Fluid simulations of edge turbulence for stellarators and axisymmetric configurations
Kleiber, R.; Scott, B.
2005-10-01
Nonlinear electromagnetic fluid simulations in a flux tube are used to compute the edge turbulence for a family of axisymmetric configurations with different rotational transform profiles (ι) and the stellarator Wendelstein 7-X (W7-X) [Grieger et al., Plasma Physics and Controlled Nuclear Fusion Research, 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 525]. The influence of the ι profile on anomalous transport and the strength of zonal flows in these axisymmetric equilibria are studied and the results are connected to simulations for the W7-X equilibrium. A strong decrease in transport is found by increasing ι or switching the sign of the shear from tokamak-(ι'0). The effect of pressure-induced changes in the W7-X equilibrium geometry on the transport at fixed parameters is studied and a decrease in the transport following changes in the zonal flows is found.
Turbulent contributions to Ohm's law in axisymmetric magnetized plasmas
Chavdarovski, I.; Gatto, R.
2017-07-01
The effect of magnetic turbulence in shaping the current density in axisymmetric magnetized plasmas is analyzed using a turbulent extension of Ohm's law derived from the self-consistent action-angle transport theory. Besides the well-known hyper-resistive (helicity-conserving) contribution, the generalized Ohm's law contains an anomalous resistivity term and a turbulent bootstrap-like term proportional to the current density derivative. The numerical solution of the equation for equilibrium and turbulence profiles characteristic of conventional and advanced scenarios shows that, through the "turbulent bootstrap" effect and anomalous resistivity, power and parallel current can be generated which are a sizable portion (about 20%-25%) of the corresponding effects associated with the neoclassical bootstrap effect. The degree of alignment of the turbulence peak and the pressure gradient plays an important role in defining the steady-state regime. In a fully bootstrapped tokamak, the hyper-resistivity is essential in overcoming the intrinsic limitation of the hollow current profile.
Low-frequency behavior of the turbulent axisymmetric near-wake
Gentile, V.; Schrijer, F.F.J.; van Oudheusden, B.W.; Scarano, F.
2016-01-01
The turbulent wake past an axisymmetric body is investigated with time-resolved stereoscopic particle image velocimetry (PIV) at a Reynolds number ReD = 6.7 × 104 based on the object diameter. The azimuthal organization of the near-wake is studied at different locations downstream of the trailing
Turbulent properties of axisymmetric shock-wave/boundary-layer interaction flows
Brown, J. L.; Kussoy, M. I.; Coakley, T. J.
1986-01-01
A combined experimental and computational investigation of an axisymmetric turbulent shock-wave boundary-layer interaction flow is presented. Experimental measurements include both mean and fluctuating data obtained by LDV techniques and identify large scale unsteady motions associated with shock induced separation. Computations using the compressible Navier-Stokes equations, and a two-equation turbulence model are in relatively good agreement with experimental measurements. It is found that the large scale unsteady motions do not appear to have a critical impact on the ability to compute the mean properties of the flows investigated in this paper.
Modified k-l model and its ability to simulate supersonic axisymmetric turbulent flows
International Nuclear Information System (INIS)
Ahmadikia, H.; Shirani, E.
2001-05-01
The k-l turbulence model is a promising two-equation model. In this paper, the k and l model equations were derived from k-kl incompressible and one-equation turbulent models. Then the model was modified for compressible and transitional flows, and was applied to simulate supersonic axisymmetric flows over Hollow cylinder flare an hyperboloid flare bodies. The results were compared with the results obtained for the same flows experimentally as well as k-ε, k-ω and Baldwin-Lomax models. It was shown that the k-l model produces good results compared with experimental data and numerical data obtained when other turbulence models were used. It gives better results than k-ω and k-ε models in some cases. (author)
International Nuclear Information System (INIS)
Cintra Filho, J. de S.
1981-01-01
The fluctuating temperature field structure is studied for the case of turbulent circular pipe flow. Experimentally determined integral length scales are used in modeling this structure in terms of axisymmetric forms. It is found that the appropriate angle of axisymmetry is larger than the one for modeling the large scale velocity structure. The axisymmetric model is then used to examine the validity and the prediction capability of the Tyldesley and Silver's non-spherical eddy diffusivity theory. (Author) [pt
Evaluation of Industry Standard Turbulence Models on an Axisymmetric Supersonic Compression Corner
DeBonis, James R.
2015-01-01
Reynolds-averaged Navier-Stokes computations of a shock-wave/boundary-layer interaction (SWBLI) created by a Mach 2.85 flow over an axisymmetric 30-degree compression corner were carried out. The objectives were to evaluate four turbulence models commonly used in industry, for SWBLIs, and to evaluate the suitability of this test case for use in further turbulence model benchmarking. The Spalart-Allmaras model, Menter's Baseline and Shear Stress Transport models, and a low-Reynolds number k- model were evaluated. Results indicate that the models do not accurately predict the separation location; with the SST model predicting the separation onset too early and the other models predicting the onset too late. Overall the Spalart-Allmaras model did the best job in matching the experimental data. However there is significant room for improvement, most notably in the prediction of the turbulent shear stress. Density data showed that the simulations did not accurately predict the thermal boundary layer upstream of the SWBLI. The effect of turbulent Prandtl number and wall temperature were studied in an attempt to improve this prediction and understand their effects on the interaction. The data showed that both parameters can significantly affect the separation size and location, but did not improve the agreement with the experiment. This case proved challenging to compute and should provide a good test for future turbulence modeling work.
Bell, James H.; Heineck, James T.; Zilliac, Gregory; Mehta, Rabindra D.; Long, Kurtis R.
2016-01-01
An important goal for modern fluid mechanics experiments is to provide datasets which present a challenge for Computational Fluid Dynamics simulations to reproduce. Such "CFD validation experiments" should be well-characterized and well-documented, and should investigate flows which are difficult for CFD to calculate. It is also often convenient for the experiment to be challenging for CFD in some aspects while simple in others. This report is part of the continuing documentation of a series of experiments conducted to characterize the flow around an axisymmetric, modified-cosine-shaped, wall-mounted hill named "FAITH" (Fundamental Aero Investigates The Hill). Computation of this flow is easy in some ways - subsonic flow over a simple shape - while being complex in others - separated flow and boundary layer interactions. The primary set of experiments were performed on a 15.2 cm high, 45.7 cm base diameter machined aluminum model that was tested at mean speeds of 50 m/s (Reynolds Number based on height = 500,000). The ratio of model height to boundary later height was approximately 3. The flow was characterized using surface oil flow visualization, Cobra probe to determine point-wise steady and unsteady 3D velocities, Particle Image Velocimetry (PIV) to determine 3D velocities and turbulence statistics along specified planes, Pressure Sensitive Paint (PSP) to determine mean surface pressures, and Fringe Imaging Skin Friction (FISF) to determine surface skin friction magnitude and direction. A set of pathfinder experiments were also performed in a water channel on a smaller scale (5.1 cm high, 15.2 cm base diameter) sintered nylon model. The water channel test was conducted at a mean test section speed of 3 cm/s (Reynolds Number of 1500), but at the same ratio of model height to boundary layer thickness. Dye injection from both the model and an upstream rake was used to visualize the flow. This report summarizes the experimental set-up, techniques used, and data
Stereoscopic PIV and POD applied to the far turbulent axisymmetric jet
DEFF Research Database (Denmark)
Wähnström, Maja; George, William K.; Meyer, Knud Erik
2006-01-01
Recent experiments on asymptotic high Reynolds number turbulent jet have shown a difference between results from the slice POD applied to the full velocity vector and to the streamwise component of velocity only. In particular, the evolution of the peak in the energy toward azimuthal mode-2...
Marvin, Joseph G.; Brown, James L.; Gnoffo, Peter A.
2013-01-01
A database compilation of hypersonic shock-wave/turbulent boundary layer experiments is provided. The experiments selected for the database are either 2D or axisymmetric, and include both compression corner and impinging type SWTBL interactions. The strength of the interactions range from attached to incipient separation to fully separated flows. The experiments were chosen based on criterion to ensure quality of the datasets, to be relevant to NASA's missions and to be useful for validation and uncertainty assessment of CFD Navier-Stokes predictive methods, both now and in the future. An emphasis on datasets selected was on surface pressures and surface heating throughout the interaction, but include some wall shear stress distributions and flowfield profiles. Included, for selected cases, are example CFD grids and setup information, along with surface pressure and wall heating results from simulations using current NASA real-gas Navier-Stokes codes by which future CFD investigators can compare and evaluate physics modeling improvements and validation and uncertainty assessments of future CFD code developments. The experimental database is presented tabulated in the Appendices describing each experiment. The database is also provided in computer-readable ASCII files located on a companion DVD.
Energy Technology Data Exchange (ETDEWEB)
Ahlstedt, H. [Tampere Univ. of Technology (Finland). Energy and Process Engineering
1997-12-31
In this work three different turbulence models, the k - {epsilon}, RNG k - {epsilon} and Reynolds stress model, have been compared in the case of confined swirling flow. The flow geometries are the isothermal swirling flows measured by International Flame Research Foundation (IFRF). The inlet boundary profiles have been taken from the measurements. At the outlet the effect of furnace end contraction has been studied. The k - {epsilon} model falls to predict the correct flow field. The RNG k - {epsilon} model can provide improvements, although it has problems near the symmetry axis. The Reynolds stress model produces the best agreement with measured data. (author) 13 refs.
Hamilton, H. Harris, II; Millman, Daniel R.; Greendyke, Robert B.
1992-01-01
A computer code was developed that uses an implicit finite-difference technique to solve nonsimilar, axisymmetric boundary layer equations for both laminar and turbulent flow. The code can treat ideal gases, air in chemical equilibrium, and carbon tetrafluoride (CF4), which is a useful gas for hypersonic blunt-body simulations. This is the only known boundary layer code that can treat CF4. Comparisons with experimental data have demonstrated that accurate solutions are obtained. The method should prove useful as an analysis tool for comparing calculations with wind tunnel experiments and for making calculations about flight vehicles where equilibrium air chemistry assumptions are valid.
Bailly, Christophe
2015-01-01
This book covers the major problems of turbulence and turbulent processes, including physical phenomena, their modeling and their simulation. After a general introduction in Chapter 1 illustrating many aspects dealing with turbulent flows, averaged equations and kinetic energy budgets are provided in Chapter 2. The concept of turbulent viscosity as a closure of the Reynolds stress is also introduced. Wall-bounded flows are presented in Chapter 3, and aspects specific to boundary layers and channel or pipe flows are also pointed out. Free shear flows, namely free jets and wakes, are considered in Chapter 4. Chapter 5 deals with vortex dynamics. Homogeneous turbulence, isotropy, and dynamics of isotropic turbulence are presented in Chapters 6 and 7. Turbulence is then described both in the physical space and in the wave number space. Time dependent numerical simulations are presented in Chapter 8, where an introduction to large eddy simulation is offered. The last three chapters of the book summarize remarka...
Dynamic Stall in Pitching Airfoils: Aerodynamic Damping and Compressibility Effects
Corke, Thomas C.; Thomas, Flint O.
2015-01-01
Dynamic stall is an incredibly rich fluid dynamics problem that manifests itself on an airfoil during rapid, transient motion in which the angle of incidence surpasses the static stall limit. It is an important element of many manmade and natural flyers, including helicopters and supermaneuverable aircraft, and low-Reynolds number flapping-wing birds and insects. The fluid dynamic attributes that accompany dynamic stall include an eruption of vorticity that organizes into a well-defined dynamic stall vortex and massive excursions in aerodynamic loads that can couple with the airfoil structural dynamics. The dynamic stall process is highly sensitive to surface roughness that can influence turbulent transition and to local compressibility effects that occur at free-stream Mach numbers that are otherwise incompressible. Under some conditions, dynamic stall can result in negative aerodynamic damping that leads to limit-cycle growth of structural vibrations and rapid mechanical failure. The mechanisms leading to negative damping have been a principal interest of recent experiments and analysis. Computational fluid dynamic simulations and low-order models have not been good predictors so far. Large-eddy simulation could be a viable approach although it remains computationally intensive. The topic is technologically important owing to the desire to develop next-generation rotorcraft that employ adaptive rotor dynamic stall control.
Orchestral Stalls, Honore Daumier
Lucero-Criswell, Amber
2004-01-01
Honore Daumier is probably best known as a politically motivated artist. Born in Marseilles in 1808, the French artist lived through one of the most turbulent eras of his country's history. With his artistic prowess and biting wit, he recorded the 1848 revolution, the rise and fall of the Second Empire, the Crimean and Franco-Prussian Wars, and…
A Comparative Study of Three Methodologies for Modeling Dynamic Stall
Sankar, L.; Rhee, M.; Tung, C.; ZibiBailly, J.; LeBalleur, J. C.; Blaise, D.; Rouzaud, O.
2002-01-01
During the past two decades, there has been an increased reliance on the use of computational fluid dynamics methods for modeling rotors in high speed forward flight. Computational methods are being developed for modeling the shock induced loads on the advancing side, first-principles based modeling of the trailing wake evolution, and for retreating blade stall. The retreating blade dynamic stall problem has received particular attention, because the large variations in lift and pitching moments encountered in dynamic stall can lead to blade vibrations and pitch link fatigue. Restricting to aerodynamics, the numerical prediction of dynamic stall is still a complex and challenging CFD problem, that, even in two dimensions at low speed, gathers the major difficulties of aerodynamics, such as the grid resolution requirements for the viscous phenomena at leading-edge bubbles or in mixing-layers, the bias of the numerical viscosity, and the major difficulties of the physical modeling, such as the turbulence models, the transition models, whose both determinant influences, already present in static maximal-lift or stall computations, are emphasized by the dynamic aspect of the phenomena.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Stall speed. 25.103 Section 25.103... STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.103 Stall speed. (a) The reference stall speed, VSR, is a calibrated airspeed defined by the applicant. VSR may not be less than a 1-g stall...
Simulasi Numerik Dynamic Stall Pada Airfoil Yang Berosilasi
Directory of Open Access Journals (Sweden)
Galih S.T.A. Bangga
2012-09-01
Full Text Available Kebutuhan analisa pada sudu helikopter, kompresor, kincir angin dan struktur streamline lainya yang beroperasi pada angle of attack yang tinggi dan melibatkan instationary effects yang disebut dynamic stall menjadi semakin penting. Fenomena ini ditandai dengan naiknya dynamic lift melewati static lift maksimum pada critical static stall angle, vortex yang terbentuk pada leading edge mengakibatkan naiknya suction contribution yang kemudian terkonveksi sepanjang permukaan hingga mencapai trailling edge diikuti terbentuknya trailling edge vortex yang menunjukkan terjadinya lift stall. Fenomena ini sangat berbahaya terhadap struktur airfoil itu sendiri. Secara umum, beban fatique yang ditimbulkan oleh adanya efek histerisis karena fluktuasi gaya lift akibat induksi vibrasi lebih besar dibandingkan kondisi statis. Simulasi numerik dilakukan secara 2D dengan menggunakan profil Boeing-Vertol V23010-1.58 pada α0 = 14.92°. Standard-kω dan SST-kω digunakan sebagai URANS turbulence modelling. Model osilasi dari airfoil disusun dalam suatu user defined function (UDF. Gerakan meshing beserta airfoil diakomodasi dengan menggunakan dynamic mesh approach. Simulasi numerik menunjukkan bahwa, model SST-kω menunjukkan performa yang lebih baik dibandingkan dengan Standard-kω. Fenomena travelling vortex yang terjadi mampu ditangkap dengan baik, meski pada angle of attack yang tinggi URANS turbulence model gagal memprediksikan fenomena yang terjadi karena dominasi efek 3D.
14 CFR 25.203 - Stall characteristics.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Stall characteristics. 25.203 Section 25.203 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Stalls § 25.203 Stall characteristics. (a) It must...
Axisymmetric control in tokamaks
International Nuclear Information System (INIS)
Humphreys, D.A.
1991-02-01
Vertically elongated tokamak plasmas are intrinsically susceptible to vertical axisymmetric instabilities as a result of the quadrupole field which must be applied to produce the elongation. The present work analyzes the axisymmetric control necessary to stabilize elongated equilibria, with special application to the Alcator C-MOD tokamak. A rigid current-conserving filamentary plasma model is applied to Alcator C-MOD stability analysis, and limitations of the model are addressed. A more physically accurate nonrigid plasma model is developed using a perturbed equilibrium approach to estimate linearized plasma response to conductor current variations. This model includes novel flux conservation and vacuum vessel stabilization effects. It is found that the nonrigid model predicts significantly higher growth rates than predicted by the rigid model applied to the same equilibria. The nonrigid model is then applied to active control system design. Multivariable pole placement techniques are used to determine performance optimized control laws. Formalisms are developed for implementing and improving nominal feedback laws using the C-MOD digital-analog hybrid control system architecture. A proportional-derivative output observer which does not require solution of the nonlinear Ricatti equation is developed to help accomplish this implementation. The nonrigid flux conserving perturbed equilibrium plasma model indicates that equilibria with separatrix elongation of at least κ sep = 1.85 can be stabilized robustly with the present control architecture and conductor/sensor configuration
Modeling axisymmetric flow and transport
Langevin, C.D.
2008-01-01
Unmodified versions of common computer programs such as MODFLOW, MT3DMS, and SEAWAT that use Cartesian geometry can accurately simulate axially symmetric ground water flow and solute transport. Axisymmetric flow and transport are simulated by adjusting several input parameters to account for the increase in flow area with radial distance from the injection or extraction well. Logarithmic weighting of interblock transmissivity, a standard option in MODFLOW, can be used for axisymmetric models to represent the linear change in hydraulic conductance within a single finite-difference cell. Results from three test problems (ground water extraction, an aquifer push-pull test, and upconing of saline water into an extraction well) show good agreement with analytical solutions or with results from other numerical models designed specifically to simulate the axisymmetric geometry. Axisymmetric models are not commonly used but can offer an efficient alternative to full three-dimensional models, provided the assumption of axial symmetry can be justified. For the upconing problem, the axisymmetric model was more than 1000 times faster than an equivalent three-dimensional model. Computational gains with the axisymmetric models may be useful for quickly determining appropriate levels of grid resolution for three-dimensional models and for estimating aquifer parameters from field tests.
Clutch-Starting Stalled Research Students
Ahern, Kathy; Manathunga, Catherine
2004-01-01
Many research students go through periods where their research seems to stall, their motivation drops, and they seem unable to make any progress. As supervisors, we attempt to remain alert to signs that our student's progress has stalled. Drawing on cognitive strategies, this article explores a problem-solving model supervisors can use to identify…
Basis for an Active Stall Avoidance System
Directory of Open Access Journals (Sweden)
Richard Schulze
2000-01-01
Full Text Available A single-stage subsonic compressor was examined with respect to compressor instabilities. During the inception of rotating stall, the transients of the pressure rise and mass flow were measured as well as their hysteresis. The development of the stall cell and the characteristics of the unstable operating range were determined.
The computation of the post-stall behavior of a circulation controlled airfoil
Linton, Samuel W.
1993-01-01
The physics of the circulation controlled airfoil is complex and poorly understood, particularly with regards to jet stall, which is the eventual breakdown of lift augmentation by the jet at some sufficiently high blowing rate. The present paper describes the numerical simulation of stalled and unstalled flows over a two-dimensional circulation controlled airfoil using a fully implicit Navier-Stokes code, and the comparison with experimental results. Mach numbers of 0.3 and 0.5 and jet total to freestream pressure ratios of 1.4 and 1.8 are investigated. The Baldwin-Lomax and k-epsilon turbulence models are used, each modified to include the effect of strong streamline curvature. The numerical solutions of the post-stall circulation controlled airfoil show a highly regular unsteady periodic flowfield. This is the result of an alternation between adverse pressure gradient and shock induced separation of the boundary layer on the airfoil trailing edge.
Energy Technology Data Exchange (ETDEWEB)
Christensen, T. [ELSAMPROJEKT A/S, Fredericia, (Denmark); Jensen, L.E. [LM Glasfiber A/S, Lunderskov (Denmark)
2000-08-01
This project has compiled data to allow the Danish manufacturers of wind turbines and blades to improve their knowledge of double stall. On the basis of the double stall difficulties different types of turbines using different makes of blades have encountered in the Tarifa area in Southern Spain, meteorological parameters and production data from two turbines have been measured for a local site. Part of the acquired data have been analysed to reach an understanding of why double stall occurs. The analysis strongly suggests that a change in power level due to double stall can be a result of several external factors: (1) Rain cleaning the blades. (2) A more or less random change in the wind speed components uv, or w, which in some cases can affect a - probably - fairly thick boundary layer. (3) A change in the high frequency turbulence where the vortex impact is too insignificant to affect an - almost - randomly - thick boundary layer. (au)
Axisymmetric finite deformation membrane problems
Energy Technology Data Exchange (ETDEWEB)
Feng, W.W.
1980-12-12
Many biomechanic problems involve the analysis of finite deformation axisymmetric membranes. This paper presents the general formulation for solving a class of axisymmetric membrane problems. The material nonlinearity, as well as the geometric nonlinearity, is considered. Two methods are presented to solve these problems. The first method is solving a set of differential equilibrium equations. The governing equations are reduced to three first-order ordinary-differential equations with explicit derivatives. The second method is the Ritz method where a general potential energy functional valid for all axisymmetric deformed positions is presented. The geometric admissible functions that govern the deformed configuration are written in terms of a series with unknown coefficients. These unknown coefficients are determined by the minimum potential energy principle that of all geometric admissible deformed configurations, the equilibrium configuration minimizes the potential energy. Some examples are presented. A comparison between these two methods is mentioned.
Construction of hydrogenation stalls for explosions
Energy Technology Data Exchange (ETDEWEB)
Raichle, L.
1943-05-03
This report contained explanations for different questions that had been asked by the Association of Chemical Manufacturers. The first item discussed was the pressure occurring in hydrogenation stalls in hydrogen explosions. The pressures actually used were much smaller than the maximum design pressure due to burning gases being allowed to escape from the top and front of the stalls since these areas were open and it could not be assumed that the whole stall space was filled with a 32% hydrogen concentration at the beginning of an explosion. The second item discussed was specifications and rules for the building of hydrogenation stalls. These included the calculations for simple wind pressure according to the Building Code with the usual safety factors and the calculations for an inner pressure of 300 kg/m/sup 2/ with the usual safety factors. An explanation of a stall explosion in Poelitz and reinforced stall construction in Poelitz were two other items that were discussed. Appendix I of the report involved maximum pressures and temperature in hydrogen explosions. Diagram I was involved with this. Appendix II discussed the behavior of a hydrogen flame at high emerging velocities and Appendix III discussed stall construction at Poelitz.
Advanced Turbulence Modeling for Unsteady and Stalled Flows Project
National Aeronautics and Space Administration — The NASA code OVERFLOW is used extensively by academia, government institutions, and industry for a wide range of applications. Successful completion of Phase 1 and...
The Relevance of the Dynamic Stall Effect for Transient
DEFF Research Database (Denmark)
Jauch, Clemens; Sørensen, Poul; Bak-Jensen, Birgitte
2005-01-01
This article describes a methodology to quantify the influence of dynamic stall on transient fault operations of active-stall turbines. The model of the dynamic stall effect is introduced briefly. The behaviour of the dynamic stall model during a transient fault operation is described mathematica...
Biomimetic Wind Turbine Design with Lift Enhancing Periodic Stall
Stamhuis, Eize Jan
2017-01-01
A wind turbine includes a rotor; a blade; and a periodic stall system. The periodic stall system selectively moves at least part of the blade in an oscillating motion whereby an angle of incidence continuously varies to invoke periodic stall. The periodic stall system can move the entire blade or
Prediction of induced vibrations in stall
Energy Technology Data Exchange (ETDEWEB)
Thirstrup Petersen, J.; Thomsen, K.; Aagaard Madsen, H. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)
1999-03-01
The main results from recent research in stall induced vibrations are presented. The focus is on the edgewise blade vibrations, which during the last decade have turned out to be a potential threat against the stable operation of stall regulated wind turbines and a fact, which must be dealt with by the designer. The basic physical explanation for the phenomenon and examples of design precaution, which can be taken, are presented. (au)
Energy Technology Data Exchange (ETDEWEB)
Summa, Alexander; Hanke, Florian; Janka, Hans-Thomas; Melson, Tobias [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany); Marek, Andreas [Max Planck Computing and Data Facility (MPCDF), Gießenbachstr. 2, D-85748 Garching (Germany); Müller, Bernhard, E-mail: asumma@mpa-garching.mpg.de, E-mail: thj@mpa-garching.mpg.de [Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast, BT7 1NN (United Kingdom)
2016-07-01
We present self-consistent, axisymmetric core-collapse supernova simulations performed with the Prometheus-Vertex code for 18 pre-supernova models in the range of 11–28 M {sub ⊙}, including progenitors recently investigated by other groups. All models develop explosions, but depending on the progenitor structure, they can be divided into two classes. With a steep density decline at the Si/Si–O interface, the arrival of this interface at the shock front leads to a sudden drop of the mass-accretion rate, triggering a rapid approach to explosion. With a more gradually decreasing accretion rate, it takes longer for the neutrino heating to overcome the accretion ram pressure and explosions set in later. Early explosions are facilitated by high mass-accretion rates after bounce and correspondingly high neutrino luminosities combined with a pronounced drop of the accretion rate and ram pressure at the Si/Si–O interface. Because of rapidly shrinking neutron star radii and receding shock fronts after the passage through their maxima, our models exhibit short advection timescales, which favor the efficient growth of the standing accretion-shock instability. The latter plays a supportive role at least for the initiation of the re-expansion of the stalled shock before runaway. Taking into account the effects of turbulent pressure in the gain layer, we derive a generalized condition for the critical neutrino luminosity that captures the explosion behavior of all models very well. We validate the robustness of our findings by testing the influence of stochasticity, numerical resolution, and approximations in some aspects of the microphysics.
Seismic analysis of axisymmetric shells
International Nuclear Information System (INIS)
Jospin, R.J.; Toledo, E.M.; Feijoo, R.A.
1984-01-01
Axisymmetric shells subjected to multiple support excitation are studied. The shells are spatialy discretized by the finite element method and in order to obtain estimates for the maximum values of displacements and stresses the response spectrum tecnique is used. Finally, some numerical results are presented and discussed in the case of a shell of revolution with vertical symmetry axis, subjected to seismic ground motions in the horizontal, vertical and rocking directions. (Author) [pt
On the axisymmetric Lewis metric
International Nuclear Information System (INIS)
Gariel, J.; Marcilhacy, G.
2001-03-01
We obtain the general solution of the axisymmetric stationary vacuum spacetime of Lewis. After precising the fundamental hypothesis of Lewis, we demonstrate that the solution is related to an arbitrary harmonic function. Formally, these solutions are the same as for the corresponding cylindrically symmetric case, and can be classified in a similar way. Furthermore, the interpretation, in the cylindrically symmetric system, of the field equations as decribing the motion of a classical particle in a central force field is still valid. (author)
Plasma-based Compressor Stall Control
McGowan, Ryan; Corke, Thomas
2017-11-01
The use of dielectric barrier discharge (DBD) plasma actuator casing treatment to prevent or delay stall inception in an axial fan is examined. The actuators are powered by a pulsed-DC waveform which induces a larger peak velocity than a purely AC waveform such as a sine or sawtooth wave. With this system, a high-voltage DC source is supplied to both electrodes, remaining constant in time for the exposed electrode. Meanwhile, the covered electrode is periodically grounded for several microseconds and allowed to rise back to the source DC level. To test the actuators' ability to interact with and modify the formation of stall cells, a facility has been designed and constructed around nonconductive fan blades. The actuators are installed in the fan casing near the blade tips. The instrumentation allows for the measurement of rotating pressure disturbances (traveling stall cells) in this tip gap region as well as fan performance characteristics including pressure rise and flow rate. The casing plasma actuation is found to reduce the correlation of the rotating stall cells, thereby extending the stall margin of the fan. Various azimuthal arrangements of the plasma actuator casing treatment is explored, as well as input voltage levels to the actuator to determine optimum conditions. NASA SBIR Contract NNX14CC12C.
EFFECTS OF LARGE-SCALE NON-AXISYMMETRIC PERTURBATIONS IN THE MEAN-FIELD SOLAR DYNAMO
Energy Technology Data Exchange (ETDEWEB)
Pipin, V. V. [Institute of Solar-Terrestrial Physics, Russian Academy of Sciences (Russian Federation); Kosovichev, A. G. [W.W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)
2015-11-10
We explore the response of a nonlinear non-axisymmetric mean-field solar dynamo model to shallow non-axisymmetric perturbations. After a relaxation period, the amplitude of the non-axisymmetric field depends on the initial condition, helicity conservation, and the depth of perturbation. It is found that a perturbation that is anchored at 0.9 R{sub ⊙} has a profound effect on the dynamo process, producing a transient magnetic cycle of the axisymmetric magnetic field, if it is initiated at the growing phase of the cycle. The non-symmetric, with respect to the equator, perturbation results in a hemispheric asymmetry of the magnetic activity. The evolution of the axisymmetric and non-axisymmetric fields depends on the turbulent magnetic Reynolds number R{sub m}. In the range of R{sub m} = 10{sup 4}–10{sup 6} the evolution returns to the normal course in the next cycle, in which the non-axisymmetric field is generated due to a nonlinear α-effect and magnetic buoyancy. In the stationary state, the large-scale magnetic field demonstrates a phenomenon of “active longitudes” with cyclic 180° “flip-flop” changes of the large-scale magnetic field orientation. The flip-flop effect is known from observations of solar and stellar magnetic cycles. However, this effect disappears in the model, which includes the meridional circulation pattern determined by helioseismology. The rotation rate of the non-axisymmetric field components varies during the relaxation period and carries important information about the dynamo process.
Energy Technology Data Exchange (ETDEWEB)
Jauch, Clemens; Soerensen, Poul; Jensen, Birgitte Bak
2005-06-15
This article describes a methodology to quantify the influence of dynamic stall on transient fault operations of active-stall turbines. The model of the dynamic stall effect is introduced briefly. The behaviour of the dynamic stall model during a transient fault operation is described mathematically, and from this its effect quantified. Two quantities are chosen to describe the influence of the dynamic stall effect: one is active power and the other is time delay. Subsequently a transient fault scenario is simulated with and without the dynamic stall effect and the differences discussed. From this comparison, the conclusion is drawn that the dynamic stall effect has some influence on the post-fault behaviour of the wind turbine, and it is hence suggested that the dynamic stall effect is considered if an active-stall wind turbine is to be modelled realistically. (Author)
Load prediction of stall regulated wind turbines
Energy Technology Data Exchange (ETDEWEB)
Bjoerck, A.; Dahlberg, J.Aa. [Aeronautical Research Inst. of Sweden, Bromma (Sweden); Carlen, I. [Chalmers Univ. of Technology, Goeteborg (Sweden). Div. of Marine Structural Engineering; Ganander, H. [Teknikgruppen AB, Sollentua (Sweden)
1996-12-01
Measurements of blade loads on a turbine situated in a small wind farm shows that the highest blade loads occur during operation close to the peak power i.e. when the turbine operates in the stall region. In this study the extensive experimental data base has been utilised to compare loads in selected campaigns with corresponding load predictions. The predictions are based on time domain simulations of the wind turbine structure, performed by the aeroelastic code VIDYN. In the calculations a model were adopted in order to include the effects of dynamic stall. This paper describes the work carried out so far within the project and key results. 5 refs, 10 figs
Energy Technology Data Exchange (ETDEWEB)
Bjoerck, A.; Thor, S.E. [Aeronautical Research Inst. of Sweden, Bromma (Sweden)
1996-12-01
The JOULE II project `Dynamic stall and 3D effects` started in January 1994 and was completed in September 1995. The objective of the project has been to increase the understanding of the three-dimensional and unsteady aerodynamics of stall controlled HAWT`s. The objectives have also been to develop `engineering models` suitable for inclusion into aero-elastic codes. The project included the participation of 13 parties within Europe. This paper describes an overview of the work carried out within the project and key results. 3 refs, 4 figs
Education stalls and subsequent stalls in African fertility: A descriptive overview
Directory of Open Access Journals (Sweden)
Anne Goujon
2015-12-01
Full Text Available Background: Recent stalls in fertility decline have been observed in a few countries in sub-Saharan Africa, and so far no plausible common reason has been identified in the literature. This paper develops the hypothesis that these fertility stalls could be associated with stalls in the progress of education among the women of the relevant cohorts, possibly resulting partly from the Structural Adjustment Programs (SAPs of the 1980s. Methods: We descriptively link the change in the education composition of successive cohorts of young women in sub-Saharan Africa and the recent fertility stalls. We use reconstructed data on population by age, gender, and level of education from www.wittgenstein centre.org/dataexplorer, and fertility rates from the United Nations. Results: In most sub-Saharan African countries, we observe that the same countries that had fertility stalls had a stall in the progress of education, particularly for young women who were of primary school age during the 1980s, when most of the countries were under structural adjustment. Conversely, stalls in fertility are less common in countries that did not have an education stall, possibly in relation to SAPs. Conclusions: The results point to the possibility of a link between the recent fertility stalls and discontinuities in the improvement of the education of the relevant cohorts, which in turn could be related to the SAPs in the 1980s. This descriptive finding now needs to be corroborated through more detailed cohort-specific fertility analysis. If the education-fertility link can be further established, it will have important implications for the projections of population growth in affected countries.
Calculation of Rotor Performance and Loads Under Stalled Conditions
National Research Council Canada - National Science Library
Yeo, Hyeonsoo
2003-01-01
Rotor behavior in stalled conditions is investigated using wind tunnel test data of a 1/10-scale CH-47B/C type rotor, which provides a set of test conditions extending from unstalled to light stall...
Airfoil stall interpreted through linear stability analysis
Busquet, Denis; Juniper, Matthew; Richez, Francois; Marquet, Olivier; Sipp, Denis
2017-11-01
Although airfoil stall has been widely investigated, the origin of this phenomenon, which manifests as a sudden drop of lift, is still not clearly understood. In the specific case of static stall, multiple steady solutions have been identified experimentally and numerically around the stall angle. We are interested here in investigating the stability of these steady solutions so as to first model and then control the dynamics. The study is performed on a 2D helicopter blade airfoil OA209 at low Mach number, M 0.2 and high Reynolds number, Re 1.8 ×106 . Steady RANS computation using a Spalart-Allmaras model is coupled with continuation methods (pseudo-arclength and Newton's method) to obtain steady states for several angles of incidence. The results show one upper branch (high lift), one lower branch (low lift) connected by a middle branch, characterizing an hysteresis phenomenon. A linear stability analysis performed around these equilibrium states highlights a mode responsible for stall, which starts with a low frequency oscillation. A bifurcation scenario is deduced from the behaviour of this mode. To shed light on the nonlinear behavior, a low order nonlinear model is created with the same linear stability behavior as that observed for that airfoil.
16 CFR 1505.50 - Stalled motor testing.
2010-01-01
... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Stalled motor testing. 1505.50 Section 1505... USE BY CHILDREN Policies and Interpretations § 1505.50 Stalled motor testing. (a) § 1505.6(e)(4)(ii) requires that a motor-operated toy be tested with the motor stalled if the construction of the toy is such...
Parametric analyses on dynamic stall control of rotor airfoil via synthetic jet
Directory of Open Access Journals (Sweden)
Qijun ZHAO
2017-12-01
Full Text Available The effects of synthetic jet control on unsteady dynamic stall over rotor airfoil are investigated numerically. A moving-embedded grid method and an Unsteady Reynolds Averaged Navier-Stokes (URANS solver coupled with k-Ï Shear Stress Transport (SST turbulence model are established for predicting the complex flowfields of oscillatory airfoil under jet control. Additionally, a velocity boundary condition modeled by sinusoidal function has been developed to fulfill the perturbation effect of periodic jet. The validity of present CFD method is evaluated by comparisons of the calculated results of baseline dynamic stall case for rotor airfoil and jet control case for VR-7B airfoil with experimental data. Then, parametric analyses are conducted emphatically for an OA212 rotor airfoil to investigate the effects of jet control parameters (jet location, dimensionless frequency, momentum coefficient, jet angle, jet type and dual-jet on dynamic stall characteristics of rotor airfoil. It is demonstrated by the calculated results that efficiency of jet control could be improved with specific momentum coefficient and jet angle when the jet is located near separation point of rotor airfoil. Furthermore, the dual-jet could improve control efficiency more obviously on dynamic stall of rotor airfoil with respect to the unique jet, and the influence laws of dual-jetâs angles and momentum coefficients on control effects are similar to those of the unique jet. Finally, unsteady aerodynamic characteristics of rotor via synthetic jet which is located on the upper surface of rotor blade in forward flight are calculated, and asÂ a result, the aerodynamic characteristics of rotor are improved compared with the baseline. The results indicate that synthetic jet has the capability in improving aerodynamic characteristics of rotor. Keywords: Airfoil, Dynamic stall characteristics, Flow control, Moving-embedded grid methodology, Navier-Stokes equations, Parametric
Turbulence Model Comparisons for Shear Layers and Axisymmetric Jets.
1979-10-01
made for all the experimental runs made by Brown and Roshko and are presented subsequently. Velocity and density profilcswerccalculated asa function of...too large arid tle miiix ing d ist ance muceh too short for tile ease of’ a hlth relative velocity between the two streams. "iOS\\ r henl thle Corn
Simulation model of an active stall wind turbine controller
Energy Technology Data Exchange (ETDEWEB)
Jauch, C.; Hansen, A.D.; Soerensen, P. [Risoe National Lab., Wind Energy Dept., Rosilde (Denmark); Blaabjerg, F. [Aalborg Univ., Inst. of Energy Technology (Denmark)
2004-07-01
This paper describes an active stall wind turbine controller. The objective is to develop a general model of an active stall controller in order to simulate the operation of grid connected active stall wind turbines. The active stall turbine concept and its control strategies are presented and evaluated on the basis of simulations. The presented controller is described for continuous operation under all wind speeds from start-up wind speed to shut doven wind speed. Due to its parametric implementation it is general i.e. it can represent different active stall wind turbine controllers and can be implemented in different simulation tools. (au)
Field rotor measurements. Data sets prepared for analysis of stall hysteresis
Energy Technology Data Exchange (ETDEWEB)
Aagaard Madsen, H.; Thirstrup Petersen, J. [Risoe National Lab. (Denmark); Bruining, A. [Delft Univ. of Technology (Netherlands); Brand, A. [ECN (Netherlands); Graham, M. [Imperical College (United Kingdom)
1998-05-01
As part of the JOULE-3 project `STALLVIB` an analysis and synthesis of the data from the field rotor experiments at ECN, Delft University, Imperial College, NREL and Risoe has been carried out. This has been done in order to see to what extent the data could be used for further development and validation of engineering dynamic stall models. A detailed investigation of the influence of the post-processing of the different data sets has been performed. Further, important statistical functions such as PSD spectra, coherence and transfer functions have been derived for the data sets which can be used as basis for evaluation of the quality of the data seen relative to actual application of the data. The importance of using an appropriate low-pass filtering to remove high frequency noise has been demonstrated when the relation between instantaneous values of e.g. {alpha} and C{sub N} is considered. In general, the complicated measurement on a rotor of {alpha} and w and the interpretation of these parameters combined with the strongly three-dimensional, turbulent flow field around the rotating blade has the consequence that it seems difficult to derive systematic information from the different data sets about stall hysteresis. In particular, the measurement of {alpha}, which determination of the stagnation point gives reasonable data below stall but fails in stall. On the other hand, measurements of {alpha} with a five hole pitot tube can be used also in the stall region. Another main problem is the non-dimensionalization of the coefficients C{sub N} and C{sub r}. If the dynamic pressure used for the non-dimensionalization is not fully correlated with the aerodynamic pressure over the considered airfoil section due to e.g. influence of the gravity on the pressure pipes, the hysteresis loops will be distorted. However, using the data with caution and applying a suitable post-processing as described by the different participants, it will probably be possible to obtain some
Axisymmetric Marangoni convection in microencapsulation
Subramanian, Pravin; Zebib, Abdelfattah; McQuillan, Barry
2005-07-01
Spherical shells used as laser targets in inertial confinement fusion (ICF) experiments are made by microencapsulation. In one phase of manufacturing, the spherical shells contain a solvent (fluorobenzene (FB)) and a solute (polystyrene (PAMS)) in a water-FB environment. Evaporation of the FB results in the desired hardened plastic hollow spherical shells, 1-2 mm in diameter. Perfect sphericity is demanded for efficient fusion ignition and the observed surface roughness maybe driven by Marangoni instabilities due to surface tension dependence on the FB concentration (buoyant forces are negligible in this micro-scale problem). Here we model this drying process and compute nonlinear, time-dependent, axisymmetric, variable viscosity, infinite Schmidt number solutocapillary convection in the shells. Comparison with results from linear theory and available experiments are made.
Streamline topology of axisymmetric flows
DEFF Research Database (Denmark)
Brøns, Morten
Topological fluid mechanics in the sense of the present paper is the study and classification of flow patterns close to a critical point. Here we discuss the topology of steady viscous incompressible axisymmetric flows in the vicinity of the axis. Following previous studies the velocity field $v...... to the authors knowledge has not been used systematically to high orders in topological fluid mechanics. We compare the general results with experimental and computational results on the Vogel-Ronneberg flow. We show that the topology changes observed when recirculating bubbles on the vortex axis are created...... and interact follow the topological classification and that the complete set of patterns found is contained in a codimension-4 unfolding of the most simple singular configuration....
CRUCIB: an axisymmetric convection code
International Nuclear Information System (INIS)
Bertram, L.A.
1975-03-01
The CRUCIB code was written in support of an experimental program aimed at measurement of thermal diffusivities of refractory liquids. Precise values of diffusivity are necessary to realistic analysis of reactor safety problems, nuclear waste disposal procedures, and fundamental metal forming processes. The code calculates the axisymmetric transient convective motions produced in a right circular cylindrical crucible, which is surface heated by an annular heat pulse. Emphasis of this report is placed on the input-output options of the CRUCIB code, which are tailored to assess the importance of the convective heat transfer in determining the surface temperature distribution. Use is limited to Prandtl numbers less than unity; larger values can be accommodated by replacement of a single block of the code, if desired. (U.S.)
Numerical Investigations of Dynamic Stall Control
Directory of Open Access Journals (Sweden)
Florin FRUNZULICA
2014-04-01
Full Text Available In this paper we investigated numerically the dynamic stall phenomenon and the possibilities to control it, with application to vertical axis wind turbines (for urban users. The Phenomenon appear at low tip speed ratio (TSR<4 and it has a great impact on structural integrity of the wind turbine and power performances. For this reason we performed a computational study of dynamic stall around NACA 0012 airfoil in pitching motion at relative low Reynolds number (105. Also, we performed the same analysis for four flow control methods: two passive (Gurney flap and slot and two active (blowing jet on the rounded trailing edge and synthetic jet periodically activated. The Results are compared to those of an existing experimental case test.
Dynamic Stall Control Using Plasma Actuators
Webb, Nathan; Singhal, Achal; Castaneda, David; Samimy, Mo
2017-11-01
Dynamic stall occurs in many applications, including sharp maneuvers of fixed wing aircraft, wind turbines, and rotorcraft and produces large unsteady aerodynamic loads that can lead to flutter and mechanical failure. This work uses flow control to reduce the unsteady loads by excitation of instabilities in the shear layer over the separated region using nanosecond pulse driven dielectric barrier discharge (NS-DBD) plasma actuators. These actuators have been shown to effectively delay or mitigate static stall. A wide range of flow parameters were explored in the current work: Reynolds number (Re = 167,000 to 500,000), reduced frequency (k = 0.025 to 0.075), and excitation Strouhal number (Ste = 0 to 10). Based on the results, three major conclusions were drawn: (a) Low Strouhal number excitation (Ste eliminated the dynamic stall vortex (DSV), thereby dramatically reducing the unsteady loading. The decrease in the strength of the DSV is achieved by the formation of shear layer coherent structures that bleed the leading-edge vorticity prior to the ejection of the DSV.
Axisymmetric Tornado Simulations with a Semi-Slip Boundary
Directory of Open Access Journals (Sweden)
Brian H. Fiedler
2017-12-01
Full Text Available The structure of natural tornadoes and simulated analogs are sensitive to the lower boundary condition for friction. Three-dimensional numerical simulations of storms require a choice for turbulence parameterizations and resolution of wind near the lower boundary. This article explores some of the consequences of choices of a surface drag coefficient on the structure of a mature simulated tornado, using a conventional axisymmetric model. The surface drag parameterization is explored over the range of the semi-slip condition, including the extremes of no-slip and free-slip. A moderate semi-slip condition allows for an extreme pressure deficit, but without the unrealistic vortex breakdown of the no-slip condition.
Adaptative mixed methods to axisymmetric shells
International Nuclear Information System (INIS)
Malta, S.M.C.; Loula, A.F.D.; Garcia, E.L.M.
1989-09-01
The mixed Petrov-Galerkin method is applied to axisymmetric shells with uniform and non uniform meshes. Numerical experiments with a cylindrical shell showed a significant improvement in convergence and accuracy with adaptive meshes. (A.C.A.S.) [pt
Energy Technology Data Exchange (ETDEWEB)
Larsen, G.C.
1998-09-01
The fatigue loading of turbines situated in complex terrain is investigated in order to determine the crucial parameters in the spatial structure of the turbulence in such situations. The parameter study is performed by means of numerical calculations, and it embraces three different wind turbine types, representing a pitch controlled concept, a stall controlled concept, and a stall controlled concept with an extremely flexible tower. For each of the turbine concepts, the fatigue load sensibility to the selected turbulence characteristics are investigated for three different mean wind speeds at hub height. The selected mean wind speeds represent the linear-, the stall-, and the post stall aerodynamic region for the stall controlled turbines and analogously the unregulated-, the partly regulated-, and the fully regulated regime for the pitch controlled turbine. Denoting the turbulence component in the mean wind direction by u, the lateral turbulence component by v, and the vertical turbulence component by w, the selected turbulence characteristics comprise the u-turbulence length scale, the ratio between the v- and w-turbulence intensities and the u-turbulence intensity, the uu-coherence decay factor, and finally the u-v and u-w cross-correlations. The turbulence length scale in the mean wind direction gives rise to significant modification of the fatigue loading on all the investigated wind turbine concepts, but for the other selected parameter variations, large individual differences exists between the turbines. With respect to sensitivity to the performed parameter variations, the Vestas V39 wind turbine is the most robust of the investigated turbines. The Nordtank 500/37 turbine, equipped with the (artificial) soft tower, is by far the most sensitive of the investigated turbine concepts - also much more sensitive than the conventional Nordtank 500/37 turbine equipped with a traditional tower. (au) 2 tabs., 43 ills., 7 refs.
Turbulent Liquid Metal Dynamo Experiments
International Nuclear Information System (INIS)
Forest, Cary
2007-01-01
The self-generation of magnetic fields in planets and stars--the dynamo effect--is a long-standing problem of magnetohydrodynamics and plasma physics. Until recently, research on the self-excitation process has been primarily theoretical. In this talk, I will begin with a tutorial on how magnetic fields are generated in planets and stars, describing the 'Standard Model' of self-excitation known as the alpha-omega dynamo. In this model, axisymmetric differential rotation can produce the majority of the magnetic field, but some non-axisymmetric, turbulence driven currents are also necessary. Understanding the conversion of turbulent kinetic energy in the fluid motion into electrical currents and thus magnetic fields, is a major challenge for both experiments and theory at this time. I will then report on recent results from a 1 meter diameter, spherical, liquid sodium dynamo experiment at the University of Wisconsin, in which the first clear evidence for these turbulence driven currents has been observed.
14 CFR 23.201 - Wings level stall.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Wings level stall. 23.201 Section 23.201 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS.... Starting from a speed at least 10 knots above the stall speed, the elevator control must be pulled back so...
14 CFR 33.65 - Surge and stall characteristics.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Surge and stall characteristics. 33.65 Section 33.65 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... stall characteristics. When the engine is operated in accordance with operating instructions required by...
Compressible dynamic stall vorticity flux control using a dynamic ...
Indian Academy of Sciences (India)
management of its unsteady vorticity using a variable droop leading edge (VDLE) airfoil. Through ... the pressure gradient term for the dynamic stall conditions encountered by a helicopter-rotor retreating blade. Thus ... This paper discusses control of compressible dynamic stall using the novel idea of variable droop leading ...
Shtemler, Yu.; Mond, M.; Liverts, E.
2018-02-01
The excitation of nonaxisymmetric quasi-resonant triads by clustering around a dominant axisymmetric explosively unstable magnetorotational instability (MRI) in Keplerian discs is investigated. Clustering, namely, the mutual interactions of a large number of quasi-resonant triads that are connected by a single dominant explosively unstable axisymmetric triad, is invoked in order to provide a viable mechanism for the stabilization of the explosive nature of the latter. The results, however, are of wider scope as the proposed clustering scenario also provides a strong mechanism for the excitation of high-amplitude nonaxisymmetric perturbations. The latter play a major role in the nonlinear evolution of the MRI on the route to fully developed turbulence.
Supersonic quasi-axisymmetric vortex breakdown
Kandil, Osama A.; Kandil, Hamdy A.; Liu, C. H.
1991-01-01
An extensive computational study of supersonic quasi-axisymmetric vortex breakdown in a configured circular duct is presented. The unsteady, compressible, full Navier-Stokes (NS) equations are used. The NS equations are solved for the quasi-axisymmetric flows using an implicit, upwind, flux difference splitting, finite volume scheme. The quasi-axisymmetric solutions are time accurate and are obtained by forcing the components of the flowfield vector to be equal on two axial planes, which are in close proximity of each other. The effect of Reynolds number, for laminar flows, on the evolution and persistence of vortex breakdown, is studied. Finally, the effect of swirl ration at the duct inlet is investigated.
Theoretical analysis of transcription process with polymerase stalling
Li, Jingwei; Zhang, Yunxin
2015-05-01
Experimental evidence shows that in gene transcription RNA polymerase has the possibility to be stalled at a certain position of the transcription template. This may be due to the template damage or protein barriers. Once stalled, polymerase may backtrack along the template to the previous nucleotide to wait for the repair of the damaged site, simply bypass the barrier or damaged site and consequently synthesize an incorrect messenger RNA, or degrade and detach from the template. Thus, the effective transcription rate (the rate to synthesize correct product mRNA) and the transcription effectiveness (the ratio of the effective transcription rate to the effective transcription initiation rate) are both influenced by polymerase stalling events. So far, no theoretical model has been given to discuss the gene transcription process including polymerase stalling. In this study, based on the totally asymmetric simple exclusion process, the transcription process including polymerase stalling is analyzed theoretically. The dependence of the effective transcription rate, effective transcription initiation rate, and transcription effectiveness on the transcription initiation rate, termination rate, as well as the backtracking rate, bypass rate, and detachment (degradation) rate when stalling, are discussed in detail. The results showed that backtracking restart after polymerase stalling is an ideal mechanism to increase both the effective transcription rate and the transcription effectiveness. Without backtracking, detachment of stalled polymerase can also help to increase the effective transcription rate and transcription effectiveness. Generally, the increase of the bypass rate of the stalled polymerase will lead to the decrease of the effective transcription rate and transcription effectiveness. However, when both detachment rate and backtracking rate of the stalled polymerase vanish, the effective transcription rate may also be increased by the bypass mechanism.
Prabhu, Kartik; Wald, Robert M.
2018-01-01
We consider arbitrary stationary and axisymmetric black holes in general relativity in (d +1) dimensions (with d ≥slant 3 ) that satisfy the vacuum Einstein equation and have a non-degenerate horizon. We prove that the canonical energy of axisymmetric electromagnetic perturbations is positive definite. This establishes that all vacuum black holes are stable to axisymmetric electromagnetic perturbations. Our results also hold for asymptotically de Sitter black holes that satisfy the vacuum Einstein equation with a positive cosmological constant. Our results also apply to extremal black holes provided that the initial perturbation vanishes in a neighborhood of the horizon.
Andre, Jean-Claude; Cousteix, Jean; Durst, Franz; Launder, Brian E.; Schmidt, Frank W.
1989-08-01
The conference presents papers on scalar transport and geophysical flows, aerodynamic flows, complex flows, and numerical simulation. Particular attention is given to an eigenfunction analysis of turbulent thermal convection, turbulent diffusion behind a heated line source in a nearly homogeneous turbulent shear flow, and the evolution of axisymmetric wakes from attached and separated flows. Other topics include the vortex street and turbulent wakes behind a circular cylinder placed inside a rotating rectangular channel and a numerical study of a stably stratified mixing layer.
The spectrum of axisymmetric torsional Alfven waves
International Nuclear Information System (INIS)
Sy, W.N.
1977-03-01
The spectrum of axisymmetric torsional Alfven waves propagating in a cylindrical, non-uniform, resistive plasma waveguide has been analysed by a method of singular perturbations. A simple condition has been derived which predicts whether the spectrum is continuous or discrete under given physical conditions. Application of this result to resolve an apparent discrepancy in experimental observations is briefly discussed. (Author)
Flap motion of helicopter rotors with novel, dynamic stall model
Directory of Open Access Journals (Sweden)
Han Wei
2016-01-01
Full Text Available In this paper, a nonlinear flapping equation for large inflow angles and flap angles is established by analyzing the aerodynamics of helicopter blade elements. In order to obtain a generalized flap equation, the Snel stall model was first applied to determine the lift coefficient of the helicopter rotor. A simulation experiment for specific airfoils was then conducted to verify the effectiveness of the Snel stall model as it applies to helicopters. Results show that the model requires no extraneous parameters compared to the traditional stall model and is highly accurate and practically applicable. Based on the model, the relationship between the flapping angle and the angle of attack was analyzed, as well as the advance ratio under the dynamic stall state.
Numerical study on a single bladed vertical axis wind turbine under dynamic stall
Energy Technology Data Exchange (ETDEWEB)
Bangga, Galih [Institute of Aerodynamics and Gas Dynamics, University of Stuttgart, Stuttgart (Germany); Hutomo, Go; Sasongko, Herman [Dept. of Mechanical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya (Indonesia); Wiranegara, Raditya [School of Mechanical Aerospace and Civil Engineering, University of Manchester, Manchester (United Kingdom)
2017-01-15
The aim of this study is to investigate the flow development of a single bladed vertical axis wind turbine using Computational fluid dynamics (CFD) methods. The blade is constructed using the NACA 0012 profile and is operating under stalled conditions at tip speed ratio of 2. Two dimensional simulations are performed using a commercial CFD package, ANSYS Fluent 15.0, employing the Menter-SST turbulence model. For the preliminary study, simulations of the NACA 0012 airfoil under static conditions are carried out and compared with available measurement data and calculations using the boundary layer code XFOIL. The CFD results under the dynamic case are presented and the resulting aerodynamic forces are evaluated. The turbine is observed to generate negative power at certain azimuth angles which can be divided into three main zones. The blade vortex interaction is observed to strongly influence the flow behavior near the blade and contributes to the power production loss. However, the impact is considered small since it covers only 6.4 % of the azimuth angle range where the power is negative compared to the dynamic stall impact which covers almost 22 % of the azimuth angle range.
Active flow control of the laminar separation bubble on a plunging airfoil near stall
Pande, Arth; Agate, Mark; Little, Jesse; Fasel, Hermann
2017-11-01
The effects of small amplitude (A/c = 0.048) high frequency (πfc/U∞ = 0.70) plunging motion on the X-56A airfoil are examined experimentally at Re = 200,000 for 12° angle of attack (CL,MAX = 12.25°) . The purpose of this research is to study the aerodynamic influence of structural motion when the wing is vibrating close to its eigenfrequency near static stall. Specific focus is placed on the laminar separation bubble (LSB) near the leading edge and its control via plasma actuation. In the baseline case, the leading edge bubble bursts during the oscillation cycle causing moment stall. A collaborative computational effort has shown that small amplitude forcing at a frequency that is most amplified by the primary instability of the LSB (FLSB+= 1, Fc+= 52) generates coherent spanwise vortices that entrain freestream momentum, thus reducing separation all while maintaining a laminar flow state. Results (PIV and surface pressure) indicate that a similar control mechanism is effective in the experiments. This is significant given the existence of freestream turbulence in the wind tunnel which has been shown to limit the efficacy of this active flow control technique in a model problem using Direct Numerical Simulation. The implications of these results are discussed.
