index of balance control, independent of postural sway and load symmetry during stance.

  13. An alternative fabrication method of the dart thrower's motion orthosis (also known as the dart orthosis).

    Science.gov (United States)

    Schwartz, Deborah A

    2016-01-01

    To allow safe early wrist motion after wrist injury, this author has modified an earlier version of a dart thrower's motion orthotic device using material that is currently available on the market and an inexpensive paper fastener as the rivet. - KristinValdes, OTD, OT, CHT, Practice Forum Editor. Copyright © 2016 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  14. Improvements in balance control in individuals with PCS detected following vestibular training: A case study.

    Science.gov (United States)

    Prangley, Alyssa; Aggerholm, Mathew; Cinelli, Michael

    2017-10-01

    Concussed individuals have been found to experience balance deficits in the anterior-posterior (AP) direction as indicated by greater Center of Pressure (COP) displacement and velocity. One possible reason for this change in balance control could be due to damage to the lateral vestibulospinal tract which sends signals to control posterior muscles, specifically ankle extensors leading to compensatory torques about the ankle. The purpose of the study was to quantify balance assessments in individuals experiencing persistent post-concussion symptoms (PCS) to determine balance control changes following a vestibular training intervention. Participants (N=6,>26days symptomatic), were tested during their first appointment with a registered physiotherapist (PT) and during each follow up appointment. Participants were prescribed balance, visual, and neck strengthening exercises by the PT that were to be completed daily between bi-weekly appointments. Balance assessments were quantified using a Nintendo Wii board to record ground reaction forces. Participants completed 4 balance assessments: 1) Romberg stance eyes open (REO); 2) Romberg stance eyes closed (REC); 3) single leg stance eyes open (SEO); and 4) single leg stance eyes closed (SEC). The balance assessments were conducted on both a firm and compliant surfaces. Significant improvements in balance control were noted in ML/AP displacement and velocity of COP for both SEC and Foam REC conditions, with additional improvements in AP velocity of COP for Foam REC and in ML displacement of COP during Foam SEC. Overall, findings indicate that objectively quantifying balance changes for individuals experiencing persistent PCS allows for a more sensitive measure of balance and detects changes unrecognizable to the naked eye. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Models of Postural Control: Shared Variance in Joint and COM Motions.

    Directory of Open Access Journals (Sweden)

    Melissa C Kilby

    Full Text Available This paper investigated the organization of the postural control system in human upright stance. To this aim the shared variance between joint and 3D total body center of mass (COM motions was analyzed using multivariate canonical correlation analysis (CCA. The CCA was performed as a function of established models of postural control that varied in their joint degrees of freedom (DOF, namely, an inverted pendulum ankle model (2DOF, ankle-hip model (4DOF, ankle-knee-hip model (5DOF, and ankle-knee-hip-neck model (7DOF. Healthy young adults performed various postural tasks (two-leg and one-leg quiet stances, voluntary AP and ML sway on a foam and rigid surface of support. Based on CCA model selection procedures, the amount of shared variance between joint and 3D COM motions and the cross-loading patterns we provide direct evidence of the contribution of multi-DOF postural control mechanisms to human balance. The direct model fitting of CCA showed that incrementing the DOFs in the model through to 7DOF was associated with progressively enhanced shared variance with COM motion. In the 7DOF model, the first canonical function revealed more active involvement of all joints during more challenging one leg stances and dynamic posture tasks. Furthermore, the shared variance was enhanced during the dynamic posture conditions, consistent with a reduction of dimension. This set of outcomes shows directly the degeneracy of multivariate joint regulation in postural control that is influenced by stance and surface of support conditions.

  16. Análise cinemática comparativa da fase de apoio da corrida em adultos e idosos Comparative kinematic analysis during the stance phase of running in adults and elderly

    Directory of Open Access Journals (Sweden)

    Reginaldo Kisho Fukuchi

    2008-01-01

    stance phase kinematics of running in adults and elderly runners. Seventeen adults (31±5 years old and 17 elderly runners (69±2 years old ran on a treadmill at 11 km/h while they were filmed by four digital cameras at 120 Hz. Rearfoot and knee joint movements were measured during the stance phase of running. The elderly runners showed lower knee flexion and lower tibial internal rotation excursion. Elderly runners apparently presented greater asynchrony between rearfoot and knee joint movement than adults. These findings suggest that during running stance elderly runners adopt different movement patterns when compared to adults. Prescription of physical activities for the elderly and prevention strategies in elderly runners should consider these findings.

  17. Nonlinear dynamics analysis of the human balance control subjected to physical and sensory perturbations.

    Science.gov (United States)

    Ashtiani, Mohammed N; Mahmood-Reza, Azghani

    2017-01-01

    Postural control after applying perturbation involves neural and muscular efforts to limit the center of mass (CoM) motion. Linear dynamical approaches may not unveil all complexities of body efforts. This study was aimed at determining two nonlinear dynamics parameters (fractal dimension (FD) and largest Lyapunov exponent (LLE)) in addition to the linear standing metrics of balance in perturbed stance. Sixteen healthy young males were subjected to sudden rotations of the standing platform. The vision and cognition during the standing were also interfered. Motion capturing was used to measure the lower limb joints and the CoM displacements. The CoM path length as a linear parameter was increased by elimination of vision (pnonlinear metric FD was decreased due to the cognitive loads (pnonlinear metrics of the perturbed stance showed that a combination of them may properly represent the body behavior.

  18. TCMB’nin Para Politikası Duruşunun Alternatif Açıklaması: Parasal Durum Endeksi (MCI (Alternative Explanations for the Monetary Stance of CBRT: Monetary Condition Index (MCI

    Directory of Open Access Journals (Sweden)

    Bora SÜSLÜ

    2012-01-01

    Full Text Available Knowledge of economic agent’s expectations enables the policy authorities to evaluate responsiveness of economic and political decisions. Hence, all central banks in the World including the Central Bank of Republic of Turkey (CBRT want to know public expectations and re-use this knowledge to influence expectations of people especially in implementing interest rate as an instrument. However, considering the stability of economy, central banks try to take into account real variables which are more flexible and effective as policy tools. Moreover, real variables are directly related to welfare of the society.The main aim of this study is to investigate whether the monetary stance of CBRT that bases on policy rules takes into account aggregate demand that impacts growth and price level during past decade. The study employs ARDL approach using time series data obtained from CBRT. The results indicate that CBRT was heavily relied on Monetary Condition Index (MCI over the past decade contrary to its official discourse.

  19. Postural control and freezing of gait in Parkinson's disease.

    Science.gov (United States)

    Schlenstedt, Christian; Muthuraman, Muthuraman; Witt, Karsten; Weisser, Burkhard; Fasano, Alfonso; Deuschl, Günther

    2016-03-01

    The relationship between freezing of gait (FOG) and postural instability in Parkinson's disease (PD) is unclear. We analyzed the impact of FOG on postural control. 31 PD patients with FOG (PD+FOG), 27 PD patients without FOG (PD-FOG) and 22 healthy control (HC) were assessed in the ON state. Postural control was measured with the Fullerton Advanced Balance (FAB) scale and with center of pressure (COP) analysis during quiet stance and maximal voluntary forward/backward leaning. The groups were balanced concerning age, disease duration and disease severity. PD+FOG performed significantly worse in the FAB scale (21.8 ± 5.8) compared to PD-FOG (25.6 ± 5.0) and HC (34.9 ± 2.4) (mean ± SD, p postural control asymmetry. PD+FOG have reduced postural control compared to PD-FOG and HC. Our results show a relationship between the anterior-posterior COP position during quiet stance and FOG. The COP shift towards posterior in PD+FOG leads to a restricted precondition to generate forward progression during gait initiation. This may contribute to the occurrence of FOG or might be a compensatory strategy to avoid forward falls. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Virtual Reality to control active participation in a subacute stroke patient during robot-assisted gait training.

    Science.gov (United States)

    Bergmann, J; Krewer, C; Müller, F; Koenig, A; Riener, R

    2011-01-01

    Virtual Reality (VR) provides a promising medium to enrich robot assisted rehabilitation. VR applications present the opportunity to engage patients in therapy and control participation. The aim of this study was to investigate two strategies to control active participation of a stroke patient focusing on the involvement of the paretic leg in task solution. A subacute stroke patient with a severe hemiparesis performed two experiments on the driven gait orthosis Lokomat. Patient activity was quantified by weighted interaction torques measured in both legs (experiment A) and the paretic leg only (experiment B). The patient was able to successfully implement both the bilateral and unilateral control modality. Both control modes increased the motor output of the paretic leg, however the paretic leg control mode resulted in a much more differentiated regulation of the activity in the leg. Both control modes are appropriate approaches to enhance active participation and increase motor output in the paretic leg. Further research should evaluate the therapeutic benefit of patients with hemiparesis using the unilateral control mode depending on the severity of their impairment. © 2011 IEEE

  1. A comparison of ballet dancers with different level of experience in performing single-leg stance on retiré position.

    Science.gov (United States)

    Lin, Chia-Wei; Lin, Cheng-Feng; Hsue, Bih-Jen; Su, Fong-Chin

    2014-04-01

    The purpose of the current study was to evaluate the postural stability of single-leg standing on the retiré position in ballet dancers having three different levels of skill. Nine superior experienced female ballet dancers, 9 experienced, and 12 novice dancers performed single-leg standing in the retiré position. The parameters of center of pressure (COP) in the anterior-posterior and medial-lateral directions and the maximum distance between COP and the center of mass (COM) were measured. The inclination angles of body segments (head, torso, and supporting leg) in the frontal plane were also calculated. The findings showed that the novice dancers had a trend of greater torso inclination angles than the experienced dancers but that the superior experienced dancers had greater maximum COM-COP distance in the anterior-posterior direction. Furthermore, both experienced and novice dancers had better balance when standing on the nondominant leg, whereas the superior experienced dancers had similar postural stability between legs. Based on the findings, ballet training should put equal focus on both legs and frontal plane control (medial-lateral direction) should be integrated to ballet training program.

  2. An ecologically-controlled exoskeleton can improve balance recovery after slippage

    Science.gov (United States)

    Monaco, V.; Tropea, P.; Aprigliano, F.; Martelli, D.; Parri, A.; Cortese, M.; Molino-Lova, R.; Vitiello, N.; Micera, S.

    2017-05-01

    The evolution to bipedalism forced humans to develop suitable strategies for dynamically controlling their balance, ensuring stability, and preventing falling. The natural aging process and traumatic events such as lower-limb loss can alter the human ability to control stability significantly increasing the risk of fall and reducing the overall autonomy. Accordingly, there is an urgent need, from both end-users and society, for novel solutions that can counteract the lack of balance, thus preventing falls among older and fragile citizens. In this study, we show a novel ecological approach relying on a wearable robotic device (the Active Pelvis Orthosis, APO) aimed at facilitating balance recovery after unexpected slippages. Specifically, if the APO detects signs of balance loss, then it supplies counteracting torques at the hips to assist balance recovery. Experimental tests conducted on eight elderly persons and two transfemoral amputees revealed that stability against falls improved due to the “assisting when needed” behavior of the APO. Interestingly, our approach required a very limited personalization for each subject, and this makes it promising for real-life applications. Our findings demonstrate the potential of closed-loop controlled wearable robots to assist elderly and disabled subjects and to improve their quality of life.

  3. Atividade eletromiográfica durante exercícios de propriocepção de tornozelo em apoio unipodal Electromyographic activity during ankle proprioception exercises on one-foot stance

    Directory of Open Access Journals (Sweden)

    Bianca Callegari

    2010-12-01

    Full Text Available Propriocepção refere-se à percepção dos mecanorreceptores para discriminar a posição do corpo e movimentos articulares, bem como tensões sobre os tendões na fase estática ou dinâmica da marcha. Objetivou-se avaliar por eletromiografia a ativação muscular do gastrocnêmio e tibial anterior em diferentes exercícios de propriocepção do tornozelo em apoio unipodal, comparando graus de dificuldade. Foram selecionados 54 voluntários, sedentários, destros, do sexo masculino (20-35 anos. Exercícios foram feitos no balancinho, prancha de equilíbrio, cama elástica e solo, à razão de três repetições de 15 segundos cada, com intervalo de 15 segundos entre as repetições. Ao final dos testes os voluntários indicaram a maior dificuldade. A atividade elétrica de ambos os músculos foi significativamente maior durante o teste no balancinho. No solo, ambos os músculos apresentaram menor atividade, mas apenas no gastrocnêmio essa diferença foi significativa. No exercício na prancha de equilíbrio e na cama elástica não se encontrou diferença quanto à ativação dos músculos. Na análise intermúsculo foi observada maior atividade do tibial anterior, exceto no balancinho. Assim, para o treino do apoio unipodal na aquisição do ganho proprioceptivo, o equipamento adotado deve ser escolhido com cuidado: no balancinho é maior o recrutamento dos músculos tibial anterior e gastrocnêmio, assim como é maior o grau de dificuldade para manutenção do equilíbrio.Proprioception refers to the ability of mechanoreceptors to discriminate body position and joint movements, as well as tensions during static or dynamic phases. The aim of this study was to assess, by means of surface electromyography, activation patterns of the gastrocnemius and tibialis anterior muscles in proprioception exercises, also comparing difficulty levels. Fifty-four sedentary, right-handed, 20-to-35 year-old male volunteers performed single-leg stance

  4. An Evaluation of the Correlation between the Free Moments Applied on the Lower Extremity and the Knee Extensor Mechanism Force in Pronated Foot Subjects during the Stance Phase of Gait

    Directory of Open Access Journals (Sweden)

    Farzaneh Yazdani

    2016-12-01

    Full Text Available Background: Due to the rotatory nature of the excessive subtalar pronation and the possible impairment of the tibial rotation-knee flexion mechanism, changes of the free moment (FM and changes of the extensor mechanism force are expected in hyper-pronated foot subjects. The purpose of this study was to evaluate the correlation between the FM applied on the lower extremity and the knee extensor mechanism force in subjects with flexible pronated feet. Methods: Fifteen asymptomatic female subjects (21.32±1.66 y, 56.30±6.08 kg, 159±6.3 cm participated in the study. Excessive subtalar pronation was determined by measuring the resting calcaneal stance position (RCSP in the frontal plane during weight bearing. A neutrally aligned foot was defined as having an RCSP between 2° of inversion and 2° of eversion. On the other hand, a flat foot had an RCSP of more than or equal to 4° of eversion. Both kinetic and kinematic data were collected using a six-camera motion analysis system and a single force plate. Three successful barefoot walking trials were recorded at selfselected speeds. The extensor mechanism force and the adductory component of the free moment (ADD FM were calculated. The correlation between the ADD FM and the knee extensor mechanism force was examined using the Pearson correlation test. Results: The Pearson correlation analysis showed a high positive correlation between the ADD FM and the extensor mechanism force (r=0.917, P<0.001. Conclusion: Excessive subtalar pronation, along with a possible impairment of the tibial rotation-knee flexion mechanism, may affect the extensor mechanism force at the knee joint. From a clinical perspective, the possible biomechanical linkage between the knee and the foot complex in the physical examination and treatment of patients should be considered.

  5. Effect of cognitive challenge on the postural control of patients with ACL reconstruction under visual and surface perturbations.

    Science.gov (United States)

    Lion, Alexis; Gette, Paul; Meyer, Christophe; Seil, Romain; Theisen, Daniel

    2018-02-01

    Our study aimed to evaluate the effect of cognitive challenge on double-leg postural control under visual and surface perturbations of patients with anterior cruciate ligament reconstruction (ACLR) cleared to return to sport. Double-leg stance postural control of 19 rehabilitated patients with ACLR (age: 24.8 ± 6.7 years, time since surgery: 9.2 ± 1.6 months) and 21 controls (age: 24.9 ± 3.7 years) was evaluated in eight randomized situations combining two cognitive (with and without silent backward counting in steps of seven), two visual (eyes open, eyes closed) and two surface (stable support, foam support) conditions. Sway area and sway path of the centre of foot pressure were measured during three 20-s recordings for each situation. Higher values indicated poorer postural control. Generally, postural control of patients with ACLR and controls was similar for sway area and sway path (p > 0.05). The lack of visual anchorage and the disturbance of the plantar input by the foam support increased sway area and sway path (p postural control during double-leg stance tests. The use of a dual task paradigm under increased task complexity modified postural control, but in a similar way in patients with ACLR than in healthy controls. Double-leg stance tests, even under challenging conditions, are not sensitive enough to reveal postural control differences between rehabilitated patients with ACLR and controls. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Ankylosing Spondylitis and Posture Control: The Role of Visual Input

    Directory of Open Access Journals (Sweden)

    Alessandro Marco De Nunzio

    2015-01-01

    Full Text Available Objectives. To assess the motor control during quiet stance in patients with established ankylosing spondylitis (AS and to evaluate the effect of visual input on the maintenance of a quiet posture. Methods. 12 male AS patients (mean age 50.1 ± 13.2 years and 12 matched healthy subjects performed 2 sessions of 3 trials in quiet stance, with eyes open (EO and with eyes closed (EC on a baropodometric platform. The oscillation of the centre of feet pressure (CoP was acquired. Indices of stability and balance control were assessed by the sway path (SP of the CoP, the frequency bandwidth (FB1 that includes the 80% of the area under the amplitude spectrum, the mean amplitude of the peaks (MP of the sway density curve (SDC, and the mean distance (MD between 2 peaks of the SDC. Results. In severe AS patients, the MD between two peaks of the SDC and the SP of the center of feet pressure were significantly higher than controls during both EO and EC conditions. The MP was significantly reduced just on EC. Conclusions. Ankylosing spondylitis exerts negative effect on postural stability, not compensable by visual inputs. Our findings may be useful in the rehabilitative management of the increased risk of falling in AS.

