WorldWideScience

Sample records for stained collagen fibrils

  1. Fracture mechanics of collagen fibrils

    DEFF Research Database (Denmark)

    Svensson, Rene B; Mulder, Hindrik; Kovanen, Vuokko

    2013-01-01

    Tendons are important load-bearing structures, which are frequently injured in both sports and work. Type I collagen fibrils are the primary components of tendons and carry most of the mechanical loads experienced by the tissue, however, knowledge of how load is transmitted between and within...... fibrils is limited. The presence of covalent enzymatic cross-links between collagen molecules is an important factor that has been shown to influence mechanical behavior of the tendons. To improve our understanding of how molecular bonds translate into tendon mechanics, we used an atomic force microscopy...... technique to measure the mechanical behavior of individual collagen fibrils loaded to failure. Fibrils from human patellar tendons, rat-tail tendons (RTTs), NaBH₄ reduced RTTs, and tail tendons of Zucker diabetic fat rats were tested. We found a characteristic three-phase stress-strain behavior in the human...

  2. Alginate-Collagen Fibril Composite Hydrogel

    Directory of Open Access Journals (Sweden)

    Mahmoud Baniasadi

    2015-02-01

    Full Text Available We report on the synthesis and the mechanical characterization of an alginate-collagen fibril composite hydrogel. Native type I collagen fibrils were used to synthesize the fibrous composite hydrogel. We characterized the mechanical properties of the fabricated fibrous hydrogel using tensile testing; rheometry and atomic force microscope (AFM-based nanoindentation experiments. The results show that addition of type I collagen fibrils improves the rheological and indentation properties of the hydrogel.

  3. Chondroitin Sulfate Perlecan Enhances Collagen Fibril Formation

    DEFF Research Database (Denmark)

    Kvist, A. J.; Johnson, A. E.; Mörgelin, M.

    2006-01-01

    in collagen type II fibril assembly by perlecan-null chondrocytes. Cartilage perlecan is a heparin sulfate or a mixed heparan sulfate/chondroitin sulfate proteoglycan. The latter form binds collagen and accelerates fibril formation in vitro, with more defined fibril morphology and increased fibril diameters...... produced in the presence of perlecan. Interestingly, the enhancement of collagen fibril formation is independent on the core protein and is mimicked by chondroitin sulfate E but neither by chondroitin sulfate D nor dextran sulfate. Furthermore, perlecan chondroitin sulfate contains the 4,6-disulfated...... disaccharides typical for chondroitin sulfate E. Indeed, purified glycosaminoglycans from perlecan-enriched fractions of cartilage extracts contain elevated levels of 4,6-disulfated chondroitin sulfate disaccharides and enhance collagen fibril formation. The effect on collagen assembly is proportional...

  4. Collagen Fibrils: Nature's Highly Tunable Nonlinear Springs.

    Science.gov (United States)

    Andriotis, Orestis G; Desissaire, Sylvia; Thurner, Philipp J

    2018-03-21

    Tissue hydration is well known to influence tissue mechanics and can be tuned via osmotic pressure. Collagen fibrils are nature's nanoscale building blocks to achieve biomechanical function in a broad range of biological tissues and across many species. Intrafibrillar covalent cross-links have long been thought to play a pivotal role in collagen fibril elasticity, but predominantly at large, far from physiological, strains. Performing nanotensile experiments of collagen fibrils at varying hydration levels by adjusting osmotic pressure in situ during atomic force microscopy experiments, we show the power the intrafibrillar noncovalent interactions have for defining collagen fibril tensile elasticity at low fibril strains. Nanomechanical tensile tests reveal that osmotic pressure increases collagen fibril stiffness up to 24-fold in transverse (nanoindentation) and up to 6-fold in the longitudinal direction (tension), compared to physiological saline in a reversible fashion. We attribute the stiffening to the density and strength of weak intermolecular forces tuned by hydration and hence collagen packing density. This reversible mechanism may be employed by cells to alter their mechanical microenvironment in a reversible manner. The mechanism could also be translated to tissue engineering approaches for customizing scaffold mechanics in spatially resolved fashion, and it may help explain local mechanical changes during development of diseases and inflammation.

  5. Uniform spatial distribution of collagen fibril radii within tendon implies local activation of pC-collagen at individual fibrils

    Science.gov (United States)

    Rutenberg, Andrew D.; Brown, Aidan I.; Kreplak, Laurent

    2016-08-01

    Collagen fibril cross-sectional radii show no systematic variation between the interior and the periphery of fibril bundles, indicating an effectively constant rate of collagen incorporation into fibrils throughout the bundle. Such spatially homogeneous incorporation constrains the extracellular diffusion of collagen precursors from sources at the bundle boundary to sinks at the growing fibrils. With a coarse-grained diffusion equation we determine stringent bounds, using parameters extracted from published experimental measurements of tendon development. From the lack of new fibril formation after birth, we further require that the concentration of diffusing precursors stays below the critical concentration for fibril nucleation. We find that the combination of the diffusive bound, which requires larger concentrations to ensure homogeneous fibril radii, and lack of nucleation, which requires lower concentrations, is only marginally consistent with fully processed collagen using conservative bounds. More realistic bounds may leave no consistent concentrations. Therefore, we propose that unprocessed pC-collagen diffuses from the bundle periphery followed by local C-proteinase activity and subsequent collagen incorporation at each fibril. We suggest that C-proteinase is localized within bundles, at fibril surfaces, during radial fibrillar growth. The much greater critical concentration of pC-collagen, as compared to fully processed collagen, then provides broad consistency between homogeneous fibril radii and the lack of fibril nucleation during fibril growth.

  6. Stabilization and anomalous hydration of collagen fibril under heating.

    Directory of Open Access Journals (Sweden)

    Sasun G Gevorkian

    Full Text Available BACKGROUND: Type I collagen is the most common protein among higher vertebrates. It forms the basis of fibrous connective tissues (tendon, chord, skin, bones and ensures mechanical stability and strength of these tissues. It is known, however, that separate triple-helical collagen macromolecules are unstable at physiological temperatures. We want to understand the mechanism of collagen stability at the intermolecular level. To this end, we study the collagen fibril, an intermediate level in the collagen hierarchy between triple-helical macromolecule and tendon. METHODOLOGY/PRINCIPAL FINDING: When heating a native fibril sample, its Young's modulus decreases in temperature range 20-58°C due to partial denaturation of triple-helices, but it is approximately constant at 58-75°C, because of stabilization by inter-molecular interactions. The stabilization temperature range 58-75°C has two further important features: here the fibril absorbs water under heating and the internal friction displays a peak. We relate these experimental findings to restructuring of collagen triple-helices in fibril. A theoretical description of the experimental results is provided via a generalization of the standard Zimm-Bragg model for the helix-coil transition. It takes into account intermolecular interactions of collagen triple-helices in fibril and describes water adsorption via the Langmuir mechanism. CONCLUSION/SIGNIFICANCE: We uncovered an inter-molecular mechanism that stabilizes the fibril made of unstable collagen macromolecules. This mechanism can be relevant for explaining stability of collagen.

  7. Visualisation of collagen fibrils in joint cartilage using STIM

    International Nuclear Information System (INIS)

    Reinert, T.; Reibetanz, U.; Vogt, J.; Butz, T.; Werner, A.; Gruender, W.

    2001-01-01

    The scanning transmission ion microscopy (STIM) method was used to investigate the collagen network structure of the articular cartilage from a pig's knee in comparison with high resolution nuclear magnetic resonance imaging (microscopic NMR-tomography) and polarised light microscopy (PLM). Single collagen fibrils down to 200 nm in diameter were visualised. It was proved that the cartilage collagen network consists partly of zones of oriented fibrils as suggested by NMR measurements. Radially oriented fibrils were found in the zone near the calcified zone (hypertrophic zone) of both tibia and femur, and in the tibial radial zone. Tangentially oriented fibrils were found in the femoral and tibial superficial zone and in a second zone of the femoral cartilage. Polarisation light microscopy reveals broader zones of orientation than it was found with STIM

  8. Evidence of structurally continuous collagen fibrils in tendon

    DEFF Research Database (Denmark)

    Svensson, Rene B; Herchenhan, Andreas; Starborg, Tobias

    2017-01-01

    favor continuity. This study initially set out to trace the full length of individual fibrils in adult human tendons, using serial block face-scanning electron microscopy. But even with this advanced technique the required length could not be covered. Instead a statistical approach was used on a large...... volume of fibrils in shorter image stacks. Only a single end was observed after tracking 67.5 mm of combined fibril lengths, in support of fibril continuity. To shed more light on this observation, the full length of a short tendon (mouse stapedius, 125 μm) was investigated and continuity of individual...... fibrils was confirmed. In light of these results, possible mechanisms that could reconcile the opposing findings on fibril continuity are discussed. STATEMENT OF SIGNIFICANCE: Connective tissues hold all parts of the body together and are mostly constructed from thin threads of the protein collagen...

  9. Nanomechanical mapping of hydrated rat tail tendon collagen I fibrils.

    Science.gov (United States)

    Baldwin, Samuel J; Quigley, Andrew S; Clegg, Charlotte; Kreplak, Laurent

    2014-10-21

    Collagen fibrils play an important role in the human body, providing tensile strength to connective tissues. These fibrils are characterized by a banding pattern with a D-period of 67 nm. The proposed origin of the D-period is the internal staggering of tropocollagen molecules within the fibril, leading to gap and overlap regions and a corresponding periodic density fluctuation. Using an atomic force microscope high-resolution modulus maps of collagen fibril segments, up to 80 μm in length, were acquired at indentation speeds around 10(5) nm/s. The maps revealed a periodic modulation corresponding to the D-period as well as previously undocumented micrometer scale fluctuations. Further analysis revealed a 4/5, gap/overlap, ratio in the measured modulus providing further support for the quarter-staggered model of collagen fibril axial structure. The modulus values obtained at indentation speeds around 10(5) nm/s are significantly larger than those previously reported. Probing the effect of indentation speed over four decades reveals two distinct logarithmic regimes of the measured modulus and point to the existence of a characteristic molecular relaxation time around 0.1 ms. Furthermore, collagen fibrils exposed to temperatures between 50 and 62°C and cooled back to room temperature show a sharp decrease in modulus and a sharp increase in fibril diameter. This is also associated with a disappearance of the D-period and the appearance of twisted subfibrils with a pitch in the micrometer range. Based on all these data and a similar behavior observed for cross-linked polymer networks below the glass transition temperature, we propose that collagen I fibrils may be in a glassy state while hydrated.

  10. Viscoelastic behavior of discrete human collagen fibrils

    DEFF Research Database (Denmark)

    Svensson, Rene; Hassenkam, Tue; P, Hansen

    2010-01-01

    Whole tendon and fibril bundles display viscoelastic behavior, but to the best of our knowledge this property has not been directly measured in single human tendon fibrils. In the present work an atomic force microscopy (AFM) approach was used for tensile testing of two human patellar tendon fibr...

  11. Effect of Mechanical Stretching of the Skin on Collagen Fibril ...

    African Journals Online (AJOL)

    Dell

    MATERIALS AND METHODS. In vitro Skin Incubation. Samples of tissue were .... experimentally obtained melting curves. Calculation of the entropy of denaturation was ... Temperature (TD), enthalpy (ΔH) and entropy (ΔS) of denaturation of fibrils formed from type I collagen synthesized in the skin in the absence of tensile ...

  12. Viscoelastic behavior of discrete human collagen fibrils

    DEFF Research Database (Denmark)

    Svensson, René; Hassenkam, Tue; Hansen, Philip

    2010-01-01

    Whole tendon and fibril bundles display viscoelastic behavior, but to the best of our knowledge this property has not been directly measured in single human tendon fibrils. In the present work an atomic force microscopy (AFM) approach was used for tensile testing of two human patellar tendon...... saline, cyclic testing was performed in the pre-yield region at different strain rates, and the elastic response was determined by a stepwise stress relaxation test. The elastic stress-strain response corresponded to a second-order polynomial fit, while the viscous response showed a linear dependence...

  13. Artificially modified collagen fibril orientation affects leather tear strength.

    Science.gov (United States)

    Kelly, Susyn J; Wells, Hannah C; Sizeland, Katie H; Kirby, Nigel; Edmonds, Richard L; Ryan, Tim; Hawley, Adrian; Mudie, Stephen; Haverkamp, Richard G

    2018-07-01

    Ovine leather has around half the tear strength of bovine leather and is therefore not suitable for high-value applications such as shoes. Tear strength has been correlated with the natural collagen fibril alignment (orientation index, OI). It is hypothesized that it could be possible to artificially increase the OI of the collagen fibrils and that an artificial increase in OI could increase tear strength. Ovine skins, after pickling and bating, were strained biaxially during chrome tanning. The strain ranged from 2 to 15% of the initial sample length, either uniformly in both directions by 10% or with 3% in one direction and 15% in the other. Once tanned, the leather tear strengths were measured and the collagen fibril orientation was measured using synchrotron-based small-angle X-ray scattering. The OI increased as a result of strain during tanning from 0.48 to 0.79 (P = 0.001) measured edge-on and the thickness-normalized tear strength increased from 27 to 43 N mm -1 (P leather was strained 10% in two orthogonal directions. This is evidence to support a causal relationship between high OI (measured edge-on), highly influenced by thickness, and tear strength. It also provides a method to produce stronger leather. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Effects of isopropanol on collagen fibrils in new parchment

    Directory of Open Access Journals (Sweden)

    Gonzalez Lee G

    2012-03-01

    Full Text Available Abstract Background Isopropanol is widely used by conservators to relax the creases and folds of parchment artefacts. At present, little is known of the possible side effects of the chemical on parchments main structural component- collagen. This study uses X-ray Diffraction to investigate the effects of a range of isopropanol concentrations on the dimensions of the nanostructure of the collagen component of new parchment. Results It is found in this study that the packing features of the collagen molecules within the collagen fibril are altered by exposure to isopropanol. The results suggest that this chemical treatment can induce a loss of structural water from the collagen within parchment and thus a rearrangement of intermolecular bonding. This study also finds that the effects of isopropanol treatment are permanent to parchment artefacts and cannot be reversed with rehydration using deionised water. Conclusions This study has shown that isopropanol induces permanent changes to the packing features of collagen within parchment artefacts and has provided scientific evidence that its use to remove creases and folds on parchment artefacts will cause structural change that may contribute to long-term deterioration of parchment artefacts. This work provides valuable information that informs conservation practitioners regarding the use of isopropanol on parchment artefacts.

  15. Structure–mechanics relationships of collagen fibrils in the osteogenesis imperfecta mouse model

    Science.gov (United States)

    Andriotis, O. G.; Chang, S. W.; Vanleene, M.; Howarth, P. H.; Davies, D. E.; Shefelbine, S. J.; Buehler, M. J.; Thurner, P. J.

    2015-01-01

    The collagen molecule, which is the building block of collagen fibrils, is a triple helix of two α1(I) chains and one α2(I) chain. However, in the severe mouse model of osteogenesis imperfecta (OIM), deletion of the COL1A2 gene results in the substitution of the α2(I) chain by one α1(I) chain. As this substitution severely impairs the structure and mechanics of collagen-rich tissues at the tissue and organ level, the main aim of this study was to investigate how the structure and mechanics are altered in OIM collagen fibrils. Comparing results from atomic force microscopy imaging and cantilever-based nanoindentation on collagen fibrils from OIM and wild-type (WT) animals, we found a 33% lower indentation modulus in OIM when air-dried (bound water present) and an almost fivefold higher indentation modulus in OIM collagen fibrils when fully hydrated (bound and unbound water present) in phosphate-buffered saline solution (PBS) compared with WT collagen fibrils. These mechanical changes were accompanied by an impaired swelling upon hydration within PBS. Our experimental and atomistic simulation results show how the structure and mechanics are altered at the individual collagen fibril level as a result of collagen gene mutation in OIM. We envisage that the combination of experimental and modelling approaches could allow mechanical phenotyping at the collagen fibril level of virtually any alteration of collagen structure or chemistry. PMID:26468064

  16. Age-related changes in human tendo calcaneus collagen fibrils

    International Nuclear Information System (INIS)

    Sargon, Mustafa F.; Ozlu, Korhan; Oken, Fuad

    2005-01-01

    The ruptures of tendo calcaneus often occur between the age group of 30-45 years as described by several text books. It is also described that some diseases and drugs are said to be responsible in the etiology; however, there are no studies related with the detailed histological structure of collagen fibrils found in the tendon in the age groups of humans. In view there of, this study was aimed to obtain further information on the etiology and to find an answer regarding the frequency the ruptures occurring between the age of 30-45 years in human. In the study, the biopsy specimen taken from 28 patients age (1-68) years who had undergone surgery due to tendo calcaneus ruptures or acilloplasty operations were examined by transmission electron microscope. All the specimens were prepared according to routine electronic microscope tissue preparation technique. The patients were divided into 7 age groups (1-9, 10-19, 20-29, 30-39, 40-49, 50-59, >60 years) and there were 4 patients in each group. The transverse diameters of collagen fibers were measured from the ultra thin sections and statistical analysis of the results were performed. The study was carried out in the electron microscopy laboratory of the Anatomy Department of Hacettepe University, Ankara, Turkey between January 2004 and September 2004. The diameters of the collagen fibers were higher in the 20-29 year-old groups compared to other groups and it showed a statistically significant difference. In patients who were in the 30-39 year old group or older, the diameters of the collagen fibers were lesser than the 20-29 year-old group. However, an increase was observed in the collagen fibril concentration of these groups. In examination of the specimens of patients who were under 20-year old, the diameter of the collagen fibers were less than 20-29 year -old group. The electron microscopic appearance of the tissue sample of a one year-old patient had a specific organization and in this patient, both the

  17. Determination of collagen fibril structure and orientation in connective tissues by X-ray diffraction

    Science.gov (United States)

    Wilkinson, S. J.; Hukins, D. W. L.

    1999-08-01

    Elastic scattering of X-rays can provide the following information on the fibrous protein collagen: its molecular structure, the axial arrangement of rod-like collagen molecules in a fibril, the lateral arrangement of molecules within a fibril, and the orientation of fibrils within a biological tissue. The first part of the paper reviews the principles involved in deducing this information. The second part describes a new computer program for measuring the equatorial intensity distribution, that provides information on the lateral arrangement of molecules within a fibril, and the angular distribution of the equatorial peaks that provides information on the orientation of fibrils. Orientation of fibrils within a tissue is quantified by the orientation distribution function, g( φ), which represents the probability of finding a fibril oriented between φ and φ+ δφ. The application of the program is illustrated by measurement of g( φ) for the collagen fibrils in demineralised cortical bone from cow tibia.

  18. Disintegration of collagen fibrils by Glucono-δ-lactone: An implied lead for disintegration of fibrosis.

    Science.gov (United States)

    Jayamani, Jayaraman; Ravikanth Reddy, R; Madhan, Balaraman; Shanmugam, Ganesh

    2018-02-01

    Excess accumulation of collagen (fibrosis) undergoes self-aggregation, which leads to fibrillar collagen, on the extracellular matrix is the hallmark of a number of diseases such as keloids, hypertrophic scars, and systemic scleroderma. Direct inhibition or disintegration of collagen fibrils by small molecules offer a therapeutic approach to prevent or treat the diseases related to fibrosis. Herein, the anti-fibrotic property of Glucono-δ-lactone (GdL), known as acidifier, on the fibrillation and its disintegration of collagen was investigated. As collagen fibrillation is pH dependent, the pH modulation property of GdL is attractive to inhibit self-association of collagen. Optical density and microscopic data indicate that GdL elicits concentration-dependent fibril inhibition and also disintegrates pre-formed collagen fibrils. The simultaneous pH analysis showed that the modulation(lowering) of pH by GdL is the primary cause for its anti-fibrotic activity. The intact triple helical structure of collagen upon treatment of GdL suggests that collagen fibril disintegration can be achieved without affecting the native structure of collagen which is essential for any anti-fibrotic agents. Saturation transfer difference (STD) NMR result reveals that GdL is in proximity to collagen. The present results thus suggest that GdL provides a lead to design novel anti-fibrotic agents for the pathologies related to collagen deposition. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Relative orientation of collagen molecules within a fibril: a homology model for homo sapiens type I collagen.

    Science.gov (United States)

    Collier, Thomas A; Nash, Anthony; Birch, Helen L; de Leeuw, Nora H

    2018-02-15

    Type I collagen is an essential extracellular protein that plays an important structural role in tissues that require high tensile strength. However, owing to the molecule's size, to date no experimental structural data are available for the Homo sapiens species. Therefore, there is a real need to develop a reliable homology model and a method to study the packing of the collagen molecules within the fibril. Through the use of the homology model and implementation of a novel simulation technique, we have ascertained the orientations of the collagen molecules within a fibril, which is currently below the resolution limit of experimental techniques. The longitudinal orientation of collagen molecules within a fibril has a significant effect on the mechanical and biological properties of the fibril, owing to the different amino acid side chains available at the interface between the molecules.

  20. Collagen fibril architecture, domain organization, and triple-helical conformation govern its proteolysis.

    Science.gov (United States)

    Perumal, Shiamalee; Antipova, Olga; Orgel, Joseph P R O

    2008-02-26

    We describe the molecular structure of the collagen fibril and how it affects collagen proteolysis or "collagenolysis." The fibril-forming collagens are major components of all mammalian connective tissues, providing the structural and organizational framework for skin, blood vessels, bone, tendon, and other tissues. The triple helix of the collagen molecule is resistant to most proteinases, and the matrix metalloproteinases that do proteolyze collagen are affected by the architecture of collagen fibrils, which are notably more resistant to collagenolysis than lone collagen monomers. Until now, there has been no molecular explanation for this. Full or limited proteolysis of the collagen fibril is known to be a key process in normal growth, development, repair, and cell differentiation, and in cancerous tumor progression and heart disease. Peptide fragments generated by collagenolysis, and the conformation of exposed sites on the fibril as a result of limited proteolysis, regulate these processes and that of cellular attachment, but it is not known how or why. Using computational and molecular visualization methods, we found that the arrangement of collagen monomers in the fibril (its architecture) protects areas vulnerable to collagenolysis and strictly governs the process. This in turn affects the accessibility of a cell interaction site located near the cleavage region. Our observations suggest that the C-terminal telopeptide must be proteolyzed before collagenase can gain access to the cleavage site. Collagenase then binds to the substrate's "interaction domain," which facilitates the triple-helix unwinding/dissociation function of the enzyme before collagenolysis.

  1. Susceptibility tensor imaging and tractography of collagen fibrils in the articular cartilage.

    Science.gov (United States)

    Wei, Hongjiang; Gibbs, Eric; Zhao, Peida; Wang, Nian; Cofer, Gary P; Zhang, Yuyao; Johnson, G Allan; Liu, Chunlei

    2017-11-01

    To investigate the B 0 orientation-dependent magnetic susceptibility of collagen fibrils within the articular cartilage and to determine whether susceptibility tensor imaging (STI) can detect the 3D collagen network within cartilage. Multiecho gradient echo datasets (100-μm isotropic resolution) were acquired from fixed porcine articular cartilage specimens at 9.4 T. The susceptibility tensor was calculated using phase images acquired at 12 or 15 different orientations relative to B 0 . The susceptibility anisotropy of the collagen fibril was quantified and diffusion tensor imaging (DTI) was compared against STI. 3D tractography was performed to visualize and track the collagen fibrils with DTI and STI. STI experiments showed the distinct and significant anisotropic magnetic susceptibility of collagen fibrils within the articular cartilage. STI can be used to measure and quantify susceptibility anisotropy maps. Furthermore, STI provides orientation information of the underlying collagen network via 3D tractography. The findings of this study demonstrate that STI can characterize the orientation variation of collagen fibrils where diffusion anisotropy fails. We believe that STI could serve as a sensitive and noninvasive marker to study the collagen fibrils microstructure. Magn Reson Med 78:1683-1690, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  2. Tensile properties of human collagen fibrils and fascicles are insensitive to environmental salts

    DEFF Research Database (Denmark)

    Svensson, René B; Hassenkam, Tue; Grant, Colin A

    2010-01-01

    loading direction of tendon is along its longitudinal axis. Thus, in this study, we focus on the tensile mechanical properties of two hierarchical levels from human patellar tendon, namely: individual collagen fibrils and fascicles. Investigations on collagen fibrils and fascicles were made at pH 7...... was observed at the highest phosphate-buffered saline concentration for both the fibrils and fascicles, indicating a stabilizing effect of ionic screening, but changes were much less than reported for radial compression. Due to the small magnitude of the effects, the tensile mechanical properties of collagen...

  3. Protease inhibitors enhance extracellular collagen fibril deposition in human mesenchymal stem cells.

    Science.gov (United States)

    Han, Sejin; Li, Yuk Yin; Chan, Barbara Pui

    2015-10-15

    Collagen is a widely used naturally occurring biomaterial for scaffolding, whereas mesenchymal stem cells (MSCs) represent a promising cell source in tissue engineering and regenerative medicine. It is generally known that cells are able to remodel their environment by simultaneous degradation of the scaffolds and deposition of newly synthesized extracellular matrix. Nevertheless, the interactions between MSCs and collagen biomaterials are poorly known, and the strategies enhancing the extracellular matrix deposition are yet to be defined. In this study, we aim to investigate the fate of collagen when it is in contact with MSCs and hypothesize that protease inhibition will enhance their extracellular deposition of collagen fibrils. Specifically, human MSCs (hMSCs) were exposed to fluorescence-labeled collagen with and without intracellular or extracellular protease inhibitors (or both) before tracing the collagen at both intracellular and extracellular spaces. Collagen were internalized by hMSCs and degraded intracellularly in lysosomes. In the presence of protease inhibitors, both intracellular collagen fibril growth and extracellular deposition of collagen fibrils were enhanced. Moreover, protease inhibitors work synergistically with ascorbic acid, a well-known matrix deposition-enhancing reagent, in further enhancing collagen fibril deposition at the extracellular space. These findings provide a better understanding of the interactions between hMSCs and collagen biomaterials and suggest a method to manipulate matrix remodeling and deposition of hMSCs, contributing to better scaffolding for tissue engineering and regenerative medicine.

  4. Nanoscale characterization of the biomechanical properties of collagen fibrils in the sclera

    International Nuclear Information System (INIS)

    Papi, M.; Paoletti, P.; Geraghty, B.; Akhtar, R.

    2014-01-01

    We apply the PeakForce Quantitative Nanomechanical Property Mapping (PFQNM) atomic force microscopy mode for the investigation of regional variations in the nanomechanical properties of porcine sclera. We examine variations in the collagen fibril diameter, adhesion, elastic modulus and dissipation in the posterior, equatorial and anterior regions of the sclera. The mean fibril diameter, elastic modulus and dissipation increased from the posterior to the anterior region. Collagen fibril diameter correlated linearly with elastic modulus. Our data matches the known macroscopic mechanical behavior of the sclera. We propose that PFQNM has significant potential in ocular biomechanics and biophysics research

  5. Nanoscale characterization of the biomechanical properties of collagen fibrils in the sclera

    Energy Technology Data Exchange (ETDEWEB)

    Papi, M. [Institute of Physics, Università Cattolica del Sacro Cuore, Largo F.Vito 1, 00168 Rome (Italy); Paoletti, P. [Centre for Engineering Dynamics, School of Engineering, Brownlow Hill, Liverpool, L69 3GH (United Kingdom); Geraghty, B.; Akhtar, R. [Centre for Materials and Structures, School of Engineering, Brownlow Hill, Liverpool, L69 3GH (United Kingdom)

    2014-03-10

    We apply the PeakForce Quantitative Nanomechanical Property Mapping (PFQNM) atomic force microscopy mode for the investigation of regional variations in the nanomechanical properties of porcine sclera. We examine variations in the collagen fibril diameter, adhesion, elastic modulus and dissipation in the posterior, equatorial and anterior regions of the sclera. The mean fibril diameter, elastic modulus and dissipation increased from the posterior to the anterior region. Collagen fibril diameter correlated linearly with elastic modulus. Our data matches the known macroscopic mechanical behavior of the sclera. We propose that PFQNM has significant potential in ocular biomechanics and biophysics research.

  6. The effect of point mutations on structure and mechanical properties of collagen-like fibril: A molecular dynamics study

    International Nuclear Information System (INIS)

    Marlowe, Ashley E.; Singh, Abhishek; Yingling, Yaroslava G.

    2012-01-01

    Understanding sequence dependent mechanical and structural properties of collagen fibrils is important for the development of artificial biomaterials for medical and nanotechnological applications. Moreover, point mutations are behind many collagen associated diseases, including Osteogenesis Imperfecta (OI). We conducted a combination of classical and steered atomistic molecular dynamics simulations to examine the effect of point mutations on structure and mechanical properties of short collagen fibrils which include mutations of glycine to alanine, aspartic acid, cysteine, and serine or mutations of hydroxyproline to arginine, asparagine, glutamine, and lysine. We found that all mutations disrupt structure and reduce strength of the collagen fibrils, which may affect the hierarchical packing of the fibrils. The glycine mutations were more detrimental to mechanical strength of the fibrils (WT > Ala > Ser > Cys > Asp) than that of hydroxyproline (WT > Arg > Gln > Asn > Lys). The clinical outcome for glycine mutations agrees well with the trend in reduction of fibril's tensile strength predicted by our simulations. Overall, our results suggest that the reduction in mechanical properties of collagen fibrils may be used to predict the clinical outcome of mutations. Highlights: ► All mutations disrupt structure and bonding pattern and reduce strength of the collagen fibrils. ► Gly based mutations are worst to mechanical integrity of fibrils than that of Hyp. ► Lys and Arg mutations most dramatically destabilize collagen fibril properties. ► Clinical outcome of mutations may be related to the reduced mechanical properties of fibrils.

  7. The effect of point mutations on structure and mechanical properties of collagen-like fibril: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Marlowe, Ashley E.; Singh, Abhishek; Yingling, Yaroslava G., E-mail: yara_yingling@ncsu.edu

    2012-12-01

    Understanding sequence dependent mechanical and structural properties of collagen fibrils is important for the development of artificial biomaterials for medical and nanotechnological applications. Moreover, point mutations are behind many collagen associated diseases, including Osteogenesis Imperfecta (OI). We conducted a combination of classical and steered atomistic molecular dynamics simulations to examine the effect of point mutations on structure and mechanical properties of short collagen fibrils which include mutations of glycine to alanine, aspartic acid, cysteine, and serine or mutations of hydroxyproline to arginine, asparagine, glutamine, and lysine. We found that all mutations disrupt structure and reduce strength of the collagen fibrils, which may affect the hierarchical packing of the fibrils. The glycine mutations were more detrimental to mechanical strength of the fibrils (WT > Ala > Ser > Cys > Asp) than that of hydroxyproline (WT > Arg > Gln > Asn > Lys). The clinical outcome for glycine mutations agrees well with the trend in reduction of fibril's tensile strength predicted by our simulations. Overall, our results suggest that the reduction in mechanical properties of collagen fibrils may be used to predict the clinical outcome of mutations. Highlights: Black-Right-Pointing-Pointer All mutations disrupt structure and bonding pattern and reduce strength of the collagen fibrils. Black-Right-Pointing-Pointer Gly based mutations are worst to mechanical integrity of fibrils than that of Hyp. Black-Right-Pointing-Pointer Lys and Arg mutations most dramatically destabilize collagen fibril properties. Black-Right-Pointing-Pointer Clinical outcome of mutations may be related to the reduced mechanical properties of fibrils.

  8. Decorin core protein (decoron) shape complements collagen fibril surface structure and mediates its binding.

    Science.gov (United States)

    Orgel, Joseph P R O; Eid, Aya; Antipova, Olga; Bella, Jordi; Scott, John E

    2009-09-15

    Decorin is the archetypal small leucine rich repeat proteoglycan of the vertebrate extracellular matrix (ECM). With its glycosaminoglycuronan chain, it is responsible for stabilizing inter-fibrillar organization. Type I collagen is the predominant member of the fibrillar collagen family, fulfilling both organizational and structural roles in animal ECMs. In this study, interactions between decoron (the decorin core protein) and binding sites in the d and e(1) bands of the type I collagen fibril were investigated through molecular modeling of their respective X-ray diffraction structures. Previously, it was proposed that a model-based, highly curved concave decoron interacts with a single collagen molecule, which would form extensive van der Waals contacts and give rise to strong non-specific binding. However, the large well-ordered aggregate that is the collagen fibril places significant restraints on modes of ligand binding and necessitates multi-collagen molecular contacts. We present here a relatively high-resolution model of the decoron-fibril collagen complex. We find that the respective crystal structures complement each other well, although it is the monomeric form of decoron that shows the most appropriate shape complementarity with the fibril surface and favorable calculated energies of interaction. One molecule of decoron interacts with four to six collagen molecules, and the binding specificity relies on a large number of hydrogen bonds and electrostatic interactions, primarily with the collagen motifs KXGDRGE and AKGDRGE (d and e(1) bands). This work helps us to understand collagen-decorin interactions and the molecular architecture of the fibrillar ECM in health and disease.

  9. Decorin core protein (decoron shape complements collagen fibril surface structure and mediates its binding.

    Directory of Open Access Journals (Sweden)

    Joseph P R O Orgel

    2009-09-01

    Full Text Available Decorin is the archetypal small leucine rich repeat proteoglycan of the vertebrate extracellular matrix (ECM. With its glycosaminoglycuronan chain, it is responsible for stabilizing inter-fibrillar organization. Type I collagen is the predominant member of the fibrillar collagen family, fulfilling both organizational and structural roles in animal ECMs. In this study, interactions between decoron (the decorin core protein and binding sites in the d and e(1 bands of the type I collagen fibril were investigated through molecular modeling of their respective X-ray diffraction structures. Previously, it was proposed that a model-based, highly curved concave decoron interacts with a single collagen molecule, which would form extensive van der Waals contacts and give rise to strong non-specific binding. However, the large well-ordered aggregate that is the collagen fibril places significant restraints on modes of ligand binding and necessitates multi-collagen molecular contacts. We present here a relatively high-resolution model of the decoron-fibril collagen complex. We find that the respective crystal structures complement each other well, although it is the monomeric form of decoron that shows the most appropriate shape complementarity with the fibril surface and favorable calculated energies of interaction. One molecule of decoron interacts with four to six collagen molecules, and the binding specificity relies on a large number of hydrogen bonds and electrostatic interactions, primarily with the collagen motifs KXGDRGE and AKGDRGE (d and e(1 bands. This work helps us to understand collagen-decorin interactions and the molecular architecture of the fibrillar ECM in health and disease.

  10. Nanoscale characterization of isolated individual type I collagen fibrils: polarization and piezoelectricity.

    Science.gov (United States)

    Minary-Jolandan, Majid; Yu, Min-Feng

    2009-02-25

    Piezoresponse force microscopy was applied to directly study individual type I collagen fibrils with diameters of approximately 100 nm isolated from bovine Achilles tendon. It was revealed that single collagen fibrils behave predominantly as shear piezoelectric materials with a piezoelectric coefficient on the order of 1 pm V(-1), and have unipolar axial polarization throughout their entire length. It was estimated that, under reasonable shear load conditions, the fibrils were capable of generating an electric potential up to tens of millivolts. The result substantiates the nanoscale origin of piezoelectricity in bone and tendons, and implies also the potential importance of the shear load-transfer mechanism, which has been the principle basis of the nanoscale mechanics model of collagen, in mechanoelectric transduction in bone.

  11. Diffusion of MMPs on the Surface of Collagen Fibrils: The Mobile Cell Surface – Collagen Substratum Interface

    Science.gov (United States)

    Collier, Ivan E.; Legant, Wesley; Marmer, Barry; Lubman, Olga; Saffarian, Saveez; Wakatsuki, Tetsuro; Elson, Elliot; Goldberg, Gregory I.

    2011-01-01

    Remodeling of the extracellular matrix catalyzed by MMPs is central to morphogenetic phenomena during development and wound healing as well as in numerous pathologic conditions such as fibrosis and cancer. We have previously demonstrated that secreted MMP-2 is tethered to the cell surface and activated by MT1-MMP/TIMP-2-dependent mechanism. The resulting cell-surface collagenolytic complex (MT1-MMP)2/TIMP-2/MMP-2 can initiate (MT1-MMP) and complete (MMP-2) degradation of an underlying collagen fibril. The following question remained: What is the mechanism of substrate recognition involving the two structures of relatively restricted mobility, the cell surface enzymatic complex and a collagen fibril embedded in the ECM? Here we demonstrate that all the components of the complex are capable of processive movement on a surface of the collagen fibril. The mechanism of MT1-MMP movement is a biased diffusion with the bias component dependent on the proteolysis of its substrate, not adenosine triphosphate (ATP) hydrolysis. It is similar to that of the MMP-1 Brownian ratchet we described earlier. In addition, both MMP-2 and MMP-9 as well as their respective complexes with TIMP-1 and -2 are capable of Brownian diffusion on the surface of native collagen fibrils without noticeable dissociation while the dimerization of MMP-9 renders the enzyme immobile. Most instructive is the finding that the inactivation of the enzymatic activity of MT1-MMP has a detectable negative effect on the cell force developed in miniaturized 3D tissue constructs. We propose that the collagenolytic complex (MT1-MMP)2/TIMP-2/MMP-2 represents a Mobile Cell Surface – Collagen Substratum Interface. The biological implications of MT1-MMP acting as a molecular ratchet tethered to the cell surface in complex with MMP-2 suggest a new mechanism for the role of spatially regulated peri-cellular proteolysis in cell-matrix interactions. PMID:21912660

  12. Diffusion of MMPs on the surface of collagen fibrils: the mobile cell surface-collagen substratum interface.

    Directory of Open Access Journals (Sweden)

    Ivan E Collier

    Full Text Available Remodeling of the extracellular matrix catalyzed by MMPs is central to morphogenetic phenomena during development and wound healing as well as in numerous pathologic conditions such as fibrosis and cancer. We have previously demonstrated that secreted MMP-2 is tethered to the cell surface and activated by MT1-MMP/TIMP-2-dependent mechanism. The resulting cell-surface collagenolytic complex (MT1-MMP(2/TIMP-2/MMP-2 can initiate (MT1-MMP and complete (MMP-2 degradation of an underlying collagen fibril. The following question remained: What is the mechanism of substrate recognition involving the two structures of relatively restricted mobility, the cell surface enzymatic complex and a collagen fibril embedded in the ECM? Here we demonstrate that all the components of the complex are capable of processive movement on a surface of the collagen fibril. The mechanism of MT1-MMP movement is a biased diffusion with the bias component dependent on the proteolysis of its substrate, not adenosine triphosphate (ATP hydrolysis. It is similar to that of the MMP-1 Brownian ratchet we described earlier. In addition, both MMP-2 and MMP-9 as well as their respective complexes with TIMP-1 and -2 are capable of Brownian diffusion on the surface of native collagen fibrils without noticeable dissociation while the dimerization of MMP-9 renders the enzyme immobile. Most instructive is the finding that the inactivation of the enzymatic activity of MT1-MMP has a detectable negative effect on the cell force developed in miniaturized 3D tissue constructs. We propose that the collagenolytic complex (MT1-MMP(2/TIMP-2/MMP-2 represents a Mobile Cell Surface-Collagen Substratum Interface. The biological implications of MT1-MMP acting as a molecular ratchet tethered to the cell surface in complex with MMP-2 suggest a new mechanism for the role of spatially regulated peri-cellular proteolysis in cell-matrix interactions.

  13. Poisson's ratio of collagen fibrils measured by small angle X-ray scattering of strained bovine pericardium

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Hannah C.; Sizeland, Katie H.; Kayed, Hanan R.; Haverkamp, Richard G., E-mail: r.haverkamp@massey.ac.nz [School of Engineering and Advanced Technology, Massey University, Private Bag 11222, Palmerston North 4442 (New Zealand); Kirby, Nigel; Hawley, Adrian; Mudie, Stephen T. [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia)

    2015-01-28

    Type I collagen is the main structural component of skin, tendons, and skin products, such as leather. Understanding the mechanical performance of collagen fibrils is important for understanding the mechanical performance of the tissues that they make up, while the mechanical properties of bulk tissue are well characterized, less is known about the mechanical behavior of individual collagen fibrils. In this study, bovine pericardium is subjected to strain while small angle X-ray scattering (SAXS) patterns are recorded using synchrotron radiation. The change in d-spacing, which is a measure of fibril extension, and the change in fibril diameter are determined from SAXS. The tissue is strained 0.25 (25%) with a corresponding strain in the collagen fibrils of 0.045 observed. The ratio of collagen fibril width contraction to length extension, or the Poisson's ratio, is 2.1 ± 0.7 for a tissue strain from 0 to 0.25. This Poisson's ratio indicates that the volume of individual collagen fibrils decreases with increasing strain, which is quite unlike most engineering materials. This high Poisson's ratio of individual fibrils may contribute to high Poisson's ratio observed for tissues, contributing to some of the remarkable properties of collagen-based materials.

  14. Effect of Mechanical Stretching of the Skin on Collagen Fibril ...

    African Journals Online (AJOL)

    Stabilization of collagen fibres during development and through growth to maturation has now become fairly documented. In vitro effect of mechanical stretching of ratsf skin on oxidative deamination of ε-NH2-groups of lysine and hydroxylysine, and functional properties of its type . collagen were studied. Experiments were ...

  15. Elastic properties of woven bone: effect of mineral content and collagen fibrils orientation.

    Science.gov (United States)

    García-Rodríguez, J; Martínez-Reina, J

    2017-02-01

    Woven bone is a type of tissue that forms mainly during fracture healing or fetal bone development. Its microstructure can be modeled as a composite with a matrix of mineral (hydroxyapatite) and inclusions of collagen fibrils with a more or less random orientation. In the present study, its elastic properties were estimated as a function of composition (degree of mineralization) and fibril orientation. A self-consistent homogenization scheme considering randomness of inclusions' orientation was used for this purpose. Lacuno-canalicular porosity in the form of periodically distributed void inclusions was also considered. Assuming collagen fibrils to be uniformly oriented in all directions led to an isotropic tissue with a Young's modulus [Formula: see text] GPa, which is of the same order of magnitude as that of woven bone in fracture calluses. By contrast, assuming fibrils to have a preferential orientation resulted in a Young's modulus in the preferential direction of 9-16 GPa depending on the mineral content of the tissue. These results are consistent with experimental evidence for woven bone in foetuses, where collagen fibrils are aligned to a certain extent.

  16. The echinoderm collagen fibril: a hero in the connective tissue research of the 1990s.

    Science.gov (United States)

    Szulgit, Greg

    2007-07-01

    Collagen fibrils are some of the most-abundant and important extracellular structures in our bodies, yet we are unsure of their shape and size. This is largely due to an inherent difficulty in isolating them from their surrounding tissues. Echinoderms have collagenous tissues that are similar to ours in many ways, yet they can be manipulated to easily relinquish their collagen fibrils, providing an excellent opportunity to study native fibrillar structure. In the early 1990s, they were found to defy the commonly accepted fibrillar model of the time in that they were much shorter, they were shaped like double-ended spindles, and their centers exhibited a reversal in molecular polarity. Realization of these features helped to reform the questions that were being asked about vertebrate fibrils, shifting the focus toward shape and size. Since then, researchers working with both groups (echinoderms and vertebrates) have worked together to find the structure of native fibrils. This information will be fundamental in understanding what holds collagenous tissues together at the fibrillar level, and could have important implications for people with Ehlers-Danlos syndrome. (c) 2007 Wiley Periodicals, Inc.

  17. Fucosylated chondroitin sulfate is covalently associated with collagen fibrils in sea cucumber Apostichopus japonicus body wall.

    Science.gov (United States)

    Wang, Jun; Chang, Yaoguang; Wu, Fanxiu; Xu, Xiaoqi; Xue, Changhu

    2018-04-15

    Fucosylated chondroitin sulfate (fCS) is the major carbohydrate constituent of sea cucumber. However, the distribution of fCS in the sea cucumber body wall has not been fully described. We addressed this in the present study employing Apostichopus japonicus as the material, a sea cucumber species with significant commercial importance. It was found that fCS was covalently attached to collagen fibrils via O-glycosidic linkages. Transmission electron microscopy analysis revealed that fCS precipitate was present in gap regions of collagen fibrils as roughly globular or ellipsoidal dots. The fCS dots arranged circumferentially around the fibrils with an axial repeat period that matched the periodicity of the fibrils. Physicochemical analysis indicated that the presence of fCS significantly increased the negative charge of the fibrils. These findings provide novel insight into fCS distribution in the sea cucumber body wall and its supramolecular organization with other macromolecules. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Role of corneal collagen fibrils in corneal disorders and related pathological conditions

    Directory of Open Access Journals (Sweden)

    Hong-Yan Zhou

    2017-05-01

    Full Text Available The cornea is a soft tissue located at the front of the eye with the principal function of transmitting and refracting light rays to precisely sense visual information. Corneal shape, refraction, and stromal stiffness are to a large part determined by corneal fibrils, the arrangements of which define the corneal cells and their functional behaviour. However, the modality and alignment of native corneal collagen lamellae are altered in various corneal pathological states such as infection, injury, keratoconus, corneal scar formation, and keratoprosthesis. Furthermore, corneal recuperation after corneal pathological change is dependent on the balance of corneal collagen degradation and contraction. A thorough understanding of the characteristics of corneal collagen is thus necessary to develop viable therapies using the outcome of strategies using engineered corneas. In this review, we discuss the composition and distribution of corneal collagens as well as their degradation and contraction, and address the current status of corneal tissue engineering and the progress of corneal cross-linking.

  19. Uncovering nanoscale electromechanical heterogeneity in the subfibrillar structure of collagen fibrils responsible for the piezoelectricity of bone.

    Science.gov (United States)

    Minary-Jolandan, Majid; Yu, Min-Feng

    2009-07-28

    Understanding piezoelectricity, the linear electromechanical transduction, in bone and tendon and its potential role in mechanoelectric transduction leading to their growth and remodeling remains a challenging subject. With high-resolution piezoresponse force microscopy, we probed piezoelectric behavior in relevant biological samples at different scale levels: from the subfibrillar structures of single isolated collagen fibrils to bone. We revealed that, beyond the general understanding of collagen fibril being a piezoelectric material, there existed an intrinsic piezoelectric heterogeneity within a collagen fibril coinciding with the periodic variation of its gap and overlap regions. This piezoelectric heterogeneity persisted even for the collagen fibrils embedded in bone, bringing about new implications for its possible roles in structural formation and remodeling of bone.