Haya, Laura; Tavoularis, Stavros
2017-06-01
Flow characteristics past a bileaflet mechanical heart valve were measured under physiological flow conditions in a straight tube with an axisymmetric expansion, similar to vessels used in previous studies, and in an anatomical model of the aorta. We found that anatomical features, including the three-lobed sinus and the aorta's curvature affected significantly the flow characteristics. The turbulent and viscous stresses were presented and discussed as indicators for potential blood damage and thrombosis. Both types of stresses, averaged over the two axial measurement planes, were significantly lower in the anatomical model than in the axisymmetric one. This difference was attributed to the lower height-to-width ratio and more gradual contraction of the anatomical aortic sinus. The curvature of the aorta caused asymmetries in the velocity and stress distributions during forward flow. Secondary flows resulting from the aorta's curvature are thought to have redistributed the fluid stresses transversely, resulting in a more homogeneous stress distribution in the anatomical aortic root than in the axisymmetric root. The results of this study demonstrate the importance of modelling accurately the aortic geometry in experimental and computational studies of prosthetic devices. Moreover, our findings suggest that grafts used for aortic root replacement should approximate as closely as possible the shape of the natural sinuses.
HAWT dynamic stall response asymmetries under yawed flow conditions
Energy Technology Data Exchange (ETDEWEB)
Schreck, S.; Robinson, M.; Hand, M.; Simms, D.
2000-02-28
Horizontal axis wind turbines can experience significant time varying aerodynamic loads, potentially causing adverse effects on structures, mechanical components, and power production. As designers attempt lighter and more flexible wind energy machines, greater accuracy and robustness will become even more critical in future aerodynamics models. Aerodynamics modeling advances, in turn, will rely on more thorough comprehension of the three-dimensional, unsteady, vortical flows that dominate wind turbine blade aerodynamics under high load conditions. To experimentally characterize these flows, turbine blade surface pressures were acquired at multiple span locations via the NREL Phase IV Unsteady Aerodynamics Experiment. Surface pressures and associated normal force histories were used to characterize dynamic stall vortex kinematics and normal force amplification. Dynamic stall vortices and normal force amplification were confirmed to occur in response to angle of attack excursions above the static stall threshold. Stall vortices occupied approximately one-half of the blade span and persisted for nearly one-fourth of the blade rotation cycle. Stall vortex convection varied along the blade, resulting in dramatic deformation of the vortex. Presence and deformation of the dynamic stall vortex produced corresponding amplification of normal forces. Analyses revealed consistent alterations to vortex kinematics in response to changes in reduced frequency, span location, and yaw error. Finally, vortex structures and kinematics not previously documented for wind turbine blades were isolated.
Physical modeling of flow over an axisymmetric knoll under neutral atmospheric conditions
International Nuclear Information System (INIS)
Cliff, W.C.; Smith, J.D.
1980-02-01
A glass-walled hydraulic (water) flume was used to model physically air flow near an axisymmetric knoll in a neutral atmospheric boundary layer. The knoll was a 1:250 scale model. An upstream velocity profile (1/7 power law), characteristic of a neutral atmospheric boundary layer, was produced by locating a 10-cm-high (4-in.) trip near the flume entrance and by appropriately roughening the flume floor. Mean velocity, rms velocity, and turbulence intensity profiles were measured at locations near the knoll using an existing laser Doppler anemometer system. The flow accelerated over the knoll and produced a relatively uniform velocity profile at the crest. The measured velocity profile was in close agreement with a theoretical velocity profile developed using potential flow theory and an upstream power law velocity profile. The turbulence intensity decreased at the crest of the knoll as a result of the flow acceleration
Input-output analysis of high-speed axisymmetric isothermal jet noise
Jeun, Jinah; Nichols, Joseph W.; Jovanović, Mihailo R.
2016-04-01
We use input-output analysis to predict and understand the aeroacoustics of high-speed isothermal turbulent jets. We consider axisymmetric linear perturbations about Reynolds-averaged Navier-Stokes solutions of ideally expanded turbulent jets with jet Mach numbers 0.6 parabolized stability equations (PSE), and this mode dominates the response. For subsonic jets, however, the singular values indicate that the contributions of sub-optimal modes to noise generation are nearly equal to that of the optimal mode, explaining why the PSE do not fully capture the far-field sound in this case. Furthermore, high-fidelity large eddy simulation (LES) is used to assess the prevalence of sub-optimal modes in the unsteady data. By projecting LES source term data onto input modes and the LES acoustic far-field onto output modes, we demonstrate that sub-optimal modes of both types are physically relevant.
Numerical computation of compressible, turbulent high-speed flows
Suzen, Yildirim Bora
Separated flows and subsequent formation of shear layers are important fluid processes which play a dominant role in numerous engineering applications. Accurate prediction of this fluid process is an important element in the design and analysis of high speed vehicles and, ultimately, in performance and trajectory analysis. In this study, a two-dimensional/axisymmetric Navier-Stokes flow solver using Steger-Warming flux vector splitting technique is developed for the accurate simulation of high speed turbulent flows. Computations are performed for an underexpanded, supersonic, turbulent, axisymmetric jet and a two-stream supersonic turbulent wake flowfield behind a two-dimensional thick base as representative of high speed, compressible shear flows. Baldwin-Barth and Spalart-Allmaras one-equation turbulence models and Baseline version of Menter's zonal k - omega/k - varepsilon two-equation turbulence models are used to investigate their performance for the applications considered. Modifications to these models are incorporated in order to improve their prediction capabilities for the types of flows considered. For two-equation models, modifications to include compressibility correction terms are considered and a modeled version of Menter's models including compressible dissipation and pressure dilatation terms is developed. Axisymmetric correction is incorporated to all models by means of coefficient changes. The computational results are compared to available experimental data. Results show that the modifications improve the computed solutions for all models.
Axisymmetric instability in a noncircular tokamak
International Nuclear Information System (INIS)
Lipschultz, B.
1979-10-01
The stability of dee, inverse-dee and square cross section plasmas to axisymmetric modes has been investigated experimentally in Tokapole II, a tokamak with a four-null poloidal divertor. Experimental results are closely compared with predictions of two numerical stability codes - the PEST code (ideal MHD, linear stability) adapted to tokapole geometry and a code which follows the nonlinear evolution of shapes similar to tokapole equilibria
Axisymmetric ideal magnetohydrodynamic equilibria with incompressible flows
International Nuclear Information System (INIS)
Tasso, H.; Throumoulopoulos, G.N.
1997-12-01
It is shown that the ideal MHD equilibrium states of an axisymmetric plasma with incompressible flows are governed by an elliptic partial differential equation for the poloidal magnetic flux function ψ containing five surface quantities along with a relation for the pressure. Exact equilibria are constructed including those with non vanishing poloidal and toroidal flows and differentially varying radial electric fields. Unlike the case in cylindrical incompressible equilibria with isothermal magnetic surfaces which should have necessarily circular cross sections [G. N. Throumoulopoulos and H. Tasso, Phys. Plasmas 4, 1492 (1997)], no restriction appears on the shapes of the magnetic surfaces in the corresponding axisymmetric equilibria. The latter equilibria satisfy a set of six ordinary differential equations which for flows parallel to the magnetic field B can be solved semianalytically. In addition, it is proved the non existence of incompressible axisymmetric equilibria with (a) purely poloidal flows and (b) non-parallel flows with isothermal magnetic surfaces and vertical stroke B vertical stroke = vertical stroke B vertical stroke (ψ) (omnigenous equilibria). (orig.)
Is Social Licence A Licence To Stall?
Directory of Open Access Journals (Sweden)
Mark Lowey
2016-03-01
Full Text Available The School of Public Policy at the University of Calgary organized a one-day symposium on Oct. 8, 2014 in Calgary, as part of the School’s TransCanada Corporation Energy Policy and Regulatory Frameworks Program. The symposium was titled “Is Social License a License to Stall?” Held at the Hotel Arts, the event attracted a full-capacity audience of about 110 people, including representatives from industry, government and environmental non-government organizations. The symposium included four moderated panel sessions and a keynote speaker at lunch. The School of Public Policy set the framework for discussion at the Calgary symposium with the following description: Canada’s regulators act in the public interest to review energy and infrastructure project applications. Regulators are guided by procedural fairness and follow a transparent application, review and hearing process with data filings and sworn testimony. But that’s changing. “Social license” is a relatively new term, which some interests are using to create a different standard for the approval of projects — especially energy projects. According to social license advocates, projects must meet often ill-defined requirements set up by non-governmental organizations, local residents or other interests — a new hurdle for project approval, but without the rigour and rule of law of a regulator. Is social license a meaningful addition to the regulatory process, or is it being used as a constantly moving goal-post designed to slow down regulatory processes, delay project implementation, frustrate energy infrastructure expansion and even enrich those advocates who promote it as a new model? This paper summarises the discussion and the themes that emerged throughout the day. Most notably, panellists concluded that “social licence” is a real and significant issue that presents both an opportunity and a problem, not only for regulators but for all parties involved in the
Dynamic Stall Characteristics of Drooped Leading Edge Airfoils
Sankar, Lakshmi N.; Sahin, Mehmet; Gopal, Naveen
2000-01-01
Helicopters in high-speed forward flight usually experience large regions of dynamic stall over the retreating side of the rotor disk. The rapid variations in the lift and pitching moments associated with the stall process can result in vibratory loads, and can cause fatigue and failure of pitch links. In some instances, the large time lag between the aerodynamic forces and the blade motion can trigger stall flutter. A number of techniques for the alleviation of dynamic stall have been proposed and studied by researchers. Passive and active control techniques have both been explored. Passive techniques include the use of high solidity rotors that reduce the lift coefficients of individual blades, leading edge slots and leading edge slats. Active control techniques include steady and unsteady blowing, and dynamically deformable leading edge (DDLE) airfoils. Considerable amount of experimental and numerical data has been collected on the effectiveness of these concepts. One concept that has not received as much attention is the drooped-leading edge airfoil idea. It has been observed in wind tunnel studies and flight tests that drooped leading edge airfoils can have a milder dynamic stall, with a significantly milder load hysteresis. Drooped leading edge airfoils may not, however, be suitable at other conditions, e.g. in hover, or in transonic flow. Work needs to be done on the analysis and design of drooped leading edge airfoils for efficient operation in a variety of flight regimes (hover, dynamic stall, and transonic flow). One concept that is worthy of investigation is the dynamically drooping airfoil, where the leading edge shape is changed roughly once-per-rev to mitigate the dynamic stall.
The Dynamics of SecM-Induced Translational Stalling
Directory of Open Access Journals (Sweden)
Albert Tsai
2014-06-01
Full Text Available SecM is an E. coli secretion monitor capable of stalling translation on the prokaryotic ribosome without cofactors. Biochemical and structural studies have demonstrated that the SecM nascent chain interacts with the 50S subunit exit tunnel to inhibit peptide bond formation. However, the timescales and pathways of stalling on an mRNA remain undefined. To provide a dynamic mechanism for stalling, we directly tracked the dynamics of elongation on ribosomes translating the SecM stall sequence (FSTPVWISQAQGIRAGP using single-molecule fluorescence techniques. Within 1 min, three peptide-ribosome interactions work cooperatively over the last five codons of the SecM sequence, leading to severely impaired elongation rates beginning from the terminal proline and lasting four codons. Our results suggest that stalling is tightly linked to the dynamics of elongation and underscore the roles that the exit tunnel and nascent chain play in controlling fundamental steps in translation.
The dynamics of SecM-induced translational stalling.
Tsai, Albert; Kornberg, Guy; Johansson, Magnus; Chen, Jin; Puglisi, Joseph D
2014-06-12
SecM is an E. coli secretion monitor capable of stalling translation on the prokaryotic ribosome without cofactors. Biochemical and structural studies have demonstrated that the SecM nascent chain interacts with the 50S subunit exit tunnel to inhibit peptide bond formation. However, the timescales and pathways of stalling on an mRNA remain undefined. To provide a dynamic mechanism for stalling, we directly tracked the dynamics of elongation on ribosomes translating the SecM stall sequence (FSTPVWISQAQGIRAGP) using single-molecule fluorescence techniques. Within 1 min, three peptide-ribosome interactions work cooperatively over the last five codons of the SecM sequence, leading to severely impaired elongation rates beginning from the terminal proline and lasting four codons. Our results suggest that stalling is tightly linked to the dynamics of elongation and underscore the roles that the exit tunnel and nascent chain play in controlling fundamental steps in translation. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Low Cost Method of Manufacturing Cooled Axisymmetric Scramjets, Phase I
National Aeronautics and Space Administration — Scramjet engine developers are working on advanced axisymmetric engine concepts that may not be feasible due to limitations of currently available manufacturing...
EuHIT, Collaboration
2015-01-01
As a member of the EuHIT (European High-Performance Infrastructures in Turbulence - see here) consortium, CERN is participating in fundamental research on turbulence phenomena. To this end, the Laboratory provides European researchers with a cryogenic research infrastructure (see here), where the first tests have just been performed.
International Nuclear Information System (INIS)
Horton, W.
1998-07-01
The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates
National Research Council Canada - National Science Library
Hathaway, Michael D; Herrick, Greg; Chen, Jenping; Webster, Robert
2004-01-01
.... Improved understanding of the stall inception process and how stall control technologies mitigate such will provide compressors with increased tolerance to stall, thereby expanding the operational...
Numerical determination of axisymmetric toroidal magnetohydrodynamic equilibria
International Nuclear Information System (INIS)
Johnson, J.L.; Dalhed, H.E.; Greene, J.M.
1978-07-01
Numerical schemes for the determination of stationary axisymmetric toroidal equilibria appropriate for modeling real experimental devices are given. Iterative schemes are used to solve the elliptic nonlinear partial differential equation for the poloidal flux function psi. The principal emphasis is on solving the free boundary (plasma-vacuum interface) equilibrium problem where external current-carrying toroidal coils support the plasma column, but fixed boundary (e.g., conducting shell) cases are also included. The toroidal current distribution is given by specifying the pressure and either the poloidal current or the safety factor profiles as functions of psi. Examples of the application of the codes to tokamak design at PPPL are given
Reversed straining in axisymmetric compression test
DEFF Research Database (Denmark)
Arentoft, Mogens; Wanheim, Tarras; Lindegren, Maria
2005-01-01
A large group of the cold forging processes is carried out in a thick – walled container with the deformation force transmitted through a punch moving axially in the container. The work piece, being entrapped between punch and container will expand and exert a radial pressure resulting in an expa...... to simulate these conditions a reversed axisymmetrical material tester is designed and constructed. Three different materials were tested, aluminum alloy AA6082, technically pure copper (99.5%) and cold forging steel Ma8, at different temperatures found during cold forging....
An axisymmetric inertia-gravity wave generator
Maurer, P.; Ghaemsaidi, S. J.; Joubaud, S.; Peacock, T.; Odier, P.
2017-10-01
There has been a rich interplay between laboratory experimental studies of internal waves and advancing understanding of their role in the ocean and atmosphere. In this study, we present and demonstrate the concept for a new form of laboratory internal wave generator that can excite axisymmetric wave fields of arbitrary radial structure. The construction and operation of the generator are detailed, and its capabilities are demonstrated through a pair of experiments using a Bessel function and a bourrelet (i.e., ring-shaped) configuration. The results of the experiments are compared with the predictions of an accompanying analytical model.
Quantitative shearography in axisymmetric gas temperature measurements
VanDerWege, Brad A.; O'Brien, Christopher J.; Hochgreb, Simone
1999-06-01
This paper describes the use of shearing interferometry (shearography) for the quantitative measurement of gas temperatures in axisymmetric systems in which vibration and shock are substantial, and measurement time is limited. The setup and principle of operation of the interferometer are described, as well as Fourier-transform-based fringe pattern analysis, Abel transform, and sensitivity of the phase lead to temperature calculation. A helium jet and a Bunsen burner flame are shown as verification of the diagnostic. The accuracy of the measured temperature profile is shown to be limited by the Abel transform and is critically dependent on the reference temperature used.
Topological fluid mechanics of Axisymmetric Flow
DEFF Research Database (Denmark)
Brøns, Morten
1998-01-01
Topological fluid mechanics in the sense of the present paper is the study and classification of flow patterns close to a critical point. Here we discuss the topology of steady viscous incompressible axisymmetric flows in the vicinity of the axis. Following previous studies the velocity field v...... to the authors knowledge has not been used systematically to high orders in topological fluid mechanics. We compare the general results with experimental and computational results on the Vogel-Ronneberg flow. We show that the topology changes observed when recirculating bubbles on the vortex axis are created...
Azizi, Mohammad Ali; Brouwer, Jacob
2017-10-01
A better understanding of turbulent unsteady flows in gas turbine systems is necessary to design and control compressors for hybrid fuel cell-gas turbine systems. Compressor stall/surge analysis for a 4 MW hybrid solid oxide fuel cell-gas turbine system for locomotive applications is performed based upon a 1.7 MW multi-stage air compressor. Control strategies are applied to prevent operation of the hybrid SOFC-GT beyond the stall/surge lines of the compressor. Computational fluid dynamics tools are used to simulate the flow distribution and instabilities near the stall/surge line. The results show that a 1.7 MW system compressor like that of a Kawasaki gas turbine is an appropriate choice among the industrial compressors to be used in a 4 MW locomotive SOFC-GT with topping cycle design. The multi-stage radial design of the compressor enhances the ability of the compressor to maintain air flow rate during transient step-load changes. These transient step-load changes are exhibited in many potential applications for SOFC/GT systems. The compressor provides sustained air flow rate during the mild stall/surge event that occurs due to the transient step-load change that is applied, indicating that this type of compressor is well-suited for this hybrid application.
PTEN Regulates DNA Replication Progression and Stalled Fork Recovery
He, Jinxue; Kang, Xi; Yin, Yuxin; Chao, K.S. Clifford; Shen, Wen H.
2015-01-01
Faithful DNA replication is a cornerstone of genomic integrity. PTEN plays multiple roles in genome protection and tumor suppression. Here we report on the importance of PTEN in DNA replication. PTEN depletion leads to impairment of replication progression and stalled fork recovery, indicating an elevation of endogenous replication stress. Exogenous replication inhibition aggravates replication-originated DNA lesions without inducing S-phase arrest in cells lacking PTEN, representing replication stress tolerance. Our analysis reveals the physical association of PTEN with DNA replication forks and PTEN-dependent recruitment of Rad51. PTEN deletion results in Rad51 dissociation from replication forks. Stalled replication forks in Pten null cells can be reactivated by ectopic Rad51 or PTEN, the latter facilitating chromatin loading of Rad51. These data highlight the interplay of PTEN with Rad51 in promoting stalled fork restart. We propose that loss of PTEN may initiate a replication stress cascade that progressively deteriorates through the cell cycle. PMID:26158445
Active Suppression of Rotating Stall Inception with Distributed Jet Actuation
Directory of Open Access Journals (Sweden)
Huu Duc Vo
2007-01-01
Full Text Available An analytical and experimental investigation of the effectiveness of full-span distributed jet actuation for active suppression of long length-scale rotating stall inception is carried out. Detailed modeling and experimental verification highlight the important effects of mass addition, discrete injectors, and feedback dynamics, which may be overlooked in preliminary theoretical studies of active control with jet injection. A model of the compression system incorporating nonideal injection and feedback dynamics is verified with forced response measurements to predict the right trends in the movement of the critical pole associated with the stall precursor. Active control experiments with proportional feedback control show that the predicted stall precursors are suppressed to give a 5.5% range extension in compressor flow coefficient. In addition, results suggest that the proposed model could be used to design a more sophisticated controller to further improve performance while reducing actuator bandwidth requirements.
Stall Recovery Guidance Algorithms Based on Constrained Control Approaches
Stepanyan, Vahram; Krishnakumar, Kalmanje; Kaneshige, John; Acosta, Diana
2016-01-01
Aircraft loss-of-control, in particular approach to stall or fully developed stall, is a major factor contributing to aircraft safety risks, which emphasizes the need to develop algorithms that are capable of assisting the pilots to identify the problem and providing guidance to recover the aircraft. In this paper we present several stall recovery guidance algorithms, which are implemented in the background without interfering with flight control system and altering the pilot's actions. They are using input and state constrained control methods to generate guidance signals, which are provided to the pilot in the form of visual cues. It is the pilot's decision to follow these signals. The algorithms are validated in the pilot-in-the loop medium fidelity simulation experiment.
Flow-around modes for a rhomboid wing with a stall vortex in the shock layer
Zubin, M. A.; Maximov, F. A.; Ostapenko, N. A.
2017-12-01
The results of theoretical and experimental investigation of an asymmetrical hypersonic flow around a V-shaped wing with the opening angle larger than π on the modes with attached shockwaves on forward edges, when the stall flow is implemented on the leeward wing cantilever behind the kink point of the cross contour. In this case, a vortex of nonviscous nature is formed in which the velocities on the sphere exceeding the speed of sound and resulting in the occurrence of pressure shocks with an intensity sufficient for the separation of the turbulent boundary layer take place in the reverse flow according to the calculations within the framework of the ideal gas. It is experimentally established that a separation boundary layer can exist in the reverse flow, and its structure is subject to the laws inherent to the reverse flow in the separation region of the turbulent boundary layer arising in the supersonic conic flow under the action of a shockwave incident to the boundary layer.
EQUINE THERMOREGULATORY RESPONSES DURING SUMMERTIME ROAD TRANSPORT AND STALL CONFINEMENT
Directory of Open Access Journals (Sweden)
ANGELA R. GREEN
2007-04-01
Full Text Available Thermoregulatory responses of horses subjected to summer-time road transport and stall confinement were investigated in this study. Six mature geldings were transported 168 km in a 4-horse trailer and were monitored while tethered in their stalls, on alternate days. Core body temperature (GT demonstrated negligible response during transport, but GT following transport was higher than GT for non-transport. GT tended to increase with increased temperature humidity index (THI. THI within the trailer was greatest for positions near the front, and was influenced by daily weather which varied over experiment days from heat stress conditions to moderate discomfort.
A dynamic stall model for airfoils with deformable trailing edges
DEFF Research Database (Denmark)
Andersen, Peter Bjørn; Gaunaa, Mac; Bak, Christian
2009-01-01
The present work contains an extension of the Beddoes-Leishman-type dynamic stall model. In this work, a deformable trailing-edge flap has been added to the dynamic stall model. The model predicts the unsteady aerodynamic forces and moments on an airfoil section undergoing arbitrary motion in hea...... for the attached flow region and Hansen et al. The model is compared qualitatively to wind tunnel measurements of a Riso/ B1-18 blade section equipped with deformable trailing-edge flap devices in the form of piezoelectric devices. Copyright © 2009 John Wiley & Sons, Ltd....
Regulation of bacterial gene expression by ribosome stalling and rescuing.
Jin, Yongxin; Jin, Shouguang; Wu, Weihui
2016-05-01
Ribosome is responsible for protein synthesis and is able to monitor the sequence and structure of the nascent peptide. Such ability plays an important role in determining overall gene expression profile of the bacteria through ribosome stalling and rescuing. In this review, we briefly summarize our current understanding of the regulation of gene expression through ribosome stalling and rescuing in bacteria, as well as mechanisms that modulate ribosome activity. Understanding the mechanisms of how bacteria modulate ribosome activity will provide not only fundamental insights into bacterial gene regulation, but also new candidate targets for the development of novel antimicrobial agents.
A dynamic stall model for airfoils with deformable trailing edges
DEFF Research Database (Denmark)
Andersen, Peter Bjørn; Gaunaa, Mac; Bak, Dan Christian
2007-01-01
on an airfoil section undergoing arbitrary motion in heave, lead-lag, pitch, Trailing Edge (TE) flapping. In the linear region, the model reduces to the inviscid model of Gaunaa [4], which includes the aerodynamic effect of a thin airfoil with a deformable camberline in inviscid flow. Therefore, the proposed......The present work contains an extension of the Beddoes-Leishman (B-L) type dynamic stall model, as described by Hansen et al. [7]. In this work a Deformable Trailing Edge Geometry (DTEG) has been added to the dynamic stall model. The model predicts the unsteady aerodynamic forces and moments...
Axisymmetric vibrations of thick shells of revolution
International Nuclear Information System (INIS)
Suzuki, Katsuyoshi; Kosawada, Tadashi; Takahashi, Shin
1983-01-01
Axisymmetric shells of revolution are used for chemical plants, nuclear power plants, aircrafts, structures and so on, and the elucidation of their free vibration is important for the design. In this study, the axisymmetric vibration of a barrel-shaped shell was analyzed by the modified thick shell theory. The Lagrangian during one period of the vibration of a shell of revolution was determined, and from its stopping condition, the vibration equations and the boundary conditions were derived. The vibration equations were analyzed strictly by using the series solution. Moreover, the basic equations for the strain of a shell and others were based on those of Love. As the examples of numerical calculation, the natural frequency and vibration mode of the symmetrical shells of revolution fixed at both ends and supported at both ends were determined, and their characteristics were clarified. By comparing the results of this study with the results by thin shell theory, the effects of shearing deformation and rotary inertia on the natural frequency and vibration mode were clarified. The theoretical analysis and the numerical calculation are described. The effects of shearing deformation and rotary inertia on the natural frequency became larger in the higher order vibration. The vibration mode did not much change in both theories. (Kako, I.)
Experiments in turbulent pipe flow
Energy Technology Data Exchange (ETDEWEB)
Torbergsen, Lars Even
1998-12-31
This thesis reports experimental results for the mean velocity and turbulence statistics in two straight pipe sections for bulk Reynolds numbers in the range 22000 to 75000. The flow was found consistent with a fully developed state. Detailed turbulence spectra were obtained for low and moderate turbulent Reynolds number. For the pipe centre line location at R{sub {lambda}} = 112, a narrow range in the streamwise power spectrum applied to the -5/3 inertial subrange. However this range was influenced both by turbulence production and viscous dissipation, and therefore did not reflect a true inertial range. The result indicates how the intermediate range between the production and dissipative scales can be misinterpreted as an inertial range for low and moderate R{sub {lambda}}. To examine the universal behaviour of the inertial range, the inertial scaling of the streamwise power spectrum is compared to the inertial scaling of the second order longitudinal velocity structure function, which relate directly by a Fourier transform. Increasing agreement between the Kolmogorov constant C{sub K} and the second order structure function scaling constant C{sub 2} was observed with increasing R{sub {lambda}}. The result indicates that a true inertial range requires several decades of separation between the energy containing and dissipative scales. A method for examining spectral anisotropy is reported and applied to turbulence spectra in fully developed pipe flow. It is found that the spectral redistribution from the streamwise to the two lateral spectra goes primarily to the circumferential component. Experimental results are reported for an axisymmetric contraction of a fully developed pipe flow. 67 refs., 75 figs., 9 tabs.
Near surface stress analysis strategies for axisymmetric fretting
Indian Academy of Sciences (India)
In this paper, we develop design tools for Near Surface Analysis (NSA) for understanding axisymmetric fretting. Axisymmetric Fretting Analysis (AFA) becomes formidable owing to localised tractions that call for Fourier transform techniques. We develop two different NSA strategies based on two-dimensional plane strain ...
Dynamic Stall Flow Control Through the Use of a Novel Plasma Based Actuator Technology, Phase I
National Aeronautics and Space Administration — Lynntech proposes a novel flow control methodology for airfoils undergoing dynamic stall. Dynamic stall refers to an aerodynamic phenomenon that is experienced by...
Nazarenko, Sergey
2015-07-01
Wave turbulence is the statistical mechanics of random waves with a broadband spectrum interacting via non-linearity. To understand its difference from non-random well-tuned coherent waves, one could compare the sound of thunder to a piece of classical music. Wave turbulence is surprisingly common and important in a great variety of physical settings, starting with the most familiar ocean waves to waves at quantum scales or to much longer waves in astrophysics. We will provide a basic overview of the wave turbulence ideas, approaches and main results emphasising the physics of the phenomena and using qualitative descriptions avoiding, whenever possible, involved mathematical derivations. In particular, dimensional analysis will be used for obtaining the key scaling solutions in wave turbulence - Kolmogorov-Zakharov (KZ) spectra.
CERN. Geneva. Audiovisual Unit
2005-01-01
Understanding turbulence is vital in astrophysics, geophysics and many engineering applications, with thermal convection playing a central role. I shall describe progress that has recently been made in understanding this ubiquitous phenomenon by making controlled experiments using low-temperature helium, and a brief account of the frontier topic of superfluid turbulence will also be given. CERN might be able to play a unique role in experiments to probe these two problems.
Unsteady Double Wake Model for the Simulation of Stalled Airfoils
DEFF Research Database (Denmark)
Ramos García, Néstor; Cayron, Antoine; Sørensen, Jens Nørkær
2015-01-01
separation and its dynamics. In this paper, the calculated integral forces have been successfully validated against wind tunnel measurements for the FFA-W3-211 airfoil. Furthermore, the computed highly unsteady flow field is analyzed in detail for a set of angles of attack ranging from light to deep stall...
Dynamic Characteristics of Rotating Stall in Mixed Flow Pump
Directory of Open Access Journals (Sweden)
Xiaojun Li
2013-01-01
Full Text Available Rotating stall, a phenomenon that causes flow instabilities and pressure hysteresis by propagating at some fraction of the impeller rotational speed, can occur in centrifugal impellers, mixed impellers, radial diffusers, or axial diffusers. Despite considerable efforts devoted to the study of rotating stall in pumps, the mechanics of this phenomenon are not sufficiently understood. The propagation mechanism and onset of rotating stall are not only affected by inlet flow but also by outlet flow as well as the pressure gradient in the flow passage. As such, the complexity of these concepts is not covered by the classical explanation. To bridge this research gap, the current study investigated prerotation generated at the upstream of the impeller, leakage flow at the tip clearance between the casing and the impeller, and strong reserve flow at the inlet of the diffuser. Understanding these areas will clarify the origin of the positive slope of the head-flow performance curve for a mixed flow pump. Nonuniform pressure distribution and adverse pressure gradient were also introduced to evaluate the onset and development of rotating stall within the diffuser.
The Mechanical Impact of Aerodynamic Stall on Tunnel Ventilation Fans
Directory of Open Access Journals (Sweden)
A. G. Sheard
2012-01-01
Full Text Available This paper describes work aimed at establishing the ability of a tunnel ventilation fan to operate without risk of mechanical failure in the event of aerodynamic stall. The research establishes the aerodynamic characteristics of a typical tunnel ventilation fan when operated in both stable and stalled aerodynamic conditions, with and without an anti-stall stabilisation ring, with and without a “nonstalling” blade angle and at full, half, and one quarter design speed. It also measures the fan’s peak stress, thus facilitating an analysis of the implications of the experimental results for mechanical design methodology. The paper concludes by presenting three different strategies for tunnel ventilation fan selection in applications where the selected fan will most likely stall. The first strategy selects a fan with a low-blade angle that is nonstalling. The second strategy selects a fan with a high-pressure developing capability. The third strategy selects a fan with a fitted stabilisation ring. Tunnel ventilation system designers each have their favoured fan selection strategy. However, all three strategies can produce system designs within which a tunnel ventilation fan performs reliably in-service. The paper considers the advantages and disadvantages of each selection strategy and considered the strengths and weaknesses of each.
THE IMPACT OF LOCALIZATION AND BARN TYPE ON INSOLATION OF SIDEWALL STALLS DURING SUMMER
Directory of Open Access Journals (Sweden)
Sabina Angrecka
2017-07-01
The obtained results allowed us to identify optimal orientation of barns and to suggest the simplest technical measures to protect sidewall stalls from solar heat gain deleterious to cows. The model analysis of stall shading demonstrated that extension of barn eaves to 1 m on the southern side reduced the insolation of stalls over even up to 90% of their area.
A CFD Database for Airfoils and Wings at Post-Stall Angles of Attack
Petrilli, Justin; Paul, Ryan; Gopalarathnam, Ashok; Frink, Neal T.
2013-01-01
This paper presents selected results from an ongoing effort to develop an aerodynamic database from Reynolds-Averaged Navier-Stokes (RANS) computational analysis of airfoils and wings at stall and post-stall angles of attack. The data obtained from this effort will be used for validation and refinement of a low-order post-stall prediction method developed at NCSU, and to fill existing gaps in high angle of attack data in the literature. Such data could have potential applications in post-stall flight dynamics, helicopter aerodynamics and wind turbine aerodynamics. An overview of the NASA TetrUSS CFD package used for the RANS computational approach is presented. Detailed results for three airfoils are presented to compare their stall and post-stall behavior. The results for finite wings at stall and post-stall conditions focus on the effects of taper-ratio and sweep angle, with particular attention to whether the sectional flows can be approximated using two-dimensional flow over a stalled airfoil. While this approximation seems reasonable for unswept wings even at post-stall conditions, significant spanwise flow on stalled swept wings preclude the use of two-dimensional data to model sectional flows on swept wings. Thus, further effort is needed in low-order aerodynamic modeling of swept wings at stalled conditions.
Analysis of turbulent wake behind a wind turbine
DEFF Research Database (Denmark)
Kermani, Nasrin Arjomand; Andersen, Søren Juhl; Sørensen, Jens Nørkær
2013-01-01
The aim of this study is to improve the classical analytical model for estimation of the rate of wake expansion and the decay of wake velocity deficit in the far wake region behind a wind turbine. The relations for a fully turbulent axisymmetric far wake were derived by applying the mass and mome......The aim of this study is to improve the classical analytical model for estimation of the rate of wake expansion and the decay of wake velocity deficit in the far wake region behind a wind turbine. The relations for a fully turbulent axisymmetric far wake were derived by applying the mass...... ambient wind velocities (higher thrust coefficients), this trend may be improved due to the faster recovery of the wake and therefore closer values to the theoretical approach may be obtained. In addition, the assumption of self-similarity behavior of the mean velocity profile, when scaled with center...
Charged particle dynamics in axisymmetric nonconservative beams
International Nuclear Information System (INIS)
Radchenko, V.I.; Nikonov, O.I.
1998-01-01
Many of ion-beam technologies lead to the requirement of cross-section minimization of a particle beam in the object region acted upon, or to the problem of minimization of charged particle beam emittance (the growth rate of emittance) for a specified segment of the beam formation. In this paper we study the above problem for axisymmetric beams representing a nonconservative system of charged particles. It is shown that under certain assumptions the beam in question can be described by appropriate equations that possess an explicit solution. The latter allows one to study the influence of particle density distribution at the starting point on the future beam evolution. The results are based on approaches developed in J.D. Lawson (1977); V.I. Radchenko, G.D. Ved'manov (1995); O.I. Nikonov (1994). (orig.)
Compact neutron imaging system using axisymmetric mirrors
Khaykovich, Boris; Moncton, David E; Gubarev, Mikhail V; Ramsey, Brian D; Engelhaupt, Darell E
2014-05-27
A dispersed release of neutrons is generated from a source. A portion of this dispersed neutron release is reflected by surfaces of a plurality of nested, axisymmetric mirrors in at least an inner mirror layer and an outer mirror layer, wherein the neutrons reflected by the inner mirror layer are incident on at least one mirror surface of the inner mirror layer N times, wherein N is an integer, and wherein neutrons reflected by the outer mirror are incident on a plurality of mirror surfaces of the outer layer N+i times, where i is a positive integer, to redirect the neutrons toward a target. The mirrors can be formed by a periodically reversed pulsed-plating process.
Electrostatic axisymmetric mirror with removable spherical aberration
International Nuclear Information System (INIS)
Birmuzaev, S.B.; Serikbaeva, G.S.; Hizirova, M.A.
1999-01-01
The electrostatic axisymmetric mirror, assembled from three coaxial cylinders with an equal diameter d and under the potential v1, v2 and v3, was computed. The proportions of geometrical and electric parameters of the mirror, with which the spherical 3-order aberration may be eliminated, were determined. The computation outcomes of the case, when the focal power of the mirror is enough large and the object plane in the focus is out of its field, are presented (Fig. 1 - potentials proportion that makes elimination of the spherical aberration possible; Fig. 2 - the focus coordinates when the spherical aberration is eliminated). The geometrical values are presented by d, and the electric ones are presented by v1. The figures on the curves present a length of the second (middle) electrode. The zero point is located in the middle of the gap between the first and second electrodes The investigated mirror may be used as a lens for the transmission electron microscope
Analysis of flow over an axisymmetric hull-form using Large Eddy Simulation
Kumar, Praveen; Mahesh, Krishnan
2017-11-01
Large eddy simulations are performed for flow over an idealized axisymmetric hull at a Reynolds number of 1.1 million, based on hull length and freestream velocity. The domain is chosen to minimize confinement effects and the grid is designed to capture the near-wall physics as well as the evolution of turbulent wake. The entire hull is broken up into bow, mid and stern region and analyzed individually before merging them together, to ensure accurate solution on the final grid. The boundary layer is tripped on the bow region of the hull to make it turbulent as done in experiment. The turbulent boundary layer evolves on the mid region of the hull and eventually separates on the stern region due to the adverse pressure gradient, and forms the wake. Results are shown for the flow field and the pressure and skin-friction on the hull. The sensitivity of wake to the boundary layer characteristics on the stern is discussed. This work is supported by the Office of Naval Research.
Tchen, C. M.
1986-01-01
Theoretical and numerical works in atmospheric turbulence have used the Navier-Stokes fluid equations exclusively for describing large-scale motions. Controversy over the existence of an average temperature gradient for the very large eddies in the atmosphere suggested that a new theoretical basis for describing large-scale turbulence was necessary. A new soliton formalism as a fluid analogue that generalizes the Schrodinger equation and the Zakharov equations has been developed. This formalism, processing all the nonlinearities including those from modulation provided by the density fluctuations and from convection due to the emission of finite sound waves by velocity fluctuations, treats large-scale turbulence as coalescing and colliding solitons. The new soliton system describes large-scale instabilities more explicitly than the Navier-Stokes system because it has a nonlinearity of the gradient type, while the Navier-Stokes has a nonlinearity of the non-gradient type. The forced Schrodinger equation for strong fluctuations describes the micro-hydrodynamical state of soliton turbulence and is valid for large-scale turbulence in fluids and plasmas where internal waves can interact with velocity fluctuations.
Field simulation of axisymmetric plasma screw pinches by alternating-direction-implicit methods
International Nuclear Information System (INIS)
Lambert, M.A.
1996-06-01
An axisymmetric plasma screw pinch is an axisymmetric column of ionized gaseous plasma radially confined by forces from axial and azimuthal currents driven in the plasma and its surroundings. This dissertation is a contribution to detailed, high resolution computer simulation of dynamic plasma screw pinches in 2-d rz-coordinates. The simulation algorithm combines electron fluid and particle-in-cell (PIC) ion models to represent the plasma in a hybrid fashion. The plasma is assumed to be quasineutral; along with the Darwin approximation to the Maxwell equations, this implies application of Ampere's law without displacement current. Electron inertia is assumed negligible so that advective terms in the electron momentum equation are ignored. Electrons and ions have separate scalar temperatures, and a scalar plasma electrical resistivity is assumed. Altemating-direction-implicit (ADI) methods are used to advance the electron fluid drift velocity and the magnetic fields in the simulation. The ADI methods allow time steps larger than allowed by explicit methods. Spatial regions where vacuum field equations have validity are determined by a cutoff density that invokes the quasineutral vacuum Maxwell equations (Darwin approximation). In this dissertation, the algorithm was first checked against ideal MM stability theory, and agreement was nicely demonstrated. However, such agreement is not a new contribution to the research field. Contributions to the research field include new treatments of the fields in vacuum regions of the pinch simulation. The new treatments predict a level of magnetohydrodynamic turbulence near the bulk plasma surface that is higher than predicted by other methods
Simulation Model of an Active-stall Fixed-speed Wind Turbine Controller
DEFF Research Database (Denmark)
Jauch, Clemens; Hansen, Anca D.; Soerensen, Poul
2004-01-01
This paper describes an active-stall wind turbine controller. The objective is to develop a general model of an active stall controller in order to simulate the operation of grid connected active stall wind turbines. The active stall turbine concept and its control strategies are presented...... and evaluated by simulations. The presented controller is described for continuous operation under all wind speeds from start-up wind speed to shut down wind speed. Due to its parametric implementation it is general i.e. it can represent different active stall wind turbine controllers and can be implemented...
Simulation model of an active-stall fixed-speed wind turbine controller
Energy Technology Data Exchange (ETDEWEB)
Jauch, C.; Hansen, A.D.; Sorensen, P.; Blaabjerg, F.
2004-07-01
This paper describes an active-stall wind turbine controller. The objective is to develop a general model of an active stall controller in order to simulate the operation of grid connected active stall wind turbines. The active stall turbine concept and its control strategies are presented and evaluated by simulations. The presented controller is described for continuous operation under all wind speeds from start-up wind speed to shut down wind speed. Due to its parametric implementation it is general i. e. it can represent different active stall wind turbine controllers and can be implemented in different simulation tools. (author)
International Nuclear Information System (INIS)
Méchi, Rachid; Farhat, Habib; Said, Rachid
2016-01-01
Nongray radiation calculations are carried out for a case problem available in the literature. The problem is a non-isothermal and inhomogeneous CO 2 -H 2 O- N 2 gas mixture confined within an axisymmetric cylindrical furnace. The numerical procedure is based on the zonal method associated with the weighted sum of gray gases (WSGG) model. The effect of the wall emissivity on the heat flux losses is discussed. It is shown that this property affects strongly the furnace efficiency and that the most important heat fluxes are those leaving through the circumferential boundary. The numerical procedure adopted in this work is found to be effective and may be relied on to simulate coupled turbulent combustion-radiation in fired furnaces. (paper)
Drift-kinetic simulations of axisymmetric plasma transport at the edge of a divertor tokamak
Dorf, M.; Dorr, M.; Ghosh, D.; Hittinger, J.; Lee, W.; Cohen, R.
2017-10-01
Eulerian kinetic calculations are presented for the axisymmetric cross-separatrix transport of plasma at the edge of a tokamak. The simulations are performed with a high-order finite-volume code COGENT that solves the full-F drift-kinetic equation for the ion species including the effects of fully-nonlinear Fokker-Plank ion-ion collisions. The ion kinetic response is coupled to two-dimensional self-consistent electrostatic potential variations, which are obtained from the vorticity equation with the isothermal fluid electron model. The paper also presents recent progress toward the full-edge turbulence code. The slab-geometry 5D version has recently become available and is successfully verified in simulations of the collisionless drift-wave instability. Work performed for USDOE, at LLNL under contract DE-AC52-07NA27344.
International Nuclear Information System (INIS)
Laurence, D.
1997-01-01
This paper is an introduction course in modelling turbulent thermohydraulics, aimed at computational fluid dynamics users. No specific knowledge other than the Navier Stokes equations is required beforehand. Chapter I (which those who are not beginners can skip) provides basic ideas on turbulence physics and is taken up in a textbook prepared by the teaching team of the ENPC (Benque, Viollet). Chapter II describes turbulent viscosity type modelling and the 2k-ε two equations model. It provides details of the channel flow case and the boundary conditions. Chapter III describes the 'standard' (R ij -ε) Reynolds tensions transport model and introduces more recent models called 'feasible'. A second paper deals with heat transfer and the effects of gravity, and returns to the Reynolds stress transport model. (author)
Flow and Noise Characteristics of Centrifugal Fan under Different Stall Conditions
Directory of Open Access Journals (Sweden)
Lei Zhang
2014-01-01
Full Text Available An implicit, time-accurate 3D Reynolds-averaged Navier-Stokes (RANS solver is used to simulate the rotating stall phenomenon in a centrifugal fan. The goal of the present work is to shed light on the flow field and particularly the aerodynamic noise at different stall conditions. Aerodynamic characteristics, frequency domain characteristics, and the contours of sound power level under two different stall conditions are discussed in this paper. The results show that, with the decrease of valve opening, the amplitude of full pressure and flow fluctuations tends to be larger and the stall frequency remains the same. The flow field analysis indicates that the area occupied by stall cells expands with the decrease of flow rate. The noise calculation based on the simulation underlines the role of vortex noise after the occurrence of rotating stall, showing that the high noise area rotates along with the stall cell in the circumferential direction.
DYNSTALL: Subroutine package with a dynamic stall model
Energy Technology Data Exchange (ETDEWEB)
Bjoerck, Anders [Aeronautical Research Inst. of Sweden, Bromma (Sweden)
2001-03-01
A subroutine package, called DYNSTALL, for the calculation of 2D unsteady airfoil aerodynamics is described. The subroutines are written in FORTRAN. DYNSTALL is basically an implementation of the Beddoes-Leishman dynamic stall model. This model is a semi-empirical model for dynamic stall. It includes, however, also models for attached flow unsteady aerodynamics. It is complete in the sense that it treats attached flow as well as separated flow. Semi-empirical means that the model relies on empirically determined constants. Semi because the constants are constants in equations with some physical interpretation. It requires the input of 2D airfoil aerodynamic data via tables as function of angle of attack. The method is intended for use in an aeroelastic code with the aerodynamics solved by blade/element method. DYNSTALL was written to work for any 2D angles of attack relative to the airfoil, e.g. flow from the rear of an airfoil.
Axisymmetric Magnetic Mirror Fusion-Fission Hybrid
Energy Technology Data Exchange (ETDEWEB)
Moir, R. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martovetsky, N. N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Molvik, A. W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ryutov, D. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simonen, T. C. [Univ. of California, Berkeley, CA (United States)
2011-05-13
The achieved performance of the gas dynamic trap version of magnetic mirrors and today’s technology we believe are sufficient with modest further efforts for a neutron source for material testing (Q=P_{fusion}/P_{input}~0.1). The performance needed for commercial power production requires considerable further advances to achieve the necessary high Q>>10. An early application of the mirror, requiring intermediate performance and intermediate values of Q~1 are the hybrid applications. The Axisymmetric Mirror has a number of attractive features as a driver for a fusion-fission hybrid system: geometrical simplicity, inherently steady-state operation, and the presence of the natural divertors in the form of end tanks. This level of physics performance has the virtue of low risk and only modest R&D needed and its simplicity promises economy advantages. Operation at Q~1 allows for relatively low electron temperatures, in the range of 4 keV, for the DT injection energy ~ 80 keV. A simple mirror with the plasma diameter of 1 m and mirror-to-mirror length of 35 m is discussed. Simple circular superconducting coils are based on today’s technology. The positive ion neutral beams are similar to existing units but designed for steady state. A brief qualitative discussion of three groups of physics issues is presented: axial heat loss, MHD stability in the axisymmetric geometry, microstability of sloshing ions. Burning fission reactor wastes by fissioning actinides (transuranics: Pu, Np, Am, Cm, .. or just minor actinides: Np, Am, Cm, …) in the hybrid will multiply fusion’s energy by a factor of ~10 or more and diminish the Q needed to less than 1 to overcome the cost of recirculating power for good economics. The economic value of destroying actinides by fissioning is rather low based on either the cost of long-term storage or even deep geologic disposal so most of the revenues of hybrids will come from electrical power. Hybrids that obtain revenues from
bessel functions for axisymmetric elasticity problems of the elastic
African Journals Online (AJOL)
HOD
. ) ( ) r. (. ) ( ). The governing partial differential equation for axisymmetric elasticity problems are the strain- displacement equations, the differential equations of equilibrium and the material constitutive laws, subject to the displacement and ...
Syed, S. A.; Chiappetta, L. M.
1985-01-01
A methodological evaluation for two-finite differencing schemes for computer-aided gas turbine design is presented. The two computational schemes include; a Bounded Skewed Finite Differencing Scheme (BSUDS); and a Quadratic Upwind Differencing Scheme (QSDS). In the evaluation, the derivations of the schemes were incorporated into two-dimensional and three-dimensional versions of the Teaching Axisymmetric Characteristics Heuristically (TEACH) computer code. Assessments were made according to performance criteria for the solution of problems of turbulent, laminar, and coannular turbulent flow. The specific performance criteria used in the evaluation were simplicity, accuracy, and computational economy. It is found that the BSUDS scheme performed better with respect to the criteria than the QUDS. Some of the reasons for the more successful performance BSUDS are discussed.
The influence of turbulence on the aero-elastic instability of wind turbines
DEFF Research Database (Denmark)
Zhang, Zili; Nielsen, Søren R.K.
2014-01-01
calibrated to the NREL 5 MW baseline wind turbine. Aeroelastic stability of the wind turbine system has been evaluated for various values of the rated generator torque, the rated rotational speed of the rotor, the mean wind speed and the turbulence intensity. Critical turbulence intensity, at which the wind...... turbine shifts from a stable state into an instable state, is determined in different cases. Results show that turbulence intensity has significant influence on the aeroelastic stability of high-performance wind turbines operating close to stall, and the stability of the wind turbine might be changed due...
Konrath, Robert; Geisler, Reinhard; Otter, Dirk; Philipp, Florian; Ehlers, Hauke; Agocs, Janos; Quest, Jürgen
2015-01-01
Within the framework of the EU project ESWIRP the Particle Image Velocimetry (PIV) using high-speed camera and laser has been used to measure the turbulent flow in the wake of a stalled aircraft wing. The measurements took place on the Common Research Model (CRM) provided by NASA in the pressurized cryogenic European Transonic Wind tunnel (ETW). A specific cryo-PIV system has been used and adapted for using high-speed PIV components under the cryogenic conditions of the wind tunnel faci...
Departures from Axisymmetric Balance Dynamics during Secondary Eyewall Formation
2014-10-01
tangential wind tendencies of the mesoscale integration with those diagnosed as the axisymmetric balanced response of a vortex subject to diabatic ...the mesoscale integration with those diagnosed as the axisymmetric balanced response of a vortex subject to diabatic and tangential momentum forcing...secondary circulation will develop to oppose the forcing of diabatic heating and/or friction. After the seminal work of Eliassen (1951), a number of
Computational study of axisymmetric modes in noncircular cross section tokamaks
International Nuclear Information System (INIS)
Johnson, J.L.; Chance, M.S.; Greene, J.M.; Grimm, R.C.; Jardin, S.C.; Kerner, W.; Manickam, J.; Weimer, K.E.
1976-09-01
A major computational program to investigate the MHD equilibrium, stability, and nonlinear evolution properties of realistic tokamak configurations is proceeding. Preliminary application is made to the Princeton PDX device. Both axisymmetric (n = 0) modes and kink (n = 1) modes are found; the growth rates depend sensitively on the configuration. A study of the nonlinear evolution of axisymmetric modes in such a device shows that flux conservation in the vacuum region can limit their growth
Study and Control of a Radial Vaned Diffuser Stall
Directory of Open Access Journals (Sweden)
Aurélien Marsan
2012-01-01
Full Text Available The aim of the present study is to evaluate the efficiency of a boundary layer suction technique in case of a centrifugal compressor stage in order to extend its stable operating range. First, an analysis of the flow pattern within the radial vaned diffuser is presented. It highlights the stall of the diffuser vanes when reaching a low massflow. A boundary layer separation in the hub-suction side corner grows when decreasing the massflow from the nominal operating point to the surge and finally leads to a massive stall. An aspiration strategy is investigated in order to control the stall. The suction slot is put in the vicinity of the saddle that originates the main separating skin-friction line, identified thanks to the analysis of the skin-friction pattern. Several aspiration massflow rates are tested, and two different modelings of the aspiration are evaluated. Finally, an efficient control is reached with a removal of only 0,1% of the global massflow and leads—from a steady-state calculations point of view—to an increase by 40% of the compressor operating range extent.
Vorticity Transport on a Flexible Wing in Stall Flutter
Akkala, James; Buchholz, James; Farnsworth, John; McLaughlin, Thomas
2014-11-01
The circulation budget within dynamic stall vortices was investigated on a flexible NACA 0018 wing model of aspect ratio 6 undergoing stall flutter. The wing had an initial angle of attack of 6 degrees, Reynolds number of 1 . 5 ×105 and large-amplitude, primarily torsional, limit cycle oscillations were observed at a reduced frequency of k = πfc / U = 0 . 1 . Phase-locked stereo PIV measurements were obtained at multiple chordwise planes around the 62.5% and 75% spanwise locations to characterize the flow field within thin volumetric regions over the suction surface. Transient surface pressure measurements were used to estimate boundary vorticity flux. Recent analyses on plunging and rotating wings indicates that the magnitude of the pressure-gradient-driven boundary flux of secondary vorticity is a significant fraction of the magnitude of the convective flux from the separated leading-edge shear layer, suggesting that the secondary vorticity plays a significant role in regulating the strength of the primary vortex. This phenomenon is examined in the present case, and the physical mechanisms governing the growth and evolution of the dynamic stall vortices are explored. This work was supported by the Air Force Office of Scientific Research through the Flow Interactions and Control Program monitored by Dr. Douglas Smith, and through the 2014 AFOSR/ASEE Summer Faculty Fellowship Program (JA and JB).
DEFF Research Database (Denmark)
Nielsen, Mogens Peter; Shui, Wan; Johansson, Jens
2011-01-01
term with stresses depending linearly on the strain rates. This term takes into account the transfer of linear momentum from one part of the fluid to another. Besides there is another term, which takes into account the transfer of angular momentum. Thus the model implies a new definition of turbulence...
Energy Technology Data Exchange (ETDEWEB)
Talbot, L.; Cheng, R.K. [Lawrence Berkeley Laboratory, CA (United States)
1993-12-01
Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.
Rotational Motion of Axisymmetric Marangoni Swimmers
Rothstein, Jonathan; Uvanovic, Nick
2017-11-01
A series of experiments will be presented investigating the motion of millimeter-sized particles on the surface of water. The particles were partially coated with ethanol and carefully placed on a water interface in a series of Petri dishes with different diameters. High speed particle motion was driven by strong surface tension gradients as the ethanol slowly diffuses from the particles into the water resulting in a Marangoni flow. The velocity and acceleration of the particles where measured. In addition to straight line motion, the presence of the bounding walls of the circular Petri dish was found to induce an asymmetric, rotational motion of the axisymmetric Marangoni swimmers. The rotation rate and radius of curvature was found to be a function of the size of the Petri dish and the curvature of the air-water interface near the edge of the dish. For large Petri dishes or small particles, rotation motion was observed far from the bounding walls. In these cases, the symmetry break appears to be the result of the onset of votex shedding. Finally, multiple spherical particles were observed to undergo assembly driven by capillary forces followed by explosive disassembly.
Prediction of dynamic loads and induced vibrations in stall
Energy Technology Data Exchange (ETDEWEB)
Thirstrup Petersen, J.; Aagaard Madsen, H. [Risoe National Lab. (Denmark); Bjoerck, A. [Aeronautical Research Inst. of Sweden (Sweden); Enevoldsen, P. [Bonus Energy A/S (Denmark); Oeye, S. [The Technical Univ. of Denmark (Denmark); Ganander, H. [Teknikgruppen AB (Sweden); Winkelaar, D. [Netherlands Energy Research Foundation (Netherlands)
1998-05-01
Results from research in an EC Joule-III project and from national projects are presented. The objectives are improvement of design methods for stall regulated wind turbines with emphasis on stall induced vibrations and dynamic stall. The primary concern is limitation of the edgewise vibrations in the fundamental blade natural mode shape, which have caused trouble on modern wind turbines of approximate size 500 kW nominal power and 40 m rotor diameter. A theoretical study of quasi-steady aerodynamics confirms that the vibrations are driven basically by energy supplied from the aerodynamic forces during stalled operation. This energy exchange is equivalent to negative aerodynamic damping. The theoretical approach identifies the main parameters controlling the phenomenon. These parameters describe the steady and the dynamic airfoil characteristics, the overall aerodynamic layout of the blade, e.g. chord length and twist, the structural properties of the blade, e.g. structural damping and properties controlling the resulting vibration direction. Furthermore, full aeroelastic calculations and comparison with measurements show that the properties of the supporting structure, i.e. the main shaft, the nacelle and the tower, are important, as the global vibration of the rotor on its support may exchange energy with the blade vibration, when the blade natural frequency is close to one of the frequencies of the coupled rotor tilt-yaw mode shapes, usually denoted the global rotor whirl frequencies. It is confirmed that the influence of changing the primary design parameters can be determined by use of qualified aeroelastic calculations. Presented design guidelines therefore build on both the simple quasi-steady models, which can be used for the preliminary choice of the design variables mentioned above, and on full aeroelastic calculations. The aeroelastic calculations refine the design basis and should be used for choosing the final design variables and for final
Parametric analyses for synthetic jet control on separation and stall over rotor airfoil
Directory of Open Access Journals (Sweden)
Zhao Guoqing
2014-10-01
Full Text Available Numerical simulations are performed to investigate the effects of synthetic jet control on separation and stall over rotor airfoils. The preconditioned and unsteady Reynolds-averaged Navier–Stokes equations coupled with a k − ω shear stream transport turbulence model are employed to accomplish the flowfield simulation of rotor airfoils under jet control. Additionally, a velocity boundary condition modeled by a sinusoidal function is developed to fulfill the perturbation effect of periodic jets. The validity of the present CFD procedure is evaluated by the simulated results of an isolated synthetic jet and the jet control case for airfoil NACA0015. Then, parametric analyses are conducted specifically for an OA213 rotor airfoil to investigate the effects of jet parameters (forcing frequency, jet location and momentum coefficient, jet direction, and distribution of jet arrays on the control effect of the aerodynamic characteristics of a rotor airfoil. Preliminary results indicate that the efficiency of jet control can be improved with specific frequencies (the best lift-drag ratio at F+ = 2.0 and jet angles (40° or 75° when the jets are located near the separation point of the rotor airfoil. Furthermore, as a result of a suitable combination of jet arrays, the lift coefficient of the airfoil can be improved by nearly 100%, and the corresponding drag coefficient decreased by 26.5% in comparison with the single point control case.
