WorldWideScience

Sample records for stall force measurements

  1. Field rotor measurements. Data sets prepared for analysis of stall hysteresis

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard Madsen, H.; Thirstrup Petersen, J. [Risoe National Lab. (Denmark); Bruining, A. [Delft Univ. of Technology (Netherlands); Brand, A. [ECN (Netherlands); Graham, M. [Imperical College (United Kingdom)

    1998-05-01

    As part of the JOULE-3 project `STALLVIB` an analysis and synthesis of the data from the field rotor experiments at ECN, Delft University, Imperial College, NREL and Risoe has been carried out. This has been done in order to see to what extent the data could be used for further development and validation of engineering dynamic stall models. A detailed investigation of the influence of the post-processing of the different data sets has been performed. Further, important statistical functions such as PSD spectra, coherence and transfer functions have been derived for the data sets which can be used as basis for evaluation of the quality of the data seen relative to actual application of the data. The importance of using an appropriate low-pass filtering to remove high frequency noise has been demonstrated when the relation between instantaneous values of e.g. {alpha} and C{sub N} is considered. In general, the complicated measurement on a rotor of {alpha} and w and the interpretation of these parameters combined with the strongly three-dimensional, turbulent flow field around the rotating blade has the consequence that it seems difficult to derive systematic information from the different data sets about stall hysteresis. In particular, the measurement of {alpha}, which determination of the stagnation point gives reasonable data below stall but fails in stall. On the other hand, measurements of {alpha} with a five hole pitot tube can be used also in the stall region. Another main problem is the non-dimensionalization of the coefficients C{sub N} and C{sub r}. If the dynamic pressure used for the non-dimensionalization is not fully correlated with the aerodynamic pressure over the considered airfoil section due to e.g. influence of the gravity on the pressure pipes, the hysteresis loops will be distorted. However, using the data with caution and applying a suitable post-processing as described by the different participants, it will probably be possible to obtain some

  2. Interfacial force measurements using atomic force microscopy

    NARCIS (Netherlands)

    Chu, L.

    2018-01-01

    Atomic Force Microscopy (AFM) can not only image the topography of surfaces at atomic resolution, but can also measure accurately the different interaction forces, like repulsive, adhesive and lateral existing between an AFM tip and the sample surface. Based on AFM, various extended techniques have

  3. Unsteady Double Wake Model for the Simulation of Stalled Airfoils

    DEFF Research Database (Denmark)

    Ramos García, Néstor; Cayron, Antoine; Sørensen, Jens Nørkær

    2015-01-01

    separation and its dynamics. In this paper, the calculated integral forces have been successfully validated against wind tunnel measurements for the FFA-W3-211 airfoil. Furthermore, the computed highly unsteady flow field is analyzed in detail for a set of angles of attack ranging from light to deep stall...

  4. A dynamic stall model for airfoils with deformable trailing edges

    DEFF Research Database (Denmark)

    Andersen, Peter Bjørn; Gaunaa, Mac; Bak, Christian

    2009-01-01

    The present work contains an extension of the Beddoes-Leishman-type dynamic stall model. In this work, a deformable trailing-edge flap has been added to the dynamic stall model. The model predicts the unsteady aerodynamic forces and moments on an airfoil section undergoing arbitrary motion in hea...... for the attached flow region and Hansen et al. The model is compared qualitatively to wind tunnel measurements of a Riso/ B1-18 blade section equipped with deformable trailing-edge flap devices in the form of piezoelectric devices. Copyright © 2009 John Wiley & Sons, Ltd....

  5. Active Suppression of Rotating Stall Inception with Distributed Jet Actuation

    Directory of Open Access Journals (Sweden)

    Huu Duc Vo

    2007-01-01

    Full Text Available An analytical and experimental investigation of the effectiveness of full-span distributed jet actuation for active suppression of long length-scale rotating stall inception is carried out. Detailed modeling and experimental verification highlight the important effects of mass addition, discrete injectors, and feedback dynamics, which may be overlooked in preliminary theoretical studies of active control with jet injection. A model of the compression system incorporating nonideal injection and feedback dynamics is verified with forced response measurements to predict the right trends in the movement of the critical pole associated with the stall precursor. Active control experiments with proportional feedback control show that the predicted stall precursors are suppressed to give a 5.5% range extension in compressor flow coefficient. In addition, results suggest that the proposed model could be used to design a more sophisticated controller to further improve performance while reducing actuator bandwidth requirements.

  6. Basis for an Active Stall Avoidance System

    Directory of Open Access Journals (Sweden)

    Richard Schulze

    2000-01-01

    Full Text Available A single-stage subsonic compressor was examined with respect to compressor instabilities. During the inception of rotating stall, the transients of the pressure rise and mass flow were measured as well as their hysteresis. The development of the stall cell and the characteristics of the unstable operating range were determined.

  7. Automatic HTS force measurement instrument

    Science.gov (United States)

    Sanders, S.T.; Niemann, R.C.

    1999-03-30

    A device is disclosed for measuring the levitation force of a high temperature superconductor sample with respect to a reference magnet includes a receptacle for holding several high temperature superconductor samples each cooled to superconducting temperature. A rotatable carousel successively locates a selected one of the high temperature superconductor samples in registry with the reference magnet. Mechanism varies the distance between one of the high temperature superconductor samples and the reference magnet, and a sensor measures levitation force of the sample as a function of the distance between the reference magnet and the sample. A method is also disclosed. 3 figs.

  8. Direct measurements of intermolecular forces by chemical force microscopy

    Science.gov (United States)

    Vezenov, Dmitri Vitalievich

    1999-12-01

    Detailed description of intermolecular forces is key to understanding a wide range of phenomena from molecular recognition to materials failure. The unique features of atomic force microscopy (AFM) to make point contact force measurements with ultra high sensitivity and to generate spatial maps of surface topography and forces have been extended to include measurements between well-defined organic molecular groups. Chemical modification of AFM probes with self-assembled monolayers (SAMs) was used to make them sensitive to specific molecular interactions. This novel chemical force microscopy (CFM) technique was used to probe forces between different molecular groups in a range of environments (vacuum, organic liquids and aqueous solutions); measure surface energetics on a nanometer scale; determine pK values of the surface acid and base groups; measure forces to stretch and unbind a short synthetic DNA duplex and map the spatial distribution of specific functional groups and their ionization state. Studies of adhesion forces demonstrated the important contribution of hydrogen bonding to interactions between simple organic functionalities. The chemical identity of the tip and substrate surfaces as well as the medium had a dramatic effect on adhesion between model monolayers. A direct correlation between surface free energy and adhesion forces was established. The adhesion between epoxy polymer and model mixed SAMs varied with the amount of hydrogen bonding component in the monolayers. A consistent interpretation of CFM measurements in polar solvents was provided by contact mechanics models and intermolecular force components theory. Forces between tips and surfaces functionalized with SAMs terminating in acid or base groups depended on their ionization state. A novel method of force titration was introduced for highly local characterization of the pK's of surface functional groups. The pH-dependent changes in friction forces were exploited to map spatially the

  9. Vorticity Transport on a Flexible Wing in Stall Flutter

    Science.gov (United States)

    Akkala, James; Buchholz, James; Farnsworth, John; McLaughlin, Thomas

    2014-11-01

    The circulation budget within dynamic stall vortices was investigated on a flexible NACA 0018 wing model of aspect ratio 6 undergoing stall flutter. The wing had an initial angle of attack of 6 degrees, Reynolds number of 1 . 5 ×105 and large-amplitude, primarily torsional, limit cycle oscillations were observed at a reduced frequency of k = πfc / U = 0 . 1 . Phase-locked stereo PIV measurements were obtained at multiple chordwise planes around the 62.5% and 75% spanwise locations to characterize the flow field within thin volumetric regions over the suction surface. Transient surface pressure measurements were used to estimate boundary vorticity flux. Recent analyses on plunging and rotating wings indicates that the magnitude of the pressure-gradient-driven boundary flux of secondary vorticity is a significant fraction of the magnitude of the convective flux from the separated leading-edge shear layer, suggesting that the secondary vorticity plays a significant role in regulating the strength of the primary vortex. This phenomenon is examined in the present case, and the physical mechanisms governing the growth and evolution of the dynamic stall vortices are explored. This work was supported by the Air Force Office of Scientific Research through the Flow Interactions and Control Program monitored by Dr. Douglas Smith, and through the 2014 AFOSR/ASEE Summer Faculty Fellowship Program (JA and JB).

  10. Measuring Forces between Oxide Surfaces Using the Atomic Force Microscope

    DEFF Research Database (Denmark)

    Pedersen, Henrik Guldberg; Høj, Jakob Weiland

    1996-01-01

    The interactions between colloidal particles play a major role in processing of ceramics, especially in casting processes. With the Atomic Force Microscope (AFM) it is possible to measure the inter-action force between a small oxide particle (a few micron) and a surface as function of surface...

  11. Axial force measurement for esophageal function testing

    DEFF Research Database (Denmark)

    Gravesen, Flemming Holbæk; Funch-Jensen, Peter; Gregersen, Hans

    2009-01-01

    force (force in radial direction) whereas the bolus moves along the length of esophagus in a distal direction. Force measurements in the longitudinal (axial) direction provide a more direct measure of esophageal transport function. The technique used to record axial force has developed from external...... documented using imaging modalities such as radiography and scintigraphy. This inconsistency using manometry has also been documented by axial force recordings. This underlines the lack of information when diagnostics are based on manometry alone. Increasing the volume of a bag mounted on a probe...

  12. Plasma-based Compressor Stall Control

    Science.gov (United States)

    McGowan, Ryan; Corke, Thomas

    2017-11-01

    The use of dielectric barrier discharge (DBD) plasma actuator casing treatment to prevent or delay stall inception in an axial fan is examined. The actuators are powered by a pulsed-DC waveform which induces a larger peak velocity than a purely AC waveform such as a sine or sawtooth wave. With this system, a high-voltage DC source is supplied to both electrodes, remaining constant in time for the exposed electrode. Meanwhile, the covered electrode is periodically grounded for several microseconds and allowed to rise back to the source DC level. To test the actuators' ability to interact with and modify the formation of stall cells, a facility has been designed and constructed around nonconductive fan blades. The actuators are installed in the fan casing near the blade tips. The instrumentation allows for the measurement of rotating pressure disturbances (traveling stall cells) in this tip gap region as well as fan performance characteristics including pressure rise and flow rate. The casing plasma actuation is found to reduce the correlation of the rotating stall cells, thereby extending the stall margin of the fan. Various azimuthal arrangements of the plasma actuator casing treatment is explored, as well as input voltage levels to the actuator to determine optimum conditions. NASA SBIR Contract NNX14CC12C.

  13. Load prediction of stall regulated wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerck, A.; Dahlberg, J.Aa. [Aeronautical Research Inst. of Sweden, Bromma (Sweden); Carlen, I. [Chalmers Univ. of Technology, Goeteborg (Sweden). Div. of Marine Structural Engineering; Ganander, H. [Teknikgruppen AB, Sollentua (Sweden)

    1996-12-01

    Measurements of blade loads on a turbine situated in a small wind farm shows that the highest blade loads occur during operation close to the peak power i.e. when the turbine operates in the stall region. In this study the extensive experimental data base has been utilised to compare loads in selected campaigns with corresponding load predictions. The predictions are based on time domain simulations of the wind turbine structure, performed by the aeroelastic code VIDYN. In the calculations a model were adopted in order to include the effects of dynamic stall. This paper describes the work carried out so far within the project and key results. 5 refs, 10 figs

  14. HAWT dynamic stall response asymmetries under yawed flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, S.; Robinson, M.; Hand, M.; Simms, D.

    2000-02-28

    Horizontal axis wind turbines can experience significant time varying aerodynamic loads, potentially causing adverse effects on structures, mechanical components, and power production. As designers attempt lighter and more flexible wind energy machines, greater accuracy and robustness will become even more critical in future aerodynamics models. Aerodynamics modeling advances, in turn, will rely on more thorough comprehension of the three-dimensional, unsteady, vortical flows that dominate wind turbine blade aerodynamics under high load conditions. To experimentally characterize these flows, turbine blade surface pressures were acquired at multiple span locations via the NREL Phase IV Unsteady Aerodynamics Experiment. Surface pressures and associated normal force histories were used to characterize dynamic stall vortex kinematics and normal force amplification. Dynamic stall vortices and normal force amplification were confirmed to occur in response to angle of attack excursions above the static stall threshold. Stall vortices occupied approximately one-half of the blade span and persisted for nearly one-fourth of the blade rotation cycle. Stall vortex convection varied along the blade, resulting in dramatic deformation of the vortex. Presence and deformation of the dynamic stall vortex produced corresponding amplification of normal forces. Analyses revealed consistent alterations to vortex kinematics in response to changes in reduced frequency, span location, and yaw error. Finally, vortex structures and kinematics not previously documented for wind turbine blades were isolated.

  15. Prediction of dynamic loads and induced vibrations in stall

    Energy Technology Data Exchange (ETDEWEB)

    Thirstrup Petersen, J.; Aagaard Madsen, H. [Risoe National Lab. (Denmark); Bjoerck, A. [Aeronautical Research Inst. of Sweden (Sweden); Enevoldsen, P. [Bonus Energy A/S (Denmark); Oeye, S. [The Technical Univ. of Denmark (Denmark); Ganander, H. [Teknikgruppen AB (Sweden); Winkelaar, D. [Netherlands Energy Research Foundation (Netherlands)

    1998-05-01

    Results from research in an EC Joule-III project and from national projects are presented. The objectives are improvement of design methods for stall regulated wind turbines with emphasis on stall induced vibrations and dynamic stall. The primary concern is limitation of the edgewise vibrations in the fundamental blade natural mode shape, which have caused trouble on modern wind turbines of approximate size 500 kW nominal power and 40 m rotor diameter. A theoretical study of quasi-steady aerodynamics confirms that the vibrations are driven basically by energy supplied from the aerodynamic forces during stalled operation. This energy exchange is equivalent to negative aerodynamic damping. The theoretical approach identifies the main parameters controlling the phenomenon. These parameters describe the steady and the dynamic airfoil characteristics, the overall aerodynamic layout of the blade, e.g. chord length and twist, the structural properties of the blade, e.g. structural damping and properties controlling the resulting vibration direction. Furthermore, full aeroelastic calculations and comparison with measurements show that the properties of the supporting structure, i.e. the main shaft, the nacelle and the tower, are important, as the global vibration of the rotor on its support may exchange energy with the blade vibration, when the blade natural frequency is close to one of the frequencies of the coupled rotor tilt-yaw mode shapes, usually denoted the global rotor whirl frequencies. It is confirmed that the influence of changing the primary design parameters can be determined by use of qualified aeroelastic calculations. Presented design guidelines therefore build on both the simple quasi-steady models, which can be used for the preliminary choice of the design variables mentioned above, and on full aeroelastic calculations. The aeroelastic calculations refine the design basis and should be used for choosing the final design variables and for final

  16. THE IMPACT OF LOCALIZATION AND BARN TYPE ON INSOLATION OF SIDEWALL STALLS DURING SUMMER

    Directory of Open Access Journals (Sweden)

    Sabina Angrecka

    2017-07-01

    The obtained results allowed us to identify optimal orientation of barns and to suggest the simplest technical measures to protect sidewall stalls from solar heat gain deleterious to cows. The model analysis of stall shading demonstrated that extension of barn eaves to 1 m on the southern side reduced the insolation of stalls over even up to 90% of their area.

  17. Detecting chameleons through Casimir force measurements

    International Nuclear Information System (INIS)

    Brax, Philippe; Bruck, Carsten van de; Davis, Anne-Christine; Shaw, Douglas; Mota, David F.

    2007-01-01

    The best laboratory constraints on strongly coupled chameleon fields come not from tests of gravity per se but from precision measurements of the Casimir force. The chameleonic force between two nearby bodies is more akin to a Casimir-like force than a gravitational one: The chameleon force behaves as an inverse power of the distance of separation between the surfaces of two bodies, just as the Casimir force does. Additionally, experimental tests of gravity often employ a thin metallic sheet to shield electrostatic forces; however, this sheet masks any detectable signal due to the presence of a strongly coupled chameleon field. As a result of this shielding, experiments that are designed to specifically test the behavior of gravity are often unable to place any constraint on chameleon fields with a strong coupling to matter. Casimir force measurements do not employ a physical electrostatic shield and as such are able to put tighter constraints on the properties of chameleons fields with a strong matter coupling than tests of gravity. Motivated by this, we perform a full investigation on the possibility of testing chameleon models with both present and future Casimir experiments. We find that present-day measurements are not able to detect the chameleon. However, future experiments have a strong possibility of detecting or rule out a whole class of chameleon models

  18. Measurement of tool forces in diamond turning

    Energy Technology Data Exchange (ETDEWEB)

    Drescher, J.; Dow, T.A.

    1988-12-01

    A dynamometer has been designed and built to measure forces in diamond turning. The design includes a 3-component, piezoelectric transducer. Initial experiments with this dynamometer system included verification of its predicted dynamic characteristics as well as a detailed study of cutting parameters. Many cutting experiments have been conducted on OFHC Copper and 6061-T6 Aluminum. Tests have involved investigation of velocity effects, and the effects of depth and feedrate on tool forces. Velocity has been determined to have negligible effects between 4 and 21 m/s. Forces generally increase with increasing depth of cut. Increasing feedrate does not necessarily lead to higher forces. Results suggest that a simple model may not be sufficient to describe the forces produced in the diamond turning process.

  19. Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio.

    Science.gov (United States)

    Kruyt, Jan W; van Heijst, GertJan F; Altshuler, Douglas L; Lentink, David

    2015-04-06

    Airplanes and helicopters use high aspect ratio wings to reduce the power required to fly, but must operate at low angle of attack to prevent flow separation and stall. Animals capable of slow sustained flight, such as hummingbirds, have low aspect ratio wings and flap their wings at high angle of attack without stalling. Instead, they generate an attached vortex along the leading edge of the wing that elevates lift. Previous studies have demonstrated that this vortex and high lift can be reproduced by revolving the animal wing at the same angle of attack. How do flapping and revolving animal wings delay stall and reduce power? It has been hypothesized that stall delay derives from having a short radial distance between the shoulder joint and wing tip, measured in chord lengths. This non-dimensional measure of wing length represents the relative magnitude of inertial forces versus rotational accelerations operating in the boundary layer of revolving and flapping wings. Here we show for a suite of aspect ratios, which represent both animal and aircraft wings, that the attachment of the leading edge vortex on a revolving wing is determined by wing aspect ratio, defined with respect to the centre of revolution. At high angle of attack, the vortex remains attached when the local radius is shorter than four chord lengths and separates outboard on higher aspect ratio wings. This radial stall limit explains why revolving high aspect ratio wings (of helicopters) require less power compared with low aspect ratio wings (of hummingbirds) at low angle of attack and vice versa at high angle of attack. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  20. Knitting Force Measurement on Flat Knitting Machines

    Directory of Open Access Journals (Sweden)

    A. Fouda

    2014-01-01

    Full Text Available Knittability can be defined as the ability of yarns to run on knitting machines without problems. Knittability can be achieved when less stress is applied on the knitting machine parts by the knitting yarns. This paper presents a novel measuring system for the knitting force needed to perform knitting yarns on flat knitting machine based on data acquisition system (DAS. The proposed system is used to measure the knitting force at different machine settings and different properties of the knitting yarns to determine the optimal production conditions. For this reason, three types of knitted fabric structures (single jersey, Rib 1 × 1, and full cardigan with three different loop lengths and five different twists of ply yarn were produced. The obtained results showed the optimal yarn ply twist factor (αe which gave minimum knitting force (less stress on needles or knitting yarns at different loop lengths for each structure.

  1. Spot Surface Labeling of Magnetic Microbeads and Application in Biological Force Measurements

    Science.gov (United States)

    Estes, Ashley; O'Brien, E. Tim; Hill, David; Superfine, Richard

    2006-11-01

    Biological force measurements on single molecules and macromolecular structures often use microbeads for the application of force. These techniques are often complicated by multiple attachments and nonspecific binding. In one set of experiments, we are applying a magnetic force microscope that allows us to pull on magnetic beads attached to ciliated human bronchial epithelial cells. These experiments provide a means to measure the stall force of cilia and understand how cilia propel fluids. However, because we are using beads with diameters of one and 2.8 microns, and the diameter of human airway cilia is approximately 200 nm, we cannot be assured that the bead is bound to a single cilium. To address this, we have developed a sputter coating technique to block the biotin binding capability of the streptavidin labeled bead over its entire surface except for a small spot. These beads may also have applications in other biological experiments such as DNA force experiments in which binding of a single target to an individual bead is critical.

  2. Unsteady Aerodynamic Force Sensing from Measured Strain

    Science.gov (United States)

    Pak, Chan-Gi

    2016-01-01

    A simple approach for computing unsteady aerodynamic forces from simulated measured strain data is proposed in this study. First, the deflection and slope of the structure are computed from the unsteady strain using the two-step approach. Velocities and accelerations of the structure are computed using the autoregressive moving average model, on-line parameter estimator, low-pass filter, and a least-squares curve fitting method together with analytical derivatives with respect to time. Finally, aerodynamic forces over the wing are computed using modal aerodynamic influence coefficient matrices, a rational function approximation, and a time-marching algorithm. A cantilevered rectangular wing built and tested at the NASA Langley Research Center (Hampton, Virginia, USA) in 1959 is used to validate the simple approach. Unsteady aerodynamic forces as well as wing deflections, velocities, accelerations, and strains are computed using the CFL3D computational fluid dynamics (CFD) code and an MSC/NASTRAN code (MSC Software Corporation, Newport Beach, California, USA), and these CFL3D-based results are assumed as measured quantities. Based on the measured strains, wing deflections, velocities, accelerations, and aerodynamic forces are computed using the proposed approach. These computed deflections, velocities, accelerations, and unsteady aerodynamic forces are compared with the CFL3D/NASTRAN-based results. In general, computed aerodynamic forces based on the lifting surface theory in subsonic speeds are in good agreement with the target aerodynamic forces generated using CFL3D code with the Euler equation. Excellent aeroelastic responses are obtained even with unsteady strain data under the signal to noise ratio of -9.8dB. The deflections, velocities, and accelerations at each sensor location are independent of structural and aerodynamic models. Therefore, the distributed strain data together with the current proposed approaches can be used as distributed deflection

  3. Nanoindentation and atomic force microscopy measurements on ...

    Indian Academy of Sciences (India)

    Unknown

    substrate temperature to ~ 130°C during the deposition. The growth rate for TiN coatings was ~ 0⋅82 µm/h. The nanoindentation measurements were performed with an instrument consisting of a nanohardness tester. (CSEM Instruments) and an integrated optical (Nikon)/ atomic force microscope (surface imaging systems).

  4. 14 CFR 25.103 - Stall speed.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Stall speed. 25.103 Section 25.103... STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.103 Stall speed. (a) The reference stall speed, VSR, is a calibrated airspeed defined by the applicant. VSR may not be less than a 1-g stall...

  5. Memory effect o force measurements at nanoscales

    International Nuclear Information System (INIS)

    Lisy, V.; Tothova, J.

    2011-01-01

    we have obtained an exact solution for the drift velocity of a Brownian particle in an incompressible fluid under the action of a constant force, taking into account the hydrodynamic memory in the particle motion. This velocity is proportional to the applied force but depends in a complicated manner on the time of observation t. At short times it is proportional to t and at long times it contains algebraic tails, the longest-lived of which being ∼ t -1/ 2. Due to this the velocity very slowly approaches the limiting value F/γ. As a consequence, the force F can significantly differ from the value that would be extracted from the drift measurements neglecting the inertial effects, which is a standard assumption in the interpretation of such experiments. The presented method can be equally applicable in the case of force linearly depending on the particle position. For nonlinear forces, first the open question about the choice of convention to be used in stochastic calculus should be resolved. (authors)

  6. Measurement of circulation around wing-tip vortices and estimation of lift forces using stereo PIV

    Science.gov (United States)

    Asano, Shinichiro; Sato, Haru; Sakakibara, Jun

    2017-11-01

    Applying the flapping flight to the development of an aircraft as Mars space probe and a small aircraft called MAV (Micro Air Vehicle) is considered. This is because Reynolds number assumed as the condition of these aircrafts is low and similar to of insects and small birds flapping on the earth. However, it is difficult to measure the flow around the airfoil in flapping flight directly because of its three-dimensional and unsteady characteristics. Hence, there is an attempt to estimate the flow field and aerodynamics by measuring the wake of the airfoil using PIV, for example the lift estimation method based on a wing-tip vortex. In this study, at the angle of attack including the angle after stall, we measured the wing-tip vortex of a NACA 0015 cross-sectional and rectangular planform airfoil using stereo PIV. The circulation of the wing-tip vortex was calculated from the obtained velocity field, and the lift force was estimated based on Kutta-Joukowski theorem. Then, the validity of this estimation method was examined by comparing the estimated lift force and the force balance data at various angles of attack. The experiment results are going to be presented in the conference.

  7. Dynamic Stall Characteristics of Drooped Leading Edge Airfoils

    Science.gov (United States)

    Sankar, Lakshmi N.; Sahin, Mehmet; Gopal, Naveen

    2000-01-01

    Helicopters in high-speed forward flight usually experience large regions of dynamic stall over the retreating side of the rotor disk. The rapid variations in the lift and pitching moments associated with the stall process can result in vibratory loads, and can cause fatigue and failure of pitch links. In some instances, the large time lag between the aerodynamic forces and the blade motion can trigger stall flutter. A number of techniques for the alleviation of dynamic stall have been proposed and studied by researchers. Passive and active control techniques have both been explored. Passive techniques include the use of high solidity rotors that reduce the lift coefficients of individual blades, leading edge slots and leading edge slats. Active control techniques include steady and unsteady blowing, and dynamically deformable leading edge (DDLE) airfoils. Considerable amount of experimental and numerical data has been collected on the effectiveness of these concepts. One concept that has not received as much attention is the drooped-leading edge airfoil idea. It has been observed in wind tunnel studies and flight tests that drooped leading edge airfoils can have a milder dynamic stall, with a significantly milder load hysteresis. Drooped leading edge airfoils may not, however, be suitable at other conditions, e.g. in hover, or in transonic flow. Work needs to be done on the analysis and design of drooped leading edge airfoils for efficient operation in a variety of flight regimes (hover, dynamic stall, and transonic flow). One concept that is worthy of investigation is the dynamically drooping airfoil, where the leading edge shape is changed roughly once-per-rev to mitigate the dynamic stall.

  8. A dynamic stall model for airfoils with deformable trailing edges

    DEFF Research Database (Denmark)

    Andersen, Peter Bjørn; Gaunaa, Mac; Bak, Dan Christian

    2007-01-01

    on an airfoil section undergoing arbitrary motion in heave, lead-lag, pitch, Trailing Edge (TE) flapping. In the linear region, the model reduces to the inviscid model of Gaunaa [4], which includes the aerodynamic effect of a thin airfoil with a deformable camberline in inviscid flow. Therefore, the proposed......The present work contains an extension of the Beddoes-Leishman (B-L) type dynamic stall model, as described by Hansen et al. [7]. In this work a Deformable Trailing Edge Geometry (DTEG) has been added to the dynamic stall model. The model predicts the unsteady aerodynamic forces and moments...

  9. Wider stall space affects behavior, lesion scores, and productivity of gestating sows.

    Science.gov (United States)

    Salak-Johnson, J L; DeDecker, A E; Levitin, H A; McGarry, B M

    2015-10-01

    Limited space allowance within the standard gestation stall is an important welfare concern because it restricts the ability of the sow to make postural adjustments and hinders her ability to perform natural behaviors. Therefore, we evaluated the impacts of increasing stall space and/or providing sows the freedom to access a small pen area on sow well-being using multiple welfare metrics. A total of 96 primi- and multiparous crossbred sows were randomly assigned in groups of 4 sows/treatment across 8 replicates to 1 of 3 stall treatments (TRT): standard stall (CTL; dimensions: 61 by 216 cm), width-adjustable stall (flex stall [FLX]; dimensions: adjustable width of 56 to 79 cm by 216 cm), or an individual walk-in/lock-in stall with access to a small communal open-pen area at the rear of the stall (free-access stall [FAS]; dimensions: 69 by 226 cm). Lesion scores, behavior, and immune and productivity traits were measured at various gestational days throughout the study. Total lesion scores were greatest for sows in FAS and least for sows in FLX ( pregnancy progressed, lesion scores increased among sows in CTL ( postural behaviors and sham chew behavior were affected by TRT ( changes in postural behaviors, lesion severity scores, and other sow traits. Moreover, compromised welfare measures found among sows in various stall environments may be partly attributed to the specific constraints of each stall system such as restricted stall space in CTL, insufficient floor space in the open-pen area of the FAS system, and gate design of the FLX (e.g., direction of bars and feeder space). These results also indicate that parity and gestational day are additional factors that may exacerbate the effects of restricted stall space or insufficient pen space, further compromising sow well-being.

  10. 14 CFR 25.203 - Stall characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Stall characteristics. 25.203 Section 25.203 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Stalls § 25.203 Stall characteristics. (a) It must...

  11. Squeezed noise in precision force measurements

    International Nuclear Information System (INIS)

    Bocko, M.F.; Bordoni, F.; Fuligni, F.; Johnson, W.W.

    1986-01-01

    The effort to build gravitational radiation antennae with sensitivity sufficient to detect bursts of radiation from supernovae in the Virgo cluster of galaxies has caused a consideration of the fundamental limits for the detection of weak forces. The existing Weber bar detectors will be eventually limited, by the phase insensitive transducers now used, to noise temperatures no better than that of the first amplifier which follows the transducer. Even for a quantum limited amplifier this may not give the sensitivity required to definitively detect gravitational radiation. In a 'back action evasion' measurement a specific phase sensitive transducer would be used. It is believed that by the technique of measuring one of the two antenna phases it is possible to reach an effective noise temperature for the measured phase which is far below the amplifier noise temperature. This is at the expense of an infinite noise temperature in the unmeasured antenna phase and is thus described as squeezing the noise. The authors outline the theoretical model for the behavior of such systems and present data from several experiments which demonstrate the main features of a back action evasion measurement. (Auth.)

  12. Nanoindentation and atomic force microscopy measurements on ...

    Indian Academy of Sciences (India)

    Unknown

    CSEM Instruments) and an integrated optical (Nikon)/ atomic force microscope ... The results reported herein represent averages of the group. For each loading/ unloading cycle, the load was plotted against the dis- placement of the indenter.

  13. Theoretical Models for Surface Forces and Adhesion and Their Measurement Using Atomic Force Microscopy

    Science.gov (United States)

    Leite, Fabio L.; Bueno, Carolina C.; Da Róz, Alessandra L.; Ziemath, Ervino C.; Oliveira, Osvaldo N.

    2012-01-01

    The increasing importance of studies on soft matter and their impact on new technologies, including those associated with nanotechnology, has brought intermolecular and surface forces to the forefront of physics and materials science, for these are the prevailing forces in micro and nanosystems. With experimental methods such as the atomic force spectroscopy (AFS), it is now possible to measure these forces accurately, in addition to providing information on local material properties such as elasticity, hardness and adhesion. This review provides the theoretical and experimental background of AFS, adhesion forces, intermolecular interactions and surface forces in air, vacuum and in solution. PMID:23202925

  14. Theoretical models for surface forces and adhesion and their measurement using atomic force microscopy.

    Science.gov (United States)

    Leite, Fabio L; Bueno, Carolina C; Da Róz, Alessandra L; Ziemath, Ervino C; Oliveira, Osvaldo N

    2012-10-08

    The increasing importance of studies on soft matter and their impact on new technologies, including those associated with nanotechnology, has brought intermolecular and surface forces to the forefront of physics and materials science, for these are the prevailing forces in micro and nanosystems. With experimental methods such as the atomic force spectroscopy (AFS), it is now possible to measure these forces accurately, in addition to providing information on local material properties such as elasticity, hardness and adhesion. This review provides the theoretical and experimental background of afs, adhesion forces, intermolecular interactions and surface forces in air, vacuum and in solution.

  15. The effect of patch potentials in Casimir force measurements determined by heterodyne Kelvin probe force microscopy.

    Science.gov (United States)

    Garrett, Joseph L; Somers, David; Munday, Jeremy N

    2015-06-03

    Measurements of the Casimir force require the elimination of the electrostatic force between the surfaces. However, due to electrostatic patch potentials, the voltage required to minimize the total force may not be sufficient to completely nullify the electrostatic interaction. Thus, these surface potential variations cause an additional force, which can obscure the Casimir force signal. In this paper, we inspect the spatially varying surface potential of e-beamed, sputtered, sputtered and annealed, and template stripped gold surfaces with Heterodyne amplitude modulated Kelvin probe force microscopy (HAM-KPFM). It is demonstrated that HAM-KPFM improves the spatial resolution of surface potential measurements compared to amplitude modulated Kelvin probe force microscopy. We find that patch potentials vary depending on sample preparation, and that the calculated pressure can be similar to the pressure difference between Casimir force calculations employing the plasma and Drude models.

  16. Roughness in Surface Force Measurements: Extension of DLVO Theory To Describe the Forces between Hafnia Surfaces.

    Science.gov (United States)

    Eom, Namsoon; Parsons, Drew F; Craig, Vincent S J

    2017-07-06

    The interaction between colloidal particles is commonly viewed through the lens of DLVO theory, whereby the interaction is described as the sum of the electrostatic and dispersion forces. For similar materials acting across a medium at pH values remote from the isoelectric point the theory typically involves an electrostatic repulsion that is overcome by dispersion forces at very small separations. However, the dominance of the dispersion forces at short separations is generally not seen in force measurements, with the exception of the interaction between mica surfaces. The discrepancy for silica surfaces has been attributed to hydration forces, but this does not explain the situation for titania surfaces where the dispersion forces are very much larger. Here, the interaction forces between very smooth hafnia surfaces have been measured using the colloid probe technique and the forces evaluated within the DLVO framework, including both hydration forces and the influence of roughness. The measured forces across a wide range of pH at different salt concentrations are well described with a single parameter for the surface roughness. These findings show that even small degrees of surface roughness significantly alter the form of the interaction force and therefore indicate that surface roughness needs to be included in the evaluation of surface forces between all surfaces that are not ideally smooth.

  17. Measuring Agglomeration Forces in a Financial Center

    OpenAIRE

    Bourgain, Arnaud; Pieretti, Patrice

    2006-01-01

    Basing on Scitovsky's (1954) definition of external economies and applying the method of Caballero and Lyons (1990) to macro data of Luxembourg services industry, we find significant agglomeration forces between financial intermediaries (downstream industry) on the one hand and business services and computer industry (upstream industries) on the other.

  18. Nanoindentation and atomic force microscopy measurements on ...

    Indian Academy of Sciences (India)

    The films were deposited on silicon (111) substrates at various process conditions, e.g. substrate bias voltage (B) and nitrogen partial pressure. Mechanical properties of the coatings were investigated by a nanoindentation technique. Force vs displacement curves generated during loading and unloading of a Berkovich ...

  19. A Novel Device for Measuring Forces in Endoluminal Procedures

    Directory of Open Access Journals (Sweden)

    Tommaso Ranzani

    2015-08-01

    Full Text Available In this paper a simple but effective measuring system for endoluminal procedures is presented. The device allows measuring forces during the endoluminal manipulation of tissues with a standard surgical instrument for laparoscopic procedures. The force measurement is performed by recording both the forces applied directly by the surgeon at the instrument handle and the reaction forces on the access port. The measuring system was used to measure the forces necessary for appropriate surgical manipulation of tissues during transanal endoscopic microsurgery (TEM. Ex-vivo and in-vivo measurements were performed, reported and discussed. The obtained data can be used for developing and appropriately dimensioning novel dedicated instrumentation for TEM procedures.

  20. Bite Forces and Their Measurement in Dogs and Cats

    Directory of Open Access Journals (Sweden)

    Se Eun Kim

    2018-04-01

    Full Text Available Bite force is generated by the interaction of the masticatory muscles, the mandibles and maxillae, the temporomandibular joints (TMJs, and the teeth. Several methods to measure bite forces in dogs and cats have been described. Direct in vivo measurement of a bite in dogs has been done; however, bite forces were highly variable due to animal volition, situation, or specific measurement technique. Bite force has been measured in vivo from anesthetized dogs by electrical stimulation of jaw adductor muscles, but this may not be reflective of volitional bite force during natural activity. In vitro bite forces have been estimated by calculation of the force produced using mechanical equations representing the jaw adductor muscles and of the mandible and skull structure Bite force can be estimated in silico using finite element analysis (FEA of the computed model of the anatomical structures. FEA can estimate bite force in extinct species; however, estimates may be lower than the measurements in live animals and would have to be validated specifically in domestic dogs and cats to be reliable. The main factors affecting the bite forces in dogs and cats are body weight and the skull’s morphology and size. Other factors such as oral pain, TMJ disorders, masticatory muscle atrophy, and malocclusion may also affect bite force. Knowledge of bite forces in dogs and cats is essential for various clinical and research fields such as the development of implants, materials, and surgical techniques as well as for forensic medicine. This paper is a summary of current knowledge of bite forces in dogs and cats, including the effect of measurement methods and of other factors.

  1. Measurement of dynamic and static radiation force on a sphere.

    Science.gov (United States)

    Chen, Shigao; Silva, Glauber T; Kinnick, Randall R; Greenleaf, James F; Fatemi, Mostafa

    2005-05-01

    Dynamic radiation force from ultrasound has found increasing applications in elasticity imaging methods such as vibro-acoustography. Radiation force that has both static and dynamic components can be produced by interfering two ultrasound beams of slightly different frequencies. This paper presents a method to measure both static and dynamic components of the radiation force on a sphere suspended by thin threads in water. Due to ultrasound radiation force, the sphere deflects to an equilibrant position and vibrates around it. The static radiation force is estimated from the deflection of the sphere. The dynamic radiation force is estimated from the calculated radiation impedance of the sphere and its vibration speed measured by a laser vibrometer. Experimental results on spheres of different size, vibrated at various frequencies, confirm the theoretical prediction that the dynamic and static radiation force on a sphere have approximately equal magnitudes [G. T. Silva, Phys. Rev. E 71, 056617 (2005)].

  2. Clutch-Starting Stalled Research Students

    Science.gov (United States)

    Ahern, Kathy; Manathunga, Catherine

    2004-01-01

    Many research students go through periods where their research seems to stall, their motivation drops, and they seem unable to make any progress. As supervisors, we attempt to remain alert to signs that our student's progress has stalled. Drawing on cognitive strategies, this article explores a problem-solving model supervisors can use to identify…

  3. an extended octagonal ring dynamometer for measurement of forces

    African Journals Online (AJOL)

    NIJOTECH

    ABSTRACT. The analysis, design, construction, evaluation and use of an extended octagonal ring dynamometer for measurement of draught, vertical force and moment on a simple tillage tool are presented. The dynamometer was used to measure tool forces as functions of depth, rake angle and speed, for a wide plane ...

  4. An ABS control logic based on wheel force measurement

    Science.gov (United States)

    Capra, D.; Galvagno, E.; Ondrak, V.; van Leeuwen, B.; Vigliani, A.

    2012-12-01

    The paper presents an anti-lock braking system (ABS) control logic based on the measurement of the longitudinal forces at the hub bearings. The availability of force information allows to design a logic that does not rely on the estimation of the tyre-road friction coefficient, since it continuously tries to exploit the maximum longitudinal tyre force. The logic is designed by means of computer simulation and then tested on a specific hardware in the loop test bench: the experimental results confirm that measured wheel force can lead to a significant improvement of the ABS performances in terms of stopping distance also in the presence of road with variable friction coefficient.

  5. The Mechanical Impact of Aerodynamic Stall on Tunnel Ventilation Fans

    Directory of Open Access Journals (Sweden)

    A. G. Sheard

    2012-01-01

    Full Text Available This paper describes work aimed at establishing the ability of a tunnel ventilation fan to operate without risk of mechanical failure in the event of aerodynamic stall. The research establishes the aerodynamic characteristics of a typical tunnel ventilation fan when operated in both stable and stalled aerodynamic conditions, with and without an anti-stall stabilisation ring, with and without a “nonstalling” blade angle and at full, half, and one quarter design speed. It also measures the fan’s peak stress, thus facilitating an analysis of the implications of the experimental results for mechanical design methodology. The paper concludes by presenting three different strategies for tunnel ventilation fan selection in applications where the selected fan will most likely stall. The first strategy selects a fan with a low-blade angle that is nonstalling. The second strategy selects a fan with a high-pressure developing capability. The third strategy selects a fan with a fitted stabilisation ring. Tunnel ventilation system designers each have their favoured fan selection strategy. However, all three strategies can produce system designs within which a tunnel ventilation fan performs reliably in-service. The paper considers the advantages and disadvantages of each selection strategy and considered the strengths and weaknesses of each.

  6. Micromechanical cohesion force measurements to determine cyclopentane hydrate interfacial properties.

    Science.gov (United States)

    Aman, Zachary M; Joshi, Sanjeev E; Sloan, E Dendy; Sum, Amadeu K; Koh, Carolyn A

    2012-06-15

    Hydrate aggregation and deposition are critical factors in determining where and when hydrates may plug a deepwater flowline. We present the first direct measurement of structure II (cyclopentane) hydrate cohesive forces in the water, liquid hydrocarbon and gas bulk phases. For fully annealed hydrate particles, gas phase cohesive forces were approximately twice that obtained in a liquid hydrocarbon phase, and approximately six times that obtained in the water phase. Direct measurements show that hydrate cohesion force in a water-continuous bulk may be only the product of solid-solid cohesion. When excess water was present on the hydrate surface, gas phase cohesive forces increased by a factor of three, suggesting the importance of the liquid or quasi-liquid layer (QLL) in determining cohesive force. Hydrate-steel adhesion force measurements show that, when the steel surface is coated with hydrophobic wax, forces decrease up to 96%. As the micromechanical force technique is uniquely capable of measuring hydrate-surface forces with variable contact time, the present work contains significant implications for hydrate applications in flow assurance. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Bite force measurement based on fiber Bragg grating sensor

    Science.gov (United States)

    Padma, Srivani; Umesh, Sharath; Asokan, Sundarrajan; Srinivas, Talabattula

    2017-10-01

    The maximum level of voluntary bite force, which results from the combined action of muscle of mastication, joints, and teeth, i.e., craniomandibular structure, is considered as one of the major indicators for the functional state of the masticatory system. Measurement of voluntary bite force provides useful data for the jaw muscle function and activity along with assessment of prosthetics. This study proposes an in vivo methodology for the dynamic measurement of bite force employing a fiber Bragg grating (FBG) sensor known as bite force measurement device (BFMD). The BFMD developed is a noninvasive intraoral device, which transduces the bite force exerted at the occlusal surface into strain variations on a metal plate. These strain variations are acquired by the FBG sensor bonded over it. The BFMD developed facilitates adjustment of the distance between the biting platform, which is essential to capture the maximum voluntary bite force at three different positions of teeth, namely incisor, premolar, and molar sites. The clinically relevant bite forces are measured at incisor, molar, and premolar position and have been compared against each other. Furthermore, the bite forces measured with all subjects are segregated according to gender and also compared against each other.

  8. Direct measurements of the frequency-dependent dielectrophoresis force.

    Science.gov (United States)

    Wei, Ming-Tzo; Junio, Joseph; Ou-Yang, H Daniel

    2009-01-02

    Dielectrophoresis (DEP), the phenomenon of directed motion of electrically polarizable particles in a nonuniform electric field, is promising for applications in biochemical separation and filtration. For colloidal particles in suspension, the relaxation of the ionic species in the shear layer gives rise to a frequency-dependent, bidirectional DEP force in the radio frequency range. However, quantification methods of the DEP force on individual particles with the pico-Newton resolution required for the development of theories and design of device applications are lacking. We report the use of optical tweezers as a force sensor and a lock-in phase-sensitive technique for analysis of the particle motion in an amplitude modulated DEP force. The coherent detection and sensing scheme yielded not only unprecedented sensitivity for DEP force measurements, but also provided a selectivity that clearly distinguishes the pure DEP force from all the other forces in the system, including electrophoresis, electro-osmosis, heat-induced convection, and Brownian forces, all of which can hamper accurate measurements through other existing methods. Using optical tweezers-based force transducers already developed in our laboratory, we have results that quantify the frequency-dependent DEP force and the crossover frequency of individual particles with this new experimental method.

  9. A stochastic model for the simulation of wind turbine blades in static stall

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Rasmussen, Flemming; Sørensen, Niels N.

    2010-01-01

    The aim of this work is to improve aeroelastic simulation codes by accounting for the unsteady aerodynamic forces that a blade experiences in static stall. A model based on a spectral representation of the aerodynamic lift force is defined. The drag and pitching moment are derived using...

  10. Construction of hydrogenation stalls for explosions

    Energy Technology Data Exchange (ETDEWEB)

    Raichle, L.

    1943-05-03

    This report contained explanations for different questions that had been asked by the Association of Chemical Manufacturers. The first item discussed was the pressure occurring in hydrogenation stalls in hydrogen explosions. The pressures actually used were much smaller than the maximum design pressure due to burning gases being allowed to escape from the top and front of the stalls since these areas were open and it could not be assumed that the whole stall space was filled with a 32% hydrogen concentration at the beginning of an explosion. The second item discussed was specifications and rules for the building of hydrogenation stalls. These included the calculations for simple wind pressure according to the Building Code with the usual safety factors and the calculations for an inner pressure of 300 kg/m/sup 2/ with the usual safety factors. An explanation of a stall explosion in Poelitz and reinforced stall construction in Poelitz were two other items that were discussed. Appendix I of the report involved maximum pressures and temperature in hydrogen explosions. Diagram I was involved with this. Appendix II discussed the behavior of a hydrogen flame at high emerging velocities and Appendix III discussed stall construction at Poelitz.

  11. Molecular force sensors to measure stress in cells

    International Nuclear Information System (INIS)

    Prabhune, Meenakshi; Rehfeldt, Florian; Schmidt, Christoph F

    2017-01-01

    Molecularly generated forces are essential for most activities of biological cells, but also for the maintenance of steady state or homeostasis. To quantitatively understand cellular dynamics in migration, division, or mechanically guided differentiation, it will be important to exactly measure stress fields within the cell and the extracellular matrix. Traction force microscopy and related techniques have been established to determine the stress transmitted from adherent cells to their substrates. However, different approaches are needed to directly assess the stress generated inside the cell. This has recently led to the development of novel molecular force sensors. In this topical review, we briefly mention methods used to measure cell-external forces, and then summarize and explain different designs for the measurement of cell-internal forces with their respective advantages and disadvantages. (topical review)

  12. Molecular force sensors to measure stress in cells

    Science.gov (United States)

    Prabhune, Meenakshi; Rehfeldt, Florian; Schmidt, Christoph F.

    2017-06-01

    Molecularly generated forces are essential for most activities of biological cells, but also for the maintenance of steady state or homeostasis. To quantitatively understand cellular dynamics in migration, division, or mechanically guided differentiation, it will be important to exactly measure stress fields within the cell and the extracellular matrix. Traction force microscopy and related techniques have been established to determine the stress transmitted from adherent cells to their substrates. However, different approaches are needed to directly assess the stress generated inside the cell. This has recently led to the development of novel molecular force sensors. In this topical review, we briefly mention methods used to measure cell-external forces, and then summarize and explain different designs for the measurement of cell-internal forces with their respective advantages and disadvantages.

  13. Uncertainties in forces extracted from non-contact atomic force microscopy measurements by fitting of long-range background forces

    Directory of Open Access Journals (Sweden)

    Adam Sweetman

    2014-04-01

    Full Text Available In principle, non-contact atomic force microscopy (NC-AFM now readily allows for the measurement of forces with sub-nanonewton precision on the atomic scale. In practice, however, the extraction of the often desired ‘short-range’ force from the experimental observable (frequency shift is often far from trivial. In most cases there is a significant contribution to the total tip–sample force due to non-site-specific van der Waals and electrostatic forces. Typically, the contribution from these forces must be removed before the results of the experiment can be successfully interpreted, often by comparison to density functional theory calculations. In this paper we compare the ‘on-minus-off’ method for extracting site-specific forces to a commonly used extrapolation method modelling the long-range forces using a simple power law. By examining the behaviour of the fitting method in the case of two radically different interaction potentials we show that significant uncertainties in the final extracted forces may result from use of the extrapolation method.

  14. From static to animated: Measuring mechanical forces in tissues.

    Science.gov (United States)

    Nelson, Celeste M

    2017-01-02

    Cells are physical objects that exert mechanical forces on their surroundings as they migrate and take their places within tissues. New techniques are now poised to enable the measurement of cell-generated mechanical forces in intact tissues in vivo, which will illuminate the secret dynamic lives of cells and change our current perception of cell biology. © 2017 Nelson.

  15. Reduction of Liquid Bridge Force for 3D Microstructure Measurements

    Directory of Open Access Journals (Sweden)

    Hiroshi Murakami

    2016-05-01

    Full Text Available Recent years have witnessed an increased demand for a method for precise measurement of the microstructures of mechanical microparts, microelectromechanical systems, micromolds, optical devices, microholes, etc. This paper presents a measurement system for three-dimensional (3D microstructures that use an optical fiber probe. This probe consists of a stylus shaft with a diameter of 2.5 µm and a glass ball with a diameter of 5 µm attached to the stylus tip. In this study, the measurement system, placed in a vacuum vessel, is constructed suitably to prevent adhesion of the stylus tip to the measured surface caused by the surface force resulting from the van der Waals force, electrostatic force, and liquid bridge force. First, these surface forces are analyzed with the aim of investigating the causes of adhesion. Subsequently, the effects of pressure inside the vacuum vessel on surface forces are evaluated. As a result, it is found that the surface force is 0.13 µN when the pressure inside the vacuum vessel is 350 Pa. This effect is equivalent to a 60% reduction in the surface force in the atmosphere.

  16. Vehicle lateral state estimation based on measured tyre forces.

    Science.gov (United States)

    Tuononen, Ari J

    2009-01-01

    Future active safety systems need more accurate information about the state of vehicles. This article proposes a method to evaluate the lateral state of a vehicle based on measured tyre forces. The tyre forces of two tyres are estimated from optically measured tyre carcass deflections and transmitted wirelessly to the vehicle body. The two remaining tyres are so-called virtual tyre sensors, the forces of which are calculated from the real tyre sensor estimates. The Kalman filter estimator for lateral vehicle state based on measured tyre forces is presented, together with a simple method to define adaptive measurement error covariance depending on the driving condition of the vehicle. The estimated yaw rate and lateral velocity are compared with the validation sensor measurements.

  17. Vehicle Lateral State Estimation Based on Measured Tyre Forces

    Directory of Open Access Journals (Sweden)

    Ari J. Tuononen

    2009-10-01

    Full Text Available Future active safety systems need more accurate information about the state of vehicles. This article proposes a method to evaluate the lateral state of a vehicle based on measured tyre forces. The tyre forces of two tyres are estimated from optically measured tyre carcass deflections and transmitted wirelessly to the vehicle body. The two remaining tyres are so-called virtual tyre sensors, the forces of which are calculated from the real tyre sensor estimates. The Kalman filter estimator for lateral vehicle state based on measured tyre forces is presented, together with a simple method to define adaptive measurement error covariance depending on the driving condition of the vehicle. The estimated yaw rate and lateral velocity are compared with the validation sensor measurements.

  18. Measuring Air Force Contracting Customer Satisfaction

    Science.gov (United States)

    2015-12-01

    customer satisfaction is through the use of the EDP model , and then assesses the value and importance of measuring customer satisfaction through the lens...companies’ business models . Their companies’ business models dictated the frequency for collecting customer satisfaction data by encouraging regular...pursuit of satisfying their organizations’ business models , the participants aligned the frequency for collecting customer satisfaction

  19. Standardized voluntary force measurement in a lower extremity rehabilitation robot

    OpenAIRE

    Bolliger, M; Banz, R; Dietz, V; Lünenburger, L

    2008-01-01

    Abstract Background Isometric force measurements in the lower extremity are widely used in rehabilitation of subjects with neurological movement disorders (NMD) because walking ability has been shown to be related to muscle strength. Therefore muscle strength measurements can be used to monitor and control the effects of training programs. A new method to assess isometric muscle force was implemented in the driven gait orthosis (DGO) Lokomat. To evaluate the capabilities of this new measureme...

  20. Quantitative measurements of shear displacement using atomic force microscopy

    International Nuclear Information System (INIS)

    Wang, Wenbo; Wu, Weida; Sun, Ying; Zhao, Yonggang

    2016-01-01

    We report a method to quantitatively measure local shear deformation with high sensitivity using atomic force microscopy. The key point is to simultaneously detect both torsional and buckling motions of atomic force microscopy (AFM) cantilevers induced by the lateral piezoelectric response of the sample. This requires the quantitative calibration of torsional and buckling response of AFM. This method is validated by measuring the angular dependence of the in-plane piezoelectric response of a piece of piezoelectric α-quartz. The accurate determination of the amplitude and orientation of the in-plane piezoelectric response, without rotation, would greatly enhance the efficiency of lateral piezoelectric force microscopy.

  1. Nanonet force microscopy for measuring forces in single smooth muscle cells of the human aorta.

    Science.gov (United States)

    Hall, Alexander; Chan, Patrick; Sheets, Kevin; Apperson, Matthew; Delaughter, Christopher; Gleason, Thomas G; Phillippi, Julie A; Nain, Amrinder

    2017-07-07

    A number of innovative methods exist to measure cell-matrix adhesive forces, but they have yet to accurately describe and quantify the intricate interplay of a cell and its fibrous extracellular matrix (ECM). In cardiovascular pathologies, such as aortic aneurysm, new knowledge on the involvement of cell-matrix forces could lead to elucidation of disease mechanisms. To better understand this dynamics, we measured primary human aortic single smooth muscle cell (SMC) forces using nanonet force microscopy in both inside-out (I-O intrinsic contractility) and outside-in (O-I external perturbation) modes. For SMC populations, we measured the I-O and O-I forces to be 12.9 ± 1.0 and 57.9 ± 2.5 nN, respectively. Exposure of cells to oxidative stress conditions caused a force decrease of 57 and 48% in I-O and O-I modes, respectively, and an increase in migration rate by 2.5-fold. Finally, in O-I mode, we cyclically perturbed cells at constant strain of varying duration to simulate in vivo conditions of the cardiac cycle and found that I-O forces decrease with increasing duration and O-I forces decreased by half at shorter cycle times. Thus our findings highlight the need to study forces exerted and felt by cells simultaneously to comprehensively understand force modulation in cardiovascular disease. © 2017 Hall et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  2. Sub-Angstrom oscillation amplitude non-contact atomic force microscopy for lateral force gradient measurement

    International Nuclear Information System (INIS)

    Atabak, Mehrdad; Unverdi, Ozhan; Ozer, H. Ozguer; Oral, Ahmet

    2009-01-01

    We report the first results from novel sub-Angstrom oscillation amplitude non-contact atomic force microscopy developed for lateral force gradient measurements. Quantitative lateral force gradients between a tungsten tip and Si(1 1 1)-(7 x 7) surface can be measured using this microscope. Simultaneous lateral force gradient and scanning tunnelling microscope images of single and multi atomic steps are obtained. In our measurement, tunnel current is used as feedback. The lateral stiffness contrast has been observed to be 2.5 N/m at single atomic step, in contrast to 13 N/m at multi atomic step on Si(1 1 1) surface. We also carried out a series of lateral stiffness-distance spectroscopy. We observed lateral stiffness-distance curves exhibit sharp increase in the stiffness as the sample is approached towards the surface. We usually observed positive stiffness and sometimes going into slightly negative region.

  3. Does an instrumented treadmill correctly measure the ground reaction forces?

    Directory of Open Access Journals (Sweden)

    Patrick A. Willems

    2013-11-01

    Since the 1990s, treadmills have been equipped with multi-axis force transducers to measure the three components of the ground reaction forces during walking and running. These measurements are correctly performed if the whole treadmill (including the motor is mounted on the transducers. In this case, the acceleration of the treadmill centre of mass relative to the reference frame of the laboratory is nil. The external forces exerted on one side of the treadmill are thus equal in magnitude and opposite in direction to the external forces exerted on the other side. However, uncertainty exists about the accuracy of these measures: due to friction between the belt and the tread-surface, due to the motor pulling the belt, some believe that it is not possible to correctly measure the horizontal components of the forces exerted by the feet on the belt. Here, we propose a simple model of an instrumented treadmill and we demonstrate (1 that the forces exerted by the subject moving on the upper part of the treadmill are accurately transmitted to the transducers placed under it and (2 that all internal forces – including friction – between the parts of the treadmill are cancelling each other.

  4. The Relevance of the Dynamic Stall Effect for Transient

    DEFF Research Database (Denmark)

    Jauch, Clemens; Sørensen, Poul; Bak-Jensen, Birgitte

    2005-01-01

    This article describes a methodology to quantify the influence of dynamic stall on transient fault operations of active-stall turbines. The model of the dynamic stall effect is introduced briefly. The behaviour of the dynamic stall model during a transient fault operation is described mathematica...

  5. Biomimetic Wind Turbine Design with Lift Enhancing Periodic Stall

    NARCIS (Netherlands)

    Stamhuis, Eize Jan

    2017-01-01

    A wind turbine includes a rotor; a blade; and a periodic stall system. The periodic stall system selectively moves at least part of the blade in an oscillating motion whereby an angle of incidence continuously varies to invoke periodic stall. The periodic stall system can move the entire blade or

  6. Uncertainty quantification in nanomechanical measurements using the atomic force microscope

    Science.gov (United States)

    Ryan Wagner; Robert Moon; Jon Pratt; Gordon Shaw; Arvind Raman

    2011-01-01

    Quantifying uncertainty in measured properties of nanomaterials is a prerequisite for the manufacture of reliable nanoengineered materials and products. Yet, rigorous uncertainty quantification (UQ) is rarely applied for material property measurements with the atomic force microscope (AFM), a widely used instrument that can measure properties at nanometer scale...

  7. Numerical study on a single bladed vertical axis wind turbine under dynamic stall

    Energy Technology Data Exchange (ETDEWEB)

    Bangga, Galih [Institute of Aerodynamics and Gas Dynamics, University of Stuttgart, Stuttgart (Germany); Hutomo, Go; Sasongko, Herman [Dept. of Mechanical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya (Indonesia); Wiranegara, Raditya [School of Mechanical Aerospace and Civil Engineering, University of Manchester, Manchester (United Kingdom)

    2017-01-15

    The aim of this study is to investigate the flow development of a single bladed vertical axis wind turbine using Computational fluid dynamics (CFD) methods. The blade is constructed using the NACA 0012 profile and is operating under stalled conditions at tip speed ratio of 2. Two dimensional simulations are performed using a commercial CFD package, ANSYS Fluent 15.0, employing the Menter-SST turbulence model. For the preliminary study, simulations of the NACA 0012 airfoil under static conditions are carried out and compared with available measurement data and calculations using the boundary layer code XFOIL. The CFD results under the dynamic case are presented and the resulting aerodynamic forces are evaluated. The turbine is observed to generate negative power at certain azimuth angles which can be divided into three main zones. The blade vortex interaction is observed to strongly influence the flow behavior near the blade and contributes to the power production loss. However, the impact is considered small since it covers only 6.4 % of the azimuth angle range where the power is negative compared to the dynamic stall impact which covers almost 22 % of the azimuth angle range.

  8. Prediction of induced vibrations in stall

    Energy Technology Data Exchange (ETDEWEB)

    Thirstrup Petersen, J.; Thomsen, K.; Aagaard Madsen, H. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1999-03-01

    The main results from recent research in stall induced vibrations are presented. The focus is on the edgewise blade vibrations, which during the last decade have turned out to be a potential threat against the stable operation of stall regulated wind turbines and a fact, which must be dealt with by the designer. The basic physical explanation for the phenomenon and examples of design precaution, which can be taken, are presented. (au)

  9. Friction force measurements relevant to de-inking by means of atomic force microscope.

    Science.gov (United States)

    Theander, Katarina; Pugh, Robert J; Rutland, Mark W

    2005-11-15

    In the pulping step of the de-inking process, the ink detaches from the fibers due to shear and physical chemical interaction. In order to get a better understanding of the forces involved between cellulose and ink, the atomic force microscope and the colloidal probe technique have been used in the presence of a model chemical dispersant (hexa-ethyleneglycol mono n-dodecyl ether, C12E6). A cellulose bead was used as the colloidal probe and three different lower surfaces have been used, an alkyd resin, mica and a cellulose sphere. The normal and lateral forces have been measured at a range of nonionic concentrations. It was found that the lateral sliding friction forces deceased with increasing surfactant concentration for both the alkyd resin and mica while no differences were observed for the cellulose surface. In addition, only a very small change in normal force could be detected for the alkyd surface as the concentration changed.

  10. Towards a Casimir Force Measurement between Micromachined Parallel Plate Structures

    Directory of Open Access Journals (Sweden)

    Remco J. Wiegerink

    2012-11-01

    Full Text Available Ever since its prediction, experimental investigation of the Casimir force has been of great scientific interest. Many research groups have successfully attempted quantifying the force with different device geometries; however, measurement of the Casimir force between parallel plates with sub-micron separation distance is still a challenging task, since it becomes extremely difficult to maintain sufficient parallelism between the plates. The Casimir force can significantly influence the operation of micro devices and to realize reliable and reproducible devices it is necessary to understand and experimentally verify the influence of the Casimir force at sub-micron scale. In this paper, we present the design principle, fabrication and characterization of micromachined parallel plate structures that could allow the measurement of the Casimir force with tunable separation distance in the range of 100 to 1000 nm. Initially, a gold coated parallel plate structure is explored to measure the Casimir force, but also other material combinations could be investigated. Using gold-silicon eutectic bonding, a reliable approach to bond chips with integrated suspended plates together with a well-defined separation distance in the order of 1–2 μm is developed.

  11. MD1405: Demonstration of forced dynamic aperture measurements at injection

    CERN Document Server

    Carlier, Felix Simon; Persson, Tobias Hakan Bjorn; Tomas Garcia, Rogelio; CERN. Geneva. ATS Department

    2017-01-01

    Accurate measurements of dynamic aperture become more important for the LHC as it advances into increasingly nonlinear regimes of operations, as well as for the High Luminosity LHC where machine nonlinearities will have a significantly larger impact. Direct dynamic aperture measurements at top energy in the LHC are challenging, and conventional single kick methods are not viable. Dynamic aperture measurements under forced oscillation of AC dipoles have been proposed as s possible alternative observable. A first demonstration of forced DA measurements at injections energy is presented.

  12. Designing an experiment to measure cellular interaction forces

    Science.gov (United States)

    McAlinden, Niall; Glass, David G.; Millington, Owain R.; Wright, Amanda J.

    2013-09-01

    Optical trapping is a powerful tool in Life Science research and is becoming common place in many microscopy laboratories and facilities. The force applied by the laser beam on the trapped object can be accurately determined allowing any external forces acting on the trapped object to be deduced. We aim to design a series of experiments that use an optical trap to measure and quantify the interaction force between immune cells. In order to cause minimum perturbation to the sample we plan to directly trap T cells and remove the need to introduce exogenous beads to the sample. This poses a series of challenges and raises questions that need to be answered in order to design a set of effect end-point experiments. A typical cell is large compared to the beads normally trapped and highly non-uniform - can we reliably trap such objects and prevent them from rolling and re-orientating? In this paper we show how a spatial light modulator can produce a triple-spot trap, as opposed to a single-spot trap, giving complete control over the object's orientation and preventing it from rolling due, for example, to Brownian motion. To use an optical trap as a force transducer to measure an external force you must first have a reliably calibrated system. The optical trapping force is typically measured using either the theory of equipartition and observing the Brownian motion of the trapped object or using an escape force method, e.g. the viscous drag force method. In this paper we examine the relationship between force and displacement, as well as measuring the maximum displacement from equilibrium position before an object falls out of the trap, hence determining the conditions under which the different calibration methods should be applied.

  13. Isoelectric point of fluorite by direct force measurements using atomic force microscopy.

    Science.gov (United States)

    Assemi, Shoeleh; Nalaskowski, Jakub; Miller, Jan D; Johnson, William P

    2006-02-14

    Interaction forces between a fluorite (CaF2) surface and colloidal silica were measured by atomic force microscopy (AFM) in 1 x 10(-3) M NaNO3 at different pH values. Forces between the silica colloid and fluorite flat were measured at a range of pH values above the isoelectric point (IEP) of silica so that the forces were mainly controlled by the fluorite surface charge. In this way, the IEP of the fluorite surface was deduced from AFM force curves at pH approximately 9.2. Experimental force versus separation distance curves were in good agreement with theoretical predictions based on long-range electrostatic interactions, allowing the potential of the fluorite surface to be estimated from the experimental force curves. AFM-deduced surface potentials were generally lower than the published zeta potentials obtained from electrokinetic methods for powdered samples. Differences in methodology, orientation of the fluorite, surface carbonation, and equilibration time all could have contributed to this difference.

  14. Support force measures of midsized men in seated positions.

    Science.gov (United States)

    Bush, Tamara Reid; Hubbard, Robert P

    2007-02-01

    Two areas not well researched in the field of seating mechanics are the distribution of normal and shear forces, and how those forces change with seat position. The availability of these data would be beneficial for the design and development of office, automotive and medical seats. To increase our knowledge in the area of seating mechanics, this study sought to measure the normal and shear loads applied to segmental supports in 12 seated positions, utilizing three inclination angles and four levels of seat back articulation that were associated with automotive driving positions. Force data from six regions, including the thorax, sacral region, buttocks, thighs, feet, and hand support were gathered using multi-axis load cells. The sample contained 23 midsized subjects with an average weight of 76.7 kg and a standard deviation of 4.2 kg, and an average height of 1745 mm with a standard deviation of 19 mm. Results were examined in terms of seat back inclination and in terms of torso articulation for relationships between seat positions and support forces. Using a repeated measures analysis, significant differences (p<0.05) were identified for normal forces relative to all inclination angles except for forces occurring at the hand support. Other significant differences were observed between normal forces behind the buttocks, pelvis, and feet for torso articulations. Significant differences in the shear forces occurred under the buttocks and posterior pelvis during changes in seat back inclination. Significant differences in shear forces were also identified for torso articulations. These data suggest that as seat back inclination or torso articulation change, significant shifts in force distribution occur.

  15. Fiber optic micro sensor for the measurement of tendon forces.

    Science.gov (United States)

    Behrmann, Gregory P; Hidler, Joseph; Mirotznik, Mark S

    2012-10-03

    A fiber optic sensor developed for the measurement of tendon forces was designed, numerically modeled, fabricated, and experimentally evaluated. The sensor incorporated fiber Bragg gratings and micro-fabricated stainless steel housings. A fiber Bragg grating is an optical device that is spectrally sensitive to axial strain. Stainless steel housings were designed to convert radial forces applied to the housing into axial forces that could be sensed by the fiber Bragg grating. The metal housings were fabricated by several methods including laser micromachining, swaging, and hydroforming. Designs are presented that allow for simultaneous temperature and force measurements as well as for simultaneous resolution of multi-axis forces.The sensor was experimentally evaluated by hydrostatic loading and in vitro testing. A commercial hydraulic burst tester was used to provide uniform pressures on the sensor in order to establish the linearity, repeatability, and accuracy characteristics of the sensor. The in vitro experiments were performed in excised tendon and in a dynamic gait simulator to simulate biological conditions. In both experimental conditions, the sensor was found to be a sensitive and reliable method for acquiring minimally invasive measurements of soft tissue forces. Our results suggest that this sensor will prove useful in a variety of biomechanical measurements.

