WorldWideScience

Sample records for stainless steel nickel

  1. Nickel: makes stainless steel strong

    Science.gov (United States)

    Boland, Maeve A.

    2012-01-01

    Nickel is a silvery-white metal that is used mainly to make stainless steel and other alloys stronger and better able to withstand extreme temperatures and corrosive environments. Nickel was first identified as a unique element in 1751 by Baron Axel Fredrik Cronstedt, a Swedish mineralogist and chemist. He originally called the element kupfernickel because it was found in rock that looked like copper (kupfer) ore and because miners thought that "bad spirits" (nickel) in the rock were making it difficult for them to extract copper from it. Approximately 80 percent of the primary (not recycled) nickel consumed in the United States in 2011 was used in alloys, such as stainless steel and superalloys. Because nickel increases an alloy's resistance to corrosion and its ability to withstand extreme temperatures, equipment and parts made of nickel-bearing alloys are often used in harsh environments, such as those in chemical plants, petroleum refineries, jet engines, power generation facilities, and offshore installations. Medical equipment, cookware, and cutlery are often made of stainless steel because it is easy to clean and sterilize. All U.S. circulating coins except the penny are made of alloys that contain nickel. Nickel alloys are increasingly being used in making rechargeable batteries for portable computers, power tools, and hybrid and electric vehicles. Nickel is also plated onto such items as bathroom fixtures to reduce corrosion and provide an attractive finish.

  2. Stainless Steel Leaches Nickel and Chromium into Foods During Cooking

    OpenAIRE

    Kamerud, Kristin L.; Hobbie, Kevin A.; Anderson, Kim A.

    2013-01-01

    Toxicological studies show that oral doses of nickel and chromium can cause cutaneous adverse reactions such as dermatitis. Additional dietary sources, such as leaching from stainless steel cookware during food preparation, are not well characterized. This study examined stainless steel grades, cooking time, repetitive cooking cycles, and multiple types of tomato sauces for their effects on nickel and chromium leaching. Trials included three types of stainless steels and a stainless steel sau...

  3. Stainless steel leaches nickel and chromium into foods during cooking.

    Science.gov (United States)

    Kamerud, Kristin L; Hobbie, Kevin A; Anderson, Kim A

    2013-10-02

    Toxicological studies show that oral doses of nickel and chromium can cause cutaneous adverse reactions such as dermatitis. Additional dietary sources, such as leaching from stainless steel cookware during food preparation, are not well characterized. This study examined stainless steel grades, cooking time, repetitive cooking cycles, and multiple types of tomato sauces for their effects on nickel and chromium leaching. Trials included three types of stainless steels and a stainless steel saucepan, cooking times of 2-20 h, 10 consecutive cooking cycles, and four commercial tomato sauces. After a simulated cooking process, samples were analyzed by ICP-MS for Ni and Cr. After 6 h of cooking, Ni and Cr concentrations in tomato sauce increased up to 26- and 7-fold, respectively, depending on the grade of stainless steel. Longer cooking durations resulted in additional increases in metal leaching, where Ni concentrations increased 34-fold and Cr increased approximately 35-fold from sauces cooked without stainless steel. Cooking with new stainless steel resulted in the largest increases. Metal leaching decreases with sequential cooking cycles and stabilized after the sixth cooking cycle, although significant metal contributions to foods were still observed. The tenth cooking cycle resulted in an average of 88 μg of Ni and 86 μg of Cr leached per 126 g serving of tomato sauce. Stainless steel cookware can be an overlooked source of nickel and chromium, where the contribution is dependent on stainless steel grade, cooking time, and cookware usage.

  4. Stainless Steel Leaches Nickel and Chromium into Foods During Cooking

    Science.gov (United States)

    Kamerud, Kristin L.; Hobbie, Kevin A.; Anderson, Kim A.

    2014-01-01

    Toxicological studies show that oral doses of nickel and chromium can cause cutaneous adverse reactions such as dermatitis. Additional dietary sources, such as leaching from stainless steel cookware during food preparation, are not well characterized. This study examined stainless steel grades, cooking time, repetitive cooking cycles, and multiple types of tomato sauces for their effects on nickel and chromium leaching. Trials included three types of stainless steels and a stainless steel saucepan; cooking times of 2 to 20 hours, ten consecutive cooking cycles, and four commercial tomato sauces. After a simulated cooking process, samples were analyzed by ICP-MS for Ni and Cr. After six hours of cooking, Ni and Cr concentrations in tomato sauce increased up to 26- and 7-fold respectively, depending on the grade of stainless steel. Longer cooking durations resulted in additional increases in metal leaching, where Ni concentrations increased 34 fold and Cr increased approximately 35 fold from sauces cooked without stainless steel. Cooking with new stainless steel resulted in the largest increases. Metal leaching decreases with sequential cooking cycles and stabilized after the sixth cooking cycle, though significant metal contributions to foods were still observed. The tenth cooking cycle, resulted in an average of 88 μg of Ni and 86 μg of Cr leached per 126 g serving of tomato sauce. Stainless steel cookware can be an overlooked source of nickel and chromium, where the contribution is dependent on stainless steel grade, cooking time, and cookware usage. PMID:23984718

  5. Electroless nickel plating on stainless steels and aluminum

    Science.gov (United States)

    1966-01-01

    Procedures for applying an adherent electroless nickel plating on 303 SE, 304, and 17-7 PH stainless steels, and 7075 aluminum alloy was developed. When heat treated, the electroless nickel plating provides a hard surface coating on a high strength, corrosion resistant substrate.

  6. Nickel alloys and high-alloyed special stainless steels. Properties, manufacturing, applications. 4. compl. rev. ed.

    International Nuclear Information System (INIS)

    Heubner, Ulrich; Kloewer, Jutta; Alves, Helena; Behrens, Rainer; Schindler, Claudius; Wahl, Volker; Wolf, Martin

    2012-01-01

    This book contains the following eight topics: 1. Nickel alloys and high-alloy special stainless steels - Material overview and metallurgical principles (U. Heubner); 2. Corrosion resistance of nickel alloys and high-alloy special stainless steels (U. Heubner); 3. Welding of nickel alloys and high-alloy special stainless steels (T. Hoffmann, M. Wolf); 4. High-temperature materials for industrial plant construction (J. Kloewer); 5. Nickel alloys and high-alloy special stainless steels as hot roll clad composites-a cost-effective alternative (C. Schindler); 6. Selected examples of the use of nickel alloys and high-alloy special stainless steels in chemical plants (H. Alves); 7. The use of nickel alloys and stainless steels in environmental engineering (V. Wahl); 8: Nickel alloys and high-alloy special stainless steels for the oil and gas industry (R. Behrens).

  7. CASTI handbook of stainless steels and nickel alloys. 2. ed.

    International Nuclear Information System (INIS)

    Lamb, S.

    2002-01-01

    This is the only up-to-date (2002) reference book that covers both stainless steels and nickel alloys. Written by 30 authors and peer reviewers with over 700 years of combined industrial experience, this CASTI handbook provides the latest stainless steels and nickel alloys information in a practical and comprehensive manner. For the project engineer, maintenance engineer or inspector, this book provides solutions to many of the corrosion problems encountered in aggressive environmental conditions. Some of the corrosive conditions covered are: stress corrosion cracking, reducing environments, halogenation, highly oxidizing environments, and high temperatures. Hundreds of different material applications and selections, throughout many industries, are referenced. It is an ideal reference source to assist in preventing or minimizing corrosion related problems, including those encountered during welding fabrication. This practical handbook also contains a handy 'Alloy Index' which lists each alloy by its ASTM Specification, UNS Number, common name, trade name and page number references. The second edition includes additional coverage of corrosion resistant alloys for downhole production tubing. The new material covers corrosion processes, corrosion rates, hydrogen sulfide environments, corrosion inhibitors, corrosion resistant alloys, the application of stainless steel in production conditions, and more

  8. DT fusion neutron irradiation of BPNL niobium nickel and 316 stainless steel at 1750C

    International Nuclear Information System (INIS)

    MacLean, S.C.

    1977-01-01

    The DT fusion neutron irradiation at 175 0 C of 17 niobium wires, one niobium foil, 14 316 stainless steel wires, one 316 stainless steel foil, nine nickel wires, and two nickel foils from BPNL is described. The sample position, beam-on time, neutron dose record, and neutron fluence are given

  9. Characterization of friction stir welded joint of low nickel austenitic stainless steel and modified ferritic stainless steel

    Science.gov (United States)

    Mondal, Mounarik; Das, Hrishikesh; Ahn, Eun Yeong; Hong, Sung Tae; Kim, Moon-Jo; Han, Heung Nam; Pal, Tapan Kumar

    2017-09-01

    Friction stir welding (FSW) of dissimilar stainless steels, low nickel austenitic stainless steel and 409M ferritic stainless steel, is experimentally investigated. Process responses during FSW and the microstructures of the resultant dissimilar joints are evaluated. Material flow in the stir zone is investigated in detail by elemental mapping. Elemental mapping of the dissimilar joints clearly indicates that the material flow pattern during FSW depends on the process parameter combination. Dynamic recrystallization and recovery are also observed in the dissimilar joints. Among the two different stainless steels selected in the present study, the ferritic stainless steels shows more severe dynamic recrystallization, resulting in a very fine microstructure, probably due to the higher stacking fault energy.

  10. A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications.

    Science.gov (United States)

    Talha, Mohd; Behera, C K; Sinha, O P

    2013-10-01

    The field of biomaterials has become a vital area, as these materials can enhance the quality and longevity of human life. Metallic materials are often used as biomaterials to replace structural components of the human body. Stainless steels, cobalt-chromium alloys, commercially pure titanium and its alloys are typical metallic biomaterials that are being used for implant devices. Stainless steels have been widely used as biomaterials because of their very low cost as compared to other metallic materials, good mechanical and corrosion resistant properties and adequate biocompatibility. However, the adverse effects of nickel ions being released into the human body have promoted the development of "nickel-free nitrogen containing austenitic stainless steels" for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also much improves steel properties. Here we review the harmful effects associated with nickel and emphatically the advantages of nitrogen in stainless steel, as well as the development of nickel-free nitrogen containing stainless steels for medical applications. By combining the benefits of stable austenitic structure, high strength, better corrosion and wear resistance and superior biocompatibility in comparison to the currently used austenitic stainless steel (e.g. 316L), the newly developed nickel-free high nitrogen austenitic stainless steel is a reliable substitute for the conventionally used medical stainless steels. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Austenitic stainless steel alloys with high nickel contents in high temperature liquid metal systems

    International Nuclear Information System (INIS)

    Konvicka, H.R.; Schwarz, N.F.

    1981-01-01

    Fe-Cr-Ni base alloys (nickel content: from 15 to 70 wt%, Chromium content: 15 wt%, iron: balance) together with stainless steel (W.Nr. 1.4981) have been exposed to flowing liquid sodium at 730 0 C in four intervals up to a cumulative exposure time of 1500 hours. Weight change data and the results of post-exposition microcharacterization of specimens are reported. The corrosion rates increase with increasing nickel content and tend to become constant after longer exposure times for each alloy. The corrosion rate of stainless steel is considerably reduced due to the presence of the base alloys. Different kinetics of nickel poor (up to 35% nickel) and nickel rich (> 50% nickel) alloys and nickel transport from nickel rich to nickel poor material is observed. (orig.)

  12. Welding of nickel free high nitrogen stainless steel: Microstructure and mechanical properties

    OpenAIRE

    Raffi Mohammed; G. Madhusudhan Reddy; K. Srinivasa Rao

    2017-01-01

    High nitrogen stainless steel (HNS) is a nickel free austenitic stainless steel that is used as a structural component in defence applications for manufacturing battle tanks as a replacement of the existing armour grade steel owing to its low cost, excellent mechanical properties and better corrosion resistance. Conventional fusion welding causes problems like nitrogen desorption, solidification cracking in weld zone, liquation cracking in heat affected zone, nitrogen induced porosity and poo...

  13. Direct quantification of nickel in stainless steels by spectrophotometry

    International Nuclear Information System (INIS)

    Singh, Ritu; Raut, Vaibhavi V.; Jeyakumar, S.; Ramakumar, K.L.

    2007-01-01

    A spectrophotometric method based on the Ni-DMG complex for the quantification of nickel in steel samples without employing any prior separation is reported in the present study. The interfering ions are masked by suitable complexing agents and the method was extended to real samples after validating with BCS and Euro steel standards. (author)

  14. Mechanical evaluation of quad-helix appliance made of low-nickel stainless steel wire.

    Science.gov (United States)

    dos Santos, Rogério Lacerda; Pithon, Matheus Melo

    2013-01-01

    The objective of this study was to test the hypothesis that there is no difference between stainless steel and low-nickel stainless steel wires as regards mechanical behavior. Force, resilience, and elastic modulus produced by Quad-helix appliances made of 0.032-inch and 0.036-inch wires were evaluated. Sixty Quad-helix appliances were made, thirty for each type of alloy, being fifteen for each wire thickness, 0.032-in and 0.036-in. All the archwires were submitted to mechanical compression test using an EMIC DL-10000 machine simulating activations of 4, 6, 9, and 12 mm. Analysis of variance (ANOVA) with multiple comparisons and Tukey's test were used (p nickel stainless steel alloy had force, resilience, and elastic modulus similar to those made of stainless steel alloy.

  15. Deposition of DLC Film on Stainless Steel Substrates Coated by Nickel Using PECVD Method.

    Science.gov (United States)

    Khalaj, Zahra; Ghoranneviss, Mahmood; Vaghri, Elnaz; Saghaleini, Amir; Diudea, Mircea V

    2012-06-01

    Research on diamond-like carbon (DLC) films has been devoted to find both optimized conditions and characteristics of the deposited films on various substrates. In the present work, we investigate the quality of the DLC films grown on stainless steel substrates using different thickness of the nickel nanoparticle layers on the surface. Nickel nanoparticles were sputtered on the stainless steel substrates at 200 °C by a DC-sputtering system to make a good adherence between DLC coating and steel substrates. Atomic Force Microscopy was used to characterize the surface roughness and distribution function of the nickel nanoparticles on the substrate surface. Diamond like carbon films were deposited on stainless steel substrates coated by nickel using pure acetylene and C2H2/H2 with 15% flow ratio by DC-Plasma Enhanced Chemical Vapor Deposition (PECVD) systems. Microstructural analysis by Raman spectroscopy showed a low intensity ratio ID/IG for DLC films by increasing the Ni layer thickness on the stainless steel substrates. Fourier Transforms Infrared spectroscopy (FTIR) evidenced the peaks attributed to C-H bending and stretching vibration modes in the range of 1300-1700 cm-1 and 2700-3100 cm-1, respectively, in good agreement with the Raman spectroscopy and confirmed the DLC growth in all samples.

  16. Characterization and Evaluation of Aged Chromium Nickel Niobium Stainless Steels

    Science.gov (United States)

    Dewar, Matthew

    20Cr-32Ni-1Nb stainless steel alloys are commonly used in hydrogen reformer manifolds for transporting hot hydrogen by-products at 750-950°C. After long periods of exposure, embrittling secondary carbides and intermetallic phases can precipitate at the grain boundaries which can drastically reduce the ductility, and the repair weldability of the alloy. The intermetallic silicide, G-phase, is commonly observed in 20Cr-32Ni-1Nb stainless steels, and is prone to liquation cracking during welding operations. G-phase is deleterious to the material, where a high degree of G-phase coarsening will render the material unweldable. The present work will investigate various methods in mitigating G-phase precipitation. Variations in casting methods, wall thickness, homogenization treatments, and alloy chemistry will be examined by evaluating their microstructure after periodically aging the samples. Thermodynamic equilibrium modeling using computational thermodynamic tools will be used to optimize the 20Cr-32Ni-1Nb chemistry following ASTM specifications.

  17. Nickel-based materials and high-alloy, special stainless steels. 2. new rev. and enl. ed.

    International Nuclear Information System (INIS)

    Heubner, U.; Brill, U.; Hoffmann, T.; Jasner, M.; Kirchheiner, R.; Koecher, R.; Richter, H.; Rockel, M.; White, F.

    1993-01-01

    The book is intended as a source of information on nickel-based materials and special stainless steels and apart from the up-to-date materials data presents information on recent developments and knowledge gained, so that it may be a valuable aid to materials engineers looking for cost-effective resolutions of their materials problems in the chemical process industry, power plant operation, and high-temperature applications. The book presents eight individual contributions entitled as follows: (1) Nickel-base alloys and high-alloy, special stainless steels. - Materials survey and data sheets (Ulrich Heubner). (2) Corrosion of nickel-base alloys and special stainless steels (Manfred Rockel). (3) Welding of nickel-base alloys and high-alloy, special stainless steels (Theo Hoffmann). (4) High-temperature resistant materials (Ulrich Brill). (5) Application and processing of nickel-base materials in the chemical process industry and in pollution abatement equipment (Reiner Koecher). (6) Selected examples of applications of nickel-base materials in chemical plant (Manfred Jasner, Frederick White). (7) Applications of nickel-base alloys and special stainless steels in power plant. (8) The use of nickel-base alloys and stainless steels in pollution abatement processes (R. Kirchheiner). (orig./MM). 151 figs., 226 refs [de

  18. Impact of a nickel-reduced stainless steel implant on striated muscle microcirculation: a comparative in vivo study.

    Science.gov (United States)

    Kraft, C N; Burian, B; Perlick, L; Wimmer, M A; Wallny, T; Schmitt, O; Diedrich, O

    2001-12-05

    The impairment of skeletal muscle microcirculation by a biomaterial may have profound consequences. With moderately good physical and corrosion characteristics, implant-quality stainless steel is particularly popular in orthopedic surgery. However, due to the presence of a considerable amount of nickel in the alloy, concern has been voiced in respect to local tissue responses. More recently a stainless steel alloy with a significant reduction of nickel has become commercially available. We, therefore, studied in vivo nutritive perfusion and leukocytic response of striated muscle to this nickel-reduced alloy, and compared these results with those of the materials conventional stainless steel and titanium. Using the hamster dorsal skinfold chamber preparation and intravital microscopy, we could demonstrate that reduction of the nickel quantity in a stainless steel implant has a positive effect on local microvascular parameters. Although the implantation of a conventional stainless steel sample led to a distinct and persistent activation of leukocytes combined with disruption of the microvascular endothelial integrity, marked leukocyte extravasation, and considerable venular dilation, animals with a nickel-reduced stainless steel implant showed only a moderate increase of these parameters, with a clear tendency of recuperation. Titanium implants merely caused a transient increase of leukocyte-endothelial cell interaction within the first 120 min, and no significant change in macromolecular leakage, leukocyte extravasation, or venular diameter. Pending biomechanical and corrosion testing, nickel-reduced stainless steel may be a viable alternative to conventional implant-quality stainless steel for biomedical applications. Concerning tolerance by the local vascular system, titanium currently remains unsurpassed. Copyright 2001 John Wiley & Sons, Inc. J Biomed Mater Res 57: 404-412, 2001

  19. Comparison of radiographic density and compaction index of root canal obturation using nickel titanium or stainless-steel spreaders

    Directory of Open Access Journals (Sweden)

    M. Adel

    2016-08-01

    Full Text Available Background: Both nickel titanium and stainless-steel spreaders are available. The obvious advantage of nickel titanium spreader over stainless steel spreaders is greater penetration in curved canals. Objective: To compare the radiographic density and compaction index of root canal obturation using nickel-titanium or stainless-steel spreaders in curved canals. Methods: In this experimental study the primary weight of 30 acrylic blocks with 45o degrees of apical curvature were measured by a scale (W1. After canals were prepared by step back master apical up to file #30 all blocks were weighed again (W2 and randomly divided in two groups of 15each. All canals were obturated by Cold lateral compaction technique (with nickel-titanium in one group and stainless-steel finger spreaders in another group. After all blocks were reweighed (W3, compaction index (W3-W2/W1-W2 was calculated. One radiograph was taken for each sample. Apical density of the apical third of each canal was measured by digital transmission densitometer. Data were analyzed statistically using T-test. Findings: Mean compaction index for nickel-titanium group was 7.67±2.38 and for stainless-steel group was 9.14±4.06. There was no significant difference between two groups. Mean radiographic density of obturation was 2.05±0.14 in nickel-titanium group and was 2.07±0.21 in stainless-steel group. There was no significant difference between two groups. Conclusion: It is concluded that nickel-titanium spreaders are not superior than stainless-steel spreaders in obturating curved canal.

  20. Discontinuous precipitation in a nickel-free high nitrogen austenitic stainless steel on solution nitriding

    DEFF Research Database (Denmark)

    Mohammadzadeh, Roghayeh; Akbari, Alireza; Grumsen, Flemming Bjerg

    2017-01-01

    Chromium-rich nitride precipitates in production of nickel-free austenitic stainless steel plates via pressurised solution nitriding of Fe–22.7Cr–2.4Mo ferritic stainless steel at 1473 K (1200 °C) under a nitrogen gas atmosphere was investigated. The microstructure, chemical and phase composition......, morphology and crystallographic orientation between the resulted austenite and precipitates were investigated using optical microscopy, X-ray Diffraction (XRD), Scanning and Transmission Electron Microscopy (TEM) and Electron Back Scatter Diffraction (EBSD). On prolonged nitriding, Chromium-rich nitride...... precipitates were formed firstly close to the surface and later throughout the sample with austenitic structure. Chromium-rich nitride precipitates with a rod or strip-like morphology was developed by a discontinuous cellular precipitation mechanism. STEM-EDS analysis demonstrated partitioning of metallic...

  1. Nickel and chromium ion release from stainless steel bracket on immersion various types of mouthwashes

    Science.gov (United States)

    Mihardjanti, M.; Ismah, N.; Purwanegara, M. K.

    2017-08-01

    The stainless steel bracket is widely used in orthodontics because of its mechanical properties, strength, and good biocompatibility. However, under certain conditions, it can be susceptible to corrosion. Studies have reported that the release of nickel and chromium ions because of corrosion can cause allergic reactions in some individuals and are mutagenic. The condition of the oral environment can lead to corrosion, and one factor that can alter the oral environment is mouthwash. The aim of this study was to measure the nickel and chromium ions released from stainless steel brackets when immersed in mouthwash and aquadest. The objects consisted of four groups of 17 maxillary premolar brackets with .022 slots. Each group was immersed in a different mouthwash and aquadest and incubated at 37 °C for 30 days. After 30 days of immersion, the released ions were measured using the ICP-MS (Inductively Coupled Plasma-Mass Spectrometer). For statistical analysis, both the Kruskal-Wallis and Mann-Whitney tests were used. The results showed differences among the four groups in the nickel ions released (p < 0.05) and the chromium ions released (p < 0.5). In conclusion, the ions released as a result of mouthwash immersion have a small value that is below the limit of daily intake recommended by the World Health Organization.

  2. Systemic nickel: the contribution made by stainless-steel cooking utensils.

    Science.gov (United States)

    Flint, G N; Packirisamy, S

    1995-04-01

    An extensive programme of cooking operations, using household recipes, has shown that, apart from aberrant values associated with new pans on first use, the contribution made by 19 Cr/9 Ni stainless-steel cooking utensils to nickel in the diet is negligible. The amount of nickel (0 to 8 micrograms) derived from the utensils in standard portions of various "aggressive" foodstuffs tested was less than that to be found occurring in 1 square of a bitter-sweet chocolate bar. New pans, if first used with acid fruits, can show a greater pick-up of nickel, which, in the worst case observed, amounted to approximately 1/5 of the normal daily intake for the average person (ca. 200 micrograms). This situation does not recur in subsequent usage, even after the pan has been cleaned by abrasion. A higher rate of nickel release was observed in new pans on first use from 4 manufacturers located in different countries and appears to be a general phenomenon. This could provide a possible explanation for the high pick-up of nickel by acid fruits reported in 1 instance in the literature.

  3. Characterization of the dissimilar welding - austenitic stainless steel with filler metal of the nickel alloy

    International Nuclear Information System (INIS)

    Soares, Bruno Amorim; Schvartzman, Monica Maria de Abreu Mendonca; Campos, Wagner Reis da Costa

    2007-01-01

    In elevated temperature environments, austenitic stainless steel and nickel alloy has a superior corrosion resistance due to its high Cr content. Consequently, this alloys is widely used in nuclear reactors components and others plants of energy generation that burn fossil fuel or gas, chemical and petrochemical industries. The object of the present work was to research the welding of AISI 304 austenitic stainless steel using the nickel alloy filler metals, Inconel 625. Gas tungsten arc welding, mechanical and metallographic tests, and compositional analysis of the joint were used. A fundamental investigation was undertaken to characterize fusion boundary microstructure and to better understand the nature and character of boundaries that are associated with cracking in dissimilar welds. The results indicate that the microstructure of the fusion zone has a dendritic structure, inclusions, and precipitated phases containing Ti and Nb are present in the inter-dendritic region. In some parts near to the fusion line it can be seen a band in the weld, probably a eutectic phase with lower melting point than the AISI 304, were the cracking may be beginning by stress corrosion. (author)

  4. Corrosion of nickel and stainless steels in concentrated lithium hydroxide solutions

    International Nuclear Information System (INIS)

    Graydon, J.W.; Kirk, D.W.

    1990-06-01

    The corrosion behaviour of four alloys in 3 and 5 mol/L lithium hydroxide solutions under a hydrogen atmosphere at 95 degrees C was investigated. Corrosion of Nickel 200 and the stainless steels 316, 316L, and E-Brite 26-1 was assessed in two sets of immersion tests lasting 10 and 136 days. Corrosion rates were determined by weight loss, susceptibility to stress corrosion cracking was evaluated using U-bends, and the details of the corrosion process were studied on specimens with a mirror finish using light and electron microscopy, x-ray spectrometry and mapping, and x-ray diffraction. The long term corrosion rates were low for all alloys ( 2 , β-LiFeO 2 , and a very iron-rich β-LiFe 5 0 8 . The passivating layer on the nickel was Ni(OH) 2 . The underlying metal corroded evenly except for the 316 stainless steels. These showed a uniform intergranular corrosion with minor drop-out of smaller grains likely because of segregation of impurities to the grain boundaries. The walls of these intergranular crevices were covered with a passivating layer of chromium oxide. (8 figs., 5 tabs., 11 refs.)

  5. Comparative in vitro biocompatibility of nickel-titanium, pure nickel, pure titanium, and stainless steel: genotoxicity and atomic absorption evaluation.

    Science.gov (United States)

    Assad, M; Lemieux, N; Rivard, C H; Yahia, L H

    1999-01-01

    The genotoxicity level of nickel-titanium (NiTi) was compared to that of its pure constituents, pure nickel (Ni) and pure titanium (Ti) powders, and also to 316L stainless steel (316L SS) as clinical reference material. In order to do so, a dynamic in vitro semiphysiological extraction was performed with all metals using agitation and ISO requirements. Peripheral blood lymphocytes were then cultured in the presence of all material extracts, and their comparative genotoxicity levels were assessed using electron microscopy-in situ end-labeling (EM-ISEL) coupled to immunogold staining. Cellular chromatin exposition to pure Ni and 316L SS demonstrated a significantly stronger gold binding than exposition to NiTi, pure Ti, or the untreated control. In parallel, graphite furnace atomic absorption spectrophotometry (AAS) was also performed on all extraction media. The release of Ni atoms took the following decreasing distribution for the different resulting semiphysiological solutions: pure Ni, 316L SS, NiTi, Ti, and controls. Ti elements were detected after elution of pure titanium only. Both pure titanium and nickel-titanium specimens obtained a relative in vitro biocompatibility. Therefore, this quantitative in vitro study provides optimistic results for the eventual use of nickel-titanium alloys as surgical implant materials.

  6. Pelepasan ion nikel dan kromium kawat Australia dan stainless steel dalam saliva buatan (The release of nickel and chromium ions from Australian wire and stainless steel in artificial saliva)

    OpenAIRE

    Nolista Indah Rasyid; Pinandi Sri Pudyani; JCP Heryumani

    2014-01-01

    Background: Fixed orthodontic treatment needs several types of wire to produce biomechanical force to move teeth. The use orthodontic wire within the mouth interacts with saliva, causing the release of nickel and chromium ions. Purpose: The study was aimed to examine the effect of immersion time in artificial saliva between special type of Australian wire and stainless steel on the release of nickel and chromium ions. Methods: Thirty special type Australian wires and 30 stainless steel wires ...

  7. Weldability of neutron-irradiated stainless steel and nickel-base alloy

    International Nuclear Information System (INIS)

    Koyabu, Ken; Asano, Kyoichi; Takahashi, Hidenori; Sakamoto, Hiroshi; Kawano, Shohei; Nakamura, Tomomi; Hashimoto, Tsuneyuki; Koshiishi, Masato; Kato, Takahiko; Katsura, Ryoei; Nishimura, Seiji

    2000-01-01

    Degradation of of weldability caused by helium, which is generated by nuclear transmutation irradiated material, is an important issue to be addressed in planning of proactive maintenance of light water reactor core internal components. In this work, the weldability of neutron.irradiated stainless steel and nickel-base alloy, which are major constituting materials for components, was practically evaluated. The weldability was first examined by TIG welding in relation to the weld heat input and helium content using various specimens (made of SUS304 and SUS316L) sampled from reactor internal components. The specimens were neutron irradiated in a boiling water reactor to fluences from 4 x 10 24 to 1.4 x 10 26 n/ m 2 (E> l MeV ), and resulting helium generation ranged from 0.1 to 103 appm. The weld defects were characterized by dye penetrant test and cross-sectional metallography. The weldability of neutron-irradiated stainless steel was shown to be better at lower weld heat input and lower helium content. To evaluate mechanical properties of welded joints, thick plates (20 mm) specimens of SUS304 and Alloy 600 were prepared and irradiated in Japan Material Test Reactor (JMTR). The helium content of the specimens was controlled to range from 0.11 to 1.34 appm selected to determine threshold helium content to weld successfully. The welded joints had multiple passes by TIG welding process at 10 and 20 kJ/cm heat input. The welded joints of thick plate were characterized by dye penetrant test, cross-sectional metallography, tensile test, side bend test and root bend test. It was shown that irradiated stainless steel containing below 0.14 appm of helium could be welded with conventional TIG welding process (heat input below 20 kJ/cm). Nickel-base alloy, which contained as much helium as stainless steel could be welded successfully, could also be welded with conventional TIG welding process, These results served as basis to evaluate the applicability of repair welding to

  8. Interfacial microstructure and mechanical properties of diffusion-bonded titanium-stainless steel joints using a nickel interlayer

    International Nuclear Information System (INIS)

    Kundu, S.; Chatterjee, S.

    2006-01-01

    Diffusion bonding was carried out between commercially pure titanium and 304 stainless steel using nickel interlayer in the temperature range of 800-950 deg. C for 3.6 ks under 3 MPa load in vacuum. The transition joints thus formed were characterized in optical and scanning electron microscopes. TiNi 3 , TiNi and Ti 2 Ni are formed at the nickel-titanium (Ni-Ti) interface; whereas, stainless steel-nickel (SS-Ni) interface is free from intermetallic compounds up to 900 deg. C processing temperatures. At 950 deg. C, Ni-Ti interface exhibits the presence of β-Ti discrete islands in the matrix of Ti 2 Ni and the phase mixture of λ + χ + α-Fe, λ + α-Fe, λ + FeTi + β-Ti and FeTi + β-Ti occurs at the stainless steel-nickel interface. Nickel is able to inhibit the diffusion of Ti to stainless steel side up to 900 deg. C temperature; however, becomes unable to restrict the migration of Ti to stainless steel at 950 deg. C. Bond strength was also evaluated and maximum tensile strength of ∼302 MPa and shear strength of ∼219 MPa were obtained for the diffusion couple processed at 900 deg. C temperature due to better contact of the mating surfaces and failure takes place at the Ni-Ti interface. At higher joining temperature, the formation of Fe-Ti bases intermetallics reduces the bond strength and failure occurs at the SS-Ni interface

  9. Discontinuous precipitation in a nickel-free high nitrogen austenitic stainless steel on solution nitriding

    Science.gov (United States)

    Mohammadzadeh, Roghayeh; Akbari, Alireza; Grumsen, Flemming B.; Somers, Marcel A. J.

    2017-10-01

    Chromium-rich nitride precipitates in production of nickel-free austenitic stainless steel plates via pressurised solution nitriding of Fe-22.7Cr-2.4Mo ferritic stainless steel at 1473 K (1200 °C) under a nitrogen gas atmosphere was investigated. The microstructure, chemical and phase composition, morphology and crystallographic orientation between the resulted austenite and precipitates were investigated using optical microscopy, X-ray Diffraction (XRD), Scanning and Transmission Electron Microscopy (TEM) and Electron Back Scatter Diffraction (EBSD). On prolonged nitriding, Chromium-rich nitride precipitates were formed firstly close to the surface and later throughout the sample with austenitic structure. Chromium-rich nitride precipitates with a rod or strip-like morphology was developed by a discontinuous cellular precipitation mechanism. STEM-EDS analysis demonstrated partitioning of metallic elements between austenite and nitrides, with chromium contents of about 80 wt.% in the precipitates. XRD analysis indicated that the Chromium-rich nitride precipitates are hexagonal (Cr, Mo)2N. Based on the TEM studies, (Cr, Mo)2N precipitates presented a (1 1 1)γ//(0 0 2)(Cr, Mo)2N, ?γ//?(Cr, Mo)2N orientation relationship with respect to the austenite matrix. EBSD studies revealed that the austenite in the regions that have transformed into austenite and (Cr, Mo)2N have no orientation relation to the untransformed austenite.

  10. Soft tissue response to a new austenitic stainless steel with a negligible nickel content.

    Science.gov (United States)

    Tschon, M; Fini, M; Giavaresi, G; Borsari, V; Lenger, H; Bernauer, J; Chiesa, R; Cigada, A; Chiusoli, L; Giardino, R

    2005-10-01

    This study evaluates the soft tissue response to a new austenitic stainless steel with a low nickel content (P558) in comparison with a conventional stainless steel (SSt)and a titanium alloy (Ti6Al4V). Previous findings showed its in vitro biocompatibility by culturing P558 with healthy and osteoporotic osteoblasts and its in vivo effectiveness as bone implant material. Regarding its use as a material in osteosynthesis,P558 biocompatibility when implanted in soft tissues, as subcutis and muscle, was assessed. Disks and rods of these metals were implanted in rat subcutis and in rabbit muscle, respectively. Four and twelve weeks post surgery implants with surrounding tissue were retrieved for histologic and histomorphometric analysis: fibrous capsule thickness and new vessel formation were measured. Around all implanted materials, light microscopy highlighted a reactive and fibrous capsule formation coupled with ongoing neoangiogenesis both in rats and in rabbits. Histomorphometric measurements revealed a stronger inflammatory response,in terms of capsule thickness,surrounding SSt implants (9.8% Ni content) both in rat subcutis and in rabbit muscle independently of shape and site of implantation. A progressive decrease in capsule thickness around P558 (implantation. However,in the light of the previous and present studies, P558 is a good material, instead of titanium alloys, in orthopedic research.

  11. Welding of nickel free high nitrogen stainless steel: Microstructure and mechanical properties

    Directory of Open Access Journals (Sweden)

    Raffi Mohammed

    2017-04-01

    Full Text Available High nitrogen stainless steel (HNS is a nickel free austenitic stainless steel that is used as a structural component in defence applications for manufacturing battle tanks as a replacement of the existing armour grade steel owing to its low cost, excellent mechanical properties and better corrosion resistance. Conventional fusion welding causes problems like nitrogen desorption, solidification cracking in weld zone, liquation cracking in heat affected zone, nitrogen induced porosity and poor mechanical properties. The above problems can be overcome by proper selection and procedure of joining process. In the present work, an attempt has been made to correlate the microstructural changes with mechanical properties of fusion and solid state welds of high nitrogen steel. Shielded metal arc welding (SMAW, gas tungsten arc welding (GTAW, electron beam welding (EBW and friction stir welding (FSW processes were used in the present work. Optical microscopy, scanning electron microscopy and electron backscatter diffraction were used to characterize microstructural changes. Hardness, tensile and bend tests were performed to evaluate the mechanical properties of welds. The results of the present investigation established that fully austenitic dendritic structure was found in welds of SMAW. Reverted austenite pools in the martensite matrix in weld zone and unmixed zones near the fusion boundary were observed in GTA welds. Discontinuous ferrite network in austenite matrix was observed in electron beam welds. Fine recrystallized austenite grain structure was observed in the nugget zone of friction stir welds. Improved mechanical properties are obtained in friction stir welds when compared to fusion welds. This is attributed to the refined microstructure consisting of equiaxed and homogenous austenite grains.

  12. Ductility in a new low nickel stainless steel for reinforced concrete

    Directory of Open Access Journals (Sweden)

    Cobo, A.

    2011-12-01

    Full Text Available This paper discusses the stress-strain curves for a new low nickel stainless steel, a conventional AISI 304 stainless steel and a carbon steel commonly used in reinforced concrete structures. Ductility was studied in terms of ultimate tensile strength (fmax, elastic limit (fy and total elongation at maximum force [ultimate strain; uniform elongation] (εmax. The three materials were assessed with internationally accepted criteria, such as plastic rotational capacity, necking region and the toughness index (total energy absorbed at uniform elongation. The findings were compared to the properties of three types of conventional reinforcing steel: 500SD, 500N and 500H (EC-2.

    En este trabajo se presentan los diagramas tensióndeformación de un nuevo acero inoxidable con bajo contenido en níquel, un inoxidable convencional AISI 304 y un acero al carbono de uso común en estructuras de hormigón armado. Dicha ductilidad se ha estudiado determinando la tensión máxima (fmax, la tensión en el límite elástico (fy y la deformación bajo carga máxima (εmax. Los tres materiales se han evaluado utilizando criterios aceptados internacionalmente, como son el índice p (capacidad de rotación plástica, el índice A* (área plástica de endurecimiento y el índice de tenacidad Id (energía total absorbida en el punto de alargamiento bajo carga máxima, los resultados obtenidos se han comparado con los aceros convencionales de armaduras 500SD, 500N y 500H (EC-2.

  13. A preliminary investigation of the initiation of pitting corrosion in austenitic stainless steels and nickel-based alloys

    International Nuclear Information System (INIS)

    Higginson, A.

    1984-01-01

    Pitting corrosion in a number of austenitic stainless steels and nickel-based alloys that differ widely in their resistance to corrosion was studed by electrochemical and electron-optical techniques. The effect of contamination of the sulphuric acid electrolyte by chloride ions was also investigated. Preliminary results for the surface analysis of samples of 316 stainless steel by Auger electron spectroscopy are presented, and suggestions are included for further application of this technique to the examination of pitting corrosion. A comprehensive review of the literature concerning the initiation of pitting corrosion is included

  14. Monitoring of occupational exposure in manufacturing of stainless steel constructions. Part I: Chromium, iron, manganese, molybdenum, nickel and vanadium in the workplace air of stainless steel welders.

    Science.gov (United States)

    Kucera, J; Bencko, V; Pápayová, A; Saligová, D; Tejral, J; Borská, L

    2001-11-01

    Exposure to workplace airborne pollutants was examined in a group of 20 workers dealing mainly with welding, polishing, drilling and assembling of stainless steel constructions. Airborne particulate matter (APM) collected using both personal and stationary samplers was analyzed by instrumental neutron activation analysis (INAA). Quality assurance procedures of both sampling and analytical stages are described. Of the elements determined, results are presented for chromium, iron, manganese, molybdenum, nickel and vanadium. The median values of element concentrations exceeded the maximum admissible limits for workplace pollutants only for chromium, while for nickel the limit was exceeded in several individual cases. Sampling of hair, nails, blood, urine and saliva to be used for biological monitoring of the exposed and control groups is also described.

  15. Plastic strain characterization in austenitic stainless steels and nickel alloys by electron backscatter diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Saez-Maderuelo, A., E-mail: alberto.saez@ciemat.es [CIEMAT, Av. Complutense, 22-28040 Madrid (Spain); Castro, L.; Diego, G. de [CIEMAT, Av. Complutense, 22-28040 Madrid (Spain)

    2011-09-01

    Stress corrosion cracking (SCC) is enhanced by cold work and causes many problems in components of the nuclear power plants. Besides, during manufacturing, installation, welding and service of the material, residual strains can be produced increasing the susceptibility to SCC. For this reason, it is important to characterize the degree of plastic strain due to dislocation accumulation in each crystal. Electron backscatter diffraction (EBSD), in conjunction with scanning electron microscope (SEM), has been a great advance in this field because it enables to estimate the plastic strain in a quick and easy way. Nevertheless, over the last few years, a lot of different mathematical expressions to estimate the plastic strain have appeared in the literature. This situation hinders the election of one of them by a novel scientist in this field. Therefore, in this paper some of the more common expressions used in the calculation of the angular misorientation have been presented and discussed in order to clarify their more important aspects. Then, using one of these expressions (average local misorientation), curves relating misorientation density with known levels of strain will be obtained for an austenitic stainless steel 304L and nickel base alloy 690, which have shown a linear behaviour that is in good agreement with results found in the literature. Finally, using curves obtained in previous steps, levels of plastic strain in a plate of nickel base alloy 600 welded with weld metal 182 were estimated between 8 and 10% for a high temperature mill annealing sample.

  16. Plastic strain characterization in austenitic stainless steels and nickel alloys by electron backscatter diffraction

    International Nuclear Information System (INIS)

    Saez-Maderuelo, A.; Castro, L.; Diego, G. de

    2011-01-01

    Stress corrosion cracking (SCC) is enhanced by cold work and causes many problems in components of the nuclear power plants. Besides, during manufacturing, installation, welding and service of the material, residual strains can be produced increasing the susceptibility to SCC. For this reason, it is important to characterize the degree of plastic strain due to dislocation accumulation in each crystal. Electron backscatter diffraction (EBSD), in conjunction with scanning electron microscope (SEM), has been a great advance in this field because it enables to estimate the plastic strain in a quick and easy way. Nevertheless, over the last few years, a lot of different mathematical expressions to estimate the plastic strain have appeared in the literature. This situation hinders the election of one of them by a novel scientist in this field. Therefore, in this paper some of the more common expressions used in the calculation of the angular misorientation have been presented and discussed in order to clarify their more important aspects. Then, using one of these expressions (average local misorientation), curves relating misorientation density with known levels of strain will be obtained for an austenitic stainless steel 304L and nickel base alloy 690, which have shown a linear behaviour that is in good agreement with results found in the literature. Finally, using curves obtained in previous steps, levels of plastic strain in a plate of nickel base alloy 600 welded with weld metal 182 were estimated between 8 and 10% for a high temperature mill annealing sample.

  17. Absorption of Nickel, Chromium, and Iron by the Root Surface of Primary Molars Covered with Stainless Steel Crowns

    Directory of Open Access Journals (Sweden)

    David Keinan

    2010-01-01

    Full Text Available Objective. The purpose of this study was to analyze the absorption of metal ions released from stainless steel crowns by root surface of primary molars. Study Design. Laboratory research: The study included 34 primary molars, exfoliated or extracted during routine dental treatment. 17 molars were covered with stainless-steel crowns for more than two years and compared to 17 intact primary molars. Chemical content of the mesial or distal root surface, 1 mm apically to the crown or the cemento-enamel junction (CEJ, was analyzed. An energy dispersive X-ray spectrometer (EDS was used for chemical analysis. Results. Higher amounts of nickel, chromium, and iron (5-6 times were found in the cementum of molars covered with stainless-steel crowns compared to intact molars. The differences between groups were highly significant (<.001. Significance. Stainless-steel crowns release nickel, chromium, and iron in oral environment, and the ions are absorbed by the primary molars roots. The additional burden of allergenic metals should be reduced if possible.

  18. Plating on stainless steel alloys

    International Nuclear Information System (INIS)

    Dini, J.W.; Johnson, H.R.

    1981-01-01

    Quantitative adhesion data are presented for a variety of electroplated stainless steel type alloys. Results show that excellent adhesion can be obtained by using a Wood's nickel strike or a sulfamate nickel strike prior to final plating. Specimens plated after Wood's nickel striking failed in the deposit rather than at the interface between the substrate and the coating. Flyer plate quantitative tests showed that use of anodic treatment in sulfuric acid prior to Wood's nickel striking even further improved adhesion. In contrast activation of stainless steels by immersion or cathodic treatment in hydrochloric acid resulted in very reduced bond strengths with failure always occurring at the interface between the coating and substrate

  19. Poly(ophenylenediaminecoaniline/ZnO coated on passivated low nickel stainless steel

    Directory of Open Access Journals (Sweden)

    P. Karthikeyan

    2017-03-01

    Full Text Available Iron and its alloys are broadly used in many applications, which have strengthened the research in corrosion resistance in various neutral and provoking environments. Almost powerful corrosion inhibitors have negative effects on both environment and health. Therefore, there is a need for a primer that provides outstanding adherence and corrosion resistance, and is environmentally safer. The conducting polymer coating on metals was found to offer the anti-corrosion. In this work, the Poly(o-phenylenediamine-co-aniline copolymers (P(Popd-co-Ani and Poly(o-phenylenediamine-co-aniline/ZnO (P(Popd-co-Ani/ZnO composite were synthesized using the electrochemical techniques on borate passivated low nickel stainless steel (LN SS electrodes from lithium perchlorate in acetonitrile solutions containing a fixed concentration of monomer and different concentrations of zinc oxide (ZnO. The structural and morphological analyses of the copolymer and composite coatings were conducted by Fourier transform-infrared spectroscopy (FT-IR, X-ray diffraction (XRD, field emission scanning electron microscopy (FE-SEM, elemental mapping and energy dispersion X-ray spectroscopy (EDX. The surface topography was assessed with using an atomic force microscope (AFM, and the corrosion protection behavior of these copolymer-coated stainless steels was investigated in a 0.5 M H2SO4 solution by the potentiodynamic polarization (Tafel and electrochemical impedance spectroscopy methods. Among the as developed protective copolymer coatings, the P(Popd-co-Ani/ZnO composite exhibited the best corrosion protection.

  20. Canal preparation with nickel-titanium or stainless steel instruments without the risk of instrument fracture: preliminary observations

    OpenAIRE

    Ghassan Yared

    2015-01-01

    This report introduces a novel technique that allows a safe and predictable canal negotiation, creation of a glide path and canal preparation with reciprocating nickel-titanium or stainless steel engine-driven instruments in canals where the use of rotary and the newly developed reciprocating instruments is contraindicated. In this novel technique, the instruments are used in reciprocating motion with very small angles. Hand files are not used regardless of the complexity of the canal anatomy...

  1. Pyrolysis-catalysis of waste plastic using a nickel-stainless-steel mesh catalyst for high-value carbon products.

    Science.gov (United States)

    Zhang, Yeshui; Nahil, Mohamad A; Wu, Chunfei; Williams, Paul T

    2017-11-01

    A stainless-steel mesh loaded with nickel catalyst was produced and used for the pyrolysis-catalysis of waste high-density polyethylene with the aim of producing high-value carbon products, including carbon nanotubes (CNTs). The catalysis temperature and plastic-to-catalyst ratio were investigated to determine the influence on the formation of different types of carbon deposited on the nickel-stainless-steel mesh catalyst. Increasing temperature from 700 to 900°C resulted in an increase in the carbon deposited on the nickel-loaded stainless-steel mesh catalyst from 32.5 to 38.0 wt%. The increase in sample-to-catalyst ratio reduced the amount of carbon deposited on the mesh catalyst in terms of g carbon g -1 plastic. The carbons were found to be largely composed of filamentous carbons, with negligible disordered (amorphous) carbons. Transmission electron microscopy analysis of the filamentous carbons revealed them to be composed of a large proportion (estimated at ∼40%) multi-walled carbon nanotubes (MWCNTs). The optimum process conditions for CNT production, in terms of yield and graphitic nature, determined by Raman spectroscopy, was catalysis temperature of 800°C and plastic-to-catalyst ratio of 1:2, where a mass of 334 mg of filamentous/MWCNTs g -1 plastic was produced.

  2. The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells

    KAUST Repository

    Selembo, Priscilla A.; Merrill, Mathew D.; Logan, Bruce E.

    2009-01-01

    Microbial electrolysis cells (MECs) are used to produce hydrogen gas from the current generated by bacteria, but low-cost alternatives are needed to typical cathode materials (carbon cloth, platinum and Nafion™). Stainless steel A286 was superior to platinum sheet metal in terms of cathodic hydrogen recovery (61% vs. 47%), overall energy recovery (46% vs. 35%), and maximum volumetric hydrogen production rate (1.5 m3 m-3 day-1 vs. 0.68 m3 m-3 day-1) at an applied voltage of 0.9 V. Nickel 625 was better than other nickel alloys, but it did not perform as well as SS A625. The relative ranking of these materials in MEC tests was in agreement with cyclic voltammetry studies. Performance of the stainless steel and nickel cathodes was further increased, even at a lower applied voltage (0.6 V), by electrodepositing a nickel oxide layer onto the sheet metal (cathodic hydrogen recovery, 52%, overall energy recovery, 48%; maximum volumetric hydrogen production rate, 0.76 m3 m-3 day-1). However, performance of the nickel oxide cathodes decreased over time due to a reduction in mechanical stability of the oxides (based on SEM-EDS analysis). These results demonstrate that non-precious metal cathodes can be used in MECs to achieve hydrogen gas production rates better than those obtained with platinum. © 2009 Elsevier B.V. All rights reserved.

  3. The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells

    KAUST Repository

    Selembo, Priscilla A.

    2009-05-01

    Microbial electrolysis cells (MECs) are used to produce hydrogen gas from the current generated by bacteria, but low-cost alternatives are needed to typical cathode materials (carbon cloth, platinum and Nafion™). Stainless steel A286 was superior to platinum sheet metal in terms of cathodic hydrogen recovery (61% vs. 47%), overall energy recovery (46% vs. 35%), and maximum volumetric hydrogen production rate (1.5 m3 m-3 day-1 vs. 0.68 m3 m-3 day-1) at an applied voltage of 0.9 V. Nickel 625 was better than other nickel alloys, but it did not perform as well as SS A625. The relative ranking of these materials in MEC tests was in agreement with cyclic voltammetry studies. Performance of the stainless steel and nickel cathodes was further increased, even at a lower applied voltage (0.6 V), by electrodepositing a nickel oxide layer onto the sheet metal (cathodic hydrogen recovery, 52%, overall energy recovery, 48%; maximum volumetric hydrogen production rate, 0.76 m3 m-3 day-1). However, performance of the nickel oxide cathodes decreased over time due to a reduction in mechanical stability of the oxides (based on SEM-EDS analysis). These results demonstrate that non-precious metal cathodes can be used in MECs to achieve hydrogen gas production rates better than those obtained with platinum. © 2009 Elsevier B.V. All rights reserved.

  4. Copper and nickel hexacyanoferrate nanostructures with graphene-coated stainless steel sheets for electrochemical supercapacitors

    Science.gov (United States)

    Wu, Mao-Sung; Lyu, Li-Jyun; Syu, Jhih-Hao

    2015-11-01

    Copper and nickel hexacyanoferrate (CuHCF and NiHCF) nanostructures featuring three-dimensional open-framework tunnels are prepared using a solution-based coprecipitation process. CuHCF shows superior supercapacitive behavior than the NiHCF, due to the presence of numerous macropores in CuHCF particles for facilitating the transport of electrolyte. Both CuHCF and NiHCF electrodes with stainless steel (SS) substrate tend to lose their electroactivity towards intercalation/deintercalation of hydrated potassium ions owing to the partial corrosion of SS. Formation of a protective and conductive carbon layer in between SS and CuHCF (NiHCF) film is of paramount importance for improving the irreversible loss of electroactivity. Thin and compact graphene (GN) layer without observable holes in its normal plane is the most effective way to suppress the corrosion of SS compared with porous carbon nanotube and activated carbon layers. Specific capacitance of CuHCF electrode with GN layer (CuHCF/GN/SS) reaches 570 F g-1, which is even better than that of CuHCF with Pt substrate (500 F g-1) at 1 A g-1. The CuHCF/GN/SS exhibits high stability with 96% capacitance retention over 1000 cycles, greater than the CuHCF with Pt (75%).

  5. Observations of a fcc helium gas-bubble superlattice in copper, nickel, and stainless steel

    International Nuclear Information System (INIS)

    Johnson, P.B.; Mazey, D.J.

    1980-01-01

    Transmission electron microscopy is used to investigate the spatial arrangement of the small gas bubbles produced in several fcc metals by 30 keV helium ion irradiation to high dose at 300 K. In what is a new result for this important class of metals it is found that the helium gas bubbles lie on a superlattice having an fcc structure with principal axes aligned with those of the metal matrix. The bubble lattice constant asub(i), is measured for a helium fluence just below the critical dose for radiation blistering of the metal surface (approximately 4 x 10 17 He/cm 2 ). Implantation rates are typically approximately 10 14 He ions cm -2 sec -1 . The values of asub(i) obtained for copper, nickel and stainless steel are (7.6 +- 0.3)nm, (6.6 +- 0.5)nm and (6.4 +- 0.5)nm respectively. Above the critical dose the bubble lattice is seen to survive in some blister caps as well as in the region between blisters. Bubble alignment is also observed in the case of hydrogen bubbles produced in copper by low energy proton irradiation to high fluence at 300 K. The presentation of this data was accompanied by a cine film illustrating the behaviour of the gas bubble lattice in copper during post-irradiation annealing in the electron microscope. A summary of the film is given in the appendix. (author)

  6. The observation of helium gas bubble lattices in copper, nickel and stainless steel

    International Nuclear Information System (INIS)

    Johnson, P.B.; Mazey, D.J.

    1978-10-01

    Transmission electron microscopy is used to investigate the spatial arrangement of the small gas bubbles produced in several fcc metals by 30 keV helium ion irradiation to high dose at 300K. In what is a new result for this important class of metals it is found that the helium gas bubbles lie on a superlattice having an fcc structure with principal axes aligned with those of the metal matrix. The bubble lattice constant, asub(l), is measured for a helium fluence just below the critical dose for radiation blistering of the metal surface. Implantation rates are typically approximately 10 14 He ions cm -2 sec -1 . The values of asub(l) obtained for copper, nickel and stainless steel are given. Above the critical dose the bubble lattice is seen to survive in some blister caps as well as in the region between blisters. Bubble alignment is also observed in the case of hydrogen bubbles produced in copper by low energy proton irradiation to high fluence at 300K. (author)

  7. Mechanical and microstructural integrity of nickel-titanium and stainless steel laser joined wires

    International Nuclear Information System (INIS)

    Vannod, J.; Bornert, M.; Bidaux, J.-E.; Bataillard, L.; Karimi, A.; Drezet, J.-M.; Rappaz, M.; Hessler-Wyser, A.

    2011-01-01

    The biomedical industry shows increasing interest in the joining of dissimilar metals, especially with the aim of developing devices that combine different mechanical and corrosive properties. As an example, nickel-titanium shape memory alloys joined to stainless steel are very promising for new invasive surgery devices, such as guidewires. A fracture mechanics study of such joined wires was carried out using in situ tensile testing and scanning electron microscopy imaging combined with chemical analysis, and revealed an unusual fracture behaviour at superelastic stress. Nanoindentation was performed to determine the mechanical properties of the welded area, which were used as an input for mechanical computation in order to understand this unexpected behaviour. Automated image correlation allowed verification of the mechanical modelling and a reduced stress-strain model is proposed to explain the special fracture mechanism. This study reveals the fact that tremendous property changes at the interface between the NiTi base wire and the weld area have more impact on the ultimate tensile strength than the chemical composition variation across the welded area.

  8. Microstructure and properties of gravity sintered 316l stainless steel powder with nickel boride addition

    Directory of Open Access Journals (Sweden)

    Božić Dušan

    2016-01-01

    Full Text Available The present work demonstrates a procedure for synthesis of stainless steel powder by gravity sintering method. As an additive to the basic powder, NiB powder was added in the amount of 0.2 - 1.0 wt.%. Gravity sintering was done in vacuum, at the temperatures of 1100°C-1250°C, in the course of 3 - 60 min, using ceramic mould. Structural characterization was conducted by XRD, and microstructural analysis by optical and scanning electron microscope (SEM. Mechanical properties were investigated by tensile tests with steel rings. Density and permeability were determined by standard techniques for porous samples. Gravity sintered stainless steel with NiB addition had more superior mechanical and physico-chemical properties compared to stainless steel obtained by standard powder metallurgy procedures - pressing and sintering. [Projekat Ministarstva nauke Republike Srbije, br. 172005

  9. Effect of Low Nickel Dopant on Torque Transducer Response Function in High-Chromium Content ESR Stainless Tool Steels

    Science.gov (United States)

    Wiewel, Joseph L.; Hecox, Bryan G.; Orris, Jason T.; Boley, Mark S.

    2007-03-01

    The change in magnetoelastic torque transducer response was investigated as a low nickel content (up to 0.2%) is alloyed into an ESR (Electro-Slag-Refining) stainless tool steel with a chromium content of around 13%, which our previous studies have proven to be the ideal level of chromium content for optimal transducer performance. Two separate hollow steel 3/4-inch diameter shafts were prepared from ESR 416 and ESR 420 steel, respectively, the first having no nickel content and the second having 0.2% nickel content. The heat treatment of these steels consisted of a hardening process conducted in a helium atmosphere at 1038^oC, followed by an annealing at 871^oC for 5h and a 15^oC cool down rate. Prior and subsequent to the heat treatment processes, the circumferential and axial magnetic hysteresis properties of the samples were measured and their external field signals were mapped over the magnetically polarized regions both with and without applied shear stress up to 2500 psi on the samples. It was found that the effect of the low nickel dopant was to improve torque transducer sensitivity and linearity, but heat treatment worsened the performance of both samples.

  10. Pelepasan ion nikel dan kromium kawat Australia dan stainless steel dalam saliva buatan (The release of nickel and chromium ions from Australian wire and stainless steel in artificial saliva

    Directory of Open Access Journals (Sweden)

    Nolista Indah Rasyid

    2014-09-01

    Full Text Available Background: Fixed orthodontic treatment needs several types of wire to produce biomechanical force to move teeth. The use orthodontic wire within the mouth interacts with saliva, causing the release of nickel and chromium ions. Purpose: The study was aimed to examine the effect of immersion time in artificial saliva between special type of Australian wire and stainless steel on the release of nickel and chromium ions. Methods: Thirty special type Australian wires and 30 stainless steel wires were used in this study, each of which weighed 0.12 grams. The wires were immersed for 1, 7, 28, 35, 42, and 49 days in artificial saliva with a normal pH. The release of ions in saliva was examined using Atomic Absorption spectrophotometry. Results: The result indicated that the release of nickel ions on special type of Australian wire was larger than that on stainless steel wire (p<0.005, there were differences in the release of the amount of nickel ions on special type of Australia in different immersion time, and there was a correlation between the types of wire and immersion time. Nickel ions released from the special type of Australian wire detected on the 7th day of immersion and reached its peak on the 35th day, while from stainless steel wire were detected on the 49th day of immersion. The released of chromium ions from the special type of Australian wire and stainless steel wire were not detected until the 49th day of immersion. Conclusion: The release of nickel ions were highest on the 35th day of immersion in special type of Australian wire and they were detected on the 49th day in stainless steel wire. The release of chromium ions were not detected until 49th day of immersion in special type of Australian and stainless steel wire.Latar belakang: Perawatan ortodonti cekat memerlukan beberapa macam kawat untuk menghasilkan kekuatan biomekanika yang sesuai dalam menggerakkan gigi. Pemakaian kawat ortodonti di dalam mulut dapat bereaksi dengan

  11. Effects of solution temperature on localized corrosion of high nickel content stainless steels and nickel in chromated LiBr solution

    International Nuclear Information System (INIS)

    Munoz, A. Igual; Anton, J. Garcia; Guinon, J.L.; Perez Herranz, V.

    2006-01-01

    The potentiodynamic technique has been used to study the general and localized corrosion resistance of high-alloyed stainless steels (UNS N02031 and UNS R20033) and nickel (UNS N02205) at different temperatures (from 25 deg. C to 80 deg. C) in a heavy brine Lithium Bromide solution. The engineering question of concern is the compatibility of the LiBr fluid with the structural materials of refrigeration systems which use absorption technology. The results of potentiodynamic polarization studies indicate excellent corrosion resistance for stainless steels in LiBr solution at room temperature and no big differences at temperatures above 50 deg. C. In the temperature range of 25-80 deg. C, a linear relationship exists between logarithmic of corrosion rate and reciprocal of absolute temperature (Arrhenius plot). The linear plots showed that the mechanism of the corresponding passivation process is the same for the three investigated alloys, essentially due to the presence of nickel. Tests indicated that stainless steels UNS N02031 and UNS R20033 were the most suitable for use to be used in the construction of absorption units for refrigeration purposes

  12. Canal preparation with nickel-titanium or stainless steel instruments without the risk of instrument fracture: preliminary observations

    Directory of Open Access Journals (Sweden)

    Ghassan Yared

    2015-02-01

    Full Text Available This report introduces a novel technique that allows a safe and predictable canal negotiation, creation of a glide path and canal preparation with reciprocating nickel-titanium or stainless steel engine-driven instruments in canals where the use of rotary and the newly developed reciprocating instruments is contraindicated. In this novel technique, the instruments are used in reciprocating motion with very small angles. Hand files are not used regardless of the complexity of the canal anatomy. It also allows achieving predictable results in canal negotiation and glide path creation in challenging canals without the risk of instrument fracture.

  13. Microstructure characterization in the weld joint of a high nickel austenitic alloy and Cr18-Ni8 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Na; Li, Yajiang; Wang, Juan [Shandong Univ., Jinan (CN). Key Lab. for Liquid - Solid Structural Evolution and Processing of Materials (Ministry of Education)

    2012-06-15

    High nickel austenitic alloy, 6 mm thick, and Cr18-Ni8 stainless steel with a thickness of 0.6 mm were joined by pulsed current tungsten inert gas arc welding without filler metal in this work. Metallographic examination, microhardness measurement and electron microprobe analysis were used to reveal microstructural characteristics in the joint. The results indicated that the weld metal consisted of {gamma}-austenite, {delta}-ferrite and carbides without the appearance of martensite. There were dendrite crystals at the edge of the weld metal near the high nickel austenitic alloy and isometric crystals in the center of the weld metal. The microhardness of the weld metal was the highest due to the existence of carbides and its finer structure. Graphite flakes were still embedded in the austenite matrix of the heat-affected zone without the formation of martensite. (orig.)