  20. Nanoscale Structure of Type I Collagen Fibrils: Quantitative Measurement of D-spacing

    Science.gov (United States)

    Erickson, Blake; Fang, Ming; Wallace, Joseph M.; Orr, Bradford G.; Les, Clifford M.; Holl, Mark M. Banaszak

    2012-01-01

    This paper details a quantitative method to measure the D-periodic spacing of Type I collagen fibrils using Atomic Force Microscopy coupled with analysis using a 2D Fast Fourier Transform approach. Instrument calibration, data sampling and data analysis are all discussed and comparisons of the data to the complementary methods of electron microscopy and X-ray scattering are made. Examples of the application of this new approach to the analysis of Type I collagen morphology in disease models of estrogen depletion and Osteogenesis Imperfecta are provided. We demonstrate that it is the D-spacing distribution, not the D-spacing mean, that showed statistically significant differences in estrogen depletion associated with early stage Osteoporosis and Osteogenesis Imperfecta. The ability to quantitatively characterize nanoscale morphological features of Type I collagen fibrils will provide important structural information regarding Type I collagen in many research areas, including tissue aging and disease, tissue engineering, and gene knock out studies. Furthermore, we also envision potential clinical applications including evaluation of tissue collagen integrity under the impact of diseases or drug treatments. PMID:23027700

  1. Fibril growth kinetics link buffer conditions and topology of 3D collagen I networks.

    Science.gov (United States)

    Kalbitzer, Liv; Pompe, Tilo

    2018-02-01

    Three-dimensional fibrillar networks reconstituted from collagen I are widely used as biomimetic scaffolds for in vitro and in vivo cell studies. Various physicochemical parameters of buffer conditions for in vitro fibril formation are well known, including pH-value, ion concentrations and temperature. However, there is a lack of a detailed understanding of reconstituting well-defined 3D network topologies, which is required to mimic specific properties of the native extracellular matrix. We screened a wide range of relevant physicochemical buffer conditions and characterized the topology of the reconstituted 3D networks in terms of mean pore size and fibril diameter. A congruent analysis of fibril formation kinetics by turbidimetry revealed the adjustment of the lateral growth phase of fibrils by buffer conditions to be key in the determination of pore size and fibril diameter of the networks. Although the kinetics of nucleation and linear growth phase were affected by buffer conditions as well, network topology was independent of those two growth phases. Overall, the results of our study provide necessary insights into how to engineer 3D collagen matrices with an independent control over topology parameters, in order to mimic in vivo tissues in in vitro experiments and tissue engineering applications. The study reports a comprehensive analysis of physicochemical conditions of buffer solutions to reconstitute defined 3D collagen I matrices. By a combined analysis of network topology, i.e., pore size and fibril diameter, and the kinetics of fibril formation we can reveal the dependence of 3D network topology on buffer conditions, such as pH-value, phosphate concentration and sodium chloride content. With those results we are now able to provide engineering strategies to independently tune the topology parameters of widely used 3D collagen scaffolds based on the buffer conditions. By that, we enable the straightforward mimicking of extracellular matrices of in vivo

  2. Phagocytosis of Collagen Fibrils by Fibroblasts In Vivo is Independent of the uPARAP/Endo180 Receptor

    DEFF Research Database (Denmark)

    Sprangers, Sara; Behrendt, Niels; Engelholm, Lars

    2017-01-01

    electron microscopy (TEM), we found that fibroblasts in the periosteum of tibia and calvaria, as well as in the periodontal ligament of molar and incisor, phagocytosed collagen fibrils independently of uPARAP. Quantification of phagocytosed collagen in the periodontal ligament of uPARAP-deficient mice...... cleavage products probably occurs through fundamentally different pathways. This article is protected by copyright. All rights reserved....

  3. Supramolecular Organization of Collagen Fibrils in Healthy and Osteoarthritic Human Knee and Hip Joint Cartilage.

    Directory of Open Access Journals (Sweden)

    Riccardo Gottardi

    Full Text Available Cartilage matrix is a composite of discrete, but interacting suprastructures, i.e. cartilage fibers with microfibrillar or network-like aggregates and penetrating extrafibrillar proteoglycan matrix. The biomechanical function of the proteoglycan matrix and the collagen fibers are to absorb compressive and tensional loads, respectively. Here, we are focusing on the suprastructural organization of collagen fibrils and the degradation process of their hierarchical organized fiber architecture studied at high resolution at the authentic location within cartilage. We present electron micrographs of the collagenous cores of such fibers obtained by an improved protocol for scanning electron microscopy (SEM. Articular cartilages are permeated by small prototypic fibrils with a homogeneous diameter of 18 ± 5 nm that can align in their D-periodic pattern and merge into larger fibers by lateral association. Interestingly, these fibers have tissue-specific organizations in cartilage. They are twisted ropes in superficial regions of knee joints or assemble into parallel aligned cable-like structures in deeper regions of knee joint- or throughout hip joints articular cartilage. These novel observations contribute to an improved understanding of collagen fiber biogenesis, function, and homeostasis in hyaline cartilage.

  4. Fibrillar, fibril-associated and basement membrane collagens of the arterial wall: architecture, elasticity and remodeling under stress.

    Science.gov (United States)

    Osidak, M S; Osidak, E O; Akhmanova, M A; Domogatsky, S P; Domogatskaya, A S

    2015-01-01

    The ability of a human artery to pass through 150 million liters of blood sustaining 2 billion pulsations of blood pressure with minor deterioration depends on unique construction of the arterial wall. Viscoelastic properties of this construction enable to re-seal the occuring damages apparently without direct immediate participance of the constituent cells. Collagen structures are considered to be the elements that determine the mechanoelastic properties of the wall in parallel with elastin responsible for elasticity and resilience. Collagen scaffold architecture is the function-dependent dynamic arrangement of a dozen different collagen types composing three distinct interacting forms inside the extracellular matrix of the wall. Tightly packed molecules of collagen types I, III, V provide high tensile strength along collagen fibrils but toughness of the collagen scaffold as a whole depends on molecular bonds between distinct fibrils. Apart of other macromolecules in the extracellular matrix (ECM), collagen-specific interlinks involve microfilaments of collagen type VI, meshwork-organized collagen type VIII, and FACIT collagen type XIV. Basement membrane collagen types IV, XV, XVIII and cell-associated collagen XIII enable transmission of mechanical signals between cells and whole artery matrix. Collagen scaffold undergoes continuous remodeling by decomposition promoted with MMPs and reconstitution from newly produced collagen molecules. Pulsatile stress-strain load modulates both collagen synthesis and MMP-dependent collagen degradation. In this way the ECM structure becomes adoptive to mechanical challenges. The mechanoelastic properties of the arterial wall are changed in atherosclerosis concomitantly with collagen turnover both type-specific and dependent on the structure. Improving the feedback could be another approach to restore sufficient blood circulation.

  5. Superficial Collagen Fibril Modulus and Pericellular Fixed Charge Density Modulate Chondrocyte Volumetric Behaviour in Early Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Petri Tanska

    2013-01-01

    Full Text Available The aim of this study was to investigate if the experimentally detected altered chondrocyte volumetric behavior in early osteoarthritis can be explained by changes in the extracellular and pericellular matrix properties of cartilage. Based on our own experimental tests and the literature, the structural and mechanical parameters for normal and osteoarthritic cartilage were implemented into a multiscale fibril-reinforced poroelastic swelling model. Model simulations were compared with experimentally observed cell volume changes in mechanically loaded cartilage, obtained from anterior cruciate ligament transected rabbit knees. We found that the cell volume increased by 7% in the osteoarthritic cartilage model following mechanical loading of the tissue. In contrast, the cell volume decreased by 4% in normal cartilage model. These findings were consistent with the experimental results. Increased local transversal tissue strain due to the reduced collagen fibril stiffness accompanied with the reduced fixed charge density of the pericellular matrix could increase the cell volume up to 12%. These findings suggest that the increase in the cell volume in mechanically loaded osteoarthritic cartilage is primarily explained by the reduction in the pericellular fixed charge density, while the superficial collagen fibril stiffness is suggested to contribute secondarily to the cell volume behavior.

  6. Modelling the mechanics of partially mineralized collagen fibrils, fibres and tissue

    Science.gov (United States)

    Liu, Yanxin; Thomopoulos, Stavros; Chen, Changqing; Birman, Victor; Buehler, Markus J.; Genin, Guy M.

    2014-01-01

    Progressive stiffening of collagen tissue by bioapatite mineral is important physiologically, but the details of this stiffening are uncertain. Unresolved questions about the details of the accommodation of bioapatite within and upon collagen's hierarchical structure have posed a central hurdle, but recent microscopy data resolve several major questions. These data suggest how collagen accommodates bioapatite at the lowest relevant hierarchical level (collagen fibrils), and suggest several possibilities for the progressive accommodation of bioapatite at higher hierarchical length scales (fibres and tissue). We developed approximations for the stiffening of collagen across spatial hierarchies based upon these data, and connected models across hierarchies levels to estimate mineralization-dependent tissue-level mechanics. In the five possible sequences of mineralization studied, percolation of the bioapatite phase proved to be an important determinant of the degree of stiffening by bioapatite. The models were applied to study one important instance of partially mineralized tissue, which occurs at the attachment of tendon to bone. All sequences of mineralization considered reproduced experimental observations of a region of tissue between tendon and bone that is more compliant than either tendon or bone, but the size and nature of this region depended strongly upon the sequence of mineralization. These models and observations have implications for engineered tissue scaffolds at the attachment of tendon to bone, bone development and graded biomimetic attachment of dissimilar hierarchical materials in general. PMID:24352669

  7. An age-related study of morphology and cross-link composition of collagen fibrils in the digital flexor tendons of young thoroughbred horses.

    Science.gov (United States)

    Patterson-Kane, J C; Parry, D A; Birch, H L; Goodship, A E; Firth, E C

    1997-01-01

    The superficial digital flexor tendon is the most commonly injured tendon in the racing Thoroughbred. Despite the clinical significance of this structure, only limited data exist regarding normal age-related morphology of the tensile units, the collagen fibrils. The age at which these collagen fibrils become mature in composition and structure may be of importance. Consequently, the association of age and collagen fibril crosslink composition, diameter distribution and crimp morphology in the superficial and deep digital flexor tendons of Thoroughbreds up to and including three years of age has been studied. Replacement of immature crosslinks, peaking of the collagen fibril mass-average diameter and collagen fibril index, and stabilization of collagen crimp morphology changes supported the hypothesis that both digital flexor tendons become mature in structure by two years of age.

  8. Agent-based modeling traction force mediated compaction of cell-populated collagen gels using physically realistic fibril mechanics.

    Science.gov (United States)

    Reinhardt, James W; Gooch, Keith J

    2014-02-01

    Agent-based modeling was used to model collagen fibrils, composed of a string of nodes serially connected by links that act as Hookean springs. Bending mechanics are implemented as torsional springs that act upon each set of three serially connected nodes as a linear function of angular deflection about the central node. These fibrils were evaluated under conditions that simulated axial extension, simple three-point bending and an end-loaded cantilever. The deformation of fibrils under axial loading varied <0.001% from the analytical solution for linearly elastic fibrils. For fibrils between 100 μm and 200 μm in length experiencing small deflections, differences between simulated deflections and their analytical solutions were <1% for fibrils experiencing three-point bending and <7% for fibrils experiencing cantilever bending. When these new rules for fibril mechanics were introduced into a model that allowed for cross-linking of fibrils to form a network and the application of cell traction force, the fibrous network underwent macroscopic compaction and aligned between cells. Further, fibril density increased between cells to a greater extent than that observed macroscopically and appeared similar to matrical tracks that have been observed experimentally in cell-populated collagen gels. This behavior is consistent with observations in previous versions of the model that did not allow for the physically realistic simulation of fibril mechanics. The significance of the torsional spring constant value was then explored to determine its impact on remodeling of the simulated fibrous network. Although a stronger torsional spring constant reduced the degree of quantitative remodeling that occurred, the inclusion of torsional springs in the model was not necessary for the model to reproduce key qualitative aspects of remodeling, indicating that the presence of Hookean springs is essential for this behavior. These results suggest that traction force mediated matrix

  9. Van Gieson's picrofuchsin. The staining mechanisms for collagen and cytoplasm, and an examination of the dye diffusion rate model of differential staining

    DEFF Research Database (Denmark)

    Prentø, P

    1993-01-01

    this and experiments with additives (sodium dodecylsulphate, urea etc.) and organic solvents, it is proposed that coagulant interchain cross-linking at the high protein concentration of the cytoplasm masks potential dye-binding sites. This affects high affinity dyes with multiple binding sites more than small dyes......, and so puts AcF at a disadvantage compared to PA. Staining of non-collagen proteins is mainly by hydrophobic bonding, involving ionic attractions, apolar bonds, and release of water. This mode of binding is relatively strong, decreases swelling and leads to slow dye exchange. Dye binding to collagen...

  10. Stiparin: a glycoprotein from sea cucumber dermis that aggregates collagen fibrils.

    Science.gov (United States)

    Trotter, J A; Lyons-Levy, G; Luna, D; Koob, T J; Keene, D R; Atkinson, M A

    1996-07-01

    The interactions between collagen fibrils in many echinoderm connective tissues are rapidly altered by the secretions of resident neurosecretory cells. Recent evidence has suggested that a secreted protein is responsible for the interactions that lead to an increase in tissue stiffness (Trotter and Koob, 1995). Structurally intact collagen fibrils have been isolated from such a connective tissue- the dermis of the sea cucumber Cucumaria frondosa- and used in an assay in vitro to identify a protein that binds to them and causes them to aggregate. This protein has been purified by anion-exchange and molecular sieve chromatography. It is eluted from a MonoQ column at approximately 0.55 M NaCl. Its isoelectric point is 5.2. It elutes from a Superose-6 column in a position corresponding to a molecule with a Stokes radius of 11.5 nm. Its native molecular weight estimated from sedimentation equilibrium analysis under non-denaturing conditions is 375,000, and its monomer molecular weight, estimated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, is approximately 350,000. Sedimentation velocity measurements indicated for the native molecule a sedimentation coefficient of 11 x 10(-13)s, a diffusion coefficient of 3.274 x 10(-7) cm2s-1, and a frictional ratio of 1.95, which corresponds to a prolate ellipsoid of revolution with an axial ratio of 19. The highly asymmetric structure suggested by the above correlated well with the images obtained by transmission electron microscopy following rotary shadowing, which revealed a flexible structure approximately 125 nm long. Based on its ability to aggregate collagen fibrils, this protein has been named "stiparin," from the Latin stipare, "to pack together."

  11. Calcium hydroxylapatite treatment of human skin: evidence of collagen turnover through picrosirius red staining and circularly polarized microscopy

    Directory of Open Access Journals (Sweden)

    Zerbinati N

    2018-01-01

    Full Text Available Nicola Zerbinati,1 Alberto Calligaro2 1Department of Surgical and Morphological Sciences, University of Insubria (Varese and Polyspecialist Medical Center, Pavia, 2Department of Public Health, Experimental and Forensic Medicine, Unit of Histology and Embryology, University of Pavia, Pavia, Italy Background: Calcium hydroxylapatite (CaHA, Radiesse® is a biocompatible, injectable filler for facial soft-tissue augmentation that provides volume to tissues, followed by a process of neocollagenesis for improved skin quality. Objective: To examine the effects of CaHA treatment on the molecular organization of collagen using a combination of picrosirius red staining and circularly polarized light microscopy.Methods: Five subjects received subdermal injection of 0.3 mL of CaHA in tissues scheduled for removal during abdominoplasty 2 months later. Tissue specimens from the CaHA injection site and a control untreated area were obtained from excised skin at the time of surgery. Processed tissue sections were stained with picrosirius red solution 0.1% and visualized under circularly polarized light microscopy for identification of thick mature (type I and thin newly formed (type III collagen fibers. Pixel signals from both the control and CaHA-treated areas were extracted from the images, and morphometric computerized hue analysis was performed to provide a quantitative evaluation of mature and newly formed collagen fibers.Results: Under picrosirius red staining and circularly polarized light microscopy, green/yellow areas (thin newly formed collagen type III were visible among the collagen fibers in tissue sections from the area of CaHA injection. In contrast, the majority of the collagen fibers appeared red (thick mature collagen type I in control tissues. Morphometric analysis confirmed that, following CaHA treatment, the proportion of fibers represented by thin newly formed collagen type III increased significantly (p<0.01 in comparison with the

  12. Characterization of excitation beam on second-harmonic generation in fibrillous type I collagen.

    Science.gov (United States)

    Chang, Ying; Deng, Xiaoyuan

    2010-09-01

    Following our established theoretical model to deal with the second-harmonic generation (SHG) excited by a linearly polarized focused beam in type I collagen, in this paper, we further quantitatively characterize the differences between SHG emissions in type I collagen excited by collimated and focused beams. The effects of the linear polarization angle (α) and the fibril polarity characterized by the hyperpolarizability ratio ρ on SHG emission has been compared under collimated and focused beam excitation, respectively. In particular, SHG emission components along the i axis [Formula: see text] (i = x,y,z), the induced SHG emission deviation angle γ(ij), and the detected SHG signals (I(2ω,ij)) in the ij plane by rotating the applied polarizer angle φ(ij) have been investigated (i = x, x, y; j = y, z, z). Results show that under our simulation model, SHG emission in the xy plane, such as I(2ω,x) ,I(2ω,y) ,γ(xy) and I(2ω,xy) varying as polarization angle (α) under collimated and focused light, presents no significant difference. The reverse of the fibril polarity has induced great impact on I(2ω,x) ,γ(xy) and I(2ω,xy) in both collimated and focused light. I(2ω,x) and γ(xy) show similarity, but I(2ω,xy) at α = 30° demonstrates a slight difference in focused light to that in collimated light. Under focused light, the reverse of fibril polarity causes obvious changes of the collected SHG intensity I(2ω,xz) and I(2ω,yz) at a special polarization angle α = 60° and γ(xz), γ(yz) along α.

  13. Rapid biomimetic mineralization of collagen fibrils and combining with human umbilical cord mesenchymal stem cells for bone defects healing

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Bihua; Luo, Xueshi; Li, Zhiwen [Department of Material Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632 (China); Zhuang, Caiping [Department of Anesthesiology, Huizhou Central People' s Hospital, Huizhou 516001 (China); Li, Lihua, E-mail: tlihuali@jnu.edu.cn [Department of Material Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632 (China); Lu, Lu; Ding, Shan; Tian, Jinhuan [Department of Material Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632 (China); Zhou, Changren, E-mail: tcrz9@jnu.edu.cn [Department of Material Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632 (China)

    2016-11-01

    Collagen biomineralization is regulated by complicated interactions between the collagen matrix and non-collagenous extracellular proteins. Here, the use of sodium tripolyphosphate to simulate the templating functional motif of the C-terminal fragment of non-collagenous proteins is reported, and a low molecular weight polyacrylic acid served as a sequestration agent to stabilize amorphous calcium phosphate into nanoprecursors. Self-assembled collagen fibrils served as a fixed template for achieving rapid biomimetic mineralization in vitro. Results demonstrated that, during the mineralization process, intrafibrillar and extrafibrillar hydroxyapatite mineral with collagen fibrils formed and did so via bottom-up nanoparticle assembly based on the non-classical crystallization approach in the presence of these dual biomimetic functional analogues. In vitro human umbilical cord mesenchymal stem cell (hUCMSC) culture found that the mineralized scaffolds have a better cytocompatibility in terms of cell viability, adhesion, proliferation, and differentiation into osteoblasts. A rabbit femoral condyle defect model was established to confirm the ability of the n-HA/collagen scaffolds to facilitate bone regeneration and repair. The images of gross anatomy, MRI, CT and histomorphology taken 6 and 12 weeks after surgery showed that the biomimetic mineralized collagen scaffolds with hUCMSCs can promote the healing speed of bone defects in vivo, and both of the scaffolds groups performing better than the bone defect control group. As new bone tissue formed, the scaffolds degraded and were gradually absorbed. All these results demonstrated that both of the scaffolds and cells have better histocompatibility. - Highlights: • A rapid and facile biomimetic mineralization approach is proposed. • Intrafibrillar and extrafibrillar mineralization of collagen fibrils was achieved. • HA/COL scaffolds promote hUCMSCs adhesion, proliferation, and differentiation. • Feasibility of h

  14. Rapid biomimetic mineralization of collagen fibrils and combining with human umbilical cord mesenchymal stem cells for bone defects healing

    International Nuclear Information System (INIS)

    Ye, Bihua; Luo, Xueshi; Li, Zhiwen; Zhuang, Caiping; Li, Lihua; Lu, Lu; Ding, Shan; Tian, Jinhuan; Zhou, Changren

    2016-01-01

    Collagen biomineralization is regulated by complicated interactions between the collagen matrix and non-collagenous extracellular proteins. Here, the use of sodium tripolyphosphate to simulate the templating functional motif of the C-terminal fragment of non-collagenous proteins is reported, and a low molecular weight polyacrylic acid served as a sequestration agent to stabilize amorphous calcium phosphate into nanoprecursors. Self-assembled collagen fibrils served as a fixed template for achieving rapid biomimetic mineralization in vitro. Results demonstrated that, during the mineralization process, intrafibrillar and extrafibrillar hydroxyapatite mineral with collagen fibrils formed and did so via bottom-up nanoparticle assembly based on the non-classical crystallization approach in the presence of these dual biomimetic functional analogues. In vitro human umbilical cord mesenchymal stem cell (hUCMSC) culture found that the mineralized scaffolds have a better cytocompatibility in terms of cell viability, adhesion, proliferation, and differentiation into osteoblasts. A rabbit femoral condyle defect model was established to confirm the ability of the n-HA/collagen scaffolds to facilitate bone regeneration and repair. The images of gross anatomy, MRI, CT and histomorphology taken 6 and 12 weeks after surgery showed that the biomimetic mineralized collagen scaffolds with hUCMSCs can promote the healing speed of bone defects in vivo, and both of the scaffolds groups performing better than the bone defect control group. As new bone tissue formed, the scaffolds degraded and were gradually absorbed. All these results demonstrated that both of the scaffolds and cells have better histocompatibility. - Highlights: • A rapid and facile biomimetic mineralization approach is proposed. • Intrafibrillar and extrafibrillar mineralization of collagen fibrils was achieved. • HA/COL scaffolds promote hUCMSCs adhesion, proliferation, and differentiation. • Feasibility of h

  15. Lower strength of the human posterior patellar tendon seems unrelated to mature collagen cross-linking and fibril morphology

    DEFF Research Database (Denmark)

    Hansen, Philip; Haraldsson, Bjarki Thor; Aagaard, Per

    2010-01-01

    The human patellar tendon is frequently affected by tendinopathy, but the etiology of the condition is not established, although differential loading of the anterior and posterior tendon may be associated with the condition. We hypothesized that changes in fibril morphology and collagen cross-lin...

  16. In vitro tendon tissue development from human fibroblasts demonstrates collagen fibril diameter growth associated with a rise in mechanical strength

    DEFF Research Database (Denmark)

    Herchenhan, Andreas; Bayer, Monika L; Svensson, René B

    2013-01-01

    Collagen-rich tendons and ligaments are important for joint stability and force transmission, but the capacity to form new tendon is poorly understood. In the present study, we investigated mechanical strength, fibril size, and structure during development of tendon-like tissue from adult human...

  17. Effect of exercise on age-related changes in collagen fibril diameter distributions in the common digital extensor tendons of young horses.

    Science.gov (United States)

    Edwards, Lindsey J; Goodship, Allen E; Birch, Helen L; Patterson-Kane, Janet C

    2005-04-01

    To determine whether specific treadmill exercise regimens would accelerate age-related changes in collagen fibril diameter distributions in the common digital extensor tendon (CDET) of the forelimbs of young Thoroughbreds. 24 female Thoroughbreds. Horses were trained for 18 weeks (6 horses; short term) or 18 months (5 horses; long term) on a high-speed treadmill; 2 age-matched control groups (6 horses/group) performed walking exercise only. Horses were (mean +/- SD) 24 +/- 1 months and 39 +/- 1 months old at termination of the short-term and long-term regimens, respectively. Midmetacarpal CDET specimens were obtained and processed for transmission electron microscopy. Diameter and area of at least 1,000 collagen fibrils/specimen were measured by use of computerized image analysis. Mass-average diameter (MAD) of collagen fibrils and collagen fibril index were calculated for each horse. Collagen fibril MAD for the older horses was significantly less than that for the younger horses. Exercise did not significantly affect fibril diameter or distributions in either age group, and collagen fibril index did not differ significantly between groups. Age-related reduction in collagen fibril MAD agreed with findings for other tendons and species. Training did not accelerate age-related change in the CDET in contrast to a reported decrease in collagen fibril MAD in the superficial digital flexor tendon of horses trained long term. Our results support the concept that the functionally distinct nature of the CDET and superficial digital flexor tendon in horses results in fundamentally different responses to high-speed exercise regimens.

  18. Combined role of type IX collagen and cartilage oligomeric matrix protein in cartilage matrix assembly: Cartilage oligomeric matrix protein counteracts type IX collagen-induced limitation of cartilage collagen fibril growth in mouse chondrocyte cultures

    NARCIS (Netherlands)

    Blumbach, K.; Bastiaansen-Jenniskens, Y.M.; Groot, J. de; Paulsson, M.; Osch, G.J.V.M. van; Zaucke, F.

    2009-01-01

    Objective. Defects in the assembly and composition of cartilage extracellular matrix are likely to result in impaired matrix integrity and increased susceptibility to cartilage degeneration. The aim of this study was to determine the functional interaction of the collagen fibril-associated proteins

  19. Minerals and aligned collagen fibrils in tilapia fish scales: structural analysis using dark-field and energy-filtered transmission electron microscopy and electron tomography.

    Science.gov (United States)

    Okuda, Mitsuhiro; Ogawa, Nobuhiro; Takeguchi, Masaki; Hashimoto, Ayako; Tagaya, Motohiro; Chen, Song; Hanagata, Nobutaka; Ikoma, Toshiyuki

    2011-10-01

    The mineralized structure of aligned collagen fibrils in a tilapia fish scale was investigated using transmission electron microscopy (TEM) techniques after a thin sample was prepared using aqueous techniques. Electron diffraction and electron energy loss spectroscopy data indicated that a mineralized internal layer consisting of aligned collagen fibrils contains hydroxyapatite crystals. Bright-field imaging, dark-field imaging, and energy-filtered TEM showed that the hydroxyapatite was mainly distributed in the hole zones of the aligned collagen fibrils structure, while needle-like materials composed of calcium compounds including hydroxyapatite existed in the mineralized internal layer. Dark-field imaging and three-dimensional observation using electron tomography revealed that hydroxyapatite and needle-like materials were mainly found in the matrix between the collagen fibrils. It was observed that hydroxyapatite and needle-like materials were preferentially distributed on the surface of the hole zones in the aligned collagen fibrils structure and in the matrix between the collagen fibrils in the mineralized internal layer of the scale.

  20. Effects of training on collagen fibril populations in the suspensory ligament and deep digital flexor tendon of young thoroughbreds.

    Science.gov (United States)

    Patterson-Kane, J C; Firth, E C; Parry, D A; Wilson, A M; Goodship, A E

    1998-01-01

    To determine the effect of a specific galloping exercise regimen on collagen fibril mass-average diameters (MAD) in the deep digital flexor tendon (DDFT) and suspensory ligament (SL) of young Thoroughbreds. 12 Thoroughbred fillies, 21 +/- 1 (mean +/- SD) months old. 6 horses underwent a specific 18-month treadmill training program involving galloping exercise. The remaining 6 horses served as controls, undertaking low-volume walking exercise over the same period. Sections were excised from the midpoint of the DDFT and SL, and small strips were dissected from central and peripheral locations for each structure. Fibril diameters were measured from micrographs of transverse ultrathin sections, using a computerized image analysis program. An MAD value was calculated for the central and peripheral regions of the DDFT and SL for each horse. Values for both regions were compared between exercised and control horses. The MAD did not change significantly with exercise for either the DDFT or the SL. Loading of the DDFT as a result of this exercise regimen was not sufficient to stimulate collagen fibril hypertrophy, in keeping with current data that indicate this tendon, compared with the SL and superficial digital flexor tendon (SDFT), is subjected to low loads. Microtrauma, in terms of reduction in fibril MAD, may have occurred in the SL at a site different from that sampled. Another possibility is that, between the trot and the gallop, loading of the SL does not increase to the same extent as that of the SDFT.

  1. Ultrastructure Organization of Collagen Fibrils and Proteoglycans of Stingray and Shark Corneal Stroma

    Directory of Open Access Journals (Sweden)

    Saud A. Alanazi

    2015-01-01

    Full Text Available We report here the ultrastructural organization of collagen fibrils (CF and proteoglycans (PGs of the corneal stroma of both the stingray and the shark. Three corneas from three stingrays and three corneas from three sharks were processed for electron microscopy. Tissues were embedded in TAAB 031 resin. The corneal stroma of both the stingray and shark consisted of parallel running lamellae of CFs which were decorated with PGs. In the stingray, the mean area of PGs in the posterior stroma was significantly larger than the PGs of the anterior and middle stroma, whereas, in the shark, the mean area of PGs was similar throughout the stroma. The mean area of PGs of the stingray was significantly larger compared to the PGs, mean area of the shark corneal stroma. The CF diameter of the stingray was significantly smaller compared to the CF diameter in the shark. The ultrastructural features of the corneal stroma of both the stingray and the shark were similar to each other except for the CFs and PGs. The PGs in the stingray and shark might be composed of chondroitin sulfate (CS/dermatan sulfate (DS PGs and these PGs with sutures might contribute to the nonswelling properties of the cornea of the stingray and shark.

  2. Double immunohistochemical staining with laminin 5 (γ2 chain) and collagen IV in colorectal neoplasms

    DEFF Research Database (Denmark)

    Fiehn, Anne-Marie Kanstrup; Bzorek, Michael; Warnecke, Mads

    2016-01-01

    divided according to the primary histopathological diagnoses of tubular adenoma, tubulovillous adenoma, adenoma with pseudoinvasion and glandular adenocarcinoma stages pT1, pT2 or pT3, were included in the study. In normal colonic mucosa, no expression of laminin 5 staining was observed. BM was always...... as a supplement for the diagnosis of pT1 CRC. In adenomas, the double staining highlights the areas for the pathologist to pay extra attention. By itself, the double staining cannot determine whether or not there is invasion. Morphology remains the single most important factor in differentiating adenoma...

  3. On the role of type IX collagen in the extracellular matrix of cartilage: type IX collagen is localized to intersections of collagen fibrils

    OpenAIRE

    1986-01-01

    The tissue distribution of type II and type IX collagen in 17-d-old chicken embryo was studied by immunofluorescence using polyclonal antibodies against type II collagen and a peptic fragment of type IX collagen (HMW), respectively. Both proteins were found only in cartilage where they were co-distributed. They occurred uniformly throughout the extracellular matrix, i.e., without distinction between pericellular, territorial, and interterritorial matrices. Tissues that undergo endochondral bo...

  4. Softenin, a novel protein that softens the connective tissue of sea cucumbers through inhibiting interaction between collagen fibrils.

    Directory of Open Access Journals (Sweden)

    Yasuhiro Takehana

    Full Text Available The dermis in the holothurian body wall is a typical catch connective tissue or mutable collagenous tissue that shows rapid changes in stiffness. Some chemical factors that change the stiffness of the tissue were found in previous studies, but the molecular mechanisms of the changes are not yet fully understood. Detection of factors that change the stiffness by working directly on the extracellular matrix was vital to clarify the mechanisms of the change. We isolated from the body wall of the sea cucumber Stichopus chloronotus a novel protein, softenin, that softened the body-wall dermis. The apparent molecular mass was 20 kDa. The N-terminal sequence of 17 amino acids had low homology to that of known proteins. We performed sequential chemical and physical dissections of the dermis and tested the effects of softenin on each dissection stage by dynamic mechanical tests. Softenin softened Triton-treated dermis whose cells had been disrupted by detergent. The Triton-treated dermis was subjected to repetitive freeze-and-thawing to make Triton-Freeze-Thaw (TFT dermis that was softer than the Triton-treated dermis, implying that some force-bearing structure had been disrupted by this treatment. TFT dermis was stiffened by tensilin, a stiffening protein of sea cucumbers. Softenin softened the tensilin-stiffened TFT dermis while it had no effect on the TFT dermis without tensilin treatment. We isolated collagen from the dermis. When tensilin was applied to the suspending solution of collagen fibrils, they made a large compact aggregate that was dissolved by the application of softenin or by repetitive freeze-and-thawing. These results strongly suggested that softenin decreased dermal stiffness through inhibiting cross-bridge formation between collagen fibrils; the formation was augmented by tensilin and the bridges were broken by the freeze-thaw treatment. Softenin is thus the first softener of catch connective tissue shown to work on the cross

  5. Graphene-supporting films and low-voltage STEM in SEM toward imaging nanobio materials without staining: Observation of insulin amyloid fibrils.

    Science.gov (United States)

    Ogawa, Takashi; Gang, Geun Won; Thieu, Minh Thu; Kwon, Hyuksang; Ahn, Sang Jung; Ha, Tai Hwan; Cho, Boklae

    2017-05-01

    Utilization of graphene-supporting films and low-voltage scanning transmission electron microscopy (LV-STEM) in scanning electron microscopy (SEM) is shown to be an effective means of observing unstained nanobio materials. Insulin amyloid fibrils, which are implicated as a cause of type II diabetes, are formed in vitro and observed without staining at room temperature. An in-lens cold field-emission SEM, equipped with an additional homemade STEM detector, provides dark field (DF)-STEM images in the low energy range of 5-30keV, together with secondary electron (SE) images. Analysis based on Lenz's theory is used to interpret the experimental results. Graphene films, where the fibrils are deposited, reduce the background level of the STEM images compared with instances when conventional amorphous carbon films are used. Using 30keV, which is lower than that for conventional TEM (100-300keV), together with low detection angles (15-55mrad) enhances the signals from the fibrils. These factors improve image quality, which enables observation of thin fibrils with widths of 7-8nm. STEM imaging clearly reveals a twisted-ribbon structure of a fibril, and SE imaging shows an emphasized striped pattern of the fibril. The LV-STEM in SEM enables acquisition of two types of images of an identical fibril in a single instrument, which is useful for understanding the structure. This study expands the application of SEM to other systems of interest, which is beneficial to a large number of users. The method in this study can be applied to the observation of various nanobio materials and analysis of their native structures, thus contributing to research in materials and life sciences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Protease inhibitors enhance extracellular collagen fibril deposition in human mesenchymal stem cells

    OpenAIRE

    Han, Sejin; Li, Yuk Yin; Chan, Barbara Pui

    2015-01-01

    Introduction Collagen is a widely used naturally occurring biomaterial for scaffolding, whereas mesenchymal stem cells (MSCs) represent a promising cell source in tissue engineering and regenerative medicine. It is generally known that cells are able to remodel their environment by simultaneous degradation of the scaffolds and deposition of newly synthesized extracellular matrix. Nevertheless, the interactions between MSCs and collagen biomaterials are poorly known, and the strategies enhanci...

  7. Collagen fibril size and crimp morphology in ruptured and intact Achilles tendons

    DEFF Research Database (Denmark)

    Magnusson, S P; Qvortrup, K; Larsen, Jytte Overgaard

    2002-01-01

    tendons. Crimp angle did not display any region-specific differences, or any difference between the rupture and intact tendons. In conclusion, these data suggest that although crimp morphology is unchanged there appears to be a site-specific loss of larger fibrils in the core and periphery of the Achilles...

  8. Tenomodulin is Required for Tendon Endurance Running and Collagen I Fibril Adaptation to Mechanical Load

    Directory of Open Access Journals (Sweden)

    Sarah Dex

    2017-06-01

    Full Text Available Tendons are dense connective tissues that attach muscles to bone with an indispensable role in locomotion because of their intrinsic properties of storing and releasing muscle- generated elastic energy. Tenomodulin (Tnmd is a well-accepted gene marker for the mature tendon/ligament lineage and its loss-of -function in mice leads to a phenotype with distinct signs of premature aging on tissue and stem/progenitor cell levels. Based on these findings, we hypothesized that Tnmd might be an important factor in the functional performance of tendons. Firstly, we revealed that Tnmd is a mechanosensitive gene and that the C-terminus of the protein co-localize with collagen I-type fibers in the extracellular matrix. Secondly, using an endurance training protocol, we compared Tnmd knockout mice with wild types and showed that Tnmd deficiency leads to significantly inferior running performance that further worsens with training. In these mice, endurance running was hindered due to abnormal response of collagen I cross-linking and proteoglycan genes leading to an inadequate collagen I fiber thickness and elasticity. In sum, our study demonstrates that Tnmd is required for proper tendon tissue adaptation to endurance running and aids in better understanding of the structural-functional relationships of tendon tissues.

  9. Effect of collagen fibrils removal on shear bond strength of total etch and self etch adhesive systems

    Directory of Open Access Journals (Sweden)

    Pishevar L.

    2009-12-01

    Full Text Available "nBackground and Aim: Sodium hypochlorite can remove the organic phase of the demineralized dentin and it produces direct resin bonding with hydroxyapatite crystals. Therefore, the hydrolytic degradation of collagen fibrils which might affect the bonding durability is removed. The aim of this study was to evaluate the effect of collagen fibrils removal by 10% NaOCl on dentin shear bond strength of two total etch and self etch adhesive systems."nMaterials and Methods: Sixty extracted human premolar teeth were used in this study. Buccal surface of teeth were grounded until dentin was exposed. Then teeth were divided into four groups. According to dentin surface treatment, experimental groups were as follows: Group I: Single Bond (3M according to manufacture instruction, Group II: 10% NaOCl+Single bond (3M, Group III: Clearfil SE Bond (Kuraray according to manufacture instruction, and Group IV: Clearfil SE Bond primer. After that, the specimens were immersed in 50% acetone solution for removing extra monomer. Then the specimens were rinsed and dried. 10% NaOCl was applied and finally adhesive was used. Then composite was bonded to the treated surfaces using a 4 2 mm cylindrical plastic mold. Specimens were thermocycled for 500 cycles (5-55ºC. A shear load was employed by a universal testing machine with a cross head speed of 1mm/min. The data were analyzed for statistical significance with One-way ANOVA, Two-way ANOVA and Tukey HSD post-hoc tests."nResults: The mean shear bond strengths of groups were as follows: Single Bond=16.8±4.2, Clearfil SE Bond=23.7±4.07, Single Bond+NaOCl=10.5±4.34, Clearfil SE Bond+NaOCl=23.3±3.65 MPa. Statistical analysis revealed that using 10% NaOCl significantly decreased the shear bond strength in Single Bond group (P=0.00, but caused no significant difference in the shear bond strength in Clearfil SE Bond group (P=0.99."nConclusion: Based on the results of this study, NaOCl treatment did not improve the bond

  10. A quantitative comparison of morphological and histological characteristics of collagen in the rabbit medial collateral ligament.

    Science.gov (United States)

    Wan, Chao; Hao, Zhixiu; Wen, Shizhu

    2013-12-01

    Collagen fiber is one of the critical factors in determining mechanical properties of ligaments and both the morphological and histological characteristics of collagen have been widely studied. However, there was still no consensus about whether the morphological characteristics of collagen correlated with its histological characteristics in physiological ligaments. Rabbit medial collateral ligaments (MCLs) were measured under a transmission electron microscope and a polarized light microscope plus picrosirius red-staining to obtain the distributions of collagen fibril diameters and types at different anatomical sites of rabbit MCLs, respectively. The correlation between the fibril diameter and type was determined by a correlation analysis. The collagen fibril diameters at the different anatomical sites had different distributions (unimodal or bimodal) and mean fibril diameters were found to increase significantly from the anterior part to the posterior part (P=0.0482) as well as from the proximal to the distal sections (P=0.0208). Type I collagen in the core portion of MCLs was significantly less than at the other four peripheral areas (P0.05). The low coefficient in the correlation analysis (r=0.3759) demonstrated collagen fibril diameters had no correlation with collagen types. This may provide a new view of collagen types in studying the mechanical behavior of ligaments. Copyright © 2013 Elsevier GmbH. All rights reserved.

  11. Two-way regulation between cells and aligned collagen fibrils: local 3D matrix formation and accelerated neural differentiation of human decidua parietalis placental stem cells.

    Science.gov (United States)

    Li, Wen; Zhu, Bofan; Strakova, Zuzana; Wang, Rong

    2014-08-08

    It has been well established that an aligned matrix provides structural and signaling cues to guide cell polarization and cell fate decision. However, the modulation role of cells in matrix remodeling and the feedforward effect on stem cell differentiation have not been studied extensively. In this study, we report on the concerted changes of human decidua parietalis placental stem cells (hdpPSCs) and the highly ordered collagen fibril matrix in response to cell-matrix interaction. With high-resolution imaging, we found the hdpPSCs interacted with the matrix by deforming the cell shape, harvesting the nearby collagen fibrils, and reorganizing the fibrils around the cell body to transform a 2D matrix to a localized 3D matrix. Such a unique 3D matrix prompted high expression of β-1 integrin around the cell body that mediates and facilitates the stem cell differentiation toward neural cells. The study offers insights into the coordinated, dynamic changes at the cell-matrix interface and elucidates cell modulation of its matrix to establish structural and biochemical cues for effective cell growth and differentiation. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Location of 3-hydroxyproline residues in collagen types I, II, III, and V/XI implies a role in fibril supramolecular assembly.

    Science.gov (United States)

    Weis, Mary Ann; Hudson, David M; Kim, Lammy; Scott, Melissa; Wu, Jiann-Jiu; Eyre, David R

    2010-01-22

    Collagen triple helices are stabilized by 4-hydroxyproline residues. No function is known for the much less common 3-hydroxyproline (3Hyp), although genetic defects inhibiting its formation cause recessive osteogenesis imperfecta. To help understand the pathogenesis, we used mass spectrometry to identify the sites and local sequence motifs of 3Hyp residues in fibril-forming collagens from normal human and bovine tissues. The results confirm a single, essentially fully occupied 3Hyp site (A1) at Pro(986) in A-clade chains alpha1(I), alpha1(II), and alpha2(V). Two partially modified sites (A2 and A3) were found at Pro(944) in alpha1(II) and alpha2(V) and Pro(707) in alpha2(I) and alpha2(V), which differed from A1 in sequence motif. Significantly, the distance between sites 2 and 3, 237 residues, is close to the collagen D-period (234 residues). A search for additional D-periodic 3Hyp sites revealed a fourth site (A4) at Pro(470) in alpha2(V), 237 residues N-terminal to site 3. In contrast, human and bovine type III collagen contained no 3Hyp at any site, despite a candidate proline residue and recognizable A1 sequence motif. A conserved histidine in mammalian alpha1(III) at A1 may have prevented 3-hydroxylation because this site in chicken type III was fully hydroxylated, and tyrosine replaced histidine. All three B-clade type V/XI collagen chains revealed the same three sites of 3Hyp but at different loci and sequence contexts from those in A-clade collagen chains. Two of these B-clade sites were spaced apart by 231 residues. From these and other observations we propose a fundamental role for 3Hyp residues in the ordered self-assembly of collagen supramolecular structures.

  13. Rheology of Heterotypic Collagen Networks

    NARCIS (Netherlands)

    Piechocka, I.K.; van Oosten, A.S.G.; Breuls, R.G.M.; Koenderink, G.H.

    2011-01-01

    Collagen fibrils are the main structural element of connective tissues. In many tissues, these fibrils contain two fibrillar collagens (types I and V) in a ratio that changes during tissue development, regeneration, and various diseases. Here we investigate the influence of collagen composition on

  14. Topologically Micropatterned Collagen and Poly(ε-caprolactone) Struts Fabricated Using the Poly(vinyl alcohol) Fibrillation/Leaching Process To Develop Efficiently Engineered Skeletal Muscle Tissue.

    Science.gov (United States)

    Kim, Minseong; Kim, WonJin; Kim, GeunHyung

    2017-12-20

    Optimally designed three-dimensional (3D) biomedical scaffolds for skeletal muscle tissue regeneration pose significant research challenges. Currently, most studies on scaffolds focus on the two-dimensional (2D) surface structures that are patterned in the micro-/nanoscales with various repeating sizes and shapes to induce the alignment of myoblasts and myotube formation. The 2D patterned surface clearly provides effective analytical results of pattern size and shape of the myoblast alignment and differentiation. However, it is inconvenient in terms of the direct application for clinical usage due to the limited thickness and 3D shapeability. Hence, the present study suggests an innovative hydrogel or synthetic structure that consists of uniaxially surface-patterned cylindrical struts for skeleton muscle regeneration. The alignment of the pattern on the hydrogel (collagen) and poly(ε-caprolactone) struts was attained with the fibrillation of poly(vinyl alcohol) and the leaching process. Various cell culture results indicate that the C2C12 cells on the micropatterned collagen structure were fully aligned, and that a significantly high level of myotube formation was achieved when compared to the collagen structures that were not treated with the micropatterning process.

  15. Tumor Cell Invasion Can Be Blocked by Modulators of Collagen Fibril Alignment That Control Assembly of the Extracellular Matrix.