  16. Fiber optic micro sensor for the measurement of tendon forces

    Directory of Open Access Journals (Sweden)

    Behrmann Gregory P

    2012-10-01

    Full Text Available Abstract A fiber optic sensor developed for the measurement of tendon forces was designed, numerically modeled, fabricated, and experimentally evaluated. The sensor incorporated fiber Bragg gratings and micro-fabricated stainless steel housings. A fiber Bragg grating is an optical device that is spectrally sensitive to axial strain. Stainless steel housings were designed to convert radial forces applied to the housing into axial forces that could be sensed by the fiber Bragg grating. The metal housings were fabricated by several methods including laser micromachining, swaging, and hydroforming. Designs are presented that allow for simultaneous temperature and force measurements as well as for simultaneous resolution of multi-axis forces. The sensor was experimentally evaluated by hydrostatic loading and in vitro testing. A commercial hydraulic burst tester was used to provide uniform pressures on the sensor in order to establish the linearity, repeatability, and accuracy characteristics of the sensor. The in vitro experiments were performed in excised tendon and in a dynamic gait simulator to simulate biological conditions. In both experimental conditions, the sensor was found to be a sensitive and reliable method for acquiring minimally invasive measurements of soft tissue forces. Our results suggest that this sensor will prove useful in a variety of biomechanical measurements.

  17. Extending Bell's model: how force transducer stiffness alters measured unbinding forces and kinetics of molecular complexes.

    Science.gov (United States)

    Walton, Emily B; Lee, Sunyoung; Van Vliet, Krystyn J

    2008-04-01

    Forced unbinding of complementary macromolecules such as ligand-receptor complexes can reveal energetic and kinetic details governing physiological processes ranging from cellular adhesion to drug metabolism. Although molecular-level experiments have enabled sampling of individual ligand-receptor complex dissociation events, disparities in measured unbinding force F(R) among these methods lead to marked variation in inferred binding energetics and kinetics at equilibrium. These discrepancies are documented for even the ubiquitous ligand-receptor pair, biotin-streptavidin. We investigated these disparities and examined atomic-level unbinding trajectories via steered molecular dynamics simulations, as well as via molecular force spectroscopy experiments on biotin-streptavidin. In addition to the well-known loading rate dependence of F(R) predicted by Bell's model, we find that experimentally accessible parameters such as the effective stiffness of the force transducer k can significantly perturb the energy landscape and the apparent unbinding force of the complex for sufficiently stiff force transducers. Additionally, at least 20% variation in unbinding force can be attributed to minute differences in initial atomic positions among energetically and structurally comparable complexes. For force transducers typical of molecular force spectroscopy experiments and atomistic simulations, this energy barrier perturbation results in extrapolated energetic and kinetic parameters of the complex that depend strongly on k. We present a model that explicitly includes the effect of k on apparent unbinding force of the ligand-receptor complex, and demonstrate that this correction enables prediction of unbinding distances and dissociation rates that are decoupled from the stiffness of actual or simulated molecular linkers.

  18. Magnetic moment measurement of magnetic nanoparticles using atomic force microscopy

    International Nuclear Information System (INIS)

    Park, J-W; Lee, E-C; Ju, H; Yoo, I S; Chang, W-S; Chung, B H; Kim, B S

    2008-01-01

    Magnetic moment per unit mass of magnetic nanoparticles was found by using the atomic force microscope (AFM). The mass of the nanoparticles was acquired from the resonance frequency shift of the particle-attached AFM probe and magnetic force measurement was also carried out with the AFM. Combining with magnetic field strength, the magnetic moment per unit mass of the nanoparticles was determined as a function of magnetic field strength. (technical design note)

  19. Field measurement of basal forces generated by erosive debris flows

    Science.gov (United States)

    McCoy, S.W.; Tucker, G.E.; Kean, J.W.; Coe, J.A.

    2013-01-01

    It has been proposed that debris flows cut bedrock valleys in steeplands worldwide, but field measurements needed to constrain mechanistic models of this process remain sparse due to the difficulty of instrumenting natural flows. Here we present and analyze measurements made using an automated sensor network, erosion bolts, and a 15.24 cm by 15.24 cm force plate installed in the bedrock channel floor of a steep catchment. These measurements allow us to quantify the distribution of basal forces from natural debris‒flow events that incised bedrock. Over the 4 year monitoring period, 11 debris‒flow events scoured the bedrock channel floor. No clear water flows were observed. Measurements of erosion bolts at the beginning and end of the study indicated that the bedrock channel floor was lowered by 36 to 64 mm. The basal force during these erosive debris‒flow events had a large‒magnitude (up to 21 kN, which was approximately 50 times larger than the concurrent time‒averaged mean force), high‒frequency (greater than 1 Hz) fluctuating component. We interpret these fluctuations as flow particles impacting the bed. The resulting variability in force magnitude increased linearly with the time‒averaged mean basal force. Probability density functions of basal normal forces were consistent with a generalized Pareto distribution, rather than the exponential distribution that is commonly found in experimental and simulated monodispersed granular flows and which has a lower probability of large forces. When the bed sediment thickness covering the force plate was greater than ~ 20 times the median bed sediment grain size, no significant fluctuations about the time‒averaged mean force were measured, indicating that a thin layer of sediment (~ 5 cm in the monitored cases) can effectively shield the subjacent bed from erosive impacts. Coarse‒grained granular surges and water‒rich, intersurge flow had very similar basal force distributions despite

  20. A Feasibility Study on the Use of a Structured Light Depth-Camera for Three-Dimensional Body Measurements of Dairy Cows in Free-Stall Barns

    Directory of Open Access Journals (Sweden)

    Andrea Pezzuolo

    2018-02-01

    Full Text Available Frequent checks on livestock’s body growth can help reducing problems related to cow infertility or other welfare implications, and recognizing health’s anomalies. In the last ten years, optical methods have been proposed to extract information on various parameters while avoiding direct contact with animals’ body, generally causes stress. This research aims to evaluate a new monitoring system, which is suitable to frequently check calves and cow’s growth through a three-dimensional analysis of their bodies’ portions. The innovative system is based on multiple acquisitions from a low cost Structured Light Depth-Camera (Microsoft Kinect™ v1. The metrological performance of the instrument is proved through an uncertainty analysis and a proper calibration procedure. The paper reports application of the depth camera for extraction of different body parameters. Expanded uncertainty ranging between 3 and 15 mm is reported in the case of ten repeated measurements. Coefficients of determination R² > 0.84 and deviations lower than 6% from manual measurements where in general detected in the case of head size, hips distance, withers to tail length, chest girth, hips, and withers height. Conversely, lower performances where recognized in the case of animal depth (R² = 0.74 and back slope (R² = 0.12.

  1. Cantilever contribution to the total electrostatic force measured with the atomic force microscope

    International Nuclear Information System (INIS)

    Guriyanova, Svetlana; Golovko, Dmytro S; Bonaccurso, Elmar

    2010-01-01

    The atomic force microscope (AFM) is a powerful tool for surface imaging at the nanometer scale and surface force measurements in the piconewton range. Among long-range surface forces, the electrostatic forces play a predominant role. They originate if the electric potentials of the substrate and of the tip of the AFM cantilever are different. A quantitative interpretation of the AFM signal is often difficult because it depends in a complicated fashion on the cantilever–tip–surface geometry. Since the electrostatic interaction is a long-range interaction, the cantilever, which is many microns from the surface, contributes to the total electrostatic force along with the tip. Here we present results of the electrostatic interaction between a conducting flat surface and horizontal or tilted cantilevers, with and without tips, at various distances from the surface. As addressed in a previous work, we show that the contribution of the cantilever to the overall force cannot be neglected. Based on a predictive model and on 3D confocal measurements, we discuss the influence of the tilting angle of the cantilever

  2. Accurate fluid force measurement based on control surface integration

    Science.gov (United States)

    Lentink, David

    2018-01-01

    Nonintrusive 3D fluid force measurements are still challenging to conduct accurately for freely moving animals, vehicles, and deforming objects. Two techniques, 3D particle image velocimetry (PIV) and a new technique, the aerodynamic force platform (AFP), address this. Both rely on the control volume integral for momentum; whereas PIV requires numerical integration of flow fields, the AFP performs the integration mechanically based on rigid walls that form the control surface. The accuracy of both PIV and AFP measurements based on the control surface integration is thought to hinge on determining the unsteady body force associated with the acceleration of the volume of displaced fluid. Here, I introduce a set of non-dimensional error ratios to show which fluid and body parameters make the error negligible. The unsteady body force is insignificant in all conditions where the average density of the body is much greater than the density of the fluid, e.g., in gas. Whenever a strongly deforming body experiences significant buoyancy and acceleration, the error is significant. Remarkably, this error can be entirely corrected for with an exact factor provided that the body has a sufficiently homogenous density or acceleration distribution, which is common in liquids. The correction factor for omitting the unsteady body force, {{{ {ρ f}} {1 - {ρ f} ( {{ρ b}+{ρ f}} )}.{( {{{{ρ }}b}+{ρ f}} )}}} , depends only on the fluid, {ρ f}, and body, {{ρ }}b, density. Whereas these straightforward solutions work even at the liquid-gas interface in a significant number of cases, they do not work for generalized bodies undergoing buoyancy in combination with appreciable body density inhomogeneity, volume change (PIV), or volume rate-of-change (PIV and AFP). In these less common cases, the 3D body shape needs to be measured and resolved in time and space to estimate the unsteady body force. The analysis shows that accounting for the unsteady body force is straightforward to non

  3. Global estimate of aerosol direct radiative forcing from satellite measurements.

    Science.gov (United States)

    Bellouin, Nicolas; Boucher, Olivier; Haywood, Jim; Reddy, M Shekar

    2005-12-22

    Atmospheric aerosols cause scattering and absorption of incoming solar radiation. Additional anthropogenic aerosols released into the atmosphere thus exert a direct radiative forcing on the climate system. The degree of present-day aerosol forcing is estimated from global models that incorporate a representation of the aerosol cycles. Although the models are compared and validated against observations, these estimates remain uncertain. Previous satellite measurements of the direct effect of aerosols contained limited information about aerosol type, and were confined to oceans only. Here we use state-of-the-art satellite-based measurements of aerosols and surface wind speed to estimate the clear-sky direct radiative forcing for 2002, incorporating measurements over land and ocean. We use a Monte Carlo approach to account for uncertainties in aerosol measurements and in the algorithm used. Probability density functions obtained for the direct radiative forcing at the top of the atmosphere give a clear-sky, global, annual average of -1.9 W m(-2) with standard deviation, +/- 0.3 W m(-2). These results suggest that present-day direct radiative forcing is stronger than present model estimates, implying future atmospheric warming greater than is presently predicted, as aerosol emissions continue to decline.

  4. The application of force-sensing resistor sensors for measuring forces developed by the human hand.

    Science.gov (United States)

    Nikonovas, A; Harrison, A J L; Hoult, S; Sammut, D

    2004-01-01

    Most attempts to measure forces developed by the human hand have been implemented by placing force sensors on the object of interaction. Other researchers have placed sensors just on the subject's fingertips. In this paper, a system is described that measures forces over the entire hand using thin-film sensors and associated electronics. This system was developed by the authors and is able to obtain force readings from up to 60 thin-film sensors at rates of up to 400 samples/s per sensor. The sensors can be placed anywhere on the palm and/or fingers of the hand. The sensor readings, together with a video stream containing information about hand posture, are logged into a portable computer using a multiplexer, analogue-to-digital converter and software developed for the purpose. The system has been successfully used to measure forces involved in a range of everyday tasks such as driving a vehicle, lifting saucepans and hitting a golf ball. In the latter case, results are compared with those from an instrumented golf club. Future applications include the assessment of hand strength following disease, trauma or surgery, and to enable quantitative ergonomic investigations.

  5. Dynamic stall characterization using modal analysis of phase-averaged pressure distributions

    Science.gov (United States)

    Harms, Tanner; Nikoueeyan, Pourya; Naughton, Jonathan

    2017-11-01

    Dynamic stall characterization by means of surface pressure measurements can simplify the time and cost associated with experimental investigation of unsteady airfoil aerodynamics. A unique test capability has been developed at University of Wyoming over the past few years that allows for time and cost efficient measurement of dynamic stall. A variety of rotorcraft and wind turbine airfoils have been tested under a variety of pitch oscillation conditions resulting in a range of dynamic stall behavior. Formation, development and separation of different flow structures are responsible for the complex aerodynamic loading behavior experienced during dynamic stall. These structures have unique signatures on the pressure distribution over the airfoil. This work investigates the statistical behavior of phase-averaged pressure distribution for different types of dynamic stall by means of modal analysis. The use of different modes to identify specific flow structures is being investigated. The use of these modes for different types of dynamic stall can provide a new approach for understanding and categorizing these flows. This work uses airfoil data acquired under Army contract W911W60160C-0021, DOE Grant DE-SC0001261, and a gift from BP Alternative Energy North America, Inc.

  6. Reducing detrimental electrostatic effects in Casimir-force measurements and Casimir-force-based microdevices

    Science.gov (United States)

    Xu, Jun; Klimchitskaya, G. L.; Mostepanenko, V. M.; Mohideen, U.

    2018-03-01

    It is well known that residual electrostatic forces create significant difficulties in precise measurements of the Casimir force and the wide use of Casimir-operated microdevices. We experimentally demonstrate that, with the help of Ar-ion cleaning of the surfaces, it is possible to make electrostatic effects negligibly small compared to the Casimir interaction. Our experimental setup consists of a dynamic atomic force microscope supplemented with an Ar-ion gun and argon reservoir. The residual potential difference between the Au-coated surfaces of a sphere and those of a plate was measured both before and after in situ Ar-ion cleaning. It is shown that this cleaning decreases the magnitude of the residual potential by up to an order of magnitude and makes it almost independent of the separation. The gradient of the Casimir force was measured using ordinary samples subjected to Ar-ion cleaning. The obtained results are shown to be in good agreement both with previous precision measurements using specially selected samples and with theoretical predictions of the Lifshitz theory. The conclusion is made that the suggested method of in situ Ar-ion cleaning is effective in reducing the electrostatic effects and therefore is a great resource for experiments on measuring the Casimir interaction and for Casimir-operated microdevices.

  7. Measuring of beat up force on weaving machines

    Directory of Open Access Journals (Sweden)

    Bílek Martin

    2017-01-01

    Full Text Available The textile material (warp is stressed cyclically at a relative high frequency during the weaving process. Therefore, the special measuring device for analysis of beat up force in the textile material during the weaving process, has been devised in the Weaving Laboratory of the TUL. This paper includes a description of this measuring device. The experimental part includes measurements results for various materials (PES and VS and various warp thread densities of the produced fabric.

  8. A laboratory apparatus to measure clast-bed contact forces

    Science.gov (United States)

    Cohen, D.

    2007-12-01

    Glacier dynamics, sediment transport, and erosion are controlled in part by processes occurring at the interface between basal ice and bedrock. One critical parameter is the contact force between a clast and the bedrock. This force affects many processes such as basal friction which regulates sliding speed, slip resistance which influences basal shear stress and may cause micro-seismic events associated with slip instabilities, abrasion which controls rates of erosion, landscape evolution, and production of sediments. Despite field and laboratory evidences indicating that contact forces may be up to one order of magnitude higher than estimated from leading theories, no studies have yet measured with precision the magnitude of contact forces and how contact forces vary as a function of key glaciological variables such as basal melt rate and effective pressure. An apparatus was designed to make two independent measurements: (1) the contact force between a clast and a hard bed as a function of melt rate and effective pressure; (2) the drag force on an identical clast away from the bed as a function of the ice speed. The contact force differs from the drag force because of the presence of the bed which modifies the ice flow field. Measurement (2) is necessary to estimate the rheological properties of the ice and to quantify wall- (bed) effects on the drag force. The apparatus consists of a hydraulic press that pressurizes an ice cylinder, 24~cm high and 20~cm in diameter, to 1.0 - 1.5~MPa. The ice cylinder is contained inside a polycarbonate vessel. Above and below the ice cylinder are three disks: an aluminum disk sandwiched between two Delrin disks. The aluminum disks are hollow and used to circulate a fluid at a controlled temperature. The Delrin disks are used to isolate the ice from the cold room and to control the flow of heat to the ice block. The ice is kept at the melting temperature by circulating a fluid in channels inside the polycarbonate vessel and in the

  9. Standardized voluntary force measurement in a lower extremity rehabilitation robot.

    Science.gov (United States)

    Bolliger, Marc; Banz, Raphael; Dietz, Volker; Lünenburger, Lars

    2008-10-28

    Isometric force measurements in the lower extremity are widely used in rehabilitation of subjects with neurological movement disorders (NMD) because walking ability has been shown to be related to muscle strength. Therefore muscle strength measurements can be used to monitor and control the effects of training programs. A new method to assess isometric muscle force was implemented in the driven gait orthosis (DGO) Lokomat. To evaluate the capabilities of this new measurement method, inter- and intra-rater reliability were assessed. Reliability was assessed in subjects with and without NMD. Subjects were tested twice on the same day by two different therapists to test inter-rater reliability and on two separate days by the same therapist to test intra-rater reliability. Results showed fair to good reliability for the new measurement method to assess isometric muscle force of lower extremities. In subjects without NMD, intraclass correlation coefficients (ICC) for inter-rater reliability ranged from 0.72 to 0.97 and intra-rater reliability from 0.71 to 0.90. In subjects with NMD, ICC ranged from 0.66 to 0.97 for inter-rater and from 0.50 to 0.96 for intra-rater reliability. Inter- and intra- rater reliability of an assessment method for measuring maximal voluntary isometric muscle force of lower extremities was demonstrated. We suggest that this method is a valuable tool for documentation and controlling of the rehabilitation process in patients using a DGO.

  10. The relevance of the dynamic stall effect for transient fault operations of active-stall wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, Clemens; Soerensen, Poul; Jensen, Birgitte Bak

    2005-06-15

    This article describes a methodology to quantify the influence of dynamic stall on transient fault operations of active-stall turbines. The model of the dynamic stall effect is introduced briefly. The behaviour of the dynamic stall model during a transient fault operation is described mathematically, and from this its effect quantified. Two quantities are chosen to describe the influence of the dynamic stall effect: one is active power and the other is time delay. Subsequently a transient fault scenario is simulated with and without the dynamic stall effect and the differences discussed. From this comparison, the conclusion is drawn that the dynamic stall effect has some influence on the post-fault behaviour of the wind turbine, and it is hence suggested that the dynamic stall effect is considered if an active-stall wind turbine is to be modelled realistically. (Author)

  11. Direct Measurement of Interparticle Forces of Titan Aerosol Analogs ("Tholin") Using Atomic Force Microscopy

    Science.gov (United States)

    Yu, Xinting; Hörst, Sarah M.; He, Chao; McGuiggan, Patricia; Bridges, Nathan T.

    2017-12-01

    To understand the origin of the dunes on Titan, it is important to investigate the material properties of Titan's organic sand particles on Titan. The organic sand may behave distinctively compared to the quartz/basaltic sand on terrestrial planets (Earth, Venus, and Mars) due to differences in interparticle forces. We measured the surface energy (through contact angle measurements) and elastic modulus (through Atomic Force Microscopy) of the Titan aerosol analog (tholin). We find that the surface energy of a tholin thin film is about 70.9 mN/m, and its elastic modulus is about 3.0 GPa (similar to hard polymers like PMMA and polystyrene). For two 20 μm diameter particles, the theoretical cohesion force is therefore 3.3 μN. We directly measured interparticle forces for relevant materials: tholin particles are 0.8 ± 0.6 μN, while the interparticle cohesion between walnut shell particles (a typical model materials for the Titan Wind Tunnel, TWT) is only 0.4 ± 0.1 μN. The interparticle cohesion forces are much larger for tholins and presumably Titan sand particles than materials used in the TWT. This suggests that we should increase the interparticle force in both analog experiments (TWT) and threshold models to correctly translate the results to real Titan conditions. The strong cohesion of tholins may also inform us how the small aerosol particles (˜1 μm) in Titan's atmosphere are transformed into large sand particles (˜200 μm). It may also support the cohesive sand formation mechanism suggested by Rubin and Hesp (2009), where only unidirectional wind is needed to form linear dunes on Titan.

  12. High-Speed Experiments on Combustion-Powered Actuation for Dynamic Stall Suppression

    Science.gov (United States)

    Matalanis, Claude; Bowles, Patrick; Lorber, Peter; Crittenden, Thomas; Glezer, Ari; Schaeffler, Norman; Min, Byung-Young; Jee, Solkeun; Kuczek, Andrzej; Wake, Brian

    2016-01-01

    This work documents high-speed wind tunnel experiments conducted on a pitching airfoil equipped with an array of combustion-powered actuators (COMPACT). The main objective of these experiments was to demonstrate the stall-suppression capability of COMPACT on a high-lift rotorcraft airfoil, the VR-12, at relevant Mach numbers. Through dynamic pressure measurements at the airfoil surface it was shown that COMPACT can positively affect the stall behavior of the VR-12 at Mach numbers up to 0.4. Static airfoil results demonstrated 25% and 50% increases in post-stall lift at Mach numbers of 0.4 and 0.3, respectively. Deep dynamic stall results showed cycle-averaged lift coefficient increases up to 11% at Mach 0.4. Furthermore, it was shown that these benefits could be achieved with relatively few pulses during down-stroke and with no need to pre-anticipate the stall event. The flow mechanisms responsible for stall suppression were investigated using particle image velocimetry.

  13. Performance measures for combat-ready forces in the military

    CSIR Research Space (South Africa)

    Engelbrecht, GN

    2009-09-01

    Full Text Available The development of performance indicators in the military is dependent on the measurability of its associated strategies. Von Clausewitz (1976) argues that nations are either at war or preparing for war. It follows that military forces should have a...

  14. Model Engine Performance Measurement From Force Balance Instrumentation

    Science.gov (United States)

    Jeracki, Robert J.

    1998-01-01

    A large scale model representative of a low-noise, high bypass ratio turbofan engine was tested for acoustics and performance in the NASA Lewis 9- by 15-Foot Low-Speed Wind Tunnel. This test was part of NASA's continuing Advanced Subsonic Technology Noise Reduction Program. The low tip speed fan, nacelle, and an un-powered core passage (with core inlet guide vanes) were simulated. The fan blades and hub are mounted on a rotating thrust and torque balance. The nacelle, bypass duct stators, and core passage are attached to a six component force balance. The two balance forces, when corrected for internal pressure tares, measure the total thrust-minus-drag of the engine simulator. Corrected for scaling and other effects, it is basically the same force that the engine supports would feel, operating at similar conditions. A control volume is shown and discussed, identifying the various force components of the engine simulator thrust and definitions of net thrust. Several wind tunnel runs with nearly the same hardware installed are compared, to identify the repeatability of the measured thrust-minus-drag. Other wind tunnel runs, with hardware changes that affected fan performance, are compared to the baseline configuration, and the thrust and torque effects are shown. Finally, a thrust comparison between the force balance and nozzle gross thrust methods is shown, and both yield very similar results.

  15. Enclosed Electronic System for Force Measurements in Knee Implants

    Directory of Open Access Journals (Sweden)

    David Forchelet

    2014-08-01

    Full Text Available Total knee arthroplasty is a widely performed surgical technique. Soft tissue force balancing during the operation relies strongly on the experience of the surgeon in equilibrating tension in the collateral ligaments. Little information on the forces in the implanted prosthesis is available during surgery and post-operative treatment. This paper presents the design, fabrication and testing of an instrumented insert performing force measurements in a knee prosthesis. The insert contains a closed structure composed of printed circuit boards and incorporates a microfabricated polyimide thin-film piezoresistive strain sensor for each condylar compartment. The sensor is tested in a mechanical knee simulator that mimics in-vivo conditions. For characterization purposes, static and dynamic load patterns are applied to the instrumented insert. Results show that the sensors are able to measure forces up to 1.5 times body weight with a sensitivity fitting the requirements for the proposed use. Dynamic testing of the insert shows a good tracking of slow and fast changing forces in the knee prosthesis by the sensors.

  16. Measuring Industry Coagglomeration and Identifying the Driving Forces

    DEFF Research Database (Denmark)

    Howard, Emma; Newman, Carol; Tarp, Finn

    2015-01-01

    Understanding industry agglomeration and its driving forces is critical for the formulation of industrial policy in developing countries. Crucial to this process is the definition and measurement of agglomeration. We construct a new coagglomeration index based purely on the location of firms. We...... examine what this index reveals about the importance of transport costs, labour market pooling and technology transfer for agglomeration processes, controlling for overall industry agglomeration. We compare the results based on our new measure to existing measures in the literature and find very different...... underlying stories at work. We conclude that in conducting analyses of this kind giving consideration to the source of agglomeration economies, employees or entrepreneurs, and finding an appropriate measure for agglomeration, are both crucial to the process of identifying agglomerative forces....

  17. Dynamic stall and 3D effects

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerck, A.; Thor, S.E. [Aeronautical Research Inst. of Sweden, Bromma (Sweden)

    1996-12-01

    The JOULE II project `Dynamic stall and 3D effects` started in January 1994 and was completed in September 1995. The objective of the project has been to increase the understanding of the three-dimensional and unsteady aerodynamics of stall controlled HAWT`s. The objectives have also been to develop `engineering models` suitable for inclusion into aero-elastic codes. The project included the participation of 13 parties within Europe. This paper describes an overview of the work carried out within the project and key results. 3 refs, 4 figs

  18. Education stalls and subsequent stalls in African fertility: A descriptive overview

    Directory of Open Access Journals (Sweden)

    Anne Goujon

    2015-12-01

    Full Text Available Background: Recent stalls in fertility decline have been observed in a few countries in sub-Saharan Africa, and so far no plausible common reason has been identified in the literature. This paper develops the hypothesis that these fertility stalls could be associated with stalls in the progress of education among the women of the relevant cohorts, possibly resulting partly from the Structural Adjustment Programs (SAPs of the 1980s. Methods: We descriptively link the change in the education composition of successive cohorts of young women in sub-Saharan Africa and the recent fertility stalls. We use reconstructed data on population by age, gender, and level of education from www.wittgenstein centre.org/dataexplorer, and fertility rates from the United Nations. Results: In most sub-Saharan African countries, we observe that the same countries that had fertility stalls had a stall in the progress of education, particularly for young women who were of primary school age during the 1980s, when most of the countries were under structural adjustment. Conversely, stalls in fertility are less common in countries that did not have an education stall, possibly in relation to SAPs. Conclusions: The results point to the possibility of a link between the recent fertility stalls and discontinuities in the improvement of the education of the relevant cohorts, which in turn could be related to the SAPs in the 1980s. This descriptive finding now needs to be corroborated through more detailed cohort-specific fertility analysis. If the education-fertility link can be further established, it will have important implications for the projections of population growth in affected countries.

  19. Effect of permanent-magnet irregularities in levitation force measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. [Energy Technology Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2000-06-01

    In the measurement of the levitation force between a vertically magnetized permanent magnet (PM) and a bulk high-temperature superconductor (HTS), PM domains with horizontal components of magnetization are shown to produce a non-negligible contribution to the levitation force in most systems. Such domains are typically found in all PMs, even in those that exhibit zero net horizontal magnetic moment. Extension of this analysis leads to an HTS analogue of Earnshaw's theorem, in which the vertical stiffness is equal to the sum of the horizontal stiffness at the field-cooling position, independent of the angular distribution of magnetic moments within the PM. (author)

  20. Friction of ice measured using lateral force microscopy

    International Nuclear Information System (INIS)

    Bluhm, Hendrik; Inoue, Takahito; Salmeron, Miquel

    2000-01-01

    The friction of nanometer thin ice films grown on mica substrates is investigated using atomic force microscopy (AFM). Friction was found to be of similar magnitude as the static friction of ice reported in macroscopic experiments. The possible existence of a lubricating film of water due to pressure melting, frictional heating, and surface premelting is discussed based on the experimental results using noncontact, contact, and lateral force microscopy. We conclude that AFM measures the dry friction of ice due to the low scan speed and the squeezing out of the water layer between the sharp AFM tip and the ice surface. (c) 2000 The American Physical Society

  1. WP/084 Measuring Industry Agglomeration and Identifying the Driving Forces

    DEFF Research Database (Denmark)

    Howard, Emma; Tarp, Finn; Newman, Carol

    Understanding industry agglomeration and its driving forces is critical for the formulation of industrial policy in developing countries. Crucial to this process is the definition and measurement of agglomeration. We propose a new measure and examine what it reveals about the importance...... of transport costs, labour market pooling, and technology transfer for agglomeration processes. We contrast this analysis with insights from existing measures in the literature and find very different underlying stories at work. An exceptionally rich set of data from Vietnam makes us confident that our measure...

  2. FEATURES OF MEASURING IN LIQUID MEDIA BY ATOMIC FORCE MICROSCOPY

    Directory of Open Access Journals (Sweden)

    Mikhail V. Zhukov

    2016-11-01

    Full Text Available Subject of Research.The paper presents results of experimental study of measurement features in liquids by atomic force microscope to identify the best modes and buffered media as well as to find possible image artifacts and ways of their elimination. Method. The atomic force microscope Ntegra Aura (NT-MDT, Russia with standard prism probe holder and liquid cell was used to carry out measurements in liquids. The calibration lattice TGQ1 (NT-MDT, Russia was chosen as investigated structure with a fixed shape and height. Main Results. The research of probe functioning in specific pH liquids (distilled water, PBS - sodium phosphate buffer, Na2HPO4 - borate buffer, NaOH 0.1 M, NaOH 0.5 M was carried out in contact and semi-contact modes. The optimal operating conditions and the best media for the liquid measurements were found. Comparison of atomic force microscopy data with the results of lattice study by scanning electron microscopy was performed. The features of the feedback system response in the «probe-surface» interaction were considered by the approach/retraction curves in the different environments. An artifact of image inversion was analyzed and recommendation for its elimination was provided. Practical Relevance. These studies reveal the possibility of fine alignment of research method for objects of organic and inorganic nature by atomic force microscopy in liquid media.

  3. Microfluidic tactile sensors for three-dimensional contact force measurements.

    Science.gov (United States)

    Nie, Baoqing; Li, Ruya; Brandt, James D; Pan, Tingrui

    2014-11-21

    A microfluidic tactile sensing device has been first reported for three-dimensional contact force measurement utilizing the microfluidic interfacial capacitive sensing (MICS) principle. Consisting of common and differential microfluidic sensing elements and topologically micro-textured surfaces, the microfluidic sensing devices are intended not only to resolve normal mechanical loads but also to measure forces tangent to the surface upon contact. In response to normal or shear loads, the membrane surface deforms the underlying sensing elements uniformly or differentially. The corresponding variation in interfacial capacitance can be detected from each sensing unit, from which the direction and magnitude of the original load can be determined. Benefiting from the highly sensitive and adaptive MICS principle, the microfluidic sensor is capable of detecting normal forces with a device sensitivity of 29.8 nF N(-1) in a 7 mm × 7 mm × 0.52 mm package, which is at least a thousand times higher than its solid-state counterparts to our best knowledge. In addition, the microfluidic sensing elements enable facilitated relaxation response/time in the millisecond range (up to 12 ms). To demonstrate the utility and flexibility of the three-dimensional microfluidic sensor, it has been successfully configured into a fingertip-amounted setting for continuous tracing of the fingertip movement and contact force measurement.

  4. Optical tweezers force measurements to study parasites chemotaxis

    Science.gov (United States)

    de Thomaz, A. A.; Pozzo, L. Y.; Fontes, A.; Almeida, D. B.; Stahl, C. V.; Santos-Mallet, J. R.; Gomes, S. A. O.; Feder, D.; Ayres, D. C.; Giorgio, S.; Cesar, C. L.

    2009-07-01

    In this work, we propose a methodology to study microorganisms chemotaxis in real time using an Optical Tweezers system. Optical Tweezers allowed real time measurements of the force vectors, strength and direction, of living parasites under chemical or other kinds of gradients. This seems to be the ideal tool to perform observations of taxis response of cells and microorganisms with high sensitivity to capture instantaneous responses to a given stimulus. Forces involved in the movement of unicellular parasites are very small, in the femto-pico-Newton range, about the same order of magnitude of the forces generated in an Optical Tweezers. We applied this methodology to investigate the Leishmania amazonensis (L. amazonensis) and Trypanossoma cruzi (T. cruzi) under distinct situations.

  5. Optimal parameters for the FFA-Beddoes dynamic stall model

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerck, A.; Mert, M. [FFA, The Aeronautical Research Institute of Sweden, Bromma (Sweden); Madsen, H.A. [Risoe National Lab., Roskilde (Denmark)

    1999-03-01

    Unsteady aerodynamic effects, like dynamic stall, must be considered in calculation of dynamic forces for wind turbines. Models incorporated in aero-elastic programs are of semi-empirical nature. Resulting aerodynamic forces therefore depend on values used for the semi-empiricial parameters. In this paper a study of finding appropriate parameters to use with the Beddoes-Leishman model is discussed. Minimisation of the `tracking error` between results from 2D wind tunnel tests and simulation with the model is used to find optimum values for the parameters. The resulting optimum parameters show a large variation from case to case. Using these different sets of optimum parameters in the calculation of blade vibrations, give rise to quite different predictions of aerodynamic damping which is discussed. (au)

  6. Calculation of Rotor Performance and Loads Under Stalled Conditions

    National Research Council Canada - National Science Library

    Yeo, Hyeonsoo

    2003-01-01

    Rotor behavior in stalled conditions is investigated using wind tunnel test data of a 1/10-scale CH-47B/C type rotor, which provides a set of test conditions extending from unstalled to light stall...

  7. Breast Cancer EDGE Task Force Outcomes: Clinical Measures of Pain

    Science.gov (United States)

    Harrington, Shana; Gilchrist, Laura; Sander, Antoinette

    2014-01-01

    Background Pain is one of the most commonly reported impairments after breast cancer treatment affecting anywhere from 16-73% of breast cancer survivors Despite the high reported incidence of pain from cancer and its treatments, the ability to evaluate cancer pain continues to be difficult due to the complexity of the disease and the subjective experience of pain. The Oncology Section Breast Cancer EDGE Task Force was created to evaluate the evidence behind clinical outcome measures of pain in women diagnosed with breast cancer. Methods The authors systematically reviewed the literature for pain outcome measures published in the research involving women diagnosed with breast cancer. The goal was to examine the reported psychometric properties that are reported in the literature in order to determine clinical utility. Results Visual Analog Scale, Numeric Rating Scale, Pressure Pain Threshold, McGill Pain Questionnaire, McGill Pain Questionnaire – Short Form, Brief Pain Inventory and Brief Pain Inventory – Short Form were highly recommended by the Task Force. The Task Force was unable to recommend two measures for use in the breast cancer population at the present time. Conclusions A variety of outcome measures were used to measure pain in women diagnosed with breast cancer. When assessing pain in women with breast cancer, researchers and clinicians need to determine whether a unidimensional or multidimensional tool is most appropriate as well as whether the tool has strong psychometric properties. PMID:25346950

  8. Airfoil stall interpreted through linear stability analysis

    Science.gov (United States)

    Busquet, Denis; Juniper, Matthew; Richez, Francois; Marquet, Olivier; Sipp, Denis

    2017-11-01

    Although airfoil stall has been widely investigated, the origin of this phenomenon, which manifests as a sudden drop of lift, is still not clearly understood. In the specific case of static stall, multiple steady solutions have been identified experimentally and numerically around the stall angle. We are interested here in investigating the stability of these steady solutions so as to first model and then control the dynamics. The study is performed on a 2D helicopter blade airfoil OA209 at low Mach number, M 0.2 and high Reynolds number, Re 1.8 ×106 . Steady RANS computation using a Spalart-Allmaras model is coupled with continuation methods (pseudo-arclength and Newton's method) to obtain steady states for several angles of incidence. The results show one upper branch (high lift), one lower branch (low lift) connected by a middle branch, characterizing an hysteresis phenomenon. A linear stability analysis performed around these equilibrium states highlights a mode responsible for stall, which starts with a low frequency oscillation. A bifurcation scenario is deduced from the behaviour of this mode. To shed light on the nonlinear behavior, a low order nonlinear model is created with the same linear stability behavior as that observed for that airfoil.

  9. Development of a shear force measurement dummy for seat comfort.

    Directory of Open Access Journals (Sweden)

    Seong Guk Kim

    Full Text Available Seat comfort is one of the main factors that consumers consider when purchasing a car. In this study, we develop a dummy with a shear-force sensor to evaluate seat comfort. The sensor has dimensions of 25 mm × 25 mm × 26 mm and is made of S45C. Electroless nickel plating is employed to coat its surface in order to prevent corrosion and oxidation. The proposed sensor is validated using a qualified load cell and shows high accuracy and precision (measurement range: -30-30 N; sensitivity: 0.1 N; linear relationship: R = 0.999; transverse sensitivity: <1%. The dummy is manufactured in compliance with the SAE standards (SAE J826 and incorporates shear sensors into its design. We measure the shear force under four driving conditions and at five different speeds using a sedan; results showed that the shear force increases with speed under all driving conditions. In the case of acceleration and deceleration, shear force significantly changes in the lower body of the dummy. During right and left turns, it significantly changes in the upper body of the dummy.

  10. Development of a shear force measurement dummy for seat comfort.

    Science.gov (United States)

    Kim, Seong Guk; Ko, Chang-Yong; Kim, Dong Hyun; Song, Ye Eun; Kang, Tae Uk; Ahn, Sungwoo; Lim, Dohyung; Kim, Han Sung

    2017-01-01

    Seat comfort is one of the main factors that consumers consider when purchasing a car. In this study, we develop a dummy with a shear-force sensor to evaluate seat comfort. The sensor has dimensions of 25 mm × 25 mm × 26 mm and is made of S45C. Electroless nickel plating is employed to coat its surface in order to prevent corrosion and oxidation. The proposed sensor is validated using a qualified load cell and shows high accuracy and precision (measurement range: -30-30 N; sensitivity: 0.1 N; linear relationship: R = 0.999; transverse sensitivity: <1%). The dummy is manufactured in compliance with the SAE standards (SAE J826) and incorporates shear sensors into its design. We measure the shear force under four driving conditions and at five different speeds using a sedan; results showed that the shear force increases with speed under all driving conditions. In the case of acceleration and deceleration, shear force significantly changes in the lower body of the dummy. During right and left turns, it significantly changes in the upper body of the dummy.

  11. 16 CFR 1505.50 - Stalled motor testing.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Stalled motor testing. 1505.50 Section 1505... USE BY CHILDREN Policies and Interpretations § 1505.50 Stalled motor testing. (a) § 1505.6(e)(4)(ii) requires that a motor-operated toy be tested with the motor stalled if the construction of the toy is such...

  12. Novel parallel plate condenser for single particle electrostatic force measurements in atomic force microscope

    KAUST Repository

    Kwek, Jin Wang

    2011-07-01

    A combination of small parallel plate condenser with Indium Tin Oxide (ITO) glass slides as electrodes and an atomic force microscope (AFM) is used to characterize the electrostatic behavior of single glass bead microparticles (105-150 μm) glued to the AFM cantilever. This novel setup allows measurements of the electrostatic forces acting on a particle in an applied electrical field to be performed in ambient air conditions. By varying the position of the microparticle between the electrodes and the strength of the applied electric field, the relative contributions of the particle net charge, induced and image charges were investigated. When the microparticle is positioned in the middle of the electrodes, the force acting on the microparticle was linear with the applied electric field and proportional to the microparticle net charge. At distances close to the bottom electrode, the force follows a parabolic relationship with the applied electric field reflecting the contributions of induced and image charges. The method can be used for the rapid evaluation of the charging and polarizability properties of the microparticle as well as an alternative to the conventional Faraday\\'s pail technique. © 2011 Elsevier B.V.

  13. What Effect Did General Order Number 1 and the Force Protection Measures Have on Task Force Eagle Operations in Bosnia During Implementation Force?

    National Research Council Canada - National Science Library

    Yates, William

    2002-01-01

    This thesis is a historical study to determine the effect General Order Number 1 and the Force Protection Measures had on Task Force Eagle operations during the deployment of the NATO Implementation...

  14. Diameter measurements of polystyrene particles with atomic force microscopy

    Science.gov (United States)

    Garnaes, J.

    2011-09-01

    The size of (nano) particles is a key parameter used in controlling their function. The particle size is also important in order to understand their physical and chemical properties and regulate their number in health and safety issues. In this work, the geometric diameters of polystyrene spheres of nominal diameter 100 nm are measured using atomic force microscopy. The measurements are based on the apex height and on the average distance between neighbouring spheres when they form a close-packed monolayer on a flat mica substrate. The most important influence parameters for the determination of the geometric diameter are the lateral air gaps and deformation of the spheres. The lateral air gaps are caused by significant size variations of the individual spheres, and a correction is calculated based on the simulation of packing of spheres. The deformation of the spheres is caused mainly by capillary forces acting when they are in contact with each other or with the mica substrate. Based on calculated capillary forces and the literature values of the elastic properties of the polystyrene and mica, the deformation is estimated to be 2 nm with a standard uncertainty of 2 nm. The geometric diameter of the polystyrene spheres was measured with a combined standard uncertainty of ≈3 nm. The measured vertical diameter of 92.3 nm and the certified mobility equivalent diameter measured by differential mobility analysis (DMA) are marginally consistent at a confidence level of 95%. However, the measured lateral geometric diameter was 98.9 nm and is in good agreement with DMA.

  15. The effect of alphacypermethrin-treated mesh protection against African horse sickness virus vectors on jet stall microclimate, clinical variables and faecal glucocorticoid metabolites of horses.

    Science.gov (United States)

    Page, Patrick; Ganswindt, Andre; Schoeman, Johan; Venter, Gert; Guthrie, Alan

    2017-09-09

    African horse sickness (AHS) is of importance to health and international trade in horses worldwide. During export from and transit through AHS endemic countries or zones, physical and chemical measures to protect horses from the vectors of AHS virus (AHSV) are recommended by the World Organization for Animal Health. Protection of containerized air transport systems for horses (jet stalls) with alphacypermethrin insecticide-treated high density polyethylene mesh is effective in reducing the Culicoides midge vector attack rate. In order to determine the effect of this mesh on jet stall ventilation and horse welfare under temperate climatic conditions, jet stall microclimate, clinical variables and faecal glucocorticoid metabolite (FGM) levels of 12 horses were monitored during overnight housing in either a treated or untreated stall in two blocks of a 2 × 3 randomized crossover design. Temperature difference between the treated stall and outside was significantly higher than the difference between the untreated stall and outside at 1/15 time points only (P = 0.045, r = 0.70). Relative humidity (RH) difference between the treated stall and outside did not differ from the untreated stall and outside. Temperature and RH in the treated stall were highly and significantly correlated with outside temperature (r = 0.96, P < 0.001) and RH (r = 0.95, P < 0.001), respectively. No significant differences were detected between rectal temperatures, pulse and respiratory rates of horses in the treated stall compared to the untreated stall. Mean FGM concentrations for horses housed in the treated stall peaked earlier (24 h) and at a higher concentration than horses housed in the untreated stall (48 h), but were not significantly different from baseline. No significant difference was detected in FGM concentrations when the treated and untreated stall groups were compared at individual time points up to 72 h after exiting the jet stall. Alphacypermethrin

  16. Simulation model of an active stall wind turbine controller

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, C.; Hansen, A.D.; Soerensen, P. [Risoe National Lab., Wind Energy Dept., Rosilde (Denmark); Blaabjerg, F. [Aalborg Univ., Inst. of Energy Technology (Denmark)

    2004-07-01

    This paper describes an active stall wind turbine controller. The objective is to develop a general model of an active stall controller in order to simulate the operation of grid connected active stall wind turbines. The active stall turbine concept and its control strategies are presented and evaluated on the basis of simulations. The presented controller is described for continuous operation under all wind speeds from start-up wind speed to shut doven wind speed. Due to its parametric implementation it is general i.e. it can represent different active stall wind turbine controllers and can be implemented in different simulation tools. (au)

  17. Measuring the greenhouse effect and radiative forcing through the atmosphere

    Science.gov (United States)

    Philipona, Rolf; Kräuchi, Andreas; Brocard, Emmanuel

    2013-04-01

    In spite of a large body of existing measurements of incoming shortwave solar radiation and outgoing longwave terrestrial radiation at the Earth's surface and at the top of the atmosphere, there are few observations documenting how radiation profiles change through the atmosphere - information that is necessary to fully quantify the greenhouse effect of the Earth's atmosphere. Using weather balloons and specific radiometer equipped radiosondes, we continuously measured shortwave and longwave radiation fluxes from the surface of the Earth up to altitudes of 35 kilometers in the upper stratosphere. Comparing radiation profiles from night measurements with different amounts of water vapor, we show evidence of large greenhouse forcing. We show, that under cloud free conditions, water vapor increases with Clausius-Clapeyron ( 7% / K), and longwave downward radiation at the surface increases by 8 Watts per square meter per Kelvin. The longwave net radiation however, shows a positive increase (downward) of 2.4 Watts per square meter and Kelvin at the surface, which decreases with height and shows a similar but negative increase (upward) at the tropopause. Hence, increased tropospheric water vapor increases longwave net radiation towards the ground and towards space, and produces a heating of 0.42 Kelvin per Watt per square meter at the surface. References: Philipona et al., 2012: Solar and thermal radiation profiles and radiative forcing measured through the atmosphere. Geophys. Res. Lett., 39, L13806, doi: 10.1029/2012GL052087.

  18. Tunisia: high fertility stalls development.

    Science.gov (United States)

    Barberis, M

    1985-01-01

    Despite government policy enacted in 1964 to reduce fertility in order to hasten socioeconomic progress, population pressures continue to impair development in Tunisia. The birth rate fell 20% over the last 2 decades, but this accomplishment has been outweighed by a 50% decline in mortality rates. As a result, the rate of natural population increase has remained relatively constant at 2.5%/year. The initial decline in fertility that followed introduction of the national family planning program appears to have reached a plateau, explained in part by the resurgence of conservatism and religious fundamentalism and the consequent emphasis on women's childbearing roles. Unemployment in rural areas has led to widespread migration and unemployment is as high as 20% in the nonagricultural sector. Many young Tunisians lack adequate educational preparation to enter the labor force; in 1982, 27% of new job entrants could not read or write. The government's plan to decentralize development to stabilize population and achieve equilibrium between regions has been thwarted by the pace of population growth and limited resources. The rural regions where population is increasing the fastest are also the most difficult to reach with family planning programs. On the other hand, there have been some successes in this area when services have been adapted to the lifestyle and traditions of those in these isolated rural villages.

  19. The FFA dynamic stall model. The Beddoes-Leishman dynamic stall model modified for lead-lag oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerck, A. [FFA, The Aeronautical Research Institute of Sweden, Bromma (Sweden)

    1997-08-01

    For calculations of the dynamics of wind turbines the inclusion of a dynamic stall model is necessary in order to obtain reliable results at high winds. For blade vibrations in the lead-lag motion the velocity relative to the blade will vary in time. In the present paper modifications to the Beddoes-Leishman model is presented in order to improve the model for calculations of cases with a varying relative velocity. Comparisons with measurement are also shown and the influence on the calculated aerodynamic damping by the modifications are investigated. (au)

  20. Numerical Investigations of Dynamic Stall Control

    Directory of Open Access Journals (Sweden)

    Florin FRUNZULICA

    2014-04-01

    Full Text Available In this paper we investigated numerically the dynamic stall phenomenon and the possibilities to control it, with application to vertical axis wind turbines (for urban users. The Phenomenon appear at low tip speed ratio (TSR<4 and it has a great impact on structural integrity of the wind turbine and power performances. For this reason we performed a computational study of dynamic stall around NACA 0012 airfoil in pitching motion at relative low Reynolds number (105. Also, we performed the same analysis for four flow control methods: two passive (Gurney flap and slot and two active (blowing jet on the rounded trailing edge and synthetic jet periodically activated. The Results are compared to those of an existing experimental case test.

  1. A.C. Plasma Anemometer for Axial Compressor Stall Warning

    Science.gov (United States)

    Matlis, Eric; Cameron, Joshua; Morris, Scott; Corke, Thomas

    2007-11-01

    Compressor sections of turbo jet engines are subject to stall and surge as a result of flow instabilities that occur upstream of the compressor rotor. One of the instability modes that contributes to compressor surge is the so-called `spike' mode of stall inception. It has been shown that this mode of instability can be predicted before onset by performing real-time statistical auto-correlation measurements of the blade-passing pressure characteristic at the mid-chord location of the rotor. These measurements are performed with pressure sensors or hot-wires that are too fragile for a full-scale compressor. We have developed a sensor that can survive the vibration and temperatures of a full-scale rig while providing the bandwidth necessary to resolve the blade passage signature required by this coherence technique. This sensor, called the Plasma Anemometer, provides high-bandwith point measurements of velocity or pressure fluctuations with unparalleled mechanical robustness and resistance to vibration and thermal effects.

  2. Dynamic Stall Control Using Plasma Actuators

    Science.gov (United States)

    Webb, Nathan; Singhal, Achal; Castaneda, David; Samimy, Mo

    2017-11-01

    Dynamic stall occurs in many applications, including sharp maneuvers of fixed wing aircraft, wind turbines, and rotorcraft and produces large unsteady aerodynamic loads that can lead to flutter and mechanical failure. This work uses flow control to reduce the unsteady loads by excitation of instabilities in the shear layer over the separated region using nanosecond pulse driven dielectric barrier discharge (NS-DBD) plasma actuators. These actuators have been shown to effectively delay or mitigate static stall. A wide range of flow parameters were explored in the current work: Reynolds number (Re = 167,000 to 500,000), reduced frequency (k = 0.025 to 0.075), and excitation Strouhal number (Ste = 0 to 10). Based on the results, three major conclusions were drawn: (a) Low Strouhal number excitation (Ste eliminated the dynamic stall vortex (DSV), thereby dramatically reducing the unsteady loading. The decrease in the strength of the DSV is achieved by the formation of shear layer coherent structures that bleed the leading-edge vorticity prior to the ejection of the DSV.

  3. Preparation of stable silica surfaces for surface forces measurement

    Science.gov (United States)

    Ren, Huai-Yin; Mizukami, Masashi; Kurihara, Kazue

    2017-09-01

    A surface forces apparatus (SFA) measures the forces between two surfaces as a function of the surface separation distance. It is regarded as an essential tool for studying the interactions between two surfaces. However, sample surfaces used for the conventional SFA measurements have been mostly limited to thin (ca. 2-3 μm) micas, which are coated with silver layers (ca. 50 nm) on their back, due to the requirement of the distance determination by transmission mode optical interferometry called FECO (fringes of equal chromatic order). The FECO method has the advantage of determining the absolute distance, so it should be important to increase the availability of samples other than mica, which is chemically nonreactive and also requires significant efforts for cleaving. Recently, silica sheets have been occasionally used in place of mica, which increases the possibility of surface modification. However, in this case, the silver layer side of the sheet is glued on a cylindrical quartz disc using epoxy resin, which is not stable in organic solvents and can be easily swollen or dissolved. The preparation of substrates more stable under severe conditions, such as in organic solvents, is necessary for extending application of the measurement. In this study, we report an easy method for preparing stable silica layers of ca. 2 μm in thickness deposited on gold layers (41 nm)/silica discs by sputtering, then annealed to enhance the stability. The obtained silica layers were stable and showed no swelling in organic solvents such as ethanol and toluene.

  4. An archival analysis of stall warning system effectiveness during airborne icing encounters

    Science.gov (United States)

    Maris, John Michael

    Monitoring (APM) systems that directly measure the boundary layer airflow adjacent to the affected aerodynamic surfaces, independent of other aircraft stall protection, air data, and AoA systems. In addition to investigating APM systems, measures should also be taken to include the CIRB phenomenon in aircrew training to better prepare crews to cope with airborne icing encounters. The SDT/BLR technique would allow the forecast gains from these improved systems and training processes to be evaluated objectively and quantitatively. The SDT/BLR model developed for this study has broad application outside the realm of airborne icing. The SDT technique has been extensively validated by prior research, and the BLR is a very robust multivariate technique. Combined, they could be applied to evaluate high order constructs (such as stall awareness for this study), in complex and dynamic environments. The union of SDT and BLR reduces the modeling complexities for each variable into the four binary SDT categories of Hit, Miss, False Alarm, and Correct Rejection, which is the optimum format for the BLR. Despite this reductionist approach to complex situations, the method has demonstrated very high statistical and practical significance, as well as excellent predictive power, when applied to the airborne icing scenario.

  5. Investigation of the wind climate in connection with double-stall on wind turbines in Tarifa[Spain]; Undersoegelse af vindklima i forbindelse med dobbelt-stall paa vindmoeller i Tarifa

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, T. [ELSAMPROJEKT A/S, Fredericia, (Denmark); Jensen, L.E. [LM Glasfiber A/S, Lunderskov (Denmark)

    2000-08-01

    This project has compiled data to allow the Danish manufacturers of wind turbines and blades to improve their knowledge of double stall. On the basis of the double stall difficulties different types of turbines using different makes of blades have encountered in the Tarifa area in Southern Spain, meteorological parameters and production data from two turbines have been measured for a local site. Part of the acquired data have been analysed to reach an understanding of why double stall occurs. The analysis strongly suggests that a change in power level due to double stall can be a result of several external factors: (1) Rain cleaning the blades. (2) A more or less random change in the wind speed components uv, or w, which in some cases can affect a - probably - fairly thick boundary layer. (3) A change in the high frequency turbulence where the vortex impact is too insignificant to affect an - almost - randomly - thick boundary layer. (au)

  6. Measurements of electrostatic double layer potentials with atomic force microscopy

    Science.gov (United States)

    Giamberardino, Jason

    The aim of this thesis is to provide a thorough description of the development of theory and experiment pertaining to the electrostatic double layer (EDL) in aqueous electrolytic systems. The EDL is an important physical element of many systems and its behavior has been of interest to scientists for many decades. Because many areas of science and engineering move to test, build, and understand systems at smaller and smaller scales, this work focuses on nanoscopic experimental investigations of the EDL. In that vein, atomic force microscopy (AFM) will be introduced and discussed as a tool for making high spatial resolution measurements of the solid-liquid interface, culminating in a description of the development of a method for completely characterizing the EDL. This thesis first explores, in a semi-historical fashion, the development of the various models and theories that are used to describe the electrostatic double layer. Later, various experimental techniques and ideas are addressed as ways to make measurements of interesting characteristics of the EDL. Finally, a newly developed approach to measuring the EDL system with AFM is introduced. This approach relies on both implementation of existing theoretical models with slight modifications as well as a unique experimental measurement scheme. The model proposed clears up previous ambiguities in definitions of various parameters pertaining to measurements of the EDL and also can be used to fully characterize the system in a way not yet demonstrated.

  7. Force measuring optical tweezers system for long time measurements of P pili stability

    Science.gov (United States)

    Andersson, Magnus; Fällman, Erik; Uhlin, Bernt Eric; Axner, Ove

    2006-02-01

    A force-measuring optical tweezers instrumentation and long time measurements of the elongation and retraction of bacterial fimbriae from Uropathogenic E. coli (UPEC) under strain are presented. The instrumentation is presented in some detail. Special emphasis is given to measures taken to reduce the influence of noise and drifts in the system and from the surrounding, which makes long term force measurements possible. Individual P pili from UPEC bacteria were used as a biological model system for repetitive unfolding and refolding cycles of bacterial fimbriae under equilibrium conditions. P pili have evolved into a three-dimensional helix-like structure, the PapA rod, that can be successively and significantly elongated and/or unfolded when exposed to external forces. The instrumentation is used for characterization of the force-vs.-elongation response of the PapA rod of individual P pili, with emphasis on the long time stability of the forced unfolding and refolding of the helical structure of the PapA rod. The results show that the PapA rod is capable of withstanding extensive strain, leading to a complete unfolding of the helical structure, repetitive times during the life cycle of a bacterium without any noticeable alteration of the mechanical properties of the P pili. This function is believed to be importance for UPEC bacteria in vivo since it provides a close contact to a host cell (which is an initial step of invasion) despite urine cleaning attempts.

  8. Multilayer Steel Materials Deformation Resistance and Roll Force Measurement

    Directory of Open Access Journals (Sweden)

    A. G. Kolesnikov

    2014-01-01

    Full Text Available To create new types of cars, raise their reliability, gain operational life, and decrease in metal consumption of products it is necessary to improve mechanical, physical, and also special properties of the constructional materials applied in mechanical engineering. Presently, there are intensive researches and developments under way to create materials with ultrafine-grained structure (the sizes of grains in their crystal lattice make less than 1 micron in one of the measurements.BMSTU developed a manufacturing technology of multilayer steel sheets with steady ultrafine-grained structure based on the multiple hot rolling of billet as a composition consisting of the alternating metal sheets. A principled condition for implementation of such technology is existence of different crystallographic modifications in the adjoining sheets of the composition at specified temperature of rolling.Power parameters of rolling are important technical characteristics of the process. Usually, to determine a deformation resistance value when rolling the diverse multilayer materials, is used the actual resistance value averaging in relation to the components of the composition. The aim of this work is a comparative analysis of known calculated dependences with experimental data when rolling the 100-layer samples. Objects of research were the 100-layer compositions based on the alternating layers of steel 08H18N10 and U8.Experimental samples represented the vacuumized capsules with height, width, and length of 53 mm x 53 mm x 200 mm, respectively, in which there were the 100-layer packs from sheets, each of 0.5 mm, based on the composition of steels (U8+08H18N10. Rolling was made on the double-high mill with rolls of 160 mm in diameter during 19 passes to the thickness of 7 mm with the speed of 0,1 m/s. Relative sinking in each pass was accepted to be equal 10±2,5%. Rolling forces were measured by the strain-gauging method using the measuring cells, located under

  9. Prototype to measure bracket debonding force in vivo

    Directory of Open Access Journals (Sweden)

    Jéssika Lagni Tonus

    Full Text Available ABSTRACT Introduction: Material biodegradation that occurs in the mouth may interfere in the bonding strength between the bracket and the enamel, causing lower bond strength values in vivo, in comparison with in vitro studies. Objective: To develop a prototype to measure bracket debonding force in vivo and to evaluate, in vitro, the bond strength obtained with the prototype. Methods: A original plier (3M Unitek was modified by adding one strain gauge directly connected to its claw. An electronic circuit performed the reading of the strain gauge, and the software installed in a computer recorded the values of the bracket debonding force, in kgf. Orthodontic brackets were bonded to the facial surface of 30 bovine incisors with adhesive materials. In Group 1 (n = 15, debonding was carried out with the prototype, while tensile bond strength testing was performed in Group 2 (n = 15. A universal testing machine was used for the second group. The adhesive remnant index (ARI was recorded. Results: According to Student’s t test (α = 0.05, Group 1 (2.96 MPa and Group 2 (3.08 MPa were not significantly different. ARI score of 3 was predominant in the two groups. Conclusion: The prototype proved to be reliable for obtaining in vivo bond strength values for orthodontic brackets.

  10. The validity of plantarflexor strength measures obtained through hand-held dynamometry measurements of force.

    Science.gov (United States)

    Marmon, Adam R; Pozzi, Federico; Alnahdi, Ali H; Zeni, Joseph A

    2013-12-01

    Hand-held dynamometers are commonly used to assess plantarflexor strength during rehabilitation. The purpose of this study was to determine the concurrent validity of measuring plantarflexion force using a hand-held dynamometer (HHD) as compared to an electromechanical dynamometer as the gold standard. The hypothesis was that plantarflexor forces obtained using a hand-held dynamometer would not show absolute agreement with a criterion standard. Concurrent validity assessment for a diagnostic strength testing device. Institutional clinic and research laboratory. Volunteer sample of healthy university students (N=20, 10 women, 10 men; 25.9±4.1 years). Maximal plantarflexion strength was measured using both a HHD and an electromechanical dynamometer (EMD) as a criterion measure. Plantarflexor force measures with the HHD were significantly different (p<0.01) and not correlated with plantarflexor forces measured using the EMD for either limb (R(2) ≤ 0.09). Plantarflexor strength measurements acquired using HHD are different from those acquired using an EMD and are likely influenced by the strength of the examiner. Prospective cohort study, level II.

  11. Force

    CERN Document Server

    Graybill, George

    2007-01-01

    Forces are at work all around us. Discover what a force is, and different kinds of forces that work on contact and at a distance. We use simple language and vocabulary to make this invisible world easy for students to ""see"" and understand. Examine how forces ""add up"" to create the total force on an object, and reinforce concepts and extend learning with sample problems.

  12. Sensor Prototype to Evaluate the Contact Force in Measuring with Coordinate Measuring Arms

    Directory of Open Access Journals (Sweden)

    Eduardo Cuesta

    2015-06-01

    Full Text Available This paper describes the design, development and evaluation tests of an integrated force sensor prototype for portable Coordinate Measuring Arms (CMAs or AACMMs. The development is based on the use of strain gauges located on the surface of the CMAs’ hard probe. The strain gauges as well as their cables and connectors have been protected with a custom case, made by Additive Manufacturing techniques (Polyjet 3D. The same method has been selected to manufacture an ergonomic handle that includes trigger mechanics and the electronic components required for synchronizing the trigger signal when probing occurs. The paper also describes the monitoring software that reads the signals in real time, the calibration procedure of the prototype and the validation tests oriented towards increasing knowledge of the forces employed in manual probing. Several experiments read and record the force in real time comparing different ways of probing (discontinuous and continuous contact and measuring different types of geometric features, from single planes to exterior cylinders, cones, or spheres, through interior features. The probing force is separated into two components allowing the influence of these strategies in probe deformation to be known. The final goal of this research is to improve the probing technique, for example by using an operator training programme, allowing extra-force peaks and bad contacts to be minimized or just to avoid bad measurements.

  13. Measurement of Forces and Moments Transmitted to the Residual Limb

    Science.gov (United States)

    2010-10-01

    the floor, but only changes the length of the heel and toe lever arms. Additional evidence statements and the associated levels of confidence...Interface Biomechanical Correlate Force X Anterior-Posterior Force Perpendicular to Pylon Anterior-Posterior Force on Limb Braking and Propulsion...heel lever arm. The other significant changes were all less than 10% of the absolute values of the forces and moments. Significant differences in

  14. Effect of summer grazing on welfare of dairy cows reared in mountain tie-stall barns

    Directory of Open Access Journals (Sweden)

    Simonetta Dovier

    2010-09-01

    Full Text Available Traditional mountain farms have an important economic, social and environmental role. The Alps management system for dairy cows consists of animals kept indoors from autumn to spring, mostly in tie-stalls, and moved to mountain pasture in summer. The aim of our study was to assess the effect of mountain summer grazing on the welfare of dairy cows housed in tie-stall barns. Twenty-four farms were considered. In twelve of them, animals were reared in tie-stalls and moved to mountain pasture for three months in summer; they were visited three times: (i four weeks before grazing during the indoor period in the stall; (ii about three weeks after the start of grazing; and (iii in the stall, in autumn, at least three weeks after returning from grazing. The other twelve farms kept the animals in tie-stalls all year; they were visited once in autumn. Data were collected following a protocol that considers animal-based measures and structure information on the basis of Quality Welfare Consortium® indications. Data allowed the calculation of both the Animal Needs Index score (ANI 35L and an overall assessment of the cows’ welfare obtained from three general aspects: housing, animal’s physical condition, and animal’s behaviour. Summer grazing had a significant positive effect on injuries, lameness and animal’s rising duration but a negative effect on faeces consistency. Moreover, a reduction of tongue playing was observed. The ANI 35L and the overall assessment did not show significant differences linked to summer grazing, which tended to have a positive but temporary effect on animal behaviour.

  15. EVALUATION OF STYRENE EMISSIONS FROM A SHOWER STALL/BATHTUB MANUFACTURING FACILITY

    Science.gov (United States)

    The report gives results of emissions measurements carried out at a representative facility (Eljer Plumbingware in Wilson, NC) that manufactures polyester-resin-reinforced shower stalls and bathtubs by spraying styrene-based resins onto molds in vented, open, spray booths. Styren...

  16. Forces due to surface water measured by force microscopy. Consequences for anchoring biological cells to surfaces

    International Nuclear Information System (INIS)

    Schilcher, K.

    1997-05-01

    Interaction forces in 'Scanning Force Microscopy' (SFM). Force curves revealed exponentially decaying, attractive forces between silicon tip and silicon sample in aqueous media. Replacing the silicon sample by a sheet of mica, the interaction forces had both, an attractive and a repulsive component. Addition of salts generally reduced the forces. At 500 mM salt concentration, the attractive force became quantized with a residual force value of 23 pN. The attractive force is attributed to the gain in energy of water molecules which are released from surface water into free water during tip-sample approach. This conclusion is supported by a statistical model. The repulsive force contribution in the case of mica, is caused by hydration forces due to the spatial organization of crystalline water on the mica surface. Anchoring of biological cells. Molecular resolution of cell surfaces by SFM requires cell anchoring without interference with cell physiology. For this a novel strategy, 'hydrophobic anchoring' was designed. It avoids strong attractive forces between cell and by using a flexible spacer molecule. It establishes anchoring by a lipid (bound to the spacer), which weakly interacts with the hydrophobic core of the cell membrane. The method was subjected to tests using RBL-2H3, CH0 αβ and HEK-293 cells. The strength of cell anchoring was assayed by shear forces. In all cases 'hydrophobic anchoring' via a spacer caused elective anchoring much beyond controls. Such cell anchoring was employed for the imaging of RBL-2H3 cells by SFM. Images showed considerable finer details than images of loosely adsorbed cells. With about 50 rim resolution, SFM succeeded in imaging microvilli, filopodia, single cytoskeletal fibers (microtubules, microfilaments) and vesicles. In addition, as a consequence of cell stimulation upon ionomycin treatment, lamellae formation and the appearance of secretory granules on top of them were observed which indicates the viability of anchored

  17. An inductive sensor for real-time measurement of plantar normal and shear forces distribution.

    Science.gov (United States)

    Du, Li; Zhu, Xiaoliang; Zhe, Jiang

    2015-05-01

    The objective of this paper is to demonstrate a multiplexed inductive force sensor for simultaneously measuring normal force and shear forces on a foot. The sensor measures the normal force and shear forces by monitoring the inductance changes of three planar sensing coils. Resonance frequency division multiplexing was applied to signals from the multiple sensing coils, making it feasible to simultaneously measure the three forces (normal force, shear forces in x- and y-axis) on a foot using only one set of measurement electronics with high sensitivity and resolution. The testing results of the prototype sensor have shown that the sensor is capable of measuring normal force ranging from 0 to 800 N and shear forces ranging from 0 to 130 N in real time. With its high resolution, high sensitivity, and the capability of monitoring forces at different positions of a foot simultaneously, this sensor can be potentially used for real-time measurement of plantar normal force and shear forces distribution on diabetes patient's foot. Real-time monitoring of the normal force and shear forces on diabetes patient's foot can provide useful information for physicians and diabetes patients to take actions in preventing foot ulceration.