  7. Ankylosing Spondylitis and Posture Control: The Role of Visual Input

    Science.gov (United States)

    De Nunzio, Alessandro Marco; Iervolino, Salvatore; Zincarelli, Carmela; Di Gioia, Luisa; Rengo, Giuseppe; Multari, Vincenzo; Peluso, Rosario; Di Minno, Matteo Nicola Dario; Pappone, Nicola

    2015-01-01

    Objectives. To assess the motor control during quiet stance in patients with established ankylosing spondylitis (AS) and to evaluate the effect of visual input on the maintenance of a quiet posture. Methods. 12 male AS patients (mean age 50.1 ± 13.2 years) and 12 matched healthy subjects performed 2 sessions of 3 trials in quiet stance, with eyes open (EO) and with eyes closed (EC) on a baropodometric platform. The oscillation of the centre of feet pressure (CoP) was acquired. Indices of stability and balance control were assessed by the sway path (SP) of the CoP, the frequency bandwidth (FB1) that includes the 80% of the area under the amplitude spectrum, the mean amplitude of the peaks (MP) of the sway density curve (SDC), and the mean distance (MD) between 2 peaks of the SDC. Results. In severe AS patients, the MD between two peaks of the SDC and the SP of the center of feet pressure were significantly higher than controls during both EO and EC conditions. The MP was significantly reduced just on EC. Conclusions. Ankylosing spondylitis exerts negative effect on postural stability, not compensable by visual inputs. Our findings may be useful in the rehabilitative management of the increased risk of falling in AS. PMID:25821831

  8. Phytol in a pharma-medico-stance.

    Science.gov (United States)

    Islam, Md Torequl; de Alencar, Marcus Vinícius Oliveira Barros; da Conceição Machado, Katia; da Conceição Machado, Keylla; de Carvalho Melo-Cavalcante, Ana Amélia; de Sousa, Damiao Pergentino; de Freitas, Rivelilson Mendes

    2015-10-05

    This study aims to review phytol (PYT), through published articles, periodicals, magazines and patents, which were retrieved from the PM, SD, WS, SP; DII, WIPO, CIPO, USPTO and INPI databases. Among the 149 articles and 62 patents, 27.52% articles and 87.09% patients were found on the searched topic, PYT and its sources and synthesis and metabolism; then followed by 15.44% and 14.77% articles on PYT in cytotoxicity/cancer/mutagenicity/teratogenicity and PYT in neurological diseases, respectively. In the pharma-medico viewpoint, PYT and its derivatives have been evident to have antimicrobial, cytotoxic, antitumorous, antimutagenic, anti-teratogenic, antibiotic-chemotherapeutic, antidiabetic, lipid lowering, antispasmodic, anticonvulsant, antinociceptive, antioxidant, anti-inflammatory, anxiolytic, antidepressant, immunoadjuvancy, hair growth facilitator, hair fall defense and antidandruff activities. Otherwise, the important biometebolite of PYT is phytanic acid (PA). Evidence shows PA to have cytotoxic, anticancer, antidiabetic, lipid lowering and aniteratogenic activities. In addition, it may be considered as an important biomarker for some diseases such as Refsum's Disease (RD), Sjögren Larsson syndrome (SLS), rhizomelic chondrodysplasia punctata (RZCP), chronic polyneuropathy (CP), Zellweger's disease hyperpipecolic academia (ZDHA) and related diseases. Thus, phytol may be considered as a new drug candidate. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Narrative Transparency: Adopting a Rhetorical Stance

    DEFF Research Database (Denmark)

    Arnould, Eric; Press, Melea

    2014-01-01

    In this paper, we look at how alternative marketing organisations communicate transparency in a climate of generalised risk and scepticism. We contrast the traditional numeric approach to transparency, which involves auditing and third-party certifications; with an alternative approach that we call...... narrative transparency. Central to narrative transparency is an emphasis on stake-holder dialogue and an invitation to stake-holders to play the role of auditor. This article illustrates how alternative marketing organisations engage in rhetorical tactics central to a narrative approach, to communicate...... transparency to their stakeholders. These rhetorical tactics include persona, allegory, consumer sovereignty and enlightenment. Community supported agriculture programmes from across the United States are the context for this study. Findings enrich discussions about best practices for transparency...

  10. ITER review team takes bullish stance

    International Nuclear Information System (INIS)

    Lawler, A.

    1997-01-01

    A large team of U.S. fusion researchers last week began poring over the latest blueprints for a massive international machine designed to demonstrate fusion power and provide plasma physicists with an exciting new facility. The review of the $10 billion International Thermonuclear Experimental Reactor (ITER) was prompted by controversy over the reactor's design and the shrinking U.S. fusion budget

  11. Toward a Situated Stance in Organizational Institutionalism

    DEFF Research Database (Denmark)

    Boxenbaum, Eva

    2014-01-01

    are individuals to engage with non-institutionalized mind-sets? (b) How institutionally determined are individual interests? and (c) How deliberate are individuals about provoking institutional effects? The discussion includes concrete proposals for empirical study as well as limitations and potential pitfalls...

  12. ChemWaste appeals Hanford permit stance

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Chemical Waste Management, Inc. is appealing the Washington State Department of Ecology's decision to suspend its review of the company's proposal to build a hazardous waste incinerator and two mixed waste incinerators at the Hanford Nuclear Site near Richland, Washington. The company wants to build the incinerators on a 200 acre parcel in the DOE reservation that is leased to the State. The State contends the two mixed waste incinerators meet siting criteria, but the hazardous waste unit does not. A compromise may be reached between DOE and Washington state involving the transfer of title to the leased land from DOE to the State

  13. Interpersonal stance in police interviews: content analysis

    NARCIS (Netherlands)

    op den Akker, Hendrikus J.A.; Bruijnes, Merijn; Peters, R.M.; Krikke, T.

    2013-01-01

    A serious game for learning the social skills required for effective police interviewing is a challenging idea. Building artificial conversational characters that play the role of a suspect in a police interrogation game requires computational models of police interviews as well as of the internal

  14. Relationship Between Postural Control and Restricted, Repetitive Behaviors in Autism Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    Krestin eRadonovich

    2013-05-01

    Full Text Available Restricted, repetitive behaviors (RRBs are one of the core diagnostic criteria of autism spectrum disorders (ASD, and include simple repetitive motor behaviors and more complex cognitive behaviors, such as compulsions and restricted interests. In addition to the core symptoms, impaired movement is often observed in ASD. Research suggests that the postural system in individuals with ASD is immature and may never reach adult levels. RRBs have been related to postural sway in individuals with mental retardation.Our goals were to determine whether subjects with ASD had greater postural sway and whether RBS-R scores were related to the magnitude of postural sway. We compared the center of pressure (COP sway area during quiet stance with scores on the Repetitive Behavior Scale-Revised (RBS-R in children with ASD and typically developing controls (TD ages 3-16. All subjects had Nonverbal IQ>70. Subjects performed four quiet stance trials at a self–selected stance width for 15 seconds. Subjects with ASD had greater postural sway area compared to controls. Not surprisingly, subjects with ASD exhibited greater frequencies and intensities of RRBs overall and on all 6 subscales. Further, there was a positive correlation between postural sway area and presence of RRBs. Interestingly, results of the postural sway area for the ASD group suggests that roughly half of the ASD subjects scored comparable to TD controls, whereas the other half scored >2 SD worse. Motor impaired children did not have significantly worse IQ scores, but were younger and had more RRBs.Results support previous findings of relationships between RRBs and postural control. It appears that motor control impairments may characterize a subset of individuals with ASD. Better delineation of motor control abilities in individuals with ASD will be important to help explain variations of abilities in ASD, inform treatment, and guide examination of underlying neural involvement in this diverse

  15. Template model inspired leg force feedback based control can assist human walking.

    Science.gov (United States)

    Zhao, Guoping; Sharbafi, Maziar; Vlutters, Mark; van Asseldonk, Edwin; Seyfarth, Andre

    2017-07-01

    We present a novel control approach for assistive lower-extremity exoskeletons. In particular, we implement a virtual pivot point (VPP) template model inspired leg force feedback based controller on a lower-extremity powered exoskeleton (LOPES II) and demonstrate that it can effectively assist humans during walking. It has been shown that the VPP template model is capable of stabilizing the trunk and reproduce a human-like hip torque during the stance phase of walking. With leg force and joint angle feedback inspired by the VPP template model, our controller provides hip and knee torque assistance during the stance phase. A pilot experiment was conducted with four healthy subjects. Joint kinematics, leg muscle electromyography (EMG), and metabolic cost were measured during walking with and without assistance. Results show that, for 0.6 m/s walking, our controller can reduce leg muscle activations, especially for the medial gastrocnemius (about 16.0%), while hip and knee joint kinematics remain similar to the condition without the controller. Besides, the controller also reduces 10% of the net metabolic cost during walking. This paper demonstrates walking assistance benefits of the VPP template model for the first time. The support of human walking is achieved by a force feedback of leg force applied to the control of hip and knee joints. It can help us to provide a framework for investigating walking assistance control in the future.

  16. Design of a gait training device for control of pelvic obliquity.

    Science.gov (United States)

    Pietrusinski, Maciej; Severini, Giacomo; Cajigas, Iahn; Mavroidis, Constantinos; Bonato, Paolo

    2012-01-01

    This paper presents the design and testing of a novel device for the control of pelvic obliquity during gait. The device, called the Robotic Gait Rehabilitation (RGR) Trainer, consists of a single actuator system designed to target secondary gait deviations, such as hip-hiking, affecting the movement of the pelvis. Secondary gait deviations affecting the pelvis are generated in response to primary gait deviations (e.g. limited knee flexion during the swing phase) in stroke survivors and contribute to the overall asymmetrical gait pattern often observed in these patients. The proposed device generates a force field able to affect the obliquity of the pelvis (i.e. the rotation of the pelvis around the anteroposterior axis) by using an impedance controlled single linear actuator acting on a hip orthosis. Tests showed that the RGR Trainer is able to induce changes in pelvic obliquity trajectories (hip-hiking) in healthy subjects. These results suggest that the RGR Trainer is suitable to test the hypothesis that has motivated our efforts toward developing the system, namely that addressing both primary and secondary gait deviations during robotic-assisted gait training may help promote a physiologically-sound gait behavior more effectively than when only primary deviations are addressed.

  17. Stances of (invisibility of the female Negro body: focusing on portinari’s pictorial aesthetics = Regimes de (invisibilidade do corpo negro feminino: a estética pictural portinariana em tela

    Directory of Open Access Journals (Sweden)

    Ismara Eliane Vidal de Souza Tasso

    2010-07-01

    Full Text Available Current analysis investigates the manner identity constitution and black female’s visual representation in Portinari’s iconography is shown within the theoretical presuppositions of the French Discourse Analysis in alignment with the theoretical bases of Peirce’s Semiotics, the History of the Body and Cultural Studies. The social and the political factors are understood through an interpretative stance, within the paradoxical state of intangible significant materiality. The descriptive, interpretative, archeological andgenealogical movement showed that the half-naked body is presented as erotic, perceived as exotic and treated as profane. The movement also showed that sensuality is signified and resignified by the marginal since it works with discursive memory which conceives the exotic as an order opposed to existence, namely the profane order, and the place in which the subjects of difference encounter one another.O objetivo deste artigo é demonstrar o modo de constituição identitária e de representação visual da mulher negra na iconografiaportinariana, sob os pressupostos teóricos da Análise do Discurso de linha francesa, em diálogo com os fundamentos teóricos da Semiótica peirceana, da História do Corpo e dos Estudos Culturais. Dessa forma, buscamos apreender, no estado paradoxal da materialidade significante intangível, o social e o político, por meio de um gesto de leitura. O movimento descritivo-interpretativo arqueogenealógico empreendido demonstrou que o corpo semidesnudo é apresentado como erótico, visto como exótico e tratado como profano e a sensualidade significada e ressignificada pelo marginal, em razão de operar com a memória discursiva de que o exótico constitui uma ordem contrária de existência, a do profano, lugar em que se encontram os sujeitos da diferença.

  18. Advantages and disadvantages of stiffness instructions when studying postural control.

    Science.gov (United States)

    Bonnet, Cédrick T

    2016-05-01

    To understand the maintenance of upright stance, researchers try to discover the fundamental mechanisms and attentional resources devoted to postural control and eventually to the performance of other tasks (e.g., counting in the head). During their studies, some researchers require participants to stand as steady as possible and other simply ask participants to stand naturally. Surprisingly, a clear and direct explanation of the usefulness of the steadiness requirement seems to be lacking, both in experimental and methodological discussions. Hence, the objective of the present note was to provide advantages and disadvantages of this steadiness requirement in studies of postural control. The advantages may be to study fundamental postural control, to eliminate useless postural variability, to control spurious body motions and to control the participants' thoughts. As disadvantages, this steadiness requirement only leads to study postural control in unnatural upright stance, it changes the focus of attention (internal vs. external) and the nature of postural control (unconscious vs. conscious), it increases the difficulty of a supposedly easy control task and it eliminates or reduces the opportunity to record exploratory behaviors. When looking carefully at the four advantages of the steadiness requirement, one can believe that they are, in fact, more disadvantageous than advantageous. Overall therefore, this requirement seems illegitimate and it is proposed that researchers should not use it in the study of postural control. They may use this requirement only if they search to know the limit until which participants can consciously reduce their postural sway. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Postural control and shoulder steadiness in F-16 pilots

    DEFF Research Database (Denmark)

    Lange, Britt; Murray, Mike; Chreiteh, Shadi S

    2014-01-01

    to a control group (CG; N = 28) or training group (TG; N = 27). Postural control was tested in four different settings: Romberg with open and closed eyes, unilateral stance, and perturbation. Maximal voluntary contraction and force steadiness was measured for shoulder elevation. RESULTS: At follow......-up, there was a significant between-group difference in the Romberg test with closed eyes only (95% confidence ellipse area; CG: 761 +/- 311 mm2; TG: 650 +/- 405 mm2). Prior to randomization, there were no significant differences in postural control and steadiness between 30 pilots who experienced neck pain within...... the previous 3 mo and 25 pilots without such pain. DISCUSSION: Impaired postural control and steadiness may only be quantifiable in individuals experiencing acute neck pain of certain intensity, and there may be a ceiling effect in the ability to improve these parameters. For individuals with highly developed...

  20. Postural control model interpretation of stabilogram diffusion analysis

    Science.gov (United States)

    Peterka, R. J.

    2000-01-01

    Collins and De Luca [Collins JJ. De Luca CJ (1993) Exp Brain Res 95: 308-318] introduced a new method known as stabilogram diffusion analysis that provides a quantitative statistical measure of the apparently random variations of center-of-pressure (COP) trajectories recorded during quiet upright stance in humans. This analysis generates a stabilogram diffusion function (SDF) that summarizes the mean square COP displacement as a function of the time interval between COP comparisons. SDFs have a characteristic two-part form that suggests the presence of two different control regimes: a short-term open-loop control behavior and a longer-term closed-loop behavior. This paper demonstrates that a very simple closed-loop control model of upright stance can generate realistic SDFs. The model consists of an inverted pendulum body with torque applied at the ankle joint. This torque includes a random disturbance torque and a control torque. The control torque is a function of the deviation (error signal) between the desired upright body position and the actual body position, and is generated in proportion to the error signal, the derivative of the error signal, and the integral of the error signal [i.e. a proportional, integral and derivative (PID) neural controller]. The control torque is applied with a time delay representing conduction, processing, and muscle activation delays. Variations in the PID parameters and the time delay generate variations in SDFs that mimic real experimental SDFs. This model analysis allows one to interpret experimentally observed changes in SDFs in terms of variations in neural controller and time delay parameters rather than in terms of open-loop versus closed-loop behavior.

  1. Functional weight-bearing mobilization after Achilles tendon rupture enhances early healing response: a single-blinded randomized controlled trial.

    Science.gov (United States)

    Valkering, Kars P; Aufwerber, Susanna; Ranuccio, Francesco; Lunini, Enricomaria; Edman, Gunnar; Ackermann, Paul W

    2017-06-01

    Functional weight-bearing mobilization may improve repair of Achilles tendon rupture (ATR), but the underlying mechanisms and outcome were unknown. We hypothesized that functional weight-bearing mobilization by means of increased metabolism could improve both early and long-term healing. In this prospective randomized controlled trial, patients with acute ATR were randomized to either direct post-operative functional weight-bearing mobilization (n = 27) in an orthosis or to non-weight-bearing (n = 29) plaster cast immobilization. During the first two post-operative weeks, 15°-30° of plantar flexion was allowed and encouraged in the functional weight-bearing mobilization group. At 2 weeks, patients in the non-weight-bearing cast immobilization group received a stiff orthosis, while the functional weight-bearing mobilization group continued with increased range of motion. At 6 weeks, all patients discontinued immobilization. At 2 weeks, healing metabolites and markers of procollagen type I (PINP) and III (PIIINP) were examined using microdialysis. At 6 and 12 months, functional outcome using heel-rise test was assessed. Healing tendons of both groups exhibited increased levels of metabolites glutamate, lactate, pyruvate, and of PIIINP (all p bearing mobilization group demonstrated significantly higher concentrations of glutamate compared to the non-weight-bearing cast immobilization group (p = 0.045).The upregulated glutamate levels were significantly correlated with the concentrations of PINP (r = 0.5, p = 0.002) as well as with improved functional outcome at 6 months (r = 0.4; p = 0.014). Heel-rise tests at 6 and 12 months did not display any differences between the two groups. Functional weight-bearing mobilization enhanced the early healing response of ATR. In addition, early ankle range of motion was improved without the risk of Achilles tendon elongation and without altering long-term functional outcome. The relationship between

  2. Movement Strategies among Groups of Chronic Ankle Instability, Coper, and Control.

    Science.gov (United States)

    Son, S Jun; Kim, Hyunsoo; Seeley, Matthew K; Hopkins, J Ty

    2017-08-01

    Comprehensive evaluation of movement strategies during functional movement is a difficult undertaking. Because of this challenge, studied movements have been oversimplified. Furthermore, evaluating movement strategies at only a discrete time point(s) provide limited insight into how movement strategies may change or adapt in chronic ankle instability (CAI) patients. This study aimed to identify abnormal movement strategies in individuals with a history of ankle sprain injury during a sports maneuver compared with healthy controls. Sixty-six participants, consisting of 22 CAI patients, 22 ankle sprain copers, and 22 healthy controls, participated in this study. Functional profiles of lower extremity kinematics, kinetics, and EMG activation from initial contact (0% of stance) to toe-off (100% of stance) were collected and analyzed during a jump landing/cutting task using a functional data analysis approach. Compared with copers, CAI patients displayed landing positions of less plantarflexion, less inversion, more knee flexion, more hip flexion, and less hip abduction during the first 25% of stance. However, restricted dorsiflexion angle was observed in both CAI patients and copers relative to controls during the midlanding to mid-side-cutting phase when the ankle and knee reached its peak range of motion (e.g., dorsiflexion and knee flexion). Reduced EMG activation of tibialis anterior, peroneus longus, medial gastrocnemius, and gluteus medius may be due to altered kinematics that reduce muscular demands on the involved muscles. CAI patients displayed altered movement strategies, perhaps in an attempt to avoid perceived positions of risk. Although sagittal joint positions seemed to increase the external torque on the knee and hip extensors, frontal joint positions appeared to reduce the muscular demands on evertor and hip abductor muscles.