  14. Nickel titanium springs versus stainless steel springs: A randomized clinical trial of two methods of space closure.

    Science.gov (United States)

    Norman, Noraina Hafizan; Worthington, Helen; Chadwick, Stephen Mark

    2016-09-01

    To compare the clinical performance of nickel titanium (NiTi) versus stainless steel (SS) springs during orthodontic space closure. Two-centre parallel group randomized clinical trial. Orthodontic Department University of Manchester Dental Hospital and Orthodontic Department Countess of Chester Hospital, United Kingdom. Forty orthodontic patients requiring fixed appliance treatment were enrolled, each being randomly allocated into either NiTi (n = 19) or SS groups (n = 21). Study models were constructed at the start of the space closure phase (T0) and following the completion of space closure (T1). The rate of space closure achieved for each patient was calculated by taking an average measurement from the tip of the canine to the mesiobuccal groove on the first permanent molar of each quadrant. The study was terminated early due to time constraints. Only 30 patients completed, 15 in each study group. There was no statistically significant difference between the amounts of space closed (mean difference 0.17 mm (95%CI -0.99 to 1.34; P = 0.76)). The mean rate of space closure for NiTi coil springs was 0.58 mm/4 weeks (SD 0.24) and 0.85 mm/4 weeks (SD 0.36) for the stainless steel springs. There was a statistically significant difference between the two groups (P = 0.024), in favour of the stainless steel springs, when the mean values per patient were compared. Our study shows that stainless steel springs are clinically effective; these springs produce as much space closure as their more expensive rivals, the NiTi springs.

  15. Intergranular Corrosion Behavior of Low-Nickel and 304 Austenitic Stainless Steels

    Science.gov (United States)

    Bansod, Ankur V.; Patil, Awanikumar P.; Moon, Abhijeet P.; Khobragade, Nilay N.

    2016-09-01

    Intergranular corrosion (IGC) susceptibility for Cr-Mn austenitic stainless steel and 304 austenitic stainless steel (ASS) was estimated using electrochemical techniques. Optical and SEM microscopy studies were carried out to investigate the nature of IGC at 700 °C with increasing time (15, 30, 60, 180, 360, 720, 1440 min) according to ASTM standard 262 A. Quantitative analysis was performed to estimate the degree of sensitization (DOS) using double loop electrochemical potentiokinetic reactivation (DLEPR) and EIS technique. DLEPR results indicated that with the increase in thermal aging duration, DOS becomes more severe for both types of stainless steel. The DOS for Cr-Mn ASS was found to be higher (65.12% for 1440 min) than that of the AISI 304 ASS (23% for 1440 min). The higher degree of sensitization resulted in lowering of electrical charge capacitance resistance. Chronoamperometry studies were carried out at a passive potential of 0.4 V versus SCE and was observed to have a higher anodic dissolution of the passive film of Cr-Mn ASS. EDS studies show the formation of chromium carbide precipitates in the vicinity of the grain boundary. The higher Mn content was also observed for Cr-Mn ASS at the grain boundary.

  16. Monitoring of occupational exposure in manufacturing of stainless steel constructions. Part I: Chromium, iron, manganese, molybdenum, nickel and vanadium in the workplace air of stainless steel welders

    International Nuclear Information System (INIS)

    Kucera, J.; Hnatowicz, V.; Bencko, V.; Papayova, A.; Saligova, D.; Tejral, J.; Borska, L.

    2000-01-01

    Exposure to workplace airborne pollutants was examined in a group of 20 workers dealing mainly with welding, polishing, drilling and assembling of stainless steel constructions. Monitoring of airborne particulate matter (ARM) was performed using both personal and stationary samplers. For the personal full-shift monitoring, a SKC 224 PCRX-4 constant flow rate pump was used which was connected to a sampling head with mixed cellulose matched-weight filters having a diameter of 32 mm and a 0.8 μm pore size. The constant flow rate amounted to 2 L min -1 . For the stationary sampling, the ''Gent'' stacked filter unit PM10 sampler was used, operating at a flow rate of 16 L min -1 . It collects particles having an equivalent aerodynamic diameter (EAD) of less than 10,um in the separate ''coarse'' (2-10 μm EAD) and ''fine'' (< 2 μm EAD) size fractions on two sequential polycarbonate (Costar, Nuclepore) filters with a 47 mm diameter. The filters of both types were analyzed by instrumental neutron activation analysis (INAA). Of the elements determined, results for chromium, iron, manganese, molybdenum, nickel and vanadium are presented. Procedures for quality assurance of both sampling and analytical stages are described. Sampling of biological material for elemental analysis (hair, nails, urine and blood and/or serum) of exposed and control persons in contamination-free conditions was also performed. In addition, saliva samples were collected for studying immunological and genotoxicity aspects of occupational exposure. (author)

  17. Corrosion behavior of 2205 duplex stainless steel.

    Science.gov (United States)

    Platt, J A; Guzman, A; Zuccari, A; Thornburg, D W; Rhodes, B F; Oshida, Y; Moore, B K

    1997-07-01

    The corrosion of 2205 duplex stainless steel was compared with that of AISI type 316L stainless steel. The 2205 stainless steel is a potential orthodontic bracket material with low nickel content (4 to 6 wt%), whereas the 316L stainless steel (nickel content: 10 to 14 wt%) is a currently used bracket material. Both stainless steels were subjected to electrochemical and immersion (crevice) corrosion tests in 37 degrees C, 0.9 wt% sodium chloride solution. Electrochemical testing indicates that 2205 has a longer passivation range than 316L. The corrosion rate of 2205 was 0.416 MPY (milli-inch per year), whereas 316L exhibited 0.647 MPY. When 2205 was coupled to 316L with equal surface area ratio, the corrosion rate of 2205 reduced to 0.260 MPY, indicating that 316L stainless steel behaved like a sacrificial anode. When 316L is coupled with NiTi, TMA, or stainless steel arch wire and was subjected to the immersion corrosion test, it was found that 316L suffered from crevice corrosion. On the other hand, 2205 stainless steel did not show any localized crevice corrosion, although the surface of 2205 was covered with corrosion products, formed when coupled to NiTi and stainless steel wires. This study indicates that considering corrosion resistance, 2205 duplex stainless steel is an improved alternative to 316L for orthodontic bracket fabrication when used in conjunction with titanium, its alloys, or stainless steel arch wires.

  18. Microstructural development of diffusion-brazed austenitic stainless steel to magnesium alloy using a nickel interlayer

    International Nuclear Information System (INIS)

    Elthalabawy, Waled M.; Khan, Tahir I.

    2010-01-01

    The differences in physical and metallurgical properties of stainless steels and magnesium alloys make them difficult to join using conventional fusion welding processes. Therefore, the diffusion brazing of 316L steel to magnesium alloy (AZ31) was performed using a double stage bonding process. To join these dissimilar alloys, the solid-state diffusion bonding of 316L steel to a Ni interlayer was carried out at 900 deg. C followed by diffusion brazing to AZ31 at 510 deg. C. Metallographic and compositional analyses show that a metallurgical bond was achieved with a shear strength of 54 MPa. However, during the diffusion brazing stage B 2 intermetallic compounds form within the joint and these intermetallics are pushed ahead of the solid/liquid interface during isothermal solidification of the joint. These intermetallics had a detrimental effect on joint strengths when the joint was held at the diffusion brazing temperature for longer than 20 min.

  19. Microstructure Evolution During Stainless Steel-Copper Vacuum Brazing with a Ag/Cu/Pd Filler Alloy: Effect of Nickel Plating

    Science.gov (United States)

    Choudhary, R. K.; Laik, A.; Mishra, P.

    2017-03-01

    Vacuum brazing of stainless steel and copper plates was done using a silver-based filler alloy. In one set of experiments, around 30-µm-thick nickel coatings were electrochemically applied on stainless steel plates before carrying out the brazing runs and its effect in making changes in the braze-zone microstructure was studied. For brazing temperature of 830 °C, scanning electron microscopy examination of the braze-zone revealed that relatively sound joints were obtained when brazing was done with nickel-coated stainless steel than with uncoated one. However, when brazing of nickel-coated stainless steel and copper plates was done at 860 °C, a wide crack appeared in the braze-zone adjacent to copper side. Energy-dispersive x-ray analysis and electron microprobe analysis confirmed that at higher temperature, the diffusion of Cu atoms from copper plate towards the braze-zone was faster than that of Ni atoms from nickel coating. Helium leak rate of the order 10-11 Pa m3/s was obtained for the crack-free joint, whereas this value was higher than 10-4 Pa m3/s for the joint having crack. The shear strength of the joint was found to decrease considerably due to the presence of crack.

  20. Weldability of Stainless Steels

    International Nuclear Information System (INIS)

    Saida, Kazuyoshi

    2010-01-01

    It gives an outline of metallographic properties of welding zone of stainless steels, generation and mechanisms of welding crack and decreasing of corrosion resistance of welding zone. It consists of seven chapters such as introduction, some kinds of stainless steels and properties, metallographic properties of welding zone, weld crack, toughness of welding zone, corrosion resistance and summary. The solidification modes of stainless steels, each solidification mode on the cross section of Fe-Cr-Ni alloy phase diagram, each solidification mode of weld stainless steels metal by electron beam welding, segregation state of alloy elements at each solidification mode, Schaeffler diagram, Delong diagram, effects of (P + S) mass content in % and Cr/Ni equivalent on solidification cracking of weld stainless steels metal, solidification crack susceptibility of weld high purity stainless steels metal, effects of trace impurity elements on solidification crack susceptibility of weld high purity stainless steels metal, ductile fracture susceptibility of weld austenitic stainless steels metal, effects of H2 and ferrite content on generation of crack of weld 25Cr-5N duplex stainless steels, effects of O and N content on toughness of weld SUS 447J1 metals, effect of ferrite content on aging toughness of weld austenitic stainless steel metal, corrosion morphology of welding zone of stainless steels, generation mechanism of knife line attack phenomenon, and corrosion potential of some kinds of metals in seawater at room temperature are illustrated. (S.Y.)

  1. Precipitate evolution in low-nickel austenitic stainless steels during neutron irradiation at very low dose rates

    International Nuclear Information System (INIS)

    Isobe, Y.; Sagisaka, M.; Garner, F.; Okita, T.

    2007-01-01

    Full text of publication follows: Not all components of a fusion reactor will be subjected to high atomic displacement rates. Some components outside the plasma containment may experience relatively low displacement rates but data generated under long-term irradiation at low dpa rates is hard to obtain. In another study the neutron-induced microstructural evolution in response to long term irradiation at very low dose rates was studied for a Russian low-nickel austenitic stainless steel that is analogous to AISI 304. The irradiated samples were obtained from an out-of-core anti-crush support column for the BN-600 fast reactor with doses ranging from 1.5 to 22 dpa generated at 3x10 -9 to 4x10 -8 dpa/s. The irradiation temperatures were in a very narrow range of 370-375 deg. C. Microstructural observation showed that in addition to voids and dislocations, an unexpectedly high density of small carbide precipitates was formed that are not usually observed at higher dpa rates in this temperature range. These results required us to ask if such unexpected precipitation was anomalous or was a general feature of low-flux, long-term irradiation. It is shown in this paper that a similar behavior was observed in a western stainless steel, namely AISI 304 stainless steel, irradiated at similar temperatures and dpa rates in the EBR-II fast reactor, indicating that irradiation at low dpa rates for many years leads to a different precipitate microstructure and therefore different associated changes in matrix composition than are generated at higher dpa rates. One consequence of this precipitation is a reduced lattice parameter of the alloy matrix, leading to densification that increases in strength with increasing temperature and dose. A. non-destructive method to evaluate these precipitates is under development and is also discussed in this paper. (authors)

  2. Influence of PWHT on Toughness of High Chromium and Nickel Containing Martensitic Stainless Steel Weld Metals

    Science.gov (United States)

    Divya, M.; Das, Chitta Ranjan; Mahadevan, S.; Albert, S. K.; Pandian, R.; Kar, Sujoy Kumar; Bhaduri, A. K.; Jayakumar, T.

    2015-06-01

    Commonly used 12.5Cr-5Ni consumable specified for welding of martensitic stainless steels is compared with newly designed 14.5Cr-5Ni consumable in terms of their suitability for repair welding of 410 and 414 stainless steels by gas tungsten arc welding process. Changes in microstructure and austenite evolution were investigated using optical, scanning electron microscopy, X-ray diffraction techniques and Thermo-Calc studies. Microstructure of as-welded 12.5Cr-5Ni weld metal revealed only lath martensite, whereas as-welded 14.5Cr-5Ni weld metal revealed delta-ferrite, retained austenite, and lath martensite. Toughness value of as-welded 12.5Cr-5Ni weld metal is found to be significantly higher (216 J) than that of the 14.5Cr-5Ni weld metal (15 J). The welds were subjected to different PWHTs: one at 923 K (650 °C) for 1, 2, 4 hours (single-stage PWHT) and another one at 923 K (650 °C)/4 h followed by 873 K (600 °C)/2 h or 873 K (600 °C)/4 h (two-stage heat treatment). Hardness and impact toughness of the weld metals were measured for these weld metals and correlated with the microstructure. The study demonstrates the importance of avoiding formation of delta-ferrite in the weld metal.

  3. Sealing of thermally-sprayed stainless steel coatings against corrosion using nickel electroplating technique

    Directory of Open Access Journals (Sweden)

    Hathaipat Koiprasert

    2007-07-01

    Full Text Available Electric arc spraying (EAS is one of the thermal spray techniques used for restoration and to providecorrosion resistance. It can be utilized to build up coatings to thicknesses of several millimeters, It is easy to use on-site. Most importantly, the cost of this technique is lower than other thermal spraying techniques thatmay be suitable for part restoration. A major disadvantage associated with the electric arc sprayed coating is its high porosity, which can be as high as 3-8% making it not appropriate for use in immersion condition. This work was carried out around the idea of using electroplating to seal off the pore of the EAS coating, with an aim to improve the corrosion resistance of the coating in immersion condition. This research compared the corrosion behavior of a stainless steel 316 electric arc sprayed coating in 2M NaOH solution at 25oC. It was found that the Ni plating used as sealant can improve the corrosion resistance of the EAS coating. Furthermore, the smoothened and plated stainless steel 316 coating has a better corrosion resistance than the plated EAS coating that was not ground to smoothen the surface before plating.

  4. Effect of water purity on intergranular stress corrosion cracking of stainless steel and nickel alloys in BWRs

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, B. [Structural Integrity Associates (United States); Garcia, S. [Electric Power Research Institute (United States)

    2011-07-01

    Boiling water reactors (BWRs) operate with very high purity water. While even the utilization of a very low conductivity water (e.g., 0.06 {mu}S/cm) coolant cannot prevent intergranular stress corrosion cracking (IGSCC) of sensitized stainless steel and nickel alloys under oxygenated conditions, the presence of certain impurities in the coolant can dramatically increase the probability of this most insidious form of corrosion. The goal of this paper is to present the effect of effect of only a few ionic impurities plus zinc on the IGSCC propensities of BWR stainless steel piping and reactor internals under both oxygenated, i.e., normal water chemistry (NWC) and deoxygenated, i.e., hydrogen water chemistry (HWC) conditions. More specifically, of the numerous impurities identified in the BWR coolant (e.g., lithium, sodium, potassium, silica, borate, chromate, phosphate, sulphate, chloride, nitrate, cuprous, cupric, ferrous, etc.) only strong acid anions sulfate and chloride that are stable in the highly reducing crack tip environment rather than the bulk water conductivity will be discussed in detail. Nitrate will be briefly discussed as representing a species that is not thermodynamically stable in the crack while the effects of zinc is discussed as a deliberate additive to the BWR environment. (authors)

  5. Corrosion behaviour of austenitic stainless steel, nickel-base alloy and its weldments in aqueous LiBr solutions

    Energy Technology Data Exchange (ETDEWEB)

    Blasco-Tamarit, E.; Igual-Munoz, A.; Garcia Anton, J.; Garcia-Garcia, D. [Departamento de Ingenieria Quimica y Nuclear. E.T.S.I.Industriales, Universidad Politecnica de Valencia, P.O. Box 22012 E-46071 Valencia (Spain)

    2004-07-01

    With the advances in materials production new alloys have been developed, such as High- Alloy Austenitic Stainless Steels and Nickel-base alloys, with high corrosion resistance. These new alloys are finding applications in Lithium Bromide absorption refrigeration systems, because LiBr is a corrosive medium which can cause serious corrosion problems, in spite of its favourable properties as absorbent. The objective of the present work was to study the corrosion resistance of a highly alloyed austenitic stainless steel (UNS N08031) used as base metal, a Nickel-base alloy (UNS N06059) used as its corresponding filler metal, and the weld metal obtained by the Gas Tungsten Arc Welding (GTAW) procedure. The materials have been tested in different LiBr solutions (400 g/l, 700 g/l, 850 g/l and a commercial 850 g/l LiBr heavy brine containing Lithium Chromate as corrosion inhibitor), at 25 deg. C. Open Circuit Potential tests and potentiodynamic anodic polarization curves have been carried out to obtain information about the general electrochemical behaviour of the materials. The polarization curves of all the alloys tested were typical of passivable materials. Pitting corrosion susceptibility has been evaluated by means of cyclic potentiodynamic curves, which provide parameters to analyse re-passivation properties. The galvanic corrosion generated by the electrical contact between the welded and the base material has been estimated from the polarization diagrams according to the Mixed Potential Method. Samples have been etched to study the microstructure by Scanning Electron Microscopy (SEM). The results demonstrate that the pitting resistance of all these materials increases as the LiBr concentration decreases. In general, the presence of chromate tended to shift the pitting potential to more positive values than those obtained in the 850 g/l LiBr solution. (authors)

  6. Hot rolling of chromium - nickel - manganese stainless steel containing nitrogen and boron

    International Nuclear Information System (INIS)

    Khorosh, V.A.; Bulat, S.I.; Mukhina, M.A.; Sorokina, N.A.; Yushchenko, K.A.; Tsentral'nyj Nauchno-Issledovatel'skij Inst. Chernoj Metallurgii, Moscow; AN Ukrainskoj SSR, Kiev. Inst. Ehlektrosvarki)

    1976-01-01

    The strength of stainless steel of the 03Kh2ON16AG6 type increases perceptibly with an increase in the nitrogen content from 0.11 to 0.37%. At the same time, however, its ductility in the region of hot deformation temperatures (red brittleness range of 800 to 1,000 deg C) decreases. Microalloying with boron (0.002 to 0.005% by calculation) permits enhancing the hot ductility to an acceptable level without adversely affecting the working properties. The mechaniusm of boron effect is analyzed. The temperature at which ingots are heated prior to rolling to achieve the desired effect must be sufficiently low. Optimum condition for two stage heating of 6.2-ton ingots are recommeded

  7. Photo-Electrochemical Effect of Zinc Addition on the Electrochemical Corrosion Potentials of Stainless Steels and Nickel Alloys in High Temperature Water

    International Nuclear Information System (INIS)

    Lee, Yi-Ching; Fong, Clinton; Fang-Chu, Charles; Chang, Ching

    2012-09-01

    Hydrogen water chemistry (HWC) is one of the main mitigating methods for stress corrosion cracking problem of reactor core stainless steel and nickel based alloy components. Zinc is added to minimize the radiation increase associated with HWC. However, the subsequently formed zinc-containing surface oxides may exhibit p-type semiconducting characteristics. Upon the irradiation of Cherenkov and Gamma ray in the reactor core, the ECP of stainless steels and nickel based alloys may shift in the anodic direction, possibly offsetting the beneficial effect of HWC. This study will evaluate the photo-electrochemical effect of Zinc Water Chemistry on SS304 stainless steel and Alloy 182 nickel based weld metal under simulated irradiated BWR water environments with UV illumination. The experimental results reveal that Alloy 182 nickel-based alloy generally possesses n-type semiconductor characteristics in both oxidizing NWC and reducing HWC conditions with zinc addition. Upon UV irradiation, the ECP of Alloy 182 will shift in the cathodic direction. In most conditions, SS304 will also exhibit n-type semiconducting properties. Only under hydrogen water chemistry, a weak p-type property may emerge. Only a slight upward shift in the anodic direction is detected when SS304 is illuminated with UV light. The potential influence of p-type semiconductor of zinc containing surface oxides is weak and the mitigation effect of HWC on the stress corrosion cracking is not adversely affected. (authors)

  8. Estimation of changes in nickel and chromium content in nickel-titanium and stainless steel orthodontic wires used during orthodontic treatment: An analytical and scanning electron microscopic study

    Directory of Open Access Journals (Sweden)

    Vandana Kararia

    2015-01-01

    Full Text Available Introduction: The biocompatibility of orthodontic dental alloys has been investigated over the past 20 years, but the results have been inconclusive. The study compares standard 3 M Unitek nickel-titanium (NiTi and stainless steel archwires with locally available JJ orthodontics wires. Scanning electron microscope (SEM study of surface changes and complexometric titration to study compositional change was performed. Materials and Methods: Ten archwires each of group 1-3 M 0.016" NiTi, group 2-JJ 0.016" NiTi, group 3-3 M 0.019" FNx010.025" SS and group 4-JJ SS contributed a 10 mm piece of wire for analysis prior to insertion in the patient and 6 weeks post insertion. SEM images were recorded at Χ2000, Χ4000 and Χ6000 magnification. The same samples were subjected to complexiometric titration using ethylenediaminetetraacetic acid to gauge the actual change in the composition. Observations and Results: The SEM images of all the archwires showed marked changes with deep scratches and grooves and dark pitting corrosion areas post intraoral use. 3M wires showed an uniform criss-cross pattern in as received wires indicating a coating which was absent after intraoral use. There was a significant release of Nickel and Chromium from both group 3 and 4. Group 2 wires released ions significantly more than group 1 (P = 0.0. Conclusion: Extensive and stringent trials are required before certifying any product to be used in Orthodontics.

  9. Corrosion of stainless steels and nickel-base alloys in solutions of nitric acid and hydrofluoric acid

    International Nuclear Information System (INIS)

    Horn, E.M.; Renner, M.

    1992-01-01

    Reactions involving nitric acid may always result in the contamination of this acid with fluorides. In highly concentrted nitric acid, the presence of small amounts of HF will substantially reduce the corrosion of metallic materials. Mixtures consisting of hydrofluoric acid and hypo-azeotropic nitric acid on the other hand will strongly attack: the metal loss will markedly increase with increasing HNO 3 and HF concentrations as well as with rising temperatures. The investigation covered 12 stainless steel grades and nickel-base alloys. With constant HNO 3 content, corrosion rates will rise linearly when increasing the HF concentration. With constant HF concentration (0,25 M), corrosion rates will increase rapidly with increasing nitric acid concentration (from 0.3 M to 14.8 M). This can best be described by superimposing a linear function and a hyperbolic function that is reflecting the change in the HNO 3 content. Alloys containing as much chromium as possible (up to 46 wt.%) will exhibit the best corrosion resistance. Alloy NiCr30FeMo (Hastelloy alloy G-30) proved to be well suitable in this investigation. (orig.) [de

  10. The influence of nickel-nitrogen ratio on the deformation behaviour of austenitic stainless steels

    CSIR Research Space (South Africa)

    Schmid, OE

    1992-01-01

    Full Text Available necking is resisted when martensite forms gradually and selectively, preventing the formation and propagation of micronecks and microcracks. The microstructures of ten alloys, each having a type 301 base composition, but systematically varying nickel...

  11. A comparison of torque expression between stainless steel, titanium molybdenum alloy, and copper nickel titanium wires in metallic self-ligating brackets.

    Science.gov (United States)

    Archambault, Amy; Major, Thomas W; Carey, Jason P; Heo, Giseon; Badawi, Hisham; Major, Paul W

    2010-09-01

    The force moment providing rotation of the tooth around the x-axis (buccal-lingual) is referred to as torque expression in orthodontic literature. Many factors affect torque expression, including the wire material characteristics. This investigation aims to provide an experimental study into and comparison of the torque expression between wire types. With a worm-gear-driven torquing apparatus, wire was torqued while a bracket mounted on a six-axis load cell was engaged. Three 0.019 x 0.0195 inch wire (stainless steel, titanium molybdenum alloy [TMA], copper nickel titanium [CuNiTi]), and three 0.022 inch slot bracket combinations (Damon 3MX, In-Ovation-R, SPEED) were compared. At low twist angles (wires were not statistically significant. At twist angles over 24 degrees, stainless steel wire yielded 1.5 to 2 times the torque expression of TMA and 2.5 to 3 times that of nickel titanium (NiTi). At high angles of torsion (over 40 degrees) with a stiff wire material, loss of linear torque expression sometimes occurred. Stainless steel has the largest torque expression, followed by TMA and then NiTi.

  12. Endodontic complications of root canal therapy performed by dental students with stainless-steel K-files and nickel-titanium hand files.

    Science.gov (United States)

    Pettiette, M T; Metzger, Z; Phillips, C; Trope, M

    1999-04-01

    Straightening of curved canals is one of the most common procedural errors in endodontic instrumentation. This problem is commonly encountered when dental students perform molar endodontics. The purpose of this study was to compare the effect of the type of instrument used by these students on the extent of straightening and on the incidence of other endodontic procedural errors. Nickel-titanium 0.02 taper hand files were compared with traditional stainless-steel 0.02 taper K-files. Sixty molar teeth comprised of maxillary and mandibular first and second molars were treated by senior dental students. Instrumentation was with either nickel-titanium hand files or stainless-steel K-files. Preoperative and postoperative radiographs of each tooth were taken using an XCP precision instrument with a customized bite block to ensure accurate reproduction of radiographic angulation. The radiographs were scanned and the images stored as TIFF files. By superimposing tracings from the preoperative over the postoperative radiographs, the degree of deviation of the apical third of the root canal filling from the original canal was measured. The presence of other errors, such as strip perforation and instrument breakage, was established by examining the radiographs. In curved canals instrumented by stainless-steel K-files, the average deviation of the apical third of the canals was 14.44 degrees (+/- 10.33 degrees). The deviation was significantly reduced when nickel-titanium hand files were used to an average of 4.39 degrees (+/- 4.53 degrees). The incidence of other procedural errors was also significantly reduced by the use of nickel-titanium hand files.

  13. Nickel cobaltite nanograss grown around porous carbon nanotube-wrapped stainless steel wire mesh as a flexible electrode for high-performance supercapacitor application

    International Nuclear Information System (INIS)

    Wu, Mao-Sung; Zheng, Zhi-Bin; Lai, Yu-Sheng; Jow, Jiin-Jiang

    2015-01-01

    Graphical abstract: Nickel cobaltite nanograss with bimodal pore size distribution is grown around the carbon nanotube-wrapped stainless steel wire mesh as a high capacitance and stable electrode for high-performance and flexible supercapacitors. - Highlights: • NiCo 2 O 4 nanograss with bimodal pore size distribution is hydrothermally prepared. • Carbon nanotubes (CNTs) wrap around stainless steel (SS) wire mesh as a scaffold. • NiCo 2 O 4 grown on CNT-wrapped SS mesh shows excellent capacitive performance. • Porous CNT layer allows for rapid transport of electron and electrolyte. - Abstract: Nickel cobaltite nanograss with bimodal pore size distribution (small and large mesopores) is grown on various electrode substrates by one-pot hydrothermal synthesis. The small pores (<5 nm) in the nanograss of individual nanorods contribute to large surface area, while the large pore channels (>20 nm) between nanorods offer fast transport paths for electrolyte. Carbon nanotubes (CNTs) with high electrical conductivity wrap around stainless steel (SS) wire mesh by electrophoresis as an electrode scaffold for supporting the nickel cobaltite nanograss. This unique electrode configuration turns out to have great benefits for the development of supercapacitors. The specific capacitance of nickel cobaltite grown around CNT-wrapped SS wire mesh reaches 1223 and 1070 F g −1 at current densities of 1 and 50 A g −1 , respectively. CNT-wrapped SS wire mesh affords porous and conductive networks underneath the nanograss for rapid transport of electron and electrolyte. Flexible CNTs connect the nanorods to mitigate the contact resistance and the volume expansion during cycling test. Thus, this tailored electrode can significantly reduce the ohmic resistance, charge-transfer resistance, and diffusive impedance, leading to high specific capacitance, prominent rate performance, and good cycle-life stability.

  14. Review of corrosion phenomena on zirconium alloys, niobium, titanium, inconel, stainless steel, and nickel plate under irradiation

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.

    1975-01-01

    The role of nuclear fluxes in corrosion processes was investigated in ATR, ETR, PRTR, and in Hanford production reactors. Major effort was directed to zirconium alloy corrosion parameter studies. Corrosion and hydriding results are reported as a function of oxygen concentration in the coolant, flux level, alloy composition, surface pretreatment, and metallurgical condition. Localized corrosion and hydriding at sites of bonding to dissimilar metals are described. Corrosion behavior on specimens transferred from oxygenated to low-oxygen coolants in ETR and ATR experiments is compared. Mechanism studies suggest that a depression in the corrosion of the Zr--2.5Nb alloy under irradiation is due to radiation-induced aging. The radiation-induced onset of transition on several alloys is in general a gradual process which nucleates locally, causing areas of oxide prosity which eventually encompass the surface. Examination of Zry-2 process tubes reveals that accelerated corrosion has occurred in low-oxygen coolants. Hydrogen contents are relatively low, but show some localized profiles. Gross hydriding has occurred on process tubes containing aluminum spacers, apparently by a galvanic charging mechanism. Titanium paralleled Zry-2 in corrosion behavior under irradiation. Niobium corrosion was variable, but did not appear to be strongly influenced by radiation. Corrosion rates on Inconel and stainless steel were only slightly higher in-flux than out-of-reactor. Corrosion rates on nickel-plated aluminum appeared to vary substantially with preexposure treatments, but the rates generally were accelerated compared to rates on unirradiated coupons. (59 references, 11 tables, 12 figs.)

  15. Comparison of nickel and chromium ions released from stainless steel and NiTi wires after immersion in Oral B®, Orthokin® and artificial saliva.

    Science.gov (United States)

    Jamilian, Abdolreza; Moghaddas, Omid; Toopchi, Shabnam; Perillo, Letizia

    2014-07-01

    Oral environment of the mouth is a suitable place for biodegradation of alloys used in orthodontic wires. The toxicity of these alloys namely nickel and chromium has concerned the researchers about the release of these ions from orthodontic wires and brackets. The aim of this study was to measure the levels of nickel and chromium ions released from 0.018" stainless steel (SS) and NiTi wires after immersion in three solutions. One hundred and forty-four round NiTi and 144 round SS archwires with the diameters of 0.018" were immersed in Oral B®, Orthokin® and artificial saliva. The amounts of nickel and chromium ions released were measured after 1, 6, 24 hours and 7 days. Two way repeated ANOVA showed that the amount of chromium and nickel significantly increased in all solutions during all time intervals (p nickel ions were released more in NiTi wire in all solutions compared with SS wire. The lowest increase rate was also seen in artificial saliva. There is general consensus in literature that even very little amounts of nickel and chromium are dangerous for human body specially when absorbed orally; therefore, knowing the precise amount of these ions released from different wires when immersed in different mouthwashes is of high priority.

  16. Standard practice for determining the susceptibility of stainless steels and related Nickel-Chromium-Iron Alloys to stress-corrosion cracking in polythionic acids

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers procedures for preparing and conducting the polythionic acid test at room temperature, 22 to 25°C (72 to 77°F), to determine the relative susceptibility of stainless steels or other related materials (nickel-chromiumiron alloys) to intergranular stress corrosion cracking. 1.2 This practice can be used to evaluate stainless steels or other materials in the “as received” condition or after being subjected to high-temperature service, 482 to 815°C (900 to 1500°F), for prolonged periods of time. 1.3 This practice can be applied to wrought products, castings, and weld metal of stainless steels or other related materials to be used in environments containing sulfur or sulfides. Other materials capable of being sensitized can also be tested in accordance with this test. 1.4 This practice may be used with a variety of stress corrosion test specimens, surface finishes, and methods of applying stress. 1.5 This standard does not purport to address all of the safety concerns, if any, ...

  17. The influence of artificial salivary pH on nickel ion release and the surface morphology of stainless steel bracket-nickel-titanium archwire combinations

    Directory of Open Access Journals (Sweden)

    Ida Bagus Narmada

    2017-06-01

    Full Text Available Background: In the oral cavity, orthodontic appliances come into contact with saliva which may cause corrosion capable of changing their surface morphology due to the release of metal ions. Surface roughness can influence the effectiveness of tooth movement. One of the ions possibly released when body fluid comes into contact with brackets and archwire is nickel ion (Ni. Ni, one of the most popular components of orthodontic appliances, is, however, a toxic element that could potentially increase the likelihood of health problems such as allergic responses during treatment. Purpose: The purpose of this study was to investigate the effect of different artificial salivary pH on the ions released and the surface morphology of stainless steel (SS brackets-nickel-titanium (NiTi and archwire combinations. Methods: Brackets and archwires were analyzed by an Energy Dispersive X-Ray Detector System (EDX to determine their composition, while NiTi archwire compound was examined by means of X-ray Diffraction (XRD. The immersion test was performed at artificial salivary pH levels of 4.2; 6.5; and 7.6 at 37°C for 28 days. Ni ion release measurement was performed using an Atomic Absorption Spectroscopy (AAS. Surface morphology was analyzed by means of a Scanning Electron Microscopy (SEM. Results: The chemical composition of all orthodontic appliances contained Ni element. In addition, XRD was depicted phases not only NiTi but also Ni, Titanium, Silicon and Zinc Oleate. The immersion test showed that the highest release of Ni ions occured at a pH of 4.2, with no significant difference at various levels of pH (p=.092. There were surface morphology changes in the orthodontic appliances. It was revealed that at a pH of 4.2, the surfaces of orthodontic appliances become unhomogenous and rough compared to those at other pH concentrations. Conclusion: The reduction of pH in the artificial saliva increases the amount of released Ni ions, as well as causing changes to

  18. Austenitic stainless steels with cryogenic resistance

    International Nuclear Information System (INIS)

    Tarata, Daniela Florentina

    1999-01-01

    The most used austenitic stainless steels are alloyed with chromium and nickel and have a reduced carbon content, usually lower than 0.1 % what ensures corresponding properties for processing by plastic deformation at welding, corrosion resistance in aggressive environment and toughness at low temperatures. Steels of this kind alloyed with manganese are also used to reduce the nickel content. By alloying with manganese which is a gammageneous element one ensures the stability of austenites. Being cheaper these steels may be used extensively for components and equipment used in cryogenics field. The best results were obtained with steels of second group, AMnNi, in which the designed chemical composition was achieved, i.e. the partial replacement of nickel by manganese ensured the toughness at cryogenic temperatures. If these steels are supplementary alloyed, their strength properties may increase to the detriment of plasticity and toughness, although the cryogenic character is preserved

  19. Stress corrosion cracking of austenitic stainless steels in high temperature water and alternative stainless steel

    International Nuclear Information System (INIS)

    Yonezawa, T.

    2015-01-01

    In order to clarify the effect of SFE on SCC resistance of austenitic stainless steels and to develop the alternative material of Type 316LN stainless steel for BWR application, the effect of chemical composition and heat treatment on SFE value and SCCGR in oxygenated high temperature water were studied. The correlation factors between SFE values for 54 heats of materials and their chemical compositions for nickel, molybdenum, chromium, manganese, nitrogen, silicon and carbon were obtained. From these correlation factors, original formulae for SFE values calculation of austenitic stainless steels in the SHTWC, SHTFC and AGG conditions were established. The maximum crack length, average crack length and cracked area of the IGSCC for 33 heats were evaluated as IGSCC resistance in oxygenated high temperature water. The IGSCC resistance of strain hardened nonsensitized austenitic stainless steels in oxygenated high temperature water increases with increasing of nickel contents and SFE values. From this study, it is suggested that the SFE value is a key parameter for the IGSCC resistance of non-sensitized strain hardened austenitic stainless steels. As an alternative material of Type 316LN stainless steel, increased SFE value material, which is high nickel, high chromium, low silicon and low nitrogen material, is recommendable. (author)

  20. Effect of phase instabilities on the correlation of nickel ion and neutron irradiation swelling in solution annealed 316 stainless steel

    International Nuclear Information System (INIS)

    Rowcliffe, A.F.; Lee, E.H.; Sklad, P.S.

    1979-01-01

    Annealed 316 stainless steel specimens were neutron irradiated to establish steady-state microstructures and then subjected to further high temperature irradiations with 4 MeV Ni ions. It is shown that void growth under neutron irradiation is simulated in ion irradiations carried out at approx. 180 0 C above reactor temperature. However, the precipitate microstructure developed during neutron irradiation is unstable during subsequent ion irradiation. As a result, the relative swelling rates at various reactor temperatures are not simulated correctly

  1. Effect of the Addition of Nickel Powder and Post Weld Heat Treatment on the Metallurgical and Mechanical Properties of the Welded UNS S32304 Duplex Stainless Steel

    Directory of Open Access Journals (Sweden)

    Ali Tahaei

    Full Text Available Abstract In this research, the effect of the addition of nickel powder and the application of a post weld heat treatment (PWHT on the welding properties of the UNS S32304 lean duplex stainless steel were investigated in order to improve the microstructure and mechanical properties. Nickel powder was directly poured inside the joint gap and mixed with the filler metal during the Gas Tungsten Arc Welding (GTAW process; moreover, the solution heat treatment was performed at 1100 °C for 10 min. The joints were characterized by optical microscopy (OM and the evolution of the phase percentages in the different zones was studied by means of the image analysis technique. Tensile and hardness tests were carried out on the joints in order to evaluate the improvement of the mechanical properties. The results showed that both the addition of nickel powder during the welding process and the post weld heat treatment made it possible to improve the mechanical properties of the weld joints. PWHT had the best effect in restoring the equal percentage of ferrite and austenite compared to the addition of nickel powder.

  2. Advances in stainless steels

    International Nuclear Information System (INIS)

    Baldev Raj; Jayakumar, T.; Saibaba, Saroja; Sivaprasad, P.V.; Shankar, P.

    2010-01-01

    This book covers a broad spectrum of topics spanning the entire life cycle of stainless steel-from alloy design and characterization to engineering design, fabrication, mechanical properties, corrosion, quality assurance of components, in-service performance assessment, life prediction and finally failure analysis of materials and components. The contents provide useful feedback for further developments aimed at effective utilization of this class of materials. The book comprises articles that bring out contemporary developments in stainless steels and is thematically classified into the following sections. 1. Component design, modelling and structural integrity, 2. Manufacturing technology, 3. Property evaluation, 4. Alloy development and applications, 5. NDE methods, 6. Corrosion and surface modification. The book commences with articles on component design and structural integrity, thus opening up the areas of challenge for researchers and academia. The articles in the book relevant to INIS are indexed separately

  3. Hydrogen effects in stainless steel

    International Nuclear Information System (INIS)

    Caskey, G.R. Jr.

    1983-01-01

    The effects of hydrogen on stainless steels have been reviewed and are summarized in this paper. Discussion covers hydrogen solution and transport in stainless steels as well as the effects of hydrogen on deformation and fracture under various loading conditions. Damage is caused also by helium that arises from decay of the hydrogen isotope tritium. Austenitic, ferritic, martensite, and precipitation-hardenable stainless steels are included in the discussion. 200 references

  4. Niobium stainless steel for implants

    International Nuclear Information System (INIS)

    Rollo, J.M.D.A.

    1983-01-01

    The materials that have often been used, during the last two or three decades, to carry out materials for implants are made according to the specifications: a)A.S.T.M. (F.55-76, F.56-76, F.138-76, F.139-76) stainless steel b)A.S.T.M. (F.75-76), cobalt-chromium-molybdenum alloys. c)A.S.T.M. (F.90-76), cobalt-chromium-tungsten-nickel alloys. d)A.S.T.M. (F.67-77), unalloyed titanium. e)A.S.T.M. (F.136-70), titanium alloys. It was the purpose of retaking them, toverify the niobium influence as alloy element in ANSI/ASTM F.55-76 classification stainless steels, usually for these materials elaboration. The problem by substituting molybdenum total or partially for niobium, by comparing the mechanical and corrosion properties, and biocompatibility is presented, by pointing out the variables of these substitutions, when we employ this new material to perform materials for implants. (Author) [pt

  5. Evaluation of the Pulmonary Toxicity of a Fume Generated from a Nickel-, Copper-Based Electrode to be Used as a Substitute in Stainless Steel Welding

    Science.gov (United States)

    Antonini, James M; Badding, Melissa A; Meighan, Terence G; Keane, Michael; Leonard, Stephen S; Roberts, Jenny R

    2014-01-01

    Epidemiology has indicated a possible increase in lung cancer among stainless steel welders. Chromium (Cr) is a primary component of stainless steel welding fume. There is an initiative to develop alternative welding consumables [nickel (Ni)- and copper (Cu)-based alloys] that do not contain Cr. No study has been performed to evaluate the toxicity of fumes generated from Ni- and Cu-based consumables. Dose–response and time-course effects on lung toxicity of a Ni- and Cu-based welding fume (Ni–Cu WF) were examined using an in vivo and in vitro bioassay, and compared with two other well-characterized welding fumes. Even though only trace amounts of Cr were present, a persistent increase in lung injury and inflammation was observed for the Ni–Cu WF compared to the other fumes. The difference in response appears to be due to a direct cytotoxic effect by the Ni–Cu WF sample on lung macrophages as opposed to an elevated production of reactive oxygen species (ROS). PMID:25392698

  6. Investigation of the Effects of Solution Temperature on the Corrosion Behavior of Austenitic Low-Nickel Stainless Steels in Citric Acid using Impedance and Polarization Measurements

    Directory of Open Access Journals (Sweden)

    Mulimbayan Francis M.

    2015-01-01

    Full Text Available Stainless steels may be classified according to alloy microstructure – ferritic, austenitic, martensitic, duplex, and precipitation hardening grades. Among these, austenitic grade has the largest contribution to market due to the alloy’s numerous industrial and domestic applications. In this study, the corrosion behavior of low-Nickel stainless steel in citric acid was investigated using potentiodynamic polarization techniques and Electrochemical Impedance Spectroscopy (EIS. The corrosion current density which is directly related to corrosion rate was extracted from the generated anodic polarization curve. Increasing the temperature of the citric acid resulted to increased corrosion current densities indicating higher corrosion rates at initial corrosion condition. EIS was performed to generate Nyquist plots whose shape and size depicts the corrosion mechanism and corrosion resistance of the alloy in citric acid, respectively. All the generated Nyquist plots have depressed semi-circle shapes implying that corrosion process takes place with charge-transfer as the rate-determining step. Based from the extracted values of polarization resistance (Rp, the temperature of the solution has negative correlation with the corrosion resistance of the studied alloy.

  7. The Interfacial Microstructure and Mechanical Properties of Diffusion-Bonded Joints of 316L Stainless Steel and the 4J29 Kovar Alloy Using Nickel as an Interlayer

    Directory of Open Access Journals (Sweden)

    Tingfeng Song

    2016-11-01

    Full Text Available 316L stainless steel (Fe–18Cr–11Ni and a Kovar (Fe–29Ni–17Co or 4J29 alloy were diffusion-bonded via vacuum hot-pressing in a temperature range of 850–950 °C with an interval of 50 °C for 120 min and at 900 °C for 180 and 240 min, under a pressure of 34.66 MPa. Interfacial microstructures of diffusion-bonded joints were characterized by optical microscopy (OM, scanning electron microscopy (SEM, X-ray diffraction (XRD, and energy dispersive spectroscopy (EDS. The inter-diffusion of the elements across the diffusion interface was revealed via electron probe microanalysis (EPMA. The mechanical properties of the joints were investigated via micro Vickers hardness and tensile strength. The results show that an Ni interlayer can serve as an effective diffusion barrier for the bonding of 316L stainless steel and the 4J29 Kovar alloy. The composition of the joints was 316L/Ni s.s (Fe–Cr–Ni/remnant Ni/Ni s.s (Fe–Co–Ni/4J29. The highest tensile strength of 504.91 MPa with an elongation of 38.75% was obtained at 900 °C for 240 min. After the width of nickel solid solution (Fe–Co–Ni sufficiently increased, failure located at the 4J29 side and the fracture surface indicated a ductile nature.

  8. Hydrogen damage in stainless steel

    International Nuclear Information System (INIS)

    Caskey, G.R. Jr.

    1981-01-01

    Hydrogen damage has been studied in a wide variety of stainless steels. Both internal and external hydrogen damage were evaluated by ductility or J-integral under rising tensile loads and by fractography. Analysis of the data has emphasized the potential effects of strain-induced martensite on hydrogen damage. Strain-induced martensite was neither necessary nor sufficient for hydrogen damage in the alloys studied. Neither ductility loss nor fracture-mode change correlated generally with martensite formation. Alloy composition, particularly nickel and nitrogen contents, was the primary factor in resistance to hydrogen damage. Thermomechanical processing, however, could alter the degree of hydrogen damage in an alloy and was critical for optimizing resistance to hydrogen damage. 10 figures, 10 tables

  9. Stainless steels low temperature nitriding

    International Nuclear Information System (INIS)

    Roux, T.; Darbeida, A.; Von Stebut, J.; Michel, H.; Lebrun, J.P.; Hertz, D.

    1995-01-01

    Nitrogen ions implantation of 316L stainless steel leads to monophasic diffusion layers, which are constituted of a solid solution (γ N ) fcc, metastable, nitrogen sur-saturated, and without order. This article shows that for 316L stainless steels,these layers improve the tribological properties without degradation of the corrosion resistance. (A.B.). 13 refs. 6 figs

  10. Pitting corrosion resistant austenite stainless steel

    Science.gov (United States)

    van Rooyen, D.; Bandy, R.

    A pitting corrosion resistant austenite stainless steel comprises 17 to 28 wt. % chromium, 15 to 26 wt. % nickel, 5 to 8 wt. % molybdenum, and 0.3 to 0.5 wt. % nitrogen, the balance being iron, unavoidable impurities, minor additions made in the normal course of melting and casting alloys of this type, and may optionally include up to 10 wt. % of manganese, up to 5 wt. % of silicon, and up to 0.08 wt. % of carbon.

  11. Stainless steel decontamination manipulators

    International Nuclear Information System (INIS)

    Sullivan, R.J.

    1986-01-01

    Three, large-volume coverage manipulator systems were designed and built for the Defense Water Processing Facility at the Savannah River Laboratory. These stainless steel systems will be used for high-pressure spray decontamination of waste containers and large process equipment modules. Each system has a manipulator arm, folding boom, and vertical drive and guide structure. Handling capacity is 45 kg, horizontal reach is 4.6 m with a 180-deg swing motion, and the vertical travel is 6 m. The system is remotely removable and replaceable in modules using an overhead crane and an impact wrench. The manipulator arm has seven motions: Shoulder rotation and pivot, elbow pivot, wrist pivot and rotation, and grip open-close. All motions are variable speed and are slip-clutch protected to prevent overloading from external forces (collisions)

  12. Ex vivo study on root canal instrumentation of two rotary nickel-titanium systems in comparison to stainless steel hand instruments.

    Science.gov (United States)

    Vaudt, J; Bitter, K; Neumann, K; Kielbassa, A M

    2009-01-01

    To investigate instrumentation time, working safety and the shaping ability of two rotary nickel-titanium (NiTi) systems (Alpha System and ProTaper Universal) in comparison to stainless steel hand instruments. A total of 45 mesial root canals of extracted human mandibular molars were selected. On the basis of the degree of curvature the matched teeth were allocated randomly into three groups of 15 teeth each. In group 1 root canals were prepared to size 30 using a standardized manual preparation technique; in group 2 and 3 rotary NiTi instruments were used following the manufacturers' instructions. Instrumentation time and procedural errors were recorded. With the aid of pre- and postoperative radiographs, apical straightening of the canal curvature was determined. Photographs of the coronal, middle and apical cross-sections of the pre- and postoperative canals were taken, and superimposed using a standard software. Based on these composite images the portion of uninstrumented canal walls was evaluated. Active instrumentation time of the Alpha System was significantly reduced compared with ProTaper Universal and hand instrumentation (P < 0.05; anova). No instrument fractures occurred in any of the groups. The Alpha System revealed significantly less apical straightening compared with the other instruments (P < 0.05; Mann-Whitney U test). In the apical cross-sections Alpha System resulted in significantly less uninstrumented canal walls compared with stainless steel files (P < 0.05; chi-squared test). Despite the demonstrated differences between the systems, an apical straightening effect could not be prevented; areas of uninstrumented root canal wall were left in all regions using the various systems.

  13. Austenitic stainless steel weld inspection

    International Nuclear Information System (INIS)

    Mech, S.J.; Emmons, J.S.; Michaels, T.E.

    1978-01-01

    Analytical techniques applied to ultrasonic waveforms obtained from inspection of austenitic stainless steel welds are described. Experimental results obtained from a variety of geometric and defect reflectors are presented. Specifically, frequency analyses parameters, such as simple moments of the power spectrum, cross-correlation techniques, and adaptive learning network analysis, all represent improvements over conventional time domain analysis of ultrasonic waveforms. Results for each of these methods are presented, and the overall inspection difficulties of austenitic stainless steel welds are discussed

  14. On the corrosion behaviour of stainless steel, nickel-chromium and zirconium-alloys in pore water of Portland cement

    International Nuclear Information System (INIS)

    Heitz, E.; Graefen, H.

    1991-12-01

    On the basis of an extensive review of literature and available experience, an evaluation was made of the corrosion of a metallic matrix for radioactive nuclides embedded in porous, water containing Portland cement. As a metallic matrix, austenitic high-alloy steel, nickel-base alloys and zirconium alloys are discussed. Pore waters in Portland cement have low aggressivity. However, through contact with formation water, chloride and sulphate enrichment can occur. Although corrosion is principally possible on the basis of purely thermodynamic considerations, it can be assumed that local corrosion (pitting, stress corrosion cracking, intergranular corrosion) is highly improbable under the given boundary conditions. This is valid for all three groups of alloys and means that only low release rates of corrosion products are to be expected. As a result of the discussion on radiolysis-induced corrosion, additional corrosion activity can be excluded. Final conclusions concerning the stimulation of corrosion processes by microbial action cannot be drawn and, therefore, additional experiments are proposed. The release rates of radioactive products are controlled by a very low dissolution rate of the materials in the passive state. All three groups of alloys show this type of general dissolution. From a survey of literature data it can be concluded that release rates greater than 250 mg/m 2 per day are not exceeded. Since these data were mainly obtained by electrochemical methods, it is proposed that quantitative analytical investigations of the corrosion products in pore water be made. On the whole the release rates determined are far below corrosion rates which are generally technically relevant. (author) 13 figs., 9 tabs., 61 refs

  15. The influence of lead temperature on the accuracy of various stainless-steel sheathed, mineral-inulated nickel-chromium/nickel aluminium thermocouples

    International Nuclear Information System (INIS)

    Burnett, P.; Burns, J.S.

    1977-10-01

    Samples of three types of stainless steel sheathed MI thermocouples, such as are currently used in fire and furnace tests of transport flasks, have been subjected to high lead temperatures whilst the thermojunctions were kept at a constant low temperature. Both the lead temperature and the length of lead at temperature have been varied. As the lead temperature rises from ambient to a selected value, the emf output from the thermocouple initially decreases and then increases, taking up a final value dependent on the particular conditions. Below a threshold lead temperature, no significant steady state error occurs and the negative transient is generally negligible. Each thermocouple has its own threshold temperature, the lowest found being about 600 0 C, although the average lies at about 750 0 C. Above the threshold lead temperature, the thermal emf can be in error by the equivalent of more than 100 0 C, the highest error found being nearly 230 0 C at a temperature 250 0 C above threshold. The same thermocouple showed a negative transient of 13 0 C 3 minutes after start of heating to 890 0 C. It is probable that the steady state error arises because of the degradation of the thermocouple mineral insulation at elevated temperatures and recommendations are made on the use of such thermocouples in fire and furnace tests. The cause of the initial negative transient error has not been identified, but ways of minimising any resultant errors are suggested. (author)

  16. Chromium-Makes stainless steel stainless

    Science.gov (United States)

    Kropschot, S.J.; Doebrich, Jeff

    2010-01-01

    Chromium, a steely-gray, lustrous, hard metal that takes a high polish and has a high melting point, is a silvery white, hard, and bright metal plating on steel and other material. Commonly known as chrome, it is one of the most important and indispensable industrial metals because of its hardness and resistance to corrosion. But it is used for more than the production of stainless steel and nonferrous alloys; it is also used to create pigments and chemicals used to process leather.

  17. Comparative short-term in vitro analysis of mutans streptococci adhesion on esthetic, nickel-titanium, and stainless-steel arch wires.

    Science.gov (United States)

    Kim, In-Hye; Park, Hyo-Sang; Kim, Young Kyung; Kim, Kyo-Han; Kwon, Tae-Yub

    2014-07-01

    To test the hypothesis that there are no differences in mutans streptococci (MS) adhesion between esthetic and metallic orthodontic arch wires based on their surface characteristics. Surface roughness (Ra) and apparent surface free energy (SFE) were measured for six wires-four esthetic, one nickel-titanium (NiTi), and one stainless-steel (SS)-using profilometry and dynamic contact angle analysis, respectively. The amount of MS (Streptococcus mutans and Streptococcus sobrinus) adhering to the wires was quantified using the colony-counting method. The surfaces, coating layers, and MS adhesion were also observed by scanning electron microscopy. Statistical significance was set at P wires were significantly different from one another depending on the coating method (P wire showed the highest SFE, followed by the SS wire and then the four esthetic wires. The NiTi wires produced a significantly higher MS adhesion than did the SS wires (P wires showed significantly lower MS adhesions than did the NiTi wire (P < .05). Pearson correlation analyses found moderate significant positive correlations between the SFE and the S mutans and S sobrinus adhesions (r  =  .636/.427, P < .001/P  =  .001, respectively). The hypothesis is rejected. This study indicates that some esthetic coatings on NiTi alloy might reduce MS adhesion in vitro in the short term.

  18. Shaping abilities of two different engine-driven rotary nickel titanium systems or stainless steel balanced-force technique in mandibular molars.

    Science.gov (United States)

    Matwychuk, Michael J; Bowles, Walter R; McClanahan, Scott B; Hodges, Jim S; Pesun, Igor J

    2007-07-01

    The purpose of this study was to compare apical transportation, working-length changes, and instrumentation time by using nickel-titanium (Ni-Ti) rotary file systems (crown-down method) or stainless steel hand files (balanced-force technique) in mesiobuccal canals of extracted mandibular molars. The curvature of each canal was determined and teeth placed into three equivalent groups. Group 1 was instrumented with Sequence (Brasseler USA, Savannah, GA) rotary files, group 2 with Liberator (Miltex Inc, York, PA) rotary files, and group 3 with Flex-R (Union Broach, New York, NY) files. Pre- and postoperative radiographs were superimposed to measure loss of working length and apical transportation as shown by changes in radius of curvature and the long-axis canal angle. Sequence rotary files, Liberator rotary files, and Flex-R hand files had similar effects on apical canal transportation and changes in working length, with no significant differences detected among the 3 groups. Hand instrumentation times were longer than with either Ni-Ti rotary group, whereas the rotary NiTi groups had a higher incidence of fracture.

  19. Development of commercial nitrogen-rich stainless steels

    International Nuclear Information System (INIS)

    Liljas, M.

    1999-01-01

    This paper reviews the development of nitrogen alloyed stainless steels. Nitrogen alloying of austenitic stainless steels started at an early stage and was to a large extent caused by nickel shortage. However, direct technical advantages such as increased strength of the nitrogen alloyed steels made them attractive alternatives to the current steels. It was not until the advent of the AOD (argon oxygen decarburisation) process in the late 1960s that nitrogen alloying could be controlled to such accuracy that it became successful commercially on a broader scale. The paper describes production aspects and how nitrogen addition influences microstructure and the resulting properties of austenitic and duplex stainless steels. For austenitic steels there are several reasons for nitrogen alloying. Apart from increasing strength nitrogen also improves structural stability, work hardening and corrosion resistance. For duplex steels nitrogen also has a decisive effect in controlling the microstructure during thermal cycles such as welding. (orig.)

  20. Chemical decontamination of stainless steel

    International Nuclear Information System (INIS)

    Onuma, Tsutomu; Akimoto, Hidetoshi

    1991-01-01

    The present invention concerns a method for chemical decontamination of radioactive metal waste materials contaminated with radioactive materials on the surface, generated in radioactive materials-handling facilities. The invention is comprised of a method of chemical decontamination of stainless steel, characterized by comprising a first process of immersing a stainless steel-based metal waste material contaminated by radioactive materials on the surface in a sulfuric acid solution and second process of immersing in an aqueous solution of sulfuric acid and oxidizing metal salt, in which a portion of the surface of the stainless steel to be decontaminated is polished mechanically to expose a portion of the base material before the above first and second processes. 1 figs., 2 tabs

  1. Multilayer graphene for long-term corrosion protection of stainless steel bipolar plates for polymer electrolyte membrane fuel cell

    DEFF Research Database (Denmark)

    Stoot, Adam Carsten; Camilli, Luca; Spiegelhauer, Susie Ann

    2015-01-01

    Abstract Motivated by similar investigations recently published (Pu et al., 2015), we report a comparative corrosion study of three sets of samples relevant as bipolar plates for polymer electrolyte fuel cells: stainless steel, stainless steel with a nickel seed layer (Ni/SS) and stainless steel...

  2. Novel copper doped Halloysite Nano Tube/silver-poly(pyrrole-co-3,4-ethylenedioxythiophene dual layer coatings on low nickel stainless steel for anti-corrosion applications

    Directory of Open Access Journals (Sweden)

    Palanisamy Karthikeyan

    2018-03-01

    Full Text Available The increase of the diverse and complicated applications of stainless steel in all fields of industry production and various research activities have induced immense efforts in research and fabrication to increase its efficiency and sophisticated to minimize its corrosion by using among others conducting polymer coatings. The present work discusses the corrosion resistant behavior of stainless steel with copolymer and composite dual layer coatings. The coated samples were analyzed by various analytical studies and the results are discussed. The dual layer composite coating Ag-p(Py-co-EDOT thus obtained was uniform in nature and highly adherent to the stainless steel surface, when compared to the monolayer coatings. An antibacterial effect of coating and the coatings against marine and pathogenic bacteria have also been studied. Keywords: Dual layer coatings, Electrochemical studies, Surface analysis, Antibacterial activity, Ion leachout test

  3. Development of oxide dispersion strengthened 2205 duplex stainless steel composite

    Directory of Open Access Journals (Sweden)

    Oladayo OLANIRAN

    2015-05-01

    Full Text Available Composites of duplex stainless steel were produced by oxide dispersion strengthening with comparatively improved mechanical properties by hot press sintering of partially stabilized Zirconia (PSZ, 3% yttria, mole fraction dispersion in 2205 duplex stainless steels. Ceramic oxide was added as reinforcement, while chromium (Cr and Nickel (Ni were incorporated to maintain the austenitic/ferritic phase balance of the duplex stainless steel. The powders and sintered were characterized in detail using scanning electron microscopy (SEM and X-ray diffraction (XRD. The microstructural evolution and phase formation during oxide dispersion strengthening of duplex stainless steel composites were investigated. The influence of composition variation of the reinforcements on the microstructural and corrosion behaviour in simulated mine water of the composites were investigated. In this manuscript, it was established that composition has great influence on the structure/properties relationship of the composites developed.

  4. Microstructural stability of 21-6-9 stainless steel

    International Nuclear Information System (INIS)

    Krenzer, R.W.; Sanderson, E.C.

    1978-01-01

    Two experiments were designed to better define parameters for thermomechanical processing of 21-6-9 stainless steel. This steel is one of the nitrogen-strengthened chromium, manganese, and nickel austenitic stainless steels having mechanical properties that can be improved by a combination of plastic deformation and heat treatments. By heat-treating coupons, the time-temperature relationship of the precipitate phase, and the solutionizing, recrystallizing, and stress-relieving temperature ranges in 21-6-9 were established. Secondly, mechanical properties and microstructure as a function of percent deformation and stress-relieving temperature are reported

  5. Depth distribution of martensite in xenon implanted stainless steels

    International Nuclear Information System (INIS)

    Johansen, A.; Johnson, E.; Sarholt-Kristensen, L.; Steenstrup, S.; Hayashi, N.; Sakamoto, I.

    1989-01-01

    The amount of stress-induced martensite and its distribution in depth in xenon implanted austenitic stainless steel poly- and single crystals have been measured by Rutherford backscattering and channeling analysis, depth selective conversion electron Moessbauer spectroscopy, cross-sectional transmission electron microscopy and x-ray diffraction analysis. In low nickel 17/7, 304 and 316 commercial stainless steels and in 17:13 single crystals the martensitic transformation starts at the surface and develops towards greater depth with increasing xenon fluence. The implanted layer is nearly completely transformed, and the interface between martensite and austenite is rather sharp and well defined. In high nickel 310 commercial stainless steel and 15:19 and 20:19 single crystals, on the other hand, only insignificant amounts of martensite are observed. (orig.)

  6. An in vitro evaluation of the accuracy of four electronic apex locators using stainless-steel and nickel-titanium hand files

    Directory of Open Access Journals (Sweden)

    Paras Mull Gehlot

    2016-02-01

    Full Text Available Objectives The purpose of this in vitro study was to evaluate the accuracy of working length (WL determination of four electronic apex locators (EALs, namely, Root ZX (RZX, Elements diagnostic unit and apex locator (ELE, SybronEndo Mini Apex locator (MINI and Propex pixi (PIXI using Stainless steel (SS and nickel-titanium (NiTi hand files. The null hypothesis was that there was no difference between canal length determination by SS and NiTi files of 4 EALs. Materials and Methods Sixty extracted, single rooted human teeth were decoronated and the canal orifice flared. The actual length (AL was assessed visually, and the teeth were embedded in an alginate model. The electronic length (EL measurements were recorded with all four EALs using SS and NiTi files at '0.5' reading on display. The differences between the AL and EL were compared. Results The results obtained with each EAL with SS and NiTi files were compared with AL. A paired sample t test showed that there was a statistical significant difference between EAL readings with SS and NiTi files for RZX and MINI (p < 0.05. The accuracy of RZX, ELE, MINI and PIXI within ± 0.5 mm of AL with SS/NiTi files were 93.3%/70%, 90%/91.7%, 95%/68.3%, and 83.3%/83.3%, respectively. Conclusions The results of this study indicate that Root ZX was statistically more accurate with NiTi files compared to SS files, while MINI was statistically more accurate with SS files compared to NiTi files. ELE and PIXI were not affected by the alloy type of the file used to determine WL.