  18. Aerosol Direct Radiative Forcing and Forcing Efficiencies at Surface from the shortwave Irradiance Measurements in Abu Dhabi, UAE

    Science.gov (United States)

    Beegum S, N.; Ben Romdhane, H.; Ghedira, H.

    2013-12-01

    Atmospheric aerosols are known to affect the radiation balance of the Earth-Atmospheric system directly by scattering and absorbing the solar and terrestrial radiation, and indirectly by affecting the lifetime and albedo of the clouds. Continuous and simultaneous measurements of short wave global irradiance in combination with synchronous spectral aerosol optical depth (AOD) measurements (from 340 nm to 1640 nm in 8 channels), for a period of 1 year from June 2012 to May 2013, were used for the determination of the surface direct aerosol radiative forcing and forcing efficiencies under cloud free conditions in Abu Dhabi (24.42°N, 54.61o E, 7m MSL), a coastal location in United Arab Emirates (UAE) in the Arabian Peninsula. The Rotating Shadow band Pyranometer (RSP, LI-COR) was used for the irradiance measurements (in the spectral region 400-1100 nm), whereas the AOD measurements were carried out using CIMEL Sunphotometer (CE 318-2, under AERONET program). The differential method, which is neither sensitive to calibration uncertainties nor model assumptions, has been employed for estimating forcing efficiencies from the changes in the measured fluxes. The forcing efficiency, which quantifies the net change in irradiance per unit change in AOD, is an appropriate parameter for the characterization of the aerosol radiative effects even if the microphysical and optical properties of the aerosols are not completely understood. The corresponding forcing values were estimated from the forcing efficiencies. The estimated radiative forcing and forcing efficiencies exhibited strong monthly variations. The forcing efficiencies (absolute magnitudes) were highest during March, and showed continuous decrease thereafter to reach the lowest value during September. In contrast, the forcing followed a slightly different pattern of variability, with the highest solar dimming during April ( -60 W m-2) and the minimum during February ( -20 W m-2). The results indicate that the aerosol

  19. Measuring Resilience to Operational Stress in Canadian Armed Forces Personnel.

    Science.gov (United States)

    Hellewell, Sarah C; Cernak, Ibolja

    2018-02-01

    Adaptability to stress is governed by innate resilience, comprised of complex neuroendocrine and immune mechanisms alongside inherited or learned behavioral traits. Based on their capacity to adapt, some people thrive in stressful situations, whereas others experience maladaptation. In our study, we used state-of-the-art tools to assess the resilience level in individuals, as well as their susceptibility to developing military stress-induced behavioral and cognitive deficits. To address this complex question, we tested Canadian Armed Forces (CAF) personnel in three distinct stress environments (baselines): during predeployment training, deployment in Afghanistan, and readjustment upon return to Canada. Our comprehensive outcome measures included psychometric tests, saliva biomarkers, and computerized cognitive tests that used the Cambridge Neuropsychological Automated Test Battery. Participants were categorized based on initial biomarker measurements as being at low-, moderate-, or high stress-maladaptation risk. Biomarkers showed significant changes (ds = 0.56 to 2.44) between baselines, calculated as "delta" changes. Participants at low stress-maladaptation risk demonstrated minimal changes, whereas those at high stress-maladaptation risk showed significant biomarker variations. The psychometric patterns and cognitive functions were likewise affected across baselines, suggesting that the panel of saliva stress biomarkers could be a useful tool for determining the risk of stress maladaptation that can cause psychological and cognitive decline. Copyright © 2018 International Society for Traumatic Stress Studies.

  20. A relationship between three-dimensional surface hydration structures and force distribution measured by atomic force microscopy

    Science.gov (United States)

    Miyazawa, Keisuke; Kobayashi, Naritaka; Watkins, Matthew; Shluger, Alexander L.; Amano, Ken-Ichi; Fukuma, Takeshi

    2016-03-01

    Hydration plays important roles in various solid-liquid interfacial phenomena. Very recently, three-dimensional scanning force microscopy (3D-SFM) has been proposed as a tool to visualise solvated surfaces and their hydration structures with lateral and vertical (sub) molecular resolution. However, the relationship between the 3D force map obtained and the equilibrium water density, ρ(r), distribution above the surface remains an open question. Here, we investigate this relationship at an interface of an inorganic mineral, fluorite, and water. The force maps measured in pure water are directly compared to force maps generated using the solvent tip approximation (STA) model and from explicit molecular dynamics simulations. The results show that the simulated STA force map describes the major features of the experimentally obtained force image. The agreement between the STA data and the experiment establishes the correspondence between the water density used as an input to the STA model and the experimental hydration structure and thus provides a tool to bridge the experimental force data and atomistic solvation structures. Further applications of this method should improve the accuracy and reliability of both interpretation of 3D-SFM force maps and atomistic simulations in a wide range of solid-liquid interfacial phenomena.Hydration plays important roles in various solid-liquid interfacial phenomena. Very recently, three-dimensional scanning force microscopy (3D-SFM) has been proposed as a tool to visualise solvated surfaces and their hydration structures with lateral and vertical (sub) molecular resolution. However, the relationship between the 3D force map obtained and the equilibrium water density, ρ(r), distribution above the surface remains an open question. Here, we investigate this relationship at an interface of an inorganic mineral, fluorite, and water. The force maps measured in pure water are directly compared to force maps generated using the solvent

  1. Dynamic and static measurement of interfacial capillary forces by a hybrid nanomechanical system.

    Science.gov (United States)

    Kwon, Soyoung; Stambaugh, Corey; Kim, Bongsu; An, Sangmin; Jhe, Wonho

    2014-05-21

    The forces resulting from the presence of interfacial liquids have mechanical importance under ambient conditions. For holistic understanding of the liquid-mediated interactions, we combine the force-gradient sensitivity of an atomic force microscope (AFM) with the force measuring capability of a micro-electromechanical force sensor. Simultaneous measurement of the viscoelasticity of the water nanomeniscus and the absolute capillary force shows excellent agreement in its entire length, which justifies the validity of the widely used AFM results. We apply the hybrid system to measure the stress and strain, whose hysteretic response provides the intrinsic quantities of the liquid nanocluster.

  2. Exploring Heat Stress Relief Measures among the Australian Labour Force.

    Science.gov (United States)

    Zander, Kerstin K; Mathew, Supriya; Garnett, Stephen T

    2018-02-26

    Australia experiences frequent heat waves and generally high average temperatures throughout the continent with substantial impacts on human health and the economy. People adapt to heat by adopting various relief measures in their daily lives including changing their behaviour. Many labour intensive outdoor industries implement standards for heat stress management for their workforce. However, little is known about how people cope with heat at their workplaces apart from studies targeting some specific industries where labourers are exposed to extreme heat. Here, we analysed responses from 1719 people in the Australian labour force to self-reported heat stress and associated coping mechanisms. Three quarters of respondents experienced heat stress at their workplace with fatigue and headache being the two most frequently stated symptoms. Almost all of those who were affected by heat would hydrate (88%), 67% would cool, and 44% would rest as a strategy for coping with heat. About 10% intended to change their jobs because of heat stress in the workplace. We found differences in heat relief measures across gender, education, health, level of physical intensity of job, and time spent working outside. People working in jobs that were not very demanding physically were more likely to choose cooling down as a relief measure, while those in labour intensive jobs and jobs that required considerable time outside were more likely to rest. This has potential consequences for their productivity and work schedules. Heat affects work in Australia in many types of industry with impact dependent on workforce acclimatisation, yet public awareness and work relief plans are often limited to outdoor and labour intensive industries. Industries and various levels of government in all sectors need to implement standards for heat management specific to climate zones to help people cope better with high temperatures as well as plan strategies in anticipation of projected temperature

  3. Exploring Heat Stress Relief Measures among the Australian Labour Force

    Directory of Open Access Journals (Sweden)

    Kerstin K. Zander

    2018-02-01

    Full Text Available Australia experiences frequent heat waves and generally high average temperatures throughout the continent with substantial impacts on human health and the economy. People adapt to heat by adopting various relief measures in their daily lives including changing their behaviour. Many labour intensive outdoor industries implement standards for heat stress management for their workforce. However, little is known about how people cope with heat at their workplaces apart from studies targeting some specific industries where labourers are exposed to extreme heat. Here, we analysed responses from 1719 people in the Australian labour force to self-reported heat stress and associated coping mechanisms. Three quarters of respondents experienced heat stress at their workplace with fatigue and headache being the two most frequently stated symptoms. Almost all of those who were affected by heat would hydrate (88%, 67% would cool, and 44% would rest as a strategy for coping with heat. About 10% intended to change their jobs because of heat stress in the workplace. We found differences in heat relief measures across gender, education, health, level of physical intensity of job, and time spent working outside. People working in jobs that were not very demanding physically were more likely to choose cooling down as a relief measure, while those in labour intensive jobs and jobs that required considerable time outside were more likely to rest. This has potential consequences for their productivity and work schedules. Heat affects work in Australia in many types of industry with impact dependent on workforce acclimatisation, yet public awareness and work relief plans are often limited to outdoor and labour intensive industries. Industries and various levels of government in all sectors need to implement standards for heat management specific to climate zones to help people cope better with high temperatures as well as plan strategies in anticipation of projected

  4. 14 CFR 23.201 - Wings level stall.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Wings level stall. 23.201 Section 23.201 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS.... Starting from a speed at least 10 knots above the stall speed, the elevator control must be pulled back so...

  5. 14 CFR 33.65 - Surge and stall characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Surge and stall characteristics. 33.65 Section 33.65 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... stall characteristics. When the engine is operated in accordance with operating instructions required by...

  6. Compressible dynamic stall vorticity flux control using a dynamic ...

    Indian Academy of Sciences (India)

    management of its unsteady vorticity using a variable droop leading edge (VDLE) airfoil. Through ... the pressure gradient term for the dynamic stall conditions encountered by a helicopter-rotor retreating blade. Thus ... This paper discusses control of compressible dynamic stall using the novel idea of variable droop leading ...

  7. Large Scale Security Force Assistance: A Measured Approach

    Science.gov (United States)

    2011-02-17

    Military Assistance Training Advisory ( MATA ) course. The program of instruction (POI) for MATA evolved over time to reflect the ever changing environment...Force Assistance, v. 23 Ibid. 24 Robert D. Ramsey III, Advising Indigenous Forces: American Advisors in Korea, Vietnam, and El Salvador , (Fort

  8. Accurate measurement of microscopic forces and torques using optical tweezers

    Directory of Open Access Journals (Sweden)

    Andrew Forbes

    2011-09-01

    Full Text Available It is now well known that matter may be trapped by optical fields with high intensity gradients. Once trapped, it is then possible to manipulate microscopic particles using such optical fields, in so-called optical tweezers. Such optical trapping and tweezing systems have found widespread application across diverse fields in science, from applied biology to fundamental physics. In this article we outline the design and construction of an optical trapping and tweezing system, and show how the resulting interaction of the laser light with microscopic particles may be understood in terms of the transfer of linear and angular momentum of light. We demonstrate experimentally the use of our optical tweezing configuration for the measurement of microscopic forces and torques. In particular, we make use of digital holography to create so-called vortex laser beams, capable of transferring orbital angular momentum to particles. The use of such novel laser beams in an optical trapping and tweezing set-up allows for the control of biological species at the single-cell level.

  9. A verification of quantum field theory – measurement of Casimir force

    Indian Academy of Sciences (India)

    Abstract. Here we review our work on measurement of the Casimir force between a large alu- minum coated a sphere and flat plate using an atomic force microscope. The average statistical pre- cision is 1% of the force measured at the closest separation. We have also shown nontrival boundary dependence of the Casimir ...

  10. A Beddoes-Leishman type dynamic stall model in state-space and indicial formulations

    DEFF Research Database (Denmark)

    Hansen, M.H.; Gaunaa, Mac; Aagaard Madsen, Helge

    2004-01-01

    This report contains a description of a Beddoes-Leishman type dynamic stall model in both a state-space and an indicial function formulation. The model predicts the unsteady aerodynamic forces and moment on an airfoil section undergoing arbitrary motionin heave, lead-lag, and pitch. The model...... features, such as overshoot of the lift, in the stall region. The linearized model is shown to give identicalresults to the full model for small amplitude oscillations. Furthermore, it is shown that the response of finite thichkness airfoils can be reproduced to a high accuracy by the use of specific...... is carried out by comparing the response of the model with inviscid solutions and observing the general behavior of the model using known airfoil data as input. Theproposed dynamic model gives results identical to inviscid solutions within the attached-flow region; and it exhibits the expected dynamic...

  11. Theoretical analysis of transcription process with polymerase stalling

    Science.gov (United States)

    Li, Jingwei; Zhang, Yunxin

    2015-05-01

    Experimental evidence shows that in gene transcription RNA polymerase has the possibility to be stalled at a certain position of the transcription template. This may be due to the template damage or protein barriers. Once stalled, polymerase may backtrack along the template to the previous nucleotide to wait for the repair of the damaged site, simply bypass the barrier or damaged site and consequently synthesize an incorrect messenger RNA, or degrade and detach from the template. Thus, the effective transcription rate (the rate to synthesize correct product mRNA) and the transcription effectiveness (the ratio of the effective transcription rate to the effective transcription initiation rate) are both influenced by polymerase stalling events. So far, no theoretical model has been given to discuss the gene transcription process including polymerase stalling. In this study, based on the totally asymmetric simple exclusion process, the transcription process including polymerase stalling is analyzed theoretically. The dependence of the effective transcription rate, effective transcription initiation rate, and transcription effectiveness on the transcription initiation rate, termination rate, as well as the backtracking rate, bypass rate, and detachment (degradation) rate when stalling, are discussed in detail. The results showed that backtracking restart after polymerase stalling is an ideal mechanism to increase both the effective transcription rate and the transcription effectiveness. Without backtracking, detachment of stalled polymerase can also help to increase the effective transcription rate and transcription effectiveness. Generally, the increase of the bypass rate of the stalled polymerase will lead to the decrease of the effective transcription rate and transcription effectiveness. However, when both detachment rate and backtracking rate of the stalled polymerase vanish, the effective transcription rate may also be increased by the bypass mechanism.

  12. A verification of quantum field theory – measurement of Casimir force

    Indian Academy of Sciences (India)

    : F = &z where & is the force constant and z is the cantilever deflection. The cantilever is calibrated and the residual potential difference between the grounded sphere and plate is measured using the electrostatic force between them. The detail ...

  13. A measurement of the hysteresis loop in force-spectroscopy curves using a tuning-fork atomic force microscope

    Directory of Open Access Journals (Sweden)

    Manfred Lange

    2012-03-01

    Full Text Available Measurements of the frequency shift versus distance in noncontact atomic force microscopy (NC-AFM allow measurements of the force gradient between the oscillating tip and a surface (force-spectroscopy measurements. When nonconservative forces act between the tip apex and the surface the oscillation amplitude is damped. The dissipation is caused by bistabilities in the potential energy surface of the tip–sample system, and the process can be understood as a hysteresis of forces between approach and retraction of the tip. In this paper, we present the direct measurement of the whole hysteresis loop in force-spectroscopy curves at 77 K on the PTCDA/Ag/Si(111 √3 × √3 surface by means of a tuning-fork-based NC-AFM with an oscillation amplitude smaller than the distance range of the hysteresis loop. The hysteresis effect is caused by the making and breaking of a bond between PTCDA molecules on the surface and a PTCDA molecule at the tip. The corresponding energy loss was determined to be 0.57 eV by evaluation of the force–distance curves upon approach and retraction. Furthermore, a second dissipation process was identified through the damping of the oscillation while the molecule on the tip is in contact with the surface. This dissipation process occurs mainly during the retraction of the tip. It reaches a maximum value of about 0.22 eV/cycle.

  14. Thermophoretic forces on DNA measured with a single-molecule spring balance

    DEFF Research Database (Denmark)

    Pedersen, Jonas Nyvold; Lüscher, Christopher James; Marie, Rodolphe

    2014-01-01

    of the thermophoretic force in a static configuration finds forces up to 130 fN. This is eleven times stronger than the force experienced by the same molecule in the same thermal gradient in bulk, where the molecule shields itself. Our stronger forces stretch the middle of the molecule up to 80% of its contour length......We stretch a single DNA molecule with thermophoretic forces and measure these forces with a spring balance: the DNA molecule itself. It is an entropic spring which we calibrate, using as a benchmark its Brownian motion in the nanochannel that contains and prestretches it. This direct measurement...

  15. Physics of Prestall Propagating Disturbances in Axial Compressors and Their Potential as a Stall Warning Indicator

    Directory of Open Access Journals (Sweden)

    Mario Eck

    2017-03-01

    Full Text Available Axial compressors in aero engines are prone to suffering a breakdown of orderly flow when operating at the peak of the pressure rise characteristic. The damaging potential of separated flows is why a safe distance has to be left between every possible operating point and an operating point at which stall occurs. During earlier investigations of stall inception mechanisms, a new type of prestall instability has been found. In this study, it could be demonstrated that the prestall instability characterised by discrete flow disturbances can be clearly assigned to the subject of “Rotating Instabilities”. Propagating disturbances are responsible for the rise in blade passing irregularity. If the mass flow is reduced successively, the level of irregularity increases until the prestall condition devolves into rotating stall. The primary objective of the current work is to highlight the basic physics behind these prestall disturbances by complementary experimental and numerical investigations. Before reaching the peak of the pressure rise characteristic flow, disturbances appear as small vortex tubes with one end attached to the casing and the other attached to the suction surface of the rotor blade. These vortex structures arise when the entire tip region is affected by blockage and at the same time the critical rotor incidence is not exceeded in this flow regime. Furthermore, a new stall indicator was developed by applying statistical methods to the unsteady pressure signal measured over the rotor blade tips, thus granting a better control of the safety margin.

  16. Three-axis micro-force sensor with sub-micro-Newton measurement uncertainty and tunable force range

    International Nuclear Information System (INIS)

    Muntwyler, S; Beyeler, F; Nelson, B J

    2010-01-01

    The first three-axis micro-force sensor with adjustable force range from ±20 µN to ±200 µN and sub-micro-Newton measurement uncertainty is presented. The sensor design, the readout electronics, the sensor characterization and an uncertainty analysis for the force predictions are described. A novel microfabrication process based on a double silicon-on-insulator (SOI) substrate has been developed enabling a major reduction in the fabrication complexity of multi-axis sensors and actuators.

  17. Standard practice of calibration of force-measuring instruments for verifying the force indication of testing machines

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 The purpose of this practice is to specify procedures for the calibration of force-measuring instruments. Procedures are included for the following types of instruments: 1.1.1 Elastic force-measuring instruments, and 1.1.2 Force-multiplying systems, such as balances and small platform scales. Note 1Verification by deadweight loading is also an acceptable method of verifying the force indication of a testing machine. Tolerances for weights for this purpose are given in Practices E 4; methods for calibration of the weights are given in NIST Technical Note 577, Methods of Calibrating Weights for Piston Gages. 1.2 The values stated in SI units are to be regarded as the standard. Other metric and inch-pound values are regarded as equivalent when required. 1.3 This practice is intended for the calibration of static force measuring instruments. It is not applicable for dynamic or high speed force calibrations, nor can the results of calibrations performed in accordance with this practice be assumed valid for...

  18. Dynamic Stall in Pitching Airfoils: Aerodynamic Damping and Compressibility Effects

    Science.gov (United States)

    Corke, Thomas C.; Thomas, Flint O.

    2015-01-01

    Dynamic stall is an incredibly rich fluid dynamics problem that manifests itself on an airfoil during rapid, transient motion in which the angle of incidence surpasses the static stall limit. It is an important element of many manmade and natural flyers, including helicopters and supermaneuverable aircraft, and low-Reynolds number flapping-wing birds and insects. The fluid dynamic attributes that accompany dynamic stall include an eruption of vorticity that organizes into a well-defined dynamic stall vortex and massive excursions in aerodynamic loads that can couple with the airfoil structural dynamics. The dynamic stall process is highly sensitive to surface roughness that can influence turbulent transition and to local compressibility effects that occur at free-stream Mach numbers that are otherwise incompressible. Under some conditions, dynamic stall can result in negative aerodynamic damping that leads to limit-cycle growth of structural vibrations and rapid mechanical failure. The mechanisms leading to negative damping have been a principal interest of recent experiments and analysis. Computational fluid dynamic simulations and low-order models have not been good predictors so far. Large-eddy simulation could be a viable approach although it remains computationally intensive. The topic is technologically important owing to the desire to develop next-generation rotorcraft that employ adaptive rotor dynamic stall control.

  19. Direct measurement of interaction forces between a platinum dichloride complex and DNA molecules.

    Science.gov (United States)

    Muramatsu, Hiroshi; Shimada, Shogo; Okada, Tomoko

    2017-09-01

    The interaction forces between a platinum dichloride complex and DNA molecules have been studied using atomic force microscopy (AFM). The platinum dichloride complex, di-dimethylsulfoxide-dichloroplatinum (II) (Pt(DMSO) 2 Cl 2 ), was immobilized on an AFM probe by coordinating the platinum to two amino groups to form a complex similar to Pt(en)Cl 2 , which is structurally similar to cisplatin. The retraction forces were measured between the platinum complex and DNA molecules immobilized on mica plates using force curve measurements. The histogram of the retraction force for λ-DNA showed several peaks; the unit retraction force was estimated to be 130 pN for a pulling rate of 60 nm/s. The retraction forces were also measured separately for four single-base DNA oligomers (adenine, guanine, thymine, and cytosine). Retraction forces were frequently observed in the force curves for the DNA oligomers of guanine and adenine. For the guanine DNA oligomer, the most frequent retraction force was slightly lower than but very similar to the retraction force for λ-DNA. A higher retraction force was obtained for the adenine DNA oligomer than for the guanine oligomer. This result is consistent with a higher retraction activation energy of adenine with the Pt complex being than that of guanine because the kinetic rate constant for retraction correlates to exp(FΔx - ΔE) where ΔE is an activation energy, F is an applied force, and Δx is a displacement of distance.

  20. Forced excitation and active control for the measurement of fluid-elastic forces

    International Nuclear Information System (INIS)

    Caillaud, Sebastien

    1999-01-01

    The action of a fluid flow on a tubes bundle is commonly decomposed into a random turbulent excitation and a fluid-elastic excitation. The fluid-elastic forces which are coupled to the tubes movement can be experimentally determined from an analysis of the vibratory response of the structure excited by turbulent forces. For low flow velocities, the turbulent excitation can be insufficient to make the tube significantly vibrate and to permit a correct vibratory analysis. On the opposite side, the structure can become unstable for high flow velocities: the fluid-elastic forces make the fluid-structure damping system fall towards zero. Two experimental methods are proposed in order to extend the considered flow rate. An additional excitation force allows to increase the tube vibration level for improving the signal-noise ratio at low velocities. When the tube is submitted to fluid-elastic instability, an artificial damping contribution by active control allows to stabilize it. Methods are implemented on a flexible tube inserted into rigid tubes bundle water and water-air transverse flows. Two actuator technologies are used: an electromagnetic exciter and piezoelectric actuators. The additional excitation method shows that the fluid-elastic forces remain insignificant at low velocity single phase flow. With the active control method, it is possible to carry out tests beyond the fluid-elastic instability. In two-phase flow, the stabilization of the structure is observed for low vacuum rates. The obtained new results are analyzed with the literature expected results in terms of fluid-elastic coupling and turbulent excitation. (author) [fr

  1. Spatially resolved frequency-dependent elasticity measured with pulsed force microscopy and nanoindentation

    NARCIS (Netherlands)

    Sweers, Kim K M; van der Werf, Kees O; Bennink, Martin L; Subramaniam, Vinod

    2012-01-01

    Recently several atomic force microscopy (AFM)-based surface property mapping techniques like pulsed force microscopy (PFM), harmonic force microscopy or Peakforce QNM® have been introduced to measure the nano- and micro-mechanical properties of materials. These modes all work at different operating

  2. Towards measurement of the Casimir force between parallel plates separated at sub-mircon distance

    NARCIS (Netherlands)

    Syed Nawazuddin, M.B.; Lammerink, Theodorus S.J.; Wiegerink, Remco J.; Berenschot, Johan W.; de Boer, Meint J.; Elwenspoek, Michael Curt

    2011-01-01

    Ever since its prediction, experimental investigation of the Casimir force has been of great scientific interest. Many research groups have successfully attempted quantifying the force with different device geometries; however measurement of the Casimir force between parallel plates with sub-micron

  3. Effect of stall design on dairy calf transition to voluntary feeding on an automatic milk feeder after introduction to group housing.

    Science.gov (United States)

    Wilson, Tanya R; LeBlanc, Stephen J; DeVries, Trevor J; Haley, Derek B

    2018-03-14

    Automatic milk feeders (AMF) for young dairy calves are widely used in the dairy industry. These feeders are thought to have benefits for calf health and welfare and may reduce labor required for feeding; however, little is known about how calves adapt to feeding with AMF. The objective of this study was to observe the effects of feeding stall design on calves learning to use the AMF. The hypothesis was that solid side stalls, compared with steel bar stalls, would result in a longer latency to approach and feed from the AMF without assistance. A total of 147 Holstein calves (80 male and 67 female) were enrolled at 4 d of age, introduced to a group pen, and, at the same time, trained on an AMF. For training, calves were allowed to suck on the trainer's fingers and guided to the teat. Calves were allocated to 1 of 2 stall designs at the pen level, depending on which treatment cohort they were born into, either with steel bar stall walls (n = 46 male, 34 female calves) or with solid side stall walls (n = 34 male, 33 female calves). For 72 h after introductory training on the AMF, data from the feeders were collected and calf behavior was monitored by video. Outcomes measured included latency to first voluntary visit to the feeder and to first feeding, time spent in the feeder, amount of milk consumed over 72 h, number of retraining sessions required (retrained if linear regression models or a Poisson model for the outcome of retraining. For certain outcomes the effects of stall design interacted with difficulty of training (willingness to enter feeder and drink); for the 38% of calves that were scored as moderately difficult to train on a scale of easy, moderate, or difficult, treatment (stall design) differences were detected. These calves took 2× longer to lick or bite toward the nipple, 2× longer to first voluntarily feeding, and consumed less milk over 72 h following training when trained on the steel bar stall design. These results suggest simple features of a

  4. Stalling HIV through social marketing: prospects in Pakistan.

    Science.gov (United States)

    Husain, Sara; Shaikh, Babar T

    2005-07-01

    Over the last two decades HIV/AIDS has evolved from a series of interesting case-reports to a growing epidemic that threatens the entire world. It is feared to cause devastation among large pockets of populations and may roll back more than thirty years of public health achievements. This killer disease has been more amenable to behavioral change than by provision of curative services and attempts are being made to educate the public about this threat. Various techniques of promotion have been tried through out the world including television dramas/soaps, mass media and school curricula. Social marketing is an evolving strategy used to influence human behavior and choices. By using the principles of marketing and promoting behavior as a product, social marketers attempt to understand the dynamics of human behaviour and devise messages and products to change, modify, accept or reject unsafe behaviors or practices. Thus, social marketers provide an effective force to combat the spread of HIV and may serve to be invaluable allies in health promotion efforts. In a complex and diversified cultural milieu of Pakistan, social marketing can have a significant impact on health determinants and the conditions that will facilitate the adoption of health-oriented behaviors and practices. This paper gives an account of the elements needed for the success of a health promotion strategy adopted in a developing country and makes a case for social marketing to be adopted as the lead strategy for stalling HIV/AIDS in Pakistan.

  5. The big shift: measuring the forces of change

    DEFF Research Database (Denmark)

    Hagel, John; Brown, John Seely; Davison, Lang

    2009-01-01

    Traditional metrics don't capture many of the challenges and opportunities in store for U.S. companies and the national economy. The authors, from Deloitte, present a framework for understanding the forces that have transformed business over the past 40 years--and an index for gauging their impact...

  6. Femto-Newton light force measurement at the thermal noise limit.

    Science.gov (United States)

    Mueller, F; Heugel, S; Wang, L J

    2008-03-15

    The measurement of very small light forces has wide applications in many fields of physics. A common measurement method for small force detection is the determination of changes in the dynamic behavior of mechanical oscillators, either in amplitude or in frequency. The detection of slowly varying forces mostly requires long period oscillators, such as a torsion pendulum. We demonstrate the application of a macroscopic, low-noise, torsion balance oscillator for the detection of radiation pressure forces at the femto-Newton level. The system is "precooled" (removing excess seimic noise) to be only thermal noise limited. The demonstrated force sensitivity reaches the thermal limit.

  7. Flap motion of helicopter rotors with novel, dynamic stall model

    Directory of Open Access Journals (Sweden)

    Han Wei

    2016-01-01

    Full Text Available In this paper, a nonlinear flapping equation for large inflow angles and flap angles is established by analyzing the aerodynamics of helicopter blade elements. In order to obtain a generalized flap equation, the Snel stall model was first applied to determine the lift coefficient of the helicopter rotor. A simulation experiment for specific airfoils was then conducted to verify the effectiveness of the Snel stall model as it applies to helicopters. Results show that the model requires no extraneous parameters compared to the traditional stall model and is highly accurate and practically applicable. Based on the model, the relationship between the flapping angle and the angle of attack was analyzed, as well as the advance ratio under the dynamic stall state.

  8. Quantum limited force measurement in a cavityless optomechanical system

    International Nuclear Information System (INIS)

    Fermani, Rachele; Mancini, Stefano; Tombesi, Paolo

    2004-01-01

    We study the possibility of revealing a weak coherent force by using a pendular mirror as a probe, and coupling this to a radiation field, which acts as the meter, in a cavityless configuration. We determine the sensitivity of such a scheme and show that the use of an entangled meter state greatly improves the ultimate detection limit. We also compare this scheme with that involving an optical cavity

  9. Measuring forces in liver cutting: new equipment and experimental results.

    Science.gov (United States)

    Chanthasopeephan, Teeranoot; Desai, Jaydev P; Lau, Alan C W

    2003-12-01

    We are interested in modeling the liver cutting process as accurately as possible by determining the mechanical properties experimentally and developing a predictive model that is self-consistent with the experimentally determined properties. In this paper, we present the newly developed hardware and software to characterize the mechanical response of pig liver during (ex vivo) cutting. We describe the custom-made cutting apparatus, the data acquisition system, and the characteristics of the cutting force versus displacement plot. The force-displacement behavior appears to reveal that the cutting process consists of a sequence of intermittent localized crack extension in the tissue on the macroscopic scale. The macroscopic cutting force-displacement curve shows repeating self-similar units of localized linear loading followed by sudden unloading. The sudden unloading coincides with observed onset of localized crack growth. This experimental data were used to determine the self-consistent local effective Young's modulus for the specimens, to be used in finite element models. Results from finite element analyses models reveal that the magnitude of the self-consistent local effective Young's modulus determined by plane-stress and plane-strain varies within close bounds. Finally, we have also observed that the local effective Young's modulus determined by plane stress and plane strain analysis decreases with increasing cutting speed.

  10. Measurement strategy and analytic model to determine firing pin force

    Science.gov (United States)

    Lesenciuc, Ioan; Suciu, Cornel

    2016-12-01

    As illustrated in literature, ballistics is a branch of theoretical mechanics, which studies the construction and working principles of firearms and ammunition, their effects, as well as the motions of projectiles and bullets1. Criminalistics identification, as part of judiciary identification represents an activity aimed at finding common traits of different objects, objectives, phenomena and beings, but more importantly, traits that differentiate each of them from similar ones2-4. In judicial ballistics, in the case of rifled firearms it is relatively simple for experts to identify the used weapon from traces left on the projectile, as the rifling of the barrel leaves imprints on the bullet, which remain approximately identical even after the respective weapon is fired 100 times with the same barrel. However, in the case of smoothbore firearms, their identification becomes much more complicated. As the firing cap suffers alterations from being hit by the firing pin, determination of the force generated during impact creates the premises for determining the type of firearm used to shoot the respective cartridge. The present paper proposes a simple impact model that can be used to evaluate the force generated by the firing pin during its impact with the firing cap. The present research clearly showed that each rifle, by the combination of the three investigated parameters (impact force maximum value, its variation diagram, and impact time) leave a unique trace. Application of such a method in ballistics can create the perspectives for formulating clear conclusions that eliminate possible judicial errors in this field.

  11. Estimation of Cable Forces of a Guyed Mast from Dynamic Measurements

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Hansen, Lars Pilegaard

    This paper presents how the tension forces in the cables of a 200 m. high guyed mast have been estimated from natural frequencies obtained from acceleration measurements.The mast is guyed at five levels with three guys at 120 degree intervals at each level. The accelerations in three directions...... were measured in five cables. The relationship between frequencies and cable forces have been establish assuming the cables to behave in linear manner. The results show that estimated cables forces correspond very well to the expected. The results obtained showed that it was possible to obtain reliable...... estimates for cables forces based on measured natural frequencies....

  12. Measurement and calculation of forces in a magnetic journal bearing actuator

    Science.gov (United States)

    Knight, Josiah; Mccaul, Edward; Xia, Zule

    1991-01-01

    Numerical calculations and experimental measurements of forces from an actuator of the type used in active magnetic journal bearings are presented. The calculations are based on solution of the scalar magnetic potential field in and near the gap regions. The predicted forces from single magnet with steady current are compared with experimental measurements in the same geometry. The measured forces are smaller than calculated ones in the principal direction but are larger than calculated in the normal direction. This combination of results indicate that material and spatial effects other than saturation play roles in determining the force available from an actuator.

  13. Thermally activated state transition technique for femto-Newton-level force measurement.

    Science.gov (United States)

    Chen, Feng-Jung; Wong, Jhih-Sian; Hsu, Ken Y; Hsu, Long

    2012-05-01

    We develop and test a thermally activated state transition technique for ultraweak force measurement. As a force sensor, the technique was demonstrated on a classical Brownian bead immersed in water and restrained by a bistable optical trap. A femto-Newton-level flow force imposed on this sensor was measured by monitoring changes in the transition rates of the bead hopping between two energy states. The treatment of thermal disturbances as a requirement instead of a limiting factor is the major feature of the technique, and provides a new strategy by which to measure other ultraweak forces beyond the thermal noise limit.

  14. Validating Future Force Performance Measures (Army Class): Concluding Analyses

    Science.gov (United States)

    2016-06-01

    Opportunities Measures an individual’s preference for work that affords opportunities to lead others. Leisure Time Measures an individual’s preference...Orientation Measures an individual’s preference for working closely with others. Travel Measures an individual’s preference for work involving...frequent or regular travel . Variety Measures an individual’s preference for work involving having something different to do every day. B -1

  15. System for measurement of interaction forces between wheel and rail for railway vehicles

    Directory of Open Access Journals (Sweden)

    Manea Ion

    2017-01-01

    Full Text Available Determination of the interaction forces between wheel and rail of railway vehicles is essential for assessment of the vehicle dynamic characteristics from point of view of running safety and rail loading as well as for approval the vehicle and alignment them to the Technical Specification for Interoperability. The direct measurement of transverse and vertical interaction forces using the existing full-disk wheel is practical impossible due to the impossibility of separating the two types of forces. To avoid this impediment it was realized a measuring wheelset fitted with 12 spokes achieved as force transducers for measurement of the vertical forces and 12 spokes achieved as force transducers for measurement of the transverse forces. The measuring wheelset was calibrated as a force transducer and was used to determine the wheel and rail interaction forces for LE-MA 6000kW electric locomotive made by Softronic Craiova. The article presents the measuring wheelset, the calibration principle and the calibration characteristics as well as some time history of the main parameters which characterize the running safety and rail loading, determined in the on-track tests.

  16. Force sensor for measuring power transfer between the human body and the environment

    NARCIS (Netherlands)

    Brookhuis, Robert Anton; Lammerink, Theodorus S.J.; Wiegerink, Remco J.; de Boer, Meint J.; Elwenspoek, Michael Curt

    2011-01-01

    A force sensor with capacitive readout is designed and realized for the measurement of mechanical power transfer. The ultimate aim is to integrate this in a glove that determines the complete mechanical interaction between the human hand and the environment. The sensor measures the normal force and

  17. Direct Measurements of Surface Energy, Elastic Modulus and Interparticle Forces of Titan Aerosol Analog (`Tholin') Using Atomic Force Microscopy

    Science.gov (United States)

    Yu, X.; Horst, S. M.; He, C.; McGuiggan, P.; Bridges, N. T.

    2017-12-01

    To understand the origin of the dunes on Titan, it is important to investigate the material properties of the sand particles on Titan, which are mainly made of organics deposited from the atmosphere [1]. The organic sand may behave differently compared to the quartz/basaltic sand on terrestrial planets (Earth, Venus, Mars) in terms of interparticle forces. We measured the surface energy (through contact angle measurements) and elastic modulus (through Atomic Force Microscopy, AFM) of Titan aerosol analog (tholins) produced in our lab. Tholins may be compositionally similar to sand on Titan. We directly measured the interparticle forces between a tholin particle adhered to an AFM cantilver and tholin particles on a substrate. We also measured the properties of walnut shells, a typical material used in the Titan Wind Tunnel (TWT, [2, 3]). We find the surface energy of a tholin thin film is about 70.9 mN/m and its elastic modulus is about 3.5 GPa (similar to hard polymers like PMMA and polystyrene). We used the two measured material properties of tholin to calculate its interparticle cohesion assuming simple sphere-sphere geometry [4]. For two 20 µm particles, the theoretical cohesion force is about 6682 nN. Under dry nitrogen (RHmeasured interparticle forces using AFM was approximately 4000 nN, which is smaller than theoretical predictions but still relatively strong under dry conditions. The interparticle cohesion between walnut shell particles is only 200 nN, which is much lower than between tholin particles. The key finding of this study is that the interparticle cohesion forces are much larger for tholins and presumably Titan sand particles than for terrestrial sand and materials used in the wind tunnel. This suggests we should increase the interparticle force in both analog experiments (TWT) and threshold models (e.g. [5]) to correctly translate the results to real Titan conditions. The strong cohesion of tholins may also inform us how the small aerosol

  18. Fiber Bragg grating sensor for simultaneous measurement of temperature and force using polymer open loop

    Science.gov (United States)

    Huang, Yonglin; Zhang, Shiyan

    2014-07-01

    A fiber Bragg grating (FBG) sensor for simultaneous measurement of temperature and force is proposed and demonstrated. Where a part of uniform FBG (about one half length of an FBG) is attached on the polymer open loop, the FBG is divided into two parts which has an equal length. So the two parts can be regarded as two FBGs. Because of the difference of the Young's modulus and the thermal expansion coefficients for two parts of the FBG, the two Bragg reflection wavelengths are shift when the temperature and force are applied on the sensor. Simultaneous measurement of temperature and force is demonstrated experimentally. The experimental results show that the linear response to temperature and force are achieved. The value of applied temperature and force can be obtained from the two Bragg wavelength shift via the coefficient matrix. This study provides a simple and economical method to measure temperature and force simultaneously.

  19. Measurement of cell adhesion force by vertical forcible detachment using an arrowhead nanoneedle and atomic force microscopy

    International Nuclear Information System (INIS)

    Ryu, Seunghwan; Hashizume, Yui; Mishima, Mari; Kawamura, Ryuzo; Tamura, Masato; Matsui, Hirofumi; Matsusaki, Michiya; Akashi, Mitsuru; Nakamura, Chikashi

    2014-01-01

    Graphical abstract: - Highlights: • We developed a method to measure cell adhesion force by detaching cell using an arrowhead nanoneedle and AFM. • A nanofilm consisting of fibronectin and gelatin was formed on cell surface to reinforce the cell cortex. • By the nanofilm lamination, detachment efficiencies of strongly adherent cell lines were improved markedly. - Abstract: The properties of substrates and extracellular matrices (ECM) are important factors governing the functions and fates of mammalian adherent cells. For example, substrate stiffness often affects cell differentiation. At focal adhesions, clustered–integrin bindings link cells mechanically to the ECM. In order to quantitate the affinity between cell and substrate, the cell adhesion force must be measured for single cells. In this study, forcible detachment of a single cell in the vertical direction using AFM was carried out, allowing breakage of the integrin–substrate bindings. An AFM tip was fabricated into an arrowhead shape to detach the cell from the substrate. Peak force observed in the recorded force curve during probe retraction was defined as the adhesion force, and was analyzed for various types of cells. Some of the cell types adhered so strongly that they could not be picked up because of plasma membrane breakage by the arrowhead probe. To address this problem, a technique to reinforce the cellular membrane with layer-by-layer nanofilms composed of fibronectin and gelatin helped to improve insertion efficiency and to prevent cell membrane rupture during the detachment process, allowing successful detachment of the cells. This method for detaching cells, involving cellular membrane reinforcement, may be beneficial for evaluating true cell adhesion forces in various cell types

  20. Development and validation of a method to directly measure the cable force during the hammer throw.

    Science.gov (United States)

    Brice, Sara M; Ness, Kevin F; Rosemond, Doug; Lyons, Keith; Davis, Mark

    2008-05-01

    The development of cable force during hammer-throw turns is crucial to the throw distance. In this paper, we present a method that is capable of measuring cable force in real time and, as it does not interfere with technique, it is capable of providing immediate feedback to coaches and athletes during training. A strain gauge was mounted on the wires of three hammers to measure the tension in the wire and an elite male hammer thrower executed three throws with each hammer. The output from the gauges was recorded by a data logger positioned on the lower back of the thrower. The throws were captured by three high-speed video cameras and the three-dimensional position of the hammer's head was determined by digitizing the images manually. The five best throws were analysed. The force acting on the hammer's head was calculated from Newton's second law of motion and this was compared with the force measured via the strain gauge. Qualitatively the time dependence of the two forces was essentially the same, although the measured force showed more detail in the troughs of the force-time curves. Quantitatively the average difference between the measured and calculated forces over the five throws was 76 N, which corresponds to a difference of 3.8% for a cable force of 2000 N.

  1. Is Social Licence A Licence To Stall?

    Directory of Open Access Journals (Sweden)

    Mark Lowey

    2016-03-01

    Full Text Available The School of Public Policy at the University of Calgary organized a one-day symposium on Oct. 8, 2014 in Calgary, as part of the School’s TransCanada Corporation Energy Policy and Regulatory Frameworks Program. The symposium was titled “Is Social License a License to Stall?” Held at the Hotel Arts, the event attracted a full-capacity audience of about 110 people, including representatives from industry, government and environmental non-government organizations. The symposium included four moderated panel sessions and a keynote speaker at lunch. The School of Public Policy set the framework for discussion at the Calgary symposium with the following description: Canada’s regulators act in the public interest to review energy and infrastructure project applications. Regulators are guided by procedural fairness and follow a transparent application, review and hearing process with data filings and sworn testimony. But that’s changing. “Social license” is a relatively new term, which some interests are using to create a different standard for the approval of projects — especially energy projects. According to social license advocates, projects must meet often ill-defined requirements set up by non-governmental organizations, local residents or other interests — a new hurdle for project approval, but without the rigour and rule of law of a regulator. Is social license a meaningful addition to the regulatory process, or is it being used as a constantly moving goal-post designed to slow down regulatory processes, delay project implementation, frustrate energy infrastructure expansion and even enrich those advocates who promote it as a new model? This paper summarises the discussion and the themes that emerged throughout the day. Most notably, panellists concluded that “social licence” is a real and significant issue that presents both an opportunity and a problem, not only for regulators but for all parties involved in the

  2. Measurement of Giardia lamblia adhesion force using an integrated microfluidic assay.

    Science.gov (United States)

    Lu, Ling; Zheng, Guo-Xia; Yang, Yu-Suo; Feng, Cheng-Yu; Liu, Fang-Fang; Wang, Yun-Hua

    2017-02-01

    The mechanisms how Giardias attach to the intestinal epithelium remain unclear. None of the methods currently being used to measure the attachment force could provide a continuous nutrition supply and a micro-aerobic atmosphere to the Giardia. Besides, they are all labor-intensive. In the present research, a microfluidic method based on electric circuit analogy was developed. The input fluid flowed through the inlet channel with different lengths and was distributed in four assay chambers. Shear force gradients were generated in chambers, too. This allowed an easy control of fluids and the shear forces. Most importantly, the shear stress large enough to detach Giardia could be generated in laminar flow regime. Moreover, analysis could be accomplished in one single test. By applying inlet flow rates of 30, 60, and 120 μL ml -1 , shear force gradients ranging from 19.47 to 60.50 Pa were generated. The adhesion forces of trophozoites were analyzed and the EC 50 of the force that caused 50% trophozoites detachment was calculated as 36.60 Pa. This paper presents a novel method for measurement of Giardia adhesion force. Graphical Abstract Measurement of Giardia adhesion force. Various of flow rates were applied to generate different shear forces and Giardia trophozoites remaining attached were counted (a-c). The percentages of attachment vs shear stress were plotted and the EC 50 of adhesion force was calculated (d).

  3. Method to measure the force to pull and to break pin bones of fish.

    Science.gov (United States)

    Balaban, Murat O; Jie, Hubert; Yin Yee, Yin; Alçiçek, Zayde

    2015-02-01

    A texture measurement device was modified to measure the force required to pull pin bones from King salmon (Oncorhynchus tshawytscha), snapper (Pagrus auratus), and kahawai (Arripis trutta). Pulled bones were also subjected to tension to measure the breaking force. For all fish, the pulling force depended on the size of the fish, and on the length of the pin bone (P bones. For example, fresh small salmon (about 1500 g whole) required 600 g on average to pull pin bones, and large fish (about 3700 g whole) required 850 g. Longer bones required greater pulling force. The breaking force followed the same trend. In general, the breaking force was greater than the pulling force. This allows the removal of the bones without breaking them. There was no statistically significant (P > 0.05) difference between the forces (both pulling and breaking) from fresh and frozen/thawed samples, although in general frozen/thawed samples required less force to pull. With the quantification of pulling and breaking forces for pin bones, it is possible to design and build better, "more intelligent" pin bone removal equipment. © 2015 Institute of Food Technologists®

  4. A wearable force plate system for the continuous measurement of triaxial ground reaction force in biomechanical applications

    International Nuclear Information System (INIS)

    Liu, Tao; Inoue, Yoshio; Shibata, Kyoko

    2010-01-01

    The ambulatory measurement of ground reaction force (GRF) and human motion under free-living conditions is convenient, inexpensive and never restricted to gait analysis in a laboratory environment and is therefore much desired by researchers and clinical doctors in biomedical applications. A wearable force plate system was developed by integrating small triaxial force sensors and three-dimensional (3D) inertial sensors for estimating dynamic triaxial GRF in biomechanical applications. The system, in comparison to existent systems, is characterized by being lightweight, thin and easy-to-wear. A six-axial force sensor (Nitta Co., Japan) was used as a verification measurement device to validate the static accuracy of the developed force plate. To evaluate the precision during dynamic gait measurements, we compared the measurements of the triaxial GRF and the center of pressure (CoP) by using the developed system with the reference measurements made using a stationary force plate and an optical motion analysis system. The root mean square (RMS) differences of the two transverse components (x- and y-axes) and the vertical component (z-axis) of the GRF were 4.3 ± 0.9 N, 6.0 ± 1.3 N and 12.1 ± 1.1 N, respectively, corresponding to 5.1 ± 1.1% and 6.5 ± 1% of the maximum of each transverse component and 1.3 ± 0.2% of the maximum vertical component of GRF. The RMS distance between the two systems' CoP traces was 3.2 ± 0.8 mm, corresponding to 1.2 ± 0.3% of the length of the shoe. Moreover, based on the results of the assessment of the influence of the system on natural gait, we found that gait was almost never affected. Therefore, the wearable system as an alternative device can be a potential solution for measuring CoP and triaxial GRF in non-laboratory environments

  5. AFM measurements of adhesive forces between carbonaceous particles and the substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tianqi [Institute of Nuclear and New Energy Technology of Tsinghua University, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Beijing 100084 (China); Peng, Wei, E-mail: pengwei@tsinghua.edu.cn [Institute of Nuclear and New Energy Technology of Tsinghua University, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Beijing 100084 (China); Shen, Ke [Institute of Nuclear and New Energy Technology of Tsinghua University, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Beijing 100084 (China); Yu, Suyuan, E-mail: suyuan@tsinghua.edu.cn [Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Educations, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)

    2015-11-15

    Highlights: • Adhesive force of spherical carbonaceous particle MCMBs and HTR-10 graphite matrix debris were measured for the first time. • The measured equivalent works of adhesion were much smaller than the ideal values. • The shape factor and the particle morphology reduce the adhesive force. • The adhesion effect does not change directly with the asperity size. - Abstract: Graphite dust is carbonaceous particles generated during operation of High Temperature Gas-Cooled Reactors (HTR). Graphite dust resuspension is the key behavior associated with HTR source term analyses and environmental safety assessment. The adhesive force is the key factor that determines the resuspension rate. The present study used an atomic force microscope (AFM) to measure the adhesive force between a single carbonaceous particle and the substrate. The measurements were performed on mica, graphite IG110 and Inconel 800H. The prepared “probe cantilevers” were mesocarbon microbeads (MCMB), fuel element debris from HTR-10 and graphite NBG18. The equivalent work of adhesion was derived from the measured adhesive force and calculated based on substrate profile approximation and the JKR theoretical model. The measured work was smaller than the ideal work of adhesion, most likely due to the rough particle morphology and the rough substrate surface. Additionally, a shape factor imposes a constraint on the lateral deformation of the particles. Furthermore, surface roughness could reduce the adhesive force some depending on the particle size. Once the particle was too small to be trapped into a trough, the adhesive force would not be further reduced.

  6. Detailed On-Water Measurements of Blade Forces and Stroke Efficiencies in Sprint Canoe

    Directory of Open Access Journals (Sweden)

    Stephen Tullis

    2018-03-01

    Full Text Available Measurements of blade forces are made using a load cell mounted between the blade and shaft of a modified paddle. All six force components and moments are measured simultaneously to give a full picture of blade hydrodynamic forces as the centre of pressure on the blade varies throughout the stroke. Blade orientation was also measured using inertial measurement units, one on the blade shaft, and the other on the canoe giving the relative position of blade with respect to the boat, as well as boat speed, acceleration and motion. Testing of the instrumented paddle was undertaken by one of the authors, an ex-national team athlete. The measured forces (and propulsive/vertical forces are analyzed in detail through the stroke and as stroke averages. Various measures of propulsive efficiency are proposed using either the input force and propulsive force, or using input force and boat speed, and can be used for stroke analysis, or as training tools/targets.

  7. Traceability of small force measurements and the future international system of units (SI

    Directory of Open Access Journals (Sweden)

    Khelifa Naceur-Eddine

    2016-01-01

    Full Text Available The unit of force is connected to the international prototype of the kilogramme, unit of mass in the international system of units (SI, via dead weight machines using calibrated masses. However, forces below 10 μN, ubiquitous in nature and in some devices cannot be measured with a traceability to the SI. The measurement, with the uncertainty of these forces has implications for both basic and applied science. Today, many emerging sectors in micro/nanotechnology and biotechnology have started producing and using systems to implement low forces that, for various reasons, require them to be traceable. Also, the revision of the SI, scheduled for 2018 year, of linking the definitions of the kilogramme, the ampere, the kelvin and the mole to fixed numerical values of fundamental constants, has aroused particular interest in the measurement and calibration of small forces. In this paper, we will give some indications of the state of the art on the small force with a focus on the development of a force sensor using a photoelastic crystal as a monolithic solid-state laser. Basically, the force to be measured is applied to the crystal induces a birefringence in the laser medium which in turn manifests itself by the appearance of a splitting between the frequencies associated with the two polarization components of the oscillating laser mode. This difference is then exploited because, within the elastic limit of the crystal, it is proportional to the force acting on the laser.

  8. Hydrophobic attraction as revealed by AFM force measurements and molecular dynamics simulation.

    Science.gov (United States)

    Fa, Keqing; Nguyen, Anh V; Miller, Jan D

    2005-07-14

    Spherical calcium dioleate particles ( approximately 10 mum in diameter) were used as AFM (atomic force microscope) probes to measure interaction forces of the collector colloid with calcite and fluorite surfaces. The attractive AFM force between the calcium dioleate sphere and the fluorite surface is strong and has a longer range than the DLVO (Derjaguin-Landau-Verwey-Overbeek) prediction. The AFM force between the calcium dioleate sphere and the mineral surfaces does not agree with the DLVO prediction. Consideration of non-DLVO forces, including the attractive hydrophobic force and the repulsive hydration force, was necessary to explain the experimental results. The non-DLVO interactions considered were justified by the different interfacial water structures at calcite- and fluorite-water interfaces as revealed by the numerical computation experiments with molecular dynamics simulation.

  9. Classifying Force Spectroscopy of DNA Pulling Measurements Using Supervised and Unsupervised Machine Learning Methods.

    Science.gov (United States)

    Karatay, Durmus U; Zhang, Jie; Harrison, Jeffrey S; Ginger, David S

    2016-04-25

    Dynamic force spectroscopy (DFS) measurements on biomolecules typically require classifying thousands of repeated force spectra prior to data analysis. Here, we study classification of atomic force microscope-based DFS measurements using machine-learning algorithms in order to automate selection of successful force curves. Notably, we collect a data set that has a testable positive signal using photoswitch-modified DNA before and after illumination with UV (365 nm) light. We generate a feature set consisting of six properties of force-distance curves to train supervised models and use principal component analysis (PCA) for an unsupervised model. For supervised classification, we train random forest models for binary and multiclass classification of force-distance curves. Random forest models predict successful pulls with an accuracy of 94% and classify them into five classes with an accuracy of 90%. The unsupervised method using Gaussian mixture models (GMM) reaches an accuracy of approximately 80% for binary classification.

  10. Near Stall Flow Analysis in the Transonic Fan of the RTA Propulsion System

    Science.gov (United States)

    Hah, Chunill

    2010-01-01

    Turbine-based propulsion systems for access to space have been investigated at NASA Glenn Research center. A ground demonstrator engine for validation testing has been developed as a part of the program. The demonstrator, the Revolutionary Turbine Accelerator (RTA-1), is a variable cycle turbofan ramjet designed to transition from an augmented turbofan to a ramjet that produces the thrust required to accelerate the vehicle to Mach 4. The RTA-1 is designed to accommodate a large variation in bypass ratio from sea level static to Mach 4 flight condition. A key component of this engine is a new fan stage that accommodates these large variations in bypass ratio and flow ranges. In the present study, unsteady flow behavior in the fan of the RTA-1 is studied in detail with large eddy simulation (LES) and the numerical results are compared with measured data. During the experimental study of the fan stage, humming sound was detected at 100 % speed near stall operation. The main purpose of the study is to investigate details of the unsteady flow behavior at near stall operation and to identify a possible cause of the hum. The large eddy simulation of the current flow field reproduces main features of the measured flow very well. The LES simulation indicates that non-synchronous flow instability develops as the fan operates toward the stall limit. The FFT analysis of the calculated wall pressure shows that the rotating flow instability has the characteristic frequency that is about 50% of the blade passing frequency.

  11. Using optical tweezers for measuring the interaction forces between human bone cells and implant surfaces: System design and force calibration

    International Nuclear Information System (INIS)

    Andersson, Martin; Madgavkar, Ashwin; Stjerndahl, Maria; Wu, Yanrong; Tan, Weihong; Duran, Randy; Niehren, Stefan; Mustafa, Kamal; Arvidson, Kristina; Wennerberg, Ann

    2007-01-01

    Optical tweezers were used to study the interaction and attachment of human bone cells to various types of medical implant materials. Ideally, the implant should facilitate cell attachment and promote migration of the progenitor cells in order to decrease the healing time. It is therefore of interest, in a controlled manner, to be able to monitor the cell adhesion process. Results from such studies would help foresee the clinical outcome of integrating medical implants. The interactions between two primary cell culture models, human gingival fibroblasts and bone forming human osteoblast cells, and three different implant materials, glass, titanium, and hydroxyapatite, were studied. A novel type of optical tweezers, which has a newly designed quadrant detector and a powerful 3 W laser was constructed and force calibrated using two different methods: one method in which the stiffness of the optical trap was obtained by monitoring the phase lag between the trap and the moved object when imposing a forced oscillation on the trapped object and another method in which the maximum trapping force was derived from the critical velocity at which the object escapes the trap. Polystyrene beads as well as cells were utilized for the calibrations. This is the first time that cells have been used directly for these types of force calibrations and, hence, direct measurements of forces exerted on cells can be performed, thus avoiding the difficulties often encountered when translating the results obtained from cell measurements to the calibrations obtained with reference materials. This more straightforward approach represents an advantage in comparison to established methods

  12. Measurement of Multiple Blade Rate Unsteady Propeller Forces

    Science.gov (United States)

    1990-05-01

    with PUF -2 prediction ...................................... 33 17. Total velocity measurement positions using LDV .................... 34 18...CRAW F OrIC TAB Q Propeller torque JU.tSw riced .,) Qn Amplitude of nth harmonic of torque By R Propeller tip radius Ot Itt:ic A.tdt 4Vt,.*, Cc#eS r...unsteady lifting surface theory code PUF -2, 3 and were compared with measured data. PUF -2 calculations were performed for both Propellers 4132 and

  13. A Modernized UDM-600 Dynamometer-Based Setup for the Cutting Force Measurement

    Directory of Open Access Journals (Sweden)

    Ya. I. Shuliak

    2016-01-01

    Full Text Available The article considers development of a modernized UDM-600 dynamometer-based setup for measuring the cutting force components. Modernization of existing equipment to improve the method of recording the cutting force components in the automated mode is of relevance. The measuring setup allows recording the cutting force components in turning and milling, as well as the axial force and the torque in the drilling and milling operations.The article presents a block diagram and a schematic diagram of the setup to measure the cutting force components, and describes a basic principle of measuring units within the modernized setup. The developed setup uses a half-bridge strain gauge measuring circuit to record the cutting forces. To enhance the measuring circuit output voltage is used a 16-channel amplifier of LA-UN16 model with a discretely adjustable gain. To record and process electrical signals is used a data acquisition device of NI USB-6009 model, which enables transmitting the received data to a PC via USB-interface. The data acquisition device has a built-in stabilized DC power supply that is used to power the strain gauge bridges. A developed schematic diagram of the measuring setup allows us to realize this measuring device and implement its modernization.Final processing of recorded data is provided through the software developed in visual programming environment LabVIEW 9.0. The program allows us to show the real-time measuring values of the cutting force components graphically and to record the taken data to a text file.The measuring setup modernization enabled increasing measurement accuracy and reducing time for processing and analysis of experimental data obtained when measuring the cutting force components. The MT2 Department of BMSTU uses it in education and research activities and in experimental efforts and laboratory classes.

  14. The Dynamics of SecM-Induced Translational Stalling

    Directory of Open Access Journals (Sweden)

    Albert Tsai

    2014-06-01

    Full Text Available SecM is an E. coli secretion monitor capable of stalling translation on the prokaryotic ribosome without cofactors. Biochemical and structural studies have demonstrated that the SecM nascent chain interacts with the 50S subunit exit tunnel to inhibit peptide bond formation. However, the timescales and pathways of stalling on an mRNA remain undefined. To provide a dynamic mechanism for stalling, we directly tracked the dynamics of elongation on ribosomes translating the SecM stall sequence (FSTPVWISQAQGIRAGP using single-molecule fluorescence techniques. Within 1 min, three peptide-ribosome interactions work cooperatively over the last five codons of the SecM sequence, leading to severely impaired elongation rates beginning from the terminal proline and lasting four codons. Our results suggest that stalling is tightly linked to the dynamics of elongation and underscore the roles that the exit tunnel and nascent chain play in controlling fundamental steps in translation.

  15. The dynamics of SecM-induced translational stalling.

    Science.gov (United States)

    Tsai, Albert; Kornberg, Guy; Johansson, Magnus; Chen, Jin; Puglisi, Joseph D

    2014-06-12

    SecM is an E. coli secretion monitor capable of stalling translation on the prokaryotic ribosome without cofactors. Biochemical and structural studies have demonstrated that the SecM nascent chain interacts with the 50S subunit exit tunnel to inhibit peptide bond formation. However, the timescales and pathways of stalling on an mRNA remain undefined. To provide a dynamic mechanism for stalling, we directly tracked the dynamics of elongation on ribosomes translating the SecM stall sequence (FSTPVWISQAQGIRAGP) using single-molecule fluorescence techniques. Within 1 min, three peptide-ribosome interactions work cooperatively over the last five codons of the SecM sequence, leading to severely impaired elongation rates beginning from the terminal proline and lasting four codons. Our results suggest that stalling is tightly linked to the dynamics of elongation and underscore the roles that the exit tunnel and nascent chain play in controlling fundamental steps in translation. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  16. A Comparative Study of Three Methodologies for Modeling Dynamic Stall

    Science.gov (United States)

    Sankar, L.; Rhee, M.; Tung, C.; ZibiBailly, J.; LeBalleur, J. C.; Blaise, D.; Rouzaud, O.

    2002-01-01

    During the past two decades, there has been an increased reliance on the use of computational fluid dynamics methods for modeling rotors in high speed forward flight. Computational methods are being developed for modeling the shock induced loads on the advancing side, first-principles based modeling of the trailing wake evolution, and for retreating blade stall. The retreating blade dynamic stall problem has received particular attention, because the large variations in lift and pitching moments encountered in dynamic stall can lead to blade vibrations and pitch link fatigue. Restricting to aerodynamics, the numerical prediction of dynamic stall is still a complex and challenging CFD problem, that, even in two dimensions at low speed, gathers the major difficulties of aerodynamics, such as the grid resolution requirements for the viscous phenomena at leading-edge bubbles or in mixing-layers, the bias of the numerical viscosity, and the major difficulties of the physical modeling, such as the turbulence models, the transition models, whose both determinant influences, already present in static maximal-lift or stall computations, are emphasized by the dynamic aspect of the phenomena.

  17. Update: Partnership for the Revitalization of National Wind Tunnel Force Measurement Technology Capability

    Science.gov (United States)

    Rhew, Ray D.

    2010-01-01

    NASA's Aeronautics Test Program (ATP) chartered a team to examine the issues and risks associated with the lack of funding and focus on force measurement over the past several years, focusing specifically on strain-gage balances. NASA partnered with the U.S. Air Force's Arnold Engineering Development Center (AEDC) to exploit their combined capabilities and take a national level government view of the problem and established the National Force Measurement Technology Capability (NFMTC) project. This paper provides an update on the team's status for revitalizing the government's balance capability with respect to designing, fabricating, calibrating, and using the these critical measurement devices.

  18. Time, tire measurements forces and moments: a new standard for steady state cornering tyre testing

    NARCIS (Netherlands)

    Oosten, J.J.M. van; Savi, C.; Augustin, M.; Bouhet, O.; Sommer, J.; Colinot, J.P.

    1999-01-01

    In order to develop vehicles which have maximum active safety, car manufacturers need information about the so-called force and moment properties of tyres. Vehicle manufacturers, tyre suppliers and automotive research organisations have advanced test equipment to measure the forces between a tyre

  19. Ambulatory measurement of ground reaction force and estimation of ankle and foot dynamics

    NARCIS (Netherlands)

    Schepers, H. Martin; Koopman, Hubertus F.J.M.; Baten, Christian T.M.; Veltink, Petrus H.

    INTRODUCTION Traditionally, human body movement analysis is done in so-called ‘gait laboratories’. In these laboratories, body movement is measured by a camera system using optical markers, the ground reaction force by a force plate fixed in the floor, and the muscle activity by EMG. From the body

  20. Short revolving wings enable hovering animals to avoid stall and reduce drag

    Science.gov (United States)

    Lentink, David; Kruyt, Jan W.; Heijst, Gertjan F.; Altshuler, Douglas L.

    2014-11-01

    Long and slender wings reduce the drag of airplanes, helicopters, and gliding animals, which operate at low angle of attack (incidence). Remarkably, there is no evidence for such influence of wing aspect ratio on the energetics of hovering animals that operate their wings at much higher incidence. High incidence causes aircraft wings to stall, hovering animals avoid stall by generating an attached vortex along the leading edge of their wings that elevates lift. Hypotheses that explain this capability include the necessity for a short radial distance between the shoulder joint and wing tip, measured in chord lengths, instead of the long tip-to-tip distance that elevates aircraft performance. This stems from how hovering animals revolve their wings around a joint, a condition for which the precise effect of aspect ratio on stall performance is unknown. Here we show that the attachment of the leading edge vortex is determined by wing aspect ratio with respect to the center of rotation-for a suite of aspect ratios that represent both animal and aircraft wings. The vortex remains attached when the local radius is shorter than 4 chord lengths, and separates outboard on more slender wings. Like most other hovering animals, hummingbirds have wing aspect ratios between 3 and 4, much stubbier than helicopters. Our results show this makes their wings robust against flow separation, which reduces drag below values obtained with more slender wings. This revises our understanding of how aspect ratio improves performance at low Reynolds numbers.

  1. Time Accurate Unsteady Simulation of the Stall Inception Process in the Compression System of a US Army Helicopter Gas Turbine Engine

    National Research Council Canada - National Science Library

    Hathaway, Michael D; Herrick, Greg; Chen, Jenping; Webster, Robert

    2004-01-01

    .... Improved understanding of the stall inception process and how stall control technologies mitigate such will provide compressors with increased tolerance to stall, thereby expanding the operational...

  2. Intra-operative measurement of applied forces during anterior scoliosis correction.

    Science.gov (United States)

    Fairhurst, H; Little, J P; Adam, C J

    2016-12-01

    Spinal instrumentation and fusion for the treatment of scoliosis is primarily a mechanical intervention to correct the deformity and halt further progression. While implant-related complications remain a concern, little is known about the magnitudes of the forces applied to the spine during surgery, which may affect post-surgical outcomes. In this study, the compressive forces applied to each spinal segment during anterior instrumentation were measured in a series of patients with Adolescent Idiopathic Scoliosis. A force transducer was designed and retrofit to a routinely used surgical tool, and compressive forces applied to each segment during surgery were measured for 15 scoliosis patients. Cobb angle correction achieved by each force was measured on intra-operative fluoroscope images. Relative changes in orientation of the screw within the vertebra were also measured to detect intra-operative screw plough. Intra-operative forces were measured for a total of 95 spinal segments. The mean applied compressive force was 540N (SD 230N, range 88N-1019N). There was a clear trend for higher forces to be applied at segments toward the apex of the scoliosis. Fluoroscopic evidence of screw plough was detected at 10 segments (10.5%). The magnitude of forces applied during anterior scoliosis correction vary over a broad range. These forces do reach magnitudes capable of causing intra-operative vertebral body screw plough. Surgeons should be aware there is a risk for tissue overload during correction, however the clinical implications of intra-operative screw plough remain unclear. The dataset presented here is valuable for providing realistic input parameters for in silico surgical simulations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. A new bi-axial cantilever beam design for biomechanics force measurements.