    Science.gov (United States)

    Grossman, Moran; Ben-Chetrit, Nir; Zhuravlev, Alina; Afik, Ran; Bassat, Elad; Solomonov, Inna; Yarden, Yosef; Sagi, Irit

    2016-07-15

    Abnormal architectures of collagen fibers in the extracellular matrix (ECM) are hallmarks of many invasive diseases, including cancer. Targeting specific stages of collagen assembly in vivo presents a great challenge due to the involvement of various crosslinking enzymes in the multistep, hierarchical process of ECM build-up. Using advanced microscopic tools, we monitored stages of fibrillary collagen assembly in a native fibroblast-derived 3D matrix system and identified anti-lysyl oxidase-like 2 (LOXL2) antibodies that alter the natural alignment and width of endogenic fibrillary collagens without affecting ECM composition. The disrupted collagen morphologies interfered with the adhesion and invasion properties of human breast cancer cells. Treatment of mice bearing breast cancer xenografts with the inhibitory antibodies resulted in disruption of the tumorigenic collagen superstructure and in reduction of primary tumor growth. Our approach could serve as a general methodology to identify novel therapeutics targeting fibrillary protein organization to treat ECM-associated pathologies. Cancer Res; 76(14); 4249-58. ©2016 AACR. ©2016 American Association for Cancer Research.

  16. Evaluation and Comparison of the Biopathology of Collagen and Inflammation in the Extracellular Matrix of Oral Epithelial Dysplasias and Inflammatory Fibrous Hyperplasia Using Picrosirius Red Stain and Polarising Microscopy: A Preliminary Study.

    Science.gov (United States)

    Varghese, Soma Susan; Sarojini, Sreenivasan Bargavan; George, Giju Baby; Vinod, Sankar; Mathew, Philips; Babu, Anulekh; Sebastian, Joseph

    2015-12-01

    The role of tumour inflammation and the dysplastic epithelial-stromal interactions on the nature of collagen fibres in the extracellular matrix of dysplastic epithelium is not fully understood. The present study was aimed to evaluate and compare the inflammation and pathological stromal collagen (loosely packed thin disorganized collagen) present in mild, moderate and severe epithelial dysplasias with that of inflammatory fibrous hyperplasias. The basement membrane intactness of epithelial dysplasias was also evaluated to determine if dysplastic epithelial mesenchymal interaction has any role in the integrity of stromal collagen in epithelial dysplasia. Oral epithelial dysplasias, inflammatory fibrous hyperplasia and normal oral mucosal samples were used for the study. Packing, thickness and orientation of collagen fibres in mild, moderate and severe grades of oral epithelial dysplasias (n = 24), inflammatory fibrous hyperplasia (n = 8) and normal oral mucosal samples (n = 8) were analysed based on the polarisation of collagen fibres in picrosirius red polarising stain under polarising microscope. All the grades of epithelial dysplasias showed greenish yellow birefringence confirming the presence of loosely arranged pathological collagen in the presence of moderate inflammation. All the cases of inflammatory fibrous hyperplasia showed red polarisation hue and moderate inflammation. A statistically significant difference was found in the packing and orientation of collagen when epithelial dysplasias and inflammatory fibrous hyperplasia were compared (P collagen even in mild epithelial dysplasia suggests that tumourigenic factors are released to connective tissue stroma much earlier than expected. Hence we suggest considering the integrity of extracellular matrix collagen, intactness of basement membrane and inflammation associated with dysplasia along with the anaplasia of epithelial cells in the microscopic assessment of dysplastic epithelium.

  17. Fibulin-4 E57K Knock-in Mice Recapitulate Cutaneous, Vascular and Skeletal Defects of Recessive Cutis Laxa 1B with both Elastic Fiber and Collagen Fibril Abnormalities.

    Science.gov (United States)

    Igoucheva, Olga; Alexeev, Vitali; Halabi, Carmen M; Adams, Sheila M; Stoilov, Ivan; Sasaki, Takako; Arita, Machiko; Donahue, Adele; Mecham, Robert P; Birk, David E; Chu, Mon-Li

    2015-08-28

    Fibulin-4 is an extracellular matrix protein essential for elastic fiber formation. Frameshift and missense mutations in the fibulin-4 gene (EFEMP2/FBLN4) cause autosomal recessive cutis laxa (ARCL) 1B, characterized by loose skin, aortic aneurysm, arterial tortuosity, lung emphysema, and skeletal abnormalities. Homozygous missense mutations in FBLN4 are a prevalent cause of ARCL 1B. Here we generated a knock-in mouse strain bearing a recurrent fibulin-4 E57K homozygous missense mutation. The mutant mice survived into adulthood and displayed abnormalities in multiple organ systems, including loose skin, bent forelimb, aortic aneurysm, tortuous artery, and pulmonary emphysema. Biochemical studies of dermal fibroblasts showed that fibulin-4 E57K mutant protein was produced but was prone to dimer formation and inefficiently secreted, thereby triggering an endoplasmic reticulum stress response. Immunohistochemistry detected a low level of fibulin-4 E57K protein in the knock-in skin along with altered expression of selected elastic fiber components. Processing of a precursor to mature lysyl oxidase, an enzyme involved in cross-linking of elastin and collagen, was compromised. The knock-in skin had a reduced level of desmosine, an elastin-specific cross-link compound, and ultrastructurally abnormal elastic fibers. Surprisingly, structurally aberrant collagen fibrils and altered organization into fibers were characteristics of the knock-in dermis and forelimb tendons. Type I collagen extracted from the knock-in skin had decreased amounts of covalent intermolecular cross-links, which could contribute to the collagen fibril abnormalities. Our studies provide the first evidence that fibulin-4 plays a role in regulating collagen fibril assembly and offer a preclinical platform for developing treatments for ARCL 1B. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Transmission electron microscopy of amyloid fibrils.

    Science.gov (United States)

    Gras, Sally L; Waddington, Lynne J; Goldie, Kenneth N

    2011-01-01

    Transmission Electron Microscopy of negatively stained and cryo-prepared specimens allows amyloid fibrils to be visualised at high resolution in a dried or a hydrated state, and is an essential method for characterising the morphology of fibrils and pre-fibrillar species. We outline the key steps involved in the preparation and observation of samples using negative staining and cryo-electron preservation. We also discuss methods to measure fibril characteristics, such as fibril width, from electron micrographs.

  19. Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators.

    Science.gov (United States)

    Kadler, Karl E; Hill, Adele; Canty-Laird, Elizabeth G

    2008-10-01

    Collagens are triple helical proteins that occur in the extracellular matrix (ECM) and at the cell-ECM interface. There are more than 30 collagens and collagen-related proteins but the most abundant are collagens I and II that exist as D-periodic (where D = 67 nm) fibrils. The fibrils are of broad biomedical importance and have central roles in embryogenesis, arthritis, tissue repair, fibrosis, tumor invasion, and cardiovascular disease. Collagens I and II spontaneously form fibrils in vitro, which shows that collagen fibrillogenesis is a selfassembly process. However, the situation in vivo is not that simple; collagen I-containing fibrils do not form in the absence of fibronectin, fibronectin-binding and collagen-binding integrins, and collagen V. Likewise, the thin collagen II-containing fibrils in cartilage do not form in the absence of collagen XI. Thus, in vivo, cellular mechanisms are in place to control what is otherwise a protein self-assembly process. This review puts forward a working hypothesis for how fibronectin and integrins (the organizers) determine the site of fibril assembly, and collagens V and XI (the nucleators) initiate collagen fibrillogenesis.

  20. Effect of modifications in mineralized collagen fibril and extra-fibrillar matrix material properties on submicroscale mechanical behavior of cortical bone.

    Science.gov (United States)

    Wang, Yaohui; Ural, Ani

    2018-06-01

    A key length scale of interest in assessing the fracture resistance of bone is the submicroscale which is composed of mineralized collagen fibrils (MCF) and extra-fibrillar matrix (EFM). Although the processes through which the submicroscale constituents of bone contribute to the fracture resistance in bone have been identified, the extent of the modifications in submicroscale mechanical response due to the changes in individual properties of MCFs and EFM has not been determined. As a result, this study aims to quantify the influence of individual MCF and EFM material property modifications on the mechanical behavior (elastic modulus, ultimate strength, and resistance to failure) of bone at the submicroscale using a novel finite element modeling approach that incorporate 3D networks of MCFs with three different orientations as well as explicit representation of EFM. The models were evaluated under tensile loading in transverse (representing MCF separation) and longitudinal (representing MCF rupture) directions. The results showed that the apparent elastic modulus at the submicroscale under both loading directions for all orientations was only affected by the change in the elastic modulus of MCFs. MCF separation and rupture strengths were mainly dependent on the ultimate strength of EFM and MCFs, respectively, with minimal influence of other material properties. The extent of damage during MCF separation increased with increasing ultimate strength of EFM and decreased with increasing fracture energy of EFM with minimal contribution from elastic modulus of MCFs. For MCF rupture, there was an almost one-to-one linear relationship between the percent change in fracture energy of MCFs and the percent change in the apparent submicroscale fracture energy. The ultimate strength and elastic modulus of MCFs had moderate to limited influence on the MCF rupture fracture energy. The results of this study quantified the extent of changes that may be seen in the energy

  1. Microscopic characterization of collagen modifications induced by low-temperature diode-laser welding of corneal tissue.

    Science.gov (United States)

    Matteini, Paolo; Rossi, Francesca; Menabuoni, Luca; Pini, Roberto

    2007-08-01

    Laser welding of corneal tissue that employs diode lasers (810 nm) at low power densities (12-20 W/cm(2)) in association with Indocyanine Green staining of the wound is a technique proposed as an alternative to conventional suturing procedures. The aim of this study is to evaluate, by means of light (LM) and transmission electron microscopy (TEM) analyses, the structural modifications induced in laser-welded corneal stroma. Experiments were carried out in 20 freshly enucleated pig eyes. A 3.5 mm in length full-thickness cut was produced in the cornea, and was then closed by laser welding. Birefringence modifications in samples stained with picrosirius red dye were analyzed by polarized LM to assess heat damage. TEM analysis was performed on ultra-thin slices, contrasted with uranyl acetate and lead citrate, in order to assess organization and size of type I collagen fibrils after laser welding. LM evidenced bridges of collagen bundles between the wound edges, with a loss of regular lamellar organization at the welded site. Polarized LM indicated that birefringence properties were mostly preserved after laser treatment. TEM examinations revealed the presence of quasi-ordered groups of fibrils across the wound edges preserving their interfibrillar spacing. These fibrils appeared morphologically comparable to those in the control tissue, indicating that type I collagen was not denatured during the diode laser corneal welding. The preservation of substantially intact, undenatured collagen fibrils in laser-welded corneal wounds supported the thermodynamic studies that we carried out recently, which indicated temperatures below 66 degrees C at the weld site under laser irradiation. This observation enabled us to hypothesize that the mechanism, proposed in the literature, of unwinding of collagen triple helixes followed by fibrils "interdigitation" is not likely to occur in the welding process that we set up for the corneal suturing.

  2. Alteration of cartilage surface collagen fibers differs locally after immobilization of knee joints in rats

    Science.gov (United States)

    Nagai, Momoko; Aoyama, Tomoki; Ito, Akira; Tajino, Junichi; Iijima, Hirotaka; Yamaguchi, Shoki; Zhang, Xiangkai; Kuroki, Hiroshi

    2015-01-01

    The purpose of this study was to examine the ultrastructural changes of surface cartilage collagen fibers, which differ by region and the length of the experimental period in an immobilization model of rat. Male Wistar rats were randomly divided into histological or macroscopic and ultrastructural assessment groups. The left knees of all the animals were surgically immobilized by external fixation for 1, 2, 4, 8 or 16 weeks (n = 5/time point). Sagittal histological sections of the medial mid-condylar region of the knee were obtained and assessed in four specific regions (contact and peripheral regions of the femur and tibia) and two zones (superficial and deep). To semi-quantify the staining intensity of the collagen fibers in the cartilage, picrosirius red staining was used. The cartilage surface changes of all the assessed regions were investigated by scanning electron microscopy (SEM). From histological and SEM observations, the fibrillation and irregular changes of the cartilage surface were more severe in the peripheral region than in the contact region. Interestingly, at 16 weeks post-immobilization, we observed non-fibrous structures at both the contact and peripheral regions. The collagen fiber staining intensity decreased in the contact region compared with the peripheral region. In conclusion, the alteration of surface collagen fiber ultrastructure and collagen staining intensity differed by the specific cartilage regions after immobilization. These results demonstrate that the progressive degeneration of cartilage is region specific, and depends on the length of the immobilization period. PMID:25939458

  3. Assessment of atherosclerotic plaque collagen content and architecture using polarization-sensitive optical coherence tomography (Conference Presentation)

    Science.gov (United States)

    Doradla, Pallavi; Villiger, Martin; Tshikudi, Diane M.; Bouma, Brett E.; Nadkarni, Seemantini K.

    2016-02-01

    Acute myocardial infarction, caused by the rupture of vulnerable coronary plaques, is the leading cause of death worldwide. Collagen is the primary extracellular matrix macromolecule that imparts the mechanical stability to a plaque and its reduction causes plaque instability. Intracoronary polarization sensitive optical coherence tomography (PS-OCT) measures the polarization states of the backscattered light from the tissue to evaluate plaque birefringence, a material property that is elevated in proteins such as collagen with an ordered structure. Here we investigate the dependence of the PS-OCT parameters on the quantity of the plaque collagen and fiber architecture. In this study, coronary arterial segments from human cadaveric hearts were evaluated with intracoronary PS-OCT and compared with Histopathological assessment of collagen content and architecture from picrosirius-red (PSR) stained sections. PSR sections were visualized with circularly-polarized light microscopy to quantify collagen birefringence, and the additional assessment of color hue indicated fibril thickness. Due to the ordered architecture of thick collagen fibers, a positive correlation between PS-OCT retardation and quantity of thick collagen fibers (r=0.54, p=0.04), and similarly with the total collagen content (r=0.51, p=0.03) was observed. In contrast, there was no perceivable relationship between PS-OCT retardation and the presence of thin collagen fibers (r=0.08, p=0.07), suggesting that thin and disorganized collagen fiber architecture did not significantly contribute to the PS-OCT retardation. Further analysis will be performed to assess the relationship between PS-OCT retardation and collagen architecture based on immunohistochemical analysis of collagen type. These results suggest that intracoronary PS-OCT may open the opportunity to assess collagen architecture in addition total collagen content, potentially enabling an improved understanding of coronary plaque rupture.

  4. Changes in histoanatomical distribution of types I, III and V collagen promote adaptative remodeling in posterior tibial tendon rupture

    Directory of Open Access Journals (Sweden)

    Érika Satomi

    2008-01-01

    Full Text Available INTRODUCTION: Posterior tibial tendon dysfunction is a common cause of adult flat foot deformity, and its etiology is unknown. PURPOSE: In this study, we characterized the morphologic pattern and distribution of types I, III and V collagen in posterior tibial tendon dysfunction. METHOD: Tendon samples from patients with and without posterior tibial tendon dysfunction were stained by immunofluorescence using antibodies against types I, III and V collagen. RESULTS: Control samples showed that type V deposited near the vessels only, while surgically obtained specimens displayed type V collagen surrounding other types of collagen fibers in thicker adventitial layers. Type III collagen levels were also increased in pathological specimens. On the other hand, amounts of collagen type I, which represents 95% of the total collagen amount in normal tendon, were decreased in pathological specimens. CONCLUSION: Fibrillogenesis in posterior tibial tendon dysfunction is altered due to higher expression of types III and V collagen and a decreased amount of collagen type I, which renders the originating fibrils structurally less resistant to mechanical forces.

  5. Gram staining.

    Science.gov (United States)

    Coico, Richard

    2005-10-01

    Named after Hans Christian Gram who developed the method in 1884, the Gram stain allows one to distinguish between Gram-positive and Gram-negative bacteria on the basis of differential staining with a crystal violet-iodine complex and a safranin counterstain. The cell walls of Gram-positive organisms retain this complex after treatment with alcohol and appear purple, whereas gram-negative organisms decolorize following such treatment and appear pink. The method described here is useful for assessing bacterial contamination of tissue culture samples or for examining the Gram stain status and morphological features of bacteria isolated from mixed or isolated bacterial cultures.

  6. Investigation on fibrous collagen modifications during corneal laser welding by second harmonic generation microscopy

    Science.gov (United States)

    Matteini, Paolo; Ratto, Fulvio; Rossi, Francesca; Cicchi, Riccardo; Stringari, Chiara; Kapsokalyvas, Dimitrios; Pavone, Francesco S.; Pini, Roberto

    2009-02-01

    The structural modifications in the collagen lattice of corneal stroma induced by near-infrared laser welding were investigated with second-harmonic generation (SHG) imaging. The corneal laser welding procedure is performed by staining the wound edges with a saturated water solution of Indocyanine Green (ICG) followed by irradiation with a 810 nm diode laser operated in continuous (CWLW: continuous wave laser welding) or pulsed (PLW: pulsed laser welding) mode. Both these procedures can provide closure of corneal wounds by inducing different structural modifications in the extracellular matrix. SHG imaging of native corneal stroma revealed collagen bundles composed of many regularly aligned collagen fibrils. After CWLW the regular lamellar arrangement was lost; collagen bundles appeared densely packed with an increasing disordered arrangement toward the welded cut. The weld was characterized by a loss of details; nevertheless, the observation of the second harmonic signal at this site indicated the lack of collagen denaturation. By contrast, PLW mode produced welding spots at the interface between donor and recipient corneal layers, which were characterized by a severe loss of the SHG signal, suggesting the occurrence of a complete collagen denaturation. SHG imaging appeared to be a powerful tool for visualizing the supramolecular morphological modifications in the collagen matrix after laser welding.

  7. Collagen Content Limits Optical Coherence Tomography Image Depth in Porcine Vocal Fold Tissue.

    Science.gov (United States)

    Garcia, Jordan A; Benboujja, Fouzi; Beaudette, Kathy; Rogers, Derek; Maurer, Rie; Boudoux, Caroline; Hartnick, Christopher J

    2016-11-01

    Vocal fold scarring, a condition defined by increased collagen content, is challenging to treat without a method of noninvasively assessing vocal fold structure in vivo. The goal of this study was to observe the effects of vocal fold collagen content on optical coherence tomography imaging to develop a quantifiable marker of disease. Excised specimen study. Massachusetts Eye and Ear Infirmary. Porcine vocal folds were injected with collagenase to remove collagen from the lamina propria. Optical coherence tomography imaging was performed preinjection and at 0, 45, 90, and 180 minutes postinjection. Mean pixel intensity (or image brightness) was extracted from images of collagenase- and control-treated hemilarynges. Texture analysis of the lamina propria at each injection site was performed to extract image contrast. Two-factor repeated measure analysis of variance and t tests were used to determine statistical significance. Picrosirius red staining was performed to confirm collagenase activity. Mean pixel intensity was higher at injection sites of collagenase-treated vocal folds than control vocal folds (P Fold change in image contrast was significantly increased in collagenase-treated vocal folds than control vocal folds (P = .002). Picrosirius red staining in control specimens revealed collagen fibrils most prominent in the subepithelium and above the thyroarytenoid muscle. Specimens treated with collagenase exhibited a loss of these structures. Collagen removal from vocal fold tissue increases image brightness of underlying structures. This inverse relationship may be useful in treating vocal fold scarring in patients. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.

  8. Structure of collagen-glycosaminoglycan matrix and the influence to its integrity and stability.

    Science.gov (United States)

    Bi, Yuying; Patra, Prabir; Faezipour, Miad

    2014-01-01

    Glycosaminoglycan (GAG) is a chain-like disaccharide that is linked to polypeptide core to connect two collagen fibrils/fibers and provide the intermolecular force in Collagen-GAG matrix (C-G matrix). Thus, the distribution of GAG in C-G matrix contributes to the integrity and mechanical properties of the matrix and related tissue. This paper analyzes the transverse isotropic distribution of GAG in C-G matrix. The angle of GAGs related to collagen fibrils is used as parameters to qualify the GAGs isotropic characteristic in both 3D and 2D rendering. Statistical results included that over one third of GAGs were perpendicular directed to collagen fibril with symmetrical distribution for both 3D matrix and 2D plane cross through collagen fibrils. The three factors tested in this paper: collagen radius, collagen distribution, and GAGs density, were not statistically significant for the strength of Collagen-GAG matrix in 3D rendering. However in 2D rendering, a significant factor found was the radius of collagen in matrix for the GAGs directed to orthogonal plane of Collagen-GAG matrix. Between two cross-section selected from Collagen-GAG matrix model, the plane cross through collagen fibrils was symmetrically distributed but the total percentage of perpendicular directed GAG was deducted by decreasing collagen radius. There were some symmetry features of GAGs angle distribution in selected 2D plane that passed through space between collagen fibrils, but most models showed multiple peaks in GAGs angle distribution. With less GAGs directed to perpendicular of collagen fibril, strength in collagen cross-section weakened. Collagen distribution was also a factor that influences GAGs angle distribution in 2D rendering. True hexagonal collagen packaging is reported in this paper to have less strength at collagen cross-section compared to quasi-hexagonal collagen arrangement. In this work focus is on GAGs matrix within the collagen and its relevance to anisotropy.

  9. Enhanced stabilization of collagen by furfural.

    Science.gov (United States)

    Lakra, Rachita; Kiran, Manikantan Syamala; Usha, Ramamoorthy; Mohan, Ranganathan; Sundaresan, Raja; Korrapati, Purna Sai

    2014-04-01

    Furfural (2-furancarboxaldehyde), a product derived from plant pentosans, has been investigated for its interaction with collagen. Introduction of furfural during fibril formation enhanced the thermal and mechanical stability of collagen. Collagen films treated with furfural exhibited higher denaturation temperature (Td) (pFurfural and furfural treated collagen films did not have any cytotoxic effect. Rheological characterization showed an increase in shear stress and shear viscosity with increasing shear rate for treated collagen. Circular dichroism (CD) studies indicated that the furfural did not have any impact on triple helical structure of collagen. Scanning electron microscopy (SEM) of furfural treated collagen exhibited small sized porous structure in comparison with untreated collagen. Thus this study provides an alternate ecologically safe crosslinking agent for improving the stability of collagen for biomedical and industrial applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Fibrous mini-collagens in hydra nematocysts.

    Science.gov (United States)

    Holstein, T W; Benoit, M; Herder, G V; David, C N; Wanner, G; Gaub, H E

    1994-07-15

    Nematocysts (cnidocysts) are exocytotic organelles found in all cnidarians. Here, atomic force microscopy and field emission scanning electron microscopy reveal the structure of the nematocyst capsule wall. The outer wall consists of globular proteins of unknown function. The inner wall consists of bundles of collagen-like fibrils having a spacing of 50 to 100 nanometers and cross-striations at intervals of 32 nanometers. The fibrils consist of polymers of "mini-collagens," which are abundant in the nematocysts of Hydra. The distinct pattern of mini-collagen fibers in the inner wall can provide the tensile strength necessary to withstand the high osmotic pressure (15 megapascals) in the capsules.

  11. Lysyl oxidase activity is required for ordered collagen fibrillogenesis by tendon cells

    DEFF Research Database (Denmark)

    Herchenhan, Andreas; Uhlenbrock, Franziska Katharina; Eliasson, Pernilla

    2015-01-01

    to structurally abnormal collagen fibrils with irregular profiles and widely dispersed diameters. Of special interest, the abnormal fibril profiles resembled those seen in some Ehlers-Danlos Syndrome phenotypes. Importantly, the total collagen content developed normally, and there was no difference in COL1A1 gene...

  12. Atrial fibrillation

    African Journals Online (AJOL)

    ABEOLUGBENGAS

    Mean blood pressures were 126.03± ... optimal. Keywords: Atrial fibrillation, thrombosis, CHADS2 Score, stroke risk, hypertensive heart disease, ... general population and the average age group ... Appendix 1) to stratify the stroke risk and we.

  13. Synergistic intrafibrillar/extrafibrillar mineralization of collagen scaffolds based on a biomimetic strategy to promote the regeneration of bone defects

    Directory of Open Access Journals (Sweden)

    Wang Y

    2016-05-01

    Full Text Available Yao Wang,1 Ngo Van Manh,1,2 Haorong Wang,1 Xue Zhong,1 Xu Zhang,1 Changyi Li1 1School of Dentistry, Hospital of Stomatology, Tianjin Medical University, Tianjin, People’s Republic of China; 2Thaibinh University of Medicine and Pharmacy, Thaibinh, Vietnam Abstract: The mineralization of collagen scaffolds can improve their mechanical properties and biocompatibility, thereby providing an appropriate microenvironment for bone regeneration. The primary purpose of the present study is to fabricate a synergistically intra- and extrafibrillar mineralized collagen scaffold, which has many advantages in terms of biocompatibility, biomechanical properties, and further osteogenic potential. In this study, mineralized collagen scaffolds were fabricated using a traditional mineralization method (ie, immersed in simulated body fluid as a control group and using a biomimetic method based on the polymer-induced liquid precursor process as an experimental group. In the polymer-induced liquid precursor process, a negatively charged polymer, carboxymethyl chitosan (CMC, was used to stabilize amorphous calcium phosphate (ACP to form nanocomplexes of CMC/ACP. Collagen scaffolds mineralized based on the polymer-induced liquid precursor process were in gel form such that nanocomplexes of CMC/ACP can easily be drawn into the interstices of the collagen fibrils. Scanning electron microscopy and transmission electron microscopy were used to examine the porous micromorphology and synergistic mineralization pattern of the collagen scaffolds. Compared with simulated body fluid, nanocomplexes of CMC/ACP significantly increased the modulus of the collagen scaffolds. The results of in vitro experiments showed that the cell count and differentiated degrees in the experimental group were higher than those in the control group. Histological staining and micro-computed tomography showed that the amount of new bone regenerated in the experimental group was larger than that in the

  14. Atrial Fibrillation: Diagnosis

    Science.gov (United States)

    ... of this page please turn JavaScript on. Feature: Atrial Fibrillation Atrial Fibrillation: Diagnosis Past Issues / Winter 2015 Table of Contents ... of your body's cells and organs. Read More "Atrial Fibrillation" Articles Atrial Fibrillation / Who Is at Risk for ...

  15. Type VII collagen is enriched in the enamel organic matrix associated with the dentin-enamel junction of mature human teeth.

    Science.gov (United States)

    McGuire, Jacob D; Walker, Mary P; Mousa, Ahmad; Wang, Yong; Gorski, Jeff P

    2014-06-01

    The inner enamel region of erupted teeth is known to exhibit higher fracture toughness and crack growth resistance than bulk phase enamel. However, an explanation for this behavior has been hampered by the lack of compositional information for the residual enamel organic matrix. Since enamel-forming ameloblasts are known to express type VII collagen and type VII collagen null mice display abnormal amelogenesis, the aim of this study was to determine whether type VII collagen is a component of the enamel organic matrix at the dentin-enamel junction (DEJ) of mature human teeth. Immunofluorescent confocal microscopy of demineralized tooth sections localized type VII collagen to the organic matrix surrounding individual enamel rods near the DEJ. Morphologically, immunoreactive type VII collagen helical-bundles resembled the gnarled-pattern of enamel rods detected by Coomassie Blue staining. Western blotting of whole crown or enamel matrix extracts also identified characteristic Mr=280 and 230 kDa type VII dimeric forms, which resolved into 75 and 25 kDa bands upon reduction. As expected, the collagenous domain of type VII collagen was resistant to pepsin digestion, but was susceptible to purified bacterial collagenase. These results demonstrate the inner enamel organic matrix in mature teeth contains macromolecular type VII collagen. Based on its physical association with the DEJ and its well-appreciated capacity to complex with other collagens, we hypothesize that enamel embedded type VII collagen fibrils may contribute not only to the structural resilience of enamel, but may also play a role in bonding enamel to dentin. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Expression of TGFbeta1 in pulmonary vein stenosis after radiofrequency ablation in chronic atrial fibrillation of dogs.

    Science.gov (United States)

    Li, Shufeng; Li, Hongli; Mingyan, E; Yu, Bo

    2009-02-01

    The development of pulmonary vein stenosis has recently been described after radiofrequency ablation (RF) to treat atrial fibrillation (AF). The purpose of this study was to examine expression of TGFbeta1 in pulmonary vein stenosis after radiofrequency ablation in chronic atrial fibrillation of dogs. About 28 mongrel dogs were randomly assigned to the sham-operated group (n = 7), the AF group (n = 7), AF + RF group (n = 7), and RF group (n = 7). In AF or AF + RF groups, dogs underwent chronic pulmonary vein (PV) pacing to induce sustained AF. RF application was applied around the PVs until electrical activity was eliminated. Histological assessment of pulmonary veins was performed using hematoxylin and eosin staining; TGFbeta1 gene expression in pulmonary veins was examined by RT-PCR analysis; expression of TGFbeta1 protein in pulmonary veins was assessed by Western blot analysis. Rapid pacing from the left superior pulmonary vein (LSPV) induced sustained AF in AF group and AF + RF group. Pulmonary vein ablation terminated the chronic atrial fibrillation in dogs. Histological examination revealed necrotic tissues in various stages of collagen replacement, intimal thickening, and cartilaginous metaplasia with chondroblasts and chondroclasts. Compared with sham-operated and AF group, TGFbeta1 gene and protein expressions was increased in AF + RF or RF groups. It was concluded that TGFbeta1 might be associated with pulmonary vein stenosis after radiofrequency ablation in chronic atrial fibrillation of dogs.

  17. Co-ordinate induction of collagen type I and biglycan expression in keloids.

    Science.gov (United States)

    Hunzelmann, N; Anders, S; Sollberg, S; Schönherr, E; Krieg, T

    1996-09-01

    Proteoglycans are macromolecules displaying structural roles as well as regulatory functions in the maintenance of the extracellular matrix. Biglycan/PG-I and decorin/PG-II are two small proteoglycans that are structurally related but differ considerably in their localization in vivo and behaviour in vitro. Decorin and, to a minor extent, biglycan, can be located at the surface of type I collagen fibrils and have been shown to influence collagen fibrillogenesis. However, the physiological role of biglycan in the dermis is not known. Biopsies obtained from keloids were bisected and processed for total RNA extraction and immunohistochemistry. Northern blot analysis of total RNA obtained from keloids with high growth tendency in vivo showed a marked induction of biglycan and collagen alpha 1(I)mRNA expression in comparison with total RNA obtained from normal skin or keloids with little growth tendency. In contrast, decorin mRNA expression remained largely unaltered. Studying these biopsies by immunohistochemistry, decorin expression in the dermis was unaltered comparing normal and keloid tissue, whereas a markedly increased staining for biglycan was observed in the keloid tissue, which was most pronounced in the nodular formations, and was a characteristic feature of keloids. The altered expression of biglycan in keloid tissue might be involved in the abnormal regulation of extracellular matrix deposition either through the binding of growth factors or by influencing the three-dimensional organization of collagen fibres or associated molecules.

  18. Collagenous sprue

    DEFF Research Database (Denmark)

    Soendergaard, Christoffer; Riis, Lene Buhl; Nielsen, Ole Haagen

    2014-01-01

    Collagenous sprue is a rare clinicopathological condition of the small bowel. It is characterised by abnormal subepithelial collagen deposition and is typically associated with malabsorption, diarrhoea and weight loss. The clinical features of collagenous sprue often resemble those of coeliac...... disease and together with frequent histological findings like mucosal thinning and intraepithelial lymphocytosis the diagnosis may be hard to reach without awareness of this condition. While coeliac disease is treated using gluten restriction, collagenous sprue is, however, not improved...... by this intervention. In cases of diet-refractory 'coeliac disease' it is therefore essential to consider collagenous sprue to initiate treatment at an early stage to prevent the fibrotic progression. Here, we report a case of a 78-year-old man with collagenous sprue and present the clinical and histological...

  19. Penta-fibrillar assembly: A Building block collagen based materials

    Indian Academy of Sciences (India)

    There is a smartness in the way the penta-fibrils behave in collagen based biomaterials. It is one of the intriguing nano material with a size of about 4 nano meter diagonal size. There are several intermolecular forces that participate in the penta fibrillar assembly, which derive importance in smart behavior of collagen.

  20. Manipulation of in vitro collagen matrix architecture for scaffolds of improved physiological relevance

    Science.gov (United States)

    Hapach, Lauren A.; VanderBurgh, Jacob A.; Miller, Joseph P.; Reinhart-King, Cynthia A.

    2015-12-01

    Type I collagen is a versatile biomaterial that is widely used in medical applications due to its weak antigenicity, robust biocompatibility, and its ability to be modified for a wide array of applications. As such, collagen has become a major component of many tissue engineering scaffolds, drug delivery platforms, and substrates for in vitro cell culture. In these applications, collagen constructs are fabricated to recapitulate a diverse set of conditions. Collagen fibrils can be aligned during or post-fabrication, cross-linked via numerous techniques, polymerized to create various fibril sizes and densities, and copolymerized into a wide array of composite scaffolds. Here, we review approaches that have been used to tune collagen to better recapitulate physiological environments for use in tissue engineering applications and studies of basic cell behavior. We discuss techniques to control fibril alignment, methods for cross-linking collagen constructs to modulate stiffness, and composite collagen constructs to better mimic physiological extracellular matrix.

  1. Atrial fibrillation

    DEFF Research Database (Denmark)

    Olesen, Morten S; Nielsen, Morten W; Haunsø, Stig

    2014-01-01

    Atrial fibrillation (AF) is the most common cardiac arrhythmia affecting 1-2% of the general population. A number of studies have demonstrated that AF, and in particular lone AF, has a substantial genetic component. Monogenic mutations in lone and familial AF, although rare, have been recognized...

  2. [Atrial fibrillation].

    Science.gov (United States)

    Spinar, J; Vítovec, J

    2003-09-01

    Atrial fibrilation is the most frequent arrhythmia, the occurrence increasing with age and associated diseases. The incidence at the age below 60 years is markedly lower than one per cent, whereas in persons above 80 years of age it exceeds six per cent. The occurrence in patients with heart failure is from 10% (NYHA II) up to 50% (NYHA IV). Atrial fibrillation is classified into that observed for the first time and permanent, respectively, while transient forms include paroxyzmal and persistent atrial fibrillation. The diagnosis is based on ECG recording, while echocardiography is most significant. The therapy includes two basic questions--anticoagulant or anti-aggregation treatment and the control of rhythm or frequency. The anticoagulant therapy should be introduced in all patients, where contraindications are not present, being necessary before every cardioversion, provided atrial fibrillation lasts more than two days. In patients without any heart disease and with a physiological echocardiogram it is possible to administer only anti-aggregation treatment. Cardioversion (the control of rhythm) is recommended to all symptomatic patients, in other cases and especially in older persons the control of frequency is safer and of more advantage. Electrical cardioversion is more effective that a pharmacological treatment, the sinus rhythm is preferably controlled by dofetilid, ibutilid, propafenon and amiodaron. For the control of heart rate beta-blockers, diltiazem, verapamil and digitalis are recommended.

  3. Differential staining of bacteria: gram stain.

    Science.gov (United States)

    Moyes, Rita B; Reynolds, Jackie; Breakwell, Donald P

    2009-11-01

    In 1884, Hans Christian Gram, a Danish doctor, developed a differential staining technique that is still the cornerstone of bacterial identification and taxonomic division. This multistep, sequential staining protocol separates bacteria into four groups based on cell morphology and cell wall structure: Gram-positive cocci, Gram-negative cocci, Gram-positive rods, and Gram-negative rods. The Gram stain is useful for assessing bacterial contamination of tissue culture samples or for examining the Gram stain status and morphological features of bacteria isolated from mixed or isolated bacterial cultures. (c) 2009 by John Wiley & Sons, Inc.

  4. Port-Wine Stains

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Port-Wine Stains KidsHealth / For Parents / Port-Wine Stains What's ... Manchas de vino de oporto What Are Port-Wine Stains? A port-wine stain is a type ...

  5. Ovine tendon collagen: Extraction, characterisation and fabrication of thin films for tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Fauzi, M.B.; Lokanathan, Y. [Tissue Engineering Centre, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur (Malaysia); Aminuddin, B.S. [Tissue Engineering Centre, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur (Malaysia); Ear, Nose & Throat Consultant Clinic, Ampang Puteri Specialist Hospital, Taman Dato Ahmad Razali, 68000 Ampang, Selangor (Malaysia); Ruszymah, B.H.I. [Tissue Engineering Centre, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur (Malaysia); Department of Physiology, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur (Malaysia); Chowdhury, S.R., E-mail: shiplu@ppukm.ukm.edu.my [Tissue Engineering Centre, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur (Malaysia)

    2016-11-01

    Collagen is the most abundant extracellular matrix (ECM) protein in the human body, thus widely used in tissue engineering and subsequent clinical applications. This study aimed to extract collagen from ovine (Ovis aries) Achilles tendon (OTC), and to evaluate its physicochemical properties and its potential to fabricate thin film with collagen fibrils in a random or aligned orientation. Acid-solubilized protein was extracted from ovine Achilles tendon using 0.35 M acetic acid, and 80% of extracted protein was measured as collagen. SDS-PAGE and mass spectrometry analysis revealed the presence of alpha 1 and alpha 2 chain of collagen type I (col I). Further analysis with Fourier transform infrared spectrometry (FTIR), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS) confirms the presence of triple helix structure of col I, similar to commercially available rat tail col I. Drying the OTC solution at 37°C resulted in formation of a thin film with randomly orientated collagen fibrils (random collagen film; RCF). Introduction of unidirectional mechanical intervention using a platform rocker prior to drying facilitated the fabrication of a film with aligned orientation of collagen fibril (aligned collagen film; ACF). It was shown that both RCF and ACF significantly enhanced human dermal fibroblast (HDF) attachment and proliferation than that on plastic surface. Moreover, cells were distributed randomly on RCF, but aligned with the direction of mechanical intervention on ACF. In conclusion, ovine tendon could be an alternative source of col I to fabricate scaffold for tissue engineering applications. - Highlights: • Isolated collagen from ovine tendon was characterized as collagen type I. • Collagen film was fabricated via air drying of ovine tendon collagen. • Collagen fibril alignment was realized via unidirectional platform rocker. • Orientation of cells was attained depending on collagen fibril direction in the film. • Collagen films

  6. Action of trypsin on structural changes of collagen fibres from sea cucumber (Stichopus japonicus).

    Science.gov (United States)

    Liu, Zi-Qiang; Tuo, Feng-Yan; Song, Liang; Liu, Yu-Xin; Dong, Xiu-Ping; Li, Dong-Mei; Zhou, Da-Yong; Shahidi, Fereidoon

    2018-08-01

    Trypsin, a representative serine proteinase, was used to hydrolyse the collagen fibres from sea cucumber (Stichopus japonicus) to highlight the role of serine proteinase in the autolysis of sea cucumber. Partial disaggregation of collagen fibres into collagen fibrils upon trypsin treatment occurred. The trypsin treatment also caused a time-dependent release of water-soluble glycosaminoglycans and proteins. Therefore, the degradation of the proteoglycan bridges between collagen fibrils might account for the disaggregation of collagen fibrils. For trypsin-treated collagen fibres (72 h), the collagen fibrils still kept their structural integrity and showed characteristic D-banding pattern, and the dissolution rate of hydroxyproline was just 0.21%. Meanwhile, Fourier transform infrared analysis showed the collagen within trypsin-treated collagen fibres (72 h) still retaining their triple-helical conformation. These results suggested that serine proteinase participated in the autolysis of S. japonicus body wall by damaging the proteoglycan bridges between collagen fibrils and disintegrating the latter. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Insight into the collagen assembly in the presence of lysine and glutamic acid: An in vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xinhua; Dan, Nianhua [Key Laboratory for Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu, Sichuan 610065 (China); Research Center of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065 (China); Dan, Weihua, E-mail: danweihua_scu@126.com [Key Laboratory for Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu, Sichuan 610065 (China); Research Center of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065 (China)

    2017-01-01

    The aim of this study is to evaluate the effects of two different charged amino acids in collagen chains, lysine and glutamic acid, on the fibrillogenesis process of collagen molecules. The turbidity, zeta potential, and fiber diameter analysis suggest that introducing the positively charged lysine into collagen might improve the sizes or amounts of the self-assembled collagen fibrils significantly. Conversely, the negatively charged glutamic acid might restrict the self-assembly of collagen building blocks into a higher order structure. Meanwhile, the optimal fibrillogenesis condition is achieved when the concentration of lysine reaches to 1 mM. Both scanning electron microscopy (SEM) and atomic force microscope (AFM) analysis indicates that compared to pure collagen fibrils, the reconstructed collagen-lysine co-fibrils exhibit a higher degree of inter-fiber entanglements with more straight and longer fibrils. Noted that the specific D-period patterns of the reconstructed collagen fibrils could be clearly discernible and the width of D-banding increases steadily after introducing lysine. Besides, the kinetic and thermodynamic collagen self-assembly analysis confirms that the rate constants of both the first and second assembly phase decrease after introducing lysine, and lysine could promote the process of collagen fibrillogenesis obeying the laws of thermodynamics. - Highlights: • The effects of two different charged amino acids in collagen chains on the collagen fibrillogenesis were evaluated. • The positively charged lysine could improve the sizes or amounts of self-assembled collagen fibrils. • The width of D-banding of the collagen-lysine co-fibrils increased steadily after introducing lysine. • The optimal fibrillogenesis was achieved when the concentration of lysine reached to 1 mM. • The kinetic and thermodynamic collagen self-assembly were both analyzed.

  8. Changes in content and synthesis of collagen types and proteoglycans in osteoarthritis of the knee joint and comparison of quantitative analysis with Photoshop-based image analysis.

    Science.gov (United States)

    Lahm, Andreas; Mrosek, Eike; Spank, Heiko; Erggelet, Christoph; Kasch, Richard; Esser, Jan; Merk, Harry

    2010-04-01

    The different cartilage layers vary in synthesis of proteoglycan and of the distinct types of collagen with the predominant collagen Type II with its associated collagens, e.g. types IX and XI, produced by normal chondrocytes. It was demonstrated that proteoglycan decreases in degenerative tissue and a switch from collagen type II to type I occurs. The aim of this study was to evaluate the correlation of real-time (RT)-PCR and Photoshop-based image analysis in detecting such lesions and find new aspects about their distribution. We performed immunohistochemistry and histology with cartilage tissue samples from 20 patients suffering from osteoarthritis compared with 20 healthy biopsies. Furthermore, we quantified our results on the gene expression of collagen type I and II and aggrecan with the help of real-time (RT)-PCR. Proteoglycan content was measured colorimetrically. Using Adobe Photoshop the digitized images of histology and immunohistochemistry stains of collagen type I and II were stored on an external data storage device. The area occupied by any specific colour range can be specified and compared in a relative manner directly from the histogram using the "magic wand tool" in the select similar menu. In the image grow menu gray levels or luminosity (colour) of all pixels within the selected area, including mean, median and standard deviation, etc. are depicted. Statistical Analysis was performed using the t test. With the help of immunohistochemistry, RT-PCR and quantitative RT- PCR we found that not only collagen type II, but also collagen type I is synthesized by the cells of the diseased cartilage tissue, shown by increasing amounts of collagen type I mRNA especially in the later stages of osteoarthritis. A decrease of collagen type II is visible especially in the upper fibrillated area of the advanced osteoarthritic samples, which leads to an overall decrease. Analysis of proteoglycan showed a loss of the overall content and a quite uniform staining in

  9. [Collagen nephritis].

    Science.gov (United States)

    Lago, N R; Bulos, M J; Monserrat, A J

    1997-01-01

    Fibrillar collagen in the glomeruli is considered specific of the nail-patella syndrome. A new nephropathy with diffuse intraglomerular deposition of type III collagen without nail and skeletal abnormalities has been described. We report the case of a 26-year-old woman who presented persistent proteinuria, hematuria, deafness without nail and skeletal abnormalities. The renal biopsy showed focal and segmental glomerulosclerosis by light microscopy. The electron microscopy revealed the presence of massive fibrillar collagen within the mesangial matriz and the basement membrane. This is the first patient reported in our country. We emphasize the usefulness of electron microscopy in the study of glomerular diseases.

  10. Atrial Fibrillation: Treatment

    Science.gov (United States)

    ... of this page please turn JavaScript on. Feature: Atrial Fibrillation Atrial Fibrillation: Treatment Past Issues / Winter 2015 Table of Contents Treatment for atrial fibrillation depends on how often you have symptoms, how ...

  11. Type XII and XIV collagens mediate interactions between banded collagen fibers in vitro and may modulate extracellular matrix deformability.

    Science.gov (United States)

    Nishiyama, T; McDonough, A M; Bruns, R R; Burgeson, R E

    1994-11-11

    Type XII and XIV collagens are very large molecules containing three extended globular domains derived from the amino terminus of each alpha chain and an interrupted triple helix. Both collagens are genetically and immunologically unique and have distinct distributions in many tissues. These collagens localize near the surface of banded collagen fibrils. The function of the molecules is unknown. We have prepared a mixture of native type XII and XIV collagens that is free of contaminating proteins by electrophoretic criteria. In addition, we have purified the collagenase-resistant globular domains of type XII or XIV collagens (XII-NC-3 or XIV-NC-3). In this study, we have investigated the effect of intact type XII and XIV and XII-NC-3 or XIV-NC-3 on the interactions between fibroblasts and type I collagen fibrils. We find that both type XII and XIV collagens promote collagen gel contraction mediated by fibroblasts, even in the absence of serum. The activity is present in the NC-3 domains. The effect is dose-dependent and is inhibited by denaturation. The effect of type XII NC-3 is inhibited by the addition of anti-XII antiserum. To elucidate the mechanism underlying this phenomenon, we examined the effect of XII-NC-3 or XIV-NC-3 on deformability of collagen gels by centrifugal force. XII-NC-3 or XIV-NC-3 markedly promotes gel compression after centrifugation. The effect is also inhibited by denaturation, and the activity of type XII-NC3 is inhibited by the addition of anti-XII antiserum. The results indicate that the effect of XII-NC-3 or XIV-NC-3 on collagen gel contraction by fibroblasts is not due to activation of cellular events but rather results from the increase in mobility of hydrated collagen fibrils within the gel. These studies suggest that collagen types XII and XIV may modulate the biomechanical properties of tissues.