  7. En-masse retraction with a preformed nickel-titanium and stainless steel archwire assembly and temporary skeletal anchorage devices without posterior bonding

    Science.gov (United States)

    Jee, Jeong-Hyun; Ahn, Hyo-Won; Seo, Kyung-Won; Kook, Yoon-Ah; Chung, Kyu-Rhim; Nelson, Gerald

    2014-01-01

    Objective To evaluate the therapeutic effects of a preformed assembly of nickel-titanium (NiTi) and stainless steel (SS) archwires (preformed C-wire) combined with temporary skeletal anchorage devices (TSADs) as the sole source of anchorage and to compare these effects with those of a SS version of C-wire (conventional C-wire) for en-masse retraction. Methods Thirty-one adult female patients with skeletal Class I or II dentoalveolar protrusion, mild-to-moderate anterior crowding (3.0-6.0 mm), and stable Class I posterior occlusion were divided into conventional (n = 15) and preformed (n = 16) C-wire groups. All subjects underwent first premolar extractions and en-masse retraction with pre-adjusted edgewise anterior brackets, the assigned C-wire, and maxillary C-tubes or C-implants; bonded mesh-tube appliances were used in the mandibular dentition. Differences in pretreatment and post-retraction measurements of skeletal, dental, and soft-tissue cephalometric variables were statistically analyzed. Results Both groups showed full retraction of the maxillary anterior teeth by controlled tipping and space closure without altered posterior occlusion. However, the preformed C-wire group had a shorter retraction period (by 3.2 months). Furthermore, the maxillary molars in this group showed no significant mesialization, mesial tipping, or extrusion; some mesialization and mesial tipping occurred in the conventional C-wire group. Conclusions Preformed C-wires combined with maxillary TSADs enable simultaneous leveling and space closure from the beginning of the treatment without maxillary posterior bonding. This allows for faster treatment of dentoalveolar protrusion without unwanted side effects, when compared with conventional C-wire, evidencing its clinical expediency. PMID:25309863

  8. Monitoring of chromium and nickel in biological fluids of stainless steel welders using the flux-cored-wire (FCW) welding method.

    Science.gov (United States)

    Stridsklev, Inger Cecilie; Schaller, Karl-Heinz; Langård, Sverre

    2004-11-01

    This study was undertaken to investigate the exposure to chromium (Cr) and nickel (Ni) in flux-cored wire (FCW) welders welding on stainless steel (SS). Seven FCW welders were monitored for 3 days to 1 workweek, measuring Cr and Ni in air, blood, and urine. The welders were questioned about exposure to Cr and Ni during their whole working careers, with emphasis on the week of monitoring, about the use of personal protective equipment and their smoking habits. The air concentrations were mean 200 microg/m(3) (range 2.4-2,744) for total Cr, 11.3 microg/m(3) (416.7) for Ni during the workdays for the five welders who were monitored with air measurements. The levels of Cr and Ni in biological fluids varied between different workplaces. For Cr in whole blood, plasma, and erythrocytes, the mean levels after work were 1.25 (<0.4-8.3) and 1.68 (<0.2-8.0) and 0.9 (<0.4-7.2) microg/l, respectively. For Ni most of the measurements in whole blood and plasma were below the detection limits, the mean levels after work being 0.84 (<0.8-3.3) and 0.57 microg/l (<0.4-1.7), respectively. Mean levels for Cr and Ni in the urine after work were 3.96 (0.34-40.7) and 2.50 (0.56-5.0) microg/g creatinine, respectively. Correlations between the Cr(VI) levels measured in air and the levels of total Cr in the measured biological fluids were found. The results seem to support the view that monitoring of Cr in the urine may be versatile for indirect monitoring of the Cr(VI) air level in FCW welders. The results seem to suggest that external and internal exposure to Cr and Ni in FCW welders welding SS is low in general.

  9. En-masse retraction with a preformed nickel-titanium and stainless steel archwire assembly and temporary skeletal anchorage devices without posterior bonding.

    Science.gov (United States)

    Jee, Jeong-Hyun; Ahn, Hyo-Won; Seo, Kyung-Won; Kim, Seong-Hun; Kook, Yoon-Ah; Chung, Kyu-Rhim; Nelson, Gerald

    2014-09-01

    To evaluate the therapeutic effects of a preformed assembly of nickel-titanium (NiTi) and stainless steel (SS) archwires (preformed C-wire) combined with temporary skeletal anchorage devices (TSADs) as the sole source of anchorage and to compare these effects with those of a SS version of C-wire (conventional C-wire) for en-masse retraction. Thirty-one adult female patients with skeletal Class I or II dentoalveolar protrusion, mild-to-moderate anterior crowding (3.0-6.0 mm), and stable Class I posterior occlusion were divided into conventional (n = 15) and preformed (n = 16) C-wire groups. All subjects underwent first premolar extractions and en-masse retraction with pre-adjusted edgewise anterior brackets, the assigned C-wire, and maxillary C-tubes or C-implants; bonded mesh-tube appliances were used in the mandibular dentition. Differences in pretreatment and post-retraction measurements of skeletal, dental, and soft-tissue cephalometric variables were statistically analyzed. Both groups showed full retraction of the maxillary anterior teeth by controlled tipping and space closure without altered posterior occlusion. However, the preformed C-wire group had a shorter retraction period (by 3.2 months). Furthermore, the maxillary molars in this group showed no significant mesialization, mesial tipping, or extrusion; some mesialization and mesial tipping occurred in the conventional C-wire group. Preformed C-wires combined with maxillary TSADs enable simultaneous leveling and space closure from the beginning of the treatment without maxillary posterior bonding. This allows for faster treatment of dentoalveolar protrusion without unwanted side effects, when compared with conventional C-wire, evidencing its clinical expediency.

  10. Corrosion of austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Silva, M C.M. [Instituto Nacional de Tecnologia, Rio de Janeiro (Brazil)

    1977-01-01

    Types of corrosion observed in a heat exchanger pipe and on a support of still of molasses fermented wort, both in austenitic stainless steel, are focused. Not only are the causes which might have had any kind of influence on them examined, but also the measures adopted in order to avoid and lessen its occurence.

  11. Effect of nickel and MnS inclusions in the metal on the pitting corrosion of low-carbon stainless steels

    International Nuclear Information System (INIS)

    Frejman, L.I.; Nguen, The Dong; Volkov, D.E.; Konnov, Yu.P.

    1986-01-01

    The resistance to pitting corrosion of steels on the 03Kh17-03Kh18 base containing up to 20 % Ni at different levels of S and Mn impurities contamination is investigated. It is shown that up to 50 % of nickel introduced into ordinary steels with 5-6 % Ni is spent to compensate the resistance decrease caused by MnS inclusions. Full compensation is not attained even in the 10-20 %. Ni range in which nickel practically does not affect the resistance of neither ordinary, nor pure (without MnS) steels. Titanium introduction into ordinary steel on the Kh22N6 base permits to surpass the level of 03Kh17N3 pure steel resistance and attain the level of 03Kh17N6 pure steel almost by all characteristics (including passivated characteristics in sulfuric acid) besides pitting repassivity. In this property pure steels with Ni >or approx. 3 % surpass even the molybdenum containing 03Kh21NbM2T ordinary steel though they by far concede by passivation in sulfuric acid

  12. Accelerated corrosion of stainless steel in thiocyanate-containing solutions

    Energy Technology Data Exchange (ETDEWEB)

    Pistorius, P Chris; Li, Wen

    2012-09-19

    It is known that reduced sulfur compounds (such as thiocyanate and thiosulfate) can accelerate active corrosion of austenitic stainless steel in acid solutions, but before we started this project the mechanism of acceleration was largely unclear. This work combined electrochemical measurements and analysis using scanning electron microscopy (SEM) and X-ray photo-electron spectroscopy (XPS), which provided a comprehensive understanding of the catalytic effect of reduced sulfur species on the active corrosion of stainless steel. Both the behavior of the pure elements and the steel were studied and the work focused on the interaction between the pure elements of the steel, which is the least understood area. Upon completion of this work, several aspects are now much clearer. The main results from this work can be summarized as follows: The presence of low concentrations (around 0.1 mM) of thiocyanate or tetrathionate in dilute sulfuric acid greatly accelerates the anodic dissolution of chromium and nickel, but has an even stronger effect on stainless steels (iron-chromium-nickel alloys). Electrochemical measurements and surface analyses are in agreement with the suggestion that accelerated dissolution really results from suppressed passivation. Even well below the passivation potential, the electrochemical signature of passivation is evident in the electrode impedance; the electrode impedance shows clearly that this pre-passivation is suppressed in the presence of thiocyanate. For the stainless steels, remarkable changes in the morphology of the corroded metal surface and in the surface concentration of chromium support the suggestion that pre-passivation of stainless steels is suppressed because dissolution of chromium is accelerated. Surface analysis confirmed that adsorbed sulfur / sulfide forms on the metal surfaces upon exposure to solutions containing thiocyanate or thiosulfate. For pure nickel, and steels containing nickel (and residual copper), bulk sulfide

  13. Kohonen mapping of the crack growth under fatigue loading conditions of stainless steels in BWR environments and of nickel alloys in PWR environments

    International Nuclear Information System (INIS)

    Urquidi-Macdonald, Mirna

    2008-01-01

    In this study, crack growth rate data under fatigue loading conditions generated by Argonne National Laboratories and published in 2006 were analyzed [O.K. Chopra, B. Alexandreanu, E.E. Gruber, R.S. Daum, W.J. Shack, Argonne National Laboratory, NUREG CR 6891-series ANL 04/20, Crack Growth Rates of Austenitic Stainless Steel Weld Heat Affected Zone in BWR Environments, January, 2006; B. Alexandreanu, O.K. Chopra, H.M. Chung, E.E. Gruber, W.K. Soppet, R.W. Strain, W.J. Shack, Environmentally Assisted Cracking in Light Water Reactors, vol. 34 in the NUREG/CR-4667 series annual report of Argonne National Laboratory program studies for Calendar (Annual Report 2003). Manuscript Completed: May 2005, Date Published: May 2006], and reported by DoE [B. Alexandreanu, O.K. Chopra, W.J. Shack, S. Crane, H.J. Gonzalez, NRC, Crack Growth Rates and Metallographic Examinations of Alloy 600 and Alloy 82/182 from Field Components and Laboratory Materials Tested in PWR Environments, NUREG/CR-6964, May 2008]. The data collected were measured on austenitic stainless steels in BWR (boiling water reactor) environments and on nickel alloys in PWR (pressurized water reactor) environments. The data collected contained information on material composition, temperature, conductivity of the environment, oxygen concentration, irradiated sample information, weld information, electrochemical potential, load ratio, rise time, hydrogen concentration, hold time, down time, maximum stress intensity factor (K max ), stress intensity range (ΔK max ), crack length, and crack growth rates (CGR). Each position on that Kohonen map is called a cell. A Kohonen map clusters vectors of information by 'similarities.' Vectors of information were formed using the metal composition, followed by the environmental conditions used in each experiments, and finally followed by the crack growth rate (CGR) measured when a sample of pre-cracked metal is set in an environment and the sample is cyclically loaded

  14. Corrosion behaviour of laser clad stainless steels

    International Nuclear Information System (INIS)

    Damborenea, J.J. de; Weerasinghe, V.M.; West, D.R.F.

    1993-01-01

    The present paper is focussed in the study of the properties of a clad layer of stainless steel on a mild steel. By blowing powder of the alloy into a melt pool generated by a laser of 2 KW, an homogeneous layer of 316 stainless steel can be obtained. Structure, composition and corrosion behaviour are similar to those of a stainless steel in as-received condition. (Author)

  15. Investigation of corrosion and analysis of passive films concerning some nickel alloys and stainless steels in reconstructed geological environments

    International Nuclear Information System (INIS)

    Jallerat, Nelly

    1984-01-01

    This research thesis addresses the corrosion behaviour of materials which might be used for the fabrication of radioactive waste containers. After a bibliographical study on films formed on Fe-Cr-Ni alloys, this research concentrates on passivation and de-passivation phenomena of three nickel-base alloys among the most resistant to corrosion and which also meet processing and economic criteria: Hastelloy C4, Inconel 625 and ZICNDU 25-20. Titanium and Ti-Pd alloy are also studied. Parameters governing pitting corrosion are notably studied. After a recall of knowledge on passive films formed on Fe-Cr-Ni alloys, and a presentation of experimental and technical conditions, the author reports and discussed the results obtained by electrochemical studies, reports the determination of factors governing alloy passivation in geological waters. The influence of some soluble impurities is notably studied. The author reports the analysis by glow discharge optical emission spectrometry to determine the composition of passive films with respect to geological water nature, the immersion duration and the electrode potential. Additional surface analyses are performed by X-ray photoelectron spectrometry (XPS or ESCA) and secondary ion mass spectrometry (SIMS). Finally, the author uses a dosing method by neutron radio-activation of alloy elements to determine dissolution mechanisms [fr

  16. Kinetic study of hydrogen-material interactions in nickel base alloy 600 and stainless steel 316L through coupled experimental and numerical analysis

    International Nuclear Information System (INIS)

    Hurley, Caitlin-Mae

    2015-01-01

    In France all of the nuclear power plant facilities in service today are pressurized water reactors (PWR). Some parts of the PWR in contact with the primary circuit medium, such as the steam generator tubes (fabricated in nickel base alloy A600) and some reactor core internal components (fabricated in stainless steel 316L), can fall victim to environmental degradation phenomena such as stress corrosion cracking (SCC). In the late 1950's, H. Coriou observed experimentally and predicted this type of cracking in alloys traditionally renowned for their SCC resistance (A600). Just some 20 to 30 years later his predictions became a reality. Since then, numerous studies have focused on the description and comprehension of the SCC phenomenon in primary water under reactor operating conditions. In view of reactor lifetime extension, it has become both critical and strategic to be capable of simulating SCC phenomenon in order to optimize construction materials, operating conditions, etc. and to understand the critical parameters in order to limit the damage done by SCC. This study focuses on the role hydrogen plays in SCC phenomenon and in particular H-material interactions. Hydrogen, from primary medium in the form of dissolved H gas or H from the water, can be absorbed by the alloy during the oxidation process taking place under reactor operating conditions. Once absorbed, hydrogen may be transported across the material, diffusing in the interstitial sites of the crystallographic structure and interacting with local defects, such as dislocations, precipitates, vacancies, etc. The presence of these [local defect] sites can slow the hydrogen transport and may provoke local H accumulation in the alloy. This accumulation could modify the local mechanical properties of the material and favor premature rupture. It is therefore essential to identify the nature of these H-material interactions, specifically the rate of H diffusion and hydrogen trapping kinetics at these

  17. Strength of interface in stainless clad steels

    International Nuclear Information System (INIS)

    Ohji, Kiyotsugu; Nakai, Yoshikazu; Hashimoto, Shinji

    1990-01-01

    Mechanical tests were conducted on four kinds of stainless clad steels to establish test methods for determining crack growth resistance of bimaterial interface. In tension tests, smooth specimens and shallow notched specimens were employed. In these tests, all of the smooth specimens were broken in carbon steel, not along the bimaterial interface. On the other hand, most of the shallow notched specimens were broken along the interface, when the notch root was located at the interface. Therefore, the shallow notched specimens were suitable for estimating the strength of the interface in tension tests. For fracture toughness tests, chevron notched specimens are recommended, since pre-fatigue cracks were susceptible to initiate and grow in carbon steel for conventional straight notched specimens. In fatigue crack growth tests, side-grooved and non-side-grooved specimens were employed. Although the side-grooves were machined so that the minimum cross-sectional plane of the specimens coincided with the plane of the bimaterial interface, cracks did not always propagate along the interface. Therefore, the side-grooves were judged not to be effective for cracks to propagate along the bimaterial interface. Both in fracture toughness tests and fatigue tests, the crack growth resistance along bimaterial interface was much lower than the resistance of matrix steels. In all of the mechanical tests conducted, the crack growth resistance along the interface was higher for the normalized material than that for the as-rolled material. The nickel foil inserted between carbon steel and stainless steel improved the growth resistance of interfacial cracks. (author)

  18. Properties of super stainless steels for orthodontic applications.

    Science.gov (United States)

    Oh, Keun-Taek; Kim, Young-Sik; Park, Yong-Soo; Kim, Kyoung-Nam

    2004-05-15

    Orthodontic stainless-steel appliances are considered to be corrosion resistant, but localized corrosion can occur in the oral cavity. This study was undertaken to evaluate the properties of super stainless steels in orthodontic applications. Accordingly, the metallurgical properties, mechanical properties, corrosion resistance, amount of the released nickel, cytotoxicity, and characteristics of the passive film were investigated. Corrosion resistances of the specimens were high and in the following order: super austenitic stainless steel (SR-50A) > super ferritic stainless steel (SFSS) = super duplex stainless steel (SR-6DX) > 316L SS > super martensitic stainless steel (SR-3Mo) in artificial saliva, 37 degrees C. At 500 mV (SCE), current densities of SR-50A, SFSS, SR-6DX, 316L SS, and SR-3Mo were 5.96 microA/cm(2), 20.3 microA/cm(2), 31.9 microA/cm(2), 805 microA/cm(2), and 5.36 mA/cm(2), respectively. Open circuit potentials of SR-50A, 316L SS, SR-6DX, SR-3Mo, and SFSS were - 0.2, - 0.22, - 0.24, - 0.43, and - 0.46 V (SCE), respectively. SR-50A, SFSS, and SR-6DX released below 3 ng/ml nickel for 8 weeks, and increased a little with immersion time, and 316L SS released about 3.5 ng/ml nickel, but SR-3Mo released a large amount of nickel, which increased with immersion time. The study demonstrated that SR-50A, SR-6DX, and SFSS have high corrosion resistance and mild or no cytotoxicity, due to the passive film enhanced by synergistic effect of Mo + N or by high addition effect of Cr + W. All super stainless steels showed very low cytotoxicity regardless of their nickel contents, although SR-3Mo was found to be relatively cytotoxic. From these studies, these steels are considered suitable for orthodontic applications. Copyright 2004 Wiley Periodicals, Inc.

  19. Nano-composite stainless steel

    Science.gov (United States)

    Dehoff, Ryan R.; Blue, Craig A.; Peter, William H.; Chen, Wei; Aprigliano, Louis F.

    2015-07-14

    A composite stainless steel composition is composed essentially of, in terms of wt. % ranges: 25 to 28 Cr; 11 to 13 Ni; 7 to 8 W; 3.5 to 4 Mo; 3 to 3.5 B; 2 to 2.5 Mn; 1 to 1.5 Si; 0.3 to 1.7 C; up to 2 O; balance Fe. The composition has an austenitic matrix phase and a particulate, crystalline dispersed phase.

  20. Thermophysical properties of stainless steels

    International Nuclear Information System (INIS)

    Kim, C.S.

    1975-09-01

    Recommended values of the thermodynamic and transport properties of stainless steels Type 304L and Type 316L are given for temperatures from 300 to 3000 0 K. The properties in the solid region were obtained by extrapolating available experimental data to the melting range, while appropriate correlations were used to estimate the properties in the liquid region. The properties evaluated include the enthalpy, entropy, specific heat, vapor pressure, density, thermal expansion coefficient, thermal conductivity, thermal diffusivity, and viscosity. (9 fig, 11 tables)

  1. Microstructure and mechanical properties of nickel coated multi walled carbon nanotube reinforced stainless steel 316L matrix composites by laser sintering process

    Science.gov (United States)

    Mahanthesha, P.; Mohankumar, G. C.

    2018-04-01

    Electroless Ni coated Multi-walled Carbon nanotubes reinforced with Stainless Steel 316L matrix composite was developed by Direct Metal Laser Sintering process (DMLS). Homogeneous mixture of Stainless Steel 316L powder and carbon nanotubes in different vol. % was obtained by using double cone blender machine. Characterization of electroless Ni coated carbon nanotubes was done by using X-ray diffraction, FESEM and EDS. Test samples were fabricated at different laser scan speeds. Effect of process parameters and CNT vol. % content on solidification microstructure and mechanical properties of test samples was investigated by using Optical microscopy, FESEM, and Hounsfield tensometer. Experimental results reveal DMLS process parameters affect the density and microstructure of sintered parts. Dense parts with minimum porosity when processed at low laser scan speeds and low CNT vol. %. Tensile fractured surface of test specimens evidences the survival of carbon nanotubes under high temperature processing condition.

  2. Welding Metallurgy and Weldability of Stainless Steels

    Science.gov (United States)

    Lippold, John C.; Kotecki, Damian J.

    2005-03-01

    Welding Metallurgy and Weldability of Stainless Steels, the first book in over twenty years to address welding metallurgy and weldability issues associated with stainless steel, offers the most up-to-date and comprehensive treatment of these topics currently available. The authors emphasize fundamental metallurgical principles governing microstructure evolution and property development of stainless steels, including martensistic, ferric, austenitic, duplex, and precipitation hardening grades. They present a logical and well-organized look at the history, evolution, and primary uses of each stainless steel, including detailed descriptions of the associated weldability issues.

  3. Microchemical evolution of irradiated stainless steels

    International Nuclear Information System (INIS)

    Garner, F.A.

    1980-01-01

    The precipitates that develop during irradiation play the dominant role in the response of 300 series alloys, which alters not only the diffusional properties of point defects but also the rate of acceptance of point defects at dislocations and voids. The major elemental participants are carbon, nickel and silicon. Carbon appears to function as a major governing factor of the route and rate by which the radiation-induced evolution proceeds. It is the sensitivity of carbon's response to a wide range of variables that accounts for much of the variability observed in the swelling of 316 stainless steel. Silicon's role is two-fold: while in solution it depresses void nucleation and determines the duration of the void incubation period, and it also coprecipitates with nickel. The eventual level of nickel in the alloy matrix appears to control the steady-state swelling rate and is determined by the silicon and carbon content. The other participating elements appear to affect primarily the distribution and activity of carbon. Dislocations introduced either by irradiation or cold work likewise appear to influence the role of carbon. Several new physical mechanisms appear to be operating: Inverse Kirkendall effect, interstitial-altered phase stability, solute-interstitial binding, infiltration-exchange process, and creation of radiation-stable precipitates. The sensitivity of the latter phenomenon to temperature and flux has been shown to account for much of the unusual behavior of AISI 316 during irradiation

  4. Duplex stainless steel surface bay laser cladding

    International Nuclear Information System (INIS)

    Amigo, V.; Pineda, Y.; Segovia, F.; Vicente, A.

    2004-01-01

    Laser cladding is one of the most promising techniques to restore damaged surfaces and achieve properties similar to those of the base metal. In this work, duplex stainless steels have been cladded by a nickel alloy under different processing conditions. The influence of the beam speed and defocusing variables ha been evaluated in the microstructure both of the cladding and heat affected zone, HAZ. These results have been correlated to mechanical properties by means of microhardness measurements from cladding area to base metal through the interface. This technique has shown to be very appropriate to obtain controlled mechanical properties as they are determined by the solidification microstructure, originated by the transfer of mass and heat in the system. (Author) 21 refs

  5. Mechanical characteristics of welded joints between different stainless steels grades

    Science.gov (United States)

    Topolska, S.; Łabanowski, J.

    2017-08-01

    Investigation of mechanical characteristics of welded joints is one of the most important tasks that allow determining their functional properties. Due to the very high, still rising, cost of some stainless steels it is justified, on economic grounds, welding austenitic stainless steel with steels that are corrosion-resistant like duplex ones. According to forecasts the price of corrosion resistant steels stil can increase by 26 ÷ 30%. For technical reasons welded joints require appropriate mechanical properties such as: tensile strength, bending, ductility, toughness, and resistance to aggressive media. Such joints are applied in the construction of chemical tankers, apparatus and chemical plants and power steam stations. Using the proper binder makes possible the welds directly between the elements of austenitic stainless steels and duplex ones. It causes that such joits behave satisfactorily in service in such areas like maritime constructions and steam and chemical plants. These steels have high mechanical properties such as: the yield strength, the tensile strength and the ductility as well as the resistance to general corrosion media. They are resistant to both pitting and stress corrosions. The relatively low cost of production of duplex steels, in comparison with standard austenitic steels, is inter alia, the result of a reduced amount of scarce and expensive Nickel, which is seen as a further advantage of these steels.

  6. A comparison of the iraddiated tensile properties of a high-manganese austenitic steel and type 316 stainless steel

    International Nuclear Information System (INIS)

    Klueh, R.L.; Grossbeck, M.L.

    1984-01-01

    The USSR steel EP-838 is a high-manganese, low-nickel steel that also has lower chromium and molybdenum than type 316 stainless steel. Tensile specimens of 20%-cold-worked EP-838 and type 316 stainless steel were irradiated in the High Flux Isotope Reactor (HFIR) at the coolant temperature (approx.=50 0 C). A displacement damage level of 5.2 dpa was reached for the EP-838 and up to 9.5 dpa for the type 316 stainless steel. Tensile tests at room temperature and 300 0 C on the two steels indicated that the irradiation led to increased strength and decreased ductility compared to the unirradiated steels. Although the 0.2% yield stress of the type 316 stainless steel in the unirradiated condition was greater than that for the EP-838, after irradiation there was essentially no difference between the strength or ductility of the two steels. The results indicate that the replacement of the majority of the nickel by manganese and a reduction of chromium and molybdenum in an austenitic stainless steel of composition near that for type 316 stainless steel has little effect on the irradiated and unirradiated tensile properties at low temperatures. (orig.)

  7. Spectrographic analysis of stainless steels

    International Nuclear Information System (INIS)

    Sabato, S.F.; Lordello, A.R.

    1984-01-01

    Two spectrogaphyic solution techniques, 'Porous Cup' and 'Vacuum Cup', were investigated in order to determine the minor constituents (Cr, Ni, Mo, Mn, Cu and V) of stainless steels. Iron and cobalt were experimented as internal standards. The precision varied from 4 to 11% for both spectrographic techniques, in which cobalt was used as international standard. Certified standards from National Bureau of Standards and Instituto de Pesquisas Tecnologicas were analysed to verify the accuracy of both techniques. The best accuracy was obtained with the Vacuum Cup techniques. (Author) [pt

  8. Failures on stainless steel components

    International Nuclear Information System (INIS)

    Haenninen, H.

    1994-01-01

    Economic losses due to failure mainly by corrosion in process and nuclear industries are considered. In these industries the characteristics of different forms of corrosion and their economic effects are fairly well known and, especially, in nuclear industry the assessment of corrosion related costs has been comprehensive. In both industries the economic losses resulting from environmentally enhanced cracking of stainless steel components and the accompanying failures and outages have been considerable, owing as much to the frequency as the unpredictability of such occurrences. (orig.)

  9. A comparison of cytotoxicity and oxidative stress from welding fumes generated with a new nickel-, copper-based consumable versus mild and stainless steel-based welding in RAW 264.7 mouse macrophages.

    Science.gov (United States)

    Badding, Melissa A; Fix, Natalie R; Antonini, James M; Leonard, Stephen S

    2014-01-01

    Welding processes that generate fumes containing toxic metals, such as hexavalent chromium (Cr(VI)), manganese (Mn), and nickel (Ni), have been implicated in lung injury, inflammation, and lung tumor promotion in animal models. While federal regulations have reduced permissible worker exposure limits to Cr(VI), this is not always practical considering that welders may work in confined spaces and exhaust ventilation may be ineffective. Thus, there has been a recent initiative to minimize the potentially hazardous components in welding materials by developing new consumables containing much less Cr(VI) and Mn. A new nickel (Ni) and copper (Cu)-based material (Ni-Cu WF) is being suggested as a safer alternative to stainless steel consumables; however, its adverse cellular effects have not been studied. This study compared the cytotoxic effects of the newly developed Ni-Cu WF with two well-characterized welding fumes, collected from gas metal arc welding using mild steel (GMA-MS) or stainless steel (GMA-SS) electrodes. RAW 264.7 mouse macrophages were exposed to the three welding fumes at two doses (50 µg/ml and 250 µg/ml) for up to 24 hours. Cell viability, reactive oxygen species (ROS) production, phagocytic function, and cytokine production were examined. The GMA-MS and GMA-SS samples were found to be more reactive in terms of ROS production compared to the Ni-Cu WF. However, the fumes from this new material were more cytotoxic, inducing cell death and mitochondrial dysfunction at a lower dose. Additionally, pre-treatment with Ni-Cu WF particles impaired the ability of cells to phagocytize E. coli, suggesting macrophage dysfunction. Thus, the toxic cellular responses to welding fumes are largely due to the metal composition. The results also suggest that reducing Cr(VI) and Mn in the generated fume by increasing the concentration of other metals (e.g., Ni, Cu) may not necessarily improve welder safety.

  10. Stainless steel fabrications: past and present

    International Nuclear Information System (INIS)

    Daniels, R.

    1986-01-01

    The paper deals with stainless steel fabrications of Fairey Engineering Company for the nuclear industry. The manufacture of stainless steel containers for Magnox and Advanced Gas Cooled Reactors, flexible fabrication facility, and welding development, are all briefly described. (U.K.)

  11. Radiation blistering of stainless steel

    International Nuclear Information System (INIS)

    Yoshii, Naritsugu; Tanabe, Tetsuo; Imoto, Shosuke

    1980-01-01

    Surface blistering of stainless steels due to 20 keV He + ion bombardment has been investigated by examination of surface topography with a scanning electron microscope (SEM) and an optical microscope. Blisters of 0.1 to 2 μm in diameter are observed in all samples irradiated with fluence of about 1 x 10 18 He + /cm 2 at any temperature between -80 0 C and 500 0 C. With increasing the fluence blister covers are ruptured and exfoliated and finally the surface becomes rough surface without traces of blister formation. The surface effect is severer at 500 0 C than at 100 0 C irradiation. Also in double-phase stainless steel DP-3, similar surface topography to 316 SS is observed. But by the difference of the erosion rate by sputtering of the surface between α-phase and γ-phase, a striped pattern appears in DP-3 with heavy irradiation of about 2 x 10 19 He + /cm 2 . (author)

  12. Evaluation of Joint Performance on High Nitrogen Stainless Steel Which is Expected to Have Higher Allergy Resistance

    Science.gov (United States)

    Nakano, Kouichi

    Austenitic stainless steel, which includes nickel for stabilizing austenitic structure, is used for various purposes, for example, for structural material, corrosion-resistant material, biomaterial etc. Nickel is set as one of the rare metals and economizing on nickel as the natural resources is required. On the other hand, nickel is one of the metals that cause metallic allergy frequently. Therefore, high nitrogen stainless steel, where nitrogen stabilizes austenitic structure instead of nickel, has been developed in Japan and some of the foreign countries for the above reason. When high nitrogen stainless steel is fused and bonded, dissolved nitrogen is released to the atmospheric area, and some of the material properties will change. In this study, we bonded high nitrogen stainless steel by stud welding process, which is able to bond at short time, and we evaluate joint performance. We have got some interesting results from the other tests and examinations.

  13. Purity of food cooked in stainless steel utensils.

    Science.gov (United States)

    Flint, G N; Packirisamy, S

    1997-01-01

    An extensive programme of cooking operations, using household recipes, has shown that, apart from aberrant values associated with new pans on first use, the contribution made by 19% Cr/9% Ni stainless steel cooking utensils to chromium and nickel in the diet is negligible. New pans, if first used with acid fruits, showed a greater pick-up of chromium and nickel, ranging from approximately 1/20 to 1/3 and 1/20 to 1/2 of the normal daily intake of chromium and nickel respectively. This situation did not recur in subsequent usage, even after the pan had been cleaned by abrasion. A higher rate of chromium and nickel release in new pans on first use was observed on products from four manufactures and appears to be related to surface finish, since treatment of the surface of a new pan was partly, and in the case of electropolishing, wholly effective in eliminating their initial high release.

  14. Development of new high-performance stainless steels

    International Nuclear Information System (INIS)

    Park, Yong Soo

    2002-01-01

    This paper focused on high-performance stainless steels and their development status. Effect of nitrogen addition on super-stainless steel was discussed. Research activities at Yonsei University, on austenitic and martensitic high-performance stainless, steels, and the next-generation duplex stainless steels were introduced

  15. Weld bonding of stainless steel

    DEFF Research Database (Denmark)

    Santos, I. O.; Zhang, Wenqi; Goncalves, V.M.

    2004-01-01

    . The overall assessment of the weld bonding process is made using several commercial adhesives with varying working times under different surface conditions. The quality of the resulting joints is evaluated by means of macroetching observations, tension-shear tests and peel tests. The theoretical investigation......This paper presents a comprehensive theoretical and experimental investigation of the weld bonding process with the purpose of evaluating its relative performance in case of joining stainless steel parts, against alternative solutions based on structural adhesives or conventional spot-welding...... of the process consists of numerical predictions based on the commercial finite element program SORPAS with the purpose of establishing the most favourable parameters that allow spot-welding through the adhesives....

  16. Tritiated Water Interaction with Stainless Steel

    International Nuclear Information System (INIS)

    Glen R. Longhurst

    2007-01-01

    Experiments conducted to study tritium permeation of stainless steel at ambient and elevated temperatures revealed that HT converts relatively quickly to HTO. Further, the HTO partial pressure contributes essentially equally with elemental tritium gas in driving permeation through the stainless steel. Such permeation appears to be due to dissociation of the water molecule on the hot stainless steel surface. There is an equilibrium concentration of HTO vapor above adsorbed gas on the walls of the experimental apparatus evident from freezing transients. The uptake process of tritium from the carrier gas involves both surface adsorption and isotopic exchange with surface bound water

  17. Special stainless steels for sea water service

    International Nuclear Information System (INIS)

    Tomaselli, A.C.

    1983-01-01

    Very exacting demands are made on the corrosion resistance and mechanical properties of materials which in their service come into contact with seawater, and in many cases simultaneously with corrosive process solutions. The demand for higher alloy stainless steels for seawater application is rising in pace with the increasing requirements for safety and operation economy. The corrosion conditions in seawater and the resistance of stainless steels in this medium will be dealt with in the following. Sanicro 28 will then be compared with stainless steels, types AISI 304, 316 and 317, as well as with Alloy 20, Alloy 825 and SANDVIK 2RK65. (Author) [pt

  18. Influence of sulphate ions on the composition and structure of the oxide films on stainless steel and nickel alloys in simulated BWR crack conditions

    International Nuclear Information System (INIS)

    Bojinov, M.; Kinnunen, P.; Laitinen, E.; Maekelae, K.; Saario, T.; Sirkiae, P.; Toivonen, A.; Campbell, J.M.; Johansson, L.S.; Helin, M.; Muttilainen, E.; Reinvall, A.; Ollonqvist, T.; Vaeyrynen, J.

    2002-01-01

    The goal of the present work has been to clarify the influence of sulphate ions on the oxide films formed on stainless steel and Ni-based alloys in simulated crack chemistry conditions using different ex situ analytical techniques. The main observations of this work can be summarised as follows: The thickness of the films formed in simulated oxygen-free crack chemistry conditions during an exposure of circa 4 days varies roughly in the range 200..500 nm, which corresponds to observations reported in the literature [2]. The presence of 10000 ppb sulphate ions in simulated crack tip conditions seems to lead to a considerably lower thickness of the oxide films when compared to sulphate-free conditions. The presence of 10000 ppb sulphate ions leads also to considerable changes in the morphology of the oxide crystals on the material samples. In the absence of sulphate the outer oxide layer contains elongated round-edged crystals, while in the presence of sulphate ions the crystals are longish and needle-like. No visible difference can be observed in the outlook of the crystals formed on stainless steel and Inconel alloy surfaces. A small amount of sulphur in the form of sulphate can be found on the oxide surface on all the studied materials after exposure to the 10000 ppb solution. Sulphur seems to become incorporated inside the oxide film on AISI 316 L(NG). It is not clear at this stage, whether the observed influence of the sulphate ions can be ascribed to the lower pH, to a possible effect on solubility or to a direct influence of the anionic species. (authors)

  19. Current status of stainless steel industry and development of stainless steel

    International Nuclear Information System (INIS)

    Lee, Yong Deuk; Lee, Chan Soo; Kim Kwang Tae

    2000-01-01

    Stainless steel is not only clean and smooth in its surface, but also it is superior in quality in terms of corrosion resistance and strength. So that, it is widely in use in the field of construction, chemical installations, and other industries. Growth of stainless steel industry started since the steel technology was developed for mass production in 1960s. Since then stainless steel industry grew rapidly on account of diversified development in this field and growth rate went up to 5.8% per year comparable to 2.3% of steel growth. The rapid growth is attributed to significant industry developments in Europe and Japan in the years of 1970s and 1980s. In addition to these the expansion of stainless steel industry in Korea and Taiwan. Presently Korea produces about 120,000 tons of stainless steel and occupies about 8% of international market. This means Korea become the second largest single country in world in stainless steel production. Moreover Korea is to reinforce its domestic production line by affiliating production companies, increasing of production capability, and specializing in types of stainless steel. This paper is to describe activity of material development, and types of stainless steel for industry use. (Hong, J. S.)

  20. Constitutive modeling of metastable austenitic stainless steel

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.; Huetink, Han; Khan, A.

    2010-01-01

    A physically based, macroscale constitutive model has been developed that can describe the complex mechanical behavior of metastable austenitic stainless steels. In the developed model a generalized model for the mechanically induced martensitic transformation is introduced. Mechanical tests have

  1. Consitutive modeling of metastable austenitic stainless steel

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Perdahcioglu, Emin Semih

    2008-01-01

    Metastable austenitic stainless steels combine high formability and high strength, which are generally opposing properties in materials. This property is a consequence of the martensitic phase transformation that takes place during deformation. This transformation is purely mechanically induced

  2. Improvements of stainless steels tribological properties

    International Nuclear Information System (INIS)

    Jacquot, P.; Stauder, B.; Varlet, J.

    2012-01-01

    A lot of superficial treatment solutions have been tested to improve the tribological properties of stainless steels. Among these treatments are those described here and proposed by the Bodycote firm: Nitreg S, Kolsterising and Nivox. (O.M.)

  3. Stainless Steel to Titanium Bimetallic Transitions

    Energy Technology Data Exchange (ETDEWEB)

    Kaluzny, J. A. [Fermilab; Grimm, C. [Fermilab; Passarelli, D. [Fermilab

    2015-01-01

    In order to use stainless steel piping in an LCLS-II (Linac Coherent Light Source Upgrade) cryomodule, stainless steel to titanium bimetallic transitions are needed to connect the stainless steel piping to the titanium cavity helium vessel. Explosion bonded stainless steel to titanium transition pieces and bimetallic transition material samples have been tested. A sample transition tube was subjected to tests and x-ray examinations between tests. Samples of the bonded joint material were impact and tensile tested at room temperature as well as liquid helium temperature. The joint has been used successfully in horizontal tests of LCLS-II cavity helium vessels and is planned to be used in LCLS-II cryomodules. Results of material sample and transition tube tests will be presented.

  4. Effects of solute interstitial elements on swelling of stainless steel

    International Nuclear Information System (INIS)

    Stiegler, J.O.; Leitnaker, J.M.; Bloom, E.E.

    1975-01-01

    High-purity stainless steel (HPS), equivalent to type 316 stainless steel in major alloy elements but with greatly reduced interstitial elements and manganese contents, was irradiated in the temperature range 725 to 875 K to fluences ranging from 1.0 to 3.5 x 10 26 neutrons/m 2 (>0.1 MeV). The HPS swelled 20 to 50 times more than commercial grade 316 stainless steel (316 SS), and about the same as commercial-purity nickel, which has about the same interstitial content as HPS. A fine-grained 316 SS in which interstitial elements but not manganese were precipitated by thermomechanical treatments also showed exaggerated swelling, approaching that of HPS, which suggests that swelling in commercial stainless steels is retarded by small amounts of interstitial elements normally present in them and not by the major alloying elements. Interstitials tend to precipitate from solution during irradiation, and bulk extractions of precipitate particles were made to evaluate the extent of the precipitation reactions. At both 643 and 853 K precipitation was clearly enhanced by irradiation significantly enough to alter the matrix composition, which suggests that swelling may be increased at high fluences over that predicted by extrapolation of lower fluence data. These observations are discussed in terms of potential behaviour of fuel cladding materials and of the validity and interpretation of accelerated schemes for simulating neutron damage. (author)

  5. Attenuation capability of low activation-modified high manganese austenitic stainless steel for fusion reactor system

    Energy Technology Data Exchange (ETDEWEB)

    Eissa, M.M. [Steel Technology Department, Central Metallurgical Research and Development Institute (CMRDI), Helwan (Egypt); El-kameesy, S.U.; El-Fiki, S.A. [Physics Department, Faculty of Science, Ain Shams University, Cairo (Egypt); Ghali, S.N. [Steel Technology Department, Central Metallurgical Research and Development Institute (CMRDI), Helwan (Egypt); El Shazly, R.M. [Physics Department, Faculty of Science, Al-Azhar University, Cairo (Egypt); Saeed, Aly, E-mail: aly_8h@yahoo.com [Nuclear Power station Department, Faculty of Engineering, Egyptian-Russian University, Cairo (Egypt)

    2016-11-15

    Highlights: • Improvement stainless steel alloys to be used in fusion reactors. • Structural, mechanical, attenuation properties of investigated alloys were studied. • Good agreement between experimental and calculated results has been achieved. • The developed alloys could be considered as candidate materials for fusion reactors. - Abstract: Low nickel-high manganese austenitic stainless steel alloys, SSMn9Ni and SSMn10Ni, were developed to use as a shielding material in fusion reactor system. A standard austenitic stainless steel SS316L was prepared and studied as a reference sample. The microstructure properties of the present stainless steel alloys were investigated using Schaeffler diagram, optical microscopy, and X-ray diffraction pattern. Mainly, an austenite phase was observed for the prepared stainless steel alloys. Additionally, a small ferrite phase was observed in SS316L and SSMn10Ni samples. The mechanical properties of the prepared alloys were studied using Vickers hardness and tensile tests at room temperature. The studied manganese stainless steel alloys showed higher hardness, yield strength, and ultimate tensile strength than SS316L. On the other hand, the manganese stainless steel elongation had relatively lower values than the standard SS316L. The removal cross section for both slow and total slow (primary and those slowed down in sample) neutrons were carried out using {sup 241}Am-Be neutron source. Gamma ray attenuation parameters were carried out for different gamma ray energy lines which emitted from {sup 60}Co and {sup 232}Th radioactive sources. The developed manganese stainless steel alloys had a higher total slow removal cross section than SS316L. While the slow neutron and gamma rays were nearly the same for all studied stainless steel alloys. From the obtained results, the developed manganese stainless steel alloys could be considered as candidate materials for fusion reactor system with low activation based on the short life

  6. Behaviour of stainless steel in natural seawater

    OpenAIRE

    Compere, Chantal; Le Bozec, Nathalie

    1997-01-01

    In this paper, investigations performed in natural and artificial seawater on stainless steels will be presented. They concerned studies on: biofilm formation, passive layers composition, electrochemical behaviour, localised corrosion and the evolution of these different parameters as a function of ageing time. According to literature surveys, the different aspects will be discussed. Some conclusions will be drawn concerning the actual knowledge on the behaviour of stainless steels in seawater.

  7. Stainless steel recycle FY94 progress report

    International Nuclear Information System (INIS)

    Imrich, K.J.

    1994-01-01

    The Materials Technology Section (MTS) of the Savannah River Technology Center (SRTC) was asked to demonstrate the practicality of recycling previously contaminated stainless steel components such as reactor heat exchanger heads, process water piping and slug buckets into 208 liters (55 gallon) drums and 2.8 cubic meter (100 ft 3 ) storage boxes. Radioactively contaminated stainless steel scrap will be sent to several industrial partners where it will be melted, decontaminated/cast into ingots, and rolled into plate and sheet and fabricated into the drums and boxes. As part of this recycle initiative, MTS was requested to demonstrate that radioactively contaminated Type 304L stainless steel could be remelted and cast to meet the applicable ASTM specification for fabrication of drums and boxes. In addition, MTS was requested to develop the technical basis of melt decontamination and establish practicality of using this approach for value added products. The findings presented in this investigation lead to the following conclusions: recycle of 18 wt% Cr-8 wt% Ni alloy can be achieved by melting Type 304 stainless steel in a air vacuum induction furnace; limited melt decontamination of the contaminated stainless steel was achieved, surface contamination was removed by standard decontamination techniques; carbon uptake in the as-cast ingots resulted from the graphite susceptor used in this experiment and is unavoidable with this furnace configuration. A new furnace optimized for melting stainless steel has been installed and is currently being tested for use in this program

  8. 76 FR 87 - Grant of Authority for Subzone Status; ThyssenKrupp Steel and Stainless USA, LLC; (Stainless and...

    Science.gov (United States)

    2011-01-03

    ... at the stainless and carbon steel products manufacturing facility of ThyssenKrupp Steel and Stainless... to the manufacturing of stainless and carbon steel products at the facility of ThyssenKrupp Steel and... Status; ThyssenKrupp Steel and Stainless USA, LLC; (Stainless and Carbon Steel Products) Calvert, AL...

  9. Precipitation and cavity formation in austenitic stainless steels during irradiation

    International Nuclear Information System (INIS)

    Lee, E.H.; Rowcliffe, A.F.; Mansur, L.K.

    1982-01-01

    Microstructural evolution in austenitic stainless steels subjected to displacement damage at high temperature is strongly influenced by the interaction between helium atoms and second phase particles. Cavity nucleation occurs by the trapping of helium at partially coherent particle-matrix interfaces. The recent precipitate point defect collector theory describes the more rapid growth of precipitate-attached cavities compared to matrix cavities where the precipitate-matrix interface collects point defects to augment the normal point deflect flux to the cavity. Data are presented which support these ideas. It is shown that during nickel ion irradiation of a titanium-modified stainless steel at 675 0 C the rate of injection of helium has a strong effect on the total swelling and also on the nature and distribution of precipitate phases. (orig.)

  10. Ion-nitriding of austenitic stainless steels

    International Nuclear Information System (INIS)

    Pacheco, O.; Hertz, D.; Lebrun, J.P.; Michel, H.

    1995-01-01

    Although ion-nitriding is an extensively industrialized process enabling steel surfaces to be hardened by nitrogen diffusion, with a resulting increase in wear, seizure and fatigue resistance, its direct application to stainless steels, while enhancing their mechanical properties, also causes a marked degradation in their oxidation resistance. However, by adaption of the nitriding process, it is possible to maintain the improved wear resistant properties while retaining the oxidation resistance of the stainless steel. The controlled diffusion permits the growth of a nitrogen supersaturated austenite layer on parts made of stainless steel (AISI 304L and 316L) without chromium nitride precipitation. The diffusion layer remains stable during post heat treatments up to 650 F for 5,000 hrs and maintains a hardness of 900 HV. A very low and stable friction coefficient is achieved which provides good wear resistance against stainless steels under diverse conditions. Electrochemical and chemical tests in various media confirm the preservation of the stainless steel characteristics. An example of the application of this process is the treatment of Reactor Control Rod Cluster Assemblies (RCCAs) for Pressurized Water Nuclear Reactors

  11. Radiation-induced sensitisation of stainless steels

    International Nuclear Information System (INIS)

    Norris, D.I.R.

    1987-01-01

    The book contains the proceedings of a symposium on radiation-induced sensitization of stainless steels, which took place at Berkeley, United Kingdom, 1986. The purpose of the symposium was to examine the mechanism leading to inter-granular corrosion of 20%Cr/25% Ni/Nb stainless steel cladding of AGR fuel following irradiation. Nine papers are presented, of which three are theoretical, two papers are based upon corrosion studies of 20%Cr/25%Ni/Nb steel, and the remaining are concerned with compositional redistribution and its measurement. (U.K.)

  12. Corrosion behavior of sensitized duplex stainless steel.

    Science.gov (United States)

    Torres, F J; Panyayong, W; Rogers, W; Velasquez-Plata, D; Oshida, Y; Moore, B K

    1998-01-01

    The present work investigates the corrosion behavior of 2205 duplex stainless steel in 0.9% NaCl solution after various heat-treatments, and compares it to that of 316L austenitic stainless steel. Both stainless steels were heat-treated at 500, 650, and 800 degrees C in air for 1 h, followed by furnace cooling. Each heat-treated sample was examined for their microstructures and Vickers micro-hardness, and subjected to the X-ray diffraction for the phase identification. Using potentiostatic polarization method, each heat-treated sample was corrosion-tested in 37 degrees C 0.9% NaCl solution to estimate its corrosion rate. It was found that simulated sensitization showed an adverse influence on both steels, indicating that corrosion rates increased by increasing the sensitization temperatures.

  13. Ultrasonic testing of austenitic stainless steel welds

    International Nuclear Information System (INIS)

    Nishino, Shunichi; Hida, Yoshio; Yamamoto, Michio; Ando, Tomozumi; Shirai, Tasuku.

    1982-05-01

    Ultrasonic testing of austenitic stainless steel welds has been considered difficult because of the high noise level and remarkable attenuation of ultrasonic waves. To improve flaw detectability in this kind of steel, various inspection techniques have been studied. A series of tests indicated: (1) The longitudinal angle beam transducers newly developed during this study can detect 4.8 mm dia. side drilled holes in dissimilar metal welds (refraction angle: 55 0 from SUS side, 45 0 from CS side) and in cast stainless steel welds (refraction angle: 45 0 , inspection frequency: 1 MHz). (2) Cracks more than 5% t in depth in the heat affected zones of fine-grain stainless steel pipe welds can be detected by the 45 0 shear wave angle beam method (inspection frequency: 2 MHz). (3) The pattern recognition method using frequency analysis technology was presumed useful for discriminating crack signals from spurious echoes. (author)

  14. Mechanism of creep in stainless steel

    International Nuclear Information System (INIS)

    Monteiro, S.N.; Silveira, T.L.

    In the present work the creep criterions to identify the deformation mechanisms through the exponent of the strain rate versus stress relationship are presented. When applied to several stainless steels these criterions show an apparent contradiction for the proper mechanism acting at Σ/D above 10 9 /cm 2 . Microstructural aspects interfering in different manners with the fracture of these steels could be a reason for rationalizing the contradictory behavior. This is discussed in suggested deformation maps for the steels investigated [pt

  15. Aging degradation of cast stainless steel

    International Nuclear Information System (INIS)

    Chopra, O.K.; Chung, H.M.

    1985-10-01

    A program is being conducted to investigate the significance of in-service embrittlement of cast-duplex stainless steels under light-water reactor operating conditions. Data from room-temperature Charpy-impact tests for several heats of cast stainless steel aged up to 10,000 h at 350, 400, and 450 0 C are presented and compared with results from other studies. Microstructures of cast-duplex stainless steels subjected to long-term aging either in the laboratory or in reactor service have been characterized. The results indicate that at least two processes contribute to the low-temperature embrittleent of duplex stainless steels, viz., weakening of the ferrite/austenite phase boundary by carbide precipitation and embrittlement of ferrite matrix by the formation of additional phases such as G-phase, Type X, or the α' phase. Carbide precipitation has a significant effect on the onset of embrittlement of CF-8 and -8M grades of stainless steels aged at 400 or 450 0 C. The existing correlations do not accurately represent the embrittlement behavior over the temperature range 300 to 450 0 C. 18 refs., 13 figs

  16. Ductility of high chromium stainless steels

    International Nuclear Information System (INIS)

    Peretyat'ko, V.N.; Kazantsev, A.A.

    1997-01-01

    Aimed to optimize the hot working conditions for high chromium stainless steels the experiments were carried in the temperature range of 800-1300 deg C using hot torsion tests and cylindrical specimens of ferritic and ferritic-martensitic steels 08Kh13, 12Kh13, 20Kh13, 30Kh13 and 40Kh13. Testing results showed that steel plasticity varies in a wide range depending on carbon content. Steels of lesser carbon concentration (08Kh13 and 12Kh13) exhibit a sharp increase in plasticity with a temperature rise, especially in the interval of 1200-1250 deg C. Steels 20Kh13 and 30Kh13 display insignificant plasticity increasing, whereas plastic properties of steel 40Kh13 increase noticeably in the range of 1000-1300 deg C. It is shown that optimal hot working conditions for specific steel must be selected with account of steel phase composition at high temperatures

  17. The role of duplex stainless steels for downhole tubulars

    International Nuclear Information System (INIS)

    Francis, R.

    1993-01-01

    In sour conditions there is an increasing trend to turn to corrosion resistant alloys for downhole tubulars. The most commonly used CRA tubular is 13Cr, and there are thousands of feet in service. However, there are limits to the use of 13Cr, ie., the risk of sulphide stress corrosion cracking at high H 2 S levels, and the possibility of pitting or high corrosion rates in waters with high chloride contents. Where the service conditions are felt to be too severe for 13Cr alloys it has been traditional to switch to nickel base alloys such as alloys 825 and C-276 (UNS N08825 and N10276). The alloys are much more expensive than 13Cr, and in recent years the duplex stainless steels have been selected as alloys with superior corrosion and SSCC resistance compared with 13Cr, and having lower cost than nickel alloys. Originally the 22Cr duplex alloy (UNS 31803) was used, but more recently the 25Cr super duplex alloys (UNS S32760 and S32750) have become more available. The present paper reviews the data available for 13Cr and the limits of applicability. Data is also presented for laboratory tests for both the 22Cr and 25Cr super duplex alloys. There is extensive service experience with both 22Cr and 25Cr super duplex in the North Sea, covering both downhole tubulars, manifold and post wellhead equipment. Data is presented showing some of the sour condition being experienced in the North Sea by super duplex alloys. These results show that there is a substantial gap between the limits of use for 13Cr and the 25Cr super duplex stainless steel alloys. This means that in many sour environments super duplex stainless steel provides a cost effective alternative to nickel-base alloys

  18. Analysis of polypyrrole-coated stainless steel electrodes

    Indian Academy of Sciences (India)

    Analysis of polypyrrole-coated stainless steel electrodes - Estimation of specific ... is carried out on stainless steel electrodes using -toluene sulphonic acid. ... The feasibility of the electrode for supercapacitor applications is investigated.

  19. Effects of nitrogen on corrosion of stainless steels in a liquid sodium environment

    International Nuclear Information System (INIS)

    Suzuki, Tadashi; Mutoh, Isao

    1990-01-01

    The corrosion of ferritic stainless steels using sodium at 650degC in a maximum isothermal region contained in a non-isothermal sodium loop constructed of a Type 316 stainless steel has been examined. Also, previous results on corrosion of austenitic stainless steels in sodium at 700degC in the same loop have been reproduced. The selective dissolution and absorption of nickel, the selective dissolution of chromium, and the resultant increase in iron in the surface of stainless steels in the loop mainly determine the corrosion loss of the stainless steel specimens. The austenitic steels hardly decarburize, but denitride. The ferritic steels decarburize and denitride and the denitriding is more remarkable than the decarburizing. The vanadium and niobium, carbide and nitride formers, in the ferritic steels inhibit the decarburizing to some extent, but barely inhibit the denitriding. The nitrogen in the steels rapidly diffuses to the grain boundaries, and rapidly dissolves into sodium, which will lower surface energy of the steels to enhance the dissolution of other elements. The dissolved N in sodium would then be transported to the free surface of the sodium adjacent to the argon cover gas of sodium and easily be released into the cover gas. This mechanism would cause the rapid dissolution of nitrogen into sodium and the enhancement of the corrosion rate of the steels containing nitrogen. (orig.)

  20. Microchemical evolution of neutron-irradiated stainless steel

    International Nuclear Information System (INIS)

    Brager, H.R.; Garner, F.A.

    1980-04-01

    The precipitates that develop in AISI 316 stainless steel during irradiation play a dominant role in determining the dimensional and mechanical property changes of this alloy. This role is expressed primarily in a large change in matrix composition that alters the diffusional properties of the alloy matrix and also appears to alter the rate of acceptance of point defects at dislocations and voids. The major elemental participants in the evolution have been identified as nickel, silicon, and carbon. The exceptional sensitivity of this evolution to many variables accounts for much of the variability of response exhibited by this alloy in nominally similar irradiations

  1. Fusion welding of borated stainless steels

    International Nuclear Information System (INIS)

    Robino, C.V.; Cieslak, M.J.

    1993-01-01

    Borated austenitic stainless steels have been developed for use in the nuclear industry where storage, transport, and reprocessing of nuclear materials are required. The objective of this work is to develop appropriate joining technology for borated stainless steels based upon understanding the response of these materials to thermal processing involving melting. This understanding is being developed through the application of physical metallurgy techniques to determine the evolution of microstructure and mechanical properties within the various regions of the HAZ. Initial investigations include development of the kinetics of boride coarsening in the solid-state region of HAZ and the effect of boride coarsening on the impact properties of this region of the weld zone. Microstructures of the borated stainless steels, their response to high temperature isothermal heat treatments, and the implications of these heat treatments with respect to welding behavior will be presented

  2. Phosphate coating on stainless steel 304 sensitized

    International Nuclear Information System (INIS)

    Cruz V, J. P.; Vite T, J.; Castillo S, M.; Vite T, M.

    2009-01-01

    The stainless steel 304 can be sensitized when welding processes are applied, that causes the precipitation of chromium carbide in the grain limits, being promoted in this way the formation of galvanic cells and consequently the corrosion process. Using a phosphate coating is possible to retard the physiochemical damages that can to happen in the corrosion process. The stainless steel 304 substrate sensitized it is phosphate to base of Zn-Mn, in a immersion cell very hot. During the process was considered optimization values, for the characterization equipment of X-rays diffraction and scanning electron microscopy was used. The XRD technique confirmed the presence of the phases of manganese phosphate, zinc phosphate, as well as the phase of the stainless steel 304. When increasing the temperature from 60 to 90 C in the immersion process a homogeneous coating is obtained. (Author)

  3. Chemical decontaminating method for stainless steel

    International Nuclear Information System (INIS)

    Onuma, Tsutomu; Akimoto, Hidetoshi.

    1990-01-01

    Radioactive metal wastes comprising passivated stainless steels are chemically decontaminated to such a radioactivity level as that of usual wastes. The present invention for chemically decontaminating stainless steels comprises a first step of immersing decontaminates into a sulfuric acid solution and a second step of immersing them into an aqueous solution prepared by adding oxidative metal salts to sulfuric acid, in which a portion of the surface of stainless steels as decontaminates are chemically ground to partially expose substrate materials and then the above-mentioned decontamination steps are applied. More than 90% of radioactive materials are removed in this method by the dissolution of the exposed substrate materials and peeling of cruds secured to the surface of the materials upon dissolution. This method is applicable to decontamination of articles having complicate shapes, can reduce the amount of secondary wastes after decontamination and also remarkably shorten the time required for decontamination. (T.M.)

  4. Method of chemical decontamination of stainless steel

    International Nuclear Information System (INIS)

    Onuma, Tsutomu; Akimoto, Hidetoshi.

    1989-01-01

    The present invention concerns a decontamination method of chemically decontaminating radioactive metal wastes of passivated stainless steels to a radioactivity level identical with usual wastes, in which the amount of oxidizable metal salts used is decreased. Metal wastes of stainless steels contaminated at their surface with radioactive materials are immersed in a sulfuric acid solution. In this case, a voltage is applied for a certain period of time so that the potential of the stainless steels comes to an active region. Then, oxidizable metal salt (tetravalent cerium) is added into the sulfuric acid solution. According to this method, since most of radioactive materials are removed in the immersing step to the sulfuric acid solution, the amount of the tetravalent cerium used is as less as 1/700 and the decontamination time is as short as 1/4 as compared with those in the conventional method. (K.M.)

  5. Tensile behavior of borated stainless steels

    International Nuclear Information System (INIS)

    Stephens, J.J. Jr.; Sorenson, K.B.

    1991-01-01

    Borated stainless steel tensile testing is being conducted at Sandia National Laboratories (SNL). The goal of the test program is to provide data to support a code case inquiry to the ASME Boiler and Pressure Vessel Code, Section III. The adoption by ASME facilitates a material's qualification for structural use in transport cask applications. For transport cask basket applications, the potential advantage to using borated stainless steel arises from the fact that the structural and criticality control functions can be combined into one material. This can result in a decrease in net section thickness of the basket web (increased payload capacity) and eliminates the fabrication process and cost of attaching a discrete boron poison material to the basket web. In addition, adding borate stainless steel to the inventory of acceptable structural material provides the Department of Energy (DOE) and its cask contractors an alternative to current proposed materials which have not been qualified for structural service. The test program at SNL involves procuring material, machining test specimens, and conducting the tensile tests. From test measurements obtained so far, general trends indicate that tensile properties (yield strength and ultimate strength) increase with boron content and are in all cases superior to the minimum required properties established in A-240, Type 304, a typical grade of austenitic stainless steel. Therefore, in a designed basket, web thicknesses using borated stainless steel would be comparable to or thinner tan an equivalent basket manufactured from a typical stainless steel without boron additions. General trends from test results indicate that ductilities decrease with increasing boron content

  6. Measuring secondary phases in duplex stainless steels

    Science.gov (United States)

    Calliari, I.; Brunelli, K.; Dabalà, M.; Ramous, E.

    2009-01-01

    The use of duplex stainless steels is limited by their susceptibility to the formation of dangerous intermetallic phases resulting in detrimental effects on impact toughness and corrosion resistance. This precipitation and the quantitative determinations of the phases have received considerable attention and different precipitation sequences (σ phase, χ phase, and carbides) have been suggested. This study investigates the phase transformation during continuous cooling and isothermal treatments in commercial duplex stainless steel grades and the effects on alloy properties, and compares the most common techniques of analysis.

  7. Microstructure of laser cladded martensitic stainless steel

    CSIR Research Space (South Africa)

    Van Rooyen, C

    2006-08-01

    Full Text Available and martensite with 10% ferrite for Material B. Table 7 - Proposed martensitic stainless steel alloys for laser cladding Material C* Cr Ni Mn Si Mo Co Ms (ºC)* Cr eq Ni eq Material A 0.4 13 - 1 0.5 2.5 5.5 120 16.5 12.5 Material B 0.2 15 2 1 0.7 2.5 5.5 117... dilution, low heat input, less distortion, increased mechanical and corrosion properties excellent repeatability and control of process parameters. Solidification of laser cladded martensitic stainless steel is primarily austenitic. Microstructures...

  8. Low temperature gaseous surface hardening of stainless steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A. J.

    2010-01-01

    The present contribution gives an overview of some of the technological aspects of low temperature thermochemical treatment of stainless steel. Examples of low temperature gaseous nitriding, carburising and nitrocarburising of stainless steel are presented and discussed. In particular......, the morphology, microstructure and characteristics of so-called expanite “layers” on stainless steel are addressed....

  9. Alloying effect on martensite transformation in stainless steels

    International Nuclear Information System (INIS)

    Gulyaev, A.P.; Shlyamnev, A.P.; Sorokina, N.A.