  3. Bio-inspired swing leg control for spring-mass robots running on ground with unexpected height disturbance

    International Nuclear Information System (INIS)

    Vejdani, H R; Hurst, J W; Blum, Y; Daley, M A

    2013-01-01

    We proposed three swing leg control policies for spring-mass running robots, inspired by experimental data from our recent collaborative work on ground running birds. Previous investigations suggest that animals may prioritize injury avoidance and/or efficiency as their objective function during running rather than maintaining limit-cycle stability. Therefore, in this study we targeted structural capacity (maximum leg force to avoid damage) and efficiency as the main goals for our control policies, since these objective functions are crucial to reduce motor size and structure weight. Each proposed policy controls the leg angle as a function of time during flight phase such that its objective function during the subsequent stance phase is regulated. The three objective functions that are regulated in the control policies are (i) the leg peak force, (ii) the axial impulse, and (iii) the leg actuator work. It should be noted that each control policy regulates one single objective function. Surprisingly, all three swing leg control policies result in nearly identical subsequent stance phase dynamics. This implies that the implementation of any of the proposed control policies would satisfy both goals (damage avoidance and efficiency) at once. Furthermore, all three control policies require a surprisingly simple leg angle adjustment: leg retraction with constant angular acceleration. (paper)

  4. Bio-inspired swing leg control for spring-mass robots running on ground with unexpected height disturbance.

    Science.gov (United States)

    Vejdani, H R; Blum, Y; Daley, M A; Hurst, J W

    2013-12-01

    We proposed three swing leg control policies for spring-mass running robots, inspired by experimental data from our recent collaborative work on ground running birds. Previous investigations suggest that animals may prioritize injury avoidance and/or efficiency as their objective function during running rather than maintaining limit-cycle stability. Therefore, in this study we targeted structural capacity (maximum leg force to avoid damage) and efficiency as the main goals for our control policies, since these objective functions are crucial to reduce motor size and structure weight. Each proposed policy controls the leg angle as a function of time during flight phase such that its objective function during the subsequent stance phase is regulated. The three objective functions that are regulated in the control policies are (i) the leg peak force, (ii) the axial impulse, and (iii) the leg actuator work. It should be noted that each control policy regulates one single objective function. Surprisingly, all three swing leg control policies result in nearly identical subsequent stance phase dynamics. This implies that the implementation of any of the proposed control policies would satisfy both goals (damage avoidance and efficiency) at once. Furthermore, all three control policies require a surprisingly simple leg angle adjustment: leg retraction with constant angular acceleration.

  5. A novel motion sensor-driven control system for FES-assisted walking after spinal cord injury: A pilot study.

    Science.gov (United States)

    Braz, Gustavo P; Russold, Michael F; Fornusek, Che; Hamzaid, Nur Azah; Smith, Richard M; Davis, Glen M

    2016-11-01

    This pilot study reports the development of a novel closed-loop (CL) FES-gait control system, which employed a finite-state controller that processed kinematic feedback from four miniaturized motion sensors. This strategy automated the control of knee extension via quadriceps and gluteus stimulation during the stance phase of gait on the supporting leg, and managed the stimulation delivered to the common peroneal nerve (CPN) during swing-phase on the contra-lateral limb. The control system was assessed against a traditional open-loop (OL) system on two sensorimotor 'complete' paraplegic subjects. A biomechanical analysis revealed that the closed-loop control of leg swing was efficient, but without major advantages compared to OL. CL automated the control of knee extension during the stance phase of gait and for this reason was the method of preference by the subjects. For the first time, a feedback control system with a simplified configuration of four miniaturized sensors allowed the addition of instruments to collect the data of multiple physiological and biomechanical variables during FES-evoked gait. In this pilot study of two sensorimotor complete paraplegic individuals, CL ameliorated certain drawbacks of current OL systems - it required less user intervention and accounted for the inter-subject differences in their stimulation requirements. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  6. Comprehensive joint feedback control for standing by functional neuromuscular stimulation-a simulation study.

    Science.gov (United States)

    Nataraj, Raviraj; Audu, Musa L; Kirsch, Robert F; Triolo, Ronald J

    2010-12-01

    Previous investigations of feedback control of standing after spinal cord injury (SCI) using functional neuromuscular stimulation (FNS) have primarily targeted individual joints. This study assesses the potential efficacy of comprehensive (trunk, hips, knees, and ankles) joint feedback control against postural disturbances using a bipedal, 3-D computer model of SCI stance. Proportional-derivative feedback drove an artificial neural network trained to produce muscle excitation patterns consistent with maximal joint stiffness values achievable about neutral stance given typical SCI muscle properties. Feedback gains were optimized to minimize upper extremity (UE) loading required to stabilize against disturbances. Compared to the baseline case of maximum constant muscle excitations used clinically, the controller reduced UE loading by 55% in resisting external force perturbations and by 84% during simulated one-arm functional tasks. Performance was most sensitive to inaccurate measurements of ankle plantar/dorsiflexion position and hip ab/adduction velocity feedback. In conclusion, comprehensive joint feedback demonstrates potential to markedly improve FNS standing function. However, alternative control structures capable of effective performance with fewer sensor-based feedback parameters may better facilitate clinical usage.

  7. Comprehensive Joint Feedback Control for Standing by Functional Neuromuscular Stimulation – a Simulation Study

    Science.gov (United States)

    Nataraj, Raviraj; Audu, Musa L.; Kirsch, Robert F.; Triolo, Ronald J.

    2013-01-01

    Previous investigations of feedback control of standing after spinal cord injury (SCI) using functional neuromuscular stimulation (FNS) have primarily targeted individual joints. This study assesses the potential efficacy of comprehensive (trunk, hips, knees, and ankles) joint-feedback control against postural disturbances using a bipedal, three-dimensional computer model of SCI stance. Proportional-derivative feedback drove an artificial neural network trained to produce muscle excitation patterns consistent with maximal joint stiffness values achievable about neutral stance given typical SCI muscle properties. Feedback gains were optimized to minimize upper extremity (UE) loading required to stabilize against disturbances. Compared to the baseline case of maximum constant muscle excitations used clinically, the controller reduced UE loading by 55% in resisting external force perturbations and by 84% during simulated one-arm functional tasks. Performance was most sensitive to inaccurate measurements of ankle plantar/dorsiflexion position and hip ab/adduction velocity feedback. In conclusion, comprehensive joint-feedback demonstrates potential to markedly improve FNS standing function. However, alternative control structures capable of effective performance with fewer sensor-based feedback parameters may better facilitate clinical usage. PMID:20923741

  8. Mina: A Sensorimotor Robotic Orthosis for Mobility Assistance

    OpenAIRE

    Raj, Anil K.; Neuhaus, Peter D.; Moucheboeuf, Adrien M.; Noorden, Jerryll H.; Lecoutre, David V.

    2011-01-01

    While most mobility options for persons with paraplegia or paraparesis employ wheeled solutions, significant adverse health, psychological, and social consequences result from wheelchair confinement. Modern robotic exoskeleton devices for gait assistance and rehabilitation, however, can support legged locomotion systems for those with lower extremity weakness or paralysis. The Florida Institute for Human and Machine Cognition (IHMC) has developed the Mina, a prototype sensorimotor robotic ort...

  9. Can an Ankle-Foot Orthosis Change Hearts and Minds?

    Science.gov (United States)

    2011-01-01

    the commercial brace in both comfort and function. He continued to progress in his therapy, returning to recre- ational softball with a local team of...this design, we have been able to return patients with fused ankles to running, basketball, softball , skydiving, and combat arms deployments. We have

  10. Ankle-foot orthosis bending axis influences running mechanics.

    Science.gov (United States)

    Russell Esposito, Elizabeth; Ranz, Ellyn C; Schmidtbauer, Kelly A; Neptune, Richard R; Wilken, Jason M

    2017-07-01

    Passive-dynamic ankle-foot orthoses (AFOs) are commonly prescribed to improve locomotion for people with lower limb musculoskeletal weakness. The clinical prescription and design process are typically qualitative and based on observational assessment and experience. Prior work examining the effect of AFO design characteristics generally excludes higher impact activities such as running, providing clinicians and researchers limited information to guide the development of objective prescription guidelines. The proximal location of the bending axis may directly influence energy storage and return and resulting running mechanics. The purpose of this study was to determine if the location of an AFO's bending axis influences running mechanics. Marker and force data were recorded as 12 participants with lower extremity weakness ran overground while wearing a passive-dynamic AFO with posterior struts manufactured with central (middle) and off-centered (high and low) bending axes. Lower extremity joint angles, moments, powers, and ground reaction forces were calculated and compared between limbs and across bending axis conditions. Bending axis produced relatively small but significant changes. Ankle range of motion increased as the bending axis shifted distally (pbenefits during running, although individual preference and physical ability should also be considered. Published by Elsevier B.V.

  11. 21 CFR 888.3060 - Spinal intervertebral body fixation orthosis.

    Science.gov (United States)

    2010-04-01

    ... the plates. A braided cable is threaded through each eye-type screw. The cable is tightened with a tension device and it is fastened or crimped at each eye-type screw. The device is used to apply force to...

  12. Gait variability and motor control in people with knee osteoarthritis.

    Science.gov (United States)

    Alkjaer, Tine; Raffalt, Peter C; Dalsgaard, Helle; Simonsen, Erik B; Petersen, Nicolas C; Bliddal, Henning; Henriksen, Marius

    2015-10-01

    Knee osteoarthritis (OA) is a common disease that impairs walking ability and function. We compared the temporal gait variability and motor control in people with knee OA with healthy controls. The purpose was to test the hypothesis that the temporal gait variability would reflect a more stereotypic pattern in people with knee OA compared with healthy age-matched subjects. To assess the gait variability the temporal structure of the ankle and knee joint kinematics was quantified by the largest Lyapunov exponent and the stride time fluctuations were quantified by sample entropy and detrended fluctuation analysis. The motor control was assessed by the soleus (SO) Hoffmann (H)-reflex modulation and muscle co-activation during walking. The results showed no statistically significant mean group differences in any of the gait variability measures or muscle co-activation levels. The SO H-reflex amplitude was significantly higher in the knee OA group around heel strike when compared with the controls. The mean group difference in the H-reflex in the initial part of the stance phase (control-knee OA) was -6.6% Mmax (95% CI: -10.4 to -2.7, p=0.041). The present OA group reported relatively small impact of their disease. These results suggest that the OA group in general sustained a normal gait pattern with natural variability but with suggestions of facilitated SO H-reflex in the swing to stance phase transition. We speculate that the difference in SO H-reflex modulation reflects that the OA group increased the excitability of the soleus stretch reflex as a preparatory mechanism to avoid sudden collapse of the knee joint which is not uncommon in knee OA. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Obesity impact on the attentional cost for controlling posture.

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Mignardot

    2010-12-01

    Full Text Available This study investigated the effects of obesity on attentional resources allocated to postural control in seating and unipedal standing.Ten non obese adults (BMI = 22.4±1.3, age = 42.4±15.1 and 10 obese adult patients (BMI = 35.2±2.8, age = 46.2±19.6 maintained postural stability on a force platform in two postural tasks (seated and unipedal. The two postural tasks were performed (1 alone and (2 in a dual-task paradigm in combination with an auditory reaction time task (RT. Performing the RT task together with the postural one was supposed to require some attentional resources that allowed estimating the attentional cost of postural control. 4 trials were performed in each condition for a total of 16 trials.(1 Whereas seated non obese and obese patients exhibited similar centre of foot pressure oscillations (CoP, in the unipedal stance only obese patients strongly increased their CoP sway in comparison to controls. (2 Whatever the postural task, the additional RT task did not affect postural stability. (3 Seated, RT did not differ between the two groups. (4 RT strongly increased between the two postural conditions in the obese patients only, suggesting that body schema and the use of internal models was altered with obesity.Obese patients needed more attentional resources to control postural stability during unipedal stance than non obese participants. This was not the case in a more simple posture such as seating. To reduce the risk of fall as indicated by the critical values of CoP displacement, obese patients must dedicate a strong large part of their attentional resources to postural control, to the detriment of non-postural events. Obese patients were not able to easily perform multitasking as healthy adults do, reflecting weakened psycho-motor abilities.

  14. Obesity Impact on the Attentional Cost for Controlling Posture

    Science.gov (United States)

    Mignardot, Jean-Baptiste; Olivier, Isabelle; Promayon, Emmanuel; Nougier, Vincent

    2010-01-01

    Background This study investigated the effects of obesity on attentional resources allocated to postural control in seating and unipedal standing. Methods Ten non obese adults (BMI = 22.4±1.3, age = 42.4±15.1) and 10 obese adult patients (BMI = 35.2±2.8, age = 46.2±19.6) maintained postural stability on a force platform in two postural tasks (seated and unipedal). The two postural tasks were performed (1) alone and (2) in a dual-task paradigm in combination with an auditory reaction time task (RT). Performing the RT task together with the postural one was supposed to require some attentional resources that allowed estimating the attentional cost of postural control. 4 trials were performed in each condition for a total of 16 trials. Findings (1) Whereas seated non obese and obese patients exhibited similar centre of foot pressure oscillations (CoP), in the unipedal stance only obese patients strongly increased their CoP sway in comparison to controls. (2) Whatever the postural task, the additional RT task did not affect postural stability. (3) Seated, RT did not differ between the two groups. (4) RT strongly increased between the two postural conditions in the obese patients only, suggesting that body schema and the use of internal models was altered with obesity. Interpretation Obese patients needed more attentional resources to control postural stability during unipedal stance than non obese participants. This was not the case in a more simple posture such as seating. To reduce the risk of fall as indicated by the critical values of CoP displacement, obese patients must dedicate a strong large part of their attentional resources to postural control, to the detriment of non-postural events. Obese patients were not able to easily perform multitasking as healthy adults do, reflecting weakened psycho-motor abilities. PMID:21187914

  15. Evaluation of the lambda model for human postural control during ankle strategy.

    Science.gov (United States)

    Micheau, Philippe; Kron, Aymeric; Bourassa, Paul

    2003-09-01

    An accurate modeling of human stance might be helpful in assessing postural deficit. The objective of this article is to validate a mathematical postural control model for quiet standing posture. The postural dynamics is modeled in the sagittal plane as an inverted pendulum with torque applied at the ankle joint. The torque control system is represented by the physiological lambda model. Two neurophysiological command variables of the central nervous system, designated lambda and micro, establish the dynamic threshold muscle at which motoneuron recruitment begins. Kinematic data and electromyographic signals were collected on four young males in order to measure small voluntary sway and quiet standing posture. Validation of the mathematical model was achieved through comparison of the experimental and simulated results. The mathematical model allows computation of the unmeasurable neurophysiological commands lambda and micro that control the equilibrium position and stability. Furthermore, with the model it is possible to conclude that low-amplitude body sway during quiet stance is commanded by the central nervous system.

  16. Designs and performance of three new microprocessor-controlled knee joints.

    Science.gov (United States)

    Thiele, Julius; Schöllig, Christina; Bellmann, Malte; Kraft, Marc

    2018-02-09

    A crossover design study with a small group of subjects was used to evaluate the performance of three microprocessor-controlled exoprosthetic knee joints (MPKs): C-Leg 4, Plié 3 and Rheo Knee 3. Given that the mechanical designs and control algorithms of the joints determine the user outcome, the influence of these inherent differences on the functional characteristics was investigated in this study. The knee joints were evaluated during level-ground walking at different velocities in a motion analysis laboratory. Additionally, technical analyses using patents, technical documentations and X-ray computed tomography (CT) for each knee joint were performed. The technical analyses showed that only C-Leg 4 and Rheo Knee 3 allow microprocessor-controlled adaptation of the joint resistances for different gait velocities. Furthermore, Plié 3 is not able to provide stance extension damping. The biomechanical results showed that only if a knee joint adapts flexion and extension resistances by the microprocessor all known advantages of MPKs can become apparent. But not all users may benefit from the examined functions: e.g. a good accommodation to fast walking speeds or comfortable stance phase flexion. Hence, a detailed comparison of user demands and performance of the designated knee joint is mandatory to ensure a maximum in user outcome.

  17. Birds achieve high robustness in uneven terrain through active control of landing conditions.

    Science.gov (United States)

    Birn-Jeffery, Aleksandra V; Daley, Monica A

    2012-06-15

    We understand little about how animals adjust locomotor behaviour to negotiate uneven terrain. The mechanical demands and constraints of such behaviours likely differ from uniform terrain locomotion. Here we investigated how common pheasants negotiate visible obstacles with heights from 10 to 50% of leg length. Our goal was to determine the neuro-mechanical strategies used to achieve robust stability, and address whether strategies vary with obstacle height. We found that control of landing conditions was crucial for minimising fluctuations in stance leg loading and work in uneven terrain. Variation in touchdown leg angle (θ(TD)) was correlated with the orientation of ground force during stance, and the angle between the leg and body velocity vector at touchdown (β(TD)) was correlated with net limb work. Pheasants actively targeted obstacles to control body velocity and leg posture at touchdown to achieve nearly steady dynamics on the obstacle step. In the approach step to an obstacle, the birds produced net positive limb work to launch themselves upward. On the obstacle, body dynamics were similar to uniform terrain. Pheasants also increased swing leg retraction velocity during obstacle negotiation, which we suggest is an active strategy to minimise fluctuations in peak force and leg posture in uneven terrain. Thus, pheasants appear to achieve robustly stable locomotion through a combination of path planning using visual feedback and active adjustment of leg swing dynamics to control landing conditions. We suggest that strategies for robust stability are context specific, depending on the quality of sensory feedback available, especially visual input.

  18. Effect of visual field locus and oscillation frequencies on posture control in an ecological environment.

    Science.gov (United States)

    Piponnier, Jean-Claude; Hanssens, Jean-Marie; Faubert, Jocelyn

    2009-01-14

    To examine the respective roles of central and peripheral vision in the control of posture, body sway amplitude (BSA) and postural perturbations (given by velocity root mean square or vRMS) were calculated in a group of 19 healthy young adults. The stimulus was a 3D tunnel, either static or moving sinusoidally in the anterior-posterior direction. There were nine visual field conditions: four central conditions (4, 7, 15, and 30 degrees); four peripheral conditions (central occlusions of 4, 7, 15, and 30 degrees); and a full visual field condition (FF). The virtual tunnel respected all the aspects of a real physical tunnel (i.e., stereoscopy and size increase with proximity). The results show that, under static conditions, central and peripheral visual fields appear to have equal importance for the control of stance. In the presence of an optic flow, peripheral vision plays a crucial role in the control of stance, since it is responsible for a compensatory sway, whereas central vision has an accessory role that seems to be related to spatial orientation.