Wider stall space affects behavior, lesion scores, and productivity of gestating sows.
Salak-Johnson, J L; DeDecker, A E; Levitin, H A; McGarry, B M
2015-10-01
Limited space allowance within the standard gestation stall is an important welfare concern because it restricts the ability of the sow to make postural adjustments and hinders her ability to perform natural behaviors. Therefore, we evaluated the impacts of increasing stall space and/or providing sows the freedom to access a small pen area on sow well-being using multiple welfare metrics. A total of 96 primi- and multiparous crossbred sows were randomly assigned in groups of 4 sows/treatment across 8 replicates to 1 of 3 stall treatments (TRT): standard stall (CTL; dimensions: 61 by 216 cm), width-adjustable stall (flex stall [FLX]; dimensions: adjustable width of 56 to 79 cm by 216 cm), or an individual walk-in/lock-in stall with access to a small communal open-pen area at the rear of the stall (free-access stall [FAS]; dimensions: 69 by 226 cm). Lesion scores, behavior, and immune and productivity traits were measured at various gestational days throughout the study. Total lesion scores were greatest for sows in FAS and least for sows in FLX ( pregnancy progressed, lesion scores increased among sows in CTL ( postural behaviors and sham chew behavior were affected by TRT ( changes in postural behaviors, lesion severity scores, and other sow traits. Moreover, compromised welfare measures found among sows in various stall environments may be partly attributed to the specific constraints of each stall system such as restricted stall space in CTL, insufficient floor space in the open-pen area of the FAS system, and gate design of the FLX (e.g., direction of bars and feeder space). These results also indicate that parity and gestational day are additional factors that may exacerbate the effects of restricted stall space or insufficient pen space, further compromising sow well-being.
Free-stream turbulence effects on the flow around an S809 wind turbine airfoil
Energy Technology Data Exchange (ETDEWEB)
Torres-Nieves, Sheilla; Maldonado, Victor; Lebron, Jose [Rensselaer Polytechnic Institute, Troy, NY (United States); Kang, Hyung-Suk [United States Naval Academy, Annapolis, MD (United States); Meneveau, Charles [Johns Hopkins Univ., Baltimore, MD (United States); Castillo, Luciano [Texas Tech Univ., Lubbock, TX (United States)
2012-07-01
Two-dimensional Particle Image Velocimetry (2-D PIV) measurements were performed to study the effect of free-stream turbulence on the flow around a smooth and rough surface airfoil, specifically under stall conditions. A 0.25-m chord model with an S809 profile, common for horizontal-axis wind turbine applications, was tested at a wind tunnel speed of 10 m/s, resulting in Reynolds numbers based on the chord of Re{sub c} {approx} 182,000 and turbulence intensity levels of up to 6.14%. Results indicate that when the flow is fully attached, turbulence significantly decreases aerodynamic efficiency (from L/D {approx} 4.894 to L/D {approx} 0.908). On the contrary, when the flow is mostly stalled, the effect is reversed and aerodynamic performance is slightly improved (from L/D {approx} 1.696 to L/D {approx} 1.787). Analysis of the mean flow over the suction surface shows that, contrary to what is expected, free-stream turbulence is actually advancing separation, particularly when the turbulent scales in the free-stream are of the same order as the chord. This is a result of the complex dynamics between the boundary layer scales and the free-stream turbulence length scales when relatively high levels of active-grid generated turbulence are present. (orig.)
Numerical investigation of turbulence models for shock separated boundary-layer flows
Viegas, J. R.; Coakley, T. J.
1977-01-01
Numerical solutions of the Navier-Stokes equations for shock separated turbulent boundary-layer flows are presented. Several turbulence models are investigated and assessed by their ability to predict the physical phenomena associated with two extensively documented experiments. The experimental flows consist of shock-wave boundary-layer interactions in axisymmetric internal and external geometries at Mach numbers of 1.5 and 7, respectively. Algebraic and one-equation eddy viscosity models are used to describe the Reynolds shear stress. Calculated values of skin friction, wall pressure distribution, kinetic energy of turbulence, and heat transfer are compared with measurements.
New Classes of Quasi-Axisymmetric Configurations
International Nuclear Information System (INIS)
Ku, L. P.; Garabedian, P. R.
2005-01-01
Stellarators with quasi-axially symmetric (QA) magnetic field structure have attracted considerable interests in recent years. They are expected to have good particle orbits found in tokamaks and may be made passively stable to MHD perturbations found in conventional stellarators. A proof-of-principle device, the National Compact Stellarator Experiment (NCSX), is being designed and operation is expected to begin in 2008 [1]. In parallel, a reactor studies project (ARIES-CS) is being conducted to examine critical issues of compact stellarators as power producing reactors [2]. It is under the auspices of this project that we made an extensive survey of the aspect ratio-rotational transform space to look for regions endowed with particularly interesting characteristics. We report in this paper the progress made in identifying new configurations with unique features of different emphasis that may be of interest from the standpoint of both power producing reactors and near term physics experiments. NCSX is a highly optimized configuration in both physics and coil properties. The baseline plasma was chosen for its low aspect ratio (A equal 4.5), low non-axisymmetric residues in the magnetic spectrum (<2.5%) and good MHD stability characteristics. The coils were designed with sufficient room to accommodate the scrape-off, vacuum vessel, diagnostics, etc., and with enough flexibility to accommodate a wide variety of operating scenarios. However, the configuration space is vast and complex. Possibilities exist that there are other configurations also having good properties. To look beyond NCSX, we asked ourselves: are there other configurations more attractive and what additional properties will make a quasi-axisymmetric stellarator (QAS) more attractive? We note that recent experimental results from W7AS and LHD showed that, while magnetohydrodynamic (MHD) activities apparently existed in these devices, the plasmas nevertheless were quiescent and remained quasi
Analytic modeling of axisymmetric disruption halo currents
International Nuclear Information System (INIS)
Humphreys, D.A.; Kellman, A.G.
1999-01-01
Currents which can flow in plasma facing components during disruptions pose a challenge to the design of next generation tokamaks. Induced toroidal eddy currents and both induced and conducted poloidal ''halo'' currents can produce design-limiting electromagnetic loads. While induction of toroidal and poloidal currents in passive structures is a well-understood phenomenon, the driving terms and scalings for poloidal currents flowing on open field lines during disruptions are less well established. A model of halo current evolution is presented in which the current is induced in the halo by decay of the plasma current and change in enclosed toroidal flux while being convected into the halo from the core by plasma motion. Fundamental physical processes and scalings are described in a simplified analytic version of the model. The peak axisymmetric halo current is found to depend on halo and core plasma characteristics during the current quench, including machine and plasma dimensions, resistivities, safety factor, and vertical stability growth rate. Two extreme regimes in poloidal halo current amplitude are identified depending on the minimum halo safety factor reached during the disruption. A 'type I' disruption is characterized by a minimum safety factor that remains relatively high (typically 2 - 3, comparable to the predisruption safety factor), and a relatively low poloidal halo current. A 'type II' disruption is characterized by a minimum safety factor comparable to unity and a relatively high poloidal halo current. Model predictions for these two regimes are found to agree well with halo current measurements from vertical displacement event disruptions in DIII-D [T. S. Taylor, K. H. Burrell, D. R. Baker, G. L. Jackson, R. J. La Haye, M. A. Mahdavi, R. Prater, T. C. Simonen, and A. D. Turnbull, open-quotes Results from the DIII-D Scientific Research Program,close quotes in Proceedings of the 17th IAEA Fusion Energy Conference, Yokohama, 1998, to be published in
Seetharam, H. C.; Wentz, W. H., Jr.
1975-01-01
Results were given on experimental studies of flow separation and stalling on a two-dimensional GA(W)-1 17 percent thick airfoil with an extended Fowler flap. Experimental velocity profiles obtained from a five tube probe survey with optimum flap gap and overlap setting (flap at 40 deg) are shown at various stations above, below, and behind the airfoil/flap combination for various angles of attack. The typical zones of steady flow, intermittent turbulence, and large scale turbulence were obtained from a hot wire anemometer survey and are depicted graphically for an angle of attack of 12.5 deg. Local skin friction distributions were obtained and are given for various angles of attack. Computer plots of the boundary layer profiles are shown for the case of the flap at 40 deg. Static pressure contours are also given. A GA(W)-2 section model was fabricated with 30 percent Fowler flaps and with pressure tabs.
The role of zonal flows in disc gravito-turbulence
Vanon, R.
2018-04-01
The work presented here focuses on the role of zonal flows in the self-sustenance of gravito-turbulence in accretion discs. The numerical analysis is conducted using a bespoke pseudo-spectral code in fully compressible, non-linear conditions. The disc in question, which is modelled using the shearing sheet approximation, is assumed to be self-gravitating, viscous, and thermally diffusive; a constant cooling timescale is also considered. Zonal flows are found to emerge at the onset of gravito-turbulence and they remain closely linked to the turbulent state. A cycle of zonal flow formation and destruction is established, mediated by a slow mode instability (which allows zonal flows to grow) and a non-axisymmetric instability (which disrupts the zonal flow), which is found to repeat numerous times. It is in fact the disruptive action of the non-axisymmetric instability to form new leading and trailing shearing waves, allowing energy to be extracted from the background flow and ensuring the self-sustenance of the gravito-turbulent regime.
An axisymmetric non-hydrostatic model for double-diffusive water systems
Hilgersom, Koen; Zijlema, Marcel; van de Giesen, Nick
2018-02-01
The three-dimensional (3-D) modelling of water systems involving double-diffusive processes is challenging due to the large computation times required to solve the flow and transport of constituents. In 3-D systems that approach axisymmetry around a central location, computation times can be reduced by applying a 2-D axisymmetric model set-up. This article applies the Reynolds-averaged Navier-Stokes equations described in cylindrical coordinates and integrates them to guarantee mass and momentum conservation. The discretized equations are presented in a way that a Cartesian finite-volume model can be easily extended to the developed framework, which is demonstrated by the implementation into a non-hydrostatic free-surface flow model. This model employs temperature- and salinity-dependent densities, molecular diffusivities, and kinematic viscosity. One quantitative case study, based on an analytical solution derived for the radial expansion of a dense water layer, and two qualitative case studies demonstrate a good behaviour of the model for seepage inflows with contrasting salinities and temperatures. Four case studies with respect to double-diffusive processes in a stratified water body demonstrate that turbulent flows are not yet correctly modelled near the interfaces and that an advanced turbulence model is required.
Large scale organized motion in isothermal swirling flow through an axisymmetric dump combustor
International Nuclear Information System (INIS)
Daddis, E.D.; Lieber, B.B.; Nejad, A.S.; Ahmed, S.A.
1990-01-01
This paper reports on velocity measurements that were obtained in a model axisymmetric dump combustor which included a coaxial swirler by means of a two component laser Doppler velocimeter (LDV) at a Reynolds number of 125,000. The frequency spectrum of the velocity fluctuations is obtained via the Fast Fourier Transform (FFT). The velocity field downstream of the dump plane is characterized, in addition to background turbulence, by large scale organized structures which are manifested as sharp spikes of the spectrum at relatively low frequencies. The decomposition of velocity disturbances to background turbulence and large scale structures can then be achieved through spectral methods which include matched filters and spectral factorization. These methods are demonstrated here for axial velocity obtained one step height downstream of the dump plane. Subsequent analysis of the various velocity disturbances shows that large scale structures account for about 25% of the apparent normal stresses at this particular location. Naturally, large scale structures evolve spatially and their contribution to the apparent stress tensor may vary depending on the location in the flow field
Precautions against axial fan stall in reactor building to Tianwan NPP
International Nuclear Information System (INIS)
Liu Chunlong; Pei Junmin
2011-01-01
The paper introduces the mechanism and harm of rotating stall of axial fans, analyzes the necessity for prevention against axial fan stall in reactor building of Tianwan NPP, introduces the precautions, and then makes an assessment on anti-stall effect of flow separators. It can provide reference for model-selection or reconstruction of similar fans in power stations, and for operation and maintenance of axial fans. (authors)
Comparison of Different Stall Conditions in Axial Flow Compressor Using Analytic Wavelet Transform
Directory of Open Access Journals (Sweden)
Arshad Ali
2017-12-01
Full Text Available The rotating stall inception data analysis using Analytic Wavelet Transform (AWT in a low-speed axial compressor was presented in the authors’ previous studies [1], [2]. These studies focused on the detection of instability inception in an axial flow compressor when it enters into the instability regime due to the modal type of stall perturbation. In this paper, the effectiveness of AWT is further studied by applying it under different testing conditions. In order to examine the results of AWT on highly sampled data, at first, the stall data were acquired at a high sampling frequency and the results were compared with the conventional filtered signals. Secondly, the AWT analysis of stall data was carried out for the condition when compressor experienced a spike type rotating stall disturbance. The stall inception information obtained from the AWT analysis was then compared with the commonly used stall detection techniques. The results show that AWT is equally beneficial for the diagnostic of compressor instability regardless of the data sampling rate and represents an outstanding ability to detect stall disturbance irrespective of the type of stall precursor, i.e. the modal wave or spike.
Enhancing BEM simulations of a stalled wind turbine using a 3D correction model
Bangga, Galih; Hutomo, Go; Syawitri, Taurista; Kusumadewi, Tri; Oktavia, Winda; Sabila, Ahmad; Setiadi, Herlambang; Faisal, Muhamad; Hendranata, Yongki; Lastomo, Dwi; Putra, Louis; Kristiadi, Stefanus; Bumi, Ilmi
2018-03-01
Nowadays wind turbine rotors are usually employed with pitch control mechanisms to avoid deep stall conditions. Despite that, wind turbines often operate under pitch fault situation causing massive flow separation to occur. Pure Blade Element Momentum (BEM) approaches are not designed for this situation and inaccurate load predictions are already expected. In the present studies, BEM predictions are improved through the inclusion of a stall delay model for a wind turbine rotor operating under pitch fault situation of -2.3° towards stall. The accuracy of the stall delay model is assessed by comparing the results with available Computational Fluid Dynamics (CFD) simulations data.
Numerical simulation of the RISOe1-airfoil dynamic stall
Energy Technology Data Exchange (ETDEWEB)
Bertagnolio, F.; Soerensen, N. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)
1997-12-31
In this paper we are concerned with the numerical computation of the dynamic stall that occur in the viscous flowfield over an airfoil. These results are compared to experimental data that were obtained with the new designed RISOe1-airfoil, both for a motionless airfoil and for a pitching motion. Moreover, we present some numerical computations of the plunging and lead-lag motions. We also investigate the possibility of using the pitching motion to simulate the plunging and lead-lag situations. (au)
El departamento musical Disney : las Silly Symphonies y Carl Stalling
Duarte del Moral, Marina
2014-01-01
La historia de la animación tiene un nombre propio: Walt Disney. Gracias a su experimentación en diversos campos de esta materia, Disney consigue desarrollar la animación y su universo de una forma perseverante y continua, adaptándose a los diversos cambios producidos desde el nacimiento de ésta, reinventando una y otra vez el sector y añadiendo su toque mágico a la personalidad de cada personaje y cada obra. En este camino no está solo gracias al trabajo de genios como Carl Stalling, que apo...
FBH1 Catalyzes Regression of Stalled Replication Forks
DEFF Research Database (Denmark)
Fugger, Kasper; Mistrik, Martin; Neelsen, Kai J
2015-01-01
DNA replication fork perturbation is a major challenge to the maintenance of genome integrity. It has been suggested that processing of stalled forks might involve fork regression, in which the fork reverses and the two nascent DNA strands anneal. Here, we show that FBH1 catalyzes regression......, is required for early phosphorylation of ATM substrates such as CHK2 and CtIP as well as hyperphosphorylation of RPA. These phosphorylations occur prior to apparent DNA double-strand break formation. Furthermore, FBH1-dependent signaling promotes checkpoint control and preserves genome integrity. We propose...
Graphical Turbulence Guidance - Composite
National Oceanic and Atmospheric Administration, Department of Commerce — Forecast turbulence hazards identified by the Graphical Turbulence Guidance algorithm. The Graphical Turbulence Guidance product depicts mid-level and upper-level...
Magnetohydrodynamic Turbulence
Montgomery, David C.
2004-01-01
Magnetohydrodynamic (MHD) turbulence theory is modeled on neutral fluid (Navier-Stokes) turbulence theory, but with some important differences. There have been essentially no repeatable laboratory MHD experiments wherein the boundary conditions could be controlled or varied and a full set of diagnostics implemented. The equations of MHD are convincingly derivable only in the limit of small ratio of collision mean-free-paths to macroscopic length scales, an inequality that often goes the other way for magnetofluids of interest. Finally, accurate information on the MHD transport coefficients-and thus, the Reynolds-like numbers that order magnetofluid behavior-is largely lacking; indeed, the algebraic expressions used for such ingredients as the viscous stress tensor are often little more than wishful borrowing from fluid mechanics. The one accurate thing that has been done extensively and well is to solve the (strongly nonlinear) MHD equations numerically, usually in the presence of rectangular periodic boundary conditions, and then hope for the best when drawing inferences from the computations for those astrophysical and geophysical MHD systems for which some indisputably turbulent detailed data are available, such as the solar wind or solar prominences. This has led to what is perhaps the first field of physics for which computer simulations are regarded as more central to validating conclusions than is any kind of measurement. Things have evolved in this way due to a mixture of the inevitable and the bureaucratic, but that is the way it is, and those of us who want to work on the subject have to live with it. It is the only game in town, and theories that have promised more-often on the basis of some alleged ``instability''-have turned out to be illusory.
Energy Technology Data Exchange (ETDEWEB)
Bjoerck, A. [FFA, The Aeronautical Research Institute of Sweden, Bromma (Sweden)
1997-08-01
For calculations of the dynamics of wind turbines the inclusion of a dynamic stall model is necessary in order to obtain reliable results at high winds. For blade vibrations in the lead-lag motion the velocity relative to the blade will vary in time. In the present paper modifications to the Beddoes-Leishman model is presented in order to improve the model for calculations of cases with a varying relative velocity. Comparisons with measurement are also shown and the influence on the calculated aerodynamic damping by the modifications are investigated. (au)
Ingestive behavior of lambs confined in individual and group stalls.
Filho, A Eustáquio; Carvalho, G G P; Pires, A J V; Silva, R R; Santos, P E F; Murta, R M; Pereira, F M
2014-02-01
The experiment was conducted to evaluate the ingestive behavior of lambs confined in individual and group stalls. We used thirty-four lambs in their growing phase, aged an average of three months, with mean initial live weight of 17.8±5.2 kg. They were allotted in a completely randomized design with 24 animals kept in individual stalls and 10 animals confined as a group. The experiment lasted for a total of 74 days, and the first 14 days were dedicated to the animals' adaption to the management, facilities and diets. The data collection period lasted 60 days, divided into three 20-d periods for the behavior evaluation. The animals were subjected to five days of visual observation during the experiment period, by the quantification of 24 h a day, with evaluations on the 15th day of each period and an interim evaluation consisting of two consecutive days on the 30th and 31st day of the experiment. The animals confined as a group consumed less (pbehavior.
A.C. Plasma Anemometer for Axial Compressor Stall Warning
Matlis, Eric; Cameron, Joshua; Morris, Scott; Corke, Thomas
2007-11-01
Compressor sections of turbo jet engines are subject to stall and surge as a result of flow instabilities that occur upstream of the compressor rotor. One of the instability modes that contributes to compressor surge is the so-called `spike' mode of stall inception. It has been shown that this mode of instability can be predicted before onset by performing real-time statistical auto-correlation measurements of the blade-passing pressure characteristic at the mid-chord location of the rotor. These measurements are performed with pressure sensors or hot-wires that are too fragile for a full-scale compressor. We have developed a sensor that can survive the vibration and temperatures of a full-scale rig while providing the bandwidth necessary to resolve the blade passage signature required by this coherence technique. This sensor, called the Plasma Anemometer, provides high-bandwith point measurements of velocity or pressure fluctuations with unparalleled mechanical robustness and resistance to vibration and thermal effects.
Turbulence modification and multiphase turbulence transport modeling
International Nuclear Information System (INIS)
Besnard, D.C.; Kataoka, I.; Serizawa, A.
1991-01-01
It is shown here that in the derivation of turbulence transport models for multiphase flows, terms naturally appear that can be interpreted as related to turbulence modification of one field by the other. We obtain two such terms, one suggesting turbulence enhancement due to instabilities in two-phase flow, the second one showing turbulence damping due to the presence of the other field, both in gas-particle and gas-liquid cases
Evaluating Classroom Interaction with the iPad®: An Updated Stalling's Tool
MacKinnon, Gregory; Schep, Lourens; Borden, Lisa Lunney; Murray-Orr, Anne; Orr, Jeff; MacKinnon, Paula
2016-01-01
A large study of classrooms in the Caribbean context necessitated the use of a validated classroom observation tool. In practice, the paper-version Stalling's instrument (Stallings & Kaskowitz 1974) presented specific challenges with respect to (a) facile data collection and (b) qualitative observations of classrooms. In response to these…
Simulation of Entropy Generation under Stall Conditions in a Centrifugal Fan
Directory of Open Access Journals (Sweden)
Lei Zhang
2014-06-01
Full Text Available Rotating stalls are generally the first instability met in turbomachinery, before surges. This 3D phenomenon is characterized by one or more stalled flow cells which rotate at a fraction of the impeller speed. The goal of the present work is to shed some light on the entropy generation in a centrifugal fan under rotating stall conditions. A numerical simulation of entropy generation is carried out with the ANSYS Fluent software which solves the Navier-Stokes equations and user defined function (UDF. The entropy generation characteristics in the centrifugal fan for five typical conditions are presented and discussed, involving the design condition, conditions on occurrence and development of stall inception, the rotating stall conditions with two throttle coefficients. The results show that the entropy generation increases after the occurrence of stall inception. The high entropy generation areas move along the circumferential and axial directions, and finally merge into one stall cell. The entropy generation rate during circumferential propagation of the stall cell is also discussed, showing that the entropy generation history is similar to sine curves in impeller and volute, and the volute tongue has a great influence on entropy generation in the centrifugal fan.
Statistical turbulence theory and turbulence phenomenology
Herring, J. R.
1973-01-01
The application of deductive turbulence theory for validity determination of turbulence phenomenology at the level of second-order, single-point moments is considered. Particular emphasis is placed on the phenomenological formula relating the dissipation to the turbulence energy and the Rotta-type formula for the return to isotropy. Methods which deal directly with most or all the scales of motion explicitly are reviewed briefly. The statistical theory of turbulence is presented as an expansion about randomness. Two concepts are involved: (1) a modeling of the turbulence as nearly multipoint Gaussian, and (2) a simultaneous introduction of a generalized eddy viscosity operator.
On the variational approach to axisymmetric magnetohydrodynamic equilibria
International Nuclear Information System (INIS)
Andreussi, T.; Pegoraro, F.
2008-01-01
The variational formulation of the axisymmetric magnetohydrodynamic equilibrium equations with plasma flows is addressed and a more comprehensive method is presented that allows, in particular, for open boundary conditions and discontinuous (shock) solutions. A numerical procedure based on the variational formulation is described and a validation test for an open conical geometry, including also hydrodynamic shocks, is investigated.
Non-Radial Oscillations in an Axisymmetric MHD Incompressible Fluid
Indian Academy of Sciences (India)
2016-01-27
Jan 27, 2016 ... ... oscillations by perturbing the MHD equilibrium solution for an axisymmetric incompressible fluid. The fluid motion and the magnetic field are expressed as scalars , , and , respectively. In deriving the exact solution for the equilibrium state, we neglect the contribution due to meridional circulation.
Axisymmetric Lattice Boltzmann Model of Droplet Impact on Solid Surfaces
Dalgamoni, Hussein; Yong, Xin
2017-11-01
Droplet impact is a ubiquitous fluid phenomena encountered in scientific and engineering applications such as ink-jet printing, coating, electronics manufacturing, and many others. It is of great technological importance to understand the detailed dynamics of drop impact on various surfaces. The lattice Boltzmann method (LBM) emerges as an efficient method for modeling complex fluid systems involving rapidly evolving fluid-fluid and fluid-solid interfaces with complex geometries. In this work, we model droplet impact on flat solid substrates with well-defined wetting behavior using a two-phase axisymmetric LBM with high density and viscosity contrasts. We extend the two-dimensional Lee and Liu model to capture axisymmetric effect in the normal impact. First we compare the 2D axisymmetric results with the 2D and 3D results reported by Lee and Liu to probe the effect of axisymmetric terms. Then, we explore the effects of Weber number, Ohnesorge number, and droplet-surface equilibrium contact angle on the impact. The dynamic contact angle and spreading factor of the droplet during impact are investigated to qualitatively characterize the impact dynamics.
Modelling axisymmetric cod-ends made of different mesh types
DEFF Research Database (Denmark)
Priour, D.; Herrmann, Bent; O'Neill, F.G.
2009-01-01
Cod-ends are the rearmost part of trawl fishing gears. They collect the catch, and for many important species it is where fish selection takes place. Generally speaking they are axisymmetric, and their shape is influenced by the catch volume, the mesh shape, and the material characteristics. The ...
Non-Axisymmetric Shaping of Tokamaks Preserving Quasi-Axisymmetry
Energy Technology Data Exchange (ETDEWEB)
Long-Poe Ku and Allen H. Boozer
2009-06-05
If quasi-axisymmetry is preserved, non-axisymmetric shaping can be used to design tokamaks that do not require current drive, are resilient to disruptions, and have robust plasma stability without feedback. Suggestions for addressing the critical issues of tokamaks can only be validated when presented with sufficient specificity that validating experiments can be designed. The purpose of this paper is provide that specificity for non-axisymmetric shaping. To our knowledge, no other suggestions for the solution of a number of tokamak issues, such as disruptions, have reached this level of specificity. Sequences of three-field-period quasi-axisymmetric plasmas are studied. These sequences address the questions: (1) What can be achieved at various levels of non-axisymmetric shaping? (2) What simplifications to the coils can be achieved by going to a larger aspect ratio? (3) What range of shaping can be achieved in a single experimental facility? The sequences of plasmas found in this study provide a set of interesting and potentially important configurations.
Potential formation in axisymmetrized tandem mirror GAMMA 10
International Nuclear Information System (INIS)
Cho, T.; Ichimura, M.; Inutake, M.
1985-01-01
The paper reports experimental results on potential formation and end plugging in the axisymmetrized tandem mirror GAMMA 10. The plugging at both ends has been achieved by a combination of neutral beams and gyrotrons. The presence of a plug potential with a thermal barrier in an axisymmetric mirror has been confirmed by direct measurement of the axial potential profile. Enhancement of axial particle confinement has been observed during the end plugging. Non-ambipolar radial transport has been greatly reduced in the axisymmetrized magnetic configuration. The potentials measured by beam probes and end loss analysers are 0.7, 0.4 and 1.1 kV in the central, barrier and plug regions, respectively. Strong end plugging is observed when the central-cell density is higher than the densities in the plug and the barrier, and the plug density remains higher than the barrier density. The plug electron temperature is higher than the central temperature. Hot electrons forming a football-shaped profile have been stably produced in the axisymmetric mirror. The beta value and the fraction of the hot electrons reach up to 5% and 0.8, respectively. Central-cell ion-cyclotron resonance heating can sustain a stable plasma with higher density and ion temperature when resonance surfaces exist in both the anchor and the central cells. (author)
Turbulence Modeling Validation, Testing, and Development
Bardina, J. E.; Huang, P. G.; Coakley, T. J.
1997-01-01
The primary objective of this work is to provide accurate numerical solutions for selected flow fields and to compare and evaluate the performance of selected turbulence models with experimental results. Four popular turbulence models have been tested and validated against experimental data often turbulent flows. The models are: (1) the two-equation k-epsilon model of Wilcox, (2) the two-equation k-epsilon model of Launder and Sharma, (3) the two-equation k-omega/k-epsilon SST model of Menter, and (4) the one-equation model of Spalart and Allmaras. The flows investigated are five free shear flows consisting of a mixing layer, a round jet, a plane jet, a plane wake, and a compressible mixing layer; and five boundary layer flows consisting of an incompressible flat plate, a Mach 5 adiabatic flat plate, a separated boundary layer, an axisymmetric shock-wave/boundary layer interaction, and an RAE 2822 transonic airfoil. The experimental data for these flows are well established and have been extensively used in model developments. The results are shown in the following four sections: Part A describes the equations of motion and boundary conditions; Part B describes the model equations, constants, parameters, boundary conditions, and numerical implementation; and Parts C and D describe the experimental data and the performance of the models in the free-shear flows and the boundary layer flows, respectively.
Optimal parameters for the FFA-Beddoes dynamic stall model
Energy Technology Data Exchange (ETDEWEB)
Bjoerck, A.; Mert, M. [FFA, The Aeronautical Research Institute of Sweden, Bromma (Sweden); Madsen, H.A. [Risoe National Lab., Roskilde (Denmark)
1999-03-01
Unsteady aerodynamic effects, like dynamic stall, must be considered in calculation of dynamic forces for wind turbines. Models incorporated in aero-elastic programs are of semi-empirical nature. Resulting aerodynamic forces therefore depend on values used for the semi-empiricial parameters. In this paper a study of finding appropriate parameters to use with the Beddoes-Leishman model is discussed. Minimisation of the `tracking error` between results from 2D wind tunnel tests and simulation with the model is used to find optimum values for the parameters. The resulting optimum parameters show a large variation from case to case. Using these different sets of optimum parameters in the calculation of blade vibrations, give rise to quite different predictions of aerodynamic damping which is discussed. (au)
Proposed Chevron Tengiz venture stalls amid Soviet political squabble
International Nuclear Information System (INIS)
Anon.
1991-01-01
This paper reports on the status of foreign investment in Soviet oil and gas joint ventures which has reached a critical juncture. Just as the U.S. is considering granting most favored nation trade status to the U.S.S.R., the joint venture petroleum deal seen as the litmus test for such deals-Chevron Corp.'s proposed addition of supergiant Tengiz oil field to its Caspian Sea joint venture-has stalled amid controversy. Unconfirmed reports from Soviet officials and other foreign joint venture participants in the U.S.S.R. have Chevron pulling out of the long negotiated, multibillion dollar project after the Soviets rejected the company's terms. Chevron, however, insists the project is still alive
New Higher-Order Boundary-Layer Equations for Laminar and Turbulent Flow Past Axisymmetric Bodies.
1982-04-01
regions is postulated (e.g. Baker & Launder 0974), Kwon & Pletcher 0979)). The distributions of km and vt are then described by two separate empirical...nsdrcio s hr egho umre oy influence the upstream region of the still attached boundary layer. However, we will test the performance of our parabolic...press). O.K. KWON AND R.H. PLETCHER (1979), Prediction o6 incomptezsible sepatated bowidaty tayer icZudbig vtscous-invi.cid intvzaction, Trans. ASME, J
1979-10-01
total pressures and the model static pressures were converted to a d-c electrical signal by one of two Scanivalve ®, Druck Model PDCR22, 0- to l0...31 3d 33 3+ 3’:, 3~ 3~ ~d ~ 4 4 b 4 h ,.,.9 50 0 , 0 0 + 0 . 0 9 9 n . 0 1 4 0.019 0 , 0 ~ 4 0 . 0 2 9 C . 0 3 ~ ~ . 0 3...1 ° 5 8 5 £ 02 0 .322 - 1 ° 2 5 b £ O~ 0,3~2 - 9 . f i ~ 3 £ t)l 0 ,36~ - 7 , b P ~ £ 01 0 . 3d ~ - 5 , ~ 3 9 £ Ol 0 , ~ 0 ~ - ~ ° 5 1
Stereoscopic PIV and POD applied to the far turbulent axisymmetric jet
DEFF Research Database (Denmark)
Wähnström, Maja; George, William K.; Meyer, Knud Erik
2006-01-01
here applies stereoscopic PIV to the far field of the same jet in which the mode-2 phenomenon was first noticed. Indeed azimuthal mode-1 is maximal if all three velocity components are considered, so the new findings are confirmed. This work also addresses a number of outstanding issues from all...
POD applied to stereo PIV data of the far turbulent axisymmetric jet
DEFF Research Database (Denmark)
Wänström, Maja; George, William K.; Meyer, Knud Erik
positions of 60, 70 and 100 diameters using stereoscopic PIV. In addition to the standard PIV processing, a novel application of the snapshot POD was used to filter the data in preparation for the classical POD analysis. The two-point Reynolds stress tensor was reconstructed from the dominant snapshot POD...
Experimental Investigation of Premixed Turbulent Hydrocarbon/Air Bunsen Flames
Tamadonfar, Parsa
Through the influence of turbulence, the front of a premixed turbulent flame is subjected to the motions of eddies that leads to an increase in the flame surface area, and the term flame wrinkling is commonly used to describe it. If it is assumed that the flame front would continue to burn locally unaffected by the stretch, then the total turbulent burning velocity is expected to increase proportionally to the increase in the flame surface area caused by wrinkling. When the turbulence intensity is high enough such that the stretch due to hydrodynamics and flame curvature would influence the local premixed laminar burning velocity, then the actual laminar burning velocity (that is, flamelet consumption velocity) should reflect the influence of stretch. To address this issue, obtaining the knowledge of instantaneous flame front structures, flame brush characteristics, and burning velocities of premixed turbulent flames is necessary. Two axisymmetric Bunsen-type burners were used to produce premixed turbulent flames, and three optical measurement techniques were utilized: Particle image velocimetry to measure the turbulence statistics; Rayleigh scattering method to measure the temperature fields of premixed turbulent flames, and Mie scattering method to visualize the flame front contours of premixed turbulent flames. Three hydrocarbons (methane, ethane, and propane) were used as the fuel in the experiments. The turbulence was generated using different perforated plates mounted upstream of the burner exit. A series of comprehensive parameters including the thermal flame front thickness, characteristic flame height, mean flame brush thickness, mean volume of the turbulent flame region, two-dimensional flame front curvature, local flame front angle, two-dimensional flame surface density, wrinkled flame surface area, turbulent burning velocity, mean flamelet consumption velocity, mean turbulent flame stretch factor, mean turbulent Markstein length and number, and mean
Gounko, Yu. P.; Mazhul, I. I.
2017-05-01
The work presents the results of an analysis of starting conditions for some frontal axisymmetric inlets of internal compression tested at freestream Mach numbers M = 3-8.4 in the hot-shot wind tunnels based at Khristianovich Institute of Theoretical and Applied Mechanics (ITAM). The results of these inlets test are compared with the data of numerical computations of inviscid, laminar, and turbulent flows carried out by the pseudo-unsteady method. There were determined the inlet throat areas limiting either with regard to the inlet starting or with regard to providing the maximally possible degree of geometric compression of the inlet-captured supersonic airstream at its deceleration in the already started inlet. Reshaping of computed flow patterns in the inlets depending on the variation of the minimal cross section of the inlet internal duct is analyzed.
Analysis of Low Speed Stall Aerodynamics of a Swept Wing with Laminar Flow Glove
Bui, Trong T.
2014-01-01
Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a GIII aircraft's swept wing modified with a laminar-flow wing glove. The stall aerodynamics of the gloved wing were analyzed and compared with the unmodified wing for the flight speed of 120 knots and altitude of 2300 ft above mean sea level (MSL). The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First American Institute of Aeronautics and Astronautics (AIAA) CFD High-Lift Prediction Workshop. It was found that the Star-CCM+ CFD code can produce results that are within the scattering of other CFD codes considered at the workshop. In particular, the Star-CCM+ CFD code was able to predict wing stall for the AIAA wing-body geometry to within 1 degree of angle of attack as compared to benchmark wind-tunnel test data. Current results show that the addition of the laminar-flow wing glove causes the gloved wing to stall much earlier than the unmodified wing. Furthermore, the gloved wing has a different stall characteristic than the clean wing, with no sharp lift drop-off at stall for the gloved wing.
Analysis of Low-Speed Stall Aerodynamics of a Swept Wing with Laminar-Flow Glove
Bui, Trong T.
2014-01-01
Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a GIII aircraft's swept wing modified with a laminar-flow wing glove. The stall aerodynamics of the gloved wing were analyzed and compared with the unmodified wing for the flight speed of 120 knots and altitude of 2300 ft above mean sea level (MSL). The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First American Institute of Aeronautics and Astronautics (AIAA) CFD High-Lift Prediction Workshop. It was found that the Star-CCM+ CFD code can produce results that are within the scattering of other CFD codes considered at the workshop. In particular, the Star-CCM+ CFD code was able to predict wing stall for the AIAA wing-body geometry to within 1 degree of angle of attack as compared to benchmark wind-tunnel test data. Current results show that the addition of the laminar-flow wing glove causes the gloved wing to stall much earlier than the unmodified wing. Furthermore, the gloved wing has a different stall characteristic than the clean wing, with no sharp lift drop-off at stall for the gloved wing.
Investigating Stall Flutter using a DS model-An application for HAWTs
International Nuclear Information System (INIS)
Nichols, James; Haans, Wouter; Witcher, David; Attorni, Andrea
2014-01-01
As wind turbine blades become larger there is a tendency for the blade torsional stiffness to reduce, producing the possibility of dynamic instability at moderate windspeeds. While linearised methods can assess the envelope of allowable blade properties for avoiding classical flutter with attached flow aerodynamics, wind turbine aerofoils can experience stalled flow. Therefore, it is necessary to explore the possible effects of stall-flutter on blade stability. This paper aims to address methods for judging the stability of blade designs during both attached flow and stalled flow behaviour. This paper covers the following areas: i) Attached flow model A Beddoes-Leishman indicial model is presented and the choice of coefficients is explained in the context of Theodorsen's theory for flat-plate aerofoils and experimental results by Beddoes and Leishman. Special attention is given to the differing dynamic behaviour of the pitching moment due to flapping motion, pitching motion and dynamically varying inflow. (ii) Classical flutter analysis The time domain attached flow model is verified against a linear flutter analysis by comparing time domain results for a 3D model of a representative multi-megawatt turbine blade, varying the position of the centre of mass along the chord. The results show agreement to within 6% for a range of flutter onset speeds. (iii) Dynamic stall model On entering the stalled region, damping of torsional motion of an aerofoil section can become negative. A dynamic stall model which encompasses the effects of trailing edge separation and leading edge vortex detachment is presented and validated against published experimental data. (iv) Stall flutter The resulting time domain model is used in simulations validating the prediction of reduced flutter onset for stalled aerofoils. Representative stalled conditions for a multi-megawatt wind turbine blade are investigated to assess the possible reduction in flutter speed. A maximum reduction of 17
Kim, Daejoong
2009-11-10
The stabilization characteristics of premixed flames in an axisymmetric curved-wall jet burner have been experimentally investigated. This burner utilized the Coanda effect on top of a burner tip. The initially spherical burner tip was modified to a flat tip and a concave tip in order to improve flame stabilization by providing enough space for flow recirculation above the burner tip region. The flow characteristics have been visualized using a schlieren technique. Small-scale turbulence structure has been observed mainly in the interaction jet region (located downstream of the recirculation region) for large jet velocity (Reynolds number >11,500). An appreciable amount of air entrainment was exhibited from the half-angle of the jet spread, approximately 20. The averaged planar laser-induced fluorescence images of the flames for this large velocity demonstrated that the strong signal of OH radicals, representing reaction zones, existed in the recirculation zone, while it was weak in the interaction jet region due to intermittency and local extinction by the generation of small scale turbulence. The OH radical signals strengthened again in the merged jet region (downstream of the interaction jet region). In extreme cases of Reynolds number over 19,000, a unique flame exhibiting OH radicals only in the recirculation zone was observed for the concave tip. The flame stabilization has been mapped by varying jet velocity and equivalence ratio, and the result showed that the stabilization characteristics were improved appreciably from the initial spherical tip design, especially for rich mixtures. The flow fields measured by a laser Doppler velocimetry confirmed the existence of recirculation zone and the expansion of the recirculation zones for the modified tips. The temperature profile measured by a coherent anti-Stokes Raman spectroscopy exhibited an intermittent nature, especially near the recirculation zone.
Analysis of Low-Speed Stall Aerodynamics of a Business Jets Wing Using STAR-CCM+
Bui, Trong
2016-01-01
Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted: to study the low-speed stall aerodynamics of a GIII aircrafts swept wing modified with (1) a laminar-flow wing glove, or (2) a seamless flap. The stall aerodynamics of these two different wing configurations were analyzed and compared with the unmodified baseline wing for low-speed flight. The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First AIAA CFD High-Lift Prediction Workshop.
ON THE GRAVITATIONAL STABILITY OF GRAVITO-TURBULENT ACCRETION DISKS
Energy Technology Data Exchange (ETDEWEB)
Lin, Min-Kai; Kratter, Kaitlin M., E-mail: minkailin@email.arizona.edu [Department of Astronomy and Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)
2016-06-20
Low mass, self-gravitating accretion disks admit quasi-steady, “gravito-turbulent” states in which cooling balances turbulent viscous heating. However, numerical simulations show that gravito-turbulence cannot be sustained beyond dynamical timescales when the cooling rate or corresponding turbulent viscosity is too large. The result is disk fragmentation. We motivate and quantify an interpretation of disk fragmentation as the inability to maintain gravito-turbulence due to formal secondary instabilities driven by: (1) cooling, which reduces pressure support; and/or (2) viscosity, which reduces rotational support. We analyze the axisymmetric gravitational stability of viscous, non-adiabatic accretion disks with internal heating, external irradiation, and cooling in the shearing box approximation. We consider parameterized cooling functions in 2D and 3D disks, as well as radiative diffusion in 3D. We show that generally there is no critical cooling rate/viscosity below which the disk is formally stable, although interesting limits appear for unstable modes with lengthscales on the order of the disk thickness. We apply this new linear theory to protoplanetary disks subject to gravito-turbulence modeled as an effective viscosity, and cooling regulated by dust opacity. We find that viscosity renders the disk beyond ∼60 au dynamically unstable on radial lengthscales a few times the local disk thickness. This is coincident with the empirical condition for disk fragmentation based on a maximum sustainable stress. We suggest turbulent stresses can play an active role in realistic disk fragmentation by removing rotational stabilization against self-gravity, and that the observed transition in behavior from gravito-turbulent to fragmenting may reflect instability of the gravito-turbulent state itself.
Calibration of Axisymmetric and Quasi-1D Solvers for High Enthalpy Nozzles
Papadopoulos, P. E.; Gochberg, L. A.; Tokarcik-Polsky, S.; Venkatapathy, E.; Deiwert, G. S.; Edwards, Thomas A. (Technical Monitor)
1994-01-01
The proposed paper will present a numerical investigation of the flow characteristics and boundary layer development in the nozzles of high enthalpy shock tunnel facilities used for hypersonic propulsion testing. The computed flow will be validated against existing experimental data. Pitot pressure data obtained at the entrance of the test cabin will be used to validate the numerical simulations. It is necessary to accurately model the facility nozzles in order to characterize the test article flow conditions. Initially the axisymmetric nozzle flow will be computed using a Navier Stokes solver for a range of reservoir conditions. The calculated solutions will be compared and calibrated against available experimental data from the DLR HEG piston-driven shock tunnel and the 16-inch shock tunnel at NASA Ames Research Center. The Reynolds number is assumed to be high enough at the throat that the boundary layer flow is assumed turbulent at this point downstream. The real gas affects will be examined. In high Mach number facilities the boundary layer is thick. Attempts will be made to correlate the boundary layer displacement thickness. The displacement thickness correlation will be used to calibrate the quasi-1D codes NENZF and LSENS in order to provide fast and efficient tools of characterizing the facility nozzles. The calibrated quasi-1D codes will be implemented to study the effects of chemistry and the flow condition variations at the test section due to small variations in the driver gas conditions.
Axisymmetric instability in a noncircular tokamak: experiment and theory
International Nuclear Information System (INIS)
Lipschultz, B.; Prager, S.C.; Todd, A.M.M.; Delucia, J.
1979-09-01
The stability of dee, inverse-dee and square cross section plasmas to axisymmetric modes has been investigated experimentally in Tokapole II, a tokamak with a four-null poloidal divertor. Experimental results are closely compared with predictions of two numerical stability codes -- the PEST code (ideal MHD, linear stability) adapted to tokapole geometry and a code which follows the nonlinear evolution of shapes similar to tokapole equilibria. Experimentally, the square is vertically stable and both dee's unstable to a vertical nonrigid axisymmetric shift. The central magnetic axis displacement grows exponentially with a growth time approximately 10 3 poloidal Alfven times plasma time. Proper initial positioning of the plasma on the midplane allows passive feedback to nonlinearly restore vertical motion to a small stable oscillation. Experimental poloidal flux plots are produced directly from internal magnetic probe measurements
Stability of flow over axisymmetric bodies with porous suction strips
Nayfeh, A. H.; Reed, H. L.
1982-01-01
Linear triple deck, closed form solutions for mean-flow quantities are developed for axisymmetric incompressible flow past a body with porous strips. The solutions account for upstream influence and are linear superpositions of the flow past the body without suction plus the perturbations due to the suction strips. Flow past the suctionless body is calculated using the Transition Analysis Program System, and a simple linear optimization scheme to determine number, spacing, and mass flow rate through the strips on an axisymmetric body is developed using the linear, triple-deck, closed-form solutions. The theory is demonstrated by predicting optimal strip distributions, and the effect of various adverse pressure-gradient situations on stability is studied.
Small Engine Technology (SET) - Task 14 Axisymmetric Engine Simulation Environment
Miller, Max J.
1999-01-01
As part of the NPSS (Numerical Propulsion Simulation System) project, NASA Lewis has a goal of developing an U.S. industry standard for an axisymmetric engine simulation environment. In this program, AlliedSignal Engines (AE) contributed to this goal by evaluating the ENG20 software and developing support tools. ENG20 is a NASA developed axisymmetric engine simulation tool. The project was divided into six subtasks which are summarized below: Evaluate the capabilities of the ENG20 code using an existing test case to see how this procedure can capture the component interactions for a full engine. Link AE's compressor and turbine axisymmetric streamline curvature codes (UD0300M and TAPS) with ENG20, which will provide the necessary boundary conditions for an ENG20 engine simulation. Evaluate GE's Global Data System (GDS), attempt to use GDS to do the linking of codes described in Subtask 2 above. Use a turbofan engine test case to evaluate various aspects of the system, including the linkage of UD0300M and TAPS with ENG20 and the GE data storage system. Also, compare the solution results with cycle deck results, axisymmetric solutions (UD0300M and TAPS), and test data to determine the accuracy of the solution. Evaluate the order of accuracy and the convergence time for the solution. Provide a monthly status report and a final formal report documenting AE's evaluation of ENG20. Provide the developed interfaces that link UD0300M and TAPS with ENG20, to NASA. The interface that links UD0300M with ENG20 will be compatible with the industr,, version of UD0300M.
Modeling axisymmetric flows dynamics of films, jets, and drops
Middleman, Stanley
1995-01-01
This concise book is intended to fulfill two purposes: to provide an important supplement to classic texts by carrying fluid dynamics students on into the realm of free boundary flows; and to demonstrate the art of mathematical modeling based on knowledge, intuition, and observation. In the authors words, the overall goal is make the complex simple, without losing the essence--the virtue--of the complexity.Modeling Axisymmetric Flows: Dynamics of Films, Jets, and Drops is the first book to cover the topics of axisymmetric laminar flows; free-boundary flows; and dynamics of drops, jets, and films. The text also features comparisons of models to experiments, and it includes a large selection of problems at the end of each chapter.Key Features* Contains problems at the end of each chapter* Compares real-world experimental data to theory* Provides one of the first comprehensive examinations of axisymmetric laminar flows, free-boundary flows, and dynamics of drops, jets, and films* Includes development of basic eq...
Energy and energy flux in axisymmetric slow and fast waves
Moreels, M. G.; Van Doorsselaere, T.; Grant, S. D. T.; Jess, D. B.; Goossens, M.
2015-06-01
Aims: We aim to calculate the kinetic, magnetic, thermal, and total energy densities and the flux of energy in axisymmetric sausage modes. The resulting equations should contain as few parameters as possible to facilitate applicability for different observations. Methods: The background equilibrium is a one-dimensional cylindrical flux tube model with a piecewise constant radial density profile. This enables us to use linearised magnetohydrodynamic equations to calculate the energy densities and the flux of energy for axisymmetric sausage modes. Results: The equations used to calculate the energy densities and the flux of energy in axisymmetric sausage modes depend on the radius of the flux tube, the equilibrium sound and Alfvén speeds, the density of the plasma, the period and phase speed of the wave, and the radial or longitudinal components of the Lagrangian displacement at the flux tube boundary. Approximate relations for limiting cases of propagating slow and fast sausage modes are also obtained. We also obtained the dispersive first-order correction term to the phase speed for both the fundamental slow body mode under coronal conditions and the slow surface mode under photospheric conditions. Appendix A is available in electronic form at http://www.aanda.org
Three-Dimensional Electromagnetic High Frequency Axisymmetric Cavity Scars.
Energy Technology Data Exchange (ETDEWEB)
Warne, Larry Kevin; Jorgenson, Roy Eberhardt
2014-10-01
This report examines the localization of high frequency electromagnetic fi elds in three-dimensional axisymmetric cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This report treats both the case where the opposing sides, or mirrors, are convex, where there are no interior foci, and the case where they are concave, leading to interior foci. The scalar problem is treated fi rst but the approximations required to treat the vector fi eld components are also examined. Particular att ention is focused on the normalization through the electromagnetic energy theorem. Both projections of the fi eld along the scarred orbit as well as point statistics are examined. Statistical comparisons are m ade with a numerical calculation of the scars run with an axisymmetric simulation. This axisymmetric cas eformstheoppositeextreme(wherethetwomirror radii at each end of the ray orbit are equal) from the two -dimensional solution examined previously (where one mirror radius is vastly di ff erent from the other). The enhancement of the fi eldontheorbitaxiscanbe larger here than in the two-dimensional case. Intentionally Left Blank
High Reynolds Number Turbulence
National Research Council Canada - National Science Library
Smits, Alexander J
2007-01-01
The objectives of the grant were to provide a systematic study to fill the gap between existing research on low Reynolds number turbulent flows to the kinds of turbulent flows encountered on full-scale vehicles...
National Research Council Canada - National Science Library
Drikakis, D; Geurts, Bernard
2002-01-01
... discretization 3 A test-case: turbulent channel flow 4 Conclusions 75 75 82 93 98 4 Analysis and control of errors in the numerical simulation of turbulence Sandip Ghosal 1 Introduction 2 Source...
Stalling HIV through social marketing: prospects in Pakistan.
Husain, Sara; Shaikh, Babar T
2005-07-01
Over the last two decades HIV/AIDS has evolved from a series of interesting case-reports to a growing epidemic that threatens the entire world. It is feared to cause devastation among large pockets of populations and may roll back more than thirty years of public health achievements. This killer disease has been more amenable to behavioral change than by provision of curative services and attempts are being made to educate the public about this threat. Various techniques of promotion have been tried through out the world including television dramas/soaps, mass media and school curricula. Social marketing is an evolving strategy used to influence human behavior and choices. By using the principles of marketing and promoting behavior as a product, social marketers attempt to understand the dynamics of human behaviour and devise messages and products to change, modify, accept or reject unsafe behaviors or practices. Thus, social marketers provide an effective force to combat the spread of HIV and may serve to be invaluable allies in health promotion efforts. In a complex and diversified cultural milieu of Pakistan, social marketing can have a significant impact on health determinants and the conditions that will facilitate the adoption of health-oriented behaviors and practices. This paper gives an account of the elements needed for the success of a health promotion strategy adopted in a developing country and makes a case for social marketing to be adopted as the lead strategy for stalling HIV/AIDS in Pakistan.
Initial design of a stall-controlled wind turbine rotor
Energy Technology Data Exchange (ETDEWEB)
Nygaard, T.A. [Inst. for Energiteknikk, Kjeller (Norway)
1997-08-01
A model intended for initial design of stall-controlled wind turbine rotors is described. The user specifies relative radial position of an arbitrary number of airfoil sections, referring to a data file containing lift-and drag curves. The data file is on the same format as used in the commercial blade-element code BLADES-/2/, where lift- and drag coefficients are interpolated from tables as function of Reynolds number, relative thickness and angle of attack. The user can set constraints on a selection of the following: Maximum power; Maximum thrust in operation; Maximum root bending moment in operation; Extreme root bending moment, parked rotor; Tip speed; Upper and lower bounds on optimisation variables. The optimisation variables can be selected from: Blade radius; Rotational speed; Chord and twist at an arbitrary number of radial positions. The user can chose linear chord distribution and a hyperbola-like twist distribution to ensure smooth planform and twist, or cubic spline interpolation for one or both. The aerodynamic model is based on classical strip theory with Prandtl tip loss correction, supplemented by empirical data for high induction factors. (EG)
Cow preference and usage of free stalls compared with an open pack area.
Fregonesi, J A; von Keyserlingk, M A G; Weary, D M
2009-11-01
Free-stall housing systems are designed to provide a comfortable and hygienic lying area, but some aspects of stall design may restrict usage by cows. The aim of this study was to compare free-stall housing with a comparable lying area (open pack) without stall partitions. We predicted that cows would spend more time lying down and standing in the bedded area when provided access to an open pack than when in free stalls. We also predicted that cows would spend less time standing outside of the lying area and less time perching with the front 2 hooves in the lying area when using the open pack. Groups (n = 8) of 12 cows each were provided access to either the open pack or stalls. After a 7-d adaptation period, each group was tested sequentially in the 2 treatments for 3 d each. This no-choice phase was followed by an 8-d choice phase during which cows had simultaneous access to both treatments. During the no-choice phase, cows spent more time lying down (13.03 +/- 0.24 vs. 12.48 +/- 0.24 h/d) and standing with all 4 hooves in the bedded area (0.96 +/- 0.12 vs. 0.41 +/- 0.12 h/d) of the open pack than in the stalls. During the choice phase, cows spent more time lying down (7.20 +/- 0.29 vs. 5.86 +/- 0.29 h/d) and standing with all 4 hooves in the bedded area (0.58 +/- 0.07 vs. 0.12 +/- 0.07 h/d) of the open pack than in the stalls. In both the no-choice (1.66 +/- 0.24 vs. 0.55 +/- 0.24 h/d) and choice (0.55 +/- 0.07 vs. 0.29 +/- 0.07 h/d) phases, cows spent more time standing with just 2 hooves in the stalls than in the open pack. In conclusion, cows spent more time lying and standing with all 4 hooves in the bedded open pack than in the stalls. Additionally, cows spent more time standing in the alley and standing with just the front 2 hooves on the bedding in the stalls than in the bedded open pack; increased standing time on wet concrete is a known risk factor for lameness.
DEFF Research Database (Denmark)
Brand, Arno J.; Peinke, Joachim; Mann, Jakob
2011-01-01
The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed.......The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed....
Dynamic stall characterization using modal analysis of phase-averaged pressure distributions
Harms, Tanner; Nikoueeyan, Pourya; Naughton, Jonathan
2017-11-01
Dynamic stall characterization by means of surface pressure measurements can simplify the time and cost associated with experimental investigation of unsteady airfoil aerodynamics. A unique test capability has been developed at University of Wyoming over the past few years that allows for time and cost efficient measurement of dynamic stall. A variety of rotorcraft and wind turbine airfoils have been tested under a variety of pitch oscillation conditions resulting in a range of dynamic stall behavior. Formation, development and separation of different flow structures are responsible for the complex aerodynamic loading behavior experienced during dynamic stall. These structures have unique signatures on the pressure distribution over the airfoil. This work investigates the statistical behavior of phase-averaged pressure distribution for different types of dynamic stall by means of modal analysis. The use of different modes to identify specific flow structures is being investigated. The use of these modes for different types of dynamic stall can provide a new approach for understanding and categorizing these flows. This work uses airfoil data acquired under Army contract W911W60160C-0021, DOE Grant DE-SC0001261, and a gift from BP Alternative Energy North America, Inc.