    Science.gov (United States)

    Lin, Huai-Ti; Trimmer, Barry A

    2012-08-31

    The demand for measuring forces exerted by animals during locomotion has increased dramatically as biomechanists strive to understand and implement biomechanical control strategies. In particular, multi-axial force transducers are often required to capture animal limb coordination patterns. Most existing force transducers employ strain gages arranged in a Wheatstone bridge on a cantilever beam. Bi-axial measurements require duplicating this arrangement in the transverse direction. In this paper, we reveal a method to embed a Wheatstone bridge inside another to allow bi-axial measurements without additional strain gages or additional second beams. This hybrid configuration resolves two force components from a single bridge circuit and simplifies fabrication for the simultaneous assessment of normal and transverse loads. This design can be implemented with two-dimensional fabrication techniques and can even be used to modify a common full bridge cantilever force transducer. As a demonstration of the new design, we built a simple beam which achieved bi-axial sensing capability that outperformed a conventional half-bridge-per-axis bi-axial strain gage design. We have used this design to measure the ground reaction forces of a crawling caterpillar and a caterpillar-mimicking soft robot. The simplicity and increased sensitivity of this method could facilitate bi-axial force measurements for experimental biologists. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. PTEN Regulates DNA Replication Progression and Stalled Fork Recovery

    Science.gov (United States)

    He, Jinxue; Kang, Xi; Yin, Yuxin; Chao, K.S. Clifford; Shen, Wen H.

    2015-01-01

    Faithful DNA replication is a cornerstone of genomic integrity. PTEN plays multiple roles in genome protection and tumor suppression. Here we report on the importance of PTEN in DNA replication. PTEN depletion leads to impairment of replication progression and stalled fork recovery, indicating an elevation of endogenous replication stress. Exogenous replication inhibition aggravates replication-originated DNA lesions without inducing S-phase arrest in cells lacking PTEN, representing replication stress tolerance. Our analysis reveals the physical association of PTEN with DNA replication forks and PTEN-dependent recruitment of Rad51. PTEN deletion results in Rad51 dissociation from replication forks. Stalled replication forks in Pten null cells can be reactivated by ectopic Rad51 or PTEN, the latter facilitating chromatin loading of Rad51. These data highlight the interplay of PTEN with Rad51 in promoting stalled fork restart. We propose that loss of PTEN may initiate a replication stress cascade that progressively deteriorates through the cell cycle. PMID:26158445

  5. Stall Recovery Guidance Algorithms Based on Constrained Control Approaches

    Science.gov (United States)

    Stepanyan, Vahram; Krishnakumar, Kalmanje; Kaneshige, John; Acosta, Diana

    2016-01-01

    Aircraft loss-of-control, in particular approach to stall or fully developed stall, is a major factor contributing to aircraft safety risks, which emphasizes the need to develop algorithms that are capable of assisting the pilots to identify the problem and providing guidance to recover the aircraft. In this paper we present several stall recovery guidance algorithms, which are implemented in the background without interfering with flight control system and altering the pilot's actions. They are using input and state constrained control methods to generate guidance signals, which are provided to the pilot in the form of visual cues. It is the pilot's decision to follow these signals. The algorithms are validated in the pilot-in-the loop medium fidelity simulation experiment.

  6. Measurements of Normal and Friction Forces in a Rolling Process

    DEFF Research Database (Denmark)

    Henningsen, Poul; Arentoft, Mogens; Wanheim, Tarras

    2004-01-01

    To improve the quality of frictional data and to validate the simulations in rolling, a load transducer for measuring normal and friction stresses in the deformation zone has been developed. The transducer consists of a strain gauge equipped insert embedded in the surface of the roll. The length...... of the insert exceeds the contact length. By analyzing the output from the insert, the friction stress and normal pressure in the contact zone can be determined. The new concept differs from existing pin designs by a lower disturbance of lubricant film and material flow and limited penetration of material...

  7. Measurement of Normal and Friction Forces in a Rolling Process

    DEFF Research Database (Denmark)

    Henningsen, Poul; Arentoft, Mogens; Wanheim, Tarras

    2004-01-01

    by the fric-tion conditions. To achieve this important informa-tion, measurements of the normal pressure and friction stresses in the deformation zone are re-quested. The direction of the friction stresses is changing during the rolling gap. At the entrance of the de-formation zone, the peripherical velocity...... of the roll is higher than for the incoming material, which causes frictional stresses at the material acting in the rolling direction. At the outlet of the rolling gap, the velocity of the deformed material exceeds the velocity of the roll, generating frictional stresses contrary to the direction of rolling...

  8. Measurements of normal and frictional forces in a rolling process

    DEFF Research Database (Denmark)

    Henningsen, Poul; Arentoft, Mogens; Wanheim, Tarras

    2006-01-01

    of the insert exceeds the contact length. By analysing the output from the insert, the frictional stress and normal pressure in the contact zone can be determined. The new concept differs from existing pin designs by less disturbance of lubricant film and material flow and limited penetration of material......To improve the quality of frictional data and to validate the simulations in rolling, a load transducer for measuring normal and frictional stresses in the deformation zone has been developed. The transducer consists of a strain-gauge-equipped insert embedded in the surface of the roll. The length...

  9. Measuring Relationships: A Model for Evaluating U.S. Air Force Public Affairs Programs

    National Research Council Canada - National Science Library

    Della Vedova, Joseph P

    2005-01-01

    The thesis advanced here is that Air Force Public Affairs should be responsible for managing the organization-public relationship and that the effectiveness of that management can be measured in terms...

  10. Spring constant measurement using a MEMS force and displacement sensor utilizing paralleled piezoresistive cantilevers

    Science.gov (United States)

    Kohyama, Sumihiro; Takahashi, Hidetoshi; Yoshida, Satoru; Onoe, Hiroaki; Hirayama-Shoji, Kayoko; Tsukagoshi, Takuya; Takahata, Tomoyuki; Shimoyama, Isao

    2018-04-01

    This paper reports on a method to measure a spring constant on site using a micro electro mechanical systems (MEMS) force and displacement sensor. The proposed sensor consists of a force-sensing cantilever and a displacement-sensing cantilever. Each cantilever is composed of two beams with a piezoresistor on the sidewall for measuring the in-plane lateral directional force and displacement. The force resolution and displacement resolution of the fabricated sensor were less than 0.8 µN and 0.1 µm, respectively. We measured the spring constants of two types of hydrogel microparticles to demonstrate the effectiveness of the proposed sensor, with values of approximately 4.3 N m-1 and 15.1 N m-1 obtained. The results indicated that the proposed sensor is effective for on-site spring constant measurement.

  11. Subsurface measurement of nanostructures on GaAs by electrostatic force microscopy

    International Nuclear Information System (INIS)

    Yamada, Fumihiko; Kamiya, Itaru

    2013-01-01

    The size of surface buried oxide nanostructures are measured by electrostatic force microscopy (EFM). In contrast to atomic force microscopy that cannot probe subsurface structures and thickness, we show that EFM data include information about the thickness of individual nanostructures, consequently allowing us to determine the thickness of buried nanostructures on semiconductor substrates. We further show that this measurement can be performed simultaneously with AFM using EFM modulation spectroscopy.

  12. Measurement of wisdom forging force using piezoelectric materials

    Directory of Open Access Journals (Sweden)

    Hsia Shao-Yi

    2017-01-01

    Full Text Available Aiming at forging machines for bolts and nuts with up to 61% market share, adding piezoelectric sensing units to the mold forging is discussed in this study. In the research process, it attempts to develop a sensing element with low cost, practicable limited space, acceptable performance stability, and real-time measurement of forging load by a five-stage forming system for special nuts matched with the theory of plastic forming, the CAD/CAE design and numerical analysis, and the installation of a piezoelectric unit. It aims to assist fastener businesses in the intelligentization, networking, and systemization of machines and further integrate into the Internet service manufacturing system to enhance the overall competitiveness of fastener industry.

  13. Oncology Section EDGE Task Force on Urogenital Cancer: A Systematic Review of Clinical Measures for Incontinence.

    Science.gov (United States)

    Jeffrey, Alicia; Harrington, Shana E; Hill, Alexandra; Roscow, Amanda; Alappattu, Meryl

    2017-07-01

    Compared to the general population, women and men with urogenital and colorectal cancer experience higher rates of urinary and fecal incontinence. Although a variety of measures exist to assess these areas, currently, there are no guidelines recommending which outcomes rehabilitation professionals should administer to examine these impairments in those with cancer. To identify outcome measures for assessing urinary and fecal incontinence and evaluate their psychometric data and applicability to the cancer population. Multiple electronic databases (CINAHL, Medline, PsycInfo) were reviewed using specific search terms to locate articles that identify outcome measures assessing urinary and fecal incontinence. As part of a larger effort to identify outcome measures for both incontinence and sexual dysfunction, 1118 articles were initially identified, 228 articles were reviewed, and 37 outcome measures were selected for analysis, 13 of which were related to urinary and fecal incontinence. Each incontinence outcome measure was independently reviewed and rated by two reviewers using the Cancer EDGE Task Force Outcome Measure Rating Form. Any discrepancies between reviewers were discussed and an overall recommendation for each outcome measure was made using the 4-point Cancer EDGE Task Force Rating Scale. The Task Force was able to highly recommend 1 measure addressing urinary incontinence (American Urological Association Symptom Index) and 2 measures assessing both urinary and fecal incontinence (Pelvic Floor Distress Inventory - Short Form, Pelvic Floor Impact Questionnaire - Short Form). The Task Force also recommended two measures of urinary incontinence that demonstrated strong psychometric properties, but had not yet been evaluated in the cancer population (Incontinence Quality of Life Questionnaire, International Consultation on Incontinence Questionnaire - Short Form). The Task Force was unable to recommend any measures that solely addressed fecal incontinence. Five

  14. EQUINE THERMOREGULATORY RESPONSES DURING SUMMERTIME ROAD TRANSPORT AND STALL CONFINEMENT

    Directory of Open Access Journals (Sweden)

    ANGELA R. GREEN

    2007-04-01

    Full Text Available Thermoregulatory responses of horses subjected to summer-time road transport and stall confinement were investigated in this study. Six mature geldings were transported 168 km in a 4-horse trailer and were monitored while tethered in their stalls, on alternate days. Core body temperature (GT demonstrated negligible response during transport, but GT following transport was higher than GT for non-transport. GT tended to increase with increased temperature humidity index (THI. THI within the trailer was greatest for positions near the front, and was influenced by daily weather which varied over experiment days from heat stress conditions to moderate discomfort.

  15. Regulation of bacterial gene expression by ribosome stalling and rescuing.

    Science.gov (United States)

    Jin, Yongxin; Jin, Shouguang; Wu, Weihui

    2016-05-01

    Ribosome is responsible for protein synthesis and is able to monitor the sequence and structure of the nascent peptide. Such ability plays an important role in determining overall gene expression profile of the bacteria through ribosome stalling and rescuing. In this review, we briefly summarize our current understanding of the regulation of gene expression through ribosome stalling and rescuing in bacteria, as well as mechanisms that modulate ribosome activity. Understanding the mechanisms of how bacteria modulate ribosome activity will provide not only fundamental insights into bacterial gene regulation, but also new candidate targets for the development of novel antimicrobial agents.

  16. Fabrication of oriented crystals as force measurement tips via focused ion beam and microlithography methods

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhigang [School of Science, North University of China, Shanxi 030051 China; Chun, Jaehun [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, WA USA; Chatterjee, Sayandev [Energy and Environment Directorate, Pacific Northwest National Laboratory, WA USA; Li, Dongsheng [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, WA USA

    2017-11-09

    Detailed knowledge of the forces between nanocrystals is very crucial for understanding many generic (e.g., random aggregation/assembly and rheology) and specific (e.g., oriented attachment) phenomena at macroscopic length scales, especially considering the additional complexities involved in nanocrystals such as crystal orientation and corresponding orientation-dependent physicochemical properties. Because there are a limited number of methods to directly measure the forces, little is known about the forces that drive the various emergent phenomena. Here we report on two methods of preparing crystals as force measurement tips used in an atomic force microscope (AFM): the focused ion beam method and microlithography method. The desired crystals are fabricated using these two methods and are fixed to the AFM probe using platinum deposition, ultraviolet epoxy, or resin, which allows for the orientation-dependent force measurements. These two methods can be used to attach virtually any solid particles (from the size of a few hundreds of nanometers to millimeters). We demonstrate the force measurements between aqueous media under different conditions such as pH.

  17. Digital design and fabrication of simulation model for measuring orthodontic force.

    Science.gov (United States)

    Liu, Yun-Feng; Zhang, Peng-Yuan; Zhang, Qiao-Fang; Zhang, Jian-Xing; Chen, Jie

    2014-01-01

    Three dimensional (3D) forces are the key factors for determining movement of teeth during orthodontic treatment. Designing precise forces and torques on tooth before treatment can result accurate tooth movements, but it is too difficult to realize. In orthodontic biomechanical systems, the periodontal tissues, including bones, teeth, and periodontal ligaments (PDL), are affected by braces, and measuring the forces applied on the teeth by braces should be based on a simulated model composed of these three types of tissues. This study explores the design and fabrication of a simulated oral model for 3D orthodontic force measurements. Based on medical image processing, tissue reconstruction, 3D printing, and PDL simulation and testing, a model for measuring force was designed and fabricated, which can potentially be used for force prediction, design of treatment plans, and precise clinical operation. The experiment illustrated that bi-component silicones with 2:8 ratios had similar mechanical properties to PDL, and with a positioning guide, the teeth were assembled in the mandible sockets accurately, and so a customized oral model for 3D orthodontic force measurement was created.

  18. Design and testing of an innovative measurement device for tyre-road contact forces

    Science.gov (United States)

    Cheli, F.; Braghin, F.; Brusarosco, M.; Mancosu, F.; Sabbioni, E.

    2011-08-01

    The measurement of tyre-road contact forces is the first step towards the development of new control systems for improving vehicle safety and performances. Tyre-road contact forces measurement systems are very expensive and significantly modify the unsprung masses of the vehicle as well as the rotational inertia of the tyres. Thus, vehicle dynamics results are significantly affected. As a consequence, the measured contact forces do not correspond to the contact forces under real working conditions. A new low-cost tyre-road contact forces measurement system is proposed in this paper that can be applied to passenger cars. Its working principle is based on the measurement of three deformations of the wheel rim through strain gauges. The tyre-rim assembly is thus turned into a sensor for tyre-road contact forces. The influence of the strain gauges position onto the measurement results has been assessed through finite element simulations and experimental tests. It has been proven that, for a large variety of rims, the strain gauge position that leads to high signal-to-noise ratios is almost the same. A dynamic calibration procedure has been developed in order to allow the reconstruction of contact force and torque components once per wheel turn. The capability of the developed device to correctly estimate tyre-road contact forces has been assessed, in a first stage, through indoor laboratory experimental test on an MTS Flat-Trac ® testing machine. Results show that the implemented measuring system allows to reconstruct contact forces once per wheel turn with a precision that is comparable to that of existing high-cost measurement systems. Subsequently, outdoor tests with a vehicle having all four wheels equipped with the developed measuring device have also been performed. Reliability of the measurements provided by the developed sensor has been assessed by comparing the global measured longitudinal/lateral forces and the product of the measured longitudinal

  19. Accuracy of force and center of pressure measures of the Wii Balance Board.

    Science.gov (United States)

    Bartlett, Harrison L; Ting, Lena H; Bingham, Jeffrey T

    2014-01-01

    The Nintendo Wii Balance Board (WBB) is increasingly used as an inexpensive force plate for assessment of postural control; however, no documentation of force and COP accuracy and reliability is publicly available. Therefore, we performed a standard measurement uncertainty analysis on 3 lightly and 6 heavily used WBBs to provide future users with information about the repeatability and accuracy of the WBB force and COP measurements. Across WBBs, we found the total uncertainty of force measurements to be within ± 9.1N, and of COP location within ± 4.1mm. However, repeatability of a single measurement within a board was better (4.5 N, 1.5mm), suggesting that the WBB is best used for relative measures using the same device, rather than absolute measurement across devices. Internally stored calibration values were comparable to those determined experimentally. Further, heavy wear did not significantly degrade performance. In combination with prior evaluation of WBB performance and published standards for measuring human balance, our study provides necessary information to evaluate the use of the WBB for analysis of human balance control. We suggest the WBB may be useful for low-resolution measurements, but should not be considered as a replacement for laboratory-grade force plates. Published by Elsevier B.V.

  20. Experimental measurements of hydrodynamic radial forces and stiffness matrices for a centrifugal pump-impeller

    Science.gov (United States)

    Chamieh, D. S.; Acosta, A. J.; Brennen, C. E.; Caughey, T. K.

    1985-01-01

    Measurements of the steady-state hydrodynamic forces on a centrifugal pump impeller are presented as a function of position within two geometrically different volutes. These correspond to the forces experienced by the impeller at zero whirl frequency. The hydrodynamic force matrices derived from these measurements exhibit both diagonal and off-diagonal terms of substantial magnitude. These terms are of the form which would tend to excite a whirl motion in a rotordynamic analysis of the pump; this may be the cause of 'rough running' reported in many pumps. Static pressure measurements in the impeller discharge flow show that the hydrodynamic force on the impeller contains a substantial component due to the nonisotropy of the net momentum flux leaving the impeller. A similar breakdown of the contributions to the stiffness matrices reveals that the major component of these matrices results from the nonisotropy of the momentum flux.

  1. Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope

    DEFF Research Database (Denmark)

    Jensen, Carsten P.

    Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope......Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope...

  2. An in-fiber Bragg grating sensor for contact force and stress measurements in articular joints

    International Nuclear Information System (INIS)

    Dennison, Christopher R; Wild, Peter M; Wilson, David R; Gilbart, Michael K

    2010-01-01

    We present an in-fiber Bragg grating-based sensor (240 µm diameter) for contact force/stress measurements in articular joints. The contact force sensor and another Bragg grating-based pressure sensor (400 µm diameter) are used to conduct the first simultaneous measurements of contact force/stress and fluid pressure in intact cadaveric human hips. The contact force/stress sensor addresses limitations associated with stress-sensitive films, the current standard tools for contact measurements in joints, including cartilage modulus-dependent sensitivity of films and the necessity to remove biomechanically relevant anatomy to implant the films. Because stress-sensitive films require removal of anatomy, it has been impossible to validate the mechanical rationale underlying preventive or corrective surgeries, which repair these anatomies, by conducting simultaneous stress and pressure measurements in intact hips. Methods are presented to insert the Bragg grating-based sensors into the joint, while relevant anatomy is left largely intact. Sensor performance is predicted using numerical models and the predicted sensitivity is verified through experimental calibrations. Contact force/stress and pressure measurements in cadaveric joints exhibited repeatability. With further validation, the Bragg grating-based sensors could be used to study the currently unknown relationships between contact forces and pressures in both healthy and degenerated joints

  3. QCM-based rupture force measurement as a tool to study DNA dehybridization and duplex stability.

    Science.gov (United States)

    Dultsev, Fedor N; Kolosovsky, Eugeny A; Lomzov, Alexander A; Pyshnyi, Dmitrii V

    2017-02-01

    The stability of double-stranded DNA (dsDNA) was assessed on the basis of unwinding force measurement. Unwinding force was measured directly with a quartz crystal microbalance (QCM). The amplitude of its surface oscillations was controlled by supplying variable alternate voltage. Under smoothly increasing amplitude of QCM surface oscillations, dsDNA fixed on QCM surface through one of its ends got unwound. This procedure allows reliable measurement of rupture force as small as 5-10 pN. It was demonstrated that oscillations of the surface, with dsDNA bound through one of its ends to this surface, at a frequency of 14 MHz, cause helix unwinding to form two complementary parts due to viscous forces of the liquid medium. Unwinding starts at the upper end. This was proven using oligonucleotide duplexes containing mismatches in different positions. For duplexes containing complementary 20 base pairs, the helix unwinding force is equal to 30-40 pN, which is in agreement with the data obtained by means of atomic-force microscopy (AFM) for the case of unzipping mode. Graphical Abstract Rupture force depending on mismatch position in dsDNA.

  4. Prestress Force Identification for Externally Prestressed Concrete Beam Based on Frequency Equation and Measured Frequencies

    Directory of Open Access Journals (Sweden)

    Luning Shi

    2014-01-01

    Full Text Available A prestress force identification method for externally prestressed concrete uniform beam based on the frequency equation and the measured frequencies is developed. For the purpose of the prestress force identification accuracy, we first look for the appropriate method to solve the free vibration equation of externally prestressed concrete beam and then combine the measured frequencies with frequency equation to identify the prestress force. To obtain the exact solution of the free vibration equation of multispan externally prestressed concrete beam, an analytical model of externally prestressed concrete beam is set up based on the Bernoulli-Euler beam theory and the function relation between prestress variation and vibration displacement is built. The multispan externally prestressed concrete beam is taken as the multiple single-span beams which must meet the bending moment and rotation angle boundary conditions, the free vibration equation is solved using sublevel simultaneous method and the semi-analytical solution of the free vibration equation which considered the influence of prestress on section rigidity and beam length is obtained. Taking simply supported concrete beam and two-span concrete beam with external tendons as examples, frequency function curves are obtained with the measured frequencies into it and the prestress force can be identified using the abscissa of the crosspoint of frequency functions. Identification value of the prestress force is in good agreement with the test results. The method can accurately identify prestress force of externally prestressed concrete beam and trace the trend of effective prestress force.

  5. Predicting Diaphyseal Cortical Bone Status Using Measures of Muscle Force Capacity.

    Science.gov (United States)

    Higgins, Simon; Sokolowski, Chester M; Vishwanathan, Megha; Anderson, Jessica G; Schmidt, Michael D; Lewis, Richard D; Evans, Ellen M

    2018-02-16

    Muscle cross sectional area (MCSA) is often used as a surrogate for the forces applied to bones during physical activity. Though MCSA is a strong predictor of cortical bone status, its use makes assumptions about the relationship between muscle size and force that are inaccurate. Furthermore, to measure MCSA and other muscle force surrogates typically requires expensive and/or radiative laboratory equipment. Thus, this study aimed to determine whether clinical lab- and field-based methodologies for measuring muscular force capacity accounted for similar variance in diaphyseal cortical bone status as a commonly used muscular force surrogate; MCSA, at the mid-tibia in young men and women. Healthy young adults (n = 142, 19.7 ± 0.7 yo, 52.8% female) were assessed via peripheral quantitative computed tomography at the mid-tibia for cortical bone status and MCSA. Muscle force capacity was measured via Biodex dynamometer, Nottingham leg extensor power rig, and Vertec vertical jump. Regression analysis compared the independent variance predicted by each muscle force measure to that of MCSA, accounting for relevant confounders. MCSA, knee extension peak torque, and peak anaerobic power from vertical jump were independent predictors of select cortical structural outcomes (cortical thickness and area, periosteal and endosteal circumference, and estimated strength) accounting for up to 78.4% of the variance explained (all p<.05). However, cortical volumetric bone mineral density was unrelated to any measure or surrogate of muscle force capacity. MCSA is a strong independent predictor of cortical bone structure; however, both lab- and field-based measures of peak torque and/or peak anaerobic power are promising alternatives, explaining similar and sometimes greater variance than MCSA.

  6. Modeling the effect of probe force on length measurements on polymer parts

    DEFF Research Database (Denmark)

    Mohammadi, Ali; Sonne, Mads Rostgaard; Dalla Costa, Giuseppe

    2016-01-01

    Measurement uncertainty at micrometer level is in the future going to be very common in dimensional measurements on polymer parts. Accurate dimensional measurement of polymer parts is becoming a key and common practice in the industry, especially when micrometer tolerances are required. When...... numerically. Both analytical and numerical approaches were compared with the experimental results. The results showed that the numerical model was able to predict the deformation of the polymer part due to different probe forces. Furthermore it was shown, that the probe force should be taking into account...... when measurement with a few micrometer accuracy should be performed on thin walled polymer parts....

  7. Dynamic Stall Flow Control Through the Use of a Novel Plasma Based Actuator Technology, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Lynntech proposes a novel flow control methodology for airfoils undergoing dynamic stall. Dynamic stall refers to an aerodynamic phenomenon that is experienced by...

  8. The use of piezoelectric bimorph transducers to measure forces in colloidal systems

    International Nuclear Information System (INIS)

    Stewart, A.M.

    1996-01-01

    The Surface Force Apparatus developed in this Department has proved useful for the measurement of colloidal forces between transparent surfaces in liquids and gases at surface separations of 1 nm up to 500 nm. The distance between the surfaces is measured by the interferometry of white light, and the force is measured from the movement of one of the surfaces that is attached to a cantilever spring which deflects under the influence of the force. In the present work an analysis is made of the effect of the errors introduced at a longer time scale by bimorph drift and decay upon accuracy of measurement. For direct measurements the errors will be small provided that the time constant of the bimorph, given by the product of its capacitance and amplifier input impedance, is much larger than the total time of measurement. With the force-feedback technique the errors will be negligible provided that, in addition the integrator time constant is much smaller than the bimorph time constant, a condition easily satisfied. In is important to use an amplifier with a very high input impedance to buffer bimorphs used for this type of measurement

  9. A validation study of a new instrument for low cost bite force measurement.

    Science.gov (United States)

    Testa, Marco; Di Marco, Anna; Pertusio, Raffaele; Van Roy, Peter; Cattrysse, Erik; Roatta, Silvestro

    2016-10-01

    Quantitative assessment of force in masticatory muscles is not a routine clinical test, probably due to the lack of an "easy-to-use" device. Aim of this study is (1) to present a low cost bite force instrument located in a custom-made housing, designed to guarantee a comfortable and effective bite action, (2) to evaluate its mechanical characteristics, in order to implement it in clinical settings and in experimental setups. Linearity, repeatability and adaptation over time were assessed on a set of four different sensors in bare and housed condition. Application of the housing to the transducer may appreciably alter the transducer's response. Calibration of the housed transducer is thus necessary in order to correctly record real bite force. This solution may represent a low cost and reliable option for biting force measurement and objective assessment of individual force control in the scientific and clinical setting. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Transient Response of an Impacted Beam and Indirect Impact Force Identification Using Strain Measurements

    Directory of Open Access Journals (Sweden)

    Hyungsoon Park

    1994-01-01

    Full Text Available The impulse response functions (force-strain relations for Euler–Bernoulli and Timoshenko beams are considered. The response of a beam to a transverse impact force, including reflection at the boundary, is obtained with the convolution approach using the impulse response function obtained by a Laplace transform and a numerical scheme. Using this relation, the impact force history is determined in the time domain and results are compared with those of Hertz's contact law. In the case of an arbitrary impact, the location of the impact force and the time history of the impact force can be found. In order to verify the proposed algorithm, measurements were taken using an impact hammer and a drop test of a steel ball. These results are compared with simulated ones.

  11. Laboratory measurement verification of laser hazard analysis for miles weapon simulators used in force on force exercises.

    Energy Technology Data Exchange (ETDEWEB)

    Augustoni, Arnold L.

    2006-08-01

    Due to the change in the batteries used with the Small Arm Laser Transmitters (SALT) from 3-volts dc to 3.6-volts dc and changes to SNL MILES operating conditions, the associated laser hazards of these units required re-evaluation to ensure that the hazard classification of the laser emitters had not changed as well. The output laser emissions of the SNL MILES, weapon simulators and empire guns, used in Force-On-Force (FOF) training exercises, was measured in accordance to the ANSI Standard Z136.4-2005, ''Recommended Practice for Laser Safety Measurements for Hazard Evaluation''. The laser hazard class was evaluated in accordance with the ANSI Standard Z136.1-2000, ''Safe Use of Lasers'', using ''worst'' case conditions associated with these MILES units. Laser safety assessment was conducted in accordance with the ANSI Standard Z136.6-2005, ''Safe Use of Lasers Outdoors''. The laser hazard evaluation of these MILES laser emitters was compared to and supersedes SAND Report SAND2002-0246, ''Laser Safety Evaluation of the MILES and Mini MILES Laser Emitting Components'', which used ''actual'' operating conditions of the laser emitters at the time of its issuance.

  12. Development and testing of an integrated smart tool holder for four-component cutting force measurement

    Science.gov (United States)

    Xie, Zhengyou; Lu, Yong; Li, Jianguang

    2017-09-01

    Cutting force measurement is a significant requirement for monitoring and controlling the machining processes. Hence, various methods of measuring the cutting force have been proposed by many researchers. In this study, an innovative integrated smart tool holder system based on capacitive sensors is designed, constructed and tested, which is capable of measuring triaxial cutting force and a torque simultaneously in a wireless environment system. A standard commercial tool holder is modified to make itself be the force sensing element that has advantages of simple structure and easy machining. Deformable beams are created in the tool holder, and the tiny deformations of which used to calculate the four-component cutting force are detected by six high precision capacitive sensors. All the sensors and other electronics, like data acquisition and transmitting unit, and wireless power unit, are incorporated into the tool holder as a whole system. The device is intended to be used in a rotating spindle such as in milling and drilling processes. Eventually, the static and dynamic characteristics of the smart tool holder have been determined by a series of tests. Cutting tests have also been carried out and the results show it is stable and practical to measure the cutting force in milling and drilling processes.

  13. Pushing nanoparticles with light — A femtonewton resolved measurement of optical scattering forces

    Directory of Open Access Journals (Sweden)

    C. Zensen

    2016-05-01

    Full Text Available Optomechanical manipulation of plasmonic nanoparticles is an area of current interest, both fundamental and applied. However, no experimental method is available to determine the forward-directed scattering force that dominates for incident light of a wavelength close to the plasmon resonance. Here, we demonstrate how the scattering force acting on a single gold nanoparticle in solution can be measured. An optically trapped 80 nm particle was repetitively pushed from the side with laser light resonant to the particle plasmon frequency. A lock-in analysis of the particle movement provides a measured value for the scattering force. We obtain a resolution of less than 3 femtonewtons which is an order of magnitude smaller than any measurement of switchable forces performed on nanoparticles in solution with single beam optical tweezers to date. We compared the results of the force measurement with Mie simulations of the optical scattering force on a gold nanoparticle and found good agreement between experiment and theory within a few fN.

  14. A High Performance Sensor for Triaxial Cutting Force Measurement in Turning

    Directory of Open Access Journals (Sweden)

    You Zhao

    2015-04-01

    Full Text Available This paper presents a high performance triaxial cutting force sensor with excellent accuracy, favorable natural frequency and acceptable cross-interference for high speed turning process. Octagonal ring is selected as sensitive element of the designed sensor, which is drawn inspiration from ring theory. A novel structure of two mutual-perpendicular octagonal rings is proposed and three Wheatstone full bridge circuits are specially organized in order to obtain triaxial cutting force components and restrain cross-interference. Firstly, the newly developed sensor is tested in static calibration; test results indicate that the sensor possesses outstanding accuracy in the range of 0.38%–0.83%. Secondly, impacting modal tests are conducted to identify the natural frequencies of the sensor in triaxial directions (i.e., 1147 Hz, 1122 Hz and 2035 Hz, which implies that the devised sensor can be used for cutting force measurement in a high speed lathe when the spindle speed does not exceed 17,205 rev/min in continuous cutting condition. Finally, an application of the sensor in turning process is operated to show its performance for real-time cutting force measurement; the measured cutting forces demonstrate a good accordance with the variation of cutting parameters. Thus, the developed sensor possesses perfect properties and it gains great potential for real-time cutting force measurement in turning.

  15. Dynamic Characteristics of Rotating Stall in Mixed Flow Pump

    Directory of Open Access Journals (Sweden)

    Xiaojun Li

    2013-01-01

    Full Text Available Rotating stall, a phenomenon that causes flow instabilities and pressure hysteresis by propagating at some fraction of the impeller rotational speed, can occur in centrifugal impellers, mixed impellers, radial diffusers, or axial diffusers. Despite considerable efforts devoted to the study of rotating stall in pumps, the mechanics of this phenomenon are not sufficiently understood. The propagation mechanism and onset of rotating stall are not only affected by inlet flow but also by outlet flow as well as the pressure gradient in the flow passage. As such, the complexity of these concepts is not covered by the classical explanation. To bridge this research gap, the current study investigated prerotation generated at the upstream of the impeller, leakage flow at the tip clearance between the casing and the impeller, and strong reserve flow at the inlet of the diffuser. Understanding these areas will clarify the origin of the positive slope of the head-flow performance curve for a mixed flow pump. Nonuniform pressure distribution and adverse pressure gradient were also introduced to evaluate the onset and development of rotating stall within the diffuser.

  16. Dynamic functional force measurements on an anterior bite plane during the night.

    Science.gov (United States)

    Wichelhaus, Andrea; Hüffmeier, Stefan; Sander, Franz-Günter

    2003-11-01

    Anterior bite planes are used in removable and fixed appliance treatment. In removable appliance treatment the question arising is whether the delivered forces can achieve active intrusion in terms of their amplitude and duration. In fixed appliance treatment, the force effect on the incisors and associated pathologic side effects, in particular under the application of intrusion mechanics, have to be considered. The aim of the present study was to investigate the effects of an anterior bite plane during the night. For this purpose ten subjects underwent nocturnal sleep investigations by means of a telemetric system. A silicon force sensor was integrated into an anterior bite plane for continuous measurement of bite forces and of the frequency of occlusal contact with the plate. The occlusal forces exerted on the anterior bite planes ranged between 3 and 80 N. The average forces were 5.5-24 N. The number of occlusal contacts varied between 39 and 558, with forces of between 7 and 9 N being registered in most cases. Major interindividual differences were detected in the magnitude of the force as well as in bite frequency. The intraindividual pattern of arising occlusal forces showed an intermittent force effect. No significant differences were found with regard to gender or growth pattern. In subjects with removable appliances, no active intrusion of teeth is possible during the night owing to the small number of occlusal contacts. Due to the partially very high forces in fixed appliance therapy, the integration of an anterior bite plane has to be assessed as critical in patients with unfavorable root geometry or bruxism.

  17. Assessment of masticatory function using bite force measurements in patients treated for mandibular fractures.

    Science.gov (United States)

    Sybil, Deborah; Gopalkrishnan, K

    2013-12-01

    Bite force measurements are excellent criteria for assessment of masticatory efficiency. The purpose of this study was to assess the effect of mandibular fractures on the bite forces of patients treated for such fractures. Patients who were surgically treated for isolated mandibular fractures in the Department of Oral and Maxillofacial Surgery from January 2006 to December 2007 were included in the study. Patients were asked to bite on a bite force transducer on the first, fourth, sixth, and ninth postoperative weeks. The bite force values were compared with those of age, sex, and weight-matched controls. A total of 60 patients were included in the study. It was found that maximum bite forces in patients were significantly less than in controls for several weeks after surgery. After the ninth postoperative week, the maximum bite force measured  80% the normal in patients with isolated parasymphysis fractures. The same values reduced to < 60% in patients with fractures of angle and parasymphysis and < 70% in patients with fractures of parasymphysis and condylar complex. An inverse relationship was found between the bite force values and the number of fractures of the mandible. We also found lower bite forces and longer period for normalization in patients who had fractures in those regions of the mandible which are more significantly associated with the masticatory apparatus for example angle or condyle of the mandible.

  18. Interaction force measurement between E. coli cells and nanoparticles immobilized surfaces by using AFM.

    Science.gov (United States)

    Zhang, Wen; Stack, Andrew G; Chen, Yongsheng

    2011-02-01

    To better understand environmental behaviors of nanoparticles (NPs), we used the atomic force microscopy (AFM) to measure interaction forces between E. coli cells and NPs immobilized on surfaces in an aqueous environment. The results showed that adhesion force strength was significantly influenced by particle size for both hematite (α-Fe(2)O(3)) and corundum (α-Al(2)O(3)) NPs whereas the effect on the repulsive force was not observed. The adhesion force decreased from 6.3±0.7nN to 0.8±0.4nN as hematite NPs increased from 26nm to 98nm in diameter. Corundum NPs exhibited a similar dependence of adhesion force on particle size. The Johnson-Kendall-Roberts (JKR) model was employed to estimate the contact area between E. coli cells and NPs, and based on the JKR model a new model that considers local effective contact area was developed. The prediction of the new model matched the size dependence of adhesion force in experimental results. Size effects on adhesion forces may originate from the difference in local effective contact areas as supported by our model. These findings provide fundamental information for interpreting the environmental behaviors and biological interactions of NPs, which barely have been addressed. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Identification of impact force acting on composite laminated plates using the radiated sound measured with microphones

    Science.gov (United States)

    Atobe, Satoshi; Nonami, Shunsuke; Hu, Ning; Fukunaga, Hisao

    2017-09-01

    Foreign object impact events are serious threats to composite laminates because impact damage leads to significant degradation of the mechanical properties of the structure. Identification of the location and force history of the impact that was applied to the structure can provide useful information for assessing the structural integrity. This study proposes a method for identifying impact forces acting on CFRP (carbon fiber reinforced plastic) laminated plates on the basis of the sound radiated from the impacted structure. Identification of the impact location and force history is performed using the sound pressure measured with microphones. To devise a method for identifying the impact location from the difference in the arrival times of the sound wave detected with the microphones, the propagation path of the sound wave from the impacted point to the sensor is examined. For the identification of the force history, an experimentally constructed transfer matrix is employed to relate the force history to the corresponding sound pressure. To verify the validity of the proposed method, impact tests are conducted by using a CFRP cross-ply laminate as the specimen, and an impulse hammer as the impactor. The experimental results confirm the validity of the present method for identifying the impact location from the arrival time of the sound wave detected with the microphones. Moreover, the results of force history identification show the feasibility of identifying the force history accurately from the measured sound pressure using the experimental transfer matrix.

  20. Soft colloidal probes for AFM force measurements between water droplets in oil

    KAUST Repository

    Vakarelski, Ivan Uriev

    2014-11-01

    Here we introduce an extension of the atomic force microscopy (AFM) colloidal probe technique, as a simple and reliable experimental approach to measure the interaction forces between small water droplets (~80-160. μm) dispersed in oil. Small water droplets are formed by capillary breakup of a microscale water jet in air, which is forced out of a fine capillary nozzle, and deposited on a superhydrophobic substrate immersed in tetradecane oil medium. In these conditions the water droplets are very loosely attached to the superhydrophobic substrate and are easily picked up with a hydrophobic AFM cantilever to form a soft colloidal probe. Sample force measurements are conducted to demonstrate the capability of the technique.

  1. High force measurement sensitivity with fiber Bragg gratings fabricated in uniform-waist fiber tapers

    International Nuclear Information System (INIS)

    Wieduwilt, Torsten; Brückner, Sven; Bartelt, Hartmut

    2011-01-01

    Fiber Bragg gratings inscribed in the waist of tapered photosensitive fibers offer specific attractive properties for sensing applications. A small-diameter fiber reduces structural influences for imbedded fiber sensing elements. In the case of application as a force-sensing element for tensile forces, sensitivity scales inversely with the fiber cross-sectional area. It is therefore possible to increase force sensitivity by several orders of magnitude compared to Bragg grating sensors in conventionally sized fibers. Special requirements for such Bragg grating arrangements are discussed and experimental measurements for different fiber taper diameters down to 4 µm are presented

  2. Aerodynamics of Dragonfly in Forward Flight: Force measurements and PIV results

    Science.gov (United States)

    Hu, Zheng; Deng, Xinyan

    2009-11-01

    We used a pair of dynamically scaled robotic dragonfly model wings to investigate the aerodynamic effects of wing-wing interaction in dragonflies. We follow the wing kinematics of real dragonflies in forward flight, while systematically varied the phase difference between the forewing and hindwing. Instantaneous aerodynamic forces and torques were measured on both wings, while flow visualization and PIV results were obtained. The results show that, in forward flight, wing-wing interaction always enhances the aerodynamic forces on the forewing through an upwash brought by the hindwing, while reduces the forces on the hindwing through a downwash brought by the forewing.

  3. A CFD Database for Airfoils and Wings at Post-Stall Angles of Attack

    Science.gov (United States)

    Petrilli, Justin; Paul, Ryan; Gopalarathnam, Ashok; Frink, Neal T.

    2013-01-01

    This paper presents selected results from an ongoing effort to develop an aerodynamic database from Reynolds-Averaged Navier-Stokes (RANS) computational analysis of airfoils and wings at stall and post-stall angles of attack. The data obtained from this effort will be used for validation and refinement of a low-order post-stall prediction method developed at NCSU, and to fill existing gaps in high angle of attack data in the literature. Such data could have potential applications in post-stall flight dynamics, helicopter aerodynamics and wind turbine aerodynamics. An overview of the NASA TetrUSS CFD package used for the RANS computational approach is presented. Detailed results for three airfoils are presented to compare their stall and post-stall behavior. The results for finite wings at stall and post-stall conditions focus on the effects of taper-ratio and sweep angle, with particular attention to whether the sectional flows can be approximated using two-dimensional flow over a stalled airfoil. While this approximation seems reasonable for unswept wings even at post-stall conditions, significant spanwise flow on stalled swept wings preclude the use of two-dimensional data to model sectional flows on swept wings. Thus, further effort is needed in low-order aerodynamic modeling of swept wings at stalled conditions.

  4. A Hair Ribbon Deflection Model for Low-intrusiveness Measurement of Bow Force in Violin Performance

    OpenAIRE

    Marchini, Marco; Papiotis, Panos; Pérez, Alfonso; Maestre, Esteban

    2011-01-01

    This paper introduces and evaluates a novel methodologyfor the estimation of bow pressing force in violin performance, aiming at a reduced intrusiveness while maintaininghigh accuracy. The technique is based on using a simplifiedphysical model of the hair ribbon deflection, and feeding thismodel solely with position and orientation measurements ofthe bow and violin spatial coordinates. The physical modelis both calibrated and evaluated using real force data acquired by means of a load cell.

  5. Extended Measurements of Aerodynamic Stability and Limb Dislodgement Forces with the ACES-II Ejection Seat

    Science.gov (United States)

    1975-07-01

    HENNfl^ E. VON GIERKE ’ Director ;*■ Diodynamics and Bionics Division Aerospace Medical Research Laboratory <r U~ /ECcS^’O« (or HTIS ffliü...Investigator. The Air Force Technical Monitor was James W. Brinkley of the Impact Branch, Biodynamics and Bionics Division of the Aerospace Medical...ACES-II Side Arm Control Handles were Mounted on Strain-Gauged Cantilever Beams which Permit "In-Out" and "Forward-Back" Forces to be Measured 18

  6. Measurement of the traction force of biological cells by digital holography

    Science.gov (United States)

    Yu, Xiao; Cross, Michael; Liu, Changgeng; Clark, David C.; Haynie, Donald T.; Kim, Myung K.

    2011-01-01

    The traction force produced by biological cells has been visualized as distortions in flexible substrata. We have utilized quantitative phase microscopy by digital holography (DH-QPM) to study the wrinkling of a silicone rubber film by motile fibroblasts. Surface deformation and the cellular traction force have been measured from phase profiles in a direct and straightforward manner. DH-QPM is shown to provide highly efficient and versatile means for quantitatively analyzing cellular motility. PMID:22254175

  7. A novel AFM based method for force measurements between individual hair strands

    International Nuclear Information System (INIS)

    Max, Eva; Haefner, Wolfgang; Wilco Bartels, Frank; Sugiharto, Albert; Wood, Claudia; Fery, Andreas

    2010-01-01

    Interactions between hairs and other natural fibers are of broad interest for both applications and fundamental understanding of biological interfaces. We present a novel method, that allows force measurements between individual hair strands. Hair fragments can be laser-cut without altering their surface chemistry. Subsequently, they are glued onto Atomic force microscopy (AFM) cantilevers. This allows carrying out measurements between the hair fragment and surface immobilized hair in a well-defined crossed-cylinder geometry. Both force-distance and friction measurements are feasible. Measurements in air with controlled humidity and in aqueous environment show clear differences which can be explained by the dominating role of capillary interactions in air. Friction is found to be anisotropic, reflecting the fine structure of hair cuticula. While the investigations are focused on the particular example of human hair, we expect that the approach can be extended to other animal/plant fibers and thus offers perspectives for broad spectrum systems.

  8. Measurement of internal forces in superconducting accelerator magnets with strain gauge transducers

    International Nuclear Information System (INIS)

    Goodzeit, C.L.; Anerella, M.D.; Ganetis, G.L.

    1988-01-01

    An improved method has been developed for the measurement of internal forces in superconducting accelerator magnets, in particular the compressive stresses in coils and the end restraint forces on the coils. The transducers have been designed to provide improved sensitivity to purely mechanical strain by using bending mode deflections for sensing the applied loads. Strain gauge resistance measurements are made with a new system that eliminates sources of errors due to spurious resistance changes in interconnecting wiring and solder joints. The design of the transducers and their measurement system is presented along with a discussion of the method of compensation for thermal and magnetic effects, methods of calibration with typical calibration data, and measured effect in actual magnets of the thermal stress changes from cooldown and the Lorentz forces during magnet excitation. 13 figs., 1 tab

  9. A novel AFM based method for force measurements between individual hair strands

    Energy Technology Data Exchange (ETDEWEB)

    Max, Eva; Haefner, Wolfgang [Physical Chemistry II, University of Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth (Germany); Wilco Bartels, Frank [Polymer Physics, Global PU Specialties Research, BASF Polyurethanes GmbH, Elastogranstrasse 60, 49448 Lemfoerde (Germany); Sugiharto, Albert [Polymer Physics and Analytics, G201, 67056 Ludwigshafen (Germany); Wood, Claudia [Care Chemicals and Formulators, Personal Care Ingredients, New Business and Application Development, BASF SE, E-EMV/GP - H201, 67056 Ludwigshafen (Germany); Fery, Andreas, E-mail: andreas.fery@uni-bayreuth.de [Physical Chemistry II, University of Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth (Germany)

    2010-03-15

    Interactions between hairs and other natural fibers are of broad interest for both applications and fundamental understanding of biological interfaces. We present a novel method, that allows force measurements between individual hair strands. Hair fragments can be laser-cut without altering their surface chemistry. Subsequently, they are glued onto Atomic force microscopy (AFM) cantilevers. This allows carrying out measurements between the hair fragment and surface immobilized hair in a well-defined crossed-cylinder geometry. Both force-distance and friction measurements are feasible. Measurements in air with controlled humidity and in aqueous environment show clear differences which can be explained by the dominating role of capillary interactions in air. Friction is found to be anisotropic, reflecting the fine structure of hair cuticula. While the investigations are focused on the particular example of human hair, we expect that the approach can be extended to other animal/plant fibers and thus offers perspectives for broad spectrum systems.

  10. Measurement of friction force between two mica surfaces with multiple beam interferometry

    Directory of Open Access Journals (Sweden)

    Jung J.C.

    2010-06-01

    Full Text Available Friction forces play a crucial role in the tribological behaviour of microcomponents and the application of MEMS products. It is necessary to develop a measurement system to understand and control the material characteristics. In this study, a microscopic measurement system based on multiple beam interferometry is developed to measure the friction force between two mica thin films. Some frictional behaviour between the two mica sheets in contact are reported. The evaluated shear strength of mica agrees well to the existing data. It is possible to use the developed system for micro-tribology study.

  11. Cellular dynamics of bovine aortic smooth muscle cells measured using MEMS force sensors

    Science.gov (United States)

    Tsukagoshi, Takuya; Nguyen, Thanh-Vinh; Hirayama Shoji, Kayoko; Takahashi, Hidetoshi; Matsumoto, Kiyoshi; Shimoyama, Isao

    2018-04-01

    Adhesive cells perceive the mechanical properties of the substrates to which they adhere, adjusting their cellular mechanical forces according to their biological characteristics. This mechanical interaction subsequently affects the growth, locomotion, and differentiation of the cell. However, little is known about the detailed mechanism that underlies this interaction between adherent cells and substrates because dynamically measuring mechanical phenomena is difficult. Here, we utilize microelectromechamical systems force sensors that can measure cellular traction forces with high temporal resolution (~2.5 µs) over long periods (~3 h). We found that the cellular dynamics reflected physical phenomena with time scales from milliseconds to hours, which contradicts the idea that cellular motion is slow. A single focal adhesion (FA) generates an average force of 7 nN, which disappears in ms via the action of trypsin-ethylenediaminetetraacetic acid. The force-changing rate obtained from our measurements suggests that the time required for an FA to decompose was nearly proportional to the force acting on the FA.

  12. Active flow control of the laminar separation bubble on a plunging airfoil near stall

    Science.gov (United States)

    Pande, Arth; Agate, Mark; Little, Jesse; Fasel, Hermann

    2017-11-01

    The effects of small amplitude (A/c = 0.048) high frequency (πfc/U∞ = 0.70) plunging motion on the X-56A airfoil are examined experimentally at Re = 200,000 for 12° angle of attack (CL,MAX = 12.25°) . The purpose of this research is to study the aerodynamic influence of structural motion when the wing is vibrating close to its eigenfrequency near static stall. Specific focus is placed on the laminar separation bubble (LSB) near the leading edge and its control via plasma actuation. In the baseline case, the leading edge bubble bursts during the oscillation cycle causing moment stall. A collaborative computational effort has shown that small amplitude forcing at a frequency that is most amplified by the primary instability of the LSB (FLSB+= 1, Fc+= 52) generates coherent spanwise vortices that entrain freestream momentum, thus reducing separation all while maintaining a laminar flow state. Results (PIV and surface pressure) indicate that a similar control mechanism is effective in the experiments. This is significant given the existence of freestream turbulence in the wind tunnel which has been shown to limit the efficacy of this active flow control technique in a model problem using Direct Numerical Simulation. The implications of these results are discussed.

  13. Static and dynamic force/moment measurements in the Eidetics water tunnel

    Science.gov (United States)

    Suarez, Carlos J.; Malcolm, Gerald N.

    1994-01-01

    Water tunnels have been utilized in one form or another to explore fluid mechanics and aerodynamics phenomena since the days of Leonardo da Vinci. Water tunnel testing is attractive because of the relatively low cost and quick turn-around time to perform flow visualization experiments and evaluate the results. The principal limitation of a water tunnel is that the low flow speed, which provides for detailed visualization, also results in very small hydrodynamic (aerodynamic) forces on the model, which, in the past, have proven to be difficult to measure accurately. However, the advent of semi-conductor strain gage technology and devices associated with data acquisition such as low-noise amplifiers, electronic filters, and digital recording have made accurate measurements of very low strain levels feasible. The principal objective of this research effort was to develop a multi-component strain gage balance to measure forces and moments on models tested in flow visualization water tunnels. A balance was designed that allows measuring normal and side forces, and pitching, yawing and rolling moments (no axial force). The balance mounts internally in the model and is used in a manner typical of wind tunnel balances. The key differences between a water tunnel balance and a wind tunnel balance are the requirement for very high sensitivity since the loads are very low (typical normal force is 0.2 lbs), the need for water proofing the gage elements, and the small size required to fit into typical water tunnel models.

  14. An implantable telemetry device to measure intra-articular tibial forces.

    Science.gov (United States)

    D'Lima, Darryl D; Townsend, Christopher P; Arms, Steven W; Morris, Beverly A; Colwell, Clifford W

    2005-02-01

    Tibial forces are important because they determine polyethylene wear, stress distribution in the implant, and stress transfer to underlying bone. Theoretic estimates of tibiofemoral forces have varied between three and six times the body weight depending on the mathematical models used and the type of activity analyzed. An implantable telemetry system was therefore developed to directly measure tibiofemoral compressive forces. This system was tested in a cadaver knee in a dynamic knee rig. A total knee tibial arthroplasty prosthesis was instrumented with four force transducers located at the four corners of the tibial tray. These transducers measured the total compressive forces on the tibial tray and the location of the center of pressure. A microprocessor performed analog-to-digital signal conversion and performed pulse code modulation of a surface acoustic wave radio frequency oscillator. This signal was then transmitted through a single pin hermetic feed-through tantalum wire antenna located at the tip of the stem. The radio frequency signal was received by an external antenna connected to a receiver and to a computer for data acquisition. The prosthesis was powered by external coil induction. The tibial transducer accurately measured both the magnitude and the location of precisely applied external loads. Successful transmission of the radio frequency signal up to a range of 3m was achieved through cadaveric bone, bone cement, and soft tissue. Reasonable accuracy was obtained in measuring loads applied through a polyethylene insert. The implant was also able to detect unicondylar loading with liftoff.

  15. Non-Newtonian Gravity and New Weak Forces: an Index of Measurements and Theory

    Science.gov (United States)

    Fischbach, E.; Gillies, G. T.; Krause, D. E.; Schwan, J. G.; Talmadge, C.

    1992-01-01

    The precise measurement of weak effects plays a pivotal role in metrology and in the determination of the fundamental constants. Hence, the possibility of new weak forces, and the related question of non-Newtonian behaviour of the gravitational force, have been of special interest to both measurement scientists and those involved in precise tests of physical laws. To date there is no compelling evidence for any deviations from the predictions of Newtonian gravity in the nonrelativistic weak-field regime. A significant literature on this question has developed over the past few years, and a host of experiments and theoretical scenarios have been discussed. Moreover, a very close relationship exists between the experimental methodologies used to determine the absolute value of the Newtonian gravitational constant G, and those employed in searches for new weak forces and for breakdowns in the inverse-square law of gravity. We have therefore prepared a new index of measurements of such effects, using the original bibliographic work of Gillies as a starting point, but also including citations to the appropriate theoretical papers in the field. The focus of the present version of the index is then studies of the "fifth force", measurements of gravitational effects on antimatter, searches for a spin-component in the gravitational force, and related phenomena.

  16. Hilbert phase dynamometry (HPD) for real-time measurement of cell generated forces (Conference Presentation)

    Science.gov (United States)

    Sridharan, Shamira; Li, Yanfen; Bhaduri, Basanta; Majeed, Hassaan; Dupenloup, Paul; Levine, Alex; Kilian, Kristopher A.; Popescu, Gabriel

    2016-03-01

    Traction force microscopy is the most widely used technique for studying the forces exerted by cells on deformable substrates. However, the method is computationally intense and cells have to be detached from the substrate prior to measuring the displacement map. We have developed a new method, referred to as Hilbert phase dynamometry (HPD), which yields real-time force fields and, simultaneously, cell dry mass and growth information. HPD operates by imaging cells on a deformable substrate that is patterned with a grid of fluorescent proteins. A Hilbert transform is used to extract the phase map associated with the grid deformation, which provides the displacement field. By combining this information with substrate stiffness, an elasticity model was developed to measure forces exerted by cells with high spatial resolution. In our study, we prepared 10kPa gels and them with a 2-D grid of FITC-conjugated fibrinogen/fibronectin mixture, an extracellular matrix protein to which cells adhere. We cultured undifferentiated mesenchymal stem cells (MSC), and MSCs that were in the process of undergoing adipogenesis and osteogenesis. The cells were measured over the course of 24 hours using Spatial Light Interference Microscopy (SLIM) and wide-field epi-fluorescence microscopy allowing us to simultaneously measure cell growth and the forces exerted by the cells on the substrate.

  17. Simulation Model of an Active-stall Fixed-speed Wind Turbine Controller

    DEFF Research Database (Denmark)

    Jauch, Clemens; Hansen, Anca D.; Soerensen, Poul

    2004-01-01

    This paper describes an active-stall wind turbine controller. The objective is to develop a general model of an active stall controller in order to simulate the operation of grid connected active stall wind turbines. The active stall turbine concept and its control strategies are presented...... and evaluated by simulations. The presented controller is described for continuous operation under all wind speeds from start-up wind speed to shut down wind speed. Due to its parametric implementation it is general i.e. it can represent different active stall wind turbine controllers and can be implemented...

  18. Simulation model of an active-stall fixed-speed wind turbine controller

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, C.; Hansen, A.D.; Sorensen, P.; Blaabjerg, F.

    2004-07-01

    This paper describes an active-stall wind turbine controller. The objective is to develop a general model of an active stall controller in order to simulate the operation of grid connected active stall wind turbines. The active stall turbine concept and its control strategies are presented and evaluated by simulations. The presented controller is described for continuous operation under all wind speeds from start-up wind speed to shut down wind speed. Due to its parametric implementation it is general i. e. it can represent different active stall wind turbine controllers and can be implemented in different simulation tools. (author)

  19. Phase-resolved fluid dynamic forces of a flapping foil energy harvester based on PIV measurements

    Science.gov (United States)

    Liburdy, James

    2017-11-01

    Two-dimensional particle image velocimetry measurements are performed in a wind tunnel to evaluate the spatial and temporal fluid dynamic forces acting on a flapping foil operating in the energy harvesting regime. Experiments are conducted at reduced frequencies (k = fc/U) of 0.05 - 0.2, pitching angle of, and heaving amplitude of A / c = 0.6. The phase-averaged pressure field is obtained by integrating the pressure Poisson equation. Fluid dynamic forces are then obtained through the integral momentum equation. Results are compared with a simple force model based on the concept of flow impulse. These results help to show the detailed force distributions, their transient nature and aide in understanding the impact of the fluid flow structures that contribute to the power production.

  20. Measurements on hydrophobic and hydrophilic surfaces using a porous gamma alumina nanoparticle aggregate mounted on Atomic Force Microscopy cantilevers

    NARCIS (Netherlands)

    Das, Theerthankar; Becker, Thomas; Nair, Balagopal N.

    2010-01-01

    Atomic Force Microscopy (AFM) measurements are extensively used for a detailed understanding of molecular and surface forces. In this study, we present a technique for measuring such forces, using an AFM cantilever attached with a porous gamma alumina nanoparticle aggregate. The modified cantilever

  1. Harmonic Force Spectroscopy measures load-dependent kinetics of individual human β-cardiac myosin molecules

    DEFF Research Database (Denmark)

    Sung, Jongmin; Nag, Suman; Mortensen, Kim

    2015-01-01

    Molecular motors are responsible for numerous cellular processes from cargo transport to heart contraction. Their interactions with other cellular components are often transient and exhibit kinetics that depend on load. Here, we measure such interactions using ‘harmonic force spectroscopy....... The protocol accumulates statistics fast enough to deliver single-molecule results from single-molecule experiments. We demonstrate the method’s performance by measuring the force-dependent kinetics of individual human b-cardiac myosin molecules interacting with an actin filament at physiological ATP...

  2. In situ friction measurement on murine cartilage by atomic force microscopy.

    Science.gov (United States)

    Coles, Jeffrey M; Blum, Jason J; Jay, Gregory D; Darling, Eric M; Guilak, Farshid; Zauscher, Stefan

    2008-01-01

    Articular cartilage provides a low-friction, wear-resistant surface for the motion of diarthrodial joints. The objective of this study was to develop a method for in situ friction measurement of murine cartilage using a colloidal probe attached to the cantilever of an atomic force microscope. Sliding friction was measured between a chemically functionalized microsphere and the cartilage of the murine femoral head. Friction was measured at normal loads ranging incrementally from 20 to 100 nN with a sliding speed of 40 microm/s and sliding distance of 64 microm. Under these test conditions, hydrostatic pressurization and biphasic load support in the cartilage were minimized, providing frictional measurements that predominantly reflect boundary lubrication properties. Friction coefficients measured on murine tissue (0.25+/-0.11) were similar to those measured on porcine tissue (0.23+/-0.09) and were in general agreement with measurements of boundary friction on cartilage by other researchers. Using the colloidal probe as an indenter, the elastic mechanical properties and surface roughness were measured in the same configuration. Interfacial shear was found to be the principal mechanism of friction generation, with little to no friction resulting from plowing forces, collision forces, or energy losses due to normal deformation. This measurement technique can be applied to future studies of cartilage friction and mechanical properties on genetically altered mice or other small animals.

  3. Flow and Noise Characteristics of Centrifugal Fan under Different Stall Conditions

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2014-01-01

    Full Text Available An implicit, time-accurate 3D Reynolds-averaged Navier-Stokes (RANS solver is used to simulate the rotating stall phenomenon in a centrifugal fan. The goal of the present work is to shed light on the flow field and particularly the aerodynamic noise at different stall conditions. Aerodynamic characteristics, frequency domain characteristics, and the contours of sound power level under two different stall conditions are discussed in this paper. The results show that, with the decrease of valve opening, the amplitude of full pressure and flow fluctuations tends to be larger and the stall frequency remains the same. The flow field analysis indicates that the area occupied by stall cells expands with the decrease of flow rate. The noise calculation based on the simulation underlines the role of vortex noise after the occurrence of rotating stall, showing that the high noise area rotates along with the stall cell in the circumferential direction.

  4. Investigating the adsorption of the gemini surfactant "12-2-12" onto mica using atomic force microscopy and surface force apparatus measurements

    NARCIS (Netherlands)

    Fielden, ML; Claesson, PM; Verrall, RE

    1999-01-01

    The adsorption of the cationic gemini surfactant 1,2-bis(n-dodecyldimethylammonium)ethane dibromide on mica was followed by measuring forces between mica surfaces and by atomic force microscopy (AFM) imaging. The surface charge was found to be neutralized at total surfactant concentrations between 8

  5. Direct measurement and modulation of single-molecule coordinative bonding forces in a transition metal complex

    DEFF Research Database (Denmark)

    Hao, Xian; Zhu, Nan; Gschneidtner, Tina

    2013-01-01

    remain a daunting challenge. Here we demonstrate an interdisciplinary and systematic approach that enables measurement and modulation of the coordinative bonding forces in a transition metal complex. Terpyridine is derived with a thiol linker, facilitating covalent attachment of this ligand on both gold...... substrate surfaces and gold-coated atomic force microscopy tips. The coordination and bond breaking between terpyridine and osmium are followed in situ by electrochemically controlled atomic force microscopy at the single-molecule level. The redox state of the central metal atom is found to have......Coordination chemistry has been a consistently active branch of chemistry since Werner's seminal theory of coordination compounds inaugurated in 1893, with the central focus on transition metal complexes. However, control and measurement of metal-ligand interactions at the single-molecule level...

  6. Measurement and prediction of cutting forces and vibrations on longwall shearers

    Energy Technology Data Exchange (ETDEWEB)

    Bulent Tiryaki [CRCMining (Australia)

    2006-12-15

    CRCMining has developed the Cutting Head Performance Analysis Software (CPAS) to predict cutter motor power, ranging arm reaction forces, and vibrations for different drum designs, coal seams, and shearer operational conditions. This project describes the work on THE DBT EL3000 shearer at Beltana to validate/update CPAS by measuring the cutter motor power, ranging arm vibrations, and reaction forces through an online data acquisition system called Cutting Head Performance Monitoring System (CPMS). This system records the outputs of six strain gauge bridges, six accelerometers, and two pressure transducers on ranging arms during underground coal production. CPAS2 has then been developed in order to eliminate the needs for performing coal cutting tests for the target coal seam. CPAS2 simulations for cutter motor power, vertical reaction force, and vibrations were also close to those measured in the trials. CRCMining will release the CPAS code including fully functioning software code on CD to Australian coal mining industry.

  7. Measurement of levitation force and critical current density of melt textured YBa2Cu3Ox

    International Nuclear Information System (INIS)

    Lehndorff, B.; Kuerschner, H.G.; Busch, D.; Fischer, B.; Piel, H.

    1993-01-01

    By various Melt Textured Growth (MTG) processes YBa 2 Cu 3 O x (Y-123) samples have been prepared with high critical current densities and high levitation forces. The best value of both have been reported by Murakami et al., who used the melt powder melt growth (MPMG) process with platinum addition. These melt textured samples are applicable to magnetic bearings (3). The goal of this work is to develop technical High Temperature Superconductors (HTSC) for bearings and magnet application. In order to optimize the HTSC material for this purpose, levitation force and critical current measurements were carried out. Within this work samples were prepared by the modified Salama method. Levitation force was measured as a function of the distance between the magnet and the superconductor. The critical current density was determined by an inductive method. (orig.)

  8. Minimising the effect of nanoparticle deformation in intermittent contact amplitude modulation atomic force microscopy measurements

    International Nuclear Information System (INIS)

    Babic, Bakir; Lawn, Malcolm A.; Coleman, Victoria A.; Jämting, Åsa K.; Herrmann, Jan

    2016-01-01

    The results of systematic height measurements of polystyrene (PS) nanoparticles using intermittent contact amplitude modulation atomic force microscopy (IC-AM-AFM) are presented. The experimental findings demonstrate that PS nanoparticles deform during AFM imaging, as indicated by a reduction in the measured particle height. This deformation depends on the IC-AM-AFM imaging parameters, material composition, and dimensional properties of the nanoparticles. A model for nanoparticle deformation occurring during IC-AM-AFM imaging is developed as a function of the peak force which can be calculated for a particular set of experimental conditions. The undeformed nanoparticle height can be estimated from the model by extrapolation to zero peak force. A procedure is proposed to quantify and minimise nanoparticle deformation during IC-AM-AFM imaging, based on appropriate adjustments of the experimental control parameters.

  9. A Noncontact Force Sensor Based on a Fiber Bragg Grating and Its Application for Corrosion Measurement

    Directory of Open Access Journals (Sweden)

    Antonio C. Bruno

    2013-08-01

    Full Text Available A simple noncontact force sensor based on an optical fiber Bragg grating attached to a small magnet has been proposed and built. The sensor measures the force between the magnet and any ferromagnetic material placed within a few millimeters of the sensor. Maintaining the sensor at a constant standoff distance, material loss due to corrosion increases the distance between the magnet and the corroded surface, which decreases the magnetic force. This will decrease the strain in the optical fiber shifting the reflected Bragg wavelength. The measured shift for the optical fiber used was 1.36 nm per Newton. Models were developed to optimize the magnet geometry for a specific sensor standoff distance and for particular corrosion pit depths. The sensor was able to detect corrosion pits on a fuel storage tank bottom with depths in the sub-millimeter range.

  10. DYNSTALL: Subroutine package with a dynamic stall model

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerck, Anders [Aeronautical Research Inst. of Sweden, Bromma (Sweden)

    2001-03-01

    A subroutine package, called DYNSTALL, for the calculation of 2D unsteady airfoil aerodynamics is described. The subroutines are written in FORTRAN. DYNSTALL is basically an implementation of the Beddoes-Leishman dynamic stall model. This model is a semi-empirical model for dynamic stall. It includes, however, also models for attached flow unsteady aerodynamics. It is complete in the sense that it treats attached flow as well as separated flow. Semi-empirical means that the model relies on empirically determined constants. Semi because the constants are constants in equations with some physical interpretation. It requires the input of 2D airfoil aerodynamic data via tables as function of angle of attack. The method is intended for use in an aeroelastic code with the aerodynamics solved by blade/element method. DYNSTALL was written to work for any 2D angles of attack relative to the airfoil, e.g. flow from the rear of an airfoil.