  19. Vibrotactile Feedback Alters Dynamics Of Static Postural Control In Persons With Parkinson's Disease But Not Older Adults At High Fall Risk.

    Science.gov (United States)

    High, Carleigh M; McHugh, Hannah F; Mills, Stephen C; Amano, Shinichi; Freund, Jane E; Vallabhajosula, Srikant

    2018-06-01

    Aging and Parkinson's disease are often associated with impaired postural control. Providing extrinsic feedback via vibrotactile sensation could supplement intrinsic feedback to maintain postural control. We investigated the postural control response to vibrotactile feedback provided at the trunk during challenging stance conditions in older adults at high fall risk and individuals with Parkinson's disease compared to healthy older adults. Nine older adults at high fall risk, 9 persons with Parkinson's disease and 10 healthy older adults performed 30s quiet standing on a force platform under five challenging stance conditions with eyes open/closed and standing on firm/foam surface with feet together, each with and without vibrotactile feedback. During vibrotactile feedback trials, feedback was provided when participants swayed >10% over the center of their base of support. Participants were instructed vibrations would be in response to their movement. Magnitude of postural sway was estimated using center of pressure path length, velocity, and sway area. Dynamics of individuals' postural control was evaluated using detrended fluctuation analysis. Results showed that vibrotactile feedback induced a change in postural control dynamics among persons with Parkinson's disease when standing with intact intrinsic visual input and altered intrinsic somatosensory input, but there was no change in sway magnitude. However, use of vibrotactile feedback did not significantly alter dynamics of postural control in older adults with high risk of falling or reduce the magnitude of sway. Considering the effects of vibrotactile feedback were dependent on the population and stance condition, designing an optimal therapeutic regimen for balance training should be carefully considered and be specific to a target population. Furthermore, our results suggest that explicit instructions on how to respond to the vibrotactile feedback could affect training outcome. Copyright © 2018 The

  20. Static balance control and lower limb strength in blind and sighted women.

    Science.gov (United States)

    Giagazoglou, Paraskevi; Amiridis, Ioannis G; Zafeiridis, Andreas; Thimara, Maria; Kouvelioti, Vassiliki; Kellis, Elefthrerios

    2009-11-01

    The aim of the present study was to examine isokinetic and isometric strength of the knee and ankle muscles and to compare center of pressure (CoP) sway between blind and sighted women. A total of 20 women volunteered to participate in this study. Ten severe blind women (age 33.5 +/- 7.9 years; height 163 +/- 5 cm; mass 64.5 +/- 12.2 kg) and 10 women with normal vision (age 33.5 +/- 8.3 years; height 164 +/- 6 cm; mass 61.9 +/- 14.5 kg) performed 3 different tasks of increasing difficulty: Normal Quiet Stance (1 min), Tandem Stance (20 s), and One-Leg Stance (10 s). Participants stood barefoot on two adjacent force platforms and the CoP variations [peak-to-peak amplitude (CoPmax) and SD of the CoP displacement (CoPsd)] were analyzed. Sighted participants performed the tests in eyes open and eyes closed conditions. Torque/angular velocity and torque/angular position relationships were also established using a Cybex dynamometer for knee extensors and flexors as well as for ankle plantar and dorsiflexors. The main finding of this study was that the ability to control balance in both anterior/posterior and medio/lateral directions was inferior in blind than in sighted women. However, when sighted participants performed the tests blindfolded, their CoP sway increased significantly in both directions. There were no differences in most isometric and concentric strength measurements of the lower limb muscles between the blind and sighted individuals. Our results demonstrate that vision is a more prominent indicator of performance during the postural tasks compared to strength of the lower limbs. Despite similar level of strength, blind individuals performed significantly worse in all balance tests compared to sighted individuals.

  1. Efficacy of an Electromechanical Gait Trainer Poststroke in Singapore: A Randomized Controlled Trial.

    Science.gov (United States)

    Chua, Joyce; Culpan, Jane; Menon, Edward

    2016-05-01

    To evaluate the longer-term effects of electromechanical gait trainers (GTs) combined with conventional physiotherapy on health status, function, and ambulation in people with subacute stroke in comparison with conventional physiotherapy given alone. Randomized controlled trial with intention-to-treat analysis. Community hospital in Singapore. Nonambulant individuals (N=106) recruited approximately 1 month poststroke. Both groups received 45 minutes of physiotherapy 6 times per week for 8 weeks as follows: the GT group received 20 minutes of GT training and 5 minutes of stance/gait training in contrast with 25 minutes of stance/gait training for the control group. Both groups completed 10 minutes of standing and 10 minutes of cycling. The primary outcome was the Functional Ambulation Category (FAC). Secondary outcomes were the Barthel Index (BI), gait speed and endurance, and Stroke Impact Scale (SIS). Measures were taken at baseline and 4, 8, 12, 24, and 48 weeks. Generalized linear model analysis showed significant improvement over time (independent of group) for the FAC, BI, and SIS physical and participation subscales. However, no significant group × time or group differences were observed for any of the outcome variables after generalized linear model analysis. The use of GTs combined with conventional physiotherapy can be as effective as conventional physiotherapy applied alone for people with subacute stroke. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  2. Human Walk Modeled by PCPG to Control a Lower Limb Neuroprosthesis by High-Level Commands

    Directory of Open Access Journals (Sweden)

    Matthieu Duvinage

    2012-06-01

    Full Text Available Current active leg prostheses do not integrate the most recent advances in Brain-Computer Interfaces (BCI and bipedal robotics. Moreover, their actuators are seldom driven by the subject’s intention. This paper aims at showing a summary of our current results in the field of human gait rehabilitation. In a first prototype, the main focus was on people suffering from foot drop problems, i.e. people who are unable to lift their feet. However, current work is focusing on a full active ankle orthosis. The approach is threefold: a BCI system, a gait model and an orthosis. Thanks to the BCI system, patients are able to generate high-level commands. Typically, a command could represent a speed modification. Then, a gait model based on a programmable central pattern generator is used to generate the adequate kinematics. Finally, the orthosis is tracking this kinematics when the foot is in the air, whereas, the orthosis is mimicking a spring when the foot is on the ground.

  3. Effects of Lifetime Occupational Pesticide Exposure on Postural Control Among Farmworkers and Non-Farmworkers.

    Science.gov (United States)

    Sunwook, Kim; Nussbaum, Maury A; Quandt, Sara A; Laurienti, Paul J; Arcury, Thomas A

    2016-02-01

    The aim of the study was to assess potential chronic effects of pesticide exposure on postural control, by examining postural balance of farmworkers and non-farmworkers diverse self-reported lifetime exposures. Balance was assessed during quiet upright stance under four experimental conditions (2 visual × 2 cognitive difficulty). Significant differences in baseline balance performance (eyes open without cognitive task) between occupational groups were apparent in postural sway complexity. When adding a cognitive task to the eyes open condition, the influence of lifetime exposure on complexity ratios appeared different between occupational groups. Removing visual information revealed a negative association of lifetime exposure with complexity ratios. Farmworkers and non-farmworkers may use different postural control strategies even when controlling for the level of lifetime pesticide exposure. Long-term exposure can affect somatosensory/vestibular sensory systems and the central processing of sensory information for postural control.

  4. Experimental System for Investigation of Visual Sensory Input in Postural Feedback Control

    Directory of Open Access Journals (Sweden)

    Jozef Pucik

    2012-01-01

    Full Text Available The human postural control system represents a biological feedback system responsible for maintenance of upright stance. Vestibular, proprioceptive and visual sensory inputs provide the most important information into the control system, which controls body centre of mass (COM in order to stabilize the human body resembling an inverted pendulum. The COM can be measured indirectly by means of a force plate as the centre of pressure (COP. Clinically used measurement method is referred to as posturography. In this paper, the conventional static posturography is extended by visual stimulation, which provides insight into a role of visual information in balance control. Visual stimuli have been designed to induce body sway in four specific directions – forward, backward, left and right. Stabilograms were measured using proposed single-PC based system and processed to calculate velocity waveforms and posturographic parameters. The parameters extracted from pre-stimulus and on-stimulus periods exhibit statistically significant differences.

  5. Hopping system control with an approximated dynamics model and upper-body motion

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyang Jun; Oh, Jun Ho [KAIST, Daejeon (Korea, Republic of)

    2015-11-15

    A hopping system is highly non-linear due to the nature of its dynamics, which has alternating phases in a cycle, flight and stance phases and related transitions. Every control method that stabilizes the hopping system satisfies the Poincaré stability condition. At the Poincaré section, a hopping system cycle is considered as discrete sectional data set. By controlling the sectional data in a discrete control form, we can generate a stable hopping cycle. We utilize phase-mapping matrices to build a Poincaré return map by approximating the dynamics of the hopping system with SLIP model. We can generate various Poincaré stable gait patterns with the approximated discrete control form which uses upper-body motions as inputs.

  6. Changes in FDB and soleus muscle activity after a train of stimuli during upright stance Alterações pós-trem de estímulo, na atividade dos músculos FDB e sóleus durante a postura ortostática

    Directory of Open Access Journals (Sweden)

    Liria A. Okai

    2012-06-01

    Full Text Available BACKGROUND: Evidence of self-sustained muscle activation following a brief electrical stimulation has been reported in the literature for certain muscles. OBJECTIVES: This report shows that the foot muscle (Flexor Digitorum Brevis - FDB shows a self-sustained increase in muscle activity during upright stance in some subjects following a train of stimuli to the tibial nerve. METHODS: Healthy subjects were requested to stand upright and surface EMG electrodes were placed on the FDB, Soleus and Tibialis Anterior muscles. After background muscle activity (BGA acquisition, a 50 Hz train of stimuli was applied to the tibial nerve at the popliteal fossa. The root mean square values (RMS of the BGA and the post-stimulus muscle activation were computed. RESULTS: There was a 13.8% average increase in the FDB muscle EMG amplitude with respect to BGA after the stimulation was turned off. The corresponding post-stimulus Soleus EMG activity decreased by an average of 9.2%. We hypothesize that the sustained contraction observed in the FDB following stimulus may be evidence of persistent inward currents (PIC generated in FDB spinal motoneurons. The post-stimulus decrease in soleus activity may have occurred due to the action of inhibitory interneurons caused by the PICs, which were triggered by the stimulus train. CONCLUSIONS: These sustained post-stimulation changes in postural muscle activity, found in different levels in different subjects, may be part of a set of possible responses that contribute to overall postural control.CONTEXTUALIZAÇÃO: Existem evidências de ativação autossustentada em certos músculos pós-estimulação elétrica. OBJETIVOS: Mostrar que, em alguns sujeitos, o músculo do pé (Flexor Digitorum Brevis - FDB também pode apresentar aumento de atividade autossustentada na posição ortostática pós-trem de estímulo no nervo tibial. MÉTODOS: Sujeitos foram solicitados a permanecer na posição ortostática e sinais eletromiogr

  7. Proprioceptive changes impair balance control in individuals with chronic obstructive pulmonary disease.

    Directory of Open Access Journals (Sweden)

    Lotte Janssens

    Full Text Available Balance deficits are identified as important risk factors for falling in individuals with chronic obstructive pulmonary disease (COPD. However, the specific use of proprioception, which is of primary importance during balance control, has not been studied in individuals with COPD. The objective was to determine the specific proprioceptive control strategy during postural balance in individuals with COPD and healthy controls, and to assess whether this was related to inspiratory muscle weakness.Center of pressure displacement was determined in 20 individuals with COPD and 20 age/gender-matched controls during upright stance on an unstable support surface without vision. Ankle and back muscle vibration were applied to evaluate the relative contribution of different proprioceptive signals used in postural control.Individuals with COPD showed an increased anterior-posterior body sway during upright stance (p = 0.037. Compared to controls, individuals with COPD showed an increased posterior body sway during ankle muscle vibration (p = 0.047, decreased anterior body sway during back muscle vibration (p = 0.025, and increased posterior body sway during simultaneous ankle-muscle vibration (p = 0.002. Individuals with COPD with the weakest inspiratory muscles showed the greatest reliance on ankle muscle input when compared to the stronger individuals with COPD (p = 0.037.Individuals with COPD, especially those with inspiratory muscle weakness, increased their reliance on ankle muscle proprioceptive signals and decreased their reliance on back muscle proprioceptive signals during balance control, resulting in a decreased postural stability compared to healthy controls. These proprioceptive changes may be due to an impaired postural contribution of the inspiratory muscles to trunk stability. Further research is required to determine whether interventions such as proprioceptive training and inspiratory muscle training improve postural balance and reduce the

  8. Postural control and head stability during natural gaze behaviour in 6- to 12-year-old children.

    Science.gov (United States)

    Schärli, A M; van de Langenberg, R; Murer, K; Müller, R M

    2013-06-01

    We investigated how the influence of natural exploratory gaze behaviour on postural control develops from childhood into adulthood. In a cross-sectional design, we compared four age groups: 6-, 9-, 12-year-olds and young adults. Two experimental trials were performed: quiet stance with a fixed gaze (fixed) and quiet stance with natural exploratory gaze behaviour (exploratory). The latter was elicited by having participants watch an animated short film on a large screen in front of them. 3D head rotations in space and centre of pressure (COP) excursions on the ground plane were measured. Across conditions, both head rotation and COP displacement decreased with increasing age. Head movement was greater in the exploratory condition in all age groups. In all children-but not in adults-COP displacement was markedly greater in the exploratory condition. Bivariate correlations across groups showed highly significant positive correlations between COP displacement in ML direction and head rotation in yaw, roll, and pitch in both conditions. The regularity of COP displacements did not show a clear developmental trend, which indicates that COP dynamics were qualitatively similar across age groups. Together, the results suggest that the contribution of head movement to eye-head saccades decreases with age and that head instability-in part resulting from such gaze-related head movements-is an important limiting factor in children's postural control. The lack of head stabilisation might particularly affect children in everyday activities in which both postural control and visual exploration are required.

  9. Postural Control in Bilateral Vestibular Failure: Its Relation to Visual, Proprioceptive, Vestibular, and Cognitive Input.

    Science.gov (United States)

    Sprenger, Andreas; Wojak, Jann F; Jandl, Nico M; Helmchen, Christoph

    2017-01-01

    Patients with bilateral vestibular failure (BVF) suffer from postural and gait unsteadiness with an increased risk of falls. The aim of this study was to elucidate the differential role of otolith, semicircular canal (SSC), visual, proprioceptive, and cognitive influences on the postural stability of BVF patients. Center-of-pressure displacements were recorded by posturography under six conditions: target visibility; tonic head positions in the pitch plane; horizontal head shaking; sensory deprivation; dual task; and tandem stance. Between-group analysis revealed larger postural sway in BVF patients on eye closure; but with the eyes open, BVF did not differ from healthy controls (HCs). Head tilts and horizontal head shaking increased sway but did not differ between groups. In the dual task condition, BVF patients maintained posture indistinguishable from controls. On foam and tandem stance, postural sway was larger in BVF, even with the eyes open. The best predictor for the severity of bilateral vestibulopathy was standing on foam with eyes closed. Postural control of our BVF was indistinguishable from HCs once visual and proprioceptive feedback is provided. This distinguishes them from patients with vestibulo-cerebellar disorders or functional dizziness. It confirms previous reports and explains that postural unsteadiness of BVF patients can be missed easily if not examined by conditions of visual and/or proprioceptive deprivation. In fact, the best predictor for vestibular hypofunction (VOR gain) was examining patients standing on foam with the eyes closed. Postural sway in that condition increased with the severity of vestibular impairment but not with disease duration. In the absence of visual control, impaired otolith input destabilizes BVF with head retroflexion. Stimulating deficient SSC does not distinguish patients from controls possibly reflecting a shift of intersensory weighing toward proprioceptive-guided postural control. Accordingly, proprioceptive

  10. Postural Control in Bilateral Vestibular Failure: Its Relation to Visual, Proprioceptive, Vestibular, and Cognitive Input

    Directory of Open Access Journals (Sweden)

    Andreas Sprenger

    2017-09-01

    Full Text Available Patients with bilateral vestibular failure (BVF suffer from postural and gait unsteadiness with an increased risk of falls. The aim of this study was to elucidate the differential role of otolith, semicircular canal (SSC, visual, proprioceptive, and cognitive influences on the postural stability of BVF patients. Center-of-pressure displacements were recorded by posturography under six conditions: target visibility; tonic head positions in the pitch plane; horizontal head shaking; sensory deprivation; dual task; and tandem stance. Between-group analysis revealed larger postural sway in BVF patients on eye closure; but with the eyes open, BVF did not differ from healthy controls (HCs. Head tilts and horizontal head shaking increased sway but did not differ between groups. In the dual task condition, BVF patients maintained posture indistinguishable from controls. On foam and tandem stance, postural sway was larger in BVF, even with the eyes open. The best predictor for the severity of bilateral vestibulopathy was standing on foam with eyes closed. Postural control of our BVF was indistinguishable from HCs once visual and proprioceptive feedback is provided. This distinguishes them from patients with vestibulo-cerebellar disorders or functional dizziness. It confirms previous reports and explains that postural unsteadiness of BVF patients can be missed easily if not examined by conditions of visual and/or proprioceptive deprivation. In fact, the best predictor for vestibular hypofunction (VOR gain was examining patients standing on foam with the eyes closed. Postural sway in that condition increased with the severity of vestibular impairment but not with disease duration. In the absence of visual control, impaired otolith input destabilizes BVF with head retroflexion. Stimulating deficient SSC does not distinguish patients from controls possibly reflecting a shift of intersensory weighing toward proprioceptive-guided postural control. Accordingly

  11. Postural Control in Bilateral Vestibular Failure: Its Relation to Visual, Proprioceptive, Vestibular, and Cognitive Input

    Science.gov (United States)

    Sprenger, Andreas; Wojak, Jann F.; Jandl, Nico M.; Helmchen, Christoph

    2017-01-01

    Patients with bilateral vestibular failure (BVF) suffer from postural and gait unsteadiness with an increased risk of falls. The aim of this study was to elucidate the differential role of otolith, semicircular canal (SSC), visual, proprioceptive, and cognitive influences on the postural stability of BVF patients. Center-of-pressure displacements were recorded by posturography under six conditions: target visibility; tonic head positions in the pitch plane; horizontal head shaking; sensory deprivation; dual task; and tandem stance. Between-group analysis revealed larger postural sway in BVF patients on eye closure; but with the eyes open, BVF did not differ from healthy controls (HCs). Head tilts and horizontal head shaking increased sway but did not differ between groups. In the dual task condition, BVF patients maintained posture indistinguishable from controls. On foam and tandem stance, postural sway was larger in BVF, even with the eyes open. The best predictor for the severity of bilateral vestibulopathy was standing on foam with eyes closed. Postural control of our BVF was indistinguishable from HCs once visual and proprioceptive feedback is provided. This distinguishes them from patients with vestibulo-cerebellar disorders or functional dizziness. It confirms previous reports and explains that postural unsteadiness of BVF patients can be missed easily if not examined by conditions of visual and/or proprioceptive deprivation. In fact, the best predictor for vestibular hypofunction (VOR gain) was examining patients standing on foam with the eyes closed. Postural sway in that condition increased with the severity of vestibular impairment but not with disease duration. In the absence of visual control, impaired otolith input destabilizes BVF with head retroflexion. Stimulating deficient SSC does not distinguish patients from controls possibly reflecting a shift of intersensory weighing toward proprioceptive-guided postural control. Accordingly, proprioceptive

  12. Development of an above-knee prosthesis equipped with a microcomputer-controlled knee joint: first test results.

    Science.gov (United States)

    Aeyels, B; Peeraer, L; Vander Sloten, J; Van der Perre, G

    1992-05-01

    The shortcomings of conventional above-knee prostheses are due to their lack of adaptive control. Implementation of a microcomputer controlling the knee joint in a passive way has been suggested to enhance the patient's gait comfort, safety and cosmesis. This approach was used in the design of a new prosthetic system for the above-knee amputee, and tested on one patient. The knee joint of a conventional, modular prosthesis was replaced by a knee joint mechanism, equipped with a controllable brake on the knee joint axis. Sensors and a microcomputer were added, keeping the system self-contained. The modularity of the design permits the use of an alternative, external, PC-based control unit, emulating the self-contained one, and offering extended data monitoring and storage facilities. For both units an operating environment was written, including sensor/actuator interfacing and the implementation of a real-time interrupt, executing the control algorithm. A double finite state approach was used in the design of the control algorithm. On a higher level, the mode identification algorithm reveals the patient's intent. Within a specific mode (lower level), the relevant mode control algorithm looks for the current phase within the gait cycle. Within a particular phase, a specific simple control action with the brake replaces normal knee muscle activity. Tests were carried out with one prosthetic patient using a basic control algorithm for level walking, allowing controlled knee flexion during stance phase. The technical feasibility of such a concept is illustrated by the test results, even though only flexion during early stance phase was controlled during the trials.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton.