    1975-01-01

    The effect of cobalt, nickel, molybdenum on the martensite transformation kinetics in stainless steels containing 9 to 13% Cr has been studied. Cobalt in Fe-Cr base alloys decreases the temperature of the Msub(in) and Msub(fin) points without a considerable decrease of the martensite phase amount after the transformation. Nickel reduces the martensite transformation temperature range, the nickel effect being enhanced in the presence of cobalt, which is characterized by a change of the linear dependence Msub(in)=f(%Ni) for a quadratic one. Molybdenum decreases the temperature of the Msub(in) and Msub(fin) points intensively, thus, substantially increasing the residual austenite amount. In the steels investigated Ni and Co decrease, whereas Mo increases, to some extent, the temperature of the reverse a-γ-transformation. The reduction of chromium content from 13 to 9% stimulates the martensite transformation initiation, that is why, in alloys containing 9% Cr, the increase in the contents of Ni, Co., Mo with the martensite structure maintained is possible. A further alloying of steel containing 13% Cr with these elements is rather limited due to the inhibition of the martensite transformation

  10. Evolution of stainless steels in nuclear industry

    International Nuclear Information System (INIS)

    Tavassoli, Farhad

    2010-01-01

    Starting with the stainless steels used in the conventional industry, their adoption and successive evolutions in the nuclear industry, from one generation of nuclear reactors to another, is presented. Specific examples for several steels are given, covering fabrication procedures, qualification methods, property databases and design allowable stresses, to show how the ever-increasing demands for better performance and reliability, in particular under neutron irradiation, have been met. Particular attention is paid to the austenitic stainless steels types 304L, 316L, 316L(N), 316L(N)-IG, titanium stabilized grade 321, precipitation strengthened alloy 800, conventional and low activation ferritic/martensitic steels and their oxygen dispersion strengthening (ODS) derivatives. For each material, the evolution of the associated filler metal and welding techniques are also presented. (author)

  11. Welding metallurgy of austenitic stainless steels

    International Nuclear Information System (INIS)

    Ibrahim, A.N.

    1983-01-01

    Austenitic stainless steels welds are commonly found in nuclear reactor systems. The macrostructure and the transformation of delta -phase into γ - phase which occur during rapid solidification of such welds are discussed. Finally, several types of defects which are derived from the welding operation, particularly defects of crack type, are also discussed in brief. (author)

  12. CASE-HARDENING OF STAINLESS STEEL

    DEFF Research Database (Denmark)

    2004-01-01

    The invention relates to case-hardening of a stainless steel article by means of gas including carbon and/or nitrogen, whereby carbon and/or nitrogen atoms diffuse through the surface into the article. The method includes activating the surface of the article, applying a top layer on the activated...

  13. Austenitic stainless steels for cryogenic service

    Energy Technology Data Exchange (ETDEWEB)

    Dalder, E.N.C.; Juhas, M.C.

    1985-09-19

    Presently available information on austenitic Fe-Cr-Ni stainless steel plate, welds, and castings for service below 77 K are reviewed with the intent (1) of developing systematic relationships between mechanical properties, composition, microstructure, and processing, and (2) of assessing the adequacy of these data bases in the design, fabrication, and operation of engineering systems at 4 K.

  14. Austenitic stainless steels for cryogenic service

    International Nuclear Information System (INIS)

    Dalder, E.N.C.; Juhas, M.C.

    1985-01-01

    Presently available information on austenitic Fe-Cr-Ni stainless steel plate, welds, and castings for service below 77 K are reviewed with the intent (1) of developing systematic relationships between mechanical properties, composition, microstructure, and processing, and (2) of assessing the adequacy of these data bases in the design, fabrication, and operation of engineering systems at 4 K

  15. Solidification cracking in austenitic stainless steel welds

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    Hot cracking in stainless steel welds is caused by low-melting eutectics containing impurities such as S, ... Total crack length (TCL), used extensively in hot cracking assessment, exhibits greater variability due to ... behaviour appear to be complex and the mechanisms thereof are not completely under- stood. Development of ...

  16. Stainless steel forgings for nuclear chemical plants

    International Nuclear Information System (INIS)

    1982-02-01

    This Specification covers detailed requirements for the supply of austenitic stainless steel forgings used in radioactive and corrosive areas within the Nuclear Industry. With the exception of 316S51 the materials specified are all suitable for contact with nitric acid, 316S51 being included as suitable for use in contact with sodium and other alkali metals at elevated temperatures. (author)

  17. Stainless steels: general considerations and rates of crack growth

    International Nuclear Information System (INIS)

    Chator, T.

    1992-05-01

    This report describes the different types of stainless steels, and presents the laws governing the rates of crack growth for several stainless steels extensively used for the manufacture of structures in nuclear power plants. The laws are not discussed in detail in the report. After a brief review of the development of stainless steels, the main categories of stainless steels, their mechanical characteristics and corrosion resistance, are presented. Finally, the rates of crack growth are presented for various stainless steels, mainly austenitic. The study overall aim is an investigation of the cracking in the 900 MWe primary pump thermal barriers and shafts

  18. Micropurity in stainless steel making

    International Nuclear Information System (INIS)

    Motloch, Z.

    1981-01-01

    New technologies were developed by the Vitkovice research institutes in response to high requirements for the quality of high-alloy steels for nuclear power, viz., duplex technology with double vacuum degassing at the DH unit and oxidation vacuum degassing using the VAKUVIT equipment. The steel produced shows low contents of impurities and high micropurity. A study was conducted into changes in carbon content and the formation of titanium nitrides and carbonitrides in austenitic steels during their production, and optimum technological parameters were found for eliminating their formation in forgings. (author)

  19. Effect of metal surface composition on deposition behavior of stainless steel component dissolved in liquid sodium

    International Nuclear Information System (INIS)

    Yokota, Norikatsu; Shimoyashiki, Shigehiro

    1988-01-01

    Deposition behavior of corrosion products has been investigated to clarify the effect of metal surface composition on the deposition process in liquid sodium. For the study a sodium loop made of Type 304 stainless steel was employed. Deposition test pieces, which were Type 304 stainless steel, iron, nickel or Inconel 718, were immersed in the sodium pool of the test pot. Corrosion test pieces, which were Type 304 stainless steel, 50 at% Fe-50 at%Mn and Inconel 718, were set in a heater pin assembly along the axial direction of the heater pin surface. Sodium temperatures at the outlet and inlet of the heater pin assembly were controlled at 943 and 833 K, respectively. Sodium was purified at a cold trap temperature of 393 K and the deposition test was carried out for 4.3 x 10 2 - 2.9 x 10 4 ks. Several crystallized particles were observed on the surface of the deposition test pieces. The particles had compositions and crystal structures which depended on both the composition of deposition test pieces and the concentration of iron and manganese in sodium. Only iron-rich particles having a polyhedral shape deposited on the iron surface. Two types of particles, iron-rich α-phase and γ-phase with nearly the same composition as stainless steel, were deposited on Type 304 stainless steel. A Ni-Mn alloy was deposited on the nickel surface in the case of a higher concentration of manganese in sodium. On the other hand, for a lower manganese concentration, a Fe-Ni alloy was precipitated on the nickel surface. Particles deposited on nickel had a γ-phase crystal structure similar to the deposition test piece of nickel. Hence, the deposition process can be explained as follows: Corrosion products in liquid sodium were deposited on the metal surface by forming a metal alloy selectively with elements of the metal surface. (author)

  20. Tensile-property characterization of thermally aged cast stainless steels

    International Nuclear Information System (INIS)

    Michaud, W.F.; Toben, P.T.; Soppet, W.K.; Chopra, O.K.

    1994-02-01

    The effect of thermal aging on tensile properties of cast stainless steels during service in light water reactors has been evaluated. Tensile data for several experimental and commercial heats of cast stainless steels are presented. Thermal aging increases the tensile strength of these steels. The high-C Mo-bearing CF-8M steels are more susceptible to thermal aging than the Mo-free CF-3 or CF-8 steels. A procedure and correlations are presented for predicting the change in tensile flow and yield stresses and engineering stress-vs.-strain curve of cast stainless steel as a function of time and temperature of service. The tensile properties of aged cast stainless steel are estimated from known material information, i.e., chemical composition and the initial tensile strength of the steel. The correlations described in this report may be used for assessing thermal embrittlement of cast stainless steel components

  1. In Vivo and In Vitro Effectiveness of Rotary Nickel-Titanium vs Manual Stainless Steel Instruments for Root Canal Therapy: Systematic Review and Meta-analysis.

    Science.gov (United States)

    Del Fabbro, Massimo; Afrashtehfar, Kelvin Ian; Corbella, Stefano; El-Kabbaney, Ahmed; Perondi, Isabella; Taschieri, Silvio

    2018-03-01

    This systematic review evaluated the effectiveness of nickel-titanium (NiTi) rotary files compared to stainless-steel (SST) hand files. An electronic search was performed on Medline, EMBASE, CENTRAL and Scopus databases up to February 2016. An additional hand searching was performed in 13 journals. The studies were classified according to study type and the outcome variables. Two reviewers independently applied eligibility criteria, extracted data, and three reviewers independently assessed the quality of the evidence of each included study according to The Cochrane Collaboration's procedures. A meta-analysis was performed whenever it was possible. The electronic and hand search strategies yielded 1155 references of studies after removal of duplicates. Four clinical studies (two prospective and two retrospective studies) and 18 in vitro studies (on extracted teeth) were included for the qualitative synthesis after full-text evaluation of the eligible studies. The overall level of methodological quality of the studies included can be considered inadequate. Only one clinical study was judged at low risk of bias, whereas most non-clinical studies had a low risk of bias. Three meta-analyses, based on a very limited number of studies, could be performed. Each meta-analysis contained two studies. Of these, one meta-analysis was based on clinical studies. The results of this systematic review suggested that NiTi rotary instruments were associated with lower canal transportation and apical extrusion when compared to SST hand files, whereas both groups had similar outcomes in terms of success of therapy, amount of residual bacteria, and cleansing ability after treatment. However, due to the limited evidence available, these results should be interpreted with caution. Consequently, more randomized control trials using standardized protocols are needed in order to provide more solid recommendations. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Corrosion resistance of stainless steel, nickel-titanium, titanium molybdenum alloy, and ion-implanted titanium molybdenum alloy archwires in acidic fluoride-containing artificial saliva: An in vitro study

    Directory of Open Access Journals (Sweden)

    Venith Jojee Pulikkottil

    2016-01-01

    Full Text Available Objective: (1 To evaluate the corrosion resistance of four different orthodontic archwires and to determine the effect of 0.5% NaF (simulating high fluoride-containing toothpaste of about 2250 ppm on corrosion resistance of these archwires. (2 To assess whether surface roughness (Ra is the primary factor influencing the corrosion resistance of these archwires. Materials and Methods: Four different archwires (stainless steel [SS], nickel-titanium [NiTi], titanium molybdenum alloy [TMA], and ion-implanted TMA were considered for this study. Surface characteristics were analyzed using scanning electron microscopy, atomic force microscopy (AFM, and energy dispersive spectroscopy. Linear polarization test, a fast electrochemical technique, was used to evaluate the corrosion resistance, in terms of polarization resistance of four different archwires in artificial saliva with NaF concentrations of 0% and 0.5%. Statistical analysis was performed by one-way analysis of variance. Results: The potentiostatic study reveals that the corrosion resistance of low-friction TMA (L-TMA > TMA > NiTi > SS. AFM analysis showed the surface Ra of TMA > NiTi > L-TMA > SS. This indicates that the chemical composition of the wire is the primary influential factor to have high corrosion resistance and surface Ra is only secondary. The corrosion resistance of all wires had reduced significantly in 0.5% acidic fluoride-containing artificial saliva due to formation of fluoride complex compound. Conclusion: The presence of 0.5% NaF in artificial saliva was detrimental to the corrosion resistance of the orthodontic archwires. Therefore, complete removal of residual high-fluorinated toothpastes from the crevice between archwire and bracket during tooth brushing is mandatory.

  3. Plasma spot welding of ferritic stainless steels

    International Nuclear Information System (INIS)

    Lesnjak, A.; Tusek, J.

    2002-01-01

    Plasma spot wedding of ferritic stainless steels studied. The study was focused on welding parameters, plasma and shieldings and the optimum welding equipment. Plasma-spot welded overlap joints on a 0.8 mm thick ferritic stainless steel sheet were subjected to a visual examination and mechanical testing in terms of tension-shear strength. Several macro specimens were prepared Plasma spot welding is suitable to use the same gas as shielding gas and as plasma gas , i. e. a 98% Ar/2% H 2 gas mixture. Tension-shear strength of plasma-spot welded joint was compared to that of resistance sport welded joints. It was found that the resistance welded joints withstand a somewhat stronger load than the plasma welded joints due to a large weld sport diameter of the former. Strength of both types of welded joints is approximately the same. (Author) 32 refs

  4. Phase Transformation in Cast Superaustenitic Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Lee Phillips, Nathaniel Steven [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    Superaustenitic stainless steels constitute a group of Fe-based alloys that are compositionally balanced to have a purely austenitic matrix and exhibit favorable pitting and crevice corrosion resistant properties and mechanical strength. However, intermetallic precipitates such as sigma and Laves can form during casting or exposure to high-temperature processing, which degrade the corrosion and mechanical properties of the material. The goal of this study was to accurately characterize the solid-solid phase transformations seen in cast superaustenitic stainless steels. Heat treatments were performed to understand the time and temperature ranges for intermetallic phase formations in alloys CN3MN and CK3MCuN. Microstructures were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy and wavelength dispersive spectroscopy (EDS, WDS). The equilibrium microstructures, composed primarily of sigma and Laves within purely austenitic matrices, showed slow transformation kinetics. Factors that determine the extent of transformation, including diffusion, nucleation, and growth, are discussed.

  5. The stainless steel beneficial reuse integrated demonstration

    International Nuclear Information System (INIS)

    Boettinger, W.L.; Lutz, R.N.

    1994-01-01

    Process water heat exchangers at SRS contains over 95% 304 stainless steel which could be recycled back to DOE in a ''controlled release'' manner, that is, the radioactive scrap metal (RSM) could be reprocessed into new reusable products for return to DOE for use within the DOE Complex. In 1994, a demonstration was begun to recycle recycle contaminated stainless steel by melting 60 tons of RSM and refabricating it into containers for long-term temporary storage. The demonstration covers the entire recycle chain; the melting and the fabrication are to be done through subcontracts with private industry. Activity level of RSM to be supplied to industry is less than one curie total; the average specific activity level of the cobalt-60 which will be imbedded in the final products was estimated to be 117 pico curies per gram (4.31 becquerels/gram)

  6. Diamond deposition on siliconized stainless steel

    International Nuclear Information System (INIS)

    Alvarez, F.; Reinoso, M.; Huck, H.; Rosenbusch, M.

    2010-01-01

    Silicon diffusion layers in AISI 304 and AISI 316 type stainless steels were investigated as an alternative to surface barrier coatings for diamond film growth. Uniform 2 μm thick silicon rich interlayers were obtained by coating the surface of the steels with silicon and performing diffusion treatments at 800 deg. C. Adherent diamond films with low sp 2 carbon content were deposited on the diffused silicon layers by a modified hot filament assisted chemical vapor deposition (HFCVD) method. Characterization of as-siliconized layers and diamond coatings was performed by energy dispersive X-ray analysis, scanning electron microscopy, X-ray diffraction and Raman spectroscopy.

  7. STRUCTURAL STRESS RELAXATION IN STAINLESS INSTABILITY STEEL

    Directory of Open Access Journals (Sweden)

    S. Lyabuk

    2017-06-01

    Full Text Available The approach to the description of conditions of martensitic transformation in austenitic steel is advanced. Transformation induced hardening is the result of Le Chatelier principle in instability alloys. The phase transformation in austenitic instability stainless steel is the cause of reduction of grain refining and increase of strength. It was experimentally shown that physical-mechanical characteristics of the prepared materials were defined by the structure and inhomogeneous distribution of the hardening phase within a grain. The reasons for high thermal stability of inverse austenitic were established. The factors determining the inverse austenitic relaxation resistibility and resources for its increasing were revealed.

  8. Nondestructive characterization of austenitic stainless steels

    International Nuclear Information System (INIS)

    Jayakumar, T.; Kumar, Anish

    2010-01-01

    The paper presents an overview of the non-destructive methodologies developed at the authors' laboratory for characterization of various microstructural features, residual stresses and corrosion in austenitic stainless steels. Various non-destructive evaluation (NDE) parameters such as ultrasonic velocity, ultrasonic attenuation, spectral analysis of the ultrasonic signals, magnetic hysteresis parameters and eddy current amplitude have been used for characterization of grain size, precipitation behaviour, texture, recrystallization, thermomechanical processing, degree of sensitization, formation of martensite from metastable austenite, assessment of residual stresses, degree of sensitization and propensity for intergranular corrosion in different austenitic steels. (author)

  9. Thermal ageing of duplex stainless steels

    International Nuclear Information System (INIS)

    Massoud, J.P.; Van Duysen, J.C.; Zacharie, G.; Auger, P.; Danoix, F.

    1992-03-01

    The evolution of the mechanical properties of Mobearing anf Mo-free cast duplex stainless steels, induced by long term ageing in the range 300-400 deg C, has been studied in relation with the evolution of their microstructure. The unmixing of the ferritic Fe-Cr-Ni, solid solution by three-dimensional (sponge-like) spinodal decomposition and the precipitation of intermetallic G-phase particles are the main characteristics of this microstructural evolution

  10. Corrosion Properties of Laser Welded Stainless Steel

    DEFF Research Database (Denmark)

    Weldingh, Jakob; Olsen, Flemmming Ove

    1997-01-01

    In this paper the corrosion properties of laser welded AISI 316L stainless steel are examined. A number of different welds has been performed to test the influence of the weld parameters of the resulting corrosion properties. It has been chosen to use the potential independent critical pitting...... temperature (CPT) test as corrosion test. The following welding parameters are varied: Welding speed, lsser power, focus point position and laser operation mode (CW or pulsed)....

  11. Fatigue fracture modes of a stainless steel

    International Nuclear Information System (INIS)

    Pacheco, D.J.; Souza e Silva, A.S. de; Monteiro, S.N.

    1977-01-01

    The influence of strain hardening and martensite phase transformation on the fatigue fracture regions (pulsative tension) of a Stainless Steel type AISI 316 was investigated. This lead to the conclusion that the greater austenite strain hardening level only favours the occurrence of a brittle fracture. Also, in as much as the static induced martensite is concerned, a direct influence on the failure process was not observed, whereas, apparently, the one transformed under cyclic loading has no contribution to the rupture mechanisms. (author) [pt

  12. CEMS of Sb+ implanted stainless steels

    International Nuclear Information System (INIS)

    Roy-Poulsen, H.; Johnson, E.; Johansen, A.; Sarholt-Kristensen, L.; Hayashi, H.

    1986-01-01

    Martensitic transformations have been analyzed in a series of antimony implanted austenitic stainless steels using CEMS. The implanted samples contain about 70 vol% martensite, which is considerably more than can be formed conventionally by plastic deformation of cooling below the martensite start temperature. CEM spectra from implantation induced martensite and from martensite formed in conventional processes are virtually identical. In both cases the hyperfine field is ∼ 25T. (Auth.)

  13. CEMS of Sb+ implanted stainless steels

    International Nuclear Information System (INIS)

    Roy-Poulsen, H.; Copenhagen Univ.; Johnson, E.; Johansen, A.; Sarholt-Kristensen, L.; Hayashi, H.

    1985-01-01

    Martensitic transformations have been analyzed in a series of antimony implanted austenitic stainless steels using CEMS. The implanted samples contain about 70 vol% martensite, which is considerably more than can be formed conventionally by plastic deformation or cooling below the martensite start temperature. CEM spectra from implantation induced martensite and from martensite formed in conventional processes are virtually identical. In both cases the hyperfine field is ∝25 T. (orig.)

  14. Gaseous surface hardening of martensitic stainless steels

    DEFF Research Database (Denmark)

    Tibollo, Chiara; Villa, Matteo; Christiansen, Thomas L.

    The present work addresses heat and surface treatments of martensitic stainless steel EN 1.4028. Different combinations of heat treatments and surface treatments were performed: conventional austenitisation, cryogenic treatment and in particular high temperature solution nitriding (HTSN) and low...... that cubic lath martensite in conventionally austenitised EN 1.4028 dissolves nitrogen and develops expanded martensite (ferrite) during LTSH. HTSN leads to a microstructure of tetragonal plate martensite and retained austenite. The content of retained austenite can be reduced by a cryo...

  15. Ferritic stainless steels: corrosion resistance + economy

    International Nuclear Information System (INIS)

    Remus, A.L.

    1976-01-01

    Ferritic stainless steels provide corrosion resistance at lower cost. They include Type 409, Type 439, 18SR, 20-Mo (1.6 Mo), 18-2 (2 Mo), 26-1S, E-Brite 26-1, 29 Cr-4 Mo, and 29 Cr-4 Mo-2 Ni. Their corrosion and mechanical properties are examined. Resistance to stress-corrosion cracking is an advantage compared to austenitic types

  16. Modeling of Ni Diffusion Induced Austenite Formation in Ferritic Stainless Steel Interconnects

    DEFF Research Database (Denmark)

    Chen, Ming; Molin, Sebastian; Zhang, L.

    2015-01-01

    Ferritic stainless steel interconnect plates are widely used in planar solid oxide fuel cell (SOFC) or electrolysis cell (SOEC) stacks. During stack production and operation, nickel from the Ni/YSZ fuel electrode or from the Ni contact component diffuses into the IC plate, causing transformation...... of the ferritic phase into an austenitic phase in the interface region. This is accompanied with changes in volume and in mechanical and corrosion properties of the IC plates. In this work, kinetic modeling of the inter-diffusion between Ni and FeCr based ferritic stainless steel was conducted, using the CALPHAD...

  17. Withdrawal Strength and Bending Yield Strength of Stainless Steel Nails

    Science.gov (United States)

    Douglas R. Rammer; Samuel L. Zelinka

    2015-01-01

    It has been well established that stainless steel nails have superior corrosion performance compared to carbon steel or galvanized nails in treated wood; however, their mechanical fastening behavior is unknown. In this paper, the performance of stainless steel nails is examined with respect to two important properties used in wood connection design: withdrawal strength...

  18. Reliability and performance evaluation of stainless and mild steel ...

    African Journals Online (AJOL)

    Reliability and performance of stainless and mild steel products in methanolic and aqueous sodium chloride media have been investigated. Weight-loss and pre-exposure methods were used. There was a higher rate of weight-loss of mild steels and stainless steels in 1% HCl methanolic solution than in aqueous NaCl ...

  19. Impact Testing of Stainless Steel Materials

    International Nuclear Information System (INIS)

    R. K. Blandford; D. K. Morton; T. E. Rahl; S. D. Snow

    2005-01-01

    Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates (10 to 200 per second) during accidental drop events. Mechanical characteristics of these materials under dynamic (impact) loads in the strain rate range of concern are not well documented. The goal of the work presented in this paper was to improve understanding of moderate strain rate phenomena on these materials. Utilizing a drop-weight impact test machine and relatively large test specimens (1/2-inch thick), initial test efforts focused on the tensile behavior of specific stainless steel materials during impact loading. Impact tests of 304L and 316L stainless steel test specimens at two different strain rates, 25 per second (304L and 316L material) and 50 per second (304L material) were performed for comparison to their quasi-static tensile test properties. Elevated strain rate stress-strain curves for the two materials were determined using the impact test machine and a ''total impact energy'' approach. This approach considered the deformation energy required to strain the specimens at a given strain rate. The material data developed was then utilized in analytical simulations to validate the final elevated stress-strain curves. The procedures used during testing and the results obtained are described in this paper

  20. Computer simulation of sensitization in stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Logan, R W

    1983-12-20

    Stainless steel containers are prime candidates for the containment of nuclear waste in tuff rock. The thermal history of a container involves exposure to temperatures of 500 to 600/sup 0/C when it is welded and possibly filled with molten waste glass, followed by hundreds of years exposure in the 100 to 300/sup 0/C range. The problems of short- and long-term sensitization in stainless steels have been addressed by two computer programs. The TTS program uses classical nucleation and growth theory plus experimental input to predict the onset of precipitation or sensitization under complex thermal histories. The FEMGB program uses quadratic finite-element methods to analyze diffusion processes and chromium depletion during precipitate growth. The results of studies using both programs indicate that sensitization should not be a problem in any of the austenitic stainless steels considered. However, more precise information on the process thermal cycles, especially during welding of the container, is needed. Contributions from dislocation pipe diffusion could promote long-term low-temperature sensitization.

  1. Applications of nitrogen-alloyed stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Sundvall, J.; Olsson, J. [Avesta Sheffield AB (Sweden); Holmberg, B. [Avesta Welding AB (Sweden)

    1999-07-01

    A selected number of applications for different types of nitrogen-alloyed stainless steels are described. The applications and grades are based on how nitrogen improves different properties. Conventional austenitic grades of type 304 and 316 can be alloyed with nitrogen to increase the strength and to maintain the austenite stability after cold deformation when exposed to cryogenic temperatures. Such examples are presented. The addition of nitrogen to duplex grades of stainless steel such as 2205 improves the pitting resistance, among other things, and also enables faster reformation of the austenite in the heat affected zone. This means that heavy plate can be welded without pre-heating or post-weld heating. Such applications are covered. Modern highly alloyed austenitic stainless steels almost always contain nitrogen and all reasons for this are covered, i.e. to stabilise the austenite, to increase the strength, and to improve the pitting resistance. The increased strength is the characteristic exemplified the least, since the higher strength of duplex grades is well known, but examples on austenite stability and improved pitting resistance are presented. (orig.)

  2. SRS stainless steel beneficial reuse program

    Energy Technology Data Exchange (ETDEWEB)

    Boettinger, W.L.

    1997-02-01

    The US Department of Energy`s (DOE) Savannah River Site (SRS) has thousands of tons of stainless steel radioactive scrap metal (RSNI). Much of the metal is volumetrically contaminated. There is no {open_quotes}de minimis{close_quotes} free release level for volumetric material, and therefore no way to recycle the metal into the normal commercial market. If declared waste, the metal would qualify as low level radioactive waste (LLW) and ultimately be dispositioned through shallow land buried at a cost of millions of dollars. The metal however could be recycled in a {open_quotes}controlled release{close_quote} manner, in the form of containers to hold other types of radioactive waste. This form of recycle is generally referred to as {open_quotes}Beneficial Reuse{close_quotes}. Beneficial reuse reduces the amount of disposal space needed and reduces the need for virgin containers which would themselves become contaminated. Stainless steel is particularly suited for long term storage because of its resistance to corrosion. To assess the practicality of stainless steel RSM recycle the SRS Benficial Reuse Program began a demonstration in 1994, funded by the DOE Office of Science and Technology. This paper discusses the experiences gained in this program.

  3. Aging degradation of cast stainless steel

    International Nuclear Information System (INIS)

    Chopra, O.K.; Chung, H.M.

    1986-10-01

    A program is being conducted to investigate the significance of in-service embrittlement of cast duplex stainless steels under light-water reactor operating conditions. Microstructures of cast materials subjected to long-term aging either in reactor service or in the laboratory have been characterized by TEM, SANS, and APFIM techniques. Two precipitate phases, i.e., the Cr-rich α' and Ni- and Si-rich G phase, have been identified in the ferrite matrix of the aged steels. The results indicate that the low-temperature embrittlement is primarily caused by α' precipitates which form by spinodal decomposition. The relative contribution of G phase to loss of toughness is now known. Microstructural data also indicate that weakening of ferrite/austenite phase boundary by carbide precipitates has a significant effect on the onset and extent of embrittlement of the high-carbon CF-8 and CF-8M grades of stainless steels, particularly after aging at 400 or 450 0 C. Data from Charpy-impact, tensile, and J-R curve tests for several heats of cast stainless steel aged up to 10,000 h at 350, 400, and 450 0 C are presented and correlated with the microstructural results. Thermal aging of the steels results in an increase in tensile strength and a decrease in impact energy, J/sub IC/, and tearing modulus. The fracture toughness results show good agreement with the Charpy-impact data. The effects of compositional and metallurgical variables on loss of toughness are discussed

  4. Characterization of thermal aging of duplex stainless steel by SQUID

    International Nuclear Information System (INIS)

    Isobe, Y.; Kamimura, A.; Aoki, K.; Nakayasu, F.

    1995-01-01

    Thermal aging is a growing concern for long-term-aged duplex stainless steel piping in nuclear power plants. Superconducting QUantum Interference Device (SQUID) was used for the detection of thermal aging of SUS329 rolled duplex stainless steel and SCS16 cast duplex stainless steel. It was found that the SQUID output signal pattern in the presence of AC magnetic field applied to the specimen was sensitive to the changes in electromagnetic properties due to thermal aging

  5. Electroplastic drawing of stainless steels

    International Nuclear Information System (INIS)

    Troitskij, O.A.; Spitsyn, V.I.; Sokolov, N.V.; Ryzhkov, V.G.

    1977-01-01

    Effect of electroplastic drawing on mechanical, magnetic and electrical properties of wire of 12Kh18N10T and Kh13N13M2 steels was studied. Pulse, direct and alternating currents were used. Direct and alternating current densities were 400 A/mm 2 , mean density of pulse current was 200 A/mm 2 . The investigations have shown that the current density increase results in decreasing the wire strengthening intensity though in increasing plastic properties. As a result of electroplastic drawing the growth of magnetic characteristics of wire occurs

  6. Apical displacement produced by rotary nickel-titanium instruments and stainless steel files Deslocamento apical produzido por instrumentos de níquel-titânio acionados a motor e limas de aço inoxidável

    Directory of Open Access Journals (Sweden)

    José Roberto Vanni

    2004-03-01

    Full Text Available The aim of this study was to evaluate the apical displacement produced by different rotary nickel-titanium instruments, testing the hypothesis that rotary systems with nickel-titanium instruments produce lower mean values of apical displacement than stainless steel hand instruments. A total of 100 maxillary permanent first molars were selected for the study. The mesiobuccal roots were sectioned at the top cervical third and embedded in blocks of self-curing resin. The specimens were randomly divided into 5 groups and the root canals were prepared using the following nickel-titanium instruments: Group 1 - Quantec system 2000 (Analytic Endodontics, Mexico; Group 2 - Pro-File T.0.04 (Dentsply/Maillefer, Switzerland; Group 3 - Pro-File Series 29 T.0.04 (Dentsply Tulsa, Switzerland; Group 4 - Pow-R T.0.02 (Moyco-Union Broach, USA. Specimens in Group 5 were prepared using stainless steel hand instruments Flexofile (Dentsply/Maillefer, Switzerland. All root canals were previously submitted to cervical preparation using Orifice Shaper instruments #1, 2, 3 and 4 (Dentsply/Maillefer, Switzerland. After odontometry, the remaining root canal was shaped employing increasingly larger instruments, so that the final instrument corresponded to Quantec #9, Pro-File Series 29 #6, and #35 for the other groups. Specimens in Groups 1 to 4 were prepared using an electric handpiece with 16:1 reduction at 350 rpm. The specimens in Group 5 were manually prepared. Apical displacement was measured and recorded by means of radiographic superimposition on a specific desk. Statistical analysis (ANOVA of the results revealed that all groups presented apical displacements. Considering only the nickel-titanium instruments, Group 4 showed the lowest mean value while Groups 2 and 3 produced the highest mean apical displacement values (pO objetivo deste trabalho foi avaliar o deslocamento apical produzido por diferentes instrumentos de níquel-titânio acionadas a motor testando a

  7. Performance of high molybdenum superaustenitic stainless steel welds in harsh chloride environments

    International Nuclear Information System (INIS)

    Stenvall, P.; Liljas, M.; Wallen, B.

    1996-01-01

    Superaustenitic steels are normally welded with nickel-based alloys as filler materials. To clarify the understanding of weld behavior in superaustenitic stainless steels this paper presents the development history of 6Mo and 7Mo steels, and results of laboratory tests and field tests on welds of UNS S31254 (6Mo) and UNS S32654 (7 Mo) in different types of chloride containing environments. The laboratory tests consisted of the well known ferric chloride test (ASTM G 48 Method A). Shielded metal arc welds, gas tungsten arc welds and submerged arc welds in both grades were tested. The critical pitting temperatures were determined and the locations of the attack were noted. Some specimens were sectioned at the position of the attack followed by studies using light optical microscopy. The critical pitting temperatures of the welds in S31254 and S32654 were at normal levels for both grades, i.e., 40--50 C for S31254 and 60--75 C for S32654. The locations of the attack differed depending on the welding process. In shielded metal arc welds the attack was mostly located in the weld metal. In gas tungsten arc welds the attack was predominantly located next to the fusion line. The field tests showed that the behavior of welds and parent metal of superaustenitic stainless steels, as well as of nickel-based alloys, is much dependent on the corrosive environment. In oxidizing chloride solutions, similar results to those of the ferric chloride test, are observed. However, crevice corrosion in the parent material is at a greater risk than pitting corrosion in the welds. In very oxidizing solutions of low chloride concentrations, welds made of nickel-based fillers may corrode faster than the stainless steel base metal due to transpassive uniform corrosion. The opposite situation exists when active uniform corrosion prevails, i.e., welds made of nickel-based fillers corrode less than the stainless steel parent material

  8. Electrochemical aspects of stainless steel behaviour in biocorrosive environment

    International Nuclear Information System (INIS)

    Feron, D.

    1990-01-01

    Electrochemical measurements have been used to evaluate and follow, to understand and control microbial induced corrosion of stainless steels. Results include seawater loop tests and laboratory-based microbiological experiments. With natural flowing seawater, impedance spectroscopy measurements have been used to evaluate and follow biofilms on stainless steel tube-electrodes. With batch cultures of single bacterial strain (Sulphate Reducing Bacteria), open-circuit potential measurements and polarization curves performed on 316 L and 430 Ti stainless steels, have shown that the corrosion behaviour of these stainless steels is mainly dependent on the sulphide content of the culture media [fr

  9. Tritium distributing in stainless steel determined by chemical etchin

    International Nuclear Information System (INIS)

    Xiong Yifu; Luo Deli; Chen Changan; Chen Shicun; Jing Wenyong

    2009-01-01

    The depth distribution of tritium in stainless steel was measured by chemical etching. The results show that the method can more quantitatively evaluate the tritium distributing in stainless steel. The maximum amount of tritium which distributed in crystal lattice of stainless steel is limitted by its solubility at room temperature. The other form of tritium in stainless steel is gaseous tritium that are trapped by defects, impurities, fractures, etc. within it. The gaseous tritium is several times more than the solid-dissolved tritium. (authors)

  10. Stainless steels for cryogenic bolts and nuts

    International Nuclear Information System (INIS)

    Leroy, F.; Rabbe, P.; Odin, G.

    1975-01-01

    Stainless steel for cryogenic applications are generally austenitic steels which, under the effect of cold-drawing, can or cannot undergo a partial martensitic transformation according to their composition. It has been shown that very high ductility and endurance characteristics at low temperatures, together with very high yield strength and resistances values, can be attained with grades of nitrogenous steels of types Z2CN18-10N and Z3CMN18-8-6N. Optimum ductility values are obtained by employing to the best possible, the martensitic transformations which develop during cold-drawing. From the plotting of the rational traction curves, it is possible to analyse very simply the influence of the composition on the martensitic transformations [fr

  11. Complex Protection of Vertical Stainless Steel Tanks

    Directory of Open Access Journals (Sweden)

    Fakhrislamov Radik Zakievich

    2014-03-01

    Full Text Available The authors consider the problem of fail-safe oil and oil products storage in stainless steel tanks and present the patented tank inner side protection technology. The latter provides process, ecological and fire safety and reducing soil evaporation of oil products, which is a specific problem. The above-mentioned technology includes corrosion protection and heat insulation protection providing increase of cover durability and RVS service life in general. The offered technological protection scheme is a collaboration of the author, Steel Paint GmbH firm and JSC “Koksokhimmontazhproyekt”. PU foam unicomponent materials of Steel Paint GmbH firm provide the protection of tank inner side and cover.

  12. Dynamical recrystallization of high purity austenitic stainless steels

    International Nuclear Information System (INIS)

    Gavard, L.

    2001-01-01

    The aim of this work is to optimize the performance of structural materials. The elementary mechanisms (strain hardening and dynamical regeneration, germination and growth of new grains) occurring during the hot working of metals and low pile defect energy alloys have been studied for austenitic stainless steels. In particular, the influence of the main experimental parameters (temperature, deformation velocity, initial grain size, impurities amount, deformation way) on the process of discontinuous dynamical recrystallization has been studied. Alloys with composition equal to those of the industrial stainless steel-304L have been fabricated from ultra-pure iron, chromium and nickel. Tests carried out in hot compression and torsion in order to cover a wide range of deformations, deformation velocities and temperatures for two very different deformation ways have allowed to determine the rheological characteristics (sensitivity to the deformation velocity, apparent activation energy) of materials as well as to characterize their microstructural deformations by optical metallography and electron back-scattered diffraction. The influence of the initial grain size and the influence of the purity of the material on the dynamical recrystallization kinetics have been determined. An analytical model for the determination of the apparent mobility of grain boundaries, a semi-analytical model for the dynamical recrystallization and at last an analytical model for the stationary state of dynamical recrystallization are proposed as well as a new criteria for the transition between the refinement state and the state of grain growth. (O.M.)

  13. Effect of dissolved hydrogen concentration on IASCC initiation susceptibility of type 316 stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Min-Jae; Kim, Sung Woo; Hwang, Seong Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The effect of DH concentration on PWSCC of nickel based alloys has been studied, higher dissolved hydrogen strategy is being considered to obtain partial mitigation of PWSCC. In the case of stainless steels, it is necessary to research the effect of DH concentration on irradiation assisted stress corrosion cracking(IASCC). In this research, we tried to evaluate the effect of DH concentration on IASCC initiation susceptibility using the proton irradiated type 316 stainless steels under the condition of simulated primary water. The slow strain rate tests were performed using the proton irradiated type 316 stainless steels at the simulated primary water conditions, crack length per unit area for all tested specimens were calculated. IASCC initiation susceptibility was increased by increasing irradiation doses and by increasing DH concentration.

  14. Study of electroless Ni-W-P alloy coating on martensitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Nikitasari, Arini, E-mail: arini-nikitasari@yahoo.com; Mabruri, Efendi, E-mail: efendi-lipi@yahoo.com [Research Center for Metallurgy and Materials, Indonesian Institute of Sciences (470 Building, Puspiptek, Serpong, Indonesia 15313) (Indonesia)

    2016-04-19

    Electroless nickel phospor (Ni-P) is widely used in many industries due to their corrosion and wear resistance, coating uniformity, and ability to coat non-conductive surfaces. The unique properties of tungsten such as high hardness, higher melting point, lower coefficient of linear thermal expansion, and high tensile strength have created a lot of interest in developing ternary Ni-W-P alloys. This article presents the study of electroless Ni-W-P alloys coating using acid or alkaline bath on martensitic stainless steel. Nickel sulfate and sodium tungstate were used as nickel and tungsten sources, respectively, and sodium hypophosphite was used as a reducing agent. Acid or alkaline bath refer to bath pH condition was adjusted by adding sulfuric acid. Martensitic stainless steel was immersed in Ni-W-P bath for 15, 30, and 60 minutes. The substrate of martensitic stainless steel was subjected to pre-treatment (polishing and cleaning) and activation prior to electroless plating. The plating characteristics were investigated for concentration ratio of nickel and hypophosphite (1:3), sodium tungstate concentration 0,1 M, immersion time (15 min, 30 min, 60 min), and bath condition (acid, alkaline). The electroless Ni-W-P plating was heat treated at 400°C for 1 hour. Deposits were characterized using scanning electron microscope (SEM) and corrosion measurement system (CMS).

  15. Microstructural observation of ion-irradiated austenitic stainless steel

    International Nuclear Information System (INIS)

    Sawai, T.; Hamada, S.; Hishinuma, A.

    1992-01-01

    Type 316 stainless steel, base metal and weld metal obtained from an electron beam weld joint, was irradiated with 90 MeV Br +6 in the JAERI tandem accelerator. Cross-sectional TEM specimens were obtained by nickel plating. Microstructural observation revealed a band of tiny dislocation loops was observed around the mean projected range and the measured distance from the surface was 6.75±0.15μm. This is slightly larger than the calculated value using Ziegler's stopping power. Defect clusters were also observed around defect sinks within the mean projected range, suggesting cascade-sink interaction. These sinks are the grain boundary in the base metal specimen and preexisting dislocation lines in the weld metal specimen. Surface roughness of polished specimen was detected at the shallower side of the peak damage band, although no visible crystalline defect cluster was observed. This suggests radiation-induced microchemical evolution prior to sever microstructural evolution. (author)

  16. Corrosion behaviour of stainless steels by internal friction method

    International Nuclear Information System (INIS)

    Postnikov, V.S.; Kovalevskij, V.I.

    1987-01-01

    Corrosion of austenite chromium-nickel stainless steels 12 Kh18N9, 12Kh18N9T, 12Kh18N10 and 12Kh18N10T is investigated. Wire samples 0.7...0.8 mm in diameter before tests were subjected to quenching in water from the temperature of 1050...1100 deg C and part of them - to tempering at 650 deg C for 2 h. Pitting corrosion was brought about by different concentration of iron chloride solutions (C FeCl 3 ). Total corrosion has a slight effect on the character of IF (internal friction) variation that increases without the whole test period up to the moment when mechanical strength of the sample

  17. Ion nitriding in 316=L stainless steel

    International Nuclear Information System (INIS)

    Rojas-Calderon, E.L.

    1989-01-01

    Ion nitriding is a glow discharge process that is used to induce surface modification in metals. It has been applied to 316-L austenitic stainless steel looking for similar benefits already obtained in other steels. An austenitic stainless steel was selected because is not hardenable by heat treatment and is not easy to nitride by gas nitriding. The samples were plastically deformed to 10, 20, 40, 50 AND 70% of their original thickness in order to obtain bulk hardening and to observe nitrogen penetration dependence on it. The results were: an increase of one to two rockwell hardness number (except in 70% deformed sample because of its thickness); an increase of even several hundreds per cent in microhardness knoop number in nitrided surface. The later surely modifies waste resistance which would be worth to quantify in further studies. Microhardness measured in an internal transversal face to nitrided surface had a gradual diminish in its value with depth. Auger microanalysis showed a higher relative concentration rate C N /C F e near the surface giving evidence of nitrogen presence till 250 microns deep. The color metallography etchant used, produced faster corrosion in nitrited regions. Therefore, corrosion studies have to be done before using ion nitrited 316-L under these chemicals. (Author)

  18. Heat treatment temperature influence on ASTM A890 GR 6A super duplex stainless steel microstructure

    International Nuclear Information System (INIS)

    Martins, Marcelo; Casteletti, Luiz Carlos

    2005-01-01

    Duplex and super duplex stainless steels are ferrous alloys with up to 26% chromium, 8% nickel, 5% molybdenum and 0.3% nitrogen, which are largely used in applications in media containing ions from the halogen family, mainly the chloride ion (Cl - ). The emergence of this material aimed at substituting Copper-Nickel alloys (Cupro-Nickel) that despite presenting good corrosion resistance, has mechanical properties quite inferior to steel properties. The metallurgy of duplex and super duplex stainless steel is complex due to high sensitiveness to sigma phase precipitation that becomes apparent, due to the temperatures they are exposed on cooling from solidification as well as from heat treatment processes. The objective of this study was to verify the influence of heat treating temperatures on the microstructure and hardness of ASTM A890/A890M Gr 6A super duplex stainless steel type. Microstructure control is of extreme importance for castings, as the chemical composition and cooling during solidification inevitably provide conditions for precipitation of sigma phase. Higher hardness in these materials is directly associated to high sigma phase concentration in the microstructure, precipitated in the ferrite/austenite interface. While heat treatment temperature during solution treatment increases, the sigma phase content in the microstructure decreases and consequently, the material hardness diminishes. When the sigma phase was completely dissolved by the heat treatment, the material hardness was influenced only due to ferrite and austenite contents in the microstructure

  19. Investigating the Crevice Corrosion Behavior of Coated Stainless Steel in Seawater

    National Research Council Canada - National Science Library

    Kain, Robert

    2000-01-01

    .... austenitic stainless steel. Testing in natural seawater has demonstrated that coatings can protect susceptible stainless steel from barnacle related crevice corrosion and localized corrosion at weldments...

  20. Plasticity of low carbon stainless steels

    International Nuclear Information System (INIS)

    Bulat, S.I.; Fel'dgandler, Eh.G.; Kareva, E.N.

    1975-01-01

    In the temperature range 800-1200 0 C and with strain rates of from 10 -3 to 3 s -1 , austenitic (000Kh18N12) and austenitic-ferrite (000Kh26N6) very low carbon stainless steels containing 0.02-0.03% C exhibit no higher resilience than corresponding ordinary steels containing 0.10-0.12% C. However, the plasticity of such steels (particularly two-phase steels) at 900-1100 0 C is appreciably inferior owing to the development of intergranular brittle fracture. Pressure treatment preceded by partial cooling of the surface to 850 0 C yields rolled and forged products with acceptable indices but is inconvenient technically. At the Zlatoustovsk and Ashin metallurgical plants successful tests have been performed involving the forging and rolling of such steels heated to 1280-1300 0 C without partial cooling; it was necessary to improve the killing conditions, correct the chemical composition (increasing the proportion of ferrite) and take measures against heat loss. (author)

  1. Antimicrobial Cu-bearing stainless steel scaffolds

    International Nuclear Information System (INIS)

    Wang, Qiang; Ren, Ling; Li, Xiaopeng; Zhang, Shuyuan; Sercombe, Timothy B.; Yang, Ke

    2016-01-01

    Copper-bearing stainless steel scaffolds with two different structures (Body Centered Cubic and Gyroid labyrinth) at two solid fractions (25% and 40%) were fabricated from both 316L powder and a mixture of 316L and elemental Cu powder using selective laser melting, and relative 316L scaffolds were served as control group. After processing, the antimicrobial testing demonstrated that the 316L-Cu scaffolds presented excellent antimicrobial activity against Escherichia coli and Staphylococcus aureus, and the cell viability assay indicated that there was no cytotoxic effect of 316L-Cu scaffolds on rat marrow mesenchymal stem cells. As such, these have the potential to reduce implant-associated infections. The Cu was also found to homogeneously distribute within the microstructure by scanning electronic microcopy. The addition of Cu would not significantly affect its strength and stiffness compared to 316L scaffold, and the stiffness of all the scaffolds (3-20GPa) is similar to that of bone and much less than that of bulk stainless steel. Consequently, fabrication of such low stiffness porous structures, especially coupled with the addition of antimicrobial Cu, may provide a new direction for medical stainless steels. - Highlights: • 316L-Cu scaffolds were fabricated by using selective laser melting (SLM). • 316L-Cu scaffolds showed satisfied antimicrobial activities. • 316L-Cu scaffolds have no cytotoxic effect on normal cells. • Other properties of 316L-Cu scaffolds were similar to 316L scaffolds. • 316L-Cu scaffolds have the potential to be used in orthopedic applications.

  2. Antimicrobial Cu-bearing stainless steel scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qiang, E-mail: mfqwang@163.com [School of Stomatology, China Medical University, Shenyang 110002 (China); Ren, Ling [Institute of Metal Research, Chinese Academy of Sciences (China); Li, Xiaopeng [School of Mechanical and Chemical Engineering, The University of Western Australia (Australia); Zhang, Shuyuan [Institute of Metal Research, Chinese Academy of Sciences (China); Sercombe, Timothy B., E-mail: tim.sercombe@uwa.edu.au [School of Mechanical and Chemical Engineering, The University of Western Australia (Australia); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences (China)

    2016-11-01

    Copper-bearing stainless steel scaffolds with two different structures (Body Centered Cubic and Gyroid labyrinth) at two solid fractions (25% and 40%) were fabricated from both 316L powder and a mixture of 316L and elemental Cu powder using selective laser melting, and relative 316L scaffolds were served as control group. After processing, the antimicrobial testing demonstrated that the 316L-Cu scaffolds presented excellent antimicrobial activity against Escherichia coli and Staphylococcus aureus, and the cell viability assay indicated that there was no cytotoxic effect of 316L-Cu scaffolds on rat marrow mesenchymal stem cells. As such, these have the potential to reduce implant-associated infections. The Cu was also found to homogeneously distribute within the microstructure by scanning electronic microcopy. The addition of Cu would not significantly affect its strength and stiffness compared to 316L scaffold, and the stiffness of all the scaffolds (3-20GPa) is similar to that of bone and much less than that of bulk stainless steel. Consequently, fabrication of such low stiffness porous structures, especially coupled with the addition of antimicrobial Cu, may provide a new direction for medical stainless steels. - Highlights: • 316L-Cu scaffolds were fabricated by using selective laser melting (SLM). • 316L-Cu scaffolds showed satisfied antimicrobial activities. • 316L-Cu scaffolds have no cytotoxic effect on normal cells. • Other properties of 316L-Cu scaffolds were similar to 316L scaffolds. • 316L-Cu scaffolds have the potential to be used in orthopedic applications.

  3. Identification of the mechanism that confers superhydrophobicity on 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Escobar, Ana M.; Llorca-Isern, Nuria; Rius-Ayra, Oriol

    2016-01-15

    This study develops a rapid method to confer superhydrophobicity on 316L stainless steel surfaces with an amphiphilic reagent such as dodecanoic acid. The highest contact angle (approaching 173°) was obtained after forming hierarchical structures with a non-aqueous electrolyte by an electrolytic process. Our goal was to induce superhydrophobicity directly on 316L stainless steel substrates and to establish which molecules cause the effect. The superhydrophobic behaviour is analysed by contact angle measurements, scanning electron microscopy (SEM), IR spectroscopy and atomic force microscopy (AFM). The growth mechanism is analysed using FE-SEM, TOF-SIMS and XPS in order to determine the molecules involved in the reaction and the growth. The TOF-SIMS analysis revealed that the Ni{sup 2+} ions react with lauric acid to create an ester on the stainless steel surface. - Highlights: • This study develops a rapid and facile approach to impart superhydrophobicity properties to 316L stainless steel surfaces with an amphiphilic reagent such as dodecanoic acid. Surface character changes from superhydrophilicity to superhydrophobicity. • This process changes the surface character from superhydrophilicity to superhydrophobicity. • The process based on electrolysis of a nickel salt in lauric acid provides superhydrophobic behaviour in 316L stainless steel. • The growth mechanism is proposed as a mode island (Volmert- Weber mode). • TOF-SIMS and XPS provided the identification of the molecules involved in the surface modification reaction on AISI 316L inducing superhydrophobicity.

  4. Use of stainless steel as structural materials in reactor cores

    International Nuclear Information System (INIS)

    Teodoro, C.A.

    1990-01-01

    Austenitic stainless steels are used as structural materials in reactor cores, due to their good mechanical properties at working temperatures and high generalized corrosion resistance in aqueous medium. The objective of this paper is to compare several 300 series austenitic stainless steels related to mechanical properties, localized corrosion resistance (SCC and intergranular) and content of delta ferrite. (author)

  5. Twin boundary cavitation in aged type 304 stainless steel

    International Nuclear Information System (INIS)

    Sikka, V.K.; Swindeman, R.W.; Brinkman, C.R.

    1975-10-01

    A transition from grain to twin boundary cavitation was observed in aged-and-creep-tested type 304 stainless steel. Evidence of twin boundary cavitation has also been observed for unaged material under certain test conditions. This same behavior was also found in aged type 316 stainless steel. Several possible reasons have been suggested for the absence of frequently observed grain boundary cavitation

  6. Segregation effects in welded stainless steels

    International Nuclear Information System (INIS)

    Akhter, J.I.; Shoaid, K.A.; Ahmed, M.; Malik, A.Q.

    1987-01-01

    Welding of steels causes changes in the microstructure and chemical composition which could adversely affect the mechanical and corrosion properties. The report describes the experimental results of an investigation of segregation effects in welded austenitic stainless steels of AISI type 304, 304L, 316 and 316L using the techniques of scanning electron microscopy and electron probe microanalysis. Considerable enhancement of chromium and carbon has been observed in certain well-defined zones on the parent metal and on composition, particularly in the parent metal, in attributed to the formation of (M 23 C 6 ) precipitates. The formation of geometrically well-defined segregation zones is explained on the basis of the time-temperature-precipitation curve of (M 23 C 6 ). (author)

  7. Deformation induced martensitic transformation in stainless steels

    International Nuclear Information System (INIS)

    Nagy, E.; Mertinger, V.; Tranta, F.; Solyom, J.

    2003-01-01

    Deformation induced martensitic transformation was investigated in metastable austenitic stainless steel. This steel can present a microstructure of austenite (γ), α' martensite and non magnetic ε martensite. Uni-axial tensile test was used for loading at different temperatures below room temperature (from -120 to 20 deg. C). During the deformation the transformation takes place at certain places in an anisotropic way and texture also develops. Quantitative phase analysis was done by X-ray diffraction (XRD) and magnetic methods while the texture was described by X-ray diffraction using a special inverse pole figure. The quantitative phase analysis has shown that the formation of α' and ε martensite from austenite is the function of deformation rate, and deformation temperature. The transformation of the textured austenite takes place in an anisotropic way and a well defined crystallographic relationship between the parent and α' martensite phase has been measured

  8. Features of residual stresses in duplex stainless steel butt welds

    Science.gov (United States)

    Um, Tae-Hwan; Lee, Chin-Hyung; Chang, Kyong-Ho; Nguyen Van Do, Vuong

    2018-04-01

    Duplex stainless steel finds increasing use as an alternative to austenitic stainless steel, particularly where chloride or sulphide stress corrosion cracking is of primary concern, due to the excellent combination of strength and corrosion resistance. During welding, duplex stainless steel does not create the same magnitude or distribution of weld-induced residual stresses as those in welded austenitic stainless steel due to the different physical and mechanical properties between them. In this work, an experimental study on the residual stresses in butt-welded duplex stainless steel is performed utilizing the layering technique to investigate the characteristics of residual stresses in the weldment. Three-dimensional thermos-mechanical-metallurgical finite element analysis is also performed to confirm the residual stress measurements.

  9. Brazing open cell reticulated copper foam to stainless steel tubing with vacuum furnace brazed gold/indium alloy plating

    Science.gov (United States)

    Howard, Stanley R [Windsor, SC; Korinko, Paul S [Aiken, SC

    2008-05-27

    A method of fabricating a heat exchanger includes brush electroplating plated layers for a brazing alloy onto a stainless steel tube in thin layers, over a nickel strike having a 1.3 .mu.m thickness. The resultant Au-18 In composition may be applied as a first layer of indium, 1.47 .mu.m thick, and a second layer of gold, 2.54 .mu.m thick. The order of plating helps control brazing erosion. Excessive amounts of brazing material are avoided by controlling the electroplating process. The reticulated copper foam rings are interference fit to the stainless steel tube, and in contact with the plated layers. The copper foam rings, the plated layers for brazing alloy, and the stainless steel tube are heated and cooled in a vacuum furnace at controlled rates, forming a bond of the copper foam rings to the stainless steel tube that improves heat transfer between the tube and the copper foam.

  10. Development of a lean duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Liljas, M.; Johansson, P.; Liu Hui-Ping; Olsson, C.O.A. [Avesta Research Centre, Avesta (Sweden). Outokumpu Stainless

    2008-06-15

    The classic series of duplex stainless steels shows very high corrosion resistance and can be used for very demanding applications. A new lean duplex steel, LDX 2101 {sup registered} (EN 1.4162, UNS S32101), has been developed with corrosion resistance on a par with standard austenitic grades. Application areas include: structural components, chemical industry, tanks and containers. The steel was designed to have equal amounts of ferrite and austenite in annealed condition and with an austenite that is stable against strain-induced martensite. Thanks to its high nitrogen content, the steel has a fast austenite reformation when subjected to thermal cycling, e.g. welding. Unlike conventional duplex grades, the formation of intermetallic phase is very sluggish, although precipitation of nitrides and carbides has a certain impact on material properties after exposure in the temperature range 600 to 800 C. The precipitation behaviour after different isothermal treatments is described and its influence on different product properties is shown. A good agreement was found between impact toughness and corrosion resistance for a wide range of thermal treatments. (orig.)

  11. Citric Acid Passivation of Stainless Steel

    Science.gov (United States)

    Yasensky, David; Reali, John; Larson, Chris; Carl, Chad

    2009-01-01

    Passivation is a process for cleaning and providing corrosion protection for stainless steel. Currently, on Kennedy Space Center (KSC), only parts passivated with nitric acid are acceptable for use. KSC disposes of approximately 125gal of concentrated nitric acid per year, and receives many parts from vendors who must also dispose of used nitric acid. Unfortunately, nitric acid presents health and environmental hazards. As a result, several recent industry studies have examined citric acid as an alternative. Implementing a citric acid-based passivation procedure would improve the health and environmental safety aspects of passivation process. However although there is a lack of published studies that conclusively prove citric acid is a technically sound passivation agent. In 2007, NASA's KSC Materials Advisory Working Group requested the evaluation of citric acid in place of nitric acid for passivation of parts at KSC. United Space Alliance Materials & Processes engineers have developed a three-phase test plan to evaluate citric acid as an alternative to nitric acid on three stainless steels commonly used at KSC: UNS S30400, S41000, and S17400. Phases 1 and 2 will produce an optimized citric acid treatment based on results from atmospheric exposure at NASA's Beach Corrosion Facility. Phase 3 will compare the optimized solution(s) with nitric acid treatments. If the results indicate that citric acid passivates as well or better than nitric acid, NASA intends to approve this method for parts used at the Kennedy Space Center.

  12. Irradiated accelerated corrosion of stainless steel

    International Nuclear Information System (INIS)

    Raiman, S.S.; Wang, P.; Was, G.S.

    2015-01-01

    Type 316L stainless steel was exposed to a simulated PWR environment with in-situ proton irradiation to investigate the effect of simultaneous irradiation and corrosion. To enable these experiments, a dedicated beamline was constructed to transport a 3.2 MeV proton beam from a tandem accelerator, through the sample that also acts as the window between the beamline vacuum and a corrosion cell designed to flow primary water at 320 C. degrees and 13.1 MPa. Experiments were conducted on 316L stainless steel samples which were irradiated for 24 hours in 320 C. degrees water with 3 ppm H 2 , at dose rates of 7*10 -6 dpa/s and 7*10 -7 dpa/s, for 4, 24, and 72 hours. A dual-layer oxide formed on the samples, with an inner layer rich in Cr with Fe and Ni content, and an outer layer of Fe oxides. Samples were characterized with TEM (Transmission Electron Microscopy), EDS, and Raman spectroscopy to determine the effect of irradiation. Irradiated samples were found to have a thinner and more porous inner oxide which was deficient in chromium. The outer oxide was found to have significant hematite content, suggesting that irradiation led to an increase in ECP (Electro-Chemical Potential) at the oxide-solution interface, causing accelerated dissolution of the oxide under irradiation. (authors)

  13. Fracture toughness of irradiated stainless steel alloys

    International Nuclear Information System (INIS)

    Mills, W.J.

    1986-01-01

    The postirradiation fracture toughness responses of Types 316 and 304 stainless steel (SS) wrought products, cast CF8 SS and Type 308 SS weld deposit were characterized at 427 0 C using J/sub R/-curve techniques. Fast-neutron irradiation of these alloys caused an order of magnitude reduction in J/sub c/ and two orders of magnitude reduction in tearing modulus at neutron exposures above 10 dpa, where radiation-induced losses in toughness appeared to saturate. Saturation J/sub c/ values for the wrought materials ranged from 28 to 31 kJ/m 2 ; the weld exhibited a saturation level of 11 kJ/m 2 . Maximum allowable flaw sizes for highly irradiated stainless steel components stressed to 90% of the unirradiated yield strength are on the order of 3 cm for the wrought material and 1 cm for the weld. Electron fractographic examination revealed that irradiation displacement damage brought about a transition from ductile microvoid coalescence to channel fracture, associated with local separation along planar deformation bands. The lower saturation toughness value for the weld relative to that for the wrought products was attributed to local failure of ferrite particles ahead of the advancing crack which prematurely initiated channel fracture

  14. Single pit propagation on austenitic stainless steel

    International Nuclear Information System (INIS)

    Heurtault, Stephane

    2016-01-01

    The electrochemical characterization of metastable events such as pitting corrosion of stainless steel in chloride electrolyte remains complex because many individual processes may occur simultaneously on the alloy surface. To overcome these difficulties, an experimental setup, the flow micro-device, has been developed to achieve the initiation of a single pit and to propagate the single pit in three dimensions. In this work, we take advantage of such a device in order to revisit the pitting process on a 316L stainless steel in a chloride - sulphate bulk. In a first step, the time evolution of the pit geometry (depth, radius) and the chemical evolution of the pit solution investigated using in situ Raman spectroscopy have shown that the pit depth propagation depends on the formation of a metal chloride and sulphate gel in the pit solution, and is controlled by the metallic cations diffusion from the pit bottom to the pit mouth. The pit radius growth is defined by the initial surface de-passivation, by the presence of a pit cover and by the gel development in the solution. all of these phenomena are function of applied potential and chemical composition of the solution. In a last step, it was demonstrated that a critical chloride concentration is needed in order to maintain the pit propagation. This critical concentration slightly increases with the pit depth. From statistical analysis performed on identical experiments, a zone diagram showing the pit stability as a function of the chloride concentration and the pit dimensions was built. (author) [fr

  15. Borated stainless steel joining technology. Final report

    International Nuclear Information System (INIS)

    Smith, R.J.

    1994-12-01

    EPRI had continued investigating the application of borated stainless steel products within the US commercial nuclear power industry through participation in a wide range of activities. This effort provides the documentation of the data obtained in the development of the ASTM-A887 Specification preparation effort conducted by Applied Science and Technology and the most recent efforts for the development of joining technologies conducted under a joint effort by EPRI, Carpenter Technologies and Sandia National Laboratory under a US DOE CRADA program. The data presented in this report provides the basis for the ASTM specification which has been previously unpublished by EPRI and the data generated in support of the Joining Technology research effort conducted at Sandia. The results of the Sandia research, although terminated prior to the completion, confirms earlier data that the degradation of material properties in fusion welded borated stainless steels occurs in the heat affected zone of the weld area and not in the base material. The data obtained also supports the conclusion that the degradation of material properties can be overcome by post weld heat treatment which can result in material properties near the original unwelded metal

  16. Microstructural features of dissimilar welds between 316LN austenitic stainless steel and alloy 800

    International Nuclear Information System (INIS)

    Sireesha, M.; Sundaresan, S.