High-Speed Experiments on Combustion-Powered Actuation for Dynamic Stall Suppression
Matalanis, Claude; Bowles, Patrick; Lorber, Peter; Crittenden, Thomas; Glezer, Ari; Schaeffler, Norman; Min, Byung-Young; Jee, Solkeun; Kuczek, Andrzej; Wake, Brian
2016-01-01
This work documents high-speed wind tunnel experiments conducted on a pitching airfoil equipped with an array of combustion-powered actuators (COMPACT). The main objective of these experiments was to demonstrate the stall-suppression capability of COMPACT on a high-lift rotorcraft airfoil, the VR-12, at relevant Mach numbers. Through dynamic pressure measurements at the airfoil surface it was shown that COMPACT can positively affect the stall behavior of the VR-12 at Mach numbers up to 0.4. Static airfoil results demonstrated 25% and 50% increases in post-stall lift at Mach numbers of 0.4 and 0.3, respectively. Deep dynamic stall results showed cycle-averaged lift coefficient increases up to 11% at Mach 0.4. Furthermore, it was shown that these benefits could be achieved with relatively few pulses during down-stroke and with no need to pre-anticipate the stall event. The flow mechanisms responsible for stall suppression were investigated using particle image velocimetry.
Directory of Open Access Journals (Sweden)
Tegegn Dejene Toge
2015-01-01
Full Text Available The present paper is an attempt in understanding the stall inception mechanism in a low speed, contra rotating axial flow fan stage, using wavelet transforms. The rotors used in this study have relatively large tip gap (about 3% of the blade span and aspect ratio of 3. The study was carried out near stall and at stall mass flow conditions for different speed ratios of rotor-2 to rotor-1. Unsteady pressure data from the casing wall mounted sensors are used to understand the stall inception mechanism. The wavelet transform clearly indicates that stall inception occurs mainly through long length scale disturbances for both rotors. It also reveals that short length disturbances occur simultaneously or intermittently in the case of rotor-1. The analysis shows the presence of a strong modal disturbance with 25–80% of the rotor frequency in the case of rotor-1 at the stall mass flow for all the speed combinations studied. The most interesting thing observed in the present study is that the frequency amplitude of the disturbance level is very small for both rotors.
The role of zonal flows in the saturation of multi-scale gyrokinetic turbulence
Energy Technology Data Exchange (ETDEWEB)
Staebler, G. M.; Candy, J. [General Atomics, San Diego, California 92186 (United States); Howard, N. T. [Oak Ridge Institute for Science Education (ORISE), Oak Ridge, Tennessee 37831 (United States); Holland, C. [University of California San Diego, San Diego, California 92093 (United States)
2016-06-15
The 2D spectrum of the saturated electric potential from gyrokinetic turbulence simulations that include both ion and electron scales (multi-scale) in axisymmetric tokamak geometry is analyzed. The paradigm that the turbulence is saturated when the zonal (axisymmetic) ExB flow shearing rate competes with linear growth is shown to not apply to the electron scale turbulence. Instead, it is the mixing rate by the zonal ExB velocity spectrum with the turbulent distribution function that competes with linear growth. A model of this mechanism is shown to be able to capture the suppression of electron-scale turbulence by ion-scale turbulence and the threshold for the increase in electron scale turbulence when the ion-scale turbulence is reduced. The model computes the strength of the zonal flow velocity and the saturated potential spectrum from the linear growth rate spectrum. The model for the saturated electric potential spectrum is applied to a quasilinear transport model and shown to accurately reproduce the electron and ion energy fluxes of the non-linear gyrokinetic multi-scale simulations. The zonal flow mixing saturation model is also shown to reproduce the non-linear upshift in the critical temperature gradient caused by zonal flows in ion-scale gyrokinetic simulations.
Progress in turbulence research
International Nuclear Information System (INIS)
Bradshaw, P.
1990-01-01
Recent developments in experiments and eddy simulations, as an introduction to a discussion of turbulence modeling for engineers is reviewed. The most important advances in the last decade rely on computers: microcomputers to control laboratory experiments, especially for multidimensional imaging, and supercomputers to simulate turbulence. These basic studies in turbulence research are leading to genuine breakthroughs in prediction methods for engineers and earth scientists. The three main branches of turbulence research: experiments, simulations (numerically-accurate three-dimensional, time-dependent solutions of the Navier-Stokes equations, with any empiricism confined to the smallest eddies), and modeling (empirical closure of time-averaged equations for turbulent flow) are discussed. 33 refs
Exploration of turbulent optimization in stellarators & tokamaks
Mynick, H.; Pomphrey, N.; Xanthopoulos, P.; Lucia, M.
2012-03-01
A methodfootnotetextH.E. Mynick, N. Pomphrey, P. Xanthopoulos, Phys. Rev. Letters, 105, 095004 (2010).^,footnotetextH.E. Mynick, N. Pomphrey, P. Xanthopoulos, Phys. Plasmas, 18, 056101 (2011). recently developed for evolving toroidal configurations to ones with reduced turbulent transport, using the STELLOPT optimization codes and the GENE gyrokinetic code, is being applied and extended. The growing body of results has found that the effectiveness of the current proxy measure Qprox used by STELLOPT to estimate transport levels depends on the class of toroidal device considered. The present proxy works well for quasi-axisymmetric stellarators and tokamaks, modestly for quasi-helically symmetric designs, but not for the W7X quasi-omnigenous/quasi-isodynamic design. We are exploring the origin of this variation, and improving the dependence of the proxy on key geometric factors, extending the proxy to apply to transport channels other than the ITG turbulence it was originally developed for, and are also examining the relative effectiveness of different search algorithms. To help in these efforts, we have adapted STELLOPT to provide a new capability for mapping the topography of the cost function in the search space.
Superhydrophobic Drag Reduction in Various Turbulent Flows
Gose, James W.; Tuteja, Anish; Perlin, Marc; Ceccio, Steven L.
2017-11-01
Superhydrophobic surfaces (SHSs) have been studied exhaustively in laminar flow applications while interest in SHS drag reduction in turbulent flow applications has been increasing steadily. In this discussion, we will highlight recent advances of SHS applications in various high-Reynolds number flows. We will address the application of mechanically robust and scalable spray SHSs in three cases: fully-developed internal flow; a near-zero pressure gradient turbulent boundary layer; and an axisymmetric DARPA SUBOFF model. The model will be towed in the University of Michigan's Physical Model Basin. Experimental measurements of streamwise pressure drop and the near-wall flow via Particle Image Velocimetry and Laser Doppler Velocimetry will be discussed where applicable. Moreover, integral measurement of the total resistance of the SUBOFF model, with and without SHS application, will be examined. The SUBOFF model extends 2.6 m and is 0.3 m in diameter, and will be tested at water depths of three to six model diameters. Previous investigation of these SHSs have proven that skin-friction savings of 20% or more can be attained for friction Reynolds numbers greater than of 1,000. This project was carried out as part of the U.S. Office of Naval Research (ONR) MURI (Multidisciplinary University Research Initiatives) program (Grant No. N00014-12-1-0874) managed by Dr. Ki-Han Kim and led by Dr. Steven L. Ceccio.
Magnetohydrodynamic turbulence model
Hammer, James
2005-10-01
K-epsilon models find wide application as approximate models of fluid turbulence. The models couple equations for the turbulent kinetic energy and dissipation rate to the usual fluid equations, where the turbulence is driven by Reynolds stress or buoyancy source terms. We generalize to the case with magnetic forces in a Z-pinch geometry (azimuthal fields), using simple energy arguments to derive the turbulent source terms. The field is presumed strong enough that 3 dimensional twisting or bending of the field can be ignored, i.e. the flow is of the interchange type. The generalized source terms show the familiar correspondence between magnetic curvature and acceleration as drive terms for Rayleigh-Taylor and sausage instability. The source terms lead naturally to a modification of Ohm's law including a turbulent electric field that allows magnetic field to diffuse through material. The turbulent magnetic diffusion parallels a corresponding ohmic heating term in the equation for the turbulent kinetic energy.
Homogeneous turbulence dynamics
Sagaut, Pierre
2018-01-01
This book provides state-of-the-art results and theories in homogeneous turbulence, including anisotropy and compressibility effects with extension to quantum turbulence, magneto-hydodynamic turbulence and turbulence in non-newtonian fluids. Each chapter is devoted to a given type of interaction (strain, rotation, shear, etc.), and presents and compares experimental data, numerical results, analysis of the Reynolds stress budget equations and advanced multipoint spectral theories. The role of both linear and non-linear mechanisms is emphasized. The link between the statistical properties and the dynamics of coherent structures is also addressed. Despite its restriction to homogeneous turbulence, the book is of interest to all people working in turbulence, since the basic physical mechanisms which are present in all turbulent flows are explained. The reader will find a unified presentation of the results and a clear presentation of existing controversies. Special attention is given to bridge the results obta...
Thermal optical effect in axisymmetric structural laser resonator
Xu, Yonggen; Li, Yude
2012-02-01
In order to study the thermal optical effect (TOE) resulting from the axisymmetrical sources of thermal energy at the output mirror of CO 2 laser, the Heat Conduction Poisson Equation (HCPE) has been solved in the output mirror. Then the temperature distribution is given. The temperature variations will cause the surface distortion and the phase shift at the output mirror. Therefore, the output laser beam will be subject to thermal optical distortion and phase change. The numerical examples are to confirm our calculated results.
Axisymmetric tandem mirror stabilized by a magnetic limiter
International Nuclear Information System (INIS)
Kesner, J.; Post, R.S.; Lane, B.
1985-06-01
In order to stabilize MHD-like, fast growing m = 1 fluctuations in the central cell of a tandem mirror we propose the introduction of a magnetic limiter. The magnetic limiter would create a ring null in the magnetic field. Electrons which enter the null can stream azimuthally and thereby ''short-circuit'' m = 1 fluctuations. Some pressure could be maintained on the separatrix flux surface by locating the null on a local magnetic maxima or by axial plugging. This scheme introduces the possibility of a fully axisymmetric tandem mirror
A high-precision algorithm for axisymmetric flow
Directory of Open Access Journals (Sweden)
A. Gokhman
1995-01-01
Full Text Available We present a new algorithm for highly accurate computation of axisymmetric potential flow. The principal feature of the algorithm is the use of orthogonal curvilinear coordinates. These coordinates are used to write down the equations and to specify quadrilateral elements following the boundary. In particular, boundary conditions for the Stokes' stream-function are satisfied exactly. The velocity field is determined by differentiating the stream-function. We avoid the use of quadratures in the evaluation of Galerkin integrals, and instead use splining of the boundaries of elements to take the double integrals of the shape functions in closed form. This is very accurate and not time consuming.
Accuracy Improvement in Magnetic Field Modeling for an Axisymmetric Electromagnet
Ilin, Andrew V.; Chang-Diaz, Franklin R.; Gurieva, Yana L.; Il,in, Valery P.
2000-01-01
This paper examines the accuracy and calculation speed for the magnetic field computation in an axisymmetric electromagnet. Different numerical techniques, based on an adaptive nonuniform grid, high order finite difference approximations, and semi-analitical calculation of boundary conditions are considered. These techniques are being applied to the modeling of the Variable Specific Impulse Magnetoplasma Rocket. For high-accuracy calculations, a fourth-order scheme offers dramatic advantages over a second order scheme. For complex physical configurations of interest in plasma propulsion, a second-order scheme with nonuniform mesh gives the best results. Also, the relative advantages of various methods are described when the speed of computation is an important consideration.
Modelling Acoustic Wave Propagation in Axisymmetric Varying-Radius Waveguides
DEFF Research Database (Denmark)
Bæk, David; Willatzen, Morten
2008-01-01
A computationally fast and accurate model (a set of coupled ordinary differential equations) for fluid sound-wave propagation in infinite axisymmetric waveguides of varying radius is proposed. The model accounts for fluid heat conduction and fluid irrotational viscosity. The model problem is solved...... by expanding solutions in terms of cross-sectional eigenfunctions following Stevenson’s method. A transfer matrix can be easily constructed from simple model responses of a given waveguide and later used in computing the response to any complex wave input. Energy losses due to heat conduction and viscous...
Fusion-product transport in axisymmetric tokamaks: losses and thermalization
Energy Technology Data Exchange (ETDEWEB)
Hively, L.M.
1980-01-01
High-energy fusion-product losses from an axisymmetric tokamak plasma are studied. Prompt-escape loss fluxes (i.e. prior to slowing down) are calculated including the non-separable dependence of flux as a function of poloidal angle and local angle-of-incidence at the first wall. Fusion-product (fp) thermalization and heating are calculated assuming classical slowing down. The present analytical model describes fast ion orbits and their distribution function in realistic, high-..beta.., non-circular tokamak equilibria. First-orbit losses, trapping effects, and slowing-down drifts are also treated.
2015-06-01
pass turbo –fan engine sensor data to seek its deterioration modelling and prognostics capability. In futurity this will allow for achievement of...preventive maintenance for the TF34-100 jet engine to prevent engine compressor stalls for the A-10 aircraft. Due to their destructive nature, compressor...stalls are a significant concern in axial flow compressor jet engines. A compressor stall is caused by air approaching the compressor blades at an
An archival analysis of stall warning system effectiveness during airborne icing encounters
Maris, John Michael
An archival study was conducted to determine the influence of stall warning system performance on aircrew decision-making outcomes during airborne icing encounters. A Conservative Icing Response Bias (CIRB) model was developed to explain the historical variability in aircrew performance in the face of airframe icing. The model combined Bayes' Theorem with Signal Detection Theory (SDT) concepts to yield testable predictions that were evaluated using a Binary Logistic Regression (BLR) multivariate technique applied to two archives: the NASA Aviation Safety Reporting System (ASRS) incident database, and the National Transportation Safety Board (NTSB) accident databases, both covering the period January 1, 1988 to October 2, 2015. The CIRB model predicted that aircrew would experience more incorrect response outcomes in the face of missed stall warnings than with stall warning False Alarms. These predicted outcomes were observed at high significance levels in the final sample of 132 NASA/NTSB cases. The CIRB model had high sensitivity and specificity, and explained 71.5% (Nagelkerke R2) of the variance of aircrew decision-making outcomes during the icing encounters. The reliability and validity metrics derived from this study suggest indicate that the findings are generalizable to the population of U.S. registered turbine-powered aircraft. These findings suggest that icing-related stall events could be reduced if the incidence of stall warning Misses could be minimized. Observed stall warning Misses stemmed from three principal causes: aerodynamic icing effects, which reduced the stall angle-of-attack (AoA) to below the stall warning calibration threshold; tail stalls, which are not monitored by contemporary protection systems; and icing-induced system issues (such as frozen pitot tubes), which compromised stall warning system effectiveness and airframe envelope protections. Each of these sources of missed stall warnings could be addressed by Aerodynamic Performance
Stall Margin Improvement in a Centrifugal Compressor through Inducer Casing Treatment
Directory of Open Access Journals (Sweden)
V. V. N. K. Satish Koyyalamudi
2016-01-01
Full Text Available The increasing trend of high stage pressure ratio with increased aerodynamic loading has led to reduction in stable operating range of centrifugal compressors with stall and surge initiating at relatively higher mass flow rates. The casing treatment technique of stall control is found to be effective in axial compressors, but very limited research work is published on the application of this technique in centrifugal compressors. Present research was aimed to investigate the effect of casing treatment on the performance and stall margin of a high speed, 4 : 1 pressure ratio centrifugal compressor through numerical simulations using ANSYS CFX software. Three casing treatment configurations were developed and incorporated in the shroud over the inducer of the impeller. The predicted performance of baseline compressor (without casing treatment was in good agreement with published experimental data. The compressor with different inducer casing treatment geometries showed varying levels of stall margin improvement, up to a maximum of 18%. While the peak efficiency of the compressor with casing treatment dropped by 0.8%–1% compared to the baseline compressor, the choke mass flow rate was improved by 9.5%, thus enhancing the total stable operating range. The inlet configuration of the casing treatment was found to play an important role in stall margin improvement.
An airloads theory for morphing airfoils in dynamic stall with experimental correlation
Ahaus, Loren A.
Helicopter rotor blades frequently encounter dynamic stall during normal flight conditions, limiting the applicability of classical thin-airfoil theory at large angles of attack. Also, it is evident that because of the largely different conditions on the advancing and retreating sides of the rotor, future rotorcraft may incorporate dynamically morphing airfoils (trailing-edge aps, dynamic camber, dynamic droop, etc.). Reduced-order aerodynamic models are needed for preliminary design and ight simulation. A unified model for predicting the airloads on a morphing airfoil in dynamic stall is presented, consisting of three components. First, a linear airloads theory allows for arbitrary airfoil deformations consistent with a morphing airfoil. Second, to capture the effects of the wake, the airloads theory is coupled to an induced ow model. Third, the overshoot and time delay associated with dynamic stall are modeled by a second-order dynamic filter, along the lines of the ONERA dynamic stall model. This paper presents a unified airloads model that allows arbitrary airfoil morphing with dynamic stall. Correlations with experimental data validate the theory.
A time-varying subjective quality model for mobile streaming videos with stalling events
Ghadiyaram, Deepti; Pan, Janice; Bovik, Alan C.
2015-09-01
Over-the-top mobile video streaming is invariably influenced by volatile network conditions which cause playback interruptions (stalling events), thereby impairing users' quality of experience (QoE). Developing models that can accurately predict users' QoE could enable the more efficient design of quality-control protocols for video streaming networks that reduce network operational costs while still delivering high-quality video content to the customers. Existing objective models that predict QoE are based on global video features, such as the number of stall events and their lengths, and are trained and validated on a small pool of ad hoc video datasets, most of which are not publicly available. The model we propose in this work goes beyond previous models as it also accounts for the fundamental effect that a viewer's recent level of satisfaction or dissatisfaction has on their overall viewing experience. In other words, the proposed model accounts for and adapts to the recency, or hysteresis effect caused by a stall event in addition to accounting for the lengths, frequency of occurrence, and the positions of stall events - factors that interact in a complex way to affect a user's QoE. On the recently introduced LIVE-Avvasi Mobile Video Database, which consists of 180 distorted videos of varied content that are afflicted solely with over 25 unique realistic stalling events, we trained and validated our model to accurately predict the QoE, attaining standout QoE prediction performance.
Interdisciplinary aspects of turbulence
Kupka, Friedrich
2008-01-01
What do combustion engines, fusion reactors, weather forecast, ocean flows, our sun, and stellar explosions in outer space have in common? Of course, the physics and the length and time scales are vastly different in all cases, but it is also well known that in all of them, on some relevant length scales, the material flows that govern the dynamical and/or secular evolution of the systems are chaotic and often unpredictable: they are said to be turbulent. The interdisciplinary aspects of turbulence are brought together in this volume containing chapters written by experts from very different fields, including geophysics, astrophysics, and engineering. It covers several subjects on which considerable progress was made during the last decades, from questions concerning the very nature of turbulence to some practical applications. These subjects include: a basic introduction into turbulence, statistical mechanics and nonlinear dynamics, turbulent convection in stars, atmospheric turbulence in the context of nume...
Identification of multiple modes of axisymmetric or circularly repetitive structures
International Nuclear Information System (INIS)
Kopff, P.
1983-01-01
The axisymmetric structures, or those composed with circularly repetitive elements, often display multiple modes, which are not easy to separate by modal identification of experimental responses. To be able to solve in situ some problems related to the vibrational behaviour of reactor vessels or other such huge structures, ELECTRICITY DE FRANCE developed a few years ago, experimental capabilities providing heavy harmonic driving forces, and elaborate data acquisition, signal processing and modal identification software, self-contained in an integrated mobile test facility. The modal analysis techniques we have developed with the LABORATOIRE DE MECANIQUE Appliquee of University of BESANCON (FRANCE) were especially suited for identification of multiple or separation of quasi-multiple modes, i.e. very close and strongly coupled resonances. Besides, the curve fitting methods involved, compute the same complex eigen-frequencies for all the vibration pick-ups, for better accuracy of the related eigen-vector components. Moreover, the latest extensions of these algorithms give us the means to deal with non-linear behaviour. The performances of these programs are drawn from some experimental results on axisymmetric or circularly repetitive structure, we tested in our laboratory to validate the computational hypothesis used in models for seismic responses of breeder reactor vessels. (orig.)
Elastic layer under axisymmetric indentation and surface energy effects
Intarit, Pong-in; Senjuntichai, Teerapong; Rungamornrat, Jaroon
2018-04-01
In this paper, a continuum-based approach is adopted to investigate the contact problem of an elastic layer with finite thickness and rigid base subjected to axisymmetric indentation with the consideration of surface energy effects. A complete Gurtin-Murdoch surface elasticity is employed to consider the influence of surface stresses. The indentation problem of a rigid frictionless punch with arbitrary axisymmetric profiles is formulated by employing the displacement Green's functions, derived with the aid of Hankel integral transform technique. The problem is solved by assuming the contact pressure distribution in terms of a linear combination of admissible functions and undetermined coefficients. Those coefficients are then obtained by employing a collocation technique and an efficient numerical quadrature scheme. The accuracy of proposed solution technique is verified by comparing with existing solutions for rigid indentation on an elastic half-space. Selected numerical results for the indenters with flat-ended cylindrical and paraboloidal punch profiles are presented to portray the influence of surface energy effects on elastic fields of the finite layer. It is found that the presence of surface stresses renders the layer stiffer, and the size-dependent behavior of elastic fields is observed in the present solutions. In addition, the surface energy effects become more pronounced with smaller contact area; thus, the influence of surface energy cannot be ignored in the analysis of indentation problem especially when the indenter size is very small such as in the case of nanoindentation.
Aerodynamics characteristic of axisymmetric surface protuberance in supersonic regime
Qamar, Adnan
2012-01-01
The present work deals with the problem of an axi-symmetric surface protuberance mounted on a spherical nosed body of revolution. The numerical computations are carried out for laminar supersonic viscous flow for trapezoidal shape axi-symmetric protuberances. A free stream Mach number ranging from 3 to 8 in steps of 1 at a fixed free stream Reynolds number of 1.8x10(4) has been used in the present study. The steady solutions are obtained using a time marching approach. A newly developed Particle Velocity Upwinding (PVU) scheme has been used for the computation. The spatial flow pattern exhibits a strong bow shock in front of the hemispherical nose, which engulfs the entire base body. Near the protuberance, the fluid particle decelerates due to the adverse pressure created by the protuberance and thus the flow separates in front of the protuberance. This point of separation is found to be a function of Mach number and the protuberance shape. A low-pressure expansion region dominates the base region of the obstacle. The reattachment point for the base separation is also a function of Mach number. As the Mach number is increased the reattachment point shifts toward the protuberances base. A weak recompression shock is also seen in the base, which affects the separated zone behind the protuberance. The important design parameters such as skin friction, heat transfer, drag, and surface pressure coefficients are reported extensively.
Stress analysis in a non axisymmetric loaded reactor pressure vessel
International Nuclear Information System (INIS)
Albuquerque, Levi Barcelos; Assis, Gracia Menezes V. de; Miranda, Carlos Alexandre J.; Cruz, Julio Ricardo B.; Mattar Neto, Miguel
1995-01-01
In this work we intend to present the stress analysis of a PWR vessel under postulated concentrated loads. The vessel was modeled with Axisymmetric solid 4 nodes harmonic finite elements with the use of the ANSYS program, version 5.0. The bolts connecting the vessel flanges were modeled with beam elements. Some considerations were made to model the contact between the flanges. The perforated part of the vessel tori spherical head was modeled (with reduced properties due to its holes) to introduce its stiffness and loads but was not within the scope of this work. The loading consists of some usual ones, as pressure, dead weight, bolts preload, seismic load and some postulated ones as concentrated loads, over the vessel, modeled by Fourier Series. The results in the axisymmetric model are taken in terms of linearized stresses, obtained in some circumferential positions and for each position, in some sections along the vessel. Using the ASME Code (Section III, Division 1, Sub-section NB) the stresses are within the allowable limits. In order to draw some conclusions about stress linearization, the membrane plus bending stresses (Pl + Pb) are obtained and compared in some sections, using three different methods. (author)
Uncertainty evaluation method for axi-symmetric measurement machines
Directory of Open Access Journals (Sweden)
Muelaner Jody Emlyn
2016-01-01
Full Text Available This paper describes a method of uncertainty evaluation for axi-symmetric measurement machines. Specialized measuring machines for the inspection of axisymmetric components enable the measurement of properties such as roundness (radial runout, axial runout and coning. These machines typically consist of a rotary table and a number of contact measurement probes located on slideways. Sources of uncertainty include the probe calibration process, probe repeatability, probe alignment, geometric errors in the rotary table, the dimensional stability of the structure holding the probes and form errors in the reference hemisphere which is used to calibrate the system. The generic method is described and an evaluation of an industrial machine is described as a worked example. Expanded uncertainties, at 95% confidence, were then calculated for the measurement of; radial runout (1.2 μm with a plunger probe or 1.7 μm with a lever probe; axial runout (1.2 μm with a plunger probe or 1.5 μm with a lever probe; and coning/swash (0.44 arcseconds with a plunger probe or 0.60 arcseconds with a lever probe.
Axisymmetric magnetic mirrors for plasma confinement. Recent development and perspectives
International Nuclear Information System (INIS)
Kruglyakov, E.P.; Dimov, G.I.; Ivanov, A.A.; Koidan, V.S.
2003-01-01
Mirrors are the only one class of fusion systems which completely differs topologically from the systems with closed magnetic configurations. At present, three modern types of different mirror machines for plasma confinement and heating exist in Novosibirsk (Gas Dynamic Trap,- GDT, Multi-mirror,- GOL-3, and Tandem Mirror,- AMBAL-M). All these systems are attractive from the engineering point of view because of very simple axisymmetric geometry of magnetic configurations. In the present paper, the status of different confinement systems is presented. The experiments most crucial for the mirror concept are described such as a demonstration of different principles of suppression of electron heat conductivity (GDT, GOL-3), finding of MHD stable regimes of plasma confinement in axisymmetric geometry of magnetic field (GDT, AMBAL-M), an effective heating of a dense plasma by relativistic electron beam (GOL-3), observation of radial diffusion of quiescent plasma with practically classical diffusion coefficient (AMBAL-M), etc. It should be mentioned that on the basis of the GDT it is possible to make a very important intermediate step. Using 'warm' plasma and oblique injection of fast atoms of D and T one can create a powerful 14 MeV neutron source with a moderate irradiation area (about 1 square meter) and, accordingly, with low tritium consumption. The main plasma parameters achieved are presented and the future perspectives of different mirror machines are outlined. (author)
Hot Wire Measurements in a Axisymmetric Shear Layer with Swirl
Ewing, D.; Pollard, A.
1996-11-01
It is well known that the introduction of swirl in an axisymmetric jet can influence the development of and mixing in the near field of the jet. Recent efforts to compute this flow have demonstrated that the development of the near field is dependent on parameters at the jet outlet other than distribution of the swirl component, such as the distribution the mean radial velocity (Xai, J.L., Smith, B.L., Benim, A. C., Schmidli, J., and Yadigaroglu, G. (1996) Influence of Boundary Conditions on Swirling Flow in Combustors, Proc. ASME Fluid. Eng. Div. Summer Meeting), San Diego, Ca., July 7-11.. An experimental rig has been designed to produce co-axial round and annular swirling jets with uniform outlet conditions in each flow. The flow rate and swirl component from each of these jets can be controlled independently and the rig can be configured to produce both co- and counter-swirling flows. Thus, the rig can be used to carry out an extensive investigation of the effect of swirl on the development of axisymmetric flows. The key design features of the rig and the first sets of hot-wire measurements in the shear layer will be reported here.
What can anisotropy tell us about turbulence similarity in terrain of increasing complexity?
Stiperski, I.; Calaf, M.
2017-12-01
One of the great remaining challenges of numerical weather prediction lies close to the surface, where unresolved boundary layer processes and surface momentum and energy exchanges require parameterizations. These parameterizations, however, still rely on the similarity theory developed over flat and horizontally homogeneous terrain even when making predictions over highly complex surfaces such as mountainous areas. This is despite the fact that experimental datasets obtained over progressively complex surfaces have shown large deviations from the curves proposed by similarity theory on horizontally homogeneous and flat terrain. Even over flat terrain, horizontal velocity variances are eluding scaling due to large scatter, and under very stable stratification lack of scaling is generally attributed to non-Kolmogorov turbulence and influence of non-turbulent submeso motions. Within this work we employ anisotropy of the Reynolds stress tensor as a means of examining the character of turbulence and its response to growing terrain complexity. The validity of similarity relationships and the cause of their failure are examined in light of turbulence topology (isotropic, two component axisymmetric and one component turbulence) from multiple experimental campaigns ranging from flat to highly complex terrain. Results illustrate that different states of anisotropy correspond to different similarity relations. Experimental data with isotropic turbulence match local scaling relationships well for all the datasets. On the other hand, strongly anisotropic turbulence significantly deviates from the traditional scaling relations. These limiting states of anisotropy can furthermore be connected with different governing parameters that help identify conditions in which different topologies occur.
Topological Fluid Mechanics with Applications to Free Surfaces and Axisymmetric Flows
DEFF Research Database (Denmark)
Brøns, Morten
1996-01-01
Topological fluid mechanics is the study of qualitative features of fluid patterns. We discuss applications to the flow beneath a stagnant surface film, and to patterns in axisymmetric flow.......Topological fluid mechanics is the study of qualitative features of fluid patterns. We discuss applications to the flow beneath a stagnant surface film, and to patterns in axisymmetric flow....
Yamoto, Fumiharu; Sekiya, M.
2006-09-01
One of the unsolved issues in planetary system formation is how kilometer-sized planetesimals form. The fragmentation of the dust layer due to gravitational instability (hereafter referred GI) is one of possible models. We investigate the density evolution in the dust layer of a protoplanetary disk due to the GI and dust settling toward the midplane. We restrict to consider the region where the radial pressure gradient at equilibrium is negligible so that the shear-induced instability is avoided, and we also restrict our model to an axisymmetric perturbation as a first step of nonlinear numerical simulations of the GI. We show that there are two different evolutionary paths of the GI, depending on the nondimensional gas friction time, which is defined as the product of the gas friction time and the Keplerian angular velocity. If the nondimensional gas friction time is equal to 0.01, the GI grows faster than dust settling. On the other hand, if the nondimensional gas friction time is equal to 0.1, dust aggregates settle sufficiently before the GI grows. In the latter case, an approximate analytical calculation reveals that dust settling is faster than the growth of the GI, regardless of the dust density at the midplane. Thus, the dust layer becomes extremely thin and may reach a few tenths of the material density of the dust before the GI grows, as long as there is no turbulence. In order to elucidate whether the planetesimal formation due to the GI is possible or not, we plan to perform nonaxisymmetric simulations in the future. This work was supported by JSPS Research Fellowship for Young Scientists and Grants-in-Aid from the Japanese Ministry of Education, Culture, Sports, Science, and Technology.
The role of tip clearance in high-speed fan stall
Energy Technology Data Exchange (ETDEWEB)
Adamczyk, J.J. (NASA Lewis Research Center, Cleveland, OH (United States)); Celestina, M.L. (Sverdrup Tech., Inc., Cleveland, OH (United States)); Greitzer, E.M. (Massachusetts Institute of Technology, Cambridge, MA (United States))
1993-01-01
A numerical experiment has been carried out to define the near-stall casing endwall flow field of a high-speed fan rotor. The experiment used a simulation code incorporating a simple clearance model, whose calibration is presented. The results of the simulation show that the interaction of the tip leakage vortex and the in-passage shock plays a major role in determining the fan flow range. More specifically, the computations imply that it is the area increase of this vortex as it passes through the in-passage shock that is the source of the blockage associated with stall. In addition, for fans of this type, it is the clearance over the forward portion of the fan blade that controls the flow processes leading to stall.
The role of tip clearance in high-speed fan stall
Adamczyk, J. J.; Celestina, M. L.; Greitzer, E. M.
1991-01-01
A numerical experiment has been carried out to define the near-stall casing endwall flowfield of a high-speed fan rotor. The experiment used a simulation code incorporating a simple clearance model, whose calibration is presented. The results of the simulation show that the interaction of the tip leakage vortex and the in-pasage shock plays a major role in determining the fan flow range. More specifically, the computations imply that it is the area increase of this vortex as it passes through the in-passage shock, which is the source of the blockage associated with stall. In addition, for fans of this type, it is the clearance over the forward portion of the fan blade which controls the flow processes leading to stall.
International Nuclear Information System (INIS)
Xiou, W.J.; Ru, Y.A.; Mo, C.S.; Yi, H.S.
1987-01-01
The heat transfer of enhancement condensation of the vapor over the surface of an axisymmetric cylinder has been first studied theoretically in this paper. The problems of an axisymmetric cylinder are transformed into plate problems. The effects of some parameters on heat transfer coefficients of the vapor condensation over the surface of an axisymmetric cylinder have been discussed here. The heat transfer of the vapor condensation over an elliptical cylinder and an axisymmetric wing-shape cylinder has compared with the heat transfer of the vapor condensation over a tube surface. The conclusion is that the heat transfer of the vapor condensation over an elliptical cylinder and an axisymmetric wing-shape cylinder is greater than that over tubes
Effect of summer grazing on welfare of dairy cows reared in mountain tie-stall barns
Directory of Open Access Journals (Sweden)
Simonetta Dovier
2010-09-01
Full Text Available Traditional mountain farms have an important economic, social and environmental role. The Alps management system for dairy cows consists of animals kept indoors from autumn to spring, mostly in tie-stalls, and moved to mountain pasture in summer. The aim of our study was to assess the effect of mountain summer grazing on the welfare of dairy cows housed in tie-stall barns. Twenty-four farms were considered. In twelve of them, animals were reared in tie-stalls and moved to mountain pasture for three months in summer; they were visited three times: (i four weeks before grazing during the indoor period in the stall; (ii about three weeks after the start of grazing; and (iii in the stall, in autumn, at least three weeks after returning from grazing. The other twelve farms kept the animals in tie-stalls all year; they were visited once in autumn. Data were collected following a protocol that considers animal-based measures and structure information on the basis of Quality Welfare Consortium® indications. Data allowed the calculation of both the Animal Needs Index score (ANI 35L and an overall assessment of the cows’ welfare obtained from three general aspects: housing, animal’s physical condition, and animal’s behaviour. Summer grazing had a significant positive effect on injuries, lameness and animal’s rising duration but a negative effect on faeces consistency. Moreover, a reduction of tongue playing was observed. The ANI 35L and the overall assessment did not show significant differences linked to summer grazing, which tended to have a positive but temporary effect on animal behaviour.
Prediction of RNA Polymerase II recruitment, elongation and stalling from histone modification data
DEFF Research Database (Denmark)
Chen, Yun; Jørgensen, Mette; Kolde, Raivo
2011-01-01
strategies are needed to progress from descriptive annotation of data to quantitative, predictive models. RESULTS: Here, we describe a computational framework which with high accuracy can predict the locations of core promoters, the amount of recruited RNAPII at the promoter, the amount of elongating RNAPII...... of RNAPII stalling. CONCLUSIONS: In this study we introduce a general framework to accurately predict the level of RNAPII recruitment, elongation, stalling and mRNA expression from chromatin signals. The versatility of the method also makes it ideally suited to investigate other genomic data....
Analysis of compressible light dynamic stall flow at transitional Reynolds numbers
DEFF Research Database (Denmark)
Dyken, R.D. Van; Ekaterinaris, John A.; Chandrasekhara, M.S.
1996-01-01
Numerical and experimental results of steady and light dynamic stall flow over an oscillating NACA 0012 airfoil at a freestream Mach number of 0.3 and Reynolds number of 0.54 x 10(6) are compared, The experimental observation that dynamic stall is induced from the bursting of a laminar separation...... point is specified suitably and a simple transition length model is incorporated to determine the extent of the laminar separation bubble. The thin-layer approximations of compressible, Reynolds-averaged, Navier-Stokes equations are used for the numerical solution, with an implicit, upwind-biased, third...
The influence of elevated feed stalls on feeding behaviour of lactating dairy cows
Directory of Open Access Journals (Sweden)
Barbara Benz
2014-10-01
Full Text Available The performance level of high yielding cows can only be guaranteed by high quality forage and high feed intake. An about 15–20 cm elevated and 160 cm long feed stall with rubber flooring doesn’t only offer undisturbed meals but also a yielding and dry standing surface. In a pilot stable with 130 dairy cows (German Simmental the feeding alley was subsequently equipped with elevated feed stalls. The results show that animals frequented the feeding barn less often while the duration of single meals prolonged. The specific behavioural changes differed depending on milk yield and number of lactation.
Diagnosis of voltage collapse due to induction motor stalling using static analysis
International Nuclear Information System (INIS)
Karbalaei, F.; Kalantar, M.; Kazemi, A.
2008-01-01
Induction motor stalling is one of the important reasons for voltage collapse. This paper presents that, for induction motor stalling diagnosis, it is not necessary to use a third or first order dynamic model of induction motors. Instead, a method is presented based on algebraic calculations for which the steady state model of the induction motor considering different kinds of mechanical loads (constant and variable torque) is added to the power flow equations. Simulation results for a simple system confirm the correctness of the proposed method as compared to dynamic simulation results
Power control of a wind farm with active stall wind turbines and AC grid connection
DEFF Research Database (Denmark)
Hansen, Anca Daniela; Sørensen, Poul; Iov, Florin
This paper describes the design of a centralised wind farm controller for a wind farm made-up exclusively of active stall wind turbines with AC grid connection. The overall aim of such controller is to enable the wind farms to provide the best grid support. The designed wind farm control involves...... both the control on wind turbine level as well as the central control on the wind farm level. The ability of active stall wind farms with AC grid connection to regulate the power production to the reference power ordered by the operators is assessed and discussed by means of simulations....
PDF Modeling of Turbulent Combustion
National Research Council Canada - National Science Library
Pope, Stephen B
2006-01-01
.... The PDF approach to turbulent combustion has the advantages of fully representing the turbulent fluctuations of species and temperature, and of allowing realistic combustion chemistry to be implemented...
International Nuclear Information System (INIS)
Kolhe, Pankaj S; Agrawal, Ajay K
2009-01-01
Statistical tomography to obtain local field variables from non-intrusive line-of-sight measurements in turbulent flows has been an intriguing subject for some time. In this study, a novel algorithm is presented to obtain statistical information on the local scalar field in axisymmetric turbulent flows. The algorithm uses line-of-sight transverse deflection angle measurements in only one view direction to greatly simplify the optical configuration. The validity of the algorithm is examined using noise-free synthetically generated scalar data that simulate the concentration field of a turbulent helium jet. Results show that the proposed algorithm provides excellent reconstruction of integral length scale and variance of refractive index difference, which can be related to scalar physical properties such as density, temperature and/or species concentrations. Good reconstruction accuracy and the need for a simple optical configuration make the proposed algorithm a promising method to characterize the scalar field in turbulent flows using path-integrated measurements
Nagendra Prakash, Vivek
2013-01-01
This thesis deals with the broad topic of particles in turbulence, which has applications in a diverse number of fields. A vast majority of fluid flows found in nature and in the industry are turbulent and contain dispersed elements. In this thesis, I have focused on light particles (air bubbles in
Dynamic paradigm of turbulence
International Nuclear Information System (INIS)
Mukhamedov, Alfred M.
2006-01-01
In this paper a dynamic paradigm of turbulence is proposed. The basic idea consists in the novel definition of chaotic structure given with the help of Pfaff system of PDE associated with the turbulent dynamics. A methodological analysis of the new and the former paradigm is produced
Pereira, R.; Schepers, G.; Pavel, M.D.
2011-01-01
The aim of this study is to assess the load predicting capability of a classical Beddoes-Leishman dynamic stall model in a horizontal axis wind turbine (HAWT) environment, in the presence of yaw-misalignment. The dynamic stall model was tailored to the HAWT environment, and validated against
Cellular blebs: pressure-driven, axisymmetric, membrane protrusions
Woolley, Thomas E.
2013-07-16
Blebs are cellular protrusions that are used by cells for multiple purposes including locomotion. A mechanical model for the problem of pressure-driven blebs based on force and moment balances of an axisymmetric shell model is proposed. The formation of a bleb is initiated by weakening the shell over a small region, and the deformation of the cellular membrane from the cortex is obtained during inflation. However, simply weakening the shell leads to an area increase of more than 4 %, which is physically unrealistic. Thus, the model is extended to include a reconfiguration process that allows large blebs to form with small increases in area. It is observed that both geometric and biomechanical constraints are important in this process. In particular, it is shown that although blebs are driven by a pressure difference across the cellular membrane, it is not the limiting factor in determining bleb size. © 2013 Springer-Verlag Berlin Heidelberg.
Numerical calculation of axisymmetric non-neutral plasma equilibria
Spencer, Ross L.; Rasband, S. N.; Vanfleet, Richard R.
1993-12-01
Efficient techniques for computing axisymmetric non-neutral plasma equilibria are described. These equilibria may be obtained either by requiring global thermal equilibrium, by specifying the midplane radial density profile, or by specifying the radial profile of ∫n dz. Both splines and finite-differences are used, and the accuracy of the two is compared by using a new characterization of the thermal equilibrium density profile which gives a simple formula for estimating the radial and axial gradient scale lengths of thermal equilibria. It is found that for global thermal equilibrium 1% accuracy is achieved with splines if the distance between neighboring splines is about two Debye lengths while finite differences require a grid spacing of about one-half Debye length to achieve the same accuracy.
Energetic Particle Transport in Compact Quasi-axisymmetric Stellarators
International Nuclear Information System (INIS)
Redi, M.H.; Mynick, H.E.; Suewattana, M.; White, R.B.; Zarnstorff, M.C.; Isaev, M.Yu.; Mikhailov, M.I.; Subbotin, A.A.
1999-01-01
Hamiltonian coordinate, guiding-center code calculations of the confinement of suprathermal ions in quasi-axisymmetric stellarator (QAS) designs have been carried out to evaluate the attractiveness of compact configurations which are optimized for ballooning stability. A new stellarator particle-following code is used to predict ion loss rates and particle confinement for thermal and neutral beam ions in a small experiment with R = 145 cm, B = 1-2 T and for alpha particles in a reactor-size device. In contrast to tokamaks, it is found that high edge poloidal flux has limited value in improving ion confinement in QAS, since collisional pitch-angle scattering drives ions into ripple wells and stochastic field regions, where they are quickly lost. The necessity for reduced stellarator ripple fields is emphasized. The high neutral beam ion loss predicted for these configurations suggests that more interesting physics could be explored with an experiment of less constrained size and magnetic field geometry
Flow in axisymmetric expansion in a catalytic converter
DEFF Research Database (Denmark)
Gotfredsen, Erik; Meyer, Knud Erik
The flow in an axisymmetric expansion (circular diffusor) is used in many different engineering applications, such as heat exchangers, catalytic converters and filters. These applications require a relatively uniform flow at the inlet. To minimise the pressure loss, an ideal solution would...... for a specific local flow rate and a non-uniform inflow to the catalyst will severely reduce the efficiency of the process. Since each ship will have a unique design the flow system, it is desirable to be able to design the system using Computational Fluid Dynamics (CFD). However, CFD fails to predict flow......-scaled model of the catalytic converter is constructed, see figure 1. The experiments are performed at laboratory conditions, with lower pressure, temperature and velocity than the full-scale catalytic converter. The Reynolds number based on the velocity in the inlet pipe and the diameter of the converter...
Ideal, steady-state, axisymmetric magnetohydrodynamic equations with flow
International Nuclear Information System (INIS)
Baransky, Y.A.
1987-01-01
The motivation of this study is to gain additional understanding of the effect of rotation on the equilibrium of a plasma. The axisymmetric equilibria of ideal magnetohydrodynamics (MHD) with flow have been studied numerically and analytically. A general discussion is provided of previous work on plasmas with flow and comparisons are made to the static model. A variational principle has been derived for the two dimensional problem with comments as to appropriate boundary conditions. An inverse aspect ratio expansion has been used for a study of the toroidal flow equation for both low- and high-β. The inverse aspect ratio expansion has also been used for a study of equations with both poloidal and toroidal flow. An overview is provided of the adaptive finite-difference code which was developed to solve the full equations. (FI)
Pressure drop coefficient of laminar Newtonian flow in axisymmetric diffusers
International Nuclear Information System (INIS)
Rosa, S.; Pinho, F.T.
2006-01-01
The laminar flow of Newtonian fluids in axisymmetric diffusers has been numerically investigated to evaluate the pressure-loss coefficient as a function of Reynolds number, diffusion angle and expansion ratio. The numerical simulations were carried out with a finite-volume based code using non-orthogonal collocated grids and second order accurate differencing schemes to discretize all terms of the transport equations. The calculations were carried out for Reynolds numbers between 2 and 200, diffusion angles from 0 deg. to 90 deg. and expansion ratios of 1.5 and 2 and the data are presented in tabular form and as correlations. A simplified 1D theoretical analysis helped explain the various contributions to the loss coefficient and its difference relative to the reversible pressure variation due to differences between the actual and fully developed friction losses, distortions of the velocity profiles and pressure non-uniformity upstream and downstream of the expansion section
Secular instability of axisymmetric rotating stars to gravitational radiation reaction
International Nuclear Information System (INIS)
Managan, R.A.
1985-01-01
A generalization of the Eulerian variational principle derived by Ipser and Managan, for nonaxisymmetric neutral modes of axisymmetric fluid configurations, is developed. The principle provides a variational basis for calculating the frequencies of nonaxisymmetric normal modes proportional to e/sup i/(sigmat + mphi). A modified form of this principle, valid for sigma near 0, is also developed. The latter principle is used to locate the points where the frequency of a nonaxisymmetric normal mode of an axisymmetric rotating fluid configuration passes through zero. lt is at these points that the configuration becomes secularly unstable to gravitational radiation reaction (GRR). This is demonstrated directly by including the GRR potential and showing that the imaginary part of sigma passes through zero and becomes negative at these points. The imaginary part of the frequency is used to estimate the e-folding time of the mode. This variational principle is applied to sequences of rotating polytropes. The sequences are constructed using four rotation laws at each value of the polytropic index n = 0.5, 1.0, 1.5, 2.0, and 3.0. The values of (T/W)/sub m/, the ratio of the rotational kinetic energy to the magnitude of the gravitational potential energy at the onset of instability, and timescales for the modes with m = 2, 3, and 4 are estimated for each sequence. The value of (T/W) 2 is largely independent of the equation of state and rotation law. For m > 2, (T/W)/sub m/ decreases as the equation of state becomes softer, i.e., as the polytropic index n increases, and increases as the amount of differential rotation increases. The most striking result of this behavior occurs for uniform rotation
Thin circular cylinder under axisymmetrical thermal and mechanical loading
International Nuclear Information System (INIS)
Arnaudeau, F.; Zarka, J.; Gerij, J.
1977-01-01
To assess structural integrity of components subjected to cyclic thermal loadings one must look at thermal ratchetting as a possible failure mode. Considering a thin circular cylinder subjected to constant internal pressure and cyclically varying thermal gradient through the thickness Bree, J. Strain Analysis 2 (1967) No.3, obtained a diagram that serves as a foundation for many design rules (e.g.: ASME code). The upper part of the french LMFBR main vessel is subjected to an axisymmetrical axial thermal loading and an axial load (own weight). Operation of the reactor leads to cyclic variations of the axial thermal loading. The question that arises is whether or not the Bree diagram is realistic for such loading conditions. A special purpose computer code (Ratch) was developed to analyse a thin circular cylinder subjected to axisymmetrical mechanical and thermal loadings. The Mendelson's approach of this problem is followed. Classical Kirchoff-Love hypothesis of thin shells is used and a state of plane stress is assumed. Space integrations are performed by Gaussian quadrature in the axial direction and by Simpson's one third rule throughout the thickness. Thermoelastic-plastic constitutive equations are solved with an implicit scheme (Nguyen). Thermovisco-plastic constitutive equations are solved with an explicit time integration scheme (Treanor's algorithm especially fitted). A Bree type diagram is obtained for an axial step of temperature which varies cyclically and a sustained constant axial load. The material behavior is assumed perfectly plastic and creep effect is not considered. Results show that the domain where no ratchetting occurs is reduced when compared with the domain predicted by the Bree diagram
Modified guidance laws to escape microbursts with turbulence
Directory of Open Access Journals (Sweden)
Atilla Dogan
2002-01-01
Full Text Available This paper introduces Modified Altitude- and Dive-Guidance laws for escaping a microburst with turbulence. The goal is to develop a procedure to estimate the highest altitude at which an aircraft can fly through a microburst without running into stall. First, a new metric is constructed that quantifies the aircraft upward force capability in a microburst encounter. In the absence of turbulence, the metric is shown to be a decreasing function of altitude. This suggests that descending to a low altitude may improve safety in the sense that the aircraft will have more upward force capability to maintain its altitude. In the presence of stochastic turbulence, the metric is treated as a random variable and its probability distribution function is analytically approximated as a function of altitude. This approximation allows us to determine the highest safe altitude at which the aircraft may descend, hence avoiding to descend too low. This highest safe altitude is used as the commanded altitude in Modified Altitude- and Dive-Guidance. Monte Carlo simulations show that these Modified Altitude- and Dive-Guidance strategies can decrease the probability of minimum altitude being lower than a given value without significantly increasing the probability of crash.
A stochastic model for the simulation of wind turbine blades in static stall
DEFF Research Database (Denmark)
Bertagnolio, Franck; Rasmussen, Flemming; Sørensen, Niels N.
2010-01-01
The aim of this work is to improve aeroelastic simulation codes by accounting for the unsteady aerodynamic forces that a blade experiences in static stall. A model based on a spectral representation of the aerodynamic lift force is defined. The drag and pitching moment are derived using...
Directory of Open Access Journals (Sweden)
Mario Eck
2017-03-01
Full Text Available Axial compressors in aero engines are prone to suffering a breakdown of orderly flow when operating at the peak of the pressure rise characteristic. The damaging potential of separated flows is why a safe distance has to be left between every possible operating point and an operating point at which stall occurs. During earlier investigations of stall inception mechanisms, a new type of prestall instability has been found. In this study, it could be demonstrated that the prestall instability characterised by discrete flow disturbances can be clearly assigned to the subject of “Rotating Instabilities”. Propagating disturbances are responsible for the rise in blade passing irregularity. If the mass flow is reduced successively, the level of irregularity increases until the prestall condition devolves into rotating stall. The primary objective of the current work is to highlight the basic physics behind these prestall disturbances by complementary experimental and numerical investigations. Before reaching the peak of the pressure rise characteristic flow, disturbances appear as small vortex tubes with one end attached to the casing and the other attached to the suction surface of the rotor blade. These vortex structures arise when the entire tip region is affected by blockage and at the same time the critical rotor incidence is not exceeded in this flow regime. Furthermore, a new stall indicator was developed by applying statistical methods to the unsteady pressure signal measured over the rotor blade tips, thus granting a better control of the safety margin.
Numerical Study on the Acoustic Characteristics of an Axial Fan under Rotating Stall Condition
Directory of Open Access Journals (Sweden)
Lei Zhang
2017-11-01
Full Text Available Axial fan is an important piece of equipment in the thermal power plant that provides enough air for combustion of coal. This paper focuses on the aerodynamic noise characteristics of an axial fan in the development from stall inception to stall cells. The aerodynamic noise characteristic of monitoring region in time and frequency domains was simulated employing the large-eddy simulation (LES, with the addition of throttle setting and the Ffowcs Williams-Hawkings (FW-H noise model. The numerical results show that, under the design condition, the acoustic pressure presents regular periodicity along with the time. The noise energy is concentrated with high energy of the fundamental frequency and high order harmonics. During the stall inception stage, the acoustic pressure amplitude starts fluctuating and discrete frequencies are increased significantly in the low frequency; among them, there are three obvious discrete frequencies: 27.66 Hz, 46.10 Hz and 64.55 Hz. On the rotating stall condition, the fluctuation of the acoustic pressure level and amplitude are more serious than that mentioned above. During the whole evolution process, the acoustic pressure peak is difficult to keep stable all the time, and a sudden increase of the peak value at the 34.5th revolution corresponds to the relative velocity’s first sudden increase at the time when the valve coefficient is 0.780.
Artieri, Carlo G; Fraser, Hunter B
2014-12-01
The recent advent of ribosome profiling-sequencing of short ribosome-bound fragments of mRNA-has offered an unprecedented opportunity to interrogate the sequence features responsible for modulating translational rates. Nevertheless, numerous analyses of the first riboprofiling data set have produced equivocal and often incompatible results. Here we analyze three independent yeast riboprofiling data sets, including two with much higher coverage than previously available, and find that all three show substantial technical sequence biases that confound interpretations of ribosomal occupancy. After accounting for these biases, we find no effect of previously implicated factors on ribosomal pausing. Rather, we find that incorporation of proline, whose unique side-chain stalls peptide synthesis in vitro, also slows the ribosome in vivo. We also reanalyze a method that implicated positively charged amino acids as the major determinant of ribosomal stalling and demonstrate that it produces false signals of stalling in low-coverage data. Our results suggest that any analysis of riboprofiling data should account for sequencing biases and sparse coverage. To this end, we establish a robust methodology that enables analysis of ribosome profiling data without prior assumptions regarding which positions spanned by the ribosome cause stalling. © 2014 Artieri and Fraser; Published by Cold Spring Harbor Laboratory Press.
EVALUATION OF STYRENE EMISSIONS FROM A SHOWER STALL/BATHTUB MANUFACTURING FACILITY
The report gives results of emissions measurements carried out at a representative facility (Eljer Plumbingware in Wilson, NC) that manufactures polyester-resin-reinforced shower stalls and bathtubs by spraying styrene-based resins onto molds in vented, open, spray booths. Styren...
14 CFR 23.203 - Turning flight and accelerated turning stalls.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turning flight and accelerated turning stalls. 23.203 Section 23.203 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... a 30 degree bank. Reduce speed by steadily and progressively tightening the turn with the elevator...
Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio
Kruyt, J.W.; Heijst, Van G.F.; Altshuler, D.L.; Lentink, David
2015-01-01
Airplanes and helicopters use high aspect ratio wings to reduce the power required to fly, but must operate at low angle of attack to prevent flow separation and stall. Animals capable of slow sustained flight, such as hummingbirds, have low aspect ratio wings and flap their wings at high angle
Vortical structures responsible for delayed stall in an idealized humpback whale flipper model
Kim, Heesu; Kim, Jooha; Choi, Haecheon
2016-11-01
In this study, we investigate how the tubercles on the leading edge of an idealized humpback whale flipper model delay the stall. Oil-surface visualization is performed to see the surface flow pattern on the suction surface, and PIV is conducted in several streamwise and crossflow planes at different attack angles (α). Without tubercles, leading edge separation first occurs near the tip region and progresses inboard with increasing α. With tubercles, however, two types of vortical motions are observed at the mid-span. The first is streamwise vortex arrays which are dominant at α 9° , and these structures appear near the trailing edge. These two types of vortical motions delay flow separation at the peak regions of the mid-span, eliminating the spanwise stall progression and resulting in delayed stall. At α = 16° at which the tubercle model stalls, a large-scale streamwise vortex is originated from flow separation near the root region. This structure delays flow separation at the mid-span, leading to higher lift coefficient. Supported by NRF-2014M3C1B1033848.
Charley, Phillida A; Wilusz, Carol J; Wilusz, Jeffrey
2018-01-05
Regulated mRNA decay plays a vital role in determining both the level and quality of cellular gene expression. Viral RNAs must successfully evade this host RNA decay machinery to establish a productive infection. One way for RNA viruses to accomplish this is to target the cellular exoribonuclease XRN1, because this enzyme is accessible in the cytoplasm and plays a major role in mRNA decay. Members of the Flaviviridae use RNA structures in their 5'- or 3'-untranslated regions to stall and repress XRN1, effectively stabilizing viral RNAs while also causing significant dysregulation of host cell mRNA stability. Here, we use a series of biochemical assays to demonstrate that the 3'-terminal portion of the nucleocapsid (N) mRNA of Rift Valley fever virus, a phlebovirus of the Bunyaviridae family, also can effectively stall and repress XRN1. The region responsible for impeding XRN1 includes a G-rich portion that likely forms a G-quadruplex structure. The 3'-terminal portions of ambisense-derived transcripts of multiple arenaviruses also stalled XRN1. Therefore, we conclude that RNAs from two additional families of mammalian RNA viruses stall and repress XRN1. This observation. emphasizes the importance and commonality of this viral strategy to interfere with the 5'-to-3'-exoribonuclease component of the cytoplasmic RNA decay machinery. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Theory/test correlation of helicopter rotor blade element airloads in the blade stall regime
Bobo, C. J.
1972-01-01
The effects of stall on a rotor blade element in a three-dimensional rotating environment was investigated. The model rotor test provided blade element airloads and local boundary layer flow characteristics at the three-quarter blade radius position for a wide range of rotor operating conditions. A description of the test program and the test results are presented.