    Science.gov (United States)

    del-Ama, Antonio J; Gil-Agudo, Angel; Pons, José L; Moreno, Juan C

    2014-03-04

    stimulation; HKAFO: hip-knee-ankle-foot orthosis; ILC: iterative error-based learning control; MFE: muscle fatigue estimator; NILC: Normalized stimulation output from ILC controller; PID: Proportional-Integral-derivative Control; PW: Stimulation pulse width; QUEST: Quebec User Evaluation of Satisfaction with assistive Technology; SCI: Spinal cord injury; TTI: torque-time integral; VAS: Visual Analog Scale.

  14. Static and dynamic postural control in low-vision and normal-vision adults.

    Science.gov (United States)

    Tomomitsu, Mônica S V; Alonso, Angelica Castilho; Morimoto, Eurica; Bobbio, Tatiana G; Greve, Julia M D

    2013-04-01

    This study aimed to evaluate the influence of reduced visual information on postural control by comparing low-vision and normal-vision adults in static and dynamic conditions. Twenty-five low-vision subjects and twenty-five normal sighted adults were evaluated for static and dynamic balance using four protocols: 1) the Modified Clinical Test of Sensory Interaction on Balance on firm and foam surfaces with eyes opened and closed; 2) Unilateral Stance with eyes opened and closed; 3) Tandem Walk; and 4) Step Up/Over. The results showed that the low-vision group presented greater body sway compared with the normal vision during balance on a foam surface (p≤0.001), the Unilateral Stance test for both limbs (p≤0.001), and the Tandem Walk test. The low-vision group showed greater step width (p≤0.001) and slower gait speed (p≤0.004). In the Step Up/Over task, low-vision participants were more cautious in stepping up (right p≤0.005 and left p≤0.009) and in executing the movement (p≤0.001). These findings suggest that visual feedback is crucial for determining balance, especially for dynamic tasks and on foam surfaces. Low-vision individuals had worse postural stability than normal-vision adults in terms of dynamic tests and balance on foam surfaces.

  15. Biomechanics and energetics of walking in powered ankle exoskeletons using myoelectric control versus mechanically intrinsic control.

    Science.gov (United States)

    Koller, Jeffrey R; Remy, C David; Ferris, Daniel P

    2018-05-25

    Controllers for assistive robotic devices can be divided into two main categories: controllers using neural signals and controllers using mechanically intrinsic signals. Both approaches are prevalent in research devices, but a direct comparison between the two could provide insight into their relative advantages and disadvantages. We studied subjects walking with robotic ankle exoskeletons using two different control modes: dynamic gain proportional myoelectric control based on soleus muscle activity (neural signal), and timing-based mechanically intrinsic control based on gait events (mechanically intrinsic signal). We hypothesized that subjects would have different measures of metabolic work rate between the two controllers as we predicted subjects would use each controller in a unique manner due to one being dependent on muscle recruitment and the other not. The two controllers had the same average actuation signal as we used the control signals from walking with the myoelectric controller to shape the mechanically intrinsic control signal. The difference being the myoelectric controller allowed step-to-step variation in the actuation signals controlled by the user's soleus muscle recruitment while the timing-based controller had the same actuation signal with each step regardless of muscle recruitment. We observed no statistically significant difference in metabolic work rate between the two controllers. Subjects walked with 11% less soleus activity during mid and late stance and significantly less peak soleus recruitment when using the timing-based controller than when using the myoelectric controller. While walking with the myoelectric controller, subjects walked with significantly higher average positive and negative total ankle power compared to walking with the timing-based controller. We interpret the reduced ankle power and muscle activity with the timing-based controller relative to the myoelectric controller to result from greater slacking effects

  16. Chaos in balance: non-linear measures of postural control predict individual variations in visual illusions of motion.

    Directory of Open Access Journals (Sweden)

    Deborah Apthorp

    Full Text Available Visually-induced illusions of self-motion (vection can be compelling for some people, but they are subject to large individual variations in strength. Do these variations depend, at least in part, on the extent to which people rely on vision to maintain their postural stability? We investigated by comparing physical posture measures to subjective vection ratings. Using a Bertec balance plate in a brightly-lit room, we measured 13 participants' excursions of the centre of foot pressure (CoP over a 60-second period with eyes open and with eyes closed during quiet stance. Subsequently, we collected vection strength ratings for large optic flow displays while seated, using both verbal ratings and online throttle measures. We also collected measures of postural sway (changes in anterior-posterior CoP in response to the same visual motion stimuli while standing on the plate. The magnitude of standing sway in response to expanding optic flow (in comparison to blank fixation periods was predictive of both verbal and throttle measures for seated vection. In addition, the ratio between eyes-open and eyes-closed CoP excursions during quiet stance (using the area of postural sway significantly predicted seated vection for both measures. Interestingly, these relationships were weaker for contracting optic flow displays, though these produced both stronger vection and more sway. Next we used a non-linear analysis (recurrence quantification analysis, RQA of the fluctuations in anterior-posterior position during quiet stance (both with eyes closed and eyes open; this was a much stronger predictor of seated vection for both expanding and contracting stimuli. Given the complex multisensory integration involved in postural control, our study adds to the growing evidence that non-linear measures drawn from complexity theory may provide a more informative measure of postural sway than the conventional linear measures.

  17. Haptic cues for orientation and postural control in sighted and blind individuals

    Science.gov (United States)

    Jeka, J. J.; Easton, R. D.; Bentzen, B. L.; Lackner, J. R.

    1996-01-01

    Haptic cues from fingertip contact with a stable surface attenuate body sway in subjects even when the contact forces are too small to provide physical support of the body. We investigated how haptic cues derived from contact of a cane with a stationary surface at low force levels aids postural control in sighted and congenitally blind individuals. Five sighted (eyes closed) and five congenitally blind subjects maintained a tandem Romberg stance in five conditions: (1) no cane; (2,3) touch contact (postural sway in all subjects, compared to the no-cane condition. A slanted cane was far more effective in reducing postural sway than was a perpendicular cane. Cane use also decreased head displacement of sighted subjects far more than that of blind subjects. These results suggest that head movement control is linked to postural control through gaze stabilization reflexes in sighted subjects; such reflexes are absent in congenitally blind individuals and may account for their higher levels of head displacement.

  18. Locomotor Sub-functions for Control of Assistive Wearable Robots

    Directory of Open Access Journals (Sweden)

    Maziar A. Sharbafi

    2017-09-01

    Full Text Available A primary goal of comparative biomechanics is to understand the fundamental physics of locomotion within an evolutionary context. Such an understanding of legged locomotion results in a transition from copying nature to borrowing strategies for interacting with the physical world regarding design and control of bio-inspired legged robots or robotic assistive devices. Inspired from nature, legged locomotion can be composed of three locomotor sub-functions, which are intrinsically interrelated: Stance: redirecting the center of mass by exerting forces on the ground. Swing: cycling the legs between ground contacts. Balance: maintaining body posture. With these three sub-functions, one can understand, design and control legged locomotory systems with formulating them in simpler separated tasks. Coordination between locomotor sub-functions in a harmonized manner appears then as an additional problem when considering legged locomotion. However, biological locomotion shows that appropriate design and control of each sub-function simplifies coordination. It means that only limited exchange of sensory information between the different locomotor sub-function controllers is required enabling the envisioned modular architecture of the locomotion control system. In this paper, we present different studies on implementing different locomotor sub-function controllers on models, robots, and an exoskeleton in addition to demonstrating their abilities in explaining humans' control strategies.

  19. Locomotor Sub-functions for Control of Assistive Wearable Robots.

    Science.gov (United States)

    Sharbafi, Maziar A; Seyfarth, Andre; Zhao, Guoping

    2017-01-01

    A primary goal of comparative biomechanics is to understand the fundamental physics of locomotion within an evolutionary context. Such an understanding of legged locomotion results in a transition from copying nature to borrowing strategies for interacting with the physical world regarding design and control of bio-inspired legged robots or robotic assistive devices. Inspired from nature, legged locomotion can be composed of three locomotor sub-functions, which are intrinsically interrelated: Stance : redirecting the center of mass by exerting forces on the ground. Swing : cycling the legs between ground contacts. Balance : maintaining body posture. With these three sub-functions, one can understand, design and control legged locomotory systems with formulating them in simpler separated tasks. Coordination between locomotor sub-functions in a harmonized manner appears then as an additional problem when considering legged locomotion. However, biological locomotion shows that appropriate design and control of each sub-function simplifies coordination. It means that only limited exchange of sensory information between the different locomotor sub-function controllers is required enabling the envisioned modular architecture of the locomotion control system. In this paper, we present different studies on implementing different locomotor sub-function controllers on models, robots, and an exoskeleton in addition to demonstrating their abilities in explaining humans' control strategies.

  20. Study protocol: the effect of whole body vibration on acute unilateral unstable lateral ankle sprain- a biphasic randomized controlled trial.

    Science.gov (United States)

    Baumbach, Sebastian Felix; Fasser, Mariette; Polzer, Hans; Sieb, Michael; Regauer, Markus; Mutschler, Wolf; Schieker, Matthias; Blauth, Michael

    2013-01-14

    Ankle sprains often result in ankle instability, which is most likely caused by damage to passive structures and neuromuscular impairment. Whole body vibration (WBV) is a neuromuscular training method improving those impaired neurologic parameters. The aim of this study is to compare the current gold standard functional treatment to functional treatment plus WBV in patients with acute unilateral unstable inversion ankle sprains. 60 patients, aged 18-40 years, presenting with an isolated, unilateral, acute unstable inversion ankle sprain will be included in this bicentric, biphasic, randomized controlled trial. Samples will be randomized by envelope drawing. All patients will be allowed early mobilization and pain-dependent weight bearing, limited functional immobilization by orthosis, PRICE, NSARDs as well as home and supervised physiotherapy. Supervised physical therapy will take place twice a week, for 30 minutes for a period of 6 weeks, following a standardized intervention protocol. During supervised physical therapy, the intervention group will perform exercises similar to those of the control group, on a side-alternating sinusoidal vibration platform. Two time-dependent primary outcome parameters will be assessed: short-term outcome after six weeks will be postural control quantified by the sway index; mid-term outcome after one year will be assessed by subjective instability, defined by the presence of giving-way attacks. Secondary outcome parameters include: return to pre-injury level of activities, residual pain, recurrence, objective instability, energy/coordination, Foot and Ankle Disability Index and EQ 5D. This is the first trial investigating the effects of WBV in patients with acute soft tissue injury. Inversion ankle sprains often result in ankle instability, which is most likely due to damage of neurological structures. Due to its unique, frequency dependent, influence on various neuromuscular parameters, WBV is a promising treatment method for

  1. Study protocol: the effect of whole body vibration on acute unilateral unstable lateral ankle sprain- a biphasic randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Baumbach Sebastian Felix

    2013-01-01

    Full Text Available Abstract Background Ankle sprains often result in ankle instability, which is most likely caused by damage to passive structures and neuromuscular impairment. Whole body vibration (WBV is a neuromuscular training method improving those impaired neurologic parameters. The aim of this study is to compare the current gold standard functional treatment to functional treatment plus WBV in patients with acute unilateral unstable inversion ankle sprains. Methods/Design 60 patients, aged 18–40 years, presenting with an isolated, unilateral, acute unstable inversion ankle sprain will be included in this bicentric, biphasic, randomized controlled trial. Samples will be randomized by envelope drawing. All patients will be allowed early mobilization and pain-dependent weight bearing, limited functional immobilization by orthosis, PRICE, NSARDs as well as home and supervised physiotherapy. Supervised physical therapy will take place twice a week, for 30 minutes for a period of 6 weeks, following a standardized intervention protocol. During supervised physical therapy, the intervention group will perform exercises similar to those of the control group, on a side-alternating sinusoidal vibration platform. Two time-dependent primary outcome parameters will be assessed: short-term outcome after six weeks will be postural control quantified by the sway index; mid-term outcome after one year will be assessed by subjective instability, defined by the presence of giving-way attacks. Secondary outcome parameters include: return to pre-injury level of activities, residual pain, recurrence, objective instability, energy/coordination, Foot and Ankle Disability Index and EQ 5D. Discussion This is the first trial investigating the effects of WBV in patients with acute soft tissue injury. Inversion ankle sprains often result in ankle instability, which is most likely due to damage of neurological structures. Due to its unique, frequency dependent, influence on various

  2. Task-level strategies for human sagittal-plane running maneuvers are consistent with robotic control policies.

    Directory of Open Access Journals (Sweden)

    Mu Qiao

    Full Text Available The strategies that humans use to control unsteady locomotion are not well understood. A "spring-mass" template comprised of a point mass bouncing on a sprung leg can approximate both center of mass movements and ground reaction forces during running in humans and other animals. Legged robots that operate as bouncing, "spring-mass" systems can maintain stable motion using relatively simple, distributed feedback rules. We tested whether the changes to sagittal-plane movements during five running tasks involving active changes to running height, speed, and orientation were consistent with the rules used by bouncing robots to maintain stability. Changes to running height were associated with changes to leg force but not stance duration. To change speed, humans primarily used a "pogo stick" strategy, where speed changes were associated with adjustments to fore-aft foot placement, and not a "unicycle" strategy involving systematic changes to stance leg hip moment. However, hip moments were related to changes to body orientation and angular speed. Hip moments could be described with first order proportional-derivative relationship to trunk pitch. Overall, the task-level strategies used for body control in humans were consistent with the strategies employed by bouncing robots. Identification of these behavioral strategies could lead to a better understanding of the sensorimotor mechanisms that allow for effective unsteady locomotion.

  3. Interest of active posturography to detect age-related and early Parkinson's disease-related impairments in mediolateral postural control.

    Science.gov (United States)

    Bonnet, Cédrick T; Delval, Arnaud; Defebvre, Luc

    2014-11-15

    Patients with Parkinson's disease display impairments of postural control most particularly in active, challenging conditions. The objective of the present study was to analyze early signs of disease-related and also age-related impairments in mediolateral body extension and postural control. Fifty-five participants (18 Hoehn and Yahr stage 2 patients in the off-drug condition, 18 healthy elderly control subjects, and 19 young adults) were included in the study. The participants performed a quiet stance task and two active tasks that analyzed the performance in mediolateral body motion: a limit of stability and a rhythmic weight shift task. As expected, the patients displayed significantly lower and slower body displacement (head, neck, lower back, center of pressure) than elderly control subjects when performing the two body excursion tasks. However, the behavioral variability in both tasks was similar between the groups. Under these active conditions, the patients showed significantly lower contribution of the hip postural control mechanisms compared with the elderly control subjects. Overall, the patients seemed to lower their performance in order to prevent a mediolateral postural instability. However, these patients, at an early stage of their disease, were not unstable in quiet stance. Complementarily, elderly control subjects displayed slower body performance than young adults, which therefore showed an additional age-related impairment in mediolateral postural control. Overall, the study illustrated markers of age-related and Parkinson's disease impairments in mediolateral postural control that may constrain everyday activities in elderly adults and even more in patients with Parkinson's disease. Copyright © 2014 the American Physiological Society.

  4. Differential effects of a visuospatial attention task on measures of postural control in young and older adults.

    Science.gov (United States)

    Peterson, Jeffrey J; Keenan, Kevin G

    2018-02-01

    The purpose of this study was to examine the influence of a visuospatial attention task on three measures of postural control in young and older adults. 20 young (19-36  years) and 20 older (67-91 years) adults performed a choice stepping response time (CSRT) task, a submaximal dorsiflexion force steadiness task, and quiet standing in 3 bilateral stances. All tasks were performed with and without a visuospatial (VS) attention task that involved visualizing a star moving within a 2 × 2 grid. CSRT increased with the addition of the VS task in both groups (p   .084). The findings suggest that visuospatial attention differentially affects postural control in young and older adults and the effect is task-specific. These findings suggest the need to include stepping and force control tasks to further determine what role visuospatial attention plays in postural control. Copyright © 2017. Published by Elsevier Ltd.