    2000-01-01

    For joining type 316LN austenitic stainless steel to modified 9Cr-1Mo steel for power plant application, a trimetallic configuration using an insert piece (such as alloy 800) of intermediate thermal coefficient of expansion (CTE) has been sometimes suggested for bridging the wide gap in CTE between the two steels. Two joints are thus involved and this paper is concerned with the weld between 316LN and alloy 800. These welds were produced using three types of filler materials: austenitic stainless steels corresponding to 316,16Cr-8Ni-2Mo, and the nickel-base Inconel 182 1 . The weld fusion zones and the interfaces with the base materials were characterised in detail using light and transmission electron microscopy. The 316 and Inconel 182 weld metals solidified dendritically, while the 16-8-2(16%Cr-8%Ni-2%Mo) weld metal showed a predominantly cellular substructure. The Inconel weld metal contained a large number of inclusions when deposited from flux-coated electrodes, but was relatively inclusion-free under inert gas-shielded welding. Long-term elevated-temperature aging of the weld metals resulted in embrittling sigma phase precipitation in the austenitic stainless steel weld metals, but the nickel-base welds showed no visible precipitation, demonstrating their superior metallurgical stability for high-temperature service. (orig.)

  17. APT characterization of high nickel RPV steels

    International Nuclear Information System (INIS)

    Miller, M.K.; Russell, K.F

    2004-01-01

    Full text: The microstructures of several high nickel content pressure vessel steels have been characterized by atom probe tomography. The purposes of this study were to investigate the influence of high nickel levels on the response to neutron irradiation of high and low copper pressure vessel steels and to establish whether any additional phases were present after neutron irradiation. The nickel levels in these steels were at least twice that typically found in Western pressure vessel steels. Two different types of pressure vessel steels with low and high copper contents were selected for this study. The first set of alloys was low copper (∼0.05% Cu) base (15Ch2NMFAA) and weld (12Ch2N2MAA) materials used in a VVER-1000 reactor. The composition of the lower nickel VVER-1000 base material was Fe- 0.17 wt% C, 0.30% Si, 0.46% Mn, 2.2% Cr, 1.26% Ni, 0.05% Cu, 0.01% S, 0.008% P, 0.10% V and 0.50% Mo. The composition of the higher nickel VVER-1000 weld material was Fe- 0.06 wt % C, 0.33% Si, 0.80% Mn, 1.8% Cr, 1.78% Ni, 0.07% Cu, 0.009% S, 0.005% P, and 0.63% Mo. The VVER-1000 steels were irradiated in the HSSI Program's irradiation facilities at the University of Michigan, Ford Nuclear Reactor at a temperature of 288 o C for 2,137 h at an average flux of 7.08 x 10 11 cm 2 s -1 for a fluence of 5.45 x 10 18 n cm -2 (E >1 MeV) and for 5,340 h at an average flux of 4.33 x 10 11 cm -2 s -1 for a fluence of 8.32 x 10 1 28 n cm -2 (E >1 MeV). Therefore, the total fluence was 1.38 x 10 19 n cm -2 (E >1 MeV). The second type of pressure vessel steel was a high copper (0.20% Cu) weld from the Palisades reactor. The average composition of the Palisades weld was Fe- 0.11 wt% C, 0.18% Si, 1.27% Mn, 0.04% Cr, 1.20% Ni, 0.20% Cu, 0.017% S, 0.014% P, 0.003% V and 0.55% Mn. The Palisades weld, designated weldment 'B' from weld heat 34B009, was irradiated at a temperature of 288 o C and a flux of ∼7 x 10 11 cm -2 s -1 to a fast fluence of 1.4 x 10 19 n cm -2 (E >1 MeV). These three

  18. Porous stainless steel for biomedical applications

    Directory of Open Access Journals (Sweden)

    Sabrina de Fátima Ferreira Mariotto

    2011-01-01

    Full Text Available Porous 316L austenitic stainless steel was synthesized by powder metallurgy with relative density of 0.50 and 0.30 using 15 and 30 wt. (% respectively of ammonium carbonate and ammonium bicarbonate as foaming agents. The powders were mixed in a planetary ball mill at 60 rpm for 10 minutes. The samples were uniaxially pressed at 287 MPa and subsequently vacuum heat treated in two stages, the first one at 200 ºC for 5 hours to decompose the carbonate and the second one at 1150 ºC for 2 hours to sinter the steel. The sintered samples had a close porous structure and a multimodal pore size distribution that varied with the foaming agent and its concentration. The samples obtained by addition of 30 wt. (% of foaming agents had a more homogeneous porous structure than that obtained with 15 wt. (%. The MTT cytotoxicity test (3-[4,5-dimethylthiazol]-2,5-diphenyltetrazolium bromide was used to evaluate the mitochondrial activity of L929 cells with samples for periods of 24, 48, and 72 hours. The cytotoxicity test showed that the steel foams were not toxic to fibroblast culture. The sample with the best cellular growth, therefore the most suitable for biomedical applications among those studied in this work, was produced with 30 wt. (% ammonium carbonate. In this sample, cell development was observed after 48 hours of incubation, and there was adhesion and spreading on the material after 72 hours. Electrochemical experiments using a chloride-containing medium were performed on steel foams and compared to massive steel. The massive steel had a better corrosion performance than the foams as the porosity contributes to increase the surface area exposed to the corrosive medium.

  19. Aging behaviour of 25Cr-17Mn high nitrogen duplex stainless steel

    OpenAIRE

    Machado, I. F.; Padilha, A. F.

    2000-01-01

    The precipitation behaviour of a nickel free stainless steel containing 25% chromium, 17% manganese and 0.54% nitrogen, with duplex ferritic-austenitic microstructure, was studied using several complementary techniques of microstructural analysis after aging heat treatments between 600 and 1 000 degrees C for periods of lime between 15 and 6 000 min. During aging heat treatments, ferrite was decomposed into sigma phase and austenite by a eutectoid reaction, like in the Fe-Cr-Ni duplex stainle...

  20. Relationship between equivalent chromium content and irradiation-induced swelling in 316 stainless steel

    International Nuclear Information System (INIS)

    Bates, J.F.; Guthrie, G.L.

    1974-12-01

    A correlation is noted between equivalent chromium content and resistance to irradiation induced swelling in various 316 stainless steel specimens which have slightly different chemical compositions. Several examples are cited where an increased concentration of an α-stabilizing minor constituent results in decreased swelling. It is shown that the relative swelling resistance of alloys having the same carbon and equivalent nickel contents is higher for those alloys with the higher equivalent chromium content

  1. Spatial distribution of crystalline corrosion products formed during corrosion of stainless steel in concrete

    KAUST Repository

    Serdar, Marijana

    2015-05-01

    © 2015 Elsevier Ltd All rights reserved. The mineralogy and spatial distribution of nano-crystalline corrosion products that form in the steel/concrete interface were characterized using synchrotron X-ray micro-diffraction (μ-XRD). Two types of low-nickel high-chromium reinforcing steels embedded into mortar and exposed to NaCl solution were investigated. Corrosion in the samples was confirmed by electrochemical impedance spectroscopy (EIS). μ-XRD revealed that goethite (α-FeOOH) and akaganeite (β-FeOOH) are the main iron oxide-hydroxides formed during the chloride-induced corrosion of stainless steel in concrete. Goethite is formed closer to the surface of the steel due to the presence of chromium in the steel, while akaganeite is formed further away from the surface due to the presence of chloride ions. Detailed microstructural analysis is shown and discussed on one sample of each type of steel.

  2. Spatial distribution of crystalline corrosion products formed during corrosion of stainless steel in concrete

    KAUST Repository

    Serdar, Marijana; Meral, Cagla; Kunz, Martin; Bjegovic, Dubravka; Wenk, Hans-Rudolf; Monteiro, Paulo J.M.

    2015-01-01

    © 2015 Elsevier Ltd All rights reserved. The mineralogy and spatial distribution of nano-crystalline corrosion products that form in the steel/concrete interface were characterized using synchrotron X-ray micro-diffraction (μ-XRD). Two types of low-nickel high-chromium reinforcing steels embedded into mortar and exposed to NaCl solution were investigated. Corrosion in the samples was confirmed by electrochemical impedance spectroscopy (EIS). μ-XRD revealed that goethite (α-FeOOH) and akaganeite (β-FeOOH) are the main iron oxide-hydroxides formed during the chloride-induced corrosion of stainless steel in concrete. Goethite is formed closer to the surface of the steel due to the presence of chromium in the steel, while akaganeite is formed further away from the surface due to the presence of chloride ions. Detailed microstructural analysis is shown and discussed on one sample of each type of steel.

  3. Study of corrosion resistance of AISI 444 ferritic stainless steel for application as a biomaterial

    International Nuclear Information System (INIS)

    Marques, Rogerio Albuquerque

    2014-01-01

    Ferritic stainless steels are ferromagnetic materials. This property does not allow their use in orthopedic prosthesis. Nevertheless, in some specific applications, this characteristic is very useful, such as, for fixing dental and facial prostheses by using magnetic attachments. In this study, the corrosion resistance and cytotoxicity of the AISI 444 ferritic stainless steel, with low nickel content, extra-low interstitial levels (C and N) and Ti and Nb stabilizers, were investigated for magnetic dental attachments application. The ISO 5832-1 (ASTM F-139) austenitic stainless steel and a commercial universal keeper for dental attachment (Neo-magnet System) were evaluated for comparison reasons. The first stainless steel is the most used metallic material for prostheses, and the second one, is a ferromagnetic keeper for dental prostheses (NeoM). In vitro cytotoxicity analysis was performed by the red neutral incorporation method. The results showed that the AISI 444 stainless steel is non cytotoxic. The corrosion resistance was studied by anodic polarization methods and electrochemical impedance spectroscopy (EIS), in a saline phosphate buffered solution (PBS) at 37 °C. The electronic properties of the passive film formed on AISI 444 SS were evaluated by the Mott-Schottky approach. All tested materials showed passivity in the PBS medium and the passive oxide film presented a duplex nature. The highest susceptibility to pitting corrosion was associated to the NeoM SS. This steel was also associated to the highest dopant concentration. The comparatively low levels of chromium (nearly 12.5%) and molybdenum (0.3%) of NeoM relatively to the other studied stainless steels are the probable cause of its lower corrosion resistance. The NeoM chemical composition does not match that of the SUS444 standards. The AISI 444 SS pitting resistance was equivalent to the ISO 5832-1 pointing out that it is a potential candidate for replacement of commercial ferromagnetic alloys used

  4. Fracture toughness of a welded super duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Pilhagen, Johan, E-mail: pilhagen@kth.se [Department of Materials Science and Engineering, KTH Royal Institute of Technology, Stockholm (Sweden); Sieurin, Henrik [Scania CV AB, Södertälje (Sweden); Sandström, Rolf [Department of Materials Science and Engineering, KTH Royal Institute of Technology, Stockholm (Sweden)

    2014-06-01

    Fracture toughness testing was conducted on standard single-edge notched bend bar specimens of base and weld metal. The material was the SAF 2906 super duplex stainless steel. The aim was to evaluate the susceptibility for brittle failure at sub-zero temperatures for the base and weld metal. The base metal was tested between −103 and −60 °C and was evaluated according to the crack-tip opening displacement method. The fracture event at and below −80 °C can be described as ductile until critical cleavage initiation occurs, which caused unstable failure of the specimen. The welding method used was submerged arc welding with a 7 wt% nickel filler metal. The welded specimens were post-weld heat treated (PWHT) at 1100 °C for 20 min and then quenched. Energy-dispersive X-ray spectroscopy analysis showed that during PWHT substitutional element partitioning occurred which resulted in decreased nickel content in the ferrite. The PWHT weld metal specimens were tested at −72 °C. The fracture sequence was critical cleavage fracture initiation after minor crack-tip blunting and ductile fracture.

  5. Joining silicon carbide to austenitic stainless steel through diffusion welding; Stellingen behorende bij het proefschrift

    Energy Technology Data Exchange (ETDEWEB)

    Krugers, Jan-Paul

    1993-01-19

    In this thesis, the results are presented of a study dealing with joining silicon carbide to austenitic stainless steel AIS316 by means of diffusion welding. Welding experiments were carried out without and with the use of a metallic intermediate, like copper, nickel and copper-nickel alloys at various conditions of process temperature, process time, mechanical pressure and interlayer thickness. Most experiments were carried out in high vacuum. For reasons of comparison, however, some experiments were also carried out in a gas shielded environment of 95 vol.% Ar and 5 vol.% H2.

  6. High cycle fatigue of austenitic stainless steels

    International Nuclear Information System (INIS)

    Gauthier, J.P.; Lehmann, D.; Picker

    1990-01-01

    This study concerns the evaluation of material data to be used in LMFBR design codes. High cycle fatigue properties of three austenitic stainless steels are evaluated: type AISI 316 (UKAEA tests), type AISI 316L (CEA tests) and type AISI 304 (Interatom tests). The data on these steels comprised some 550 data points from 14 casts. This data set covered a wide range of testing parameters: temperature from 20-625 0 C, frequency from 1-20 000 Hz, constant amplitude and random fatigue loading, with and without mean stress, etc. However, the testing conditions chosen by the three partners differed considerably because they had been fixed independently and not harmonized prior to the tests. This created considerable difficulties for the evaluations. Experimental procedures and statistical treatments used for the three subsets of data are described and discussed. Results are presented in tables and graphs. Although it is often difficult to single out the influence of each parameter due to the different testing conditions, several interesting conclusions can be drawn: The HCF properties of the three steels are consistent with the 0.2% proof stress, the fatigue limit being larger than the latter at temperatures above 550 0 C. The type 304 steel has lower tensile properties than the two other steels and hence also lower HCF properties. Parameters which clearly have a significant effect of HCF behaviour are mean stress or R-ratio (less in the non-endurance region than in the endurance region), temperature, cast or product. Other parameters have probably a weak or no effect but it is difficult to conclude due to insufficient data: environment, specimen orientation, frequency, specimen geometry

  7. Electrolytic pickling of duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Ipek, N.; Holm, B.; Pettersson, R. [Swedish Institute for Metals Research, Drottning Kristinas vaeg 48, 11428 Stockholm (Sweden); Runnsjoe, G.; Karlsson, M. [Outokumpu Stainless AB, 77422 Avesta (Sweden)

    2005-08-01

    Pickling of duplex stainless steels has proved to be much more difficult than that of standard austenitic grades. Electrolytic pre-pickling is shown to be a key process towards facilitating the pickling process for material annealed both in the production-line and in laboratory experiments. The mechanism for the neutral electrolytic process on duplex 2205 and austenitic 316 steels has been examined and the oxide scale found to become thinner as a function of electrolytic pickling time. Spallation or peeling of the oxide induced by gas evolution did not play a decisive role. A maximum of about 20% of the current supplied to the oxidised steel surface goes to dissolution reactions whereas about 80% of the current was consumed in oxygen gas production. This makes the current utilisation very poor, particularly against the background of reports that in indirect electrolytic pickling only about 30% of the total current, supplied to the process, actually goes into the strip. A parametric study was therefore carried out to determine whether adjustment of process variables could improve the current utilisation. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  8. On phase equilibria in duplex stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Wessman, S. [Swerea KIMAB AB, Stockholm (Sweden); Pettersson, R. [Outokumpu Stainless AB, Avesta Research Centre, Avesta (Sweden); Hertzman, S. [Outokumpu Stainless Research Foundation, Stockholm (Sweden)

    2010-05-15

    The equilibrium conditions of four duplex stainless steels; Fe-23Cr-4.5Ni-0.1N, Fe-22Cr-5.5Ni-3Mo-0.17N, Fe-25Cr-7Ni-4Mo-0.27N and Fe-25Cr-7Ni-4Mo-1W-1.5Cu-0.27N were studied in the temperature region from 700 to 1000 C. Phase compositions were determined with SEM EDS and the phase fractions using image analysis on backscattered SEM images. The results showed that below 1000 C the steels develop an inverse duplex structure with austenite and sigma phase, of which the former is the matrix phase. With decreasing temperature, the microstructure will be more and more complex and finely dispersed. The ferrite is, for the higher alloyed steels, only stable above 1000 C and at lower temperatures disappears in favour of intermetallic phases. The major intermetallic phase is sigma phase with small amounts of chi phase, the latter primarily in high Mo and W grades. Nitrides, not a focus in this investigation, were present as rounded particles and acicular precipitates at lower temperatures. The results were compared to theoretical predictions using the TCFE5 and TCFE6 databases. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  9. High nitrogen stainless steels for nuclear industry

    International Nuclear Information System (INIS)

    Kamachi Mudali, U.

    2016-01-01

    Nitrogen alloying in stainless steels (SS) has myriad beneficial effects, including solid solution strengthening, precipitation effects, phase control and corrosion resistance. Recent years have seen a rapid development of these alloys with improved properties owing to advances in processing technologies. Furthermore, unlimited demands for high-performance advanced steels for special use in advanced applications renewed the interest in high nitrogen steels (HNS). The combination of numbers of attractive properties such as strength, fracture toughness, wear resistance, workability, magnetic properties and corrosion resistance of HNS has given a unique advantage and offers a number of prospective applications in different industries. Based on extensive studies carried out at IGCAR, nitrogen alloyed type 304LN SS and 316LN SS have been chosen as materials of construction for many engineering components of fast breeder reactor (FBR) and associated reprocessing plants. HNS austenitic SS alloys are used as structural/reactor components, i.e., main vessel, inner vessel, control plug, intermediate heat exchanger and main sodium piping for fast breeder reactor. HNS type 304LN SS is a candidate material for continuous dissolver, nuclear waste storage tanks, pipings, etc. for nitric acid service under highly corrosive conditions. Recent developments towards the manufacturing and properties of HNS alloys for application in nuclear industry are highlighted in the presentation. (author)

  10. Low carbon manganese-nickel-niobium steel

    International Nuclear Information System (INIS)

    Heisterkamp, F.; Hulka, K.

    1983-11-01

    Experimental heats of a low carbon-manganese-0.5% nickel-0.15% niobium steel have been rolled to plates between 13.5 and 50 mm thickness and to a 16 mm hot strip. Various combinations of soaking temperatures form 1100 0 C to 1300 0 C and of finish rolling temperatures between 710 0 C and 930 0 C have been investigated. From mechanical properties obtained, one can conclude that the investigated steel composition provides very good properties e.g. for pipe steels X65 to X75. In particular, the toughness at low temperature is outstanding despite relaxed rolling conditions. Metalographic and special investigations such as electron microscopy, texture evaluation and chemical extraction, correlated with applied rolling schedules and the mechanical properties obtained resulted in a comprehensive understanding about the benefits of high niobium metallurgy combined with nickel addition. All practically applied welding processes generated mechanical properties, in particular toughness of the weldment, that meet arctic specifications.(Author) [pt

  11. Microbial-Influenced Corrosion of Corten Steel Compared with Carbon Steel and Stainless Steel in Oily Wastewater by Pseudomonas aeruginosa

    Science.gov (United States)

    Mansouri, Hamidreza; Alavi, Seyed Abolhasan; Fotovat, Meysam

    2015-07-01

    The microbial corrosion behavior of three important steels (carbon steel, stainless steel, and Corten steel) was investigated in semi petroleum medium. This work was done in modified nutrient broth (2 g nutrient broth in 1 L oily wastewater) in the presence of Pseudomonas aeruginosa and mixed culture (as a biotic media) and an abiotic medium for 2 weeks. The behavior of corrosion was analyzed by spectrophotometric and electrochemical methods and at the end was confirmed by scanning electron microscopy. The results show that the degree of corrosion of Corten steel in mixed culture, unlike carbon steel and stainless steel, is less than P. aeruginosa inoculated medium because some bacteria affect Corten steel less than other steels. According to the experiments, carbon steel had less resistance than Corten steel and stainless steel. Furthermore, biofilm inhibits separated particles of those steels to spread to the medium; in other words, particles get trapped between biofilm and steel.

  12. 75 FR 39663 - Stainless Steel Bar From Brazil: Final Results of Antidumping Duty Administrative Review

    Science.gov (United States)

    2010-07-12

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-351-825] Stainless Steel Bar From... duty order on certain stainless steel bar from Brazil. The review covers one producer/exporter of the... antidumping duty order on certain stainless steel bar from Brazil. See Stainless Steel Bar From Brazil...

  13. 76 FR 49726 - Continuation of Antidumping and Countervailing Duty Orders: Stainless Steel Sheet and Strip in...

    Science.gov (United States)

    2011-08-11

    ... martensitic precipitation-hardenable stainless steel, and (12) three specialty stainless steels typically used...\\ ``Gilphy 36'' is a trademark of Imphy, S.A. Certain martensitic precipitation-hardenable stainless steel is...-831] Continuation of Antidumping and Countervailing Duty Orders: Stainless Steel Sheet and Strip in...

  14. Characteristics of modified martensitic stainless steel surfaces under tribocorrosion conditions

    International Nuclear Information System (INIS)

    Rozing, Goran; Marusic, Vlatko; Alar, Vesna

    2017-01-01

    Stainless steel samples were tested in the laboratory and under real conditions of tribocorrosion wear. Electrochemical tests were also carried out to verify the corrosion resistance of modified steel surfaces. Metallographic analysis and hardness testing were conducted on stainless steel samples X20Cr13 and X17CrNi16 2. The possibilities of applications of modified surfaces of the selected steels were investigated by testing the samples under real wear conditions. The results have shown that the induction hardened and subsequently nitrided martensitic steels achieved an average wear resistance of up to three orders of magnitude higher as compared to the delivered condition.

  15. Characteristics of modified martensitic stainless steel surfaces under tribocorrosion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Rozing, Goran [Osijek Univ. (Croatia). Chair of Mechanical Engineering; Marusic, Vlatko [Osijek Univ. (Croatia). Dept. of Engineering Materials; Alar, Vesna [Zagreb Univ. (Croatia). Dept. Materials

    2017-04-01

    Stainless steel samples were tested in the laboratory and under real conditions of tribocorrosion wear. Electrochemical tests were also carried out to verify the corrosion resistance of modified steel surfaces. Metallographic analysis and hardness testing were conducted on stainless steel samples X20Cr13 and X17CrNi16 2. The possibilities of applications of modified surfaces of the selected steels were investigated by testing the samples under real wear conditions. The results have shown that the induction hardened and subsequently nitrided martensitic steels achieved an average wear resistance of up to three orders of magnitude higher as compared to the delivered condition.

  16. The Effects of Alloy Chemistry on Localized Corrosion of Austenitic Stainless Steels

    Science.gov (United States)

    Sapiro, David O.

    This study investigated localized corrosion behavior of austenitic stainless steels under stressed and unstressed conditions, as well as corrosion of metallic thin films. While austenitic stainless steels are widely used in corrosive environments, they are vulnerable to pitting and stress corrosion cracking (SCC), particularly in chloride-containing environments. The corrosion resistance of austenitic stainless steels is closely tied to the alloying elements chromium, nickel, and molybdenum. Polarization curves were measured for five commercially available austenitic stainless steels of varying chromium, nickel, and molybdenum content in 3.5 wt.% and 25 wt.% NaCl solutions. The alloys were also tested in tension at slow strain rates in air and in a chloride environment under different polarization conditions to explore the relationship between the extent of pitting corrosion and SCC over a range of alloy content and environment. The influence of alloy composition on corrosion resistance was found to be consistent with the pitting resistance equivalent number (PREN) under some conditions, but there were also conditions under which the model did not hold for certain commercial alloy compositions. Monotonic loading was used to generate SCC in in 300 series stainless steels, and it was possible to control the failure mode through adjusting environmental and polarization conditions. Metallic thin film systems of thickness 10-200 nm are being investigated for use as corrosion sensors and protective coatings, however the corrosion properties of ferrous thin films have not been widely studied. The effects of film thickness and substrate conductivity were examined using potentiodynamic polarization and scanning vibrating electrode technique (SVET) on iron thin films. Thicker films undergo more corrosion than thinner films in the same environment, though the corrosion mechanism is the same. Conductive substrates encourage general corrosion, similar to that of bulk iron

  17. Thermal stability of manganese-stabilized stainless steels

    International Nuclear Information System (INIS)

    Klueh, R.L.; Kenik, E.A.

    1993-01-01

    Previous work on a series of experimental high-manganese reduced-activation austenitic stainless steels demonstrated that they have improved tensile properties relative to type 316 stainless steel in both the annealed and 20% cold-worked conditions. Steels were tested with an Fe-20Mn-12Cr-0.25C (in weight percent) base composition, to which various combinations of Ti, W, V, P, and B were added. Tensile tests have now been completed on these steels after thermal aging at 600 degrees C. Thermal stability varied with composition, but the alloys were as stable or more stable than type 316 stainless steel. the strength of the annealed steels increased slightly after aging to 5000 h, while a strength decrease occurred for the cold worked steel. In both conditions, a steel containing a combination of all the alloying elements was most stable and had the best strength after thermal aging 5000 h at 600 degrees C. Despite having much higher strength than 316 stainless steel after aging, the ductility of the strongest experimental alloy was still as good as that of 316 stainless steel

  18. Stainless Steel Round Robin Test: Centrifugally cast stainless steel screening phase

    Energy Technology Data Exchange (ETDEWEB)

    Bates, D J; Doctor, S R; Heasler, P G; Burck, E

    1987-10-01

    This report presents the results of the Centrifugally Cast Stainless Steel Round Robin Test (CCSSRRT). The CCSSRRT is the first phase of an effort to investigate and improve the capability and reliability of NDE inspections of light water reactor piping systems. This phase was a screening test to identify the most promising procedures presently available for CCSS. The next phase will be an in-depth program to evaluate the capability and reliability of inservice inspections (ISI) for piping. In the CCSSRRT, 15 centrifugally cast stainless steel pipe sections containing welds and laboratory-grown thermal fatigue cracks in both columnar and equiaxed base material were used. These pipe specimens were inspected by a total of 18 teams from Europe and the United States using a variety of NDE techniques, mostly ultrasonic (UT). The inspections were carried out at the team's facilities and included inspections from both sides of the weld and inspections restricted to one side of the weld. The results of the CCSSRRT make it apparent that a more detailed study on the capability and reliability of procedures to inspect stainless steel materials is needed to better understand the specific material and flaw properties and how they affect the outcome of an inspection.

  19. Compressibility of 304 Stainless Steel Powder Metallurgy Materials Reinforced with 304 Short Stainless Steel Fibers

    Directory of Open Access Journals (Sweden)

    Bibo Yao

    2016-03-01

    Full Text Available Powder metallurgy (P/M technique is usually used for manufacturing porous metal materials. However, some P/M materials are limitedly used in engineering for their performance deficiency. A novel 304 stainless steel P/M material was produced by a solid-state sintering of 304 stainless steel powders and 304 short stainless steel fibers, which were alternately laid in layers according to mass ratio. In this paper, the compressive properties of the P/M materials were characterized by a series of uniaxial compression tests. The effects of fiber content, compaction pressure and high temperature nitriding on compressive properties were investigated. The results indicated that, without nitriding, the samples changed from cuboid to cydariform without damage in the process of compression. The compressive stress was enhanced with increasing fiber content ranging from 0 to 8 wt.%. For compaction pressure from 55 to 75 MPa, greater compaction pressure improved compressive stress. Moreover, high temperature nitriding was able to significantly improve the yield stress, but collapse failure eventually occurred.

  20. Compressibility of 304 Stainless Steel Powder Metallurgy Materials Reinforced with 304 Short Stainless Steel Fibers.

    Science.gov (United States)

    Yao, Bibo; Zhou, Zhaoyao; Duan, Liuyang; Xiao, Zhiyu

    2016-03-04

    Powder metallurgy (P/M) technique is usually used for manufacturing porous metal materials. However, some P/M materials are limitedly used in engineering for their performance deficiency. A novel 304 stainless steel P/M material was produced by a solid-state sintering of 304 stainless steel powders and 304 short stainless steel fibers, which were alternately laid in layers according to mass ratio. In this paper, the compressive properties of the P/M materials were characterized by a series of uniaxial compression tests. The effects of fiber content, compaction pressure and high temperature nitriding on compressive properties were investigated. The results indicated that, without nitriding, the samples changed from cuboid to cydariform without damage in the process of compression. The compressive stress was enhanced with increasing fiber content ranging from 0 to 8 wt.%. For compaction pressure from 55 to 75 MPa, greater compaction pressure improved compressive stress. Moreover, high temperature nitriding was able to significantly improve the yield stress, but collapse failure eventually occurred.

  1. Electrochemical decontamination of Pu contaminated stainless steel

    International Nuclear Information System (INIS)

    Turner, A.D.; Pottinger, J.S.; Junkison, A.R.

    1983-08-01

    Electrochemical decontamination has been demonstrated to be very effective in removing plutonium nitrate contamination (0.5 μg cm -2 ) on stainless steels. The amount of metal dissolved to achieve a DF of 10 2 to 10 3 was 2 to 7 μm depending on the electrolyte used. In unstirred electrolytes 1M HNO 3 , 1M HNO 3 /0.1M NaF, 5M HNO 3 perform best. Under stirred electrolyte conditions, there is a general marginal fall in effectiveness except for 5M HNO 3 where there is a slight improvement. The optimum performance is a compromise between maximizing the electrolyte throwing power and minimizing substrate surface roughening during decontamination. (author)

  2. Forging evaluaion of 304L stainless steel

    International Nuclear Information System (INIS)

    Packard, C.L.; Edstrom, C.M.

    1979-01-01

    The objective of this project was to evaluate and characterize the effects of various forging parameters on the metallographic structure and mechanical properties of 304L stainless steel forgings. Upset and die forgings were produced by hammer and Dynapak forging with forging temperatures ranging from 760 to 1145 0 C, upset reductions ranging from 20 to 60%, and annealing times ranging from 0 to 25 minutes at 843 0 C. The carbide precipitation behavior observed was found to be a function of forging temperature and annealing time. Higher forging temperatures were beneficial in avoiding continuous carbide precipitation and annealing at 843 0 C promoted increased carbide precipitation. The yield strength of the unannealed forgings decreased with increasing forging temperature and, with the exception of the 1145 0 C upset forgings, was significantly lowered by annealing

  3. Simulation of a stainless steel multipass weldment

    Energy Technology Data Exchange (ETDEWEB)

    Lejeail, Y.; Cabrillat, M.T. [CEA Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France)

    1995-12-31

    Several problems in nuclear power plants are due to shrinkage and distortion of welded structures and the associated residual stresses. In this context, a stainless steel multipass weldment realized in a H type constrained specimen has been calculated by means of finite element method. The temperatures obtained from a 3 D modified Rosenthal equation are compared with the experimental ones, and are then used for the 2 D simulation in which a linear Kinematic hardening is assumed in relation to a Von Mises plasticity criteria. Materials data are well known up to very high temperatures (1200{sup 0} C) and are introduced in the model. Experimental and calculated displacements after the first pass are compared and a discussion points out what improvements should be made for a better agreement. (author). 3 refs., 8 figs, 1 tab.

  4. Automatic welding of stainless steel tubing

    Science.gov (United States)

    Clautice, W. E.

    1978-01-01

    The use of automatic welding for making girth welds in stainless steel tubing was investigated as well as the reduction in fabrication costs resulting from the elimination of radiographic inspection. Test methodology, materials, and techniques are discussed, and data sheets for individual tests are included. Process variables studied include welding amperes, revolutions per minute, and shielding gas flow. Strip chart recordings, as a definitive method of insuring weld quality, are studied. Test results, determined by both radiographic and visual inspection, are presented and indicate that once optimum welding procedures for specific sizes of tubing are established, and the welding machine operations are certified, then the automatic tube welding process produces good quality welds repeatedly, with a high degree of reliability. Revised specifications for welding tubing using the automatic process and weld visual inspection requirements at the Kennedy Space Center are enumerated.

  5. Ultrasonic examination of stainless steel weldments

    International Nuclear Information System (INIS)

    Mullan, J.V.

    1976-01-01

    Atomic Energy of Canada Ltd. have specified a combination of liquid penetrant, radiography and ultrasonic examination of welds in austenitic stainless steel. In the past, angle wedges attached to ultrasonic transducers have been designed so that only shear waves are propagated in the medium. Shear waves, however, do not penetrate one half inch of weld metal without high transmission losses, so that the signal-to-noise ratio is poor. Canadian Vickers have therefore developed a method using longitudinal waves at 45 deg in the material. The presence also of a shear wave at an angle of 19 deg does not cause confusion, because the shear wave travels slower, and has farther to travel. Some considerations for the design of transducers and wedges are outlined. (N.D.H.)

  6. Hydrogenation of stainless steels implanted with nitrogen

    International Nuclear Information System (INIS)

    Silva Ramos, L.E. da.

    1989-01-01

    In the present work the effects of both ion implantation and hydrogenation on the fatigue behaviour of an AISI-304 type unstable stainless steel was studied. The material was tested under the following microstructural conditions: annealed; annealed plus hydrogenated; annealed plus ion-implanted; annealed, ion-implanted and hydrogeneted. The hydrogen induced phase transformations were also studied during the outgassing of the samples. The ion implanted was observed to retard the kinetics of the hydrogen induced phase transformations. It was also observed that the nitrogen ion implantation followed by both natural (for about 4 months) and artificial (100 0 C for 6 hours) aging treatments was beneficial to the fatigue life of both non hydrogenated and severely hydrogenated samples. (author) [pt

  7. Decontamination experiments for stainless steel decommissioned components

    International Nuclear Information System (INIS)

    Stefanescu, D.; Radulescu, M.; Dragomir, M.; Velciu, L.; Dinu, A.

    2001-01-01

    This paper presents the factors which influence the decontamination conditions using the steps of CONAP process. This four phases process (alkaline pre-treatment , an oxidation phase with potassium permanganate in acid environment, a dissolution phase using a complexing agent, a rinsing phase) has been used for decontamination to recycle the stainless steel 304 L and 403 m. The attraction of this process results from the following reasons: - the volume of radioactive sludge is low comparatively with the original volume of the solutions; - the separation of the activity from the solution is very effective; - time of exposure is reduced; - it is not necessary to process the solution through evaporators. During decommissioning decontamination is used to reduce radiation field by removing some of the fission and activation products contained in deposits and oxide films to minimize the radiation exposure of the personnel and public. In this context, this hard decontamination yields the materials at a radioactivity level fulfilling the repository requirements. (authors)

  8. Chemical decontamination method for stainless steel

    International Nuclear Information System (INIS)

    Yomo, Nobuo; Onuma, Tsutomu; Akimoto, Hidetoshi.

    1991-01-01

    In a case where an object to be decontaminated has a restricted portion in which the passage of liquids is difficult, decontamination liquids are not circulated effectively upon decontamination for the inner surfaces, and it requires a quite long period of time. In view of the above, through holes are perforated by, for example, a drill in the restricted portion of metal wastes made of stainless steels. Then, they are immersed in a sulfuric acid solution, and further immersed in an aqueous solution in which oxidative metal salts are added to the sulfuric acid. With such procedures, substrates are exposed at the inner circumference of the holes even if they are fine holes, and a local cell is formed between the substrate and an oxidized membranes, which may cause dissolution due to the reduction of the oxidized membranes. Further, since it is possible to discharge bubbles formed upon the solution, even from such fine holes, decontamination can be conducted effectively. (T.M.)

  9. Strengthening of stainless steel weldment by high temperature precipitation

    OpenAIRE

    Sergio Neves Monteiro; Lucio Fabio Cassiano Nascimento; Édio Pereira Lima, Jr.; Fernanda Santos da Luz; Eduardo Sousa Lima; Fábio de Oliveira Braga

    2017-01-01

    The mechanical behavior and the strengthening mechanism of stainless steel welded joints at 600 °C have been investigated. The welds were composed of AISI 304 stainless steel, as base metal, and niobium containing AISI 347 stainless steel, as weld metal. The investigation was conducted by means of creep tests. The welded specimens were subjected to both high temperature (600 °C) and long periods (up to 2000 h) under constant load, and both mechanical properties and microstructural changes in ...

  10. The role of molybdenum in corrosion resistance of stainless steel

    International Nuclear Information System (INIS)

    Abdul Razak bin Daud

    1989-01-01

    The effect of Mo on corrosion properties of stainless steels in 1M MgCl 2 solution was studied using an electrochemical polarization method. Procedure for the preparation of electrochemically polarized samples for surface analysis is described. The samples surface were analyzed using X-ray Photoelectron Spectroscopy (XPS). The stainless steel which has high Mo content has a better resistance to corrosion in Cl containing media. Cr and Mo are enriched in the surface of Mo-bearing stainless steels which have undergone high anodic-metal dissolution. Mo may exist as MoO 2 which is responsible in slowing down the rate of corrosion attack. (author)

  11. Joining method for pressure tube and martensitic stainless steel tube

    International Nuclear Information System (INIS)

    Kimoto, Hiroshi; Koike, Hiromitsu.

    1993-01-01

    In a joining portion of zirconium alloy and a stainless steel, the surface of martensitic stainless steel being in contact with Zr and Zr alloy is applied with a laser quenching solidification treatment before expanding joining of them to improve the surface. This can provide the surface with refined coagulated cell tissues and make deposits and impurities homogeneous and solubilized. As a result, the surface of the martensitic stainless steel has highly corrosion resistance, to suppress contact corrosion with Zr and Zr alloy. Accordingly, even if it is exposed to high temperature water of 200 to 350degC, failures of Zr and Zr alloy can be suppressed. (T.M.)

  12. [Study on biocompatibility of MIM 316L stainless steel].

    Science.gov (United States)

    Wang, Guohui; Zhu, Shaihong; Li, Yiming; Zhao, Yanzhong; Zhou, Kechao; Huang, Boyun

    2007-04-01

    This study was aimed to evaluate the biocompatibility of metal powder injection molding (MIM) 316L stainless steel. The percentage of S-period cells was detected by flow cytometry after L929 cells being incubated with extraction of MIM 316L stainless steel, and titanium implant materials for clinical application were used as control. In addition, both materials were implanted in animals and the histopathological evaluations were carried out. The statistical analyses show that there are no significant differences between the two groups (P > 0.05), which demonstrate that MIM 316L stainless steel has good biocompatibility.

  13. Stainless steel-zirconium alloy waste forms

    International Nuclear Information System (INIS)

    McDeavitt, S.M.; Abraham, D.P.; Keiser, D.D. Jr.; Park, J.Y.

    1996-01-01

    An electrometallurgical treatment process has been developed by Argonne National Laboratory to convert various types of spent nuclear fuels into stable storage forms and waste forms for repository disposal. The first application of this process will be to treat spent fuel alloys from the Experimental Breeder Reactor-II. Three distinct product streams emanate from the electrorefining process: (1) refined uranium; (2) fission products and actinides extracted from the electrolyte salt that are processed into a mineral waste form; and (3) metallic wastes left behind at the completion of the electrorefining step. The third product stream (i.e., the metal waste stream) is the subject of this paper. The metal waste stream contains components of the chopped spent fuel that are unaffected by the electrorefining process because of their electrochemically ''noble'' nature; this includes the cladding hulls, noble metal fission products (NMFP), and, in specific cases, zirconium from metal fuel alloys. The selected method for the consolidation and stabilization of the metal waste stream is melting and casting into a uniform, corrosion-resistant alloy. The waste form casting process will be carried out in a controlled-atmosphere furnace at high temperatures with a molten salt flux. Spent fuels with both stainless steel and Zircaloy cladding are being evaluated for treatment; thus, stainless steel-rich and Zircaloy-rich waste forms are being developed. Although the primary disposition option for the actinides is the mineral waste form, the concept of incorporating the TRU-bearing product into the metal waste form has enough potential to warrant investigation

  14. Development of nuclear grade stainless steels at KCSSL

    International Nuclear Information System (INIS)

    Balachandran, G.; Dhere, M.; Mahadik, A.; Hinge, N.M.; Balasubramanian, V.

    2011-01-01

    Kalyani Carpenter Special Steels Ltd is an alloy steel plant, where a variety of alloy steel grades are produced for automotive, defence, nuclear and aerospace applications. The plant has developed expertise in processing of several alloy steel grades of superior quality that meets stringent specifications. Primary steel is processed through a combination of electric arc furnace, ladle furnace and vacuum degassing where stringent control over dephosphorisation, desulphurization, deoxidation is effected to get a refined high quality steel. The molten steel is cast through continuous casting of slabs or ingot casting. In grades specific to nuclear application, the primary cast products are further subjected to electroslag remelting to achieve further freedom from inclusions and to achieve a favourable solidification grain structure, which ultimately improve the hot workability of the alloy steel. Appropriate choice of slag and operating parameters are needed for realising the required ingot quality. The present study would examine the processing and quality aspects of some important grades of steels used in nuclear industry namely ferritic 9Cr-1Mo steel, martensitic stainless steels 403, 410, precipitation hardenable 17-4 PH stainless steel and austenitic 321, 316LN stainless steel, which were made and supplied for applications to Indian nuclear industry. The expertise developed in processing the steels in terms of melting, heat treatment and their relationship to structural features and mechanical properties would be highlighted. (author)

  15. Stainless steel anodes for alkaline water electrolysis and methods of making

    Science.gov (United States)

    Soloveichik, Grigorii Lev

    2014-01-21

    The corrosion resistance of stainless steel anodes for use in alkaline water electrolysis was increased by immersion of the stainless steel anode into a caustic solution prior to electrolysis. Also disclosed herein are electrolyzers employing the so-treated stainless steel anodes. The pre-treatment process provides a stainless steel anode that has a higher corrosion resistance than an untreated stainless steel anode of the same composition.

  16. Effects of Cr2N Precipitation on the Antibacterial Properties of AISI 430 Stainless Steel

    OpenAIRE

    Je-Kang Du; Chih-Yeh Chao; Yu-Ting Jhong; Chung-Hao Wu; Ju-Hui Wu

    2016-01-01

    Based on their mechanical properties and good corrosion resistance, some commercial Ni-Cr stainless steels have been widely applied as biomaterials, including the austenitic 304 stainless steel, the austenitic 316 stainless steel, the duplex 2205 stainless steel, and the ferritic 430 stainless steel. In order to reduce the occurrence of infections resulting from biomaterial implants, instruments, and medical devices, Cu2+ and Ag2+ ions have been added onto biomaterials for increasing the anti...

  17. Corrosion behaviour of sintered duplex stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Utrilla, M. Victoria; Urena, Alejandro; Otero, Enrique; Munez, Claudio Jose [Escuela Superior de Ciencias Experimentales y Tecnologia, Universidad Rey Juan Carlos, C/ Tulipan s/n, 28933 Mostoles, Madrid (Spain)

    2004-07-01

    Duplex austenite-ferrite stainless steels were prepared by mixing austenitic (316L) and ferritic (434L) atomized powders. Although different 316L/434L ratios were prepared, present work centred its study on 50% ferrite - 50% austenite sintered steel. The powders were mixed and pressed at 700 MPa and sintered at 1250 deg. C for 30 min in vacuum. The cooling rate was 5 deg. C/min. Solution treatment was carried out to homogenize the microstructure at 1100 deg. C during 20 min. A microstructural study of the material in solution was performed, evaluating the microstructure, proportion and shape of porosity, and ferrite percentage. This last was measured by two methods, quantitative metallography and Fischer ferrito-metry. The materials were heat treated in the range of 700 to 1000 deg. C, for 10, 30 and 60 min and water quenched, to study the microstructural changes and the influence on the intergranular corrosion resistance. The method used to evaluate the sensitization to the intergranular corrosion was the electrochemical potentio-kinetic reactivation procedure (EPR). The test solution was 0.5 M H{sub 2}SO{sub 4} + 0,01 M KSCN at 30 deg. C. The criterion used to evaluate the sensitization was the ratio between the maximum reactivation density (Ir) and the maximum activation density (Ia). The results of the electrochemical tests were discussed in relation with the microstructures observed at the different heat treatments. (authors)

  18. Nonmetallic inclusions in JBK-75 stainless steel

    International Nuclear Information System (INIS)

    Brewer, A.W.; Krenzer, R.W.; Doyle, J.H.; Riefenberg, D.H.

    1977-01-01

    Stainless steel alloys that are chemically complex, such as A-286 or JBK-75, are designed to improve such high-temperature properties as strength. This is accomplished by precipitating secondary phases during aging. Such multicomponent systems, however, can also produce undesirable phases that are detrimental to forgeability and final mechanical properties. Cast segregation and numerous nonmetallic inclusions can have a degrading influence on the toughness and ductility of the alloy. Several different heats of A-286 and JBK-75 were studied, and titanium carbide and/or molybdenum carbide [(Ti, Mo)C] plus titanium carbide and/or titanium carbonitride Ti(C,N)-type phases were qualitatively identified as the major nonmetallic constituent in these alloys. The common procedure for rating the microcleanliness of steels does not classify such carbide or carbonitride phases and thus does not provide an appropriate means of controlling in-process inspection. The results of this study are discussed in terms of alternative methods for evaluating the microcleanliness of superalloys

  19. Corrosion of mild steel and stainless steel by marine Vibrio sp.

    Digital Repository Service at National Institute of Oceanography (India)

    PrabhaDevi; Wagh, A.B.

    Microbially induced corrosion (MIC) of stainless steel and mild steel coupons exposed to media with and without a bacterial culture Vibrio sp. was studied using Scanning Electron Microscope (SEM). Pitting type of corrosion was noticed which was more...

  20. Characterization of diffusion bonded joint between titanium and 304 stainless steel using a Ni interlayer

    International Nuclear Information System (INIS)

    Kundu, S.; Chatterjee, S.

    2008-01-01

    Solid-state diffusion bonded joints were prepared between commercially pure titanium and 304 stainless steel with nickel as an intermediate material in the temperature range of 800-950 deg. C for 10.8 ks under a 3 MPa uniaxial pressure in vacuum. The interface microstructures and reaction products of the transition joints were investigated by optical and scanning electron microscopy. Up to 850 deg. C processing temperature, a 300-μm nickel interlayer completely restricts the diffusion of titanium to stainless steel. However, the nickel interlayer cannot block the diffusion of Ti to the stainless side and λ + χ + α-Fe, λ + FeTi and λ + FeTi + β-Ti phase mixtures are formed at the SS-Ni interface, when bonding was processed at 900 deg. C and above. These reaction products were confirmed by X-ray diffraction. A maximum tensile strength of ∼ 270 MPa and shear strength of ∼ 194 MPa, along with 6.2% ductility, were obtained for the diffusion bonded joint processed at 850 deg. C. Fracture surface observation in SEM using EDS demonstrates that failure occurred through the Ni-Ti interface of the joints when processed up to 850 deg. C and through the SS-Ni interface when processed at and above 900 deg. C

  1. Phase Transformations in Cast Duplex Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoon-Jun [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as σ and χ can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe-22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase (σ + χ) formation were analyzed using the Johnson-Mehl-Avrami (MA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations. The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities; a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, σ was stabilized with increasing Cr addition and χ by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in DSS can be affected by

  2. Damage evolution and failure mechanisms in additively manufactured stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, Holly D., E-mail: carlton4@llnl.gov [Materials Engineering Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Haboub, Abdel [Lincoln University, Life and Physical Sciences Department, 820 Chestnut St, Jefferson City, MO 65101 (United States); Gallegos, Gilbert F. [Materials Engineering Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Parkinson, Dilworth Y.; MacDowell, Alastair A. [Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2016-01-10

    In situ tensile tests were performed on additively manufactured austenitic stainless steel to track damage evolution within the material. For these experiments Synchrotron Radiation micro-Tomography was used to measure three-dimensional pore volume, distribution, and morphology in stainless steel at the micrometer length-scale while tensile loading was applied. The results showed that porosity distribution played a larger role in affecting the fracture mechanisms than measured bulk density. Specifically, additively manufactured stainless steel specimens with large inhomogeneous void distributions displayed a flaw-dominated failure where cracks were shown to initiate at pre-existing voids, while annealed additively manufactured stainless steel specimens, which contained low porosity and randomly distributed pores, displayed fracture mechanisms that closely resembled wrought metal.

  3. Stainless steels in power plant and plant construction. Papers

    International Nuclear Information System (INIS)

    1994-01-01

    The conference report comprises 14 papers on the corrosion characteristics of stainless steels in power plant and plant engineering. 9 papers are available as separate records in the ENERGY database. (MM) [de

  4. Anelastic mechanical loss spectrometry of hydrogen in austenitic stainless steels

    International Nuclear Information System (INIS)

    Yagodzinskyy, Y.; Andronova, E.; Ivanchenko, M.; Haenninen, H.

    2009-01-01

    Atomic distribution of hydrogen, its elemental diffusion jumps and its interaction with dislocations in a number of austenitic stainless steels are studied with anelastic mechanical loss (AML) spectrometry in combination with the hydrogen thermal desorption method. Austenitic stainless steels of different chemical composition, namely, AISI 310, AISI 201, and AISI 301LN, as well as LDX 2101 duplex stainless steel are studied to clarify the role of different alloying elements on the hydrogen behavior. Activation analyses of the hydrogen Snoek-like peaks are performed with their decomposition to sets of Gaussian components. Fine structure of the composite hydrogen peaks is analyzed under the assumption that each component corresponds to diffusion transfer of hydrogen between octahedral positions with certain atomic compositions of the nearest neighbouring lattice sites. An additional component originating from hydrogen-dislocation interaction is considered. Binding energies for hydrogen-dislocation interaction are also estimated for the studied austenitic stainless steels.

  5. Stress corrosion cracking evaluation of precipitation-hardening stainless steel

    Science.gov (United States)

    Humphries, T. S.; Nelson, E. E.

    1970-01-01

    Accelerated test program results show which precipitation hardening stainless steels are resistant to stress corrosion cracking. In certain cases stress corrosion susceptibility was found to be associated with the process procedure.

  6. Strengthening of stainless steel weldment by high temperature precipitation

    Directory of Open Access Journals (Sweden)

    Sergio Neves Monteiro

    2017-10-01

    Full Text Available The mechanical behavior and the strengthening mechanism of stainless steel welded joints at 600 °C have been investigated. The welds were composed of AISI 304 stainless steel, as base metal, and niobium containing AISI 347 stainless steel, as weld metal. The investigation was conducted by means of creep tests. The welded specimens were subjected to both high temperature (600 °C and long periods (up to 2000 h under constant load, and both mechanical properties and microstructural changes in the material were monitored. It was found that the exposure of the material at 600 °C under load contributes to a strengthening effect on the weld. The phenomenon might be correlated with an accelerated process of second phase precipitation hardening. Keywords: Stainless steel, Weld, AISI 304, Precipitation hardening

  7. Stress-Corrosion Cracking in Martensitic PH Stainless Steels

    Science.gov (United States)

    Humphries, T.; Nelson, E.

    1984-01-01

    Precipitation-hardening alloys evaluated in marine environment tests. Report describes marine-environment stress-corrosion cracking (SCC) tests of three martensitic precipitation hardening (PH) stainless-steel alloys.

  8. Controlled dissolution of colossal quantities of nitrogen in stainless steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A. J.

    2006-01-01

    The solubility of nitrogen in austenitic stainless steel was investigated thermogravimetrically by equilibrating thin foils of AISI 304 and AISI 316 in ammonia/hydrogen gas mixtures. Controlled dissolution of colossal amounts of nitrogen under metastable equilibrium conditions was realized...

  9. Characterization of laser metal deposited 316L stainless steel

    CSIR Research Space (South Africa)

    Bayode, A

    2016-06-01

    Full Text Available investigates the effects of laser power on the structural integrity, microstructure and microhardness of laser deposited 316L stainless steel. The result showed that the laser power has much influence on the evolving microstructure and microhardness...

  10. Interaction of Liquid Sodium With 304 Stainless Steel

    National Research Council Canada - National Science Library

    Moberly, John

    1968-01-01

    The effect of a liquid sodium environment on 304 stainless steel has important engineering significance because of the potential use of this liquid-metal solid-metal system in fast breeder reactors...

  11. Stress Corrosion Cracking of Type 304 Stainless Steel

    National Research Council Canada - National Science Library

    Louthan, M

    1964-01-01

    Stress corrosion cracking of type 304 stainless steel exposed in dilute chloride solutions is being investigated at the Savannah River Laboratory in attempts to develop a fundamental understanding of the phenomenon...

  12. HIP bonding between niobium/copper/stainless steel materials

    International Nuclear Information System (INIS)

    Inoue, Hitoshi; Fujino, Takeo; Hitomi, Nobuteru; Saito, Kenji; Yamada, Masahiro; Shibuya, Junichi; Ota, Tomoko

    2000-01-01

    We have used niobium flanges for the niobium bulk superconducting RF cavities, however, they are expensive. Stainless steel flanges instead of the niobium flanges will be used in the future large scale production of sc cavities like the KEK/JAERI joint project. For a future R and D of the vacuum sealing related to the clean horizontal assembly method or development of cavities welded a helium vessel in the KEK/JAERI joint project, a converter section of niobium material to stainless steel is required. From these requirements we need to develop the converter. We have tried a HIP bonding method between niobium materials and stainless steel or copper material. It was made clear that the technology could offer an enough bonding strength even higher than niobium tensile strength in the joined surface between niobium and stainless steel or copper. (author)

  13. Simulation of radiation induced segregation and PWSCC susceptibility for austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto Koji; Yonezawa, Toshio; Iwamura, Toshihiko [Mitsubishi Heavy Industries Ltd., Takasago, Hyogo (Japan). Takasago R and D Center; Ajiki, Kazuhide [Mitsubishi Heavy Industries Ltd., Kobe (Japan). Kobe Shipyard and Machinery Works; Urata, Sigeru [General Office of Nuclear and Fossil Power Production, Kansai Electric Power Co., Inc., Osaka (Japan)

    2000-08-01

    Recently, irradiation assisted stress corrosion cracking (IASCC) of austenitic stainless steels for core internal components materials become a subject of discussion in light water reactors (LWRs). IASCC has not been found in Pressurized Water Reactors (PWRs). However, the authors have investigated on the possibility of IASCC of austenitic stainless steels for core internal materials so as to be able to estimate the degradation of PWR plants up to the end of their lifetime. In this study, in order to verify the hypothetical that the IASCC in PWRs shall be caused by the primary water stress corrosion cracking (PWSCC) as a result of radiation induced segregation (RIS) at grain boundaries, the authors simulated RIS at grain boundaries of austenitic stainless steels based on previous study and estimated RIS tendency after long time operation. And the authors melted the test alloys whose bulk compositions simulated the grain boundary compositions of irradiated austenitic stainless steels and made clear chromium-nickel-silicon compositions for PWSCC susceptibility area in austenitic alloys by slow strain rate tensile (SSRT) test. (author)

  14. Stress corrosion cracking for 316 stainless steel clips in a condensate stabilizer

    Energy Technology Data Exchange (ETDEWEB)

    Al-Awar, A.; Aldajah, S.; Harhara, A. [Department of Mechanical Engineering, United Arab Emirates University, P. O. Box 17555 Al-AIn 17555 (United Arab Emirates)

    2011-09-15

    In one of the gas processing facilities in Abu Dhabi, UAE; a case of 316L stainless steel material failure occurred in the fractionating column due to stress cracking corrosion twice in a cycle of less than 2 years. This paper studies the stress corrosion cracking behavior of the 316L stainless steel in an accelerated corrosion environment and compares it with a higher corrosion resistant nickel alloy (Inconel 625). The experimental work was designed according to ASTM G36 standard, the samples were immersed in a boiling magnesium chloride medium which provided the accelerated corrosion environment and the tested samples were shaped into U-bend specimens as they underwent both plastic and elastic stresses. The specimens were then tested to determine the time required for cracks to initiate. The results of the experimental work showed that the main mode of failure was stress corrosion cracking initiated by the proven presence of chlorides, hydrogen sulfide, and water at elevated temperatures. Inconel 625 samples placed in the controlled environment showed better corrosion resistance as it took them an average of 56 days to initiate cracks, whereas it took an average of 24 days to initiate cracks in the stainless steel 316L samples. The scanning electron microscopy (SEM) micrographs showed that the cracks in the stainless steel 316L samples were longer, wider, and deeper compared to the cracks of Inconel 625. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Simulation of radiation induced segregation and PWSCC susceptibility for austenitic stainless steels

    International Nuclear Information System (INIS)

    Fujimoto Koji; Yonezawa, Toshio; Iwamura, Toshihiko

    2000-01-01

    Recently, irradiation assisted stress corrosion cracking (IASCC) of austenitic stainless steels for core internal components materials become a subject of discussion in light water reactors (LWRs). IASCC has not been found in Pressurized Water Reactors (PWRs). However, the authors have investigated on the possibility of IASCC of austenitic stainless steels for core internal materials so as to be able to estimate the degradation of PWR plants up to the end of their lifetime. In this study, in order to verify the hypothetical that the IASCC in PWRs shall be caused by the primary water stress corrosion cracking (PWSCC) as a result of radiation induced segregation (RIS) at grain boundaries, the authors simulated RIS at grain boundaries of austenitic stainless steels based on previous study and estimated RIS tendency after long time operation. And the authors melted the test alloys whose bulk compositions simulated the grain boundary compositions of irradiated austenitic stainless steels and made clear chromium-nickel-silicon compositions for PWSCC susceptibility area in austenitic alloys by slow strain rate tensile (SSRT) test. (author)

  16. Structural materialization of stainless steel molds and dies by the low temperature high density plasma nitriding

    Directory of Open Access Journals (Sweden)

    Aizawa Tatsuhiko

    2015-01-01

    Full Text Available Various kinds of stainless steels have been widely utilized as a mold substrate material for injection molding and as a die for mold-stamping and direct stamping processes. Since they suffered from high temperature transients and thermal cycles in practice, they must be surface-treated by dry and wet coatings, or, by plasma nitriding. Martensitic stainless steel mold was first wet plated by the nickel phosphate (NiP, which was unstable at the high temperature stamping condition; and, was easy to crystalize or to fracture by itself. This issue of nuisance significantly lowered the productivity in fabrication of optical elements at present. In the present paper, the stainless steel mold was surface-treated by the low-temperature plasma nitriding. The nitrided layer by this surface modification had higher nitrogen solute content than 4 mass%; the maximum solid-solubility of nitrogen is usually 0.1 mass% in the equilibrium phase diagram. Owing to this solid-solution with high nitrogen concentration, the nitrided layer had high hardness of 1400 Hv within its thickness of 40 μm without any formation of nitrides after 14.4 ks plasma nitriding at 693 K. This nitrogen solid-solution treated stainless steel had thermal resistivity even at the mold-stamping conditions up to 900 K.

  17. Stainless steel in contact with food and bevarage

    Directory of Open Access Journals (Sweden)

    Sveto Cvetkovski

    2012-12-01

    Full Text Available Stainless steels are probably the most important materials in the food and beverage industries. The main reason for such broad implementation of stainless steel in contact with food are excellent properties which they possess such as corrosion resistance, resistance to high and low temperatures, very good mechanical and physical properties, aesthetic appeal, inertness of surface, durability, easy cleaning and recycling. Low thermal conductivity of these steels produces steeper temperature coefficient provoking an increased distortion, shrinkage and stresses compared with carbon steel.

  18. Ultrasonic scanner for stainless steel weld inspections. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Kupperman, D. S.; Reimann, K. J.

    1978-09-01

    The large grain size and anisotropic nature of stainless steel weld metal make conventional ultrasonic testing very difficult. A technique is evaluated for minimizing the coherent ultrasonic noise in stainless steel weld metal. The method involves digitizing conventional ''A-scan'' traces and averaging them with a minicomputer. Results are presented for an ultrasonic scanner which interrogates a small volume of the weld metal while averaging the coherent ultrasonic noise.

  19. High Cycle Fatigue of Metastable Austenitic Stainless Steels

    OpenAIRE

    Fargas Ribas, Gemma; Zapata Dederle, Ana Cristina; Anglada Gomila, Marcos Juan; Mateo García, Antonio Manuel

    2009-01-01

    Metastable austenitic stainless steels are currently used in applications where severe forming operations are required, such as automotive bodies, due to its excellent ductility. They are also gaining interest for its combination of high strength and formability after forming. The biggest disadvantage is the difficulty to predict the mechanical response, which depends heavily on the amount of martensite formed. The martensitic transformation in metastable stainless steels can b...

  20. Stainless steel reinforcement for durability in concrete structures

    International Nuclear Information System (INIS)

    Cochrane, D.J.

    1998-01-01

    Stainless steels and concrete are materials which the nuclear industry, more than any other, has given special attention to over the years. It is the intention of this paper to inform congress about developments outside the nuclear industry, in the use of stainless steel as reinforcement (rebar) in concrete structures. It is left to individual engineers within the industry to assess the implications of this information to applications with which they will be familiar. (author)

  1. An in vitro Evaluation of Friction Characteristics of Conventional Stainless Steel and Self-ligating Stainless Steel Brackets with different Dimensions of Archwires in Various Bracket-archwire Combination.

    Science.gov (United States)

    Sridharan, K; Sandbhor, Shailesh; Rajasekaran, U B; Sam, George; Ramees, M Mohamed; Abraham, Esther A

    2017-08-01

    The purpose of this research is to compare the frictional attributes of stainless steel conventional brackets and self-ligating stainless steel brackets with different dimensions of archwires. The test was carried with two sets of maxillary brackets: (1) Conventional stainless steel (Victory Series), (2) stainless steel self-ligating (SmartClip) without first premolar brackets. Stainless steel, nickel-titanium (NiTi), and beta-Ti which are the types of orthodontic wire alloys were tested in this study. To monitor the frictional force, a universal testing machine (Instron 33R 4467) that comprises 10 kg tension load cell was assigned on a range of 1 kg and determined from 0 to 2 kg, which allows moving of an archwire along the brackets. One-way analysis of variance was used to test the difference between groups. To analyze the statistical difference between the two groups, Student's t-test was used. For Victory Series in static friction, p-value was 0.946 and for kinetic friction it was 0.944; at the same time for SmartClip, the p value for static and kinetic frictional resistance was 0.497 and 0.518 respectively. Hence, there was no statistically significant difference between the NiTi and stainless steel archwires. It is concluded that when compared with conventional brackets with stainless steel ligatures, self-ligating brackets can produce significantly less friction during sliding. Beta-Ti archwires expressed high amount of frictional resistance and the stainless steel archwires comprise low frictional resistance among all the archwire materials. In orthodontics, frictional resistance has always had a major role. Its ability to impair tooth movement leads to the need for higher forces to move the teeth and it extends the treatment time which results in loss of posterior anchorage. Friction in orthodontics is related with sliding mechanics when a wire is moving through one or a series of bracket slots.

  2. Solidification behavior of austenitic stainless steel filler metals

    International Nuclear Information System (INIS)

    David, S.A.; Goodwin, G.M.; Braski, D.N.