Reedy, Todd Mitchell
An experimental investigation evaluating the effects of flow control on the near-wake downstream of a blunt-based axisymmetric body in supersonic flow has been conducted. To better understand and control the physical phenomena that govern these massively separated high-speed flows, this research examined both passive and active flow-control methodologies designed to alter the stability characteristics and structure of the near-wake. The passive control investigation consisted of inserting splitter plates into the recirculation region. The active control technique utilized energy deposition from multiple electric-arc plasma discharges placed around the base. The flow-control authority of both methodologies was evaluated with experimental diagnostics including particle image velocimetry, schlieren photography, surface flow visualization, pressure-sensitive paint, and discrete surface pressure measurements. Using a blowdown-type wind tunnel reconstructed specifically for these studies, baseline axisymmetric experiments without control were conducted for a nominal approach Mach number of 2.5. In addition to traditional base pressure measurements, mean velocity and turbulence quantities were acquired using two-component, planar particle image velocimetry. As a result, substantial insight was gained regarding the time-averaged and instantaneous near-wake flow fields. This dataset will supplement the previous benchmark point-wise laser Doppler velocimetry data of Herrin and Dutton (1994) for comparison with new computational predictive techniques. Next, experiments were conducted to study the effects of passive triangular splitter plates placed in the recirculation region behind a blunt-based axisymmetric body. By dividing the near-wake into 1/2, 1/3, and 1/4 cylindrical regions, the time-averaged base pressure distribution, time-series pressure fluctuations, and presumably the stability characteristics were altered. While the spatial base pressure distribution was
Modeling dynamic stall on wind turbine blades under rotationally augmented flow fields
Energy Technology Data Exchange (ETDEWEB)
Guntur, S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schreck, S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sorensen, N. N. [Technical Univ. of Denmark, Lyngby (Denmark); Bergami, L. [Technical Univ. of Denmark, Lyngby (Denmark)
2015-04-22
It is well known that airfoils under unsteady flow conditions with a periodically varying angle of attack exhibit aerodynamic characteristics different from those under steady flow conditions, a phenomenon commonly known as dynamic stall. It is also well known that the steady aerodynamic characteristics of airfoils in the inboard region of a rotating blade differ from those under steady two-dimensional (2D) flow conditions, a phenomenon commonly known as rotational augmentation. This paper presents an investigation of these two phenomena together in the inboard parts of wind turbine blades. This analysis is carried out using data from three sources: (1) the National Renewable Energy Laboratory’s Unsteady Aerodynamics Experiment Phase VI experimental data, including constant as well as continuously pitching blade conditions during axial operation, (2) data from unsteady Delayed Detached Eddy Simulations (DDES) carried out using the Technical University of Denmark’s in-house flow solver Ellipsys3D, and (3) data from a simplified model based on the blade element momentum method with a dynamic stall subroutine that uses rotationally augmented steady-state polars obtained from steady Phase VI experimental sequences, instead of the traditional 2D nonrotating data. The aim of this work is twofold. First, the blade loads estimated by the DDES simulations are compared to three select cases of the N sequence experimental data, which serves as a validation of the DDES method. Results show reasonable agreement between the two data in two out of three cases studied. Second, the dynamic time series of the lift and the moment polars obtained from the experiments are compared to those from the dynamic stall subroutine that uses the rotationally augmented steady polars. This allowed the differences between the stall phenomenon on the inboard parts of harmonically pitching blades on a rotating wind turbine and the classic dynamic stall representation in 2D flow to be
Iga, Keita; Yokota, Sho; Watanabe, Shunichi; Ikeda, Takashi; Niino, Hiroshi; Misawa, Nobuhiko
2017-12-01
The theory of axisymmetric flow in a cylindrical container with a rotating bottom, as described in Part I, is validated against the results of previous and our own laboratory experiments. First, deformation of the water surface is derived using the velocity distribution of the axisymmetric flow obtained by the theory. The form of the water surface is classified into three regimes, and the rotation rates of the transitions between these regimes are determined. The parameters predicted from this theory are compared with the results measured in laboratory experiments and also with data from previous experimental studies. The theory predicts the experimental data well, but a slight difference was found in the narrow region close to the side wall. Corrections estimated by considering the fluid behavior around the side wall boundary layer successfully explain most of the discrepancies. This theory appears to predict the results of the laboratory experiments very well, much better than a theory using an assumption of quadratic drag as a model of turbulent boundary layers.
Interaction of turbulent length scales with wind turbine blades
Torres-Nieves, Sheilla N.
Understanding the effects of free-stream turbulence (FST) and surface roughness on the flow around wind turbine blades is imperative in the quest for higher wind turbine efficiency, specially under stall conditions. While many investigations have focused on the aerodynamic loads on wind turbine airfoils, there are no studies that examine the effects of free-stream turbulence and surface roughness on the velocity field around a wind turbine airfoil. Hence, the aim of this investigation is to study the influence of high levels of FST on the flow around smooth and rough surfaces with pressure gradients. Moreover, of great importance in this study is the examination of how the length scales of turbulence and surface roughness interact in the flow over wind turbine airfoils to affect flow separation. Particle Image Velocimetry measurements were performed to analyze the overall flow around a S809 wind turbine blade. Results indicate that when the flow is fully attached, free-stream turbulence significantly decreases aerodynamic efficiency by 82%, yielding to higher loads and fatigue on the blades. On the contrary, when the flow is separated, the effect is reversed and aerodynamic performance is slightly improved (i.e., by 5%) by the presence of the free-stream turbulence. Analysis of the mean flow over the suction surface shows that, under stall conditions, free-stream turbulence delays separation, and surface roughness advances separation. Interestingly, the highly non-linear interaction between free-stream turbulence and surface roughness results in the further advancement of separation. Of particular interest is the study of the region closer to the wall (i.e., the boundary layer), where the flow interacts with both the surface of the blade and the free-stream. Turbulent boundary layer experiments subject to an external favorable pressure gradient (FPG) were performed to study the influence of FST, surface roughness and external pressure gradient (present around the
Partial Fourier analysis of time-harmonic Maxwell's equations in axisymmetric domains
International Nuclear Information System (INIS)
Nkemzi, Boniface
2003-01-01
We analyze the Fourier method for treating time-harmonic Maxwell's equations in three-dimensional axisymmetric domains with non-axisymmetric data. The Fourier method reduces the three-dimensional boundary value problem to a system of decoupled two-dimensional boundary value problems on the plane meridian domain of the axisymmetric domain. The reduction process is fully described and suitable weighted spaces are introduced on the meridian domain to characterize the two-dimensional solutions. In particular, existence and uniqueness of solutions of the two-dimensional problems is proved and a priori estimates for the solutions are given. (author)
International Nuclear Information System (INIS)
Galishin, A.Z.
1995-01-01
The nonaxisymmetric thermoelastic stress-strain state (SSS) of branched laminar orthotropic shells was considered; the axisymmetric thermoviscoelastic SSS of branched laminar orthotropic shells was considered; and the axisymmetric thermoviscoelastoplastic SSS of branched laminar isotropic shells was considered, taking into account of the transverse-shear deformation. In the present work, in contrast, the axisymmetric thermoviscoelastoplastic SSS of branched laminar isotropic shells is considered, taking account of transverse-shear and torsional deformation. Layers that are made from orthotropic materials and deform in the elastic region may be present
International Nuclear Information System (INIS)
Choi, S. N.; Kim, H. N.; Jang, K. S.; Kim, H. J.
2000-01-01
The purpose of this paper is to determine a two dimensional axisymmetric model through a comparative study between a three dimensional and an axisymmetric finite element analysis of the reactor coolant piping nozzle subject to internal pressure. The finite element analysis results show that the stress adopting the axisymmetric model with the radius of equivalent spherical vessel are well agree with that adopting the three dimensional model. The radii of equivalent spherical vessel are 3.5 times and 7.3 times of the radius of the reactor coolant piping for the safety injection nozzle and for the residual heat removal nozzle, respectively
International Nuclear Information System (INIS)
Childress, S.
1995-01-01
The authors formulate and study an elementary one-dimensional model mimicking some of the features of fluid turbulence. The underlying vorticity field corresponds to a parallel flow. Structure on all scales down to the numerical resolution is generated by the action of baker's maps acting on the vorticity of the flow. These transformations conserve kinetic energy locally in the Euler model, while viscous diffusion of vorticity occurs in the Navier-Stokes case. The authors apply the model to the study of homogeneous fully, developed turbulence, and to turbulent channel flow
Energy Technology Data Exchange (ETDEWEB)
Hoejstrup, J. [NEG Micon Project Development A/S, Randers (Denmark); Hansen, K.S. [Denmarks Technical Univ., Dept. of Energy Engineering, Lyngby (Denmark); Pedersen, B.J. [VESTAS Wind Systems A/S, Lem (Denmark); Nielsen, M. [Risoe National Lab., Wind Energy and Atmospheric Physics, Roskilde (Denmark)
1999-03-01
The pdf`s of atmospheric turbulence have somewhat wider tails than a Gaussian, especially regarding accelerations, whereas velocities are close to Gaussian. This behaviour is being investigated using data from a large WEB-database in order to quantify the amount of non-Gaussianity. Models for non-Gaussian turbulence have been developed, by which artificial turbulence can be generated with specified distributions, spectra and cross-correlations. The artificial time series will then be used in load models and the resulting loads in the Gaussian and the non-Gaussian cases will be compared. (au)
Belotserkovskii, OM; Chechetkin, VM
2005-01-01
The authors present the results of numerical experiments carried out to examine the problem of development of turbulence and convection. On the basis of the results, they propose a physical model of the development of turbulence. Numerical algorithms and difference schema for carrying out numerical experiments in hydrodynamics, are proposed. Original algorithms, suitable for calculation of the development of the processes of turbulence and convection in different conditions, even on astrophysical objects, are presented. The results of numerical modelling of several important phenomena having both fundamental and applied importance are described.
Turbulent current drive mechanisms
McDevitt, Christopher J.; Tang, Xian-Zhu; Guo, Zehua
2017-08-01
Mechanisms through which plasma microturbulence can drive a mean electron plasma current are derived. The efficiency through which these turbulent contributions can drive deviations from neoclassical predictions of the electron current profile is computed by employing a linearized Coulomb collision operator. It is found that a non-diffusive contribution to the electron momentum flux as well as an anomalous electron-ion momentum exchange term provide the most efficient means through which turbulence can modify the mean electron current for the cases considered. Such turbulent contributions appear as an effective EMF within Ohm's law and hence provide an ideal means for driving deviations from neoclassical predictions.
Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio.
Kruyt, Jan W; van Heijst, GertJan F; Altshuler, Douglas L; Lentink, David
2015-04-06
Airplanes and helicopters use high aspect ratio wings to reduce the power required to fly, but must operate at low angle of attack to prevent flow separation and stall. Animals capable of slow sustained flight, such as hummingbirds, have low aspect ratio wings and flap their wings at high angle of attack without stalling. Instead, they generate an attached vortex along the leading edge of the wing that elevates lift. Previous studies have demonstrated that this vortex and high lift can be reproduced by revolving the animal wing at the same angle of attack. How do flapping and revolving animal wings delay stall and reduce power? It has been hypothesized that stall delay derives from having a short radial distance between the shoulder joint and wing tip, measured in chord lengths. This non-dimensional measure of wing length represents the relative magnitude of inertial forces versus rotational accelerations operating in the boundary layer of revolving and flapping wings. Here we show for a suite of aspect ratios, which represent both animal and aircraft wings, that the attachment of the leading edge vortex on a revolving wing is determined by wing aspect ratio, defined with respect to the centre of revolution. At high angle of attack, the vortex remains attached when the local radius is shorter than four chord lengths and separates outboard on higher aspect ratio wings. This radial stall limit explains why revolving high aspect ratio wings (of helicopters) require less power compared with low aspect ratio wings (of hummingbirds) at low angle of attack and vice versa at high angle of attack. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
von der Malsburg, Karina; Shao, Sichen; Hegde, Ramanujan S
2015-06-15
Cytosolic ribosomes that stall during translation are split into subunits, and nascent polypeptides trapped in the 60S subunit are ubiquitinated by the ribosome quality control (RQC) pathway. Whether the RQC pathway can also target stalls during cotranslational translocation into the ER is not known. Here we report that listerin and NEMF, core RQC components, are bound to translocon-engaged 60S subunits on native ER membranes. RQC recruitment to the ER in cultured cells is stimulated by translation stalling. Biochemical analyses demonstrated that translocon-targeted nascent polypeptides that subsequently stall are polyubiquitinated in 60S complexes. Ubiquitination at the translocon requires cytosolic exposure of the polypeptide at the ribosome-Sec61 junction. This exposure can result from either failed insertion into the Sec61 channel or partial backsliding of translocating nascent chains. Only Sec61-engaged nascent chains early in their biogenesis were relatively refractory to ubiquitination. Modeling based on recent 60S-RQC and 80S-Sec61 structures suggests that the E3 ligase listerin accesses nascent polypeptides via a gap in the ribosome-translocon junction near the Sec61 lateral gate. Thus the RQC pathway can target stalled translocation intermediates for degradation from the Sec61 channel. © 2015 von der Malsburg et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Modeling of turbulent chemical reaction
Chen, J.-Y.
1995-01-01
Viewgraphs are presented on modeling turbulent reacting flows, regimes of turbulent combustion, regimes of premixed and regimes of non-premixed turbulent combustion, chemical closure models, flamelet model, conditional moment closure (CMC), NO(x) emissions from turbulent H2 jet flames, probability density function (PDF), departures from chemical equilibrium, mixing models for PDF methods, comparison of predicted and measured H2O mass fractions in turbulent nonpremixed jet flames, experimental evidence of preferential diffusion in turbulent jet flames, and computation of turbulent reacting flows.
Aviation turbulence processes, detection, prediction
Lane, Todd
2016-01-01
Anyone who has experienced turbulence in flight knows that it is usually not pleasant, and may wonder why this is so difficult to avoid. The book includes papers by various aviation turbulence researchers and provides background into the nature and causes of atmospheric turbulence that affect aircraft motion, and contains surveys of the latest techniques for remote and in situ sensing and forecasting of the turbulence phenomenon. It provides updates on the state-of-the-art research since earlier studies in the 1960s on clear-air turbulence, explains recent new understanding into turbulence generation by thunderstorms, and summarizes future challenges in turbulence prediction and avoidance.
A Cryogenic High-Reynolds Turbulence Experiment at CERN
Bézaguet, Alain-Arthur; Knoops, S; Lebrun, P; Pezzetti, M; Pirotte, O; Bret, J L; Chabaud, B; Garde, G; Guttin, C; Hébral, B; Pietropinto, S; Roche, P; Barbier-Neyret, J P; Baudet, C; Gagne, Y; Poulain, C; Castaing, B; Ladam, Y; Vittoz, F
2002-01-01
The potential of cryogenic helium flows for studying high-Reynolds number turbulence in the laboratory has been recognised for a long time and implemented in several small-scale hydrodynamic experiments. With its large superconducting particle accelerators and detector magnets, CERN, the European Laboratory for Particle Physics, has become a major world center in helium cryogenics, with several large helium refrigerators having capacities up to 18 kW @ 4.5 K. Combining a small fraction of these resources with the expertise of three laboratories at the forefront of turbulence research, has led to the design, swift implementation, and successful operation of GReC (Grands Reynolds Cryogéniques) a large axisymmetric turbulent-jet experiment. With flow-rates up to 260 g/s of gaseous helium at ~ 5 K and atmospheric pressure, Reynolds numbers up to 107 have been achieved in a 4.6 m high, 1.4 m diameter cryostat. This paper presents the results of the first runs and describes the experimental set-up comprehensively ...
Vorticity dynamics after the shock-turbulence interaction
Livescu, D.; Ryu, J.
2016-05-01
The interaction of a shock wave with quasi-vortical isotropic turbulence (IT) represents a basic problem for studying some of the phenomena associated with high speed flows, such as hypersonic flight, supersonic combustion and Inertial Confinement Fusion (ICF). In general, in practical applications, the shock width is much smaller than the turbulence scales and the upstream turbulent Mach number is modest. In this case, recent high resolution shock-resolved Direct Numerical Simulations (DNS) (Ryu and Livescu, J Fluid Mech 756:R1, 2014) show that the interaction can be described by the Linear Interaction Approximation (LIA). Using LIA to alleviate the need to resolve the shock, DNS post-shock data can be generated at much higher Reynolds numbers than previously possible. Here, such results with Taylor Reynolds number approximately 180 are used to investigate the changes in the vortical structure as a function of the shock Mach number, Ms, up to Ms=10. It is shown that, as Ms increases, the shock interaction induces a tendency towards a local axisymmetric state perpendicular to the shock front, which has a profound influence on the vortex-stretching mechanism and divergence of the Lamb vector and, ultimately, on the flow evolution away from the shock.
Inflow Turbulence Generation Methods
Wu, Xiaohua
2017-01-01
Research activities on inflow turbulence generation methods have been vigorous over the past quarter century, accompanying advances in eddy-resolving computations of spatially developing turbulent flows with direct numerical simulation, large-eddy simulation (LES), and hybrid Reynolds-averaged Navier-Stokes-LES. The weak recycling method, rooted in scaling arguments on the canonical incompressible boundary layer, has been applied to supersonic boundary layer, rough surface boundary layer, and microscale urban canopy LES coupled with mesoscale numerical weather forecasting. Synthetic methods, originating from analytical approximation to homogeneous isotropic turbulence, have branched out into several robust methods, including the synthetic random Fourier method, synthetic digital filtering method, synthetic coherent eddy method, and synthetic volume forcing method. This article reviews major progress in inflow turbulence generation methods with an emphasis on fundamental ideas, key milestones, representative applications, and critical issues. Directions for future research in the field are also highlighted.
Directory of Open Access Journals (Sweden)
Norimasa Shiomi
2003-01-01
Full Text Available We carried out investigations for the purpose of clarifying the rotor outlet flow fields with rotating stall cell in a diagonal-flow fan. The test fan was a high–specific-speed (ns=1620 type of diagonal-flow fan that had 6 rotor blades and 11 stator blades. It has been shown that the number of the stall cell is 1, and its propagating speed is approximately 80% of its rotor speed, although little has been known about the behavior of the stall cell because a flow field with a rotating stall cell is essentially unsteady. In order to capture the behavior of the stall cell at the rotor outlet flow fields, hot-wire surveys were performed using a single-slant hotwire probe. The data obtained by these surveys were processed by means of a double phase-locked averaging technique, which enabled us to capture the flow field with the rotating stall cell in the reference coordinate system fixed to the rotor. As a result, time-dependent ensemble averages of the three-dimensional velocity components at the rotor outlet flow fields were obtained. The behavior of the stall cell was shown for each velocity component, and the flow patterns on the meridional planes were illustrated.
National Research Council Canada - National Science Library
Reeder, D
2002-01-01
... laboratory acoustic measurements. A general acoustic scattering model is developed that is accurate and numerically efficient for a wide range of frequencies, angles of orientation, irregular axisymmetric shapes and boundary...
Computation of steady and unsteady compressible quasi-axisymmetric vortex flow and breakdown
Kandil, Osama A.; Kandil, Hamdy A.; Liu, C. H.
1991-01-01
The unsteady, compressible Navier-Stokes equations are used to compute and analyze compressible quasi-axisymmetric isolated vortices. The Navier-Stokes equations are solved using an implicit, upwind, flux-difference splitting finite-volume scheme. The developed three-dimensional solver has been verified by comparing its solution profiles with those of a slender, quasi-axisymmetric vortex solver for a subsonic, isolated quasi-axisymmetric vortex in an unbounded domain. The Navier-Stokes solver is then used to solve for a supersonic quasi-axisymmetric vortex flow in a configured circular duct. Steady and unsteady vortex-shock interactions and breakdown have been captured. The problem has also been calculated using the Euler solver of the same code and the results are compared with those of the Navier-Stokes solver. The effect of the initial swirl has been tentatively studied.
Computation of compressible quasi-axisymmetric slender vortex flow and breakdown
Kandil, Osama A.; Kandil, Hamdy A.
1991-01-01
The unsteady, compressible Navier-Stokes equations are used to compute and analyze compressible quasi-axisymmetric isolated vortices. The Navier-Stokes equations are solved using an implicit, upwind, flux difference splitting finite volume scheme. The developed three dimensional solver was verified by comparing its solution profiles with those of a slender, quasi-axisymmetric vortex solver for a subsonic, quasi-axisymmetric vortex in an unbounded domain. The Navier-Stokes solver is then used to solve for a supersonic, quasi-axisymmetric vortex flow in a configured circular duct. Steady and unsteady vortex-shock interactions and breakdown were captured. The problem was also calculated using the Euler solver of the same code; the results were compared with those of the Navier-Stokes solver. The effect of the initial swirl was investigated.
Experiences with the use of axisymmetric elements in cosmic NASTRAN for static analysis
Cooper, Michael J.; Walton, William C.
1991-01-01
Discussed here are some recent finite element modeling experiences using the axisymmetric elements CONEAX, TRAPAX, and TRIAAX, from the COSMIC NASTRAN element library. These experiences were gained in the practical application of these elements to the static analysis of helicopter rotor force measuring systems for two design projects for the NASA Ames Research Center. These design projects were the Rotor Test Apparatus and the Large Rotor Test Apparatus, which are dedicated to basic helicopter research. Here, a genetic axisymmetric model is generated for illustrative purposes. Modeling considerations are discussed, and the advantages and disadvantages of using axisymmetric elements are presented. Asymmetric mechanical and thermal loads are applied to the structure, and single and multi-point constraints are addressed. An example that couples the axisymmetric model to a non-axisymmtric model is demonstrated, complete with DMAP alters. Recommendations for improving the elements and making them easier to use are offered.
Smith, Timothy D.; Steffen, Christopher J., Jr.; Yungster, Shaye; Keller, Dennis J.
1998-01-01
The all rocket mode of operation is shown to be a critical factor in the overall performance of a rocket based combined cycle (RBCC) vehicle. An axisymmetric RBCC engine was used to determine specific impulse efficiency values based upon both full flow and gas generator configurations. Design of experiments methodology was used to construct a test matrix and multiple linear regression analysis was used to build parametric models. The main parameters investigated in this study were: rocket chamber pressure, rocket exit area ratio, injected secondary flow, mixer-ejector inlet area, mixer-ejector area ratio, and mixer-ejector length-to-inlet diameter ratio. A perfect gas computational fluid dynamics analysis, using both the Spalart-Allmaras and k-omega turbulence models, was performed with the NPARC code to obtain values of vacuum specific impulse. Results from the multiple linear regression analysis showed that for both the full flow and gas generator configurations increasing mixer-ejector area ratio and rocket area ratio increase performance, while increasing mixer-ejector inlet area ratio and mixer-ejector length-to-diameter ratio decrease performance. Increasing injected secondary flow increased performance for the gas generator analysis, but was not statistically significant for the full flow analysis. Chamber pressure was found to be not statistically significant.
MULTIFLUID MAGNETOHYDRODYNAMIC TURBULENT DECAY
International Nuclear Information System (INIS)
Downes, T. P.; O'Sullivan, S.
2011-01-01
It is generally believed that turbulence has a significant impact on the dynamics and evolution of molecular clouds and the star formation that occurs within them. Non-ideal magnetohydrodynamic (MHD) effects are known to influence the nature of this turbulence. We present the results of a suite of 512 3 resolution simulations of the decay of initially super-Alfvenic and supersonic fully multifluid MHD turbulence. We find that ambipolar diffusion increases the rate of decay of the turbulence while the Hall effect has virtually no impact. The decay of the kinetic energy can be fitted as a power law in time and the exponent is found to be -1.34 for fully multifluid MHD turbulence. The power spectra of density, velocity, and magnetic field are all steepened significantly by the inclusion of non-ideal terms. The dominant reason for this steepening is ambipolar diffusion with the Hall effect again playing a minimal role except at short length scales where it creates extra structure in the magnetic field. Interestingly we find that, at least at these resolutions, the majority of the physics of multifluid turbulence can be captured by simply introducing fixed (in time and space) resistive terms into the induction equation without the need for a full multifluid MHD treatment. The velocity dispersion is also examined and, in common with previously published results, it is found not to be power law in nature.
Dielectric tensor operator of hot plasmas in toroidal axisymmetric systems
International Nuclear Information System (INIS)
Brunner, S.; Vaclavik, J.
1992-08-01
Kinetic theory is used to develop equations describing dynamics of small-amplitude electromagnetic perturbations in toroidal axisymmetric plasmas. The closed Vlasov-Maxwell equations are first solved for a hot stationary plasma using the expansion in the small parameter ε e =ρ/L, where ρ is the Larmor radius and L a characteristic length scale of the stationary state. The ordering and additional assumptions are specified so as to obtain the well-known Grad-Shafranov equation. The dielectric tensor of such a plasma is then derived. The Vlasov equation for the perturbed distribution function is solved by the expansion in the small parameters ε e and ε p =ρ/λ, where λ is a characteristic wavelength of the perturbing electromagnetic field. The solution is obtained up to the first order in ε e and the second order in ε p . By integrating the resulting distribution function over velocity space, an explicit expression for the tensor is derived in the form of a two-dimensional partial differential operator. The operator is shown to possess the proper symmetry corresponding to the energy conservation law. (author) 6 refs
Axisymmetric core collapse simulations using characteristic numerical relativity
International Nuclear Information System (INIS)
Siebel, Florian; Mueller, Ewald; Font, Jose A.; Papadopoulos, Philippos
2003-01-01
We present results from nonrotating axisymmetric stellar core collapse simulations in general relativity. Our hydrodynamics code has proved robust and accurate enough to allow for a detailed analysis of the global dynamics of the collapse. Contrary to traditional approaches based on the 3+1 formulation of the gravitational field equations, our framework uses a foliation based on a family of outgoing light cones, emanating from a regular center, and terminating at future null infinity. Such a coordinate system is well adapted to the study of interesting dynamical spacetimes in relativistic astrophysics such as stellar core collapse and neutron star formation. Perhaps most importantly this procedure allows for the extraction of gravitational waves at future null infinity, along with the commonly used quadrupole formalism for the gravitational wave extraction. Our results concerning the gravitational wave signals show noticeable disagreement when those are extracted by computing the Bondi news at future null infinity on the one hand and by using the quadrupole formula on the other hand. We have a strong indication that for our setup the quadrupole formula on the null cone does not lead to physical gravitational wave signals. The Bondi gravitational wave signals extracted at infinity show typical oscillation frequencies of about 0.5 kHz
Linear theory of the tearing instability in axisymmetric toroidal devices
International Nuclear Information System (INIS)
Rogister, A.; Singh, R.
1988-08-01
We derive a very general kinetic equation describing the linear evolution of low m/l modes in axisymmetric toroidal plasmas with arbitrary cross sections. Included are: Ion sound, inertia, diamagnetic drifts, finite poloidal beta, and finite ion Larmor radius effects. Assuming the magnetic surfaces to form a set of nested tori with circular cross sections of shifted centers, and introducing adequate simplifications justified by our knowledge of experimental tokamak plasmas, we then obtain explicitely the sets of equations describing the coupling of the quasimodes 0/1, 1/1, 2/1, and, for m≥2, m/1, (m+1)/1. By keeping finite aspect ratio effects into account when calculating the jump of the derivative of the eigenfunction, it is shown that the theory can explain the rapid evolution, within one sawtooth period, of the growth rate of the sawteeth precursors from resistive values to magnetohydrodynamic ones. The characteristics thus theoretically required from current profiles in sawtoothing discharges have clearly been observed. Other aspects of the full theory could be relevant to the phenomenon of major disruptions. (orig.)
Direct numerical simulation of axisymmetric laminar low-density jets
Gomez Lendinez, Daniel; Coenen, Wilfried; Sevilla, Alejandro
2017-11-01
The stability of submerged laminar axisymmetric low-density jets has been investigated experimentally (Kyle & Sreenivasan 1993, Hallberg & Strykowski 2006) and with linear analysis (Jendoubi & Strykowski 1994, Coenen & Sevilla 2012, Coenen et al. 2017). These jets become globally unstable when the Reynolds number is larger than a certain critical value which depends on the density ratio and on the velocity profile at the injector outlet. In this work, Direct Numerical Simulations using FreeFEM + + (Hecht 2012) with P1 elements for pressure and P2 for velocity and density are performed to complement the above mentioned studies. Density and velocity fields are analyzed at long time showing the unforced space-time evolution of nonlinear disturbances propagating along the jet. Using the Stuart-Landau model to fit the numerical results for the self-excited oscillations we have computed a neutral stability curve that shows good agreement with experiments and stability theory. Thanks to Spanish MINECO under projects DPI2014-59292-C3-1-P and DPI2015-71901-REDT for financial support.
Adhesion and detachment of a capsule in axisymmetric flow
Keh, M. P.; Leal, L. G.
2016-05-01
The adhesion and detachment of a capsule on a solid boundary surface is studied via a combination of scaling theory and numerical simulation and the behavior is compared and contrasted with a vesicle. It is shown that the dominant physical property for both capsules and vesicles is the area dilation modulus Ks of the membrane. The nonzero shear modulus Gs for capsules increases the resistance to deformation and thus decreases slightly the equilibrium contact radius for an adhered capsule compared to an adhered vesicle. The detachment process in this study is due to an external axisymmetric flow. Unlike a rigid body that must be pulled away without change of shape, capsules (and vesicles) almost always detach dominantly by peeling in which the contact radius decreases but the minimum separation distance does not change until the final moments of detachment. Compared to a vesicle with the same Ks, a capsule maintains a more compact shape and is harder to elongate under a given external flow. Hence, the detachment process is slower for capsules compared to vesicles with the same Ks.
Plasma equilibria and stationary flows in axisymmetric systems. Pt. 3
International Nuclear Information System (INIS)
Zelazny, R.; Stankiewicz, R.; Galkowski, A.; Potempski, S.; Pietak, R.
1990-08-01
The problem of the importance of poloidal flows for the behaviour of plasmas in axisymmetric systems has caused a lot of discussion and controversy during the last 15 years. There is no doubt that the mere existence of poloidal flow transforms the elliptic Grad-Shafranov-Schlueter equation into a system of mixed type partial differential equation and an algebraic multivalued Bernoulli equation. This fact leads to the appearance of Bernoulli branches in the solutions. Then, one can come across three branches of elliptic solutions as well as two branches of hyperbolic solutions with the possible appearance of phenomena connected with ''transsonic'' effects. Problems connected with such a mathematical situation have been extensively discussed in the report with the same title, dated May 1988, which we shall call later Part I of our studies on this subject. The present report, considered as Part III, is devoted to the presentation of results of efforts aimed at constructing programmes which allow us to solve the extended Grad-Shafranov-Schlueter equation (EGSS) (with stationary flows) in a more realistic situation relevant to the JET operating conditions. The main problem is to specify for a wider class of profiles the boundary conditions at the magnetic axis for a system of nonlinear ordinary differential equations ODE, resulting from EGSS equation after application of Fourier transformation techniques and of inverse method approach. The present report elaborates a much more general case and describes the computational framework enabling us to derive those boundary conditions. (author)
Uniformly rotating, axisymmetric, and triaxial quark stars in general relativity
Zhou, Enping; Tsokaros, Antonios; Rezzolla, Luciano; Xu, Renxin; UryÅ«, KÅji
2018-01-01
Quasiequilibrium models of uniformly rotating axisymmetric and triaxial quark stars are computed in a general-relativistic gravity scenario. The Isenberg-Wilson-Mathews (IWM) formulation is employed and the Compact Object Calculator (cocal) code is extended to treat rotating stars with finite surface density and new equations of state (EOSs). Besides the MIT bag model for quark matter which is composed of deconfined quarks, we examine a new EOS proposed by Lai and Xu that is based on quark clustering and results in a stiff EOS that can support masses up to 3.3 M⊙ in the case we considered. We perform convergence tests for our new code to evaluate the effect of finite surface density in the accuracy of our solutions and construct sequences of solutions for both small and high compactness. The onset of secular instability due to viscous dissipation is identified and possible implications are discussed. An estimate of the gravitational wave amplitude and luminosity based on quadrupole formulas is presented and comparison with neutron stars is discussed.
Transverse linear dynamics in an axisymmetric ionization cooling channel
Directory of Open Access Journals (Sweden)
G. Dugan
2001-10-01
Full Text Available This paper outlines a formalism for the description of the linear transverse dynamics of charged particles in an axisymmetric ionization cooling channel. The particle trajectories in the absence of Coulomb scattering are described in terms of lattice functions à la Courant and Snyder, which depend only on the electric and magnetic fields in the channel. The process of multiple Coulomb scattering, which introduces stochastic terms into the particle equations of motion, is treated (in Gaussian approximation by obtaining the distribution function in phase space as a solution of a Fokker-Planck equation. The distribution function is then used to obtain moment equations for the transverse variables and for combinations of variables such as the emittance and angular momentum. The distribution function is also used to obtain an expression for the peak four-dimensional phase space density and for the fraction of the beam that is within a certain area in phase space. The special case of a periodic channel is then considered and expressions for the asymptotic rms emittance and peak phase space density are obtained. Finally, the application of the general formalism to a numerical example, based on the reported design of a cooling channel for a neutrino source, is considered, and comparisons are made with numerical simulations of that channel.
First integrals of the axisymmetric shape equation of lipid membranes
Zhang, Yi-Heng; McDargh, Zachary; Tu, Zhan-Chun
2018-03-01
The shape equation of lipid membranes is a fourth-order partial differential equation. Under the axisymmetric condition, this equation was transformed into a second-order ordinary differential equation (ODE) by Zheng and Liu (Phys. Rev. E 48 2856 (1993)). Here we try to further reduce this second-order ODE to a first-order ODE. First, we invert the usual process of variational calculus, that is, we construct a Lagrangian for which the ODE is the corresponding Euler–Lagrange equation. Then, we seek symmetries of this Lagrangian according to the Noether theorem. Under a certain restriction on Lie groups of the shape equation, we find that the first integral only exists when the shape equation is identical to the Willmore equation, in which case the symmetry leading to the first integral is scale invariance. We also obtain the mechanical interpretation of the first integral by using the membrane stress tensor. Project supported by the National Natural Science Foundation of China (Grant No. 11274046) and the National Science Foundation of the United States (Grant No. 1515007).
Axisymmetric bifurcations of thick spherical shells under inflation and compression
deBotton, G.
2013-01-01
Incremental equilibrium equations and corresponding boundary conditions for an isotropic, hyperelastic and incompressible material are summarized and then specialized to a form suitable for the analysis of a spherical shell subject to an internal or an external pressure. A thick-walled spherical shell during inflation is analyzed using four different material models. Specifically, one and two terms in the Ogden energy formulation, the Gent model and an I1 formulation recently proposed by Lopez-Pamies. We investigate the existence of local pressure maxima and minima and the dependence of the corresponding stretches on the material model and on shell thickness. These results are then used to investigate axisymmetric bifurcations of the inflated shell. The analysis is extended to determine the behavior of a thick-walled spherical shell subject to an external pressure. We find that the results of the two terms Ogden formulation, the Gent and the Lopez-Pamies models are very similar, for the one term Ogden material we identify additional critical stretches, which have not been reported in the literature before.© 2012 Published by Elsevier Ltd.
Taylor, C. (Editor); Chin, J. H. (Editor); Homsy, G. M. (Editor)
1991-01-01
Consideration is given to the impulse response of a laminar boundary layer and receptivity; numerical transition to turbulence in plane Poiseuille flow; large eddy simulation of turbulent wake flow; a viscous model and loss calculation of a multisplitter cascade; vortex initiation during dynamic stall of an airfoil; a numerical analysis of isothermal flow in a combustion chamber; and compressible flow calculations with a two-equation turbulence model and unstructured grids. Attention is also given to a 2D calculation of a buoyant flow around a burning sphere, a fast multigrid method for 3D turbulent incompressible flows, a streaming flow induced by an oscillating cascade of circular cylinders, an algebraic multigrid scheme for solving the Navier-Stokes equations on unstructured meshes; and nonlinear coupled multigrid solutions to thermal problems employing different nodal grid arrangements and convective transport approximations.
Vorticity dynamics of a bileaflet mechanical heart valve in an axisymmetric aorta
Dasi, L. P.; Ge, L.; Simon, H. A.; Sotiropoulos, F.; Yoganathan, A. P.
2007-06-01
We present comprehensive particle image velocimetry measurements and direct numerical simulation (DNS) of physiological, pulsatile flow through a clinical quality bileaflet mechanical heart valve mounted in an idealized axisymmetric aorta geometry with a sudden expansion modeling the aortic sinus region. Instantaneous and ensemble-averaged velocity measurements as well as the associated statistics of leaflet kinematics are reported and analyzed in tandem to elucidate the structure of the velocity and vorticity fields of the ensuing flow-structure interaction. The measurements reveal that during the first half of the acceleration phase, the flow is laminar and repeatable from cycle to cycle. The valve housing shear layer rolls up into the sinus and begins to extract vorticity of opposite sign from the sinus wall. A start-up vortical structure is shed from the leaflets and is advected downstream as the leaflet shear layers become wavy and oscillatory. In the second half of flow acceleration the leaflet shear layers become unstable and break down into two von Karman-like vortex streets. The onset of vortex shedding from the valve leaflets is responsible for the growth of significant cycle-to-cycle vorticity oscillations. At peak flow, the housing and leaflet shear layers undergo secondary instabilities and break down rapidly into a chaotic, turbulent-like state with multiple small-scale vortical structures emerging in the flow. During the deceleration and closing phases all large-scale coherent flow features disappear and a chaotic small-scale vorticity field emerges, which persists even after the valve has closed. Probability density functions of the leaflet position during opening and closing phases show that the leaflet position fluctuates from cycle to cycle with larger fluctuations evident during valve closure. The DNS is carried out by prescribing the leaflet kinematics from the experimental data. The computed instantaneous vorticity fields are in very good
DENOIX , Marie-Alice
1992-01-01
We create two-dimensional flows within a thin layer of mercury, horizontal and subjected to a vertical uniform magnetic field. The fluid is set in motion by injecting electrical currents. We are interested in the inertial organization into stable structures of two-dimensional turbulence. With the experimental conditions in two areas of initial vorticity, we get axisymmetric structures, elliptical, or eccentric. We study these structures using visualizations and also measurements by potential ...
Why Do Promising Therapies Stall in Development and How Can We Move Them Forward?
Wegner, Craig D; Goodwin, Andrew; Cook, Jon C; Allamneni, Krishna; Sohn, Jane; McVean, Maralee
There are many reasons that molecules fail to progress to market and various principles of risk-benefit decisions that can help drive the molecule through development. This symposium included discussions on global strategies involved in pushing promising molecules to market, what to do when a molecule stalls in its progress to market, and options for rescuing the molecule and pushing it forward again. Innovative partnerships that bring stalled drugs back into clinical development were also addressed. A regulatory perspective on common reasons for a molecule to fail in its forward progress was presented. In addition, situations arise when a third-party advisory committee can provide input to help overcome issues identified by a regulatory agency. Using examples from the private and public domain, presentations centered on how to repurpose a molecule and when more science is needed.
A Beddoes-Leishman type dynamic stall model in state-space and indicial formulations
DEFF Research Database (Denmark)
Hansen, M.H.; Gaunaa, Mac; Aagaard Madsen, Helge
2004-01-01
This report contains a description of a Beddoes-Leishman type dynamic stall model in both a state-space and an indicial function formulation. The model predicts the unsteady aerodynamic forces and moment on an airfoil section undergoing arbitrary motionin heave, lead-lag, and pitch. The model...... features, such as overshoot of the lift, in the stall region. The linearized model is shown to give identicalresults to the full model for small amplitude oscillations. Furthermore, it is shown that the response of finite thichkness airfoils can be reproduced to a high accuracy by the use of specific...... is carried out by comparing the response of the model with inviscid solutions and observing the general behavior of the model using known airfoil data as input. Theproposed dynamic model gives results identical to inviscid solutions within the attached-flow region; and it exhibits the expected dynamic...
Grid support of a wind farm with active stall wind turbines and AC grid connection
DEFF Research Database (Denmark)
Hansen, Anca Daniela; Sørensen, Poul Ejnar; Iov, F.
2006-01-01
grid connection. The designed control system has the task of enabling such a wind farm to provide the best grid support. It is based on two control levels: a supervisory control level, which controls the power production of the whole farm by sending out reference signals to each individual wind turbine......, and a local control level, which ensures that the reference power signals at the wind turbine level are reached. The ability of active stall wind farms with AC grid connection to control the power production to the reference power ordered by the operators is assessed and discussed by means of simulations.......One of the main concerns in the grid integration of large wind farms is their ability to behave as active controllable components in the power system. This article presents the design of a new integrated power control system for a wind farm made up exclusively of active stall wind turbines with AC...
Turbulent and neoclassical toroidal momentum transport in tokamak plasmas
International Nuclear Information System (INIS)
Abiteboul, J.
2012-10-01
then analyzed and, although the conventional gyro-Bohm scaling is recovered on average, local processes are found to be clearly non-diffusive. The impact of scrape-off layer flows on core toroidal rotation is also analyzed by modifying the boundary conditions in GYSELA. Finally, the equilibrium magnetic field in tokamaks, which is not rigorously axisymmetric, provides another means of breaking the toroidal symmetry, through purely collisional processes. This effect is found to contribute significantly to toroidal momentum transport and can compete with the turbulence-driven toroidal rotation in tokamaks. (author)
Turbulence in Natural Environments
Banerjee, Tirtha
Problems in the area of land/biosphere-atmosphere interaction, hydrology, climate modeling etc. can be systematically organized as a study of turbulent flow in presence of boundary conditions in an increasing order of complexity. The present work is an attempt to study a few subsets of this general problem of turbulence in natural environments- in the context of neutral and thermally stratified atmospheric surface layer, the presence of a heterogeneous vegetation canopy and the interaction between air flow and a static water body in presence of flexible protruding vegetation. The main issue addressed in the context of turbulence in the atmospheric surface layer is whether it is possible to describe the macro-states of turbulence such as mean velocity and turbulent velocity variance in terms of the micro-states of the turbulent flow, i.e., a distribution of turbulent kinetic energy across a multitude of scales. This has been achieved by a `spectral budget approach' which is extended for thermal stratification scenarios as well, in the process unifying the seemingly different and unrelated theories of turbulence such as Kolmogorov's hypothesis, Heisenberg's eddy viscosity, Monin Obukhov Similarity Theory (MOST) etc. under a common framework. In the case of a more complex scenario such as presence of a vegetation canopy with edges and gaps, the question that is addressed is in what detail the turbulence is needed to be resolved in order to capture the bulk flow features such as recirculation patterns. This issue is addressed by a simple numerical framework and it has been found out that an explicit prescription of turbulence is not necessary in presence of heterogeneities such as edges and gaps where the interplay between advection, pressure gradients and drag forces are sufficient to capture the first order dynamics. This result can be very important for eddy-covariance flux calibration strategies in non-ideal environments and the developed numerical model can be
Simulation model of a transient fault controller for an active-stall wind turbine
Energy Technology Data Exchange (ETDEWEB)
Jauch, C.; Soerensen, P.; Bak Jensen, B.
2005-01-01
This paper describes the simulation model of a controller that enables an active-stall wind turbine to ride through transient faults. The simulated wind turbine is connected to a simple model of a power system. Certain fault scenarios are specified and the turbine shall be able to sustain operation in case of such faults. The design of the controller is described and its performance assessed by simulations. The control strategies are explained and the behaviour of the turbine discussed. (author)
Turbulence introduction to theory and applications of turbulent flows
Westerweel, Jerry; Nieuwstadt, Frans T M
2016-01-01
This book provides a general introduction to the topic of turbulent flows. Apart from classical topics in turbulence, attention is also paid to modern topics. After studying this work, the reader will have the basic knowledge to follow current topics on turbulence in scientific literature. The theory is illustrated with a number of examples of applications, such as closure models, numerical simulations and turbulent diffusion, and experimental findings. The work also contains a number of illustrative exercises.
DksA guards elongating RNA polymerase against ribosome-stalling-induced arrest.
Zhang, Yan; Mooney, Rachel A; Grass, Jeffrey A; Sivaramakrishnan, Priya; Herman, Christophe; Landick, Robert; Wang, Jue D
2014-03-06
In bacteria, translation-transcription coupling inhibits RNA polymerase (RNAP) stalling. We present evidence suggesting that, upon amino acid starvation, inactive ribosomes promote rather than inhibit RNAP stalling. We developed an algorithm to evaluate genome-wide polymerase progression independently of local noise and used it to reveal that the transcription factor DksA inhibits promoter-proximal pausing and increases RNAP elongation when uncoupled from translation by depletion of charged tRNAs. DksA has minimal effect on RNAP elongation in vitro and on untranslated RNAs in vivo. In these cases, transcripts can form RNA structures that prevent backtracking. Thus, the effect of DksA on transcript elongation may occur primarily upon ribosome slowing/stalling or at promoter-proximal locations that limit the potential for RNA structure. We propose that inactive ribosomes prevent formation of backtrack-blocking mRNA structures and that, in this circumstance, DksA acts as a transcription elongation factor in vivo. Copyright © 2014 Elsevier Inc. All rights reserved.
An automatic system for the detection of dairy cows lying behaviour in free-stall barns
Directory of Open Access Journals (Sweden)
Simona M.C. Porto
2013-09-01
Full Text Available In this paper, a method for the automatic detection of dairy cow lying behaviour in free-stall barns is proposed. A computer visionbased system (CVBS composed of a video-recording system and a cow lying behaviour detector based on the Viola Jones algorithm was developed. The CVBS performance was tested in a head-to-head free stall barn. Two classifiers were implemented in the software component of the CVBS to obtain the cow lying behaviour detector. The CVBS was validated by comparing its detection results with those generated from visual recognition. This comparison allowed the following accuracy indices to be calculated: the branching factor (BF, the miss factor (MF, the sensitivity, and the quality percentage (QP. The MF value of approximately 0.09 showed that the CVBS missed one cow every 11 well detected cows. Conversely, the BF value of approximately 0.08 indicated that one false positive was detected every 13 well detected cows. The high value of approximately 0.92 obtained for the sensitivity index and that obtained for QP of about 0.85 revealed the ability of the proposed system to detect cows lying in the stalls.
Piloted Simulator Evaluation Results of Flight Physics Based Stall Recovery Guidance
Lombaerts, Thomas; Schuet, Stefan; Stepanyan, Vahram; Kaneshige, John; Hardy, Gordon; Shish, Kimberlee; Robinson, Peter
2018-01-01
In recent studies, it has been observed that loss of control in flight is the most frequent primary cause of accidents. A significant share of accidents in this category can be remedied by upset prevention if possible, and by upset recovery if necessary, in this order of priorities. One of the most important upsets to be recovered from is stall. Recent accidents have shown that a correct stall recovery maneuver remains a big challenge in civil aviation, partly due to a lack of pilot training. A possible strategy to support the flight crew in this demanding context is calculating a recovery guidance signal, and showing this signal in an intuitive way on one of the cockpit displays, for example by means of the flight director. Different methods for calculating the recovery signal, one based on fast model predictive control and another using an energy based approach, have been evaluated in four relevant operational scenarios by experienced commercial as well as test pilots in the Vertical Motion Simulator at NASA Ames Research Center. Evaluation results show that this approach could be able to assist the pilots in executing a correct stall recovery maneuver.
Directory of Open Access Journals (Sweden)
Tris Eryando
2014-04-01
Full Text Available Escherichia coli in food stalls surrounding the X Campuss in Depok, year 2012. The research conducted to examine food safety, which were served in surrounding the campus X in Depok. Escherichia coli (E. coli existence was used to indicate the quality of hygiene and sanitation of the food that was served. Using the cross sectional method, the research examined the persons who served the food to be sold in the food stalls in the campus. There were 173 food servers chosen as the respondents from 10 different food stalls around the university. The existence of E. coli examined in the microbiology laboratory in the Faculty of Public Health. Using the most probable number (MPN method found that 59.54% of the food served in the campus were contaminated E. coli. Factors affecting the existence of E. coli were the raw materials (vegetables treated and the length of cooking of the materials (rice/beens. The improper treatment such as washing with no running water or even unwashed vegetables had 5 times risk of the E. coli contamination. Cooking less than 15 minutes was also more risky than cooking more than 15 minutes. As a result, this is very important to find a method to improve knowledge and to increase practical skills in food safety. Furthermore, in this research area may give contribution to avoid E. coli contamination which will prevent unnecessary illness among students in the campus.
Replisome stall events have shaped the distribution of replication origins in the genomes of yeasts
Newman, Timothy J.; Mamun, Mohammed A.; Nieduszynski, Conrad A.; Blow, J. Julian
2013-01-01
During S phase, the entire genome must be precisely duplicated, with no sections of DNA left unreplicated. Here, we develop a simple mathematical model to describe the probability of replication failing due to the irreversible stalling of replication forks. We show that the probability of complete genome replication is maximized if replication origins are evenly spaced, the largest inter-origin distances are minimized, and the end-most origins are positioned close to chromosome ends. We show that origin positions in the yeast Saccharomyces cerevisiae genome conform to all three predictions thereby maximizing the probability of complete replication if replication forks stall. Origin positions in four other yeasts—Kluyveromyces lactis, Lachancea kluyveri, Lachancea waltii and Schizosaccharomyces pombe—also conform to these predictions. Equating failure rates at chromosome ends with those in chromosome interiors gives a mean per nucleotide fork stall rate of ∼5 × 10−8, which is consistent with experimental estimates. Using this value in our theoretical predictions gives replication failure rates that are consistent with data from replication origin knockout experiments. Our theory also predicts that significantly larger genomes, such as those of mammals, will experience a much greater probability of replication failure genome-wide, and therefore will likely require additional compensatory mechanisms. PMID:23963700
Near Stall Flow Analysis in the Transonic Fan of the RTA Propulsion System
Hah, Chunill
2010-01-01
Turbine-based propulsion systems for access to space have been investigated at NASA Glenn Research center. A ground demonstrator engine for validation testing has been developed as a part of the program. The demonstrator, the Revolutionary Turbine Accelerator (RTA-1), is a variable cycle turbofan ramjet designed to transition from an augmented turbofan to a ramjet that produces the thrust required to accelerate the vehicle to Mach 4. The RTA-1 is designed to accommodate a large variation in bypass ratio from sea level static to Mach 4 flight condition. A key component of this engine is a new fan stage that accommodates these large variations in bypass ratio and flow ranges. In the present study, unsteady flow behavior in the fan of the RTA-1 is studied in detail with large eddy simulation (LES) and the numerical results are compared with measured data. During the experimental study of the fan stage, humming sound was detected at 100 % speed near stall operation. The main purpose of the study is to investigate details of the unsteady flow behavior at near stall operation and to identify a possible cause of the hum. The large eddy simulation of the current flow field reproduces main features of the measured flow very well. The LES simulation indicates that non-synchronous flow instability develops as the fan operates toward the stall limit. The FFT analysis of the calculated wall pressure shows that the rotating flow instability has the characteristic frequency that is about 50% of the blade passing frequency.
Aire unleashes stalled RNA polymerase to induce ectopic gene expression in thymic epithelial cells.
Giraud, Matthieu; Yoshida, Hideyuki; Abramson, Jakub; Rahl, Peter B; Young, Richard A; Mathis, Diane; Benoist, Christophe
2012-01-10
Aire is a transcriptional regulator that induces expression of peripheral tissue antigens (PTA) in thymic medullary epithelial cells (MECs), driving immunological self-tolerance in differentiating T cells. To elucidate its mechanistic pathways, we examined its transcriptional impact in MECs in vivo by microarray analysis with mRNA-spanning probes. This analysis revealed initiation of Aire-activated genes to be comparable in Aire-deficient and wild-type MECs, but with a block to elongation after 50-100 bp in the absence of Aire, suggesting activation by release of stalled polymerases by Aire. In contrast, patterns of activation by transcription factors such as Klf4 were consistent with regulation of initiation. Mapping of Aire and RNA polymerase-II (Pol-II) by ChIP and high-throughput sequencing (ChIP-seq) revealed that Aire bound all Pol-II-rich transcriptional start sites (TSS), irrespective of its eventual effect. However, the genes it preferentially activated were characterized by a relative surfeit of stalled polymerases at the TSS, which resolved once Aire was introduced into cells. Thus, transcript mapping and ChIP-seq data indicate that Aire activates ectopic transcription not through specific recognition of PTA gene promoters but by releasing stalled polymerases.
Short revolving wings enable hovering animals to avoid stall and reduce drag
Lentink, David; Kruyt, Jan W.; Heijst, Gertjan F.; Altshuler, Douglas L.
2014-11-01
Long and slender wings reduce the drag of airplanes, helicopters, and gliding animals, which operate at low angle of attack (incidence). Remarkably, there is no evidence for such influence of wing aspect ratio on the energetics of hovering animals that operate their wings at much higher incidence. High incidence causes aircraft wings to stall, hovering animals avoid stall by generating an attached vortex along the leading edge of their wings that elevates lift. Hypotheses that explain this capability include the necessity for a short radial distance between the shoulder joint and wing tip, measured in chord lengths, instead of the long tip-to-tip distance that elevates aircraft performance. This stems from how hovering animals revolve their wings around a joint, a condition for which the precise effect of aspect ratio on stall performance is unknown. Here we show that the attachment of the leading edge vortex is determined by wing aspect ratio with respect to the center of rotation-for a suite of aspect ratios that represent both animal and aircraft wings. The vortex remains attached when the local radius is shorter than 4 chord lengths, and separates outboard on more slender wings. Like most other hovering animals, hummingbirds have wing aspect ratios between 3 and 4, much stubbier than helicopters. Our results show this makes their wings robust against flow separation, which reduces drag below values obtained with more slender wings. This revises our understanding of how aspect ratio improves performance at low Reynolds numbers.
Turbulent heat transport in two- and three-dimensional temperature fields
Energy Technology Data Exchange (ETDEWEB)
Samaraweera, Don Sarath Abesiri [Univ. of California, Berkeley, CA (United States)
1978-03-01
A fundamental numerical study of turbulent heat and mass transport processes in two- and three-dimensional convective flows is presented. The model of turbulence employed is the type referred to as a second-order closure. In this scheme transport equations for all nonzero components of the Reynolds stress tensor, for the isotropic dissipation rate of turbulent kinetic energy, for all nonzero scalar flux tensor components and for the mean square scalar fluctuations are solved by a finite difference method along with the mean momentum and mean enthalpy (or concentration) equations. The model used for the stresses was developed earlier. Parallel ideas were utilised in obtaining a model for turbulent heat and mass transfer processes. The study has focused especially on the problem of nonaxisymmetric convective heat and mass transport in pipes, which arises when the boundary conditions are not axisymmetric. The few available experimental data on such situations have indicated anisotropy in effective diffusivities. To expand the available data base an experiment was conducted to obtain heat transfer measurements in strong three-dimensional heating conditions. Numerical procedures especially suitable for incorporation of second-order turbulent closure models have been developed. The effect of circumferential conduction in the tube material, which is influential in the asymmetric heating data currently available, was accounted for directly by extending the finite difference calculations into the pipe wall. The principal goal of predicting three-dimensional scalar transfer has been achieved.
Analysis of turbulent free jet hydrogen-air diffusion flames with finite chemical reaction rates
Sislian, J. P.
1978-01-01
The nonequilibrium flow field resulting from the turbulent mixing and combustion of a supersonic axisymmetric hydrogen jet in a supersonic parallel coflowing air stream is analyzed. Effective turbulent transport properties are determined using the (K-epsilon) model. The finite-rate chemistry model considers eight reactions between six chemical species, H, O, H2O, OH, O2, and H2. The governing set of nonlinear partial differential equations is solved by an implicit finite-difference procedure. Radial distributions are obtained at two downstream locations of variables such as turbulent kinetic energy, turbulent dissipation rate, turbulent scale length, and viscosity. The results show that these variables attain peak values at the axis of symmetry. Computed distributions of velocity, temperature, and mass fraction are also given. A direct analytical approach to account for the effect of species concentration fluctuations on the mean production rate of species (the phenomenon of unmixedness) is also presented. However, the use of the method does not seem justified in view of the excessive computer time required to solve the resulting system of equations.
Implications of Navier-Stokes turbulence theory for plasma turbulence
International Nuclear Information System (INIS)
Montgomery, David
1977-01-01
A brief discussion of Navier-Stokes turbulence theory is given with particular reference to the two dimensional case. The MHD turbulence is introduced with possible applications of techniques developed in Navier-Stokes theory. Turbulence in Vlasov plasma is also discussed from the point of view of the ''direct interaction approximation'' (DIA). (A.K.)