  5. Analysis of Interrelationships among Voluntary and Prosthetic Leg Joint Parameters Using Cyclograms.

    Science.gov (United States)

    Jasni, Farahiyah; Hamzaid, Nur Azah; Mohd Syah, Nor Elleeiana; Chung, Tze Y; Abu Osman, Noor Azuan

    2017-01-01

    The walking mechanism of a prosthetic leg user is a tightly coordinated movement of several joints and limb segments. The interaction among the voluntary and mechanical joints and segments requires particular biomechanical insight. This study aims to analyze the inter-relationship between amputees' voluntary and mechanical coupled leg joints variables using cyclograms. From this analysis, the critical gait parameters in each gait phase were determined and analyzed if they contribute to a better powered prosthetic knee control design. To develop the cyclogram model, 20 healthy able-bodied subjects and 25 prosthesis and orthosis users (10 transtibial amputees, 5 transfemoral amputees, and 10 different pathological profiles of orthosis users) walked at their comfortable speed in a 3D motion analysis lab setting. The gait parameters (i.e., angle, moment and power for the ankle, knee and hip joints) were coupled to form 36 cyclograms relationship. The model was validated by quantifying the gait disparities of all the pathological walking by analyzing each cyclograms pairs using feed-forward neural network with backpropagation. Subsequently, the cyclogram pairs that contributed to the highest gait disparity of each gait phase were manipulated by replacing it with normal values and re-analyzed. The manipulated cyclograms relationship that showed highest improvement in terms of gait disparity calculation suggested that they are the most dominant parameters in powered-knee control. In case of transfemoral amputee walking, it was identified using this approach that at each gait sub-phase, the knee variables most responsible for closest to normal walking were: knee power during loading response and mid-stance, knee moment and knee angle during terminal stance phase, knee angle and knee power during pre-swing, knee angle at initial swing, and knee power at terminal swing. No variable was dominant during mid-swing phase implying natural pendulum effect of the lower limb between

  6. Analysis of Interrelationships among Voluntary and Prosthetic Leg Joint Parameters Using Cyclograms

    Directory of Open Access Journals (Sweden)

    Nur Azah Hamzaid

    2017-04-01

    Full Text Available The walking mechanism of a prosthetic leg user is a tightly coordinated movement of several joints and limb segments. The interaction among the voluntary and mechanical joints and segments requires particular biomechanical insight. This study aims to analyze the inter-relationship between amputees' voluntary and mechanical coupled leg joints variables using cyclograms. From this analysis, the critical gait parameters in each gait phase were determined and analyzed if they contribute to a better powered prosthetic knee control design. To develop the cyclogram model, 20 healthy able-bodied subjects and 25 prosthesis and orthosis users (10 transtibial amputees, 5 transfemoral amputees, and 10 different pathological profiles of orthosis users walked at their comfortable speed in a 3D motion analysis lab setting. The gait parameters (i.e., angle, moment and power for the ankle, knee and hip joints were coupled to form 36 cyclograms relationship. The model was validated by quantifying the gait disparities of all the pathological walking by analyzing each cyclograms pairs using feed-forward neural network with backpropagation. Subsequently, the cyclogram pairs that contributed to the highest gait disparity of each gait phase were manipulated by replacing it with normal values and re-analyzed. The manipulated cyclograms relationship that showed highest improvement in terms of gait disparity calculation suggested that they are the most dominant parameters in powered-knee control. In case of transfemoral amputee walking, it was identified using this approach that at each gait sub-phase, the knee variables most responsible for closest to normal walking were: knee power during loading response and mid-stance, knee moment and knee angle during terminal stance phase, knee angle and knee power during pre-swing, knee angle at initial swing, and knee power at terminal swing. No variable was dominant during mid-swing phase implying natural pendulum effect of the

  7. Robust hopping based on virtual pendulum posture control

    International Nuclear Information System (INIS)

    Sharbafi, Maziar A; Ahmadabadi, Majid Nili; Yazdanpanah, Mohammad J; Maufroy, Christophe; Seyfarth, Andre

    2013-01-01

    A new control approach to achieve robust hopping against perturbations in the sagittal plane is presented in this paper. In perturbed hopping, vertical body alignment has a significant role for stability. Our approach is based on the virtual pendulum concept, recently proposed, based on experimental findings in human and animal locomotion. In this concept, the ground reaction forces are pointed to a virtual support point, named virtual pivot point (VPP), during motion. This concept is employed in designing the controller to balance the trunk during the stance phase. New strategies for leg angle and length adjustment besides the virtual pendulum posture control are proposed as a unified controller. This method is investigated by applying it on an extension of the spring loaded inverted pendulum (SLIP) model. Trunk, leg mass and damping are added to the SLIP model in order to make the model more realistic. The stability is analyzed by Poincaré map analysis. With fixed VPP position, stability, disturbance rejection and moderate robustness are achieved, but with a low convergence speed. To improve the performance and attain higher robustness, an event-based control of the VPP position is introduced, using feedback of the system states at apexes. Discrete linear quartic regulator is used to design the feedback controller. Considerable enhancements with respect to stability, convergence speed and robustness against perturbations and parameter changes are achieved. (paper)

  8. THE ROLE OF LEG AND TRUNK MUSCLES PROPRIOCEPTION ON STATIC AND DYNAMIC POSTURAL CONTROL

    Directory of Open Access Journals (Sweden)

    SEYED Hossein Hosseinimehr

    2010-04-01

    Full Text Available The proprioception information is a prerequisite for balance, body’s navigation system, and the movement coordinator. Due to changes between the angles of ankle, knee, and hip joints the aforementioned information are important in the coordination of the limbs and postural balance. The aim of this study was to investigate therole of leg and trunk muscles proprioception on static and dynamic postural control. Thirty males students of physical education and sport sciences (age =21.23 ± 2.95 years, height = 170.4 ± 5.1 cm, and weight = 70.7 ± 5.6 kg participated in this study volunteered. Vibration (100HZ was used to disturb of proprioception. Vibrationoperated on leg muscle (gasterocnemius and trunk muscles (erector spine muscle, at L1 level. Leg stance time and Star Excursion Balance Test were used for evaluation of static and dynamic postural control respectively.Subjects performed pre and post (with operated vibration leg stance time and star excursion balance test. Paired sample test used for investigation the effect of vibration on leg and trunk muscles in static and dynamic postural control. Result of this study showed in static postural control, there is no significant difference between pre and post test (operated vibration in leg and trunk muscles (p≤0.05. In contrast there is significant difference indynamic postural control between pre and post test in leg muscles in 8 directions of star excursion balance test (p≤0.05 while there is only significant difference in trunk muscle in antrolateral and lateral of star excursion balance test (p≤0.05. During physical training such conditions like fatigue and injury can disturbproprioceptions’ information. Thus, due to the importance of this information we recommend that coaches'additionally specific trainings any sport used specific exercises to enhance the proprioception information

  9. Sport Skill-Specific Expertise Biases Sensory Integration for Spatial Referencing and Postural Control.

    Science.gov (United States)

    Thalassinos, Michalis; Fotiadis, Giorgos; Arabatzi, Fotini; Isableu, Brice; Hatzitaki, Vassilia

    2017-09-15

    The authors asked how sport expertise modulates visual field dependence and sensory reweighting for controlling posture. Experienced soccer athletes, ballet dancers, and nonathletes performed (a) a Rod and Frame test and (b) a 100-s bipedal stance task during which vision and proprioception were successively or concurrently disrupted in 20-s blocks. Postural adaptation was assessed in the mean center of pressure displacement, root mean square of center of pressure velocity and ankle muscles integrated electromyography activity. Soccer athletes were more field dependent than were nonathletes. During standing, dancers were more destabilized by vibration and required more time to reweigh sensory information compared with the other 2 groups. These findings reveal a sport skill-specific bias in the reweighing of sensory inputs for spatial orientation and postural control.

  10. Development of an advanced mechanised gait trainer, controlling movement of the centre of mass, for restoring gait in non-ambulant subjects.

    Science.gov (United States)

    Hesse, S; Sarkodie-Gyan, T; Uhlenbrock, D

    1999-01-01

    The study aimed at further development of a mechanised gait trainer which would allow non-ambulant people to practice a gait-like motion repeatedly. To simulate normal gait, discrete stance and swing phases, lasting 60% and 40% of the gait cycle respectively, and the control of the movement of the centre of mass were required. A complex gear system provided the gait-like movement of two foot plates with a ratio of 60% to 40% between the stance and swing phases. A controlled propulsion system adjusted its output according to patient's efforts. Two eccenters on the central gear controlled phase-adjusted the vertical and horizontal position of the centre of mass. The patterns of sagittal lower limb joint kinematics and of muscle activation of a normal subject were similar when using the mechanised trainer and when walking on a treadmill. A non-ambulatory hemiparetic subject required little help from one therapist on the gait trainer, while two therapists supported treadmill walking. Gait movements on the trainer were highly symmetrical, impact-free, and less spastic. The weight-bearing muscles were activated in a similar fashion during both conditions. The vertical displacement of the centre of mass was bi-instead of mono-phasic during each gait cycle on the new device. In conclusion, the gait trainer allowed wheelchair-bound subjects the repetitive practice of a gait-like movement without overstraining therapists.

  11. Failure of gamma-aminobutyrate acid-beta agonist baclofen to improve balance, gait, and postural control after vestibular schwannoma resection.

    Science.gov (United States)

    De Valck, Claudia F J; Vereeck, Luc; Wuyts, Floris L; Van de Heyning, Paul H

    2009-04-01

    Incomplete postural control often occurs after vestibular schwannoma (VS) surgery. Customized vestibular rehabilitation in man improves and speeds up this process. Animal experiments have shown an improved and faster vestibular compensation after administration of the gamma-aminobutyrate acid (GABA)-beta agonist baclofen. To examine whether medical treatment with baclofen provides an improvement of the compensation process after VS surgery. A time-series study with historical control. Tertiary referral center. Thirteen patients who underwent VS resection were included and compared with a matched group of patients. In addition to an individualized vestibular rehabilitation protocol, the study group received medical treatment with 30 mg baclofen (a GABA-beta agonist) daily during the first 6 weeks after surgery. Clinical gait and balance tests (Romberg maneuver, standing on foam, tandem Romberg, single-leg stance, Timed Up & Go test, tandem gait, Dynamic Gait Index) and Dizziness Handicap Inventory. Follow-up until 24 weeks after surgery. When examining the postoperative test results, the group treated with baclofen did not perform better when compared with the matched (historical control) group. Repeated-measures analysis of variance revealed no significant group effect, but a significant time effect for almost all balance tests during the acute recovery period was found. An interaction effect between time and intervention was seen concerning single-leg stance and Dizziness Handicap Inventory scores for the acute recovery period. Medical therapy with baclofen did not seem to be beneficial in the process of central vestibular compensation.

  12. Age Effects in Postural Control Analyzed via a Principal Component Analysis of Kinematic Data and Interpreted in Relation to Predictions of the Optimal Feedback Control Theory

    Science.gov (United States)

    Haid, Thomas H.; Doix, Aude-Clémence M.; Nigg, Benno M.; Federolf, Peter A.

    2018-01-01

    Optimal feedback control theory suggests that control of movement is focused on movement dimensions that are important for the task's success. The current study tested the hypotheses that age effects would emerge in the control of only specific movement components and that these components would be linked to the task relevance. Fifty healthy volunteers, 25 young and 25 older adults, performed a 80s-tandem stance while their postural movements were recorded using a standard motion capture system. The postural movements were decomposed by a principal component analysis into one-dimensional movement components, PMk, whose control was assessed through two variables, Nk and σk, which characterized the tightness and the regularity of the neuro-muscular control, respectively. The older volunteers showed less tight and more irregular control in PM2 (N2: −9.2%, p = 0.007; σ2: +14.3.0%, p = 0.017) but tighter control in PM8 and PM9 (N8: +4.7%, p = 0.020; N9: +2.5%, p = 0.043; σ9: −8.8%, p = 0.025). These results suggest that aging effects alter the postural control system not as a whole, but emerge in specific, task relevant components. The findings of the current study thus support the hypothesis that the minimal intervention principle, as described in the context of optimal feedback control (OFC), may be relevant when assessing aging effects on postural control. PMID:29459826

  13. Experimental effective shape control of a powered transfemoral prosthesis.

    Science.gov (United States)

    Gregg, Robert D; Lenzi, Tommaso; Fey, Nicholas P; Hargrove, Levi J; Sensinger, Jonathon W

    2013-06-01

    This paper presents the design and experimental implementation of a novel feedback control strategy that regulates effective shape on a powered transfemoral prosthesis. The human effective shape is the effective geometry to which the biological leg conforms--through movement of ground reaction forces and leg joints--during the stance period of gait. Able-bodied humans regulate effective shapes to be invariant across conditions such as heel height, walking speed, and body weight, so this measure has proven to be a very useful tool for the alignment and design of passive prostheses. However, leg joints must be actively controlled to assume different effective shapes that are unique to tasks such as standing, walking, and stair climbing. Using our previous simulation studies as a starting point, we model and control the effective shape as a virtual kinematic constraint on the powered Vanderbilt prosthetic leg with a custom instrumented foot. An able-bodied subject used a by-pass adapter to walk on the controlled leg over ground and over a treadmill. These preliminary experiments demonstrate, for the first time, that effective shape (or virtual constraints in general) can be used to control a powered prosthetic leg.

  14. Balance and Gait Training With Augmented Feedback Improves Balance Confidence in People With Parkinson's Disease: A Randomized Controlled Trial.

    Science.gov (United States)

    Shen, Xia; Mak, Margaret K Y

    2014-07-01

    Background Fear of falling has been identified as an important and independent fall-risk predictor in patients with Parkinson's disease (PD). However, there are inconsistent findings on the effects of balance and gait training on balance confidence. Objective To explore whether balance and gait training with augmented feedback can enhance balance confidence in PD patients immediately after treatment and at 3- and 12-month follow-ups. Methods A total of 51 PD patients were randomly assigned to a balance and gait training (BAL) group or to an active control (CON) group. The BAL group received balance and gait training with augmented feedback, whereas CON participants received lower-limb strength training for 12 weeks. Outcome measures included Activities-Specific Balance Confidence (ABC) Scale, limits-of-stability test, single-leg-stance test, and spatiotemporal gait characteristics. All tests were administered before intervention (Pre), immediately after training (Post), and at 3 months (Post3m) and 12 months (Post12m) after treatment completion. Results The ABC score improved marginally at Post and significantly at Post3m and Post12m only in the BAL group (P point excursion at Post, but only the BAL group maintained the improvement at Post3m. The BAL group maintained significantly longer time-to-loss-of-balance during the single-leg stance test than the CON group at Post3m and Post12m (P balance confidence and balance and gait performance in patients with PD. © The Author(s) 2014.

  15. Neural Control and Adaptive Neural Forward Models for Insect-like, Energy-Efficient, and Adaptable Locomotion of Walking Machines

    DEFF Research Database (Denmark)

    Manoonpong, Poramate; Parlitz, Ulrich; Wörgötter, Florentin

    2013-01-01

    such natural properties with artificial legged locomotion systems by using different approaches including machine learning algorithms, classical engineering control techniques, and biologically-inspired control mechanisms. However, their levels of performance are still far from the natural ones. By contrast...... on sensory feedback and adaptive neural forward models with efference copies. This neural closed-loop controller enables a walking machine to perform a multitude of different walking patterns including insect-like leg movements and gaits as well as energy-efficient locomotion. In addition, the forward models...... allow the machine to autonomously adapt its locomotion to deal with a change of terrain, losing of ground contact during stance phase, stepping on or hitting an obstacle during swing phase, leg damage, and even to promote cockroach-like climbing behavior. Thus, the results presented here show...

  16. Eye Movements Affect Postural Control in Young and Older Females.

    Science.gov (United States)

    Thomas, Neil M; Bampouras, Theodoros M; Donovan, Tim; Dewhurst, Susan

    2016-01-01

    Visual information is used for postural stabilization in humans. However, little is known about how eye movements prevalent in everyday life interact with the postural control system in older individuals. Therefore, the present study assessed the effects of stationary gaze fixations, smooth pursuits, and saccadic eye movements, with combinations of absent, fixed and oscillating large-field visual backgrounds to generate different forms of retinal flow, on postural control in healthy young and older females. Participants were presented with computer generated visual stimuli, whilst postural sway and gaze fixations were simultaneously assessed with a force platform and eye tracking equipment, respectively. The results showed that fixed backgrounds and stationary gaze fixations attenuated postural sway. In contrast, oscillating backgrounds and smooth pursuits increased postural sway. There were no differences regarding saccades. There were also no differences in postural sway or gaze errors between age groups in any visual condition. The stabilizing effect of the fixed visual stimuli show how retinal flow and extraocular factors guide postural adjustments. The destabilizing effect of oscillating visual backgrounds and smooth pursuits may be related to more challenging conditions for determining body shifts from retinal flow, and more complex extraocular signals, respectively. Because the older participants matched the young group's performance in all conditions, decreases of posture and gaze control during stance may not be a direct consequence of healthy aging. Further research examining extraocular and retinal mechanisms of balance control and the effects of eye movements, during locomotion, is needed to better inform fall prevention interventions.

  17. A new approach of the Star Excursion Balance Test to assess dynamic postural control in people complaining from chronic ankle instability.

    Science.gov (United States)

    Pionnier, Raphaël; Découfour, Nicolas; Barbier, Franck; Popineau, Christophe; Simoneau-Buessinger, Emilie

    2016-03-01

    The purpose of this study was to quantitatively and qualitatively assess dynamic balance with accuracy in individuals with chronic ankle instability (CAI). To this aim, a motion capture system was used while participants performed the Star Excursion Balance Test (SEBT). Reached distances for the 8 points of the star were automatically computed, thereby excluding any dependence to the experimenter. In addition, new relevant variables were also computed, such as absolute time needed to reach each distance, lower limb ranges of motion during unipodal stance, as well as absolute error of pointing. Velocity of the center of pressure and range of variation of ground reaction forces have also been assessed during the unipodal phase of the SEBT thanks to force plates. CAI group exhibited smaller reached distances and greater absolute error of pointing than the control group (p<0.05). Moreover, the ranges of motion of lower limbs joints, the velocity of the center of pressure and the range of variation of the ground reaction forces were all significantly smaller in the CAI group (p<0.05). These reduced quantitative and qualitative performances highlighted a lower dynamic postural control. The limited body movements and accelerations during the unipodal stance in the CAI group could highlight a protective strategy. The present findings could help clinicians to better understand the motor strategies used by CAI patients during dynamic balance and may guide the rehabilitation process. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Estimating the Mechanical Behavior of the Knee Joint during Crouch Gait: Implications for Real-Time Motor Control of Robotic Knee Orthoses

    Science.gov (United States)

    Damiano, Diane L.; Bulea, Thomas C.