    1980-02-01

    Thermal analysis and interrupted solidification experiments on selected austenitic stainless steel filler metals provided an understanding of the solidification behavior of austenitic stainless steel welds. The sequences of phase separations found were for type 308 stainless steel filler metal, L + L + delta + L + delta + γ → γ + delta, and for type 310 stainless steel filler metal, L → L + γ → γ. In type 308 stainless steel filler metal, ferrite at room temperature was identified as either the untransformed primary delta-ferrite formed during the initial stages of solidification or the residual ferrite after Widmanstaetten austenite precipitation. Microprobe and scanning transmission electron microscope microanalyses revealed that solute extensively redistributes during the transformation of primary delta-ferrite to austenite, leading to enrichment and stabilization of ferrite by chromium. The type 310 stainless steel filler metal investigated solidifies by the primary crystallization of austenite, with the transformation going to completion at the solidus temperature. In our samples residual ferrite resulting from solute segregation was absent at the intercellular or interdendritic regions

  3. Adsorption study of CO and H2O on carbon materials, Ni and stainless steel

    International Nuclear Information System (INIS)

    Kato, S.

    1991-01-01

    Adsorption of CO and water vapor on single crystalline graphite, diamond and an amorphous carbon film at room temperature was investigated by low energy ion scattering (ISS) and compared with stainless steel and nickel surfaces. Even for a CO exposure up to 10 4 L, the C intensity stayed constant and no O peak appeared in the ISS spectra from graphite while Ni and O intensities from Ni surface changed strikingly. Intensities of FE and O signals from stainless steel seriously decrease and increase with increasing exposure of H 2 O, respectively, but did not reach saturation even at an exposure of 10 3 L. On the other hand, C and O intensities from carbon surfaces changed moderately to reach saturation at an exposure of some 100 L. These results indicate that CO and H 2 O do not adsorb significantly on carbon surfaces in contrast to nickel and stainless steel surfaces. As a by-product survival probabilities of scattered He + ions from graphite for the primary energy of 0.6-2 keV were measured to be in a range of 10 -4 to 10 -2 and the survival parameter was deduced to be 5.0 x 10 7 cm s -1 . (author)

  4. Copper contamination in thin stainless steel sheet

    International Nuclear Information System (INIS)

    Holbert, R.K. Jr.; Dobbins, A.G.; Bennett, R.K. Jr.

    1986-01-01

    The standard welding technique used at Oak Ridge Y-12 Plant for joining thin stainless sheet is the gas tungsten arc (GTA) welding process. One of the reoccurring problems with the sheet welds is surface cracking in the heat-affected zone (HAZ). Metallography shows that the cracks are only about 0.05 mm (0.002 in.) deep which is significant in a 0.25 mm (0.01 in.) thick sheet. Thus, welding requirements do not permit any surfacing cracking as detected by a fluorescent dye penetrant test conducted on every part after welding. Surface cracks have been found in both of the two most common weld designs in the thin sheet fabricated at the Oak Ridge Y-12 Plant. These butt joints are welded between two 0.25 mm thick stainless steel sheets and a tube with eyelet welded to a 25 mm (0.98 in.) thick sheet. The weld between the two sheets is made on a semiautomatic seam welding unit, whereas the tube-to-eyelet-to-sheet welds are done manually. The quality of both welds is very dependent on the welding procedure and the way the parts are placed in the weld fixturing. Metallographic examination has indicated that some welded parts with surface cracking in the weld region had copper particles on the surface, and the question of copper contamination has been raised. With the aid of a scanning electron microscope and an electron microprobe, the existence of copper in an around the surface cracks has been verified. The copper is on the surface of the parts prior to welding in the form of small dust particles

  5. Low-temperature creep of austenitic stainless steels

    Science.gov (United States)

    Reed, R. P.; Walsh, R. P.

    2017-09-01

    Plastic deformation under constant load (creep) in austenitic stainless steels has been measured at temperatures ranging from 4 K to room temperature. Low-temperature creep data taken from past and unreported austenitic stainless steel studies are analyzed and reviewed. Creep at cryogenic temperatures of common austenitic steels, such as AISI 304, 310 316, and nitrogen-strengthened steels, such as 304HN and 3116LN, are included. Analyses suggests that logarithmic creep (creep strain dependent on the log of test time) best describe austenitic stainless steel behavior in the secondary creep stage and that the slope of creep strain versus log time is dependent on the applied stress/yield strength ratio. The role of cold work, strain-induced martensitic transformations, and stacking fault energy on low-temperature creep behavior is discussed. The engineering significance of creep on cryogenic structures is discussed in terms of the total creep strain under constant load over their operational lifetime at allowable stress levels.

  6. 76 FR 34964 - Stainless Steel Bar From India: Partial Rescission of Antidumping Duty Administrative Review

    Science.gov (United States)

    2011-06-15

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-533-810] Stainless Steel Bar From... the antidumping duty order on stainless steel bar from India for the period of review February 1, 2010....; Outokumpu Stainless Bar, Inc.; Universal Stainless & Alloy Products, Inc.; and Valbruna Slater Stainless...

  7. Plasma spot welding of ferritic stainless steels

    Directory of Open Access Journals (Sweden)

    Lešnjak, A.

    2002-06-01

    Full Text Available Plasma spot welding of ferritic stainless steels is studied. The study was focused on welding parameters, plasma and shielding gases and the optimum welding equipment. Plasma-spot welded overlap joints on a 0.8 mm thick ferritic stainless steel sheet were subjected to a visual examination and mechanical testing in terms of tension-shear strength. Several macro specimens were prepared. Plasma spot welding is suitable to use the same gas as shielding gas and as plasma gas, i.e., a 98 % Ar/2 % H 2 gas mixture. Tension-shear strength of plasma-spot welded joints was compared to that of resistance-spot welded joints. It was found that the resistance welded joints withstand a somewhat stronger load than the plasma welded joints due to a larger weld spot diameter of the former. Strength of both types of welded joints is approximately the same.

    El artículo describe el proceso de soldeo de aceros inoxidables ferríticos por puntos con plasma. La investigación se centró en el establecimiento de los parámetros óptimos de la soldadura, la definición del gas de plasma y de protección más adecuado, así como del equipo óptimo para la realización de la soldadura. Las uniones de láminas de aceros inoxidables ferríticos de 0,8 mm de espesor, soldadas a solape por puntos con plasma, se inspeccionaron visualmente y se ensayaron mecánicamente mediante el ensayo de cizalladura por tracción. Se realizaron macro pulidos. Los resultados de la investigación demostraron que la solución más adecuada para el soldeo por puntos con plasma es elegir el mismo gas de plasma que de protección. Es decir, una mezcla de 98 % de argón y 2 % de hidrógeno. La resistencia a la cizalladura por tracción de las uniones soldadas por puntos con plasma fue comparada con la resistencia de las uniones soldadas por resistencia por puntos. Se llegó a la conclusión de que las uniones soldadas por resistencia soportan una carga algo mayor que la uniones

  8. EFFECT OF INTERMETALLIC PHASES ON CORROSION BEHAVIOR AND MECHANICAL PROPERTIES OF DUPLEX STAINLESS STEEL AND SUPER-DUPLEX STAINLESS STEEL

    OpenAIRE

    Prabhu Paulraj; Rajnish Garg

    2015-01-01

    Duplex Stainless Steels (DSS) and Super Duplex Stainless Steel (SDSS) have excellent integration of mechanical and corrosion properties. However, the formation of intermetallic phases is a major problem in their usage. The mechanical and corrosion properties are deteriorated due to the presence of intermetallic phases. These phases are induced during welding, prolonged exposure to high temperatures, and improper heat treatments. The main emphasis of this review article is on intermetallic pha...

  9. On the rational alloying of structural chromium-nickel steels

    International Nuclear Information System (INIS)

    Astaf'ev, A.A.

    1982-01-01

    A study was made on the influence of chromium nickel, phosphorus on the critical brittleness temperature of Cr-Ni-Mo-V structural steels. It is shown that the critical brittleness temperature of these steels increases at chromium content more over than 2% and nickel content more than 2% in the result of carbide transformations during tempering. Increase of nickel content in Cr-Ni-Mo-V-steels strengthens the tendency to embrittlement during slow cooling, from tempering temperature owing to development of process of phosphorus grain-boundary segregation. Two mentioned mechanisms of embrittlement determine principles of rational steel alloying. The extreme dependence of the critical brittleness temperature on chromium and nickel content, which enables to choose the optimum composition of Cr-Ni-Mo-V-steels, was established

  10. Precipitation hardening in a 12%Cr-9%Ni-4%Mo-2%Cu stainless steel

    International Nuclear Information System (INIS)

    Haettestrand, Mats; Nilsson, Jan-Olof; Stiller, Krystyna; Liu Ping; Andersson, Marcus

    2004-01-01

    A combination of complementary techniques including one-dimensional and three-dimensional atom probe, energy-filtered transmission electron microscopy and conventional transmission electron microscopy has been used to assess the precipitation reactions at 475 deg. C in a 12%Cr-9%Ni-4%Mo-2%Cu precipitation hardening stainless steel. The continuous hardening up to at least 1000 h of ageing was attributed to a sequence of precipitation reactions involving nickel-rich precipitates nucleating at copper clusters followed by molybdenum-rich quasicrystalline precipitates and nickel-rich precipitates of type L1 0 . An estimate of the relative contributions to the strength increment during tempering based on measurements of particle densities was performed. Nickel-rich precipitates were found to play the most important role up to about 40 h of ageing after which the effect of quasicrystalline particles became increasingly important

  11. Perspective on present and future alloy development efforts on austenitic stainless steels for fusion application

    International Nuclear Information System (INIS)

    Maziasz, P.J.

    1984-01-01

    The purpose of this paper is to address important questions concerning how to effect further alloy development of austenitic stainless steels for resistance, and to what extent the behavior of other properties under irradiation, such as strength/embrittlement, fatigue/irradiation creep, corrosion (under irradiation), and radiation-induced activation must be influenced. To summarize current understanding, helium has been found to have major effects on swelling and embrittlement, but several metallurgical avenues are available for significant improvement relative to type 316 stainless steel. Studies on fatigue and irradiation creep, particularly including helium effects, are preliminary but have yet to reveal engineering problems requiring additional alloy development remedies. The effects of irradiation on corrosion behavior are unknown, but higher alloy nickel contents make thermal corrosion in lithium worse. 67 refs

  12. Hydrogen Embrittlement Mechanism in Fatigue Behaviour of Austenitic and Martensitic Stainless Steels

    Directory of Open Access Journals (Sweden)

    Brück Sven

    2018-01-01

    Full Text Available In the present study, the influence of hydrogen on the fatigue behaviour of the high strength martensitic stainless steel X3CrNiMo13-4 and the metastable austenitic stainless steels X2Crni19-11 with various nickel contents was examined in the low and high cycle fatigue regime. The focus of the investigations was the changes in the mechanisms of short crack propagation. The aim of the ongoing investigation is to determine and quantitatively describe the predominant processes of hydrogen embrittlement and their influence on the short fatigue crack morphology and crack growth rate. In addition, simulations were carried out on the short fatigue crack growth, in order to develop a detailed insight into the hydrogen embrittlement mechanisms relevant for cyclic loading conditions.

  13. Development of liner cutting method for stainless steel liner

    International Nuclear Information System (INIS)

    Takahata, Masato; Wignarajah, Sivakmaran; Kamata, Hirofumi

    2005-01-01

    The present work is an attempt to develop a laser cutting method for cutting and removing stainless steel liners from concrete walls and floors in cells and fuel storage pools of nuclear facilities. The effects of basic laser cutting parameters such as cutting speed, assist gas flow etc. were first studied applying a 1 kW Nd:YAG laser to mock up concrete specimens lined with 3 mm thick stainless steel sheets. These initial studies were followed by studies on the effect of unevenness of the liner surface and on methods of confining contamination during the cutting process. The results showed that laser cutting is superior to other conventional cutting methods from the point of view of safety from radioactivity and work efficiency when cutting contaminated stainless steel liners. In addition to the above results, this paper describes the design outline of a laser cutting system for cutting stainless liners at site and evaluates its merit and cost performance. (author)

  14. Martensite transformation in antimony implanted stainless steel

    International Nuclear Information System (INIS)

    Johnson, E.; Littmark, U.; Johansen, A.; Christodoulides, C.

    1981-01-01

    The authors have used Rutherford backscattering analysis (RBS) and transmission electron microscopy (TEM) and diffraction to investigate austenitic stainless steel crystals implanted at room temperature with 80 keV Sb + ions to a fluence of 5 x 10 20 ions/m 2 , thus providing implantation with a heavy group V element. RBS channeling spectra from implanted crystals show a damage peak which approaches the height of the random level and therefore indicates a very high degree of disorder in the implanted layers. The distribution of the disorder extends to a depth 3-5 times the depth of the primary radiation damage. The Sb peaks under channeling as well as random conditions are indistinguishable, confirming that substitutionality during implantation is negligible. To establish the nature of the disorder which cannot be assessed from the RBS analysis alone, and in particular to assess whether an amorphous alloy is formed in the implanted layer as indicated from the RBS spectra, samples implanted under similar conditions were investigated in the TEM. Significant extra spots in the patterns can be ascribed to the presence of a radiation induced b.c.c. phase of martensitic origin. The result that a significant amount of martensite can be induced by antimony implantation seems to indicate that the main driving force for the transition is due to damage induced stress concentrations. (Auth.)

  15. Sensitization development in austenitic stainless steel piping

    International Nuclear Information System (INIS)

    Bruemmer, S.M.; Page, R.E.; Atteridge, D.G.

    1984-10-01

    Pacific Northwest Laboratory and the Division of Engineering Technology of the US Nuclear Regulatory Commission are conducting a program to determine a method for evaluating welded and rapair-welded stainless steel piping for light-water reactor service. Validated models, based on experimental data, are being developed to predict the degree of sensitization (DOS) and the intergranular stress corrosion cracking (IGSCC) susceptibility in the heat-affected zone (HAZ) of the SS weldments. The cumulative effects of material composition, past fabrication procedures, past service exposure, weldment thermomechanical (TM) history, and projected post-repair component life are being considered. This program will measure and model the development of HAZ TM history and resultant sensitized microstructure in welded and repair-welded piping. An empirical correlation between a material's DOS and its susceptibility to SCC will be determined using slow strain rate tensile tests. Mill heat chemistries and processing/fabrication records already required in the nuclear industry will be used as input for initial DOS predictions

  16. Fracture toughness of stainless steel welds

    International Nuclear Information System (INIS)

    Mills, W.J.

    1985-11-01

    The effects of temperature, composition and weld-process variations on the fracture toughness behavior for Types 308 and 16-8-2 stainless steel (SS) welds were examined using the multiple-specimen J/sub R/-curve procedure. Fracture characteristics were found to be dependent on temperature and weld process but not on filler material. Gas-tungsten-arc (GTA) welds exhibited the highest fracture toughness, a shielded metal-arc (SMA) weld exhibited an intermediate toughness and submerged-arc (SA) welds yielded the lowest toughness. Minimum-expected fracture properties were defined from lower-bound J/sub c/ and tearing modulus values generated here and in previous studies. Fractographic examination revealed that microvoid coalescence was the operative fracture mechanism for all welds. Second phase particles of manganese silicide were found to be detrimental to the ductile fracture behavior because they separated from the matrix during the initial stages of plastic straining. In SA welds, the high density of inclusions resulting from silicon pickup from the flux promoted premature dimple rupture. The weld produced by the SMA process contained substantially less manganese silicide, while GTA welds contained no silicide inclusions. Delta ferrite particles present in all welds were substantially more resistant to local failure than the silicide phase. In welds containing little or no manganese silicide, delta ferrite particles initiated microvoid coalescence but only after extensive plastic straining

  17. Damage on 316LN stainless steel transformed by powder metallurgy

    International Nuclear Information System (INIS)

    Couturier, R.; Burlet, H.

    1998-01-01

    This study deals with the 316 LN stainless steel elaboration by powder metallurgy. This method allows the realization of structures in austenitic steel less affected by the thermal aging than the cast austenitic-ferritic components. The components are performed by the method of HIP (Hot Isostatic Pressing). Mechanical tests are provided to control mechanical properties

  18. Comparing creep in two stainless steels AISI 316

    International Nuclear Information System (INIS)

    Silveira, T.L. da; Monteiro, S.N.

    1976-07-01

    Two AISI 316 stainless steels, one of Brazilian fabrication (Villares), the other of foreign fabrication (Uddeholm) were submitted to creep tests with temperature ranging from 600 to 800 0 C. Some important differences in the mechanical behaviour of the two steels are pointed out. These differences are due to the particular thermomechanical history of the materials under consideration. (Author) [pt

  19. Evaluation of Cutting Fluids in Multiple Reaming of Stainless Steel

    DEFF Research Database (Denmark)

    Belluco, Walter; Zeng, Z.; De Chiffre, Leonardo

    2001-01-01

    subsequent reaming operations were carried out on austenitic stainless steel using high-speed-steel and solid carbide tools. The tested fluids were all significantly different from the reference fluid in at least some of the tested conditions. Significant differences down to 2 percent in cutting forces and 6...

  20. Flexibility and torsional behaviour of rotary nickel-titanium PathFile, RaCe ISO 10, Scout RaCe and stainless steel K-File hand instruments.

    Science.gov (United States)

    Nakagawa, R K L; Alves, J L; Buono, V T L; Bahia, M G A

    2014-03-01

    To assess and compare the flexibility and torsional resistance of PathFile, RaCe ISO 10 and Scout RaCe instruments in relation to stainless steel K-File hand instruments. Rotary PathFile (sizes 13, 16 and 19; .02 taper), Race ISO 10 (size 10; 0.02, 0.04 and 0.06 tapers), Scout RaCe (sizes 10, 15 and 20; 0.02 taper) and hand K-File (sizes 10, 15 and 20; 0.02 taper) instruments were evaluated. Alloy chemical composition, phases present and transformation temperatures were determined for the NiTi instruments. For all instruments, diameters at each millimetre from the tip as well as cross-sectional areas at 3 mm from the tip were measured based on ANSI/ADA Specification No. 101 using image analysis software. Resistance to bending and torsional resistance were determined according to specification ISO 3630-1. Vickers microhardness measurements were also taken in all instruments to assess their strength. Data were analysed using analysis of variance (α = 0.05). The alloys used in the manufacture of the three types of NiTi instruments had approximately the same chemical composition, but the PathFile instruments had a higher Af transformation temperature and contained a small amount of B19' martensite. All instruments had diameter values within the standard tolerance. The bending and torsional resistance values were significantly increased relative to the instrument diameter and cross-sectional area. PathFile instruments were the most flexible and the least torque resistant, whilst the stainless steel instruments were the least flexible although they were more torque resistant than the NiTi instruments. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  1. Micro-Abrasion Wear Resistance of Borided 316L Stainless Steel and AISI 1018 Steel

    Science.gov (United States)

    Reséndiz-Calderon, C. D.; Rodríguez-Castro, G. A.; Meneses-Amador, A.; Campos-Silva, I. E.; Andraca-Adame, J.; Palomar-Pardavé, M. E.; Gallardo-Hernández, E. A.

    2017-11-01

    The 316L stainless steel has high corrosion resistance but low tribological performance. In different industrial sectors (biomedical, chemical, petrochemical, and nuclear engineering), improvement upon wear resistance of 316L stainless steel components using accessible and inexpensive methods is critical. The AISI 1018 steel is widely used in industry, but its tribological performance is not the best among steels. Therefore, in this study the behavior of the borided 316L stainless steel and 1018 steel is evaluated under micro-abrasion wear. The boriding was carried out at 1223 K over 6 h of exposure time, resulting in a biphase layer composed of FeB/Fe2B phases. In order to evaluate Fe2B phase with no influence from FeB phase, AISI 1018 steel samples were borided at 1273 K for over 20 min and then diffusion annealed at 1273 K over 2 h to obtain a Fe2B mono-phase layer. Micro-abrasion wear resistance was evaluated by a commercial micro-abrasion testing rig using a mix of F-1200 SiC particles with deionized water as abrasive slurry. The obtained wear rates for FeB and Fe2B phases and for the 316L stainless steel were compared. Wear resistance of 316L stainless steel increases after boriding. The wear mechanisms for both phases and for the stainless steel were identified. Also, transient conditions for rolling and grooving abrasion were determined for the FeB and Fe2B phases.

  2. Effects of microstructure on ultrasonic examination of stainless steel

    International Nuclear Information System (INIS)

    Kupperman, D.S.; Reimann, K.J.

    1976-01-01

    Ultrasonic inspection of cast stainless steel components or stainless steel welds is difficult, and the results obtained are hard to interpret. The present study describes the effects of stainless steel microstructure on ultrasonic test results. Welded coupons, 2.5 and 5.0 cm thick, were fabricated from Type 304 stainless steel, with Type 308 stainless steel as the weld material. Metallography of the base material shows grain sizes of 15 and 80 μm, and dendrites aligned from the top to the bottom surface in cast material. X-ray diffraction and ultrasonic velocity measurements indicate a random crystal orientation in the base material, but the cast sample had aligned dendrites. The weld material exhibits a dendritic structure with a preferred (100) direction perpendicular to the weld pass. Spectral analysis of ultrasonic broad-band signals through the base materials shows drastic attenuation of higher frequencies with increasing grain size (Rayleigh scattering). Annealing and recrystallization increases the ultrasonic attenuation and produces carbide precipitation at grain boundaries. The microstructural differences of the base metal, heat-affected zone, and weld metal affect the amplitude of ultrasonic reflections from artificial flaws in these zones. Data obtained from two samples of different grain sizes indicate that grain size has little effect when a 1-MHz transducer is used. When going from a 15 to an 80-μm crystalline structure, a 5-MHz unit suffers a 30-dB attenuation in the detection of a 1.2 mm deep notch. The anisotropy of the dendritic structure in stainless steel renewed the interest in the effect of shear-wave polarization. In the (110) crystallographic orientation of stainless steel, two modes of shear waves can be generated, which have velocities differing by a factor of two. This effect may be helpful in ''tuning'' of shear waves by polarization to obtain better penetration in large grain materials such as welds

  3. Modern high strength QT, TM and duplex-stainless steels

    International Nuclear Information System (INIS)

    Bocquet, P.; Luxenburger, G.; Porter, D.; Ericsson, C.

    2003-01-01

    Pressure vessels are commonly manufactured with normalised steel grades with a yield strength up to 355 MPa or with austenitic stainless steels when corrosion as to be considered. From three decades, modern steels with higher mechanical properties - up to yield strength of 960 Mpa - are available and largely used for other applications where weight saving is of major importance as per off-shore, bridges, cranes, shipbuilding, line pipes.. The paper presents these modern steel's families - TMCP (Thermo Mechanically Controlled Process), QT (Quenched and Tempered) and Duplex (austeno-ferritic) stainless - in comparison with the normalised and austenitic steel grades. The following aspects are presented: the main mechanical properties (tensile and Charpy) as per the requirements of the standards for pressure equipment; some examples of use of these modern steels in the industry are given; the limitations of the forming conditions are considered; the weldability aspects and welds properties are developed; the interest of the PWHT (Post Weld Heat Treatment) is discussed. (orig.)

  4. Study of austenitic stainless steel welded with low alloy steel filler metal. [tensile and impact strength tests

    Science.gov (United States)

    Burns, F. A.; Dyke, R. A., Jr.

    1979-01-01

    The tensile and impact strength properties of 316L stainless steel plate welded with low alloy steel filler metal were determined. Tests were conducted at room temperature and -100 F on standard test specimens machined from as-welded panels of various chemical compositions. No significant differences were found as the result of variations in percentage chemical composition on the impact and tensile test results. The weldments containing lower chromium and nickel as the result of dilution of parent metal from the use of the low alloy steel filler metal corroded more severely in a marine environment. The use of a protective finish, i.e., a nitrile-based paint containing aluminum powder, prevented the corrosive attack.

  5. Machinability of a Stainless Steel by Electrochemical Discharge Microdrilling

    International Nuclear Information System (INIS)

    Coteata, Margareta; Pop, Nicolae; Slatineanu, Laurentiu; Schulze, Hans-Peter; Besliu, Irina

    2011-01-01

    Due to the chemical elements included in their structure for ensuring an increased resistance to the environment action, the stainless steels are characterized by a low machinability when classical machining methods are applied. For this reason, sometimes non-traditional machining methods are applied, one of these being the electrochemical discharge machining. To obtain microholes and to evaluate the machinability by electrochemical discharge microdrilling, test pieces of stainless steel were used for experimental research. The electrolyte was an aqueous solution of sodium silicate with different densities. A complete factorial plan was designed to highlight the influence of some input variables on the sizes of the considered machinability indexes (electrode tool wear, material removal rate, depth of the machined hole). By mathematically processing of experimental data, empirical functions were established both for stainless steel and carbon steel. Graphical representations were used to obtain more suggestive vision concerning the influence exerted by the considered input variables on the size of the machinability indexes.

  6. Corrosion in lithium-stainless steel thermal-convection systems

    International Nuclear Information System (INIS)

    Tortorelli, P.F.; DeVan, J.H.; Selle, J.E.

    1980-01-01

    The corrosion of types 304L and 316 austenitic stainless steel by flowing lithium was studied in thermal-convection loops operated at 500 to 650 0 C. Both weight and compositional changes were measured on specimens distributed throughout each loop and were combined with metallographic examinations to evaluate the corrosion processes. The corrosion rate and mass transfer characteristics did not significantly differ between the two austenitic stainless steels. Addition of 500 or 1700 wt ppM N to purified lithium did not increase the dissolution rate or change the attack mode of type 316 stainless steel. Adding 5 wt % Al to the lithium reduced the weight loss of this steel by a factor of 5 relative to a pure lithium-thermal-convection loop

  7. Liquid Phase Sintering of Highly Alloyed Stainless Steel

    DEFF Research Database (Denmark)

    Mathiesen, Troels

    1996-01-01

    Liquid phase sintering of stainless steel is usually applied to improve corrosion resistance by obtaining a material without an open pore system. The dense structure normally also give a higher strength when compared to conventional sintered steel. Liquid phase sintrering based on addition...... of boride to AISI 316L type steels have previously been studied, but were found to be sensitive to intergranular corrosion due to formation of intermetallic phases rich in chromium and molybdenum. In order to improve this system further, new investigations have focused on the use of higher alloyed stainless...... steel as base material. The stainless base powders were added different amounts and types of boride and sintered in hydrogen at different temperatures and times in a laboratory furnace. During sintering the outlet gas was analyzed and subsequently related to the obtained microstructure. Thermodynamic...

  8. Thermal creep properties of alloy D9 stainless steel and 316 stainless steel fuel clad tubes

    International Nuclear Information System (INIS)

    Latha, S.; Mathew, M.D.; Parameswaran, P.; Bhanu Sankara Rao, K.; Mannan, S.L.

    2008-01-01

    Uniaxial thermal creep rupture properties of 20% cold worked alloy D9 stainless steel (alloy D9 SS) fuel clad tubes for fast breeder reactors have been evaluated at 973 K in the stress range 125-250 MPa. The rupture lives were in the range 90-8100 h. The results are compared with the properties of 20% cold worked type 316 stainless steel (316 SS) clad tubes. Alloy D9 SS were found to have higher creep rupture strengths, lower creep rates and lower rupture ductility than 316 SS. The deformation and damage processes were related through Monkman Grant relationship and modified Monkman Grant relationship. The creep damage tolerance parameter indicates that creep fracture takes place by intergranular cavitation. Precipitation of titanium carbides in the matrix and chromium carbides on the grain boundaries, dislocation substructure and twins were observed in transmission electron microscopic investigations of alloy D9 SS. The improvement in strength is attributed to the precipitation of fine titanium carbides in the matrix which prevents the recovery and recrystallisation of the cold worked microstructure

  9. High temperature vapor pressures of stainless steel type 1.4970 and of some other pure metals from laser evaporation

    International Nuclear Information System (INIS)

    Bober, M.; Singer, J.

    1984-10-01

    For the safety analysis of nuclear reactors vapor pressure data of stainless steel are required up to temperatures exceeding 4000 K. In analogy to the classic boiling point method a new technique was developed to measure the high-temperature vapor pressures of stainless steel and other metals from laser vaporization. A fast pyrometer, an ion current probe and an image converter camera are used to detect incipient boiling from the time-temperature curve. The saturated-vapor pressure curves of stainless steel (Type 1.4970), being a cladding material of the SNR 300 breeder reactor, and of molybdenum are experimentally determined in the temperature ranges of 2800-3900 K and 4500-5200 K, respectively. The normal boiling points of iron, nickel, titanium, vanadium and zirconium are verified. Besides, spectral emissivity values of the liquid metals are measured at the pyrometer wavelengths of 752 nm and/or 940 nm. (orig.) [de

  10. Low temperature plasma carburizing of AISI 316L austenitic stainless steel and AISI F51 duplex stainless steel

    OpenAIRE

    Pinedo,Carlos Eduardo; Tschiptschin,André Paulo

    2013-01-01

    In this work an austenitic AISI 316L and a duplex AISI F51 (EN 1.4462) stainless steel were DC-Plasma carburized at 480ºC, using CH4 as carbon carrier gas. For the austenitic AISI 316L stainless steel, low temperature plasma carburizing induced a strong carbon supersaturation in the austenitic lattice and the formation of carbon expanded austenite (γC) without any precipitation of carbides. The hardness of the carburized AISI 316L steel reached a maximum of 1000 HV due to ∼13 at% c...

  11. Low temperature plasma carburizing of AISI 316L austenitic stainless steel and AISI F51 duplex stainless steel

    OpenAIRE

    Pinedo, Carlos Eduardo; Tschiptschin, André Paulo

    2013-01-01

    In this work an austenitic AISI 316L and a duplex AISI F51 (EN 1.4462) stainless steel were DC-Plasma carburized at 480ºC, using CH4 as carbon carrier gas. For the austenitic AISI 316L stainless steel, low temperature plasma carburizing induced a strong carbon supersaturation in the austenitic lattice and the formation of carbon expanded austenite (γC) without any precipitation of carbides. The hardness of the carburized AISI 316L steel reached a maximum of 1000 HV due to ∼13 at% carbon super...

  12. Optimization of the A-TIG welding for stainless steels

    Science.gov (United States)

    Jurica, M.; Kožuh, Z.; Garašić, I.; Bušić, M.

    2018-03-01

    The paper presents the influence of the activation flux and shielding gas on tungsten inert gas (A-TIG) welding of the stainless steel. In introduction part, duplex stainless steel was analysed. The A-TIG process was explained and the possibility of welding stainless steels using the A-TIG process to maximize productivity and the cost-effectiveness of welded structures was presented. In the experimental part duplex, 7 mm thick stainless steel has been welded in butt joint. The influence of activation flux chemical composition upon the weld penetration has been investigated prior the welding. The welding process was performed by a robot with TIG equipment. With selected A-TIG welding technology preparation of plates and consumption of filler material (containing Cr, Ni and Mn) have been avoided. Specimens sectioned from the produced welds have been subjected to tensile strength test, macrostructure analysis and corrosion resistance analysis. The results have confirmed that this type of stainless steel can be welded without edge preparation and addition of filler material containing critical raw materials as Cr, Ni and Mn when the following welding parameters are set: current 200 A, welding speed 9,1 cm/min, heat input 1,2 kJ/mm and specific activation flux is used.

  13. Growth of MWCNTs on Flexible Stainless Steels without Additional Catalysts

    Directory of Open Access Journals (Sweden)

    Udomdej Pakdee

    2017-01-01

    Full Text Available Multiwalled carbon nanotubes (MWCNTs were synthesized on austenitic stainless steel foils (Type 304 using a home-built thermal chemical vapor deposition (CVD under atmospheric pressure of hydrogen (H2 and acetylene (C2H2. During the growth, the stainless steel substrates were heated at different temperatures of 600, 700, 800, and 900°C. It was found that MWCNTs were grown on the stainless steel substrates heated at 600, 700, and 800°C while amorphous carbon film was grown at 900°C. The diameters of MWCNTs, as identified by scanning electron microscope (SEM images together with ImageJ software program, were found to be 67.7, 43.0, and 33.1 nm, respectively. The crystallinity of MWCNTs was investigated by an X-ray diffractometer. The number of graphitic walled layers and the inner diameter of MWCNTs were investigated using a transmission electron microscope (TEM. The occurrence of Fe3O4 nanoparticles associated with carbon element can be used to reveal the behavior of Fe in stainless steel as catalyst. Raman spectroscopy was used to confirm the growth and quality of MWCNTs. The results obtained in this work showed that the optimum heated stainless steel substrate temperature for the growth of effective MWCNTs is 700°C. Chemical states of MWCNTs were investigated by X-ray photoelectron spectroscopy (XPS using synchrotron light.

  14. Embrittlement and life prediction of aged duplex stainless steel

    International Nuclear Information System (INIS)

    Kuwano, Hisashi

    1996-01-01

    The stainless steel, for which the durability for long term in high temperature corrosive environment is demanded, is a complex plural alloy. Cr heightens the oxidation resistance, Ni improves the ductility and impact characteristics, Si improves the fluidity of the melted alloy and heightens the resistance to stress corrosion cracking, and Mo suppresses the pitting due to chlorine ions. These alloy elements are in the state of nonequilibrium solid solution in Fe base at practical temperature, and cause aging phenomena such as segregation, concentration abnormality and precipitation during the use for long term. The characteristics of stainless steel deteriorate due to this. Two-phase stainless cast steel, the example of the embrittlement of the material for an actual machine, the accelerated test of embrittlement, the activation energy for embrittlement, and as the mechanism of aging embrittlement, the spinodal decomposition of ferrite, the precipitation of G phase and the precipitation of carbides and nitrides are described. Also in the welded parts of austenitic stainless steel, delta-ferrite is formed during cooling, therefore, the condition is nearly same as two-phase stainless steel, and the embrittlement due to long term aging occurs. (K.I.)

  15. Aging of cast duplex stainless steels in LWR systems

    International Nuclear Information System (INIS)

    Chopra, O.K.; Chung, H.M.

    1984-10-01

    A program is being conducted to investigate the significance of in-service embrittlement of cast duplex stainless steels under light-water reactor operating conditions. The existing data are evaluated to determine the expected embrittlement of cast components during the operating lifetime of reactors and to define the objectives and scope of the investigation. This presentation describes the status of the program. Data for the metallurgical characterization of the various cast stainless steels used in the investigation are presented. Charpy impact tests on short-term aged material indicate that CF-3 stainless steels are less susceptible to embrittlement than CF-8 or CF-8M stainless steels. Microstructural characterization of cast stainless steels that were obtained from Georg Fischer Co. and aged for up to 70,000 h at 300, 350, and 400 0 C reveals the formation of four different types of precipitates that are not α'. Embrittlement of the ferrite phase is primarily due to pinning of the dislocations by two of these precipitates, designated as Type M and Type X. The ferrite phase is embrittled after approx. 8 y at 300 0 C and shows cleavage fracture. Examination of the fracture surfaces of the impact-test specimens indicates that the toughness of the long-term aged material is determined by the austenite phase. 8 figures, 3 tables

  16. Antibacterial effect of silver nanofilm modified stainless steel surface

    Science.gov (United States)

    Fang, F.; Kennedy, J.; Dhillon, M.; Flint, S.

    2015-03-01

    Bacteria can attach to stainless steel surfaces, resulting in the colonization of the surface known as biofilms. The release of bacteria from biofilms can cause contamination of food such as dairy products in manufacturing plants. This study aimed to modify stainless steel surfaces with silver nanofilms and to examine the antibacterial effectiveness of the modified surface. Ion implantation was applied to produce silver nanofilms on stainless steel surfaces. 35 keV Ag ions were implanted with various fluences of 1 × 1015 to 1 × 1017 ions•cm-2 at room temperature. Representative atomic force microscopy characterizations of the modified stainless steel are presented. Rutherford backscattering spectrometry spectra revealed the implanted atoms were located in the near-surface region. Both unmodified and modified stainless steel coupons were then exposed to two types of bacteria, Pseudomonas fluorescens and Streptococcus thermophilus, to determine the effect of the surface modification on bacterial attachment and biofilm development. The silver modified coupon surface fluoresced red over most of the surface area implying that most bacteria on coupon surface were dead. This study indicates that the silver nanofilm fabricated by the ion implantation method is a promising way of reducing the attachment of bacteria and delay biofilm formation.

  17. Microbial electrocatalysis with Geobacter sulfurreducens biofilm on stainless steel cathodes

    International Nuclear Information System (INIS)

    Dumas, Claire; Basseguy, Regine; Bergel, Alain

    2008-01-01

    Stainless steel and graphite electrodes were individually addressed and polarized at -0.60 V vs. Ag/AgCl in reactors filled with a growth medium that contained 25 mM fumarate as the electron acceptor and no electron donor, in order to force the microbial cells to use the electrode as electron source. When the reactor was inoculated with Geobacter sulfurreducens, the current increased and stabilized at average values around 0.75 A m -2 for graphite and 20.5 A m -2 for stainless steel. Cyclic voltammetry performed at the end of the experiment indicated that the reduction started at around -0.30 V vs. Ag/AgCl on stainless steel. Removing the biofilm formed on the electrode surface made the current totally disappear, confirming that the G.sulfurreducens biofilm was fully responsible for the electrocatalysis of fumarate reduction. Similar current densities were recorded when the electrodes were polarized after being kept in open circuit for several days. The reasons for the bacteria presence and survival on non-connected stainless steel coupons were discussed. Chronoamperometry experiments performed at different potential values suggested that the biofilm-driven catalysis was controlled by electrochemical kinetics. The high current density obtained, quite close to the redox potential of the fumarate/succinate couple, presents stainless steel as a remarkable material to support biocathodes

  18. Low stress creep of stainless steel

    International Nuclear Information System (INIS)

    Crossland, I.G.; Clay, B.D.; Baker, C.

    1976-06-01

    The creep of 20%Cr, 25%Ni, Nb stainless steel has been examined at temperatures from 675 to 775 0 C at sheer stressed below 13 MPa and grain sizes from 6 to 20μm. The results have indicated that the initial creep rates were linearly dependent upon stress but with a threshold stress below which no creep occurred, i.e. Bingham behaviour; in addition, the creep activation energy at small strains was substantially lower than the lattice self-diffusion value and the initial creep rates were approximately related to the grain size through an inverse cube relation. It has been concluded that at low strains (approaching the initial elastic deflection) the creep mechanism was probably that of grain boundary diffusion creep (Coble, 1963) and this is further supported by the close agreement between the observed and theoretically predicted creep rate values. Steady-state creep rates were not observed; initially the creep rates fell rapidly with strain after which a more gradual decrease occurred. Whilst the creep rate - stress relationship continued to be of a Bingham form, the progressive reduction in creep rate with strain was found to be mainly attributable to an increase in the effective viscosity, threshold stress effects being generally of secondary importance. A model has been proposed which explains the initial creep rates as being due to Cable creep with elastic accommodation at grain boundary particles. At higher strains grain boundary collapse caused by vacancy sinking is accommodated at precipitate particles by plastic deformation of the adjacent matrix material. (author)

  19. Substitution of modified 9 Cr-1 Mo steel for austentic stainless steels

    International Nuclear Information System (INIS)

    Sikka, V.K.

    1982-04-01

    This report describes the current program to develop a high-strength ferritic-martensitic steel. The alloy is essentially Fe-9% Cr-1% Mo with small additions of V and Nb and is known as modifed 9 Cr-1 Mo steel. Its elevated-temperature properties and design allowable stresses match those of type 304 stainless steel for temperatures up to 600 0 C and exceed those of other ferritic steels by factors of 2 to 3. The improved strength of this alloy permits its use in place of stainless steels for many applications

  20. Tensile properties of the modified 13Cr martensitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Mabruri, Efendi, E-mail: effe004@lipi.go.id; Anwar, Moch Syaiful, E-mail: moch.syaiful.anwar@lipi.go.id; Prifiharni, Siska, E-mail: siska.prifiharni@lipi.go.id; Romijarso, Toni B.; Adjiantoro, Bintang [Research Center for Metallurgy and Materials, Indonesian Institute of Sciences (LIPI) Kawasan Puspiptek Gd. 470 Serpong, Tangerang Selatan 15314 (Indonesia)

    2016-04-19

    This paper reports the influence of Mo and Ni on the tensile properties of the modified 13Cr martensitic stainless steels in tempered condition. Four steels with different content of Mo and Ni were prepared by induction melting followed by hot forging, quenching and tempering. The experimental results showed that the addition of about 1% and 3% Mo has a beneficial effect to increase both the tensile strength and the elongation of the steels. On the contrary, the addition of about 3% Ni into the martensitic stainless steel results in decreasing of both the tensile strength and the elongation. Among the alloys investigated the 13Cr3Mo type steel exhibited largest tensile strength of 1348 MPa and largest elongation of 12%. The observation on the tensile fractured surfaces by using scanning electron microscope supported these findings.

  1. Tensile properties of the modified 13Cr martensitic stainless steels

    International Nuclear Information System (INIS)

    Mabruri, Efendi; Anwar, Moch Syaiful; Prifiharni, Siska; Romijarso, Toni B.; Adjiantoro, Bintang

    2016-01-01

    This paper reports the influence of Mo and Ni on the tensile properties of the modified 13Cr martensitic stainless steels in tempered condition. Four steels with different content of Mo and Ni were prepared by induction melting followed by hot forging, quenching and tempering. The experimental results showed that the addition of about 1% and 3% Mo has a beneficial effect to increase both the tensile strength and the elongation of the steels. On the contrary, the addition of about 3% Ni into the martensitic stainless steel results in decreasing of both the tensile strength and the elongation. Among the alloys investigated the 13Cr3Mo type steel exhibited largest tensile strength of 1348 MPa and largest elongation of 12%. The observation on the tensile fractured surfaces by using scanning electron microscope supported these findings.

  2. Operational experience of stainless steels in seawater-cooled systems

    International Nuclear Information System (INIS)

    Henriksson, S.

    1981-06-01

    A study has been made of chiefly Swedish and Finnish operational experience of stainless steel in seawater and brackish water. A report is given on 23 typical cases, behind which in actual fact a considerably larger number of individual practical cases are concealed. The answer to the primary question why a standard steel of type SS 2343 (AISI 316) sometimes, contrary to expectation, remains unattacked by local corrosion is that there is usually spontaneous cathodic protection by other less noble components of carbon steel, cast iron or some copper alloy in direct contact with the stainless steel. The study confirms in other respects the adverse effect of residual oxides after welding and the beneficial of low temperature, high continuous waterflow and periodic cleaning, and of rinsing with fresh water during out-of service periods. It also verifies the additional advantages of the new high-alloy special steels which have begun to be marketed in recent years for seawater applications. (author)

  3. DETECTION OF BACTERIAL BIOFILM ON STAINLESS STEEL BY HYPERSPECTRAL FLUORESCENCE IMAGING

    Science.gov (United States)

    In this study, hyperspectral fluorescence imaging techniques were investigated for detection of microbial biofilm on stainless steel plates typically used to manufacture food processing equipment. Stainless steel coupons were immersed in bacterium cultures consisting of nonpathogenic E. coli, Pseudo...

  4. 78 FR 31574 - Welded Stainless Steel Pressure Pipe From Malaysia, Thailand, and Vietnam; Institution of...

    Science.gov (United States)

    2013-05-24

    ... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 731-TA-1210-1212 (Preliminary)] Welded Stainless Steel Pressure Pipe From Malaysia, Thailand, and Vietnam; Institution of Antidumping Duty..., by reason of imports from Malaysia, Thailand, and Vietnam of welded stainless steel pressure pipe...

  5. Aluminum and stainless steel tubes joined by simple ring and welding process

    Science.gov (United States)

    Townhill, A.

    1967-01-01

    Duranel ring is used to join aluminum and stainless steel tubing. Duranel is a bimetal made up of roll-bonded aluminum and stainless steel. This method of joining the tubing requires only two welding operations.

  6. Pitting and stress corrosion cracking of stainless steel

    Science.gov (United States)

    Saithala, Janardhan R.

    An investigation has been performed to determine the pitting resistance of stainless steels and stress corrosion cracking of super duplex stainless steels in water containing chloride ions from 25 - 170°C. The steels studied are 12% Cr, FV520B, FV566, 304L, Uranus65, 2205, Ferallium Alloy 255, and Zeron 100. All these commercial materials used in very significant industrial applications and suffer from pitting and stress corrosion failures. The design of a new experimental setup using an autoclave enabled potentiodynamic polarisation experiments and slow strain rate tests in dilute environments to be conducted at elevated temperatures. The corrosion potentials were controlled using a three electrode cell with computer controlled potentiostat.The experimental programme to determine pitting potentials was designed to simulate the service conditions experienced in most industrial plants and develop mathematical model equations to help a design engineer in material selection decision. Stress corrosion resistance of recently developed Zeron100 was evaluated in dilute environments to propose a mechanism in chloride solutions at high' temperatures useful for the nuclear and power generation industry. Results have shown the significance of the composition of alloying elements across a wide range of stainless steels and its influence on pitting. Nitrogen and molybdenum added to modern duplex stainless steels was found to be unstable at higher temperatures. The fractographic results obtained using the scanning electron microscope (SEM) has given insight in the initiation of pitting in modem duplex and super duplex stainless steels. A mathematical model has been proposed to predict pitting in stainless steels based on the effect of environmental factors (temperature, chloride concentration, and chemical composition). An attempt has been made to identify the mechanism of SCC in Zeron100 super duplex stainless steel.The proposed empirical models have shown good correlation

  7. Modeling of Ni Diffusion Induced Austenite Formation in Ferritic Stainless Steel Interconnects

    DEFF Research Database (Denmark)

    Chen, Ming; Alimadadi, Hossein; Molin, Sebastian

    2017-01-01

    Ferritic stainless steel interconnect plates are widely used in planar solid oxide fuel cell and electrolysis cell stacks. During stack production and operation, nickel from the Ni/yttria stabilized zirconia fuel electrode or from the Ni contact component layer diffuses into the interconnect plate......, causing transformation of the ferritic phase into an austenitic phase in the interface region. This is accompanied with changes in volume, and in mechanical and corrosion properties of the interconnect plates. In this work, kinetic modeling of the inter-diffusion between Ni and FeCr based ferritic...

  8. Diffusionless bonding of aluminum to type 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Watson, R D

    1963-03-15

    High strength diffusionless bonds can be produced between 1S aluminum and oxidized 304 stainless steel by hot pressing and extrusion bonding. Both the hot pressing and extrusion bonding techniques have been developed to a point where consistently good bonds can be obtained. Although the bonding is performed at elevated temperatures (about 510{sup o}C) a protective atmosphere is not required to produce strong bonds. The aluminum-stainless steel bonded specimens can be used to join aluminum and stainless steel by conventional welding. Welding close to the bond zone does not appear to affect the integrity of the bond. The extrusion bonding technique is covered by Canadian patent 702,438 January 26, 1965 and the hot press bonding technique by Canadian patent application 904,548 June 6, 1964. (author)

  9. Boron effect on stainless steel plasticity under hot deformation

    International Nuclear Information System (INIS)

    Bulat, S.I.; Kardonov, B.A.; Sorokina, N.A.

    1978-01-01

    The effect of boron on plasticity of stainless steels at temperatures of hot deformation has been studied at three levels of alloying, i.e. 0-0.01% (micro-alloying or modifying), 0.01-0.02% (low alloying) and 0.02-2.0% (high alloying). Introduction of 0.001-0.005% of boron increases hot plasticity of both low and high carbon stainless steels due to decrease in grain size and strengthening of grain boundaries. Microalloying by boron has a positive effect at temperatures below 1200-1220 deg C. At higher temperatures, particularly when its content exceeds 0.008%, boron deteriorates plasticity by increasing the size of grains and weakening their boundaries. 0.1-2% boron strengthen the stainless steel and dectease its plasticity

  10. Study of 316 stainless steel swelling due to neutron irradiation

    International Nuclear Information System (INIS)

    Furutani, Gen; Konishi, Takao

    2000-01-01

    Large stresses will be generated in the austenitic stainless steel core internals of pressurized water reactors (PWRs) if excessive swelling occurs after long periods of operation. As a result, deformation or stress corrosion cracking (SCC) could occur in the core internals. However, data on the swelling of irradiated austenitic stainless steel in actual PWRs is limited. In this study, mechanical tests, measurement of produced helium amount and analysis using transmission electron microscopes were carried out on a cold-worked (CW) 316 stainless steel flux thimble tube irradiated up to approximately 35 dpa in a Japanese PWR. The swelling was evaluated to be approximately 0.02%. This level of swelling was much lower than the swelling of the more than several percent that has been observed in fast breeder reactors. (author)

  11. Microbially influenced corrosion of stainless steels in nuclear power plants

    International Nuclear Information System (INIS)

    Sinha, U.P.; Wolfram, J.H.; Rogers, R.D.

    1990-01-01

    This paper reviews the components, causative agents, corrosion sites, and potential failure modes of stainless steel components susceptible to microbially influenced corrosion (MIC). The stainless steel components susceptible to MIC are located in the reactor coolant, emergency, and reactor auxiliary systems, and in many plants, in the feedwater train and condenser. The authors assessed the areas of most high occurrence of corrosion and found the sites most susceptible to MIC to the heat-affected zones in the weldments of sensitized stainless steel. Pitting is the predominant MIC corrosion mechanisms, caused by sulfur reducing bacteria (SRB). Also discussed is the current status of the diagnostic, preventive, and mitigation techniques, including use of improved water chemistry, alternate materials, and improved thermomechanical treatments. 37 refs., 3 figs

  12. Elevated temperature ductility of types 304 and 316 stainless steel

    International Nuclear Information System (INIS)

    Sikka, V.K.

    1978-01-01

    Austenitic stainless steel types 304 and 316 are known for their high ductility and toughness. However, the present study shows that certain combinations of strain rate and test temperature can result in a significant loss in elevated-temperature ductility. Such a phenomenon is referred to as ductility minimum. The strain rate, below which ductility loss is initiated, decreases with decrease in test temperature. Besides strain rate and temperature, the ductility minimum was also affected by nitrogen content and thermal aging conditions. Thermal aging at 649 0 C was observed to eliminate the ductility minimum at 649 0 C in both types 304 and 316 stainless steel. Such an aging treatment resulted in a higher ductility than the unaged value. Aging at 593 0 C still resulted in some loss in ductility. Current results suggest that ductility-minimum conditions for stainless steel should be considered in design, thermal aging data analysis, and while studying the effects of chemical composition

  13. Development of laser cutting method for stainless steel liner

    International Nuclear Information System (INIS)

    Ishihara, Satoshi; Takahata, Masato; Wignarajah, Sivakumaran; Kamata, Hirofumi

    2007-01-01

    The present work is an attempt to develop a laser cutting method for cutting and removing stainless steel liners from concrete walls and floors in nuclear facilities. The effect of basic laser cutting parameters such as energy, cutting speed, assist gas flow etc. were first studied through cutting experiments on mock-up concrete specimens lined with 3mm thick stainless steel sheets using a 1kW Nd:YAG laser. These initial studies were followed by further studies on the effect of unevenness of the liner surface and on a new method of confining contamination during the cutting process using a sliding evacuation hood attached to the laser cutting head. The results showed that laser cutting is superior to other conventional cutting methods from the point of view of safety from radioactivity and work efficiency when cutting contaminated stainless steel liners. (author)

  14. Electron beam freeforming of stainless steel using solid wire feed

    International Nuclear Information System (INIS)

    Wanjara, P.; Brochu, M.; Jahazi, M.

    2007-01-01

    The use of electron beam technology for freeforming build-ups on 321 stainless steel substrates was investigated in this work by using 347 stainless steel as a filler metal. The electron beam freeforming studies indicated that line build-ups could be deposited on the substrate material for optimized processing conditions and a slight linear thickening of the re-build occurred as a function of the deposited layer. The evolution in the formation of the Ti (C, N) (Nb, Ti) carbonitrides and Nb (C, N) precipitates was demonstrated to counteract the formation of detrimental Cr-carbides usually observed during welding stainless steels. The mechanical properties of the re-build were similar to the properties of the base metal, showing that homogeneous properties can be expected in the repaired components

  15. Diffusionless bonding of aluminum to type 304 stainless steel

    International Nuclear Information System (INIS)

    Watson, R.D.

    1963-03-01

    High strength diffusionless bonds can be produced between 1S aluminum and oxidized 304 stainless steel by hot pressing and extrusion bonding. Both the hot pressing and extrusion bonding techniques have been developed to a point where consistently good bonds can be obtained. Although the bonding is performed at elevated temperatures (about 510 o C) a protective atmosphere is not required to produce strong bonds. The aluminum-stainless steel bonded specimens can be used to join aluminum and stainless steel by conventional welding. Welding close to the bond zone does not appear to affect the integrity of the bond. The extrusion bonding technique is covered by Canadian patent 702,438 January 26, 1965 and the hot press bonding technique by Canadian patent application 904,548 June 6, 1964. (author)

  16. Temporal sealing material of tritium-contaminated stainless steel

    International Nuclear Information System (INIS)

    Wen Wei; Dan Guiping; Zhang Dong; Qiu Yongmei; Zhang Li

    2010-01-01

    Tritium can be released from the exterior of tritium-contaminated stainless steel by slight stirring while decontaminating and disassembling. In order to avoid secondary tritium contamination to environment and operators, it is necessary to cover with an effective coating to tritium on the exterior of tritium-contaminated stainless steel and fill an effective substance to tritium inside. The results of tritium sealed experiments show that sealing efficiency of neutral silicone rubber is more than 85% for condition of static state and more than 99% for foam concrete condition of dynamic state. Neutral silicone rubber and foam concrete which have finer sealing efficiency can be used as temporal sealed material for the decontamination and disassembly of tritium-contaminated stainless steel. (authors)

  17. Discussion on two special stainless steels used in nuclear fuel processing plants

    International Nuclear Information System (INIS)

    Desestret, A.; Ferriol, J.; Vallier, G.

    1977-01-01

    Nuclear fuel treatment may entail difficult corrosion problems for the metallurgist. A first case occurs when the nitric solution is concentrated (60 to 70% of HNO 3 ) at temperatures of 130 0 C. This is solved by use of a steel having a very high chromium content (25%), a high nickel content (20%), and a very low carbon content, which is now readily produced on an industrial scale. A second case happens when nitric solutions are made highly agressive, even when diluted at medium temperatures, by highly oxidising ions such as chromate or ceric ions. The stainless steel is then placed in transpassive conditions and subject to very rapid intergranular attack, even when free from precipitated chromium carbides. A steel of the Cr 17 / Ni 14 / Si 4 / C [fr

  18. 77 FR 31578 - Stainless Steel Bar From Japan: Initiation and Preliminary Results of Antidumping Duty Changed...

    Science.gov (United States)

    2012-05-29

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-588-833] Stainless Steel Bar From...-circumstances review of four types of stainless steel bar (SSBar) \\1\\ that are subject to the antidumping duty..., a G.O. Carlson Inc. Co., North American Stainless, Outokumpu Stainless Bar, Inc., Universal...

  19. Failure of Stainless Steel Welds Due to Microstructural Damage Prevented by In Situ Metallography

    OpenAIRE

    Lopez,Juan Manuel Salgado; Alvarado,María Inés; Hernandez,Hector Vergara; Quiroz,José Trinidad Perez; Olmos,Luis

    2016-01-01

    Abstract In stainless steels, microstructural damage is caused by precipitation of chromium carbides or sigma phase. These microconstituents are detrimental in stainless steel welds because they lead to weld decay. Nevertheless, they are prone to appear in the heat affected zone (HAZ) microstructure of stainless steel welds. This is particularly important for repairs of industrial components made of austenitic stainless steel. Non-destructive metallography can be applied in welding repairs of...

  20. Corrosion behaviour of some conventional stainless steels in electrolyzing process

    Directory of Open Access Journals (Sweden)

    Amal NASSAR

    2015-12-01

    Full Text Available In this study, attempts were made to increase the amount of hydrogen generated from the water electrolysis process. Some conventional stainless steels (316; 409; 410 and 430 were used as anode and cathode in electrolysis process. Further study was carried out on the corrosion trend in all the investigated metals. It is observed that the electrode material can effect on the amount of hydrogen generate by electrolyzing process and metal composition of the stainless steels effects on the rate of corrosion.

  1. Topographical Anisotropy and Wetting of Ground Stainless Steel Surfaces

    Directory of Open Access Journals (Sweden)

    Cornelia Bellmann

    2012-12-01

    Full Text Available Microscopic and physico-chemical methods were used for a comprehensive surface characterization of different mechanically modified stainless steel surfaces. The surfaces were analyzed using high-resolution confocal microscopy, resulting in detailed information about the topographic properties. In addition, static water contact angle measurements were carried out to characterize the surface heterogeneity of the samples. The effect of morphological anisotropy on water contact angle anisotropy was investigated. The correlation between topography and wetting was studied by means of a model of wetting proposed in the present work, that allows quantifying the air volume of the interface water drop-stainless steel surface.

  2. Fatigue crack nucleation of type 316LN stainless steel

    International Nuclear Information System (INIS)

    Kim, Dae Whan; Kim, Woo Gon; Hong, Jun Hwa; Ryu, Woo Seog

    2000-01-01

    Low Cycle Fatigue (LCF) life decreases drastically with increasing temperature but increases with the addition of nitrogen at room and high temperatures. The effect of nitrogen on LCF life may be related to crack nucleation at high temperatures in austenitic stainless steel because the fraction of crack nucleation in LCF life is about 40%. The influence of nitrogen on the crack nucleation of LCF in type 316LN stainless steel is investigated by observations of crack population and crack depth after testing at 40% of fatigue life. Nitrogen increases the number of cycles to nucleate microcracks of 100 μm but decreases the crack population

  3. Intergranular penetration of liquid gold into stainless steel

    OpenAIRE

    Favez, Denis; Deillon, Léa; Wagnière, Jean-Daniel; Rappaz, Michel

    2011-01-01

    Intergranular penetration of liquid 18 K gold into a superaustenitic stainless steel, which occurs during laser welding of these two materials, has been studied using a C-ring device which can be put under tensile stresses by a screw. It is shown that liquid gold at 1000 degrees C penetrates the immersed stainless steel C-ring at grain boundaries, but only when tensile stresses are applied. Based on the thickness of the peritectic phase that forms all along the liquid crack and on the transve...

  4. Resistance Element Welding of Magnesium Alloy/austenitic Stainless Steel

    Science.gov (United States)

    Manladan, S. M.; Yusof, F.; Ramesh, S.; Zhang, Y.; Luo, Z.; Ling, Z.

    2017-09-01

    Multi-material design is increasingly applied in the automotive and aerospace industries to reduce weight, improve crash-worthiness, and reduce environmental pollution. In the present study, a novel variant of resistance spot welding technique, known as resistance element welding was used to join AZ31 Mg alloy to 316 L austenitic stainless steel. The microstructure and mechanical properties of the joints were evaluated. It was found that the nugget consisted of two zones, including a peripheral fusion zone on the stainless steel side and the main fusion zone. The tensile shear properties of the joints are superior to those obtained by traditional resistance spot welding.

  5. Microbial electrocatalysis with Geobacter sulfurreducens biofilm on stainless steel cathodes

    OpenAIRE

    Dumas, Claire; Basséguy, Régine; Bergel, Alain

    2008-01-01

    Stainless steel and graphite electrodes were individually addressed and polarized at−0.60V vs. Ag/AgCl in reactors filled with a growth medium that contained 25mM fumarate as the electron acceptor and no electron donor, in order to force the microbial cells to use the electrode as electron source. When the reactor was inoculated with Geobacter sulfurreducens, the current increased and stabilized at average values around 0.75Am−2 for graphite and 20.5Am−2 for stainless steel. Cyclic voltamm...

  6. The use of titanium and stainless steel in fracture fixation.

    Science.gov (United States)

    Hayes, J S; Richards, R G

    2010-11-01

    The use of metal in fracture fixation has demonstrated unrivalled success for many years owing to its high stiffness, strength, biological toleration and overall reliable function. The most prominent materials used are electropolished stainless steel and commercially pure titanium, along with the more recent emergence of titanium alloys. Despite the many differences between electropolished stainless steel and titanium, both materials provide a relatively predictable clinical outcome, and offer similar success for fulfilling the main biomechanical and biological requirements of fracture fixation despite distinctive differences in implant properties and biological responses. This article explores these differences by highlighting the limitations and advantages of both materials, and addresses how this translates to clinical success.

  7. Development status of ultrasonic test techniques for cast stainless steel

    International Nuclear Information System (INIS)

    Nishikawa, Yoshito

    2015-01-01

    Ultrasonic testing has been thought to be difficult to apply to cast stainless steel which is used as the material for the main coolant pipes in pressurized water reactors (PWRs). An ultrasonic testing technique using large aperture twin crystal transducers was developed in INSS for application to inspection of the main coolant pipes. The method was evaluated in an application to detect circumferential and axial defects in the cast stainless steel pipes. It was found that (1) the defects could be detected which had a depth that was so small that their evaluation was not required; and (2) depth sizing and length sizing of detected defects were also possible. (author)

  8. Intergranular stress corrosion in soldered joints of stainless steel 304

    International Nuclear Information System (INIS)

    Zamora R, L.

    1994-01-01

    The intergranular stress cracking of welded joints of austenitic stainless steel, AISI 304, is a serious problem in BWR type reactors. It is associated with the simultaneous presence of three factors; stress, a critical media and sensibilization (DOS). EPR technique was used in order to verify the sensibilization degree in the base metal, and the zone affected by heat and welding material. The characterization of material was done. The objective of this work is the study of microstructure and the evaluation of EPR technique used for the determination of DOS in a welded plate of austenitic stainless steel AISI 304. (Author)

  9. Corrosion resistance testing of high-boron-content stainless steels

    International Nuclear Information System (INIS)

    Petrman, I.; Safek, V.

    1994-01-01

    Boron steels, i.e. stainless steels with boron contents of 0.2 to 2.25 wt.%, are employed in nuclear engineering for the manufacture of baskets or wells in which radioactive fissile materials are stored, mostly spent nuclear fuel elements. The resistance of such steels to intergranular corrosion and uniform corrosion was examined in the Strauss solution and in boric acid; the dependence of the corrosion rate of the steels on their chemical composition was investigated, and their resistance was compared with that of AISI 304 type steel. Corrosion resistance tests in actual conditions of ''wet'' compact storage (demineralized water or a weak boric acid solution) gave evidence that boron steels undergo nearly no uniform corrosion and, as electrochemical measurements indicated, match standard corrosion-resistant steels. Corrosion resistance was confirmed to decrease slightly with increasing boron content and to increase somewhat with increasing molybdenum content. (Z.S.). 3 tabs., 4 figs., 7 refs

  10. 76 FR 1599 - Stainless Steel Bar From Brazil: Final Results of Antidumping Duty Administrative Review

    Science.gov (United States)

    2011-01-11

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-351-825] Stainless Steel Bar From... duty order on stainless steel bar from Brazil. The review covers one producer/exporter of the subject... its administrative review of the antidumping duty order on stainless steel bar (SSB) from Brazil. See...