Comparison of Turbulence Models in Simulation of Flow in Small-Size Centrifugal Compressor
Directory of Open Access Journals (Sweden)
B. B. Novickii
2015-01-01
Full Text Available The aim of the work is the choice of turbulence model for the closure of the Reynoldsaveraged Navier-Stokes equations for calculation of the characteristics of small-size centrifugal compressor. To this were built three-dimensional sectors (as the compressor axisymmetric blade impeller and the diffuser of the centrifugal compressor on the basis of which they were created two grid models. The dimension of the grid model for the calculation models of turbulence komega and SST was 1.4 million. Elements and the dimensionless parameter y + does not exceed 2. turbulence model family k-epsilon model grid was also 1.4 million. Elements, and the dimensionless parameter y + was greater than 20, which corresponds to recommended values. The next part of the work was the task of boundary conditions required for the correct ca lculation. When the impeller inlet pawned pressure working fluid and the total temperature at the outlet and the gas flow rate through the stage. On the side faces sectors pawned boundary cond ition «Periodic», allowing everything except the wheel, but only axisymmetric part, which significantly reduces the required computational time and resources. Accounting clearance in addition to the meridional geometry construction additionally taken into account boundary condition «Counter Rotating Wall», which allows you to leave the domain in the rotating disc fixed coa ting.The next step was to analyze the results of these calculations, which showed that the turbulence model k-epsilon and RNG does not show the velocity vectors in the boundary layer, and "pushes" the flow from the blade using wall functions. At the core of the flow turbulence model k-omega shown for the undisturbed flow, which is not typical for the compressor working on predpompazhnom mode. For viscous gas diffuser vane for turbulence models SST, k-omega, RNG k-epsilon and has a similar character.The paper compares the characteristics of pressure centrifugal compressor
Reynolds number and geometry effects in laminar axisymmetric isothermal counterflows
Scribano, Gianfranco
2016-12-29
The counterflow configuration is a canonical stagnation flow, featuring two opposed impinging round jets and a mixing layer across the stagnation plane. Although counterflows are used extensively in the study of reactive mixtures and other applications where mixing of two streams is required, quantitative data on the scaling properties of the flow field are lacking. The aim of this work is to characterize the velocity and mixing fields in isothermal counterflows over a wide range of conditions. The study features both experimental data from particle image velocimetry and results from detailed axisymmetric simulations. The scaling laws for the nondimensional velocity and mixture fraction are obtained as a function of an appropriate Reynolds number and the ratio of the separation distance of the nozzles to their diameter. In the range of flow configurations investigated, the nondimensional fields are found to depend primarily on the separation ratio and, to a lesser extent, the Reynolds number. The marked dependence of the velocity field with respect to the separation ratio is linked to a high pressure region at the stagnation point. On the other hand, Reynolds number effects highlight the role played by the wall boundary layer on the interior of the nozzles, which becomes less important as the separation ratio decreases. The normalized strain rate and scalar dissipation rate at the stagnation plane are found to attain limiting values only for high values of the Reynolds number. These asymptotic values depend markedly on the separation ratio and differ significantly from the values produced by analytical models. The scaling of the mixing field does not show a limiting behavior as the separation ratio decreases to the smallest practical value considered.
Yang, Huan; Zimmerman, Aaron; Lehner, Luis
2015-02-27
We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.
Energy Technology Data Exchange (ETDEWEB)
Caldas, Ibere L.; Heller, M.V.A.P.; Brasilio, Z.A. [Sao Paulo Univ., SP, RJ (Brazil). Inst. de Fisica
1997-12-31
Full text. In this work we summarize the results from experiments on electrostatic and magnetic fluctuations in tokamak plasmas. Spectral analyses show that these fluctuations are turbulent, having a broad spectrum of wavectors and a broad spectrum of frequencies at each wavector. The electrostatic turbulence induces unexpected anomalous particle transport that deteriorates the plasma confinement. The relationship of these fluctuations to the current state of plasma theory is still unclear. Furthermore, we describe also attempts to control this plasma turbulence with external magnetic perturbations that create chaotic magnetic configurations. Accordingly, the magnetic field lines may become chaotic and then induce a Lagrangian diffusion. Moreover, to discuss nonlinear coupling and intermittency, we present results obtained by using numerical techniques as bi spectral and wavelet analyses. (author)
Energy Technology Data Exchange (ETDEWEB)
Mann, Jakob [Risoe National Lab., Wind Energy and Atmosheric Physics Dept., Roskilde (Denmark)
1999-03-01
The purpose of this work is to develop a model of the spectral velocity-tensor in neutral flow over complex terrain. The resulting equations are implemented in a computer code using the mean flow generated by a linear mean flow model as input. It estimates turbulence structure over hills (except on the lee side if recirculation is present) in the so-called outer layer and also models the changes in turbulence statistics in the vicinity roughness changes. The generated turbulence fields are suitable as input for dynamic load calculations on wind turbines and other tall structures and is under implementation in the collection of programs called WA{sup s}P Engineering. (au) EFP-97; EU-JOULE-3. 15 refs.
Computer Aided Process Planning for Non-Axisymmetric Deep Drawing Products
Park, Dong Hwan; Yarlagadda, Prasad K. D. V.
2004-06-01
In general, deep drawing products have various cross-section shapes such as cylindrical, rectangular and non-axisymmetric shapes. The application of the surface area calculation to non-axisymmetric deep drawing process has not been published yet. In this research, a surface area calculation for non-axisymmetric deep drawing products with elliptical shape was constructed for a design of blank shape of deep drawing products by using an AutoLISP function of AutoCAD software. A computer-aided process planning (CAPP) system for rotationally symmetric deep drawing products has been developed. However, the application of the system to non-axisymmetric components has not been reported yet. Thus, the CAPP system for non-axisymmetric deep drawing products with elliptical shape was constructed by using process sequence design. The system developed in this work consists of four modules. The first is recognition of shape module to recognize non-axisymmetric products. The second is a three-dimensional (3-D) modeling module to calculate the surface area for non-axisymmetric products. The third is a blank design module to create an oval-shaped blank with the identical surface area. The forth is a process planning module based on the production rules that play the best important role in an expert system for manufacturing. The production rules are generated and upgraded by interviewing field engineers. Especially, the drawing coefficient, the punch and die radii for elliptical shape products are considered as main design parameters. The suitability of this system was verified by applying to a real deep drawing product. This CAPP system constructed would be very useful to reduce lead-time for manufacturing and improve an accuracy of products.
Correlation lengths of electrostatic turbulence
International Nuclear Information System (INIS)
Guiziou, L.; Garbet, X.
1995-01-01
This document deals with correlation length of electrostatic turbulence. First, the model of drift waves turbulence is presented. Then, the radial correlation length is determined analytically with toroidal coupling and non linear coupling. (TEC). 5 refs
Statistical theory of Langmuir turbulence
International Nuclear Information System (INIS)
DuBois, D.F.; Rose, H.A.; Goldman, M.V.
1979-01-01
A statistical theory of Langmuir turbulence is developed by applying a generalization of the direction interaction approximation (DIA) of Kraichnan to the Zakharov equations describing Langmuir turbulence. 7 references
Dynamics and Control of Three-Dimensional Perching Maneuver under Dynamic Stall Influence
Feroskhan, Mir Alikhan Bin Mohammad
Perching is a type of aggressive maneuver performed by the class 'Aves' species to attain precision point landing with a generally short landing distance. Perching capability is desirable on unmanned aerial vehicles (UAVs) due to its efficient deceleration process that potentially expands the functionality and flight envelope of the aircraft. This dissertation extends the previous works on perching, which is mostly limited to two-dimensional (2D) cases, to its state-of-the-art threedimensional (3D) variety. This dissertation presents the aerodynamic modeling and optimization framework adopted to generate unprecedented variants of the 3D perching maneuver that include the sideslip perching trajectory, which ameliorates the existing 2D perching concept by eliminating the undesirable undershoot and reliance on gravity. The sideslip perching technique methodically utilizes the lateral and longitudinal drag mechanisms through consecutive phases of yawing and pitching-up motion. Since perching maneuver involves high rates of change in the angles of attack and large turn rates, introduction of three internal variables thus becomes necessary for addressing the influence of dynamic stall delay on the UAV's transient post-stall behavior. These variables are then integrated into a static nonlinear aerodynamic model, developed using empirical and analytical methods, and into an optimization framework that generates a trajectory of sideslip perching maneuver, acquiring over 70% velocity reduction. An impact study of the dynamic stall influence on the optimal perching trajectories suggests that consideration of dynamic stall delay is essential due to the significant discrepancies in the corresponding control inputs required. A comparative study between 2D and 3D perching is also conducted to examine the different drag mechanisms employed by 2D and 3D perching respectively. 3D perching is presented as a more efficient deceleration technique with respect to spatial costs and
Experimental characterization of extreme events of inertial dissipation in a turbulent swirling flow
Saw, E. -W.; Kuzzay, D.; Faranda, D.; Guittonneau, A.; Daviaud, F.; Wiertel-Gasquet, C.; Padilla, V.; Dubrulle, B.
2016-01-01
The three-dimensional incompressible Navier–Stokes equations, which describe the motion of many fluids, are the cornerstones of many physical and engineering sciences. However, it is still unclear whether they are mathematically well posed, that is, whether their solutions remain regular over time or develop singularities. Even though it was shown that singularities, if exist, could only be rare events, they may induce additional energy dissipation by inertial means. Here, using measurements at the dissipative scale of an axisymmetric turbulent flow, we report estimates of such inertial energy dissipation and identify local events of extreme values. We characterize the topology of these extreme events and identify several main types. Most of them appear as fronts separating regions of distinct velocities, whereas events corresponding to focusing spirals, jets and cusps are also found. Our results highlight the non-triviality of turbulent flows at sub-Kolmogorov scales as possible footprints of singularities of the Navier–Stokes equation. PMID:27578459
Input-output analysis of high-speed turbulent jet noise
Jeun, Jinah; Nichols, Joseph W.
2015-11-01
We apply input-output analysis to predict and understand the aeroacoustics of high-speed isothermal turbulent jets. We consider axisymmetric linear perturbations about Reynolds-averaged Navier-Stokes solutions of ideally expanded turbulent jets with Mach numbers 0 . 6 parabolized stability equations (PSE), and this mode dominates the response. For subsonic jets, however, the singular values indicate that the contributions of suboptimal modes to noise generation are nearly equal to that of the optimal mode, explaining why PSE misses some of the farfield sound in this case. Finally, high-fidelity large eddy simulation (LES) is used to assess the prevalence of suboptimal modes in the unsteady data. By projecting LES data onto the corresponding input modes, the weighted gain of each mode is examined.
Gyrofluid computation of magnetic perturbation effects on turbulence and edge localized bursts
Peer, J.; Kendl, A.; Ribeiro, T. T.; Scott, B. D.
2017-08-01
The effects of non-axisymmetric resonant magnetic perturbation fields (RMPs) on saturated drift-wave turbulence and on ballooning mode bursts in the edge pedestal of tokamak plasmas are investigated by numerical simulations with a nonlinear six-moment electromagnetic gyrofluid model including zonal profile evolution. The vacuum RMP fields are screened by plasma response currents, so that magnetic transport by perturbed parallel motion is not significantly changed. Radial transport of both particles and heat is dominated by turbulent convection even for large RMP amplitudes, where formation of quasi-stationary convective structures leads to edge profile degradation. Modelling of ideal ballooning mode unstable edge profiles for single bursts including RMP fields causes resonant mode locking and destabilization.
Plasma turbulence calculations on supercomputers
International Nuclear Information System (INIS)
Carreras, B.A.; Charlton, L.A.; Dominguez, N.; Drake, J.B.; Garcia, L.; Leboeuf, J.N.; Lee, D.K.; Lynch, V.E.; Sidikman, K.
1991-01-01
Although the single-particle picture of magnetic confinement is helpful in understanding some basic physics of plasma confinement, it does not give a full description. Collective effects dominate plasma behavior. Any analysis of plasma confinement requires a self-consistent treatment of the particles and fields. The general picture is further complicated because the plasma, in general, is turbulent. The study of fluid turbulence is a rather complex field by itself. In addition to the difficulties of classical fluid turbulence, plasma turbulence studies face the problems caused by the induced magnetic turbulence, which couples field by itself. In addition to the difficulties of classical fluid turbulence, plasma turbulence studies face the problems caused by the induced magnetic turbulence, which couples back to the fluid. Since the fluid is not a perfect conductor, this turbulence can lead to changes in the topology of the magnetic field structure, causing the magnetic field lines to wander radially. Because the plasma fluid flows along field lines, they carry the particles with them, and this enhances the losses caused by collisions. The changes in topology are critical for the plasma confinement. The study of plasma turbulence and the concomitant transport is a challenging problem. Because of the importance of solving the plasma turbulence problem for controlled thermonuclear research, the high complexity of the problem, and the necessity of attacking the problem with supercomputers, the study of plasma turbulence in magnetic confinement devices is a Grand Challenge problem
An overview of turbulence compensation
Schutte, K.; Eekeren, A.W.M. van; Dijk, J.; Schwering, P.B.W.; Iersel, M. van; Doelman, N.J.
2012-01-01
In general, long range visual detection, recognition and identification are hampered by turbulence caused by atmospheric conditions. Much research has been devoted to the field of turbulence compensation. One of the main advantages of turbulence compensation is that it enables visual identification
Magnetohydrodynamics turbulence: An astronomical perspective
Indian Academy of Sciences (India)
theories have since found applications in many areas of astrophysics. Spacecraft measurements of solar-wind turbulence show that there is more power in Alfvén waves that travel away from the. Sun than towards it. Theories of imbalanced MHD turbulence have now been proposed to address interplanetary turbulence.
Basic issues of atmospheric turbulence and turbulent diffusion
International Nuclear Information System (INIS)
Fortak, H.
1985-01-01
A major concern of the institutions commissioned with the protection of the environment is the prognostication of the environment's exposure to various pollutant emissions. The transport and turbulent diffusion of air-borne substances largely take place within a planetary boundary layer of a thickness between 500 to 1,500 m in which the atmosphere continues to be in a turbulent state of flow. The basic theories for the origination and formation of turbulence in flow fields, for the application of these theories to turbulent flows over complex terrain structures and, finally, for the turbulent diffusion of air-borne substances within the planetary boundary layer are presented. (orig./PW) [de
SICOS, 2-D Time-Dependent Creep Calculation of Plane or Axisymmetric Concrete Structure
International Nuclear Information System (INIS)
Plettenberg, W.; Schmidt, A.
1984-01-01
1 - Description of problem or function: Two-dimensional program for time-dependent calculation of plane and axisymmetric composite con- crete structures. Assumed material behaviour: - linear viscoelasticity (creep) for the concrete - Hooke's Law for liner and reinforcement The given structure may be represented by: - triangular constant strain concrete elements, plane or axisymmetric - plane or axisymmetric membrane steel elements (liner) - one-dimensional steel elements, in plane or axisymmetric geometry (prestress cables). Transient pressure loads and temperature distributions may be taken into account. Options for mesh generation, calculation of temperature distributions, restart and the representation of results are included. 2 - Method of solution: The program uses the finite-element method. The solution of the linear equation systems is performed either by utilization of the Gauss-Seidel iteration or by direct Gauss elimination possibly with reiteration. The calculation can also be per- formed with double-precision. 3 - Restrictions on the complexity of the problem: Restriction to axisymmetric and plane problems. Only linear-viscoelastic creep behaviour. No possibility of taking into account aging and shrinkage
Turbulence and Flying Machines
Indian Academy of Sciences (India)
for Advanced Scientific. Research. She is currently working on problems of flow stability, transition to turbulence and vortex dynamics. Rama Govindarajan. This article is intended to introduce the young reader to the ... T applied by the engines and the drag force D due to the resistance of the air, i.e., under cruise condi~ions,.
Incremental Similarity and Turbulence
DEFF Research Database (Denmark)
Barndorff-Nielsen, Ole E.; Hedevang, Emil; Schmiegel, Jürgen
This paper discusses the mathematical representation of an empirically observed phenomenon, referred to as Incremental Similarity. We discuss this feature from the viewpoint of stochastic processes and present a variety of non-trivial examples, including those that are of relevance for turbulence...
Stochastic modelling of turbulence
DEFF Research Database (Denmark)
Sørensen, Emil Hedevang Lohse
previously been shown to be closely connected to the energy dissipation. The incorporation of the small scale dynamics into the spatial model opens the door to a fully fledged stochastic model of turbulence. Concerning the interaction of wind and wind turbine, a new method is proposed to extract wind turbine...
Turbulence compressibility corrections
Coakley, T. J.; Horstman, C. C.; Marvin, J. G.; Viegas, J. R.; Bardina, J. E.; Huang, P. G.; Kussoy, M. I.
1994-01-01
The basic objective of this research was to identify, develop and recommend turbulence models which could be incorporated into CFD codes used in the design of the National AeroSpace Plane vehicles. To accomplish this goal, a combined effort consisting of experimental and theoretical phases was undertaken. The experimental phase consisted of a literature survey to collect and assess a database of well documented experimental flows, with emphasis on high speed or hypersonic flows, which could be used to validate turbulence models. Since it was anticipated that this database would be incomplete and would need supplementing, additional experiments in the NASA Ames 3.5-Foot Hypersonic Wind Tunnel (HWT) were also undertaken. The theoretical phase consisted of identifying promising turbulence models through applications to simple flows, and then investigating more promising models in applications to complex flows. The complex flows were selected from the database developed in the first phase of the study. For these flows it was anticipated that model performance would not be entirely satisfactory, so that model improvements or corrections would be required. The primary goals of the investigation were essentially achieved. A large database of flows was collected and assessed, a number of additional hypersonic experiments were conducted in the Ames HWT, and two turbulence models (kappa-epsilon and kappa-omega models with corrections) were determined which gave superior performance for most of the flows studied and are now recommended for NASP applications.
van der Veen, Roeland
2016-01-01
In this thesis, several questions related to drop impact and Taylor-Couette turbulence are answered. The deformation of a drop just before impact can cause a bubble to be entrapped. For many applications, such as inkjet printing, it is crucial to control the size of this entrapped bubble. To study
Page, Patrick; Ganswindt, Andre; Schoeman, Johan; Venter, Gert; Guthrie, Alan
2017-09-09
African horse sickness (AHS) is of importance to health and international trade in horses worldwide. During export from and transit through AHS endemic countries or zones, physical and chemical measures to protect horses from the vectors of AHS virus (AHSV) are recommended by the World Organization for Animal Health. Protection of containerized air transport systems for horses (jet stalls) with alphacypermethrin insecticide-treated high density polyethylene mesh is effective in reducing the Culicoides midge vector attack rate. In order to determine the effect of this mesh on jet stall ventilation and horse welfare under temperate climatic conditions, jet stall microclimate, clinical variables and faecal glucocorticoid metabolite (FGM) levels of 12 horses were monitored during overnight housing in either a treated or untreated stall in two blocks of a 2 × 3 randomized crossover design. Temperature difference between the treated stall and outside was significantly higher than the difference between the untreated stall and outside at 1/15 time points only (P = 0.045, r = 0.70). Relative humidity (RH) difference between the treated stall and outside did not differ from the untreated stall and outside. Temperature and RH in the treated stall were highly and significantly correlated with outside temperature (r = 0.96, P < 0.001) and RH (r = 0.95, P < 0.001), respectively. No significant differences were detected between rectal temperatures, pulse and respiratory rates of horses in the treated stall compared to the untreated stall. Mean FGM concentrations for horses housed in the treated stall peaked earlier (24 h) and at a higher concentration than horses housed in the untreated stall (48 h), but were not significantly different from baseline. No significant difference was detected in FGM concentrations when the treated and untreated stall groups were compared at individual time points up to 72 h after exiting the jet stall. Alphacypermethrin
Analysis of turbulent boundary layers
Cebeci, Tuncer
1974-01-01
Analysis of Turbulent Boundary Layers focuses on turbulent flows meeting the requirements for the boundary-layer or thin-shear-layer approximations. Its approach is devising relatively fundamental, and often subtle, empirical engineering correlations, which are then introduced into various forms of describing equations for final solution. After introducing the topic on turbulence, the book examines the conservation equations for compressible turbulent flows, boundary-layer equations, and general behavior of turbulent boundary layers. The latter chapters describe the CS method for calculati
Magnetosheath electrostatic turbulence
International Nuclear Information System (INIS)
Rodriguez, P.
1979-01-01
By using measurements with the University of Iowa plasma wave experiment on the Imp 6 satellite a study has been conducted of the spectrum of electrostatic plasma waves in the terrestrial magnetosheath. Electrostatic plasma wave turbulence is almost continuously present throughout the magnetosheath with broadband (20 Hz to 70 kHz) rms field intensities typically 0.01--1.0 mV m -1 . Peak intensities of about 1.0 mV m -1 near the electron plasma frequency (30--60 kHz) have been detected occasionally. Two or three components can usually be identified in the spectrum of magnetosheath electrostatic turbulence: a high-frequency (> or =30kHz) component peaking at the electron plasma frequency f/sub p/e, a low-frequency component with a broad intensity maximum below the nominal ion plasma frequency f/sub p/i (approx. f/sub p/e/43), and a less well defined intermediate component in the range f/sub p/i < f< f/sub p/e. The intensity distribution of magnetosheath electrostatic turbulence clearly shows that the low-frequency component is associated with the bow shock, suggesting that the ion heating begun at the shock continues into the downstream magnetosheath. Electrostatic waves below 1 kHz are polarized along the magnetic field direction, a result consistent with the polarization of electrostatic waves at the shock. The high- and intermediate-frequency components are features of the magnetosheath spectrum which are not characteristic of the shock spectrum but are often detected in the upstream solar wind. The intensity distribution of electrostatic turbulence at the magnetosheath plasma frequency has no apparent correlation with the shock, indicating that electron plasma oscillations are a general feature of the magnetosheath. The plasma wave noise shows a tendency to decrease toward the dawn and dusk regions, consistent with a general decrease in turbulence away from the subsolar magnetosheath
Turbulent flow field structure of initially asymmetric jets
International Nuclear Information System (INIS)
Kim, Kyung Hoon; Kim, Bong Whan; Kim, Suk Woo
2000-01-01
The near field structure of round turbulent jets with initially asymmetric velocity distributions is investigated experimentally. Experiments are carried out using a constant temperature hot-wire anemomentry system to measure streamwise velocity in the jets. The measurements are undertaken across the jet at various streamwise stations in a range starting from the jet exit plane and up to a downstream location of twelve diameters. The experimental results include the distributions of mean and instantaneous velocities, vorticity field, turbulence intensity, and the Reynolds shear stresses. The asymmetry of the jet exit plane was obtained by using circular cross-section pipes with a bend upstream of the exit. Three pipes used here include a straight pipe, and 90 and 160 degree-bend pipes. Therefore, at the upstream of the pipe exit, secondary flow through the bend and mean streamwise velocity distribution could be controlled by changing the curvature of pipes. The jets into the atmosphere have two levels of initial velocity skewness in addition to an axisymmetric jet from a straight pipe. In case of the curved pipe, a six diameterlong straight pipe section follows the bend upstream of the exit. The Reynolds number based on the exit bulk velocity is 13,400. The results indicate that the near field structure is considerably modified by the skewness of an initial mean velocity distribution. As the skewness increases, the decay rate of mean velocity at the centerline also increases
1983-01-01
Influence Scaling of 2D and 3D Shock/Turbulent ioundary Layer Interactions at Compression Corners." AIM Paper 81-334, January 1981. 5. Kubota, H...generating 3D shock wave/boundary layer interactions 2 Unswept sharp fin interaction and coordinate system 3 Cobra probe measurements of Peake (4) at Mach 4...were made by two Druck 50 PSI transducers, each in- stalled in a computer-controlled 48-port Model 48J4 Scani- valve and referenced to vacuum. A 250
Tieng, S. M.; Lai, W. Z.
Because of the importance of the temperature scalar measurements in combination diagonostics, application of phase shift holographic interferometry to temperature measurement of an axisymmetrically premixed flame was experimentally investigated. The test apparatus is an axisymmetric Bunsen burner. Propane of 99 percent purity is used as the gaseous fuel. A fast Fourier transform, a more efficient and accurate approach for Abel inversion, is used for reconstructed the axisymmetric temperature field from the interferometric data. The temperature distribution is compared with the thermocouple-measured values. The comparison shows that the proposed technique is satisfactory. The result errors are analyzed in detail. It is shown that this technique overcomes most of the earlier problems and limitations detrimental to the conventional holographic interferometry.
Transitional-turbulent spots and turbulent-turbulent spots in boundary layers.
Wu, Xiaohua; Moin, Parviz; Wallace, James M; Skarda, Jinhie; Lozano-Durán, Adrián; Hickey, Jean-Pierre
2017-07-03
Two observations drawn from a thoroughly validated direct numerical simulation of the canonical spatially developing, zero-pressure gradient, smooth, flat-plate boundary layer are presented here. The first is that, for bypass transition in the narrow sense defined herein, we found that the transitional-turbulent spot inception mechanism is analogous to the secondary instability of boundary-layer natural transition, namely a spanwise vortex filament becomes a [Formula: see text] vortex and then, a hairpin packet. Long streak meandering does occur but usually when a streak is infected by a nearby existing transitional-turbulent spot. Streak waviness and breakdown are, therefore, not the mechanisms for the inception of transitional-turbulent spots found here. Rather, they only facilitate the growth and spreading of existing transitional-turbulent spots. The second observation is the discovery, in the inner layer of the developed turbulent boundary layer, of what we call turbulent-turbulent spots. These turbulent-turbulent spots are dense concentrations of small-scale vortices with high swirling strength originating from hairpin packets. Although structurally quite similar to the transitional-turbulent spots, these turbulent-turbulent spots are generated locally in the fully turbulent environment, and they are persistent with a systematic variation of detection threshold level. They exert indentation, segmentation, and termination on the viscous sublayer streaks, and they coincide with local concentrations of high levels of Reynolds shear stress, enstrophy, and temperature fluctuations. The sublayer streaks seem to be passive and are often simply the rims of the indentation pockets arising from the turbulent-turbulent spots.
Transitional-turbulent spots and turbulent-turbulent spots in boundary layers
Wu, Xiaohua; Moin, Parviz; Wallace, James M.; Skarda, Jinhie; Lozano-Durán, Adrián; Hickey, Jean-Pierre
2017-07-01
Two observations drawn from a thoroughly validated direct numerical simulation of the canonical spatially developing, zero-pressure gradient, smooth, flat-plate boundary layer are presented here. The first is that, for bypass transition in the narrow sense defined herein, we found that the transitional-turbulent spot inception mechanism is analogous to the secondary instability of boundary-layer natural transition, namely a spanwise vortex filament becomes a ΛΛ vortex and then, a hairpin packet. Long streak meandering does occur but usually when a streak is infected by a nearby existing transitional-turbulent spot. Streak waviness and breakdown are, therefore, not the mechanisms for the inception of transitional-turbulent spots found here. Rather, they only facilitate the growth and spreading of existing transitional-turbulent spots. The second observation is the discovery, in the inner layer of the developed turbulent boundary layer, of what we call turbulent-turbulent spots. These turbulent-turbulent spots are dense concentrations of small-scale vortices with high swirling strength originating from hairpin packets. Although structurally quite similar to the transitional-turbulent spots, these turbulent-turbulent spots are generated locally in the fully turbulent environment, and they are persistent with a systematic variation of detection threshold level. They exert indentation, segmentation, and termination on the viscous sublayer streaks, and they coincide with local concentrations of high levels of Reynolds shear stress, enstrophy, and temperature fluctuations. The sublayer streaks seem to be passive and are often simply the rims of the indentation pockets arising from the turbulent-turbulent spots.
Non-axisymmetric line-driven disc winds - I. Disc perturbations
Dyda, Sergei; Proga, Daniel
2018-04-01
We study mass outflows driven from accretion discs by radiation pressure due to spectral lines. To investigate non-axisymmetric effects, we use the ATHENA++ code and develop a new module to account for radiation pressure driving. In 2D, our new simulations are consistent with previous 2D axisymmetric solutions by Proga et al., who used the ZEUS 2D code. Specifically, we find that the disc winds are time dependent, characterized by a dense stream confined to ˜45° relative to the disc mid-plane and bounded on the polar side by a less dense, fast stream. In 3D, we introduce a vertical, ϕ-dependent, subsonic velocity perturbation in the disc mid-plane. The perturbation does not change the overall character of the solution but global outflow properties such as the mass, momentum, and kinetic energy fluxes are altered by up to 100 per cent. Non-axisymmetric density structures develop and persist mainly at the base of the wind. They are relatively small, and their densities can be a few times higher than the azimuthal average. The structure of the non-axisymmetric and axisymmetric solutions differ also in other ways. Perhaps most importantly from the observational point of view are the differences in the so-called clumping factors, that serve as a proxy for emissivity due to two body processes. In particular, the spatially averaged clumping factor over the entire fast stream, while it is of a comparable value in both solutions, it varies about 10 times faster in the non-axisymmetric case.
Energy Technology Data Exchange (ETDEWEB)
Urbin, Gerald [Institut National Polytechnique, 38 - Grenoble (France)
1998-02-02
This study highlights the potentialities of the numerical technique of large scale simulation in describing and understanding the turbulent flows in a complex geometry. Particularly, it is focussed on flows of free jet, confined jets and multiple jets of high solidity grid. Spatial simulations of the circular zone close to a free jet, of high Reynolds number were performed. In spite of an evident sensitivity to upstream conditions good agreement between our statistical predictions and different experimental measurements was obtained. The multiple coherent vortical structures implied in the transition to turbulence of the jet were found. At the same time, helical or annular axisymmetric vortices were observed. Also, an original vortical arrangement was evidenced, resulting from the alternating inclination and local pairing of these rings. It could been forced through an ad-hoc excitation which modifies subsequently drastically the jet development. When an axisymmetric excitation is imposed after formation of annular structures, pairs of counter-rotative longitudinal vortices occur and generate lateral jets. Their nature and presence in case of a helical excitation are discussed. An efficient method for controlling their number is developed. Then, one is studied the very low frequency periodic phenomenon of backward-facing transition to turbulence which develops in the confined jet and grid multiple jets (a phenomenon generic in numerous flows). It was found to depend not only on the characteristic of the re-circulation (pre-transition) zones but also on the upstream flow (zone of post-transition stagnation, pressure effect). Large scale transversal motions of the fluid have been found beginning from the grid. An interpretation of this phenomenon is suggested 193 refs., 109 figs.
Satellite sensing of submerged fossil turbulence and zombie turbulence
Gibson, Carl H.
2004-11-01
Surface brightness anomalies from a submerged municipal wastewater outfall trapped by buoyancy in an area 0.1 km^2 are surprisingly detected from space satellites in areas > 200 km^2. How is this possible? Microstructure measurements near the outfall diffuser reveal enhanced turbulence and temperature dissipation rates above the 50 m trapping depth. Near-vertical radiation of internal waves by fossil and zombie turbulence microstructure patches produce wind ripple smoothing with 30-50 m internal wave patterns in surface Fourier brightness anomalies near the outfall. Detections at 10-14 km distances are at 100-220 m bottom boundary layer (BBL) fossil turbulence scales. Advected outfall fossils form zombie turbulence patches in internal wave patterns as they extract energy, vorticity, turbulence and ambient vertical internal wavelength information as their density gradients are tilted by the waves. As the zombies fossilize, patterned energy radiates near-vertically to produce the detected Fourier anomalies. Zombie turbulence patches beam extracted energy in a preferred direction with a special frequency, like energized metastable molecules in a chemical maser. Thus, kilowatts to produce the submerged field of advected fossil outfall turbulence patches are amplified by beamed zombie turbulence maser action (BZTMA) into megawatts of turbulence dissipation to affect sea surface brightness on wide surface areas using gigawatts of BBL fossil turbulence wave energy available.
Animal hygiene assessment of microclimate in semi open free-stall barns for dairy cows
Directory of Open Access Journals (Sweden)
D. Dimov
2017-03-01
Full Text Available Abstract. The study was conducted in three semi open free-stall barns (B1, B2, and B3 for dairy cows with capacities for 120, 120 and 500 cows, respectively, from three different dairy farms (F-1, F-2 and F-3, situated in Central Southern Bulgaria. The investigated farms had the same production system – loose housing in semi open free-stall dairy barn. For each of the farms the main microclimatic parameters – air temperature, relative humidity and speed of airflow were recorded twice a month at 10.00 h 12.00 h, 14.00 h, 16.00 h and 18.00 h of the day inside the barns in three main technological zones - above the stalls, above manure and feed alleys and outside the buildings. It was found that: a Microclimatic parameters (air temperature, air relative humidity and speed of airflow in technological zones (above the stalls, the manure and feed alleys of three semi open free-stall dairy barns meet the animal hygienic requirements for all seasons according to Regulation No. 44 (2006. Exceptions are some values of relative humidity in B1 and B2 in the spring, and in B1 in winter and summer, which are lower than the minimum humidity (50% according to the standard. b The investigated barns are characterized with poor insulation and do not provide enough isolation from the external ambient temperatures. With the exception of winter, the temperature of the air inside the buildings was lower than that outside, with minor differences for all seasons. The fans in the barns have no effect on the inside air temperature, especially in summer. There was a risk of higher temperatures mainly during the summer period. c There is no significant difference between the average temperatures, air humidity and speed of airflow in all technological zones of the investigated barns. d The largest and statistically significant is the difference between the relative air humidity outside and inside the building in Farm 3, followed by buildings in Farm 1 and 2, where the
Cohen, Bruce; Umansky, Maxim; Joseph, Ilon
2015-11-01
Progress is reported on including self-consistent zonal flows in simulations of drift-resistive ballooning turbulence using the BOUT + + framework. Previous published work addressed the simulation of L-mode edge turbulence in realistic single-null tokamak geometry using the BOUT three-dimensional fluid code that solves Braginskii-based fluid equations. The effects of imposed sheared ExB poloidal rotation were included, with a static radial electric field fitted to experimental data. In new work our goal is to include the self-consistent effects on the radial electric field driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We describe a model for including self-consistent zonal flows and an algorithm for maintaining underlying plasma profiles to enable the simulation of steady-state turbulence. We examine the role of Braginskii viscous forces in providing necessary dissipation when including axisymmetric perturbations. We also report on some of the numerical difficulties associated with including the axisymmetric component of the fluctuating fields. This work was performed under the auspices of the U.S. Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory (LLNL-ABS-674950).
Flow of Polymer Melts in Plane- and Axi-symmetric Converging Dies
DEFF Research Database (Denmark)
Lauridsen, Carsten Linding; Kjær, Erik Michael; Haudrum, Jan
1997-01-01
The extensional flow has considerable influence on the pressure loss in converging flows, which are present in both extrusion and injection moulding. Both plane- and axi-symmetric converging flows have been studied with LDPE, HDPE and PS. The transient extensional viscosities are determined in all...... cases. The extensional viscous description used is the one proposed by Cogswell (3). The extensional viscosities in the two now different flow fields ate compared. The plane-symmetric extensional viscosity is found to be larger than the axi-symmetric for the HDPE melt. The two viscosities are comparable...
Prediction of RNA Polymerase II recruitment, elongation and stalling from histone modification data
2011-01-01
Background Initiation and elongation of RNA polymerase II (RNAPII) transcription is regulated by both DNA sequence and chromatin signals. Recent breakthroughs make it possible to measure the chromatin state and activity of core promoters genome-wide, but dedicated computational strategies are needed to progress from descriptive annotation of data to quantitative, predictive models. Results Here, we describe a computational framework which with high accuracy can predict the locations of core promoters, the amount of recruited RNAPII at the promoter, the amount of elongating RNAPII in the gene body, the mRNA production originating from the promoter and finally also the stalling characteristics of RNAPII by considering both quantitative and spatial features of histone modifications around the transcription start site (TSS). As the model framework can also pinpoint the signals that are the most influential for prediction, it can be used to infer underlying regulatory biology. For example, we show that the H3K4 di- and tri- methylation signals are strongly predictive for promoter location while the acetylation marks H3K9 and H3K27 are highly important in estimating the promoter usage. All of these four marks are found to be necessary for recruitment of RNAPII but not sufficient for the elongation. We also show that the spatial distributions of histone marks are almost as predictive as the signal strength and that a set of histone marks immediately downstream of the TSS is highly predictive of RNAPII stalling. Conclusions In this study we introduce a general framework to accurately predict the level of RNAPII recruitment, elongation, stalling and mRNA expression from chromatin signals. The versatility of the method also makes it ideally suited to investigate other genomic data. PMID:22047616
Prediction of RNA Polymerase II recruitment, elongation and stalling from histone modification data
Directory of Open Access Journals (Sweden)
Chen Yun
2011-11-01
Full Text Available Abstract Background Initiation and elongation of RNA polymerase II (RNAPII transcription is regulated by both DNA sequence and chromatin signals. Recent breakthroughs make it possible to measure the chromatin state and activity of core promoters genome-wide, but dedicated computational strategies are needed to progress from descriptive annotation of data to quantitative, predictive models. Results Here, we describe a computational framework which with high accuracy can predict the locations of core promoters, the amount of recruited RNAPII at the promoter, the amount of elongating RNAPII in the gene body, the mRNA production originating from the promoter and finally also the stalling characteristics of RNAPII by considering both quantitative and spatial features of histone modifications around the transcription start site (TSS. As the model framework can also pinpoint the signals that are the most influential for prediction, it can be used to infer underlying regulatory biology. For example, we show that the H3K4 di- and tri- methylation signals are strongly predictive for promoter location while the acetylation marks H3K9 and H3K27 are highly important in estimating the promoter usage. All of these four marks are found to be necessary for recruitment of RNAPII but not sufficient for the elongation. We also show that the spatial distributions of histone marks are almost as predictive as the signal strength and that a set of histone marks immediately downstream of the TSS is highly predictive of RNAPII stalling. Conclusions In this study we introduce a general framework to accurately predict the level of RNAPII recruitment, elongation, stalling and mRNA expression from chromatin signals. The versatility of the method also makes it ideally suited to investigate other genomic data.
Viterbo, David
2016-03-16
Trinucleotide repeat expansions are responsible for at least two dozen neurological disorders. Mechanisms leading to these large expansions of repeated DNA are still poorly understood. It was proposed that transient stalling of the replication fork by the repeat tract might trigger slippage of the newly-synthesized strand over its template, leading to expansions or contractions of the triplet repeat. However, such mechanism was never formally proven. Here we show that replication fork pausing and CAG/CTG trinucleotide repeat instability are not linked, stable and unstable repeats exhibiting the same propensity to stall replication forks when integrated in a yeast natural chromosome. We found that replication fork stalling was dependent on the integrity of the mismatch-repair system, especially the Msh2p-Msh6p complex, suggesting that direct interaction of MMR proteins with secondary structures formed by trinucleotide repeats in vivo, triggers replication fork pauses. We also show by chromatin immunoprecipitation that Msh2p is enriched at trinucleotide repeat tracts, in both stable and unstable orientations, this enrichment being dependent on MSH3 and MSH6. Finally, we show that overexpressing MSH2 favors the formation of heteroduplex regions, leading to an increase in contractions and expansions of CAG/CTG repeat tracts during replication, these heteroduplexes being dependent on both MSH3 and MSH6. These heteroduplex regions were not detected when a mutant msh2-E768A gene in which the ATPase domain was mutated was overexpressed. Our results unravel two new roles for mismatch-repair proteins: stabilization of heteroduplex regions and transient blocking of replication forks passing through such repeats. Both roles may involve direct interactions between MMR proteins and secondary structures formed by trinucleotide repeat tracts, although indirect interactions may not be formally excluded.
Stall, Spiculate, or Run Away: The Fate of Fibers Growing towards Fluctuating Membranes
Daniels, D. R.; Marenduzzo, D.; Turner, M. S.
2006-09-01
We study the dynamics of a growing semiflexible fiber approaching a membrane at an angle. At late times we find three regimes: fiber stalling, when growth stops, runaway, in which the fiber bends away from the membrane, and another regime in which spicules form. We discuss which regions of the resulting “phase diagram” are explored by (i) single and bundled actin fibers in living cells, (ii) sickle hemoglobin fibers, and (iii) microtubules inside vesicles. We complement our analysis with 3D stochastic simulations.
Prediction of H.A.W.T. blade stall and performance
Energy Technology Data Exchange (ETDEWEB)
Giannakidis, G.; Graham, J.M.R. [Imperial College, Dept. of Aeronautics, London (United Kingdom)
1996-09-01
A model is being developed for the prediction of Horizontal Axis Wind Turbine blade stall and performance coupled with a simple aeroelastic analysis model. For the aerodynamic calculation a two dimensional unsteady Navier-Stokes solver on a sectional basis on the blade is coupled with a three dimensional vortex lattice wake. Pressure coefficient distributions are calculated from the two dimensional viscous flow in each blade section. The aerodynamic computations are coupled with a vibrating beam model in order to incorporate flapwise deformations of the blade. (au) 17 refs.
Modeling dynamic stall on wind turbine blades under rotationally augmented flow fields
DEFF Research Database (Denmark)
Guntur, Srinivas; Sørensen, Niels N.; Schreck, Scott
2016-01-01
Experiment Phase VI experimental data, including constant as well as continuously pitching blade conditions during axial operation; (2) data from unsteady delayed detached eddy simulations (DDES) carried out using the Technical University of Denmark’s in-house flow solver Ellipsys3D; and (3) data from...... agreement between the model and the experimental data in many cases, which suggests that the current two-dimensional dynamic stall model as used in blade element momentum-based aeroelastic codes may provide a reasonably accurate representation of three-dimensional rotor aerodynamics when used in combination...
Honda, M.; Satake, S.; Suzuki, Y.; Shinohara, K.; Yoshida, M.; Narita, E.; Nakata, M.; Aiba, N.; Shiraishi, J.; Hayashi, N.; Matsunaga, G.; Matsuyama, A.; Ide, S.
2017-11-01
Capabilities of the integrated framework consisting of TOPICS, OFMC, VMEC and FORTEC-3D, have been extended to calculate toroidal rotation in fully non-axisymmetric perturbed magnetic fields for demonstrating operation scenarios in actual tokamak geometry and conditions. The toroidally localized perturbed fields due to the test blanket modules and the tangential neutral beam ports in ITER augment the neoclassical toroidal viscosity (NTV) substantially, while do not significantly influence losses of beam ions and alpha particles in an ITER L-mode discharge. The NTV takes up a large portion of total torque in ITER and fairly decelerates toroidal rotation, but the change in toroidal rotation may have limited effectiveness against turbulent heat transport. The error field correction coils installed in JT-60SA can externally apply the perturbed fields, which may alter the NTV and the resultant toroidal rotation profiles. However, the non-resonant n=18 components of the magnetic fields arising from the toroidal field ripple mainly contribute to the NTV, regardless of the presence of the applied field by the coil current of 10 kA , where n is the toroidal mode number. The theoretical model of the intrinsic torque due to the fluctuation-induced residual stress is calibrated by the JT-60U data. For five JT-60U discharges, the sign of the calibration factor conformed to the gyrokinetic linear stability analysis and a range of the amplitude thereof was revealed. This semi-empirical approach opens up access to an attempt on predicting toroidal rotation in H-mode plasmas.
Anaïs Schaeffer
2015-01-01
As a member of the EuHIT (European High-Performance Infrastructures in Turbulence - see here) consortium, CERN is participating in fundamental research on turbulence phenomena. To this end, the Laboratory provides European researchers with a cryogenic research infrastructure (see here), where the first tests have just been performed. The last day of data collection, tired but satisfied after seven intense days of measurements. Around the cryostat, from left to right: Philippe-E. Roche, Éléonore Rusaouen (CNRS), Olivier Pirotte, Jean-Marc Quetsch (CERN), Nicolas Friedlin (CERN), Vladislav Benda (CERN). Not in the photo: Laurent Le Mao (CERN), Jean-Marc Debernard (CERN), Jean-Paul Lamboy (CERN), Nicolas Guillotin (CERN), Benoit Chabaud (Grenoble Uni), and Gregory Garde (CNRS). CERN has a unique cryogenic facility in hall SM18, consisting of 21 liquid-helium-cooled test stations. While this equipment was, of course, designed for testing parts of CERN's acce...
Aerotaxis in Bacterial Turbulence
Fernandez, Vicente; Bisson, Antoine; Bitton, Cindy; Waisbord, Nicolas; Smriga, Steven; Rusconi, Roberto; Stocker, Roman
2012-11-01
Concentrated suspensions of motile bacteria exhibit correlated dynamics on spatial scales much larger than an individual bacterium. The resulting flows, visually similar to turbulence, can increase mixing and decrease viscosity. However, it remains unclear to what degree the collective dynamics depend on the motile behavior of bacteria at the individual level. Using a new microfluidic device to create controlled horizontal oxygen gradients, we studied the two dimensional behavior of dense suspensions of Bacillus subtilis. This system makes it possible to assess the interplay between the coherent large-scale motions of the suspension, oxygen transport, and the directional response of cells to oxygen gradients (aerotaxis). At the same time, this device has enabled us to examine the onset of bacterial turbulence and its influence on the propagation of the diffusing oxygen front, as the bacteria begin in a dormant state and transition to swimming when exposed to oxygen.
Random functions and turbulence
Panchev, S
1971-01-01
International Series of Monographs in Natural Philosophy, Volume 32: Random Functions and Turbulence focuses on the use of random functions as mathematical methods. The manuscript first offers information on the elements of the theory of random functions. Topics include determination of statistical moments by characteristic functions; functional transformations of random variables; multidimensional random variables with spherical symmetry; and random variables and distribution functions. The book then discusses random processes and random fields, including stationarity and ergodicity of random
Analysis of a turbulent buoyant confined jet modeled using realizable k-ε model
El-Amin, Mohamed
2010-06-13
Through this paper, analyses of components of the unheated/heated turbulent confined jet are introduced and some models to describe them are developed. Turbulence realizable k-ε model is used to model the turbulence of this problem. Numerical simulations of 2D axisymmetric vertical hot water confined jet into a cylindrical tank have been done. Solutions are obtained for unsteady flow while velocity, pressure, temperature and turbulence distributions inside the water tank are analyzed. For seeking verification, an experiment was conducted for measuring of the temperature of the same system, and comparison between the measured and simulated temperature shows a good agreement. Using the simulated results, some models are developed to describe axial velocity, centerline velocity, radial velocity, dynamic pressure, mass flux, momentum flux and buoyancy flux for both unheated (non-buoyant) and heated (buoyant) jet. Finally, the dynamics of the heated jet in terms of the plume function which is a universal quantity and the source parameter are studied and therefore the maximum velocity can be predicted theoretically. © 2010 Springer-Verlag.
Analysis of turbulent free-jet hydrogen-air diffusion flames with finite chemical reaction rates
Sislian, J. P.; Glass, I. I.; Evans, J. S.
1979-01-01
A numerical analysis is presented of the nonequilibrium flow field resulting from the turbulent mixing and combustion of an axisymmetric hydrogen jet in a supersonic parallel ambient air stream. The effective turbulent transport properties are determined by means of a two-equation model of turbulence. The finite-rate chemistry model considers eight elementary reactions among six chemical species: H, O, H2O, OH, O2 and H2. The governing set of nonlinear partial differential equations was solved by using an implicit finite-difference procedure. Radial distributions were obtained at two downstream locations for some important variables affecting the flow development, such as the turbulent kinetic energy and its dissipation rate. The results show that these variables attain their peak values on the axis of symmetry. The computed distribution of velocity, temperature, and mass fractions of the chemical species gives a complete description of the flow field. The numerical predictions were compared with two sets of experimental data. Good qualitative agreement was obtained.
Suppression of turbulent resistivity in turbulent Couette flow
International Nuclear Information System (INIS)
Si, Jiahe; Sonnenfeld, Richard G.; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe; Colgate, Stirling A.; Li, Hui; Nornberg, Mark D.
2015-01-01
Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations
Suppression of turbulent resistivity in turbulent Couette flow
Si, Jiahe; Colgate, Stirling A.; Sonnenfeld, Richard G.; Nornberg, Mark D.; Li, Hui; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe
2015-07-01
Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations.
Suppression of turbulent resistivity in turbulent Couette flow
Energy Technology Data Exchange (ETDEWEB)
Si, Jiahe, E-mail: jsi@nmt.edu; Sonnenfeld, Richard G.; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe [New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801 (United States); Colgate, Stirling A.; Li, Hui [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Nornberg, Mark D. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)
2015-07-15
Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations.
Bruno, Roberto
2016-01-01
This book provides an overview of solar wind turbulence from both the theoretical and observational perspective. It argues that the interplanetary medium offers the best opportunity to directly study turbulent fluctuations in collisionless plasmas. In fact, during expansion, the solar wind evolves towards a state characterized by large-amplitude fluctuations in all observed parameters, which resembles, at least at large scales, the well-known hydrodynamic turbulence. This text starts with historical references to past observations and experiments on turbulent flows. It then introduces the Navier-Stokes equations for a magnetized plasma whose low-frequency turbulence evolution is described within the framework of the MHD approximation. It also considers the scaling of plasma and magnetic field fluctuations and the study of nonlinear energy cascades within the same framework. It reports observations of turbulence in the ecliptic and at high latitude, treating Alfvénic and compressive fluctuations separately in...
4th European Turbulence Conference
1993-01-01
The European Turbulence Conferences have been organized under the auspices of the European Mechanics Committee (Euromech) to provide a forum for discussion and exchange of recent and new results in the field of turbulence. The first conference was organized in Lyon in 1986 with 152 participants. The second and third conferences were held in Berlin (1988) and Stockholm (1990) with 165 and 172 participants respectively. The fourth was organized in Delft from 30 June to 3 July 1992 by the J.M. Burgers Centre. There were 214 participants from 22 countries. This steadily growing number of participants demonstrates both the success and need for this type of conference. The main topics of the Fourth European Turbulence Conference were: Dynamical Systems and Transition; Statistical Physics and Turbulence; Experiments and Novel Experimental Techniques; Particles and Bubbles in Turbulence; Simulation Methods; Coherent Structures; Turbulence Modelling and Compressibility Effects. In addition a special session was held o...
International Nuclear Information System (INIS)
Amanifard, N.; Nariman-Zadeh, N.; Farahani, M.H.; Khalkhali, A.
2008-01-01
Over the past 15 years there have been several research efforts to capture the stall inception nature in axial flow compressors. However previous analytical models could not explain the formation of short-length-scale stall cells. This paper provides a new model based on evolved GMDH neural network for transient evolution of multiple short-length-scale stall cells in an axial compressor. Genetic Algorithms (GAs) are also employed for optimal design of connectivity configuration of such GMDH-type neural networks. In this way, low-pass filter (LPF) pressure trace near the rotor leading edge is modelled with respect to the variation of pressure coefficient, flow rate coefficient, and number of rotor rotations which are defined as inputs
DAILY TIME BUDGET OF DAIRY COWS HOUSED IN TIE STALL BARNS, DURING TOTAL CONFINEMENT
Directory of Open Access Journals (Sweden)
D. GAVOJDIAN
2009-10-01
Full Text Available Although individual and social behavior of cattle has been studied extensively under pasture and loose housing conditions, similar behavioral data for partial or total confinement housing are limited. Essentially, the 24- h time budget represents the net response of a cow to her environment (Grant, 2003. Daily time budget was first introduced by Grant and Albright (in 2000 for cows housed in free-stall environment. Choices in stabling and management affect the behavior, health, longevity and performance of cows. Behavior while resting, eating, ruminating, urinating or defecating provides additional information about comfort. In the current study were used ten Romanian Black and White multiparous cows, housed in a tie stall barn 24 hours per day. Experiments were carried out during the cold season, in February 2008. Cows monitored were in their first hundred days of lactation. In our study cows spent resting on average 379.9 minutes (6.33 hours, value that represents 26.38 % from the days interval. Time devoted to feeding was on average 341.9 minutes (5.69 hours, in 17.5 periods. Rumination had place on average in 17.3 periods and a total time of 517.5 minutes (8.62 hours. Cows adopted lying position on average 581.2 minutes (40.36% from 24-h and standing position on average in 858.7 minutes (59.63% from 24-h.
14-3-3 Proteins regulate exonuclease 1-dependent processing of stalled replication forks.
Directory of Open Access Journals (Sweden)
Kim Engels
2011-04-01
Full Text Available Replication fork integrity, which is essential for the maintenance of genome stability, is monitored by checkpoint-mediated phosphorylation events. 14-3-3 proteins are able to bind phosphorylated proteins and were shown to play an undefined role under DNA replication stress. Exonuclease 1 (Exo1 processes stalled replication forks in checkpoint-defective yeast cells. We now identify 14-3-3 proteins as in vivo interaction partners of Exo1, both in yeast and mammalian cells. Yeast 14-3-3-deficient cells fail to induce Mec1-dependent Exo1 hyperphosphorylation and accumulate Exo1-dependent ssDNA gaps at stalled forks, as revealed by electron microscopy. This leads to persistent checkpoint activation and exacerbated recovery defects. Moreover, using DNA bi-dimensional electrophoresis, we show that 14-3-3 proteins promote fork progression under limiting nucleotide concentrations. We propose that 14-3-3 proteins assist in controlling the phosphorylation status of Exo1 and additional unknown targets, promoting fork progression, stability, and restart in response to DNA replication stress.
Wind-up of a spanwise vortex in deepening transition and stall
Energy Technology Data Exchange (ETDEWEB)
Smith, F.T.; Bowles, R.I. [University Coll., London (United Kingdom). Dept. of Mathematics; Walker, J.D.A. [Mechanical Engineering Department, Packard Laboratory No. 19, Lehigh University, Bethlehem, PA 18015 (United States)
2000-09-01
A fundamental flow problem of unsteady wind-up of a spanwise vortex is studied in this theoretical work on deepening dynamic stall and transition in a boundary layer, internal layer or related unsteady motion. It examines the nonlinear evolution of the spanwise vortex produced when the local wall pressure develops a maximum or minimum, subsequent to the finite-time break-up of an interacting layer and the impact of normal pressure gradients. The evolution is controlled by an inner-outer interaction between the effects of the normal pressure gradient and the momentum jumps across and outside the vortex, which is situated near the strong inflexion point induced in the mean flow. Although the work concentrates on a particular internal-flow context, many of the flow properties found are generic and in particular apply for a more general case including external flows. Analysis and associated computations point to two main distinct trends in the vortex response, depending to a large extent on a parameter gauging the relative strengths of the above effects. The response is either an explosive one, provoking enhanced wind-up, growth and pressure in the vortex, or it is implosive, causing the vortex to shrink and virtually empty itself through unwinding, leaving little local pressure variation. A further discussion includes the after-effects of this vortex response and some of the connections with experiments and direct computations on deepening stall and transition. (orig.)
Experimental Methods Applied in a Study of Stall Flutter in an Axial Flow Fan
Directory of Open Access Journals (Sweden)
John D. Gill
2004-01-01
Full Text Available Flutter testing is an integral part of aircraft gas turbine engine development. In typical flutter testing blade mounted sensors in the form of strain gages and casing mounted sensors in the form of light probes (NSMS are used. Casing mounted sensors have the advantage of being non-intrusive and can detect the vibratory response of each rotating blade. Other types of casing mounted sensors can also be used to detect flutter of rotating blades. In this investigation casing mounted high frequency response pressure transducers are used to characterize the part-speed stall flutter response of a single stage unshrouded axial-flow fan. These dynamic pressure transducers are evenly spaced around the circumference at a constant axial location upstream of the fan blade leading edge plane. The pre-recorded experimental data at 70% corrected speed is analyzed for the case where the fan is back-pressured into the stall flutter zone. The experimental data is analyzed using two probe and multi-probe techniques. The analysis techniques for each method are presented. Results from these two analysis methods indicate that flutter occurred at a frequency of 411 Hz with a dominant nodal diameter of 2. The multi-probe analysis technique is a valuable method that can be used to investigate the initiation of flutter in turbomachines.
Canan, B D; Asti, L; Heaney, C; Ashida, S; Renick, K; Xiang, H; Stallones, L; Jepsen, S D; Crawford, J M; Wilkins, J R
2011-04-01
Unintentional injury is the leading cause of death in the U.S. among persons 1 to 44 years of age. Over one million children and adolescents in the U.S. live, work, and/or play on farms, where injury risk is relatively high compared to other settings. In an attempt to reduce the number of childhood agricultural injuries occurring on farms, the North American Guidelines for Children's Agricultural Tasks (NAGCAT) was developed to assist parents or other caregivers in assigning developmentally appropriate chores to youth exposed to agricultural hazards. The results presented here are from a longitudinal study in which we obtained (self-reported) daily chore, injury, and safety behavior data from children and adolescents. We focused on one NAGCAT chore, cleaning a service alley in a stall barn, in order to estimate the extent of compliance with specific work practice recommendations contained in the NAGCAT. Our results indicated that among the four NAGCAT-recommended safety practices for cleaning service alleys in stall barns (wearing nonskid shoes, leather gloves, a respirator, and eye protection), wearing non-skid shoes was the only safety practice reported with any degree of regularity. Overall, boys were more likely to wear non-skid shoes compared to girls. In addition, older youth were generally more likely to report higher work practice compliance compared to younger youth.
Ivers, D. J.; Phillips, C. G.