  11. Atomic force microscope adhesion measurements and atomistic molecular dynamics simulations at different humidities

    International Nuclear Information System (INIS)

    Seppä, Jeremias; Sairanen, Hannu; Korpelainen, Virpi; Husu, Hannu; Heinonen, Martti; Lassila, Antti; Reischl, Bernhard; Raiteri, Paolo; Rohl, Andrew L; Nordlund, Kai

    2017-01-01

    Due to their operation principle atomic force microscopes (AFMs) are sensitive to all factors affecting the detected force between the probe and the sample. Relative humidity is an important and often neglected—both in experiments and simulations—factor in the interaction force between AFM probe and sample in air. This paper describes the humidity control system designed and built for the interferometrically traceable metrology AFM (IT-MAFM) at VTT MIKES. The humidity control is based on circulating the air of the AFM enclosure via dryer and humidifier paths with adjustable flow and mixing ratio of dry and humid air. The design humidity range of the system is 20–60 %rh. Force–distance adhesion studies at humidity levels between 25 %rh and 53 %rh are presented and compared to an atomistic molecular dynamics (MD) simulation. The uncertainty level of the thermal noise method implementation used for force constant calibration of the AFM cantilevers is 10 %, being the dominant component of the interaction force measurement uncertainty. Comparing the simulation and the experiment, the primary uncertainties are related to the nominally 7 nm radius and shape of measurement probe apex, possible wear and contamination, and the atomistic simulation technique details. The interaction forces are of the same order of magnitude in simulation and measurement (5 nN). An elongation of a few nanometres of the water meniscus between probe tip and sample, before its rupture, is seen in simulation upon retraction of the tip in higher humidity. This behaviour is also supported by the presented experimental measurement data but the data is insufficient to conclusively verify the quantitative meniscus elongation. (paper)

  12. Three-Dimensional Force Measurements During Rapid Palatal Expansion in Sus scrofa

    Directory of Open Access Journals (Sweden)

    Kelly Goeckner

    2016-04-01

    Full Text Available Rapid palatal expansion is an orthodontic procedure widely used to correct the maxillary arch. However, its outcome is significantly influenced by factors that show a high degree of variability amongst patients. The traditional treatment methodology is based on an intuitive and heuristic treatment approach because the forces applied in the three dimensions are indeterminate. To enable optimal and individualized treatment, it is essential to measure the three-dimensional (3D forces and displacements created by the expander. This paper proposes a method for performing these 3D measurements using a single embedded strain sensor, combining experimental measurements of strain in the palatal expander with 3D finite element analysis (FEA. The method is demonstrated using the maxillary jaw from a freshly euthanized pig (Sus scrofa and a hyrax-design rapid palatal expander (RPE appliance with integrated strain gage. The strain gage measurements are recorded using a computer interface, following which the expansion forces and extent of expansion are estimated by FEA. A total activation of 2.0 mm results in peak total force of about 100 N—almost entirely along the direction of expansion. The results also indicate that more than 85% of the input activation is immediately transferred to the palate and/or teeth. These studies demonstrate a method for assessing and individualizing expansion magnitudes and forces during orthopedic expansion of the maxilla. This provides the basis for further development of smart orthodontic appliances that provide real-time readouts of forces and movements, which will allow personalized, optimal treatment.

  13. [Hip abduction force measured by a new method and its relation to EMG activity].

    Science.gov (United States)

    Murakami, K

    1989-11-01

    I measured hip abduction force using a new device of my own design and evaluated the correlation between hip abduction force and electromyographic (EMG) activity of the gluteus medius, gluteus maximus, rectus femoris and adductor longus in 20 normal adults. Hip abduction force showed a maximum value on starting and decreased during abduction of the hip joint. Durability, on the other hand, showed an increase. The attenuation curve was approximated to the exponential function A.e-Kt; A and l/k indicating maximum hip abduction force and durability, respectively. Maximum hip abduction force was about 20 kg and durability was about 160 seconds on starting hip abduction. The regression coefficient between hip abduction force and EMG activity of the gluteus medius, gluteus maximus, rectus femoris and adductor longus was 1.5, 06, 0.6 and 0.2 respectively. From these results, I concluded that although the gluteus medius plays the major role in hip abduction, the rectus femoris and gluteus maximus may act as stabilizers for maintaining the position of hip abduction.

  14. Numerical and experimental study on vorticity measurement in liquid metal using local Lorentz force velocimetry

    Science.gov (United States)

    Hernández, Daniel; Marangoni, Rafael; Schleichert, Jan; Karcher, Christian; Fröhlich, Thomas; Wondrak, Thomas

    2018-03-01

    Local Lorentz force velocimetry (local LFV) is a contactless velocity measurement technique for liquid metals. Due to the relative movement between an electrically conductive fluid and a static applied magnetic field, eddy currents and a flow-braking Lorentz force are generated inside the metal melt. This force is proportional to the flow rate or to the local velocity, depending on the volume subset of the flow spanned by the magnetic field. By using small-size magnets, a localized magnetic field distribution is achieved allowing a local velocity assessment in the region adjacent to the wall. In the present study, we describe a numerical model of our experiments at a continuous caster model where the working fluid is GaInSn in eutectic composition. Our main goal is to demonstrate that this electromagnetic technique can be applied to measure vorticity distributions, i.e. to resolve velocity gradients as well. Our results show that by using a cross-shaped magnet system, the magnitude of the torque perpendicular to the surface of the mold significantly increases improving its measurement in a liquid metal flow. According to our numerical model, this torque correlates with the vorticity of the velocity in this direction. Before validating our numerical predictions, an electromagnetic dry calibration of the measurement system composed of a multicomponent force and torque sensor and a cross-shaped magnet was done using a rotating disk made of aluminum. The sensor is able to measure simultaneously all three components of force and torque, respectively. This calibration step cannot be avoided and it is used for an accurate definition of the center of the magnet with respect to the sensor’s coordinate system for torque measurements. Finally, we present the results of the experiments at the mini-LIMMCAST facility showing a good agreement with the numerical model.

  15. Development of a quartz tuning-fork-based force sensor for measurements in the tens of nanoNewton force range during nanomanipulation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Oiko, V. T. A., E-mail: oiko@ifi.unicamp.br; Rodrigues, V.; Ugarte, D. [Instituto de Física “Gleb Wataghin,” Univ. Estadual de Campinas (UNICAMP), Campinas 13083-859 (Brazil); Martins, B. V. C. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada); Silva, P. C. [Laboratório Nacional de Nanotecnologia, CNPEM, Campinas 13083-970 (Brazil)

    2014-03-15

    Understanding the mechanical properties of nanoscale systems requires new experimental and theoretical tools. In particular, force sensors compatible with nanomechanical testing experiments and with sensitivity in the nN range are required. Here, we report the development and testing of a tuning-fork-based force sensor for in situ nanomanipulation experiments inside a scanning electron microscope. The sensor uses a very simple design for the electronics and it allows the direct and quantitative force measurement in the 1–100 nN force range. The sensor response is initially calibrated against a nN range force standard, as, for example, a calibrated Atomic Force Microscopy cantilever; subsequently, applied force values can be directly derived using only the electric signals generated by the tuning fork. Using a homemade nanomanipulator, the quantitative force sensor has been used to analyze the mechanical deformation of multi-walled carbon nanotube bundles, where we analyzed forces in the 5–40 nN range, measured with an error bar of a few nN.

  16. Prediction of RNA Polymerase II recruitment, elongation and stalling from histone modification data

    Science.gov (United States)

    2011-01-01

    Background Initiation and elongation of RNA polymerase II (RNAPII) transcription is regulated by both DNA sequence and chromatin signals. Recent breakthroughs make it possible to measure the chromatin state and activity of core promoters genome-wide, but dedicated computational strategies are needed to progress from descriptive annotation of data to quantitative, predictive models. Results Here, we describe a computational framework which with high accuracy can predict the locations of core promoters, the amount of recruited RNAPII at the promoter, the amount of elongating RNAPII in the gene body, the mRNA production originating from the promoter and finally also the stalling characteristics of RNAPII by considering both quantitative and spatial features of histone modifications around the transcription start site (TSS). As the model framework can also pinpoint the signals that are the most influential for prediction, it can be used to infer underlying regulatory biology. For example, we show that the H3K4 di- and tri- methylation signals are strongly predictive for promoter location while the acetylation marks H3K9 and H3K27 are highly important in estimating the promoter usage. All of these four marks are found to be necessary for recruitment of RNAPII but not sufficient for the elongation. We also show that the spatial distributions of histone marks are almost as predictive as the signal strength and that a set of histone marks immediately downstream of the TSS is highly predictive of RNAPII stalling. Conclusions In this study we introduce a general framework to accurately predict the level of RNAPII recruitment, elongation, stalling and mRNA expression from chromatin signals. The versatility of the method also makes it ideally suited to investigate other genomic data. PMID:22047616

  17. Prediction of RNA Polymerase II recruitment, elongation and stalling from histone modification data

    Directory of Open Access Journals (Sweden)

    Chen Yun

    2011-11-01

    Full Text Available Abstract Background Initiation and elongation of RNA polymerase II (RNAPII transcription is regulated by both DNA sequence and chromatin signals. Recent breakthroughs make it possible to measure the chromatin state and activity of core promoters genome-wide, but dedicated computational strategies are needed to progress from descriptive annotation of data to quantitative, predictive models. Results Here, we describe a computational framework which with high accuracy can predict the locations of core promoters, the amount of recruited RNAPII at the promoter, the amount of elongating RNAPII in the gene body, the mRNA production originating from the promoter and finally also the stalling characteristics of RNAPII by considering both quantitative and spatial features of histone modifications around the transcription start site (TSS. As the model framework can also pinpoint the signals that are the most influential for prediction, it can be used to infer underlying regulatory biology. For example, we show that the H3K4 di- and tri- methylation signals are strongly predictive for promoter location while the acetylation marks H3K9 and H3K27 are highly important in estimating the promoter usage. All of these four marks are found to be necessary for recruitment of RNAPII but not sufficient for the elongation. We also show that the spatial distributions of histone marks are almost as predictive as the signal strength and that a set of histone marks immediately downstream of the TSS is highly predictive of RNAPII stalling. Conclusions In this study we introduce a general framework to accurately predict the level of RNAPII recruitment, elongation, stalling and mRNA expression from chromatin signals. The versatility of the method also makes it ideally suited to investigate other genomic data.

  18. Flexible Piezoelectric Tactile Sensor Array for Dynamic Three-Axis Force Measurement.

    Science.gov (United States)

    Yu, Ping; Liu, Weiting; Gu, Chunxin; Cheng, Xiaoying; Fu, Xin

    2016-06-03

    A new flexible piezoelectric tactile sensor array based on polyvinylidene fluoride (PVDF) film is proposed for measuring three-axis dynamic contact force distribution. The array consists of six tactile units arranged as a 3 × 2 matrix with spacing 8 mm between neighbor units. In each unit, a PVDF film is sandwiched between four square-shaped upper electrodes and one square-shaped lower electrode, forming four piezoelectric capacitors. A truncated pyramid bump is located above the four piezoelectric capacitors to improve force transmission. A three-axis contact force transmitted from the top of the bump will lead to the four piezoelectric capacitors underneath undergoing different charge changes, from which the normal and shear components of the force can be calculated. A series of dynamic tests have been carried out by exerting sinusoidal forces with amplitudes ranging from 0 to 0.5 N in the x-axis, 0 to 0.5 N in the y-axis, and 0 to 1.5 N in the z-axis, separately. The tactile units show good sensitivities with 14.93, 14.92, and 6.62 pC/N in the x-, y-, and z-axes, respectively. They can work with good linearity, relatively low coupling effect, high repeatability, and acceptable frequency response in the range of 5-400 Hz to both normal and shear load. In addition, dynamic three-axis force measurement has been conducted for all of the tactile units. The average errors between the applied and calculated forces are 10.68% ± 6.84%. Furthermore, the sensor array can be easily integrated onto a curved surface, such as robotic and prosthetic hands, due to its excellent flexibility.

  19. Flexible Piezoelectric Tactile Sensor Array for Dynamic Three-Axis Force Measurement

    Directory of Open Access Journals (Sweden)

    Ping Yu

    2016-06-01

    Full Text Available A new flexible piezoelectric tactile sensor array based on polyvinylidene fluoride (PVDF film is proposed for measuring three-axis dynamic contact force distribution. The array consists of six tactile units arranged as a 3 × 2 matrix with spacing 8 mm between neighbor units. In each unit, a PVDF film is sandwiched between four square-shaped upper electrodes and one square-shaped lower electrode, forming four piezoelectric capacitors. A truncated pyramid bump is located above the four piezoelectric capacitors to improve force transmission. A three-axis contact force transmitted from the top of the bump will lead to the four piezoelectric capacitors underneath undergoing different charge changes, from which the normal and shear components of the force can be calculated. A series of dynamic tests have been carried out by exerting sinusoidal forces with amplitudes ranging from 0 to 0.5 N in the x-axis, 0 to 0.5 N in the y-axis, and 0 to 1.5 N in the z-axis, separately. The tactile units show good sensitivities with 14.93, 14.92, and 6.62 pC/N in the x-, y-, and z-axes, respectively. They can work with good linearity, relatively low coupling effect, high repeatability, and acceptable frequency response in the range of 5–400 Hz to both normal and shear load. In addition, dynamic three-axis force measurement has been conducted for all of the tactile units. The average errors between the applied and calculated forces are 10.68% ± 6.84%. Furthermore, the sensor array can be easily integrated onto a curved surface, such as robotic and prosthetic hands, due to its excellent flexibility.

  20. Measurement of Levitation Forces of High-"T[subscript c] Superconductors

    Science.gov (United States)

    Becker, M.; Koblischka, M. R.; Hartmann, U.

    2010-01-01

    We show the construction of a so-called levitation balance which is capable of measuring the levitation forces between a permanent magnet and a superconducting high-T[subscript c] thin film sample. The underlying theoretical basis is discussed in detail. The experiment is performed as an introductory physics experiment for school students as well…

  1. Validity and reliability of strain gauge measurement of volitional quadriceps force in patients with COPD.

    Science.gov (United States)

    Machado Rodrigues, Fernanda; Demeyer, Heleen; Hornikx, Miek; Camillo, Carlos Augusto; Calik-Kutukcu, Ebru; Burtin, Chris; Janssens, Wim; Troosters, Thierry; Osadnik, Christian

    2017-08-01

    This study investigated the validity and reliability of fixed strain gauge measurements of isometric quadriceps force in patients with chronic obstructive pulmonary disease (COPD). A total cohort of 138 patients with COPD were assessed. To determine validity, maximal volitional quadriceps force was evaluated during isometric maximal voluntary contraction (MVC) manoeuvre via a fixed strain gauge dynamometer and compared to (a) potentiated non-volitional quadriceps force obtained via magnetic stimulation of the femoral nerve (twitch (Tw); n = 92) and (b) volitional computerized dynamometry (Biodex; n = 46) and analysed via correlation coefficients. Test-retest and absolute reliability were determined via calculations of intra-class correlation coefficients (ICCs), smallest real differences (SRDs) and standard errors of measurement (SEMs). For this, MVC recordings in each device were performed across two test sessions separated by a period of 7 days ( n = 46). Strain gauge measures of MVC demonstrated very large correlation with Tw and Biodex results ( r = 0.86 and 0.88, respectively, both p gauge and Biodex devices (ICC = 0.96 vs. 0.93; SEM = 8.50 vs. 10.54 N·m and SRD = 23.59 vs. 29.22 N·m, respectively). The results support that strain gauge measures of quadriceps force are valid and reliable in patients with COPD.

  2. Force Measurements on a 1/40-scale Model of the U. S. Airship "Akron."

    Science.gov (United States)

    Freeman, Hugh B

    1933-01-01

    This report describes a series of tests made on a 1/40-scale model of the U. S. Airship "Akron" (ZRS-4) for the purpose of determining the drag, lift, and pitching moments of the bare hull and of the hull equipped with two different sets of fins. Measurements were also made of the elevator forces and hinge moments.

  3. THE EFFECT OF SUBMAXIMAL INHALATION ON MEASURES DERIVED FROM FORCED EXPIRATORY SPIROMETRY

    Science.gov (United States)

    THE EFFECT OF SUBMAXIMAL INHALATION ON MEASURES DERIVED FROM FORCED EXPIRATORY SPIROMETRY. William F. McDonnell Human Studies Division, NHEERL, U.S. Environmental Protection Agency, RTP, NC 27711. Short-term exposure to ozone results in a neurally-mediated decrease in the ab...

  4. The Measurement of Non-Linear Forces and Moments by Means of Free Flight Tests

    National Research Council Canada - National Science Library

    Murphy, Charles

    1956-01-01

    .... Excellent internal consistency has been observed in measuring non-linear normal and Magnus forces and their moments and, in all cases where wind tunnel results were available, they were in good agreement with range results. The application of this technique to the equally important problem of predicting yawing motion is described.

  5. Elastic-properties measurement at high temperatures through contact resonance atomic force microscopy

    DEFF Research Database (Denmark)

    Marinello, Francesco; Pezzuolo, Andrea; Carmignato, Simone

    2015-01-01

    fast direct and non-destructive measurement of Young's modulus and related surface parameters.In this work an instrument set up for Contact Resonance Atomic Force Microscopy is proposed, where the sample with is coupled to a heating stage and a piezoelectric transducer directly vibrate the cantilever...

  6. Variability in Measurement of Swimming Forces: A Meta-Analysis of Passive and Active Drag

    Science.gov (United States)

    Havriluk, Rod

    2007-01-01

    An analysis was conducted to identify sources of true and error variance in measuring swimming drag force to draw valid conclusions about performance factor effects. Passive drag studies were grouped according to methodological differences: tow line in pool, tow line in flume, and carriage in tow tank. Active drag studies were grouped according to…

  7. Force-displacement measurements of earlywood bordered pits using a mesomechanical tester

    Science.gov (United States)

    Samuel L. Zelinka; Keith J. Bourne; John C. Hermanson; Samuel V. Glass; Adriana Costa; Alex C. Wiedenhoeft

    2015-01-01

    The elastic properties of pit membranes are reported to have important implications in understanding air-seeding phenomena in gymnosperms, and pit aspiration plays a large role in wood technological applications such as wood drying and preservative treatment. Here we present force–displacement measurements for pit membranes of circular bordered pits, collected on a...

  8. Measuring q/m for Water Drops--An Introduction to the Effects of Electrical Forces

    Science.gov (United States)

    Hart, Francis X.

    1974-01-01

    Discusses an experiment which introduces students to the effects of electrical forces on the motion of macroscopic objects. Included are the proecedures of measuring the charge-to-mass ratio from deflections of charged water drops in horizontal fields and the overall charges delivered in a Faraday cup. (CC)

  9. 3D Laboratory Measurements of Forces, Flows, and Collimation in Arched Flux Tubes

    Science.gov (United States)

    Haw, Magnus; Bellan, Paul

    2016-10-01

    Fully 3D, vector MHD force measurements from an arched, current carrying flux tube (flux rope) are presented. The experiment consists of two arched plasma-filled flux ropes each powered by a capacitor bank. The two loops are partially overlapped, as in a Venn diagram, and collide and reconnect during their evolution. B-field data is taken on the lower plasma arch using a 54 channel B-dot probe. 3D volumetric data is acquired by placing the probe at 2700 locations and taking 5 plasma shots at each location. The resulting data set gives high resolution (2cm, 10ns) volumetric B-field data with high reproducibility (deviation of 3% between shots). Taking the curl of the measured 3D B-field gives current densities (J) in good agreement with measured capacitor bank current. The JxB forces calculated from the data have a strong axial component at the base of the current channel and are shown to scale linearly with axial gradients in current density. Assuming force balance in the flux tube minor radius direction, we infer near-Alfvenic axial flows from the footpoint regions which are consistent with the measured axial forces. Flux tube collimation is observed in conjunction with these axial flows. These dynamic processes are relevant to the stability and dynamics of coronal loops. Supported provided by NSF, AFOSR.

  10. Design and Analysis of a Sensor System for Cutting Force Measurement in Machining Processes

    Directory of Open Access Journals (Sweden)

    Qiaokang Liang

    2016-01-01

    Full Text Available Multi-component force sensors have infiltrated a wide variety of automation products since the 1970s. However, one seldom finds full-component sensor systems available in the market for cutting force measurement in machine processes. In this paper, a new six-component sensor system with a compact monolithic elastic element (EE is designed and developed to detect the tangential cutting forces Fx, Fy and Fz (i.e., forces along x-, y-, and z-axis as well as the cutting moments Mx, My and Mz (i.e., moments about x-, y-, and z-axis simultaneously. Optimal structural parameters of the EE are carefully designed via simulation-driven optimization. Moreover, a prototype sensor system is fabricated, which is applied to a 5-axis parallel kinematic machining center. Calibration experimental results demonstrate that the system is capable of measuring cutting forces and moments with good linearity while minimizing coupling error. Both the Finite Element Analysis (FEA and calibration experimental studies validate the high performance of the proposed sensor system that is expected to be adopted into machining processes.

  11. Trial manufacture of rotary friction tester and frictional force measurement of metals

    CERN Document Server

    Abe, T; Kanari, M; Tanzawa, S

    2002-01-01

    In the plasma confinement type fusion reactor, in-vessel structures such as a blanket module slide at the joints each other when plasma disruption occurs, and then frictional heat is generated there. Therefore, for the selection of material and the use as the design data, it is important to understand the frictional characteristics of metals and ceramic films in the vacuum. In the present study, we have manufactured a prototype of rotary friction tester and examined the performances of the tester. The frictional characteristics of metals in the room air was measured using the friction tester, and the results obtained are as follows. A drifting friction force for a constant time and a friction force during the idling were 98 mN and 225 mN, respectively. These values were sufficiently small as compared to pressing load (9.8 - 57.8 N) used in the friction test. In a friction force measurement of stainless steel, dynamic friction force obeyed Amontons' law which indicated that dynamic friction force is not depend...

  12. Interface bonding in silicon oxide nanocontacts: interaction potentials and force measurements

    Science.gov (United States)

    Wierez-Kien, M.; Craciun, A. D.; Pinon, A. V.; Le Roux, S.; Gallani, J. L.; Rastei, M. V.

    2018-04-01

    The interface bonding between two silicon-oxide nanoscale surfaces has been studied as a function of atomic nature and size of contacting asperities. The binding forces obtained using various interaction potentials are compared with experimental force curves measured in vacuum with an atomic force microscope. In the limit of small nanocontacts (typically measured with sensitive probes the bonding is found to be influenced by thermal-induced fluctuations. Using interface interactions described by Morse, embedded atom model, or Lennard-Jones potential within reaction rate theory, we investigate three bonding types of covalent and van der Waals nature. The comparison of numerical and experimental results reveals that a Lennard-Jones-like potential originating from van der Waals interactions captures the binding characteristics of dry silicon oxide nanocontacts, and likely of other nanoscale materials adsorbed on silicon oxide surfaces. The analyses reveal the importance of the dispersive surface energy and of the effective contact area which is altered by stretching speeds. The mean unbinding force is found to decrease as the contact spends time in the attractive regime. This contact weakening is featured by a negative aging coefficient which broadens and shifts the thermal-induced force distribution at low stretching speeds.

  13. Design and Analysis of a Sensor System for Cutting Force Measurement in Machining Processes.

    Science.gov (United States)

    Liang, Qiaokang; Zhang, Dan; Coppola, Gianmarc; Mao, Jianxu; Sun, Wei; Wang, Yaonan; Ge, Yunjian

    2016-01-07

    Multi-component force sensors have infiltrated a wide variety of automation products since the 1970s. However, one seldom finds full-component sensor systems available in the market for cutting force measurement in machine processes. In this paper, a new six-component sensor system with a compact monolithic elastic element (EE) is designed and developed to detect the tangential cutting forces Fx, Fy and Fz (i.e., forces along x-, y-, and z-axis) as well as the cutting moments Mx, My and Mz (i.e., moments about x-, y-, and z-axis) simultaneously. Optimal structural parameters of the EE are carefully designed via simulation-driven optimization. Moreover, a prototype sensor system is fabricated, which is applied to a 5-axis parallel kinematic machining center. Calibration experimental results demonstrate that the system is capable of measuring cutting forces and moments with good linearity while minimizing coupling error. Both the Finite Element Analysis (FEA) and calibration experimental studies validate the high performance of the proposed sensor system that is expected to be adopted into machining processes.

  14. Novel universal system for 3-dimensional orthodontic force-moment measurements and its clinical use.

    Science.gov (United States)

    Mencattelli, Margherita; Donati, Elisa; Cultrone, Massimo; Stefanini, Cesare

    2015-07-01

    Orthodontic treatment is an important part of dental health care in Europe: the percentages of the population undergoing therapy vary from 10% to 55%. Therefore, quantifying effective orthodontic loads is a challenging topic with regard to the predictability of tooth movements and the reduction of traumatic side effects. A customized measuring platform was developed and used for detecting orthodontic forces in a range between 0.1 and 2 N. The system consists of 6 load cells, each equipped with 6 strain gauges. The tests were conducted on a 3-dimensional printed malocclused mouth model and on a plaster cast. Four types of superelastic ligation and 2 types of invisible aligners were tested to analyze, respectively, a malocclusion with a high maxillary canine, and the effects on the axial rotation of a maxillary central incisor with and without a divot in the invisible aligners. Optimal treatment forces are exerted by low-friction wires, especially if they are partially engaged. Moreover, by reducing the treatment force, there is less necessity of anchoring to surrounding teeth, thus decreasing the side effects. The efficacy of using invisible aligners with a divot was validated. This platform allowed measurement, at the radicular level, of the resultant forces of orthodontic treatments performed with different orthodontic appliances. In addition to customizing and calibrating the therapy for each patient, this platform could be used to develop new specific instruments able to exert lower treatment forces, thus preventing irreversible damages. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  15. A square-force cohesion model and its extraction from bulk measurements

    Science.gov (United States)

    Liu, Peiyuan; Lamarche, Casey; Kellogg, Kevin; Hrenya, Christine

    2017-11-01

    Cohesive particles remain poorly understood, with order of magnitude differences exhibited for prior, physical predictions of agglomerate size. A major obstacle lies in the absence of robust models of particle-particle cohesion, thereby precluding accurate prediction of the behavior of cohesive particles. Rigorous cohesion models commonly contain parameters related to surface roughness, to which cohesion shows extreme sensitivity. However, both roughness measurement and its distillation into these model parameters are challenging. Accordingly, we propose a ``square-force'' model, where cohesive force remains constant until a cut-off separation. Via DEM simulations, we demonstrate validity of the square-force model as surrogate of more rigorous models, when its two parameters are selected to match the two key quantities governing dense and dilute granular flows, namely maximum cohesive force and critical cohesive energy, respectively. Perhaps more importantly, we establish a method to extract the parameters in the square-force model via defluidization, due to its ability to isolate the effects of the two parameters. Thus, instead of relying on complicated scans of individual grains, determination of particle-particle cohesion from simple bulk measurements becomes feasible. Dow Corning Corporation.

  16. Extending calibration-free force measurements to optically-trapped rod-shaped samples

    Science.gov (United States)

    Català, Frederic; Marsà, Ferran; Montes-Usategui, Mario; Farré, Arnau; Martín-Badosa, Estela

    2017-02-01

    Optical trapping has become an optimal choice for biological research at the microscale due to its non-invasive performance and accessibility for quantitative studies, especially on the forces involved in biological processes. However, reliable force measurements depend on the calibration of the optical traps, which is different for each experiment and hence requires high control of the local variables, especially of the trapped object geometry. Many biological samples have an elongated, rod-like shape, such as chromosomes, intracellular organelles (e.g., peroxisomes), membrane tubules, certain microalgae, and a wide variety of bacteria and parasites. This type of samples often requires several optical traps to stabilize and orient them in the correct spatial direction, making it more difficult to determine the total force applied. Here, we manipulate glass microcylinders with holographic optical tweezers and show the accurate measurement of drag forces by calibration-free direct detection of beam momentum. The agreement between our results and slender-body hydrodynamic theoretical calculations indicates potential for this force-sensing method in studying protracted, rod-shaped specimens.

  17. Extending the limits of direct force measurements: colloidal probes from sub-micron particles.

    Science.gov (United States)

    Helfricht, Nicolas; Mark, Andreas; Dorwling-Carter, Livie; Zambelli, Tomaso; Papastavrou, Georg

    2017-07-13

    Direct force measurements by atomic force microscopy (AFM) in combination with the colloidal probe technique are widely used to determine interaction forces in colloidal systems. However, a number of limitations are still preventing a more universal applicability of this technique. Currently, one of the most significant limitations is that only particles with diameters of several micrometers can be used as probe particles. Here, we present a novel approach, based on the combination of nanofluidics and AFM (also referred to as FluidFM-technique), that allows to overcome this size limit and extend the size of suitable probe particles below diameters of 500 nanometers. Moreover, by aspiration of colloidal particles with a hollow AFM-cantilever, the immobilization process is independent of the particle's surface chemistry. Furthermore, the probe particles can be exchanged in situ. The applicability of the FluidFM-technique is demonstrated with silica particles, which are also the types of particles most often used for the preparation of colloidal probes. By comparing 'classical' colloidal probes, i.e. probes from particles irreversibly attached with glue, and various particle sizes aspirated by the FluidFM-technique, we can quantitatively evaluate the instrumental limits. Evaluation of the force profiles demonstrate that even for 500 nm silica particles the diffuse layer properties can be evaluated quantitatively. Therefore, direct force measurements on the level of particle sizes used in industrial formulations will become available in the future.

  18. Interactions between Rotavirus and Suwannee River Organic Matter: Aggregation, Deposition, and Adhesion Force Measurement

    KAUST Repository

    Gutierrez, Leonardo

    2012-08-21

    Interactions between rotavirus and Suwannee River natural organic matter (NOM) were studied by time-resolved dynamic light scattering, quartz crystal microbalance, and atomic force microscopy. In NOM-containing NaCl solutions of up to 600 mM, rotavirus suspension remained stable for over 4 h. Atomic force microscopy (AFM) measurement for interaction force decay length at different ionic strengths showed that nonelectrostatic repulsive forces were mainly responsible for eliminating aggregation in NaCl solutions. Aggregation rates of rotavirus in solutions containing 20 mg C/L increased with divalent cation concentration until reaching a critical coagulation concentration of 30 mM CaCl2 or 70 mM MgCl2. Deposition kinetics of rotavirus on NOM-coated silica surface was studied using quartz crystal microbalance. Experimental attachment efficiencies for rotavirus adsorption to NOM-coated surface in MgCl2 solution were lower than in CaCl2 solution at a given divalent cation concentration. Stronger adhesion force was measured for virus-virus and virus-NOM interactions in CaCl2 solution compared to those in MgCl2 or NaCl solutions at the same ionic strength. This study suggested that divalent cation complexation with carboxylate groups in NOM and on virus surface was an important mechanism in the deposition and aggregation kinetics of rotavirus. © 2012 American Chemical Society.

  19. Study and Control of a Radial Vaned Diffuser Stall

    Directory of Open Access Journals (Sweden)

    Aurélien Marsan

    2012-01-01

    Full Text Available The aim of the present study is to evaluate the efficiency of a boundary layer suction technique in case of a centrifugal compressor stage in order to extend its stable operating range. First, an analysis of the flow pattern within the radial vaned diffuser is presented. It highlights the stall of the diffuser vanes when reaching a low massflow. A boundary layer separation in the hub-suction side corner grows when decreasing the massflow from the nominal operating point to the surge and finally leads to a massive stall. An aspiration strategy is investigated in order to control the stall. The suction slot is put in the vicinity of the saddle that originates the main separating skin-friction line, identified thanks to the analysis of the skin-friction pattern. Several aspiration massflow rates are tested, and two different modelings of the aspiration are evaluated. Finally, an efficient control is reached with a removal of only 0,1% of the global massflow and leads—from a steady-state calculations point of view—to an increase by 40% of the compressor operating range extent.

  20. Simulasi Numerik Dynamic Stall Pada Airfoil Yang Berosilasi

    Directory of Open Access Journals (Sweden)

    Galih S.T.A. Bangga

    2012-09-01

    Full Text Available Kebutuhan analisa pada sudu helikopter, kompresor, kincir angin dan struktur streamline lainya yang beroperasi pada angle of attack yang tinggi dan melibatkan instationary effects yang disebut dynamic stall menjadi semakin penting. Fenomena ini ditandai dengan naiknya dynamic lift melewati static lift maksimum pada critical static stall angle, vortex yang terbentuk pada leading edge mengakibatkan naiknya suction contribution yang kemudian terkonveksi sepanjang permukaan hingga mencapai trailling edge diikuti terbentuknya trailling edge vortex yang menunjukkan terjadinya lift stall. Fenomena ini sangat berbahaya terhadap struktur airfoil itu sendiri. Secara umum, beban fatique yang ditimbulkan oleh adanya efek histerisis karena fluktuasi gaya lift akibat induksi vibrasi lebih besar dibandingkan kondisi statis. Simulasi numerik dilakukan secara 2D dengan menggunakan profil Boeing-Vertol V23010-1.58 pada α0 = 14.92°. Standard-kω dan SST-kω digunakan sebagai URANS turbulence modelling. Model osilasi dari airfoil disusun dalam suatu user defined function (UDF. Gerakan meshing beserta airfoil diakomodasi dengan menggunakan dynamic mesh approach. Simulasi numerik menunjukkan bahwa, model SST-kω menunjukkan performa yang lebih baik dibandingkan dengan Standard-kω. Fenomena travelling vortex yang terjadi mampu ditangkap dengan baik, meski pada angle of attack yang tinggi URANS turbulence model gagal memprediksikan fenomena yang terjadi karena dominasi efek 3D.

  1. Measuring Single-Bond Rupture Forces Using High Electric Fields in Microfluidic Channels and DNA Oligomers as Force Tags

    OpenAIRE

    Breisch, Stefanie; Gonska, Julian; Deissler, Helmut; Stelzle, Martin

    2005-01-01

    The disruption force of specific biotin-streptavidin bonds was determined using DNA oligomers as force tags. Forces were generated by an electric field acting on a biotinylated fluorescently labeled DNA oligomer. DNA oligomers were immobilized via biotin-streptavidin bonds on the walls of microfluidic channels. Channel layout and fluid-based deposition process were designed to enable well-defined localized deposition of the oligomers in a narrow gap of the microchannel. Electric fields of up ...

  2. The reliability of linear position transducer and force plate measurement of explosive force-time variables during a loaded jump squat in elite athletes.

    Science.gov (United States)

    Hansen, Keir T; Cronin, John B; Newton, Michael J

    2011-05-01

    The best method of assessing muscular force qualities during isoinertial stretch shorten cycle lower body movements remains a subject of much debate. This study had 2 purposes: Firstly, to calculate the interday reliability of peak force (PF) measurement and a variety of force-time measures, and, secondly, to compare the reliability of the 2 most common technologies for measuring force during loaded jump squats, the linear position transducer (PT), and the force plate (FP). Twenty-five male elite level rugby union players performed 3 rebound jump squats with a 40-kg external load on 2 occasions 1 week apart. Vertical ground reaction forces (GRFs) were directly measured via an FP, and force was differentiated from position data collected using a PT. From these data, a number of force-time variables were calculated for both the FP and PT. Intraclass correlation coefficient (ICC), coefficient of variation (CV), and percent change in the mean were used as measures of between-session reliability. Additionally, Pearson's product moment correlation coefficients were used to investigate intercorrelations between variables and technologies. Both FP and PT were found to be a reliable means of measuring PF (ICC = 0.88-0.96, CV = 2.3-4.8%), and the relationship between the 2 technologies was very high and high for days 1 and 2, respectively (r = 0.67-0.88). Force-time variables calculated from FP data tended to have greater relative and absolute consistency (ICC = 0.70-0.96, CV = 5.1-51.8%) than those calculated from differentiated PT data (ICC = 0.18-0.95, CV = 7.7-93.6%). Intercorrelations between variables ranged from trivial to practically perfect (r = 0.00-1.00). It was concluded that PF can be measured reliably with both FP and PT technologies, and these measurements are related. A number of force-time values can also be reliably calculated via the use of GRF data. Although some of these force-time variables can be reliably calculated using position data, variation of

  3. Simultaneous atomic force microscopy measurement of topography and contact resistance of metal films and carbon nanotubes

    International Nuclear Information System (INIS)

    Stadermann, M.; Grube, H.; Boland, J.J.; Papadakis, S.J.; Falvo, M.R.; Superfine, R.; Washburn, S.

    2003-01-01

    We present a quartz tuning-fork-based atomic force microscopy (AFM) setup that is capable of mapping the surface contact resistance while scanning topography. The tuning-fork setup allows us to use etched Pt/Ir tips, which have higher durability and better conductivity than probes used in earlier AFM conductance measurements. The performance of the method is demonstrated with contact resistance measurements of gold lines on silicon dioxide and carbon nanotubes on graphite

  4. Reliability of the Q Force; a mobile instrument for measuring isometric quadriceps muscle strength

    OpenAIRE

    Schans, van der, C.P.; Zijlstra, W.; Regterschot, G.R.H.; Krijnen, W.P.; Douma, K.W.; Slager, G.E.C.

    2016-01-01

    BACKGROUND: The ability to generate muscle strength is a pre-requisite for all human movement. Decreased quadriceps muscle strength is frequently observed in older adults and is associated with a decreased performance and activity limitations. To quantify the quadriceps muscle strength and to monitor changes over time, instruments and procedures with a sufficient reliability are needed. The Q Force is an innovative mobile muscle strength measurement instrument suitable to measure in various d...

  5. Measuring system and method of determining the Adaptive Force

    Directory of Open Access Journals (Sweden)

    Laura Schaefer

    2017-07-01

    Full Text Available The term Adaptive Force (AF describes the capability of adaptation of the nerve-muscle-system to externally applied forces during isometric and eccentric muscle action. This ability plays an important role in real life motions as well as in sports. The focus of this paper is on the specific measurement method of this neuromuscular action, which can be seen as innovative. A measuring system based on the use of compressed air was constructed and evaluated for this neuromuscular function. It depends on the physical conditions of the subject, at which force level it deviates from the quasi isometric position and merges into eccentric muscle action. The device enables – in contrast to the isokinetic systems – a measure of strength without forced motion. Evaluation of the scientific quality criteria of the devices was done by measurements regarding the intra- and interrater-, the test-retest-reliability and fatiguing measurements. Comparisons of the pneumatic device with a dynamometer were also done. Looking at the mechanical evaluation, the results show a high level of consistency (r²=0.94 to 0.96. The parallel test reliability delivers a very high and significant correlation (ρ=0.976; p=0.000. Including the biological system, the concordance of three different raters is very high (p=0.001, Cronbachs alpha α=0.987. The test retest with 4 subjects over five weeks speaks for the reliability of the device in showing no statistically significant differences. These evaluations indicate that the scientific evaluation criteria are fulfilled. The specific feature of this system is that an isometric position can be maintained while the externally impacting force rises. Moreover, the device can capture concentric, static and eccentric strength values. Fields of application are performance diagnostics in sports and medicine.

  6. Measurement of the Young’s modulus using micro-cantilevered beam actuated by electrostatic force

    Science.gov (United States)

    Wang, Zhichong; Zhang, Qichang; Wang, Chen

    2018-02-01

    Determining the Young’s modulus accurately is important in micro-electro-mechanical systems (MEMS) design. Generally, the Young’s modulus of a micro-component is measured by the resonance method, of which the actuation is electrostatic force. However, this method does not take the effect of the electrostatic force on the resonant frequency into consideration. Thus, the test error becomes more obvious as the DC voltage increases. In this paper, an improved resonance method, determining the Young’s modulus of a micro-cantilever beam, is proposed, which takes the nonlinearity of the electrostatic force into consideration. This method has three obvious advantages: only one simple micro-cantilevered beam sample is needed; it is unnecessary to find the initial thickness of the gas film between the beam and the substrate; the accuracy of the measurement result of the Young’s modulus is improved. In order to obtain the resonant frequency of a cantilevered beam actuated by a DC voltage, the dynamic equations of the micro-cantilevered beam in multi-field coupled situations are established, and the effect of the electrostatic force on the resonant frequency of the micro-beam is investigated. Results show that, the Young’s modulus can be found by measuring the resonant frequency and DC voltage. The dynamics performances of the micro-structure are influenced by the nonlinearity of the electrostatic force, and the electrostatic effect should be observed especially when the beam becomes smaller, through general studies. Finally, the experimental principle of measuring the Young’s modulus is designed and conducted to verify these theories. The Young’s modulus of brass is measured exactly.

  7. Reliability of the Q Force; a mobile instrument for measuring isometric quadriceps muscle strength.

    Science.gov (United States)

    Douma, K W; Regterschot, G R H; Krijnen, W P; Slager, G E C; van der Schans, C P; Zijlstra, W

    2016-01-01

    The ability to generate muscle strength is a pre-requisite for all human movement. Decreased quadriceps muscle strength is frequently observed in older adults and is associated with a decreased performance and activity limitations. To quantify the quadriceps muscle strength and to monitor changes over time, instruments and procedures with a sufficient reliability are needed. The Q Force is an innovative mobile muscle strength measurement instrument suitable to measure in various degrees of extension. Measurements between 110 and 130° extension present the highest values and the most significant increase after training. The objective of this study is to determine the test-retest reliability of muscle strength measurements by the Q Force in older adults in 110° extension. Forty-one healthy older adults, 13 males and 28 females were included in the study. Mean (SD) age was 81.9 (4.89) years. Isometric muscle strength of the Quadriceps muscle was assessed with the Q Force at 110° of knee extension. Participants were measured at two sessions with a three to eight day interval between sessions. To determine relative reliability, the intraclass correlation coefficient (ICC) was calculated. To determine absolute reliability, Bland and Altman Limits of Agreement (LOA) were calculated and t-tests were performed. Relative reliability of the Q Force is good to excellent as all ICC coefficients are higher than 0.75. Generally a large 95 % LOA, reflecting only moderate absolute reliability, is found as exemplified for the peak torque left leg of -18.6 N to 33.8 N and the right leg of -9.2 N to 26.4 N was between 15.7 and 23.6 Newton representing 25.2 % to 39.9 % of the size of the mean. Small systematic differences in mean were found between measurement session 1 and 2. The present study shows that the Q Force has excellent relative test-retest reliability, but limited absolute test-retest reliability. Since the Q Force is relatively cheap and mobile it is suitable for

  8. Midinfrared absorption measured at a lambda/400 resolution with an atomic force microscope.

    Science.gov (United States)

    Houel, Julien; Homeyer, Estelle; Sauvage, Sébastien; Boucaud, Philippe; Dazzi, Alexandre; Prazeres, Rui; Ortéga, Jean-Michel

    2009-06-22

    Midinfrared absorption can be locally measured using a detection combining an atomic force microscope and a pulsed excitation. This is illustrated for the midinfrared bulk GaAs phonon absorption and for the midinfrared absorption of thin SiO(2) microdisks. We show that the signal given by the cantilever oscillation amplitude of the atomic force microscope follows the spectral dependence of the bulk material absorption. The absorption spatial resolution achieved with microdisks is around 50 nanometer for an optical excitation around 22 micrometer wavelength.

  9. Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy

    Science.gov (United States)

    Cuenot, Stéphane; Frétigny, Christian; Demoustier-Champagne, Sophie; Nysten, Bernard

    2004-04-01

    The effect of reduced size on the elastic properties measured on silver and lead nanowires and on polypyrrole nanotubes with an outer diameter ranging between 30 and 250 nm is presented and discussed. Resonant-contact atomic force microscopy (AFM) is used to measure their apparent elastic modulus. The measured modulus of the nanomaterials with smaller diameters is significantly higher than that of the larger ones. The latter is comparable to the macroscopic modulus of the materials. The increase of the apparent elastic modulus for the smaller diameters is attributed to surface tension effects. The surface tension of the probed material may be experimentally determined from these AFM measurements.

  10. Surface force measurements at the basal planes of ordered kaolinite particles.

    Science.gov (United States)

    Gupta, Vishal; Miller, Jan D

    2010-04-15

    An experimental procedure is presented to order kaolinite particles on substrates for interrogation of the two basal plane surfaces by atomic force microscopy. Surface force measurements were performed between a silicon nitride tip and each of the two faces (silica tetrahedral face and alumina octahedral face) of kaolinite in 1 mM KCl solution at pH 4, 5, 6, 8 and 10, using atomic force microscopy. The colloidal force measurements reveal that the silica tetrahedral face of kaolinite is negatively charged at pH>4, whereas the alumina octahedral face of kaolinite is positively charged at pH8. Such measurements have not been reported previously and the results suggest that the iso-electric point of the silica tetrahedral face is at pHkaolinite carry a permanent negative charge due to minor substitution of Al(3+) for Si(4+) in the silica tetrahedral layer, and suggest some surface charge dependency of the two faces with respect to solution pH. With this new information it may be possible to further explain the electrokinetic behavior of kaolinite particles, and their interactions in aqueous suspensions. 2010 Elsevier Inc. All rights reserved.

  11. On electrostatic and Casimir force measurements between conducting surfaces in a sphere-plane configuration

    International Nuclear Information System (INIS)

    Kim, W J; Brown-Hayes, M; Brownell, J H; Dalvit, D A R; Onofrio, R

    2009-01-01

    We report on measurements of forces acting between two conducting surfaces in a spherical-plane configuration in the 35 nm-1 μm separation range. The measurements are obtained by performing electrostatic calibrations followed by a residuals analysis after subtracting the electrostatic-dependent component. We find in all runs optimal fitting of the calibrations for exponents smaller than the one predicted by electrostatics for an ideal sphere-plane geometry. We also find that the external bias potential necessary to minimize the electrostatic contribution depends on the sphere-plane distance. In spite of these anomalies, by implementing a parametrization-dependent subtraction of the electrostatic contribution we have found evidence for short-distance attractive forces of magnitude comparable to the expected Casimir-Lifshitz force. We finally discuss the relevance of our findings in the more general context of Casimir-Lifshitz force measurements, with particular regard to the critical issues of the electrical and geometrical characterization of the involved surfaces.

  12. Partnership for the Revitalization of National Wind Tunnel Force Measurement Capability

    Science.gov (United States)

    Rhew, Ray D.; Skelley, Marcus L.; Woike, Mark R.; Bader, Jon B.; Marshall, Timothy J.

    2009-01-01

    Lack of funding and lack of focus on research over the past several years, coupled with force measurement capabilities being decentralized and distributed across the National Aeronautics and Space Administration (NASA) research centers, has resulted in a significant erosion of (1) capability and infrastructure to produce and calibrate force measurement systems; (2) NASA s working knowledge of those systems; and (3) the quantity of high-quality, full-capability force measurement systems available for use in aeronautics testing. Simultaneously, and at proportional rates, the capability of industry to design, manufacture, and calibrate these test instruments has been eroding primarily because of a lack of investment by the aeronautics community. Technical expertise in this technology area is a core competency in aeronautics testing; it is highly specialized and experience-based, and it represents a niche market for only a few small precision instrument shops in the United States. With this backdrop, NASA s Aeronautics Test Program (ATP) chartered a team to examine the issues and risks associated with the problem, focusing specifically on strain- gage balances. The team partnered with the U.S. Air Force s Arnold Engineering Development Center (AEDC) to exploit their combined capabilities and take a national level government view of the problem. This paper describes the team s approach, its findings, and its recommendations, and the current status for revitalizing the government s balance capability with respect to designing, fabricating, calibrating, and using the instruments.

  13. Stress-strain relationship of PDMS micropillar for force measurement application

    Science.gov (United States)

    Johari, Shazlina; Shyan, L. Y.

    2017-11-01

    There is an increasing interest to use polydimethylsiloxane (PDMS) based materials as bio-transducers for force measurements in the order of micro to nano Newton. The accuracy of these devices relies on appropriate material characterization of PDMS and modelling to convert the micropillar deformations into the corresponding forces. Previously, we have reported on fabricated PDMS micropillar that acts as a cylindrical cantilever and was experimentally used to measure the force of the nematode C. elegans. In this research, similar PDMS micropillars are designed and simulated using ANSYS software. The simulation involves investigating two main factors that is expected to affect the force measurement performance; pillar height and diameter. Results show that the deformation increases when pillar height is increased and the deformation is inversely proportional to the pillar diameter. The maximum deformation obtained is 713 um with pillar diameter of 20 um and pillar height of 100 um. Results of stress and strain show similar pattern, where their values decreases as pillar diameter and height is increased. The simulated results are also compared with the calculated displacement. The trend for both calculated and simulated values are similar with 13% average difference.

  14. Stress-strain relationship of PDMS micropillar for force measurement application

    Directory of Open Access Journals (Sweden)

    Johari Shazlina

    2017-01-01

    Full Text Available There is an increasing interest to use polydimethylsiloxane (PDMS based materials as bio-transducers for force measurements in the order of micro to nano Newton. The accuracy of these devices relies on appropriate material characterization of PDMS and modelling to convert the micropillar deformations into the corresponding forces. Previously, we have reported on fabricated PDMS micropillar that acts as a cylindrical cantilever and was experimentally used to measure the force of the nematode C. elegans. In this research, similar PDMS micropillars are designed and simulated using ANSYS software. The simulation involves investigating two main factors that is expected to affect the force measurement performance; pillar height and diameter. Results show that the deformation increases when pillar height is increased and the deformation is inversely proportional to the pillar diameter. The maximum deformation obtained is 713 um with pillar diameter of 20 um and pillar height of 100 um. Results of stress and strain show similar pattern, where their values decreases as pillar diameter and height is increased. The simulated results are also compared with the calculated displacement. The trend for both calculated and simulated values are similar with 13% average difference.

  15. Measuring graphene adhesion using atomic force microscopy with a microsphere tip

    Science.gov (United States)

    Jiang, Tao; Zhu, Yong

    2015-06-01

    Van der Waals adhesion between graphene and various substrates has an important impact on the physical properties, device applications and nanomanufacturing processes of graphene. Here we report a general, high-throughput and reliable method that can measure adhesion energies between ultraflat graphene and a broad range of materials using atomic force microscopy with a microsphere tip. In our experiments, only van der Waals force between the tip and a graphene flake is measured. The Maugis-Dugdale theory is employed to convert the measured adhesion force using AFM to the adhesion energy. The ultraflatness of monolayer graphene on mica eliminates the effect of graphene surface roughness on the adhesion, while roughness of the microsphere tip is addressed by the modified Rumpf model. Adhesion energies of monolayer graphene to SiO2 and Cu are obtained as 0.46 and 0.75 J m-2, respectively. This work provides valuable insight into the mechanism of graphene adhesion and can readily extend to the adhesion measurement for other 2D nanomaterials.Van der Waals adhesion between graphene and various substrates has an important impact on the physical properties, device applications and nanomanufacturing processes of graphene. Here we report a general, high-throughput and reliable method that can measure adhesion energies between ultraflat graphene and a broad range of materials using atomic force microscopy with a microsphere tip. In our experiments, only van der Waals force between the tip and a graphene flake is measured. The Maugis-Dugdale theory is employed to convert the measured adhesion force using AFM to the adhesion energy. The ultraflatness of monolayer graphene on mica eliminates the effect of graphene surface roughness on the adhesion, while roughness of the microsphere tip is addressed by the modified Rumpf model. Adhesion energies of monolayer graphene to SiO2 and Cu are obtained as 0.46 and 0.75 J m-2, respectively. This work provides valuable insight into the

  16. A Scheme for Solving the Plane–Plane Challenge in Force Measurements at the Nanoscale

    Directory of Open Access Journals (Sweden)

    Comin Fabio

    2010-01-01

    Full Text Available Abstract Non-contact interaction between two parallel flat surfaces is a central paradigm in sciences. This situation is the starting point for a wealth of different models: the capacitor description in electrostatics, hydrodynamic flow, thermal exchange, the Casimir force, direct contact study, third body confinement such as liquids or films of soft condensed matter. The control of parallelism is so demanding that no versatile single force machine in this geometry has been proposed so far. Using a combination of nanopositioning based on inertial motors, of microcrystal shaping with a focused-ion beam (FIB and of accurate in situ and real-time control of surface parallelism with X-ray diffraction, we propose here a “gedanken” surface-force machine that should enable one to measure interactions between movable surfaces separated by gaps in the micrometer and nanometer ranges.

  17. A scheme for solving the plane-plane challenge in force measurements at the nanoscale.

    Science.gov (United States)

    Siria, Alessandro; Huant, Serge; Auvert, Geoffroy; Comin, Fabio; Chevrier, Joel

    2010-05-19

    Non-contact interaction between two parallel flat surfaces is a central paradigm in sciences. This situation is the starting point for a wealth of different models: the capacitor description in electrostatics, hydrodynamic flow, thermal exchange, the Casimir force, direct contact study, third body confinement such as liquids or films of soft condensed matter. The control of parallelism is so demanding that no versatile single force machine in this geometry has been proposed so far. Using a combination of nanopositioning based on inertial motors, of microcrystal shaping with a focused-ion beam (FIB) and of accurate in situ and real-time control of surface parallelism with X-ray diffraction, we propose here a "gedanken" surface-force machine that should enable one to measure interactions between movable surfaces separated by gaps in the micrometer and nanometer ranges.

  18. Aerodynamic Characterization of ‘DelFly Micro’ in Forward Flight Configuration by Force Measurements and Flow Field Visualization

    OpenAIRE

    Deng, Shuanghou; Percin, Mustafa; van Oudheusden, Bas

    2015-01-01

    This study explores the flow structures and unsteady force generation mechanisms of a flapping-wing micro air vehicle ‘DelFly Micro’ in forward flight configuration. Stereoscopic Particle Image Velocimetry (Stereo-PIV) measurements were performed to acquire three dimensional flow fields in the wake. Six components of forces and moments were captured simultaneously by use of a miniature force sensor.

  19. A force measurement system based on an electrostatic sensing and actuating technique for calibrating force in a micronewton range with a resolution of nanonewton scale

    International Nuclear Information System (INIS)

    Chen, Sheng-Jui; Pan, Sheau-Shi

    2011-01-01

    This paper introduces a force measurement system recently established at the Center for Measurement Standards, Industrial Technology Research Institute for calibrating forces in a micronewton range with a resolution of a few nanonewtons. The force balance consists of a monolithic flexure stage and a specially made capacitor for electrostatic sensing and actuating. The capacitor is formed by three electrodes which can be utilized as a capacitive position sensor and an electrostatic force actuator at the same time. Force balance control is implemented with a digital controller by which the signal of the stage deflection is acquired, filtered and fed back to the electrostatic force driver to bring the flexure stage to the null position. The detailed description of the apparatus including the design of a monolithic flexure stage, principle of capacitive position sensing/electrostatic actuation and the force balance control is given in the paper. Finally, we present the results of electrostatic force calibration and the weighing of a 1 mg wire weight

  20. Estimation of clamping force in high-tension bolts through ultrasonic velocity measurement.

    Science.gov (United States)

    Jhang, Kyung-Young; Quan, Hai-Hua; Ha, Job; Kim, Noh-Yu

    2006-12-22

    The estimation of clamping force has been regarded as the main issue in the maintenance of high-tension bolts. This paper proposes a method which uses the dependency of ultrasonic velocity on stress based on the nonlinear elastic effect. The variation of ultrasonic velocity in the range of actual stress acting in the bolt is very small so that the precise measurement of ultrasonic velocity is needed. In this paper, we adopt a method to measure ultrasonic velocity, where the TOF (time of flight) of a tone-burst ultrasonic wave is precisely measured by using the phase detection technique. In order to verify the usefulness of the proposed method, two kinds of experiments are carried out. The first one measures ultrasonic velocity when the bolt is stressed by the tension tester, and from this, the exact axial force acting in the bolt can be determined. The results show good agreement with the expected linear relationship between ultrasonic velocity and axial stress. The second experiment measures ultrasonic velocity when the bolt is stressed by the torque wrench. The results show that ultrasonic velocity decreased as the torque increased, which is identical to the theoretically expected tendency. From these results, it can be said that the proposed method is adequate in evaluating clamping force in high-tension bolts.

  1. Real-time measurement of needle forces and acute pressure changes during intravitreal injections.

    Science.gov (United States)

    Christensen, Logan; Cerda, Ashlee; Olson, Jeffrey L

    2017-11-01

    The purpose of this study was to use a physiological pressure transducer to measure real-time, continuous pressure changes in an ex vivo study model of porcine eyes to record the amount of force needed for scleral penetration and to measure acute intraocular pressure rise during intravitreal injections. A pressure transducer was inserted into the anterior chamber of 30 fresh porcine eyes, and intraocular pressure was measured 2 s prior to intravitreal injection until 2 s after. A force transducer plate was used to insert various gauge needles into the vitreous cavity and the amount of force in Newtons (N) required for scleral penetration was recorded. For scleral perforation, 32- and 30-gauge needles required 0.44 N and 0.45 N, significantly less than larger gauge needles (P time continuous recordings of pressure reveal that an instantaneous intraocular pressure spike occurs during intravitreal injection and appears to be separate from the intraocular pressure spike that occurs during needle insertion. This pressure spike is transient and has not been captured by previous methods of intraocular pressure measurement, which rely on single time point measurements. The clinical significance of this brief intraocular pressure spike is unclear and warrants further investigation. © 2017 Royal Australian and New Zealand College of Ophthalmologists.

  2. Kinetic analysis of ski turns based on measured ground reaction forces.

    Science.gov (United States)

    Vaverka, Frantisek; Vodickova, Sona; Elfmark, Milan

    2012-02-01

    The objective of this study was to devise a method of kinetic analysis of the ground reaction force that enables the durations and magnitudes of forces acting during the individual phases of ski turns to be described exactly. The method is based on a theoretical analysis of physical forces acting during the ski turn. Two elementary phases were defined: (1) preparing to turn (initiation) and (2) actual turning, during which the center of gravity of the skier-ski system moves along a curvilinear trajectory (steering). The starting point of the turn analysis is a dynamometric record of the resultant acting ground reaction force applied perpendicularly on the ski surface. The method was applied to six expert skiers. They completed a slalom course comprising five gates arranged on the fall line of a 26° slope at a competition speed using symmetrical carving turns (30 evaluated turns). A dynamometric measurement system was placed on the carving skis (168 cm long, radius 16 m, data were recorded at 100 Hz). MATLAB procedures were used to evaluate eight variables during each turn: five time variables and three force variables. Comparison of the turn analysis results between individuals showed that the method is useful for answering various research questions associated with ski turns.

  3. Preliminarily measurement and analysis of sawing forces in fresh cadaver mandible using reciprocating saw for reality-based haptic feedback.

    Science.gov (United States)

    Yua, Dedong; Zhengb, Xiaohu; Chenc, Ming; Shend, Steve G F

    2012-05-01

    The aim of the study was to preliminarily measure and analyze the cutting forces in fresh Chinese cadaver mandible using a clinically widely used reciprocating saw for reality-based haptic feedback. Eight mandibles were taken from fresh Chinese cadavers, 4 females and 4 males, aged between 59 and 95 years. A set of sawing experiments, using a surgery Stryker micro-reciprocating saw and Kistler piezoelectric dynamometer, was carried out by a CNC machining center. Under different vibration frequencies of saw and feeding rates measured from orthognathic surgery, sawing forces were recorded by a signal acquisition system. Remarkably different sawing forces were measured from different cadavers. Feed and vibration frequency of the reciprocating saw could determine the cutting forces only on 1 body. To reduce the impact of bone thickness changes on the cutting force measurements, all the cutting force data should be converted to the force of unit cutting length. The vibration frequency of haptic feedback system is determined by main cutting forces. Fast Fourier transform method can be used to calculate the frequency of this system. To simulate surgery in higher fidelity, all the sawing forces from the experiment should be amended by experienced surgeons before use in virtual reality surgery simulator. Sawing force signals of different ages for force feedback were measured successfully, and more factors related to the bone mechanical properties, such as bone density, should be concerned in the future.

  4. Acquisition and deconvolution of seismic signals by different methods to perform direct ground-force measurements

    Science.gov (United States)

    Poletto, Flavio; Schleifer, Andrea; Zgauc, Franco; Meneghini, Fabio; Petronio, Lorenzo

    2016-12-01

    We present the results of a novel borehole-seismic experiment in which we used different types of onshore-transient-impulsive and non-impulsive-surface sources together with direct ground-force recordings. The ground-force signals were obtained by baseplate load cells located beneath the sources, and by buried soil-stress sensors installed in the very shallow-subsurface together with accelerometers. The aim was to characterize the source's emission by its complex impedance, function of the near-field vibrations and soil stress components, and above all to obtain appropriate deconvolution operators to remove the signature of the sources in the far-field seismic signals. The data analysis shows the differences in the reference measurements utilized to deconvolve the source signature. As downgoing waves, we process the signals of vertical seismic profiles (VSP) recorded in the far-field approximation by an array of permanent geophones cemented at shallow-medium depth outside the casing of an instrumented well. We obtain a significant improvement in the waveform of the radiated seismic-vibrator signals deconvolved by ground force, similar to that of the seismograms generated by the impulsive sources, and demonstrates that the results obtained by different sources present low values in their repeatability norm. The comparison evidences the potentiality of the direct ground-force measurement approach to effectively remove the far-field source signature in VSP onshore data, and to increase the performance of permanent acquisition installations for time-lapse application purposes.

  5. Non-additivity of molecule-surface van der Waals potentials from force measurements

    Science.gov (United States)

    Wagner, Christian; Fournier, Norman; Ruiz, Victor G.; Li, Chen; Müllen, Klaus; Rohlfing, Michael; Tkatchenko, Alexandre; Temirov, Ruslan; Tautz, F. Stefan

    2014-11-01

    Van der Waals (vdW) forces act ubiquitously in condensed matter. Despite being weak on an atomic level, they substantially influence molecular and biological systems due to their long range and system-size scaling. The difficulty to isolate and measure vdW forces on a single-molecule level causes our present understanding to be strongly theory based. Here we show measurements of the attractive potential between differently sized organic molecules and a metal surface using an atomic force microscope. Our choice of molecules and the large molecule-surface separation cause this attraction to be purely of vdW type. The experiment allows testing the asymptotic vdW force law and its validity range. We find a superlinear growth of the vdW attraction with molecular size, originating from the increased deconfinement of electrons in the molecules. Because such non-additive vdW contributions are not accounted for in most first-principles or empirical calculations, we suggest further development in that direction.

  6. Non-additivity of molecule-surface van der Waals potentials from force measurements.

    Science.gov (United States)

    Wagner, Christian; Fournier, Norman; Ruiz, Victor G; Li, Chen; Müllen, Klaus; Rohlfing, Michael; Tkatchenko, Alexandre; Temirov, Ruslan; Tautz, F Stefan

    2014-11-26

    Van der Waals (vdW) forces act ubiquitously in condensed matter. Despite being weak on an atomic level, they substantially influence molecular and biological systems due to their long range and system-size scaling. The difficulty to isolate and measure vdW forces on a single-molecule level causes our present understanding to be strongly theory based. Here we show measurements of the attractive potential between differently sized organic molecules and a metal surface using an atomic force microscope. Our choice of molecules and the large molecule-surface separation cause this attraction to be purely of vdW type. The experiment allows testing the asymptotic vdW force law and its validity range. We find a superlinear growth of the vdW attraction with molecular size, originating from the increased deconfinement of electrons in the molecules. Because such non-additive vdW contributions are not accounted for in most first-principles or empirical calculations, we suggest further development in that direction.

  7. Merging Psychophysical and Psychometric Theory to Estimate Global Visual State Measures from Forced-Choices

    International Nuclear Information System (INIS)

    Massof, Robert W; Schmidt, Karen M; Laby, Daniel M; Kirschen, David; Meadows, David

    2013-01-01

    Visual acuity, a forced-choice psychophysical measure of visual spatial resolution, is the sine qua non of clinical visual impairment testing in ophthalmology and optometry patients with visual system disorders ranging from refractive error to retinal, optic nerve, or central visual system pathology. Visual acuity measures are standardized against a norm, but it is well known that visual acuity depends on a variety of stimulus parameters, including contrast and exposure duration. This paper asks if it is possible to estimate a single global visual state measure from visual acuity measures as a function of stimulus parameters that can represent the patient's overall visual health state with a single variable. Psychophysical theory (at the sensory level) and psychometric theory (at the decision level) are merged to identify the conditions that must be satisfied to derive a global visual state measure from parameterised visual acuity measures. A global visual state measurement model is developed and tested with forced-choice visual acuity measures from 116 subjects with no visual impairments and 560 subjects with uncorrected refractive error. The results are in agreement with the expectations of the model

  8. Merging Psychophysical and Psychometric Theory to Estimate Global Visual State Measures from Forced-Choices

    Science.gov (United States)

    Massof, Robert W.; Schmidt, Karen M.; Laby, Daniel M.; Kirschen, David; Meadows, David

    2013-09-01

    Visual acuity, a forced-choice psychophysical measure of visual spatial resolution, is the sine qua non of clinical visual impairment testing in ophthalmology and optometry patients with visual system disorders ranging from refractive error to retinal, optic nerve, or central visual system pathology. Visual acuity measures are standardized against a norm, but it is well known that visual acuity depends on a variety of stimulus parameters, including contrast and exposure duration. This paper asks if it is possible to estimate a single global visual state measure from visual acuity measures as a function of stimulus parameters that can represent the patient's overall visual health state with a single variable. Psychophysical theory (at the sensory level) and psychometric theory (at the decision level) are merged to identify the conditions that must be satisfied to derive a global visual state measure from parameterised visual acuity measures. A global visual state measurement model is developed and tested with forced-choice visual acuity measures from 116 subjects with no visual impairments and 560 subjects with uncorrected refractive error. The results are in agreement with the expectations of the model.

  9. The role of the cantilever in Kelvin probe force microscopy measurements

    Directory of Open Access Journals (Sweden)

    George Elias

    2011-05-01

    Full Text Available The role of the cantilever in quantitative Kelvin probe force microscopy (KPFM is rigorously analyzed. We use the boundary element method to calculate the point spread function of the measuring probe: Tip and cantilever. The calculations show that the cantilever has a very strong effect on the absolute value of the measured contact potential difference even under ultra-high vacuum conditions, and we demonstrate a good agreement between our model and KPFM measurements in ultra-high vacuum of NaCl monolayers grown on Cu(111. The effect of the oscillating cantilever shape on the KPFM resolution and sensitivity has been calculated and found to be relatively small.

  10. Force chains in monodisperse spherical particle assemblies: Three-dimensional measurements using neutrons

    Science.gov (United States)

    Wensrich, C. M.; Kisi, E. H.; Luzin, V.; Garbe, U.; Kirstein, O.; Smith, A. L.; Zhang, J. F.

    2014-10-01

    The full triaxial stress state within individual particles in a monodisperse spherical granular assembly has been measured. This was made possible by neutron imaging and computed tomography combined with neutron diffraction strain measurement techniques and associated stress reconstruction. The assembly in question consists of 549 precision steel ball bearings under an applied axial load of 85 MPa in a cylindrical die. Clear evidence of force chains was observed in terms of both the shape of the probability distribution function for normal stresses and the network formed by highly loaded particles. An extensive analysis of the source and magnitude of uncertainty in these measurements is also presented.

  11. Fluid force predictions and experimental measurements for a magnetically levitated pediatric ventricular assist device.