  12. Association of collagen architecture with glioblastoma patient survival.

    Science.gov (United States)

    Pointer, Kelli B; Clark, Paul A; Schroeder, Alexandra B; Salamat, M Shahriar; Eliceiri, Kevin W; Kuo, John S

    2017-06-01

    OBJECTIVE Glioblastoma (GBM) is the most malignant primary brain tumor. Collagen is present in low amounts in normal brain, but in GBMs, collagen gene expression is reportedly upregulated. However, to the authors' knowledge, direct visualization of collagen architecture has not been reported. The authors sought to perform the first direct visualization of GBM collagen architecture, identify clinically relevant collagen signatures, and link them to differential patient survival. METHODS Second-harmonic generation microscopy was used to detect collagen in a GBM patient tissue microarray. Focal and invasive GBM mouse xenografts were stained with Picrosirius red. Quantitation of collagen fibers was performed using custom software. Multivariate survival analysis was done to determine if collagen is a survival marker for patients. RESULTS In focal xenografts, collagen was observed at tumor brain boundaries. For invasive xenografts, collagen was intercalated with tumor cells. Quantitative analysis showed significant differences in collagen fibers for focal and invasive xenografts. The authors also found that GBM patients with more organized collagen had a longer median survival than those with less organized collagen. CONCLUSIONS Collagen architecture can be directly visualized and is different in focal versus invasive GBMs. The authors also demonstrate that collagen signature is associated with patient survival. These findings suggest that there are collagen differences in focal versus invasive GBMs and that collagen is a survival marker for GBM.

  13. A pilot study for distinguishing chromophobe renal cell carcinoma and oncocytoma using second harmonic generation imaging and convolutional neural network analysis of collagen fibrillar structure

    Science.gov (United States)

    Judd, Nicolas; Smith, Jason; Jain, Manu; Mukherjee, Sushmita; Icaza, Michael; Gallagher, Ryan; Szeligowski, Richard; Wu, Binlin

    2018-02-01

    A clear distinction between oncocytoma and chromophobe renal cell carcinoma (chRCC) is critically important for clinical management of patients. But it may often be difficult to distinguish the two entities based on hematoxylin and eosin (H and E) stained sections alone. In this study, second harmonic generation (SHG) signals which are very specific to collagen were used to image collagen fibril structure. We conduct a pilot study to develop a new diagnostic method based on the analysis of collagen associated with kidney tumors using convolutional neural networks (CNNs). CNNs comprise a type of machine learning process well-suited for drawing information out of images. This study examines a CNN model's ability to differentiate between oncocytoma (benign), and chRCC (malignant) kidney tumor images acquired with second harmonic generation (SHG), which is very specific for collagen matrix. To the best of our knowledge, this is the first study that attempts to distinguish the two entities based on their collagen structure. The model developed from this study demonstrated an overall classification accuracy of 68.7% with a specificity of 66.3% and sensitivity of 74.6%. While these results reflect an ability to classify the kidney tumors better than chance, further studies will be carried out to (a) better realize the tumor classification potential of this method with a larger sample size and (b) combining SHG with two-photon excited intrinsic fluorescence signal to achieve better classification.

  14. Atrial Fibrillation

    DEFF Research Database (Denmark)

    Staerk, Laila; Sherer, Jason A; Ko, Darae

    2017-01-01

    The past 3 decades have been characterized by an exponential growth in knowledge and advances in the clinical treatment of atrial fibrillation (AF). It is now known that AF genesis requires a vulnerable atrial substrate and that the formation and composition of this substrate may vary depending...... on comorbid conditions, genetics, sex, and other factors. Population-based studies have identified numerous factors that modify the atrial substrate and increase AF susceptibility. To date, genetic studies have reported 17 independent signals for AF at 14 genomic regions. Studies have established...

  15. High-resolution study of the 3D collagen fibrillary matrix of Achilles tendons without tissue labelling and dehydrating.

    Science.gov (United States)

    Wu, Jian-Ping; Swift, Benjamin John; Becker, Thomas; Squelch, Andrew; Wang, Allan; Zheng, Yong-Chang; Zhao, Xuelin; Xu, Jiake; Xue, Wei; Zheng, Minghao; Lloyd, David; Kirk, Thomas Brett

    2017-06-01

    Knowledge of the collagen structure of an Achilles tendon is critical to comprehend the physiology, biomechanics, homeostasis and remodelling of the tissue. Despite intensive studies, there are still uncertainties regarding the microstructure. The majority of studies have examined the longitudinally arranged collagen fibrils as they are primarily attributed to the principal tensile strength of the tendon. Few studies have considered the structural integrity of the entire three-dimensional (3D) collagen meshwork, and how the longitudinal collagen fibrils are integrated as a strong unit in a 3D domain to provide the tendons with the essential tensile properties. Using second harmonic generation imaging, a 3D imaging technique was developed and used to study the 3D collagen matrix in the midportion of Achilles tendons without tissue labelling and dehydration. Therefore, the 3D collagen structure is presented in a condition closely representative of the in vivo status. Atomic force microscopy studies have confirmed that second harmonic generation reveals the internal collagen matrix of tendons in 3D at a fibril level. Achilles tendons primarily contain longitudinal collagen fibrils that braid spatially into a dense rope-like collagen meshwork and are encapsulated or wound tightly by the oblique collagen fibrils emanating from the epitenon region. The arrangement of the collagen fibrils provides the longitudinal fibrils with essential structural integrity and endows the tendon with the unique mechanical function for withstanding tensile stresses. A novel 3D microscopic method has been developed to examine the 3D collagen microstructure of tendons without tissue dehydrating and labelling. The study also provides new knowledge about the collagen microstructure in an Achilles tendon, which enables understanding of the function of the tissue. The knowledge may be important for applying surgical and tissue engineering techniques to tendon reconstruction. © 2017 The Authors

  16. Molecular crowding of collagen: a pathway to produce highly-organized collagenous structures.

    Science.gov (United States)

    Saeidi, Nima; Karmelek, Kathryn P; Paten, Jeffrey A; Zareian, Ramin; DiMasi, Elaine; Ruberti, Jeffrey W

    2012-10-01

    Collagen in vertebrate animals is often arranged in alternating lamellae or in bundles of aligned fibrils which are designed to withstand in vivo mechanical loads. The formation of these organized structures is thought to result from a complex, large-area integration of individual cell motion and locally-controlled synthesis of fibrillar arrays via cell-surface fibripositors (direct matrix printing). The difficulty of reproducing such a process in vitro has prevented tissue engineers from constructing clinically useful load-bearing connective tissue directly from collagen. However, we and others have taken the view that long-range organizational information is potentially encoded into the structure of the collagen molecule itself, allowing the control of fibril organization to extend far from cell (or bounding) surfaces. We here demonstrate a simple, fast, cell-free method capable of producing highly-organized, anistropic collagen fibrillar lamellae de novo which persist over relatively long-distances (tens to hundreds of microns). Our approach to nanoscale organizational control takes advantage of the intrinsic physiochemical properties of collagen molecules by inducing collagen association through molecular crowding and geometric confinement. To mimic biological tissues which comprise planar, aligned collagen lamellae (e.g. cornea, lamellar bone or annulus fibrosus), type I collagen was confined to a thin, planar geometry, concentrated through molecular crowding and polymerized. The resulting fibrillar lamellae show a striking resemblance to native load-bearing lamellae in that the fibrils are small, generally aligned in the plane of the confining space and change direction en masse throughout the thickness of the construct. The process of organizational control is consistent with embryonic development where the bounded planar cell sheets produced by fibroblasts suggest a similar confinement/concentration strategy. Such a simple approach to nanoscale

  17. An improved method for staining cell colonies in clonogenic assays.

    Science.gov (United States)

    Guda, Kishore; Natale, Leanna; Markowitz, Sanford D

    2007-06-01

    Clonogenic assay is a widely used experimental approach to test for the effects of drugs/genes on the growth and proliferative characteristics of cells in vitro. Accurate quantitation of treatment effects in clonogeneic assays depends on the ability to visualize and count cell colonies precisely. We report a novel method (referred as ETeB) for staining cell colonies grown on plastic and specially coated substrates like collagen. Using colon cancer cell lines grown on plastic and collagen, we compared the colony staining efficiencies of the widely used methylene blue, and Ethidium bromide (ETeB) stains. Results show that the ETeB protocol works well on plastic and is extremely effective for staining colonies on collagen when compared to methylene blue. The key features and advantages of ETeB technique are; (a) reduction in background for colonies grown on collagen and possibly other substrates, (b) the whole procedure takes less than a minute, (c) no post-stain washing step is required which eliminates colony losses for cell lines that are loosely adherent, (d) colony visualization and counting can be done immediately following the staining procedure using a standard UV illuminator and software, and (e) the method works across a wide variety of cell lines. The simplicity and robustness of this procedure should warrant its usage in both small and large-scale clonogenic experiments.

  18. Modelling Elastic Scattering and Light Transport in 3D Collagen Gel Constructs

    National Research Council Canada - National Science Library

    Bixio, L

    2001-01-01

    A model of elastic scattering and light propagation is presented, which can be used to obtain the scattering coefficient, the index of refraction and the distribution of the collagen fibrils in a gel...

  19. Insight into the collagen assembly in the presence of lysine and glutamic acid: An in vitro study.

    Science.gov (United States)

    Liu, Xinhua; Dan, Nianhua; Dan, Weihua

    2017-01-01

    The aim of this study is to evaluate the effects of two different charged amino acids in collagen chains, lysine and glutamic acid, on the fibrillogenesis process of collagen molecules. The turbidity, zeta potential, and fiber diameter analysis suggest that introducing the positively charged lysine into collagen might improve the sizes or amounts of the self-assembled collagen fibrils significantly. Conversely, the negatively charged glutamic acid might restrict the self-assembly of collagen building blocks into a higher order structure. Meanwhile, the optimal fibrillogenesis condition is achieved when the concentration of lysine reaches to 1mM. Both scanning electron microscopy (SEM) and atomic force microscope (AFM) analysis indicates that compared to pure collagen fibrils, the reconstructed collagen-lysine co-fibrils exhibit a higher degree of inter-fiber entanglements with more straight and longer fibrils. Noted that the specific D-period patterns of the reconstructed collagen fibrils could be clearly discernible and the width of D-banding increases steadily after introducing lysine. Besides, the kinetic and thermodynamic collagen self-assembly analysis confirms that the rate constants of both the first and second assembly phase decrease after introducing lysine, and lysine could promote the process of collagen fibrillogenesis obeying the laws of thermodynamics. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. leaves extracts as counter stain in gram staining reaction 56

    African Journals Online (AJOL)

    DR. AMINU

    is a stain with color contrasting to the principal stain, making the stained ... technology today, the Gram's staining method remains ... was aimed at employing the use of Henna leaves extract as ... fragrant, white or rose flowers in clusters. It is.

  1. An improved method for staining cell colonies in clonogenic assays

    OpenAIRE

    Guda, Kishore; Natale, Leanna; Markowitz, Sanford D.

    2007-01-01

    Clonogenic assay is a widely used experimental approach to test for the effects of drugs/genes on the growth and proliferative characteristics of cells in vitro. Accurate quantitation of treatment effects in clonogeneic assays depends on the ability to visualize and count cell colonies precisely. We report a novel method (referred as ETeB) for staining cell colonies grown on plastic and specially coated substrates like collagen. Using colon cancer cell lines grown on plastic and collagen, we ...

  2. Collagen V expression is crucial in regional development of the supraspinatus tendon.

    Science.gov (United States)

    Connizzo, Brianne K; Adams, Sheila M; Adams, Thomas H; Birk, David E; Soslowsky, Louis J

    2016-12-01

    Manipulations in cell culture and mouse models have demonstrated that reduction of collagen V results in altered fibril structure and matrix assembly. A tissue-dependent role for collagen V in determining mechanical function was recently established, but its role in determining regional properties has not been addressed. The objective of this study was to define the role(s) of collagen V expression in establishing the site-specific properties of the supraspinatus tendon. The insertion and midsubstance of tendons from wild type, heterozygous and tendon/ligament-specific null mice were assessed for crimp morphology, fibril morphology, cell morphology, as well as total collagen and pyridinoline cross-link (PYD) content. Fibril morphology was altered at the midsubstance of both groups with larger, but fewer, fibrils and no change in cell morphology or collagen compared to the wild type controls. In contrast, a significant disruption of fibril assembly was observed at the insertion site of the null group with the presence of structurally aberrant fibrils. Alterations were also present in cell density and PYD content. Altogether, these results demonstrate that collagen V plays a crucial role in determining region-specific differences in mouse supraspinatus tendon structure. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2154-2161, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  3. Differential staining of bacteria: acid fast stain.

    Science.gov (United States)

    Reynolds, Jackie; Moyes, Rita B; Breakwell, Donald P

    2009-11-01

    Acid-fastness is an uncommon characteristic shared by the genera Mycobacterium (Section 10A) and Nocardia. Because of this feature, this stain is extremely helpful in identification of these bacteria. Although Gram positive, acid-fast bacteria do not take the crystal violet into the wall well, appearing very light purple rather than the deep purple of normal Gram-positive bacteria. (c) 2009 by John Wiley & Sons, Inc.

  4. Iron Stain on Wood

    Science.gov (United States)

    Mark Knaebe

    2013-01-01

    Iron stain, an unsightly blue–black or gray discoloration, can occur on nearly all woods. Oak, redwood, cypress, and cedar are particularly prone to iron stain because these woods contain large amounts of tannin-like extractives. The discoloration is caused by a chemical reaction between extractives in the wood and iron in steel products, such as nails, screws, and...

  5. Imaging Prostate Cancer Microenvironment by Collagen Hybridization

    Science.gov (United States)

    2015-10-01

    diagnosis, staging, and treatment of numerous connective tissue disorders and diseases. Standard antibody staining methods that rely on epitopes of a...CMP can be used to detect mechanical damage to collagen in tendon which could be used for diagnostic and therapeutics of musculoskeletal injury which...13. SUPPLEMENTARY NOTES 14. ABSTRACT The major goal of the proposed work is to develop new PCa imaging methods based on the collagen mimetic peptide

  6. Quantification of collagen ultrastructure after penetrating keratoplasty - implications for corneal biomechanics.

    Directory of Open Access Journals (Sweden)

    Craig Boote

    Full Text Available To quantify long-term changes in stromal collagen ultrastructure following penetrating keratoplasty (PK, and evaluate their possible implications for corneal biomechanics.A pair of 16 mm post-mortem corneo-scleral buttons was obtained from a patient receiving bilateral penetrating keratoplasty 12 (left/28 (right years previously. Small-angle x-ray scattering quantified collagen fibril spacing, diameter and spatial order at 0.5 mm or 0.25 mm intervals along linear scans across the graft margin. Corresponding control data was collected from two corneo-scleral buttons with no history of refractive surgery. Wide-angle x-ray scattering quantified collagen fibril orientation at 0.25 mm (horizontal×0.25 mm (vertical intervals across both PK specimens. Quantification of orientation changes in the graft margin were verified by equivalent analysis of data from a 13 year post-operative right PK specimen obtained from a second patient in a previous study, and comparison made with new and published data from normal corneas.Marked changes to normal fibril alignment, in favour of tangentially oriented collagen, were observed around the entire graft margin in all PK specimens. The total number of meridional fibrils in the wound margin was observed to decrease by up to 40%, with the number of tangentially oriented fibrils increasing by up to 46%. As a result, in some locations the number of fibrils aligned parallel to the wound outnumbered those spanning it by up to five times. Localised increases in fibril spacing and diameter, with an accompanying reduction in matrix order, were also evident.Abnormal collagen fibril size and spatial order within the PK graft margin are indicative of incomplete stromal wound remodelling and the long term persistence of fibrotic scar tissue. Lasting changes in collagen fibril orientation in and around PK wounds may alter corneal biomechanics and compromise the integrity of the graft-host interface in the long term.

  7. Quantification of Collagen Ultrastructure after Penetrating Keratoplasty – Implications for Corneal Biomechanics

    Science.gov (United States)

    Gardner, Steven J.; Kamma-Lorger, Christina S.; Hayes, Sally; Nielsen, Kim; Hjortdal, Jesper; Sorensen, Thomas; Terrill, Nicholas J.; Meek, Keith M.

    2013-01-01

    Purpose To quantify long-term changes in stromal collagen ultrastructure following penetrating keratoplasty (PK), and evaluate their possible implications for corneal biomechanics. Methods A pair of 16 mm post-mortem corneo-scleral buttons was obtained from a patient receiving bilateral penetrating keratoplasty 12 (left)/28 (right) years previously. Small-angle x-ray scattering quantified collagen fibril spacing, diameter and spatial order at 0.5 mm or 0.25 mm intervals along linear scans across the graft margin. Corresponding control data was collected from two corneo-scleral buttons with no history of refractive surgery. Wide-angle x-ray scattering quantified collagen fibril orientation at 0.25 mm (horizontal)×0.25 mm (vertical) intervals across both PK specimens. Quantification of orientation changes in the graft margin were verified by equivalent analysis of data from a 13 year post-operative right PK specimen obtained from a second patient in a previous study, and comparison made with new and published data from normal corneas. Results Marked changes to normal fibril alignment, in favour of tangentially oriented collagen, were observed around the entire graft margin in all PK specimens. The total number of meridional fibrils in the wound margin was observed to decrease by up to 40%, with the number of tangentially oriented fibrils increasing by up to 46%. As a result, in some locations the number of fibrils aligned parallel to the wound outnumbered those spanning it by up to five times. Localised increases in fibril spacing and diameter, with an accompanying reduction in matrix order, were also evident. Conclusions Abnormal collagen fibril size and spatial order within the PK graft margin are indicative of incomplete stromal wound remodelling and the long term persistence of fibrotic scar tissue. Lasting changes in collagen fibril orientation in and around PK wounds may alter corneal biomechanics and compromise the integrity of the graft-host interface in the

  8. Atrial fibrillation or flutter

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000184.htm Atrial fibrillation or flutter To use the sharing features on this page, please enable JavaScript. Atrial fibrillation or flutter is a common type of abnormal ...

  9. Atrial fibrillation - discharge

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000237.htm Atrial fibrillation - discharge To use the sharing features on this ... have been in the hospital because you have atrial fibrillation . This condition occurs when your heart beats faster ...

  10. Atrial Fibrillation - Multiple Languages

    Science.gov (United States)

    ... Are Here: Home → Multiple Languages → All Health Topics → Atrial Fibrillation URL of this page: https://medlineplus.gov/languages/ ... V W XYZ List of All Topics All Atrial Fibrillation - Multiple Languages To use the sharing features on ...

  11. Collagen-binding peptidoglycans inhibit MMP mediated collagen degradation and reduce dermal scarring.

    Directory of Open Access Journals (Sweden)

    Kate Stuart

    Full Text Available Scarring of the skin is a large unmet clinical problem that is of high patient concern and impact. Wound healing is complex and involves numerous pathways that are highly orchestrated, leaving the skin sealed, but with abnormal organization and composition of tissue components, namely collagen and proteoglycans, that are then remodeled over time. To improve healing and reduce or eliminate scarring, more rapid restoration of healthy tissue composition and organization offers a unique approach for development of new therapeutics. A synthetic collagen-binding peptidoglycan has been developed that inhibits matrix metalloproteinase-1 and 13 (MMP-1 and MMP-13 mediated collagen degradation. We investigated the synthetic peptidoglycan in a rat incisional model in which a single dose was delivered in a hyaluronic acid (HA vehicle at the time of surgery prior to wound closure. The peptidoglycan treatment resulted in a significant reduction in scar tissue at 21 days as measured by histology and visual analysis. Improved collagen architecture of the treated wounds was demonstrated by increased tensile strength and transmission electron microscopy (TEM analysis of collagen fibril diameters compared to untreated and HA controls. The peptidoglycan's mechanism of action includes masking existing collagen and inhibiting MMP-mediated collagen degradation while modulating collagen organization. The peptidoglycan can be synthesized at low cost with unique design control, and together with demonstrated preclinical efficacy in reducing scarring, warrants further investigation for dermal wound healing.

  12. Characterizing the collagen stabilizing effect of crosslinked chitosan nanoparticles against collagenase degradation.

    Science.gov (United States)

    Kishen, Anil; Shrestha, Suja; Shrestha, Annie; Cheng, Calvin; Goh, Cynthia

    2016-08-01

    Antibacterial and chelating properties of chitosan has been widely studied for various dental applications. To characterize the interaction between chitosan-nanoparticles (CSnp) and collagen, and understand their stabilizing effect against collagenase degradation for dentin matrix stabilization. Phase-1: a single Type I collagen-fibril model was used to study the interaction with CSnp along with carbodiimides crosslinking treatment. Degradation of the crosslinked fibrils was studied with bacterial collagenase enzyme and monitored using Fourier Transform Infrared (FTIR) spectroscopy, turbidity measurement (400nm), ninhydrin assay and Atomic Force Microscopy (AFM). Interaction of CSnp with collagenase and Type I collagen, were evaluated using SDS-PAGE, and proteolytic cleavage potential of a synthetic peptide. Phase-2: degradation of dentin collagen crosslinked with/without CSnp was evaluated using FTIR, ninhydrin assay and Scanning Electron Microscopy (SEM). Glutaraldehyde crosslinking was used as a positive control. Both native collagen-fibrils and dentin collagen after crosslinking showed higher resistance to collagenase degradation, as observed in turbidity measurements and FTIR spectra. AFM images showed the interaction of CSnp with single collagen-fibril and crosslinked collagen resisted collagenase degradation up to 54h. The collagen and collagenase both formed complexes with CSnp resulting in thickening of bands and reduction in collagen degradation. CSnp treated collagenase showed significantly reduced cleavage of the fluorescent peptides. Dentin collagen was coated with CSnp following crosslinking with significant increase in resistance to collagenase degradation. Crosslinked CSnp on collagen stabilized and enhanced the resistance of dentin matrix against bacterial collagenase degradation due to non-specific interaction with both collagen and collagenase. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Atrial Fibrillation: Complications

    Science.gov (United States)

    ... of this page please turn JavaScript on. Feature: Atrial Fibrillation Atrial Fibrillation: Complications Past Issues / Winter 2015 Table of Contents ... has two major complications—stroke and heart failure. Atrial Fibrillation and Stroke Click to enlarge image This illustration ...

  14. MMP mediated type V collagen degradation (C5M) is elevated in ankylosing spondylitis

    DEFF Research Database (Denmark)

    Veidal, S S; Larsen, D V; Chen, Xijuan

    2012-01-01

    Type V collagen has been demonstrated to control fibril formation. The aim of this study was to develop an ELISA capable of detecting a fragment of type V collagen generated by MMP-2/9 and to evaluate the assay as biomarker for ankylosing spondylitis (AS)....

  15. The digestion of phagocytosed collagen is inhibited by the proteinase inhibitors leupeptin and E-64

    NARCIS (Netherlands)

    Everts, V.; Beertsen, W.; Tigchelaar-Gutter, W.

    1985-01-01

    Using morphometric methods the effects of the thiol-proteinase inhibitors leupeptin and E-64 on the digestion of intracytoplasmic collagen fibrils were studied in cultured mouse bone explants. Both drugs caused a dose-dependent increase of lysosomal structures containing cross-banded collagen

  16. Biophysical behavior of Scomberoides commersonianus skin collagen.

    Science.gov (United States)

    Kolli, Nagamalleswari; Joseph, K Thomas; Ramasami, T

    2002-06-01

    Some biophysical characteristics of the skin collagen from Scomberoides commersonianus were measured and compared to those of rat tail tendon. Stress-strain data indicate that the strain at break as well as the tensile strength of the fish skin without scales increased significantly. The maximum tension in case of rat skin is at least a factor of two higher than that observed in fish skin. The much lower hydrothermal isometric tension measurements observed in fish skin are attributable to a lesser number of heat stable crosslinks. Stress relaxation measurements in the fish skin indicate that more than one relaxation process may be involved in the stabilization of collagenous matrix. The observed differences in the biophysical behavior of fish skin may well arise from combination of changes in extent of hydroxylation of proline in collagen synthesis, hydrogen bond network and fibril orientation as compared to rat tail tendon.

  17. Atrial fibrillation.

    Science.gov (United States)

    Bang, Casper N

    2013-10-01

    Atrial fibrillation (AF) is a common complication after myocardial infarction (MI) and new-onset AF has been demonstrated to be associated with adverse outcome and a large excess risk of death in both MI and aortic stenosis (AS) patients. Prevention of new-onset AF is therefore a potential therapeutic target in AS and MI patients. Lipid-lowering drugs, particularly statins, have anti-inflammatory and antioxidant properties that may prevent AF. Accordingly, statins are recommended as a class IIa recommendation for prevention of new-onset AF after coronary artery bypass grafting (CABG). However, this preventive effect has not been investigated on new-onset AF in asymptomatic patients with AS or a large scale first-time MI patient sample and data in patients not undergoing invasive cardiac interventions are limited. This PhD thesis was conducted at the Heart Centre, Rigshospitalet, Denmark, with the aim to investigate the three aforementioned questions and to add to the existing evidence of AF prevention with statins. This was done using three different settings: 1) a randomized patients sample of 1,873 from the Simvastatin and Ezetimibe in Aortic Stenosis (SEAS) study, 2) a register patient sample of 97,499 with first-time MI, and 3) all published studies until beginning of June 2011 examining statin treatment on new-onset and recurrent AF in patients not undergoing cardiac surgery. This thesis revealed that statins did not lower the incidence or the time to new-onset AF in patients with asymptomatic AS. However, statin treatment showed an independently preventive effect on new-onset AF, including type-dependent effect and a trend to dosage-dependent effect. In addition, this thesis showed that good compliance to statin treatment was important to prevent new-onset AF. Finally, the meta-analysis in this PhD thesis showed a preventive effect in the observational studies although this effect was absent in the randomized controlled trials. Based on this PhD thesis

  18. Single-photon absorption of isolated collagen mimetic peptides and triple-helix models in the VUV-X energy range

    NARCIS (Netherlands)

    Schwob, Lucas; Lalande, Mathieu; Rangama, Jimmy; Egorov, Dmitrii; Hoekstra, Ronnie; Pandey, Rahul; Eden, Samuel; Schlathölter, Thomas; Vizcaino, Violaine; Poully, Jean-Christophe

    2017-01-01

    Cartilage and tendons owe their special mechanical properties to the fibrous collagen structure. These strong fibrils are aggregates of a sub-unit consisting of three collagen proteins wound around each other in a triple helix. Even though collagen is the most abundant protein in the human body, the

  19. Collagen-Gold Nanoparticle Conjugates for Versatile Biosensing

    Directory of Open Access Journals (Sweden)

    Sarah Unser

    2017-02-01

    Full Text Available Integration of noble metal nanoparticles with proteins offers promising potential to create a wide variety of biosensors that possess both improved selectivity and versatility. The multitude of functionalities that proteins offer coupled with the unique optical properties of noble metal nanoparticles can allow for the realization of simple, colorimetric sensors for a significantly larger range of targets. Herein, we integrate the structural protein collagen with 10 nm gold nanoparticles to develop a protein-nanoparticle conjugate which possess the functionality of the protein with the desired colorimetric properties of the nanoparticles. Applying the many interactions that collagen undergoes in the extracellular matrix, we are able to selectively detect both glucose and heparin with the same collagen-nanoparticle conjugate. Glucose is directly detected through the cross-linking of the collagen fibrils, which brings the attached nanoparticles into closer proximity, leading to a red-shift in the LSPR frequency. Conversely, heparin is detected through a competition assay in which heparin-gold nanoparticles are added to solution and compete with heparin in the solution for the binding sites on the collagen fibrils. The collagen-nanoparticle conjugates are shown to detect both glucose and heparin in the physiological range. Lastly, glucose is selectively detected in 50% mouse serum with the collagen-nanoparticle devices possessing a linear range of 3–25 mM, which is also within the physiologically relevant range.

  20. Dense tissue-like collagen matrices formed in cell-free conditions.

    Science.gov (United States)

    Mosser, Gervaise; Anglo, Anny; Helary, Christophe; Bouligand, Yves; Giraud-Guille, Marie-Madeleine

    2006-01-01

    A new protocol was developed to produce dense organized collagen matrices hierarchically ordered on a large scale. It consists of a two stage process: (1) the organization of a collagen solution and (2) the stabilization of the organizations by a sol-gel transition that leads to the formation of collagen fibrils. This new protocol relies on the continuous injection of an acid-soluble collagen solution into glass microchambers. It leads to extended concentration gradients of collagen, ranging from 5 to 1000 mg/ml. The self-organization of collagen solutions into a wide array of spatial organizations was investigated. The final matrices obtained by this procedure varied in concentration, structure and density. Changes in the liquid state of the samples were followed by polarized light microscopy, and the final stabilized gel states obtained after fibrillogenesis were analyzed by both light and electron microscopy. Typical organizations extended homogeneously by up to three centimetres in one direction and several hundreds of micrometers in other directions. Fibrillogenesis of collagen solutions of high and low concentrations led to fibrils spatially arranged as has been described in bone and derm, respectively. Moreover, a relationship was revealed between the collagen concentration and the aggregation of and rotational angles between lateral fibrils. These results constitute a strong base from which to further develop highly enriched collagen matrices that could lead to substitutes that mimic connective tissues. The matrices thus obtained may also be good candidates for the study of the three-dimensional migration of cells.

  1. Port-wine stain

    Science.gov (United States)

    ... About MedlinePlus Show Search Search MedlinePlus GO GO About MedlinePlus Site Map FAQs Customer Support Health Topics Drugs & Supplements Videos & Tools Español You Are Here: Home → Medical Encyclopedia → Port-wine stain URL of this page: //medlineplus.gov/ency/ ...

  2. Stool Gram stain

    Science.gov (United States)

    ... stool sample. The Gram stain method is sometimes used to quickly diagnose bacterial infections. How the Test is Performed You will need to collect a stool sample. There are many ways to collect the sample. You can catch the stool on plastic wrap that is loosely placed over the toilet bowl ...

  3. Stained Glass and Flu

    Centers for Disease Control (CDC) Podcasts

    2017-02-01

    Dr. Robert Webster, an Emeritus member of the Department of Infectious Diseases at St. Jude Children's Research Hospital, discusses his cover art story on stained glass and influenza.  Created: 2/1/2017 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 2/1/2017.

  4. Diffusion and Binding of Laponite Clay Nanoparticles into Collagen Fibers for the Formation of Leather Matrix.

    Science.gov (United States)

    Shi, Jiabo; Wang, Chunhua; Ngai, To; Lin, Wei

    2018-06-13

    Understanding accessibility and interactions of clay nanoparticles with collagen fibers is an important fundamental issue for the conversion of collagen to leather matrix. In this study, we have investigated the diffusion and binding of Laponite into the collagen fiber network. Our results indicate that the diffusion behaviors of Laponite into the collagen exhibit the Langmuir adsorption, verifying its affinity for collagen. The introduction of Laponite leads to a shift in the isoelectric point of collagen from ∼6.8 to ∼4.5, indicating the ionic bonding between the positively charged amino groups of the collagen and negatively charged Laponite under the tanning conditions. Fluorescence microscopy, atomic force microscopy, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and wide-angle X-ray diffraction analyses reveal that Laponite nanoparticles can penetrate into collagen microstructure and evenly distributed onto collagen fibrils, not altering native D-periodic banding patterns of collagen fibrils. Attenuated total reflectance-Fourier transform infrared and Raman spectroscopy detections further demonstrate the presence of noncovalent interactions, namely, ionic and hydrogen bonding, between Laponite and collagen. These findings provide a theoretical basis for the use of Laponite as an emerging tanning agent in leather manufacture.

  5. Fabrication of homobifunctional crosslinker stabilized collagen for biomedical application

    International Nuclear Information System (INIS)

    Lakra, Rachita; Kiran, Manikantan Syamala; Sai, Korrapati Purna

    2015-01-01

    Collagen biopolymer has found widespread application in the field of tissue engineering owing to its excellent tissue compatibility and negligible immunogenicity. Mechanical strength and enzymatic degradation of the collagen necessitates the physical and chemical strength enhancement. One such attempt deals with the understanding of crosslinking behaviour of EGS (ethylene glycol-bis (succinic acid N-hydroxysuccinimide ester)) with collagen to improve the physico-chemical properties. The incorporation of a crosslinker during fibril formation enhanced the thermal and mechanical stability of collagen. EGS crosslinked collagen films exhibited higher denaturation temperature (T d ) and the residue left after thermogravimetric analysis was about 16  ±  5.2%. Mechanical properties determined by uniaxial tensile tests showed a threefold increase in tensile strength and Young’s modulus at higher concentration (100 μM). Water uptake capacity reduced up to a moderate extent upon crosslinking which is essential for the transport of nutrients to the cells. Cell viability was found to be 100% upon treatment with 100 μM EGS whereas only 30% viability could be observed with glutaraldehyde. Rheological studies of crosslinked collagen showed an increase in shear stress and shear viscosity at 37 °C. Crosslinking with EGS resulted in the formation of a uniform fibrillar network. Trinitrobenzene sulfonate (TNBS) assay confirmed that EGS crosslinked collagen by forming a covalent interaction with ε-amino acids of collagen. The homobifunctional crosslinker used in this study enhanced the effectiveness of collagen as a biomaterial for biomedical application. (paper)

  6. Modified Field's staining--a rapid stain for Trichomonas vaginalis.

    Science.gov (United States)

    Afzan, M Yusuf; Sivanandam, S; Kumar, G Suresh

    2010-10-01

    Trichomonas vaginalis, a flagellate protozoan parasite commonly found in the human genitourinary tract, is transmitted primarily by sexual intercourse. Diagnosis is usually by in vitro culture method and staining with Giemsa stain. There are laboratories that use Gram stain as well. We compared the use of modified Field's (MF), Giemsa, and Gram stains on 2 axenic and xenic isolates of T. vaginalis, respectively. Three smears from every sediment of spun cultures of all 4 isolates were stained, respectively, with each of the stains. We showed that MF staining, apart from being a rapid stain (20 s), confers sharper staining contrast, which differentiates the nucleus and the cytoplasm of the organism when compared to Giemsa and Gram staining especially on parasites from spiked urine samples. The alternative staining procedure offers in a diagnostic setting a rapid stain that can easily visualize the parasite with sharp contrasting characteristics between organelles especially the nucleus and cytoplasm. Vacuoles are more clearly visible in parasites stained with MF than when stained with Giemsa. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Insulin-like growth factor I enhances collagen synthesis in engineered human tendon tissue

    DEFF Research Database (Denmark)

    Herchenhan, Andreas; Bayer, Monika L.; Eliasson, Pernilla

    2015-01-01

    OBJECTIVE: Isolated human tendon cells form 3D tendon constructs that demonstrate collagen fibrillogenesis and feature structural similarities to tendon when cultured under tensile load. The exact role of circulating growth factors for collagen formation in tendon is sparsely examined. We...... investigated the influence of insulin-like growth factor I (IGF-I) on tendon construct formation in 3D cell culture. DESIGN: Tendon constructs were grown in 0.5 or 10% FBS with or without IGF-I (250 mg/ml) supplementation. Collagen content (fluorometric), mRNA levels (PCR) and fibril diameter (transmission...... electron microscopy) were determined at 7, 10, 14, 21 and 28 days. RESULTS: IGF-I revealed a stimulating effect on fibril diameter (up to day 21), mRNA for collagen (to day 28), tenomodulin (to day 28) and scleraxis (at days 10 and 14), and on overall collagen content. 10% FBS diminished the development...

  8. 3-D ultrastructure and collagen composition of healthy and overloaded human tendon

    DEFF Research Database (Denmark)

    Pingel, Jessica; Lu, Yinhui; Starborg, Tobias

    2014-01-01

    with regards to changes in the content of collagen type I and III (the major collagens in tendon), and changes in tendon fibroblast (tenocyte) shape and organization of the extracellular matrix (ECM). To gain new insights, we took biopsies from the tendinopathic region and flanking healthy region of Achilles...... block face-scanning electron microscopy were made on two individuals. In the tendinopathic regions, compared with the flanking healthy tissue, we observed: (i) an increase in the ratio of collagen III : I proteins; (ii) buckling of the collagen fascicles in the ECM; (iii) buckling of tenocytes...... and their nuclei; and (iv) an increase in the ratio of small-diameter : large-diameter collagen fibrils. In summary, load-induced non-rupture tendinopathy in humans is associated with localized biochemical changes, a shift from large- to small-diameter fibrils, buckling of the tendon ECM, and buckling of the cells...

  9. Effects of endogenous cysteine proteinases on structures of collagen fibres from dermis of sea cucumber (Stichopus japonicus).

    Science.gov (United States)

    Liu, Yu-Xin; Zhou, Da-Yong; Ma, Dong-Dong; Liu, Zi-Qiang; Liu, Yan-Fei; Song, Liang; Dong, Xiu-Ping; Li, Dong-Mei; Zhu, Bei-Wei; Konno, Kunihiko; Shahidi, Fereidoon

    2017-10-01

    Autolysis of sea cucumber, caused by endogenous enzymes, leads to postharvest quality deterioration of sea cucumber. However, the effects of endogenous proteinases on structures of collagen fibres, the major biologically relevant substrates in the body wall of sea cucumber, are less clear. Collagen fibres were prepared from the dermis of sea cucumber (Stichopus japonicus), and the structural consequences of degradation of the collagen fibres caused by endogenous cysteine proteinases (ECP) from Stichopus japonicus were examined. Scanning electron microscopic images showed that ECP caused partial disaggregation of collagen fibres into collagen fibrils by disrupting interfibrillar proteoglycan bridges. Differential scanning calorimetry and Fourier transform infrared analysis revealed increased structural disorder of fibrillar collagen caused by ECP. SDS-PAGE and chemical analysis indicated that ECP can liberate glycosaminoglycan, hydroxyproline and collagen fragments from collagen fibres. Thus ECP can cause disintegration of collagen fibres by degrading interfibrillar proteoglycan bridges. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Investigation of the influence of UV irradiation on collagen thin films by AFM imaging

    International Nuclear Information System (INIS)

    Stylianou, Andreas; Yova, Dido; Alexandratou, Eleni

    2014-01-01

    Collagen is the major fibrous extracellular matrix protein and due to its unique properties, it has been widely used as biomaterial, scaffold and cell-substrate. The aim of the paper was to use Atomic Force Microscopy (AFM) in order to investigate well-characterized collagen thin films after ultraviolet light (UV) irradiation. The films were also used as in vitro culturing substrates in order to investigate the UV-induced alterations to fibroblasts. A special attention was given in the alteration on collagen D-periodicity. For short irradiation times, spectroscopy (fluorescence/absorption) studies demonstrated that photodegradation took place and AFM imaging showed alterations in surface roughness. Also, it was highlighted that UV-irradiation had different effects when it was applied on collagen solution than on films. Concerning fibroblast culturing, it was shown that fibroblast behavior was affected after UV irradiation of both collagen solution and films. Furthermore, after a long irradiation time, collagen fibrils were deformed revealing that collagen fibrils are consisting of multiple shells and D-periodicity occurred on both outer and inner shells. The clarification of the effects of UV light on collagen and the induced modifications of cell behavior on UV-irradiated collagen-based surfaces will contribute to the better understanding of cell–matrix interactions in the nanoscale and will assist in the appropriate use of UV light for sterilizing and photo-cross-linking applications. - Highlights: • Collagen thin films were formed and exposed in UV irradiation. • Collagen thin films were formed from UV-irradiated collagen solution. • Nanocharacterization of collagen thin films by AFM • Fluorescence and absorption spectroscopy studies on collagen films • Investigation of fibroblast response on collagen films

  11. Investigation of the influence of UV irradiation on collagen thin films by AFM imaging

    Energy Technology Data Exchange (ETDEWEB)

    Stylianou, Andreas, E-mail: styliand@mail.ntua.gr; Yova, Dido; Alexandratou, Eleni

    2014-12-01

    Collagen is the major fibrous extracellular matrix protein and due to its unique properties, it has been widely used as biomaterial, scaffold and cell-substrate. The aim of the paper was to use Atomic Force Microscopy (AFM) in order to investigate well-characterized collagen thin films after ultraviolet light (UV) irradiation. The films were also used as in vitro culturing substrates in order to investigate the UV-induced alterations to fibroblasts. A special attention was given in the alteration on collagen D-periodicity. For short irradiation times, spectroscopy (fluorescence/absorption) studies demonstrated that photodegradation took place and AFM imaging showed alterations in surface roughness. Also, it was highlighted that UV-irradiation had different effects when it was applied on collagen solution than on films. Concerning fibroblast culturing, it was shown that fibroblast behavior was affected after UV irradiation of both collagen solution and films. Furthermore, after a long irradiation time, collagen fibrils were deformed revealing that collagen fibrils are consisting of multiple shells and D-periodicity occurred on both outer and inner shells. The clarification of the effects of UV light on collagen and the induced modifications of cell behavior on UV-irradiated collagen-based surfaces will contribute to the better understanding of cell–matrix interactions in the nanoscale and will assist in the appropriate use of UV light for sterilizing and photo-cross-linking applications. - Highlights: • Collagen thin films were formed and exposed in UV irradiation. • Collagen thin films were formed from UV-irradiated collagen solution. • Nanocharacterization of collagen thin films by AFM • Fluorescence and absorption spectroscopy studies on collagen films • Investigation of fibroblast response on collagen films.

  12. The initiation of embryonic-like collagen fibrillogenesis by adult human tendon fibroblasts when cultured under tension

    DEFF Research Database (Denmark)

    Bayer, Monika L; Yeung, Chin-Yan C; Kadler, Karl E

    2010-01-01

    to initiate collagen fibrillogenesis when cultured in fixed-length fibrin gels. Fibroblasts were dissected from semitendinosus and gracilis tendons from healthy humans and cultured in 3D linear fibrin gels. The fibroblasts synthesized an extracellular matrix of parallel collagen fibrils that were aligned...

  13. Mechanical Properties of Human Patellar Tendon at the Hierarchical levels of Tendon and Fibril

    DEFF Research Database (Denmark)

    Svensson, Rene Brüggebusch; Hansen, Philip; Hassenkam, Tue

    2012-01-01

    Tendons are strong hierarchical structures, but how tensile forces are transmitted between different levels remains incompletely understood. Collagen fibrils are thought to be primary determinants of whole tendon properties, and therefore we hypothesized that the whole human patellar tendon and its...... distinct collagen fibrils would display similar mechanical properties. Human patellar tendons (n=5) were mechanically tested in vivo by ultrasonography. Biopsies were obtained from each tendon and individual collagen fibrils were dissected and tested mechanically by atomic force microscopy. The Young...... that of tendon supports that fibrillar rather than interfibrillar properties govern sub-failure tendon response, making the fibrillar level a meaningful target of intervention. The lower modulus found in vitro suggests a possible adverse effect of removing the tissue from its natural environment. In addition...

  14. Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers

    Directory of Open Access Journals (Sweden)

    Rasool Suhail

    2007-09-01

    Full Text Available Abstract Background Amyloid-related degenerative diseases are associated with the accumulation of misfolded proteins as amyloid fibrils in tissue. In Alzheimer disease (AD, amyloid accumulates in several distinct types of insoluble plaque deposits, intracellular Aβ and as soluble oligomers and the relationships between these deposits and their pathological significance remains unclear. Conformation dependent antibodies have been reported that specifically recognize distinct assembly states of amyloids, including prefibrillar oligomers and fibrils. Results We immunized rabbits with a morphologically homogeneous population of Aβ42 fibrils. The resulting immune serum (OC specifically recognizes fibrils, but not random coil monomer or prefibrillar oligomers, indicating fibrils display a distinct conformation dependent epitope that is absent in prefibrillar oligomers. The fibril epitope is also displayed by fibrils of other types of amyloids, indicating that the epitope is a generic feature of the polypeptide backbone. The fibril specific antibody also recognizes 100,000 × G soluble fibrillar oligomers ranging in size from dimer to greater than 250 kDa on western blots. The fibrillar oligomers recognized by OC are immunologically distinct from prefibrillar oligomers recognized by A11, even though their sizes overlap broadly, indicating that size is not a reliable indicator of oligomer conformation. The immune response to prefibrillar oligomers and fibrils is not sequence specific and antisera of the same specificity are produced in response to immunization with islet amyloid polypeptide prefibrillar oligomer mimics and fibrils. The fibril specific antibodies stain all types of amyloid deposits in human AD brain. Diffuse amyloid deposits stain intensely with anti-fibril antibody although they are thioflavin S negative, suggesting that they are indeed fibrillar in conformation. OC also stains islet amyloid deposits in transgenic mouse models of type

  15. Prediction of equibiaxial loading stress in collagen-based extracellular matrix using a three-dimensional unit cell model.

    Science.gov (United States)

    Susilo, Monica E; Bell, Brett J; Roeder, Blayne A; Voytik-Harbin, Sherry L; Kokini, Klod; Nauman, Eric A

    2013-03-01

    Mechanical signals are important factors in determining cell fate. Therefore, insights as to how mechanical signals are transferred between the cell and its surrounding three-dimensional collagen fibril network will provide a basis for designing the optimum extracellular matrix (ECM) microenvironment for tissue regeneration. Previously we described a cellular solid model to predict fibril microstructure-mechanical relationships of reconstituted collagen matrices due to unidirectional loads (Acta Biomater 2010;6:1471-86). The model consisted of representative volume elements made up of an interconnected network of flexible struts. The present study extends this work by adapting the model to account for microstructural anisotropy of the collagen fibrils and a biaxial loading environment. The model was calibrated based on uniaxial tensile data and used to predict the equibiaxial tensile stress-stretch relationship. Modifications to the model significantly improved its predictive capacity for equibiaxial loading data. With a comparable fibril length (model 5.9-8μm, measured 7.5μm) and appropriate fibril anisotropy the anisotropic model provides a better representation of the collagen fibril microstructure. Such models are important tools for tissue engineering because they facilitate prediction of microstructure-mechanical relationships for collagen matrices over a wide range of microstructures and provide a framework for predicting cell-ECM interactions. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Development of a three-dimensional unit cell to model the micromechanical response of a collagen-based extracellular matrix.