  11. 77 FR 41969 - Stainless Steel Bar From Japan: Rescission of Antidumping Duty Administrative Review

    Science.gov (United States)

    2012-07-17

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-588-833] Stainless Steel Bar From... order on stainless steel bar from Japan (the Order) covering the period February 1, 2010, through... Suruga to the Secretary, ``Stainless Steel Bar--Withdrawal of Request for Administrative Review,'' dated...

  12. 78 FR 63517 - Control of Ferrite Content in Stainless Steel Weld Metal

    Science.gov (United States)

    2013-10-24

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0231] Control of Ferrite Content in Stainless Steel Weld... Ferrite Content in Stainless Steel Weld Metal.'' This guide (Revision 4) describes a method that the NRC staff considers acceptable for controlling ferrite content in stainless steel weld metal. It updates the...

  13. Stablization of Nanotwinned Microstructures in Stainless Steels Through Alloying and Microstructural Design

    Science.gov (United States)

    2013-08-23

    Effects of carbon content, deformation, and interfacial energetics on carbide precipitation and corrosion sensitization in 304 stainless steel , Acta...Alumina- Forming Austenitic Stainless Steels Strengthened by LAves Phase and MC Carbide Precipitates , Metallurgical and Materials Transactions A...nano- precipitate engineering---of nanotwinned stainless steels . This preliminary work has provided valuable insight into the mechanisms responsible

  14. 75 FR 59744 - Stainless Steel Sheet and Strip From Germany, Italy, Japan, Korea, Mexico, and Taiwan

    Science.gov (United States)

    2010-09-28

    ...)] Stainless Steel Sheet and Strip From Germany, Italy, Japan, Korea, Mexico, and Taiwan AGENCY: United States... duty orders on stainless steel sheet and strip from Germany, Italy, Japan, Korea, Mexico, and Taiwan... stainless steel sheet and strip from Germany, Italy, Japan, Korea, Mexico, and Taiwan would be likely to...

  15. Influence of laser power on microstructure of laser metal deposited 17-4 ph stainless steel

    CSIR Research Space (South Africa)

    Adeyemi, AA

    2017-09-01

    Full Text Available The influence of laser power on the microstructure of 17-4 PH stainless steel produced by laser metal deposition was investigated. Multiple-trackof 17-4 stainless steel powder was deposited on 316 stainless steel substrate using laser metal...

  16. 78 FR 45271 - Welded Stainless Steel Pressure Pipe From Malaysia, Thailand, and Vietnam

    Science.gov (United States)

    2013-07-26

    ... Stainless Steel Pressure Pipe From Malaysia, Thailand, and Vietnam Determination On the basis of the record... reason of imports from Malaysia, Thailand, and Vietnam of welded stainless steel pressure pipe, provided... contained in USITC Publication 4413 (July 2013), entitled Welded Stainless Steel Pressure Pipe from Malaysia...

  17. Tool degradation during sheet metal forming of three stainless steel alloys

    DEFF Research Database (Denmark)

    Wadman, Boel; Nielsen, Peter Søe; Wiklund, Daniel

    2010-01-01

    To evaluate if changes in tool design and tool surface preparation are needed when low-Ni stainless steels are used instead of austenitic stainless steels, the effect on tool degradation in the form of galling was investigated with three different types of stainless steel. The resistance to tool ...

  18. 75 FR 81309 - Stainless Steel Plate from Belgium, Italy, Korea, South Africa, and Taiwan

    Science.gov (United States)

    2010-12-27

    ... (Second Review)] Stainless Steel Plate from Belgium, Italy, Korea, South Africa, and Taiwan AGENCY: United... on stainless steel plate from Belgium, Italy, Korea, South Africa, and Taiwan. SUMMARY: The... on stainless steel plate from Belgium, Italy, Korea, South Africa, and Taiwan would be likely to lead...

  19. A review of hot cracking in austenitic stainless steel weldments

    International Nuclear Information System (INIS)

    Shankar, V.; Gill, T.P.S.; Mannan, S.L.; Rodriguez, P.

    1991-01-01

    The occurrence of hot cracking in austenitic stainless steel weldments is discussed with respect to its origin and metallurgical contributory factors. Of the three types of hot cracking, namely solidification cracking, liquation and ductility dip cracking, solidification cracking occurs in the interdendritic regions in weld metal while liquation and ductility dip cracking occur intergranularly in the heat-affected zone (HAZ). Segregation of impurity and minor elements such as sulphur, phosphorous, silicon, niobium, boron etc to form low melting eutectic phases has been found to be the major cause of hot cracking. Control of HAZ cracking requires minimisation of impurity elements in the base metal. In stabilized stainless steels containing niobium, higher amounts of delta-ferrite have been found necessary to prevent cracking than in unstabilized compositions. Titanium compounds have been found to cause liquation cracking in maraging steels and titanium containing stainless steels and superalloys. In nitrogen added stainless steels, cracking resistance decreases when the solidification mode changes to primary austenitic due to nitrogen addition. A review of the test methods to evaluate hot cracking behaviour showed that several external restraint and semi-self-restraint tests are available. The finger Test, WRC Fissure Bend Test, the PVR test and the Varestraint Test are described along with typical test results. Hot ductility testing to reveal HAZ cracking tendency during welding is described, which is of particular importance to stabilized stainless steels. Based on the literature, recommendations are made for welding stabilized and nitrogen added steels, indicating areas of further work. (author). 81 refs., 30 figs., 1 tab

  20. Preparation and characterization of 304 stainless steel/Q235 carbon steel composite material

    Science.gov (United States)

    Shen, Wenning; Feng, Lajun; Feng, Hui; Cao, Ying; Liu, Lei; Cao, Mo; Ge, Yanfeng

    The composite material of 304 stainless steel reinforced Q235 carbon steel has been prepared by modified hot-rolling process. The resulted material was characterized by scanning electron microscope, three-electrode method, fault current impact method, electrochemical potentiodynamic polarization curve measurement and electrochemical impedance spectroscopy. The results showed that metallurgical bond between the stainless steel layer and carbon steel substrate has been formed. The composite material exhibited good electrical conductivity and thermal stability. The average grounding resistance of the composite material was about 13/20 of dip galvanized steel. There has no surface crack and bubbling formed after fault current impact. The composite material led to a significant decrease in the corrosion current density in soil solution, compared with that of hot dip galvanized steel and bare carbon steel. On the basis polarization curve and EIS analyses, it can be concluded that the composite material showed improved anti-corrosion property than hot-dip galvanized steel.

  1. Paraequilibrium Carburization of Duplex and Ferritic Stainless Steels

    Science.gov (United States)

    Michal, G. M.; Gu, X.; Jennings, W. D.; Kahn, H.; Ernst, F.; Heuer, A. H.

    2009-08-01

    AISI 301 and E-BRITE stainless steels were subjected to low-temperature (743 K) carburization experiments using a commercial technology developed for carburization of 316 austenitic stainless steels. The AISI 301 steel contained ~40 vol pct ferrite before carburization but had a fully austenitic hardened case, ~20- μm thick, and a surface carbon concentration of ~8 at. pct after treatment; this “colossal” paraequilibrium carbon supersaturation caused an increase in lattice parameter of ~3 pct. The E-BRITE also developed a hardened case, 12- to 18- μm thick, but underwent a more modest (~0.3 pct) increase in lattice parameter; the surface carbon concentration was ~10 at. pct. While the hardened case on the AISI 301 stainless steel appeared to be single-phase austenite, evidence for carbide formation was apparent in X-ray diffractometer (XRD) scans of the E-BRITE. Paraequilibrium phase diagrams were calculated for both AISI 301 and E-BRITE stainless steels using a CALPHAD compound energy-based interstitial solid solution model. In the low-temperature regime of interest, and based upon measured paraequilibrium carbon solubilities, more negative Cr-carbon interaction parameters for austenite than those in the current CALPHAD data base may be appropriate. A sensitivity analysis involving Cr-carbon interaction parameters for ferrite found a strong dependence of carbon solubility on relatively small changes in the magnitude of these parameters.

  2. Quality control of stainless steel pipings for nuclear power generation

    International Nuclear Information System (INIS)

    Miki, Minoru; Kitamura, Ichiro; Ito, Hisao; Sasaki, Ryoichi

    1979-01-01

    The proportion of nuclear power in total power generation is increasing recently in order to avoid the concentrated dependence on petroleum resources, consequently the reliability of operation of nuclear power plants has become important. In order to improve the reliability of plants, the reliability of each machine or equipment must be improved, and for the purpose, the quality control at the time of manufacture is the important factor. The piping systems for BWRs are mostly made of carbon steel, and stainless steel pipings are used for the recirculation system cooling reactors and instrumentation system. Recently, grain boundary type stress corrosion cracking has occurred in the heat-affected zones of welded stainless steel pipings in some BWR plants. In this paper, the quality control of stainless steel pipings is described from the standpoint of preventing stress corrosion cracking in BWR plants. The pipings for nuclear power plants must have sufficient toughness so that the sudden rupture never occurs, and also sufficient corrosion resistance so that corrosion products do not raise the radioactivity level in reactors. The stress corrosion cracking occurred in SUS 304 pipings, the factors affecting the quality of stainless steel pipings, the working method which improves the corrosion resistance and welding control are explained. (Kako, I.)

  3. Corrosion resistance of stainless steel pipes in soil

    Energy Technology Data Exchange (ETDEWEB)

    Sjoegren, L.; Camitz, G. [Swerea KIMAB AB, Box 55970, SE-102 16 Stockholm (Sweden); Peultier, J.; Jacques, S.; Baudu, V.; Barrau, F.; Chareyre, B. [Industeel and ArcelorMittal R and D, 56 rue Clemenceau, BP19, FR-71201 le Creusot, Cedex (France); Bergquist, A. [Outokumpu Stainless AB, P.O. Box 74, SE-774 22 Avesta (Sweden); Pourbaix, A.; Carpentiers, P. [Belgian Centre for Corrosion Study, Avenue des Petits-Champs 4A, BE 1410 Waterloo (Belgium)

    2011-04-15

    To be able to give safe recommendations concerning the choice of suitable stainless steel grades for pipelines to be buried in various soil environments, a large research programme, including field exposures of test specimens buried in soil in Sweden and in France, has been performed. Resistance against external corrosion of austenitic, super austenitic, lean duplex, duplex and super duplex steel grades in soil has been investigated by laboratory tests and field exposures. The grades included have been screened according to their critical pitting-corrosion temperature and according to their time-to-re-passivation after the passive layer has been destroyed locally by scratching. The field exposures programme, being the core of the investigation, uses large specimens: 2 m pipes and plates, of different grades. The exposure has been performed to reveal effects of aeration cells, deposits or confined areas, welds and burial depth. Additionally, investigations of the tendency of stainless steel to corrode under the influence of alternating current (AC) have been performed, both in the laboratory and in the field. Recommendations for use of stainless steels under different soil conditions are given based on experimental results and on operating experiences of existing stainless steel pipelines in soil. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Passivation behavior of SUS 304 stainless steel in neutral solutions at elevated temperature

    International Nuclear Information System (INIS)

    Tanno, Kazuo; Kato, Koji; Ohnaka, Noriyuki; Okajima, Yoshiaki; Minato, Akira.

    1981-01-01

    Cyclic voltammograms of SUS 304 stainless steel in various neutral solutions such as Na 2 SO 4 at high temperature were measured, as a successive study to previous report in which effects of temperature and pH on polarization behavior of stainless steel were studied. In this measurement Ag/AgCl reference electrode and platinum counter electrode were used in a static autoclave lined with inconel. Passive films formed in various conditions were analysed by electron diffraction and Auger spectroscopy. Results obtained were compared with anodic behavior of iron, chromium and nickel and with thermodynamical stabilities of their compounds. The main results are summarized as follows. (1) Stainless steel shows such electrochemical behavior as active dissolution, passivation and transpassivation in a deaerated neutral solution at 250 0 C after fully reductive treatment of the specimen. In air-saturated solution, the peak of active dissolution is not observed. In the passive range there are intermediate oxidation and reduction peaks, and it is assumed that dissolved ionic species are oxidized to form oxide of spinel type and higher oxidized state successively at these peaks. (2) Electrochemical behavior of specimens in 0.1 M sulfate, -phosphate and -carbonate solutions are almost the same and rather thick films form in these solutions. On the other hand, specimens are easy to passivate in borate and -nitrate solution, and their passive films are thin. (author)

  5. Forces in the presence of ceramic versus stainless steel brackets with unconventional vs conventional ligatures.

    Science.gov (United States)

    Baccetti, Tiziano; Franchi, Lorenzo; Camporesi, Matteo

    2008-01-01

    To compare the forces resulting from four types of bracket/ligature combinations: ceramic brackets and stainless steel brackets combined with unconventional elastomeric ligatures (UEL) and conventional elastomeric ligatures (CEL) during the leveling and aligning phases of orthodontic therapy. The testing model consisted of five 0.022-inch preadjusted brackets (second premolar, first premolar, canine, lateral incisor, and central incisor) for each of the two bracket types. The canine bracket was welded to a sliding bar that allowed for different amounts of offset in the gingival direction. The forces generated by a 0.014-inch superelastic nickel titanium wire in the presence of either the UEL or CEL bracket/ligature systems at different amounts of upward canine misalignment (1.5 mm, 3 mm, 4.5 mm, and 6 mm) were recorded. Significant differences were found between UEL and CEL systems for all tested variables (P < .01) with the exception of the canine misalignment of 1.5 mm. The average amount of recorded force in the presence of CEL was negligible with 3.0 mm or greater of canine misalignment. On the contrary, during alignment, a force available for tooth movement was recorded in the presence of both ceramic and stainless steel brackets when associated with UEL. The type of ligature used influenced the actual amount of force released by the orthodontic system significantly more than the type of bracket used (stainless steel vs ceramic).

  6. Freezing controlled penetration of molten metals flowing through stainless steel tubes

    International Nuclear Information System (INIS)

    Sienicki, J.J.; Spencer, B.W.; Vetter, D.L.; Wesel, R.H.

    1985-01-01

    The freezing controlled penetration potential of molten metals flowing within stainless steel structure is important to the safety assessment of hypothetical severe accidents in liquid metal reactors. A series of scoping experiments has been performed in which molten stainless steel and nickel at various initial temperatures and driving pressures were injected downward and upward into 6.4 and 3.3 mm ID stainless steel tubes filled with argon gas and initially at room temperature. In all tests, there was no evidence that the solid tube wall was wetted by the molten metals. The penetration phenomena are markedly different for downward versus upward injections. The dependency upon tube orientation is explained in terms of the absence of wetting. Complete plugs were formed in all experiments halting the continued injection of melt. Calculations with a fluid dynamics/heat transfer computer code show that the injected masses limited by plugging are consistent with freezing through the growth of a stable solidified layer (crust) of metal upon the solid tube wall. 23 refs., 5 figs., 2 tabs

  7. Impact of Magnetic Stirring on Stainless Steel Integrity: Effect on Biopharmaceutical Processing.

    Science.gov (United States)

    Thompson, Christopher; Wilson, Kelly; Kim, Yoen Joo; Xie, Min; Wang, William K; Wendeler, Michaela

    2017-11-01

    Stainless steel containers are widely used in the pharmaceutical and biopharmaceutical industry for the storage of buffers, process intermediates, and purified drug substance. They are generally held to be corrosion resistant, biocompatible, and nonreactive, although it is well established that trace amounts of metal ions can leach from stainless steel equipment into biopharmaceutical products. We report here that the use of stainless steel containers in conjunction with magnetic stirring bars leads to significantly aggravated metal contamination, consisting of both metal particles and significantly elevated metal ions in solution, the degree of which is several orders of magnitude higher than described for static conditions. Metal particles are analyzed by scanning electron microscopy with electron-dispersive X-ray spectroscopy, and metal content in solution is quantitated at different time points by inductively coupled plasma-mass spectrometry. The concentration of iron, chromium, nickel, and manganese increases with increasing stirring time and speed. We describe the impact of buffer components on the extent of metal particles and ions in solution and illustrate the effect on model proteins. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  8. The integrity of 9Cr-1Mo to stainless steel transition joints in AGR steam generators

    International Nuclear Information System (INIS)

    James, D.W.; Neumann, P.; Soo, J.

    1982-01-01

    The metallurgical aspects of the transition joint between 9Cr-1Mo and 316 stainless steel boiler tube sections are reviewed. A large minimum superheat margin (106 0 C) between the dryout zone and the 9Cr-1Mo to stainless steel transition joint was specified in the original design to eliminate the risk of wetting the stainless steel which is susceptible to stress corrosion cracking. However, small defects were discovered in the welds between the 9Cr-1Mo and Sanicro (72%Ni-16%Cr-10%Fe) transition piece, resulting from dilution of the weld pool by nickel from the transition piece. This led to the possibility of weld failure as a result of creep crack growth in service, and any significant reduction in operating temperature would mean that the large superheat margin could not be sustained. The creep properties of the joints, together with the transition joint temperature distribution, enabled tube failure rates to be determined as a function of operating temperature. A probabilistic model was developed so that the transition joint could be operated within a temperature 'window', the lower temperature limit being determined by stress corrosion considerations and the upper limit being set by creep rate limitations. This allows full load performance from the boilers throughout the anticipated life of the plant. (author)

  9. Influence of Fretting on Flexural Fatigue of 304 Stainless Steel and Mild Steel

    National Research Council Canada - National Science Library

    Bill, Robert

    1978-01-01

    Fretting fatigue experiments conducted on 304 stainless steel using a flexural-fatigue test arrangement with bolted-on fretting pads have demonstrated that fatigue life is reduced by at least a factor...

  10. Hydroxyapatite coating on stainless steel by biomimetic method

    International Nuclear Information System (INIS)

    Dias, V.M.; Maia Filho, A.L.M.; Silva, G.; Sousa, E. de; Cardoso, K.R.

    2010-01-01

    Austenitic stainless steels are widely used in implants due to their high mechanical strength and corrosion, however, are not able to connect to bone tissue and were classified as bioinert. The calcium phosphate ceramics such as hydroxyapatite (HA) are bioactive materials and create strong chemical bonds with bone tissue, but its brittleness and low fracture toughness render its use in conditions of high mechanical stress. The coating of steel with the bioactive ceramics such as HA, combines the properties of interest of both materials, accelerating bone formation around the implant. In this study, austenitic stainless steel samples were coated with apatite using the biomimetic method. The effect of three different surface conditions of steel and the immersion time in the SBF solution on the coating was evaluated. The samples were characterized by SEM, EDS and X-ray diffraction. (author)

  11. Study of Stainless Steel Resistance in Conditions of Tribocorrosion Wear

    Directory of Open Access Journals (Sweden)

    Goran Rozing

    2015-07-01

    Full Text Available Analyzed was the influence of tribocorrosion wear due to effects of fatty acids present in the processed medium. The analysis was conducted on samples made of two austenitic and two martensitic stainless steels. Austenitic steels were tested in their nitrided state and martensitic in their induction hardened state. Conducted were laboratory tests of corrosion resistance of samples, analysis of the microstructure and hardness. To see how the applied processes for modifying the surface of stainless steels behave in realistic conditions, it was conducted the examination of samples/parts of a sunflower cake chain conveyer. Based on the comparison of results obtained in the laboratory and in real conditions, it was estimated that steels AISI 420 and AISI 431 with induction hardened surfaces have a satisfactory resistance to abrasive-adhesive wear in the presence of fatty acids.

  12. Nanotribological behavior of deep cryogenically treated martensitic stainless steel

    Directory of Open Access Journals (Sweden)

    Germán Prieto

    2017-08-01

    Full Text Available Cryogenic treatments are increasingly used to improve the wear resistance of various steel alloys by means of transformation of retained austenite, deformation of virgin martensite and carbide refinement. In this work the nanotribological behavior and mechanical properties at the nano-scale of cryogenically and conventionally treated AISI 420 martensitic stainless steel were evaluated. Conventionally treated specimens were subjected to quenching and annealing, while the deep cryogenically treated samples were quenched, soaked in liquid nitrogen for 2 h and annealed. The elastic–plastic parameters of the materials were assessed by nanoindentation tests under displacement control, while the friction behavior and wear rate were evaluated by a nanoscratch testing methodology that it is used for the first time in steels. It was found that cryogenic treatments increased both hardness and elastic limit of a low-carbon martensitic stainless steel, while its tribological performance was enhanced marginally.

  13. Nanotribological behavior of deep cryogenically treated martensitic stainless steel.

    Science.gov (United States)

    Prieto, Germán; Bakoglidis, Konstantinos D; Tuckart, Walter R; Broitman, Esteban

    2017-01-01

    Cryogenic treatments are increasingly used to improve the wear resistance of various steel alloys by means of transformation of retained austenite, deformation of virgin martensite and carbide refinement. In this work the nanotribological behavior and mechanical properties at the nano-scale of cryogenically and conventionally treated AISI 420 martensitic stainless steel were evaluated. Conventionally treated specimens were subjected to quenching and annealing, while the deep cryogenically treated samples were quenched, soaked in liquid nitrogen for 2 h and annealed. The elastic-plastic parameters of the materials were assessed by nanoindentation tests under displacement control, while the friction behavior and wear rate were evaluated by a nanoscratch testing methodology that it is used for the first time in steels. It was found that cryogenic treatments increased both hardness and elastic limit of a low-carbon martensitic stainless steel, while its tribological performance was enhanced marginally.

  14. Analysis of features of stainless steels in dissimilar welded joints in chloride inducted corrosion

    Science.gov (United States)

    Topolska, S.; Łabanowski, J.

    2017-08-01

    Stainless steels of femtic-austenitic microstructure that means the duplex Cr-Ni-Mo steels, in comparison with austenitic steel includes less expensive nickel and has much better mechanical properties with good formability and corrosion resistance, even in environments containing chloride ions. Similar share of high chromium ferrite and austenite, which is characterized by high ductility, determines that the duplex steels have good crack resistance at temperatures up to approximately -40°C. The steels containing approximately 22% Cr, 5% Ni, 3% Mo and 0.2% N crystallizes as a solid solution δ, partially transforming from the temperature of about 1200°C to 850°C into the phase α. The stable structure of considered steels, at temperatures above 850°C, is ferrite, and at lower temperatures the mixture of phase γ+α +σ. The two-phase structure α+γ the duplex steel obtains after hyperquenching at the temperature of stability of the mixture of α+γ phases, and the share of the phases depends on the hyper quenching attributes. Hyperquenching in water, with a temperature close to 1200°C, ensures the instance in the microstructure of the steel a large share of ferrite and a small share of the high chromium austenite. This causes the increase of strength properties and reducing the plasticity of the steel and its resistance ability to cracking and corrosion. Slower cooling from the mentioned temperature, for example in the air, enables the partial transformation of the a phase into the γ one (α → γ) and increasing the share of austenite in the steel structure. It leads to improvement of plasticity properties. In the paper are presented the results of investigations of heteronymous welded joints of duplex steel and austenitic one. The results include the relation between the chemical composition of steels and their weldability.

  15. Pitting Corrosion Susceptibility of AISI 301 Stainless Steel in ...

    African Journals Online (AJOL)

    The susceptibility of austenitic (AISI 301) stainless steel to pitting corrosion was evaluated in sodium chloride (NaCl) solutions - 0.1M, 0.2M, 0.3M, 0.5M and 0.7M and 1.0M. Tensile tests and microscopic examinations were performed on samples prepared from the steel after exposure in the various environments.

  16. Stress corrosion cracking resistance of 22% Cr duplex stainless steel in simulated sour environments

    International Nuclear Information System (INIS)

    Kudo, T.; Tsuge, H.; Moroishi, T.

    1989-01-01

    This paper reports the effect of nickel and nitrogen contents on stress corrosion cracking (SCC) of 22%Cr - 3%Mo-base duplex stainless steel investigated in simulated sour environments with respect to both the base metal and the heat-affected zone (HAZ) of welding. The threshold stress and the critical chloride concentration for SCC were evaluated as a function of the ferrite content (α-content) in the alloy. The threshold stress is highest at the α-content of 40 to 45%, and is lowered with decreasing and increasing the α-content from its value. The alloy whose α-content exceeds 80% at the HAZ has also high susceptibilities to pitting corrosion and intergranular corrosion (ICG). The critical chloride concentration for cracking increases with the decrease in the α-content. Moreover, the contents of chromium, nickel and molybdenum in the α-phase are considered to be an important factor for determining the critical chloride concentration

  17. Fuel Cell Electrodes Based on Carbon Nanotube/Metallic Nanoparticles Hybrids Formed on Porous Stainless Steel Pellets

    Directory of Open Access Journals (Sweden)

    S. M. Khantimerov

    2013-01-01

    Full Text Available The preparation of carbon nanotube/metallic particle hybrids using pressed porous stainless steel pellets as a substrate is described. The catalytic growth of carbon nanotubes was carried out by CVD on a nickel catalyst obtained by impregnation of pellets with a highly dispersive colloidal solution of nickel acetate tetrahydrate in ethanol. Granular polyethylene was used as the carbon source. Metallic particles were deposited by thermal evaporation of Pt and Ag using pellets with grown carbon nanotubes as a base. The use of such composites as fuel cell electrodes is discussed.

  18. Redemption of asthma pharmaceuticals among stainless steel and mild steel welders

    DEFF Research Database (Denmark)

    Kristiansen, Pernille; Jørgensen, Kristian Tore; Hansen, Johnni

    2015-01-01

    PURPOSE: The purpose was to examine bronchial asthma according to cumulative exposure to fume particulates conferred by stainless steel and mild steel welding through a proxy of redeemed prescribed asthma pharmaceuticals. METHODS: A Danish national company-based historical cohort of 5,303 male ever...... was estimated by combining questionnaire data on welding work with a welding exposure matrix. The estimated exposure accounted for calendar time, welding intermittence, type of steel, welding methods, local exhaustion and welding in confined spaces. Hazard ratios (HRs) with 95 % confidence intervals (CIs) were...... nonsignificant increased rate of redemption of asthma medicine was observed among high-level exposed stainless steel welders in comparison with low-level exposed welders (HR 1.54, 95 % CI 0.76-3.13). This risk increase was driven by an increase risk among non-smoking stainless steel welders (HR 1.46, 95 % CI 1...

  19. Fatigue life evaluation method of austenitic stainless steel in PWR water

    International Nuclear Information System (INIS)

    Sakaguchi, Katsumi; Nomura, Yuichiro; Suzuki, Shigeki; Kanasaki, Hiroshi; Higuchi, Makoto

    2006-09-01

    It is known that the fatigue life in elevated temperature water is substantially reduced compared with that in the air. The fatigue life reduction has been investigated experimentally in EFT project of Japan Nuclear Energy Safety Organization (JNES) to evaluate the environmental effect on fatigue life. Many tests have been done for carbon, low alloy, stainless steels and nickel-based alloy under the various conditions. In this paper, the results of the stainless steel in simulated PWR water environments were reported. Fatigue life tests in simulated PWR environments were carried out and the effect of key parameters on fatigue life reduction was examined. The materials used in this study were base and weld metal of austenitic stainless steel SS316, weld metal of SS304 and the base and aged metal of the duplex stainless steel SCS14A. In order to evaluate the effects of stain amplitude, strain rate, strain ratio, temperature, aging, water flow rate and strain holding time, many fatigue tests were examined. In transient condition in an actual plant, however, such parameters as temperature and strain rate are not constant. In order to evaluate fatigue damage in actual plant on the basis of experimental results under constant temperature and strain rate condition, the modified rate approach method was developed. Various kinds of transient have to be taken into account of in actual plant fatigue evaluation, and stress cycle of several ranges of amplitude has to be considered in assessing damage from fatigue. Generally, cumulative usage factor is applied in this type of evaluation. In this study, in order to confirm the applicability of modified rate approach method together with cumulative usage factor, fatigue tests were carried out by combining stress cycle blocks of different strain amplitude levels, in which strain rate changes in response to temperature in a simulated PWR water environment. Consequently, fatigue life could be evaluated with an accuracy of factor of 3

  20. Austenitic stainless steel bulk property considerations for fusion reactors

    International Nuclear Information System (INIS)

    Mattas, R.F.

    1979-04-01

    The bulk properties of annealed 304, 316, and 20% cold-worked 316 stainless steels are evaluated for the temperature and radiation conditions expected in a near-term fusion reactor. Of interest are the thermophysical properties, void swelling produced by neutron radiaion, and the tensile, creep, and fatigue properties before and after irradiation

  1. Monitoring of occupational exposure in manufacturing of stainless steel constructions

    Czech Academy of Sciences Publication Activity Database

    Kučera, Jan; Bencko, V.; Pápayová, A.; Šaligová, D.; Tejral, J.; Borská, L.

    2001-01-01

    Roč. 9, - (2001), s. 171-175 ISSN 1210-7778 R&D Projects: GA ČR GV202/97/K038 Institutional research plan: CEZ:AV0Z1048901 Keywords : occupational exposure * stainless steel construction industry * instrumental neutron activation analysis Subject RIV: FP - Other Medical Disciplines

  2. Alternative to Nitric Acid for Passivation of Stainless Steel Alloys

    Science.gov (United States)

    Lewis, Pattie L.; Kolody, Mark; Curran, Jerry

    2013-01-01

    Corrosion is an extensive problem that affects the Department of Defense (DoD) and National Aeronautics and Space Administration (NASA). The deleterious effects of corrosion result in steep costs, asset downtime affecting mission readiness, and safety risks to personnel. Consequently, it is vital to reduce corrosion costs and risks in a sustainable manner. The DoD and NASA have numerous structures and equipment that are fabricated from stainless steel. The standard practice for protection of stainless steel is a process called passivation. Typical passivation procedures call for the use of nitric acid; however, there are a number of environmental, worker safety, and operational issues associated with its use. Citric acid offers a variety of benefits including increased safety for personnel, reduced environmental impact, and reduced operational cost. DoD and NASA agreed to collaborate to validate citric acid as an acceptable passivating agent for stainless steel. This paper details our investigation of prior work developing the citric acid passivation process, development of the test plan, optimization of the process for specific stainless steel alloys, ongoing and planned testing to elucidate the process' resistance to corrosion in comparison to nitric acid, and preliminary results.

  3. Thermophysical properties of a Type 308 stainless steel weld

    International Nuclear Information System (INIS)

    Lore, J.D.; Richards, H.L.; King, R.T.; Greene, L.M.; Darby, D.M.

    1975-01-01

    Thermal expansion, thermal diffusivity, specific heat, and thermal conductivity measurements were obtained in vacuo for a Type 304-308 stainless steel weldment for use in the Liquid Metal Fast Breeder Reactor. Property measurements were somewhat variant, depending upon the direction of measurement, but the observed differences were small. (U.S.)

  4. Battery and fuel cell electrodes containing stainless steel charging additive

    Science.gov (United States)

    Zuckerbrod, David; Gibney, Ann

    1984-01-01

    An electrode for use in electrochemical energy cells is made, comprising a hydrophilic layer and a hydrophobic layer, where the hydrophilic layer comprises a hydrophilic composite which includes: (i) carbon particles; (ii) stainless steel particles; (iii) a nonwetting agent; and (iv) a catalyst, where at least one current collector contacts said composite.

  5. Aspects of plasma cutting in AISI 321 stainless steel

    International Nuclear Information System (INIS)

    Souza Barros, I. de; Cardoso, P.E.

    1985-10-01

    The utilization of plasma cutting process in AISI 321 stainless steel heavy plates for fabricating nozzles for nuclear reactors was evaluated. The effect of current, electric potential and cutting speed are studied. The superficial irregularity and the microstructure of the zone affected by the cut were analyzed by measurements of roughness, optical metallography and microhardness. (E.G.) [pt

  6. Immobilization of mesoporous silica particles on stainless steel plates

    International Nuclear Information System (INIS)

    Pasqua, Luigi; Morra, Marco

    2017-01-01

    A preliminary study aimed to the nano-engineering of stainless steel surface is presented. Aminopropyl-functionalized mesoporous silica is covalently and electrostatically anchored on the surface of stainless steel plates. The anchoring is carried out through the use of a nanometric spacer, and two different spacers are proposed (both below 2 nm in size). The first sample is obtained by anchoring to the stainless steel amino functionalized, a glutaryl dichloride spacer. This specie forms an amide linkage with the amino group while the unreacted acyl groups undergo hydrolysis giving a free carboxylic group. The so-obtained functionalized stainless steel plate is used as substrate for anchoring derivatized mesoporous silica particles. The second sample is prepared using 2-bromo-methyl propionic acid as spacer (BMPA). Successively, the carboxylic group of propionic acid is condensed to the aminopropyl derivatization on the external surface of the mesoporous silica particle through covalent bond. In both cases, a continuous deposition (coating thickness is around 10 μm) is obtained, in fact, XPS data do not reveal the metal elements constituting the plate. The nano-engineering of metal surfaces can represent an intriguing opportunity for producing long-term drug release or biomimetic surface.

  7. New Stainless Steel Alloys for Low Temperature Surface Hardening?

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lundin; Dahl, Kristian Vinter; Somers, Marcel A. J.

    2015-01-01

    The present contribution showcases the possibility for developing new surface hardenable stainless steels containing strong nitride/carbide forming elements (SNCFE). Nitriding of the commercial alloys, austenitic A286, and ferritic AISI 409 illustrates the beneficial effect of having SNCFE presen...

  8. Cooper coatings on stainless steel by laser cladding

    International Nuclear Information System (INIS)

    Reis, M.; Estanislau, S.; Cabral, A.; Pecas, P.; Gouveia, H.

    1998-01-01

    Copper laser cladding was performed on AISI 304L stainless steel. Some process parameters like process speed and focal point were analysed and it was established its influence on the quality of the coating. Simple track coating were achieved with good aspect, good adherence and good surface finishing. Therefore a reference basis for further developments related to industrial application, was created. (Author) 14 refs

  9. Mass spectrometric analysis of helium in stainless steel

    International Nuclear Information System (INIS)

    Isagawa, Hiroto; Wada, Yukio; Asakura, Yoshiro; Tsuji, Nobuo; Sato, Hitoshi; Tsutsumi, Kenichi

    1974-01-01

    Vacuum fusion mass-spectrometry was adopted for the analysis of helium in stainless steel. Samples were heated in a vacuum crucible, and helium in the samples was extracted and collected into a reservoir tank. The gas was then introduced through an orifice into a mass spectrometer, where the amount of helium was determined. The maspeq 070 quadrupole type mass spectrometer made by Shimazu Seisakusho, Ltd. was used. The resolving power was 150, and the mass range of the apparatus was 0-150. The determination limit of helium was about 2 x 10 -3 μg when standard helium gas was analyzed, and was about 10 -2 μg when the helium in stainless steel was analyzed. The relative standard deviation of helium intensity in repetitive measurement was about 2% in the amount of helium of 0.05 μg. Helium was injected into stainless steel by means of alpha particle irradiation with a cyclotron. The amount of helium in stainless steel was then determined. The energy of alpha particles was 34 MeV, and the beam area was 10 mm x 10 mm. The experimental data were higher than the expected value in one case, and were lower in the other case. This difference was attributable to the fluctuation of alpha particle beam, misplacement of sample plates, and unevenness of the alpha beam. (Fukutomi, T.)

  10. Fatigue behavior of welded austenitic stainless steel in different environments

    Directory of Open Access Journals (Sweden)

    D.S. Yawas

    2014-01-01

    Full Text Available The fatigue behavior of welded austenitic stainless steel in 0.5 M hydrochloric acid and wet steam corrosive media has been investigated. The immersion time in the corrosive media was 30 days to simulate the effect on stainless steel structures/equipment in offshore and food processing applications and thereafter annealing heat treatment was carried out on the samples. The findings from the fatigue tests show that seawater specimens have a lower fatigue stress of 0.5 × 10−5 N/mm2 for the heat treated sample and 0.1 × 10−5 N/mm2 for the unheat-treated sample compared to the corresponding hydrochloric acid and steam samples. The post-welding heat treatment was found to increase the mechanical properties of the austenitic stainless steel especially tensile strength but it reduces the transformation and thermal stresses of the samples. These findings were further corroborated by the microstructural examination of the stainless steel specimen.

  11. Developments of New Lubricants for Cold Forging of Stainless Steel

    DEFF Research Database (Denmark)

    Steenberg, Thomas; Christensen, Erik; Olesen, P.

    1997-01-01

    Two new lubricant systems for cold forging of stainless steel have been developed. The main component of these systems are FeCl3 and ZnCa2(PO4)2, respectively. Both lubricant systems have been tested using a backward extrusion test. The results show excellent lubricating properties with respect...

  12. Chemical coloring on stainless steel by ultrasonic irradiation.

    Science.gov (United States)

    Cheng, Zuohui; Xue, Yongqiang; Ju, Hongbin

    2018-01-01

    To solve the problems of high temperature and non-uniformity of coloring on stainless steel, a new chemical coloring process, applying ultrasonic irradiation to the traditional chemical coloring process, was developed in this paper. The effects of ultrasonic frequency and power density (sound intensity) on chemical coloring on stainless steel were studied. The uniformity of morphology and colors was observed with the help of polarizing microscope and scanning electron microscopy (SEM), and the surface compositions were characterized by X-ray photoelectric spectroscopy (XPS), meanwhile, the wear resistance and the corrosion resistance were investigated, and the effect mechanism of ultrasonic irradiation on chemical coloring was discussed. These results show that in the process of chemical coloring on stainless steel by ultrasonic irradiation, the film composition is the same as the traditional chemical coloring, and this method can significantly enhance the uniformity, the wear and corrosion resistances of the color film and accelerate the coloring rate which makes the coloring temperature reduced to 40°C. The effects of ultrasonic irradiation on the chemical coloring can be attributed to the coloring rate accelerated and the coloring temperature reduced by thermal-effect, the uniformity of coloring film improved by dispersion-effect, and the wear and corrosion resistances of coloring film enhanced by cavitation-effect. Ultrasonic irradiation not only has an extensive application prospect for chemical coloring on stainless steel but also provides an valuable reference for other chemical coloring. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Simplified Estimation of Tritium Inventory in Stainless Steel

    International Nuclear Information System (INIS)

    Willms, R. Scott

    2005-01-01

    An important part of tritium facility waste management is estimating the residual tritium inventory in stainless steel. This was needed as part of the decontamination and decommissioning associated with the Tritium Systems Test Assembly at Los Alamos National Laboratory. In particular, the disposal path for three, large tanks would vary substantially depending on the tritium inventory in the stainless steel walls. For this purpose the time-dependant diffusion equation was solved using previously measured parameters. These results were compared to previous work that measured the tritium inventory in the stainless steel wall of a 50-L tritium container. Good agreement was observed. These results are reduced to a simple algebraic equation that can readily be used to estimate tritium inventories in room temperature stainless steel based on tritium partial pressure and exposure time. Results are available for both constant partial pressure exposures and for varying partial pressures. Movies of the time dependant results were prepared which are particularly helpful for interpreting results and drawing conclusions

  14. Methane formation in tritium gas exposed to stainless steel

    International Nuclear Information System (INIS)

    Morris, G.A.

    1977-01-01

    Tests were performed to determine the effect cleanliness of a surface exposed to tritium gas had on methane formation. These tests performed on 304 stainless steel vessels, cleaned in various ways, showed that the methane formation was reduced by the use of various cleaning procedures

  15. Biomonitoring of genotoxic exposure among stainless steel welders

    DEFF Research Database (Denmark)

    Knudsen, Lisbeth E.; Boisen, T; Christensen, J M

    1992-01-01

    A biosurvey in the Danish metal industry measured the genotoxic exposure from stainless steel welding. The study comprised measurements of chromosomal aberrations (CA), sister-chromatid exchanges (SCE), unscheduled DNA synthesis (UDS) in peripheral lymphocytes and serum immunoglobulin G. Environm......A biosurvey in the Danish metal industry measured the genotoxic exposure from stainless steel welding. The study comprised measurements of chromosomal aberrations (CA), sister-chromatid exchanges (SCE), unscheduled DNA synthesis (UDS) in peripheral lymphocytes and serum immunoglobulin G....... A higher frequency of chromosomal aberrations, classified as translocations, double minutes, exchanges and rings, was observed in stainless steel welders than in non-welders. SCE was lower in welders working with both MMA and TIG welding than in reference persons. N-Acetoxy-N-acetylaminofluorene (NA...... lymphocytes in exposed persons compared with non-exposed are suggested. MMA welding gave the highest exposure to chromium, an increased number of chromosomal aberrations and a decrease in SCE when compared with TIG welding. Consequently improvements in the occupational practice of stainless steel welding...

  16. A study of DLC coatings for ironing of stainless steel

    DEFF Research Database (Denmark)

    Sulaiman, Mohd Hafis Bin; Christiansen, Peter; Bay, Niels Oluf

    2017-01-01

    severe lubrication conditions by adopting strip reduction testing to replicate industrial ironing production of deep drawn, stainless steel cans. Three DLC coatings are investigated; multi-layer, double layer and single layer. Experiments revealed that the double layer coating worked successful, i...

  17. Anomalous kinetics of lath martensite formation in stainless steel

    DEFF Research Database (Denmark)

    Villa, Matteo; Hansen, Mikkel Fougt; Pantleon, Karen

    2015-01-01

    The kinetics of lath martensite formation in Fe-17.3 wt-%Cr-7.1 wt-%Ni-1.1 wt-%Al-0.08 wt-%C stainless steel was investigated with magnetometry and microscopy. Lath martensite forms during cooling, heating and isothermally. For the first time, it is shown by magnetometry during extremely slow...

  18. Estimation of embrittlement during aging of AISI 316 stainless steel ...

    Indian Academy of Sciences (India)

    Unknown

    rical relation connecting the aging temperature, aging time and nitrogen ... strength, high tensile strength, are easy to fabricate and ... However, the ferrite is a metastable phase which ... 2. Experimental. 2.1 Materials. Nuclear grade AISI 316 stainless steel plates ( .... fore, it is desirable to develop empirical relations con-.

  19. Transformation in austenitic stainless steel sheet under different loading directions

    NARCIS (Netherlands)

    van den Boogaard, Antonius H.; Krauer, J.; Hora, P.

    2011-01-01

    The stress-strain relation for austenitic stainless steels is based on 2 main contributions: work hardening and a phase transformation from austenite to martensite. The transformation is highly temperature dependent. In most models for phase transformation from austenite to martensite, the stress

  20. Transformation in Austenitic Stainless Steel Sheet under Different Loading Directions

    NARCIS (Netherlands)

    van den Boogaard, Antonius H.; Krauer, J.; Hora, P.

    2011-01-01

    The stress-strain relation for austenitic stainless steels is based on 2 main contributions: work hardening and a phase transformation from austenite to martensite. The transformation is highly temperature dependent. In most models for phase transformation from austenite to martensite, the stress

  1. Laves intermetallics in stainless steel-zirconium alloys

    International Nuclear Information System (INIS)

    Abraham, D.P.; McDeavitt, S.M.; Richardson, J.W. Jr.

    1997-01-01

    Laves intermetallics have a significant effect on properties of metal waste forms being developed at Argonne National Laboratory. These waste forms are stainless steel-zirconium alloys that will contain radioactive metal isotopes isolated from spent nuclear fuel by electrometallurgical treatment. The baseline waste form composition for stainless steel-clad fuels is stainless steel-15 wt.% zirconium (SS-15Zr). This article presents results of neutron diffraction measurements, heat-treatment studies and mechanical testing on SS-15Zr alloys. The Laves intermetallics in these alloys, labeled Zr(Fe,Cr,Ni) 2+x , have both C36 and C15 crystal structures. A fraction of these intermetallics transform into (Fe,Cr,Ni) 23 Zr 6 during high-temperature annealing; the authors have proposed a mechanism for this transformation. The SS-15Zr alloys show virtually no elongation in uniaxial tension, but exhibit good strength and ductility in compression tests. This article also presents neutron diffraction and microstructural data for a stainless steel-42 wt.% zirconium (SS-42Zr) alloy

  2. Laser cladding crack repair of austenitic stainless steel

    CSIR Research Space (South Africa)

    Van Rooyen, C

    2009-06-01

    Full Text Available Laser cladding crack repair of austenitic stainless steel vessels subjected to internal water pressure was evaluated. The purpose of this investigation was to develop process parameters for in-situ repair of through-wall cracks in components...

  3. Static friction of stainless steel wire rope–rubber contacts.

    NARCIS (Netherlands)

    Loeve, A.J.; Krijger, T.; Mugge, W.; Breedveld, P.; Dodou, D.; Dankelman, J.

    2014-01-01

    Little is known about static friction of stainless-steel wire ropes ('cables') in contact with soft rubbers, an interface of potential importance for rigidifiable medical instruments. Although friction theories imply that the size and profile of the cables affect static friction, there are no

  4. Immobilization of mesoporous silica particles on stainless steel plates

    Energy Technology Data Exchange (ETDEWEB)

    Pasqua, Luigi, E-mail: luigi.pasqua@unical.it [University of Calabria, Department of Environmental and Chemical Engineering (Italy); Morra, Marco, E-mail: mmorra@nobilbio.com [Via Valcastellana 26 (Italy)

    2017-03-15

    A preliminary study aimed to the nano-engineering of stainless steel surface is presented. Aminopropyl-functionalized mesoporous silica is covalently and electrostatically anchored on the surface of stainless steel plates. The anchoring is carried out through the use of a nanometric spacer, and two different spacers are proposed (both below 2 nm in size). The first sample is obtained by anchoring to the stainless steel amino functionalized, a glutaryl dichloride spacer. This specie forms an amide linkage with the amino group while the unreacted acyl groups undergo hydrolysis giving a free carboxylic group. The so-obtained functionalized stainless steel plate is used as substrate for anchoring derivatized mesoporous silica particles. The second sample is prepared using 2-bromo-methyl propionic acid as spacer (BMPA). Successively, the carboxylic group of propionic acid is condensed to the aminopropyl derivatization on the external surface of the mesoporous silica particle through covalent bond. In both cases, a continuous deposition (coating thickness is around 10 μm) is obtained, in fact, XPS data do not reveal the metal elements constituting the plate. The nano-engineering of metal surfaces can represent an intriguing opportunity for producing long-term drug release or biomimetic surface.

  5. Stainless steels and nuclear industry: last advanced progress

    International Nuclear Information System (INIS)

    Leveque, Robert; Saleil, Jean; Dhers, Jean

    2013-01-01

    70 participants have attended the colloquium in Saint Etienne last May 2013. 12 conferences have been presented and are summarized in this journal article. The different thema developed were: stainless steels in the different reactors, degradation by irradiation, evolution of manufacturing processes, innovative solutions and modeling of grain growth and control. (O.M.)

  6. Behavior of stainless steels in pressurized water reactor primary circuits

    International Nuclear Information System (INIS)

    Féron, D.; Herms, E.; Tanguy, B.

    2012-01-01

    Stainless steels are widely used in primary circuits of pressurized water reactors (PWRs). Operating experience with the various grades of stainless steels over several decades of years has generally been excellent. Nevertheless, stress corrosion failures have been reported in few cases. Two main factors contributing to SCC susceptibility enhancement are investigated in this study: cold work and irradiation. Irradiation is involved in the stress corrosion cracking and corrosion of in-core reactor components in PWR environment. Irradiated assisted stress corrosion cracking (IASCC) is a complex and multi-physics phenomenon for which a predictive modeling able to describe initiation and/or propagation is not yet achieved. Experimentally, development of initiation smart tests and of in situ instrumentation, also in nuclear reactors, is an important axis in order to gain a better understanding of IASCC kinetics. A strong susceptibility for SCC of heavily cold worked austenitic stainless steels is evidenced in hydrogenated primary water typical of PWRs. It is shown that for a given cold-working procedure, SCC susceptibility of austenitic stainless steels materials increases with increasing cold-work. Results have shown also strong influences of the cold work on the oxide layer composition and of the maximum stress on the time to fracture.

  7. Filler metal selection for welding a high nitrogen stainless steel

    Science.gov (United States)

    Du Toit, Madeleine

    2002-06-01

    Cromanite is a high-strength austenitic stainless steel that contains approximately 19% chromium, 10% manganese, and 0.5% nitrogen. It can be welded successfully, but due to the high nitrogen content of the base metal, precautions have to be taken to ensure sound welds with the desired combination of properties. Although no matching filler metals are currently available, Cromanite can be welded using a range of commercially available stainless steel welding consumables. E307 stainless steel, the filler metal currently recommended for joining Cromanite, produces welds with mechanical properties that are generally inferior to those of the base metal. In wear applications, these lower strength welds would probably be acceptable, but in applications where full use is made of the high strength of Cromanite, welds with matching strength levels would be required. In this investigation, two welding consumables, ER2209 (a duplex austenitic-ferritic stainless steel) and 15CrMn (an austenitic-manganese hardfacing wire), were evaluated as substitutes for E307. When used to join Cromanite, 15CrMn produced welds displaying severe nitrogen-induced porosity, and this consumable is therefore not recommended. ER2209, however, outperformed E307, producing sound porosity-free welds with excellent mechanical properties, including high ductility and strength levels exceeding the minimum limits specified for Cromanite.

  8. Laser heat treatment of welds for various stainless steels

    Science.gov (United States)

    Dontu, O.; Ganatsios, S.; Alexandrescu, N.; Predescu, C.

    2008-03-01

    The paper presents a study concerning the post - weld heat treatment of a duplex stainless steel. Welded joint samples were surface - treated using the same laser source adopted during welding in order to counterbalance the excess of ferrite formed in the welding process.

  9. Desensitization of stainless steels by laser surface heat-treatment

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, Yoshikuni; Nishimoto, Kazutoshi

    1987-11-01

    Laser heating was applied for the desensitization heat-treatment of the surface layer in the sensitized HAZ of Type 304 stainless steel. The degree of sensitization was examined by EPR technique and the 10 % oxalic acid electrolytic etch test. The CO/sub 2/ laser with maximum power of 1.5 kW was used for heat-treatment. Time-Temperature-Desensitization diagram (TTDS diagram) for sensitized Type 304 stainless steels were developed by calculation assuming the chromium diffusion control for desensitization which might occur when the chromium depleted zone was healed up due to dissolution of chromium carbide and chromium diffusion from the matrix being heated at the solution annealing temperatures. TTDS diagrams calculated agree fairly well with ones determined by corrosion tests. Laser irradiation conditions (e.g., Laser power, beam diameter and traveling velocity) required for desensitization of sensitized Type 304 stainless steels were calculated using additivity rule from the TTDS diagram calculated and theoretical thermal curve of laser heating derived from the heat conduction theory. After laser beam irradiated under an optimum condition predicted by calculation, the sensitized HAZ of Type 304 stainless steel restored complete resistance to intergranular corrosion.

  10. Electrolytic decontamination of stainless steel using a basic electrolyte

    International Nuclear Information System (INIS)

    Childs, E.L.; Long, J.L.

    1981-01-01

    An electrolytic plutonium decontamination process or stainless steel was developed for use as the final step in a proposed radioactive waste handling and decontamination facility to be construced at the Rockwell International Rocky Flats plutonium handling facility. This paper discusses test plan, which was executed to compare the basic electrolyte with phosphoric acid and nitric acid electrolytes. 1 ref

  11. Aluminide Coating on Stainless Steel for Nuclear Reactor Application: A Preliminary Study

    International Nuclear Information System (INIS)

    Hishamuddin Husain; Zaifol Samsu; Yusof Abdullah; Muhamad Daud

    2015-01-01

    Stainless steels have been used as structural materials in the nuclear reactor since its first generation. Stainless steels type 304 and 316 are commonly used in structural components. Since the first generation materials, improvements were made on Stainless steels. This includes addition of stabilizing elements and by modification of metallurgical structure. This study investigates the formation of aluminide coating on Stainless steels by diffusion to help improve corrosion resistance. Stainless steels type 304 and 316 substrates were immersed in molten aluminium at 750 degree Celsius for 5 minutes. Interaction between molten aluminium and solid to form the outer aluminide coating by hot dipped aluminizing is studied. (Author)

  12. Properties of high temperature low cycle fatigue in austenitic stainless steel

    International Nuclear Information System (INIS)

    Kim, D. H.; Han, C. H.; Ryu, W. S.

    2002-01-01

    Tensile and fatigue tests were conducted at R. T. and 300 .deg. C for type 304 and 316 stainless steel. Tensile strength and elongation decreased and fatigue life increased with temperature for both type 304 and 316 stainless steel. Dislocation structures were mixed with cell and planar at R. T. and 300 .deg. C for both type 304 and 316 stainless steel. Strain induced martensite of type 316 stainless steel was less than that of type 304 stainless steel and decreased with temperature. It is considered that strain induced martensite is an important factor to increase fatigue life at 300 .deg. C

  13. Production and several properties of single crystal austenitic stainless steels

    International Nuclear Information System (INIS)

    Okamoto, Kazutaka; Yoshinari, Akira; Kaneda, Junya; Aono, Yasuhisa; Kato, Takahiko

    1998-01-01

    The single crystal austenitic stainless steels Type 316L and 304L were grown in order to improve the resistance to stress corrosion cracking (SCC) using a unidirectional solidification method which can provide the large size single crystals. The mechanical properties and the chemical properties were examined. The orientation and temperature dependence of tensile properties of the single crystals were measured. The yield stress of the single crystal steels are lower than those of the conventional polycrystal steels because of the grain boundary strength cannot be expected in the single crystal steels. The tensile properties of the single crystal austenitic stainless steel Type 316L depend strongly on the orientation. The tensile strength in orientation are about 200 MPa higher than those in the and orientations. The microstructure of the single crystal consists of a mixture of the continuous γ-austenitic single crystal matrix and the δ-ferrite phase so that the effects of the γ/δ boundaries on the chemical properties were studied. The effects of the δ-ferrite phases and the γ/δ boundaries on the resistance to SCC were examined by the creviced bent beam test (CBB test). No crack is observed in all the CBB test specimens of the single crystals, even at the γ/δ boundaries. The behavior of the radiation induced segregation (RIS) at the γ/δ boundaries in the single crystal austenitic stainless steel Type 316L was evaluated by the electron irradiation test in the high voltage electron microscope (HVEM). The depletion of oversized solute chromium at the γ/δ boundary in the single crystal austenitic stainless steel Type 316L is remarkably lower than that at the grain boundary in the polycrystalline-type 316L. (author)

  14. Reduced-activation austenitic stainless steels: The Fe--Mn--Cr--C system

    International Nuclear Information System (INIS)

    Klueh, R.L.; Maziasz, P.J.

    1988-01-01

    Nickel-free manganese-stabilized steels are being developed for fusion-reactor applications. As the first part of this effort, the austenite-stable region in the Fe--Mn--Cr--C system was determined. Results indicated that the Schaeffler diagram developed for Fe--Ni--Cr--C alloys cannot be used to predict the constituents expected for high-manganese steels. This is true because manganese is not as strong an austenite stabilizer relative to δ-ferrite formation as predicted by the diagram, but it is a stronger austenite stabilizer relative to martensite than predicted. Therefore, the austenite-stable region for Ne--Mn--Cr--C alloys occurs at lower chromium and hugher combinations of manganese and carbon than predicted by the Schaeffler diagram. Development of a manganese-stabilized stainless steel should be possible in the composition range of 20 to 25% Mn, 10 to 15% Cr, and 0.01 to 0.25%C. Tensile behavior of an Fe--20%Mn--12%Cr--0.25%C alloy was determined. The strength and ductility of this possible base composition was comparable to type 316 stainless steel in both the solution-annealed and cold-worked condition

  15. Phase formation at bonded vanadium and stainless steel interfaces

    International Nuclear Information System (INIS)

    Summers, T.S.E.

    1992-01-01

    The interface between vanadium bonded to stainless steel was studies to determine whether a brittle phase formed during three joining operations. Inertia friction welds between V and 21-6-9 stainless steel were examined using TEM. In the as-welded condition, a continuous, polygranular intermetallic layer about 0.25 μm thick was present at the interface. This layer grew to about 50 μm thick during heat treatment at 1000 degrees C for two hours. Analysis of electron diffraction patterns confirmed that this intermetallic was the ω phase. The interface between vanadium and type 304, SANDVIK SAF 2205, and 21-6-9 stainless steel bonded by a co-extrusion process had intermetallic particles at the interface in the as-extruded condition. Heat treatment at 1000 degrees C for two hours caused these particles to grow into continuous layers in all three cases. Based on the appearance, composition and hardness of this interfacial intermetallic, it was also concluded to be ω phase. Bonding V to type 430 stainless steel by co-extrusion caused V-rich carbides to form at the interface due to the higher concentration of C in the type 430 than in the other stainless steels investigated. The carbide particles initially present grew into a continuous layer during a two-hour heat treatment at 1000 degrees C. Co-hipping 21-6-9 stainless steel tubing with V rod resulted in slightly more concentric specimens than the co-extruded ones, but a continuous layer of the ω phase formed during the hipping operation. This brittle layer could initiate failure during subsequent forming operations. The vanadium near the stainless steel interface in the co-extruded and co-hipped tubing in some cases was harder than before heat treatment. It was concluded that this hardening was due to thermal straining during cooling following heat treatment and that thermal strains might present a greater problem than seen here when longer tubes are used in actual applications

  16. Thermal fatigue cracking of austenitic stainless steels

    International Nuclear Information System (INIS)

    Fissolo, A.

    2001-01-01

    This report deals with the thermal fatigue cracking of austenitic stainless steels as AISI 316 LN and 304 L. Such damage has been clearly observed for some components used in Fast Breeder reactors (FBR) and Pressure Water Reactor (PWR). In order to investigate thermal fatigue, quasi-structural specimen have been used. In this frame, facilities enforcing temperature variations similar to those found under the operation conditions have been progressively developed. As for components, loading results from impeded dilatation. In the SPLASH facility, the purpose was to establish accurate crack initiation conditions in order to check the relevance of the usual component design methodology. The tested specimen is continuously heated by the passage of an electrical DC current, and submitted to cyclic thermal down shock (up to 1000 deg C/s) by means of periodical spraying of water on two opposite specimen faces. The number of cycles to crack initiation N i is deduced from periodic examinations of the quenched surfaces, by means of optical microscopy. It is considered that initiation occurs when at least one 50μm to 150□m long crack is observed. Additional SPLASH tests were performed for N >> N i , with a view to investigate the evolution of a surface multiple cracking network with the number of cycles N. The CYTHIA test was mainly developed for the purpose of assessing crack growth dynamics of one isolated crack in thermal fatigue conditions. Specimens consist of thick walled tubes with a 1 mm circular groove is spark-machined at the specimen centre. During the test, the external wall of the tube is periodically heated by using a HF induction coil (1 MHz), while its internal wall is permanently cooled by flowing water. Total crack growth is derived from post-mortem examinations, whereby the thermal fatigue final rupture surface is oxidized at the end of the test. The specimen is broken afterwards under mechanical fatigue at room temperature. All the tests confirm that

  17. Atom probe, AFM and STM study on vacuum fired stainless steel

    International Nuclear Information System (INIS)

    Stupnik, A.; Frank, P.; Leisch, M.

    2008-01-01

    Full text: Stainless steel is one of the most commonly used structural materials for vacuum equipment. An efficient method to reduce the outgassing rate from stainless steel is a high temperature bakeout in vacuum (vacuum firing). This procedure reduces significantly the amount of dissolved hydrogen in the bulk. For the outgassing process the recombination rate of hydrogen atoms to the molecules plays the determining role and recombination is strongly related to the surface structure and composition. To get more detailed information about the surface morphology and composition AFM, STM and atom probe studies were carried out. Experiments on AISI 304L stainless steel samples show that the surface reconstructs completely during vacuum firing and large atomically flat terraces bounded by bunched steps and facets are formed. The large flat terraces can be assigned to (111) planes. The bunched steps and facets are corresponding in orientation almost to (110) planes and (100) planes. Surface inspection after vacuum firing by Auger electron spectroscopy (AES) gives reason for a composition change indicated by a reduction of the chromium signal in relation to the iron and nickel signal. Since the information depth of AES covers several atomic layers not only the top atomic layer of the sample surface is probed. For this reason 3D atom probe was used as well suited tool to investigate the segregation behavior of this alloy with the goal to examine the change in local chemical composition due to the high temperature treatment. As a result of vacuum firing the atom probe experiments show a significant enrichment of nickel at the top surface layer. In the second atomic layer chromium enrichment is detected. After vacuum firing the average composition below the second atomic layer shows certain chromium depletion up to 2 nm in depth. The observed changes in surface chemistry influence recombination and desorption probability from the surface and may contribute to the present

  18. Mass transfer behavior of a modified austenitic stainless steel in lithium

    International Nuclear Information System (INIS)

    Tortorelli, P.F.; DeVan, J.H.

    1983-01-01

    An austenitic stainless steel that was developed to resist neutron damage was exposed to lithium in the high-temperature part of a thermal convection loop for 6700 h. Specimens of this Prime Candidate Alloy (PCA) composed of 65.0 Fe-15.9 Ni-13.0 Cr-1.9 Mo-1.9 Mn-1.7 Si-0.5 Ti-0.05 C (wt %) were exposed at 600 and 570 0 C in both solution annealed and cold worked forms. The dissolution process was found to be similar to other austenitic alloys in flowing lithium: weight losses of PCA eventually became linearly proportional to exposure time with the specimen surfaces exhibiting porous layers depleted in nickel and chromium. However, the measured weight losses and dissolution rates of these PCA specimens were higher than those of type 316 stainless steel exposed under similar conditions and can be attributed to the higher nickel concentration of the former alloy. The effect of cold work on dissolution rates was less definitive, particularly at 570 0 C. At longer exposure times, the annealed PCA specimen exposed at 600 0 C suffered greater dissolution than the cold worked material, while no effect of prior deformation was observed by analysis of the respective surfaces

  19. Hydrogen Embrittlement Mechanism in Fatigue Behavior of Austenitic and Martensitic Stainless Steels

    Directory of Open Access Journals (Sweden)

    Sven Brück

    2018-05-01

    Full Text Available In the present study, the influence of hydrogen on the fatigue behavior of the high strength martensitic stainless steel X3CrNiMo13-4 and the metastable austenitic stainless steels X2Crni19-11 with various nickel contents was examined in the low and high cycle fatigue regime. The focus of the investigations were the changes in the mechanisms of short crack propagation. Experiments in laboratory air with uncharged and precharged specimen and uncharged specimen in pressurized hydrogen were carried out. The aim of the ongoing investigation was to determine and quantitatively describe the predominant processes of hydrogen embrittlement and their influence on the short fatigue crack morphology and crack growth rate. In addition, simulations were carried out on the short fatigue crack growth, in order to develop a detailed insight into the hydrogen embrittlement mechanisms relevant for cyclic loading conditions. It was found that a lower nickel content and a higher martensite content of the samples led to a higher susceptibility to hydrogen embrittlement. In addition, crack propagation and crack path could be simulated well with the simulation model.