    2016-01-01

    Individuals with cerebral palsy frequently exhibit crouch gait, a pathological walking pattern characterized by excessive knee flexion. Knowledge of the knee joint moment during crouch gait is necessary for the design and control of assistive devices used for treatment. Our goal was to 1) develop statistical models to estimate knee joint moment extrema and dynamic stiffness during crouch gait, and 2) use the models to estimate the instantaneous joint moment during weight-acceptance. We retrospectively computed knee moments from 10 children with crouch gait and used stepwise linear regression to develop statistical models describing the knee moment features. The models explained at least 90% of the response value variability: peak moment in early (99%) and late (90%) stance, and dynamic stiffness of weight-acceptance flexion (94%) and extension (98%). We estimated knee extensor moment profiles from the predicted dynamic stiffness and instantaneous knee angle. This approach captured the timing and shape of the computed moment (root-mean-squared error: 2.64 Nm); including the predicted early-stance peak moment as a correction factor improved model performance (root-mean-squared error: 1.37 Nm). Our strategy provides a practical, accurate method to estimate the knee moment during crouch gait, and could be used for real-time, adaptive control of robotic orthoses. PMID:27101612

  19. Human-Inspired Eigenmovement Concept Provides Coupling-Free Sensorimotor Control in Humanoid Robot.

    Science.gov (United States)

    Alexandrov, Alexei V; Lippi, Vittorio; Mergner, Thomas; Frolov, Alexander A; Hettich, Georg; Husek, Dusan

    2017-01-01

    Control of a multi-body system in both robots and humans may face the problem of destabilizing dynamic coupling effects arising between linked body segments. The state of the art solutions in robotics are full state feedback controllers. For human hip-ankle coordination, a more parsimonious and theoretically stable alternative to the robotics solution has been suggested in terms of the Eigenmovement (EM) control. Eigenmovements are kinematic synergies designed to describe the multi DoF system, and its control, with a set of independent, and hence coupling-free , scalar equations. This paper investigates whether the EM alternative shows "real-world robustness" against noisy and inaccurate sensors, mechanical non-linearities such as dead zones, and human-like feedback time delays when controlling hip-ankle movements of a balancing humanoid robot. The EM concept and the EM controller are introduced, the robot's dynamics are identified using a biomechanical approach, and robot tests are performed in a human posture control laboratory. The tests show that the EM controller provides stable control of the robot with proactive ("voluntary") movements and reactive balancing of stance during support surface tilts and translations. Although a preliminary robot-human comparison reveals similarities and differences, we conclude (i) the Eigenmovement concept is a valid candidate when different concepts of human sensorimotor control are considered, and (ii) that human-inspired robot experiments may help to decide in future the choice among the candidates and to improve the design of humanoid robots and robotic rehabilitation devices.

  20. Feedback and feedforward locomotor adaptations to ankle-foot load in people with incomplete spinal cord injury.

    Science.gov (United States)

    Gordon, Keith E; Wu, Ming; Kahn, Jennifer H; Schmit, Brian D

    2010-09-01

    Humans with spinal cord injury (SCI) modulate locomotor output in response to limb load. Understanding the neural control mechanisms responsible for locomotor adaptation could provide a framework for selecting effective interventions. We quantified feedback and feedforward locomotor adaptations to limb load modulations in people with incomplete SCI. While subjects airstepped (stepping performed with kinematic assistance and 100% bodyweight support), a powered-orthosis created a dorisflexor torque during the "stance phase" of select steps producing highly controlled ankle-load perturbations. When given repetitive, stance phase ankle-load, the increase in hip extension work, 0.27 J/kg above baseline (no ankle-load airstepping), was greater than the response to ankle-load applied during a single step, 0.14 J/kg (P = 0.029). This finding suggests that, at the hip, subjects produced both feedforward and feedback locomotor modulations. We estimate that, at the hip, the locomotor response to repetitive ankle-load was modulated almost equally by ongoing feedback and feedforward adaptations. The majority of subjects also showed after-effects in hip kinetic patterns that lasted 3 min in response to repetitive loading, providing additional evidence of feedforward locomotor adaptations. The magnitude of the after-effect was proportional to the response to repetitive ankle-foot load (R(2) = 0.92). In contrast, increases in soleus EMG amplitude were not different during repetitive and single-step ankle-load exposure, suggesting that ankle locomotor modulations were predominately feedback-based. Although subjects made both feedback and feedforward locomotor adaptations to changes in ankle-load, between-subject variations suggest that walking function may be related to the ability to make feedforward adaptations.

  1. Controllable circuit

    DEFF Research Database (Denmark)

    2010-01-01

    A switch-mode power circuit comprises a controllable element and a control unit. The controllable element is configured to control a current in response to a control signal supplied to the controllable element. The control unit is connected to the controllable element and provides the control...

  2. Spatiotemporal postural control deficits are present in those with chronic ankle instability

    Directory of Open Access Journals (Sweden)

    McKeon Patrick O

    2008-06-01

    Full Text Available Abstract Background Postural control deficits have been purported to be a potential contributing factor in chronic ankle instability (CAI. Summary forceplate measures such as center of pressure velocity and area have not consistently detected postural control deficits associated with CAI. A novel measurement technique derived from the dynamical systems theory of motor control known as Time-to-boundary (TTB has shown promise in detecting deficits in postural control related to chronic ankle instability (CAI. In a previous study, TTB deficits were detected in a sample of females with CAI. The purpose of this study was to examine postural control in sample of males and females with and without CAI using TTB measures. Methods This case-control study was performed in a research laboratory. Thirty-two subjects (18 males, 14 females with self-reported CAI were recruited and matched to healthy controls. All subjects performed three, ten-second trials of single-limb stance on a forceplate with eyes open and eyes closed. Main outcome measures included the TTB absolute minimum (s, mean of TTB minima (s, and standard deviation of TTB minima (s in the anteroposterior and mediolateral directions. A series of group by gender analyses of variance were conducted to evaluate the differences in postural control for all TTB variables separately with eyes open and eyes closed. Results There were no significant group by gender interactions or gender main effects for any of the measures. There, however, significant group main effects for 4 of the 6 measures with eyes closed as the CAI group demonstrated significant deficits in comparison to the control group. There were no significant differences between groups in any of the TTB measures with eyes open. Conclusion TTB deficits were present in the CAI group compared to the control group. These deficits were detected with concurrent removal of visual input. CAI may place significantly greater constraints on the

  3. Halo vest effect on balance.

    Science.gov (United States)

    Richardson, J K; Ross, A D; Riley, B; Rhodes, R L

    2000-03-01

    To determine the effect of a halo vest, a cervical orthosis, on clinically relevant balance parameters. Subjects performed unipedal stance (with eyes open and closed, on both firm and soft surfaces) and functional reach, with and without the application of a halo vest. A convenience sample of 12 healthy young subjects, with an equal number of men and women. Seconds for unipedal stance (maximum 45); inches for functional reach. Both unipedal stance times and functional reach (mean +/- standard deviation) were significantly decreased with the halo vest as compared to without it (29.1+/-5.8 vs. 32.8+/-6.4 seconds, p = .002; 12.9+/-1.4 vs. 15.1+/-2.1 inches, prisk for a fall, which could have devastating consequences.

  4. Incidence of vertical phoria on postural control during binocular vision: what perspective for prevention to nonspecific chronic pain management?

    Science.gov (United States)

    Matheron, Eric; Kapoula, Zoï

    2015-01-01

    Vertical heterophoria (VH) is the latent vertical misalignment of the eyes when the retinal images are dissociated, vertical orthophoria (VO) when there is no misalignment. Studies on postural control, during binocular vision in upright stance, reported that healthy subjects with small VH vs. VO are less stable, but the experimental cancellation of VH with an appropriate prism improves postural stability. The same behavior was recorded in nonspecific chronic back pain subjects, all with VH. It was hypothesized that, without refraction problems, VH indicates a perturbation of the somaesthetic cues required in the sensorimotor loops involved in postural control and the capacity of the CNS to optimally integrate these cues, suggesting prevention possibilities. Sensorimotor conflict can induce pain and modify sensory perception in some healthy subjects; some nonspecific pain or chronic pain could result from such prolonged conflict in which VH could be a sign, with new theoretical and clinical implications.

  5. Immediate effects of a new microprocessor-controlled prosthetic knee joint: a comparative biomechanical evaluation.

    Science.gov (United States)

    Bellmann, Malte; Schmalz, Thomas; Ludwigs, Eva; Blumentritt, Siegmar

    2012-03-01

    To investigate the immediate biomechanical effects after transition to a new microprocessor-controlled prosthetic knee joint. Intervention cross-over study with repeated measures. Only prosthetic knee joints were changed. Motion analysis laboratory. Men (N=11; mean age ± SD, 36.7±10.2y; Medicare functional classification level, 3-4) with unilateral transfemoral amputation. Two microprocessor-controlled prosthetic knee joints: C-Leg and a new prosthetic knee joint, Genium. Static prosthetic alignment, time-distance parameters, kinematic and kinetic parameters, and center of pressure. After a half-day training and an additional half-day accommodation, improved biomechanical outcomes were demonstrated by the Genium: lower ground reaction forces at weight acceptance during level walking at various velocities, increased swing phase flexion angles during walking on a ramp, and level walking with small steps. Maximum knee flexion angle during swing phase at various velocities was nearly equal for Genium. Step-over-step stair ascent with the Genium knee was more physiologic as demonstrated by a more equal load distribution between the prosthetic and contralateral sides and a more natural gait pattern. When descending stairs and ramps, knee flexion moments with the Genium tended to increase. During quiet stance on a decline, subjects using Genium accepted higher loading of the prosthetic side knee joint, thus reducing same side hip joint loading as well as postural sway. In comparision to the C-Leg, the Genium demonstrated immediate biomechanical advantages during various daily ambulatory activities, which may lead to an increase in range and diversity of activity of people with above-knee amputations. Results showed that use of the Genium facilitated more natural gait biomechanics and load distribution throughout the affected and sound musculoskeletal structure. This was observed during quiet stance on a decline, walking on level ground, and walking up and down ramps and

  6. Control rod control device

    International Nuclear Information System (INIS)

    Seiji, Takehiko; Obara, Kohei; Yanagihashi, Kazumi

    1998-01-01

    The present invention provides a device suitable for switching of electric motors for driving each of control rods in a nuclear reactor. Namely, in a control rod controlling device, a plurality of previously allotted electric motors connected in parallel as groups, and electric motors of any selected group are driven. In this case, a voltage of not driving predetermined selected electric motors is at first applied. In this state an electric current supplied to the circuit of predetermined electric motors is detected. Whether integration or failure of a power source and the circuit of the predetermined electric motors are normal or not is judged by the detected electric current supplied. After they are judged normal, the electric motors are driven by a regular voltage. With such procedures, whether the selected circuit is normal or not can be accurately confirmed previously. Since the electric motors are not driven just at the selected time, the control rods are not operated erroneously. (I.S.)

  7. The Empirical Stance vs. The Critical Attitude | Rowbottom | South ...

    African Journals Online (AJOL)

    But this characterisation emerges from his recognition that to be an empiricist cannot be to believe, or decide to commit to belief in, a foundational proposition, without removing any basis for a non-dogmatic empiricist critique of other philosophical approaches, such as materialism. However, noticeable by its absence in Van ...

  8. A Kantian stance on teleology in biology | Cohen | South African ...

    African Journals Online (AJOL)

    No Abstract. South African Journal of Philosophy Vol.26 (2) 2007: pp. 109-121. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · http://dx.doi.org/10.4314/sajpem.v26i2.31466 · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians ...

  9. Illuminating a dialectical transformative activist stance in education

    Science.gov (United States)

    Ritchie, Stephen M.

    2008-07-01

    In this essay I comment on Stetsenko's (2008) essay that draws together the work of Vygotsky, Piaget and Dewey, as she attempts to counter the `new' reductionist synthesis in public educational policy. While this theoretical work is helpful, it could be enhanced further by illuminating everyday practices of learners. I pose some questions that might provoke ongoing discussions by researchers as they transform collaboratively cultural-historical activity theory.

  10. Reading, writing, rebelling. Propositions for a renewed critical stance

    Directory of Open Access Journals (Sweden)

    Sébastien Doubinsky

    2017-05-01

    Full Text Available What is reading? What is writing? What connects the two? These questions have been the fertile ground for many literary and philosophical theories, from New Criticism to Deconstruction. This essay does not pretend answering to these two questions, but rather to question the question themselves and try to shed a different light of this essential problematic. Choosing not to consider literature as a stable concept, but rather as an ontologically impermanent one, I try to reflect upon the terms that condition our approach of works and of the creation of these works. In a large perspective, the notions of “reading” and “writing” are examined through the prism of their incarnations as “works”, and the consequences of this identity have on our critical discourse. In order to read critically, one must thus recognize this immanent instability of our notions and definitions, and begin from there instead of ending there. In other words, the instability of the reading is the only way to mirror the instability of the works, and to acknowledge their ever-changing form. Far from being innocent, critical reading therefore appears as a radical, but necessary action, a rebellion against the obvious and accepted definitions to which works are too often attached.

  11. Exploring Inquiry as a Teaching Stance in the Writing Workshop

    Science.gov (United States)

    Ray, Katie Wood

    2006-01-01

    This article begins with a "snapshot" of a fifth grade writing workshop and its study of op-ed writing to show an inquiry in action. The framework for this inquiry involves immersing students in reading multiple examples of the kind of text the teacher would like them to write, studying closely how the texts are crafted, and writing their own…

  12. Leadership Development From A Systems Psychodynamic Consultancy Stance

    Directory of Open Access Journals (Sweden)

    W. J. De Jager

    2003-11-01

    Hierdie navorsing poog om die impak van ‘n leierskapsontwikkelingsprogram wat aangebied is vanuit die sistemiese psigodinamiese perspektief, te evalueer. Die doel was om psigoanalitiese ingeligte leiers te ontwikkel om verandering en transformasie in die gedurige veranderende en transformerende Nuwe Ekonomie netwerk organisasie, te lei. Ten einde dit te bolwerk is. ‘n Groep -verhoudinge-opleidingsprogram is aangebied vir 30 leiers. Kwalitatiewe evaluasie deur van begrondingsteorie gebruik te maak gedurende, die post-intervensie fokus groepe het ‘n groepbewustheid aangedui van psigodinamiese leierskapgedrag soos die regressie na dikwelse patologiese leierskapspersoonlikheidskenmerke, regressie in onbewustelike groep- en organisatoriese prosesse soos die basiese aanname-groep, die koverte-koalisie- en sosiaal-gestruktureerde-verdedigingsisteme teen verandering en transformasie. Insig is ook in die nuwe leierskap rol en die opneem van persoonlike outoriteit in die netwerk organisasie wat moet funksioneer as ‘n sistemiese geheel, bekom. Aanbevelings word gemaak om die leierskapsrol in verandering in terme van vaardighede in die Nuwe Ekonomienetwerkorganisasie, te bevorder.

  13. Urban Teacher Education in Partnership: An Inquiry Stance Sustains Collaboration

    Science.gov (United States)

    Stairs, Andrea J.

    2010-01-01

    The relationship between Brighton High School (BHS) and Boston College (BC) spans several decades. Professors from multiple departments at the university--not only teacher educators but professors of psychology, measurement, and arts and sciences--have walked, as regular parts of the school community, the halls of the gothic-style high school…

  14. Expression of Epistemic Stance in EFL Chinese University Students' Writing

    Science.gov (United States)

    Chen, Zhenzhen

    2012-01-01

    This paper reported findings on a contrastive analysis of epistemic expressions in argumentative essays between NS and NNS Chinese L2 writers. Based on an examination of a NS corpus and a NNS learner corpus across four proficiency levels, the study shows there is great similarity in the total number of epistemic devices used per thousand words…

  15. Human Genetic Engineering: A Survey of Student Value Stances

    Science.gov (United States)

    Wilson, Sara McCormack; And Others

    1975-01-01

    Assesses the values of high school and college students relative to human genetic engineering and recommends that biology educators explore instructional strategies merging human genetic information with value clarification techniques. (LS)

  16. Exploring stance and listener alignment in public discourse | Thuube ...

    African Journals Online (AJOL)

    This paper discusses public speakers' discursive use of modality markers to persuade their audiences in political discourse. Although modality has been a subject of much investigation in different research areas recently, there has been no empirical examination of their role or functions in political discourse in Lesotho.

  17. The institutional stance in agent-based simulations

    NARCIS (Netherlands)

    Sileno, G.; Boer, A.; van Engers, T.; Filipe, J.; Fred, A.L.N.

    2013-01-01

    This paper presents a multi-agent framework intended to animate scenarios of compliance and non-compliance in a normative system. With the purpose of describing social human behaviour, we choose to reduce social complexity by creating models of the involved agents starting from stories, and

  18. Conveying a Stance of Religious Pluralism in Children's Literature

    Science.gov (United States)

    Sanders, Jennifer; Foyil, Kris; Graff, Jennifer M.

    2010-01-01

    Religious discrimination is a global concern, as social dissonance and devastating violence result from religious intolerance. In order to develop socially competent, global citizens and create a peaceful society, religious diversity must be explored in public school classrooms; yet it remains a controversial and seldom addressed topic. Children's…

  19. Choosing an Epistemic Stance | Gabriel | African Journal of Finance ...

    African Journals Online (AJOL)

    There is no practical justification of belonging to more than one domain, neither should we fight once we belong to different domains. At the end, the title of a research project, which I am expecting to do, will be given, followed by an indicative bibliography. (Af. J. of Finance and Management: 2003 11(2): 59-64) ...

  20. Morality and Foreign Policy. A Symposium on President Carter's Stance.

    Science.gov (United States)

    Lefever, Ernest W., Ed.

    This monograph contains a critical examination of President Carter's view on ethics and foreign policy as expressed in his commencement speech at Notre Dame University on May 22, 1977. The book is organized into three parts. Part 1 contains Mr. Carter's speech entitled, "Power for Humane Purposes." Part 2 contains nine responses to the…

  1. Assertions and Conditionals: A Historical and Pragmatic Stance

    Directory of Open Access Journals (Sweden)

    Chiffi Daniele

    2017-03-01

    Full Text Available The assertion candidate expresses a potential logical-linguistic object that can be asserted. It differs from both the act and the product of assertion; it needs not to be actually asserted and differs from the assertion made. We investigate the medieval origins of this notion, which are almost neglected in contemporary logic. Our historical analysis suggests an interpretation of the assertion candidate within the system of logic for pragmatics.