2018-03-01
We re-consider the plate-like model of turbulence in the Earth's core, proposed by Braginsky and Meytlis (1990), and show that it is plausible for core parameters not only in polar regions but extends to mid- and low-latitudes where rotation and gravity are not parallel, except in a very thin equatorial layer. In this model the turbulence is highly anisotropic with preferred directions imposed by the Earth's rotation and the magnetic field. Current geodynamo computations effectively model sub-grid scale turbulence by using isotropic viscous and thermal diffusion values significantly greater than the molecular values of the Earth's core. We consider a local turbulent dynamo model for the Earth's core in which the mean magnetic field, velocity and temperature satisfy the Boussinesq induction, momentum and heat equations with an isotropic turbulent Ekman number and Roberts number. The anisotropy is modelled only in the thermal diffusion tensor with the Earth's rotation and magnetic field as preferred directions. Nonlocal organising effects of gravity and rotation (but not aspect ratio in the Earth's core) such as an inverse cascade and nonlocal transport are assumed to occur at longer length scales, which computations may accurately capture with sufficient resolution. To investigate the implications of this anisotropy for the proposed turbulent dynamo model we investigate the linear instability of turbulent magnetoconvection on length scales longer than the background turbulence in a rotating sphere with electrically insulating exterior for no-slip and isothermal boundary conditions. The equations are linearised about an axisymmetric basic state with a conductive temperature, azimuthal magnetic field and differential rotation. The basic state temperature is a function of the anisotropy and the spherical radius. Elsasser numbers in the range 1-20 and turbulent Roberts numbers 0.01-1 are considered for both equatorial symmetries of the magnetic basic state. It is found
Numerical analyses of radiative heat transfer in any arbitrarily-shaped axisymmetric enclosures
International Nuclear Information System (INIS)
Ben Salah, M.; Askri, F; Jemni, A.; Nasrallah, S. Ben
2006-01-01
A numerical approach for the treatment of radiative heat transfer in any irregularly-shaped axisymmetric enclosure filled with absorbing, emitting and scattering gray media is developed. Radiative transfer equation (RTE) is formulated for a general axisymmetric geometrical configurations, and the discretized equation is conducted using an unstructured meshes, generated by an appropriate computer algorithm, and the control volume finite element method which frequently adopted in CFD problems. A computer procedure has been done to solve the discretized RTE and to examine the accuracy and the computational efficiency of the proposed numerical approach. By using this computer algorithm, five test cases, a cylindrical enclosure with absorbing and emitting medium, a diffuser shaped axisymmetric enclosure, a finite axisymmetric cylindrical enclosure with a curved wall, a furnace with axially varying medium temperature and a rocket nozzle, are treated and the obtained results agree very well with other published works. Furthermore, the developed computer procedure has an accurate CPU time and it can be coupled easily with CFD codes
Axi-Symmetric Simulation of the Slump Flow Test for Self-Compacting
DEFF Research Database (Denmark)
Thrane, Lars Nyholm; Szabo, Peter; Geiker, Mette Rica
2004-01-01
. This paper presents a numerical axi-symmetric approach for simulation of the slump flow test. Simulations are compared to experimental test results on the rheological properties and slump flow. Former rheological investigations on SCC indicate a non-Newtonian behaviour according to the Bingham model....
Flow of Polymer Melts in Plane- and Axi-symmetric Converging Dies
DEFF Research Database (Denmark)
Lauridsen, Carsten Linding; Kjær, Erik Michael; Haudrum, Jan
1997-01-01
The extensional flow has considerable influence on the pressure loss in converging flows, which are present in both extrusion and injection moulding. Both plane- and axi-symmetric converging flows have been studied with LDPE, HDPE and PS. The transient extensional viscosities are determined in all...
Gavrilyuk, I.; Hermann, M.; Trotsenko, Yu.; Timokha, A.
2013-10-01
Employing the virtual work variational principle and the linear multimodal method for the liquid sloshing in an axisymmetric tank, we study coupled eigenoscillations of a tower and an elevated tank partially filled by a liquid. An emphasis is placed on the case of an upright circular cylindrical tank. Theoretical results are compared with known experimental data.
Dynamic analysis of reactor containment building using axisymmetric finite element model
International Nuclear Information System (INIS)
Thakkar, S.K.; Dubey, R.N.
1989-01-01
The structural safety of nuclear reactor building during earthquake is of great importance in view of possibility of radiation hazards. The rational evaluation of forces and displacements in various portions of structure and foundation during strong ground motion is most important for safe performance and economic design of the reactor building. The accuracy of results of dynamic analysis is naturally dependent on the type of mathematical model employed. Three types of mathematical models are employed for dynamic analysis of reactor building beam model axisymmetric finite element model and three dimensional model. In this paper emphasis is laid on axisymmetric model. This model of containment building is considered a reinfinement over conventional beam model of the structure. The nuclear reactor building on a rocky foundation is considered herein. The foundation-structure interaction is relatively less in this condition. The objective of the paper is to highlight the significance of modelling of non-axisymmetric portion of building, such as reactor internals by equivalent axisymmetric body, on the structural response of the building
VANDERVEGT, W; VANDERMEI, HC; BUSSCHER, HJ
Axisymmetric drop shape analysis by profile (ADSA-P) is a technique developed in colloid and surface science to simultaneously determine the contact angle and liquid surface tension from the profile of a droplet resting on a solid surface. In this paper is described how ADSA-P can be employed to
Experimental investigation into the unsteady effects on non-axisymmetric turbine endwall contouring
CSIR Research Space (South Africa)
Dunn, Dwain I
2010-01-01
Full Text Available Turbine manufacturers are striving to develop turbines that are more efficient. One area of focus has been the control of secondary flows through the use of non-axisymmetric endwalls. The majority of development has been performed in cascades...
Corrections and comments on the multipole moments of axisymmetric electrovacuum spacetimes
Energy Technology Data Exchange (ETDEWEB)
Sotiriou, Thomas P; Apostolatos, Theocharis A [Section of Astrophysics, Astronomy, and Mechanics Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos GR-15783, Athens (Greece)
2004-12-21
Following the method of Hoenselaers and Perjes, we present a new corrected and dimensionally consistent set of multipole gravitational and electromagnetic moments for stationary axisymmetric spacetimes. Furthermore, we use our results to compute the multipole moments, both gravitational and electromagnetic, of a Kerr-Newman black hole.
2016-01-22
Electromagnetic Simulations for an Axisymmetric Gregorian Reflector System for a Space-Deployed Inflatable Antenna Alan J. Fenn Lincoln...system for potential space deployment is explored. The antenna utilizes a planar array located near the vertex of the primary reflector. Numerical...electromagnetic simulations based on the multilevel fast multipole method (MLFMM) were used to analyze and optimize the antenna parameters for
Emerson, Benjamin; Lieuwen, Tim
2017-11-01
This study investigates the forced response characteristics of axisymmetric structures in density-stratified swirling jets. The reacting, swirling jet is an important canonical flow field for modern combustion systems. This work is motivated by the combustion instability problem for such systems, where acoustically excited vortical structures may drive oscillatory heat release of combustion. Previous hydrodynamics studies have shown that the stability of helical structures is highly sensitive to the swirl number. However, the combustion literature has shown that axisymmetric structures (in contrast to helical structures) are often responsible for most of the heat release response. Therefore, this work performs a spatial stability analysis to study the swirl number sensitivity of the forced response of the axisymmetric mode. A spatio-temporal analysis is conducted in tandem to investigate the swirl number sensitivity of the impulse response of this mode. The results show that at low values of the swirl number, the axisymmetric mode stability is a weak function of the swirl number, but that new modes and stability bifurcations appear at high swirl numbers.
Flow of Polymer Melts in Plane- and Axi-Symmetric Converging Dies
DEFF Research Database (Denmark)
Lauridsen, Carsten Linding; Kjær, Erik Michael; Haudrum, Jan
1998-01-01
The extensional flow has considerable influence on the pressure loss in converging flows, which are present in both extrusion and injection moulding. Both plane- and axi-symmetric converging flows have been studied with LDPE, HDPE and PS. The transient extensional viscosities are determined in al...
Wave turbulence in magnetized plasmas
Directory of Open Access Journals (Sweden)
S. Galtier
2009-02-01
Full Text Available The paper reviews the recent progress on wave turbulence for magnetized plasmas (MHD, Hall MHD and electron MHD in the incompressible and compressible cases. The emphasis is made on homogeneous and anisotropic turbulence which usually provides the best theoretical framework to investigate space and laboratory plasmas. The solar wind and the coronal heating problems are presented as two examples of application of anisotropic wave turbulence. The most important results of wave turbulence are reported and discussed in the context of natural and simulated magnetized plasmas. Important issues and possible spurious interpretations are also discussed.
Turbulent dispersion of many particles
Pratt, J.; Busse, A.; Muller, W. C.
2017-12-01
We demonstrate the utility of the convex hull to analyze dispersion of groups of many Lagrangian tracer particles in turbulence. We examine dispersion in turbulent flows driven by convection, relevant to geophysical flows and the spread of contaminants in the atmosphere, and in turbulent flows affected by magnetic fields, relevant to stellar winds and stellar interiors. Convex hull analysis can provide new information about local dispersion, in the form of the surface area and volume for a cluster of particles. We use dispersive information to examine the local anisotropy that occurs in these turbulent settings, and to understand fundamental characteristics of heat transfer and the small-scale dynamo.
Bangga, Galih; Kusumadewi, Tri; Hutomo, Go; Sabila, Ahmad; Syawitri, Taurista; Setiadi, Herlambang; Faisal, Muhamad; Wiranegara, Raditya; Hendranata, Yongki; Lastomo, Dwi; Putra, Louis; Kristiadi, Stefanus
2018-03-01
Numerical simulations for relatively thick airfoils are carried out in the present studies. An attempt to improve the accuracy of the numerical predictions is done by adjusting the turbulent viscosity of the eddy-viscosity Menter Shear-Stress-Transport (SST) model. The modification involves the addition of a damping factor on the wall-bounded flows incorporating the ratio of the turbulent kinetic energy to its specific dissipation rate for separation detection. The results are compared with available experimental data and CFD simulations using the original Menter SST model. The present model improves the lift polar prediction even though the stall angle is still overestimated. The improvement is caused by the better prediction of separated flow under a strong adverse pressure gradient. The results show that the Reynolds stresses are damped near the wall causing variation of the logarithmic velocity profiles.
Grace, Kathryn; Sweeney, Stuart
2016-02-01
In some contemporary populations, fertility levels appear to plateau, with women maintaining a consistently high level of fertility for a relatively extended period. Because this plateau does not reflect the historical patterns observed in Europe, the focus of most studies on fertility patterns, mechanisms underlying the plateau and the reinstatement of a decline have not been fully explored and are not fully understood. Through the construction of fertility histories of 25,000 women using multiple years of health survey data, we analyze some of the components of stalled fertility as they pertain to Guatemala, the only Central American country to have experienced a stalled fertility decline.
Langohr, G Daniel G; Willing, Ryan; Medley, John B; King, Graham J W; Johnson, James A
2015-05-01
Radial head (RH) implants are manufactured from stiff materials, resulting in reduced radiocapitellar contact area that may lead to cartilage degeneration. Although the native RH is nonaxisymmetric, most implants are axisymmetric, potentially contributing to altered contact mechanics. This study compared the joint contact area (Ac) and maximum contact stress (σmax) of axisymmetric and nonaxisymmetric RH implants to the native radiocapitellar joint. The contact mechanics of intact elbows derived from cadaveric computed tomography data (n = 15) were compared with axisymmetric (size: 18, 20, 22 mm) and nonaxisymmetric (size: 16 × 18, 18 × 20, 20 × 22 mm) RH hemiarthroplasty reconstructed elbows using Abaqus finite element software. Under a 100 N load, Ac and σmax were computed for ±90° pronation-supination and 0°, 45°, 90°, and 135° flexion. Compared with native, both hemiarthroplasty models produced significantly lower Ac and higher σmax (P < .001). In the best orientation, the nonaxisymmetric RH provided significantly larger Ac at 0° and 135° flexion (P = .03, P = .007) and reduced levels of σmax at 45° and 90° flexion (P = .003, P < .001). However, there was also a worst orientation that reduced Ac and increased σmax for all flexion angles (P < .003 for all). The native RH was less sensitive to rotation than the nonaxisymmetric RH in terms of σmax (P < .001). The axisymmetric RH was not sensitive to rotation. Whereas a nonaxisymmetric RH can provide improved contact mechanics at certain forearm rotations and flexions, there are also orientations where Ac is reduced and σmax is increased. Axisymmetric designs are more consistent throughout forearm rotation and therefore may be more forgiving than the nonaxisymmetric RH implant design used in this study. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Aspects of atmospheric turbulence related to scintillometry
Braam, M.
2014-01-01
Aspects of atmospheric turbulence related to scintillometry Atmospheric turbulence is the main vertical transport mechanism in the atmospheric boundary layer. The surface fluxes related to this turbulent transport are the sensible (
Directory of Open Access Journals (Sweden)
H. Z. Baumert
2009-03-01
Full Text Available This paper extends a turbulence closure-like model for stably stratified flows into a new dynamic domain in which turbulence is generated by internal gravity waves rather than mean shear. The model turbulent kinetic energy (TKE, K balance, its first equation, incorporates a term for the energy transfer from internal waves to turbulence. This energy source is in addition to the traditional shear production. The second variable of the new two-equation model is the turbulent enstrophy (Ω. Compared to the traditional shear-only case, the Ω-equation is modified to account for the effect of the waves on the turbulence time and space scales. This modification is based on the assumption of a non-zero constant flux Richardson number in the limit of vanishing mean shear when turbulence is produced exclusively by internal waves. This paper is part 1 of a continuing theoretical development. It accounts for mean shear- and internal wave-driven mixing only in the two limits of mean shear and no waves and waves but no mean shear, respectively.
The new model reproduces the wave-turbulence transition analyzed by D'Asaro and Lien (2000b. At small energy density E of the internal wave field, the turbulent dissipation rate (ε scales like ε~E^{2}. This is what is observed in the deep sea. With increasing E, after the wave-turbulence transition has been passed, the scaling changes to ε~E^{1}. This is observed, for example, in the highly energetic tidal flow near a sill in Knight Inlet. The new model further exhibits a turbulent length scale proportional to the Ozmidov scale, as observed in the ocean, and predicts the ratio between the turbulent Thorpe and Ozmidov length scales well within the range observed in the ocean.
Measurement of the Noise Resulting from the Interaction of Turbulence with a Lifting Surface
Hutcheson, Florence V.; Brooks, Thomas F.; Burley, Casey L.; Stead, Daniel J.
2011-01-01
An experimental study of the noise resulting from the interaction of an airfoil with incident turbulence is presented. The test models include NACA0015 airfoils of different chord lengths, a flat plate with a sharp leading edge, and an airfoil of same section as a reference Fowler flap. The airfoils are immersed in nearly isotropic turbulence. Two approaches for performing the noise measurements are used and compared. The effects that turbulence intensity and scales, airfoil geometry, velocity and angle of attack have on the incident turbulence interaction noise are examined. Detailed directivity measurements are presented. It is found that noise spectral levels beyond the peak frequency decrease more with decreasing airfoil leading edge sharpness, and that spectral peak level (at 0 deg. angle of attack) appears to be mostly controlled by the airfoil fs thickness and chord. Increase in turbulence scale and intensity are observed to lead to a uniform increase of the noise spectral levels with an LI(sup 2) dependence (where L is the turbulence longitudinal integral scale and I is the turbulence intensity). Noise levels are found to scale with the 6th power of velocity and the 2nd power of the airfoil chord. Sensitivity to changes in angle of attack appears to have a turbulence longitudinal integral scale to chord (C) ratio dependence, with large effects on noise for L/C greater than or equal to 1 and decreased effects as L/C becomes smaller than 1. For all L/C values, the directivity pattern of the noise resulting from the incident turbulence is seen to remain symmetric with respect to the direction of the mean flow until stall, at which point, the directivity becomes symmetric with respect to the airfoil chord. It is also observed that sensitivity to angle of attack changes is more pronounced on the model suction side than on the model pressure side, and in the higher frequency range of the spectra for the largest airfoils tested (L/C less than 0.24).
International Nuclear Information System (INIS)
Anon.
1987-01-01
This symposium includes topics on wall flows, unsteady flows, scalar and buoyant transport, instrumentation and techniques, combustion, aerodynamic flows, free flows, geophysical flows, complex flows, separated flows, coherent structures, closures, numerical simulation, and two-phase flows. Papers are presented on the effect of favorable pressure gradients on turbulent boundary layers, the models of hydrodynamic resonances in separated shear flows, the transport of passive scalars in a turbulent channel flow, a pulsed hot-wire probe for near-wall measurements, and vortex dynamics in diffusion flames. Consideration is also given to time-dependent structure in wing-body junction flows, bifurcating air jets at high subsonic speeds, the wake of an axisymmetric body with or without tail separation, coherent structures in quasi-geostrophic jets, and separated flow predictions using a new turbulence model. Additional papers are on stochastic estimation of organized structures in turbulent channel flow, a comparative study of eleven models of turbulence, and a numerical study of a stably stratified mixing layer
Conditional Eddies in Plasma Turbulence
DEFF Research Database (Denmark)
Johnsen, Helene; Pécseli, Hans; Trulsen, J.
1986-01-01
Conditional structures, or eddies, in turbulent flows are discussed with special attention to electrostatic turbulence in plasmas. The potential variation of these eddies is obtained by sampling the fluctuations only when a certain condition is satisfied in a reference point. The resulting...
Active turbulence in active nematics
Thampi, S. P.; Yeomans, J. M.
2016-07-01
Dense, active systems show active turbulence, a state characterised by flow fields that are chaotic, with continually changing velocity jets and swirls. Here we review our current understanding of active turbulence. The development is primarily based on the theory and simulations of active liquid crystals, but with accompanying summaries of related literature.
Advances in compressible turbulent mixing
Energy Technology Data Exchange (ETDEWEB)
Dannevik, W.P.; Buckingham, A.C.; Leith, C.E. [eds.
1992-01-01
This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately.
Magnetized Turbulent Dynamo in Protogalaxies
Energy Technology Data Exchange (ETDEWEB)
Leonid Malyshkin; Russell M. Kulsrud
2002-01-28
The prevailing theory for the origin of cosmic magnetic fields is that they have been amplified to their present values by the turbulent dynamo inductive action in the protogalactic and galactic medium. Up to now, in calculation of the turbulent dynamo, it has been customary to assume that there is no back reaction of the magnetic field on the turbulence, as long as the magnetic energy is less than the turbulent kinetic energy. This assumption leads to the kinematic dynamo theory. However, the applicability of this theory to protogalaxies is rather limited. The reason is that in protogalaxies the temperature is very high, and the viscosity is dominated by magnetized ions. As the magnetic field strength grows in time, the ion cyclotron time becomes shorter than the ion collision time, and the plasma becomes strongly magnetized. As a result, the ion viscosity becomes the Braginskii viscosity. Thus, in protogalaxies the back reaction sets in much earlier, at field strengths much lower than those which correspond to field-turbulence energy equipartition, and the turbulent dynamo becomes what we call the magnetized turbulent dynamo. In this paper we lay the theoretical groundwork for the magnetized turbulent dynamo. In particular, we predict that the magnetic energy growth rate in the magnetized dynamo theory is up to ten times larger than that in the kinematic dynamo theory. We also briefly discuss how the Braginskii viscosity can aid the development of the inverse cascade of magnetic energy after the energy equipartition is reached.
The Role of Free Stream Turbulence on the Aerodynamic Performance of a Wind Turbine Blade
Maldonado, Victor; Thormann, Adrien; Meneveau, Charles; Castillo, Luciano; Turbulence Group Collaboration
2012-11-01
In the present research, a 2-D wind turbine blade section based on the S809 airfoil was manufactured and tested at Johns Hopkins University in the Stanley Corrsin wind tunnel facility. A free stream velocity of 10 m/s produced a Reynolds number based on blade chord of 2.08.x105. Free stream turbulence was generated using an active grid placed 5.5 m upstream of the blade which generated a turbulence intensity, Tu of up to 6.1% and an integral length scale, L∞ of about 0.15 m. The blade was pitched to a range of angles of attack, α from 0 to 18 degrees in order to study the effects of the integral length scales on the aerodynamic characteristics of the wind turbine under fully attached and separated flow conditions. Pressure measurements around the blade and wake velocity deficit measurements utilizing a hot-wire probe were acquired to compute the lift and drag coefficient. Results suggest that turbulence generally increases aerodynamic performance as measured by the lift to drag ratio, L / D except at 0 degrees angle of attack. A significant enhancement in L / D results with free stream turbulence at post-stall angles of attack of 16 and 18 degrees, where L / D increase from 2.49 to 5.43 and from 0.64 to 4.00 respectively. This is a consequence of delaying flow separation with turbulence (which is observed in the suction pressure distribution) which in turn reduces the momentum loss in the wake particularly at 18 degrees angle of attack.
Spins, Stalls, and Shutdowns: Pitfalls of Qualitative Policing and Security Research
Directory of Open Access Journals (Sweden)
Randy K. Lippert
2015-11-01
Full Text Available This article explores key elements of qualitative research on policing and security agencies, including barriers encountered and strategies to prevent them. While it is oft-assumed that policing/security agencies are difficult to access due to their clandestine or bureaucratic nature, this article demonstrates this is not necessarily the case, as access was gained for three distinct qualitative research projects. Yet, access and subsequent research were not without pitfalls, which we term security spins, security stalls, and security shutdowns. We illustrate how each was encountered and argue these pitfalls are akin to researchers falling into risk categories, not unlike those used by policing/security agents in their work. Before concluding we discuss methodological strategies for scholars to avoid these pitfalls and to advance research that critically interrogates the immense policing/security realm. URN: http://nbn-resolving.de/urn:nbn:de:0114-fqs1601108
URANS simulations of separated flow with stall cells over an NREL S826 airfoil
Sarlak, H.; Nishino, T.; Sørensen, J. N.
2016-06-01
A series of wind tunnel measurements and oil flow visualization was recently carried out at the Technical University of Denmark in order to investigate flow characteristics over a 14% thick NREL S826 airfoil at low Reynolds numbers. This paper aims at presenting numerical simulations of the same airfoil using unsteady Reynolds-averaged Navier-Stokes (URANS) approach. Results of the simulations are demonstrated in terms of mean flow velocity, lift and drag, as well as pressure distribution, and validated against available experimental data. The simulations are carried out with a wide computational domain (with a span-to-chord ratio of 5) and it is illustrated that the URANS approach is capable of predicting 3D spanwise structures, known as stall cells.
Fixed-speed active-stall wind turbines in offshore applications
DEFF Research Database (Denmark)
Akhmatov, Vladislav; Nielsen, Arne Hejde
2005-01-01
A large offshore wind farm in the East Danish power system was commissioned in 2003 at Rodsand. The power capacity of the wind farm is 165 MW divided between 72 wind turbines. For this large offshore application, robust and well-known wind technology has been chosen in the form of fixed-speed, ac......, active-stall wind turbines equipped with induction generators. In this paper, maintaining and improving the short-term voltage stability is discussed and systematized in terms of this wind technology. Copyright (C) 2004 John Wiley Sons, Ltd.......A large offshore wind farm in the East Danish power system was commissioned in 2003 at Rodsand. The power capacity of the wind farm is 165 MW divided between 72 wind turbines. For this large offshore application, robust and well-known wind technology has been chosen in the form of fixed-speed...
Energy Technology Data Exchange (ETDEWEB)
Griffin, D.A. [Advanced Wind Turbines Inc., Seattle, WA (United States)
1996-12-31
A study investigated the use of vortex generators (VGs) for performance augmentation of the stall-regulated AWT-26 wind turbine. Based on wind-tunnel results and analysis, a VG array was designed for and tested on the AWT-26 prototype, designated Pt. Performance and loads data were measured for P1, both with and without VGs installed. The turbine performance with VGs met most of the design requirements; power output was increased at moderate wind speeds with a minimal effect on peak power. However, VG drag penalties caused a loss in power output for low wind speeds, such that performance with VGs resulted in a net decrease in AEP for wind speed sites up to 8.5 m/s. 8 refs., 8 figs., 3 tabs.
Listeria phospholipases subvert host autophagic defenses by stalling pre-autophagosomal structures
Tattoli, Ivan; Sorbara, Matthew T; Yang, Chloe; Tooze, Sharon A; Philpott, Dana J; Girardin, Stephen E
2013-01-01
Listeria can escape host autophagy defense pathways through mechanisms that remain poorly understood. We show here that in epithelial cells, Listeriolysin (LLO)-dependent cytosolic escape of Listeria triggered a transient amino-acid starvation host response characterized by GCN2 phosphorylation, ATF3 induction and mTOR inhibition, the latter favouring a pro-autophagic cellular environment. Surprisingly, rapid recovery of mTOR signalling was neither sufficient nor necessary for Listeria avoidance of autophagic targeting. Instead, we observed that Listeria phospholipases PlcA and PlcB reduced autophagic flux and phosphatidylinositol 3-phosphate (PI3P) levels, causing pre-autophagosomal structure stalling and preventing efficient targeting of cytosolic bacteria. In co-infection experiments, wild-type Listeria protected PlcA/B-deficient bacteria from autophagy-mediated clearance. Thus, our results uncover a critical role for Listeria phospholipases C in the inhibition of autophagic flux, favouring bacterial escape from host autophagic defense. PMID:24162724
Turbulent premixed flames on fractal-grid-generated turbulence
Soulopoulos, N.; Kerl, J.; Sponfeldner, T.; Beyrau, F.; Hardalupas, Y.; Taylor, A. M. K. P.; Vassilicos, J. C.
2013-12-01
A space-filling, low blockage fractal grid is used as a novel turbulence generator in a premixed turbulent flame stabilized by a rod. The study compares the flame behaviour with a fractal grid to the behaviour when a standard square mesh grid with the same effective mesh size and solidity as the fractal grid is used. The isothermal gas flow turbulence characteristics, including mean flow velocity and rms of velocity fluctuations and Taylor length, were evaluated from hot-wire measurements. The behaviour of the flames was assessed with direct chemiluminescence emission from the flame and high-speed OH-laser-induced fluorescence. The characteristics of the two flames are considered in terms of turbulent flame thickness, local flame curvature and turbulent flame speed. It is found that, for the same flow rate and stoichiometry and at the same distance downstream of the location of the grid, fractal-grid-generated turbulence leads to a more turbulent flame with enhanced burning rate and increased flame surface area.
Study of Near-Stall Flow Behavior in a Modern Transonic Fan with Composite Sweep
Hah, Chunill; Shin, Hyoun-Woo
2011-01-01
Detailed flow behavior in a modern transonic fan with a composite sweep is investigated in this paper. Both unsteady Reynolds-averaged Navier-Stokes (URANS) and Large Eddy Simulation (LES) methods are applied to investigate the flow field over a wide operating range. The calculated flow fields are compared with the data from an array of high-frequency response pressure transducers embedded in the fan casing. The current study shows that a relatively fine computational grid is required to resolve the flow field adequately and to calculate the pressure rise across the fan correctly. The calculated flow field shows detailed flow structure near the fan rotor tip region. Due to the introduction of composite sweep toward the rotor tip, the flow structure at the rotor tip is much more stable compared to that of the conventional blade design. The passage shock stays very close to the leading edge at the rotor tip even at the throttle limit. On the other hand, the passage shock becomes stronger and detaches earlier from the blade passage at the radius where the blade sweep is in the opposite direction. The interaction between the tip clearance vortex and the passage shock becomes intense as the fan operates toward the stall limit, and tip clearance vortex breakdown occurs at near-stall operation. URANS calculates the time-averaged flow field fairly well. Details of measured RMS static pressure are not calculated with sufficient accuracy with URANS. On the other hand, LES calculates details of the measured unsteady flow features in the current transonic fan with composite sweep fairly well and reveals the flow mechanism behind the measured unsteady flow field.
Benchmarking welfare indicators in 73 free-stall dairy farms in north-western Spain
Trillo, Yolanda; Quintela, Luis Angel; Barrio, Mónica; Becerra, Juan José; Peña, Ana Isabel; Vigo, Marcos; Garcia Herradon, Pedro
2017-01-01
The aim of this study was to describe the status of body condition score (BCS), hock injuries prevalence, locomotion and body hygiene score as animal welfare measures in 73 free-stall dairy cattle farms in Lugo (Spain). A benchmarking process was established across farms: (1) the animal-based indicators were ordered from low to high values; (2) The farms were classified into three categories based on the number of indicators within less than the 25th percentile, 25th to 75th percentile and above the 75th percentile. The median prevalence of unsuitable BCS, hock injuries and clinical lameness was (median (range)) 51.7 per cent (13.3 to 89.5 per cent), 40.0 per cent (7.0per cent to 100 per cent) and 9.0 per cent (0per cent to 60.0 per cent) respectively. The dirtiness of the cow’s coat had a high prevalence (73.0 per cent (37.5per cent to 100 per cent)). Most farms did not display consistently good or poor animal-based indicators and each farm had its own set of strong and weak points. Moreover, facilities design and management practices were described to understand source of the observations made of the cows. The incidence of overstocking was 31.5 per cent for stalls and 26.0 per cent for headlocks. The front lunge space was reduced (farms and they could benefit from others by changing management practices related to facilities and herds. PMID:29018530
Reducing Respiratory Health Risks to Horses and Workers: A Comparison of Two Stall Bedding Materials
Directory of Open Access Journals (Sweden)
Markku Saastamoinen
2015-10-01
Full Text Available Stable air quality and the choice of bedding material are an important health issue both in horses and people working or visiting horse stables. Risks of impaired respiratory health are those that can especially be avoided by improving air quality in the stable. The choice of bedding material is particularly important in cold climate conditions; where horses are kept most of the day and year indoors throughout their life. This study examined the effect of two bedding materials; wood shavings and peat; on stable air quality and health of horses. Ammonia and dust levels were also measured to assess conditions in the stable. Ammonia was not detected or was at very low levels (<0.25 ppm in the boxes in which peat was used as bedding; but its concentration was clearly higher (1.5–7.0 ppm in stalls with wood shavings as bedding. Personal measurements of workers revealed quite high ammonia exposure (5.9 ppm8h in the boxes in which wood shavings were used; but no exposure was Animals 2015, 5 966 observed in stalls bedded with peat. The respiratory symptoms in horses increased regardless of the bedding material at the beginning of the study. The health status of the horses in the peat bedding group returned to the initial level in the end of the trial but horses bedded with wood shavings continued to be symptomatic. The hooves of the horses with peat bedding had a better moisture content than those of the horses bedded with wood shavings. The results suggest that peat is a better bedding material for horses than wood shavings regarding the health of both horses and stable workers.
Climate trends account for stalled wheat yields in Australia since 1990.
Hochman, Zvi; Gobbett, David L; Horan, Heidi
2017-05-01
Global food security requires that grain yields continue to increase to 2050, yet yields have stalled in many developed countries. This disturbing trend has so far been only partially explained. Here, we show that wheat yields in Australia have stalled since 1990 and investigate the extent to which climate trends account for this observation. Based on simulation of 50 sites with quality weather data, that are representative of the agro-ecological zones and of soil types in the grain zone, we show that water-limited yield potential declined by 27% over a 26 year period from 1990 to 2015. We attribute this decline to reduced rainfall and to rising temperatures while the positive effect of elevated atmospheric CO 2 concentrations prevented a further 4% loss relative to 1990 yields. Closer investigation of three sites revealed the nature of the simulated response of water-limited yield to water availability, water stress and maximum temperatures. At all three sites, maximum temperature hastened time from sowing to flowering and to maturity and reduced grain number per m 2 and average weight per grain. This 27% climate-driven decline in water-limited yield is not fully expressed in actual national yields. This is due to an unprecedented rate of technology-driven gains closing the gap between actual and water-limited potential yields by 25 kg ha -1 yr -1 enabling relative yields to increase from 39% in 1990 to 55% in 2015. It remains to be seen whether technology can continue to maintain current yields, let alone increase them to those required by 2050. © 2017 John Wiley & Sons Ltd.
Low-Order Modeling of Dynamic Stall on Airfoils in Incompressible Flow
Narsipur, Shreyas
Unsteady aerodynamics has been a topic of research since the late 1930's and has increased in popularity among researchers studying dynamic stall in helicopters, insect/bird flight, micro air vehicles, wind-turbine aerodynamics, and ow-energy harvesting devices. Several experimental and computational studies have helped researchers gain a good understanding of the unsteady ow phenomena, but have proved to be expensive and time-intensive for rapid design and analysis purposes. Since the early 1970's, the push to develop low-order models to solve unsteady ow problems has resulted in several semi-empirical models capable of effectively analyzing unsteady aerodynamics in a fraction of the time required by high-order methods. However, due to the various complexities associated with time-dependent flows, several empirical constants and curve fits derived from existing experimental and computational results are required by the semi-empirical models to be an effective analysis tool. The aim of the current work is to develop a low-order model capable of simulating incompressible dynamic-stall type ow problems with a focus on accurately modeling the unsteady ow physics with the aim of reducing empirical dependencies. The lumped-vortex-element (LVE) algorithm is used as the baseline unsteady inviscid model to which augmentations are applied to model unsteady viscous effects. The current research is divided into two phases. The first phase focused on augmentations aimed at modeling pure unsteady trailing-edge boundary-layer separation and stall without leading-edge vortex (LEV) formation. The second phase is targeted at including LEV shedding capabilities to the LVE algorithm and combining with the trailing-edge separation model from phase one to realize a holistic, optimized, and robust low-order dynamic stall model. In phase one, initial augmentations to theory were focused on modeling the effects of steady trailing-edge separation by implementing a non-linear decambering
Wilson, Tanya R; LeBlanc, Stephen J; DeVries, Trevor J; Haley, Derek B
2018-03-14
Automatic milk feeders (AMF) for young dairy calves are widely used in the dairy industry. These feeders are thought to have benefits for calf health and welfare and may reduce labor required for feeding; however, little is known about how calves adapt to feeding with AMF. The objective of this study was to observe the effects of feeding stall design on calves learning to use the AMF. The hypothesis was that solid side stalls, compared with steel bar stalls, would result in a longer latency to approach and feed from the AMF without assistance. A total of 147 Holstein calves (80 male and 67 female) were enrolled at 4 d of age, introduced to a group pen, and, at the same time, trained on an AMF. For training, calves were allowed to suck on the trainer's fingers and guided to the teat. Calves were allocated to 1 of 2 stall designs at the pen level, depending on which treatment cohort they were born into, either with steel bar stall walls (n = 46 male, 34 female calves) or with solid side stall walls (n = 34 male, 33 female calves). For 72 h after introductory training on the AMF, data from the feeders were collected and calf behavior was monitored by video. Outcomes measured included latency to first voluntary visit to the feeder and to first feeding, time spent in the feeder, amount of milk consumed over 72 h, number of retraining sessions required (retrained if linear regression models or a Poisson model for the outcome of retraining. For certain outcomes the effects of stall design interacted with difficulty of training (willingness to enter feeder and drink); for the 38% of calves that were scored as moderately difficult to train on a scale of easy, moderate, or difficult, treatment (stall design) differences were detected. These calves took 2× longer to lick or bite toward the nipple, 2× longer to first voluntarily feeding, and consumed less milk over 72 h following training when trained on the steel bar stall design. These results suggest simple features of a
Fernández-Trincado, J. G.; Robin, A. C.; Bienaymé, O.; Reylé, C.; Valenzuela, O.; Pichardo, B.
2014-07-01
In this contributed poster we present a preliminary attempt to compute a non-axisymmetric potential together with previous axisymmetric potential of the Besançon galaxy model. The contribution by non-axisymmetric components are modeled by the superposition of inhomogeneous ellipsoids to approximate the triaxial bar and superposition of homogeneous oblate spheroids for a stellar halo, possibly triaxial. Finally, we have computed the potential and force field for these non-axisymmetric components in order to constraint the total mass of the Milky Way. We present preliminary results for the rotation curve and the contribution of the bar to it. This approach will allow future studies of dynamical constraints from comparisons of kinematical simulations with upcoming surveys such as RAVE, BRAVA, APOGEE, and GAIA in the near future. More details, are presented in https://gaia.ub.edu/Twiki/pub/GREATITNFC/ProgramFinalconference/Poster_JG.Fern%e1ndez.pdf.
Beckwith, I. E.; Spokowski, A. J.; Harvey, W. D.; Stainback, P. C.
1975-01-01
The basic theory and sound attenuation mechanisms, the design procedures, and preliminary experimental results are presented for a small axisymmetric sound shield for supersonic wind tunnels. The shield consists of an array of small diameter rods aligned nearly parallel to the entrance flow with small gaps between the rods for boundary layer suction. Results show that at the lowest test Reynolds number (based on rod diameter) of 52,000 the noise shield reduced the test section noise by about 60 percent ( or 8 db attenuation) but no attenuation was measured for the higher range of test reynolds numbers from 73,000 to 190,000. These results are below expectations based on data reported elsewhere on a flat sound shield model. The smaller attenuation from the present tests is attributed to insufficient suction at the gaps to prevent feedback of vacuum manifold noise into the shielded test flow and to insufficient suction to prevent transition of the rod boundary layers to turbulent flow at the higher Reynolds numbers. Schlieren photographs of the flow are shown.
On solution of Maxwell's equations in axisymmetric domains with edges. Part II: Numerical aspects
International Nuclear Information System (INIS)
Nkemzi, Boniface
2003-10-01
In this paper we consider the Fourier-finite-element method for treating the Maxwell's equations in three-dimensional axisymmetric domains with reentrant edges. By means of partial Fourier analysis, the 3D BVP is decomposed into an infinite sequence of 2D variational equations in the plane meridian domain of the axisymmetric domain, a finite number of which is considered and treated using nodal H 1 -conforming finite elements. For domains with reentrant edges, the singular field method is employed to compensate the singular behavior of the solutions. Emphases are given to estimates of the Fourier-finite-element approximation error and convergence analysis in the H 1 -norm under different regularity assumptions. (author)
Application of Quasi-Newton methods to the analysis of axisymmetric pressure vessels
International Nuclear Information System (INIS)
Parisi, D.A.C.
1987-01-01
This work studies the application of Quasi-Newton techniques to material nonlinear analysis of axisymmetrical pressure vessels by the finite element method. In the formulation the material bahavior is described by an isotropic elastoplastic model with strain hardening. The continum is discretized through triangular finite elements of axisymmetrical solids with linear interpolation of the displacement field. The incremental governing equations are derived by the virtual work. The solution of the system of simultaneous nonlinear equations is solved iteratively by the Quasi-Newton method employing the BFGS update. The numerical performance of the proposed method is compared with the Newton-Raphson method and some of its variants through some selected examples. (author) [pt
On Perturbation Solutions for Axisymmetric Bending Boundary Values of a Deep Thin Spherical Shell
Directory of Open Access Journals (Sweden)
Rong Xiao
2014-01-01
Full Text Available On the basis of the general theory of elastic thin shells and the Kirchhoff-Love hypothesis, a fundamental equation for a thin shell under the moment theory is established. In this study, the author derives Reissner’s equation with a transverse shear force Q1 and the displacement component w. These basic unknown quantities are derived considering the axisymmetry of the deep, thin spherical shell and manage to constitute a boundary value question of axisymmetric bending of the deep thin spherical shell under boundary conditions. The asymptotic solution is obtained by the composite expansion method. At the end of this paper, to prove the correctness and accuracy of the derivation, an example is given to compare the numerical solution by ANSYS and the perturbation solution. Meanwhile, the effects of material and geometric parameters on the nonlinear response of axisymmetric deep thin spherical shell under uniform external pressure are also analyzed in this paper.
Effect of Axisymmetric Aft Wall Angle Cavity in Supersonic Flow Field
Jeyakumar, S.; Assis, Shan M.; Jayaraman, K.
2018-03-01
Cavity plays a significant role in scramjet combustors to enhance mixing and flame holding of supersonic streams. In this study, the characteristics of axisymmetric cavity with varying aft wall angles in a non-reacting supersonic flow field are experimentally investigated. The experiments are conducted in a blow-down type supersonic flow facility. The facility consists of a supersonic nozzle followed by a circular cross sectional duct. The axisymmetric cavity is incorporated inside the duct. Cavity aft wall is inclined with two consecutive angles. The performance of the aft wall cavities are compared with rectangular cavity. Decreasing aft wall angle reduces the cavity drag due to the stable flow field which is vital for flame holding in supersonic combustor. Uniform mixing and gradual decrease in stagnation pressure loss can be achieved by decreasing the cavity aft wall angle.
Turbulent deflagrations, autoignitions, and detonations
Bradley, Derek
2012-09-01
Measurements of turbulent burning velocities in fan-stirred explosion bombs show an initial linear increase with the fan speed and RMS turbulent velocity. The line then bends over to form a plateau of high values around the maximum attainable burning velocity. A further increase in fan speed leads to the eventual complete quenching of the flame due to increasing localised extinctions because of the flame stretch rate. The greater the Markstein number, the more readily does flame quenching occur. Flame propagation along a duct closed at one end, with and without baffles to increase the turbulence, is subjected to a one-dimensional analysis. The flame, initiated at the closed end of the long duct, accelerates by the turbulent feedback mechanism, creating a shock wave ahead of it, until the maximum turbulent burning velocity for the mixture is attained. With the confining walls, the mixture is compressed between the flame and the shock plane up to the point where it might autoignite. This can be followed by a deflagration to detonation transition. The maximum shock intensity occurs with the maximum attainable turbulent burning velocity, and this defines the limit for autoignition of the mixture. For more reactive mixtures, autoignition can occur at turbulent burning velocities that are less than the maximum attainable one. Autoignition can be followed by quasi-detonation or fully developed detonation. The stability of ensuing detonations is discussed, along with the conditions that may lead to their extinction. © 2012 by Pleiades Publishing, Ltd.
Numerical methods for turbulent flow
Turner, James C., Jr.
1988-01-01
It has generally become accepted that the Navier-Strokes equations predict the dynamic behavior of turbulent as well as laminar flows of a fluid at a point in space away form a discontinuity such as a shock wave. Turbulence is also closely related to the phenomena of non-uniqueness of solutions of the Navier-Strokes equations. These second order, nonlinear partial differential equations can be solved analytically for only a few simple flows. Turbulent flow fields are much to complex to lend themselves to these few analytical methods. Numerical methods, therefore, offer the only possibility of achieving a solution of turbulent flow equations. In spite of recent advances in computer technology, the direct solution, by discrete methods, of the Navier-Strokes equations for turbulent flow fields is today, and in the foreseeable future, impossible. Thus the only economically feasible way to solve practical turbulent flow problems numerically is to use statistically averaged equations governing mean-flow quantities. The objective is to study some recent developments relating to the use of numerical methods to study turbulent flow.
Comparison of turbulence mitigation algorithms
Kozacik, Stephen T.; Paolini, Aaron; Sherman, Ariel; Bonnett, James; Kelmelis, Eric
2017-07-01
When capturing imagery over long distances, atmospheric turbulence often degrades the data, especially when observation paths are close to the ground or in hot environments. These issues manifest as time-varying scintillation and warping effects that decrease the effective resolution of the sensor and reduce actionable intelligence. In recent years, several image processing approaches to turbulence mitigation have shown promise. Each of these algorithms has different computational requirements, usability demands, and degrees of independence from camera sensors. They also produce different degrees of enhancement when applied to turbulent imagery. Additionally, some of these algorithms are applicable to real-time operational scenarios while others may only be suitable for postprocessing workflows. EM Photonics has been developing image-processing-based turbulence mitigation technology since 2005. We will compare techniques from the literature with our commercially available, real-time, GPU-accelerated turbulence mitigation software. These comparisons will be made using real (not synthetic), experimentally obtained data for a variety of conditions, including varying optical hardware, imaging range, subjects, and turbulence conditions. Comparison metrics will include image quality, video latency, computational complexity, and potential for real-time operation. Additionally, we will present a technique for quantitatively comparing turbulence mitigation algorithms using real images of radial resolution targets.
The influence of turbulence on the aero-elastic instability of wind turbines
DEFF Research Database (Denmark)
Zhang, Zili; Nielsen, Søren R.K.
2014-01-01
Modern multi-megawatt wind turbines are designed with longer and slender blades using new composite materials and advanced fabrication methods. The trend towards lighter and more flexible blades may lead to aeroelastic instability of wind turbines under certain circumstances, thus resulting...... aerodynamic damping. A 13-degree-of-freedom (13-DOF) wind turbine model is developed using Euler-Lagrange equations, which includes the couplings of the tower-blade-drivetrain vibration, the quasi-static aeroelasticity and a collective pitch controller. Numerical simulations are carried out using data...... turbine shifts from a stable state into an instable state, is determined in different cases. Results show that turbulence intensity has significant influence on the aeroelastic stability of high-performance wind turbines operating close to stall, and the stability of the wind turbine might be changed due...
International Nuclear Information System (INIS)
Kondo, Koichi; Yoshida, Kenji; Okawa, Tomio; Kataoka, Isao
2004-01-01
Experiment and numerical calculation were carried out for upward, turbulent bubbly two-phase flow in a vertical pipe with an axisymmetric sudden expansion, which is one of the typical multi-dimensional channel geometries. The void fraction, the liquid velocity and turbulent intensity along the flow direction below and the above the sudden expansion point were measured for various turbulent flow conditions by using a point-electrode resistivity probe and a hot-film anemometry probe. They showed quite complicated behaviors depending upon flow rates of gas and liquid phases and bubble size. In particular, the geometry of sudden expansion affected on the bubble behaviors in multi-dimensional two-phase flow, such as the bubble-stagnation, the bubble-deformation, the enhancement and suppression effects due to the two-phase turbulence etc. Through the measurements, fundamental parameters of the two-phase flow were clarified for the sudden expansion channel. Moreover, a three-dimensional one-way bubble tracking simulation of a single bubble behavior in turbulent flow field along the downstream of the sudden expansion was also demonstrated where equation of motion of bubble was solved by assuming appropriate constitutive models and turbulence model. Based on the trajectories of large number of bubbles, the void fraction distribution was predicted in this calculation. It concretely revealed that the lift force and the two-phase turbulence model were the most important parameters in determining the multi-dimensional void fraction distribution and the calculation should be considered by using the measured experimental data. (author)
International Nuclear Information System (INIS)
Pomeau, Y.
1981-07-01
In this work it is reviewed a few known types of transition to turbulence, as the cascade of period doubling and the intermittent transition. This happens in dynamical systems with a few degrees of freedom, as modelled by the iteration of non linear maps. Then it is presented specific transitions for systems with many degrees of freedom. It is condidered first the occurence of a low frequency broadband noise in large cells at the onset of Rayleigh-Benard convection; then the transition by intermittent bursts in parallel flows. In this last case, one is concerned with localized and finite amplitude perturbations. Simple geometric arguments show that these fluctuations, when they are isolated and with a well definite relative speed, exist for a single value of the Reynolds number only [fr
Axisymmetric solid-of-revolution finite elements with rotational degrees of freedom
CSIR Research Space (South Africa)
Long, CS
2009-01-01
Full Text Available of the axis of radial symmetry. Weissman and Taylor [23] introduced two elements based on the Hellinger- Reissner functional. Their elements employ the popular Pian and Sumihara interpolation, modified to obtain correct rank for the axisymmetric case... option however. Essentially, we adopt the procedure suggested by Jog and Annabat- tula [25], who proposed the selection of interpolation functions such that zero- energy modes (associated with reduced integrations schemes) are captured. In their paper...
NOVA: a nonvariational code for solving MHD stability of axisymmetric toroidal plasmas
International Nuclear Information System (INIS)
Cheng, C.Z.; Chance, M.S.
1986-04-01
A nonvariational approach for determining the ideal MHD stability of axisymmetric toroidal confinement systems is presented. The code (NOVA) employs cubic B-spline finite elements and Fourier expansion in a general flux coordinate (psi, theta, zeta) system. Better accuracy and faster convergence were obtained in comparison with the variational PEST and ERATO codes. The nonvariational approach can be extended to problems having non-Hermitian eigenmode equations where variational energy principles cannot be obtained
Numerical analysis of laser ablation using the axisymmetric two-temperature model
Dziatkiewicz, Jolanta; Majchrzak, Ewa
2018-01-01
Laser ablation of the axisymmetric micro-domain is analyzed. To describe the thermal processes occurring in the micro-domain the two-temperature hyperbolic model supplemented by the boundary and initial conditions is used. This model takes into account the phase changes of material (solid-liquid and liquid-vapour) and the ablation process. At the stage of numerical computations the finite difference method with staggered grid is used. In the final part the results of computations are shown.
AxisSPH:devising and validating an axisymmetric smoothed particle hydrodynamics code
Relaño Castillo, Antonio
2012-01-01
A two-dimensional axisymmetric implementation of the smoothed particle hydrodynamics (SPH) technique, called for short AxisSPH, has been described in this thesis, along with a number of basic tests and realistic applications. The main goal of this work was to fill a gap on a topic which has been scarcely addressed in the published literature concerning SPH. Although the application of AxisSPH to the simulation of real problems is restricted to those systems which display the appropriate ...
Effects of shape and stroke parameters on the propulsion performance of an axisymmetric swimmer
International Nuclear Information System (INIS)
Peng Jifeng; Alben, Silas
2012-01-01
In nature, there exists a special group of aquatic animals which have an axisymmetric body and whose primary swimming mechanism is to use periodic body contractions to generate vortex rings in the surrounding fluid. Using jellyfish medusae as an example, this study develops a mathematical model of body kinematics of an axisymmetric swimmer and uses a computational approach to investigate the induced vortex wakes. Wake characteristics are identified for swimmers using jet propulsion and rowing, two mechanisms identified in previous studies of medusan propulsion. The parameter space of body kinematics is explored through four quantities: a measure of body shape, stroke amplitude, the ratio between body contraction duration and extension duration, and the pulsing frequency. The effects of these parameters on thrust, input power requirement and circulation production are quantified. Two metrics, cruising speed and energy cost of locomotion, are used to evaluate the propulsion performance. The study finds that a more prolate-shaped swimmer with larger stroke amplitudes is able to swim faster, but its cost of locomotion is also higher. In contrast, a more oblate-shaped swimmer with smaller stroke amplitudes uses less energy for its locomotion, but swims more slowly. Compared with symmetric strokes with equal durations of contraction and extension, faster bell contractions increase the swimming speed whereas faster bell extensions decrease it, but both require a larger energy input. This study shows that besides the well-studied correlations between medusan body shape and locomotion, stroke variables also affect the propulsion performance. It provides a framework for comparing the propulsion performance of axisymmetric swimmers based on their body kinematics when it is difficult to measure and analyze their wakes empirically. The knowledge from this study is also useful for the design of robotic swimmers that use axisymmetric body contractions for propulsion. (paper)
Preliminary summary of particle transport effects in non-axisymmetric tandem mirrors
International Nuclear Information System (INIS)
Baldwin, D.E.
1978-01-01
This report reviews the physical basis for the theory of enhanced transport in non-axisymmetric tandem mirror systems recently published by Ryutov, et al. For TMX and thermal ions in a reactor, the radial loss is estimated to be somewhat less than the axial loss; energetic alphas in reactors are susceptible to rapid loss. A number of variations of current magnetic field designs are suggested for reducing this transport
Solving the Axisymmetric Inverse Heat Conduction Problem by a Wavelet Dual Least Squares Method
Directory of Open Access Journals (Sweden)
Fu Chu-Li
2009-01-01
Full Text Available We consider an axisymmetric inverse heat conduction problem of determining the surface temperature from a fixed location inside a cylinder. This problem is ill-posed; the solution (if it exists does not depend continuously on the data. A special project method—dual least squares method generated by the family of Shannon wavelet is applied to formulate regularized solution. Meanwhile, an order optimal error estimate between the approximate solution and exact solution is proved.
MHD stability calculations of high-β quasi-axisymmetric stellarators
International Nuclear Information System (INIS)
Fu, G.Y.; Ku, L.P.; Pomphrey, N.; Redi, M.; Kessel, C.; Monticello, D.; Reiman, A.; Hughes, M.; Cooper, W.A.; Nuehrenberg, C.
2001-01-01
The MHD stability of quasi-axisymmetric compact stellarators is investigated. It is shown that bootstrap current driven external kink modes can be stabilized by a combination of edge magnetic shear and appropriate 3D plasma boundary shaping while maintaining good quasi-axisymmetry. The results demonstrate that there exists a new class of stellarators with quasi-axisymmetry, large bootstrap current, high MHD beta limit, and compact size. (author)
MHD Stability Calculations of High-Beta Quasi-Axisymmetric Stellarators
International Nuclear Information System (INIS)
Kessel, C.; Fu, G.Y.; Ku, L.P.; Redi, M.H.; Pomphrey, N.
1999-01-01
The MHD stability of quasi-axisymmetric compact stellarators is investigated. It is shown that bootstrap current driven external kink modes can be stabilized by a combination of edge magnetic shear and appropriate 3D plasma boundary shaping while maintaining good quasi-axisymmetry. The results demonstrate that there exists a new class of stellarators with quasi-axisymmetry, large bootstrap current, high MHD beta limit, and compact size
MHD stability calculations of high-β quasi-axisymmetric stellarators
International Nuclear Information System (INIS)
Fu, G.Y.; Ku, L.P.; Pomphrey, N.; Redi, M.H.; Kessel, C.; Monticello, D.A.; Reiman, A.; Hughes, M.; Cooper, W.A.; Nuehrenberg, C.
1999-01-01
The MHD stability of quasi-axisymmetric compact stellarators is investigated. It is shown that bootstrap current driven external kink modes can be stabilized by a combination of edge magnetic shear and appropriate 3D plasma boundary shaping while maintaining good quasi-axisymmetry. The results demonstrate that there exists a new class of stellarators with quasi-axisymmetry, large bootstrap current, high MHD beta limit, and compact size. (author)
The nonlinear behaviour of axisymmetric hydromagnetic waves in a partially ionized plasma
International Nuclear Information System (INIS)
Sawley, M.
1977-10-01
Finite amplitude effects in the propagation of axisymmetric hydromagnetic waves in a cylindrical, magnetized plasma are considered. The influence of the Hall term and the presence of neutral atoms on the resulting second order fields is examined. The combined effect of these two factors is to produce a substantial secord order azimuthal field, in addition to the axial field predicted by earlier work which neglected these factors. In some circumstances this azimuthal field is much larger than the axial field. (Author)
Coherent structures and turbulence evolution in magnetized non-neutral plasmas
Romé, M.; Chen, S.; Maero, G.
2018-01-01
The evolution of turbulence of a magnetized pure electron plasma confined in a Penning-Malmberg trap is investigated by means of a two-dimensional particle-in-cell numerical code. The transverse plasma dynamics is studied both in the case of free evolution and under the influence of non-axisymmetric, multipolar radio-frequency drives applied on the circular conducting boundary. In the latter case the radio-frequency fields are chosen in the frequency range of the low-order azimuthal (diocotron) modes of the plasma in order to investigate their effect on the insurgence of azimuthal instabilities and the formation and evolution of coherent structures, possibly preventing the relaxation to a fully-developed turbulent state. Different initial density distributions (rings and spirals) are considered, so that evolutions characterized by different levels of turbulence and intermittency are obtained. The time evolution of integral and spectral quantities of interest are computed using a multiresolution analysis based on a wavelet decomposition of density maps. Qualitative features of turbulent relaxation are found to be similar in conditions of both free and forced evolution, but the analysis allows one to highlight fine details of the flow beyond the self-similarity turbulence properties, so that the influence of the initial conditions and the effect of the external forcing can be distinguished. In particular, the presence of small inhomogeneities in the initial density configuration turns out to lead to quite different final states, especially in the presence of competing unstable diocotron modes characterized by similar growth rates.
Numerical modeling of soot formation in a turbulent C2H4/air diffusion flame
Directory of Open Access Journals (Sweden)
Manedhar Reddy Busupally
2016-06-01
Full Text Available Soot formation in a lifted C2H4-Air turbulent diffusion flame is studied using two different paths for soot nucleation and oxidation; by a 2D axisymmetric RANS simulation using ANSYS FLUENT 15.0. The turbulence-chemistry interactions are modeled using two different approaches: steady laminar flamelet approach and flamelet-generated manifold. Chemical mechanism is represented by POLIMI to study the effect of species concentration on soot formation. P1 approximation is employed to approximate the radiative transfer equation into truncated series expansion in spherical harmonics while the weighted sum of gray gases is invoked to model the absorption coefficient while the soot model accounts for nucleation, coagulation, surface growth, and oxidation. The first route for nucleation considers acetylene concentration as a linear function of soot nucleation rate, whereas the second route considers two and three ring aromatic species as function of nucleation rate. Equilibrium-based and instantaneous approach has been used to estimate the OH concentration for soot oxidation. Lee and Fenimore-Jones soot oxidation models are studied to shed light on the effect of OH on soot oxidation. Moreover, the soot-radiation interactions are also included in terms of absorption coefficient of soot. Furthermore, the soot-turbulence interactions have been invoked using a temperature/mixture fraction-based single variable PDF. Both the turbulence-chemistry interaction models are able to accurately predict the flame liftoff height, and for accurate prediction of flame length, radiative heat loss should be accounted in an accurate way. The soot-turbulence interactions are found sensitive to the PDF used in present study.