  20. Study to define NDE research for inspection of stainless steels

    International Nuclear Information System (INIS)

    Reinhart, E.R.

    1978-08-01

    After the boiling water reactor (BWR) stress corrosion cracking incidents on 4- and 10-inch stainless steel piping, the Electric Power Research Institute (EPRI) organized a round-robin ultrasonic examination of piping removed from service (TPS-75-609). Five inspection teams participated in this program, using both a standard procedure and the individual team procedure. The original intent was to section the piping after the program to evaluate the effectiveness of state-of-the-art ultrasonics in finding stress corrosion cracking. The sectioning was delayed, however, to allow research and development (R and D) groups time to perform basic measurements aimed at determining optimum search unit and instrument characteristics for the ultrasonic examination of stainless steel piping and to study the applicability of various advanced inspection methods. This additional effort was funded as part of an EPRI technical planning study (TPS-75-620), A Study to Define NDE Research for Inspection of Stainless Steels. Inspection methods evaluated in this study included (1) processing of manual scan data using a miniature programmable calculator (Aerojet Nuclear); (2) investigation into the performance characteristics of three experimental ultrasonic transducers (Battelle-Columbus Laboratories); (3) analysis of fundamental ultrasonic response data from intergranular stress corrosion cracks in stainless steels (Southwest Research Institute); and (4) a feasibility study of advanced signal processing and pattern recognition for analyzing flaws in stainless steel piping (Ultrasonics International). The results of the studies compiled in the report have indicated the direction for future research and development and have formed the basis for the recently initiated EPRI Research Project 892, Ultrasonic System Optimization

  1. Fatigue Crack Growth Behavior of Gas Metal Arc Welded AISI 409 Grade Ferritic Stainless Steel Joints

    Science.gov (United States)

    Lakshminarayanan, A. K.; Shanmugam, K.; Balasubramanian, V.

    2009-10-01

    The effect of filler metals such as austenitic stainless steel, ferritic stainless steel, and duplex stainless steel on fatigue crack growth behavior of the gas metal arc welded ferritic stainless steel joints was investigated. Rolled plates of 4 mm thickness were used as the base material for preparing single ‘V’ butt welded joints. Center cracked tensile specimens were prepared to evaluate fatigue crack growth behavior. Servo hydraulic controlled fatigue testing machine with a capacity of 100 kN was used to evaluate the fatigue crack growth behavior of the welded joints. From this investigation, it was found that the joints fabricated by duplex stainless steel filler metal showed superior fatigue crack growth resistance compared to the joints fabricated by austenitic and ferritic stainless steel filler metals. Higher yield strength and relatively higher toughness may be the reasons for superior fatigue performance of the joints fabricated by duplex stainless steel filler metal.

  2. Low temperature surface hardening of stainless steel; the role of plastic deformation

    DEFF Research Database (Denmark)

    Bottoli, Federico; Jespersen, Freja Nygaard; Hattel, Jesper Henri

    2016-01-01

    : - plastic deformation of metastable austenitic stainless steels leads to the development of strain-induced martensite, which compromises the uniformity and the homogeneity of the expanded austenite zone. - during low temperature surface engineering composition and stress profiles develop. On numerical......Thermochemical surface engineering by nitriding of austenitic stainless steel transforms the surface zone into expanded austenite, which improves the wear resistance of the stainless steel while preserving the stainless behavior. As a consequence of the thermochemical surface engineering, huge...

  3. Optimisation of welding procedures for duplex and superduplex stainless steels

    International Nuclear Information System (INIS)

    Westin, Elin M.

    2014-01-01

    Austenitic stainless steels are increasingly being replaced by duplex grades that can offer similar corrosion resistance with far higher strength. This increased strength makes it possible to reduce material consumption whilst also decreasing transport and construction costs. Although established welding methods used for austenitic steels can be used for duplex steels, modification of the procedures can lead to improved results. This paper reviews the welding of duplex stainless steel and examines precautions that may be required. The advantages and disadvantages of different welding methods are highlighted and some high productivity solutions are presented. The application of a more efficient process with a high deposition rate (e.g. flux- cored arc welding) can decrease labour costs. Further close control of heat input and interpass temperature can result in more favourable microstructures and final properties. Although welding adversely affects the corrosion resistance of austenitic and duplex stainless steels, particularly the pitting resistance, relative to the parent material, this problem can be minimised by proper backing gas protection and subsequent pickling.

  4. Low Temperature Surface Carburization of Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Sunniva R; Heuer, Arthur H; Sikka, Vinod K

    2007-12-07

    Low-temperature colossal supersaturation (LTCSS) is a novel surface hardening method for carburization of austenitic stainless steels (SS) without the precipitation of carbides. The formation of carbides is kinetically suppressed, enabling extremely high or colossal carbon supersaturation. As a result, surface carbon concentrations in excess of 12 at. % are routinely achieved. This treatment increases the surface hardness by a factor of four to five, improving resistance to wear, corrosion, and fatigue, with significant retained ductility. LTCSS is a diffusional surface hardening process that provides a uniform and conformal hardened gradient surface with no risk of delamination or peeling. The treatment retains the austenitic phase and is completely non-magnetic. In addition, because parts are treated at low temperature, they do not distort or change dimensions. During this treatment, carbon diffusion proceeds into the metal at temperatures that constrain substitutional diffusion or mobility between the metal alloy elements. Though immobilized and unable to assemble to form carbides, chromium and similar alloying elements nonetheless draw enormous amounts of carbon into their interstitial spaces. The carbon in the interstitial spaces of the alloy crystals makes the surface harder than ever achieved before by more conventional heat treating or diffusion process. The carbon solid solution manifests a Vickers hardness often exceeding 1000 HV (equivalent to 70 HRC). This project objective was to extend the LTCSS treatment to other austenitic alloys, and to quantify improvements in fatigue, corrosion, and wear resistance. Highlights from the research include the following: • Extension of the applicability of the LTCSS process to a broad range of austenitic and duplex grades of steels • Demonstration of LTCSS ability for a variety of different component shapes and sizes • Detailed microstructural characterization of LTCSS-treated samples of 316L and other alloys

  5. Inorganic coatings on stainless steel for protection against crevice corrosion

    International Nuclear Information System (INIS)

    Henrikson, Sture

    1989-12-01

    In order to create protection against crevice corrosion stainless steel test specimens of type 316 steel with various inorganic coatings applied on crevice surfaces were tested for 3-50 months at 25 and 30 degree C in natural seawater containing 0.2-1.5 ppm free chlorine. Various metallic coatings, Ni base alloys with Cr and Mo, Ni with W, pure Ag and pure Mo, as well as ceramic coatings - Cr 2 O 3 , TiO 2 and Al 2 O 3 - were studied. All the coatings tested, except pure Molybdenum applied by plasma spraying in a max 0.1 mm thick layer were found to promote crevice corrosion of the stainless steel. A significant reduction of the crevice corrosion susceptibility was obtained with Molybdenum. The result is considered promising enough to justify full scale tests in seawater on flange joints of pipes, valves or pumps. (author)

  6. Stainless steel valves with enhanced performance through microstructure optimization

    Science.gov (United States)

    Barani, A. A.; Boukhattam, M.; Haggeney, M.; Güler, S.

    2017-08-01

    Compressor valves are made of hardened and tempered martensitic steels. The main design criterion for the material selection is the fatigue performance of the material under bending loads. In some cases impact loads and corrosive atmospheres additionally act on the part. For the first time, the microstructure of the most commonly used stainless steel and its influence on the properties relevant for flapper valves is presented and described in this paper. It is demonstrated how the tensile properties of a martensitic stainless steel can be enhanced by tailoring the microstructure. Electron back scatter diffraction method is carried out to explain the changes in monotonic mechanical properties. Through a modified heat treatment the martensite microstructure is refined resulting in an increase of yield and ultimate tensile strength and at the same time a significant increase of elongation.

  7. Marine Exposure Tests on Stainless Steel Sheet

    Science.gov (United States)

    1947-02-01

    contained 17 to 20 percent of chromium, 7 to 10 percent of nickel, and, in seme Instances, sma.11 amounts of molybdenum, tita - nium, or columbium...3.5 percent, of molybdenum, exhibited much loss rust on weathering than those of the ordinary 18:8 type with or without additions of tita - nium or

  8. Preparation and characterization of 304 stainless steel/Q235 carbon steel composite material

    Directory of Open Access Journals (Sweden)

    Wenning Shen

    Full Text Available The composite material of 304 stainless steel reinforced Q235 carbon steel has been prepared by modified hot-rolling process. The resulted material was characterized by scanning electron microscope, three-electrode method, fault current impact method, electrochemical potentiodynamic polarization curve measurement and electrochemical impedance spectroscopy. The results showed that metallurgical bond between the stainless steel layer and carbon steel substrate has been formed. The composite material exhibited good electrical conductivity and thermal stability. The average grounding resistance of the composite material was about 13/20 of dip galvanized steel. There has no surface crack and bubbling formed after fault current impact. The composite material led to a significant decrease in the corrosion current density in soil solution, compared with that of hot dip galvanized steel and bare carbon steel. On the basis polarization curve and EIS analyses, it can be concluded that the composite material showed improved anti-corrosion property than hot-dip galvanized steel. Keywords: Stainless steel, Carbon steel, Anti-corrosion, Conductivity, Electrochemical, EIS

  9. Specification for corrosion-resisting chromium and chromium-nickel steel covered welding electrodes

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    This specification prescribes requirements for covered corrosion-resisting chromium and chromium-nickel steel electrodes. These electrodes normally are used for shielded metal arc welding, and include those alloy steels designated as corrosion or heat-resisting chromium-nickel steels in which chromium exceeds 4.0 percent and nickel does not exceed 50.0 percent

  10. Specification for corrosion-resisting chromium and chromium-nickel steel covered welding electrodes

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    This specification prescribes requirements for covered corrosion-resisting chromium and chromium-nickel steel electrodes. These electrodes are normally used for shielded metal arc welding, and include those alloy steels designated as corrosion or heat-resisting chromium and chromium-nickel steels, in which chromium exceeds 4.0% and nickel does not exceed 50.0%

  11. Specification for corrosion-resisting chromium and chromium-nickel steel covered welding electrodes

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    This specification prescribes requirements for covered corrosion-resisting chromium and chromium-nickel steel electrodes. These electrodes are normally used for shielded metal arc welding, and include those alloy steels designated as corrosion or heat-resisting chromium and chromium-nickel steels, in which chromium exceeds 4.0 percent and nickel does not exceed 50.0 percent

  12. Behaviour of glass and thermal protective coatings on stainless steels in the nitrogen tetroxide based coolant

    International Nuclear Information System (INIS)

    Bakalin, Yu.I.; Dobrunova, V.M.; Doroshkevich, V.N.; Nesterenko, V.B.; Trubnikov, V.P.

    1985-01-01

    The technology of application of glass and enamel protective coatings on stainless steel has been examined, their testing in the medium of nitrogen tetroxide based coolant with different content of nitric acid has been carried out, the basic characteristics of the coatings after testing have been defined. Chromium-nickel austenitic 12kh18n10t steel, widely used in the nuclear power, have been chosen as a basic object of examination. The coatings have been tested in nitrogen oxide at P=12.0 MPa, temperature 310 deg C and 0.1% HNO 3 , and also in the medium of vat residue of the rectifying tower with nitric acid content up to 25 mass %. Tests of the coatings have demonstrated their sufficiently high stability, especially of those based on enamels A-20 and BK-5. These coatings are characterised by satisfactory performance and can be used for corrosion protection of the materials used in nuclear power

  13. Changes in grain boundary composition induced by neutron irradiation of austenitic stainless steels

    International Nuclear Information System (INIS)

    Asano, K.; Nakata, K.; Fukuya, K.; Kodama, M.

    1992-01-01

    The radiation induced segregation of solutes to the grain boundary in austenitic stainless steels were studied. Type 304 and type 316 steel samples neutron irradiated at 561K up to 9.2x10 25 n/m 2 were obtained and minute compositional profiles across grain boundaries were examined using an analytical scanning transmission electron microscope equipped with a field emission electron gun. Chromium was slightly enriched at grain boundaries at the lowest irradiation dose but decreased with increasing fluence. Higher fluence irradiation resulted in depletion in chromium and molybdenum, and enrichment in nickel, silicon and phosphorus. These changes in grain boundary chemistry were limited within about 5nm of the boundary. Significant depletion of chromium and enrichment of impurities on the grain boundary occurred at fluences roughly coincidental with that of SCC susceptibility change obtained from another project

  14. Changes in structure and phase composition of chromium diffusion layer on stainless steels after long annealing

    International Nuclear Information System (INIS)

    Knyazev, E.V.; Voshedchenko, B.M.; Voskresenskij, Yu.A.

    1985-01-01

    A study was made on the effect of elevated temperatures UU and long holdings at heat on structure, phase composition and properties of chromium diffusion layer on austenitic chromium-nickel stainless steels 10Kh18N10TVD, 10Kh15N30M4B, 10Kh11N23T3MR, 10Kh21N28V6M3. The following mechanism of processes taking place in diffusion chromium layer is presented. The steady drop of chromium concentrations is observed after diffusion saturation. Chromium redistribution related with system transformation to more equilibrium state and simultaneous decarburization of steel surfaces takes place in diffusion layers of 10Kh15N30M4B and 10Kh21N28V6M3 steels after annealing at different temperatures and holdings at heat. Decarburization of steel surface layers is practically excluded in diffusion layers of 10Kh18N10T-VD and 10Kh11N23T3MR steels. Diffusion chromium-saturated layer stays effective only on 10Kh18N10T-VD and 10Kh11N23T3MR steels on heating up to 1000 deq C with holding up to 250 h

  15. Spatial distribution of crystalline corrosion products formed during corrosion of stainless steel in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Serdar, Marijana [Department of Materials, Faculty of Civil Engineering, University of Zagreb, 10000 Zagreb (Croatia); Meral, Cagla [Middle East Technical University, Department of Civil Engineering, Ankara (Turkey); Kunz, Martin [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Bjegovic, Dubravka [Department of Materials, Faculty of Civil Engineering, University of Zagreb, 10000 Zagreb (Croatia); Wenk, Hans-Rudolf [Department of Earth and Planetary Science, University of California, Berkeley, CA 94720 (United States); Monteiro, Paulo J.M., E-mail: monteiro@ce.berkeley.edu [Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720 (United States)

    2015-05-15

    The mineralogy and spatial distribution of nano-crystalline corrosion products that form in the steel/concrete interface were characterized using synchrotron X-ray micro-diffraction (μ-XRD). Two types of low-nickel high-chromium reinforcing steels embedded into mortar and exposed to NaCl solution were investigated. Corrosion in the samples was confirmed by electrochemical impedance spectroscopy (EIS). μ-XRD revealed that goethite (α-FeOOH) and akaganeite (β-FeOOH) are the main iron oxide–hydroxides formed during the chloride-induced corrosion of stainless steel in concrete. Goethite is formed closer to the surface of the steel due to the presence of chromium in the steel, while akaganeite is formed further away from the surface due to the presence of chloride ions. Detailed microstructural analysis is shown and discussed on one sample of each type of steel. - Highlights: • Synchrotron micro-diffraction used to map the distribution of crystalline phases. • Goethite and akaganeite are the main corrosion products during chloride induced corrosion in mortar. • Layers of goethite and akaganeite are negatively correlated. • EDS showed Cr present in corrosion products identified by SEM.

  16. Spatial distribution of crystalline corrosion products formed during corrosion of stainless steel in concrete

    International Nuclear Information System (INIS)

    Serdar, Marijana; Meral, Cagla; Kunz, Martin; Bjegovic, Dubravka; Wenk, Hans-Rudolf; Monteiro, Paulo J.M.

    2015-01-01

    The mineralogy and spatial distribution of nano-crystalline corrosion products that form in the steel/concrete interface were characterized using synchrotron X-ray micro-diffraction (μ-XRD). Two types of low-nickel high-chromium reinforcing steels embedded into mortar and exposed to NaCl solution were investigated. Corrosion in the samples was confirmed by electrochemical impedance spectroscopy (EIS). μ-XRD revealed that goethite (α-FeOOH) and akaganeite (β-FeOOH) are the main iron oxide–hydroxides formed during the chloride-induced corrosion of stainless steel in concrete. Goethite is formed closer to the surface of the steel due to the presence of chromium in the steel, while akaganeite is formed further away from the surface due to the presence of chloride ions. Detailed microstructural analysis is shown and discussed on one sample of each type of steel. - Highlights: • Synchrotron micro-diffraction used to map the distribution of crystalline phases. • Goethite and akaganeite are the main corrosion products during chloride induced corrosion in mortar. • Layers of goethite and akaganeite are negatively correlated. • EDS showed Cr present in corrosion products identified by SEM

  17. Behaviour of steels in natural environments: focus on stainless steels in natural sea water

    International Nuclear Information System (INIS)

    Feron, D.

    2005-01-01

    Corrosion behaviour of steels and alloys in natural environments is not only dependent to material parameters and environmental chemistry, but also to micro-organisms which may be there. The global approach used to investigate the behaviour of alloys in natural environments is illustrated by the work done on stainless steels in seawater. In aerated seawater, studies led to the proposal of an 'enzymatic model' based on the enzymatic catalyze of the cathodic reaction and which allows reproducing the electrochemical behaviour of stainless steels in natural seawater and the crevice corrosion phenomena observed in natural sea waters. Coupling areas under aerobic and anaerobic conditions leads to the worst situation for stainless steel behaviour: the catalysis of the cathodic reaction on aerobic exposed surfaces and the decrease of the corrosion resistance of anaerobic surfaces due to sulphides. These results lead to the concept of electro-active bio-films. (author)

  18. Chemical resistance of the stainless REMANIT steels

    International Nuclear Information System (INIS)

    1992-01-01

    The leaflet contains tables showing the corrosion behaviour of the REMANIT steels in various media, as e.g. in acids, brines, salty solutions, or in organic environments. The data given include information on the composition and concentration of the attacking agent, and on temperatures. The documentation is intended to serve as a guide for selecting the suitable steel quality for intended applications. (MM) [de

  19. Neutron irradiation creep in stainless steel alloys

    Energy Technology Data Exchange (ETDEWEB)

    Schuele, Wolfgang (Commission of the European Union, Institute for Advanced Materials, I-21020 Ispra (Vatican City State, Holy See) (Italy)); Hausen, Hermann (Commission of the European Union, Institute for Advanced Materials, I-21020 Ispra (Vatican City State, Holy See) (Italy))

    1994-09-01

    Irradiation creep elongations were measured in the HFR at Petten on AMCR steels, on 316 CE-reference steels, and on US-316 and US-PCA steels varying the irradiation temperature between 300 C and 500 C and the stress between 25 and 300 MPa. At the beginning of an irradiation a type of primary'' creep stage is observed for doses up to 3-5 dpa after which dose the secondary'' creep stage begins. The primary'' creep strain decreases in cold-worked steel materials with decreasing stress and decreasing irradiation temperature achieving also negative creep strains depending also on the pre-treatment of the materials. These primary'' creep strains are mainly attributed to volume changes due to the formation of radiation-induced phases, e.g. to the formation of [alpha]-ferrite below about 400 C and of carbides below about 700 C, and not to irradiation creep. The secondary'' creep stage is found for doses larger than 3 to 5 dpa and is attributed mainly to irradiation creep. The irradiation creep rate is almost independent of the irradiation temperature (Q[sub irr]=0.132 eV) and linearly dependent on the stress. The total creep elongations normalized to about 8 dpa are equal for almost every type of steel irradiated in the HFR at Petten or in ORR or in EBR II. The negative creep elongations are more pronounced in PCA- and in AMCR-steels and for this reason the total creep elongation is slightly smaller at 8 dpa for these two steels than for the other steels. ((orig.))

  20. Martensitic Stainless Steels Low-temperature Nitriding: Dependence of Substrate Composition

    OpenAIRE

    Ferreira, Lauro Mariano; Brunatto, Silvio Francisco; Cardoso, Rodrigo Perito

    2015-01-01

    Low-temperature plasma assisted nitriding is a very promising technique to improve surface mechanical properties of stainless steels, keeping unaltered or even improving their surface corrosion resistance. During treatment, nitrogen diffuses into the steel surface, increasing its hardness and wear resistance. In the present work the nitriding process of different martensitic stainless steels was studied. As-quenched AISI 410, 410NiMo, 416 and 420 stainless steel samples were plasma nitrided a...

  1. Modern high strength QT, TM and duplex-stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Bocquet, P. [Industeel (France); Luxenburger, G. [Aktiengesellschaft der Dillinger Huettenwerke, Dillingen/Saar (Germany); Porter, D. [Rautaruukki (Finland); Ericsson, C. [Avesta Polarit (Sweden)

    2003-07-01

    Pressure vessels are commonly manufactured with normalised steel grades with a yield strength up to 355 MPa or with austenitic stainless steels when corrosion as to be considered. From three decades, modern steels with higher mechanical properties - up to yield strength of 960 Mpa - are available and largely used for other applications where weight saving is of major importance as per off-shore, bridges, cranes, shipbuilding, line pipes.. The paper presents these modern steel's families - TMCP (Thermo Mechanically Controlled Process), QT (Quenched and Tempered) and Duplex (austeno-ferritic) stainless - in comparison with the normalised and austenitic steel grades. The following aspects are presented: the main mechanical properties (tensile and Charpy) as per the requirements of the standards for pressure equipment; some examples of use of these modern steels in the industry are given; the limitations of the forming conditions are considered; the weldability aspects and welds properties are developed; the interest of the PWHT (Post Weld Heat Treatment) is discussed. (orig.)

  2. Study of irradiation damage structures in austenitic stainless steels

    International Nuclear Information System (INIS)

    Hamada, Shozo

    1997-08-01

    The irradiation damage microstructures in austenitic stainless steels, which have been proposed to be a candidate of structural materials of a fusion reactor, under ions and neutrons irradiation have been studied. In ion irradiation experiments, cross-sectional observation of the depth distribution of damage formed due to ion irradiation became available. Comparison and discussion between experimental results with TEM and the calculated ones in the depth profiles of irradiation damage microstructures. Further, dual-phase stainless steels, consisted of ferritic/austenitic phases, showed irradiation-induced/enhanced precipitation during ion irradiation. High Flux Isotope Reactor with high neutron fluxes was employed in neutron-irradiation experiments. Swelling of 316 steel showed irradiation temperature dependence and this had strong correlation with phase instability under heavy damage level. Swelling resistance of Ti-modified austenitic stainless steel, which has good swelling resistance, decreased during high damage level. This might be caused by the instability of Ti-carbide particles. The preparation method to reduce higher radioactivity of neutron-irradiated TEM specimen was developed. (author). 176 refs

  3. Cryogenic properties of V-bearing austenitic stainless steel

    International Nuclear Information System (INIS)

    Nohara, Kiyohiko

    1985-01-01

    A new type austenitic stainless steel which is expected as the cryogenic structural material for superconducting magnets has been developed. This steel is that vanadium was added to SUS 316 stainless steel of low carbon and high nitrogen, which has the sufficient strength and toughness at 4 K, and maintains the stable nonmagnetic state. This is applicable both to the solution state and the state of carrying out age hardening heat treatment for precipitating Nb 3 Sn subsequent to it. Accordingly, this material can be applied to the sheath material for nuclear fusion and the manufacture of superconducting magnets by Wind and React process besides the candidate material of superconducting magnets for nuclear fusion. This phenomenon is due to the fact that vanadium carbide precipitates in crystal grains before chrome carbide precipitates at grain boundaries, thus the precipitation of chrome carbide is suppressed. In this experiment, the effect of vanadium addition on the cryogenic properties of SUS 316 stainless steel was examined. The experimental method and the results of the effects of vanadium and nitrogen, solution treatment and precipitation aging, and the measurement of magnetism are reported. (Kako, I.)

  4. Study of irradiation damage structures in austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Shozo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-08-01

    The irradiation damage microstructures in austenitic stainless steels, which have been proposed to be a candidate of structural materials of a fusion reactor, under ions and neutrons irradiation have been studied. In ion irradiation experiments, cross-sectional observation of the depth distribution of damage formed due to ion irradiation became available. Comparison and discussion between experimental results with TEM and the calculated ones in the depth profiles of irradiation damage microstructures. Further, dual-phase stainless steels, consisted of ferritic/austenitic phases, showed irradiation-induced/enhanced precipitation during ion irradiation. High Flux Isotope Reactor with high neutron fluxes was employed in neutron-irradiation experiments. Swelling of 316 steel showed irradiation temperature dependence and this had strong correlation with phase instability under heavy damage level. Swelling resistance of Ti-modified austenitic stainless steel, which has good swelling resistance, decreased during high damage level. This might be caused by the instability of Ti-carbide particles. The preparation method to reduce higher radioactivity of neutron-irradiated TEM specimen was developed. (author). 176 refs.

  5. Residual stresses and fatigue in a duplex stainless steel

    International Nuclear Information System (INIS)

    Johansson, Johan

    1999-01-01

    Duplex stainless steels, consisting of approximately equal amounts of austenite and ferrite, often combine the best features of austenitic and ferritic stainless steels. They generally have good mechanical properties, including high strength and ductility, and the corrosion resistance is often better than conventional austenitic grades. This has lead to a growing use of duplex stainless steels as a material in mechanically loaded constructions. However, detailed knowledge regarding its mechanical properties and deformation mechanisms are still lacking. In this thesis special emphasis has been placed on the residual stresses and their influence on mechanical behaviour of duplex stainless steels. Due to the difference in coefficient of thermal expansion between the two phases, tensile microstresses are found in the austenitic phase and balancing compressive microstresses in the ferritic phase. The first part of this thesis is a literature survey, which will give an introduction to duplex stainless steels and review the fatigue properties of duplex stainless steels and the influence of residual stresses in two-phase material. The second part concerns the evolution of the residual stress state during uniaxial loading. Initial residual stresses were found to be almost two times higher in the transverse direction compared to the rolling direction. During loading the absolute value of the microstresses increased in the macroscopic elastic regime but started to decrease with increasing load in the macroscopic plastic regime. A significant increase of the microstresses was also found to occur during unloading. Finite element simulations also show stress variation within one phase and a strong influence of both the elastic and plastic anisotropy of the individual phases on the simulated stress state. In the third part, the load sharing between the phases during cyclic loading is studied. X-ray diffraction stress analysis and transmission electron microscopy show that even if

  6. Residual stresses and fatigue in a duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Johan

    1999-05-01

    Duplex stainless steels, consisting of approximately equal amounts of austenite and ferrite, often combine the best features of austenitic and ferritic stainless steels. They generally have good mechanical properties, including high strength and ductility, and the corrosion resistance is often better than conventional austenitic grades. This has lead to a growing use of duplex stainless steels as a material in mechanically loaded constructions. However, detailed knowledge regarding its mechanical properties and deformation mechanisms are still lacking. In this thesis special emphasis has been placed on the residual stresses and their influence on mechanical behaviour of duplex stainless steels. Due to the difference in coefficient of thermal expansion between the two phases, tensile microstresses are found in the austenitic phase and balancing compressive microstresses in the ferritic phase. The first part of this thesis is a literature survey, which will give an introduction to duplex stainless steels and review the fatigue properties of duplex stainless steels and the influence of residual stresses in two-phase material. The second part concerns the evolution of the residual stress state during uniaxial loading. Initial residual stresses were found to be almost two times higher in the transverse direction compared to the rolling direction. During loading the absolute value of the microstresses increased in the macroscopic elastic regime but started to decrease with increasing load in the macroscopic plastic regime. A significant increase of the microstresses was also found to occur during unloading. Finite element simulations also show stress variation within one phase and a strong influence of both the elastic and plastic anisotropy of the individual phases on the simulated stress state. In the third part, the load sharing between the phases during cyclic loading is studied. X-ray diffraction stress analysis and transmission electron microscopy show that even if

  7. Development of austenitic stainless steel PC wire and strand

    International Nuclear Information System (INIS)

    Tsubono, Hideyoshi; Kawabata, Yoshinori; Yamaoka, Yukio

    1986-01-01

    The effects of aging and stress-aging (called hot stretching) at the temperatures from 120 deg C to 700 deg C on the mechanical properties, relaxation values, Charpy impact values and SCC behavior of hard drawn SUS 304, SUS 316 stainless steel wires have been studied. The main results obtained are as follows: (1) Yield and tensile strength of the wires increased by aging at 230 deg C and 530 deg C as well as by hot stretching. The strengthening after 230 deg C treatment may be due to the strain aging by C and the increase of strength after 530 deg C treatment results from precipitation of Cr 23 C 6 on dislocations. (2) Stress relaxation values up to 250 deg C are low due to precipitation of Cr 23 C 6 . Almost no difference can be observed between aging and hot stretching. (3) Impact value at -196 deg C of SUS 304 stainless steel wire which was measured with 1 mm V-notched specimen was found to be about the same as that of 9 % Ni steel. (4) It is considered that in comparison with high carbon PC wire SUS 304 stainless steel showing high tensile strength is insensitive to SCC in NH 4 SCN and NH 4 NO 3 solutions. (5) In practice, tension member of the austenitic stainless steel wire and strand which were produced by aging at 500 deg C may be useful in special industrial field, for example, (a) SUS 304, in cryogenic field use (b) SUS 316, in intensive magnetic field use as a nonmagnetic material. (author)

  8. Corrosion behaviour of high chromium ferritic stainless steels

    International Nuclear Information System (INIS)

    Kiesheyer, H.; Lennartz, G.; Brandis, H.

    1976-01-01

    Ferritic steels developed for seawater desalination and containing 20 to 28% chromium, up to 5% Mo and additions of nickel and copper have been tested with respect to their corrosion behaviour, in particular in chloride containing media. The materials in the sensibilized state were tested for intercrystalline corrosion susceptibility in the Strauss-, Streicher-, nitric acid hydrofluoric acid- and Huey-Tests. No intercrystalline corrosion was encountered in the case of the steels with 28% Cr and 2% Mo. The resistance to pitting was assessed on the basis of rupture potentials determined by potentiokinetic tests. The resistance of the steels with 20% Cr and 5% Mo or 28% Cr and 2% Mo is superior to that of the molybdenum containing austenitic types. Addition of nickel yields a significant increase in crevice corrosion resistance; the same applies to resistance in sulfuric acid. In boiling seawater all the materials tested are resistant to stress corrosion cracking. No sign of any type of corrosion was found on nickel containing steels after about 6,000 hours exposure to boiling 50% seawater brine even under salt deposits. (orig.) [de

  9. Microstructural stability of fast reactor irradiated 10 to 12% Cr ferritic-martensitic stainless steels

    International Nuclear Information System (INIS)

    Little, E.A.; Stoter, L.P.

    1982-01-01

    The strength and microstructural stability of three 10 to 12% Cr ferritic-martensitic stainless steels have been characterized following fast reactor irradiation to damage levels of 30 displacements per atom (dpa) at temperatures in the range 380 to 615 0 C. Irradiation results in either increases or decreases in room temperature hardness depending on the irradiation temperature. These strength changes can be qualitatively rationalized in terms of the combined effects of irradiation-induced interstitial dislocation loop formation and recovery of the dislocation networks comprising the initial tempered martensite structures. Precipitate evolution in the irradiated steels is associated with the nonequilibrium segregation of the elements nickel, silicon, molybdenum, chromium and phosphorus, brought about by solute-point defect interactions. The principal irradiation-induced precipitates identified are M 6 X, intermetallic chi and sigma phases and also α' (Cr-rich ferrite). The implications of the observed microstructural changes on the selection of martensitic stainless steels for fast reactor wrapper applications are briefly considered

  10. Braze alloy process and strength characterization studies for 18 nickel grade 200 maraging steel with application to wind tunnel models

    Science.gov (United States)

    Bradshaw, James F.; Sandefur, Paul G., Jr.; Young, Clarence P., Jr.

    1991-01-01

    A comprehensive study of braze alloy selection process and strength characterization with application to wind tunnel models is presented. The applications for this study include the installation of stainless steel pressure tubing in model airfoil sections make of 18 Ni 200 grade maraging steel and the joining of wing structural components by brazing. Acceptable braze alloys for these applications are identified along with process, thermal braze cycle data, and thermal management procedures. Shear specimens are used to evaluate comparative shear strength properties for the various alloys at both room and cryogenic (-300 F) temperatures and include the effects of electroless nickel plating. Nickel plating was found to significantly enhance both the wetability and strength properties for the various braze alloys studied. The data are provided for use in selecting braze alloys for use with 18 Ni grade 200 steel in the design of wind tunnel models to be tested in an ambient or cryogenic environment.

  11. Stainless steel welding and semen quality

    DEFF Research Database (Denmark)

    Jelnes, J E; Knudsen, Lisbeth E.

    1988-01-01

    Questionnaire studies of patients from fertility clinics suggest that welders may have an increased risk of reduced semen quality. In this study, welders and nonwelders from the same plants were asked to provide blood, urine, and semen samples. Urine was analyzed for chromium and nickel, and for ...... and nonwelders. Because the metal dust exposure of nonwelders in the plant may be higher than that in the general population, welders were also compared to referents not working in the metal industry. Again, no decrease in semen quality associated with welding was demonstrated....

  12. Hydrogen induced plastic deformation of stainless steel

    NARCIS (Netherlands)

    Gadgil, V.J.; Keim, Enrico G.; Geijselaers, Hubertus J.M.

    1998-01-01

    Hydrogen can influence the behaviour of materials significantly. The effects of hydrogen are specially pronounced in high fugacities of hydrogen which can occur at the surface of steels in contact with certain aqueous environments. In this investigation the effect of high fugacity hydrogen on the

  13. Effects of Aging and W Addition on the Microstructure of Fe-Cr-Mn-N Stainless Steels

    International Nuclear Information System (INIS)

    Jeon, Yu Taek; Joo, Uk Hyon; Park, Yong Soo; Kim, Young Sik

    2000-01-01

    The effects of aging treatment on the precipitation behaviors of Fe-Cr-Mn-N stainless steels were studied using a transmission electron microscopy, scanning electron microscopy, optical microscopy and XRD. In the austenitic stainless steel having a single phase. M23C6 carbides were first precipitated in the grain boundary by aging and then grew from grain boundary into grain with aging time. Carbides showed lamellar structures. It was shown from the analysis of spot patterns that carbides had a coherent relation with matrix and their lattice parameter was roughly three times that of austenite. During initial stages of M23C6 carbide precipitation, the iron content was quite high. With increasing aging time, the chromium content was increased. As the tungsten was added to improve the corrosion resistance of the Fe-Cr-Mn-N stainless steels, ferrite phase was formed. This ferrite phase was decomposed to chi(χ) phase and secondary austenite. Chi phase was mainly enriched with tungsten, chromium and tungsten were depleted in the secondary austenite due to the formation of chi phase. M23C6 carbides were also formed in the grain boundary. Nickel stabilized the austenite phase and decreased the ferrite volume fraction. But nickel content was not sufficient to suppress the formation of ferrite, and precipitation behaviors were not changed

  14. Effects of aging treatment and W addition on the microstructure of Fe-Cr-Mn stainless steels

    International Nuclear Information System (INIS)

    Jeoun, Y. T.; Zoo, W. H.; Kim, Y. S.; Park, Y. S.

    1999-01-01

    The effects of aging treatment on the precipitaion behaviors of Fe-Cr-Mn-W stainless steels were studied using a transmission electron microscopy, scanning electron microscopy, optical microscopy and XRD. In the austenitic stainless steel showing a single phase, M 23 C 6 carbides were first precipitated in the grain boundary by aging and then grew from grain boundary into grain with aging time. Carbides showed lamellar structures. It was shown from the analysis of spot patterns that carbides had a coherent relation with matrix and their lattice parameter was roughly three times that of austenite. During initial stages of M 23 C 6 carbide precipitaion, the iron content was quite high. With increasing aging time, the chromium content increased. As the tungsten was added to improve the corrosion resistance of the Fe-Cr-Mn stainless steels, ferrite phase was formed. These ferrite phase was decomposed to chi(χ) phase and secondary austenite. Chi phase was mainly enriched with tungsten, chromium and tungsten were depleted in the secondary austenite due to the formation of chi phase. M 23 C 6 carbides were also formed in the grain boundary. Nickel stabilized the austenite phase and decreased the ferrite volume fraction. But nickel content was not sufficient to suppress the formation of ferrite, and precipitaion behaviors were not changed

  15. Aging degradation of cast stainless steel: status and program

    International Nuclear Information System (INIS)

    Chopra, O.K.; Ayrault, G.

    1983-10-01

    A program has been initiated to investigate the significance of in-service embrittlement of cast duplex stainless steels under light-water reactor operating conditions. The existing data are reviewed to determine the critical parameters that control the aging behavior and to define the objectives and scope of the investigation. The test matrices for microstructural studies and mechanical property measurements are presented. The initial experimental effort is focussed on characterizing the microstructure of long-term, low-temperature aged material. Specimens from three heats of cast CF-8 and CF-8M stainless steel aged for up to 70,000 h at 300, 350, and 400 0 C were obtained from George Fisher Ltd., of Switzerland. Initial analyses reveal the formation of three different types of precipitates which are not α'. An FCC phase, similar to the M 23 C 6 precipitates, was present in all the long-term aged material. 15 references, 10 figures, 2 tables

  16. Investigation of Laser Peening Effects on Hydrogen Charged Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Zaleski, Tania M. [San Jose State Univ., CA (United States)

    2008-10-30

    Hydrogen-rich environments such as fuel cell reactors can exhibit damage caused by hydrogen permeation in the form of corrosion cracking by lowering tensile strength and decreasing material ductility. Coatings and liners have been investigated, but there were few shot-peening or laser peening studies referenced in the literature with respect to preventing hydrogen embrittlement. The surface compressive residual stress induced by laser peening had shown success in preventing stress corrosion cracking (SCC) for stainless steels in power plants. The question arose if the residual stresses induced by laser peening could delay the effects of hydrogen in a material. This study investigated the effect of laser peening on hydrogen penetration into metal alloys. Three areas were studied: laser peening, hydrogenation, and hydrogen detection. This study demonstrated that laser peening does not reduce the hydrogen permeation into a stainless steel surface nor does it prevent hydrogen embrittlement. The effect of laser peening to reduce hydrogen-assisted fatigue was unclear.

  17. Effects of surface treatments on microstructure in stainless steel

    International Nuclear Information System (INIS)

    Mabuchi, Yasuhiro; Tamako, Hiroaki; Kaneda, Junya; Yamashita, Norimichi; Miyakawa, Masahiko

    2009-01-01

    It is revealed that Stress Corrosion Cracking (SCC) on the surface of the L-grade stainless steels in Nuclear Power Plants is caused by heavily cold work of the materials. The microstructure, hardness and residual stress on the surface of the material are factors for SCC initiation. There are surface treatment methods that is effective reduction on SCC such as Flap Wheel (FW) polishing, Clean N Strip (CNS) polishing, Water Jet Peening (WJP) and Shot Peening (SP). In this paper, the characteristics of the surface cold worked layer of the L-grade stainless steels conducted by above-mentioned surface treatments are analyzed, and effects of the surface treatments on the surface layer are discussed. (author)

  18. Interdiffusion between U-Zr-Mo and stainless steel cladding

    International Nuclear Information System (INIS)

    Hwang, J. Y.; Lee, B. S.; Lee, J. T.; Kang, Y. H.

    1998-01-01

    Interdiffusion investigations were carried out at 700 deg C for 200 hours for the diffusion couples assembled with the U-Zr-Mo ternary fuel versus austenitic stainless steel D9 and the U-Zr-Mo ternary fuel versus martensitic stainless steel HT9 respectively to investigate the fuel-cladding compatibility. SEM-EDS analysis was utilized to determine the composition and the penetration depths of the reaction layers. In the case of Fuel/D9 couple, (Fe, Cr, Ni) of the cladding elements formed the precipitates with the Zr, Mo and diminished the U concentration upto 800μ length from the fuel side. Composition of the precipitates was varied with the penetrated elements. In Fuel/HT9 couple, reaction layer was smaller than that of D9 couples and was less affected by cladding elements. The eutectic reaction appeared partially in the Fuel/HT9 diffusion couple

  19. Phase transformation by fatigue in austenitic stainless steel

    International Nuclear Information System (INIS)

    Jo, Y.S.; Kwun, S.I.

    1988-01-01

    The effect of strain induced martensite on the fatigue behavior of AISI 304 austenitic stainless steel was investigated. During low cycle fatigue, the austenitic stainless steel showed a continuous cyclic hardening until fracture. The extent of cyclic hardening increased with decreasing austenite stability. The austenite stability was controlled by different aging time and temperature, which resulted in different carbide morphologies. The fatigue crack propagation rate near ΔK th varied also with the austenite stability inside the plastic zone at the crack up. Especially, the near-threshold fatigue crack propagation rate of the grain boundary carbide precipitated condition was the lowest. This was considered to be due to the roughness induced closure caused by intergranular facet. A new model for the intergranular facet formation and the fatigue crack propagation of grain boundary carbide precipitated condition was proposed. (Author)

  20. Electroless Plated Nanodiamond Coating for Stainless Steel Passivation

    International Nuclear Information System (INIS)

    Li, D.; Korinko, P.; Spencer, W.; Stein, E.

    2016-01-01

    Tritium gas sample bottles and manifold components require passivation surface treatments to minimize the interaction of the hydrogen isotopes with surface contamination on the stainless steel containment materials. This document summarizes the effort to evaluate electroless plated nanodiamond coatings as a passivation layer for stainless steel. In this work, we developed an electroless nanodiamond (ND)-copper (Cu) coating process to deposit ND on stainless steel parts with the diamond loadings of 0%, 25% and 50% v/v in a Cu matrix. The coated Conflat Flanged Vessel Assemblies (CFVAs) were evaluated on surface morphology, composition, ND distribution, residual hydrogen release, and surface reactivity with deuterium. For as-received Cu and ND-Cu coated CFVAs, hydrogen off-gassing is rapid, and the off-gas rates of H 2 was one to two orders of magnitude higher than that for both untreated and electropolished stainless steel CFVAs, and hydrogen and deuterium reacted to form HD as well. These results indicated that residual H 2 was entrapped in the Cu and ND-Cu coated CFVAs during the coating process, and moisture was adsorbed on the surface, and ND and/or Cu might facilitate catalytic isotope exchange reaction for HD formation. However, hydrocarbons (i.e., CH 3 ) did not form, and did not appear to be an issue for the Cu and ND-Cu coated CFVAs. After vacuum heating, residual H 2 and adsorbed H 2 O in the Cu and ND-Cu coated CFVAs were dramatically reduced. The H 2 off-gassing rate after the vacuum treatment of Cu and 50% ND-Cu coated CFVAs was on the level of 10 -14 l mbar/s cm 2 , while H 2 O off-gas rate was on the level of 10 -15 l mbar/s cm 2 , consistent with the untreated or electropolished stainless steel CFVA, but the HD formation remained. The Restek EP bottle was used as a reference for this work. The Restek Electro-Polished (EP) bottle and their SilTek coated bottles tested under a different research project exhibited very little hydrogen off-gassing and

  1. High temperature damage of a re-sulfurized stainless steel

    International Nuclear Information System (INIS)

    Tinet, Hougo

    2002-01-01

    After having evoked the industrial problem raised by high-temperature damage in the 303 stainless steel, and outlined that the experimental study of high-temperature damage implies the study of the sane (or non damaged) material, the study of micro-voids germination, growth and coalescence, and the study of the material failure process, the author of this research thesis reports a bibliographical study on the behaviour of sane re-sulfurized stainless steel and different damage models. He presents experimental techniques (thermal-mechanical compression and tensile tests, image analysis in optical microscopy) which have been used in this work, and describes and comments results obtained on axisymmetric samples for micro-void germination, growth and coalescence in case of a damage under low and medium stress triaxiality. The last part addresses the study of the damage of strongly notched samples (stress triaxialities close to those existing at the crack bottom) [fr

  2. Material property changes of stainless steels under PWR irradiation

    International Nuclear Information System (INIS)

    Fukuya, Koji; Nishioka, Hiromasa; Fujii, Katsuhiko; Kamaya, Masayuki; Miura, Terumitsu; Torimaru, Tadahiko

    2009-01-01

    Structural integrity of core structural materials is one of the key issues for long and safe operation of pressurized water reactors. The stainless steel components are exposed to neutron irradiation and high-temperature water, which cause significant property changes and irradiation assisted stress corrosion cracking (IASCC) in some cases. Understanding of irradiation induced material property changes is essential to predict integrity of core components. In the present study, microstructure and microchemistry, mechanical properties, and IASCC behavior were examined in 316 stainless steels irradiated to 1 - 73 dpa in a PWR. Dose-dependent changes of dislocation loops and cavities, grain boundary segregation, tensile properties and fracture mode, deformation behavior, and their interrelation were discussed. Tensile properties and deformation behavior were well coincident with microstructural changes. IASCC susceptibility under slow strain rate tensile tests, IASCC initiation under constant load tests in simulated PWR primary water, and their relationship to material changes were discussed. (author)

  3. Infrared electro-thermal NDE of stainless steel

    International Nuclear Information System (INIS)

    Green, D.R.; Hassberger, J.A.

    1975-01-01

    Electro-thermal examination, a branch of thermal testing, is a promising method being developed for nondestructive examination of stainless steel welds. This paper describes the first phase of development; i.e., preliminary demonstration and laboratory evaluation of the method's sensitivity to notches in Type 304 stainless steel plate specimens. It also includes a description of the basic principles, together with a description of the hardware and experimental results showing that electrical discharge machined notches down to 0.16 cm long x 0.08 cm deep were detected. A qualitative technique for interpreting the test results to determine whether defects are at the surface or deeper within the material is demonstrated

  4. Milling and Drilling Evaluation of Stainless Steel Powder Metallurgy Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, L.J.

    2001-12-10

    Near-net-shape components can be made with powder metallurgy (PM) processes. Only secondary operations such as milling and drilling are required to complete these components. In the past and currently production components are made from powder metallurgy (PM) stainless steel alloys. process engineers are unfamiliar with the difference in machining properties of wrought versus PM alloys and have had to make parts to develop the machining parameters. Design engineers are not generally aware that some PM alloy variations can be furnished with machining additives that greatly increase tool life. Specimens from a MANTEC PM alloy property study were made available. This study was undertaken to determine the machining properties of a number of stainless steel wrought and PM alloys under the same conditions so that comparisons of their machining properties could be made and relative tool life determined.

  5. High purity ferritic Cr-Mo stainless steel

    International Nuclear Information System (INIS)

    Knoth, J.

    1977-01-01

    In five years, E-BRITE 26-1 ferritic stainless steel has won an important place in the spectrum of materials suitable for use in chemical process equipment. It provides, in stainless steel, performance-capability characteristics comparable to more expensive alloys. It has demonstrated cost-effectiveness in equipment used for caustic, nitric-urea, organic chemicals, pulping liquors, refinery streams, and elsewhere. User confidence in the reliability and integrity of Grade XM 27 has increased to the point where large critical systems are now routinely specified in the alloy. The market acceptance of this material has attracted attempts to produce substitute versions of the alloy. Imitation, should be viewed with caution. Stabilized 26-IS must be examined over a lengthy period of time to determine if its own corrosion resistance, ductility, fabricability and reproducibility properties could ever be likened to those of E-BRITE 26-1. (orig.) [de

  6. Aging in PWR conditions of martensitic stainless steels

    International Nuclear Information System (INIS)

    Boursier, J.M.; Buisine, D.; Fronteau, M.; Michel, D.; Rouillon, Y.; Yrieix, B.; Meyzaud, Y.

    1998-01-01

    Martensitic stainless steels are largely used in Nuclear Power Plant (pump impeller, valve stem...) because of their high mechanical characteristics and their good resistance to corrosion. Nevertheless some of those components could operate at temperature higher than 250 deg.C, which could embrittle the material by the precipitation of a chromium-rich phase during aging. In collaboration with Framatome, Electricite de France has undertaken numerous studies in order to understand this process of embrittlement. This paper presents a review of the metallurgical investigations on martensitic stainless steels components which were performed in the EDF hot laboratory. In peculiar, it should be noted the good correlation between inservice experience and the modelling developed by EDF R and D division. Finally and in association with safety analysis, these results will allow to establish the maintenance strategy of the French Nuclear Power Plants. (authors)

  7. Solute strengthening effects for 316 stainless steel at elevated temperature

    International Nuclear Information System (INIS)

    Park, Nam Ju; Lee, Sang Mae

    1986-01-01

    The inelastic behavior of 316 stainless steel is studied in order to investigate the solute strengthening effects. The Arrhenius-type rate equation with inclusion of the Voce-type evolution phenomenon is extended by addition of solute strengthening term to the isotropic work hardening effect. Changing of strain rate and temperature during the tension tests, we found that the strong work hardening for the inelastic of 316 stainless steel resulted from the vacancy-interstitial pair mechanism. Thus, the calculated results using the extended constitutive equations including solute effect due to the vacancy-interstitial pair mechanism were found to be in good agreement with the stress-strain curves obtained from the tension tests. (Author)

  8. Resistance microwelding of 316L stainless steel wire to block

    DEFF Research Database (Denmark)

    Friis, Kasper Storgaard; Khan, M.I.; Bay, Niels

    2011-01-01

    The excellent corrosion resistance of low carbon vacuum melted 316 stainless steel coupled with its non-magnetic properties makes it ideal for biomedical applications. The typical joint geometry for microcomponents, such as medical implants, includes joining of fine wire to a larger block. However......, this type of joint has received little attention in the current literature. The present study was conducted to examine the microstructure and mechanical properties of low carbon vacuum melted 316 stainless steel wire welded to a larger block. Results revealed solid state bonding occurring at low currents......, while fusion bonding occurred at higher currents. This was due to the highly asymmetrical heat generation resulting in almost complete melting of the wire before the initiation of interfacial melting. This is a distinctly different bonding mechanism compared to previous studies on crossed wire joints....

  9. Multilayer modelling of stainless steel with a nanocrystallised superficial layer

    Energy Technology Data Exchange (ETDEWEB)

    Petit, J. [Laboratoire Energetique Mecanique Electromagnetisme (LEME), EA4416, Universite Paris Ouest, 92410 Ville d' Avray (France); Waltz, L., E-mail: laurent.waltz@univ-montp2.fr [Laboratoire de Mecanique et Genie Civil de Montpellier (LMGC), University of Montpellier II, Place Eugene Bataillon, 34000 Montpellier (France); Montay, G.; Retraint, D.; Roos, A.; Francois, M. [Institut Charles Delaunay - LASMIS, UMR CNRS 6279, University of Technology of Troyes, 10010 Troyes (France)

    2012-02-28

    Highlights: Black-Right-Pointing-Pointer SMAT has been used for nanocrystallisation of an austenitic stainless steel. Black-Right-Pointing-Pointer The mechanical response of the nano-phase has been obtained by an indirect method. Black-Right-Pointing-Pointer Minimisation of a stress formulated objective function. Black-Right-Pointing-Pointer The model predicts the strain at which diffuse necking occurs. - Abstract: In order to obtain the macroscopic mechanical response of a 316L stainless steel, nanocrystallised by Surface Mechanical Attrition Treatment (SMAT), a multilayer model is proposed. The constitutive behaviour of each layer is determined from tensile tests or by an inverse method and its thickness is evaluated from Scanning and Transmission Electron Microscopy (SEM and TEM) analyses and local hardness measurements. The consistency of the model is verified by its ability to predict the strain at which diffuse necking occurs.

  10. PITTING CORROSION OF STAINLESS STEEL AT THE VARIOUS SURFACE TREATMENT

    Directory of Open Access Journals (Sweden)

    Viera Zatkalíková

    2011-09-01

    Full Text Available The stainless steel surface treatment is very important with regard to its pitting corrosion susceptibility. An effect of various types surfacing on pitting corrosion resistance of AISI 304stainless steel is investigated in this work. The samples of the tested material are turned, blasted, peened, grinded and a half of them are pickled to achieve higher purity of surfaces and better quality of passive film. Eight types of different finished surfaces are tested by electrochemical and immersion tests to determine corrosion behaviour in conditions where pitting is evoked by controlled potential and second by solution with high redox potential. By this way the effect of mechanical and chemical surface treatment on the resistance to pitting corrosion, character, size and shape of pits are compared in the conditions of different mechanisms of corrosion process.

  11. Inhibition of Sodium Benzoate on Stainless Steel in Tropical Seawater

    International Nuclear Information System (INIS)

    Seoh, S. Y.; Senin, H. B.; Nik, W. N. Wan; Amin, M. M.

    2007-01-01

    The inhibition of sodium benzoate for stainless steel controlling corrosion was studied in seawater at room temperature. Three sets of sample have been immersed in seawater containing sodium benzoate with the concentrations of 0.3M, 0.6M and 1.0M respectively. One set of sample has been immersed in seawater without adding any sodium benzoate. It was found that the highest corrosion rate was observed for the stainless steel with no inhibitor was added to the seawater. As the concentration of sodium benzoate being increased, the corrosion rate is decreases. Results show that by the addition of 1.0M of sodium benzoate in seawater samples, it giving ≥ 90% efficiencies

  12. Cathodic properties of different stainless steels in natural seawater

    International Nuclear Information System (INIS)

    Johnsen, R.; Bardal, E.

    1985-01-01

    The cathodic properties of a number of stainless steels, which were exposed to natural seawater flowing at 0 to 2.5 m/s and polarized to potentials from -300 to -950 mV SCE, have been studied. The current density development at constant potential and the free corrosion potential during the exposure time were recorded continuously. At the end of the exposure period, after approximately 28 to 36 days of exposure, polarization curves were determined. After one to three weeks of exposure, depending on the water velocity, microbiological activity on the surface caused an increase in the current density requirement of the specimen. An explanation for the mechanism behind the current density increase caused by slime production from marine bacteria may be increased exchange current density, i 0 . There was no measurable calcareous deposit on the stainless steel surfaces at the end of the exposure periods

  13. Biomaterials. The Behavior of Stainless Steel as a Biomaterial

    Directory of Open Access Journals (Sweden)

    Sanda VISAN

    2011-06-01

    Full Text Available The biomaterials belong to the broad range of biocompatible chemical substances (sometimes even an element, which can be used for a period of time to treat or replace a tissue, organ or function of the human body. These materials bring many advantages in the diagnosis, prevention and medical therapy, reducing downtime for patients, restoring their biological functions, improving hospital management. The market in Romania sells a wide range of biomaterials for dental, cardiovascular medicine, renal, etc. Scientific research contributes to the discovery of new biomaterials or testing known biomaterials, for finding new applications. The paper exemplifies this contribution by presenting the testing of passive stainless steel behaviour in albumin solution using technique of cyclic voltammetry. It was shown that passivation contribute to increased stability of stainless steel implants to corrosive body fluids.

  14. SCC-induced failure of a 304 stainless steel pipe

    International Nuclear Information System (INIS)

    Tapping, R.L.; Disney, D.J.; Szostak, F.J.

    1993-01-01

    On 1991 January 12, a 304 Stainless Steel (SS) suction line in the AECL-Research NRU reactor failed, shutting down the reactor for approximately 12 months. The pipe, a 32 mm schedule 40 304 stainless steel line exposed to D 2 O at temperatures ≤35 degrees C had been in service for approximately 20 years, although no manufacturing data or composition specifications were available. The failure and resultant leak resulted in a small loss of D 2 O moderator from the reactor vessel. The pipe cracked approximately 180 degrees C around the circumference of a weld. This failure was unexpected and hense a thorough metallographic examination was carried out on the failed section, on the rest of the line (Line 1212), and on representative samples from the rest of the reactor in order to assess the integrity of the remaining piping

  15. New hermetic sealing material for vacuum brazing of stainless steels

    International Nuclear Information System (INIS)

    Hildebrandt, S; Wiehl, G; Silze, F

    2016-01-01

    For vacuum brazing applications such as in vacuum interrupter industry Hermetic Sealing Materials (HSM) with low partial pressure are widely used. AgCu28 dominates the hermetic sealing market, as it has a very good wetting behavior on copper and metallized ceramics. Within recent decades wetting on stainless steel has become more and more important. However, today the silver content of HSMs is more in focus than in the past decades, because it has the biggest impact on the material prices. Umicore Technical Materials has developed a new copper based HSM, CuAg40Ga10. The wettability on stainless steel is significantly improved compared to AgCu28 and the total silver content is reduced by almost 44%. In this article the physical properties of the alloy and its brazed joints will be presented compared to AgCu28. (paper)

  16. Magnetic properties of the austenitic stainless steels at cryogenic temperatures

    International Nuclear Information System (INIS)

    Kobayashi, T.; Tsuchiya, K.; Itoh, K.; Kobayashi, S.

    2002-01-01

    The magnetization was measured for the austenitic stainless steel of SUS304, SUS304L, SUS316, and SUS316L with the temperature from 5K to 300K and the magnetic field from 0T to 10T. The field dependences of the magnetizations changed at about 0.7T and 4T. The dependence was analyzed with ranges of 0-0.5T, 1-3T, and 5-10T. There was not so much difference between those stainless steels for the usage at small fields and 300 K. The SUS316 and SUS316L samples showed large non-linearity at high fields and 5K. Therefore, SUS304 was recommended for usage at high fields and low temperatures to design superconducting magnets with the linear approximation of the field dependence of magnetization

  17. Experiment on electrolysis decontamination of stainless steel pipes

    International Nuclear Information System (INIS)

    Wang Dongwen; Dou Tianjun; Zhao Yujie

    2004-01-01

    A new electrolytic decontamination method used metal balls as conducting anode was investigated. The influences of current density, solution property and diameter of pipes on efficiency of electrolytic decontamination were examined and the efficiency of this method was compared with that of common electrolytic method under the same experimental conditions. Decontamination of samples of stainless steel pipes contaminated by plutonium was performed. Experimental results indicate that decontamination of stainless steel pipes contaminated by plutonium can be achieved at the optimum conditions of greater than 0.2 A·cm -2 current density, 5% sulfuric acid electrolyte and 5 min electrolysis. This method can be used in the decontamination of a wide variety of decommissioned metal materials. (author)

  18. Technique to eliminate helium induced weld cracking in stainless steels

    International Nuclear Information System (INIS)

    Chin-An Wang; Chin, B.A.

    1992-01-01

    Experiments have shown that Type 316 stainless steel is susceptible to heat-affected-zone (HAZ) cracking upon cooling when welded using the gas tungsten arc (GTA) process under lateral constraint. The cracking has been hypothesized to be caused by stress-assisted helium bubble growth and rupture at grain boundaries. This study utilized an experimental welding setup which enabled different compressive stresses to be applied to the plates during welding. Autogenous GTA welds were produced in Type 316 stainless steel doped with 256 appm helium. The application of a compressive stress, 55 Mpa, during welding suppressed the previously observed catastrophic cracking. Detailed examinations conducted after welding showed a dramatic change in helium bubble morphology. Grain boundary bubble growth along directions parallel to the weld was suppressed. Results suggest that stress-modified welding techniques may be used to suppress or eliminate helium-induced cracking during joining of irradiated materials

  19. Increased recombination of CH3 radicals on stainless steel

    International Nuclear Information System (INIS)

    Gorodetsky, A.E.; Zalavutdinov, R.Kh.; Zakharov, A.P.; Vnukov, S.P.; Varshavskaya, I.G.; Makhankov, A.N.; Mazul, I.V.; Federici, G.

    2005-01-01

    By using a so-called 'stream technique', which consists of flowing gas in laminar regime along a quartz tube, we determine that CH 3 radicals are completely removed from the pumped mixture (CH 4 /C X H Y /H 2 /H/CH 3 ) after several hundred collisions with the inner surface of a stainless steel insert (T = 380-470 K). The methyl sticking coefficient decreased to ∼10 -6 and the recombination coefficient increased up to ∼0.01 at impingement with the metal surface. After passing through the heated zone no hydrocarbon deposition occurred at 300 K. However, unsaturated hydrocarbons, which formed in discharge zone and appeared as a result of interaction of radicals with stainless steel, condensed in a liquid phase at a temperature of ∼130 K and partial pressure of 0.01-0.1 Pa. Liquid films underwent partial polymerization and formed island deposits, which were stable at 300 K

  20. Electroless Plated Nanodiamond Coating for Stainless Steel Passivation

    Energy Technology Data Exchange (ETDEWEB)

    Li, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Korinko, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Spencer, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Stein, E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-15

    Tritium gas sample bottles and manifold components require passivation surface treatments to minimize the interaction of the hydrogen isotopes with surface contamination on the stainless steel containment materials. This document summarizes the effort to evaluate electroless plated nanodiamond coatings as a passivation layer for stainless steel. In this work, we developed an electroless nanodiamond (ND)-copper (Cu) coating process to deposit ND on stainless steel parts with the diamond loadings of 0%, 25% and 50% v/v in a Cu matrix. The coated Conflat Flanged Vessel Assemblies (CFVAs) were evaluated on surface morphology, composition, ND distribution, residual hydrogen release, and surface reactivity with deuterium. For as-received Cu and ND-Cu coated CFVAs, hydrogen off-gassing is rapid, and the off-gas rates of H2 was one to two orders of magnitude higher than that for both untreated and electropolished stainless steel CFVAs, and hydrogen and deuterium reacted to form HD as well. These results indicated that residual H2 was entrapped in the Cu and ND-Cu coated CFVAs during the coating process, and moisture was adsorbed on the surface, and ND and/or Cu might facilitate catalytic isotope exchange reaction for HD formation. However, hydrocarbons (i.e., CH3) did not form, and did not appear to be an issue for the Cu and ND-Cu coated CFVAs. After vacuum heating, residual H2 and adsorbed H2O in the Cu and ND-Cu coated CFVAs were dramatically reduced. The H2 off-gassing rate after the vacuum treatment of Cu and 50% ND-Cu coated CFVAs was on the level of 10-14 l mbar/s cm2, while H2O off-gas rate was on the level of 10-15 l mbar/s cm2, consistent with the untreated or electropolished stainless steel CFVA, but the HD formation remained. The Restek EP bottle was used as a reference for this work. The Restek Electro-Polished (EP) bottle and their Sil