  2. Use of the Nintendo Wii Balance Board for Studying Standing Static Balance Control: Technical Considerations, Force-Plate Congruency, and the Effect of Battery Life.

    Science.gov (United States)

    Weaver, Tyler B; Ma, Christine; Laing, Andrew C

    2017-02-01

    The Nintendo Wii Balance Board (WBB) has become popular as a low-cost alternative to research-grade force plates. The purposes of this study were to characterize a series of technical specifications for the WBB, to compare balance control metrics derived from time-varying center of pressure (COP) signals collected simultaneously from a WBB and a research-grade force plate, and to investigate the effects of battery life. Drift, linearity, hysteresis, mass accuracy, uniformity of response, and COP accuracy were assessed from a WBB. In addition, 6 participants completed an eyes-closed quiet standing task on the WBB (at 3 battery life levels) mounted on a force plate while sway was simultaneously measured by both systems. Characterization results were all associated with less than 1% error. R 2 values reflecting WBB sensor linearity were > .99. Known and measured COP differences were lowest at the center of the WBB and greatest at the corners. Between-device differences in quiet stance COP summary metrics were of limited clinical significance. Lastly, battery life did not affect WBB COP accuracy, but did influence 2 of 8 quiet stance WBB parameters. This study provides general support for the WBB as a low-cost alternative to research-grade force plates for quantifying COP movement during standing.

  3. Acute and Chronic Effect of Acoustic and Visual Cues on Gait Training in Parkinson’s Disease: A Randomized, Controlled Study

    Directory of Open Access Journals (Sweden)

    Roberto De Icco

    2015-01-01

    Full Text Available In this randomized controlled study we analyse and compare the acute and chronic effects of visual and acoustic cues on gait performance in Parkinson’s Disease (PD. We enrolled 46 patients with idiopathic PD who were assigned to 3 different modalities of gait training: (1 use of acoustic cues, (2 use of visual cues, or (3 overground training without cues. All patients were tested with kinematic analysis of gait at baseline (T0, at the end of the 4-week rehabilitation programme (T1, and 3 months later (T2. Regarding the acute effect, acoustic cues increased stride length and stride duration, while visual cues reduced the number of strides and normalized the stride/stance distribution but also reduced gait speed. As regards the chronic effect of cues, we recorded an improvement in some gait parameters in all 3 groups of patients: all 3 types of training improved gait speed; visual cues also normalized the stance/swing ratio, acoustic cues reduced the number of strides and increased stride length, and overground training improved stride length. The changes were not retained at T2 in any of the experimental groups. Our findings support and characterize the usefulness of cueing strategies in the rehabilitation of gait in PD.

  4. Control Areas

    Data.gov (United States)

    Department of Homeland Security — This feature class represents electric power Control Areas. Control Areas, also known as Balancing Authority Areas, are controlled by Balancing Authorities, who are...

  5. Control of control charts

    NARCIS (Netherlands)

    Sri Nurdiati, S.N.

    2005-01-01

    Although the Shewhart chart is widely used in practice because of its simplicity, applying this control chart to monitor the mean of a process may lead to two types of problems. The first concerns the typically unknown parameters involved in the distribution, while the second concerns the validity

  6. Structural elements in achieving legislative tobacco control in NSW, 1955-95: political reflections and implications.

    Science.gov (United States)

    Hooker, Claire; Chapman, Simon

    2006-02-01

    To analyse structural factors revealed by politicians that shaped legislation on tobacco control in New South Wales, 1955-95. Parliamentary debates and other records were collected. Open-ended interviews were conducted with 17 Members of Parliament (MPs) who were significantly involved, and then analysed for structural elements. Tobacco industry lobbying had a significant but limited influence on policy making, being exerted largely through social interactions with executives and based on concerns about the economic impact on third parties. MPs saw health advocates' chief functions as (1) generating community concern about the issue and support for control measures, and (2) bringing any new information to political attention, providing pro-control arguments and data through the media. Factors that delayed tobacco control policies included: the conservative stance of Premiers and major parties, commitments to unanimous federal action, and rivalry between parties. Factors that facilitated control policies included: reforms that gave the Legislative Council increased power, the use of parliamentary committees, and backbencher and grass roots support. Tobacco control policy and legislation has been the product of political structures that gave power to those MPs in the least powerful positions--minor parties, Members of the Legislative Council (MLCs), backbenchers, women and party rank and file--rather than to major parties and their executives. Advocates should make the most of their access points to the political process, providing information, arguments and support and demonstrating public opinion in favour of further control.

  7. Tai Chi training reduced coupling between respiration and postural control.

    Science.gov (United States)

    Holmes, Matthew L; Manor, Brad; Hsieh, Wan-hsin; Hu, Kun; Lipsitz, Lewis A; Li, Li

    2016-01-01

    In order to maintain stable upright stance, the postural control system must account for the continuous perturbations to the body's center-of-mass including those caused by spontaneous respiration. Both aging and disease increase "posturo-respiratory synchronization;" which reflects the degree to which respiration affects postural sway fluctuations over time. Tai Chi training emphasizes the coordination of respiration and bodily movements and may therefore optimize the functional interaction between these two systems. The purpose of the project was to examine the effect of Tai Chi training on the interaction between respiration and postural control in older adults. We hypothesized that Tai Chi training would improve the ability of the postural control system to compensate for respiratory perturbations and thus, reduce posturo-respiratory synchronization. Participants were recruited from supportive housing facilities and randomized to a 12-week Tai Chi intervention (n=28; 86 ± 5 yrs) or educational-control program (n=34, 85 ± 6 yrs). Standing postural sway and respiration were simultaneously recorded with a force plate and respiratory belt under eyes-open and eyes-closed conditions. Posturo-respiratory synchronization was determined by quantifying the variation of the phase relationship between the dominant oscillatory mode of respiration and corresponding oscillations within postural sway. Groups were similar in age, gender distribution, height, body mass, and intervention compliance. Neither intervention altered average sway speed, sway magnitude or respiratory rate. As compared to the education-control group, however, Tai Chi training reduced posturo-respiratory synchronization when standing with eyes open or closed (ppostural control or respiration, yet reduced the coupling between respiration and postural control. The beneficial effects of Tai Chi training may therefore stem in part from optimization of this multi-system interaction. Copyright © 2015

  8. Towards a general neural controller for quadrupedal locomotion.

    Science.gov (United States)

    Maufroy, Christophe; Kimura, Hiroshi; Takase, Kunikatsu

    2008-05-01

    Our study aims at the design and implementation of a general controller for quadruped locomotion, allowing the robot to use the whole range of quadrupedal gaits (i.e. from low speed walking to fast running). A general legged locomotion controller must integrate both posture control and rhythmic motion control and have the ability to shift continuously from one control method to the other according to locomotion speed. We are developing such a general quadrupedal locomotion controller by using a neural model involving a CPG (Central Pattern Generator) utilizing ground reaction force sensory feedback. We used a biologically faithful musculoskeletal model with a spine and hind legs, and computationally simulated stable stepping motion at various speeds using the neuro-mechanical system combining the neural controller and the musculoskeletal model. We compared the changes of the most important locomotion characteristics (stepping period, duty ratio and support length) according to speed in our simulations with the data on real cat walking. We found similar tendencies for all of them. In particular, the swing period was approximately constant while the stance period decreased with speed, resulting in a decreasing stepping period and duty ratio. Moreover, the support length increased with speed due to the posterior extreme position that shifted progressively caudally, while the anterior extreme position was approximately constant. This indicates that we succeeded in reproducing to some extent the motion of a cat from the kinematical point of view, even though we used a 2D bipedal model. We expect that such computational models will become essential tools for legged locomotion neuroscience in the future.

  9. Impact of locomotion training with a neurologic controlled hybrid assistive limb (HAL) exoskeleton on neuropathic pain and health related quality of life (HRQoL) in chronic SCI: a case study (.).

    Science.gov (United States)

    Cruciger, Oliver; Schildhauer, Thomas A; Meindl, Renate C; Tegenthoff, Martin; Schwenkreis, Peter; Citak, Mustafa; Aach, Mirko

    2016-08-01

    Chronic neuropathic pain (CNP) is a common condition associated with spinal cord injury (SCI) and has been reported to be severe, disabling and often treatment-resistant and therefore remains a clinical challenge for the attending physicians. The treatment usually includes pharmacological and/or nonpharmacological approaches. Body weight supported treadmill training (BWSTT) and locomotion training with driven gait orthosis (DGO) have evolved over the last decades and are now considered to be an established part in the rehabilitation of SCI patients. Conventional locomotion training goes along with improvements of the patients' walking abilities in particular speed and gait pattern. The neurologic controlled hybrid assistive limb (HAL®, Cyberdyne Inc., Ibraki, Japan) exoskeleton, however, is a new tailored approach to support motor functions synchronously to the patient's voluntary drive. This report presents two cases of severe chronic and therapy resistant neuropathic pain due to chronic SCI and demonstrates the beneficial effects of neurologic controlled exoskeletal intervention on pain severity and health-related quality of life (HRQoL). Both of these patients were engaged in a 12 weeks period of daily HAL®-supported locomotion training. In addition to improvements in motor functions and walking abilities, both show significant reduction in pain severity and improvements in all HRQoL domains. Although various causal factors likely contribute to abatement of CNP, the reported results occurred due to a new approach in the rehabilitation of chronic spinal cord injury patients. These findings suggest not only the feasibility of this new approach but in conclusion, demonstrate the effectiveness of neurologic controlled locomotion training in the long-term management of refractory neuropathic pain. Implications for Rehabilitation CNP remains a challenge in the rehabilitation of chronic SCI patients. Locomotion training with the HAL exoskeleton seems to improve CNP

  10. Practice of contemporary dance promotes stochastic postural control in aging

    Directory of Open Access Journals (Sweden)

    Lena eFerrufino

    2011-12-01

    Full Text Available As society ages and the frequency of falls increases, counteracting gait and posture decline is a challenging issue for countries of the developed world. Previous studies have shown that exercise and hazard management help to improve balance and/or decrease the risks for falling in normal aging. Motor activity based on motor-skill learning, particularly dance, can also benefit balance and decreases falls with age. Recent studies have suggested that older dancers had better balance, posture, or gait than non-dancers. Additionally, clinical or laboratory measures have shown improvements in some aspects of balance after dance interventions in elderly trainees. This study examined the impact of contemporary dance (CD and of fall prevention (FP programs on postural control of older adults. Posturography of quiet upright stance was performed in forty-one participants aged 59-86 years before and after 4.4-month training in either CD or FP once a week. Though classical statistic scores failed to show any effect, dynamic analyses of the center-of-pressure displacements revealed significant changes after training. Specifically, practice of CD enhanced the critical time interval in diffusion analysis, and reduced recurrence and mathematical stability in recurrence quantification analysis, whereas practice of FP induced or tended to induce the reverse patterns. We suggest that CD training based on motor improvisation favored stochastic posture inducing plasticity in motor control, while FP training based on more stereotyped behaviors did not.

  11. Dream controller

    Science.gov (United States)

    Cheng, George Shu-Xing; Mulkey, Steven L; Wang, Qiang; Chow, Andrew J

    2013-11-26

    A method and apparatus for intelligently controlling continuous process variables. A Dream Controller comprises an Intelligent Engine mechanism and a number of Model-Free Adaptive (MFA) controllers, each of which is suitable to control a process with specific behaviors. The Intelligent Engine can automatically select the appropriate MFA controller and its parameters so that the Dream Controller can be easily used by people with limited control experience and those who do not have the time to commission, tune, and maintain automatic controllers.

  12. Controllable dose; Dosis controlable

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez R, J T; Anaya M, R A [ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2004-07-01

    With the purpose of eliminating the controversy about the lineal hypothesis without threshold which found the systems of dose limitation of the recommendations of ICRP 26 and 60, at the end of last decade R. Clarke president of the ICRP proposed the concept of Controllable Dose: as the dose or dose sum that an individual receives from a particular source which can be reasonably controllable by means of any means; said concept proposes a change in the philosophy of the radiological protection of its concern by social approaches to an individual focus. In this work a panorama of the foundations is presented, convenient and inconveniences that this proposal has loosened in the international community of the radiological protection, with the purpose of to familiarize to our Mexican community in radiological protection with these new concepts. (Author)

  13. Immediate effect of nonspecific mandibular mobilization on postural control in subjects with temporomandibular disorder: a single-blind, randomized, controlled clinical trial.

    Science.gov (United States)

    Amaral, Ana P; Politti, Fabiano; Hage, Yasmin E; Arruda, Eric E C; Amorin, Cesar F; Biasotto-Gonzalez, Daniela A

    2013-01-01

    Temporomandibular disorder (TMD) is considered multifactorial and is defined as a group of pain conditions characterized by functional stomatognathic system alterations, which may be affected by or related disrupted postural control. Assess the immediate effect of nonspecific mandibular mobilization (NMM) on the postural control of subjects diagnosed or not with TMD. A simple-blind, randomized, controlled clinical trial was performed involving 50 subjects of both genders assigned to two groups: the TMD group and the control group. TMD was diagnosed according to the Research Diagnostic Criteria for Temporomandibular Disorders (RDC/TMD). A stabilometric assessment was performed by testing subjects in a quiet stance on a dual force platform under two visual conditions (eyes open and eyes closed). The Center of Pressure (CoP)-related variables analyzed were displacement, amplitude, speed of anterior-posterior (AP) and medial-lateral (ML) displacements and CoP sway area. The mean values of each variable were compared, considering the accepted significance value of ppostural control in patients with TMD.

  14. Relationships between trunk performance, gait and postural control in persons with multiple sclerosis.

    Science.gov (United States)

    Freund, Jane E; Stetts, Deborah M; Vallabhajosula, Srikant

    2016-06-30

    Multiple sclerosis (MS) is a chronic progressive disease of the central nervous system. Compared to healthy individuals, persons with multiple sclerosis (PwMS) have increased postural sway in quiet stance, decreased gait speed and increased fall incidence. Trunk performance has been implicated in postural control, gait dysfunction, and fall prevention in older adults. However, the relationship of trunk performance to postural control and gait has not been adequately studied in PwMS. To compare trunk muscle structure and performance in PwMS to healthy age and gendered-matched controls (HC); to determine the effects of isometric trunk endurance testing on postural control in both populations; and to determine the relationship of trunk performance with postural control, gait and step activity in PwMS. Fifteen PwMS and HC completed ultrasound imaging of trunk muscles, 10 m walk test, isometric trunk endurance tests, and postural sway test. Participants wore a step activity monitor for 7 days. PwMS had worse isometric trunk endurance compared to HC. PwMS trunk flexion endurance negatively correlated to several postural control measures and positively correlated to gait speed and step activity. Clinicians should consider evaluation and interventions directed at impaired trunk endurance in PwMS.

  15. Virtual Constraint Control of a Powered Prosthetic Leg: From Simulation to Experiments with Transfemoral Amputees.

    Science.gov (United States)

    Gregg, Robert D; Lenzi, Tommaso; Hargrove, Levi J; Sensinger, Jonathon W

    2014-12-01

    Recent powered (or robotic) prosthetic legs independently control different joints and time periods of the gait cycle, resulting in control parameters and switching rules that can be difficult to tune by clinicians. This challenge might be addressed by a unifying control model used by recent bipedal robots, in which virtual constraints define joint patterns as functions of a monotonic variable that continuously represents the gait cycle phase. In the first application of virtual constraints to amputee locomotion, this paper derives exact and approximate control laws for a partial feedback linearization to enforce virtual constraints on a prosthetic leg. We then encode a human-inspired invariance property called effective shape into virtual constraints for the stance period. After simulating the robustness of the partial feedback linearization to clinically meaningful conditions, we experimentally implement this control strategy on a powered transfemoral leg. We report the results of three amputee subjects walking overground and at variable cadences on a treadmill, demonstrating the clinical viability of this novel control approach.

  16. Sagittal plane gait characteristics in hip osteoarthritis patients with mild to moderate symptoms compared to healthy controls: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Eitzen Ingrid

    2012-12-01

    Full Text Available Abstract Background Existent biomechanical studies on hip osteoarthritic gait have primarily focused on the end stage of disease. Consequently, there is no clear consensus on which specific gait parameters are of most relevance for hip osteoarthritis patients with mild to moderate symptoms. The purpose of this study was to explore sagittal plane gait characteristics during the stance phase of gait in hip osteoarthritis patients not eligible for hip replacement surgery. First, compared to healthy controls, and second, when categorized into two subgroups of radiographic severity defined from a minimal joint space of ≤/>2 mm. Methods Sagittal plane kinematics and kinetics of the hip, knee and ankle joint were calculated for total joint excursion throughout the stance phase, as well as from the specific events initial contact, midstance, peak hip extension and toe-off following 3D gait analysis. In addition, the Western Ontario and McMaster Universities Osteoarthritis Index, passive hip range of motion, and isokinetic muscle strength of hip and knee flexion and extension were included as secondary outcomes. Data were checked for normality and differences evaluated with the independent Student’s t-test, Welch’s t-test and the independent Mann–Whitney U-test. A binary logistic regression model was used in order to control for velocity in key variables. Results Fourty-eight hip osteoarthritis patients and 22 controls were included in the final material. The patients walked significantly slower than the controls (p=0.002, revealed significantly reduced joint excursions of the hip (pp=0.011, and a reduced hip flexion moment at midstance and peak hip extension (p2 mm suggested that the observed deviations were more pronounced in patients with greater radiographic severity. The biomechanical differences were, however, not reflected in self-reported symptoms or function. Conclusions Reduced gait velocity, reduced sagittal plane joint excursion, and

  17. Glucose control and cardiovascular outcomes: Reorienting approach

    Directory of Open Access Journals (Sweden)

    Romesh eKhardori

    2012-08-01

    Full Text Available Cardiovascular disease accounts for nearly 70 % of morbidity and mortality in patients with diabetes mellitus. Strides made in diabetes care have indeed helped prevent or reduce the burden of microvascular complications in both type-1 and type-2 diabetes. However, the same can’t be said about macrovascular disease in diabetes. Several prospective trials so far have failed to provide conclusive evidence of glycemic control superiority in reducing macrovascular complications or death rate in people with advanced disease or those with long duration of diabetes. There are trends that suggest that benefits are restricted to those with lesser burden and shorter duration of disease. Furthermore, it is also suggested that benefits might accrue but it would take longer time to manifest. Clinicians are fraught with challenge to decide how to triage patients for intensified care versus less intense care. This review focusses on evidence and attempts to provide a balanced view of literature that has radically affected how physicians treat patients with m