Statistical properties of turbulence: An overview
Indian Academy of Sciences (India)
the turbulent advection of passive scalars, turbulence in the one-dimensional Burgers equation, and fluid turbulence in the presence of polymer ... However, it is not easy to state what would consti- tute a solution of the turbulence ...... flow with Lagrangian tracers and use a cubic spline interpolation method to calculate their ...
van Hout, René; Eisma, Jerke; Elsinga, Gerrit E.; Westerweel, Jerry
2018-02-01
In many applications, finite-sized particles are immersed in a turbulent boundary layer (TBL) and it is of interest to study wall effects on the instantaneous shedding of turbulence structures and associated mean velocity and Reynolds stress distributions. Here, 3D flow field dynamics in the wake of a prototypical, small sphere (D+=50 , 692 measured using time-resolved tomo-PIV. Increasing wall proximity increasingly tilted the mean recirculating wake away from the wall implying a negative lift force. Mean velocity deficit recovery scaled with the mean wake length with minor effects of wall proximity. Farthest from the wall, streamwise Reynolds normal stresses encircled the mean wake as an axisymmetric tubular "shell," while transverse and wall-normal stresses extended off its tip as axisymmetric tapered cones. Wall proximity removed axisymmetry and attenuated values near the wall. Reynolds shear stresses were distributed as antisymmetric lobes extending off the mean wake displaying increasing values with reducing sphere-wall gap. Instantaneous snapshots revealed a wake densely populated by "archlike" vortices with shedding frequencies lower than for a sphere in uniform flow except in the buffer layer. Tilting of the wake away from the wall resulted from self-induced motion of shed hairpinlike vortices whose symmetry plane was increasingly wall-normal oriented with reduced sphere-wall gap.
Effect of turbulent collisions on diffusion in stationary plasma turbulence
International Nuclear Information System (INIS)
Xia, H.; Ishihara, O.
1990-01-01
Recently the velocity diffusion process was studied by the generalized Langevin equation derived by the projection operator method. The further study shows that the retarded frictional function plays an important role in suppressing particle diffusion in the velocity space in stronger turbulence as much as the resonance broadening effect. The retarded frictional effect, produced by the effective collisions due to the plasma turbulence is assumed to be a Gaussian, but non-Markovian and non-wide-sense stationary process. The relations between the proposed formulation and the extended resonance broadening theory is discussed. The authors also carry out test particle numerical experiment for Langmuir turbulence to test the theories. In a stronger turbulence a deviation of the diffusion rate from the one predicted by both the quasilinear and the extended resonance theories has been observed and is explained qualitatively by the present formulation
Wind energy impact of turbulence
Hölling, Michae; Ivanell, Stefan
2014-01-01
This book presents the results of the seminar ""Wind Energy and the Impact of Turbulence on the Conversion Process"" which was supported from three societies, namely the EUROMech, EAWE and ERCOFATC and took place in Oldenburg, Germany in spring 2012.The seminar was one of the first scientific meetings devoted to the common topic of wind energy and basic turbulence. The established community of researchers working on the challenging puzzle of turbulence for decades met the quite young community of researchers, who face the upcoming challenges in the fast growing field of wind energy application
Turbulence via information field dynamics
Ensslin, Torsten A.
2015-08-01
Turbulent flows exhibit-scale free regimes, for which information on the statistical properties of the dynamics exists for many length-scales. The simulation of turbulent systems can benefit from the inclusion of such information on sub-grid process. How can statistical information about the flow on small scales be optimally be incorporated into simulation schemes? Information field dynamics (IFD) is a novel information theoretical framework to design schemes that exploit such statistical knowledge on sub-grid flow fluctuations. In this talk, I will introduce the basic idea of IFD, present its first toy applications, and discuss the next steps towards its usage in complex turbulence simulations.
On Lean Turbulent Combustion Modeling
Directory of Open Access Journals (Sweden)
Constantin LEVENTIU
2014-06-01
Full Text Available This paper investigates a lean methane-air flame with different chemical reaction mechanisms, for laminar and turbulent combustion, approached as one and bi-dimensional problem. The numerical results obtained with Cantera and Ansys Fluent software are compared with experimental data obtained at CORIA Institute, France. First, for laminar combustion, the burn temperature is very well approximated for all chemical mechanisms, however major differences appear in the evaluation of the flame front thickness. Next, the analysis of turbulence-combustion interaction shows that the numerical predictions are suficiently accurate for small and moderate turbulence intensity.
Bornemeier, Matthew; Luznik, Luksa
2017-11-01
High resolution, two dimensional PIV measurements of grid-generated turbulence in the US Naval Academy's recirculating water tunnel (1.8m test section with 0.41m x 0.41m cross sectional area) are presented for two different grid designs. The first grid is a uniform square bar grid with mesh width, M =3.9cm, bar thickness t0 = 1cm, a streamwise thickness of 1cm and resulting solidity of 44%, similar to the conventional grid used by Krogstad and Davidson (2012). The other is Mazellier & Vassilicos' (2010) square fractal grid, SFG17, with fractal iteration count, N =4, thickness ratio tr = 17 and length ratio Lr = 8. Grid patterns differ from the published designs by a circular hole with 4.30cm diameter in the middle that will accept, in future experiments, a shaft connected to an axisymmetric rotating wake generator with diameter, D. Grids were designed to generate turbulence of specific integral length scale of O(D) and intensity of 6% at the prescribed downstream location. Mean tunnel centerline velocity is 2 m/s and measurements are made in a streamwise vertical center plane with nominal individual field of view (FOV) of 12x8 cm2. Spatial coverage in the test section is accomplished by ``tiling'' individual FOV with approximately 2cm overlap. Results will focus on characterizing resulting turbulence in the test section and discussion will include comparison between published results and the present measurements.
Velocity Statistics Distinguish Quantum Turbulence from Classical Turbulence
International Nuclear Information System (INIS)
Paoletti, M. S.; Fisher, Michael E.; Sreenivasan, K. R.; Lathrop, D. P.
2008-01-01
By analyzing trajectories of solid hydrogen tracers, we find that the distributions of velocity in decaying quantum turbulence in superfluid 4 He are strongly non-Gaussian with 1/v 3 power-law tails. These features differ from the near-Gaussian statistics of homogenous and isotropic turbulence of classical fluids. We examine the dynamics of many events of reconnection between quantized vortices and show by simple scaling arguments that they produce the observed power-law tails
Numerical study of jet noise radiated by turbulent coherent structures
Energy Technology Data Exchange (ETDEWEB)
Bastin, F.
1995-08-01
a numerical approach of jet mixing noise prediction is presented, based on the assumption that the radiated sound field is essentially due to large-scale coherent turbulent structures. A semi-deterministic turbulence modelling is used to obtain the flow coherent fluctuations. This model is derived from the k-{epsilon} model and validated on the 2-D compressible shear layer case. Three plane jets at Mach 0.5, 1.33 and 2 are calculated. The semi-deterministic modelling yields a realistic unsteady representation of plane jets but not appropriate for axisymmetric jet computations. Lighthill`s analogy is used to estimate the noise radiated by the flow. Three integral formulations of the theory are compared and the most suitable one is expressed in space-time Fourier space. This formulation is associated to a geometrical interpretation of acoustic computations in (k, {omega}) plane. The only contribution of coherent structures cannot account for the high-frequency radiation of a subsonic jet and thus, the initial assumption is not verified in the subsonic range. The interpretation of Lighthill`s analogy in (k, {omega}) plane allows to conclude that the missing high-frequency components are due to the inner structure of the coherent motion. For supersonic jets, full acoustic spectra are obtained, at least in the forward arc where the dominant radiation is emitted. For the fastest jet (M = 2), no Mach waves are observed, which may be explained by a ratio of the structures convection velocity to the jet exit velocity lower in plane than in circular jets. This point is confirmed by instability theory calculations. Large eddy simulations (LES) were performed for subsonic jets. Data obtained in the plane jet case show that this technique allows only a slight improvement of acoustic results. To obtain a satisfactory high-frequency radiation, very fine grids should be considered, and the 2-D approximation could not be justified anymore. (Abstract Truncated)
Stochastic differential equations and turbulent dispersion
Durbin, P. A.
1983-01-01
Aspects of the theory of continuous stochastic processes that seem to contribute to an understanding of turbulent dispersion are introduced and the theory and philosophy of modelling turbulent transport is emphasized. Examples of eddy diffusion examined include shear dispersion, the surface layer, and channel flow. Modeling dispersion with finite-time scale is considered including the Langevin model for homogeneous turbulence, dispersion in nonhomogeneous turbulence, and the asymptotic behavior of the Langevin model for nonhomogeneous turbulence.
Turbulent forced convection of nanofluids downstream an abrupt expansion
Kimouche, Abdelali; Mataoui, Amina
2018-03-01
Turbulent forced convection of Nanofluids through an axisymmetric abrupt expansion is investigated numerically in the present study. The governing equations are solved by ANYS 14.0 CFD code based on the finite volume method by implementing the thermo-physical properties of each nanofluid. All results are analyzed through the evolutions of skin friction coefficient and Nusselt number. For each nanofluid, the effect of both volume fraction and Reynolds number on this type of flow configuration, are examined. An increase on average Nusselt number with the volume fraction and Reynolds number, are highlighted and correlated. Two relationships are proposed. The first one, determines the average Nusselt number versus Reynolds number, volume fraction and the ratio of densities of the solid particles to that of the base fluid ( \\overline{Nu}=f(\\operatorname{Re},φ, ρ_s/ρ_f) ). The second one varies according Reynolds number, volume fraction and the conductivities ratio of solid particle to that of the base fluid ( \\overline{Nu}=f(\\operatorname{Re},φ, k_s/k_f) ).
Premixed autoignition in compressible turbulence
Konduri, Aditya; Kolla, Hemanth; Krisman, Alexander; Chen, Jacqueline
2016-11-01
Prediction of chemical ignition delay in an autoignition process is critical in combustion systems like compression ignition engines and gas turbines. Often, ignition delay times measured in simple homogeneous experiments or homogeneous calculations are not representative of actual autoignition processes in complex turbulent flows. This is due the presence of turbulent mixing which results in fluctuations in thermodynamic properties as well as chemical composition. In the present study the effect of fluctuations of thermodynamic variables on the ignition delay is quantified with direct numerical simulations of compressible isotropic turbulence. A premixed syngas-air mixture is used to remove the effects of inhomogeneity in the chemical composition. Preliminary results show a significant spatial variation in the ignition delay time. We analyze the topology of autoignition kernels and identify the influence of extreme events resulting from compressibility and intermittency. The dependence of ignition delay time on Reynolds and turbulent Mach numbers is also quantified. Supported by Basic Energy Sciences, Dept of Energy, United States.
Structure and modeling of turbulence
International Nuclear Information System (INIS)
Novikov, E.A.
1995-01-01
The open-quotes vortex stringsclose quotes scale l s ∼ LRe -3/10 (L-external scale, Re - Reynolds number) is suggested as a grid scale for the large-eddy simulation. Various aspects of the structure of turbulence and subgrid modeling are described in terms of conditional averaging, Markov processes with dependent increments and infinitely divisible distributions. The major request from the energy, naval, aerospace and environmental engineering communities to the theory of turbulence is to reduce the enormous number of degrees of freedom in turbulent flows to a level manageable by computer simulations. The vast majority of these degrees of freedom is in the small-scale motion. The study of the structure of turbulence provides a basis for subgrid-scale (SGS) models, which are necessary for the large-eddy simulations (LES)
Energy transfer in compressible turbulence
Bataille, Francoise; Zhou, YE; Bertoglio, Jean-Pierre
1995-01-01
This letter investigates the compressible energy transfer process. We extend a methodology developed originally for incompressible turbulence and use databases from numerical simulations of a weak compressible turbulence based on Eddy-Damped-Quasi-Normal-Markovian (EDQNM) closure. In order to analyze the compressible mode directly, the well known Helmholtz decomposition is used. While the compressible component has very little influence on the solenoidal part, we found that almost all of the compressible turbulence energy is received from its solenoidal counterpart. We focus on the most fundamental building block of the energy transfer process, the triadic interactions. This analysis leads us to conclude that, at low turbulent Mach number, the compressible energy transfer process is dominated by a local radiative transfer (absorption) in both inertial and energy containing ranges.
Turbulence Instrumentation for Stratospheric Airships
National Research Council Canada - National Science Library
Duell, Mark L; Saupe, Lawrence M; Barbeau, Brent E; Robinson, Kris D; Jumper, George Y
2007-01-01
.... The High Altitude Airship is designed to investigate these phenomena. In order to sense atmospheric turbulence at altitudes of the expected flight of the High Altitude Airship of around 65,000ft, a prototype ionic anemometer was constructed...
Stochastic Subspace Modelling of Turbulence
DEFF Research Database (Denmark)
Sichani, Mahdi Teimouri; Pedersen, B. J.; Nielsen, Søren R.K.
2009-01-01
positive definite cross-spectral density matrix a frequency response matrix is constructed which determines the turbulence vector as a linear filtration of Gaussian white noise. Finally, an accurate state space modelling method is proposed which allows selection of an appropriate model order......, and estimation of a state space model for the vector turbulence process incorporating its phase spectrum in one stage, and its results are compared with a conventional ARMA modelling method.......Turbulence of the incoming wind field is of paramount importance to the dynamic response of civil engineering structures. Hence reliable stochastic models of the turbulence should be available from which time series can be generated for dynamic response and structural safety analysis. In the paper...
Turbulence in unmagnetized Vlasov plasmas
International Nuclear Information System (INIS)
Kuo, S.P.
1985-01-01
The classical technique of transformation and characteristics is employed to analyze the problem of strong turbulence in unmagnetized plasmas. The effect of resonance broadening and perturbation expansion are treated simultaneously, without time secularities. The renormalization procedure of Dupree and Tetreault is used in the transformed Vlasov equation to analyze the turbulence and to derive explicitly a diffusion equation. Analyses are extended to inhomogeneous plasmas and the relationship between the transformation and ponderomotive force is obtained. (author)
Quantify the complexity of turbulence
Tao, Xingtian; Wu, Huixuan
2017-11-01
Many researchers have used Reynolds stress, power spectrum and Shannon entropy to characterize a turbulent flow, but few of them have measured the complexity of turbulence. Yet as this study shows, conventional turbulence statistics and Shannon entropy have limits when quantifying the flow complexity. Thus, it is necessary to introduce new complexity measures- such as topology complexity and excess information-to describe turbulence. Our test flow is a classic turbulent cylinder wake at Reynolds number 8100. Along the stream-wise direction, the flow becomes more isotropic and the magnitudes of normal Reynolds stresses decrease monotonically. These seem to indicate the flow dynamics becomes simpler downstream. However, the Shannon entropy keeps increasing along the flow direction and the dynamics seems to be more complex, because the large-scale vortices cascade to small eddies, the flow is less correlated and more unpredictable. In fact, these two contradictory observations partially describe the complexity of a turbulent wake. Our measurements (up to 40 diameters downstream the cylinder) show that the flow's degree-of-complexity actually increases firstly and then becomes a constant (or drops slightly) along the stream-wise direction. University of Kansas General Research Fund.
Kabagenyi, Allen; Reid, Alice; Rutaremwa, Gideon; Atuyambe, Lynn M; Ntozi, James P M
2015-09-23
Persistent high fertility is associated with mother and child mortality. While most regions in the world have experienced declines in fertility rates, there are conflicting views as to whether Uganda has entered a period of fertility transition. There are limited data available that explicitly detail the fertility trends and patterns in Uganda over the last four decades, from 1973 to 2011. Total fertility rate (TFR) is number of live births that a woman would have throughout her reproductive years if she were subject to the prevailing age specific fertility patterns. The current TFR for Uganda stands at 6.2 children born per woman, which is one of the highest in the region. This study therefore sought to examine whether there has been a fertility stall in Uganda using all existing Demographic Health Survey data, to provide estimates for the current fertility levels and trends in Uganda, and finally to examine the demographic and socioeconomic factors responsible for fertility levels in Uganda. This is a secondary analysis of data from five consecutive Ugandan Demographic Health Surveys (UDHS); 1988/1989, 1995, 2000/2001, 2006 and 2011. Using pooled data to estimate for fertility levels, patterns and trends, we applied a recently developed fertility estimation approach. A Poisson regression model was also used to analyze fertility differentials over the study period. Over the studied period, fertility trends and levels fluctuated from highs of 8.8 to lows of 5.7, with no specific lag over the study period. These findings suggest Uganda is at the pre-transitional stage, with indications of imminent fertility rate reductions in forthcoming years. Marital status remained a strong predictor for number of children born, even after controlling for other variables. This study suggests there is no evidence of a fertility stall in Uganda, but demonstrates an onset of fertility transition in the country. If this trend continues, Uganda will experience a low fertility rate in
International Nuclear Information System (INIS)
Takase, Kazuyuki
1996-01-01
The square-ribbed fuel rod for high temperature gas-cooled reactors was developed in order to enhance the turbulent heat transfer in comparison with the standard fuel rod. To evaluate the heat transfer performance of the square-ribbed fuel rod, the turbulent heat transfer coefficients in an annular fuel channel with repeated two-dimensional square ribs were analyzed numerically on a fully developed incompressible flow using the k - ε turbulence model and the two-dimensional axisymmetrical coordinate system. Numerical analyses were carried out for a range of Reynolds numbers from 3000 to 20000 and ratios of square-rib pitch to height of 10, 20 and 40, respectively. The predicted values of the heat transfer coefficients agreed within an error of 10% for the square-rib pitch to height ratio of 10, 20% for 20 and 25% for 40, respectively, with the heat transfer empirical correlations obtained from the experimental data. It was concluded by the present study that the effect of the heat transfer augmentation by square ribs could be predicted sufficiently by the present numerical simulations and also a part of its mechanism could be explained by means of the change in the turbulence kinematic energy distribution along the flow direction. (author)
Kumar, Mayank
2012-01-19
In this two-part paper, we describe the construction, validation, and application of a multiscale model of entrained flow gasification. The accuracy of the model is demonstrated by (1) rigorously constructing and validating the key constituent submodels against relevant canonical test cases from the literature and (2) validating the integrated model against experimental data from laboratory scale and commercial scale gasifiers. In part I, the flow solver and particle turbulent dispersion models are validated against experimental data from nonswirling flow and swirling flow test cases in an axisymmetric sudden expansion geometry and a two-phase flow test case in a cylindrical bluff body geometry. Results show that while the large eddy simulation (LES) performs best among all tested models in predicting both swirling and nonswirling flows, the shear stress transport (SST) k-ω model is the best choice among the commonly used Reynolds-averaged Navier-Stokes (RANS) models. The particle turbulent dispersion model is accurate enough in predicting particle trajectories in complex turbulent flows when the underlying turbulent flow is well predicted. Moreover, a commonly used modeling constant in the particle dispersion model is optimized on the basis of comparisons with particle-phase experimental data for the two-phase flow bluff body case. © 2011 American Chemical Society.
Recent developments in plasma turbulence and turbulent transport
Energy Technology Data Exchange (ETDEWEB)
Terry, P.W. [Univ. of Wisconsin, Madison, WI (United States)
1997-09-22
This report contains viewgraphs of recent developments in plasma turbulence and turbulent transport. Localized nonlinear structures occur under a variety of circumstances in turbulent, magnetically confined plasmas, arising in both kinetic and fluid descriptions, i.e., in either wave-particle or three-wave coupling interactions. These structures are non wavelike. They cannot be incorporated in the collective wave response, but interact with collective modes through their shielding by the plasma dielectric. These structures are predicted to modify turbulence-driven transport in a way that in consistent with, or in some cases are confirmed by recent experimental observations. In kinetic theory, non wavelike structures are localized perturbations of phase space density. There are two types of structures. Holes are self-trapped, while clumps have a self-potential that is too weak to resist deformation and mixing by ambient potential fluctuations. Clumps remain correlated in turbulence if their spatial extent is smaller than the correlation length of the scattering fields. In magnetic turbulence, clumps travel along stochastic magnetic fields, shielded by the plasma dielectric. A drag on the clump macro-particle is exerted by the shielding, inducing emission into the collective response. The emission in turn damps back on the particle distribution via Landau dampling. The exchange of energy between clumps and particles, as mediated by the collective mode, imposes constraints on transport. For a turbulent spectrum whose mean wavenumber along the equilibrium magnetic field is nonzero, the electron thermal flux is proportional to the ion thermal velocity. Conventional predictions (which account only for collective modes) are larger by the square root of the ion to electron mass ratio. Recent measurements are consistent with the small flux. In fluid plasma,s localized coherent structures can occur as intense vortices.
Analysis of zonal flow bifurcations in 3D drift wave turbulence simulations
International Nuclear Information System (INIS)
Kammel, Andreas
2012-01-01
the resonances and the shear flow gradient length, leading to Reynolds stress asymmetries. In the zonal flow regime, shear flow-dependency of the radial group velocity results in a quantitative expression of the repulsion of drift wave turbulence by zonal flows moving opposite to the electron diamagnetic drift direction (dubbed negative flows) and attraction around the positive flows. The transport bifurcation anticipated to ensue - expressed through density corrugations and asymmetric flows - is confirmed numerically and subsequently analyzed in great detail, marking the first finding of such a bifurcation within a self-consistent drift wave turbulence simulation. If these bifurcations were to be reproduced in an actual fusion device, improvements of confinement due to increased negative flow repulsion as well as shear flow stalling effects might be feasible.
Design of a 21 m blade with Risø-A1 airfoils for active stall controlled wind turbines
DEFF Research Database (Denmark)
Fuglsang, Peter; Sangill, O.; Hansen, P.
2002-01-01
This is the final report, from the project, "Design of a Rotor/Airfoil Family for Active Stall-regulated Wind Turbines by Use of Multi-point Optimization". It describes the full scale testing of a 21 m wind turbine blade specially designed for active stallregulation. Design objectives were...... increased ratio of produced energy to turbine loads and more stable power control characteristics. Both were taken directly into account during the design of the blade using numerical optimization. The blade used theRisø-A1 airfoil family, which was specially designed for operation on wind turbine blades...... be concluded that the new LM 21.0 ASR blade could replace the LM 21.0P leading to improved cost efficiency and that the Risø-A1 airfoils were well suited for active stall control. With the newestablished knowledge of the actual airfoil characteristics, a possible future blade design could be made also...
Czech Academy of Sciences Publication Activity Database
Šidlof, Petr; Vlček, Václav; Štěpán, M.
2016-01-01
Roč. 67, November (2016), s. 48-59 ISSN 0889-9746 R&D Projects: GA ČR GA13-10527S Institutional support: RVO:61388998 Keywords : NACA 0015 airfoil * aeroelasticity * stall flutter * dynamic stall * limit cycle oscillation * schlieren Subject RIV: BI - Acoustics Impact factor: 2.021, year: 2016 http://ac.els-cdn.com/S0889974615300724/1-s2.0-S0889974615300724-main.pdf?_tid=31f9fa5a-d1c0-11e6-a705-00000aab0f26&acdnat=1483453588_64a6e8b2119c9afad3639cdec32a4569
Cuzzi, J. N.; Hartlep, T.; Estrada, P.
2016-01-01
The initial accretion of primitive bodies from freely-floating nebula particles remains problematic. Traditional growth-by-sticking models in turbulent nebulae encounter a "meter-size barrier" due to both drift and destruction, or even a millimeter-to-centimeter-size "bouncing" barrier. Recent suggestions have been made that some "lucky" particles might be able to outgrow the collision and/or drift barriers, and lead to so-called "streaming instabilities" or SI. However, new full models of growth by sticking in the presence of radial drift show that lucky particles (the largest particles, at the tail of the size distribution, that grow beyond the nominal fragmentation and drift barriers) are far too rare to lead to any collective effects such as streaming or gravitational instabilities. Thus we need to focus on typical radii gamma(sub M) which contain most of the mass. Our models of disks with weak-to-moderate turbulence, which include all the most recent experimental constraints on collisional growth, erosion, bouncing, and fragmentation, as well as radial drift, find that growth stalls quite generally at sizes gamma(sub M) which are too small to settle into layers which are dense enough for any collective effects (streaming or gravitational instabilities) to arise. Even if growth by sticking could somehow breach the nominal barriers (perhaps if the actual sticking or strength is larger than current estimates for pure ice or pure silicate, with specific grain sizes), turbulent nebulae present subsequent formidable obstacles to incremental growth through the 1-10km size range. On the other hand, non-turbulent nebulae alpha is less than 10(Sup -4).
Advance Ratio Effects on the Dynamic-stall Vortex of a Rotating Blade in Steady Forward Flight
2014-08-06
of the wind tunnel and is illustrated in Fig. 1. In order to simplify the operations, a two-bladed rotor design was preferred. The setup had manually...to wind turbines, compressors, helicopter rotors , and even insect wing aerodynamics. Dynamic stall occurs on rotating blades of a helicopter in forward...between the flow structure on helicopter rotor blades, wind turbine blades, and insect wings. Due to these wide engineering implications there has
Analysis of the grid connection sequence of stall- and pitch-controlled wind turbines
Energy Technology Data Exchange (ETDEWEB)
Quinonez-Varela, G.; Cruden, A.; Anaya-Lara, O.; Tumilty, R.; McDonald, J.R. [Univ. of Strathclyde, Inst. for Energy and Environment (United Kingdom)
2007-11-15
The realistic modelling of wind turbines and wind farms is crucial in any form of power system analysis, and consequently, knowledge about their electrical characteristics and performance is also vital. One of the operating conditions producing major transient interaction between a wind turbine generator and the local grid is the grid connection sequence itself, which is particularly significant in fixed-speed turbines. This paper presents experimental measurements of the grid connection sequence of both types of fixed speed wind turbines, i.e. stall- and pitch-controlled via a soft-start device performed at two existing wind farms. Some of the results evidenced significant discrepancies between the actual soft-start operating intervals and those stated/suggested by open literature. The discussion of the paper focuses on highlighting the importance of accurate modelling of the grid connection sequence in order to avoid erroneous estimations of the interaction between the turbine and the grid during this operating state, or inappropriate design of the grid connection. (au)
ETAA1 acts at stalled replication forks to maintain genome integrity
Bass, Thomas E.; Luzwick, Jessica W.; Kavanaugh, Gina; Carroll, Clinton; Dungrawala, Huzefa; Glick, Gloria G.; Feldkamp, Michael D.; Putney, Reid; Chazin, Walter J.; Cortez, David
2017-01-01
The ATR checkpoint kinase coordinates cellular responses to DNA replication stress. Budding yeast contain three activators of Mec1 (the ATR orthologue); however, only TOPBP1 is known to activate ATR in vertebrates. We identified ETAA1 as a replication stress response protein in two proteomic screens. ETAA1-deficient cells accumulate double-strand breaks, sister chromatid exchanges, and other hallmarks of genome instability. They are also hyper-sensitive to replication stress and have increased frequencies of replication fork collapse. ETAA1 contains two RPA-interaction motifs that localize ETAA1 to stalled replication forks. It also interacts with several DNA damage response proteins including the BLM/TOP3α/RMI1/RMI2 and ATR/ATRIP complexes. It binds ATR/ATRIP directly using a motif with sequence similarity to the TOPBP1-ATR activation domain; and like TOPBP1, ETAA1 acts as a direct ATR activator. ETAA1 functions in parallel to the TOPBP1/RAD9/HUS1/RAD1 pathway to regulate ATR and maintain genome stability. Thus, vertebrate cells contain at least two ATR activating proteins. PMID:27723720
Ledley, F D; McNamee, L M; Uzdil, V; Morgan, I W
2014-02-01
This report examines the commercialization of gene therapy in the context of innovation theories that posit a relationship between the maturation of a technology through its life cycle and prospects for successful product development. We show that the field of gene therapy has matured steadily since the 1980s, with the congruent accumulation of >35 000 papers, >16 000 US patents, >1800 clinical trials and >$4.3 billion in capital investment in gene therapy companies. Gene therapy technologies comprise a series of dissimilar approaches for gene delivery, each of which has introduced a distinct product architecture. Using bibliometric methods, we quantify the maturation of each technology through a characteristic life cycle S-curve, from a Nascent stage, through a Growing stage of exponential advance, toward an Established stage and projected limit. Capital investment in gene therapy is shown to have occurred predominantly in Nascent stage technologies and to be negatively correlated with maturity. Gene therapy technologies are now achieving the level of maturity that innovation research and biotechnology experience suggest may be requisite for efficient product development. Asynchrony between the maturation of gene therapy technologies and capital investment in development-focused business models may have stalled the commercialization of gene therapy.
Histone H2B mono-ubiquitylation maintains genomic integrity at stalled replication forks
Northam, Matthew R.; Trujillo, Kelly M.
2016-01-01
Histone modifications play an important role in regulating access to DNA for transcription, DNA repair and DNA replication. A central player in these events is the mono-ubiquitylation of histone H2B (H2Bub1), which has been shown to regulate nucleosome dynamics. Previously, it was shown that H2Bub1 was important for nucleosome assembly onto nascent DNA at active replication forks. In the absence of H2Bub1, incomplete chromatin structures resulted in several replication defects. Here, we report new evidence, which shows that loss of H2Bub1 contributes to genomic instability in yeast. Specifically, we demonstrate that H2Bub1-deficient yeast accumulate mutations at a high frequency under conditions of replicative stress. This phenotype is due to an aberrant DNA Damage Tolerance (DDT) response upon fork stalling. We show that H2Bub1 normally functions to promote error-free translesion synthesis (TLS) mediated by DNA polymerase eta (Polη). Without H2Bub1, DNA polymerase zeta (Polζ) is responsible for a highly mutagenic alternative mechanism. While H2Bub1 does not appear to regulate other DDT pathways, error-free DDT mechanisms are employed by H2Bub1-deficient cells as another means for survival. However, in these instances, the anti-recombinase, Srs2, is essential to prevent the accumulation of toxic HR intermediates that arise in an unconstrained chromatin environment. PMID:27458205
Directory of Open Access Journals (Sweden)
Hadush Muuz
2017-01-01
Full Text Available Adoption of stall feeding (SF of livestock was assessed in northern Ethiopia based on a household survey conducted in 2015. The study covered 21 communities in Tigrai to account for differences in agroecology. The purpose of this study was to understand the driving factors of full or seasonal SF adoption and its intensity. A Heckman selection model was used to estimate adoption and extent of adoption based on a model of technology adoption within an agricultural household framework, and Poisson Model for explaining the number of SF adopting seasons. The descriptive results indicate that 36% of the farmers were actually practicing SF in a full year whereas 55.6% were seasonal adopters in the study area. Empirical results of this study showed that our result is in favor of the Boserupian hypothesis indicating that small grazing land and large exclosure are associated with a higher probability of use of SF and with a higher number of SF adopting seasons. In a similar vein, small average village farm size stimulated SF adoption and adopting seasons, Availability of labor and a number of breed cows significantly increased the probability of using SF by 0.01% and 66% respectively. While animal shock had a marginal effect of 14%, factors such as access to information and early exposure increased SF adoption by about 18% and 6%. Similarly, the positive marginal effect of real milk price is 15%. However, SF appears to be less attractive to those farmers with more herd size and less crop residue.
2015-01-02
wind tunnel for the study of plasma based methods for the control of dynamic stall for helicopter rotor blades. The tunnel has a 3D positioning...SECURITY CLASSIFICATION OF: This equipment grant supported the design and construction of a subsonic variable speed wind tunnel for the study of...plasma based methods for the control of dynamic stall for helicopter rotor blades. The tunnel has a 3D positioning system and servomotor mounted below
Takeda, M; Hiratsuka, T; Ito, K; Finsterle, S
2011-04-25
Diffusion anisotropy is a critical property in predicting migration of substances in sedimentary formations with very low permeability. The diffusion anisotropy of sedimentary rocks has been evaluated mainly from laboratory diffusion experiments, in which the directional diffusivities are separately estimated by through-diffusion experiments using different rock samples, or concurrently by in-diffusion experiments in which only the tracer profile in a rock block is measured. To estimate the diffusion anisotropy from a single rock sample, this study proposes an axisymmetric diffusion test, in which tracer diffuses between a cylindrical rock sample and a surrounding solution reservoir. The tracer diffusion between the sample and reservoir can be monitored from the reservoir tracer concentrations, and the tracer profile could also be obtained after dismantling the sample. Semi-analytical solutions are derived for tracer concentrations in both the reservoir and sample, accounting for an anisotropic diffusion tensor of rank two as well as the dilution effects from sampling and replacement of reservoir solution. The transient and steady-state analyses were examined experimentally and numerically for different experimental configurations, but without the need for tracer profiling. These experimental configurations are tested for in- and out-diffusion experiments using Koetoi and Wakkanai mudstones and Shirahama sandstone, and are scrutinized by a numerical approach to identify favorable conditions for parameter estimation. The analysis reveals the difficulty in estimating diffusion anisotropy; test configurations are proposed for enhanced identifiability of diffusion anisotropy. Moreover, it is demonstrated that the axisymmetric diffusion test is efficient in obtaining the sorption parameter from both steady-state and transient data, and in determining the effective diffusion coefficient if isotropic diffusion is assumed. Moreover, measuring reservoir concentrations in an
TEM turbulence optimisation in stellarators
Proll, J. H. E.; Mynick, H. E.; Xanthopoulos, P.; Lazerson, S. A.; Faber, B. J.
2016-01-01
With the advent of neoclassically optimised stellarators, optimising stellarators for turbulent transport is an important next step. The reduction of ion-temperature-gradient-driven turbulence has been achieved via shaping of the magnetic field, and the reduction of trapped-electron mode (TEM) turbulence is addressed in the present paper. Recent analytical and numerical findings suggest TEMs are stabilised when a large fraction of trapped particles experiences favourable bounce-averaged curvature. This is the case for example in Wendelstein 7-X (Beidler et al 1990 Fusion Technol. 17 148) and other Helias-type stellarators. Using this knowledge, a proxy function was designed to estimate the TEM dynamics, allowing optimal configurations for TEM stability to be determined with the STELLOPT (Spong et al 2001 Nucl. Fusion 41 711) code without extensive turbulence simulations. A first proof-of-principle optimised equilibrium stemming from the TEM-dominated stellarator experiment HSX (Anderson et al 1995 Fusion Technol. 27 273) is presented for which a reduction of the linear growth rates is achieved over a broad range of the operational parameter space. As an important consequence of this property, the turbulent heat flux levels are reduced compared with the initial configuration.
International Nuclear Information System (INIS)
Buntine, J.D.
1994-01-01
Part I. A study of the behaviour of an inviscid, swirling fluid is performed. This flow can be described by the Squire-Long equation if the constraints of time-independence and axisymmetry are invoked. The particular case of flow through a diverging pipe is selected and a study is conducted to determine over what range of parameters does a solution exist. The work is performed with a view to understanding how the phenomenon of vortex breakdown develops. Experiments and previous numerical studies have indicated that the flow is sensitive to boundary conditions particularly at the pipe inlet. A open-quotes quasi-cylindricalclose quotes amplification of the Squire-Long equation is compared with the more complete model and shown to be able to account for most of its behaviour. An advantage of this latter representation is the relatively undetailed description of the flow geometry it requires in order to calculate a solution. open-quotes Criticalityclose quotes or the ability of small disturbances to propagate upstream is related to results of the quasi-cylindrical and axisymmetric flow models. This leads to an examination of claims made by researchers such as Benjamin and Hall concerning the interrelationship between open-quotes failureclose quotes of the quasi-cylindrical model and the occurrence of a open-quotes criticalclose quotes flow state. Lundgren developed an analytical model for homogeneous turbulence based on a collection of contracting spiral vortices each embedded in an axisymmetric strain field. Using asymptotic approximations he was able to deduce the Kolmogorov k -5/3 behaviour for inertial scales in the turbulence energy spectrum. Pullin ampersand Saffman have enlarged upon his work to make a number of predictions about the behaviour of turbulence described by the model. This work investigates the model numerically. The first part considers how the flow description compares with numerical simulations using the Navier-Stokes equations
Turbulent/non-turbulent interfaces in jets and wakes
Zecchetto, Marco; Silva, Carlos; Lasef Team
2017-11-01
The characteristics of the turbulent/non-turbulent interface (TNTI) at the edges of jets and wakes at high Reynolds numbers are compared by using new direct numerical simulations (DNS) of temporally evolving planar jets (PJET) and wakes (PWAKE). The new simulations attain a Reynolds number based on the Taylor micro-scale of Reλ 350 which are the highest Reynolds number used so far in numerical investigations of TNTI. The similarities and differences between the TNTIs from PJET and PWAKE are assessed in relation to i) their structure and scaling, ii) the vorticity dynamics and, iii) and entrainment velocity. Portuguese Foundation for Science and Technology (FST); PRACE.
International Nuclear Information System (INIS)
Kondaiah, P; Shankar, K; Ganesan, N
2013-01-01
In this paper, a multiphase magneto–electro–elastic (MEE) cylindrical shell is investigated under thermal environments using semi-analytical finite element procedures. The main aim of this paper is to study the pyroelectric and pyromagnetic effects on multiphase MEE cylindrical shells subjected to a uniform axisymmetric temperature of 50 K under different boundary conditions. This numerical study is mainly focused on the pyroelectric and pyromagnetic effects on system parameters such as thermal displacements, thermal stresses, electric potential, magnetic potential, electric displacements and magnetic flux densities. It is found that there is a significant increase in electric potential due to the pyroelectric and pyromagnetic effects under clamped–free boundary conditions. (paper)
A numerical study of two-phase Stokes flow in an axisymmetric flow-focusing device
DEFF Research Database (Denmark)
Jensen, Mads Jakob; Stone, H.A.; Bruus, Henrik
2006-01-01
We present a numerical investigation of the time-dependent dynamics of the creation of gas bubbles in an axisymmetric flow-focusing device. The liquid motion is treated as a Stokes flow, and using a generic framework we implement a second-order time-integration scheme and a free-surface model...... in MATLAB, which interfaces with the finite-element software FEMLAB. We derive scaling laws for the volume of a created bubble and for the gas flow rate, and confirm them numerically. Our results are consistent with existing experimental results by Garstecki et al. [Phys. Rev. Lett. 94, 164501 (2005...
Vortex breakdown simulation - A circumspect study of the steady, laminar, axisymmetric model
Salas, M. D.; Kuruvila, G.
1989-01-01
The incompressible axisymmetric steady Navier-Stokes equations are written using the streamfunction-vorticity formulation. The resulting equations are discretized using a second-order central-difference scheme. The discretized equations are linearized and then solved using an exact LU decomposition, Gaussian elimination, and Newton iteration. Solutions are presented for Reynolds numbers (based on vortex core radius) 100-1800 and swirl parameter 0.9-1.1. The effects of inflow boundary conditions, the location of farfield and outflow boundaries, and mesh refinement are examined. Finally, the stability of the steady solutions is investigated by solving the time-dependent equations.
Kinetic theory model predictions compared with low-thrust axisymmetric nozzle plume data
Riley, B. R.; Fuhrman, S. J.; Penko, P. F.
1993-01-01
A system of nonlinear integral equations equivalent to the steady-state Krook kinetic equation was used to model the flow from a low-thrust axisymmetric nozzle. The mathematical model was used to numerically calculate the number density, temperature, and velocity of a simple gas as it expands into a near vacuum. With these quantities the gas pressure and flow directions of the gas near the exit plane were calculated and compared with experimental values for a low-thrust nozzle of the same geometry and mass flow rate.
Directory of Open Access Journals (Sweden)
Ap Kuiroukidis
2018-01-01
Full Text Available We consider a generalized Grad–Shafranov equation (GGSE in a triangularity-deformed axisymmetric toroidal coordinate system and solve it numerically for the generic case of ITER-like and JET-like equilibria with non-parallel flow. It turns out that increase of the triangularity improves confinement by leading to larger values of the toroidal beta and the safety factor. This result is supported by the application of a criterion for linear stability valid for equilibria with flow parallel to the magnetic field. Also, the parallel flow has a weaker stabilizing effect.
DUGDALE-MAUGIS ADHESIVE NORMAL CONTACT OF AXISYMMETRIC POWER-LAW GRADED ELASTIC BODIES
Directory of Open Access Journals (Sweden)
Emanuel Willert
2018-02-01
Full Text Available A closed-form general analytic solution is presented for the adhesive normal contact of convex axisymmetric power-law graded elastic bodies using a Dugdale-Maugis model for the adhesive stress. The case of spherical contacting bodies is studied in detail. The known JKR- and DMT-limits can be derived from the general solution, whereas the transition between both can be captured introducing a generalized Tabor parameter depending on the material grading. The influence of the Tabor parameter and the material grading is studied.
On the blow-up problem for the axisymmetric 3D Euler equations
International Nuclear Information System (INIS)
Chae, Dongho
2008-01-01
In this paper we study the finite time blow-up problem for the axisymmetric 3D incompressible Euler equations with swirl. The evolution equations for the deformation tensor and the vorticity are reduced considerably in this case. Under the assumption of local minima for the pressure on the axis of symmetry with respect to the radial variations we show that the solution blows up in finite time. If we further assume that the second radial derivative vanishes on the axis, then the system reduces to the form of Constantin–Lax–Majda equations and can be integrated explicitly
International Nuclear Information System (INIS)
Frater, J.; Lestingi, J.; Padovan, J.
1977-01-01
This paper describes the development of an improved semi-analytical finite element for the stress analysis of anisotropic axisymmetric solids subjected to nonsymmetric loads. Orthogonal functions in the form of finite Fourier exponential transforms, which satisfy the equations of equilibrium of the theory of elasticity for an anisotropic solid of revolution, are used to expand the imposed loadings and displacement field. It is found that the orthogonality conditions for the assumed solution reduce the theta-dependency, thus reducing the three dimensional problem to an infinite series of two dimensional problems. (Auth.)
Qayyum, Mubashir; Khan, Hamid; Rahim, M Tariq; Ullah, Inayat
2015-01-01
The aim of this article is to model and analyze an unsteady axisymmetric flow of non-conducting, Newtonian fluid squeezed between two circular plates passing through porous medium channel with slip boundary condition. A single fourth order nonlinear ordinary differential equation is obtained using similarity transformation. The resulting boundary value problem is solved using Homotopy Perturbation Method (HPM) and fourth order Explicit Runge Kutta Method (RK4). Convergence of HPM solution is verified by obtaining various order approximate solutions along with absolute residuals. Validity of HPM solution is confirmed by comparing analytical and numerical solutions. Furthermore, the effects of various dimensionless parameters on the longitudinal and normal velocity profiles are studied graphically.
Analysis of Unsteady Axisymmetric Squeezing Fluid Flow with Slip and No-Slip Boundaries Using OHAM
Directory of Open Access Journals (Sweden)
Mubashir Qayyum
2015-01-01
Full Text Available In this manuscript, An unsteady axisymmetric flow of nonconducting, Newtonian fluid squeezed between two circular plates is studied with slip and no-slip boundaries. Using similarity transformation, the system of nonlinear partial differential equations is reduced to a single fourth order ordinary differential equation. The resulting boundary value problems are solved by optimal homotopy asymptotic method (OHAM and fourth order explicit Runge-Kutta method (RK4. It is observed that the results obtained from OHAM are in good agreement with numerical results by means of residuals. Furthermore, the effects of various dimensionless parameters on the velocity profiles are investigated graphically.
The surface effect on axisymmetric wave propagation in piezoelectric cylindrical shells
Directory of Open Access Journals (Sweden)
Yunying Zhou
2015-02-01
Full Text Available Based on the surface piezoelectricity theory and first-order shear deformation theory, the surface effect on the axisymmetric wave propagating in piezoelectric cylindrical shells is analyzed. The Gurtin–Murdoch theory is utilized to get the nontraditional boundary conditions and constitutive equations of the surface, in company with classical governing equations of the bulk, from which the basic formulations are obtained. Numerical results show that the surface layer has a profound effect on wave characteristics in nanostructure at a higher mode.
Enhanced understanding of non-axisymmetric intrinsic and controlled field impacts in tokamaks
In, Y.; Park, J.-K.; Jeon, Y. M.; Kim, J.; Park, G. Y.; Ahn, J.-W.; Loarte, A.; Ko, W. H.; Lee, H. H.; Yoo, J. W.; Juhn, J. W.; Yoon, S. W.; Park, H.; Physics Task Force in KSTAR, 3D
2017-11-01
An extensive study of intrinsic and controlled non-axisymmetric field (δB) impacts in KSTAR has enhanced the understanding about non-axisymmetric field physics and its implications, in particular, on resonant magnetic perturbation (RMP) physics and power threshold (P th) for L-H transition. The n = 1 intrinsic non-axisymmetric field in KSTAR was measured to remain as low as δB/B 0 ~ 4 × 10-5 even at high-beta plasmas (β N ~ 2), which corresponds to approximately 20% below the targeted ITER tolerance level. As for the RMP edge-localized-modes (ELM) control, robust n = 1 RMP ELM-crash-suppression has been not only sustained for more than ~90 τ E, but also confirmed to be compatible with rotating RMP. An optimal window of radial position of lower X-point (i.e. R x = 1.44+/- 0.02 m) proved to be quite critical to reach full n = 1 RMP-driven ELM-crash-suppression, while a constraint of the safety factor could be relaxed (q 95 = 5 +/- 0.25). A more encouraging finding was that even when R x cannot be positioned in the optimal window, another systematic scan in the vicinity of the previously optimal R x allows for a new optimal window with relatively small variations of plasma parameters. Also, we have addressed the importance of optimal phasing (i.e. toroidal phase difference between adjacent rows) for n = 1 RMP-driven ELM control, consistent with an ideal plasma response modeling which could predict phasing-dependent ELM suppression windows. In support of ITER RMP study, intentionally misaligned RMPs have been found to be quite effective during ELM-mitigation stage in lowering the peaks of divertor heat flux, as well as in broadening the ‘wet’ areas. Besides, a systematic survey of P th dependence on non-axisymmetric field has revealed the potential limit of the merit of low intrinsic non-axisymmetry. Considering that the ITER RMP coils are composed of 3-rows, just like in KSTAR, further 3D
Numerical study of stress concentration in localized axisymmetric thinnings in shells and plates
International Nuclear Information System (INIS)
Neoberdin, Yu.A.; Maslenok, B.A.; Borintsev, A.B.; Egorov, M.F.; Shvetsov, A.V.
1981-01-01
Based on the method of finite elements and that of central composition orthogonal planning, regression equations are obtained for stress concentration coefficients for three different forms of localized thinning of a ring plate subjected to axisymmetric tension. The equations obtained allow the stress concentration coefficients to be determined in a plate and with a sufficient accuracy for practice, in shells over a wide range of changes in the hollow depth, grinding spot diameter and the plate or shell thickness. Recommendations are given as to the hollow shape securing the least stress concentration
Antenna design for microwave hepatic ablation using an axisymmetric electromagnetic model
Directory of Open Access Journals (Sweden)
Converse Mark C
2006-02-01
Full Text Available Abstract Background An axisymmetric finite element method (FEM model was employed to demonstrate important techniques used in the design of antennas for hepatic microwave ablation (MWA. To effectively treat deep-seated hepatic tumors, these antennas should produce a highly localized specific absorption rate (SAR pattern and be efficient radiators at approved generator frequencies. Methods and results As an example, a double slot choked antenna for hepatic MWA was designed and implemented using FEMLAB™ 3.0. Discussion This paper emphasizes the importance of factors that can affect simulation accuracy, which include boundary conditions, the dielectric properties of liver tissue, and mesh resolution.
Two-point boundary value and Cauchy formulations in an axisymmetrical MHD equilibrium problem
International Nuclear Information System (INIS)
Atanasiu, C.V.; Subbotin, A.A.
1999-01-01
In this paper we present two equilibrium solvers for axisymmetrical toroidal configurations, both based on the expansion in poloidal angle method. The first one has been conceived as a two-point boundary value solver in a system of coordinates with straight field lines, while the second one uses a well-conditioned Cauchy formulation of the problem in a general curvilinear coordinate system. In order to check the capability of our moment methods to describe equilibrium accurately, a comparison of the moment solutions with analytical solutions obtained for a Solov'ev equilibrium has been performed. (author)
Dynamical grid method for time dependent simulations of axisymmetric instabilities in tokamaks
International Nuclear Information System (INIS)
Jardin, S.C.; Johnson, J.L.; Greene, J.M.; Grimm, R.C.
1977-07-01
A natural nonorthogonal time-dependent coordinate transformation based on the magnetic field lines is utilized for the numerical integration of the two-dimensional axisymmetric time-dependent ideal MHD equations in tokamak geometry. The finite-difference grid is treated as a dynamical variable, and its equations of motion are integrated simultaneously with those for the fluid and magnetic field. The method is applicable to tokamak systems of arbitrary pressure and cross section. It is particularly useful for the nearly incompressible ideal MHD modes which are of interest in tokamak stability studies
Adverse consequences of a moving vacuum-plasma boundary on axisymmetric ac helicity injection
International Nuclear Information System (INIS)
Bellan, P.M.
1986-01-01
The recent prediction of Liewer, Gould, and Bellan that a moving plasma-vacuum boundary significantly lowers the effectiveness of ac helicity injection is generalized by resolution of the apparent discrepancy between the helicity-conservation equations of Jensen and Chu and of Moffatt. It is shown that, if there are axisymmetric circular flux surfaces and a moving vacuum-plasma boundary, the helicity injected by oscillating fields (if net injection occurs) is simply consumed by an increase in helicity dissipation due to the same oscillating fields
Axisymmetric thermoviscoelastoplastic state of thin laminated shells made of a damageable material
Galishin, A. Z.
2008-04-01
A technique for the determination of the axisymmetric thermoviscoelastoplastic state of laminated thin shells made of a damageable material is developed. The technique is based on the kinematic equations of the theory of thin shells that account for transverse shear strains. The thermoviscoplastic equations, which describe the deformation of a shell element along paths of small curvature, are used as the constitutive equations. The equivalent stress that appears in the kinetic equations of damage and creep is determined from a failure criterion that accounts for the stress mode. The thermoviscoplastic deformation of a two-layer shell that models an element of a rocket engine nozzle is considered as an example
An axisymmetric evolution code for the Einstein equations on hyperboloidal slices
International Nuclear Information System (INIS)
Rinne, Oliver
2010-01-01
We present the first stable dynamical numerical evolutions of the Einstein equations in terms of a conformally rescaled metric on hyperboloidal hypersurfaces extending to future null infinity. Axisymmetry is imposed in order to reduce the computational cost. The formulation is based on an earlier axisymmetric evolution scheme, adapted to time slices of constant mean curvature. Ideas from a previous study by Moncrief and the author are applied in order to regularize the formally singular evolution equations at future null infinity. Long-term stable and convergent evolutions of Schwarzschild spacetime are obtained, including a gravitational perturbation. The Bondi news function is evaluated at future null infinity.
Coherence in Turbulence: New Perspective
Levich, Eugene
2009-07-01
It is claimed that turbulence in fluids is inherently coherent phenomenon. The coherence shows up clearly as strongly correlated helicity fluctuations of opposite sign. The helicity fluctuations have cellular structure forming clusters that are actually observed as vorticity bands and coherent structures in laboratory turbulence, direct numerical simulations and most obviously in atmospheric turbulence. The clusters are named BCC - Beltrami Cellular Clusters - because of the observed nearly total alignment of the velocity and vorticity fields in each particular cell, and hence nearly maximal possible helicity in each cell; although when averaged over all the cells the residual mean helicity in general is small and does not play active dynamical role. The Beltrami like fluctuations are short-lived and stabilize only in small and generally contiguous sub-domains that are tending to a (multi)fractal in the asymptotic limit of large Reynolds numbers, Re → ∞. For the model of homogeneous isotropic turbulence the theory predicts the leading fractal dimension of BCC to be: DF = 2.5. This particular BCC is responsible for generating the Kolmogorov -5/3 power law energy spectrum. The most obvious role that BCC play dynamically is that the nonlinear interactions in them are relatively reduced, due to strong spatial alignment between the velocity field v(r, t) and the vorticity field ω(r, t) = curlv(r, t), while the physical quantities typically best characterizing turbulence intermittency, such as entrophy, vorticity stretching and generation, and energy dissipation are maximized in and near them. The theory quantitatively relates the reduction of nonlinear inter-actions to the BCC fractal dimension DF and subsequent turbulence intermittency. It is further asserted that BCC is a fundamental feature of all turbulent flows, e.g., wall bounded turbulent flows, atmospheric and oceanic flows, and their leading fractal dimension remains invariant and universal in these flows
Atmospheric turbulence and diffusion research
International Nuclear Information System (INIS)
Hosker, R.P. Jr.
1993-01-01
The Atmospheric Turbulence and Diffusion Division (well known in the atmospheric dispersion community as the Atmospheric Turbulence and Diffusion Laboratory, ATDL) is one of several field facilities of NOAAs Air Resources Laboratory, headquartered in Silver Spring, Maryland. The laboratory conducts research on matters of atmospheric diffusion and turbulent exchange, concerning air quality. ATDD focuses attention on the physics of the lower atmosphere, with special emphasis on the processes contributing to atmospheric transport, dispersion, deposition, and air-surface exchange, and on the development of predictive capabilities using the results of this research. Research is directed toward issues of national and global importance related to the missions of DOE, to DOE's Oak Ridge Field Office, and to NOAA. The program is divided into four major projects: plume transport and diffusion in the planetary boundary layer, complex topography, canopy micrometeorology, and air-surface exchange
Clumps in drift wave turbulence
DEFF Research Database (Denmark)
Pecseli, H. L.; Mikkelsen, Torben
1986-01-01
In a statistical analysis pair correlation of particles is eventually destroyed by small scale fluctuations giving rise to relative particle diffusion. However, in any one given realization of the statistical ensemble particles may remain correlated in certain regions of space. A perfectly frozen......, two-dimensional random flow serves as a particularly simple illustration. For this case particles can be trapped for all times in a local vortex (macro-clump). A small test-cloud of particles (micro-clump) chosen arbitrarily in a realization will on the other hand expand on average. A formulation...... is proposed in terms of conditional eddies, in order to discriminate turbulent flows where macro-clumps may be observed. The analysis is illustrated by results from experimental investigations of strongly turbulent, resistive drift-wave fluctuations. The related problem for electrostatic turbulence...
Finite Element Aircraft Simulation of Turbulence
1997-02-01
A Simulation of Rotor Blade Element Turbulence (SORBET) model has been : developed for realtime aircraft simulation that accommodates stochastic : turbulence and distributed discrete gusts as a function of the terrain. This : model is applicable to c...
Chemical Reactions in Turbulent Mixing Flows
National Research Council Canada - National Science Library
Mimotakis, Paul
1998-01-01
.... New measures to characterize level sets in turbulence were developed and successfully employed to characterize experimental data of liquid-phase turbulent-jet flows as well as three-dimensional...
Frontogenesis and turbulent mixing
Zhang, S.; Chen, F.; Shang, Q.
2017-12-01
ageostrophic secondary circulation together with the cross-frontal ageostrophic speed. The mixed characteristic is weak in summer, but the large turbulent dissipation and mixing rate measured in the frontal region, which show that the front promoted exchange of material and energy in the upper ocean.
Turbulence transport with nonlocal interactions
Energy Technology Data Exchange (ETDEWEB)
Linn, R.R.; Clark, T.T.; Harlow, F.H.; Turner, L.
1998-03-01
This preliminary report describes a variety of issues in turbulence transport analysis with particular emphasis on closure procedures that are nonlocal in wave-number and/or physical space. Anomalous behavior of the transport equations for large scale parts of the turbulence spectrum are resolved by including the physical space nonlocal interactions. Direct and reverse cascade processes in wave-number space are given a much richer potential for realistic description by the nonlocal formulations. The discussion also describes issues, many still not resolved, regarding new classes of self-similar form functions.
Plasma turbulence effects on aurorae
International Nuclear Information System (INIS)
Mishin, E.V.; Telegin, V.A.
1989-01-01
Analysis of modern state of microprocesses physics in plasma of aurorare, initiated by energetic electron flow intrusion, is presented. It is shown that there is a number of phenomena, which cannot be explained under non-collision (collective) mechanisms of interaction are applied. Effects of plasma turbulence in the area of auroral arcs are considered. Introduction of a new structural element to auroral arc - plasma-turbulence (PT) layer is substantiated. Numerical simulation of electron kinetics, changes in neutral composition, as well as generation of IR- and UV-radiation in PT layer has been realized