    Science.gov (United States)

    Susilo, Monica E; Roeder, Blayne A; Voytik-Harbin, Sherry L; Kokini, Klod; Nauman, Eric A

    2010-04-01

    The three-dimensional microstructure and mechanical properties of the collagen fibrils within the extracellular matrix (ECM) is now being recognized as a primary factor in regulating cell proliferation and differentiation. Therefore, an appreciation of the mechanical aspects by which a cell interacts with its ECM is required for the development of engineered tissues. Ultimately, using these interactions to design tissue equivalents requires mathematical models with three-dimensional architecture. In this study, a three-dimensional model of a collagen fibril matrix undergoing uniaxial tensile stress was developed by making use of cellular solids. A structure consisting of thin struts was chosen to represent the arrangement of collagen fibrils within an engineered ECM. To account for the large deformation of tissues, the collagen fibrils were modeled as hyperelastic neo-Hookean or Mooney-Rivlin materials. The use of cellular solids allowed the fibril properties to be related to the ECM properties in closed form, which, in turn, allowed the estimation of fibril properties using ECM experimental data. A set of previously obtained experimental data consisting of simultaneous measures of the fibril microstructure and mechanical tests was used to evaluate the model's capability to estimate collagen fibril mechanical property when given tissue-scale data and to predict the tissue-scale mechanical properties when given estimated fibril stiffness. The fibril tangent modulus was found to be 1.26 + or - 0.70 and 1.62 + or - 0.88 MPa when the fibril was modeled as neo-Hookean and Mooney-Rivlin material, respectively. There was no statistical significance of the estimated fibril tangent modulus among the different groups. Sensitivity analysis showed that the fibril mechanical properties and volume fraction were the two input parameters which required accurate values. While the volume fraction was easily obtained from the initial image of the gel, the fibril mechanical properties

  17. A constitutive model of soft tissue: From nanoscale collagen to tissue continuum

    KAUST Repository

    Tang, Huang

    2009-04-08

    Soft collagenous tissue features many hierarchies of structure, starting from tropocollagen molecules that form fibrils, and proceeding to a bundle of fibrils that form fibers. Here we report the development of an atomistically informed continuum model of collagenous tissue. Results from full atomistic and molecular modeling are linked with a continuum theory of a fiber-reinforced composite, handshaking the fibril scale to the fiber and continuum scale in a hierarchical multi-scale simulation approach. Our model enables us to study the continuum-level response of the tissue as a function of cross-link density, making a link between nanoscale collagen features and material properties at larger tissue scales. The results illustrate a strong dependence of the continuum response as a function of nanoscopic structural features, providing evidence for the notion that the molecular basis for protein materials is important in defining their larger-scale mechanical properties. © 2009 Biomedical Engineering Society.

  18. Collagen mRNA levels changes during colorectal cancer carcinogenesis

    DEFF Research Database (Denmark)

    Skovbjerg, Hanne; Anthonsen, Dorit; Lothe, Inger M B

    2009-01-01

    BACKGROUND: Invasive growth of epithelial cancers is a complex multi-step process which involves dissolution of the basement membrane. Type IV collagen is a major component in most basement membranes. Type VII collagen is related to anchoring fibrils and is found primarily in the basement membrane...... zone of stratified epithelia. Immunohistochemical studies have previously reported changes in steady-state levels of different alpha(IV) chains in several epithelial cancer types. In the present study we aimed to quantitatively determine the mRNA levels of type IV collagen (alpha1/alpha 4/alpha 6......) and type VII collagen (alpha1) during colorectal cancer carcinogenesis. METHODS: Using quantitative RT-PCR, we have determined the mRNA levels for alpha1(IV), alpha 4(IV), alpha 6(IV), and alpha1(VII) in colorectal cancer tissue (n = 33), adenomas (n = 29) and in normal tissue from the same individuals...

  19. Initiating fibro-proliferation through interfacial interactions of myoglobin colloids with collagen in solution.

    Science.gov (United States)

    Dhanasekaran, Madhumitha; Dhathathreyan, Aruna

    2017-08-01

    This work examines fibro-proliferation through interaction of myoglobin (Mb), a globular protein with collagen, an extracellular matrix fibrous protein. Designed colloids of Mb at pH 4.5 and 7.5 have been mixed with collagen solution at pH 7.5 and 4.5 in different concentrations altering their surface charges. For the Mb colloids, 100-200nm sizes have been measured from Transmission electron micrographs and zeta sizer. CD spectra shows a shift to beta sheet like structure for the protein in the colloids. Interaction at Mb/Collagen interface studied using Dilational rheology, Quartz crystal microbalance with dissipation and Differential Scanning calorimetry show that the perturbation is not only by the charge compensation arising from the difference in pH of the colloids and collagen, but also by the organized assembly of collagen at that particular pH. Results demonstrate that positive Mb colloids at pH 4.5, having more% of entrained water stabilize the collagen fibrils (pH 7.5) around them. Ensuing dehydration leads to effective cross-linking and inherently anisotropic growth of fibrils/fibres of collagen. In the case of Mb colloids at pH 7.5, the fibril formation seems to supersede the clustering of Mb suggesting that the fibro-proliferation is both pH and hydrophilic-hydrophobic balance dependent at the interface. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Proximal collagenous gastroenteritides:

    DEFF Research Database (Denmark)

    Nielsen, Ole Haagen; Riis, Lene Buhl; Danese, Silvio

    2014-01-01

    AIM: While collagenous colitis represents the most common form of the collagenous gastroenteritides, the collagenous entities affecting the proximal part of the gastrointestinal tract are much less recognized and possibly overlooked. The aim was to summarize the latest information through a syste...

  1. Estradiol inhibits hepatic stellate cell area and collagen synthesis in the chicken liver.

    Science.gov (United States)

    Nishimura, Shotaro; Teshima, Akifumi; Kawabata, Fuminori; Tabata, Shoji

    2017-11-01

    Hepatic stellate cells (HSCs) are the main collagen-producing cells in the liver. The HSC area and amount of collagen fibers are different between male and female chickens. This study was performed to confirm the effect of estradiol on collagen synthesis in the growing chicken liver. Blood estradiol levels in chicks were compared at 4 and 8 weeks of age, and the collagen fibril network in liver tissue was observed at 8 weeks by scanning electron microscopy. Intraperitoneal administrations of estradiol and tamoxifen to male and female chicks, respectively, were performed daily from 5 to 8 weeks of age. The areas of HSCs and collagen contents were measured in the liver tissue. The blood estradiol level was higher in females than in males, and the collagen fibril network was denser in males than in females at 8 weeks of age. Estradiol administration in males induced decreases in the HSC area and collagen content of the liver. Conversely, tamoxifen administration in females induced an increase in the HSC area but did not facilitate collagen synthesis. Based on these results, estradiol inhibits the area and collagen synthesis of HSCs in the growing chicken liver under normal physiological conditions. © 2017 Japanese Society of Animal Science.

  2. [Effect of benazepril on atrial cytoskeleton remodeling in the canine atrial fibrillation models].

    Science.gov (United States)

    Liu, Li; Qu, Xiu-Fen; Yu, Yang; Bai, Bing; Huang, Yong-Lin

    2009-10-20

    To investigate the effect of benazepril on atrial cytoskeleton remodeling in atrial fibrillation (AF) canines induced by chronic rapid atrial pacing (RAP). Twenty canines were randomly divided into 3 groups: (1) Sham-operated group without RAP; (2) AF group: AF established by RAP at 600 beats per minute for 6 weeks; (3) Benazepril group: benazepril was dosed from 1 week pre-pacing to 6 weeks post-pacing. The diameter of atrial cardiomyocyte was measured, collagen volume fraction (CVF) analyzed by Masson staining and the expression and distribution of desmin were assayed by immunohistochemistry. RT-PCR method was used to semi-quantify the mRNA expression of beta-tubulin and desmin. The diameter of atrial cardiomyocyte increased in AF group [LA:(27.9 +/- 3.8) microm; RA: (26.8 +/- 3.2) microm] and benazepril group[LA: (25.1 +/- 3.4) microm; RA: (25.2 +/- 3.5) microm] than sham-operated group [LA: (19.6 +/- 2.9) microm; RA: (18.7 +/- 2.6) microm] (P benazepril group than AF group [LA: (11.3 +/- 0.8)% vs (16.9 +/- 1.1)%, RA: (10.9 +/- 0.8)% vs (15.7 +/- 2.3)%, P benazepril group than AF group (P benazepril group than AF group (LA:0.8 +/- 0.4 vs 1.0 +/- 0.3, 0.7 +/- 0.3 vs 0.9 +/- 0.4; RA:0.7 +/- 0.3 vs 1.0 +/- 0.6, 0.7 +/- 0.3 vs 1.1 +/- 0.3, P Benazepril can favorably improve atrial cytoskeleton remodeling in the canine atrial fibrillation model.

  3. What Is Atrial Fibrillation?

    Science.gov (United States)

    ANSWERS by heart Cardiovascular Conditions What Is Atrial Fibrillation? Your heart has a natural pacemaker, called the “sinus node,” that makes electrical signals. These signals cause the heart to contract and pump ...

  4. Toward understanding insulin fibrillation.

    Science.gov (United States)

    Brange, J; Andersen, L; Laursen, E D; Meyn, G; Rasmussen, E

    1997-05-01

    Formation of insulin fibrils is a physical process by which partially unfolded insulin molecules interact with each other to form linear aggregates. Shielding of hydrophobic domains is the main driving force for this process, but formation of intermolecular beta-sheet may further stabilize the fibrillar structure. Conformational displacement of the B-chain C-terminal with exposure of nonpolar, aliphatic core residues, including A2, A3, B11, and B15, plays a crucial role in the fibrillation process. Recent crystal analyses and molecular modeling studies have suggested that when insulin fibrillates this exposed domain interacts with a hydrophobic surface domain formed by the aliphatic residues A13, B6, B14, B17, and B18, normally buried when three insulin dimers form a hexamer. In rabbit immunization experiments, insulin fibrils did not elicit an increased immune response with respect to formation of IgG insulin antibodies when compared with native insulin. In contrast, the IgE response increased with increasing content of insulin in fibrillar form. Strategies and practical approaches to prevent insulin from forming fibrils are reviewed. Stabilization of the insulin hexameric structure and blockage of hydrophobic interfaces by addition of surfactants are the most effective means of counteracting insulin fibrillation.

  5. Relaxin suppresses atrial fibrillation in aged rats by reversing fibrosis and upregulating Na+ channels.

    Science.gov (United States)

    Henry, Brian L; Gabris, Beth; Li, Qiao; Martin, Brian; Giannini, Marianna; Parikh, Ashish; Patel, Divyang; Haney, Jamie; Schwartzman, David S; Shroff, Sanjeev G; Salama, Guy

    2016-04-01

    Atrial fibrillation (AF) contributes significantly to morbidity and mortality in elderly patients and has been correlated with enhanced age-dependent atrial fibrosis. Reversal of atrial fibrosis has been proposed as therapeutic strategy to suppress AF. To test the ability of relaxin to reverse age-dependent atrial fibrosis and suppress AF. Aged F-344 rats (24 months old) were treated with subcutaneous infusion of vehicle or relaxin (0.4 mg/kg/day) for 2 weeks. Rat hearts were excised, perfused on a Langendorff apparatus, and stained with voltage and Ca(2+) indicator dyes. Optical mapping and programmed electrical stimulation was used to test arrhythmia vulnerability and changes in electrophysiological characteristics. Changes in protein expression and Na(+) current density (INa) were measured by tissue immunofluorescence and whole-cell patch clamp technique. In aged rats, sustained AF was readily induced with a premature pulse (n = 7/8) and relaxin treatment suppressed sustained AF by a premature impulse or burst pacing (n = 1/6) (P atrial action potential conduction velocity and decreased atrial fibrosis. Relaxin treatment increased Nav1.5 expression (n = 6; 36% ± 10%) and decreased total collagen and collagen I (n = 5-6; 55%-66% ± 15%) in aged atria (P atrial INa by 46% ± 4% (n = 12-13/group, P atrial conduction velocity by decreasing atrial fibrosis and increasing INa. These data provide compelling evidence that relaxin may serve as an effective therapy to manage AF in geriatric patients by reversing fibrosis and modulating cardiac ionic currents. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  6. [Polarized microscopic observation of the collagen change in bone healing during bone lengthening].

    Science.gov (United States)

    Zou, Pei; Li, Junhui; Li, Zhuyi

    2006-01-01

    To investigate the feature and regularity of the collagen change in bone healing during bone lengthening. Bone lengthening model was made in the middle segment of the rabbit tibia. Five days after the model was established, the bone was lengthened 1.5 mm per day for 14 days. The rabbits were put to death after elongation, 7, 14, 21, 30, 40, 50, 60 and 70 days after elongation. The distracted area of the bone was imbedded with paraffin. After being stained by the picric acid-sirius red staining, the slice was observed under polarized microscope. The features of the collagen change in the distracted bone were as follows: (1) In the fibrous tissue of the distracted area during lengthening period and the early stage after lengthening, there was not only collagen III but also much collagen I. (2) Collagen I , II and III were observed in the cartilage. (3) Collagen I, II and III were also observed in the pseudo-growth plate. (4) Collagen I took the dominance during lengthening period and the late stage after lengthening. New bone formation in bone lengthening is under the distracted force, so the collagen changes have different features compared with that in fracture healing. Collagen I, II and III can be identified by picric acid-sirius red staining and polarized microscope, so a new method for studying the collagen typing in bone repairing is provided.

  7. Automated image analysis in the study of collagenous colitis

    DEFF Research Database (Denmark)

    Fiehn, Anne-Marie Kanstrup; Kristensson, Martin; Engel, Ulla

    2016-01-01

    PURPOSE: The aim of this study was to develop an automated image analysis software to measure the thickness of the subepithelial collagenous band in colon biopsies with collagenous colitis (CC) and incomplete CC (CCi). The software measures the thickness of the collagenous band on microscopic...... slides stained with Van Gieson (VG). PATIENTS AND METHODS: A training set consisting of ten biopsies diagnosed as CC, CCi, and normal colon mucosa was used to develop the automated image analysis (VG app) to match the assessment by a pathologist. The study set consisted of biopsies from 75 patients...

  8. Collagen XII and XIV, New Partners of Cartilage Oligomeric Matrix Protein in the Skin Extracellular Matrix Suprastructure*

    Science.gov (United States)

    Agarwal, Pallavi; Zwolanek, Daniela; Keene, Douglas R.; Schulz, Jan-Niklas; Blumbach, Katrin; Heinegård, Dick; Zaucke, Frank; Paulsson, Mats; Krieg, Thomas; Koch, Manuel; Eckes, Beate

    2012-01-01

    The tensile and scaffolding properties of skin rely on the complex extracellular matrix (ECM) that surrounds cells, vasculature, nerves, and adnexus structures and supports the epidermis. In the skin, collagen I fibrils are the major structural component of the dermal ECM, decorated by proteoglycans and by fibril-associated collagens with interrupted triple helices such as collagens XII and XIV. Here we show that the cartilage oligomeric matrix protein (COMP), an abundant component of cartilage ECM, is expressed in healthy human skin. COMP expression is detected in the dermal compartment of skin and in cultured fibroblasts, whereas epidermis and HaCaT cells are negative. In addition to binding collagen I, COMP binds to collagens XII and XIV via their C-terminal collagenous domains. All three proteins codistribute in a characteristic narrow zone in the superficial papillary dermis of healthy human skin. Ultrastructural analysis by immunogold labeling confirmed colocalization and further revealed the presence of COMP along with collagens XII and XIV in anchoring plaques. On the basis of these observations, we postulate that COMP functions as an adapter protein in human skin, similar to its function in cartilage ECM, by organizing collagen I fibrils into a suprastructure, mainly in the vicinity of anchoring plaques that stabilize the cohesion between the upper dermis and the basement membrane zone. PMID:22573329

  9. Collagen XII and XIV, new partners of cartilage oligomeric matrix protein in the skin extracellular matrix suprastructure.

    Science.gov (United States)

    Agarwal, Pallavi; Zwolanek, Daniela; Keene, Douglas R; Schulz, Jan-Niklas; Blumbach, Katrin; Heinegård, Dick; Zaucke, Frank; Paulsson, Mats; Krieg, Thomas; Koch, Manuel; Eckes, Beate

    2012-06-29

    The tensile and scaffolding properties of skin rely on the complex extracellular matrix (ECM) that surrounds cells, vasculature, nerves, and adnexus structures and supports the epidermis. In the skin, collagen I fibrils are the major structural component of the dermal ECM, decorated by proteoglycans and by fibril-associated collagens with interrupted triple helices such as collagens XII and XIV. Here we show that the cartilage oligomeric matrix protein (COMP), an abundant component of cartilage ECM, is expressed in healthy human skin. COMP expression is detected in the dermal compartment of skin and in cultured fibroblasts, whereas epidermis and HaCaT cells are negative. In addition to binding collagen I, COMP binds to collagens XII and XIV via their C-terminal collagenous domains. All three proteins codistribute in a characteristic narrow zone in the superficial papillary dermis of healthy human skin. Ultrastructural analysis by immunogold labeling confirmed colocalization and further revealed the presence of COMP along with collagens XII and XIV in anchoring plaques. On the basis of these observations, we postulate that COMP functions as an adapter protein in human skin, similar to its function in cartilage ECM, by organizing collagen I fibrils into a suprastructure, mainly in the vicinity of anchoring plaques that stabilize the cohesion between the upper dermis and the basement membrane zone.

  10. Micro-mechanical model for the tension-stabilized enzymatic degradation of collagen tissues

    Science.gov (United States)

    Nguyen, Thao; Ruberti, Jeffery

    We present a study of how the collagen fiber structure influences the enzymatic degradation of collagen tissues. Experiments of collagen fibrils and tissues show that mechanical tension can slow and halt enzymatic degradation. Tissue-level experiments also show that degradation rate is minimum at a stretch level coincident with the onset of strain-stiffening in the stress response. To understand these phenomena, we developed a micro-mechanical model of a fibrous collagen tissue undergoing enzymatic degradation. Collagen fibers are described as sinusoidal elastica beams, and the tissue is described as a distribution of fibers. We assumed that the degradation reaction is inhibited by the axial strain energy of the crimped collagen fibers. The degradation rate law was calibrated to experiments on isolated single fibrils from bovine sclera. The fiber crimp and properties were fit to uniaxial tension tests of tissue strips. The fibril-level kinetic and tissue-level structural parameters were used to predict tissue-level degradation-induced creep rate under a constant applied force. We showed that we could accurately predict the degradation-induce creep rate of the pericardium and cornea once we accounted for differences in the fiber crimp structure and properties.

  11. Surgery for atrial fibrillation.

    Science.gov (United States)

    Viganò, M; Graffigna, A; Ressia, L; Minzioni, G; Pagani, F; Aiello, M; Gazzoli, F

    1996-01-01

    The mechanisms of atrial fibrillation arc multiple reentry circuits spinning around the atrial surface, and these baffle any attempt to direct surgical interruption. The purpose of this article is to report the surgical experience in the treatment of isolated and concomitant atrial fibrillation at the Cardiac Surgical Institute of the University of Pavia. In cases of atrial fibrillation secondary to mitral/valve disease, surgical isolation of the left atrium at the time of mitral valve surgery can prevent atrial fibrillation from involving the right atrium, which can exert its diastolic pump function on the right ventricle. Left atrial isolation was performed on 205 patients at the time of mitral valve surgery. Atrial partitioning ("maze operation") creates straight and blind atrial alleys so that non-recentry circuits can take place. Five patients underwent this procedure. In eight-cases of atrial fibrillation secondary to atrial septal defect, the adult patients with atrial septal defect and chronic or paroxysmal atrial fibrillation underwent surgical isolation of the right atrium associated which surgical correction of the defect, in order to let sinus rhythm govern the left atrium and the ventricles. "Lone" atrial fibrillation occurs in hearts with no detectable organic disease. Bi-atrial isolation with creation of an atrial septal internodal "corridor" was performed on 14 patients. In cases of atrial fibrillation secondary to mitral valve disease, left atrial isolation was performed on 205 patients at the time of mitral valve surgery with an overall sinus rhythm recovery of 44%. In the same period, sinus rhythm was recovered and persisted in only 19% of 252 patients who underwent mitral valve replacement along (P < 0.001). Sinus rhythm was less likely to recover in patients with right atriomegaly requiring tricuspid valve annuloplasty: 59% vs 84% (P < 0.001). Restoration of the right atrial function raised the cardiac index from 2.25 +/- 0.55 1/min per m2

  12. Endocytic collagen degradation

    DEFF Research Database (Denmark)

    Madsen, Daniel H.; Jürgensen, Henrik J.; Ingvarsen, Signe Ziir

    2012-01-01

    it crucially important to understand both the collagen synthesis and turnover mechanisms in this condition. Here we show that the endocytic collagen receptor, uPARAP/Endo180, is a major determinant in governing the balance between collagen deposition and degradation. Cirrhotic human livers displayed a marked...... up-regulation of uPARAP/Endo180 in activated fibroblasts and hepatic stellate cells located close to the collagen deposits. In a hepatic stellate cell line, uPARAP/Endo180 was shown to be active in, and required for, the uptake and intracellular degradation of collagen. To evaluate the functional...... groups of mice clearly revealed a fibrosis protective role of uPARAP/Endo180. This effect appeared to directly reflect the activity of the collagen receptor, since no compensatory events were noted when comparing the mRNA expression profiles of the two groups of mice in an array system focused on matrix-degrading...

  13. Say goodbye to coffee stains

    NARCIS (Netherlands)

    Eral, Burak; van den Ende, Henricus T.M.; Mugele, Friedrich Gunther

    2012-01-01

    Discussing ideas over a mug of coffee or tea is the lifeblood of science, but have you ever thought about the stains that can be inadvertently left behind? H Burak Eral, Dirk van den Ende and Frieder Mugele explain how these stains, which can be a major annoyance in some biology techniques, can be

  14. Collagenous gastritis: a morphologic and immunohistochemical study of 40 patients.

    Science.gov (United States)

    Arnason, Thomas; Brown, Ian S; Goldsmith, Jeffrey D; Anderson, William; O'Brien, Blake H; Wilson, Claire; Winter, Harland; Lauwers, Gregory Y

    2015-04-01

    Collagenous gastritis is a rare condition defined histologically by a superficial subepithelial collagen layer. This study further characterizes the morphologic spectrum of collagenous gastritis by evaluating a multi-institutional series of 40 patients (26 female and 14 male). The median age at onset was 16 years (range 3-89 years), including 24 patients (60%) under age 18. Twelve patients (30%) had associated celiac disease, collagenous sprue, or collagenous colitis. Hematoxylin and eosin slides were reviewed in biopsies from all patients and tenascin, gastrin, eotaxin, and IgG4/IgG immunohistochemical stains were applied to a subset. The distribution of subepithelial collagen favored the body/fundus in pediatric patients and the antrum in adults. There were increased surface intraepithelial lymphocytes (>25 lymphocytes/100 epithelial cells) in five patients. Three of these patients had associated celiac and/or collagenous sprue/colitis, while the remaining two had increased duodenal lymphocytosis without specific etiology. An eosinophil-rich pattern (>30 eosinophils/high power field) was seen in 21/40 (52%) patients. Seven patients' biopsies demonstrated atrophy of the gastric corpus mucosa. Tenascin immunohistochemistry highlighted the subepithelial collagen in all 21 specimens evaluated and was a more sensitive method of collagen detection in biopsies from two patients with subtle subepithelial collagen. No increased eotaxin expression was identified in 16 specimens evaluated. One of the twenty-three biopsies tested had increased IgG4-positive cells (100/high power field) with an IgG4/IgG ratio of 55%. In summary, collagenous gastritis presents three distinct histologic patterns including a lymphocytic gastritis-like pattern, an eosinophil-rich pattern, and an atrophic pattern. Eotaxin and IgG4 were not elevated enough to implicate these pathways in the pathogenesis. Tenascin immunohistochemistry can be used as a sensitive method of collagen detection.

  15. Collagen and elastic fibers of skin connective tissue in patients with and without primary inguinal hernia

    OpenAIRE

    Bórquez M, Pablo; Garrido O, Luis; Manterola D, Carlos; Peña S, Patricio; Schlageter T, Carol; Orellana C, Juan José; Ulloa U, Hugo; Peña R, Juan Luis

    2003-01-01

    There are few studies looking for collagen matrix defects in patients with inguinal hernia. Aim: To study the skin connective tissue in patients with and without inguinal hernia. Patients and methods: Skin from the surgical wound was obtained from 23 patients with and 23 patients without inguinal hernia. The samples were processed for conventional light microscopy. Collagen fibers were stained with Van Giesson and elastic fibers with Weigert stain. Results: Patients without hernia had compact...

  16. Atrial Fibrillation and Hyperthyroidism

    Directory of Open Access Journals (Sweden)

    Jayaprasad N

    2005-10-01

    Full Text Available Atrial fibrillation occurs in 10 – 15% of patients with hyperthyroidism. Low serum thyrotropin concentration is an independent risk factor for atrial fibrillation. Thyroid hormone contributes to arrythmogenic activity by altering the electrophysiological characteristics of atrial myocytes by shortening the action potential duration, enhancing automaticity and triggered activity in the pulmonary vein cardio myocytes. Hyperthyroidism results in excess mortality from increased incidence of circulatory diseases and dysrhythmias. Incidence of cerebral embolism is more in hyperthyroid patients with atrial fibrillation, especially in the elderly and anti-coagulation is indicated in them. Treatment of hyperthyroidism results in conversion to sinus rhythm in up to two-third of patients. Beta-blockers reduce left ventricular hypertrophy and atrial and ventricular arrhythmias in patients with hyperthyroidism. Treatment of sub clinical hyperthyroidism is controversial. Optimizing dose of thyroxine treatment in those with replacement therapy and beta-blockers is useful in exogenous subclinical hyperthyroidism.

  17. uPARAP/endo180 directs lysosomal delivery and degradation of collagen IV

    DEFF Research Database (Denmark)

    Kjøller, Lars; Engelholm, Lars H; Høyer-Hansen, Maria

    2004-01-01

    appearing uniformly within the wild-type cells after longer incubation times. In these cells, some collagen-containing vesicles were identified as lysosomes by staining for LAMP-1. In contrast, collagen IV remained extracellular and associated with fiber-like structures on uPARAP/endo180-deficient...

  18. A quantitative method to determine the orientation of collagen fibers in the dermis

    NARCIS (Netherlands)

    Noorlander, Maril L.; Melis, Paris; Jonker, Ard; van Noorden, Cornelis J. F.

    2002-01-01

    We have developed a quantitative microscopic method to determine changes in the orientation of collagen fibers in the dermis resulting from mechanical stress. The method is based on the use of picrosirius red-stained cryostat sections of piglet skin in which collagen fibers reflect light strongly

  19. Fluorescent Labeling of Collagen Production by Cells for Noninvasive Imaging of Extracellular Matrix Deposition.

    Science.gov (United States)

    Bardsley, Katie; Yang, Ying; El Haj, Alicia J

    2017-04-01

    Extracellular matrix (ECM) is an essential component of tissues and provides both integrity and biological cues for cells. Collagen is one of the major proteins found within the ECM and therefore is an essential component of all engineered tissues. Therefore, in this article, we present a method for the online real-time monitoring of collagen deposition in three-dimensional engineered constructs. This method revolves around modification of collagen through the addition of azide-L-proline to cell culture media. The incorporation of azide-L-proline into the neocollagen produced by cells can then be detected by reaction with 10 mM of a Click-IT Alexa Fluor 488 DIBO Alkyne. The reaction was shown as being specific to the collagen as little background staining was observed in cultures, which did not contain the modified proline, and the staining was also depleted after treatment with collagenase and colocalization of collagen type I staining by immunochemistry assay. Real-time online staining of collagen deposition was observed under different culture conditions without affecting proliferation. Collagen deposition was observed to be increased under mechanical stimulation; however, the localization varied across stimulation regimes. This is a new technique for real-time monitoring of cell-produced collagen and will be a valuable addition to the tissue engineering field.

  20. Thyrotoxic atrial fibrillation.

    Science.gov (United States)

    Parmar, Malvinder S

    2005-01-04

    Atrial fibrillation is the most common cardiac complication of hyperthyroidism and occurs in 15% of patients with hyperthyroidism. It is associated with a higher risk of thromboembolism that often involves the central nervous system. Oral anticoagulation is important in the majority of these patients to prevent thromboembolic complications. These patients require adjustment in the dose of various rate-controlling agents because of increased clearance associated with hyperthyroidism and a decrease in warfarin dosage because of increased clearance of vitamin K-dependent clotting factors. The management of thyrotoxic atrial fibrillation is summarized in this clinical review.

  1. Double thermal transitions of type I collagen in acidic solution.

    Science.gov (United States)

    Liu, Yan; Liu, Lingrong; Chen, Mingmao; Zhang, Qiqing

    2013-01-01

    Contributed equally to this work. To further understand the origin of the double thermal transitions of collagen in acidic solution induced by heating, the denaturation of acidic soluble collagen was investigated by micro-differential scanning calorimeter (micro-DSC), circular dichroism (CD), dynamic laser light scattering (DLLS), transmission electron microscopy (TEM), and two-dimensional (2D) synchronous fluorescence spectrum. Micro-DSC experiments revealed that the collagen exhibited double thermal transitions, which were located within 31-37 °C (minor thermal transition, T(s) ∼ 33 °C) and 37-55 °C (major thermal transition, T(m) ∼ 40 °C), respectively. The CD spectra suggested that the thermal denaturation of collagen resulted in transition from polyproline II type structure to unordered structure. The DLLS results showed that there were mainly two kinds of collagen fibrillar aggregates with different sizes in acidic solution and the larger fibrillar aggregates (T(p2) = 40 °C) had better heat resistance than the smaller one (T(p1) = 33 °C). TEM revealed that the depolymerization of collagen fibrils occurred and the periodic cross-striations of collagen gradually disappeared with increasing temperature. The 2D fluorescence correlation spectra were also applied to investigate the thermal responses of tyrosine and phenylalanine residues at the molecular level. Finally, we could draw the conclusion that (1) the minor thermal transition was mainly due to the defibrillation of the smaller collagen fibrillar aggregates and the unfolding of a little part of triple helices; (2) the major thermal transition primarily arose from the defibrillation of the larger collagen fibrillar aggregates and the complete denaturation of the majority part of triple helices.

  2. Collagen: A review on its sources and potential cosmetic applications.

    Science.gov (United States)

    Avila Rodríguez, María Isabela; Rodríguez Barroso, Laura G; Sánchez, Mirna Lorena

    2018-02-01

    Collagen is a fibrillar protein that conforms the conjunctive and connective tissues in the human body, essentially skin, joints, and bones. This molecule is one of the most abundant in many of the living organisms due to its connective role in biological structures. Due to its abundance, strength and its directly proportional relation with skin aging, collagen has gained great interest in the cosmetic industry. It has been established that the collagen fibers are damaged with the pass of time, losing thickness and strength which has been strongly related with skin aging phenomena [Colágeno para todo. 60 y más. 2016. http://www.revista60ymas.es/InterPresent1/groups/revistas/documents/binario/ses330informe.pdf.]. As a solution, the cosmetic industry incorporated collagen as an ingredient of different treatments to enhance the user youth and well-being, and some common presentations are creams, nutritional supplement for bone and cartilage regeneration, vascular and cardiac reconstruction, skin replacement, and augmentation of soft skin among others [J App Pharm Sci. 2015;5:123-127]. Nowadays, the biomolecule can be obtained by extraction from natural sources such as plants and animals or by recombinant protein production systems including yeast, bacteria, mammalian cells, insects or plants, or artificial fibrils that mimic collagen characteristics like the artificial polymer commercially named as KOD. Because of its increased use, its market size is valued over USD 6.63 billion by 2025 [Collagen Market By Source (Bovine, Porcine, Poultry, Marine), Product (Gelatin, Hydrolyzed Collagen), Application (Food & Beverages, Healthcare, Cosmetics), By Region, And Segment Forecasts, 2014 - 2025. Grand View Research. http://www.grandviewresearch.com/industry-analysis/collagen-market. Published 2017.]. Nevertheless, there has been little effort on identifying which collagen types are the most suitable for cosmetic purposes, for which the present review will try to enlighten

  3. Soluble collagen dissolution and assembling in pressurized carbon dioxide water solutions

    Czech Academy of Sciences Publication Activity Database

    Zubal, L.; Bonani, W.; Maniglio, D.; Ceccato, R.; Renčiuk, Daniel; Hampl, A.; Migliaresi, C.; Jancar, J.; Vojtová, L.

    2018-01-01

    Roč. 12, č. 2 (2018), s. 159-170 ISSN 1788-618X Institutional support: RVO:68081707 Keywords : i collagen * fibril * protein * tissue * acid Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 2.983, year: 2016

  4. Evaluation of nanohydroxyapaptite (nano-HA) coated epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes.

    Science.gov (United States)

    Chu, Chenyu; Deng, Jia; Man, Yi; Qu, Yili

    2017-09-01

    ) and elastic modulus (EM) measurements. Then in 12 rats, 4 types of membranes were randomly applied to cover the rat calvarial defects. The animals were sacrificed at 8weeks. Histologic analyses were performed using Hematoxylin-eosin (H&E) staining and Masson's Trichrome stains. For statistical analysis, analysis of variance (ANOVA) followed by Tukey's multiple comparison tests was applied. HA nanoparticles were fairly well distributed nanoparticles among the collagen fibers on the nano-HA-modified EGCG-collagen membranes, with smoother surface. Moreover, collagen membranes with modifications all maintained their collagen backbone and the mechanical properties were enhanced by EGCG and nano-HA treatments. In addition, EGCG cross-linked collagen membranes with nano-HA coatings promoted bone regeneration. Nano-HA modified EGCG-collagen membranes can be utilized as a barrier membrane to enhance the bone regeneration in GBR surgeries. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Modulation of atrial fibrillation

    NARCIS (Netherlands)

    Geuzebroek, G.S.C.

    2013-01-01

    In this thesis we investigate the results of various surgical procedures for atrial fibrillation which have been performed in the last 2 decades in the Sint Antonius Hospital, Nieuwegein, The Netherlands. In the 1990s the classical Maze III procedure was the main surgical technique for

  6. Screening for Atrial Fibrillation

    DEFF Research Database (Denmark)

    Freedman, Ben; Camm, John; Calkins, Hugh

    2017-01-01

    Approximately 10% of ischemic strokes are associated with atrial fibrillation (AF) first diagnosed at the time of stroke. Detecting asymptomatic AF would provide an opportunity to prevent these strokes by instituting appropriate anticoagulation. The AF-SCREEN international collaboration was formed...

  7. FTIR spectro-imaging of collagen scaffold formation during glioma tumor development.

    Science.gov (United States)

    Noreen, Razia; Chien, Chia-Chi; Chen, Hsiang-Hsin; Bobroff, Vladimir; Moenner, Michel; Javerzat, Sophie; Hwu, Yeukuang; Petibois, Cyril

    2013-11-01

    Evidence has recently emerged that solid and diffuse tumors produce a specific extracellular matrix (ECM) for division and diffusion, also developing a specific interface with microvasculature. This ECM is mainly composed of collagens and their scaffolding appears to drive tumor growth. Although collagens are not easily analyzable by UV-fluorescence means, FTIR imaging has appeared as a valuable tool to characterize collagen contents in tissues, specially the brain, where ECM is normally devoid of collagen proteins. Here, we used FTIR imaging to characterize collagen content changes in growing glioma tumors. We could determine that C6-derived solid tumors presented high content of triple helix after 8-11 days of growth (typical of collagen fibrils formation; 8/8 tumor samples; 91 % of total variance), and further turned to larger α-helix (days 12-15; 9/10 of tumors; 94 % of variance) and β-turns (day 18-21; 7/8 tumors; 97 % of variance) contents, which suggest the incorporation of non-fibrillar collagen types in ECM, a sign of more and more organized collagen scaffold along tumor progression. The growth of tumors was also associated to the level of collagen produced (P < 0.05). This study thus confirms that collagen scaffolding is a major event accompanying the angiogenic shift and faster tumor growth in solid glioma phenotypes.

  8. Estrogen depletion and drug treatment alter the microstructure of type I collagen in bone

    Directory of Open Access Journals (Sweden)

    Meagan A. Cauble

    2016-12-01

    Full Text Available The impact of estrogen depletion and drug treatment on type I collagen fibril nanomorphology and collagen fibril packing (microstructure was evaluated by atomic force microscopy (AFM using an ovariectomized (OVX rabbit model of estrogen deficiency induced bone loss. Nine month-old New Zealand white female rabbits were treated as follows: sham-operated (Sham; n = 11, OVX + vehicle (OVX + Veh; n = 12, OVX + alendronate (ALN, 600 μg/kg/wk., s.c.; n = 12, and OVX + cathepsin-K inhibitor L-235 (CatKI, 10 mg/kg, daily, p.o.; n = 13 in prevention mode for 27 weeks. Samples from the cortical femur and trabecular lumbar vertebrae were polished, demineralized, and imaged using AFM. Auto-correlation of image patches was used to generate a vector field for each image that mathematically approximated the collagen fibril alignment. This vector field was used to compute an information-theoretic entropy that was employed as a quantitative fibril alignment parameter (FAP to allow image-to-image and sample-to-sample comparison. For all samples, no change was observed in the average FAP values; however significant differences in the distribution of FAP values were observed. In particular, OVX + Veh lumbar vertebrae samples contained a tail of lower FAP values representing regions of greater fibril alignment. OVX + ALN treatment resulted in a FAP distribution with a tail indicating greater alignment for cortical femur and less alignment for trabecular lumbar vertebrae. OVX + CatKI treatment gave a distribution of FAP values with a tail indicating less alignment for cortical femur and no change for trabecular lumbar vertebrae. Fibril alignment was also evaluated by considering when a fibril was part of discrete bundles or sheets (classified as parallel or not (classified as oblique. For this analysis, the percentage of parallel fibrils in cortical femur for the OVX group was 17% lower than the Sham group. OVX + ALN treatment partially

  9. Biomimetic Proteoglycan Interactions with Type I Collagen Investigated via 2D and 3D TEM

    Science.gov (United States)

    Moorehead, Carli

    Collagen is one of the leading components in extracellular matrix (ECM), providing durability, structural integrity, and functionality for many tissues. Regulation of collagen fibrillogenesis and degradation is important in the treatment of a number of diseases from orthopedic injuries to genetic deficiencies. Recently, novel, biocompatible, semi-synthetic biomimetic proteoglycans (BPGs) were developed, which consist of an enzymatically resistant synthetic polymer core and natural chondroitin sulfate bristles. It was demonstrated that BPGs affect type I collagen fibrillogenesis in vitro, as reflected by their impact delaying the kinetic formation of gels similar to native PGs. This indicates that the morphology of collagen scaffolds as well as endogenous ECM could also be modulated by these proteoglycan mimics. However, the imaging modality used previously, reflectance confocal microscopy, did not yield the resolution necessary to spatially localize BPGs within the collagen network or investigate the effect of BPGs on the quality of collagen fibrils produced in an in vitro fibrillogenesis model which is important for understanding the method of interaction. Consequently, a histological technique, electron tomography, was adapted and utilized to 3D image the nano-scale structures within this simplified tissue model. BPGs were found to aid in lateral growth and enhance fibril banding periodicity resulting in structures more closely resembling those in tissue, in addition to attaching to the collagen surface despite the lack of a protein core.

  10. Always cleave up your mess: targeting collagen degradation to treat tissue fibrosis

    Science.gov (United States)

    McKleroy, William; Lee, Ting-Hein

    2013-01-01

    Pulmonary fibrosis is a vexing clinical problem with no proven therapeutic options. In the normal lung there is continuous collagen synthesis and collagen degradation, and these two processes are precisely balanced to maintain normal tissue architecture. With lung injury there is an increase in the rate of both collagen production and collagen degradation. The increase in collagen degradation is critical in preventing the formation of permanent scar tissue each time the lung is exposed to injury. In pulmonary fibrosis, collagen degradation does not keep pace with collagen production, resulting in extracellular accumulation of fibrillar collagen. Collagen degradation occurs through both extracellular and intracellular pathways. The extracellular pathway involves cleavage of collagen fibrils by proteolytic enzyme including the metalloproteinases. The less-well-described intracellular pathway involves binding and uptake of collagen fragments by fibroblasts and macrophages for lysosomal degradation. The relationship between these two pathways and their relevance to the development of fibrosis is complex. Fibrosis in the lung, liver, and skin has been associated with an impaired degradative environment. Much of the current scientific effort in fibrosis is focused on understanding the pathways that regulate increased collagen production. However, recent reports suggest an important role for collagen turnover and degradation in regulating the severity of tissue fibrosis. The objective of this review is to evaluate the roles of the extracellular and intracellular collagen degradation pathways in the development of fibrosis and to examine whether pulmonary fibrosis can be viewed as a disease of impaired matrix degradation rather than a disease of increased matrix production. PMID:23564511

  11. Lung response to ultrafine Kevlar aramid synthetic fibrils following 2-year inhalation exposure in rats.

    Science.gov (United States)

    Lee, K P; Kelly, D P; O'Neal, F O; Stadler, J C; Kennedy, G L

    1988-07-01

    Four groups of 100 male and 100 female rats were exposed to ultrafine Kevlar fibrils at concentrations of 0, 2.5, 25, and 100 fibrils/cc for 6 hr/day, 5 days/week for 2 years. One group was exposed to 400 fibrils/cc for 1 year and allowed to recover for 1 year. At 2.5 fibrils/cc, the lungs had normal alveolar architecture with a few dust-laden macrophages (dust cell response) in the alveolar airspaces. At 25 fibrils/cc, the lungs showed a dust cell response, slight Type II pneumocyte hyperplasia, alveolar bronchiolarization, and a negligible amount of collagenized fibrosis in the alveolar duct region. At 100 fibrils/cc, the same pulmonary responses were seen as at 25 fibrils/cc. In addition, cystic keratinizing squamous cell carcinoma (CKSCC) was found in 4 female rats, but not in male rats. Female rats had more prominent foamy alveolar macrophages, cholesterol granulomas, and alveolar bronchiolarization. These pulmonary lesions were related to the development of CKSCC. The lung tumors were derived from metaplastic squamous cells in areas of alveolar bronchiolarization. At 400 fibrils/cc following 1 year of recovery, the lung dust content, average fiber length, and the pulmonary lesions were markedly reduced, but slight centriacinar emphysema and minimal collagenized fibrosis were found in the alveolar duct region. One male and 6 female rats developed CKSCC. The lung tumors were a unique type of experimentally induced tumors in the rats and have not been seen as spontaneous tumors in man or animals. Therefore, the relevance of this type of lung tumor to the human situation is minimal.

  12. Collagenous Extracellular Matrix Biomaterials for Tissue Engineering: Lessons from the Common Sea Urchin Tissue.

    Science.gov (United States)

    Goh, Kheng Lim; Holmes, David F

    2017-04-25

    Scaffolds for tissue engineering application may be made from a collagenous extracellular matrix (ECM) of connective tissues because the ECM can mimic the functions of the target tissue. The primary sources of collagenous ECM material are calf skin and bone. However, these sources are associated with the risk of having bovine spongiform encephalopathy or transmissible spongiform encephalopathy. Alternative sources for collagenous ECM materials may be derived from livestock, e.g., pigs, and from marine animals, e.g., sea urchins. Collagenous ECM of the sea urchin possesses structural features and mechanical properties that are similar to those of mammalian ones. However, even more intriguing is that some tissues such as the ligamentous catch apparatus can exhibit mutability, namely rapid reversible changes in the tissue mechanical properties. These tissues are known as mutable collagenous tissues (MCTs). The mutability of these tissues has been the subject of on-going investigations, covering the biochemistry, structural biology and mechanical properties of the collagenous components. Recent studies point to a nerve-control system for regulating the ECM macromolecules that are involved in the sliding action of collagen fibrils in the MCT. This review discusses the key attributes of the structure and function of the ECM of the sea urchin ligaments that are related to the fibril-fibril sliding action-the focus is on the respective components within the hierarchical architecture of the tissue. In this context, structure refers to size, shape and separation distance of the ECM components while function is associated with mechanical properties e.g., strength and stiffness. For simplicity, the components that address the different length scale from the largest to the smallest are as follows: collagen fibres, collagen fibrils, interfibrillar matrix and collagen molecules. Application of recent theories of stress transfer and fracture mechanisms in fibre reinforced

  13. Collagenous Extracellular Matrix Biomaterials for Tissue Engineering: Lessons from the Common Sea Urchin Tissue

    Directory of Open Access Journals (Sweden)

    Kheng Lim Goh

    2017-04-01

    Full Text Available Scaffolds for tissue engineering application may be made from a collagenous extracellular matrix (ECM of connective tissues because the ECM can mimic the functions of the target tissue. The primary sources of collagenous ECM material are calf skin and bone. However, these sources are associated with the risk of having bovine spongiform encephalopathy or transmissible spongiform encephalopathy. Alternative sources for collagenous ECM materials may be derived from livestock, e.g., pigs, and from marine animals, e.g., sea urchins. Collagenous ECM of the sea urchin possesses structural features and mechanical properties that are similar to those of mammalian ones. However, even more intriguing is that some tissues such as the ligamentous catch apparatus can exhibit mutability, namely rapid reversible changes in the tissue mechanical properties. These tissues are known as mutable collagenous tissues (MCTs. The mutability of these tissues has been the subject of on-going investigations, covering the biochemistry, structural biology and mechanical properties of the collagenous components. Recent studies point to a nerve-control system for regulating the ECM macromolecules that are involved in the sliding action of collagen fibrils in the MCT. This review discusses the key attributes of the structure and function of the ECM of the sea urchin ligaments that are related to the fibril-fibril sliding action—the focus is on the respective components within the hierarchical architecture of the tissue. In this context, structure refers to size, shape and separation distance of the ECM components while function is associated with mechanical properties e.g., strength and stiffness. For simplicity, the components that address the different length scale from the largest to the smallest are as follows: collagen fibres, collagen fibrils, interfibrillar matrix and collagen molecules. Application of recent theories of stress transfer and fracture mechanisms in fibre

  14. Collagenous Extracellular Matrix Biomaterials for Tissue Engineering: Lessons from the Common Sea Urchin Tissue

    Science.gov (United States)

    Goh, Kheng Lim; Holmes, David F.