    Science.gov (United States)

    Throckmorton, Amy L; Untaroiu, Alexandrina; Lim, D Scott; Wood, Houston G; Allaire, Paul E

    2007-05-01

    The latest generation of artificial blood pumps incorporates the use of magnetic bearings to levitate the rotating component of the pump, the impeller. A magnetic suspension prevents the rotating impeller from contacting the internal surfaces of the pump and reduces regions of stagnant and high shear flow that surround fluid or mechanical bearings. Applying this third-generation technology, the Virginia Artificial Heart Institute has developed a ventricular assist device (VAD) to support infants and children. In consideration of the suspension design, the axial and radial fluid forces exerted on the rotor of the pediatric VAD were estimated using computational fluid dynamics (CFD) such that fluid perturbations would be counterbalanced. In addition, a prototype was built for experimental measurements of the axial fluid forces and estimations of the radial fluid forces during operation using a blood analog mixture. The axial fluid forces for a centered impeller position were found to range from 0.5 +/- 0.01 to 1 +/- 0.02 N in magnitude for 0.5 +/- 0.095 to 3.5 +/- 0.164 Lpm over rotational speeds of 6110 +/- 0.39 to 8030 +/- 0.57% rpm. The CFD predictions for the axial forces deviated from the experimental data by approximately 8.5% with a maximum difference of 18% at higher flow rates. Similarly for the off-centered impeller conditions, the maximum radial fluid force along the y-axis was found to be -0.57 +/- 0.17 N. The maximum cross-coupling force in the x direction was found to be larger with a maximum value of 0.74 +/- 0.22 N. This resulted in a 25-35% overestimate of the radial fluid force as compared to the CFD predictions; this overestimation will lead to a far more robust magnetic suspension design. The axial and radial forces estimated from the computational results are well within a range over which a compact magnetic suspension can compensate for flow perturbations. This study also serves as an effective and novel design methodology for blood pump

  12. A Polymer-Based Capacitive Sensing Array for Normal and Shear Force Measurement

    Science.gov (United States)

    Cheng, Ming-Yuan; Lin, Chun-Liang; Lai, Yu-Tse; Yang, Yao-Joe

    2010-01-01

    In this work, we present the development of a polymer-based capacitive sensing array. The proposed device is capable of measuring normal and shear forces, and can be easily realized by using micromachining techniques and flexible printed circuit board (FPCB) technologies. The sensing array consists of a polydimethlysiloxane (PDMS) structure and a FPCB. Each shear sensing element comprises four capacitive sensing cells arranged in a 2 × 2 array, and each capacitive sensing cell has two sensing electrodes and a common floating electrode. The sensing electrodes as well as the metal interconnect for signal scanning are implemented on the FPCB, while the floating electrodes are patterned on the PDMS structure. This design can effectively reduce the complexity of the capacitive structures, and thus makes the device highly manufacturable. The characteristics of the devices with different dimensions were measured and discussed. A scanning circuit was also designed and implemented. The measured maximum sensitivity is 1.67%/mN. The minimum resolvable force is 26 mN measured by the scanning circuit. The capacitance distributions induced by normal and shear forces were also successfully captured by the sensing array. PMID:22163466

  13. A Polymer-Based Capacitive Sensing Array for Normal and Shear Force Measurement

    Directory of Open Access Journals (Sweden)

    Ming-Yuan Cheng

    2010-11-01

    Full Text Available In this work, we present the development of a polymer-based capacitive sensing array. The proposed device is capable of measuring normal and shear forces, and can be easily realized by using micromachining techniques and flexible printed circuit board (FPCB technologies. The sensing array consists of a polydimethlysiloxane (PDMS structure and a FPCB. Each shear sensing element comprises four capacitive sensing cells arranged in a 2 × 2 array, and each capacitive sensing cell has two sensing electrodes and a common floating electrode. The sensing electrodes as well as the metal interconnect for signal scanning are implemented on the FPCB, while the floating electrodes are patterned on the PDMS structure. This design can effectively reduce the complexity of the capacitive structures, and thus makes the device highly manufacturable. The characteristics of the devices with different dimensions were measured and discussed. A scanning circuit was also designed and implemented. The measured maximum sensitivity is 1.67%/mN. The minimum resolvable force is 26 mN measured by the scanning circuit. The capacitance distributions induced by normal and shear forces were also successfully captured by the sensing array.

  14. How to Measure Load-Dependent Kinetics of Individual Motor Molecules Without a Force-Clamp

    DEFF Research Database (Denmark)

    Sung, Jongmin; Mortensen, Kim; Spudich, James A.

    Molecular motors are responsible for numerous cellular processes from cargo transport to heart contraction. Their interactions with other cellular components are often transient and exhibit kinetics that depend on load. Here, we measure such interactions using a new method, Harmonic Force...... and efficient. The protocol accumulates statistics fast enough to deliver single-molecule results from single-molecule experiments. We demonstrate the method's performance by measuring the force-dependent kinetics of individual human beta-cardiac myosin molecules interacting with an actin filament...... at physiological ATP concentration. We show that a molecule's ADP release rate depends exponentially on the applied load. This points to Kramer's Brownian diffusion model of chemical reactions as explanation why muscle contracts with a velocity inversely proportional to external load....

  15. MEASUREMENTS OF SHOCK WAVE FORCE IN SHOCK TUBE WITH INDIRECT METHODS

    Directory of Open Access Journals (Sweden)

    Mario Dobrilović

    2005-12-01

    Full Text Available Tests have been conducted at the “Laboratory for testing of civil explosives, detonators, electrical detonators and pyrotechnical materials”, Department for mining and geotechnics of the Faculty of mining, geology and petroleum engineering, University of Zagreb with the purpose of designing a detonator that would unite advantages of a non-electric system and the precision in regulation of time delay in electronic initiation system. Sum of energy released by the wave force in shock tube is a pre-condition for operation of the new detonator, and measurement of wave force is the first step in determining the sum of energy. The sum of energy is measured indirectly, based on two principles: movement sensors and strain.

  16. Precautions against axial fan stall in reactor building to Tianwan NPP

    International Nuclear Information System (INIS)

    Liu Chunlong; Pei Junmin

    2011-01-01

    The paper introduces the mechanism and harm of rotating stall of axial fans, analyzes the necessity for prevention against axial fan stall in reactor building of Tianwan NPP, introduces the precautions, and then makes an assessment on anti-stall effect of flow separators. It can provide reference for model-selection or reconstruction of similar fans in power stations, and for operation and maintenance of axial fans. (authors)

  17. Force measurements of flexible tandem wings in hovering and forward flights

    International Nuclear Information System (INIS)

    Zheng, Yingying; Wu, Yanhua; Tang, Hui

    2015-01-01

    Aerodynamic forces, power consumptions and efficiencies of flexible and rigid tandem wings undergoing combined plunging/pitching motion were measured in a hovering flight and two forward flights with Strouhal numbers of 0.6 and 0.3. Three flexible dragonfly-like tandem wing models termed Wing I, Wing II, and Wing III which are progressively less flexible, as well as a pair of rigid wings as the reference were operated at three phase differences of 0°, 90° and 180°. The results showed that both the flexibility and phase difference have significant effects on the aerodynamic performances. In both hovering and forward flights at a higher oscillation frequency of 1 Hz (St = 0.6), the Wing III model outperformed the other wing models with larger total horizontal force coefficient and efficiency. In forward flight at the lower frequency of 0.5 Hz (St = 0.3), Wing III, rigid wings and Wing II models performed best at 0°, 90° and 180° phase difference, respectively. From the time histories of force coefficients of fore- and hind-wings, different peak values, phase lags, and secondary peaks were found to be the important reasons to cause the differences in the average horizontal force coefficients. Particle image velocimetry and deformation measurements were performed to provide the insights into how the flexibility affects the aerodynamic performance of the tandem wings. The spanwise bending deformation was found to contribute to the horizontal force, by offering a more beneficial position to make LEV more attached to the wing model in both hovering and forward flights, and inducing a higher-velocity region in forward flight. (paper)

  18. Measurement-based aerosol forcing calculations: The influence of model complexity

    Directory of Open Access Journals (Sweden)

    Manfred Wendisch

    2001-03-01

    Full Text Available On the basis of ground-based microphysical and chemical aerosol measurements a simple 'two-layer-single-wavelength' and a complex 'multiple-layer-multiple-wavelength' radiative transfer model are used to calculate the local solar radiative forcing of black carbon (BC and (NH42SO4 (ammonium sulfate particles and mixtures (external and internal of both materials. The focal points of our approach are (a that the radiative forcing calculations are based on detailed aerosol measurements with special emphasis of particle absorption, and (b the results of the radiative forcing calculations with two different types of models (with regards to model complexity are compared using identical input data. The sensitivity of the radiative forcing due to key input parameters (type of particle mixture, particle growth due to humidity, surface albedo, solar zenith angle, boundary layer height is investigated. It is shown that the model results for external particle mixtures (wet and dry only slightly differ from those of the corresponding internal mixture. This conclusion is valid for the results of both model types and for both surface albedo scenarios considered (grass and snow. Furthermore, it is concluded that the results of the two model types approximately agree if it is assumed that the aerosol particles are composed of pure BC. As soon as a mainly scattering substance is included alone or in (internal or external mixture with BC, the differences between the radiative forcings of both models become significant. This discrepancy results from neglecting multiple scattering effects in the simple radiative transfer model.

  19. Adhesion force measurements on the two wax layers of the waxy zone in Nepenthes alata pitchers.

    Science.gov (United States)

    Gorb, Elena V; Purtov, Julia; Gorb, Stanislav N

    2014-06-03

    The wax coverage of the waxy zone in Nepenthes alata pitchers consists of two clearly distinguishable layers, designated the upper and lower wax layers. Since these layers were reported to reduce insect attachment, they were considered to have anti-adhesive properties. However, no reliable adhesion tests have been performed with these wax layers. In this study, pull-off force measurements were carried out on both wax layers of the N. alata pitcher and on two reference polymer surfaces using deformable polydimethylsiloxane half-spheres as probes. To explain the results obtained, roughness measurements were performed on test surfaces. Micro-morphology of both surface samples and probes tested was examined before and after experiments. Pull-off forces measured on the upper wax layer were the lowest among surfaces tested. Here, contamination of probes by wax crystals detached from the pitcher surface was found. This suggests that low insect attachment on the upper wax layer is caused primarily by the breaking off of wax crystals from the upper wax layer, which acts as a separation layer between the insect pad and the pitcher surface. High adhesion forces obtained on the lower wax layer are explained by the high deformability of probes and the particular roughness of the substrate.

  20. Constraints on axionlike particles and non-Newtonian gravity from measuring the difference of Casimir forces

    Science.gov (United States)

    Klimchitskaya, G. L.; Mostepanenko, V. M.

    2017-06-01

    We derive constraints on the coupling constants of axionlike particles to nucleons and on the Yukawa-type corrections to Newton's gravitational law from the results of recent experiment on measuring the difference of Casimir forces between a Ni-coated sphere and Au and Ni sectors of a structured disc. Over the wide range of axion masses from 2.61 meV to 0.9 eV the obtained constraints on the axion-to-nucleon coupling are up to a factor of 14.6 stronger than all previously known constraints following from experiments on measuring the Casimir interaction. The constraints on non-Newtonian gravity found here are also stronger than all that following from the Casimir- and Cavendish-type experiments over the interaction range from 30 nm to 5.4 μ m . They are up to a factor of 177 stronger than the constraints derived recently from measuring the difference of lateral forces. Our constraints confirm previous somewhat stronger limits obtained from the isoelectronic experiment, where the contribution of the Casimir force was nullified.

  1. Measurement correction method for force sensor used in dynamic pressure calibration based on artificial neural network optimized by genetic algorithm

    Science.gov (United States)

    Gu, Tingwei; Kong, Deren; Shang, Fei; Chen, Jing

    2017-12-01

    We present an optimization algorithm to obtain low-uncertainty dynamic pressure measurements from a force-transducer-based device. In this paper, the advantages and disadvantages of the methods that are commonly used to measure the propellant powder gas pressure, the applicable scope of dynamic pressure calibration devices, and the shortcomings of the traditional comparison calibration method based on the drop-weight device are firstly analysed in detail. Then, a dynamic calibration method for measuring pressure using a force sensor based on a drop-weight device is introduced. This method can effectively save time when many pressure sensors are calibrated simultaneously and extend the life of expensive reference sensors. However, the force sensor is installed between the drop-weight and the hammerhead by transition pieces through the connection mode of bolt fastening, which causes adverse effects such as additional pretightening and inertia forces. To solve these effects, the influence mechanisms of the pretightening force, the inertia force and other influence factors on the force measurement are theoretically analysed. Then a measurement correction method for the force measurement is proposed based on an artificial neural network optimized by a genetic algorithm. The training and testing data sets are obtained from calibration tests, and the selection criteria for the key parameters of the correction model is discussed. The evaluation results for the test data show that the correction model can effectively improve the force measurement accuracy of the force sensor. Compared with the traditional high-accuracy comparison calibration method, the percentage difference of the impact-force-based measurement is less than 0.6% and the relative uncertainty of the corrected force value is 1.95%, which can meet the requirements of engineering applications.

  2. Comparison of Different Stall Conditions in Axial Flow Compressor Using Analytic Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Arshad Ali

    2017-12-01

    Full Text Available The rotating stall inception data analysis using Analytic Wavelet Transform (AWT in a low-speed axial compressor was presented in the authors’ previous studies [1], [2]. These studies focused on the detection of instability inception in an axial flow compressor when it enters into the instability regime due to the modal type of stall perturbation. In this paper, the effectiveness of AWT is further studied by applying it under different testing conditions. In order to examine the results of AWT on highly sampled data, at first, the stall data were acquired at a high sampling frequency and the results were compared with the conventional filtered signals. Secondly, the AWT analysis of stall data was carried out for the condition when compressor experienced a spike type rotating stall disturbance. The stall inception information obtained from the AWT analysis was then compared with the commonly used stall detection techniques. The results show that AWT is equally beneficial for the diagnostic of compressor instability regardless of the data sampling rate and represents an outstanding ability to detect stall disturbance irrespective of the type of stall precursor, i.e. the modal wave or spike.

  3. Enhancing BEM simulations of a stalled wind turbine using a 3D correction model

    Science.gov (United States)

    Bangga, Galih; Hutomo, Go; Syawitri, Taurista; Kusumadewi, Tri; Oktavia, Winda; Sabila, Ahmad; Setiadi, Herlambang; Faisal, Muhamad; Hendranata, Yongki; Lastomo, Dwi; Putra, Louis; Kristiadi, Stefanus; Bumi, Ilmi

    2018-03-01

    Nowadays wind turbine rotors are usually employed with pitch control mechanisms to avoid deep stall conditions. Despite that, wind turbines often operate under pitch fault situation causing massive flow separation to occur. Pure Blade Element Momentum (BEM) approaches are not designed for this situation and inaccurate load predictions are already expected. In the present studies, BEM predictions are improved through the inclusion of a stall delay model for a wind turbine rotor operating under pitch fault situation of -2.3° towards stall. The accuracy of the stall delay model is assessed by comparing the results with available Computational Fluid Dynamics (CFD) simulations data.

  4. Measuring the force of single protein molecule detachment from surfaces with AFM.

    Science.gov (United States)

    Tsapikouni, Theodora S; Missirlis, Yannis F

    2010-01-01

    Atomic force microscopy (AFM) was used to measure the non-specific detachment force of single fibrinogen molecules from glass surfaces. The identification of single unbinding events was based on the characteristics of the parabolic curves, recorded during the stretching of protein molecules. Fibrinogen molecules were covalently bound to Si(3)N(4) AFM tips, previously modified with 3-aminopropyl-dimethyl-ethoxysilane, through a homobifunctional poly(ethylene glycol) linker bearing two hydroxysulfosuccinimide esters. The most probable detachment force was found to be 210 pN, when the tip was retracting with a velocity of 1400 nm/s, while the distribution of the detachment distances indicated that the fibrinogen chain can be elongated beyond the length of the physical conformation before detachment. The dependence of the most probable detachment force on the loading rate was examined and the dynamics of fibrinogen binding to the surface were found amenable to the simple expression of the Bell-Evans theory. The theory's expansion, however, by incorporating the concept of the rupture of parallel residue-surface bonds could only describe the detachment of fibrinogen for a small number of such bonds. Finally, the mathematical expression of the Worm-Like Chain model was used to fit the stretching curves before rupture and two interpretations are suggested for the description of the AFM curves with multiple detachment events.

  5. On the tip calibration for accurate modulus measurement by contact resonance atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Passeri, D., E-mail: daniele.passeri@uniroma1.it [Department of Basic and Applied Sciences for Engineering, University of Rome Sapienza, Via A. Scarpa 16, 00161 Rome (Italy); Rossi, M. [Department of Basic and Applied Sciences for Engineering, University of Rome Sapienza, Via A. Scarpa 16, 00161 Rome (Italy); Centro di Ricerca per le Nanotecnologie Applicate all' Ingegneria della Sapienza (CNIS), University of Rome Sapienza, Piazzale A. Moro 5, 00185 Rome (Italy); Vlassak, J.J. [School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138 (United States)

    2013-05-15

    Accurate quantitative elastic modulus measurements using contact resonance atomic force microscopy require the calibration of geometrical and mechanical properties of the tip as well as the choice of a suitable model for describing the cantilever-tip-sample system. In this work, we demonstrate with both simulations and experiments that the choice of the model influences the results of the calibration. Neglecting lateral force results in the underestimation of the tip indentation modulus and in the overestimation of the tip-sample contact radius. We propose a new approach to the calibration and data analysis, where lateral forces and cantilever inclination are neglected (which simplifies the calculations) and the tip parameters are assumed as fictitious. - Highlights: ► A calibration procedure is proposed for quantitative contact resonance AFM. ► It allows the use of simple analytical model that neglects lateral forces. ► Tip parameters are used as fictitious parameters. ► The approach is demonstrated with simulations and experiments.

  6. Numerical simulation of the RISOe1-airfoil dynamic stall

    Energy Technology Data Exchange (ETDEWEB)

    Bertagnolio, F.; Soerensen, N. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1997-12-31

    In this paper we are concerned with the numerical computation of the dynamic stall that occur in the viscous flowfield over an airfoil. These results are compared to experimental data that were obtained with the new designed RISOe1-airfoil, both for a motionless airfoil and for a pitching motion. Moreover, we present some numerical computations of the plunging and lead-lag motions. We also investigate the possibility of using the pitching motion to simulate the plunging and lead-lag situations. (au)

  7. El departamento musical Disney : las Silly Symphonies y Carl Stalling

    OpenAIRE

    Duarte del Moral, Marina

    2014-01-01

    La historia de la animación tiene un nombre propio: Walt Disney. Gracias a su experimentación en diversos campos de esta materia, Disney consigue desarrollar la animación y su universo de una forma perseverante y continua, adaptándose a los diversos cambios producidos desde el nacimiento de ésta, reinventando una y otra vez el sector y añadiendo su toque mágico a la personalidad de cada personaje y cada obra. En este camino no está solo gracias al trabajo de genios como Carl Stalling, que apo...

  8. FBH1 Catalyzes Regression of Stalled Replication Forks

    DEFF Research Database (Denmark)

    Fugger, Kasper; Mistrik, Martin; Neelsen, Kai J

    2015-01-01

    DNA replication fork perturbation is a major challenge to the maintenance of genome integrity. It has been suggested that processing of stalled forks might involve fork regression, in which the fork reverses and the two nascent DNA strands anneal. Here, we show that FBH1 catalyzes regression......, is required for early phosphorylation of ATM substrates such as CHK2 and CtIP as well as hyperphosphorylation of RPA. These phosphorylations occur prior to apparent DNA double-strand break formation. Furthermore, FBH1-dependent signaling promotes checkpoint control and preserves genome integrity. We propose...

  9. Measuring the loss tangent of polymer materials with atomic force microscopy based methods

    International Nuclear Information System (INIS)

    Yablon, Dalia G; Grabowski, Jean; Chakraborty, Ishita

    2014-01-01

    Atomic force microscopy (AFM) quantitatively maps viscoelastic parameters of polymers on the nanoscale by several methods. The loss tangent, the ratio between dissipated and stored energy, was measured on a blend of thermoplastic polymer materials by a dynamic contact method, contact resonance, and by a recently developed loss tangent measurement by amplitude modulation AFM. Contact resonance measurements were performed both with dual AC resonance tracking and band excitation (BE), allowing for a reference-free measurement of the loss tangent. Amplitude modulation AFM was performed where a recent interpretation of the phase signal under certain operating conditions allows for the loss tangent to be calculated. The loss tangent measurements were compared with values expected from time–temperature superposed frequency-dependent dynamical mechanical curves of materials and reveal that the loss tangents determined from the BE contact resonance method provide the most accurate values. (paper)

  10. Note: Measurement system for the radiative forcing of greenhouse gases in a laboratory scale.

    Science.gov (United States)

    Kawamura, Yoshiyuki

    2016-01-01

    The radiative forcing of the greenhouse gases has been studied being based on computational simulations or the observation of the real atmosphere meteorologically. In order to know the greenhouse effect more deeply and to study it from various viewpoints, the study on it in a laboratory scale is important. We have developed a direct measurement system for the infrared back radiation from the carbon dioxide (CO2) gas. The system configuration is similar with that of the practical earth-atmosphere-space system. Using this system, the back radiation from the CO2 gas was directly measured in a laboratory scale, which roughly coincides with meteorologically predicted value.

  11. Surface topography characterization using an atomic force microscope mounted on a coordinate measuring machine

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Hansen, H.N; Kofod, N

    1999-01-01

    The paper describes the construction, testing and use of an integrated system for topographic characterization of fine surfaces on parts having relatively big dimensions. An atomic force microscope (AFM) was mounted on a manual three-coordinate measuring machine (CMM) achieving free positioning...... of the AFM probe in space. This means that the limited measuring range of the AFM (40 mu m x 40 mu m x 2.7 um) can be extended by positioning the AFM probe using the movements of the CMM axes (400 mm x 100 mm x 75 mm). Evaluation of the background noise by determining the Sa value of an optical fiat gave...

  12. Reliable measurement of elastic modulus of cells by nanoindentation in an atomic force microscope

    KAUST Repository

    Zhou, Zhoulong

    2012-04-01

    The elastic modulus of an oral cancer cell line UM1 is investigated by nanoindentation in an atomic force microscope with a flat-ended tip. The commonly used Hertzian method gives apparent elastic modulus which increases with the loading rate, indicating strong effects of viscoelasticity. On the contrary, a rate-jump method developed for viscoelastic materials gives elastic modulus values which are independent of the rate-jump magnitude. The results show that the rate-jump method can be used as a standard protocol for measuring elastic stiffness of living cells, since the measured values are intrinsic properties of the cells. © 2011 Elsevier Ltd.

  13. Visualized Multiprobe Electrical Impedance Measurements with STM Tips Using Shear Force Feedback Control

    Directory of Open Access Journals (Sweden)

    Luis Botaya

    2016-05-01

    Full Text Available Here we devise a multiprobe electrical measurement system based on quartz tuning forks (QTFs and metallic tips capable of having full 3D control over the position of the probes. The system is based on the use of bent tungsten tips that are placed in mechanical contact (glue-free solution with a QTF sensor. Shear forces acting in the probe are measured to control the tip-sample distance in the Z direction. Moreover, the tilting of the tip allows the visualization of the experiment under the optical microscope, allowing the coordination of the probes in X and Y directions. Meanwhile, the metallic tips are connected to a current–voltage amplifier circuit to measure the currents and thus the impedance of the studied samples. We discuss here the different aspects that must be addressed when conducting these multiprobe experiments, such as the amplitude of oscillation, shear force distance control, and wire tilting. Different results obtained in the measurement of calibration samples and microparticles are presented. They demonstrate the feasibility of the system to measure the impedance of the samples with a full 3D control on the position of the nanotips.

  14. A precision measurement of the neutron2. Probing the color force

    Energy Technology Data Exchange (ETDEWEB)

    Posik, Matthew R. [Temple Univ., Philadelphia, PA (United States)

    2014-01-01

    The g2 nucleon spin-dependent structure function measured in electron deep inelastic scattering contains information beyond the simple parton model description of the nucleon. It provides insight into quark-gluon correlations and a path to access the confining local color force a struck quark experiences just as it is hit by the virtual photon due to the remnant di-quark. The quantity d2, a measure of this local color force, has its information encoded in an x2 weighted integral of a linear combination of spin structure functions g1 and g2 and thus is dominated by the valence-quark region at large momentum fraction x. To date, theoretical calculations and experimental measurements of the neutron d2 differ by about two standard deviations. Therefore, JLab experiment E06-014, performed in Hall A, made a precision measurement of this quantity at two mean four momentum transfers values of 3.21 and 4.32 GeV2. Double spin asymmetries and absolute cross-sections were measured in both DIS and resonance regions by scattering longitudinally polarized electrons at beam energies of 4.74 and 5.89 GeV from a longitudinally and transversely polarized 3He target. Results for the absolute cross-sections and spin structure functions on 3He will be presented in the dissertation, as well as results for the neutron d2 and extracted color forces.

  15. Reliability and Validity of Force Platform Measures of Balance Impairment in Individuals With Parkinson Disease.

    Science.gov (United States)

    Harro, Cathy C; Marquis, Alicia; Piper, Natasha; Burdis, Chris

    2016-12-01

    Complex movement and balance impairments in people with Parkinson disease (PD) contribute to high fall risk. Comprehensive balance assessment is warranted to identify intrinsic fall risk factors and direct interventions. The purpose of this study was to examine the psychometric properties of 3 balance measures of a force platform (FP) system in people with PD. Forty-two community-dwelling individuals with idiopathic PD completed the testing protocol. Test-retest reliability was assessed for the Limits of Stability Test (LOS), Motor Control Test (MCT), and Sensory Organization Test (SOT). Intraclass correlation coefficients (ICC [2,1]) were calculated to determine test-retest reliability and minimal detectable change. Validity was assessed by comparing the FP measures with criterion gait and balance measures using Pearson product moment correlations. Multiple regression analyses examined the contribution of PD characteristics to FP measures. All primary FP variables demonstrated excellent test-retest reliability (ICC=.78-.92). The SOT and LOS demonstrated fair to good correlations with criterion measures, whereas the MCT had fair correlations to balance measures only. Both SOT composite equilibrium and MCT average latency were moderately associated with disease severity. This study's sample had a relatively small number of participants with a positive fall history, which may limit the generalizability of the findings. This study's findings provide support that FP measures are reliable and valid tests of balance impairment in people with PD. Disease severity was significantly associated with SOT and MCT measures, perhaps reflecting that these tests are meaningful indicators of decline in postural control with disease progression. Force platform measures may provide valuable quantitative information about underlying balance impairments in people with PD to guide therapeutic interventions for fall risk reduction. © 2016 American Physical Therapy Association.

  16. Cellular Force Microscopy for in Vivo Measurements of Plant Tissue Mechanics1[W][OA

    Science.gov (United States)

    Routier-Kierzkowska, Anne-Lise; Weber, Alain; Kochova, Petra; Felekis, Dimitris; Nelson, Bradley J.; Kuhlemeier, Cris; Smith, Richard S.

    2012-01-01

    Although growth and morphogenesis are controlled by genetics, physical shape change in plant tissue results from a balance between cell wall loosening and intracellular pressure. Despite recent work demonstrating a role for mechanical signals in morphogenesis, precise measurement of mechanical properties at the individual cell level remains a technical challenge. To address this challenge, we have developed cellular force microscopy (CFM), which combines the versatility of classical microindentation techniques with the high automation and resolution approaching that of atomic force microscopy. CFM’s large range of forces provides the possibility to map the apparent stiffness of both plasmolyzed and turgid tissue as well as to perform micropuncture of cells using very high stresses. CFM experiments reveal that, within a tissue, local stiffness measurements can vary with the level of turgor pressure in an unexpected way. Altogether, our results highlight the importance of detailed physically based simulations for the interpretation of microindentation results. CFM’s ability to be used both to assess and manipulate tissue mechanics makes it a method of choice to unravel the feedbacks between mechanics, genetics, and morphogenesis. PMID:22353572

  17. Critical-Dimension Measurement using Multi-Angle-Scanning Method in Atomic Force Microscope

    Science.gov (United States)

    Murayama, Ken; Gonda, Satoshi; Koyanagi, Hajime; Terasawa, Tsuneo; Hosaka, Sumio

    2006-07-01

    We have developed a new critical dimension (CD) measurement technique using atomic force microscope (AFM) which can measure width-dimensions and examine sidewall-shapes of fine patterns on a wafer. The technique employs a flared-type tip in combination with digital probing and multi-angle scanning mechanism that allows the tip to trace the sidewalls on both sides of a feature (or trench) by making physical contacts with the sidewall surface. First, by using finite element method (FEM) we analyzed deformation of the tip and cantilever to compensate errors caused by the deformation. To verify our compensation method we measured quartz reference patterns either with perpendicular sidewalls or undercuts. In this paper we will describe the applications and usefulness of this multi-angle operation and show some measurement results of ArF resist patterns with 200 nm width and 400 nm depth that were obtained with a flared tip of 120 nm diameter.

  18. Ingestive behavior of lambs confined in individual and group stalls.

    Science.gov (United States)

    Filho, A Eustáquio; Carvalho, G G P; Pires, A J V; Silva, R R; Santos, P E F; Murta, R M; Pereira, F M

    2014-02-01

    The experiment was conducted to evaluate the ingestive behavior of lambs confined in individual and group stalls. We used thirty-four lambs in their growing phase, aged an average of three months, with mean initial live weight of 17.8±5.2 kg. They were allotted in a completely randomized design with 24 animals kept in individual stalls and 10 animals confined as a group. The experiment lasted for a total of 74 days, and the first 14 days were dedicated to the animals' adaption to the management, facilities and diets. The data collection period lasted 60 days, divided into three 20-d periods for the behavior evaluation. The animals were subjected to five days of visual observation during the experiment period, by the quantification of 24 h a day, with evaluations on the 15th day of each period and an interim evaluation consisting of two consecutive days on the 30th and 31st day of the experiment. The animals confined as a group consumed less (pbehavior.

  19. A Study of the Confinement Induced Sponge to Lamellar Phase Transformation by Direct Force Measurement

    International Nuclear Information System (INIS)

    Antelmi, David

    1996-10-01

    The interactions between two macroscopic walls immersed in an isotropic symmetric sponge phase (L 3 ) at different volume fractions, Φ, were studied with a surface force apparatus. The purpose of these experiments was to investigate the behaviour of the sponge phase when confined between two smooth rigid surfaces. Particular attention was given to investigating this behaviour as the bulk transition to the lamellar phase (L α ) was approached. At temperatures far from the L 3 /L α bulk transition temperature, the force-distance profile showed weak oscillations with a periodicity approximately equal to twice the characteristic length, ξ, measured for the sponge phase from small angle x-ray scattering. Furthermore, the oscillations were superimposed on an exponential attractive background that decayed with an order parameter correlation length of 2-3 times ξ The attractive background was explained by the enhancement of the sponge order in the vicinity of the rigid walls. The structural oscillations observed in the force-distance profile, although not completely understood, were discussed in terms of the packing of sponge cells (cell size ξ). The significance of the observed periodicity (2ξ) may indicate the importance of the symmetric nature of the sponge phase. By moving pairs of cells in response to an applied strain, the symmetry of the sponge structure is protected. As the temperature increased towards the L 3 /L α bulk transition temperature, an abrupt change in the force-distance profile was observed at a threshold separation labelled D* in . A different force regime was observed for separations below D* in which oscillated with a periodicity that was twice the reticular spacing, d, for a L α phase of similar Φ. The force oscillations were superimposed on an attractive background that was almost linear. These observations were consistent with a first order phase transition from the sponge phase to the lamellar phase, induced by the confinement, where

  20. Ultrasound power measurements of HITU transducer with a more stable radiation force balance

    International Nuclear Information System (INIS)

    Karaboece, B; Sadiko'lu, E; Bilgic, E

    2011-01-01

    A new radiation force balance (RFB) system was established at Turkish National Metrology Institute (UME) Ultrasonics Laboratory for High intensity therapeutic ultrasound (HITU) power measurements. The new system is highly stable at high power levels up to 500 Watts. The measurement system consists of a Plexiglas cylindrical balance arm, target mounting scale disks, conical reflecting and absorbing targets, adjustment nuts, and a hanging wire. Both of the two sides of balance were mounted similar size and weight targets. The equilibrium of the balance arm can be adjusted with nuts on screws located at both sides of the balance arm. Transducer was mounted to bottom of water tank. Absorbers in the bottom and the near walls of the tank were used for reflecting target case. Ultrasound power was applied to one scale of the balance where the reflecting/absorbing target was mounted and corresponding force was measured on the other scale of balance where was connected to a balance with a thin wire while the thin rest standing on a support. Ultrasound power of two HITU transducers at frequencies 0.93 MHz, 1.1 MHz and 3.3 MHz were measured with conventional and new system, the values were compared and uncertainty components were assessed in this paper.

  1. Comparison of optical and electrical measurements of the pantograph-catenary contact force

    Science.gov (United States)

    Bocciolone, Marco; Bucca, Giuseppe; Collina, Andrea; Comolli, Lorenzo

    2010-09-01

    In railway engineering the monitoring of contact force between pantograph and catenary gives information about the interaction between the two systems and it is useful to check the status of the overhead line. Indeed the failure of the catenary is one of the main causes of out of order problems. This study was conducted in a test campaign on an underground train instrumented with sensors able to monitor the line status. One of the more important measured quantities is the pantograph contact force, and two measurement systems were implemented: one optical and another electrical. The optical one was based on FBG sensors applied on the pantograph collector strip; the electrical one was based on two load cells positioned at the sides of the collector strip. The in-line measurements show that the optical solution is very promising, providing very reliable results that can be successfully used in the monitoring application, allowing the determination of the critical point in the line. The thermal compensation of any FBG sensors is a known problem and here is no exception: a thermal compensator was used to get also mean value measurements and the results are discussed.

  2. Ultrasound power measurements of HITU transducer with a more stable radiation force balance

    Energy Technology Data Exchange (ETDEWEB)

    Karaboece, B; Sadiko' lu, E; Bilgic, E, E-mail: baki.karaboce@ume.tubitak.gov.t [Tuebitak Ulusal Metroloji Enstituesue (UME), P.K. 54 41470 Gebze-Kocaeli (Turkey)

    2011-02-01

    A new radiation force balance (RFB) system was established at Turkish National Metrology Institute (UME) Ultrasonics Laboratory for High intensity therapeutic ultrasound (HITU) power measurements. The new system is highly stable at high power levels up to 500 Watts. The measurement system consists of a Plexiglas cylindrical balance arm, target mounting scale disks, conical reflecting and absorbing targets, adjustment nuts, and a hanging wire. Both of the two sides of balance were mounted similar size and weight targets. The equilibrium of the balance arm can be adjusted with nuts on screws located at both sides of the balance arm. Transducer was mounted to bottom of water tank. Absorbers in the bottom and the near walls of the tank were used for reflecting target case. Ultrasound power was applied to one scale of the balance where the reflecting/absorbing target was mounted and corresponding force was measured on the other scale of balance where was connected to a balance with a thin wire while the thin rest standing on a support. Ultrasound power of two HITU transducers at frequencies 0.93 MHz, 1.1 MHz and 3.3 MHz were measured with conventional and new system, the values were compared and uncertainty components were assessed in this paper.

  3. Influence of Halide Solutions on Collagen Networks: Measurements of Physical Properties by Atomic Force Microscopy

    Science.gov (United States)

    Kempe, André; Lackner, Maximilian

    2016-01-01

    The influence of aqueous halide solutions on collagen coatings was tested. The effects on resistance against indentation/penetration on adhesion forces were measured by atomic force microscopy (AFM) and the change of Young's modulus of the coating was derived. Comparative measurements over time were conducted with halide solutions of various concentrations. Physical properties of the mesh-like coating generally showed large variability. Starting with a compact set of physical properties, data disperse after minutes. A trend of increase in elasticity and permeability was found for all halide solutions. These changes were largest in NaI, displaying a logical trend with ion size. However a correlation with concentration was not measured. Adhesion properties were found to be independent of mechanical properties. The paper also presents practical experience for AFM measurements of soft tissue under liquids, particularly related to data evaluation. The weakening in physical strength found after exposure to halide solutions may be interpreted as widening of the network structure or change in the chemical properties in part of the collagen fibres (swelling). In order to design customized surface coatings at optimized conditions also for medical applications, halide solutions might be used as agents with little impact on the safety of patients. PMID:27721994

  4. Development of a Hybrid Atomic Force Microscopic Measurement System Combined with White Light Scanning Interferometry

    Directory of Open Access Journals (Sweden)

    Xiaotang Hu

    2011-12-01

    Full Text Available A hybrid atomic force microscopic (AFM measurement system combined with white light scanning interferometry for micro/nanometer dimensional measurement is developed. The system is based on a high precision large-range positioning platform with nanometer accuracy on which a white light scanning interferometric module and an AFM head are built. A compact AFM head is developed using a self-sensing tuning fork probe. The head need no external optical sensors to detect the deflection of the cantilever, which saves room on the head, and it can be directly fixed under an optical microscopic interferometric system. To enhance the system’s dynamic response, the frequency modulation (FM mode is adopted for the AFM head. The measuring data can be traceable through three laser interferometers in the system. The lateral scanning range can reach 25 mm × 25 mm by using a large-range positioning platform. A hybrid method combining AFM and white light scanning interferometry is proposed to improve the AFM measurement efficiency. In this method, the sample is measured firstly by white light scanning interferometry to get an overall coarse morphology, and then, further measured with higher resolution by AFM. Several measuring experiments on standard samples demonstrate the system’s good measurement performance and feasibility of the hybrid measurement method.

  5. Measuring Pushing and Braking Forces Generated by Ensembles of Kinesin-5 Crosslinking Two Microtubules.

    Science.gov (United States)

    Shimamoto, Yuta; Forth, Scott; Kapoor, Tarun M

    2015-09-28

    The proper organization of the microtubule-based mitotic spindle is proposed to depend on nanometer-sized motor proteins generating forces that scale with a micron-sized geometric feature, such as microtubule overlap length. However, it is unclear whether such regulation can be achieved by any mitotic motor protein. Here, we employ an optical-trap- and total internal reflection fluorescence (TIRF)-based assay to show that ensembles of kinesin-5, a conserved mitotic motor protein, can push apart overlapping antiparallel microtubules to generate a force whose magnitude scales with filament overlap length. We also find that kinesin-5 can produce overlap-length-dependent "brake-like" resistance against relative microtubule sliding in both parallel and antiparallel geometries, an activity that has been suggested by cell biological studies but had not been directly measured. Together, these findings, along with numerical simulations, reveal how a motor protein can function as an analog converter, "reading" simple geometric and dynamic features in cytoskeletal networks to produce regulated force outputs. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Near-equilibrium measurement of quantum size effects using Kelvin probe force microscopy.

    Science.gov (United States)

    Späth, Thomas; Popp, Matthias; Pérez León, Carmen; Marz, Michael; Hoffmann-Vogel, Regina

    2017-06-14

    In nano-structures such as thin films electron confinement results in the quantization of energy levels in the direction perpendicular to the film. The discretization of the energy levels leads to the oscillatory dependence of many properties on the film thickness due to quantum size effects. Pb on Si(111) is a specially interesting system because a particular relationship between the Pb atomic layer thickness and its Fermi wavelength leads to a periodicity of the oscillation of two atomic layers. Here, we demonstrate how the combination of scanning force microscopy (SFM) and Kelvin probe force microscopy (KPFM) provides a reliable method to monitor the quantum oscillations in the work function of Pb ultra-thin film nano-structures on Si(111). Unlike other techniques, with SFM/KPFM we directly address single Pb islands, determine their height while suppressing the influence of electrostatic forces, and, in addition, simultaneously evaluate their local work function by measurements close to equilibrium, without current-dependent and non-equilibrium effects. Our results evidence even-odd oscillations in the work function as a function of the film thickness that decay linearly with the film thickness, proving that this method provides direct and precise information on the quantum states.

  7. Force measurements of postural sway and rapid arm lift in seated children with and without MMC.

    Science.gov (United States)

    Norrlin, Simone; Karlsson, Annica; Ahlsten, Gunnar; Lanshammar, Håkan; Silander, Hans C; Dahl, Margareta

    2002-03-01

    The aim was to investigate the horizontal ground reaction forces of seated postural sway and rapid arm lift in children with and without myelomeningocele. BACKGROUND; It is unclear whether children with myelomeningocele have limited control of body posture entirely caused by the impairment in the legs or also by other dysfunction. 11 children with myelomeningocele, 10-13 years, and 20 children without physical impairment were investigated. Data were collected by force plate measurements during quiet sitting and during rapid arm lift. The forces were expressed as the corresponding acceleration of the centre of mass. The amplitude and the frequency of the centre of mass acceleration quantified the sway. Movement time, onset and anteroposterior peak acceleration were analysed during arm lift. The children with myelomeningocele had a low sway frequency under both conditions: eyes open and eyes closed. The movement time was longer for these children compared to the controls. The onset of initial anteroposterior centre of mass acceleration preceded the arm lift and was directed forward in both groups. The peak centre of mass acceleration was usually directed backward. The control of postural sway was different in children with myelomeningocele compared to children without disabilities and this could not be explained by the cele level. The children with myelomeningocele had a slow motor performance of the seated sway and during arm lift. Slow motor performance involves functional limitations in the individual child and is important for the therapy program.

  8. Study of Near-Stall Flow Behavior in a Modern Transonic Fan with Composite Sweep

    Science.gov (United States)

    Hah, Chunill; Shin, Hyoun-Woo

    2011-01-01

    Detailed flow behavior in a modern transonic fan with a composite sweep is investigated in this paper. Both unsteady Reynolds-averaged Navier-Stokes (URANS) and Large Eddy Simulation (LES) methods are applied to investigate the flow field over a wide operating range. The calculated flow fields are compared with the data from an array of high-frequency response pressure transducers embedded in the fan casing. The current study shows that a relatively fine computational grid is required to resolve the flow field adequately and to calculate the pressure rise across the fan correctly. The calculated flow field shows detailed flow structure near the fan rotor tip region. Due to the introduction of composite sweep toward the rotor tip, the flow structure at the rotor tip is much more stable compared to that of the conventional blade design. The passage shock stays very close to the leading edge at the rotor tip even at the throttle limit. On the other hand, the passage shock becomes stronger and detaches earlier from the blade passage at the radius where the blade sweep is in the opposite direction. The interaction between the tip clearance vortex and the passage shock becomes intense as the fan operates toward the stall limit, and tip clearance vortex breakdown occurs at near-stall operation. URANS calculates the time-averaged flow field fairly well. Details of measured RMS static pressure are not calculated with sufficient accuracy with URANS. On the other hand, LES calculates details of the measured unsteady flow features in the current transonic fan with composite sweep fairly well and reveals the flow mechanism behind the measured unsteady flow field.

  9. Application of magnetic resonance force microscopy cyclic adiabatic inversion for a single-spin measurement

    CERN Document Server

    Berman, G P; Chapline, G; Gurvitz, S A; Hammel, P C; Pelekhov, D V; Suter, A; Tsifrinovich, V I

    2003-01-01

    We consider the process of a single-spin measurement using magnetic resonance force microscopy (MRFM) with a cyclic adiabatic inversion (CAI). This technique is also important for different applications, including a measurement of a qubit state in quantum computation. The measurement takes place through the interaction of a single spin with a cantilever modelled by a quantum oscillator in a coherent state in a quasi-classical range of parameters. The entire system is treated rigorously within the framework of the Schroedinger equation. For a many-spin system our equations accurately describe conventional MRFM experiments involving CAI of the spin system. Our computer simulations of the quantum spin-cantilever dynamics show that the probability distribution for the cantilever position develops two asymmetric peaks with the total relative probabilities mainly dependent on the initial angle between the directions of the average spin and the effective magnetic field, in the rotating frame. We show that each of th...

  10. A review of measurement-based assessments of the aerosol direct radiative effect and forcing

    Directory of Open Access Journals (Sweden)

    H. Yu

    2006-01-01

    Full Text Available Aerosols affect the Earth's energy budget directly by scattering and absorbing radiation and indirectly by acting as cloud condensation nuclei and, thereby, affecting cloud properties. However, large uncertainties exist in current estimates of aerosol forcing because of incomplete knowledge concerning the distribution and the physical and chemical properties of aerosols as well as aerosol-cloud interactions. In recent years, a great deal of effort has gone into improving measurements and datasets. It is thus feasible to shift the estimates of aerosol forcing from largely model-based to increasingly measurement-based. Our goal is to assess current observational capabilities and identify uncertainties in the aerosol direct forcing through comparisons of different methods with independent sources of uncertainties. Here we assess the aerosol optical depth (τ, direct radiative effect (DRE by natural and anthropogenic aerosols, and direct climate forcing (DCF by anthropogenic aerosols, focusing on satellite and ground-based measurements supplemented by global chemical transport model (CTM simulations. The multi-spectral MODIS measures global distributions of aerosol optical depth (τ on a daily scale, with a high accuracy of ±0.03±0.05τ over ocean. The annual average τ is about 0.14 over global ocean, of which about 21%±7% is contributed by human activities, as estimated by MODIS fine-mode fraction. The multi-angle MISR derives an annual average AOD of 0.23 over global land with an uncertainty of ~20% or ±0.05. These high-accuracy aerosol products and broadband flux measurements from CERES make it feasible to obtain observational constraints for the aerosol direct effect, especially over global the ocean. A number of measurement-based approaches estimate the clear-sky DRE (on solar radiation at the top-of-atmosphere (TOA to be about -5.5±0.2 Wm-2 (median ± standard error from various methods over the global ocean. Accounting for thin cirrus

  11. An Overview on Gripping Force Measurement at the Micro and Nano-Scales Using Two-Fingered Microrobotic Systems

    Directory of Open Access Journals (Sweden)

    Mokrane Boudaoud

    2014-03-01

    Full Text Available Two-fingered micromanipulation systems with an integrated force sensor are widely used in robotics to sense and control gripping forces at the micro and nano-scales. They became of primary importance for an efficient manipulation and characterization of highly deformable biomaterials and nanostructures. This paper presents a chronological overview of gripping force measurement using two-fingered micromanipulation systems. The work summarizes the major achievements in this field from the early 90s to the present, focusing in particular on the evolution of measurement technologies regarding the requirements of microrobotic applications. Measuring forces below the microNewton for the manipulation of highly deformable materials, embedding force sensors within microgrippers to increase their dexterity, and reducing the influence of noise to improve the measurement resolution are among the addressed challenges. The paper shows different examples of how these challenges have been addressed. Resolution, operating range and signal/noise ratio of gripping force sensors are reported and compared. A discussion about force measurement technologies and gripping force control is performed and future trends are highlighted.

  12. Hypersonic force measurements using internal balance based on optical micromachined Fabry-Perot interferometry

    Science.gov (United States)

    Qiu, Huacheng; Min, Fu; Zhong, Shaolong; Song, Xin; Yang, Yanguang

    2018-03-01

    Force measurements using wind tunnel balance are necessary for determining a variety of aerodynamic performance parameters, while the harsh environment in hypersonic flows requires that the measurement instrument should be reliable and robust, in against strong electromagnetic interference, high vacuum, or metal (oxide) dusts. In this paper, we demonstrated a three-component internal balance for hypersonic aerodynamic force measurements, using novel optical micromachined Fabry-Perot interferometric (FPI) strain gauges as sensing elements. The FPI gauges were fabricated using Micro-Opto-Electro-Mechanical Systems (MOEMS) surface and bulk fabrication techniques. High-reflectivity coatings are used to form a high-finesse Fabry-Perot cavity, which benefits a high resolution. Antireflective and passivation coatings are used to reduce unwanted interferences. The FPI strain gauge based balance has been calibrated and evaluated in a Mach 5 hypersonic flow. The results are compared with the traditional technique using the foil resistive strain gauge balance, indicating that the proposed balance based on the MOEMS FPI strain gauge is reliable and robust and is potentially suitable for the hypersonic wind tunnel harsh environment.

  13. Evaluating Classroom Interaction with the iPad®: An Updated Stalling's Tool

    Science.gov (United States)

    MacKinnon, Gregory; Schep, Lourens; Borden, Lisa Lunney; Murray-Orr, Anne; Orr, Jeff; MacKinnon, Paula

    2016-01-01

    A large study of classrooms in the Caribbean context necessitated the use of a validated classroom observation tool. In practice, the paper-version Stalling's instrument (Stallings & Kaskowitz 1974) presented specific challenges with respect to (a) facile data collection and (b) qualitative observations of classrooms. In response to these…

  14. Simulation of Entropy Generation under Stall Conditions in a Centrifugal Fan

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2014-06-01

    Full Text Available Rotating stalls are generally the first instability met in turbomachinery, before surges. This 3D phenomenon is characterized by one or more stalled flow cells which rotate at a fraction of the impeller speed. The goal of the present work is to shed some light on the entropy generation in a centrifugal fan under rotating stall conditions. A numerical simulation of entropy generation is carried out with the ANSYS Fluent software which solves the Navier-Stokes equations and user defined function (UDF. The entropy generation characteristics in the centrifugal fan for five typical conditions are presented and discussed, involving the design condition, conditions on occurrence and development of stall inception, the rotating stall conditions with two throttle coefficients. The results show that the entropy generation increases after the occurrence of stall inception. The high entropy generation areas move along the circumferential and axial directions, and finally merge into one stall cell. The entropy generation rate during circumferential propagation of the stall cell is also discussed, showing that the entropy generation history is similar to sine curves in impeller and volute, and the volute tongue has a great influence on entropy generation in the centrifugal fan.

  15. Out-of-Plane Electromechanical Response of Monolayer Molybdenum Disulfide Measured by Piezoresponse Force Microscopy.

    Science.gov (United States)

    Brennan, Christopher J; Ghosh, Rudresh; Koul, Kalhan; Banerjee, Sanjay K; Lu, Nanshu; Yu, Edward T

    2017-09-13

    Two-dimensional (2D) materials have recently been theoretically predicted and experimentally confirmed to exhibit electromechanical coupling. Specifically, monolayer and few-layer molybdenum disulfide (MoS 2 ) have been measured to be piezoelectric within the plane of their atoms. This work demonstrates and quantifies a nonzero out-of-plane electromechanical response of monolayer MoS 2 and discusses its possible origins. A piezoresponse force microscope was used to measure the out-of-plane deformation of monolayer MoS 2 on Au/Si and Al 2 O 3 /Si substrates. Using a vectorial background subtraction technique, we estimate the effective out-of-plane piezoelectric coefficient, d 33 eff , for monolayer MoS 2 to be 1.03 ± 0.22 pm/V when measured on the Au/Si substrate and 1.35 ± 0.24 pm/V when measured on Al 2 O 3 /Si. This is on the same order as the in-plane coefficient d 11 reported for monolayer MoS 2 . Interpreting the out-of-plane response as a flexoelectric response, the effective flexoelectric coefficient, μ eff * , is estimated to be 0.10 nC/m. Analysis has ruled out the possibility of elastic and electrostatic forces contributing to the measured electromechanical response. X-ray photoelectron spectroscopy detected some contaminants on both MoS 2 and its substrate, but the background subtraction technique is expected to remove major contributions from the unwanted contaminants. These measurements provide evidence that monolayer MoS 2 exhibits an out-of-plane electromechanical response and our analysis offers estimates of the effective piezoelectric and flexoelectric coefficients.

  16. Derivation of Inter-Atomic Force Constants of Cu2O from Diffuse Neutron Scattering Measurement

    Directory of Open Access Journals (Sweden)

    T. Makhsun

    2013-04-01

    Full Text Available Neutron scattering intensity from Cu2O compound has been measured at 10 K and 295 K with High Resolution Powder Diffractometer at JRR-3 JAEA. The oscillatory diffuse scattering related to correlations among thermal displacements of atoms was observed at 295 K. The correlation parameters were determined from the observed diffuse scattering intensity at 10 and 295 K. The force constants between the neighboring atoms in Cu2O were estimated from the correlation parameters and compared to those of Ag2O

  17. Simultaneous atomic force microscope and quartz crystal microbalance measurements: Investigation of human plasma fibrinogen adsorption

    International Nuclear Information System (INIS)

    Choi, K.-H.; Friedt, J.-M.; Frederix, F.; Campitelli, A.; Borghs, G.

    2002-01-01

    We have combined the tapping-mode atomic force microscope (AFM) and quartz crystal microbalance (QCM) for simultaneous investigation of human plasma fibrinogen adsorption on a metallic surface using these two instruments. The AFM images show the surface changes with molecular resolution while the corresponding resonance frequency shift of the QCM provides quantitative adsorbed mass estimates over the whole sensing area. The combination of AFM with QCM allowing the simultaneous measurements with two techniques working at very different scales and probing different properties of the adsorbed layer provides quantitative and qualitative information that can distinguish different protein adsorption mechanisms

  18. Frequency, amplitude, and phase measurements in contact resonance atomic force microscopies

    Directory of Open Access Journals (Sweden)

    Gheorghe Stan

    2014-03-01

    Full Text Available The resonance frequency, amplitude, and phase response of the first two eigenmodes of two contact-resonance atomic force microscopy (CR-AFM configurations, which differ in the method used to excite the system (cantilever base vs sample excitation, are analyzed in this work. Similarities and differences in the observables of the cantilever dynamics, as well as the different effect of the tip–sample contact properties on those observables in each configuration are discussed. Finally, the expected accuracy of CR-AFM using phase-locked loop detection is investigated and quantification of the typical errors incurred during measurements is provided.

  19. Bayesian inverse problems in measure spaces with application to Burgers and Hamilton–Jacobi equations with white noise forcing

    International Nuclear Information System (INIS)

    Hoang, Viet Ha

    2012-01-01

    This paper formulates Bayesian inverse problems for inference in a topological measure space given noisy observations. Conditions for the validity of the Bayes’ formula and the well posedness of the posterior measure are studied. The abstract theory is then applied to Burgers and Hamilton–Jacobi equations on a semi-infinite time interval with forcing functions which are white noise in time. Inference is made on the white noise forcing, assuming the Wiener measure as the prior. (paper)

  20. New analysis procedure for fast and reliable size measurement of nanoparticles from atomic force microscopy images

    International Nuclear Information System (INIS)

    Boyd, Robert D.; Cuenat, Alexandre

    2011-01-01

    Accurate size measurement during nanoparticle production is essential for the continuing innovation, quality and safety of nano-enabled products. Size measurement by analysing a number of separate particles individually has particular advantages over ensemble methods. In the latter case nanoparticles have to be well dispersed in a fluid and changes that may occur during analysis, such as agglomeration and degradation, will not be detected which could lead to misleading results. Atomic force microscopy (AFM) allows imaging of particles both in air and liquid, however, the strong interactions between the probe and the particle will cause the broadening of the lateral dimension in the final image. In this paper a new procedure to measure the size of spherical nanoparticles from AFM images via vertical height measurement is described. This procedure will quickly analyse hundred of particles simultaneously and reproduce the measurements obtained from electron microscopy (EM). Nanoparticles samples that were difficult, if not impossible, to analyse with EM were successfully measured using this method. The combination of this procedure with the use of a metrological AFM moves closer to true traceable measurements of nanoparticle dispersions.

  1. URANS simulations of separated flow with stall cells over an NREL S826 airfoil

    Science.gov (United States)

    Sarlak, H.; Nishino, T.; Sørensen, J. N.

    2016-06-01

    A series of wind tunnel measurements and oil flow visualization was recently carried out at the Technical University of Denmark in order to investigate flow characteristics over a 14% thick NREL S826 airfoil at low Reynolds numbers. This paper aims at presenting numerical simulations of the same airfoil using unsteady Reynolds-averaged Navier-Stokes (URANS) approach. Results of the simulations are demonstrated in terms of mean flow velocity, lift and drag, as well as pressure distribution, and validated against available experimental data. The simulations are carried out with a wide computational domain (with a span-to-chord ratio of 5) and it is illustrated that the URANS approach is capable of predicting 3D spanwise structures, known as stall cells.

  2. Performance augmentation with vortex generators: Design and testing for stall-regulated AWT-26 turbine

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, D.A. [Advanced Wind Turbines Inc., Seattle, WA (United States)

    1996-12-31

    A study investigated the use of vortex generators (VGs) for performance augmentation of the stall-regulated AWT-26 wind turbine. Based on wind-tunnel results and analysis, a VG array was designed for and tested on the AWT-26 prototype, designated Pt. Performance and loads data were measured for P1, both with and without VGs installed. The turbine performance with VGs met most of the design requirements; power output was increased at moderate wind speeds with a minimal effect on peak power. However, VG drag penalties caused a loss in power output for low wind speeds, such that performance with VGs resulted in a net decrease in AEP for wind speed sites up to 8.5 m/s. 8 refs., 8 figs., 3 tabs.

  3. Reducing Respiratory Health Risks to Horses and Workers: A Comparison of Two Stall Bedding Materials

    Directory of Open Access Journals (Sweden)

    Markku Saastamoinen

    2015-10-01

    Full Text Available Stable air quality and the choice of bedding material are an important health issue both in horses and people working or visiting horse stables. Risks of impaired respiratory health are those that can especially be avoided by improving air quality in the stable. The choice of bedding material is particularly important in cold climate conditions; where horses are kept most of the day and year indoors throughout their life. This study examined the effect of two bedding materials; wood shavings and peat; on stable air quality and health of horses. Ammonia and dust levels were also measured to assess conditions in the stable. Ammonia was not detected or was at very low levels (<0.25 ppm in the boxes in which peat was used as bedding; but its concentration was clearly higher (1.5–7.0 ppm in stalls with wood shavings as bedding. Personal measurements of workers revealed quite high ammonia exposure (5.9 ppm8h in the boxes in which wood shavings were used; but no exposure was Animals 2015, 5 966 observed in stalls bedded with peat. The respiratory symptoms in horses increased regardless of the bedding material at the beginning of the study. The health status of the horses in the peat bedding group returned to the initial level in the end of the trial but horses bedded with wood shavings continued to be symptomatic. The hooves of the horses with peat bedding had a better moisture content than those of the horses bedded with wood shavings. The results suggest that peat is a better bedding material for horses than wood shavings regarding the health of both horses and stable workers.

  4. Force Measurement Improvements to the National Transonic Facility Sidewall Model Support System

    Science.gov (United States)

    Goodliff, Scott L.; Balakrishna, Sundareswara; Butler, David; Cagle, C. Mark; Chan, David; Jones, Gregory S.; Milholen, William E., II

    2016-01-01

    The National Transonic Facility is a transonic pressurized cryogenic facility. The development of the high Reynolds number semi-span capability has advanced over the years to include transonic active flow control and powered testing using the sidewall model support system. While this system can be used in total temperatures down to -250Â F for conventional unpowered configurations, it is limited to temperatures above -60Â F when used with powered models that require the use of the high-pressure air delivery system. Thermal instabilities and non-repeatable mechanical arrangements revealed several data quality shortfalls by the force and moment measurement system. Recent modifications to the balance cavity recirculation system have improved the temperature stability of the balance and metric model-to-balance hardware. Changes to the mechanical assembly of the high-pressure air delivery system, particularly hardware that interfaces directly with the model and balance, have improved the repeatability of the force and moment measurement system. Drag comparisons with the high-pressure air system removed will also be presented in this paper.

  5. Progressing single biomolecule force spectroscopy measurements for the screening of DNA binding agents

    Science.gov (United States)

    Zhang, Wenke; Barbagallo, Romina; Madden, Claire; Roberts, Clive J.; Woolford, Alison; Allen, Stephanie

    2005-10-01

    Recent studies have indicated that the force-extension properties of single molecules of double stranded (ds) DNA are sensitive to the presence of small molecule DNA binding agents, and also to their mode of binding. These observations raise the possibility of using this approach as a highly sensitive tool for the screening of such agents. However, particularly for studies employing the atomic force microscope (AFM), several non-trivial barriers hinder the progress of this approach to the non-specialist arena and hence also the full realization of this possibility. In this paper, we therefore address a series of key reproducibility and metrological issues associated with this type of measurement. Specifically, we present an improved immobilization method that covalently anchors one end (5' end) of a dual labelled (5'-thiol, 3'-biotin) p53 DNA molecule onto a gold substrate via gold-thiol chemistry, whilst the biotinylated 3' end is available for 'pick-up' using a streptavidin modified AFM tip. We also show that co-surface immobilization of DNA with 6-mercapto-1-hexanol (MCH) can also lead to a further increase the measured contour length. We demonstrate the impact of these improved protocols through the observation of the cooperative transition plateau in a DNA fragment of approximately 118 bp, a significantly smaller fragment than previously investigated. The results of a comparative study of the effects of a model minor groove binder (Hoechst 33258) and an intercalating drug (proflavine), alone, as a mixture and under different buffer conditions, are also presented.

  6. QCM-based measurement of bond rupture forces in DNA double helices for complementarity sensing.

    Science.gov (United States)

    Dultsev, Fedor N; Kolosovsky, Eugeny A; Mik, Ivan A; Lomzov, Alexander A; Pyshnyi, Dmitrii V

    2014-04-08

    After fixing the DNA molecule in the form of a double helix on the surface of a thickness shear mode resonator (QCM), mechanical oscillations at increasing amplitude cause detorsion of the helix. The force necessary for detorsion can be determined from the voltage applied to the QCM at the rupture moment. The high sensitivity of this method is due to the fact that measurements are carried out in the frequency region around the QCM resonance, where any (even very weak) distortions of the consistent oscillating system cause noticeable distortions of the amplitude-frequency dependence, and these distortions are used to fix the rupture moment. The measured rupture forces were within 30-40 pN, and the sensitivity was 10(8) molecules. It was demonstrated that the proposed procedure allows one to determine the factors that affect the stability of the DNA double helix. This procedure can be the basis for the development of a new method of rapid DNA analysis. Experiments performed with model DNA showed that it is possible to reveal complementarity between two DNA samples.

  7. Proposed Chevron Tengiz venture stalls amid Soviet political squabble

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This paper reports on the status of foreign investment in Soviet oil and gas joint ventures which has reached a critical juncture. Just as the U.S. is considering granting most favored nation trade status to the U.S.S.R., the joint venture petroleum deal seen as the litmus test for such deals-Chevron Corp.'s proposed addition of supergiant Tengiz oil field to its Caspian Sea joint venture-has stalled amid controversy. Unconfirmed reports from Soviet officials and other foreign joint venture participants in the U.S.S.R. have Chevron pulling out of the long negotiated, multibillion dollar project after the Soviets rejected the company's terms. Chevron, however, insists the project is still alive

  8. Reliability and Validity of Computerized Force Platform Measures of Balance Function in Healthy Older Adults.

    Science.gov (United States)

    Harro, Cathy C; Garascia, Chelsea

    2018-01-10

    Postural control declines with aging and is an independent risk factor for falls in older adults. Objective examination of balance function is warranted to direct fall prevention strategies. Force platform (FP) systems provide quantitative measures of postural control and analysis of different aspects of balance. The purpose of this study was to examine the reliability and validity of FP measures in healthy older adults. This study enrolled 46 healthy elderly adults, mean age 67.67 (5.1) years, who had no history of falls. They were assessed on 3 standardized tests on the NeuroCom Equitest FP system: limits of stability (LOS), motor control test (MCT), and sensory organization test (SOT). The test battery was administered twice within a 10-day period for test-retest reliability; intraclass correlation coefficients (ICCs), standard error of measurement (SEM), and minimal detectable change based on a 95% confidence interval (MDC95) were calculated. FP measures were compared with criterion clinical balance (Mini-BESTest and Functional Gait Assessment) and gait (10-m walk and 6-minute walk) measures to examine concurrent validity using Pearson correlation coefficients. Multiple linear regression analysis examined whether age and activity level were associated with FP performance. The α level was set at P Fair correlations were found between LOS end point excursion and clinical balance and gait measures (r = 0.31-0.49), and between MCT average latency and gait measures only (r = -0.32). No correlations were found between SOT measures and clinical balance and gait measures. Age was only marginally significantly (P = .055) associated with LOS end point excursion but was not associated with SOT or MCT measures, and activity level was not associated with any of the FP measures. FP measures provided reliable information on balance function in healthy older adults; however, small learning effects were evident, particularly for the SOT. The SEM and MDC95 for the LOS and SOT

  9. Design and construction of a strain gage compression load cell to measure rolling forces

    International Nuclear Information System (INIS)

    Schoeffer, L.; Borchardt, I.G.; Carvalho, L.F.A.

    1978-05-01

    A complete detailed mechanical desion of a strain gauge compression load cell is presented. This cell was specialy designed to measure rolling forces at conventional duo or trio industrial roughing stands. The stands, in general, have little space (height) to adjust to the cells. Moreover the contact stands surfaces are very rough. Do to this facts, load cells of elastic cilindrical geometries are not recommended for accuracies better than 8%. This work describes the complete design and the construction of a circular (membrane) steel plate load cell. A prototype of 300 KN (approximately 30t) capacity, with 2% accuracies and with a height of 6 cm was constructed and tested. The design proposed is a general one and permits the construction of small load cells to measure any compression load [pt

  10. Atomic force microscope caliper for critical dimension measurements of micro and nanostructures through sidewall scanning.

    Science.gov (United States)

    Xie, Hui; Hussain, Danish; Yang, Feng; Sun, Lining

    2015-11-01

    A novel atomic force microscope (AFM) dual-probe caliper for critical dimension (CD) metrology has been developed. The caliper is equipped with two facing tilted optical fiber probes (OFPs) wherein each can be used independently to scan either sidewall of micro and nanostructures. The OFP tip with length up to 500 μm (aspect ratio 10:1, apex diameter ⩾10 nm) has unique features of scanning deep trenches and imaging sidewalls of relatively high steps with exclusive profiling possibilities. The caliper arms-OFPs can be accurately aligned with a well calibrated opening distance. The line width, line edge roughness, line width roughness, groove width and CD angles can be measured through serial scan of adjacent or opposite sidewalls with each probe. Capabilities of the presented AFM caliper have been validated through experimental CD measurement results of comb microstructures and AFM calibration grating TGZ3. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Fabrication of birefringent nanocylinders for single-molecule force and torque measurement

    International Nuclear Information System (INIS)

    Li, Ping-Chun; T Yu, Edward; Chang, Jen-Chien; La Porta, Arthur

    2014-01-01

    Optically anisotropic subwavelength scale dielectric particles have been shown to enable studies of the mechanical properties of bio-molecules via optical trapping and manipulation. However, techniques emphasized to date for fabrication of such particles generally suffer from limited uniformity and control over particle dimensions, or low throughput and high cost. Here, an approach for rapid, low-cost, fabrication of large quantities of birefringent quartz nanocylinders with dimensions optimized for optical torque wrench experiments is described. For a typical process, 10 8 or more quartz cylinders with diameters of 500 nm and heights of 800 nm, with uniformity of ±5% in each dimension, can be fabricated over ∼10 cm 2 areas, for binding to a single bio-molecule, and harvested for use in optical trapping experiments. Use of these structures to measure extensional and torsional dynamics of single DNA molecules is demonstrated with measured forces and torques shown to be in very good agreement with previously reported results. (papers)

  12. A brute-force spectral approach for wave estimation using measured vessel motions

    DEFF Research Database (Denmark)

    Nielsen, Ulrik D.; Brodtkorb, Astrid H.; Sørensen, Asgeir J.

    2018-01-01

    , and the procedure is simple in its mathematical formulation. The actual formulation is extending another recent work by including vessel advance speed and short-crested seas. Due to its simplicity, the procedure is computationally efficient, providing wave spectrum estimates in the order of a few seconds......The article introduces a spectral procedure for sea state estimation based on measurements of motion responses of a ship in a short-crested seaway. The procedure relies fundamentally on the wave buoy analogy, but the wave spectrum estimate is obtained in a direct - brute-force - approach......, and the estimation procedure will therefore be appealing to applications related to realtime, onboard control and decision support systems for safe and efficient marine operations. The procedure's performance is evaluated by use of numerical simulation of motion measurements, and it is shown that accurate wave...