    2017-01-01

    Scaffolds for tissue engineering application may be made from a collagenous extracellular matrix (ECM) of connective tissues because the ECM can mimic the functions of the target tissue. The primary sources of collagenous ECM material are calf skin and bone. However, these sources are associated with the risk of having bovine spongiform encephalopathy or transmissible spongiform encephalopathy. Alternative sources for collagenous ECM materials may be derived from livestock, e.g., pigs, and from marine animals, e.g., sea urchins. Collagenous ECM of the sea urchin possesses structural features and mechanical properties that are similar to those of mammalian ones. However, even more intriguing is that some tissues such as the ligamentous catch apparatus can exhibit mutability, namely rapid reversible changes in the tissue mechanical properties. These tissues are known as mutable collagenous tissues (MCTs). The mutability of these tissues has been the subject of on-going investigations, covering the biochemistry, structural biology and mechanical properties of the collagenous components. Recent studies point to a nerve-control system for regulating the ECM macromolecules that are involved in the sliding action of collagen fibrils in the MCT. This review discusses the key attributes of the structure and function of the ECM of the sea urchin ligaments that are related to the fibril-fibril sliding action—the focus is on the respective components within the hierarchical architecture of the tissue. In this context, structure refers to size, shape and separation distance of the ECM components while function is associated with mechanical properties e.g., strength and stiffness. For simplicity, the components that address the different length scale from the largest to the smallest are as follows: collagen fibres, collagen fibrils, interfibrillar matrix and collagen molecules. Application of recent theories of stress transfer and fracture mechanisms in fibre reinforced

  15. Newly identified interfibrillar collagen crosslinking suppresses cell proliferation and remodelling.

    Science.gov (United States)

    Marelli, Benedetto; Le Nihouannen, Damien; Hacking, S Adam; Tran, Simon; Li, Jingjing; Murshed, Monzur; Doillon, Charles J; Ghezzi, Chiara E; Zhang, Yu Ling; Nazhat, Showan N; Barralet, Jake E

    2015-06-01

    Copper is becoming recognised as a key cation in a variety of biological processes. Copper chelation has been studied as a potential anti-angiogenic strategy for arresting tumour growth. Conversely the delivery of copper ions and complexes in vivo can elicit a pro-angiogenic effect. Previously we unexpectedly found that copper-stimulated intraperitoneal angiogenesis was accompanied by collagen deposition. Here, in hard tissue, not only was healing accelerated by copper, but again enhanced deposition of collagen was detected at 2 weeks. Experiments with reconstituted collagen showed that addition of copper ions post-fibrillogenesis rendered plastically-compressed gels resistant to collagenases, enhanced their mechanical properties and increased the denaturation temperature of the protein. Unexpectedly, this apparently interfibrillar crosslinking was not affected by addition of glucose or ascorbic acid, which are required for crosslinking by advanced glycation end products (AGEs). Fibroblasts cultured on copper-crosslinked gels did not proliferate, whereas those cultured with an equivalent quantity of copper on either tissue culture plastic or collagen showed no effect compared with controls. Although non-proliferative, fibroblasts grown on copper-cross-linked collagen could migrate, remained metabolically active for at least 14 days and displayed a 6-fold increase in Mmps 1 and 3 mRNA expression compared with copper-free controls. The ability of copper ions to crosslink collagen fibrils during densification and independently of AGEs or Fenton type reactions is previously unreported. The effect on MMP susceptibility of collagen and the dramatic change in cell behaviour on this crosslinked ECM may contribute to shedding some light on unexplained phenomena as the apparent benefit of copper complexation in fibrotic disorders or the enhanced collagen deposition in response to localised copper delivery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. HYPERTHYROIDISM AND ATRIAL FIBRILLATION

    Directory of Open Access Journals (Sweden)

    I. M. Marusenko

    2017-01-01

    Full Text Available Review on a problem of the development of atrial fibrillation in patients with thyrotoxicosis is presented. Thyrotoxicosis is one of the most frequent endocrine diseases, conceding only to a diabetes mellitus. The most frequent reasons of hyperthyroidism are Graves’ disease and functional thyroid autonomy. The authors give an analysis of data on the cardiac effects of thyrotoxicosis, features of heart remodeling under the influence of thyroid hyperfunction, prevalence of atrial fibrillation in thyrotoxicosis, depending on age, as well as the possibility of restoring sinus rhythm in the combination of these diseases. Particular attention is paid to the effect on the heart of subclinical thyrotoxicosis, which is defined as a dysfunction of the thyroid gland, characterized by low serum concentration of thyrotropin, normal values of free thyroxine and free triiodothyronine. Subclinical hyperthyroidism is also capable of causing heart remodeling and diastolic dysfunction.Prevalence of thyrotoxicosis in elderly people is higher in areas of iodine deficiency; it is relevant for our country due to the large territory of iodine deficiency. In elderly patients, the cardiac effects of thyrotoxicosis prevail in the clinical picture, that makes it difficult to diagnose endocrine disorders, and correction of thyrotoxicosis is critically important for the successful control of the heart rhythm. The article also discusses the problem of thyrotoxic cardiomyopathy, caused by the toxic effect of excess thyroid hormones: features of this heart disorder, factors affecting its formation, clinical significance and contribution to the development of rhythm disturbances. The greatest significance is the development of atrial fibrillation as a result of thyrotox-icosis in older patients who already have various cardiovascular diseases.Atrial fibrillation is the most frequent heart rhythm disorder in thyrotoxicosis. The main cause of arrhythmia in hyperthyroidism is the

  17. Polarized Raman anisotropic response of collagen in tendon: towards 3D orientation mapping of collagen in tissues.

    Directory of Open Access Journals (Sweden)

    Leonardo Galvis

    Full Text Available In this study, polarized Raman spectroscopy (PRS was used to characterize the anisotropic response of the amide I band of collagen as a basis for evaluating three-dimensional collagen fibril orientation in tissues. Firstly, the response was investigated theoretically by applying classical Raman theory to collagen-like peptide crystal structures. The theoretical methodology was then tested experimentally, by measuring amide I intensity anisotropy in rat tail as a function of the orientation of the incident laser polarization. For the theoretical study, several collagen-like triple-helical peptide crystal structures obtained from the Protein Data Bank were rotated "in plane" and "out of plane" to evaluate the role of molecular orientation on the intensity of the amide I band. Collagen-like peptides exhibit a sinusoidal anisotropic response when rotated "in plane" with respect to the polarized incident laser. Maximal intensity was obtained when the polarization of the incident light is perpendicular to the molecule and minimal when parallel. In the case of "out of plane" rotation of the molecular structure a decreased anisotropic response was observed, becoming completely isotropic when the structure was perpendicular to the plane of observation. The theoretical Raman response of collagen was compared to that of alpha helical protein fragments. In contrast to collagen, alpha helices have a maximal signal when incident light is parallel to the molecule and minimal when perpendicular. For out-of-plane molecular orientations alpha-helix structures display a decreased average intensity. Results obtained from experiments on rat tail tendon are in excellent agreement with the theoretical predictions, thus demonstrating the high potential of PRS for experimental evaluation of the three-dimensional orientation of collagen fibers in biological tissues.

  18. Genetics Home Reference: familial atrial fibrillation

    Science.gov (United States)

    ... Twitter Home Health Conditions Familial atrial fibrillation Familial atrial fibrillation Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Familial atrial fibrillation is an inherited abnormality of the heart's normal ...

  19. The roles of TGF-beta1 gene transfer on collagen formation during Achilles tendon healing.

    Science.gov (United States)

    Hou, Yu; Mao, ZeBing; Wei, XueLei; Lin, Lin; Chen, LianXu; Wang, HaiJun; Fu, Xin; Zhang, JiYing; Yu, ChangLong

    2009-05-29

    Collagen content and cross-linking are believed to be major determinants of tendon structural integrity and function. The current study aimed to investigate the effects of transforming growth factor (TGF)-beta1 on the collagen content and cross-linking of Achilles tendons, and on the histological and biomechanical changes occurring during Achilles tendon healing in rabbits. Bone marrow-derived mesenchymal stem cells (BMSCs) transfected with the TGF-beta1 gene were surgically implanted into experimentally injured Achilles tendons. Collagen proteins were identified by immunohistochemical staining and fiber bundle accumulation was revealed by Sirius red staining. Achilles tendons treated with TGF-beta1-transfected BMSCs showed higher concentrations of collagen I protein, more rapid matrix remodeling, and larger fiber bundles. Thus TGF-beta1 can promote mechanical strength in healing Achilles tendons by regulating collagen synthesis, cross-link formation, and matrix remodeling.

  20. Collagen Quantification in Tissue Specimens.

    Science.gov (United States)

    Coentro, João Quintas; Capella-Monsonís, Héctor; Graceffa, Valeria; Wu, Zhuning; Mullen, Anne Maria; Raghunath, Michael; Zeugolis, Dimitrios I

    2017-01-01

    Collagen is the major extracellular protein in mammals. Accurate quantification of collagen is essential in the biomaterials (e.g., reproducible collagen scaffold fabrication), drug discovery (e.g., assessment of collagen in pathophysiologies, such as fibrosis), and tissue engineering (e.g., quantification of cell-synthesized collagen) fields. Although measuring hydroxyproline content is the most widely used method to quantify collagen in biological specimens, the process is very laborious. To this end, the Sircol™ Collagen Assay is widely used due to its inherent simplicity and convenience. However, this method leads to overestimation of collagen content due to the interaction of Sirius red with basic amino acids of non-collagenous proteins. Herein, we describe the addition of an ultrafiltration purification step in the process to accurately determine collagen content in tissues.

  1. Effects of increased collagen-matrix density on the mechanical properties and in vivo absorbability of hydroxyapatite-collagen composites as artificial bone materials

    Energy Technology Data Exchange (ETDEWEB)

    Yunoki, Shunji [Life Science Group, Tokyo Metropolitan Industrial Technology Research Institute, 2-11-1 Fukasawa, Setagaya-ku, Tokyo 158-0081 (Japan); Sugiura, Hiroaki; Kondo, Eiji; Yasuda, Kazunori [Department of Sports Medicine and Joint Surgery, Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, Hokkaido 060-8638 Japan (Japan); Ikoma, Toshiyuki; Tanaka, Junzo, E-mail: yunoki.shunji@iri-tokyo.jp [Department of Metallurgy and Ceramics Science, 2-12-1-S7-1, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2011-02-15

    The aim of this study was to evaluate the effects of increased collagen-matrix density on the mechanical properties and in vivo absorbability of porous hydroxyapatite (HAp)-collagen composites as artificial bone materials. Seven types of porous HAp-collagen composites were prepared from HAp nanocrystals and dense collagen fibrils. Their densities and HAp/collagen weight ratios ranged from 122 to 331 mg cm{sup -3} and from 20/80 to 80/20, respectively. The flexural modulus and strength increased with an increase in density, reaching 2.46 {+-} 0.48 and 0.651 {+-} 0.103 MPa, respectively. The porous composites with a higher collagen-matrix density exhibited much higher mechanical properties at the same densities, suggesting that increasing the collagen-matrix density is an effective way of improving the mechanical properties. It was also suggested that other structural factors in addition to collagen-matrix density are required to achieve bone-like mechanical properties. The in vivo absorbability of the composites was investigated in bone defects of rabbit femurs, demonstrating that the absorption rate decreased with increases in the composite density. An exhaustive increase in density is probably limited by decreases in absorbability as artificial bones.

  2. Effects of increased collagen-matrix density on the mechanical properties and in vivo absorbability of hydroxyapatite-collagen composites as artificial bone materials

    International Nuclear Information System (INIS)

    Yunoki, Shunji; Sugiura, Hiroaki; Kondo, Eiji; Yasuda, Kazunori; Ikoma, Toshiyuki; Tanaka, Junzo

    2011-01-01

    The aim of this study was to evaluate the effects of increased collagen-matrix density on the mechanical properties and in vivo absorbability of porous hydroxyapatite (HAp)-collagen composites as artificial bone materials. Seven types of porous HAp-collagen composites were prepared from HAp nanocrystals and dense collagen fibrils. Their densities and HAp/collagen weight ratios ranged from 122 to 331 mg cm -3 and from 20/80 to 80/20, respectively. The flexural modulus and strength increased with an increase in density, reaching 2.46 ± 0.48 and 0.651 ± 0.103 MPa, respectively. The porous composites with a higher collagen-matrix density exhibited much higher mechanical properties at the same densities, suggesting that increasing the collagen-matrix density is an effective way of improving the mechanical properties. It was also suggested that other structural factors in addition to collagen-matrix density are required to achieve bone-like mechanical properties. The in vivo absorbability of the composites was investigated in bone defects of rabbit femurs, demonstrating that the absorption rate decreased with increases in the composite density. An exhaustive increase in density is probably limited by decreases in absorbability as artificial bones.

  3. Quantification of collagen distributions in rat hyaline and fibro cartilages based on second harmonic generation imaging

    Science.gov (United States)

    Zhu, Xiaoqin; Liao, Chenxi; Wang, Zhenyu; Zhuo, Shuangmu; Liu, Wenge; Chen, Jianxin

    2016-10-01

    Hyaline cartilage is a semitransparent tissue composed of proteoglycan and thicker type II collagen fibers, while fibro cartilage large bundles of type I collagen besides other territorial matrix and chondrocytes. It is reported that the meniscus (fibro cartilage) has a greater capacity to regenerate and close a wound compared to articular cartilage (hyaline cartilage). And fibro cartilage often replaces the type II collagen-rich hyaline following trauma, leading to scar tissue that is composed of rigid type I collagen. The visualization and quantification of the collagen fibrillar meshwork is important for understanding the role of fibril reorganization during the healing process and how different types of cartilage contribute to wound closure. In this study, second harmonic generation (SHG) microscope was applied to image the articular and meniscus cartilage, and textural analysis were developed to quantify the collagen distribution. High-resolution images were achieved based on the SHG signal from collagen within fresh specimens, and detailed observations of tissue morphology and microstructural distribution were obtained without shrinkage or distortion. Textural analysis of SHG images was performed to confirm that collagen in fibrocartilage showed significantly coarser compared to collagen in hyaline cartilage (p < 0.01). Our results show that each type of cartilage has different structural features, which may significantly contribute to pathology when damaged. Our findings demonstrate that SHG microscopy holds potential as a clinically relevant diagnostic tool for imaging degenerative tissues or assessing wound repair following cartilage injury.

  4. A comparative study of the properties and self-aggregation behavior of collagens from the scales and skin of grass carp (Ctenopharyngodon idella).

    Science.gov (United States)

    Liu, Yaowen; Ma, Donghui; Wang, Yihao; Qin, Wen

    2018-01-01

    Collagens were extracted from the scales and skin of Ctenopharyngodon idella (C. idella) as raw materials using an acid-enzyme hybrid method. The structural properties of the extracted collagens were compared using ultraviolet-visible spectrophotometry, Fourier transform infrared spectroscopy, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and differential scanning calorimetry. Additionally, the in vitro self-aggregation behaviors of the two types of collagens (fish skin- and scale-derived collagens) were compared using turbidimetric assays, aggregation assays, and scanning electron microscopy (SEM). The results showed that both types of extracted collagen were typical type I collagen with two α chains and intact triple-helical structures. The denaturation temperatures of the collagens from fish scales and skin were 34.99°C and 39.75°C, respectively. Both types of collagens were capable of self-aggregation in neutral salt solution at 30°C, with aggregation degrees of 28% and 27.33% for the scale and skin collagens, respectively. SEM analysis revealed that both types of collagens could self-aggregate into interwoven fibers, and the fish scale-derived collagen had a more pronounced reticular fiber structure with a striped periodic D-band pattern of collagen fibrils, whereas the collagen fibers from the self-aggregation of fish skin-derived collagen had a certain degree of disruption without any D-band pattern. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Cyclophilin B Deficiency Causes Abnormal Dentin Collagen Matrix.

    Science.gov (United States)

    Terajima, Masahiko; Taga, Yuki; Cabral, Wayne A; Nagasawa, Masako; Sumida, Noriko; Hattori, Shunji; Marini, Joan C; Yamauchi, Mitsuo

    2017-08-04

    Cyclophilin B (CypB) is an endoplasmic reticulum-resident protein that regulates collagen folding, and also contributes to prolyl 3-hydroxylation (P3H) and lysine (Lys) hydroxylation of collagen. In this study, we characterized dentin type I collagen in CypB null (KO) mice, a model of recessive osteogenesis imperfecta type IX, and compared to those of wild-type (WT) and heterozygous (Het) mice. Mass spectrometric analysis demonstrated that the extent of P3H in KO collagen was significantly diminished compared to WT/Het. Lys hydroxylation in KO was significantly diminished at the helical cross-linking sites, α1/α2(I) Lys-87 and α1(I) Lys-930, leading to a significant increase in the under-hydroxylated cross-links and a decrease in fully hydroxylated cross-links. The extent of glycosylation of hydroxylysine residues was, except α1(I) Lys-87, generally higher in KO than WT/Het. Some of these molecular phenotypes were distinct from other KO tissues reported previously, indicating the dentin-specific control mechanism through CypB. Histological analysis revealed that the width of predentin was greater and irregular, and collagen fibrils were sparse and significantly smaller in KO than WT/Het. These results indicate a critical role of CypB in dentin matrix formation, suggesting a possible association between recessive osteogenesis imperfecta and dentin defects that have not been clinically detected.

  6. [Effects of exogenous prostaglandin E2 on collagen content of Achilles tendon of rabbits in vivo].

    Science.gov (United States)

    Li, Hui; Tang, Kanglai; Deng, Yinshuan; Xie, Meiming; Chang, Dehai; Tao, Xu; Xu, Jianzhong

    2012-03-01

    Prostaglandin E2 (PGE2) production increases in human tendon fibroblasts after the tendon injuries and repetitive mechanical loading in vitro. To analyze the relations between PGE2 and tendinopathy by observing the changes of collagen content and proportion after the Achilles tendon of rabbits is repeatedly exposed to PGE2. Twenty-four Japanese rabbits (aged 3-4 months, weighing 2.0-2.5 kg, and male or female) were equally randomized into 2 groups according to injection dose of PGE2: low dose group (50 ng) and high dose group (500 ng). Corresponding PGE2 (0.2 mL) was injected into the middle segment of the Achilles tendon of hindlimb, the same dose saline into the same site of the other side as controls once a week for 4 weeks or 8 weeks. The Achilles tendons were harvested at 4 and 8 weeks after injection. HE staining was used to observe the cell structure and matrix, and picric acid-sirius red staining to observe the distribution and types of collagen fibers, and transmission electron microscopy was used to measure the density of the unit area and diameter of collagen fibers. HE staining showed that collagen structural damage was observed in low dose and high dose groups. Picric acid-sirius red staining showed that the content of type I collagen significantly decreased while the content of type III collagen significantly increased in experimental side of 2 groups at 4 and 8 weeks after injection when compared with control sides (P Achilles tendon of rabbit to PGE2 can cause the decrease of type I collagen, the increase of type III collagen, the reverse ratio of type I to type III, reduced unit density of collagen fibers, and thinner collagen fibers diameter, which is related with tendinopathy.

  7. Cutaneous collagenous vasculopathy: A rare case report

    Directory of Open Access Journals (Sweden)

    Kinjal Deepak Rambhia

    2016-01-01

    Full Text Available Cutaneous collagenous vasculopathy (CCV is a distinct, rare, and underdiagnosed condition. We report a case of CCV in a 50-year-old woman presenting as asymptomatic, erythematous to hyperpigmented nonblanchable macules over both the lower extremities. The clinical differential diagnosis of the lesions was pigmented purpuric dermatoses (Schamberg's purpura and cutaneous small vessel vasculitis. Histology of the lesions revealed dilated superficial dermal vessels with abundant pink hyaline material in the vessel wall, which stained with periodic acid Schiff stain. The patient was diagnosed as CCV. This condition remains largely underdiagnosed and is commonly mistaken for pigmented purpuric dermatosis or generalized essential telangiectasia. Emphasis on the differentiation of CCV from its clinical and histological mimicks is made.

  8. Mechanical forces regulate the interactions of fibronectin and collagen I in extracellular matrix.

    Science.gov (United States)

    Kubow, Kristopher E; Vukmirovic, Radmila; Zhe, Lin; Klotzsch, Enrico; Smith, Michael L; Gourdon, Delphine; Luna, Sheila; Vogel, Viola

    2015-08-14

    Despite the crucial role of extracellular matrix (ECM) in directing cell fate in healthy and diseased tissues--particularly in development, wound healing, tissue regeneration and cancer--the mechanisms that direct the assembly and regulate hierarchical architectures of ECM are poorly understood. Collagen I matrix assembly in vivo requires active fibronectin (Fn) fibrillogenesis by cells. Here we exploit Fn-FRET probes as mechanical strain sensors and demonstrate that collagen I fibres preferentially co-localize with more-relaxed Fn fibrils in the ECM of fibroblasts in cell culture. Fibre stretch-assay studies reveal that collagen I's Fn-binding domain is responsible for the mechano-regulated interaction. Furthermore, we show that Fn-collagen interactions are reciprocal: relaxed Fn fibrils act as multivalent templates for collagen assembly, but once assembled, collagen fibres shield Fn fibres from being stretched by cellular traction forces. Thus, in addition to the well-recognized, force-regulated, cell-matrix interactions, forces also tune the interactions between different structural ECM components.

  9. Preparation and Characterization of a Collagen-Liposome-Chondroitin Sulfate Matrix with Potential Application for Inflammatory Disorders Treatment

    Directory of Open Access Journals (Sweden)

    Oana Craciunescu

    2014-01-01

    Full Text Available Smart drug delivery systems with controllable properties play an important role in targeted therapy and tissue regeneration. The aim of our study was the preparation and in vitro evaluation of a collagen (Col matrix embedding a liposomal formulation of chondroitin sulfate (L-CS for the treatment of inflammatory disorders. Structural studies using Oil Red O specific staining for lipids and scanning electron microscopy showed an alveolar network of nanosized Col fibrils decorated with deposits of L-CS at both periphery and inner of the matrix. The porosity and density of Col-L-CS matrix were similar to those of Col matrix, while its mean pore size and biodegradability had significantly higher and lower values (P<0.05, respectively. In vitro cytotoxicity assays showed that the matrix system induced high cell viability and stimulated cell metabolism in L929 fibroblast cell culture. Light and electron micrographs of the cell-matrix construct showed that cells clustered into the porous structure at 72 h of cultivation. In vitro diffusion test indicated that the quantity of released CS was significantly lower (P<0.05 after embedment of L-CS within Col matrix. All these results indicated that the biocompatible and biodegradable Col-L-CS matrix might be a promising delivery system for local treatment of inflamed site.

  10. Collagen I self-assembly: revealing the developing structures that generate turbidity.

    Science.gov (United States)

    Zhu, Jieling; Kaufman, Laura J

    2014-04-15

    Type I collagen gels are routinely used in biophysical studies and bioengineering applications. The structural and mechanical properties of these fibrillar matrices depend on the conditions under which collagen fibrillogenesis proceeds, and developing a fuller understanding of this process will enhance control over gel properties. Turbidity measurements have long been the method of choice for monitoring developing gels, whereas imaging methods are regularly used to visualize fully developed gels. In this study, turbidity and confocal reflectance microscopy (CRM) were simultaneously employed to track collagen fibrillogenesis and reconcile the information reported by the two techniques, with confocal fluorescence microscopy (CFM) used to supplement information about early events in fibrillogenesis. Time-lapse images of 0.5 mg/ml, 1.0 mg/ml, and 2.0 mg/ml acid-solubilized collagen I gels forming at 27°C, 32°C, and 37°C were collected. It was found that in situ turbidity measured in a scanning transmittance configuration was interchangeable with traditional turbidity measurements using a spectrophotometer. CRM and CFM were employed to reveal the structures responsible for the turbidity that develops during collagen self-assembly. Information from CRM and transmittance images was collapsed into straightforward single variables; total intensity in CRM images tracked turbidity development closely for all collagen gels investigated, and the two techniques were similarly sensitive to fibril number and dimension. Complementary CRM, CFM, and in situ turbidity measurements revealed that fibril and network formation occurred before substantial turbidity was present, and the majority of increasing turbidity during collagen self-assembly was due to increasing fibril thickness. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. [Study of collagen and elastic fibers of connective tissue in patients with and without primary inguinal hernia].

    Science.gov (United States)

    Bórquez, Pablo; Garrido, Luis; Manterola, Carlos; Peña, Patricio; Schlageter, Carol; Orellana, Juan José; Ulloa, Hugo; Peña, Juan Luis

    2003-11-01

    There are few studies looking for collagen matrix defects in patients with inguinal bernia. To study the skin connective tissue in patients with and without inguinal bernia. Skin from the surgical wound was obtained from 23 patients with and 23 patients without inguinal bernia. The samples were processed for conventional light microscopy. Collagen fibers were stained with Van Giesson and elastic fibers with Weigert stain. Patients without hernia had compact collagen tracts homogeneously distributed towards the deep dermis. In contrast, patients with hernia had zones in the dermis with thinner and disaggregated collagen tracts. Connective tissue had a lax aspect in these patients. Collagen fiber density was 52% lower in patients with hernia, compared to subjects without hernia. No differences in elastic fiber density or distribution was observed between groups. Patients with inguinal bernia have alterations in skin collagen fiber quality and density.

  12. Variation in the helical structure of native collagen.

    Directory of Open Access Journals (Sweden)

    Joseph P R O Orgel

    Full Text Available The structure of collagen has been a matter of curiosity, investigation, and debate for the better part of a century. There has been a particularly productive period recently, during which much progress has been made in better describing all aspects of collagen structure. However, there remain some questions regarding its helical symmetry and its persistence within the triple-helix. Previous considerations of this symmetry have sometimes confused the picture by not fully recognizing that collagen structure is a highly complex and large hierarchical entity, and this affects and is effected by the super-coiled molecules that make it. Nevertheless, the symmetry question is not trite, but of some significance as it relates to extracellular matrix organization and cellular integration. The correlation between helical structure in the context of the molecular packing arrangement determines which parts of the amino acid sequence of the collagen fibril are buried or accessible to the extracellular matrix or the cell. In this study, we concentrate primarily on the triple-helical structure of fibrillar collagens I and II, the two most predominant types. By comparing X-ray diffraction data collected from type I and type II containing tissues, we point to evidence for a range of triple-helical symmetries being extant in the molecules native environment. The possible significance of helical instability, local helix dissociation and molecular packing of the triple-helices is discussed in the context of collagen's supramolecular organization, all of which must affect the symmetry of the collagen triple-helix.

  13. Thermal and infrared-diode laser effects on indocyanine-green-treated corneal collagen

    Science.gov (United States)

    Timberlake, George T.; Patmore, Ann; Shallal, Assaad; McHugh, Dominic; Marshall, John

    1993-07-01

    It has been suggested that laser welds of collagenous tissues form by interdigitation and chemical bonding of thermally 'unraveled' collagen fibrils. We investigated this proposal by attempting to weld highly collagenous, avascular corneal tissue with an infrared (IR) diode laser as follows. First, the temperature at which corneal collagen shrinks and collagen fibrils 'split' into subfibrillary components was determined. Second, since use of a near-IR laser wavelength necessitated addition of an absorbing dye (indocyanine green (ICG) to the cornea, we measured absorption spectra of ICG-treated tissue to ensure that peak ICG absorbance did not change markedly when ICG was present in the cornea. Third, using gel electrophoresis of thermally altered corneal collagen, we searched for covalently crosslinked compounds predicted by the proposed welding mechanism. Finally, we attempted to weld partial thickness corneal incisions infused with ICG. Principal experimental findings were as follows: (1) Human corneal (type I) collagen splits into subfibrillary components at approximately 63 degree(s)C, the same temperature that produces collagen shrinkage. (2) Peak ICG absorption does not change significantly in corneal stroma or with laser heating. (3) No evidence was found for the formation of novel compounds or the loss of proteins as a result of tissue heating. All tissue treated with ICG, however, exhibited a novel 244 kD protein band indicating chemical activity between collagen and corneal stromal components. (4) Laser welding corneal incisions was unsuccessful possibly due to shrinkage of the sides of the incision, lack of incision compression during heating, or a less than optimal combination of ICG concentration and radiant exposure. In summary, these experiments demonstrate the biochemical and morphological complexity of ICG-enhanced IR laser-tissue welding and the need for further investigation of laser welding mechanisms.

  14. Ameloblasts express type I collagen during amelogenesis.

    Science.gov (United States)

    Assaraf-Weill, N; Gasse, B; Silvent, J; Bardet, C; Sire, J Y; Davit-Béal, T

    2014-05-01

    Enamel and enameloid, the highly mineralized tooth-covering tissues in living vertebrates, are different in their matrix composition. Enamel, a unique product of ameloblasts, principally contains enamel matrix proteins (EMPs), while enameloid possesses collagen fibrils and probably receives contributions from both odontoblasts and ameloblasts. Here we focused on type I collagen (COL1A1) and amelogenin (AMEL) gene expression during enameloid and enamel formation throughout ontogeny in the caudate amphibian, Pleurodeles waltl. In this model, pre-metamorphic teeth possess enameloid and enamel, while post-metamorphic teeth possess enamel only. In first-generation teeth, qPCR and in situ hybridization (ISH) on sections revealed that ameloblasts weakly expressed AMEL during late-stage enameloid formation, while expression strongly increased during enamel deposition. Using ISH, we identified COL1A1 transcripts in ameloblasts and odontoblasts during enameloid formation. COL1A1 expression in ameloblasts gradually decreased and was no longer detected after metamorphosis. The transition from enameloid-rich to enamel-rich teeth could be related to a switch in ameloblast activity from COL1A1 to AMEL synthesis. P. waltl therefore appears to be an appropriate animal model for the study of the processes involved during enameloid-to-enamel transition, especially because similar events probably occurred in various lineages during vertebrate evolution.

  15. Comparison of collagen fibre architecture between slow-twitch cranial and fast-twitch caudal parts of broiler M. latissimus dorsi.

    Science.gov (United States)

    Nakamura, Y N; Iwamoto, H; Tabata, S; Ono, Y

    2003-07-01

    1. Collagen fibre architectures of perimysium and endomysium in the slow-twitch cranial and fast-twitch caudal parts of broiler M. latissimus dorsi were compared. 2. Type I and III collagens were distributed in both perimysium and endomysium as indicated by their positive immunohistochemical reactions to polyclonal antibodies. 3. Cells invested by endomysium with no myofibres were larger in the cranial part because of the presence of larger slow-twitch myofibres. The honeycomb structure of endomysium was divided into several parts by thick perimysium. 4. The thick perimysial collagen fibres with parallel fibrils, which were interconnected by the loose reticular fibrils and thin fibres, were more numerous and thicker in the cranial part than the caudal. 5. Thick endomysial sidewall of cells in the cranial part was composed of a rougher reticulum of slightly thicker collagen fibrils compared with the thin sidewall in the caudal part. 6. These results indicated that both perimysial constitutions of collagen fibres and endomysial collagen fibrils had attained much larger growth in the slow-twitch cranial part than the fast-twitch caudal in broiler latissimus dorsi muscle.

  16. Collagen organization in the chicken cornea and structural alterations in the retinopathy, globe enlarged (rge) phenotype--an X-ray diffraction study.

    Science.gov (United States)

    Boote, Craig; Hayes, Sally; Jones, Simon; Quantock, Andrew J; Hocking, Paul M; Inglehearn, Chris F; Ali, Manir; Meek, Keith M

    2008-01-01

    An investigation into the collagenous structure of the mature avian cornea is presented. Wide-angle X-ray diffraction is employed to assess collagen organization in 9-month-old chicken corneas. The central 2-4mm corneal region features a preponderance of fibrils directed along the superior-inferior and nasal-temporal orthogonal meridians. More peripherally the orientation of fibrils alters in favor of a predominantly tangential arrangement. The chicken cornea appears to be circumscribed by an annulus of fibrils that extends into the limbus. The natural arrangement of collagen in the chicken cornea is discussed in relation to corneal shape and the mechanical requirements of avian corneal accommodation. Equivalent data are also presented from age-matched blind chickens affected with the retinopathy, globe enlarged (rge) mutation, characterized by an abnormally thick and flat cornea. The data indicate considerable realignment and redistribution of collagen lamellae in the peripheral rge cornea. In contrast to normal chickens, no obvious tangential collagen alignment was evident in the periphery of rge corneas. In mammals, the presence of a limbal fibril annulus is believed to be important in corneal shape preservation. We postulate that corneal flattening in rge chickens may be related to biomechanical changes brought about by an alteration in collagen arrangement at the corneal periphery.

  17. Distribution of Type I Collagen Morphologies in Bone: Relation to Estrogen Depletion

    Science.gov (United States)

    Wallace, Joseph M.; Erickson, Blake; Les, Clifford M.; Orr, Bradford G.; Holl, Mark M. Banaszak

    2009-01-01

    Bone is an amazing material evolved by nature to elegantly balance structural and metabolic needs in the body. Bone health is an integral part of overall health, but our lack of understanding of the ultrastructure of healthy bone precludes us from knowing how disease may impact nanoscale properties in this biological material. Here, we show that quantitative assessments of a distribution of Type I collagen fibril morphologies can be made using atomic force microscopy (AFM). We demonstrate that normal bone contains a distribution of collagen fibril morphologies and that changes in this distribution can be directly related to disease state. Specifically, by monitoring changes in the collagen fibril distribution of sham-operated and estrogen-depleted sheep, we have shown the ability to detect estrogen-deficiency-induced changes in Type I collagen in bone. This discovery provides new insight into the ultrastructure of bone as a tissue and the role of material structure in bone disease. The observation offers the possibility of a much-needed in vitro procedure to complement the current methods used to diagnose osteoporosis and other bone disease. PMID:19932773

  18. Corneal collagen crosslinking for keratoconus. A review

    Directory of Open Access Journals (Sweden)

    M. M. Bikbov

    2014-10-01

    Full Text Available Photochemical crosslinking is widely applied in ophthalmology. Its biochemical effect is due to the release of singlet oxygen that promotes anaerobic photochemical reaction. Keratoconus is one of the most common corneal ectasia affecting 1 in 250 to 250 000 persons. Currently, the rate of iatrogenic ectasia following eximer laser refractive surgery increases due to biomechanical weakening of the cornea. Morphologically and biochemically, ectasia is characterized by corneal layers thinning, contact between the stroma and epithelium resulting from Bowman’s membrane rupture, chromatin fragmentation in keratocyte nuclei, phagocytosis, abnormal staining and arrangement of collagen fibers, enzyme system disorders, and keratocyte apoptosis. In corneal ectasia, altered enzymatic processes result in the synthesis of abnormal collagen. Collagen packing is determined by the activity of various extracellular matrix enzymes which bind amines and aldehydes of collagen fiber amino acids. In the late stage, morphological changes of Descemet’s membrane (i.e., rupture and detachment develop. Abnormal hexagonal-shaped keratocytes and their apoptosis are the signs of endothelial dystrophy. The lack of analogs in domestic ophthalmology encouraged the scientists of Ufa Eye Research Institute to develop a device for corneal collagen crosslinking. The parameters of ultraviolet (i.e., wavelength, exposure time, power to achieve the desired effect were identified. The specifics of some photosensitizers in the course of the procedure were studied. UFalink, a device for UV irradiation of cornea, and photosensitizer Dextralink were developed and adopted. Due to the high risk of endothelial damage, this treatment is contraindicated in severe keratoconus (CCT less than 400 microns. Major effects of corneal collagen crosslinking are the following: Young’s modulus (modulus of elasticity increase by 328.9 % (on average, temperature tolerance increase by 5

  19. Collagen metabolism in obesity

    DEFF Research Database (Denmark)

    Rasmussen, M H; Jensen, L T; Andersen, T

    1995-01-01

    OBJECTIVE: To investigate the impact of obesity, fat distribution and weight loss on collagen turnover using serum concentrations of the carboxyterminal propeptide of type I procollagen (S-PICP) and the aminoterminal propeptide of type III pro-collagen (S-PIIINP) as markers for collagen turnover...... (r = 0.37; P = 0.004), height (r = 0.27; P = 0.04), waist circumference (r = 0.35; P = 0.007), as well as with WHR (r = 0.33; P = 0.01) and was inversely correlated to age (r = -0.40; P = 0.002). Compared with randomly selected controls from a large pool of healthy volunteers, the obese patients had...... restriction (P obesity and associated with body fat distribution, suggesting...

  20. [Atrial fibrillation in elderly].

    Science.gov (United States)

    Arquizan, Caroline

    2012-11-01

    Atrial fibrilation (AF) is frequent and a strong risk factor for ischemic stroke in elderly. Ischemic stroke in patients with AF are more severe. Vitamine K antagonist therapy is highly effective for stroke prevention but is associated with hemorrhagic risk. The new oral anticoagulants (direct thrombin inhibitor [dabigatran], and direct factor Xa inhibitors [rivaroxaban and apixaban]) have all shown non inferiority or superiority, with better safety, considering the risk of intracranial haemorrhage. On this basis, it is justified to give them in priority in the vast majority of patients with AF, the choice of the drug and the dose is individual.

  1. Nuclear staining with alum hematoxylin.

    Science.gov (United States)

    Llewellyn, B D

    2009-08-01

    The hematoxylin and eosin stain is the most common method used in anatomic pathology, yet it is a method about which technologists ask numerous questions. Hematoxylin is a natural dye obtained from a tree originally found in Central America, and is easily converted into the dye hematein. This dye forms coordination compounds with mordant metals, such as aluminum, and the resulting lake attaches to cell nuclei. Regressive formulations contain a higher concentration of dye than progressive formulations and may also contain a lower concentration of mordant. The presence of an acid increases the life of the solution and in progressive solutions may also affect selectivity of staining. An appendix lists more than 60 hemalum formulations and the ratio of dye to mordant for each.

  2. Etika Berbusana Mahasiswa Stain Samarinda

    Directory of Open Access Journals (Sweden)

    Ida Suryani Wijaya

    2012-06-01

    Full Text Available Ethics is about behavior of human being, such as which one is right or wrong. The ethics is always affecting the human life. The ethics gives people orientation how he/she do manything every time every day. Islamic ethics consists of the way how someone interact each other; how someone should do or not to do, how to sit, how to walk, how to eat or drink, how to sleep, or how to get dressed. Al-Qur’an uses three terms to define about dressing, they are: libas, tsiyah, and sarahi. Dressing has a function as covering the body, as assessoris, as the way to do Islamic taqwa, and as an identiy. Dressing ethics of the female students of STAIN Samarinda has been regulated by the rector regulation No 19 of the year 2002 about relation and dressing ethics for the students of STAIN Samarinda.

  3. Collagen Homeostasis and Metabolism

    DEFF Research Database (Denmark)

    Magnusson, S Peter; Heinemeier, Katja M; Kjaer, Michael

    2016-01-01

    The musculoskeletal system and its collagen rich tissue is important for ensuring architecture of skeletal muscle, energy storage in tendon and ligaments, joint surface protection, and for ensuring the transfer of muscular forces into resulting limb movement. Structure of tendon is stable...... inactivity or immobilization of the human body will conversely result in a dramatic loss in tendon stiffness and collagen synthesis. This illustrates the importance of regular mechanical load in order to preserve the stabilizing role of the connective tissue for the overall function of the musculoskeletal...

  4. The initiation of embryonic-like collagen fibrillogenesis by adult human tendon fibroblasts when cultured under tension

    DEFF Research Database (Denmark)

    Bayer, Monika L; Yeung, Chin-Yan C; Kadler, Karl E

    2010-01-01

    Tendon fibroblasts synthesize collagen and form fibrils during embryonic development, but to what extent mature fibroblasts are able to recapitulate embryonic development and develop normal tendon structure is unknown. The present study examined the capability of mature human tendon fibroblasts t...

  5. An engineering, multiscale constitutive model for fiber-forming collagen in tension.

    Science.gov (United States)

    Annovazzi, Lorella; Genna, Francesco

    2010-01-01

    This work proposes a nonlinear constitutive model for a single collagen fiber. Fiber-forming collagen can exhibit different hierarchies of basic units, called fascicles, bundles, fibrils, microfibrils, and so forth, down to the molecular (tropocollagen) level. Exploiting the fact that at each hierarchy level the microstructure can be seen, at least approximately, as that of a wavy, or crimped, extensible cable, the proposed stress-strain model considers a given number of levels, each of which contributes to the overall mechanical behavior according to its own geometrical features (crimp, or waviness), as well as to the basic mechanical properties of the tropocollagen. The crimp features at all levels are assumed to be random variables, whose statistical integration furnishes a stress-strain curve for a collagen fiber. The soundness of this model-the first, to the Authors' knowledge, to treat a single collagen fiber as a microstructured nonlinear structural element-is checked by its application to collagen fibers for which experimental results are available: rat tail tendon, periodontal ligament, and engineered ones. Here, no attempt is made to obtain a stress-strain law for generic collagenous tissues, which exhibit specific features, often much more complex than those of a single fiber. However, it is trivial to observe that the availability of a sound, microstructurally based constitutive law for a single collagen fiber (but applicable at any sub-level, or to any other material with a similar microstructure) is essential for assembling complex constitutive models for any collagenous fibrous tissue.

  6. Structural aspects of fish skin collagen which forms ordered arrays via liquid crystalline states.

    Science.gov (United States)

    Giraud-Guille, M M; Besseau, L; Chopin, C; Durand, P; Herbage, D

    2000-05-01

    The ability of acid-soluble type I collagen extracts from Soleidae flat fish to form ordered arrays in condensed phases has been compared with data for calf skin collagen. Liquid crystalline assemblies in vitro are optimized by preliminary treatment of the molecular population with ultrasounds. This treatment requires the stability of the fish collagen triple helicity to be controlled by X-ray diffraction and differential scanning calorimetry and the effect of sonication to be evaluated by viscosity measurements and gel electrophoresis. The collagen solution in concentrations of at least 40 mg ml(-1) showed in polarized light microscopy birefringent patterns typical of precholesteric phases indicating long-range order within the fluid collagen phase. Ultrastructural data, obtained after stabilization of the liquid crystalline collagen into a gelated matrix, showed that neutralized acid-soluble fish collagen forms cross-striated fibrils, typical of type I collagen, following sine wave-like undulations in precholesteric domains. These ordered geometries, approximating in vivo situations, give interesting mechanical properties to the material.

  7. Assembly of collagen into microribbons: effects of pH and electrolytes.

    Science.gov (United States)

    Jiang, Fengzhi; Hörber, Heinrich; Howard, Jonathon; Müller, Daniel J

    2004-12-01

    Collagen represents the major structural protein of the extracellular matrix. Elucidating the mechanism of its assembly is important for understanding many cell biological and medical processes as well as for tissue engineering and biotechnological approaches. In this work, conditions for the self-assembly of collagen type I molecules on a supporting surface were characterized. By applying hydrodynamic flow, collagen assembled into ultrathin ( approximately 3 nm) highly anisotropic ribbon-like structures coating the entire support. We call these novel collagen structures microribbons. High-resolution atomic force microscopy topographs show that subunits of these microribbons are built by fibrillar structures. The smallest units of these fibrillar structures have cross-sections of approximately 3 x 5nm, consistent with current models of collagen microfibril formation. By varying the pH and electrolyte of the buffer solution during the self-assembly process, the microfibril density and contacts formed within this network could be controlled. Under certain electrolyte compositions the microribbons and microfibers display the characteristic D-periodicity of approximately 65 nm observed for much thicker collagen fibrils. In addition to providing insight into the mechanism of collagen assembly, the ultraflat collagen matrices may also offer novel ways to bio-functionalize surfaces.

  8. Dermatan Sulfate Epimerase 1-Deficient Mice Have Reduced Content and Changed Distribution of Iduronic Acids in Dermatan Sulfate and an Altered Collagen Structure in Skin

    DEFF Research Database (Denmark)

    Maccarana, M.; Kalamajski, S.; Kongsgaard, M.

    2009-01-01

    Dermatan sulfate epimerase 1 (DS-epi1) and DS-epi2 convert glucuronic acid to iduronic acid in chondroitin/dermatan sulfate biosynthesis. Here we report on the generation of DS-epi1-null mice and the resulting alterations in the chondroitin/dermatan polysaccharide chains. The numbers of long blocks......-derived chains. DS-epi1-deficient mice are smaller than their wild-type littermates but otherwise have no gross macroscopic alterations. The lack of DS-epi1 affects the chondroitin/dermatan sulfate in many proteoglycans, and the consequences for skin collagen structure were initially analyzed. We found...... that the skin collagen architecture was altered, and electron microscopy showed that the DS-epi1-null fibrils have a larger diameter than the wild-type fibrils. The altered chondroitin/dermatan sulfate chains carried by decorin in skin are likely to affect collagen fibril formation and reduce the tensile...

  9. [The genetics of collagen diseases].

    Science.gov (United States)

    Kaplan, J; Maroteaux, P; Frezal, J

    1986-01-01

    Heritable disorders of collagen include Ehler-Danlos syndromes (11 types are actually known), Larsen syndrome and osteogenesis imperfecta. Their clinical, genetic and biochemical features are reviewed. Marfan syndrome is closely related to heritable disorders of collagen.

  10. Changes in subchondral bone mineral density and collagen matrix organization in growing horses.

    Science.gov (United States)

    Holopainen, Jaakko T; Brama, Pieter A J; Halmesmäki, Esa; Harjula, Terhi; Tuukkanen, Juha; van Weeren, P René; Helminen, Heikki J; Hyttinen, Mika M

    2008-12-01

    The effects of growth and maturation on the mineral deposition and the collagen framework of equine subchondral bone (SCB) were studied. Osteochondral specimens (diameter 6 mm) from the left metacarpophalangeal joint of 5-(n=8), 11-(n=8) and 18-month-old (n=6) horses were investigated at two differently loaded sites (Site 1 (S1): intermittent peak loading; Site 2 (S2): habitual loading). The SCB mineral density (BMD) was measured with peripheral quantitative computer tomography (pQCT), and the data were adjusted against the volume fraction (Vv) of the bone extracellular matrix (ECM). Polarised light microscopy (PLM) was used to analyze the Vv, the collagen fibril parallelism index and the orientation angle distribution in two fractions (1 mm/fraction) beneath the osteochondral junction of the SCB. PLM analysis was made along two randomly selected perpendicularly oriented vertical sections to measure the tissue anisotropy in the x-, y-, and z-directions. The BMD of SCB at S1 and S2 increased significantly during maturation. At the same time, the Vv of the ECM increased even more. This meant that the Vv-adjusted BMD decreased. There were no significant differences between sites. The basic collagen fibril framework of SCB seems to be established already at the age of 5 months. During maturation, the extracellular matrix underwent a decrease in collagen fibril parallelism but no changes in collagen orientation. The variation was negligible in the collagen network estimates in the two section planes. Growth and maturation induce significant changes in the equine SCB. The BMD increase in SCB is primarily due to the growth of bone volume and not to any increase in mineral deposition. An increase in weight-bearing appears to greatly affect the BMD and the volume of the extracellular matrix. Growth and maturation induce a striking change in collagen fibril parallelism but not in fibril orientation. The structural anisotropy of the subchondral bone is significant along the

  11. Absence of FKBP10 in recessive type XI osteogenesis imperfecta leads to diminished collagen cross-linking and reduced collagen deposition in extracellular matrix.

    Science.gov (United States)

    Barnes, Aileen M; Cabral, Wayne A; Weis, MaryAnn; Makareeva, Elena; Mertz, Edward L; Leikin, Sergey; Eyre, David; Trujillo, Carlos; Marini, Joan C

    2012-11-01

    Recessive osteogenesis imperfecta (OI) is caused by defects in genes whose products interact with type I collagen for modification and/or folding. We identified a Palestinian pedigree with moderate and lethal forms of recessive OI caused by mutations in FKBP10 or PPIB, which encode endoplasmic reticulum resident chaperone/isomerases FKBP65 and CyPB, respectively. In one pedigree branch, both parents carry a deletion in PPIB (c.563_566delACAG), causing lethal type IX OI in their two children. In another branch, a child with moderate type XI OI has a homozygous FKBP10 mutation (c.1271_1272delCCinsA). Proband FKBP10 transcripts are 4% of control and FKBP65 protein is absent from proband cells. Proband collagen electrophoresis reveals slight band broadening, compatible with ≈10% over-modification. Normal chain incorporation, helix folding, and collagen T(m) support a minimal general collagen chaperone role for FKBP65. However, there is a dramatic decrease in collagen deposited in culture despite normal collagen secretion. Mass spectrometry reveals absence of hydroxylation of the collagen telopeptide lysine involved in cross-linking, suggesting that FKBP65 is required for lysyl hydroxylase activity or access to type I collagen telopeptide lysines, perhaps through its function as a peptidylprolyl isomerase. Proband collagen to organics ratio in matrix is approximately 30% of normal in Raman spectra. Immunofluorescence shows sparse, disorganized collagen fibrils in proband matrix. Published 2012 Wiley Periodicals, Inc.*This article is a US Government work and, as such, is in the public domain of the United States of America.

  12. The Secret Life of Collagen: Temporal Changes in Nanoscale Fibrillar Pre-Strain and Molecular Organization during Physiological Loading of Cartilage.

    Science.gov (United States)

    Inamdar, Sheetal R; Knight, David P; Terrill, Nicholas J; Karunaratne, Angelo; Cacho-Nerin, Fernando; Knight, Martin M; Gupta, Himadri S

    2017-10-24

    Articular cartilage is a natural biomaterial whose structure at the micro- and nanoscale is critical for healthy joint function and where degeneration is associated with widespread disorders such as osteoarthritis. At the nanoscale, cartilage mechanical functionality is dependent on the collagen fibrils and hydrated proteoglycans that form the extracellular matrix. The dynamic response of these ultrastructural building blocks at the nanoscale, however, remains unclear. Here we measure time-resolved changes in collagen fibril strain, using small-angle X-ray diffraction during compression of bovine and human cartilage explants. We demonstrate the existence of a collagen fibril tensile pre-strain, estimated from the D-period at approximately 1-2%, due to osmotic swelling pressure from the proteoglycan. We reveal a rapid reduction and recovery of this pre-strain which occurs during stress relaxation, approximately 60 s after the onset of peak load. Furthermore, we show that this reduction in pre-strain is linked to disordering in the intrafibrillar molecular packing, alongside changes in the axial overlapping of tropocollagen molecules within the fibril. Tissue degradation in the form of selective proteoglycan removal disrupts both the collagen fibril pre-strain and the transient response during stress relaxation. This study bridges a fundamental gap in the knowledge describing time-dependent changes in collagen pre-strain and molecular organization that occur during physiological loading of articular cartilage. The ultrastructural details of this transient response are likely to transform our understanding of the role of collagen fibril nanomechanics in the biomechanics of cartilage and other hydrated soft tissues.

  13. Chondrogenic differentiation of mesenchymal stem cells in a leakproof collagen sponge

    International Nuclear Information System (INIS)

    Chen Guoping; Akahane, Daisuke; Kawazoe, Naoki; Yamamoto, Katsuyuki; Tateishi, Tetsuya

    2008-01-01

    A three-dimensional culture of mesenchymal stem cells (MSCs) in a porous scaffold has been developed as a promising strategy for cartilage tissue engineering. The chondrogenic differentiation of MSCs derived from human bone marrow was studied by culturing the cells in a novel scaffold constructed of leakproof collagen sponge. All the surfaces of the collagen sponge except the top were wrapped with a membrane that has pores smaller than the cells to protect against cell leakage during cell seeding. The cells adhered to the collagen, distributed evenly, and proliferated to fill the spaces in the sponge. Cell seeding efficiency was greater than 95%. The MSCs cultured in the collagen sponge in the presence of TGF-β3 and BMP6 expressed a high level of genes encoding type II and type X collagen, sox9, and aggrecan. Histological examination by HE staining indicated that the differentiated cells showed a round morphology. The extracellular matrices were positively stained by safranin O and toluidine blue. Immunostaining with anti-type II collagen and anti-cartilage proteoglycan showed that type II collagen and cartilage proteoglycan were detected around the cells. These results suggest the chondrogenic differentiation of MSCs when cultured in the collagen sponge in the presence of TGF-β3 and BMP6

  14. Expression of collagen in ovular membranes of pregnant smokers and non-smokers: a pilot study.

    Science.gov (United States)

    Negrini, Romulo; Araujo Júnior, Edward; Piato, Sebastião; Chade, Milca Cezar; Rios, Adriana Ribeiro Santos; Silva, Maria Antonieta Galvão; Aldrighi, José Mendes

    2015-09-01

    Our study compared the amount of total collagen and type I collagen in ovular membranes of pregnant smokers and non-smokers. The study group consisted of 14 pregnant smokers at 24-36 weeks of gestation; 39 pregnant non-smokers between 24-36 weeks of gestation comprised the control group. The expressions of total collagen and type I collagen were analyzed using two histological sections of the fetal membranes. The assessment of total collagen was performed using the Picro-Cirius red stain, and type I collagen expression was determined by means of immunohistochemistry The Mann-Whitney test was applied to verify possible differences between the groups. The average area covered by total collagen was lower in smokers (20630.45 microm2) as compared to non-smokers (24058.61 microm2), although the difference was not statistically significant (p = 0.454). Comparison involving collagen type I deemed similar results (20001.33 microm2 vs. 25328.29 microm2, p = 0.158). The amount of total collagen and type I collagen was lower in ovular membranes of pregnant smokers as compared to non-smokers, although the difference was not statistically significant.

  15. Collagen films with stabilized liquid crystalline phases and concerns on osteoblast behaviors

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Minjian; Ding, Shan; Min, Xiang; Jiao, Yanpeng, E-mail: tjiaoyp@jnu.edu.cn; Li, Lihua; Li, Hong; Zhou, Changren, E-mail: tcrz9@jnu.edu.cn

    2016-01-01

    To duplicate collagen's in vivo liquid crystalline (LC) phase and investigate the relationship between the morphology of LC collagen and osteoblast behavior, a self-assembly method was introduced for preparing collagen films with a stabilized LC phase. The LC texture and topological structure of the films before and after stabilization were observed with polarizing optical microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). The relationship between the collagen films and osteoblast behavior was studied with the 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide method, proliferation index detection, alkaline phosphatase measurements, osteocalcin assay, inverted microscopy, SEM observation, AFM observation, and cytoskeleton fluorescence staining. The results showed that the LC collagen film had continuously twisting orientations in the cholesteric phase with a typical series of arced patterns. The collagen fibers assembled in a well-organized orientation in the LC film. Compared to the non-LC film, the LC collagen film can promote cell proliferation, and increase ALP and osteocalcin expression, revealing a contact guide effect on osteoblasts. - Highlights: • Collagen film with liquid crystalline (LC) phase was observed by POM, SEM and AFM. • The effect of LC collagen film on osteoblasts behaviors was studied in detail. • LC collagen film promoted osteoblast proliferation and osteogenesis activity.

  16. Atrial fibrillation in the elderly

    Science.gov (United States)

    Franken, Roberto A.; Rosa, Ronaldo F.; Santos, Silvio CM

    2012-01-01

    This review discusses atrial fibrillation according to the guidelines of Brazilian Society of Cardiac Arrhythmias and the Brazilian Cardiogeriatrics Guidelines. We stress the thromboembolic burden of atrial fibrillation and discuss how to prevent it as well as the best way to conduct cases of atrial fibrillatios in the elderly, reverting the arrhythmia to sinus rhythm, or the option of heart rate control. The new methods to treat atrial fibrillation, such as radiofrequency ablation, new oral direct thrombin inhibitors and Xa factor inhibitors, as well as new antiarrhythmic drugs, are depicted. PMID:22916053

  17. Characterization of fibrillar collagens and extracellular matrix of glandular benign prostatic hyperplasia nodules.

    Directory of Open Access Journals (Sweden)

    Tyler M Bauman

    Full Text Available Recent studies have associated lower urinary tract symptoms (LUTS in men with prostatic fibrosis, but a definitive link between collagen deposition and LUTS has yet to be demonstrated. The objective of this study was to evaluate ECM and collagen content within normal glandular prostate tissue and glandular BPH, and to evaluate the association of clinical parameters of LUTS with collagen content.Fibrillar collagen and ECM content was assessed in normal prostate (48 patients and glandular BPH nodules (24 patients using Masson's trichrome stain and Picrosirius red stain. Second harmonic generation (SHG imaging was used to evaluate collagen content. Additional BPH tissues (n = 47 were stained with Picrosirius red and the association between clinical parameters of BPH/LUTS and collagen content was assessed.ECM was similar in normal prostate and BPH (p = 0.44. Total collagen content between normal prostate and glandular BPH was similar (p = 0.27, but a significant increase in thicker collagen bundles was observed in BPH (p = 0.045. Using SHG imaging, collagen content in BPH (mean intensity = 62.52; SEM = 2.74 was significantly higher than in normal prostate (51.77±3.49; p = 0.02. Total collagen content was not associated with treatment with finasteride (p = 0.47 or α-blockers (p = 0.52, pre-TURP AUA symptom index (p = 0.90, prostate-specific antigen (p = 0.86, post-void residual (PVR; p = 0.32, prostate size (p = 0.21, or post-TURP PVR (p = 0.51. Collagen content was not associated with patient age in patients with BPH, however as men aged normal prostatic tissue had a decreased proportion of thick collagen bundles.The proportion of larger bundles of collagen, but not total collagen, is increased in BPH nodules, suggesting that these large fibers may play a role in BPH/LUTS. Total collagen content is independent of clinical parameters of BPH and LUTS. If fibrosis and overall ECM deposition are

  18. Bone Collagen: New Clues to its Mineralization Mechanism From Recessive Osteogenesis Imperfecta

    Science.gov (United States)

    Eyre, David R.; Ann Weis, Mary

    2013-01-01

    Until 2006 the only mutations known to cause osteogenesis imperfecta (OI) were in the two genes coding for type I collagen chains. These dominant mutations affecting the expression or primary sequence of collagen α1(I) and α2(I) chains account for over 90% of OI cases. Since then a growing list of mutant genes causing the 5–10% of recessive cases has rapidly emerged. They include CRTAP, LEPRE1 and PPIB, which encode three proteins forming the prolyl 3-hydroxylase complex; PLOD2 and FKBP10, which encode respectively lysyl hydroxylase 2 and a foldase required for its activity in forming mature cross-links in bone collagen; SERPIN H1, which encodes the collagen chaperone HSP47; SERPIN F1, which encodes pigment epithelium-derived factor required for osteoid mineralization; and BMP1, which encodes the type I procollagen C-propeptidase. All cause fragile bone in infancy, which can include over-mineralization or under-mineralization defects as well as abnormal collagen post-translational modifications. Consistently both dominant and recessive variants lead to abnormal cross-linking chemistry in bone collagen. These recent discoveries strengthen the potential for a common pathogenic mechanism of misassembled collagen fibrils. Of the new genes identified, eight encode proteins required for collagen post-translational modification, chaperoning of newly synthesized collagen chains into native molecules or transport through the endoplasmic reticulum and Golgi for polymerization, cross-linking and mineralization. In reviewing these findings, we conclude that a common theme is emerging in the pathogenesis of brittle bone disease of mishandled collagen assembly with important insights on post-translational features of bone collagen that have evolved to optimize it as a biomineral template. PMID:23508630

  19. Accelerated staining technique using kitchen microwave oven

    Directory of Open Access Journals (Sweden)

    Archana Mukunda

    2015-01-01

    Full Text Available Introduction: Histopathological diagnosis of specimens is greatly dependent on good sample preparation and staining. Both of these processes is governed by diffusion of fluids and dyes in and out of the tissue, which is the key to staining. Diffusion of fluids can be accelerated by the application of heat that reduces the time of staining from hours to the minute. We modified an inexpensive model of kitchen microwave oven for staining. This study is an attempt to compare the reliability of this modified technique against the tested technique of routine staining so as to establish the kitchen microwave oven as a valuable diagnostic tool. Materials and Methods: Sixty different tissue blocks were used to prepare 20 pairs of slides for 4 different stains namely hematoxylin and eosin, Van Gieson′s, 0.1% toluidine blue and periodic acid-Schiff. From each tissue block, two bits of tissues were mounted on two different slides. One slide was stained routinely, and the other stained inside a microwave. A pathologist evaluated the stained slides and the results so obtained were analyzed statistically. Results: Microwave staining considerably cut down the staining time from hours to seconds. Microwave staining showed no loss of cellular and nuclear details, uniform-staining characteristics and was of excellent quality. Interpretation and Conclusion: The cellular details, nuclear details and staining characteristics of microwave stained tissues were better than or equal to the routine stained tissue. The overall quality of microwave-stained sections was found to be better than the routine stained tissue in majority of cases.

  20. Fibrillar structure and elasticity of hydrating collagen: a quantitative multiscale approach.

    Science.gov (United States)

    Morin, Claire; Hellmich, Christian; Henits, Peter

    2013-01-21

    It is well known that hydration of collagenous tissues leads to their swelling, as well as to softening of their elastic behavior. However, it is much less clear which microstructural and micromechanical "rules" are involved in this process. Here, we develop a theoretical approach cast in analytical mathematical formulations, which is experimentally validated by a wealth of independent tests on collagenous tissues, such as X-ray diffraction, vacuum drying, mass measurements, and Brillouin light scattering. The overall emerging picture is the following: air-drying leaves water only in the gap zones between the triple-helical collagen molecules; upon re-hydration, the extrafibrillar space is established at volumes directly proportional to the hydration-induced swelling of the (micro) fibrils, until the maximum equatorial distance between the long collagen molecules is reached. Thereafter, the volume of the fibrils stays constant, and only the extrafibrillar volume continues to grow. At all these hydration stages, the elastic behavior is governed by the same, hydration-invariant mechanical interaction pattern of only two, interpenetrating mechanical phases: transversely isotropic molecular collagen and isotropic water (or empty pores in the vacuum-dried case). Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Skeletal muscle collagen content in humans after high-force eccentric contractions

    DEFF Research Database (Denmark)

    Mackey, Abigail; Donnelly, Alan E; Turpeenniemi-Hujanen, Taina

    2004-01-01

    The purpose of this study was to investigate the effects of high-force eccentric muscle contractions on collagen remodeling and on circulating levels of matrix metalloproteinases (MMP) and tissue inhibitors of metalloproteinases (TIMP) in humans. Nine volunteers [5 men and 4 women, mean age 23 (SD...... 4) yr] each performed a bout of 100 maximum voluntary eccentric contractions of the knee extensors. Muscle biopsies were taken before exercise and on days 4 and 22 afterward. Image analysis of stained tissue sections was used to quantify endomysial collagen staining intensity. Maximum voluntary...... contractile force declined by 39 +/- 23% (mean +/- SD) on day 2 postexercise and recovered thereafter. Serum creatine kinase activity peaked on day 4 postexercise (P Collagen type IV staining intensity increased significantly on day 22 postexercise to 126 +/- 29% (mean +/- SD) of preexercise values...

  2. Pharmacological Treatment for Atrial Fibrillation

    Directory of Open Access Journals (Sweden)

    Kaoru Sugi, MD PhD

    2005-01-01

    Full Text Available Pharmacological treatment for atrial fibrillation has a variety of purposes, such as pharmacological defibrillation, maintenance of sinus rhythm, heart rate control to prevent congestive heart failure and prevention of both cerebral infarction and atrial remodeling. Sodium channel blockers are superior to potassium channel blockers for atrial defibrillation, while both sodium and potassium channel blockers are effective in the maintenance of sinus rhythm. In general, digitalis or Ca antagonists are used to control heart rate during atrial fibrillation to prevent congestive heart failure, while amiodarone or bepridil also reduce heart rates during atrial fibrillation. Anticoagulant therapy with warfarin is recommended to prevent cerebral infarction and angiotensin converting enzyme antagonists or angiotensin II receptor blockers are also used to prevent atrial remodeling. One should select appropriate drugs for treatment of atrial fibrillation according to the patient's condition.

  3. Computational segmentation of collagen fibers in bone matrix indicates bone quality in ovariectomized rat spine.

    Science.gov (United States)

    Daghma, Diaa Eldin S; Malhan, Deeksha; Simon, Paul; Stötzel, Sabine; Kern, Stefanie; Hassan, Fathi; Lips, Katrin Susanne; Heiss, Christian; El Khassawna, Thaqif

    2018-05-01

    Bone loss varies according to disease and age and these variations affect bone cells and extracellular matrix. Osteoporosis rat models are widely investigated to assess mechanical and structural properties of bone; however, bone matrix proteins and their discrepant regulation of diseased and aged bone are often overlooked. The current study considered the spine matrix properties of ovariectomized rats (OVX) against control rats (Sham) at 16 months of age. Diseased bone showed less compact structure with inhomogeneous distribution of type 1 collagen (Col1) and changes in osteocyte morphology. Intriguingly, demineralization patches were noticed in the vicinity of blood vessels in the OVX spine. The organic matrix structure was investigated using computational segmentation of collagen fibril properties. In contrast to the aged bone, diseased bone showed longer fibrils and smaller orientation angles. The study shows the potential of quantifying transmission electron microscopy images to predict the mechanical properties of bone tissue.

  4. Collagen turnover after tibial fractures

    DEFF Research Database (Denmark)

    Joerring, S; Krogsgaard, M; Wilbek, H

    1994-01-01

    Collagen turnover after tibial fractures was examined in 16 patients with fracture of the tibial diaphysis and in 8 patients with fracture in the tibial condyle area by measuring sequential changes in serological markers of turnover of types I and III collagen for up to 26 weeks after fracture....... The markers were the carboxy-terminal extension peptide of type I procollagen (PICP), the amino-terminal extension peptide of type III procollagen (PIIINP), and the pyridinoline cross-linked carboxy-terminal telopeptide of type I collagen (ICTP). The latter is a new serum marker of degradation of type I...... collagen. A group comparison showed characteristic sequential changes in the turnover of types I and III collagen in fractures of the tibial diaphysis and tibial condyles. The turnover of type III collagen reached a maximum after 2 weeks in both groups. The synthesis of type I collagen reached a maximum...

  5. Atrial fibrillation and hyperthyroidism: A literature review.

    Science.gov (United States)

    Reddy, Vivek; Taha, Wael; Kundumadam, Shanker; Khan, Mazhar

    Atrial fibrillation is the most common arrhythmia worldwide with increasing frequency noted with age. Hyperthyroidism is a well-known cause of atrial fibrillation with a 16%-60% prevalence of atrial fibrillation in patients with known hyperthyroidism Ross et al. (2016). While hyperthyroidism as a causative factor of atrial fibrillation is well established, this literature review aims to answer several questions on this topic including: 1. The relationship of atrial fibrillation to hyperthyroidism 2. Atrial fibrillation as a predictor of hyperthyroidism 3. The pathophysiology of thyrotoxic atrial fibrillation 4. Subclinical hyperthyroidism and the relationship with atrial fibrillation 5. Cardioversion and Catheter ablation of hyperthyroid patients with atrial fibrillation 6. Thrombotic risk of hyperthyroid patients with atrial fibrillation 7. Management of Thyrotoxic Atrial fibrillation 8. Pharmacological rhythm control in patients with hyperthyroidism and atrial fibrillation 9. Treatment of Hyperthyroidism to prevent atrial fibrillation 10. Clinical Implications of Hyperthyroidism and Atrial Fibrillation. Copyright © 2017 Cardiological Society of India. Published by Elsevier B.V. All rights reserved.

  6. High-contrast multimodel nonlinear optical imaging of collagen and elastin

    Energy Technology Data Exchange (ETDEWEB)

    Zhuo, S M [Key Laboratory of Optoelectronic Science and Technology for Medicine (Fujian Normal University), Ministry of Education, Fuzhou 350007 (China); Chen, J X [Key Laboratory of Optoelectronic Science and Technology for Medicine (Fujian Normal University), Ministry of Education, Fuzhou 350007 (China); Luo, T S [Key Laboratory of Optoelectronic Science and Technology for Medicine (Fujian Normal University), Ministry of Education, Fuzhou 350007 (China); Chen, H L [Key Laboratory of Optoelectronic Science and Technology for Medicine (Fujian Normal University), Ministry of Education, Fuzhou 350007 (China); Zhao, J J [Department of Skin, Affiliated Xiehe Hospital, Fujian Medical University, Fuzhou 350001 (China)

    2007-07-15

    Collagen and elastin, as the major components in the extracellular matrix (ECM), are intrinsic indicators of physiological and pathological states. Here, we have developed a high-contrast multimodel nonlinear optical imaging technique to imaging collagen and elastin by detecting simultaneously two photon-excited fluorescence (TPEF) from elastin and second-harmonic generation (SHG) from collagen. Our results show that this technique can obtain a high-contrast TPEF/SHG image in human dermis and permit direct visualization of collagen and elastin. It was shown that the technique can provide collagen and elastin structural information to determine collagen and elastin fibril orientation and distribution and acquire some morphometric properties. It was found that the in-depth TPEF/SHG imaging and 3-D reconstruction of TPEF/SHG images can extract more collagen and elastin structural and biochemical information. The study results suggest that the high-contrast multimodel nonlinear imaging provides a powerful tool to study ECM intrinsic components and has the potential to provide more important information for the diagnosis of tissue.

  7. High-contrast multimodel nonlinear optical imaging of collagen and elastin

    International Nuclear Information System (INIS)

    Zhuo, S M; Chen, J X; Luo, T S; Chen, H L; Zhao, J J

    2007-01-01

    Collagen and elastin, as the major components in the extracellular matrix (ECM), are intrinsic indicators of physiological and pathological states. Here, we have developed a high-contrast multimodel nonlinear optical imaging technique to imaging collagen and elastin by detecting simultaneously two photon-excited fluorescence (TPEF) from elastin and second-harmonic generation (SHG) from collagen. Our results show that this technique can obtain a high-contrast TPEF/SHG image in human dermis and permit direct visualization of collagen and elastin. It was shown that the technique can provide collagen and elastin structural information to determine collagen and elastin fibril orientation and distribution and acquire some morphometric properties. It was found that the in-depth TPEF/SHG imaging and 3-D reconstruction of TPEF/SHG images can extract more collagen and elastin structural and biochemical information. The study results suggest that the high-contrast multimodel nonlinear imaging provides a powerful tool to study ECM intrinsic components and has the potential to provide more important information for the diagnosis of tissue

  8. Effect of photoactivated riboflavin on the biodegradation-resistance of root-dentin collagen.

    Science.gov (United States)

    Priyadarshini, Balasankar Meera; Lu, Thong Beng; Fawzy, Amr S

    2017-12-01

    This study was conducted to evaluate the effect of UVA-activated 1% riboflavin solution on structural integrity; mechanical properties and stability; and collagenase-mediated collagen solubilisation resistance of demineralized root dentin collagen matrix. Root dentin specimens demineralized with 17% EDTA for 7days were treated with 1% RF for 1min followed by UVA photo-activation at intensity 7mW/cm 2 for 1min. Control specimens were completely devoid of riboflavin and/or UVA treatments. Specimens were challenged with bacterial collagenase type-I solution for different time-periods at 37°C. Collagen solubilisation resistance was evaluated in terms of hydroxyproline (HYP) liberation. Mechanical characterization of dentin specimens before and after 24h of exposure to collagenase solution was done in terms of apparent-elastic modulus (E appr ) and ultimate tensile strength (UTS). Variations in dentin collagen-network structure with exposure time in collagenase were visualized by TEM. Crosslinking dentin with UVA-activated riboflavin significantly decreased HYP release and increased E appr and UTS compared to control specimens with storage time in collagenase. Moreover, crosslinked specimens showed higher structural resistance to collagenase effect reflected from dense, well-formed collagen fibrils-network with characteristic collagen cross-banding. UVA-activated riboflavin treatment increased collagenase-mediated collagen degradation resistance and enhanced mechanical stability against collagenase challenges of root dentin after EDTA demineralization. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Collagen cross-linking: insights on the evolution of metazoan extracellular matrix.

    Science.gov (United States)

    Rodriguez-Pascual, Fernando; Slatter, David Anthony

    2016-11-23

    Collagens constitute a large family of extracellular matrix (ECM) proteins that play a fundamental role in supporting the structure of various tissues in multicellular animals. The mechanical strength of fibrillar collagens is highly dependent on the formation of covalent cross-links between individual fibrils, a process initiated by the enzymatic action of members of the lysyl oxidase (LOX) family. Fibrillar collagens are present in a wide variety of animals, therefore often being associated with metazoan evolution, where the emergence of an ancestral collagen chain has been proposed to lead to the formation of different clades. While LOX-generated collagen cross-linking metabolites have been detected in different metazoan families, there is limited information about when and how collagen acquired this particular modification. By analyzing telopeptide and helical sequences, we identified highly conserved, potential cross-linking sites throughout the metazoan tree of life. Based on this analysis, we propose that they have importantly contributed to the formation and further expansion of fibrillar collagens.

  10. Elevated expression of type VII collagen in the skin of patients with systemic sclerosis. Regulation by transforming growth factor-beta.

    OpenAIRE

    Rudnicka, L; Varga, J; Christiano, A M; Iozzo, R V; Jimenez, S A; Uitto, J

    1994-01-01

    A hallmark of systemic sclerosis (SSc) is the development of tissue fibrosis. Excessive production of several connective tissue components normally present in the dermis, including type I, III, V, and VI collagens as well as fibronectin and proteoglycans, is a consistent finding in the skin of SSc patients. Type VII collagen is a major constituent of anchoring fibrils, present in the skin at the dermal-epidermal basement membrane zone. TGF-beta has been shown to upregulate the expression of t...

  11. Investigation of the collagen-mineral-relation in bone with special respect to bone diseases with collagen defects by small-angle X-ray scattering

    International Nuclear Information System (INIS)

    Schreiber, S. A.

    1996-06-01

    Small-angle X-ray scattering (SAXS) was used to study the structure of the collagen/mineral composite of bone in the nanometer range. The most important results were: - In horse radius, the angular distribution of mineral crystals as measured by SAXS agreed well with previous measurements of collagen orientation using circularly polarized light microscopy. This shows that the crystals are parallel to the collagen fibrils. - The effect of sodium fluoride, which stimulates bone formation, and bisphosphonates, which reduce bone resorption, were analyzed. A slight increase in the average thickness of the mineral crystals as well as changes in the structure of the mineral/collagen composite were found in the case of fluoride treated animals. No differences were found between alendronate treated animals and controls. The changes with NaF correlate with bone weakening found in an earlier study with the same animals. - In cortical bone from 9 patients with Osteogenesis Imperfecta (brittle bone disease) the mean thickness of the mineral crystals was found approximately constant around 2.4 nm, while in control bones it constantly increased with age up to about 3.5 nm. In addition, the parallel alignment of the mineral crystals was less in OI-bone than in normal controls. Hence, despite the great variability of this genetic collagen defect, smaller and less well aligned mineral crystals seem to characterize the collagen/mineral composite in OI-bone. (author)

  12. uPARAP/endo180 directs lysosomal delivery and degradation of collagen IV

    DEFF Research Database (Denmark)

    Kjøller, Lars; Engelholm, Lars H; Høyer-Hansen, Maria

    2004-01-01

    Collagen turnover is crucial for tissue homeostasis and remodeling and pathological processes such as cancer invasion, but the underlying molecular mechanisms are poorly understood. A major pathway appears to be internalization and degradation by fibroblasts. We now show that the endocytic...... transmembrane glycoprotein urokinase plasminogen activator receptor-associated protein (uPARAP/endo180) directs collagen IV for lysosomal delivery and degradation. In wild-type fibroblasts, fluorescently labeled collagen IV was first internalized into vesicular structures with diffuse fluorescence eventually...... appearing uniformly within the wild-type cells after longer incubation times. In these cells, some collagen-containing vesicles were identified as lysosomes by staining for LAMP-1. In contrast, collagen IV remained extracellular and associated with fiber-like structures on uPARAP/endo180-deficient...

  13. Gram staining with an automatic machine.

    Science.gov (United States)

    Felek, S; Arslan, A

    1999-01-01

    This study was undertaken to develop a new Gram-staining machine controlled by a micro-controller and to investigate the quality of slides that were stained in the machine. The machine was designed and produced by the authors. It uses standard 220 V AC. Staining, washing, and drying periods are controlled by a timer built in the micro-controller. A software was made that contains a certain algorithm and time intervals for the staining mode. One-hundred and forty smears were prepared from Escherichia coli, Staphylococcus aureus, Neisseria sp., blood culture, trypticase soy broth, direct pus and sputum smears for comparison studies. Half of the slides in each group were stained with the machine, the other half by hand and then examined by four different microbiologists. Machine-stained slides had a higher clarity and less debris than the hand-stained slides (p stained slides, some Gram-positive organisms showed poor Gram-positive staining features (p Gram staining with the automatic machine increases the staining quality and helps to decrease the work load in a busy diagnostic laboratory.

  14. Highly concentrated collagen solutions leading to transparent scaffolds of controlled three-dimensional organizations for corneal epithelial cell colonization.

    Science.gov (United States)

    Tidu, Aurélien; Ghoubay-Benallaoua, Djida; Teulon, Claire; Asnacios, Sophie; Grieve, Kate; Portier, François; Schanne-Klein, Marie-Claire; Borderie, Vincent; Mosser, Gervaise

    2018-05-29

    This study aimed at controlling both the organization and the transparency of dense collagen scaffolds making use of the lyotropic mesogen properties of collagen. Cholesteric or plywood-like liquid crystal phases were achieved using mixtures of acetic and hydrochloric acids as solvents. The critical pH at which the switch between the two phases occurred was around pH = 3. The use of the two acids led to fibrillated collagen I scaffolds, whose visual aspect ranged from opaque to transparent. Rheological investigations showed that viscoelastic properties of the plywood-like solutions were optimized for molding due to faster recovery. They also confirmed the correlation between the elastic modulus and the diameter of collagen fibrils obtained after fibrillogenesis under ammonia vapor. Human corneal epithelial cells, grown from donor limbal explants, were cultured both on transparent plywood-like matrices and on human amniotic membranes for 14 days. The development of corneal epithelium and the preservation of epithelial stem cells were checked by optical microscopy, colony formation assay, immuno-fluorescence and quantitative polymerase chain reaction. A higher level of amplification of limbal stem cells was obtained with collagen matrices compared with amniotic membranes, showing the high biocompatibility of our scaffolds. We therefore suggest that collagen solutions presenting both plywood-like organization and transparency might be of interest for biomedical applications in ophthalmology.

  15. Collagen macromolecular drug delivery systems

    International Nuclear Information System (INIS)

    Gilbert, D.L.

    1988-01-01

    The objective of this study was to examine collagen for use as a macromolecular drug delivery system by determining the mechanism of release through a matrix. Collagen membranes varying in porosity, crosslinking density, structure and crosslinker were fabricated. Collagen characterized by infrared spectroscopy and solution viscosity was determined to be pure and native. The collagen membranes were determined to possess native vs. non-native quaternary structure and porous vs. dense aggregate membranes by electron microscopy. Collagen monolithic devices containing a model macromolecule (inulin) were fabricated. In vitro release rates were found to be linear with respect to t 1/2 and were affected by crosslinking density, crosslinker and structure. The biodegradation of the collagen matrix was also examined. In vivo biocompatibility, degradation and 14 C-inulin release rates were evaluated subcutaneously in rats

  16. Collageneous matrix coatings on titanium implants modified with decorin and chondroitin sulfate: characterization and influence on osteoblastic cells.

    Science.gov (United States)

    Bierbaum, Susanne; Douglas, Timothy; Hanke, Thomas; Scharnweber, Dieter; Tippelt, Sonja; Monsees, Thomas K; Funk, Richard H W; Worch, Hartmut

    2006-06-01

    Studies in developmental and cell biology have established the fact that responses of cells are influenced to a large degree by morphology and composition of the extracellular matrix. Goal of this work is to use this basic principle to improve the biological acceptance of implants by modifying the surfaces with components of the extracellular matrix (ECM), utilizing the natural self-assembly potential of collagen in combination with further ECM components in close analogy to the situation in vivo. Aiming at load-bearing applications in bone contact, collagen type I in combination with the proteoglycan decorin and the glycosaminoglycan chondroitin sulfate (CS) was used; fibrillogenesis, fibril morphology, and adsorption of differently composed fibrils onto titanium were assessed. Both decorin and CS could be integrated into the fibrils during fibrillogenesis, the amount bound respectively desorbed depending on the ionic strength of fibrillogenesis buffer. Including decorin always resulted in a significant decrease of fibril diameter, CS in only a slight decrease or even increase, depending on the collagen preparation used. No significant changes in adsorption to titanium could be detected. Osteoblastic cells showed different reactions for cytoskeletal arrangement and osteopontin expression depending on the composition of the ECM, with CS enhancing the osteoblast phenotype.

  17. Collagens - structure, function and biosynthesis.

    OpenAIRE

    Gelse, K; Poschl, E; Aigner, T

    2003-01-01

    The extracellular matrix represents a complex alloy of variable members of diverse protein families defining structural integrity and various physiological functions. The most abundant family is the collagens with more than 20 different collagen types identified so far. Collagens are centrally involved in the formation of fibrillar and microfibrillar networks of the extracellular matrix, basement membranes as well as other structures of the extracellular matrix. This review focuses on the dis...

  18. Postnatal development of depth-dependent collagen density in ovine articular cartilage

    Directory of Open Access Journals (Sweden)

    Kranenbarg Sander

    2010-10-01

    animals, but that has disappeared in the oldest animals. We discuss that the retardance valley (as seen with polarised light microscopy in perinatal animals reflects a decrease in collagen density, as well as a decrease in collagen fibril anisotropy.

  19. Combined Effect of a Microporous Layer and Type I Collagen Coating on a Biphasic Calcium Phosphate Scaffold for Bone Tissue Engineering

    OpenAIRE

    Mun-Hwan Lee; Changkook You; Kyo-Han Kim

    2015-01-01

    In this study, type I collagen was coated onto unmodified and modified microporous biphasic calcium phosphate (BCP) scaffolds. Surface characterization using a scanning electron microscope (SEM) and a surface goniometer confirmed the modification of the BCP coating. The quantity of the collagen coating was investigated using Sirius Red staining, and quantitative assessment of the collagen coating showed no significant differences between the two groups. MG63 cells were used to evaluate cell p...

  20. Cryoballoon Ablation for Atrial Fibrillation

    Directory of Open Access Journals (Sweden)

    Jason G. Andrade, MD

    2012-03-01

    Full Text Available Focal point-by-point radiofrequency catheter ablation has shown considerable success in the treatment of paroxysmal atrial fibrillation. However, it is not without limitations. Recent clinical and preclinical studies have demonstrated that cryothermal ablation using a balloon catheter (Artic Front©, Medtronic CryoCath LP provides an effective alternative strategy to treating atrial fibrillation. The objective of this article is to review efficacy and safety data surrounding cryoballoon ablation for paroxysmal and persistent atrial fibrillation. In addition, a practical step-by-step approach to cryoballoon ablation is presented, while highlighting relevant literature regarding: 1 the rationale for adjunctive imaging, 2 selection of an appropriate cryoballoon size, 3 predictors of efficacy, 4 advanced trouble-shooting techniques, and 5 strategies to reduce procedural complications, such as phrenic nerve palsy.

  1. Collagen like peptide bioconjugates for targeted drug delivery applications

    Science.gov (United States)

    Luo, Tianzhi

    Collagen is the most abundant protein in mammals, and there has been long-standing interest in understanding and controlling collagen assembly in the design of new materials. Collagen-like peptides (CLP), also known as collagen-mimetic peptides (CMP), are short synthetic peptides which mimic the triple helical conformation of native collagens. In the past few decades, collagen like peptides and their conjugated hybrids have become a new class of biomaterials that possesses unique structures and properties. In addition to traditional applications of using CLPs to decipher the role of different amino acid residues and tripeptide motifs in stabilizing the collagen triple helix and mimicking collagen fibril formation, with the introduction of specific interactions including electrostatic interactions, pi-pi stacking interaction and metal-ligand coordination, a variety of artificial collagen-like peptides with well-defined sequences have been designed to create higher order assemblies with specific biological functions. The CLPs have also been widely used as bioactive domains or physical cross-linkers to fabricate hydrogels, which have shown potential to improve cell adhesion, proliferation and ECM macromolecule production. Despite this widespread use, the utilization of CLPs as domains in stimuli responsive bioconjugates represents a relatively new area for the development of functional polymeric materials. In this work, a new class of thermoresponsive diblock conjugates, containing collagen-like peptides and a thermoresponsive polymer, namely poly(diethylene glycol methyl ether methacrylate) (PDEGMEMA), is introduced. The CLP domain maintains its triple helix conformation after conjugation with the polymer. The engineered LCST of these conjugates has enabled temperature-induced assembly under aqueous conditions, at physiologically relevant temperatures, into well-defined vesicles with diameters of approximately 50-200 nm. The formation of nanostructures was driven by

  2. Collagenous microstructure of the glenoid labrum and biceps anchor.

    Science.gov (United States)

    Hill, A M; Hoerning, E J; Brook, K; Smith, C D; Moss, J; Ryder, T; Wallace, A L; Bull, A M J

    2008-06-01

    The glenoid labrum is a significant passive stabilizer of the shoulder joint. However, its microstructural form remains largely unappreciated, particularly in the context of its variety of functions. The focus of labral microscopy has often been histology and, as such, there is very little appreciation of collagen composition and arrangement of the labrum, and hence the micromechanics of the structure. On transmission electron microscopy, significant differences in diameter, area and perimeter were noted in the two gross histological groups of collagen fibril visualized; this suggests a heterogeneous collagenous composition with potentially distinct mechanical function. Scanning electron microscopy demonstrated three distinct zones of interest: a superficial mesh, a dense circumferential braided core potentially able to accommodate hoop stresses, and a loosely packed peri-core zone. Confocal microscopy revealed an articular surface fine fibrillar mesh potentially able to reduce surface friction, bundles of circumferential encapsulated fibres in the bulk of the tissue, and bone anchoring fibres at the osseous interface. Varying microstructure throughout the depth of the labrum suggests a role in accommodating different types of loading. An understanding of the labral microstructure can lead to development of hypotheses based upon an appreciation of this component of material property. This may aid an educated approach to surgical timing and repair.

  3. Personalized management of atrial fibrillation

    DEFF Research Database (Denmark)

    Kirchhof, Paulus; Breithardt, Günter; Aliot, Etienne

    2013-01-01

    The management of atrial fibrillation (AF) has seen marked changes in past years, with the introduction of new oral anticoagulants, new antiarrhythmic drugs, and the emergence of catheter ablation as a common intervention for rhythm control. Furthermore, new technologies enhance our ability......, and hospitalizations. During the fourth Atrial Fibrillation competence NETwork/European Heart Rhythm Association (AFNET/EHRA) consensus conference, we identified the following opportunities to personalize management of AF in a better manner with a view to improve outcomes by integrating atrial morphology and damage...

  4. The role of confined collagen geometry in decreasing nucleation energy barriers to intrafibrillar mineralization.

    Science.gov (United States)

    Kim, Doyoon; Lee, Byeongdu; Thomopoulos, Stavros; Jun, Young-Shin

    2018-03-06

    Mineralization of collagen is critical for the mechanical functions of bones and teeth. Calcium phosphate nucleation in collagenous structures follows distinctly different patterns in highly confined gap regions (nanoscale confinement) than in less confined extrafibrillar spaces (microscale confinement). Although the mechanism(s) driving these differences are still largely unknown, differences in the free energy for nucleation may explain these two mineralization behaviors. Here, we report on experimentally obtained nucleation energy barriers to intra- and extrafibrillar mineralization, using in situ X-ray scattering observations and classical nucleation theory. Polyaspartic acid, an extrafibrillar nucleation inhibitor, increases interfacial energies between nuclei and mineralization fluids. In contrast, the confined gap spaces inside collagen fibrils lower the energy barrier by reducing the reactive surface area of nuclei, decreasing the surface energy penalty. The confined gap geometry, therefore, guides the two-dimensional morphology and structure of bioapatite and changes the nucleation pathway by reducing the total energy barrier.

  5. Mechanical properties and collagen cross-linking of the patellar tendon in old and young men

    DEFF Research Database (Denmark)

    Couppé, C; Hansen, P; Kongsgaard, M

    2009-01-01

    were higher in OM than in YM (73 +/- 13 vs. 11 +/- 2 mmol/mol; P appreciably influence the dimensions or mechanical properties of the human patellar tendon in vivo. Collagen concentration was reduced, whereas both enzymatic......Age-related loss in muscle mass and strength impairs daily life function in the elderly. However, it remains unknown whether tendon properties also deteriorate with age. Cross-linking of collagen molecules provides structural integrity to the tendon fibrils and has been shown to change with age...... in animals but has never been examined in humans in vivo. In this study, we examined the mechanical properties and pyridinoline and pentosidine cross-link and collagen concentrations of the patellar tendon in vivo in old (OM) and young men (YM). Seven OM (67 +/- 3 years, 86 +/- 10 kg) and 10 YM (27 +/- 2...

  6. Collagen Conduit Versus Microsurgical Neurorrhaphy

    DEFF Research Database (Denmark)

    Boeckstyns, Michel; Sørensen, Allan Ibsen; Viñeta, Joaquin Fores

    2013-01-01

    To compare repair of acute lacerations of mixed sensory-motor nerves in humans using a collagen tube versus conventional repair.......To compare repair of acute lacerations of mixed sensory-motor nerves in humans using a collagen tube versus conventional repair....

  7. Extracellular matrix of collagen modulates arrhythmogenic activity of pulmonary veins through p38 MAPK activation.

    Science.gov (United States)

    Lu, Yen-Yu; Chen, Yao-Chang; Kao, Yu-Hsun; Chen, Shih-Ann; Chen, Yi-Jen

    2013-06-01

    Atrial fibrillation (AF) is the most common sustained arrhythmia. Cardiac fibrosis with enhanced extracellular collagen plays a critical role in the pathophysiology of AF through structural and electrical remodeling. Pulmonary veins (PVs) are important foci for AF genesis. The purpose of this study was to evaluate whether collagen can directly modulate PV arrhythmogenesis. Action potentials and ionic currents were investigated in isolated male New Zealand rabbit PV cardiomyocytes with and without collagen incubation (10μg/ml, 5-7h) using the whole-cell patch-clamp technique. Compared to control PV cardiomyocytes (n=25), collagen-treated PV cardiomyocytes (n=22) had a faster beating rate (3.2±04 vs. 1.9±0.2Hz, pcollagen-treated PV cardiomyocytes showed a larger transient outward potassium current, small-conductance Ca(2+)-activated K(+) current, inward rectifier potassium current, pacemaker current, and late sodium current than control PV cardiomyocytes, but amplitudes of the sodium current, sustained outward potassium current, and L-type calcium current were similar. Collagen increased the p38 MAPK phosphorylation in PV cardiomyocytes as compared to control. The change of the spontaneous activity and action potential morphology were ameliorated by SB203580 (the p38 MAPK catalytic activity inhibitor), indicating that collagen can directly increase PV cardiomyocyte arrhythmogenesis through p38 MAPK activation, which may contribute to the pathogenesis of AF. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Changes in Structural-Mechanical Properties and Degradability of Collagen during Aging-associated Modifications*

    Science.gov (United States)

    Panwar, Preety; Lamour, Guillaume; Mackenzie, Neil C. W.; Yang, Heejae; Ko, Frank; Li, Hongbin; Brömme, Dieter

    2015-01-01

    During aging, changes occur in the collagen network that contribute to various pathological phenotypes in the skeletal, vascular, and pulmonary systems. The aim of this study was to investigate the consequences of age-related modifications on the mechanical stability and in vitro proteolytic degradation of type I collagen. Analyzing mouse tail and bovine bone collagen, we found that collagen at both fibril and fiber levels varies in rigidity and Young's modulus due to different physiological changes, which correlate with changes in cathepsin K (CatK)-mediated degradation. A decreased susceptibility to CatK-mediated hydrolysis of fibrillar collagen was observed following mineralization and advanced glycation end product-associated modification. However, aging of bone increased CatK-mediated osteoclastic resorption by ∼27%, and negligible resorption was observed when osteoclasts were cultured on mineral-deficient bone. We observed significant differences in the excavations generated by osteoclasts and C-terminal telopeptide release during bone resorption under distinct conditions. Our data indicate that modification of collagen compromises its biomechanical integrity and affects CatK-mediated degradation both in bone and tissue, thus contributing to our understanding of extracellular matrix aging. PMID:26224630

  9. A spectral approach for the quantitative description of cardiac collagen network from nonlinear optical imaging.

    Science.gov (United States)

    Masè, Michela; Cristoforetti, Alessandro; Avogaro, Laura; Tessarolo, Francesco; Piccoli, Federico; Caola, Iole; Pederzolli, Carlo; Graffigna, Angelo; Ravelli, Flavia

    2015-01-01

    The assessment of collagen structure in cardiac pathology, such as atrial fibrillation (AF), is essential for a complete understanding of the disease. This paper introduces a novel methodology for the quantitative description of collagen network properties, based on the combination of nonlinear optical microscopy with a spectral approach of image processing and analysis. Second-harmonic generation (SHG) microscopy was applied to atrial tissue samples from cardiac surgery patients, providing label-free, selective visualization of the collagen structure. The spectral analysis framework, based on 2D-FFT, was applied to the SHG images, yielding a multiparametric description of collagen fiber orientation (angle and anisotropy indexes) and texture scale (dominant wavelength and peak dispersion indexes). The proof-of-concept application of the methodology showed the capability of our approach to detect and quantify differences in the structural properties of the collagen network in AF versus sinus rhythm patients. These results suggest the potential of our approach in the assessment of collagen properties in cardiac pathologies related to a fibrotic structural component.