  13. Low-Order Modeling of Dynamic Stall on Airfoils in Incompressible Flow

    Science.gov (United States)

    Narsipur, Shreyas

    Unsteady aerodynamics has been a topic of research since the late 1930's and has increased in popularity among researchers studying dynamic stall in helicopters, insect/bird flight, micro air vehicles, wind-turbine aerodynamics, and ow-energy harvesting devices. Several experimental and computational studies have helped researchers gain a good understanding of the unsteady ow phenomena, but have proved to be expensive and time-intensive for rapid design and analysis purposes. Since the early 1970's, the push to develop low-order models to solve unsteady ow problems has resulted in several semi-empirical models capable of effectively analyzing unsteady aerodynamics in a fraction of the time required by high-order methods. However, due to the various complexities associated with time-dependent flows, several empirical constants and curve fits derived from existing experimental and computational results are required by the semi-empirical models to be an effective analysis tool. The aim of the current work is to develop a low-order model capable of simulating incompressible dynamic-stall type ow problems with a focus on accurately modeling the unsteady ow physics with the aim of reducing empirical dependencies. The lumped-vortex-element (LVE) algorithm is used as the baseline unsteady inviscid model to which augmentations are applied to model unsteady viscous effects. The current research is divided into two phases. The first phase focused on augmentations aimed at modeling pure unsteady trailing-edge boundary-layer separation and stall without leading-edge vortex (LEV) formation. The second phase is targeted at including LEV shedding capabilities to the LVE algorithm and combining with the trailing-edge separation model from phase one to realize a holistic, optimized, and robust low-order dynamic stall model. In phase one, initial augmentations to theory were focused on modeling the effects of steady trailing-edge separation by implementing a non-linear decambering

  14. Automated quality control of forced oscillation measurements: respiratory artifact detection with advanced feature extraction.

    Science.gov (United States)

    Pham, Thuy T; Leong, Philip H W; Robinson, Paul D; Gutzler, Thomas; Jee, Adelle S; King, Gregory G; Thamrin, Cindy

    2017-10-01

    The forced oscillation technique (FOT) can provide unique and clinically relevant lung function information with little cooperation with subjects. However, FOT has higher variability than spirometry, possibly because strategies for quality control and reducing artifacts in FOT measurements have yet to be standardized or validated. Many quality control procedures rely on either simple statistical filters or subjective evaluation by a human operator. In this study, we propose an automated artifact removal approach based on the resistance against flow profile, applied to complete breaths. We report results obtained from data recorded from children and adults, with and without asthma. Our proposed method has 76% agreement with a human operator for the adult data set and 79% for the pediatric data set. Furthermore, we assessed the variability of respiratory resistance measured by FOT using within-session variation (wCV) and between-session variation (bCV). In the asthmatic adults test data set, our method was again similar to that of the manual operator for wCV (6.5 vs. 6.9%) and significantly improved bCV (8.2 vs. 8.9%). Our combined automated breath removal approach based on advanced feature extraction offers better or equivalent quality control of FOT measurements compared with an expert operator and computationally more intensive methods in terms of accuracy and reducing intrasubject variability. NEW & NOTEWORTHY The forced oscillation technique (FOT) is gaining wider acceptance for clinical testing; however, strategies for quality control are still highly variable and require a high level of subjectivity. We propose an automated, complete breath approach for removal of respiratory artifacts from FOT measurements, using feature extraction and an interquartile range filter. Our approach offers better or equivalent performance compared with an expert operator, in terms of accuracy and reducing intrasubject variability. Copyright © 2017 the American Physiological

  15. An improved visualization-based force-measurement technique for short-duration hypersonic facilities

    Energy Technology Data Exchange (ETDEWEB)

    Laurence, Stuart J.; Karl, Sebastian [Institute of Aerodynamics and Flow Technology, Spacecraft Section, German Aerospace Center (DLR), Goettingen (Germany)

    2010-06-15

    This article is concerned with describing and exploring the limitations of an improved version of a recently proposed visualization-based technique for the measurement of forces and moments in short-duration hypersonic wind tunnels. The technique is based on tracking the motion of a free-flying body over a sequence of high-speed visualizations; while this idea is not new in itself, the use of high-speed digital cinematography combined with a highly accurate least-squares tracking algorithm allows improved results over what have been previously possible with such techniques. The technique precision is estimated through the analysis of artificially constructed and experimental test images, and the resulting error in acceleration measurements is characterized. For wind-tunnel scale models, position measurements to within a few microns are shown to be readily attainable. Image data from two previous experimental studies in the T5 hypervelocity shock tunnel are then reanalyzed with the improved technique: the uncertainty in the mean drag acceleration is shown to be reduced to the order of the flow unsteadiness, 2-3%, and time-resolved acceleration measurements are also shown to be possible. The response time of the technique for the configurations studied is estimated to be {proportional_to}0.5 ms. Comparisons with computations using the DLR TAU code also yield agreement to within the overall experimental uncertainty. Measurement of the pitching moment for blunt geometries still appears challenging, however. (orig.)

  16. The effect of the endothelial cell cortex on atomic force microscopy measurements.

    Science.gov (United States)

    Vargas-Pinto, R; Gong, H; Vahabikashi, A; Johnson, M

    2013-07-16

    We examined whether the presence of the cell cortex might explain, in part, why previous studies using atomic force microscopy (AFM) to measure cell modulus (E) gave higher values with sharp tips than for larger spherical tips. We confirmed these AFM findings in human umbilical vein endothelial cells (HUVEC) and Schlemm's canal (SC) endothelial cells with AFM indentation ≤ 400 nm, two cell types with prominent cortices (312 ± 65 nm in HUVEC and 371 ± 91 nm in SC cells). With spherical tips, E (kPa) was 0.71 ± 0.16 in HUVEC and 0.94 ± 0.06 in SC cells. Much higher values of E were measured using sharp tips: 3.23 ± 0.54 in HUVEC and 6.67 ± 1.07 in SC cells. Previous explanations for this difference such as strain hardening or a substrate effect were shown to be inconsistent with our measurements. Finite element modeling studies showed that a stiff cell cortex could explain the results. In both cell types, Latrunculin-A greatly reduced E for sharp and rounded tips, and also reduced the ratio of the values measured with a sharp tip as compared to a rounded tip. Our results suggest that the cell cortex increases the apparent endothelial cell modulus considerably when measured using a sharp AFM tip. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Imaging and size measurement of nanoparticles in aqueous medium by use of atomic force microscopy.

    Science.gov (United States)

    Takechi-Haraya, Yuki; Goda, Yukihiro; Sakai-Kato, Kumiko

    2018-02-01

    Size control of nanoparticles in nanotechnology-based drug products is crucial for their successful development, since the in vivo pharmacokinetics of nanoparticles are size-dependent. In this study, we evaluated the use of atomic force microscopy (AFM) for imaging and size measurement of nanoparticles in aqueous medium. The height sizes of rigid polystyrene nanoparticles and soft liposomes were measured by AFM and were compared with the hydrodynamic sizes measured by dynamic light scattering (DLS). The lipid compositions of the studied liposomes were similar to those of commercial products. AFM proved to be a viable method for obtaining images of both polystyrene nanoparticles and liposomes in aqueous medium. For the polystyrene nanoparticles, the average height size observed by AFM was similar to the average number-weighted diameter obtained by DLS, indicating the usefulness of AFM for measuring the sizes of nanoparticles in aqueous medium. For the liposomes, the height sizes obtained by AFM differed depending upon the procedures of immobilizing the liposomes onto a solid substrate. In addition, the resultant average height sizes of the liposomes were smaller than those obtained by DLS. This knowledge will help the correct use of AFM as a powerful tool for imaging and size measurement of nanotechnology-based drug products for clinical use.

  18. Nanoscale characterization of dynamic cellular viscoelasticity by atomic force microscopy with varying measurement parameters.

    Science.gov (United States)

    Li, Mi; Liu, Lianqing; Xu, Xinning; Xing, Xiaojing; Dang, Dan; Xi, Ning; Wang, Yuechao

    2018-03-27

    Cell mechanics plays an important role in regulating the physiological activities of cells. The advent of atomic force microscopy (AFM) provides a novel powerful instrument for quantifying the mechanics of single cells at the nanoscale. The applications of AFM in single-cell mechanical assays in the past decade have significantly contributed to the field of cell and molecular biology. However, current AFM-based cellular mechanical studies are commonly carried out with fixed measurement parameters, which provides limited information about the dynamic cellular mechanical behaviors in response to the variable external stimuli. In this work, we utilized AFM to investigate cellular viscoelasticity (portrayed as relaxation time) with varying measurement parameters, including ramp rate and surface dwell time, on both cell lines and primary cells. The experimental results show that the obtained cellular relaxation times are remarkably dependent on the parameter surface dwell time and ramp rate during measurements. Besides, the dependencies to the measurement parameters are variable for different types of cells, which can be potentially used to indicate cell states. The research improves our understanding of single-cell dynamic rheology and provides a novel idea for discriminating different types of cells by AFM-based cellular viscoelastic assays with varying measurement parameters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. A nanobiosensing method based on force measurement of antibody-antigen interaction for direct detection of enterovirus 71 by the chemically modified atomic force microscopic probe.

    Science.gov (United States)

    Hong, Chung-Hung; Hsieh, Chung-Fan; Tseng, Chi-Shin; Huang, Wei-Chih; Guo, Cheng-Yan; Lin, Shiming; Lee, Si-Chen

    2017-10-01

    Hand, Foot and mouth disease (HFMD) is a common disease with high infectivity for children, and enterovirus 71 (EV71) is one of the main pathogens to cause the type of illness. Therefore, the aim of this study was to propose a rapid and effective technique for detecting EV71 directly based on the mechanism of biological intermolecular force by using atomic force microscopy (AFM). At first, we coated EV71 particles on the mica surface and made the EV71 antibodies (anti-EV71) fixed on the AFM tip by means of several chemical procedures. Then, AFM chemically modified tip was applied to measure the unbinding forces between EV71 and anti-EV71 by contact mode. Finally, by using AFM imaging calculating software, the EV71 particle size (mean±SD) was 31.36±3.87 nm (n = 200) and this result was concordance with previous literature. Besides, the force (mean±SD) between EV71 antigen and antibody complex was 336.9±64.7 pN. The force (mean±SD) between anti-EV71 and non-specific specimens was 47.1±15.1 pN and was significantly smaller (P measuring the force magnitude and observing the occurrence of EV71/anti-EV71 unbinding events. Therefore, the combination of AFM system and the chemically modified tip has the potential to be a rapid and effective method for detecting EV71 directly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Benchmarking welfare indicators in 73 free-stall dairy farms in north-western Spain

    Science.gov (United States)

    Trillo, Yolanda; Quintela, Luis Angel; Barrio, Mónica; Becerra, Juan José; Peña, Ana Isabel; Vigo, Marcos; Garcia Herradon, Pedro

    2017-01-01

    The aim of this study was to describe the status of body condition score (BCS), hock injuries prevalence, locomotion and body hygiene score as animal welfare measures in 73 free-stall dairy cattle farms in Lugo (Spain). A benchmarking process was established across farms: (1) the animal-based indicators were ordered from low to high values; (2) The farms were classified into three categories based on the number of indicators within less than the 25th percentile, 25th to 75th percentile and above the 75th percentile. The median prevalence of unsuitable BCS, hock injuries and clinical lameness was (median (range)) 51.7 per cent (13.3 to 89.5 per cent), 40.0 per cent (7.0per cent to 100 per cent) and 9.0 per cent (0per cent to 60.0 per cent) respectively. The dirtiness of the cow’s coat had a high prevalence (73.0 per cent (37.5per cent to 100 per cent)). Most farms did not display consistently good or poor animal-based indicators and each farm had its own set of strong and weak points. Moreover, facilities design and management practices were described to understand source of the observations made of the cows. The incidence of overstocking was 31.5 per cent for stalls and 26.0 per cent for headlocks. The front lunge space was reduced (farms and they could benefit from others by changing management practices related to facilities and herds. PMID:29018530

  1. Association between respiratory impedance measured by forced oscillation technique and exacerbations in patients with COPD

    Directory of Open Access Journals (Sweden)

    Yamagami H

    2017-12-01

    Full Text Available Hitomi Yamagami, Akihiko Tanaka, Yasunari Kishino, Hatsuko Mikuni, Tomoko Kawahara, Shin Ohta, Mayumi Yamamoto, Shintaro Suzuki, Tsukasa Ohnishi, Hironori Sagara Division of Respiratory Medicine and Allergology, Department of Medicine, School of Medicine, Showa University, Tokyo, Japan Background: It is well known that increased airflow limitation as measured by spirometry is associated with the risk of exacerbation in patients with COPD. The forced oscillation technique (FOT is a noninvasive method used to assess respiratory impedance (resistance and reactance with minimal patient cooperation required. The clinical utility of the FOT in assessing the risk of exacerbations of COPD is yet to be determined. We examined the relationship between respiratory impedance as measured by FOT and exacerbations in patients with COPD. Materials and methods: Among 310 patients with COPD (Global Initiative for Chronic Obstructive Lung Disease stages I–IV who presented at the outpatient clinic of the Showa University Hospital from September 2014 through January 2015, 119 were collected and assigned into 2 groups according to their history of exacerbation: exacerbators and nonexacerbators. Respiratory resistance components and respiratory reactance components, as measured by FOT, were compared between the two groups. Results: Exacerbators were significantly older and had a higher white blood cell count than nonexacerbators. Resistance at 20 Hz, reactance at 5 Hz (X5, resonant frequency (Fres, and area of low reactance (ALX differed significantly between the two groups. In addition, among patients with stage II COPD, there were significant differences in X5, Fres, and ALX between the two groups despite no significant differences in respiratory function as assessed by spirometry. Finally, receiver operating characteristic curve analysis revealed that the reactance components rather than the resistance components were associated with the risk of exacerbation

  2. Measurement of the axial force during primary peristalsis in the oesophagus using a novel electrical impedance technology

    International Nuclear Information System (INIS)

    Gravesen, F H; McMahon, B P; Drewes, A M; Gregersen, H

    2008-01-01

    The oesophagus serves to transport food and fluid from the pharynx to the stomach. Oesophageal function is usually evaluated by means of manometry which is a proxy of the force in the radial direction. However, force measurements in the axial direction will provide a better measure of oesophageal transport function. The aim of this study was to develop a probe based on electrical impedance measurements to quantify the axial force generated by oesophageal contractions, i.e. probe elongation was associated with the axial force. Calibration with weights up to 200 g was done. The dispersion, creep, temperature and bending dependence were studied at the bench. Subsequently, the probe was tested in vivo in a healthy human volunteer. The probe showed good reproducibility and the dispersion was <0.04. Some dependence on temperature, creep and bending was found. Interpolation of the calibration curves made it possible to compensate for temperature fluctuations. The maximum deviation was 6.1 ± 3.7% at loads of 50 g. The influence of creep showed a maximum net creep of 6.1 g after 8 s. The swallowed bolus size correlated with the axial force measurements (P = 0.038) but not with manometric measurements. In conclusion, the new technique measures axial force in the oesophagus and may in the future provide valuable information about oesophageal function

  3. Measurement of the axial force during primary peristalsis in the oesophagus using a novel electrical impedance technology.

    Science.gov (United States)

    Gravesen, F H; McMahon, B P; Drewes, A M; Gregersen, H

    2008-03-01

    The oesophagus serves to transport food and fluid from the pharynx to the stomach. Oesophageal function is usually evaluated by means of manometry which is a proxy of the force in the radial direction. However, force measurements in the axial direction will provide a better measure of oesophageal transport function. The aim of this study was to develop a probe based on electrical impedance measurements to quantify the axial force generated by oesophageal contractions, i.e. probe elongation was associated with the axial force. Calibration with weights up to 200 g was done. The dispersion, creep, temperature and bending dependence were studied at the bench. Subsequently, the probe was tested in vivo in a healthy human volunteer. The probe showed good reproducibility and the dispersion was <0.04. Some dependence on temperature, creep and bending was found. Interpolation of the calibration curves made it possible to compensate for temperature fluctuations. The maximum deviation was 6.1 +/- 3.7% at loads of 50 g. The influence of creep showed a maximum net creep of 6.1 g after 8 s. The swallowed bolus size correlated with the axial force measurements (P = 0.038) but not with manometric measurements. In conclusion, the new technique measures axial force in the oesophagus and may in the future provide valuable information about oesophageal function.

  4. Measurement model and calibration experiment of over-constrained parallel six-dimensional force sensor based on stiffness characteristics analysis

    International Nuclear Information System (INIS)

    Niu, Zhi; Zhao, Yanzhi; Zhao, Tieshi; Cao, Yachao; Liu, Menghua

    2017-01-01

    An over-constrained, parallel six-dimensional force sensor has various advantages, including its ability to bear heavy loads and provide redundant force measurement information. These advantages render the sensor valuable in important applications in the field of aerospace (space docking tests, etc). The stiffness of each component in the over-constrained structure has a considerable influence on the internal force distribution of the structure. Thus, the measurement model changes when the measurement branches of the sensor are under tensile or compressive force. This study establishes a general measurement model for an over-constrained parallel six-dimensional force sensor considering the different branch tensions and compression stiffness values. Numerical calculations and analyses are performed using practical examples. Based on the parallel mechanism, an over-constrained, orthogonal structure is proposed for a six-dimensional force sensor. Hence, a prototype is designed and developed, and a calibration experiment is conducted. The measurement accuracy of the sensor is improved based on the measurement model under different branch tensions and compression stiffness values. Moreover, the largest class I error is reduced from 5.81 to 2.23% full scale (FS), and the largest class II error is reduced from 3.425 to 1.871% FS. (paper)

  5. The FORCE Fitness Profile--Adding a Measure of Health-Related Fitness to the Canadian Armed Forces Operational Fitness Evaluation.

    Science.gov (United States)

    Gagnon, Patrick; Spivock, Michael; Reilly, Tara; Mattie, Paige; Stockbrugger, Barry

    2015-11-01

    In 2013, the Canadian Armed Forces (CAF) implemented the Fitness for Operational Requirements of Canadian Armed Forces Employment (FORCE), a field expedient fitness test designed to predict the physical requirements of completing common military tasks. Given that attaining this minimal physical fitness standard may not represent a challenge to some personnel, a fitness incentive program was requested by the chain of command to recognize and reward fitness over and above the minimal standard. At the same time, it was determined that the CAF would benefit from a measure of general health-related fitness, in addition to this measure of operational fitness. The resulting incentive program structure is based on gender and 8 age categories. The results on the 4 elements of the FORCE evaluation were converted to a point scale from which normative scores were derived, where the median score corresponds to the bronze level, and silver, gold, and platinum correspond to a score which is 1, 2, and 3 SDs above this median, respectively. A suite of rewards including merit board point toward promotions and recognition on the uniform and material rewards was developed. A separate group rewards program was also tabled, to recognize achievements in fitness at the unit level. For general fitness, oxygen capacity was derived from FORCE evaluation results and combined with a measure of abdominal circumference. Fitness categories were determined based on relative risks of mortality and morbidity for each age and gender group. Pilot testing of this entire program was performed with 624 participants to assess participants' reactions to the enhanced test, and also to verify logistical aspects of the electronic data capture, calculation, and transfer system. The newly dubbed fitness profile program was subsequently approved by the senior leadership of the CAF and is scheduled to begin a phased implementation in June 2015.

  6. The temperature dependence of cell mechanics measured by atomic force microscopy

    International Nuclear Information System (INIS)

    Sunyer, R; Trepat, X; Farré, R; Navajas, D; Fredberg, J J

    2009-01-01

    The cytoskeleton is a complex polymer network that regulates the structural stability of living cells. Although the cytoskeleton plays a key role in many important cell functions, the mechanisms that regulate its mechanical behaviour are poorly understood. Potential mechanisms include the entropic elasticity of cytoskeletal filaments, glassy-like inelastic rearrangements of cross-linking proteins and the activity of contractile molecular motors that sets the tensional stress (prestress) borne by the cytoskeleton filaments. The contribution of these mechanisms can be assessed by studying how cell mechanics depends on temperature. The aim of this work was to elucidate the effect of temperature on cell mechanics using atomic force microscopy. We measured the complex shear modulus (G*) of human alveolar epithelial cells over a wide frequency range (0.1–25.6 Hz) at different temperatures (13–37 °C). In addition, we probed cell prestress by mapping the contractile forces that cells exert on the substrate by means of traction microscopy. To assess the role of actomyosin contraction in the temperature-induced changes in G* and cell prestress, we inhibited the Rho kinase pathway of the myosin light chain phosphorylation with Y-27632. Our results show that with increasing temperature, cells become stiffer and more solid-like. Cell prestress also increases with temperature. Inhibiting actomyosin contraction attenuated the temperature dependence of G* and prestress. We conclude that the dependence of cell mechanics with temperature is dominated by the contractile activity of molecular motors

  7. Field Measurements of Heating Efficiency of Electric Forced-Air Furnaces in Six Manufactured Homes.

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Bob; Palmiter, Larry S.; Siegel, Jeff

    1994-07-26

    This report presents the results of field measurements of heating efficiency for six manufactured homes in the Pacific Northwest heated with electric forced-air systems. This is the first in a series of regional and national efforts to measure in detail the heating efficiency of manufactured homes. Only six homes were included in this study because of budgetary constraints; therefore this is not a representative sample. These investigations do provide some useful information on the heating efficiency of these homes. Useful comparisons can be drawn between these study homes and site-built heating efficiencies measured with a similar protocol. The protocol used to test these homes is very similar to another Ecotope protocol used in the study conducted in 1992 and 1993 for the Bonneville Power Administration to test the heating efficiency of 24 homes. This protocol combined real-time power measurements of furnace energy usage with energy usage during co-heat periods. Accessory data such as house and duct tightness measurements and tracer gas measurements were used to describe these homes and their heating system efficiency. Ensuring that manufactured housing is constructed in an energy and resource efficient manner is of increasing concern to manufactured home builders and consumers. No comparable work has been done to measure the heating system efficiency of MCS manufactured homes, although some co-heat tests have been performed on manufactured homes heated with natural gas to validate HUD thermal standards. It is expected that later in 1994 more research of this kind will be conducted, and perhaps a less costly and less time-consuming method for testing efficiencies will be develops.

  8. Measurement of hydrodynamic force generation by swimming dolphins using bubble DPIV.

    Science.gov (United States)

    Fish, Frank E; Legac, Paul; Williams, Terrie M; Wei, Timothy

    2014-01-15

    Attempts to measure the propulsive forces produced by swimming dolphins have been limited. Previous uses of computational hydrodynamic models and gliding experiments have provided estimates of thrust production by dolphins, but these were indirect tests that relied on various assumptions. The thrust produced by two actively swimming bottlenose dolphins (Tursiops truncatus) was directly measured using digital particle image velocimetry (DPIV). For dolphins swimming in a large outdoor pool, the DPIV method used illuminated microbubbles that were generated in a narrow sheet from a finely porous hose and a compressed air source. The movement of the bubbles was tracked with a high-speed video camera. Dolphins swam at speeds of 0.7 to 3.4 m s(-1) within the bubble sheet oriented along the midsagittal plane of the animal. The wake of the dolphin was visualized as the microbubbles were displaced because of the action of the propulsive flukes and jet flow. The oscillations of the dolphin flukes were shown to generate strong vortices in the wake. Thrust production was measured from the vortex strength through the Kutta-Joukowski theorem of aerodynamics. The dolphins generated up to 700 N during small amplitude swimming and up to 1468 N during large amplitude starts. The results of this study demonstrated that bubble DPIV can be used effectively to measure the thrust produced by large-bodied dolphins.

  9. Elastic-properties measurement at high temperatures through contact resonance atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Marinello, Francesco, E-mail: francesco.marinello@unipd.it; Pezzuolo, Andrea; Sartori, Luigi; Cavalli, Raffaele [University of Padova, Department of Land, Environment, Agriculture and Forestry, Viale dell’Università 16, 35020 Legnaro, Padova (Italy); Carmignato, Simone [University of Padova, Department of Management and Engineering, Stradella San Nicola 3, 36100 Vicenza (Italy); Savio, Enrico [University of Padova, Department of Industrial Engineering, Via Venezia 1, 35131 Padova (Italy); De Chiffre, Leonardo [Technical University of Denmark, Department of Mechanical Engineering, Produktionstorvet 425, 2800 Kgs. Lyngby (Denmark)

    2015-06-23

    Miniaturization of products and need for further improvement of machines performance introduce new serious challenges in materials characterization. In particular non-destructive mechanical testing in the sub-micrometer scale is needed to better understand and improve micro-manufacturing operations. To this regard, some open issues are of particular interest: low depth of penetration, high lateral resolution and measurements at elevated temperatures. An interesting solution is given by acoustic microscopy techniques, which can be successfully implemented for advanced research in surface elasticity, allowing fast direct and non-destructive measurement of Young’s modulus and related surface parameters. In this work an instrument set up for Contact Resonance Atomic Force Microscopy is proposed, where the sample with is coupled to a heating stage and a piezoelectric transducer directly vibrate the cantilever during scanning, in order to allow exploitation of high resolution measurements at relatively high temperatures. Such instrument set up was undergone a set of calibration experiments in order to allow not only qualitative but also quantitative characterization of surfaces. The work was completed with a feasibility study with mechanical and topography measurements at temperatures as high as 150°C, with lateral resolution lower than 100 nm.

  10. Analysis of Low Speed Stall Aerodynamics of a Swept Wing with Laminar Flow Glove

    Science.gov (United States)

    Bui, Trong T.

    2014-01-01

    Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a GIII aircraft's swept wing modified with a laminar-flow wing glove. The stall aerodynamics of the gloved wing were analyzed and compared with the unmodified wing for the flight speed of 120 knots and altitude of 2300 ft above mean sea level (MSL). The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First American Institute of Aeronautics and Astronautics (AIAA) CFD High-Lift Prediction Workshop. It was found that the Star-CCM+ CFD code can produce results that are within the scattering of other CFD codes considered at the workshop. In particular, the Star-CCM+ CFD code was able to predict wing stall for the AIAA wing-body geometry to within 1 degree of angle of attack as compared to benchmark wind-tunnel test data. Current results show that the addition of the laminar-flow wing glove causes the gloved wing to stall much earlier than the unmodified wing. Furthermore, the gloved wing has a different stall characteristic than the clean wing, with no sharp lift drop-off at stall for the gloved wing.

  11. Analysis of Low-Speed Stall Aerodynamics of a Swept Wing with Laminar-Flow Glove

    Science.gov (United States)

    Bui, Trong T.

    2014-01-01

    Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a GIII aircraft's swept wing modified with a laminar-flow wing glove. The stall aerodynamics of the gloved wing were analyzed and compared with the unmodified wing for the flight speed of 120 knots and altitude of 2300 ft above mean sea level (MSL). The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First American Institute of Aeronautics and Astronautics (AIAA) CFD High-Lift Prediction Workshop. It was found that the Star-CCM+ CFD code can produce results that are within the scattering of other CFD codes considered at the workshop. In particular, the Star-CCM+ CFD code was able to predict wing stall for the AIAA wing-body geometry to within 1 degree of angle of attack as compared to benchmark wind-tunnel test data. Current results show that the addition of the laminar-flow wing glove causes the gloved wing to stall much earlier than the unmodified wing. Furthermore, the gloved wing has a different stall characteristic than the clean wing, with no sharp lift drop-off at stall for the gloved wing.

  12. Wind-Tunnel Investigations on a Changed Mustang Profile with Nose Flap Force and Pressure-Distribution Measurements

    Science.gov (United States)

    Krueger, W.

    1947-01-01

    Measurements are described which were taken in the large wind tunnel of the AVA on a rectangular wing "Mustang 2" with nose flap of a chord of 10 percent. Besides force measurements the results of pressure-distribution measurements are given and compared with those on the same profile "without" nose flap.

  13. Investigating Stall Flutter using a DS model-An application for HAWTs

    International Nuclear Information System (INIS)

    Nichols, James; Haans, Wouter; Witcher, David; Attorni, Andrea

    2014-01-01

    As wind turbine blades become larger there is a tendency for the blade torsional stiffness to reduce, producing the possibility of dynamic instability at moderate windspeeds. While linearised methods can assess the envelope of allowable blade properties for avoiding classical flutter with attached flow aerodynamics, wind turbine aerofoils can experience stalled flow. Therefore, it is necessary to explore the possible effects of stall-flutter on blade stability. This paper aims to address methods for judging the stability of blade designs during both attached flow and stalled flow behaviour. This paper covers the following areas: i) Attached flow model A Beddoes-Leishman indicial model is presented and the choice of coefficients is explained in the context of Theodorsen's theory for flat-plate aerofoils and experimental results by Beddoes and Leishman. Special attention is given to the differing dynamic behaviour of the pitching moment due to flapping motion, pitching motion and dynamically varying inflow. (ii) Classical flutter analysis The time domain attached flow model is verified against a linear flutter analysis by comparing time domain results for a 3D model of a representative multi-megawatt turbine blade, varying the position of the centre of mass along the chord. The results show agreement to within 6% for a range of flutter onset speeds. (iii) Dynamic stall model On entering the stalled region, damping of torsional motion of an aerofoil section can become negative. A dynamic stall model which encompasses the effects of trailing edge separation and leading edge vortex detachment is presented and validated against published experimental data. (iv) Stall flutter The resulting time domain model is used in simulations validating the prediction of reduced flutter onset for stalled aerofoils. Representative stalled conditions for a multi-megawatt wind turbine blade are investigated to assess the possible reduction in flutter speed. A maximum reduction of 17

  14. How to measure load-dependent kinetics of individual motor molecules without a force clamp

    DEFF Research Database (Denmark)

    Sung, J.; Mortensen, Kim; Spudich, J.A.

    2017-01-01

    Single-molecule force spectroscopy techniques, including optical trapping, magnetic trapping, and atomic force microscopy, have provided unprecedented opportunities to understand biological processes at the smallest biological length scales. For example, they have been used to elucidate the molec...

  15. Measuring lung function using sound waves: role of the forced oscillation technique and impulse oscillometry system.

    Science.gov (United States)

    Brashier, Bill; Salvi, Sundeep

    2015-03-01

    Measuring lung function is an important component in the decision making process for patients with obstructive airways disease (OAD). Not only does it help in arriving at a specific diagnosis, but it also helps in evaluating severity so that appropriate pharmacotherapy can be instituted, it helps determine prognosis and it helps evaluate response to therapy. Spirometry is currently the most commonly performed lung function test in clinical practice and is considered to be the gold standard diagnostic test for asthma and COPD. However, spirometry is not an easy test to perform because the forceful expiratory and inspiratory manoeuvres require good patient co-operation. Children aged <5 years, elderly people and those with physical and cognitive limitations cannot perform spirometry easily.

  16. Relationships between sensory evaluations of beef tenderness, shear force measurements and consumer characteristics.

    Science.gov (United States)

    Van Wezemael, Lynn; De Smet, Stefaan; Ueland, Øydis; Verbeke, Wim

    2014-07-01

    The supply of tender beef is an important challenge for the beef industry. Knowledge about the profile of consumers who are more optimistic or more accurate in their tenderness evaluations is important for product development and beef marketing purposes. Central location tests of beef steaks were performed in Norway and Belgium (n=218). Instrumental and sensorial tenderness of three muscles from Belgian Blue and Norwegian Red cattle was reported. Consumers who are optimistically evaluating tenderness were found to be more often male, less food neophobic, more positive towards beef healthiness, and showed fewer concerns about beef safety. No clear profile emerged for consumers who assessed tenderness similar to shear force measurements, which suggests that tenderness is mainly evaluated subjectively. The results imply a window of opportunities in tenderness improvements, and allow targeting a market segment which is less critical towards beef tenderness. © 2013 Elsevier Ltd. All rights reserved.

  17. Optimal sample preparation for nanoparticle metrology (statistical size measurements) using atomic force microscopy

    International Nuclear Information System (INIS)

    Hoo, Christopher M.; Doan, Trang; Starostin, Natasha; West, Paul E.; Mecartney, Martha L.

    2010-01-01

    Optimal deposition procedures are determined for nanoparticle size characterization by atomic force microscopy (AFM). Accurate nanoparticle size distribution analysis with AFM requires non-agglomerated nanoparticles on a flat substrate. The deposition of polystyrene (100 nm), silica (300 and 100 nm), gold (100 nm), and CdSe quantum dot (2-5 nm) nanoparticles by spin coating was optimized for size distribution measurements by AFM. Factors influencing deposition include spin speed, concentration, solvent, and pH. A comparison using spin coating, static evaporation, and a new fluid cell deposition method for depositing nanoparticles is also made. The fluid cell allows for a more uniform and higher density deposition of nanoparticles on a substrate at laminar flow rates, making nanoparticle size analysis via AFM more efficient and also offers the potential for nanoparticle analysis in liquid environments.

  18. Application of magnetic resonance force microscopy cyclic adiabatic inversion for a single-spin measurement

    International Nuclear Information System (INIS)

    Berman, G P; Borgonovi, F; Chapline, G; Gurvitz, S A; Hammel, P C; Pelekhov, D V; Suter, A; Tsifrinovich, V I

    2003-01-01

    We consider the process of a single-spin measurement using magnetic resonance force microscopy (MRFM) with a cyclic adiabatic inversion (CAI). This technique is also important for different applications, including a measurement of a qubit state in quantum computation. The measurement takes place through the interaction of a single spin with a cantilever modelled by a quantum oscillator in a coherent state in a quasi-classical range of parameters. The entire system is treated rigorously within the framework of the Schroedinger equation. For a many-spin system our equations accurately describe conventional MRFM experiments involving CAI of the spin system. Our computer simulations of the quantum spin-cantilever dynamics show that the probability distribution for the cantilever position develops two asymmetric peaks with the total relative probabilities mainly dependent on the initial angle between the directions of the average spin and the effective magnetic field, in the rotating frame. We show that each of the peaks is correlated with the direction of the average spin (being along or opposite to the direction of the effective magnetic field). This generates two possible outcomes of a single-spin measurement, similar to the Stern-Gerlach effect. We demonstrate that the generation of the second peak can be significantly suppressed by turning on adiabatically the amplitude of the rf magnetic field. We also show that MRFM CAI can be used both for detecting a signal from a single spin, and for measuring the single-spin state by measuring the phase of the cantilever driving oscillations

  19. Measurement duration impacts variability but not impedance measured by the forced oscillation technique in healthy, asthma and COPD subjects

    Directory of Open Access Journals (Sweden)

    Joanna C. Watts

    2016-04-01

    Full Text Available The forced oscillation technique (FOT is gaining clinical acceptance, facilitated by more commercial devices and clinical data. However, the effects of variations in testing protocols used in FOT data acquisition are unknown. We describe the effect of duration of data acquisition on FOT results in subjects with asthma, chronic obstructive pulmonary disease (COPD and healthy controls. FOT data were acquired from 20 healthy, 22 asthmatic and 18 COPD subjects for 60 s in triplicate. The first 16, 30 and 60 s of each measurement were analysed to obtain total, inspiratory and expiratory resistance of respiratory system (Rrs and respiratory system reactance (Xrs at 5 and 19 Hz. With increasing duration, there was a decrease in total and expiratory Rrs for healthy controls, total and inspiratory Rrs for asthmatic subjects and magnitude of total and inspiratory Xrs for COPD subjects at 5 Hz. These decreases were small compared to the differences between clinical groups. Measuring for 16, 30 and 60 s provided ≥3 acceptable breaths in at least 90, 95 and 100% of subjects, respectively. The coefficient of variation for total Rrs and Xrs also decreased with duration. Similar results were found for Rrs and Xrs at 19 Hz. FOT results are statistically, but likely minimally, impacted by acquisition duration in healthy, asthmatic or COPD subjects.

  20. Minimal detectable change of knee extension force measurements obtained by handheld dynamometry from older patients in 2 settings.

    Science.gov (United States)

    Bohannon, Richard W

    2012-01-01

    The measurement properties of handheld dynamometry (HHD) have been studied extensively, but information about the responsiveness of the procedure is scant. The purpose of this study, therefore, was to determine the responsiveness (minimal detectable change [MDC]) for measurements of knee extension force obtained by HHD from older adult patients in 2 different settings. This study involved the retrospective retrieval of knee extension force data of the left and right sides from 2 sources (acute rehabilitation [n = 53] and home care [n = 46]). The standard deviation of the forces and the weighted mean intraclass correlation coefficient (ICC) from 3 previous studies (ICC = 0.90) were then used to calculate the MDC95%. The MDC95% ranged from 46.0 to 79.0 N. It was lower for patients measured in a home care setting than for those measured in an acute rehabilitation setting. By describing the MDC for knee extension force obtained by HHD from older adults in 2 settings, this study provides an indication of the changes in force that would have to be surpassed to conclude that a real change in knee extension strength was observed. The MDCs reported have a role in the interpretation of repeated measurements and in setting goals for changes in knee extension force.

  1. Diabetes increases stiffness of live cardiomyocytes measured by atomic force microscopy nanoindentation.

    Science.gov (United States)

    Benech, Juan C; Benech, Nicolás; Zambrana, Ana I; Rauschert, Inés; Bervejillo, Verónica; Oddone, Natalia; Damián, Juan P

    2014-11-15

    Stiffness of live cardiomyocytes isolated from control and diabetic mice was measured using the atomic force microscopy nanoindentation method. Type 1 diabetes was induced in mice by streptozotocin administration. Histological images of myocardium from mice that were diabetic for 3 mo showed disorderly lineup of myocardial cells, irregularly sized cell nuclei, and fragmented and disordered myocardial fibers with interstitial collagen accumulation. Phalloidin-stained cardiomyocytes isolated from diabetic mice showed altered (i.e., more irregular and diffuse) actin filament organization compared with cardiomyocytes from control mice. Sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA2a) pump expression was reduced in homogenates obtained from the left ventricle of diabetic animals compared with age-matched controls. The apparent elastic modulus (AEM) for live control or diabetic isolated cardiomyocytes was measured using the atomic force microscopy nanoindentation method in Tyrode buffer solution containing 1.8 mM Ca(2+) and 5.4 mM KCl (physiological condition), 100 nM Ca(2+) and 5.4 mM KCl (low extracellular Ca(2+) condition), or 1.8 mM Ca(2+) and 140 mM KCl (contraction condition). In the physiological condition, the mean AEM was 112% higher for live diabetic than control isolated cardiomyocytes (91 ± 14 vs. 43 ± 7 kPa). The AEM was also significantly higher in diabetic than control cardiomyocytes in the low extracellular Ca(2+) and contraction conditions. These findings suggest that the material properties of live cardiomyocytes were affected by diabetes, resulting in stiffer cells, which very likely contribute to high diastolic LV stiffness, which has been observed in vivo in some diabetes mellitus patients. Copyright © 2014 the American Physiological Society.

  2. Reliability of performance measurements derived from ground reaction force data during countermovement jump and the influence of sampling frequency.

    Science.gov (United States)

    Hori, Naruhiro; Newton, Robert U; Kawamori, Naoki; McGuigan, Michael R; Kraemer, William J; Nosaka, Kazunori

    2009-05-01

    Force platforms are used extensively to measure force and power output during countermovement jump (CMJ). The purpose of this study was to examine measurement reliability and validity of commonly used performance measurements derived from ground reaction force (GRF)-time data during CMJ and the influence of sampling at different frequencies. Twenty-four men performed 2 trials of CMJ on a force platform, and GRF-time data were sampled at a rate of 500 Hz. Data obtained at 500 Hz were considered as the reference, and then data were resampled at 400, 250, 200, 100, 50, and 25 Hz, using interpolation. Commonly used power, force, and velocity performance measures were obtained from GRF-time data. Reliability was assessed by intraclass correlation coefficient (ICC) and coefficient of variation (CV) between the 2 trials within the session. Peak power, peak force, and peak velocity were highly reliable across all sampling frequencies (ICC = 0.92-0.98, CV = 1.3-4.1). Percentage differences from 500-Hz reference values ranged from -0.85 to 0.20% at 400 Hz, -1.88 to 0.89% at 250 Hz, -1.80 to 1.31% at 200 Hz, -3.63 to 3.34% at 100 Hz, -11.37 to 6.51% at 50 Hz, and -13.17 to 9.03% at 25 Hz. In conclusion, peak power, force, and velocity measurements derived from GRF to assess leg extensor capabilities are reliable within a test session except for peak rate of force development and time to peak power. With regard to sampling frequency, scientists and practitioners may consider sampling as low as 200 Hz, depending on the purpose of measurement, because the percentage difference is not markedly enlarged until the frequency is 100 Hz or lower.

  3. Analysis of Low-Speed Stall Aerodynamics of a Business Jets Wing Using STAR-CCM+

    Science.gov (United States)

    Bui, Trong

    2016-01-01

    Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted: to study the low-speed stall aerodynamics of a GIII aircrafts swept wing modified with (1) a laminar-flow wing glove, or (2) a seamless flap. The stall aerodynamics of these two different wing configurations were analyzed and compared with the unmodified baseline wing for low-speed flight. The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First AIAA CFD High-Lift Prediction Workshop.

  4. Talking and learning physics: Predicting future grades from network measures and Force Concept Inventory pretest scores

    Directory of Open Access Journals (Sweden)

    Jesper Bruun

    2013-07-01

    Full Text Available The role of student interactions in learning situations is a foundation of sociocultural learning theory, and social network analysis can be used to quantify student relations. We discuss how self-reported student interactions can be viewed as processes of meaning making and use this to understand how quantitative measures that describe the position in a network, called centrality measures, can be understood in terms of interactions that happen in the context of a university physics course. We apply this discussion to an empirical data set of self-reported student interactions. In a weekly administered survey, first year university students enrolled in an introductory physics course at a Danish university indicated with whom they remembered having communicated within different interaction categories. For three categories pertaining to (1 communication about how to solve physics problems in the course (called the PS category, (2 communications about the nature of physics concepts (called the CD category, and (3 social interactions that are not strictly related to the content of the physics classes (called the ICS category in the introductory mechanics course, we use the survey data to create networks of student interaction. For each of these networks, we calculate centrality measures for each student and correlate these measures with grades from the introductory course, grades from two subsequent courses, and the pretest Force Concept Inventory (FCI scores. We find highly significant correlations (p<0.001 between network centrality measures and grades in all networks. We find the highest correlations between network centrality measures and future grades. In the network composed of interactions regarding problem solving (the PS network, the centrality measures hide and PageRank show the highest correlations (r=-0.32 and r=0.33, respectively with future grades. In the CD network, the network measure target entropy shows the highest correlation

  5. Talking and learning physics: Predicting future grades from network measures and Force Concept Inventory pretest scores

    Science.gov (United States)

    Bruun, Jesper; Brewe, Eric

    2013-12-01

    The role of student interactions in learning situations is a foundation of sociocultural learning theory, and social network analysis can be used to quantify student relations. We discuss how self-reported student interactions can be viewed as processes of meaning making and use this to understand how quantitative measures that describe the position in a network, called centrality measures, can be understood in terms of interactions that happen in the context of a university physics course. We apply this discussion to an empirical data set of self-reported student interactions. In a weekly administered survey, first year university students enrolled in an introductory physics course at a Danish university indicated with whom they remembered having communicated within different interaction categories. For three categories pertaining to (1) communication about how to solve physics problems in the course (called the PS category), (2) communications about the nature of physics concepts (called the CD category), and (3) social interactions that are not strictly related to the content of the physics classes (called the ICS category) in the introductory mechanics course, we use the survey data to create networks of student interaction. For each of these networks, we calculate centrality measures for each student and correlate these measures with grades from the introductory course, grades from two subsequent courses, and the pretest Force Concept Inventory (FCI) scores. We find highly significant correlations (pnetwork centrality measures and grades in all networks. We find the highest correlations between network centrality measures and future grades. In the network composed of interactions regarding problem solving (the PS network), the centrality measures hide and PageRank show the highest correlations (r=-0.32 and r=0.33, respectively) with future grades. In the CD network, the network measure target entropy shows the highest correlation (r=0.45) with future grades

  6. Respiratory mechanics measured by forced oscillations during mechanical ventilation through a tracheal tube.

    Science.gov (United States)

    Scholz, Alexander-Wigbert; Weiler, Norbert; David, Matthias; Markstaller, Klaus

    2011-05-01

    The forced oscillation technique (FOT) allows the measurement of respiratory mechanics in the intensive care setting. The aim of this study was to compare the FOT with a reference method during mechanical ventilation through a tracheal tube. The respiratory impedance spectra were measured by FOT in nine anaesthetized pigs, and resistance and compliance were estimated on the basis of a linear resistance-compliance inertance model. In comparison, resistance and compliance were quantified by the multiple linear regression analysis (LSF) of conventional ventilator waveforms to the equation of motion. The resistance of the sample was found to range from 6 to 21 cmH(2)O s l(-1) and the compliance from 12 to 32 ml cmH(2)O(-1). A Bland-Altman analysis of the resistance resulted in a sufficient agreement (bias -0.4 cmH(2)O s l(-1); standard deviation of differences 1.4 cmH(2)O s l(-1); correlation coefficient 0.93) and test-retest reliability (coefficient of variation of repeated measurements: FOT 2.1%; LSF 1.9%). The compliance, however, was poor in agreement (bias -8 ml cmH(2)O(-1), standard deviation of differences 7 ml cmH(2)O(-1), correlation coefficient 0.74) and repeatability (coefficient of variation: FOT 23%; LSF 1.7%). In conclusion, FOT provides an alternative for monitoring resistance, but not compliance, in tracheally intubated and ventilated subjects.

  7. Research on Hydrodynamic Force Enhancement and Water Environment Protection Measures of Dachan Bay, Shenzhen

    Directory of Open Access Journals (Sweden)

    Lv Wenbin

    2015-01-01

    Full Text Available With the research purpose of protection of water environmental quality in Dachan Bay Area in Shenzhen City, especially in National Development Zone in Qianhai Area, this paper establishes a horizontal two-dimensional water quality model of Dachan Bay and its branches by the use of WQ Module of Delft 3D. And this paper respectively simulates distribution of water quality in full high flow year, normal flow year and low flow year before and after the implementation of protection measures, predicts the effect of the water environment protection measures and focuses on the analysis of two kinds of hydrodynamic force enhancement pat-terns, that is, “water replenishing in dead zones” and “pollution discharge at back doors”, and finally recommends water environment protection measures with the core of “pollution discharge at back gates” by taking full advantage of natural dynamic, thus obtaining a better effect than that of the traditional “water replenishing in dead zones”.

  8. Elastic stiffness and damping measurements in titanium alloys using atomic force acoustic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kalyan Phani, M. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102 Tamil Nadu (India); Kumar, Anish, E-mail: anish@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102 Tamil Nadu (India); Arnold, W. [Department of Materials and Materials Technology, Saarland University, Campus D 2.2, D-66123 Saarbrücken (Germany); 1. Physikalisches Institut, Georg-August-Universität, Friedrich Hund Platz 1, D-37077 Göttingen (Germany); Samwer, K. [1. Physikalisches Institut, Georg-August-Universität, Friedrich Hund Platz 1, D-37077 Göttingen (Germany)

    2016-08-15

    Atomic force acoustic microscopy (AFAM) has been used to study the distribution of elastic stiffness and damping properties across different phases, such as α &β phases in a β titanium alloy (Ti−10V−4.5Fe−1.5Al) and α, β and α′ phases in an α + β alloy (Ti−6Al−4V). Contact-resonance spectra were obtained with a 100 nm spatial resolution in various specimens of the two titanium alloys heat-treated at different temperatures. The study indicates that the metastable β phase has the minimum modulus and maximum damping followed by α′ and α-phases. Employing the rule of mixtures, the average modulus measured by AFAM was then compared with the modulus obtained by ultrasonic velocity measurements. The error in the average modulus values obtained by both techniques is discussed. - Highlights: • Mapping of elastic stiffness and damping across various phases in titanium alloys. • Influence of alloy chemistry and crystal orientation on the results are discussed. • β phase has the minimum modulus and maximum damping followed by α′ and α-phases. • Average modulus of sample calculated from AFAM measurements on individual phases.

  9. Measurement of nanoscale molten polymer droplet spreading using atomic force microscopy

    Science.gov (United States)

    Soleymaniha, Mohammadreza; Felts, Jonathan R.

    2018-03-01

    We present a technique for measuring molten polymer spreading dynamics with nanometer scale spatial resolution at elevated temperatures using atomic force microscopy (AFM). The experimental setup is used to measure the spreading dynamics of polystyrene droplets with 2 μm diameters at 115-175 °C on sapphire, silicon oxide, and mica. Custom image processing algorithms determine the droplet height, radius, volume, and contact angle of each AFM image over time to calculate the droplet spreading dynamics. The contact angle evolution follows a power law with time with experimentally determined values of -0.29 ± 0.01, -0.08 ± 0.02, and -0.21 ± 0.01 for sapphire, silicon oxide, and mica, respectively. The non-zero steady state contact angles result in a slower evolution of contact angle with time consistent with theories combining molecular kinetic and hydrodynamic models. Monitoring the cantilever phase provides additional information about the local mechanics of the droplet surface. We observe local crystallinity on the molten droplet surface, where crystalline structures appear to nucleate at the contact line and migrate toward the top of the droplet. Increasing the temperature from 115 °C to 175 °C reduced surface crystallinity from 35% to 12%, consistent with increasingly energetically favorable amorphous phase as the temperature approaches the melting temperature. This platform provides a way to measure spreading dynamics of extremely small volumes of heterogeneously complex fluids not possible through other means.

  10. Parametric analyses for synthetic jet control on separation and stall over rotor airfoil

    Directory of Open Access Journals (Sweden)

    Zhao Guoqing

    2014-10-01

    Full Text Available Numerical simulations are performed to investigate the effects of synthetic jet control on separation and stall over rotor airfoils. The preconditioned and unsteady Reynolds-averaged Navier–Stokes equations coupled with a k − ω shear stream transport turbulence model are employed to accomplish the flowfield simulation of rotor airfoils under jet control. Additionally, a velocity boundary condition modeled by a sinusoidal function is developed to fulfill the perturbation effect of periodic jets. The validity of the present CFD procedure is evaluated by the simulated results of an isolated synthetic jet and the jet control case for airfoil NACA0015. Then, parametric analyses are conducted specifically for an OA213 rotor airfoil to investigate the effects of jet parameters (forcing frequency, jet location and momentum coefficient, jet direction, and distribution of jet arrays on the control effect of the aerodynamic characteristics of a rotor airfoil. Preliminary results indicate that the efficiency of jet control can be improved with specific frequencies (the best lift-drag ratio at F+ = 2.0 and jet angles (40° or 75° when the jets are located near the separation point of the rotor airfoil. Furthermore, as a result of a suitable combination of jet arrays, the lift coefficient of the airfoil can be improved by nearly 100%, and the corresponding drag coefficient decreased by 26.5% in comparison with the single point control case.

  11. What Effect Did General Order Number 1 and the Force Protection Measures Have on Task Force Eagle Operations in Bosnia During Implementation Force?

    Science.gov (United States)

    2002-06-06

    the original order and initial amendments. Whilst soldiers were still prevented from drinking, 26 personnel during SFOR now have the ability to work...counter terrorism. Improved Base Camp Measures FP measures for base camps were originally not within the scope of this thesis. However the relationship...soldiers in twos and threes, on PT runs in town, dressed in spiffy Adidas gear, was he confident that the area really was secure. As an aside, this is a

  12. Surface EMG and intra-socket force measurement to control a prosthetic device

    Science.gov (United States)

    Sanford, Joe; Patterson, Rita; Popa, Dan

    2015-06-01

    Surface electromyography (SEMG) has been shown to be a robust and reliable interaction method allowing for basic control of powered prosthetic devices. Research has shown a marked decrease in EMG-classification efficiency throughout activities of daily life due to socket shift and movement and fatigue as well as changes in degree of fit of the socket throughout the subject's lifetime. Users with the most severe levels of amputation require the most complex devices with the greatest number of degrees of freedom. Controlling complex dexterous devices with limited available inputs requires the addition of sensing and interaction modalities. However, the larger the amputation severity, the fewer viable SEMG sites are available as control inputs. Previous work reported the use of intra-socket pressure, as measured during wrist flexion and extension, and has shown that it is possible to control a powered prosthetic device with pressure sensors. In this paper, we present data correlations of SEMG data with intra-socket pressure data. Surface EMG sensors and force sensors were housed within a simulated prosthetic cuff fit to a healthy-limbed subject. EMG and intra-socket force data was collected from inside the cuff as a subject performed pre-defined grip motions with their dominant hand. Data fusion algorithms were explored and allowed a subject to use both intra-socket pressure and SEMG data as control inputs for a powered prosthetic device. This additional input modality allows for an improvement in input classification as well as information regarding socket fit through out activities of daily life.

  13. Measurement of the elastic modulus of spider mite silk fibers using atomic force microscopy

    Science.gov (United States)

    Hudson, Stephen D.; Zhurov, Vladimir; Grbić, Vojislava; Grbić, Miodrag; Hutter, Jeffrey L.

    2013-04-01

    Bio-nanomaterials are one of the fastest developing sectors of industry and technology. Spider silk, a highly attractive light-weight biomaterial, has high tensile strength and elasticity and is compatible with human tissues, allowing for many areas of application. In comparison to spider silk fibers with diameters of several micrometers, spider mite silk fibers have much smaller diameters of tens of nanometers, making conventional tensile testing methods impractical. To determine the mechanical properties of adult and larval Tetranychus urticae silk fibers, we have performed three-point bending tests with an atomic force microscope. We found that because of the small diameters of these fibers, axial tension—due to both the applied force and a pre-existing strain—has a significant effect on the fiber response, even in the small-deformation limit. As a result, the typical Euler-Bernoulli-Timoshenko theory cannot be applied. We therefore follow the approach of Heidelberg et al. to develop a mechanical model of the fiber response that accounts for bending, an initial tension in the fibers, and a tension due to elongation during testing. This model provides self-consistent results, allowing us to determine that adult and larval fibers have Young's moduli of 24±3 GPa and 15±3 GPa, respectively. Both adult and larval fibers have an estimated ultimate strength of 200-300 MPa and a toughness of order 9 MJ/m3. We note that with increasing interest in the mechanical properties of very high aspect ratio nanomaterials, the influence of pre-existing tension must be considered in any measurements involving a bending test.

  14. Photon Pressure Force on Space Debris TOPEX/Poseidon Measured by Satellite Laser Ranging

    Science.gov (United States)

    Kucharski, D.; Kirchner, G.; Bennett, J. C.; Lachut, M.; Sośnica, K.; Koshkin, N.; Shakun, L.; Koidl, F.; Steindorfer, M.; Wang, P.; Fan, C.; Han, X.; Grunwaldt, L.; Wilkinson, M.; Rodríguez, J.; Bianco, G.; Vespe, F.; Catalán, M.; Salmins, K.; del Pino, J. R.; Lim, H.-C.; Park, E.; Moore, C.; Lejba, P.; Suchodolski, T.

    2017-10-01

    The (TOPography EXperiment) TOPEX/Poseidon (T/P) altimetry mission operated for 13 years before the satellite was decommissioned in January 2006, becoming a large space debris object at an altitude of 1,340 km. Since the end of the mission, the interaction of T/P with the space environment has driven the satellite's spin dynamics. Satellite laser ranging (SLR) measurements collected from June 2014 to October 2016 allow for the satellite spin axis orientation to be determined with an accuracy of 1.7°. The spin axis coincides with the platform yaw axis (formerly pointing in the nadir direction) about which the body rotates in a counterclockwise direction. The combined photometric and SLR data collected over the 11 year time span indicates that T/P has continuously gained rotational energy at an average rate of 2.87 J/d and spins with a period of 10.73 s as of 19 October 2016. The satellite attitude model shows a variation of the cross-sectional area in the Sun direction between 8.2 m2 and 34 m2. The direct solar radiation pressure is the main factor responsible for the spin-up of the body, and the exerted photon force varies from 65 μN to 228 μN around the mean value of 138.6 μN. Including realistic surface force modeling in orbit propagation algorithms will improve the prediction accuracy, giving better conjunction warnings for scenarios like the recent close approach reported by the ILRS Space Debris Study Group—an approximate 400 m flyby between T/P and Jason-2 on 20 June 2017.

  15. Vacuum-assisted vaginal delivery simulation--quantitation of subjective measures of traction and detachment forces.

    Science.gov (United States)

    Eskander, Ramy; Beall, Marie; Ross, Michael G

    2012-10-01

    Excessive traction has been alleged as the cause of newborn complications associated with vacuum delivery. We sought to quantify subjective levels of physician vacuum traction in a simulated obstetric delivery model, dependent upon level of training. Three groups of physicians, based on training level applied traction (minimal, average, maximal) on a pre-applied vacuum model and forces were continually recorded. Detachment force was recorded with traction in both the pelvic axis and at an oblique angle. Quantified traction force increased from subjective minimal to average to maximal pulls. Within each level, there were no differences between the groups in the average traction force. Detachment force was significantly less when traction was applied at an oblique angle as opposed to the pelvic axis (11.1 ± 0.3 vs 12.2 ± 0.3 kg). Providers appear to be good judges of the force being applied, as a clear escalation in force is noted with minimal, average and maximal force pulls. There appears to be a relatively short learning curve for use of the vacuum, as junior residents' applied force was not different from those of more experienced practitioners. Using the KIWI device, detachment force is lower when traction is applied at an oblique angle.

  16. Loudness control in pianists as exemplified in keystroke force measurements on different touches.

    Science.gov (United States)

    Kinoshita, Hiroshi; Furuya, Shinichi; Aoki, Tomoko; Altenmüller, Eckart

    2007-05-01

    The relationship between the key depression force on an upright piano and the level of loudness of a generated tone was examined when pianists hit a force-sensor built-in key with "struck" or "pressed" type of touch. The vertical displacement of the key, and the radiated piano sounds were also recorded. It was found that for both types of touch, simple exponential functions could adequately describe the relation of the force amplitude with the level of the piano tone as well as that of the impulse of the force with the piano tone. The impulse of the force generated before the maximum key depression moment commonly amounted to above 80% of the total impulse produced at the tone below mezzo-forte. It, however, decreased to around 60% at fortissimo, indicating a decrease in the efficiency of the force application for sound production. The two types of touch differed in their force profiles. The struck touch was characterized by a steeper initial force increase with greater fluctuations in the subsequent period than the pressed touch. The struck touch also demonstrated lower maximum force and less impulse at fortissimo. The inter-pianist variation in the force and impulse, and the "finger-noise" are also herein examined.

  17. A flexible tactile sensor calibration method based on an air-bearing six-dimensional force measurement platform

    Science.gov (United States)

    Huang, Bin

    2015-07-01

    A number of common issues related to the process of flexible tactile sensor calibration are discussed in this paper, and an estimate of the accuracy of classical calibration methods, as represented by a weight-pulley device, is presented. A flexible tactile sensor calibration method that is based on a six-dimensional force measurement is proposed on the basis of a theoretical analysis. A high-accuracy flexible tactile sensor calibration bench based on the air-bearing six-dimensional force measurement principle was developed to achieve a technically challenging measurement accuracy of 2% full scale (FS) for three-dimensional (3D) flexible tactile sensor calibration. The experimental results demonstrate that the accuracy of the air-bearing six-dimensional force measurement platform can reach 0.2% FS. Thus, the system satisfies the 3D flexible tactile sensor calibration requirement of 2% FS.

  18. Modelling and experimental verification of tip-induced polarization in Kelvin probe force microscopy measurements on dielectric surfaces

    DEFF Research Database (Denmark)

    Nielsen, Dennis Achton; Popok, Vladimir; Pedersen, Kjeld

    2015-01-01

    Kelvin probe force microscopy is a widely used technique for measuring surface potential distributions on the micro- and nanometer scale. The data are, however, often analyzed qualitatively, especially for dielectrics. In many cases, the phenomenon of polarization and its influence on the measured...... signals is disregarded leading to misinterpretation of the results. In this work, we present a model that allows prediction of the surface potential on a metal/polymer heterostructure as measured by Kelvin probe force microscopy by including the tip-induced polarization of the dielectric that arises...

  19. A Protocol for Using Förster Resonance Energy Transfer (FRET)-force Biosensors to Measure Mechanical Forces across the Nuclear LINC Complex.

    Science.gov (United States)

    Arsenovic, Paul T; Bathula, Kranthidhar; Conway, Daniel E

    2017-04-11

    The LINC complex has been hypothesized to be the critical structure that mediates the transfer of mechanical forces from the cytoskeleton to the nucleus. Nesprin-2G is a key component of the LINC complex that connects the actin cytoskeleton to membrane proteins (SUN domain proteins) in the perinuclear space. These membrane proteins connect to lamins inside the nucleus. Recently, a Förster Resonance Energy Transfer (FRET)-force probe was cloned into mini-Nesprin-2G (Nesprin-TS (tension sensor)) and used to measure tension across Nesprin-2G in live NIH3T3 fibroblasts. This paper describes the process of using Nesprin-TS to measure LINC complex forces in NIH3T3 fibroblasts. To extract FRET information from Nesprin-TS, an outline of how to spectrally unmix raw spectral images into acceptor and donor fluorescent channels is also presented. Using open-source software (ImageJ), images are pre-processed and transformed into ratiometric images. Finally, FRET data of Nesprin-TS is presented, along with strategies for how to compare data across different experimental groups.

  20. Initial design of a stall-controlled wind turbine rotor

    Energy Technology Data Exchange (ETDEWEB)

    Nygaard, T.A. [Inst. for Energiteknikk, Kjeller (Norway)

    1997-08-01

    A model intended for initial design of stall-controlled wind turbine rotors is described. The user specifies relative radial position of an arbitrary number of airfoil sections, referring to a data file containing lift-and drag curves. The data file is on the same format as used in the commercial blade-element code BLADES-/2/, where lift- and drag coefficients are interpolated from tables as function of Reynolds number, relative thickness and angle of attack. The user can set constraints on a selection of the following: Maximum power; Maximum thrust in operation; Maximum root bending moment in operation; Extreme root bending moment, parked rotor; Tip speed; Upper and lower bounds on optimisation variables. The optimisation variables can be selected from: Blade radius; Rotational speed; Chord and twist at an arbitrary number of radial positions. The user can chose linear chord distribution and a hyperbola-like twist distribution to ensure smooth planform and twist, or cubic spline interpolation for one or both. The aerodynamic model is based on classical strip theory with Prandtl tip loss correction, supplemented by empirical data for high induction factors. (EG)

  1. Effect of paddock vs. stall housing on 24 hour gastric pH within the proximal and ventral equine stomach.

    Science.gov (United States)

    Husted, L; Sanchez, L C; Olsen, S N; Baptiste, K E; Merritt, A M

    2008-06-01

    Stall housing has been suggested as a risk factor for ulcer development in the equine stomach; however, the exact pathogenesis for this has not been established. To investigate the effect of 3 environmental situations (grass paddock, stall alone or stall with adjacent companion) on pH in the proximal and the ventral stomach. Six horses with permanently implanted gastric cannulae were used in a randomised, cross-over, block design. Each horse rotated through each of three 24 h environmental situations. Horses remained on their normal diet (grass hay ad libitum and grain b.i.d.) throughout the study. Intragastric pH was measured continuously for 72 h just inside the lower oesophageal sphincter (proximal stomach) and via a pH probe in the gastric cannula (ventral stomach). Neither proximal nor ventral 24 h gastric pH changed significantly between the 3 environmental situations. Mean hourly proximal gastric pH decreased significantly in the interval from 01.00-09.00 h compared to the interval from 13.00-20.00 h, regardless of environmental situation. Median hourly proximal pH only differed in the interval from 06.00-07.00 h compared to the interval 14.00-19.00 h. Neither mean nor median hourly ventral gastric pH varied significantly with the time of day. The change in housing status used in the current study did not affect acid exposure within either region of the equine stomach. The pH in the ventral stomach was uniformly stable throughout the study, while the proximal pH demonstrated a 24 h circadian pattern.

  2. An Analysis of Performance Measurements Systems in the Air Force Logistics Command’s Aircraft Repair Depots

    Science.gov (United States)

    1992-01-01

    Indicator Management (KIM) system involved using organizational goals to establish target values for various functional measures. Groover (1983) examined...Air Force Magazine, 12(8), 30-34. Groover , S. L. (1983). Logistics strategy: statistical performance measurement in supply support. Service Parts

  3. Multiple degree-of-freedom force and moment measurement for static propulsion testing using magnetic suspension technology

    Science.gov (United States)

    Stuart, Keith; Bartosh, Blake

    1993-01-01

    Innovative Information Systems (IIS), Inc. is in the process of designing and fabricating a high bandwidth force and moment measuring device (i.e. the Magnetic Thruster Test Stand). This device will use active magnetic suspension to allow direct measurements of the forces and torques generated by the rocket engines of the missile under test. The principle of operation of the Magnetic Thruster Test Stand (MTTS) is based on the ability to perform very precise, high bandwidth force and position measurements on an object suspended in a magnetic field. This ability exists due to the fact that the digital servo control mechanism that performs the magnetic suspension uses high bandwidth (10 kHz) position data (via an eddy-current proximity sensor) to determine the amount of force required to maintain stable suspension at a particular point. This force is converted into required electromagnet coil current, which is then output to a current amplifier driving the coils. A discussion of how the coil current and magnetic gap distance (the distance between the electromagnet and the object being suspended) is used to determine the forces being applied from the suspended assembly is presented.

  4. Cow preference and usage of free stalls compared with an open pack area.

    Science.gov (United States)

    Fregonesi, J A; von Keyserlingk, M A G; Weary, D M

    2009-11-01

    Free-stall housing systems are designed to provide a comfortable and hygienic lying area, but some aspects of stall design may restrict usage by cows. The aim of this study was to compare free-stall housing with a comparable lying area (open pack) without stall partitions. We predicted that cows would spend more time lying down and standing in the bedded area when provided access to an open pack than when in free stalls. We also predicted that cows would spend less time standing outside of the lying area and less time perching with the front 2 hooves in the lying area when using the open pack. Groups (n = 8) of 12 cows each were provided access to either the open pack or stalls. After a 7-d adaptation period, each group was tested sequentially in the 2 treatments for 3 d each. This no-choice phase was followed by an 8-d choice phase during which cows had simultaneous access to both treatments. During the no-choice phase, cows spent more time lying down (13.03 +/- 0.24 vs. 12.48 +/- 0.24 h/d) and standing with all 4 hooves in the bedded area (0.96 +/- 0.12 vs. 0.41 +/- 0.12 h/d) of the open pack than in the stalls. During the choice phase, cows spent more time lying down (7.20 +/- 0.29 vs. 5.86 +/- 0.29 h/d) and standing with all 4 hooves in the bedded area (0.58 +/- 0.07 vs. 0.12 +/- 0.07 h/d) of the open pack than in the stalls. In both the no-choice (1.66 +/- 0.24 vs. 0.55 +/- 0.24 h/d) and choice (0.55 +/- 0.07 vs. 0.29 +/- 0.07 h/d) phases, cows spent more time standing with just 2 hooves in the stalls than in the open pack. In conclusion, cows spent more time lying and standing with all 4 hooves in the bedded open pack than in the stalls. Additionally, cows spent more time standing in the alley and standing with just the front 2 hooves on the bedding in the stalls than in the bedded open pack; increased standing time on wet concrete is a known risk factor for lameness.

  5. Quantitative measurement of changes in adhesion force involving focal adhesion kinase during cell attachment, spread, and migration

    International Nuclear Information System (INIS)

    Wu, C.-C.; Su, H.-W.; Lee, C.-C.; Tang, M.-J.; Su, F.-C.

    2005-01-01

    Focal adhesion kinase (FAK) is a critical protein for the regulation of integrin-mediated cellular functions and it can enhance cell motility in Madin-Darby canine kidney (MDCK) cells by hepatocyte growth factor (HGF) induction. We utilized optical trapping and cytodetachment techniques to measure the adhesion force between pico-Newton and nano-Newton (nN) for quantitatively investigating the effects of FAK on adhesion force during initial binding (5 s), beginning of spreading (30 min), spreadout (12 h), and migration (induced by HGF) in MDCK cells with overexpressed FAK (FAK-WT), FAK-related non-kinase (FRNK), as well as normal control cells. Optical tweezers was used to measure the initial binding force between a trapped cell and glass coverslide or between a trapped bead and a seeded cell. In cytodetachment, the commercial atomic force microscope probe with an appropriate spring constant was used as a cyto-detacher to evaluate the change of adhesion force between different FAK expression levels of cells in spreading, spreadout, and migrating status. The results demonstrated that FAK-WT significantly increased the adhesion forces as compared to FRNK cells throughout all the different stages of cell adhesion. For cells in HGF-induced migration, the adhesion force decreased to almost the same level (∼600 nN) regardless of FAK levels indicating that FAK facilitates cells to undergo migration by reducing the adhesion force. Our results suggest FAK plays a role of enhancing cell adhesive ability in the binding and spreading, but an appropriate level of adhesion force is required for HGF-induced cell migration

  6. Large area scanning probe microscope in ultra-high vacuum demonstrated for electrostatic force measurements on high-voltage devices

    Directory of Open Access Journals (Sweden)

    Urs Gysin

    2015-12-01

    Full Text Available Background: The resolution in electrostatic force microscopy (EFM, a descendant of atomic force microscopy (AFM, has reached nanometre dimensions, necessary to investigate integrated circuits in modern electronic devices. However, the characterization of conducting or semiconducting power devices with EFM methods requires an accurate and reliable technique from the nanometre up to the micrometre scale. For high force sensitivity it is indispensable to operate the microscope under high to ultra-high vacuum (UHV conditions to suppress viscous damping of the sensor. Furthermore, UHV environment allows for the analysis of clean surfaces under controlled environmental conditions. Because of these requirements we built a large area scanning probe microscope operating under UHV conditions at room temperature allowing to perform various electrical measurements, such as Kelvin probe force microscopy, scanning capacitance force microscopy, scanning spreading resistance microscopy, and also electrostatic force microscopy at higher harmonics. The instrument incorporates beside a standard beam deflection detection system a closed loop scanner with a scan range of 100 μm in lateral and 25 μm in vertical direction as well as an additional fibre optics. This enables the illumination of the tip–sample interface for optically excited measurements such as local surface photo voltage detection.Results: We present Kelvin probe force microscopy (KPFM measurements before and after sputtering of a copper alloy with chromium grains used as electrical contact surface in ultra-high power switches. In addition, we discuss KPFM measurements on cross sections of cleaved silicon carbide structures: a calibration layer sample and a power rectifier. To demonstrate the benefit of surface photo voltage measurements, we analysed the contact potential difference of a silicon carbide p/n-junction under illumination.

  7. Large area scanning probe microscope in ultra-high vacuum demonstrated for electrostatic force measurements on high-voltage devices.

    Science.gov (United States)

    Gysin, Urs; Glatzel, Thilo; Schmölzer, Thomas; Schöner, Adolf; Reshanov, Sergey; Bartolf, Holger; Meyer, Ernst

    2015-01-01

    The resolution in electrostatic force microscopy (EFM), a descendant of atomic force microscopy (AFM), has reached nanometre dimensions, necessary to investigate integrated circuits in modern electronic devices. However, the characterization of conducting or semiconducting power devices with EFM methods requires an accurate and reliable technique from the nanometre up to the micrometre scale. For high force sensitivity it is indispensable to operate the microscope under high to ultra-high vacuum (UHV) conditions to suppress viscous damping of the sensor. Furthermore, UHV environment allows for the analysis of clean surfaces under controlled environmental conditions. Because of these requirements we built a large area scanning probe microscope operating under UHV conditions at room temperature allowing to perform various electrical measurements, such as Kelvin probe force microscopy, scanning capacitance force microscopy, scanning spreading resistance microscopy, and also electrostatic force microscopy at higher harmonics. The instrument incorporates beside a standard beam deflection detection system a closed loop scanner with a scan range of 100 μm in lateral and 25 μm in vertical direction as well as an additional fibre optics. This enables the illumination of the tip-sample interface for optically excited measurements such as local surface photo voltage detection. We present Kelvin probe force microscopy (KPFM) measurements before and after sputtering of a copper alloy with chromium grains used as electrical contact surface in ultra-high power switches. In addition, we discuss KPFM measurements on cross sections of cleaved silicon carbide structures: a calibration layer sample and a power rectifier. To demonstrate the benefit of surface photo voltage measurements, we analysed the contact potential difference of a silicon carbide p/n-junction under illumination.

  8. Respiratory mechanics measured by forced oscillations during mechanical ventilation through a tracheal tube

    International Nuclear Information System (INIS)

    Scholz, Alexander-Wigbert; Weiler, Norbert; David, Matthias; Markstaller, Klaus

    2011-01-01

    The forced oscillation technique (FOT) allows the measurement of respiratory mechanics in the intensive care setting. The aim of this study was to compare the FOT with a reference method during mechanical ventilation through a tracheal tube. The respiratory impedance spectra were measured by FOT in nine anaesthetized pigs, and resistance and compliance were estimated on the basis of a linear resistance–compliance inertance model. In comparison, resistance and compliance were quantified by the multiple linear regression analysis (LSF) of conventional ventilator waveforms to the equation of motion. The resistance of the sample was found to range from 6 to 21 cmH 2 O s l −1 and the compliance from 12 to 32 ml cmH 2 O −1 . A Bland–Altman analysis of the resistance resulted in a sufficient agreement (bias −0.4 cmH 2 O s l −1 ; standard deviation of differences 1.4 cmH 2 O s l −1 ; correlation coefficient 0.93) and test–retest reliability (coefficient of variation of repeated measurements: FOT 2.1%; LSF 1.9%). The compliance, however, was poor in agreement (bias −8 ml cmH 2 O −1 , standard deviation of differences 7 ml cmH 2 O −1 , correlation coefficient 0.74) and repeatability (coefficient of variation: FOT 23%; LSF 1.7%). In conclusion, FOT provides an alternative for monitoring resistance, but not compliance, in tracheally intubated and ventilated subjects

  9. Human movement onset detection from isometric force and torque measurements: a supervised pattern recognition approach.

    Science.gov (United States)

    Soda, Paolo; Mazzoleni, Stefano; Cavallo, Giuseppe; Guglielmelli, Eugenio; Iannello, Giulio

    2010-09-01

    Recent research has successfully introduced the application of robotics and mechatronics to functional assessment and motor therapy. Measurements of movement initiation in isometric conditions are widely used in clinical rehabilitation and their importance in functional assessment has been demonstrated for specific parts of the human body. The determination of the voluntary movement initiation time, also referred to as onset time, represents a challenging issue since the time window characterizing the movement onset is of particular relevance for the understanding of recovery mechanisms after a neurological damage. Establishing it manually as well as a troublesome task may also introduce oversight errors and loss of information. The most commonly used methods for automatic onset time detection compare the raw signal, or some extracted measures such as its derivatives (i.e., velocity and acceleration) with a chosen threshold. However, they suffer from high variability and systematic errors because of the weakness of the signal, the abnormality of response profiles as well as the variability of movement initiation times among patients. In this paper, we introduce a technique to optimise onset detection according to each input signal. It is based on a classification system that enables us to establish which deterministic method provides the most accurate onset time on the basis of information directly derived from the raw signal. The approach was tested on annotated force and torque datasets. Each dataset is constituted by 768 signals acquired from eight anatomical districts in 96 patients who carried out six tasks related to common daily activities. The results show that the proposed technique improves not only on the performance achieved by each of the deterministic methods, but also on that attained by a group of clinical experts. The paper describes a classification system detecting the voluntary movement initiation time and adaptable to different signals. By

  10. Origin of the electrophoretic force on DNA in solid-state nanopores

    Science.gov (United States)

    van Dorp, Stijn; Keyser, Ulrich F.; Dekker, Nynke H.; Dekker, Cees; Lemay, Serge G.

    2009-05-01

    Despite gel electrophoresis being one of the main workhorses of molecular biology, the physics of polyelectrolyte electrophoresis in a strongly confined environment remains poorly understood. Theory indicates that forces in electrophoresis result from interplay between ionic screening and hydrodynamics, but these ideas could so far be addressed only indirectly by experiments based on macroscopic porous gels. Here, we provide a first direct experimental test by measuring the electrophoretic force on a single DNA molecule threading through a solid-state nanopore as a function of pore size. The stall force gradually decreases on increasing the nanopore diameter from 6 to 90nm, inconsistent with expectations from simple electrostatics and strikingly demonstrating the influence of the hydrodynamic environment. We model this process by applying the coupled Poisson-Boltzmann and Stokes equations in the nanopore geometry and find good agreement with the experimental results.

  11. Development of a Knee-gap Force Measurement Device to Evaluate Quantitative Lower Limb Muscular Strength of the Elderly

    Science.gov (United States)

    Yamashita, Kazuhiko; Imaizumi, Kazuya; Iwakami, Yumi; Sato, Mitsuru; Nakajima, Sawako; Ino, Shuichi; Koyama, Hironori; Kawasumi, Masashi; Ifukube, Toru

    Falling is one of the most serious problems for the elderly. It is thought that lower limb muscular strength greatly affects falls of the elderly. The aim of this study is to develop a safe, easy-to-use and quantitative device of knee-gap force measurement for evaluation of the lower limb muscular strength, and additionally, we examined it for efficiency. We examined from the three viewpoints. In the results, 1. the knee-gap force is clearly associated with the strength of muscle contraction estimated by electromyogram in each muscle for the hip joint adductors. Therefore, the proposed device for the measurement of knee-gap force correctly estimates the activity of the hip joint adductors, which is closely related with the activities of daily living. 2.The results of knee-gap force measured from 170 people aging from middle age to elderly, including some persons who are suffering from physical frailness on a clinical estimation. In the group of healthy elderly knee-gap force was decreased by 16%, while that of the physically frail elderly was decreased by 34% in comparison to middle age.3. Furthermore, the correlation coefficient between the knee-gap force and 10m obstacle walking time was found to be -0.57 (negative correlation). It means that the ambulatory ability is decreased along with the knee-gap force being decreased. This indicates a possibility easily to estimate risk of falling by the knee-gap force, because the decrease of lower limb muscular strength and ambulatory ability is a factor of increased falling risk.

  12. Validity and reliability of the abdominal test and evaluation systems tool (ABTEST) to accurately measure abdominal force.

    Science.gov (United States)

    Glenn, Jordan M; Galey, Madeline; Edwards, Abigail; Rickert, Bradley; Washington, Tyrone A

    2015-07-01

    Ability to generate force from the core musculature is a critical factor for sports and general activities with insufficiencies predisposing individuals to injury. This study evaluated isometric force production as a valid and reliable method of assessing abdominal force using the abdominal test and evaluation systems tool (ABTEST). Secondary analysis estimated 1-repetition maximum on commercially available abdominal machine compared to maximum force and average power on ABTEST system. This study utilized test-retest reliability and comparative analysis for validity. Reliability was measured using test-retest design on ABTEST. Validity was measured via comparison to estimated 1-repetition maximum on a commercially available abdominal device. Participants applied isometric, abdominal force against a transducer and muscular activation was evaluated measuring normalized electromyographic activity at the rectus-abdominus, rectus-femoris, and erector-spinae. Test, re-test force production on ABTEST was significantly correlated (r=0.84; pactivity for the rectus-abdominus (72.93% and 75.66%), rectus-femoris (6.59% and 6.51%), and erector-spinae (6.82% and 5.48%) were observed for trial-1 and trial-2, respectively. Significant correlations for the estimated 1-repetition maximum were found for average power (r=0.70, p=0.002) and maximum force (r=0.72, pactivation of erector-spinae substantiates little subjective effort among participants in the lower back. Results suggest ABTEST is a valid and reliable method of evaluating abdominal force. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  13. Experimental Investigation of Stall Inception Mechanisms of Low Speed Contra Rotating Axial Flow Fan Stage

    Directory of Open Access Journals (Sweden)

    Tegegn Dejene Toge

    2015-01-01

    Full Text Available The present paper is an attempt in understanding the stall inception mechanism in a low speed, contra rotating axial flow fan stage, using wavelet transforms. The rotors used in this study have relatively large tip gap (about 3% of the blade span and aspect ratio of 3. The study was carried out near stall and at stall mass flow conditions for different speed ratios of rotor-2 to rotor-1. Unsteady pressure data from the casing wall mounted sensors are used to understand the stall inception mechanism. The wavelet transform clearly indicates that stall inception occurs mainly through long length scale disturbances for both rotors. It also reveals that short length disturbances occur simultaneously or intermittently in the case of rotor-1. The analysis shows the presence of a strong modal disturbance with 25–80% of the rotor frequency in the case of rotor-1 at the stall mass flow for all the speed combinations studied. The most interesting thing observed in the present study is that the frequency amplitude of the disturbance level is very small for both rotors.

  14. Enhancing the examiner's resisting force improves the validity of manual muscle strength measurements: application to knee extensors and flexors.

    Science.gov (United States)

    Lu, Tung-Wu; Chien, Hui-Lien; Chang, Ling-Ying; Hsu, Horng-Chaung

    2012-09-01

    The purposes of this study were to test whether an examiner's strength may affect the validity of the knee muscle strength measurements using a hand-held dynamometer (HHD) and whether enhancing the forces applied by an examiner using a resistance-enhanced dynamometer (RED) would improve measurement validity. Twenty-five young male volunteers (mean [±SD] age: 22.5 ± 1.7 years) without a history of injury to the test limb and 6 male and 6 female experienced examiners participated in this study. Maximum resisting forces of the knee flexors and extensors were measured using RED, HHD, and a dynamometer (Kin-Com). For all testing conditions, poor to moderate associations were found between the HHD and Kin-Com, whereas there was a good to excellent relationship between RED and Kin-Com. The systematic variations between RED and Kin-Com were also smaller than those between HHD and Kin-Com. The force values measured by RED were very close to those measured by Kin-Com. An examiner's strength affects the validity of the measurements using HHD. Enhancing the forces applied by the examiner to the tested segment using RED appeared to improve the validity of muscle strength measurements.

  15. The impact of rotator cuff tendinopathy on proprioception, measuring force sensation.

    Science.gov (United States)

    Maenhout, Annelies G; Palmans, Tanneke; De Muynck, Martine; De Wilde, Lieven F; Cools, Ann M

    2012-08-01

    The impact of rotator cuff tendinopathy and related impingement on proprioception is not well understood. Numerous quantitative and qualitative changes in shoulder muscles have been shown in patients with rotator cuff tendinopathy. These findings suggest that control of force might be affected. This investigation wants to evaluate force sensation, a submodality of proprioception, in patients with rotator cuff tendinopathy. Thirty-six patients with rotator cuff tendinopathy and 30 matched healthy subjects performed force reproduction tests to isometric external and internal rotation to investigate how accurately they could reproduce a fixed target (50% MVC). Relative error, constant error, and force steadiness were calculated to evaluate respectively magnitude of error made during the test, direction of this error (overshoot or undershoot), and fluctuations of produced forces. Patients significantly overshoot the target (mean, 6.04% of target) while healthy subjects underestimate the target (mean, -5.76% of target). Relative error and force steadiness are similar in patients with rotator cuff tendinopathy and healthy subjects. Force reproduction tests, as executed in this study, were found to be highly reliable (ICC 0.849 and 0.909). Errors were significantly larger during external rotation tests, compared to internal rotation. Patients overestimate the target during force reproduction tests. This should be taken into account in the rehabilitation of patients with rotator cuff tendinopathy; however, precision of force sensation and steadiness of force exertion remains unaltered. This might indicate that control of muscle force is preserved. Copyright © 2012 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  16. Preclinical evaluation of acoustic radiation force impulse measurements in regions of heterogeneous elasticity

    Energy Technology Data Exchange (ETDEWEB)

    Hollerieth, Katharina; Moog, Philipp; Vo-Cong, Minh-Truc; Heemann, Uwe [Nephrology Department, Klinikum Rechts der Isar of the Technical University of Munich, Munich (Germany); Gassmann, Bernhard [Meso International GmbH, Berlin (Germany); Wagenpfeil, Stefan [Institute for Medical Biometry, Epidemiology and Medical Informatics, Saarland University, Campus Homburg (Saar), Homburg (Germany)

    2016-08-15

    The purpose of this study was to compare the reliability of ultrasound-based shear wave elastography in regions of homogeneous versus heterogeneous elasticity by using two different probes. Using acoustic radiation force impulse (ARFI) elastography, we measured the shear wave velocity (SWV) in different lesions of an elastography phantom with the convex {sub 4}C{sub 1} probe and the linear {sub 9}L{sub 4} probe. The region of interest (ROI) was positioned in such a way that it was partly filled by one of the lesions (0%, 25%, 50%, 75%, and 100%) and partly by the background of the phantom (100%, 75%, 50%, 25%, and 0%, respectively). The success rate was 98.5%. The measured value and the reference value of SWV correlated significantly (r=0.89, P<0.001). Further, a comparison of the two probes revealed that there was no statistical difference in either the mean or the variance values. However, the deviation of SWV from the reference was higher in the case of the {sub 9}L{sub 4} probe than in the case of the {sub 4}C{sub 1} probe, both overall and in measurements in which the ROI contained structures of different elasticity (P=0.021 and P=0.002). Taking into account all data, for both probes, we found that there was a greater spread and deviation of the SWV from the reference value when the ROI was positioned in structures having different elastic properties (standard deviation, 0.02±0.01 m/sec vs. 0.04±0.04 m/sec; P=0.010; deviation from the reference value, 0.21±0.12 m/sec vs. 0.38±0.27 m/sec; P=0.050). Quantitative ARFI elastography was achievable in structures of different elasticity; however, the validity and the reliability of the SWV measurements decreased in comparison to those of the measurements performed in structures of homogeneous elasticity. Therefore, a convex probe is preferred for examining heterogeneous structures.

  17. Miniaturised friction force measuring system for tribological research on magnetic storage devices

    NARCIS (Netherlands)

    Burger, Johannes Faas; Burger, Gert-Jan; Lammerink, Theodorus S.J.; Imai, Satomitsu; Fluitman, J.H.J.

    1996-01-01

    In this paper a silicon head slider suspension with integrated piezoresistive friction force sensors is presented. This device can be used for tribological research on magnetic rigid disk storage devices. Both the tangential and radial friction forces between the slider and disk, as well as a

  18. A model for roll stall and the inherent stability modes of low aspect ratio wings at low Reynolds numbers

    Science.gov (United States)

    Shields, Matt

    The development of Micro Aerial Vehicles has been hindered by the poor understanding of the aerodynamic loading and stability and control properties of the low Reynolds number regime in which the inherent low aspect ratio (LAR) wings operate. This thesis experimentally evaluates the static and damping aerodynamic stability derivatives to provide a complete aerodynamic model for canonical flat plate wings of aspect ratios near unity at Reynolds numbers under 1 x 105. This permits the complete functionality of the aerodynamic forces and moments to be expressed and the equations of motion to solved, thereby identifying the inherent stability properties of the wing. This provides a basis for characterizing the stability of full vehicles. The influence of the tip vortices during sideslip perturbations is found to induce a loading condition referred to as roll stall, a significant roll moment created by the spanwise induced velocity asymmetry related to the displacement of the vortex cores relative to the wing. Roll stall is manifested by a linearly increasing roll moment with low to moderate angles of attack and a subsequent stall event similar to a lift polar; this behavior is not experienced by conventional (high aspect ratio) wings. The resulting large magnitude of the roll stability derivative, Cl,beta and lack of roll damping, Cl ,rho, create significant modal responses of the lateral state variables; a linear model used to evaluate these modes is shown to accurately reflect the solution obtained by numerically integrating the nonlinear equations. An unstable Dutch roll mode dominates the behavior of the wing for small perturbations from equilibrium, and in the presence of angle of attack oscillations a previously unconsidered coupled mode, referred to as roll resonance, is seen develop and drive the bank angle? away from equilibrium. Roll resonance requires a linear time variant (LTV) model to capture the behavior of the bank angle, which is attributed to the

  19. High-Reynolds Number Active Blowing Semi-Span Force Measurement System Development

    Science.gov (United States)

    Lynn, Keith C.; Rhew, Ray D.; Acheson, Michael J.; Jones, Gregory S.; Milholen, William E.; Goodliff, Scott L.

    2012-01-01

    Recent wind-tunnel tests at the NASA Langley Research Center National Transonic Facility utilized high-pressure bellows to route air to the model for evaluating aircraft circulation control. The introduction of these bellows within the Sidewall Model Support System significantly impacted the performance of the external sidewall mounted semi-span balance. As a result of this impact on the semi-span balance measurement performance, it became apparent that a new capability needed to be built into the National Transonic Facility s infrastructure to allow for performing pressure tare calibrations on the balance in order to properly characterize its performance under the influence of static bellows pressure tare loads and bellows thermal effects. The objective of this study was to design both mechanical calibration hardware and an experimental calibration design that can be employed at the facility in order to efficiently and precisely perform the necessary loadings in order to characterize the semi-span balance under the influence of multiple calibration factors (balance forces/moments and bellows pressure/temperature). Using statistical design of experiments, an experimental design was developed allowing for strategically characterizing the behavior of the semi-span balance for use in circulation control and propulsion-type flow control testing at the National Transonic Facility.

  20. Measurement of the size of spherical nanoparticles by means of atomic force microscopy

    International Nuclear Information System (INIS)

    Couteau, O; Roebben, G

    2011-01-01

    Several techniques are nowadays available to determine the size distribution of nanoparticulate matter. Among these techniques, atomic force microscopy (AFM) is especially valuable because it can provide three-dimensional information on the shape of individual nanoparticles. This paper describes a new method to determine the size distribution of a population of spherical nanoparticles deposited on a hard substrate. The method is based on the acquisition and analysis of topographical AFM images. The size of individual nanoparticles is obtained by fitting the topographical region associated with the nanoparticle with a sphere. Tests on model systems based on nanoparticle reference materials consisting of polystyrene (PS) latex suspensions show promising results. The measured mean particle size is larger than the reference value, but this is a predictable effect of the AFM tip shape. Tests on a bi-modal mixture of two PS latex reference materials show the impact of the quality of the dispersion of the nanoparticles on the results obtained with the new technique

  1. Re-Evaluating Electromyogram–Force Relation in Healthy Biceps Brachii Muscles Using Complexity Measures

    Directory of Open Access Journals (Sweden)

    Xiaofei Zhu

    2017-11-01

    Full Text Available The objective of this study is to re-evaluate the relation between surface electromyogram (EMG and muscle contraction torque in biceps brachii (BB muscles of healthy subjects using two different complexity measures. Ten healthy subjects were recruited and asked to complete a series of elbow flexion tasks following different isometric muscle contraction levels ranging from 10% to 80% of maximum voluntary contraction (MVC with each increment of 10%. Meanwhile, both the elbow flexion torque and surface EMG data from the muscle were recorded. The root mean square (RMS, sample entropy (SampEn and fuzzy entropy (FuzzyEn of corresponding EMG data were analyzed for each contraction level, and the relation between EMG and muscle torque was accordingly quantified. The experimental results showed a nonlinear relation between the traditional RMS amplitude of EMG and the muscle torque. By contrast, the FuzzyEn of EMG exhibited an improved linear correlation with the muscle torque than the RMS amplitude of EMG, which indicates its great value in estimating BB muscle strength in a simple and straightforward manner. In addition, the SampEn of EMG was found to be insensitive to the varying muscle torques, almost presenting a flat trend with the increment of muscle force. Such a character of the SampEn implied its potential application as a promising surface EMG biomarker for examining neuromuscular changes while overcoming interference from muscle strength.

  2. Measurement of action forces and posture to determine the lumbar load of healthcare workers during care activities with patient transfers.

    Science.gov (United States)

    Theilmeier, Andreas; Jordan, Claus; Luttmann, Alwin; Jäger, Matthias

    2010-11-01

    Moving patients or other care activities with manual patient handling is characterized by high mechanical load on the lumbar spine of healthcare workers (HCWs). During the patient transfer activity, the caregivers exert lifting, pulling, and pushing forces varying over time with respect to amplitude and direction. Furthermore, the caregivers distinctly change their posture and frequently obtain postures asymmetrical to the median sagittal plane, including lateral bending and turning the trunk. This paper describes a procedure to determine lumbar load during patient transfer supported by measurement techniques and an exemplary application; this methodology represents the basis of a complex research project, the third 'Dortmund Lumbar Load Study (DOLLY 3)'. Lumbar load was determined by simulation calculations using a comprehensive biomechanical model ('The Dortmunder'). As the main influencing factors, the hand forces of the caregiver exerted during typical patient transfers and the posture and movements of the HCW were recorded in laboratory studies. The action forces were determined three-dimensionally with the help of a newly developed 'measuring bed', two different 'measuring chairs', a 'measuring bathtub', and a 'measuring floor'. To capture the forces during transfers in or at the bed, a common hospital bed was equipped with an additional framework, which is attached to the bedstead and connected to the bedspring frame via three-axial force sensors at the four corners. The other measuring systems were constructed similarly. Body movements were recorded using three-dimensional optoelectronic recording tools and video recordings. The posture and force data served as input data for the quantification of various lumbar-load indicators.

  3. Identification of critical areas of carotid stent navigation by measurement of resistive forces in vitro, using silicone phantoms

    International Nuclear Information System (INIS)

    Sengupta, A.; Kesavadas, T.; Baier, R.E.; Hoffmann, K.R.; Schafer, S.

    2007-01-01

    Manipulation of surgical tools in neuro-endovascular surgery presents problems that are unique to this procedure. Navigating tools through arterial complexities without appropriate visual or force feedback information often causes tool snagging, plaque dislocations and formation of thrombosis from the damage of the arterial wall by the tools. Identifying the critical areas in the vasculature during navigation of endovascular tools, will not only ensure safer surgical planning but also reduce risks of vessel damage. In the present research, resistive forces of stent navigation were measured in-vitro using silicone phantoms and clinically relevant surgical devices. The patterns of variation of the forces along the path of the stent movement were analyzed and mapped along the path of stent movement using a color code. It was observed that the forces changed along the length of the vessel, independent of the insertion length but based on the curvature of the vessel and the contact area of the device in the vessel lumen. (orig.)

  4. Development of a probing system for a micro-coordinate measuring machine by utilizing shear-force detection

    International Nuclear Information System (INIS)

    Ito, So; Kodama, Issei; Gao, Wei

    2014-01-01

    This paper introduces a newly developed probing system for a micro-coordinate measurement machine (micro-CMM) based on an interaction force generated by the water layer on the surface of the measuring object. In order to measure the dimensions of the micrometric structures, a probing system using a nanopipette ball stylus has been developed. A glass microsphere with diameter of 9 µm is used as a stylus tip of the probing system. The glass nanopipette, which is fabricated from a capillary glass tube by a thermal pulling process, is employed as a stylus shaft to improve the fixation strength of the stylus tip. The approach between the stylus tip and the surface of the measuring object can be detected by utilizing the method of shear-force detection. The stylus is oscillated in the lateral direction at its resonant frequency to detect an interaction force owing to the viscoelasticity of the meniscus layer existing on the surface of the measuring object. The oscillation amplitude is decreased by the shear-force applied to the stylus tip. In this study, the basic characteristics of the probing system including sensitivity, resolution and reproducibility are investigated. The experimental result of dimensional measurement of micrometer-scale structure is presented. (paper)

  5. Direct Measurement of the Wettability of Minerals Using Atomic Force Microscopy

    Science.gov (United States)

    Deng, Y.; Xu, L.; Lu, H.; Wang, H.; Shi, Y.

    2016-12-01

    The wettability of reservoir rock plays an essential role in affecting the states of fluids (water, oil, etc) in pores which are constructed with various minerals. The contact angle method, which is based on the optical microscope photographs of millimeter-sized droplets on a smooth mineral surface, is one of the most widely employed methods to evaluate the wettability of a rock. However, the real reservoir rocks are composed of several kinds of minerals and thus nonhomogeneous, which leads to different wettability at different location of the rock. The mineral grains are usually micrometer-sized so that the traditional optical contact angle method cannot obtain the wettability of different minerals in the rock. Here we used a tapping-mode atomic force microscopy (TM-AFM, MFP-3D-BIO, Asylum Research) to measure the contact angles of micrometer-sized water droplets on different minerals in a tight sand rock which is mainly composed of quartz, albite, potash feldspar and anorthite. The water droplets varied from submicron to several tens micron in diameter. With the optimization of tool and operation parameters, the AFM tip was well controlled so that the nanoscale morphology of the contact configuration between water film and the mineral surface can be obtained at high resolution without disturbing the liquid surface. The AFM results showed that the contact angles of water on quartz and albite were 30-40 ° and 37-45 °, respectively. The AFM method provides a new measure for the wettability evaluation of reservoir rocks, and it is with potential to be applied to oil and gas hydrate studies.

  6. Mathematical Model and Calibration Experiment of a Large Measurement Range Flexible Joints 6-UPUR Six-Axis Force Sensor

    Directory of Open Access Journals (Sweden)

    Yanzhi Zhao

    2016-08-01

    Full Text Available Nowadays improving the accuracy and enlarging the measuring range of six-axis force sensors for wider applications in aircraft landing, rocket thrust, and spacecraft docking testing experiments has become an urgent objective. However, it is still difficult to achieve high accuracy and large measuring range with traditional parallel six-axis force sensors due to the influence of the gap and friction of the joints. Therefore, to overcome the mentioned limitations, this paper proposed a 6-Universal-Prismatic-Universal-Revolute (UPUR joints parallel mechanism with flexible joints to develop a large measurement range six-axis force sensor. The structural characteristics of the sensor are analyzed in comparison with traditional parallel sensor based on the Stewart platform. The force transfer relation of the sensor is deduced, and the force Jacobian matrix is obtained using screw theory in two cases of the ideal state and the state of flexibility of each flexible joint is considered. The prototype and loading calibration system are designed and developed. The K value method and least squares method are used to process experimental data, and in errors of kind Ι and kind II linearity are obtained. The experimental results show that the calibration error of the K value method is more than 13.4%, and the calibration error of the least squares method is 2.67%. The experimental results prove the feasibility of the sensor and the correctness of the theoretical analysis which are expected to be adopted in practical applications.

  7. Mathematical Model and Calibration Experiment of a Large Measurement Range Flexible Joints 6-UPUR Six-Axis Force Sensor.

    Science.gov (United States)

    Zhao, Yanzhi; Zhang, Caifeng; Zhang, Dan; Shi, Zhongpan; Zhao, Tieshi

    2016-08-11

    Nowadays improving the accuracy and enlarging the measuring range of six-axis force sensors for wider applications in aircraft landing, rocket thrust, and spacecraft docking testing experiments has become an urgent objective. However, it is still difficult to achieve high accuracy and large measuring range with traditional parallel six-axis force sensors due to the influence of the gap and friction of the joints. Therefore, to overcome the mentioned limitations, this paper proposed a 6-Universal-Prismatic-Universal-Revolute (UPUR) joints parallel mechanism with flexible joints to develop a large measurement range six-axis force sensor. The structural characteristics of the sensor are analyzed in comparison with traditional parallel sensor based on the Stewart platform. The force transfer relation of the sensor is deduced, and the force Jacobian matrix is obtained using screw theory in two cases of the ideal state and the state of flexibility of each flexible joint is considered. The prototype and loading calibration system are designed and developed. The K value method and least squares method are used to process experimental data, and in errors of kind Ι and kind II linearity are obtained. The experimental results show that the calibration error of the K value method is more than 13.4%, and the calibration error of the least squares method is 2.67%. The experimental results prove the feasibility of the sensor and the correctness of the theoretical analysis which are expected to be adopted in practical applications.

  8. Design and development of fixture and force measuring system for friction stir welding process using strain gauges

    Energy Technology Data Exchange (ETDEWEB)

    Parida, Biswajit; Vishwakarma, Shiv Dayal; Pal, Sukhomay [IIT Guwahati, Guwahati (India)

    2015-02-15

    We developed a clamping system and an instrumented setup for a vertical milling machine for friction stir welding (FSW) operations and measuring the process forces. Taking into account the gap formation (i.e., lateral movement) and transverse movement of the workpiece, a new type of adjustable fixture was designed to hold the workpiece being welded. For force measurement, a strain gauge based force dynamometer was designed, developed and fabricated. The strain gauges were fitted into the specially designed octagonal members to support the welding plates. When the welding force was applied onto the plates, the load was transferred to the octagonal members and strain was induced in the member. The strains of the strain gauges were measured in terms of voltages using a Wheatstone bridge. To acquire forces in FSW operations, a data acquisition system with the necessary hardware and software was devised and connected to the developed setup. The developed setup was tested in actual welding operations. It is found that the proposed setup can be used in milling machine to perform FSW operations.

  9. Resolution of Forces and Strain Measurements from an Acoustic Ground Test

    Science.gov (United States)

    Smith, Andrew M.; LaVerde, Bruce T.; Hunt, Ronald; Waldon, James M.

    2013-01-01

    The Conservatism in Typical Vibration Tests was Demonstrated: Vibration test at component level produced conservative force reactions by approximately a factor of 4 (approx.12 dB) as compared to the integrated acoustic test in 2 out of 3 axes. Reaction Forces Estimated at the Base of Equipment Using a Finite Element Based Method were Validated: FEM based estimate of interface forces may be adequate to guide development of vibration test criteria with less conservatism. Element Forces Estimated in Secondary Structure Struts were Validated: Finite element approach provided best estimate of axial strut forces in frequency range below 200 Hz where a rigid lumped mass assumption for the entire electronics box was valid. Models with enough fidelity to represent diminishing apparent mass of equipment are better suited for estimating force reactions across the frequency range. Forward Work: Demonstrate the reduction in conservatism provided by; Current force limited approach and an FEM guided approach. Validate proposed CMS approach to estimate coupled response from uncoupled system characteristics for vibroacoustics.

  10. A Micro-Force Sensor with Beam-Membrane Structure for Measurement of Friction Torque in Rotating MEMS Machines

    Directory of Open Access Journals (Sweden)

    Huan Liu

    2017-10-01

    Full Text Available In this paper, a beam-membrane (BM sensor for measuring friction torque in micro-electro-mechanical system (MEMS gas bearings is presented. The proposed sensor measures the force-arm-transformed force using a detecting probe and the piezoresistive effect. This solution incorporates a membrane into a conventional four-beam structure to meet the range requirements for the measurement of both the maximum static friction torque and the kinetic friction torque in rotating MEMS machines, as well as eliminate the problem of low sensitivity with neat membrane structure. A glass wafer is bonded onto the bottom of the sensor chip with a certain gap to protect the sensor when overloaded. The comparisons between the performances of beam-based sensor, membrane-based sensor and BM sensor are conducted by finite element method (FEM, and the final sensor dimensions are also determined. Calibration of the fabricated and packaged device is experimentally performed. The practical verification is also reported in the paper for estimating the friction torque in micro gas bearings by assembling the proposed sensor into a rotary table-based measurement system. The results demonstrate that the proposed force sensor has a potential application in measuring micro friction or force in MEMS machines.

  11. Matlab-based interface for the simultaneous acquisition of force measures and Doppler ultrasound muscular images.

    Science.gov (United States)

    Ferrer-Buedo, José; Martínez-Sober, Marcelino; Alakhdar-Mohmara, Yasser; Soria-Olivas, Emilio; Benítez-Martínez, Josep C; Martínez-Martínez, José M

    2013-04-01

    This paper tackles the design of a graphical user interface (GUI) based on Matlab (MathWorks Inc., MA), a worldwide standard in the processing of biosignals, which allows the acquisition of muscular force signals and images from a ultrasound scanner simultaneously. Thus, it is possible to unify two key magnitudes for analyzing the evolution of muscular injuries: the force exerted by the muscle and section/length of the muscle when such force is exerted. This paper describes the modules developed to finally show its applicability with a case study to analyze the functioning capacity of the shoulder rotator cuff. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Theory of single-molecule controlled rotation experiments, predictions, tests, and comparison with stalling experiments in F1-ATPase.

    Science.gov (United States)

    Volkán-Kacsó, Sándor; Marcus, Rudolph A

    2016-10-25

    A recently proposed chemomechanical group transfer theory of rotary biomolecular motors is applied to treat single-molecule controlled rotation experiments. In these experiments, single-molecule fluorescence is used to measure the binding and release rate constants of nucleotides by monitoring the occupancy of binding sites. It is shown how missed events of nucleotide binding and release in these experiments can be corrected using theory, with F 1 -ATP synthase as an example. The missed events are significant when the reverse rate is very fast. Using the theory the actual rate constants in the controlled rotation experiments and the corrections are predicted from independent data, including other single-molecule rotation and ensemble biochemical experiments. The effective torsional elastic constant is found to depend on the binding/releasing nucleotide, and it is smaller for ADP than for ATP. There is a good agreement, with no adjustable parameters, between the theoretical and experimental results of controlled rotation experiments and stalling experiments, for the range of angles where the data overlap. This agreement is perhaps all the more surprising because it occurs even though the binding and release of fluorescent nucleotides is monitored at single-site occupancy concentrations, whereas the stalling and free rotation experiments have multiple-site occupancy.

  13. Measurement and analysis of thrust force in drilling sisal-glass fiber reinforced polymer composites

    Science.gov (United States)

    Ramesh, M.; Gopinath, A.

    2017-05-01

    Drilling of composite materials is difficult when compared to the conventional materials because of its in-homogeneous nature. The force developed during drilling play a major role in the surface quality of the hole and minimizing the damages around the surface. This paper focuses the effect of drilling parameters on thrust force in drilling of sisal-glass fiber reinforced polymer composite laminates. The quadratic response models are developed by using response surface methodology (RSM) to predict the influence of cutting parameters on thrust force. The adequacy of the models is checked by using the analysis of variance (ANOVA). A scanning electron microscope (SEM) analysis is carried out to analyze the quality of the drilled surface. From the results, it is found that, the feed rate is the most influencing parameter followed by spindle speed and the drill diameter is the least influencing parameter on the thrust force.

  14. Measuring and modeling the effect of time and temperature on removal torque and sealing force of a continuous thread closure

    Science.gov (United States)

    Pisuchpen, Supachai

    A new technique for measuring the sealing force of a container-closure system was developed by employing a strain gage based transducer. The sealing force is considered a direct indicator for monitoring the mechanical seal integrity of the container-closure systems. A sealing force measuring device and a torque meter were used to investigate the effect of environmental conditions on the relaxation behavior of a 28--400 closure system. The responses from both devices during storage over time were transformed to the percent (%) force retention (FRT) and percent (%) torque retention (TRT) and used to analyze the effect. The high temperature and relative humidity of tropical conditions showed significant effect on the relaxation of the systems studied. It was found that the % TRT over time data were less consistent than the % FRT due to the nature of torque measurement and effect of environmental conditions. The % TRT data were higher than the % FRT indicating less relaxation of torque than of force. Therefore, using the removal torque or % TRT may be misleading in the interpretation of the seal integrity of the container-closure systems. The apparent seal integrity is less when measured by force retention. Mathematical modeling of the relaxation behavior of the systems revealed that the theoretical models derived from spring and dashpot are not applicable. Empirical models using the curve fitting techniques were then applied and excellent agreement with the experimental data was found. The mathematical models developed were extended to long-term prediction for 3 years; the predicted values of the % FRT and % TRT were in the acceptable range for agreement among the models.

  15. Choosing among alternative classification criteria to measure the labour force state

    OpenAIRE

    Erich Battistin; Enrico Rettore; Ugo Trivellato

    2005-01-01

    Current labour force counting relies on general guidelines set by the International Labour Office(ILO) to classify individuals into three labour force states: employment, unemployment and in activity. However, the resulting statistics areknown to be sensitive to slight variations of operational definitions prima facie consistent with the general guidelines. In this paper two alternative classification criteria are considered: a 'strict' criterion followed by Eurostat, which results from a str...

  16. Dynamic verification of newton's law and the principal limits in measuring intermediate-range forces

    International Nuclear Information System (INIS)

    Kolosnitsyn, N.I.; Luo Jun; Melnikov, V.N.

    1992-01-01

    According to the controversial results of recent experiments for fifth force, a classification of all possible types of theories leading to non-Newtonian forces is presented. The theoretical analysis shows that if the interaction potential differs from the Newton's law the interactions of macro-and micro-bodies are in general distinguishable. The calculation also shows that Long's result can be improved by several orders if the new method proposed is used

  17. The impact of previous knee injury on force plate and field-based measures of balance.

    Science.gov (United States)

    Baltich, Jennifer; Whittaker, Jackie; Von Tscharner, Vinzenz; Nettel-Aguirre, Alberto; Nigg, Benno M; Emery, Carolyn

    2015-10-01

    Individuals with post-traumatic osteoarthritis demonstrate increased sway during quiet stance. The prospective association between balance and disease onset is unknown. Improved understanding of balance in the period between joint injury and disease onset could inform secondary prevention strategies to prevent or delay the disease. This study examines the association between youth sport-related knee injury and balance, 3-10years post-injury. Participants included 50 individuals (ages 15-26years) with a sport-related intra-articular knee injury sustained 3-10years previously and 50 uninjured age-, sex- and sport-matched controls. Force-plate measures during single-limb stance (center-of-pressure 95% ellipse-area, path length, excursion, entropic half-life) and field-based balance scores (triple single-leg hop, star-excursion, unipedal dynamic balance) were collected. Descriptive statistics (mean within-pair difference; 95% confidence intervals) were used to compare groups. Linear regression (adjusted for injury history) was used to assess the relationship between ellipse-area and field-based scores. Injured participants on average demonstrated greater medio-lateral excursion [mean within-pair difference (95% confidence interval); 2.8mm (1.0, 4.5)], more regular medio-lateral position [10ms (2, 18)], and shorter triple single-leg hop distances [-30.9% (-8.1, -53.7)] than controls, while no between group differences existed for the remaining outcomes. After taking into consideration injury history, triple single leg hop scores demonstrated a linear association with ellipse area (β=0.52, 95% confidence interval 0.01, 1.01). On average the injured participants adjusted their position less frequently and demonstrated a larger magnitude of movement during single-limb stance compared to controls. These findings support the evaluation of balance outcomes in the period between knee injury and post-traumatic osteoarthritis onset. Copyright © 2015 Elsevier Ltd. All rights

  18. Atmospheric radiation measurement: A program for improving radiative forcing and feedback in general circulation models

    International Nuclear Information System (INIS)

    Patrinos, A.A.; Renne, D.S.; Stokes, G.M.; Ellingson, R.G.

    1991-01-01

    The Atmospheric Radiation Measurement (ARM) Program is a key element of the Department of Energy's (DOE's) global change research strategy. ARM represents a long-term commitment to conduct comprehensive studies of the spectral atmospheric radiative energy balance profile for a wide range of cloud conditions and surface types, and to develop the knowledge necessary to improve parameterizations of radiative processes under various cloud regimes for use in general circulation models (GCMs) and related models. The importance of the ARM program is a apparent from the results of model assessments of the impact on global climate change. Recent studies suggest that radiatively active trace gas emissions caused by human activity can lead to a global warming of 1.5 to 4.5 degrees Celsius and to important changes in water availability during the next century (Cess, et al. 1989). These broad-scale changes can be even more significant at regional levels, where large shifts in temperature and precipitation patterns are shown to occur. However, these analyses also indicate that considerable uncertainty exists in these estimates, with the manner in which cloud radiative processes are parameterized among the most significant uncertainty. Thus, although the findings have significant policy implications in assessment of global and regional climate change, their uncertainties greatly influence the policy debate. ARM's highly focused observational and analytical research is intended to accelerate improvements and reduce key uncertainties associated with the way in which GCMs treat cloud cover and cloud characteristics and the resulting radiative forcing. This paper summarizes the scientific context for ARM, ARM's experimental approach, and recent activities within the ARM program

  19. New devices for measuring forces on the kayak foot bar and on the seat during flat-water kayak paddling: a technical report.

    Science.gov (United States)

    Nilsson, Johnny E; Rosdahl, Hans G

    2014-03-01

    The purpose was to develop and validate portable force-measurement devices for recording push and pull forces applied by each foot to the foot bar of a kayak and the horizontal force at the seat. A foot plate on a single-point force transducer mounted on the kayak foot bar underneath each foot allowed the push and pull forces to be recorded. Two metal frames interconnected with 4 linear ball bearings, and a force transducer allowed recording of horizontal seat force. The foot-bar-force device was calibrated by loading each foot plate with weights in the push-pull direction perpendicular to the foot plate surface, while the seat-force device was calibrated to horizontal forces with and without weights on the seat. A strong linearity (r2 = .99-1.0) was found between transducer output signal and load force in the push and pull directions for both foot-bar transducers perpendicular to the foot plate and the seat-force-measuring device. Reliability of both devices was tested by means of a test-retest design. The coefficient of variation (CV) for foot-bar push and pull forces ranged from 0.1% to 1.1%, and the CV for the seat forces varied from 0.6% to 2.2%. The current study opens up a field for new investigations of the forces generated in the kayak and ways to optimize kayak-paddling performance.

  20. Comparison of the Relationship between Lying and Standing Ultrasonography Measures of Muscle Morphology with Isometric and Dynamic Force Production Capabilities

    Directory of Open Access Journals (Sweden)

    John P. Wagle

    2017-11-01

    Full Text Available The purpose of the current study was (1 to examine the differences between standing and lying measures of vastus lateralis (VL, muscle thickness (MT, pennation angle (PA, and cross-sectional area (CSA using ultrasonography; and (2 to explore the relationships between lying and standing measures with isometric and dynamic assessments of force production—specifically peak force, rate of force development (RFD, impulse, and one-repetition maximum back squat. Fourteen resistance-trained subjects (age = 26.8 ± 4.0 years, height = 181.4 ± 6.0 cm, body mass = 89.8 ± 10.7 kg, back squat to body mass ratio = 1.84 ± 0.34 agreed to participate. Lying and standing ultrasonography images of the right VL were collected following 48 hours of rest. Isometric squat assessments followed ultrasonography, and were performed on force platforms with data used to determine isometric peak force (IPF, as well as RFD and impulse at various time points. Forty-eight hours later, one-repetition maximum back squats were performed by each subject. Paired-samples t-tests revealed statistically significant differences between standing and lying measurements of MT (p < 0.001, PA (p < 0.001, and CSA (p ≤ 0.05, with standing values larger in all cases. Further, standing measures were correlated more strongly and abundantly to isometric and dynamic performance. These results suggest that if practitioners intend to gain insight into strength-power potential based on ultrasonography measurements, performing the measurement collection with the athlete in a standing posture may be preferred.

  1. Aerodynamic Characterization of ‘DelFly Micro’ in Forward Flight Configuration by Force Measurements and Flow Field Visualization

    NARCIS (Netherlands)

    Deng, S.; Percin, M.; Van Oudheusden, B.

    2015-01-01

    This study explores the flow structures and unsteady force generation mechanisms of a flapping-wing micro air vehicle ‘DelFly Micro’ in forward flight configuration. Stereoscopic Particle Image Velocimetry (Stereo-PIV) measurements were performed to acquire three dimensional flow fields in the wake.

  2. Simulation and Verification of Tip-Induced Polarization During Kelvin Probe Force Microscopy Measurements on Film Capacitors

    DEFF Research Database (Denmark)

    Nielsen, Dennis Achton; Popok, Vladimir; Pedersen, Kjeld

    2017-01-01

    Kelvin probe force microscopy (KPFM) is widely used as characterization tool on functional heterostructures and components but it often suffers from measurement artifacts on such structures because the presence of the biased cantilever tip transforms the actual surface potential. In this work we...

  3. Ground measurements of fuel and fuel consumption from experimental and operational prescribed fires at Eglin Air Force Base, Florida

    Science.gov (United States)

    Roger D. Ottmar; Robert E. Vihnanek; Clinton S. Wright; Andrew T. Hudak

    2014-01-01

    Ground-level measurements of fuel loading, fuel consumption, and fuel moisture content were collected on nine research burns conducted at Eglin Air Force Base, Florida in November, 2012. A grass or grass-shrub fuelbed dominated eight of the research blocks; the ninth was a managed longleaf pine (Pinus palustrus) forest. Fuel loading ranged from 1.7 Mg ha-1 on a...

  4. MM99.50 - Surface Topography Characterization Using an Atomic Force Microscope Mounted on a Coordinate Measuring Machine

    DEFF Research Database (Denmark)

    Chiffre, Leonardo De; Hansen, Hans Nørgaard; Kofod, Niels

    1999-01-01

    The paper describes the construction, testing and use of an integrated system for topographic characterization of fine surfaces on parts having relatively big dimensions. An atomic force microscope (AFM) was mounted on a manual three-coordinate measuring machine (CMM) achieving free positioning...

  5. Development of Wearable Sheet-Type Shear Force Sensor and Measurement System that is Insusceptible to Temperature and Pressure.

    Science.gov (United States)

    Toyama, Shigeru; Tanaka, Yasuhiro; Shirogane, Satoshi; Nakamura, Takashi; Umino, Tokio; Uehara, Ryo; Okamoto, Takuma; Igarashi, Hiroshi

    2017-07-31

    A sheet-type shear force sensor and a measurement system for the sensor were developed. The sensor has an original structure where a liquid electrolyte is filled in a space composed of two electrode-patterned polymer films and an elastic rubber ring. When a shear force is applied on the surface of the sensor, the two electrode-patterned films mutually move so that the distance between the internal electrodes of the sensor changes, resulting in current increase or decrease between the electrodes. Therefore, the shear force can be calculated by monitoring the current between the electrodes. Moreover, it is possible to measure two-dimensional shear force given that the sensor has multiple electrodes. The diameter and thickness of the sensor head were 10 mm and 0.7 mm, respectively. Additionally, we also developed a measurement system that drives the sensor, corrects the baseline of the raw sensor output, displays data, and stores data as a computer file. Though the raw sensor output was considerably affected by the surrounding temperature, the influence of temperature was drastically decreased by introducing a simple arithmetical calculation. Moreover, the influence of pressure simultaneously decreased after the same calculation process. A demonstrative measurement using the sensor revealed the practical usefulness for on-site monitoring.

  6. A Method to Predict Compressor Stall in the TF34-100 Turbofan Engine Utilizing Real-Time Performance Data

    Science.gov (United States)

    2015-06-01

    pass turbo –fan engine sensor data to seek its deterioration modelling and prognostics capability. In futurity this will allow for achievement of...preventive maintenance for the TF34-100 jet engine to prevent engine compressor stalls for the A-10 aircraft. Due to their destructive nature, compressor...stalls are a significant concern in axial flow compressor jet engines. A compressor stall is caused by air approaching the compressor blades at an

  7. Oncology Section EDGE Task Force on Cancer: A systematic review of patient-reported measures for sexual dysfunction.

    Science.gov (United States)

    Alappattu, Meryl; Harrington, Shana E; Hill, Alexandra; Roscow, Amanda; Jeffrey, Alicia

    2017-07-01

    Sexual dysfunction is an important and infrequently addressed issue in patients with cancer. To identify self-report measures for assessing sexual dysfunction and to evaluate their psychometric properties and relevance to patients with cancer. Multiple electronic databases (CINAHL, Medline, PsycInfo) were reviewed using specific search terms to locate articles that identify self-report measures assessing sexual dysfunction. From the 1118 articles reviewed, 21 measures were selected for analysis. Each measure was independently reviewed and rated by two reviewers using the Cancer EDGE Task Force Outcome Measure Rating Form. Any discrepancies between reviewers were discussed and an overall recommendation for each measure was made using the 4-point Cancer EDGE Task Force Rating Scale. Based on the psychometric properties and relevance to patients with cancers, we highly recommend the following four measures: Sexual Function - Vaginal Changes Questionnaire; International Index of Erectile Function; Erection Hardness Score; Sexual Health Inventory for Men (aka International Index of Erectile Function-5). We recommend one measure, the Sexual Interest and Desire Inventory. We are unable to recommend eight measures based on limited psychometric information and/or clinical utility. Finally, we do not recommend an additional eight measures. Five of the 21 sexual dysfunction measures demonstrated satisfactory psychometric properties and application to the cancer population and are thereby recommended for clinical use in patients with cancer.

  8. Pulsed laser manipulation of an optically trapped bead: Averaging thermal noise and measuring the pulsed force amplitude

    DEFF Research Database (Denmark)

    Lindballe, Thue Bjerring; Kristensen, Martin V. G.; Keiding, Søren Rud

    2013-01-01

    -bead interaction is repeated hundreds of times. Traces with the bead position following the prompt displacement from equilibrium, induced by each laser pulse, are averaged and reveal the underlying deterministic motion of the bead, which is not visible in a single trace due to thermal noise. The motion of the bead...... is analyzed from the direct time-dependent position measurements and from the power spectrum. The results show that the bead is on average displaced 208 nm from the trap center and exposed to a force amplitude of 71 nanoNewton, more than five orders of magnitude larger than the trapping forces. Our...

  9. Analysis of the grid connection sequence of stall- and pitch-controlled wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Quinonez-Varela, G.; Cruden, A.; Anaya-Lara, O.; Tumilty, R.; McDonald, J.R. [Univ. of Strathclyde, Inst. for Energy and Environment (United Kingdom)

    2007-11-15

    The realistic modelling of wind turbines and wind farms is crucial in any form of power system analysis, and consequently, knowledge about their electrical characteristics and performance is also vital. One of the operating conditions producing major transient interaction between a wind turbine generator and the local grid is the grid connection sequence itself, which is particularly significant in fixed-speed turbines. This paper presents experimental measurements of the grid connection sequence of both types of fixed speed wind turbines, i.e. stall- and pitch-controlled via a soft-start device performed at two existing wind farms. Some of the results evidenced significant discrepancies between the actual soft-start operating intervals and those stated/suggested by open literature. The discussion of the paper focuses on highlighting the importance of accurate modelling of the grid connection sequence in order to avoid erroneous estimations of the interaction between the turbine and the grid during this operating state, or inappropriate design of the grid connection. (au)

  10. Stall Margin Improvement in a Centrifugal Compressor through Inducer Casing Treatment

    Directory of Open Access Journals (Sweden)

    V. V. N. K. Satish Koyyalamudi

    2016-01-01

    Full Text Available The increasing trend of high stage pressure ratio with increased aerodynamic loading has led to reduction in stable operating range of centrifugal compressors with stall and surge initiating at relatively higher mass flow rates. The casing treatment technique of stall control is found to be effective in axial compressors, but very limited research work is published on the application of this technique in centrifugal compressors. Present research was aimed to investigate the effect of casing treatment on the performance and stall margin of a high speed, 4 : 1 pressure ratio centrifugal compressor through numerical simulations using ANSYS CFX software. Three casing treatment configurations were developed and incorporated in the shroud over the inducer of the impeller. The predicted performance of baseline compressor (without casing treatment was in good agreement with published experimental data. The compressor with different inducer casing treatment geometries showed varying levels of stall margin improvement, up to a maximum of 18%. While the peak efficiency of the compressor with casing treatment dropped by 0.8%–1% compared to the baseline compressor, the choke mass flow rate was improved by 9.5%, thus enhancing the total stable operating range. The inlet configuration of the casing treatment was found to play an important role in stall margin improvement.

  11. An airloads theory for morphing airfoils in dynamic stall with experimental correlation

    Science.gov (United States)

    Ahaus, Loren A.

    Helicopter rotor blades frequently encounter dynamic stall during normal flight conditions, limiting the applicability of classical thin-airfoil theory at large angles of attack. Also, it is evident that because of the largely different conditions on the advancing and retreating sides of the rotor, future rotorcraft may incorporate dynamically morphing airfoils (trailing-edge aps, dynamic camber, dynamic droop, etc.). Reduced-order aerodynamic models are needed for preliminary design and ight simulation. A unified model for predicting the airloads on a morphing airfoil in dynamic stall is presented, consisting of three components. First, a linear airloads theory allows for arbitrary airfoil deformations consistent with a morphing airfoil. Second, to capture the effects of the wake, the airloads theory is coupled to an induced ow model. Third, the overshoot and time delay associated with dynamic stall are modeled by a second-order dynamic filter, along the lines of the ONERA dynamic stall model. This paper presents a unified airloads model that allows arbitrary airfoil morphing with dynamic stall. Correlations with experimental data validate the theory.

  12. A time-varying subjective quality model for mobile streaming videos with stalling events

    Science.gov (United States)

    Ghadiyaram, Deepti; Pan, Janice; Bovik, Alan C.

    2015-09-01

    Over-the-top mobile video streaming is invariably influenced by volatile network conditions which cause playback interruptions (stalling events), thereby impairing users' quality of experience (QoE). Developing models that can accurately predict users' QoE could enable the more efficient design of quality-control protocols for video streaming networks that reduce network operational costs while still delivering high-quality video content to the customers. Existing objective models that predict QoE are based on global video features, such as the number of stall events and their lengths, and are trained and validated on a small pool of ad hoc video datasets, most of which are not publicly available. The model we propose in this work goes beyond previous models as it also accounts for the fundamental effect that a viewer's recent level of satisfaction or dissatisfaction has on their overall viewing experience. In other words, the proposed model accounts for and adapts to the recency, or hysteresis effect caused by a stall event in addition to accounting for the lengths, frequency of occurrence, and the positions of stall events - factors that interact in a complex way to affect a user's QoE. On the recently introduced LIVE-Avvasi Mobile Video Database, which consists of 180 distorted videos of varied content that are afflicted solely with over 25 unique realistic stalling events, we trained and validated our model to accurately predict the QoE, attaining standout QoE prediction performance.

  13. Experimental measurement of fluid force coefficients for helical tube arrays in air cross flow

    International Nuclear Information System (INIS)

    Shen Shifang; Liu Reilan

    1993-01-01

    A helical coil steam generator is extensively used in the High Temperature Gas Cooled Reactor (HTGCR) and Sodium Cooled Reactor (SCR) nuclear power stations because of its compact structure, good heat-exchange, and small volume. The experimental model is established by the structure parameter of 200MW HTGCR. The fluid elastic instability of helical tube arrays in air cross flow is studied in this experiment, and the fluid force coefficients of helical tube arrays having the same notational direction of two adjacent layers in air cross flow are obtained. As compared to the fluid force coefficients of cylinder tube arrays, the fluid force coefficients of helical tube arrays are smaller in the low velocity area, and greater in the high velocity area. The experimental results help the study of the dynamic characteristics of helical tube arrays in air cross flow

  14. Measuring fN force variations in the presence of constant nN forces: a torsion pendulum ground test of the LISA Pathfinder free-fall mode

    Science.gov (United States)

    Russano, G.; Cavalleri, A.; Cesarini, A.; Dolesi, R.; Ferroni, V.; Gibert, F.; Giusteri, R.; Hueller, M.; Liu, L.; Pivato, P.; Tu, H. B.; Vetrugno, D.; Vitale, S.; Weber, W. J.

    2018-02-01

    LISA Pathfinder is a differential accelerometer with the main goal being to demonstrate the near perfect free-fall of reference test masses, as is needed for an orbiting gravitational wave observatory, with a target sensitivity of 30 fm s‑2 Hz-1/2 at 1 mHz. Any lasting background differential acceleration between the two test masses must be actively compensated, and noise associated with the applied actuation force can be a dominant source of noise. To remove this actuation, and the associated force noise, a ‘free-fall’ actuation control scheme has been designed; actuation is limited to brief impulses, with both test masses in free-fall in the time between the impulses, allowing measurement of the remaining acceleration noise sources. In this work, we present an on-ground torsion pendulum testing campaign of this technique and associated data analysis algorithms at a level nearing the sub-femto-g/\\sqrtHz performance required for LISA Pathfinder.

  15. Measurements of the n->d scattering at 250 MeV and three-nucleon forces

    International Nuclear Information System (INIS)

    Maeda, Y.; Sakai, H.; Fujita, K.; Hatano, M.; Kamiya, J.; Kawabata, T.; Kuboki, H.; Hatanaka, K.; Okamura, H.; Saito, T.; Sakemi, Y.; Sasano, M.; Sekiguchi, K.; Shimizu, Y.; Suda, K.; Tameshige, Y.; Tamii, A.; Wakasa, T.; Yako, K.; Greenfield, M.B.; Kamada, H.; Witala, H.

    2007-01-01

    The differential cross sections and the vector analyzing powers for the nd elastic scattering at E n = 250 MeV have been measured for the study of the three-nucleon force (3NF) effects in the Coulomb-free system. To cover a wide angular region, the experiments were performed by using two different methods at the (n, p) facility and at the NTOF facility which constructed at the Research Center for Nuclear Physics (RCNP). The results were compared with theoretical predictions of the Faddeev calculations based on the modern nucleon-nucleon (NN) forces with the three-nucleon force (3NF). The inclusion of 3NFs leads to a good description of the cross section except for the backward angles. The results were also compared with the theoretical predictions with relativistic corrections. The direct data-to-data comparison of the cross sections of the nd and pd was performed

  16. Influence of measuring parameters on the accuracy of atomic force microscope in industrial applications

    DEFF Research Database (Denmark)

    Tosello, Guido; Antico, Andrea; Hansen, Hans Nørgaard

    2009-01-01

    Atomic Force Microscopy (AFM) is a powerful technique providing 3D surface topographies with very high resolution in both lateral and vertical direction. Thanks to its relatively easy use, AFM can be well introduced in process control, gaining great advantage in research as well as in the evaluat......Atomic Force Microscopy (AFM) is a powerful technique providing 3D surface topographies with very high resolution in both lateral and vertical direction. Thanks to its relatively easy use, AFM can be well introduced in process control, gaining great advantage in research as well...

  17. Investigating dynamic stall, 3-D and rotational effects on wind turbine blades by means of an unsteady quasi-3D Navier-Stokes solver

    Energy Technology Data Exchange (ETDEWEB)

    Chaviaropoulos, P.K. [CRES-Center for Renewable Energy Sources, Pikermi Attiki (Greece)

    1997-08-01

    The blade element codes provide surprisingly accurate predictions of the aerodynamic loads provided that they are `fed` with proper lift and drag - incidence curves for the profiles mounted on the rotor blades. The evident question is how one can obtain such data. It is common experience that the use of the mostly available steady two-dimensional profile data may lead to serious discrepancies between measured and simulated loads. Although several correction techniques have been proposed as a remedy during the last years, from simplified dynamic stall models suitably tuned for wind turbines to 3-D correction schemes for profile data, the problem is by no means over-passed. Especially for the three-dimensional effects it seems that part of the difficulty is due to our limited understanding of the physical mechanism which is responsible for the extra loading of the inner part of the blades. Recognizing the importance of the above aspects two relevant Joule projects have been launched, the concluded `Dynamic Stall and 3-D Effects` JOU2-CT93-0345 and the ongoing `VISCWIND` JOR3-CT95-0007 project. Part of the activities in the first and all the activities in the second project are devoted to the identification and quantification of the dynamic stall and three-dimensional effects experienced by the wind turbine blades using Navier-Stokes computations. The contribution of CRES in these two projects is briefly presented in this paper. (EG)

  18. Intra- and Inter-Rater Reliability of the Rate of Force Development of Hip Abductor Muscles Measured by Hand-Held Dynamometer

    Science.gov (United States)

    Takeda, Kazuya; Tanabe, Shigeo; Koyama, Soichiro; Nagai, Tomoko; Sakurai, Hiroaki; Kanada, Yoshikiyo; Shomoto, Koji

    2018-01-01

    The aim of this study was to clarify the intra- and inter-rater reliability of the rate of force development in hip abductor muscle force measurements using a hand-held dynamometer. Thirty healthy adults were separately assessed by two independent raters on two separate days. Rate of force development was calculated from the slope of the…

  19. Fiber based optical tweezers for simultaneous in situ force exertion and measurements in a 3D polyacrylamide gel compartment.

    Science.gov (United States)

    Ti, Chaoyang; Thomas, Gawain M; Ren, Yundong; Zhang, Rui; Wen, Qi; Liu, Yuxiang

    2015-07-01

    Optical tweezers play an important role in biological applications. However, it is difficult for traditional optical tweezers based on objective lenses to work in a three-dimensional (3D) solid far away from the substrate. In this work, we develop a fiber based optical trapping system, namely inclined dual fiber optical tweezers, that can simultaneously apply and measure forces both in water and in a 3D polyacrylamide gel matrix. In addition, we demonstrate in situ, non-invasive characterization of local mechanical properties of polyacrylamide gel by measurements on an embedded bead. The fiber optical tweezers measurements agree well with those of atomic force microscopy (AFM). The inclined dual fiber optical tweezers provide a promising and versatile tool for cell mechanics study in 3D environments.

  20. Measuring piconewton forces with micropipette suction and its application to the flow and adhesion of individual neutrophils

    Science.gov (United States)

    Shao, Jin-Yu

    A versatile technique for measuring piconewton forces, based upon a micropipette manipulation system and low Reynolds number hydrodynamics, was established. Spherical cells or beads can be used directly as force transducers, and the force resolution is determined by the diameter of the micropipette that contains the transducer and the accuracy of the pressure measurements. The strength of the technique is in its simplicity and its ability to measure forces between cells without requiring the use of a solid surface. Here, it was employed to study: (1) The adhesion between human neutrophils and antibody-coated latex beads. Three antibodies, directed against three receptors on the neutrophil surface (CD62L, CD18 and CD45), were used. It was found that CD62L could be more easily extracted from the neutrophil surface than CD18, while the anchorage of CD45 was much stronger than that of CD62L or CD18. The logarithm of the adhesion lifetime showed a linear dependence upon the force applied to the adherent neutrophil. The association energy of CD62L or CD18 with the membrane and the cytoskeleton is equivalent to that for about fourteen hydrogen bonds. From the experiments with CD45, the natural lengths of neutrophil microvilli were inferred (˜0.3 mum). According to the force applied on their tips, microvilli can be either extended to constant lengths or pulled out to form membrane tethers. The characteristic time of microvillus extension is ˜0.83 s and the minimum force required to form a tether from neutrophils is ˜45 pN. (2) The resistance to flow of individual human neutrophils in glass capillary tubes with diameters between 4.65 and 7.75 μm. With the aid of a theory that describes the motion of a concentric, smooth-walled, sausage-shaped body in a tube, the maximum gap width in the larger capillary tubes was calculated to be on the order of 0.1 mum, whereas the minimum gap width in the smaller capillaries was only about 0.015 mum. Maximum values for the adhesive