  10. Physiological type I collagen organization induces the formation of a novel class of linear invadosomes

    Science.gov (United States)

    Juin, Amélie; Billottet, Clotilde; Moreau, Violaine; Destaing, Olivier; Albiges-Rizo, Corinne; Rosenbaum, Jean; Génot, Elisabeth; Saltel, Frédéric

    2012-01-01

    Invadosomes are F-actin structures capable of degrading the matrix through the activation of matrix metalloproteases. As fibrillar type I collagen promotes pro-matrix metalloproteinase 2 activation by membrane type 1 matrix metalloproteinase, we aimed at investigating the functional relationships between collagen I organization and invadosome induction. We found that fibrillar collagen I induced linear F-actin structures, distributed along the fibrils, on endothelial cells, macrophages, fibroblasts, and tumor cells. These structures share features with conventional invadosomes, as they express cortactin and N-WASP and accumulate the scaffold protein Tks5, which proved essential for their formation. On the basis of their ability to degrade extracellular matrix elements and their original architecture, we named these structures “linear invadosomes.” Interestingly, podosomes or invadopodia were replaced by linear invadosomes upon contact of the cells with fibrillar collagen I. However, linear invadosomes clearly differ from classical invadosomes, as they do not contain paxillin, vinculin, and β1/β3 integrins. Using knockout mouse embryonic fibroblasts and RGD peptide, we demonstrate that linear invadosome formation and activity are independent of β1 and β3 integrins. Finally, linear invadosomes also formed in a three-dimensional collagen matrix. This study demonstrates that fibrillar collagen I is the physiological inducer of a novel class of invadosomes. PMID:22114353

  11. Second harmonic generation microscopy differentiates collagen type I and type III in COPD

    Science.gov (United States)

    Suzuki, Masaru; Kayra, Damian; Elliott, W. Mark; Hogg, James C.; Abraham, Thomas

    2012-03-01

    The structural remodeling of extracellular matrix proteins in peripheral lung region is an important feature in chronic obstructive pulmonary disease (COPD). Multiphoton microscopy is capable of inducing specific second harmonic generation (SHG) signal from non-centrosymmetric structural proteins such as fibrillar collagens. In this study, SHG microscopy was used to examine structural remodeling of the fibrillar collagens in human lungs undergoing emphysematous destruction (n=2). The SHG signals originating from these diseased lung thin sections from base to apex (n=16) were captured simultaneously in both forward and backward directions. We found that the SHG images detected in the forward direction showed well-developed and well-structured thick collagen fibers while the SHG images detected in the backward direction showed striking different morphological features which included the diffused pattern of forward detected structures plus other forms of collagen structures. Comparison of these images with the wellestablished immunohistochemical staining indicated that the structures detected in the forward direction are primarily the thick collagen type I fibers and the structures identified in the backward direction are diffusive structures of forward detected collagen type I plus collagen type III. In conclusion, we here demonstrate the feasibility of SHG microscopy in differentiating fibrillar collagen subtypes and understanding their remodeling in diseased lung tissues.

  12. Staining Methods for Normal and Regenerative Myelin in the Nervous System.

    Science.gov (United States)

    Carriel, Víctor; Campos, Antonio; Alaminos, Miguel; Raimondo, Stefania; Geuna, Stefano

    2017-01-01

    Histochemical techniques enable the specific identification of myelin by light microscopy. Here we describe three histochemical methods for the staining of myelin suitable for formalin-fixed and paraffin-embedded materials. The first method is conventional luxol fast blue (LFB) method which stains myelin in blue and Nissl bodies and mast cells in purple. The second method is a LBF-based method called MCOLL, which specifically stains the myelin as well the collagen fibers and cells, giving an integrated overview of the histology and myelin content of the tissue. Finally, we describe the osmium tetroxide method, which consist in the osmication of previously fixed tissues. Osmication is performed prior the embedding of tissues in paraffin giving a permanent positive reaction for myelin as well as other lipids present in the tissue.

  13. Changes in collagenous tissue microstructures and distributions of cathepsin L in body wall of autolytic sea cucumber (Stichopus japonicus).

    Science.gov (United States)

    Liu, Yu-Xin; Zhou, Da-Yong; Ma, Dong-Dong; Liu, Yan-Fei; Li, Dong-Mei; Dong, Xiu-Ping; Tan, Ming-Qian; Du, Ming; Zhu, Bei-Wei

    2016-12-01

    The autolysis of sea cucumber (Stichopus japonicus) was induced by ultraviolet (UV) irradiation, and the changes of microstructures of collagenous tissues and distributions of cathepsin L were investigated using histological and histochemical techniques. Intact collagen fibers in fresh S. japonicus dermis were disaggregated into collagen fibrils after UV stimuli. Cathepsin L was identified inside the surface of vacuoles in the fresh S. japonicus dermis cells. After the UV stimuli, the membranes of vacuoles and cells were fused together, and cathepsin L was released from cells and diffused into tissues. The density of cathepsin L was positively correlated with the speed and degree of autolysis in different layers of body wall. Our results revealed that lysosomal cathepsin L was released from cells in response to UV stimuli, which contacts and degrades the extracellular substrates such as collagen fibers, and thus participates in the autolysis of S. japonicus. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Atrial fibrillation and delayed gastric emptying.

    Directory of Open Access Journals (Sweden)

    Isadora C Botwinick

    Full Text Available BACKGROUND: Atrial fibrillation and delayed gastric emptying (DGE are common after pancreaticoduodenectomy. Our aim was to investigate a potential relationship between atrial fibrillation and DGE, which we defined as failure to tolerate a regular diet by the 7(th postoperative day. METHODS: We performed a retrospective chart review of 249 patients who underwent pancreaticoduodenectomy at our institution between 2000 and 2009. Data was analyzed with Fisher exact test for categorical variables and Mann-Whitney U or unpaired T-test for continuous variables. RESULTS: Approximately 5% of the 249 patients included in the analysis experienced at least one episode of postoperative atrial fibrillation. Median age of patients with atrial fibrillation was 74 years, compared with 66 years in patients without atrial fibrillation (p = 0.0005. Patients with atrial fibrillation were more likely to have a history of atrial fibrillation (p = 0.03. 92% of the patients with atrial fibrillation suffered from DGE, compared to 46% of patients without atrial fibrillation (p = 0.0007. This association held true when controlling for age. CONCLUSION: Patients with postoperative atrial fibrillation are more likely to experience delayed gastric emptying. Interventions to manage delayed gastric function might be prudent in patients at high risk for postoperative atrial fibrillation.

  15. Nanomechanical properties of single amyloid fibrils

    International Nuclear Information System (INIS)

    Sweers, K K M; Bennink, M L; Subramaniam, V

    2012-01-01

    Amyloid fibrils are traditionally associated with neurodegenerative diseases like Alzheimer’s disease, Parkinson’s disease or Creutzfeldt-Jakob disease. However, the ability to form amyloid fibrils appears to be a more generic property of proteins. While disease-related, or pathological, amyloid fibrils are relevant for understanding the pathology and course of the disease, functional amyloids are involved, for example, in the exceptionally strong adhesive properties of natural adhesives. Amyloid fibrils are thus becoming increasingly interesting as versatile nanobiomaterials for applications in biotechnology. In the last decade a number of studies have reported on the intriguing mechanical characteristics of amyloid fibrils. In most of these studies atomic force microscopy (AFM) and atomic force spectroscopy play a central role. AFM techniques make it possible to probe, at nanometer length scales, and with exquisite control over the applied forces, biological samples in different environmental conditions. In this review we describe the different AFM techniques used for probing mechanical properties of single amyloid fibrils on the nanoscale. An overview is given of the existing mechanical studies on amyloid. We discuss the difficulties encountered with respect to the small fibril sizes and polymorphic behavior of amyloid fibrils. In particular, the different conformational packing of monomers within the fibrils leads to a heterogeneity in mechanical properties. We conclude with a brief outlook on how our knowledge of these mechanical properties of the amyloid fibrils can be exploited in the construction of nanomaterials from amyloid fibrils. (topical review)

  16. Reinforcement of a porous collagen scaffold with surface-activated PLA fibers.

    Science.gov (United States)

    Liu, Xi; Huang, Changbin; Feng, Yujie; Liang, Jie; Fan, Yujiang; Gu, Zhongwei; Zhang, Xingdong

    2010-01-01

    A hybrid porous collagen scaffold mechanically reinforced with surface-activated poly(lactic acid) (PLA) fiber was prepared. PLA fibers, 20 mum in diameter and 1 mm in length, were aminolyzed with hexanediamine to introduce free amino groups on the surfaces. After the amino groups were transferred to aldehyde groups by treatment with glutaraldehyde, different amounts (1.5, 3, 5 and 8 mg) of surface-activated PLA fibers were homogeneously mixed with 2 ml type-I collagen solution (pH 2.8, 0.6 wt%). This mixture solution was then freeze-dried and cross-linked to obtain collagen sponges with surface-activated PLA fiber. Scanning electron microscopy observation indicated that the collagen sponges had a highly interconnected porous structure with an average pore size of 170 mum, irrespective of PLA fiber incorporation. The dispersion of surface-activated PLA fibers was homogeneous in collagen sponge, in contrast to unactivated PLA fibers. The compression modulus test results showed that, compared with unactivated PLA fibers, the surface-activated PLA fibers enhanced the resistance of collagen sponge to compression more significantly. Cytotoxicity assay by MTT test showed no cytotoxicity of these collagen sponges. L929 mouse fibroblast cell-culture studies in vitro revealed that the number of L929 cells attached to the collagen sponge with surface-activated PLA fibers, both 6 h and 24 h after seeding, was higher than that in pure collagen sponge and sponge with unactivated PLA fibers. In addition, a better distribution of cells infiltrated in collagen sponge with surface-activated PLA fibers was observed by histological staining. These results indicated that the collagen sponge reinforced with surface-activated PLA fibers is a promising biocompatible scaffold for tissue engineering.

  17. Stroke prevention in atrial fibrillation

    DEFF Research Database (Denmark)

    Fanaroff, Alexander C; Steffel, Jan; Alexander, John H

    2018-01-01

    of anticoagulation for atrial fibrillation (AF). Observational studies employing RWD are useful for describing how oral anticoagulants are used in clinical practice, but generally cannot be used to make claims regarding comparative treatment effects. Questions regarding treatment effect generally are best answered...

  18. Risk Factors for Atrial Fibrillation

    NARCIS (Netherlands)

    B.P. Krijthe (Bouwe)

    2013-01-01

    textabstractAtrial fibrillation is a common cardiac arrhythmia that is characterized by rapid disorganized atrial electrical activity resulting in absence of atrial contractions. It is diagnosed on the basis of typical findings on an electrocardiogram (ECG). The characteristic ECG findings are

  19. Genetic basis of atrial fibrillation

    Directory of Open Access Journals (Sweden)

    Oscar Campuzano

    2016-12-01

    Full Text Available Atrial fibrillation is the most common sustained arrhythmia and remains as one of main challenges in current clinical practice. The disease may be induced secondary to other diseases such as hypertension, valvular heart disease, and heart failure, conferring an increased risk of stroke and sudden death. Epidemiological studies have provided evidence that genetic factors play an important role and up to 30% of clinically diagnosed patients may have a family history of atrial fibrillation. To date, several rare variants have been identified in a wide range of genes associated with ionic channels, calcium handling protein, fibrosis, conduction and inflammation. Important advances in clinical, genetic and molecular basis have been performed over the last decade, improving diagnosis and treatment. However, the genetics of atrial fibrillation is complex and pathophysiological data remains still unraveling. A better understanding of the genetic basis will induce accurate risk stratification and personalized clinical treatment. In this review, we have focused on current genetics basis of atrial fibrillation.

  20. Signal analysis of ventricular fibrillation

    NARCIS (Netherlands)

    Herbschleb, J.N.; Heethaar, R.M.; Tweel, L.H. van der; Zimmerman, A.N.E.; Meijler, F.L.

    Signal analysis of electro(cardio)grams during ventricular fibrillation (VF) in dogs and human patients indicates more organization and regularity than the official WHO definition suggests. The majority of the signal is characterized by a power spectrum with narrow, equidistant peaks. In a further

  1. Glutaraldehyde Cross-Linking of TendonMechanical Effects at the Level of the Tendon Fascicle and Fibril

    DEFF Research Database (Denmark)

    Hansen, P.; Svensson, R.B.; Aagaard, P.

    2009-01-01

    were examined by atomic force microscopy. Peak forces increased from 1379 to 2622 pN while an extended Hertz fit of force-indentation data showed a 24 fold increase in Young's modulus on indentation. The effect of glutaraldehyde cross-linking on the tensile properties of a single collagen fibril......Conclusive insight into the microscopic principles that govern the strength of tendon and related connective tissues is lacking and the importance of collagen cross-linking has not been firmly established. The combined application of whole-tissue mechanical testing and atomic force spectroscopy...... allowed for a detailed characterization of the effect of cross-linking in rat-tail tendon. The cross-link inducing agent glutaraldehyde augmented the tensile strength of tendon fascicles. Stress at failure increased from 8 MPa to 39 MPa. The mechanical effects of glutaraldehyde at the tendon fibril level...

  2. Large proteoglycan complexes and disturbed collagen architecture in the corneal extracellular matrix of mucopolysaccharidosis type VII (Sly syndrome).

    Science.gov (United States)

    Young, Robert D; Liskova, Petra; Pinali, Christian; Palka, Barbara P; Palos, Michalis; Jirsova, Katerina; Hrdlickova, Enkela; Tesarova, Marketa; Elleder, Milan; Zeman, Jiri; Meek, Keith M; Knupp, Carlo; Quantock, Andrew J

    2011-08-24

    Deficiencies in enzymes involved in proteoglycan (PG) turnover underlie a number of rare mucopolysaccharidoses (MPS), investigations of which can considerably aid understanding of the roles of PGs in corneal matrix biology. Here, the authors analyze novel pathologic changes in MPS VII (Sly syndrome) to determine the nature of PG-collagen associations in stromal ultrastructure. Transmission electron microscopy and electron tomography were used to investigate PG-collagen architectures and interactions in a cornea obtained at keratoplasty from a 22-year-old man with MPS VII, which was caused by a compound heterozygous mutation in the GUSB gene. Transmission electron microscopy showed atypical morphology of the epithelial basement membrane and Bowman's layer in MPS VII. Keratocytes were packed with cytoplasmic vacuoles containing abnormal glycosaminoglycan (GAG) material, and collagen fibrils were thinner than in normal cornea and varied considerably throughout anterior (14-32 nm), mid (13-42 nm), and posterior (17-39 nm) regions of the MPS VII stroma. PGs viewed in three dimensions were striking in appearance in that they were significantly larger than PGs in normal cornea and formed highly extended linkages with multiple collagen fibrils. Cellular changes in the MPS VII cornea resemble those in other MPS. However, the wide range of collagen fibril diameters throughout the stroma and the extensive matrix presence of supranormal-sized PG structures appear to be unique features of this disorder. The findings suggest that the accumulation of stromal chondroitin-, dermatan-, and heparan-sulfate glycosaminoglycans in the absence of β-glucuronidase-mediated degradation can modulate collagen fibrillogenesis.

  3. Amyloid Fibril Polymorphism: Almost Identical on the Atomic Level, Mesoscopically Very Different.

    Science.gov (United States)

    Seuring, Carolin; Verasdonck, Joeri; Ringler, Philippe; Cadalbert, Riccardo; Stahlberg, Henning; Böckmann, Anja; Meier, Beat H; Riek, Roland

    2017-03-02

    Amyloid polymorphism of twisted and straight β-endorphin fibrils was studied by negative-stain transmission electron microscopy, scanning transmission electron microscopy, and solid-state nuclear magnetic resonance spectroscopy. Whereas fibrils assembled in the presence of salt formed flat, striated ribbons, in the absence of salt they formed mainly twisted filaments. To get insights into their structural differences at the atomic level, 3D solid-state NMR spectra of both fibril types were acquired, allowing the detection of the differences in chemical shifts of 13 C and 15 N atoms in both preparations. The spectral fingerprints and therefore the chemical shifts are very similar for both fibril types. This indicates that the monomer structure and the molecular interfaces are almost the same but that these small differences do propagate to produce flat and twisted morphologies at the mesoscopic scale. This finding is in agreement with both experimental and theoretical considerations on the assembly of polymers (including amyloids) under different salt conditions, which attribute the mesoscopic difference of flat versus twisted fibrils to electrostatic intermolecular repulsions.

  4. Laser treatment of Port-wine stains

    OpenAIRE

    Boffa, Michael J.

    2001-01-01

    A state-of-the-art pulsed dye laser machine to treat port-wine stains and other vascular lesions has been available in the Malta Health Service since 1999. This article reviews the pathophysiology and clinical features of port- wine stains and describes the principles of laser treatment for this condition.

  5. Comparison of Histochemical Stainings in Evaluation of Liver Fibrosis and Correlation with Transient Elastography in Chronic Hepatitis

    Directory of Open Access Journals (Sweden)

    Daniela Cabibi

    2015-01-01

    Full Text Available Background and Aim. The best staining to evaluate liver fibrosis in liver hepatitis is still a debated topic. This study aimed to compare Masson’s trichrome (MT, Sirius Red (SR, and orcein stainings in evaluating liver fibrosis in chronic HCV hepatitis (CHC with semiquantitative and quantitative methods (Collagen Proportionate Area (CPA by Digital Image Analysis (DIA and correlate them with transient elastography (TE. Methods. Liver stiffness evaluation of 111 consecutive patients with CHC was performed by TE. Semiquantitative staging by Metavir score system and CPA by DIA were assessed on liver biopsy stained with MT, SR, and orcein. Results. MT, SR, and orcein staining showed concordant results in 89.6% of cases in staging CHC, without significant difference in both semiquantitative and quantitative evaluations of fibrosis. TE values were concordant with orcein levels in 86.5% of the cases and with MT/RS in 77.5% (P<0.001. No significant correlation between the grade of necroinflammatory activity and TE values was found. Conclusion. In CHC, SR/MT and orcein stainings are almost concordant and when discordant, orcein staining is better related to TE values than MT/RS. This suggests that elastic fibers play a more important role than reticular or collagenous ones in determining stiffness values in CHC.

  6. An optimized staining technique for the detection of Gram positive and Gram negative bacteria within tissue.

    Science.gov (United States)

    Becerra, Sandra C; Roy, Daniel C; Sanchez, Carlos J; Christy, Robert J; Burmeister, David M

    2016-04-12

    Bacterial infections are a common clinical problem in both acute and chronic wounds. With growing concerns over antibiotic resistance, treatment of bacterial infections should only occur after positive diagnosis. Currently, diagnosis is delayed due to lengthy culturing methods which may also fail to identify the presence of bacteria. While newer costly bacterial identification methods are being explored, a simple and inexpensive diagnostic tool would aid in immediate and accurate treatments for bacterial infections. Histologically, hematoxylin and eosin (H&E) and Gram stains have been employed, but are far from optimal when analyzing tissue samples due to non-specific staining. The goal of the current study was to develop a modification of the Gram stain that enhances the contrast between bacteria and host tissue. A modified Gram stain was developed and tested as an alternative to Gram stain that improves the contrast between Gram positive bacteria, Gram negative bacteria and host tissue. Initially, clinically relevant strains of Pseudomonas aeruginosa and Staphylococcus aureus were visualized in vitro and in biopsies of infected, porcine burns using routine Gram stain, and immunohistochemistry techniques involving bacterial strain-specific fluorescent antibodies as validation tools. H&E and Gram stain of serial biopsy sections were then compared to a modification of the Gram stain incorporating a counterstain that highlights collagen found in tissue. The modified Gram stain clearly identified both Gram positive and Gram negative bacteria, and when compared to H&E or Gram stain alone provided excellent contrast between bacteria and non-viable burn eschar. Moreover, when applied to surgical biopsies from patients that underwent burn debridement this technique was able to clearly detect bacterial morphology within host tissue. We describe a modification of the Gram stain that provides improved contrast of Gram positive and Gram negative microorganisms within host

  7. Optical properties of amyloid stained by Congo red: history and mechanisms.

    Science.gov (United States)

    Howie, Alexander J; Brewer, Douglas B

    2009-04-01

    Amyloid stained by Congo red has striking optical properties that generally have been poorly described and inadequately explained, although they can be understood from principles of physical optics. Molecules of Congo red are orientated on amyloid fibrils, and so the dye becomes dichroic and birefringent. The birefringence varies with wavelength in accordance with a fundamental property of all light-transmitting materials called anomalous dispersion of the refractive index around an absorption peak. The combination of this and absorption of light, with modification by any additional birefringence in the optical system, explains the various colours that can be seen in Congo red-stained amyloid between crossed polariser and analyser, and also when the polariser and analyser are progressively uncrossed. These are called anomalous colours.

  8. The collagen type I segment long spacing (SLS) and fibrillar forms: Formation by ATP and sulphonated diazo dyes.

    Science.gov (United States)

    Harris, J Robin; Lewis, Richard J

    2016-07-01

    The collagen type I segment long spacing (SLS) crystallite is a well-ordered rod-like molecular aggregate, ∼300nm in length, which is produced in vitro under mildly acidic conditions (pH 2.5-3.5) in the presence of 1mM ATP. The formation of the SLS crystallite amplifies the inherent linear structural features of individual collagen heterotrimers, due to the punctate linear distribution and summation of the bulkier amino acid side chains along the length of individual collagen heterotrimers. This can be correlated structurally with the 67nm D-banded collagen fibril that is found in vivo, and formed in vitro. Although first described many years ago, the range of conditions required for ATP-induced SLS crystallite formation from acid-soluble collagen have not been explored extensively. Consequently, we have addressed biochemical parameters such as the ATP concentration, pH, speed of formation and stability so as to provide a more complete structural understanding of the SLS crystallite. Treatment of collagen type I with 1mM ATP at neutral and higher pH (6.0-9.0) also induced the formation of D-banded fibrils. Contrary to previous studies, we have shown that the polysulphonated diazo dyes Direct red (Sirius red) and Evans blue, but not Congo red and Methyl blue, can also induce the formation of SLS-like aggregates of collagen, but under markedly different ionic conditions to those employed in the presence of ATP. Specifically, pre-formed D-banded collagen fibrils, prepared in a higher than the usual physiological NaCl concentration (e.g. 500mM NaCl, 20mM Tris-HCl pH7.4 or x3 PBS), readily form SLS aggregates when treated with 0.1mM Direct red and Evans blue, but this did not occur at lower NaCl concentrations. These new data are discussed in relation to the anion (Cl(-)) and polyanion (phosphate and sulphonate) binding by the collagen heterotrimer and their likely role in collagen fibrillogenesis and SLS formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The osteoinductive effect of chitosan-collagen composites around pure titanium implant surfaces in rats.

    Science.gov (United States)

    Kung, S; Devlin, H; Fu, E; Ho, K-Y; Liang, S-Y; Hsieh, Y-D

    2011-02-01

    The enhancing effects of chitosan on activation of platelets and differentiation of osteoprogenitor cells have been demonstrated in vitro. The purpose of this study was to evaluate the in vivo osteoinductive effect of chitosan-collagen composites around pure titanium implant surfaces. Chitosan-collagen composites containing chitosan of different molecular weights (450 and 750 kDa) were wrapped onto titanium implants and embedded into the subcutaneous area on the back of 15 Sprague-Dawley rats. The control consisted of implants wrapped with plain collagen type I membranes. Implants and surrounding tissues were retrieved 6 wks after surgery and identified by Alizarin red and Alcian blue whole mount staining. The newly formed structures in the test groups were further analyzed by Toluidine blue and Masson-Goldner trichrome staining, and immunohistochemical staining with osteopontin and alkaline phosphotase. The bone formation parameters of the new bone in the two test groups were measured and compared. New bone formed ectopically in both chitosan-collagen groups, whereas no bone induction occurred in the negative control group. These newly formed bone-like structures were further confirmed by immunohistochemical staining. Comparison of bone parameters of the newly induced bone revealed no statistically significant differences between the 450 and 750 kDa chitosan-collagen groups. Our results demonstrated that chitosan-collagen composites might induce in vivo new bone formation around pure titanium implant surfaces. Different molecular weights of chitosan did not show significantly different effects on the osteoinductive potential of the test materials. © 2010 John Wiley & Sons A/S.

  10. A collagen-binding EGFR antibody fragment targeting tumors with a collagen-rich extracellular matrix

    OpenAIRE

    Hui Liang; Xiaoran Li; Bin Wang; Bing Chen; Yannan Zhao; Jie Sun; Yan Zhuang; Jiajia Shi; He Shen; Zhijun Zhang; Jianwu Dai

    2016-01-01

    Many tumors over-express collagen, which constitutes the physical scaffold of tumor microenvironment. Collagen has been considered to be a target for cancer therapy. The collagen-binding domain (CBD) is a short peptide, which could bind to collagen and achieve the sustained release of CBD-fused proteins in collagen scaffold. Here, a collagen-binding EGFR antibody fragment was designed and expressed for targeting the collagen-rich extracellular matrix in tumors. The antibody fragment (Fab) of ...

  11. Glutaraldehyde-induced remineralization improves the mechanical properties and biostability of dentin collagen

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chaoqun; Mao, Caiyun; Sun, Jian; Chen, Yi; Wang, Wei [Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University (China); Pan, Haihua; Tang, Ruikang [Centre for Biopathways and Biomaterials, Department of Chemistry, Zhejiang University (China); Gu, Xinhua [Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University (China)

    2016-10-01

    The purpose of this study was to induce a biomimetic remineralization process by using glutaraldehyde (GA) to reconstruct the mechanical properties and biostability of demineralized collagen. Demineralized dentin disks (35% phosphoric acid, 10 s) were pretreated with a 5% GA solution for 3 min and then cultivated in a calcium phosphate remineralization solution. The remineralization kinetics and superstructure of the remineralization layer were evaluated by Raman spectroscopy, transmission electron microscopy, scanning electron microscopy and nanoindentation tests. The biostability was examined by enzymatic degradation experiments. A significant difference was found in dentin remineralization process between dentin with and without GA pretreating. GA showed a specific affinity to dentin collagen resulting in the formation of a cross-linking superstructure. GA pretreating could remarkably shorten remineralization time from 7 days to 2 days. The GA-induced remineralized collagen fibrils were well encapsulated by newly formed hydroxyapatite mineral nanocrystals. With the nano-hydroxyapatite coating, both the mechanical properties (elastic modulus and hardness) and the biostability against enzymatic degradation of the collagen were significantly enhanced, matching those of natural dentin. The results indicated that GA cross-linking of dentin collagen could promote dentin biomimetic remineralization, resulting in an improved mechanical properties and biostability. It may provide a promising tissue-engineering technology for dentin repair. - Highlights: • GA cross-linking can promote the remineralization kinetics of dentin collagen. • GA-induced remineralization can reshape the demineralized dentin collagen layer. • The GA-induced remineralization enhances the degradation resistance of collagen. • GA-induced remineralization provides a new approach to improve bonding durability.

  12. Glutaraldehyde-induced remineralization improves the mechanical properties and biostability of dentin collagen

    International Nuclear Information System (INIS)

    Chen, Chaoqun; Mao, Caiyun; Sun, Jian; Chen, Yi; Wang, Wei; Pan, Haihua; Tang, Ruikang; Gu, Xinhua

    2016-01-01

    The purpose of this study was to induce a biomimetic remineralization process by using glutaraldehyde (GA) to reconstruct the mechanical properties and biostability of demineralized collagen. Demineralized dentin disks (35% phosphoric acid, 10 s) were pretreated with a 5% GA solution for 3 min and then cultivated in a calcium phosphate remineralization solution. The remineralization kinetics and superstructure of the remineralization layer were evaluated by Raman spectroscopy, transmission electron microscopy, scanning electron microscopy and nanoindentation tests. The biostability was examined by enzymatic degradation experiments. A significant difference was found in dentin remineralization process between dentin with and without GA pretreating. GA showed a specific affinity to dentin collagen resulting in the formation of a cross-linking superstructure. GA pretreating could remarkably shorten remineralization time from 7 days to 2 days. The GA-induced remineralized collagen fibrils were well encapsulated by newly formed hydroxyapatite mineral nanocrystals. With the nano-hydroxyapatite coating, both the mechanical properties (elastic modulus and hardness) and the biostability against enzymatic degradation of the collagen were significantly enhanced, matching those of natural dentin. The results indicated that GA cross-linking of dentin collagen could promote dentin biomimetic remineralization, resulting in an improved mechanical properties and biostability. It may provide a promising tissue-engineering technology for dentin repair. - Highlights: • GA cross-linking can promote the remineralization kinetics of dentin collagen. • GA-induced remineralization can reshape the demineralized dentin collagen layer. • The GA-induced remineralization enhances the degradation resistance of collagen. • GA-induced remineralization provides a new approach to improve bonding durability.

  13. Curcuma longa extract as a histological dye for collagen fibres and red blood cells

    Science.gov (United States)

    Avwioro, O G; Onwuka, S K; Moody, J O; Agbedahunsi, J M; Oduola, T; Ekpo, O E; Oladele, A A

    2007-01-01

    Crude ethanolic extract and column chromatographic fractions of the Allepey cultivar of Curcuma longa Roxb, commonly called turmeric (tumeric) in commerce, were used as a stain for tissue sections. Staining was carried out under basic, acidic and neutral media conditions. Inorganic and organic dissolution solvents were used. The stain was used as a counterstain after alum and iron haematoxylins. C. longa stained collagen fibres, cytoplasm, red blood cells and muscle cells yellow. It also stained in a fashion similar to eosin, except for its intense yellow colour. Preliminary phytochemical evaluation of the active column fraction revealed that it contained flavonoids, free anthraquinone and deoxy sugar. A cheap, natural dye can thus be obtained from C. longa. PMID:17451535

  14. Multicenter Assessment of Gram Stain Error Rates.

    Science.gov (United States)

    Samuel, Linoj P; Balada-Llasat, Joan-Miquel; Harrington, Amanda; Cavagnolo, Robert

    2016-06-01

    Gram stains remain the cornerstone of diagnostic testing in the microbiology laboratory for the guidance of empirical treatment prior to availability of culture results. Incorrectly interpreted Gram stains may adversely impact patient care, and yet there are no comprehensive studies that have evaluated the reliability of the technique and there are no established standards for performance. In this study, clinical microbiology laboratories at four major tertiary medical care centers evaluated Gram stain error rates across all nonblood specimen types by using standardized criteria. The study focused on several factors that primarily contribute to errors in the process, including poor specimen quality, smear preparation, and interpretation of the smears. The number of specimens during the evaluation period ranged from 976 to 1,864 specimens per site, and there were a total of 6,115 specimens. Gram stain results were discrepant from culture for 5% of all specimens. Fifty-eight percent of discrepant results were specimens with no organisms reported on Gram stain but significant growth on culture, while 42% of discrepant results had reported organisms on Gram stain that were not recovered in culture. Upon review of available slides, 24% (63/263) of discrepant results were due to reader error, which varied significantly based on site (9% to 45%). The Gram stain error rate also varied between sites, ranging from 0.4% to 2.7%. The data demonstrate a significant variability between laboratories in Gram stain performance and affirm the need for ongoing quality assessment by laboratories. Standardized monitoring of Gram stains is an essential quality control tool for laboratories and is necessary for the establishment of a quality benchmark across laboratories. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  15. Surface staining of small intestinal biopsies

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier

    1977-01-01

    Small intestinal biopsies are most often by routine examined under a stereo-microscope, prior to embedding for histological examination. This is done in order to get a view of the appearance of the mucosal pattern, especially villus configuration. The distinctness of the surface pattern however......, is improved considerably if the biopsies are stained with Alcian Green and/or PAS before they are examined. In the present paper a detailed description is given of staining of small intestinal biopsies as whole mounts. The difference between the unstained and the stained biopsies is illustrated by a few...

  16. Decorin-transforming growth factor- interaction regulates matrix organization and mechanical characteristics of three-dimensional collagen matrices.

    Science.gov (United States)

    Ferdous, Zannatul; Wei, Victoria Mariko; Iozzo, Renato; Höök, Magnus; Grande-Allen, Kathryn Jane

    2007-12-07

    The small leucine-rich proteoglycan decorin has been demonstrated to be a key regulator of collagen fibrillogenesis; decorin deficiencies lead to irregularly shaped collagen fibrils and weakened material behavior in postnatal murine connective tissues. In an in vitro investigation of the contributions of decorin to tissue organization and material behavior, model tissues were engineered by seeding embryonic fibroblasts, harvested from 12.5-13.5 days gestational aged decorin null (Dcn(-/-)) or wild-type mice, within type I collagen gels. The resulting three-dimensional collagen matrices were cultured for 4 weeks under static tension. The collagen matrices seeded with Dcn(-/-) cells exhibited greater contraction, cell density, ultimate tensile strength, and elastic modulus than those seeded with wild-type cells. Ultrastructurally, the matrices seeded with Dcn(-/-) cells contained a greater density of collagen. The decorin-null tissues contained more biglycan than control tissues, suggesting that this related proteoglycan compensated for the absence of decorin. The effect of transforming growth factor-beta (TGF-beta), which is normally sequestered by decorin, was also investigated in this study. The addition of TGF-beta1 to the matrices seeded with wild-type cells improved their contraction and mechanical strength, whereas blocking TGF-beta1 in the Dcn(-/-) cell-seeded matrices significantly reduced the collagen gel contraction. These results indicate that the inhibitory interaction between decorin and TGF-beta1 significantly influenced the matrix organization and material behavior of these in vitro model tissues.

  17. Risk of atrial fibrillation in diabetes mellitus

    DEFF Research Database (Denmark)

    Pallisgaard, Jannik L; Schjerning, Anne-Marie; Lindhardt, Tommi B

    2016-01-01

    AIM: Diabetes has been associated with atrial fibrillation but the current evidence is conflicting. In particular knowledge regarding young diabetes patients and the risk of developing atrial fibrillation is sparse. The aim of our study was to investigate the risk of atrial fibrillation in patients...... with diabetes compared to the background population in Denmark. METHODS AND RESULTS: Through Danish nationwide registries we included persons above 18 years of age and without prior atrial fibrillation and/or diabetes from 1996 to 2012. The study cohort was divided into a background population without diabetes...... and a diabetes group. The absolute risk of developing atrial fibrillation was calculated and Poisson regression models adjusted for sex, age and comorbidities were used to calculate incidence rate ratios of atrial fibrillation. The total study cohort included 5,081,087 persons, 4,827,713 (95%) in the background...

  18. [Panic disorder and atrial fibrillation].

    Science.gov (United States)

    Olazabal Eizaguirre, N; Chavez, R; González-Torres, M A; Gaviria, M

    2013-10-01

    This paper studies the relationship between atrial fibrillation and panic disorder. There are often doubts on the differential diagnosis in emergency services and general medical settings. Panic disorder prevalence rates have been found to be high in patients suffering from atrial fibrillation. Various studies have observed that patients diagnosed with anxiety disorders frequently have higher cardiovascular disease rates compared to the general population. Usually, patients suffering from panic disorder exhibit somatic complaints suggesting coronary disease, such as chest pain or palpitations. The aim is to make the correct diagnosis and treatment for these different illnesses, and to decrease the costs due to misdiagnosis. Copyright © 2012 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España. All rights reserved.

  19. Quantitative analysis of the synthesis and secretion of type VII collagen in cultured human dermal fibroblasts with a sensitive sandwich enzyme-linked immunoassay.

    Science.gov (United States)

    Amano, Satoshi; Ogura, Yuki; Akutsu, Nobuko; Nishiyama, Toshio

    2007-02-01

    Type VII collagen is the major component of anchoring fibrils in the epidermal basement membrane. Its expression has been analyzed by immunostaining or Northern blotting, but rarely at the protein level. In this study, we have quantitatively examined the effects of ascorbic acid and various cytokines/growth factors on the protein synthesis and secretion of type VII collagen by human dermal fibroblasts in culture, using a developed, highly sensitive sandwich enzyme-linked immunoassay with two kinds of specific monoclonal antibodies against the non-collagenous domain-1. Ascorbic acid and its derivative induced a twofold increase in type VII collagen synthesis, and markedly increased the secretion of type VII collagen into the medium when compared with the control culture. This effect was not influenced by the presence of transforming growth factor-beta1 (TGF-beta1). The synthesis of type VII collagen was elevated by TGF-beta1, platelet-derived growth factor, tumor necrosis factor-alpha, and interleukin-1beta, but not by TGF-alpha. Thus, our data indicate that the synthesis and secretion of type VII collagen in human dermal fibroblasts are regulated by ascorbate and the enhancement of type VII collagen gene expression by cytokines/growth factors is accompanied with elevated production of type VII collagen at the protein level.

  20. Comparison of special stains for keratin with routine hematoxylin and eosin stain.

    Science.gov (United States)

    Rao, Roopa S; Patil, Shankargouda; Majumdar, Barnali; Oswal, Rakesh G

    2015-03-01

    Keratins are the most abundant proteins and are characteristic findings in many epithelial pathologies, making it a diagnostically important marker, both histopathologically and immunohistochemically. Since, immunohistochemistry is an expensive diagnostic tool, special stains to detect the degree of keratinization could serve as a faster and economic option. The aim of the present study was to compare the efficacy of special stains for keratin with standard hematoxylin and eosin stain (H and E). Objectives include: (i) To subject the diagnosed cases of keratin disorders to the selected special stains: Ayoub-shklar method, Dane-Herman method, Alcian blue -periodic acid Schiff 's (PAS), rapid papanicolaou (PAP) and Gram's stain. (ii) To compare the staining specificity and staining intensity of special stains with respect to routine hematoxylin and eosin (H and E) stain. (iii) To compare the efficacy of special stains to routine H and E stain in identification of the type of keratin present in the selected cases. A total of 80 cases of known pathology for keratin were retrieved from the department archive, which included 10 each of normal gingiva, hyperkeratosis, squamous papilloma, verrucous hyperplasia, verrucous carcinoma, well-differentiated squamous cell carcinoma, orthokeratinized odontogenic cyst and keratocystic odontogenic tumors. Six sections of 4 µ each from the paraffin blocks were made, stained with H and E and the special stains and these were evaluated by 2 pathologists based on the modified scoring criteria from Rahma Al-Maaini and Philip Bryant 2008. The results were tabulated using Chi square and kappa statistics. The statistical values for identification of the type of keratinization was insignificant showing that ortho and parakeratinized epithelia could be correctly identified by both H and E as well as all the special stains. Furthermore, all the special stains showed a positive result and statistical significance (P < 0.001) with respect to

  1. Collagen content in the bladder of men with LUTS undergoing open prostatectomy: A pilot study.

    Science.gov (United States)

    Averbeck, Marcio A; De Lima, Nelson G; Motta, Gabriela A; Beltrao, Lauro F; Abboud Filho, Nury J; Rigotti, Clarice P; Dos Santos, William N; Dos Santos, Steven K J; Da Silva, Luis F B; Rhoden, Ernani L

    2018-03-01

    To evaluate the collagen content in the bladder wall of men undergoing open prostate surgery. From July 2014 to August 2016, men aged ≥ 50 years, presenting LUTS and undergoing open prostate surgery due to benign prostatic enlargement (BPE) or prostate cancer were prospectively enrolled. Preoperative assessment included validated questionnaires (IPSS and OAB-V8), lower urinary tract ultrasound, and urodynamics. Bladder biopsies were obtained during open prostatectomy for determination of collagen content (sirius red-picric acid stain; polarized light analysis). Collagen to smooth muscle ratio (C/M) in the detrusor was measured and its relationship with preoperative parameters was investigated. The level of significance was P non-diabetic patients (17.71 ± 6.82% vs 12.46 ± 5.2%, respectively; P = 0.024). Reduced bladder compliance was also marker for higher collagen content (P = 0.042). Bladder outlet obstruction (BOO) was not a predictor of increased collagen deposition in the bladder wall (P = 0.75). Patients with PVR ≥ 200 mL showed a higher collagen to smooth muscle ratio in the bladder wall (P = 0.036). DM2 and urodynamic parameters, such as increased PVR and reduced bladder compliance, were associated with higher collagen content in the bladder wall of men with LUTS. © 2017 Wiley Periodicals, Inc.

  2. Gram staining apparatus for space station applications

    Science.gov (United States)

    Molina, T. C.; Brown, H. D.; Irbe, R. M.; Pierson, D. L.

    1990-01-01

    A self-contained, portable Gram staining apparatus (GSA) has been developed for use in the microgravity environment on board the Space Station Freedom. Accuracy and reproducibility of this apparatus compared with the conventional Gram staining method were evaluated by using gram-negative and gram-positive controls and different species of bacteria grown in pure cultures. A subsequent study was designed to assess the performance of the GSA with actual specimens. A set of 60 human and environmental specimens was evaluated with the GSA and the conventional Gram staining procedure. Data obtained from these studies indicated that the GSA will provide the Gram staining capability needed for the microgravity environment of space.

  3. Research on pre-staining gel electrophoresis

    International Nuclear Information System (INIS)

    Zhong Ruibo; Liu Yushuang; Zhang Ping; Liu Jingran; Zhao Guofen; Zhang Feng

    2014-01-01

    Background: Gel electrophoresis is a powerful biochemical separation technique. Most biological molecules are completely transparent in the visible region of light, so it is necessary to use staining to show the results after gel electrophoresis, and the general steps of conventional staining methods are time-consuming. Purpose: We try to develop a novel approach to simplify the gel electrophoresis: Pre-Staining Gel Electrophoresis (PSGE), which can make the gel electrophoresis results monitored in real time. Methods: Pre-stain the protein samples with Coomassie Brilliant Blue (CBB) for 30 min before loading the sample into the gel well. Results and Conclusion: PSGE can be successfully used to analyze the binding efficiency of Bovine Serum Albumin (BSA) and amphiphilic polymer via chemical coupling and physical absorption, and the double PSGE also shows a great potential in bio-analytical chemistry. (authors)

  4. Thermal denaturation of type I collagen vitrified gels

    International Nuclear Information System (INIS)

    Xia, Zhiyong; Calderon-Colon, Xiomara; Trexler, Morgana; Elisseeff, Jennifer; Guo, Qiongyu

    2012-01-01

    Highlights: ► We analyzed the denaturation of vitrigels synthesized under different conditions. ► Overall denaturation kinetics consisted of both reversible and irreversible steps. ► More stable vitrigels were formed under high level of vitrification. - Abstract: The denaturation kinetics of type I collagen vitrigels synthesized under different vitrification time and temperature were analyzed by the classical Kissinger approach and the advanced model free kinetics (AMFK) using the Vyazovkin algorithm. The AMFK successfully elucidated the overall denaturation into reversible and irreversible processes. Depending on vitrification conditions, the activation energy for the irreversible process ranged from 100 to 200 kJ/mol, and the reversible enthalpy ranged from 250 to 300 kJ/mol. All of these values increased with the vitrification time and temperature, indicating that a more stable and complex structure formed with increased vitrification. The classical Kissinger method predicted the presence of a critical temperate of approximately 60 °C for the transition between reversible and irreversible processes. Scanning electron microscopy revealed the presence of fibril structures in vitrigels both before and after full denaturation; however the fibrils had became thicker and rougher after denaturation.

  5. PHAGOCYTOSIS AND REMODELING OF COLLAGEN MATRICES

    OpenAIRE

    Abraham, Leah C.; Dice, J Fred.; Lee, Kyongbum; Kaplan, David L.

    2007-01-01

    The biodegradation of collagen and the deposition of new collagen-based extracellular matrices are of central importance in tissue remodeling and function. Similarly, for collagen-based biomaterials used in tissue engineering, the degradation of collagen scaffolds with accompanying cellular infiltration and generation of new extracellular matrix is critical for integration of in vitro grown tissues in vivo. In earlier studies we observed significant impact of collagen structure on primary lun...

  6. A tissue adaptation model based on strain-dependent collagen degradation and contact-guided cell traction.

    Science.gov (United States)

    Heck, T A M; Wilson, W; Foolen, J; Cilingir, A C; Ito, K; van Donkelaar, C C

    2015-03-18

    Soft biological tissues adapt their collagen network to the mechanical environment. Collagen remodeling and cell traction are both involved in this process. The present study presents a collagen adaptation model which includes strain-dependent collagen degradation and contact-guided cell traction. Cell traction is determined by the prevailing collagen structure and is assumed to strive for tensional homeostasis. In addition, collagen is assumed to mechanically fail if it is over-strained. Care is taken to use principally measurable and physiologically meaningful relationships. This model is implemented in a fibril-reinforced biphasic finite element model for soft hydrated tissues. The versatility and limitations of the model are demonstrated by corroborating the predicted transient and equilibrium collagen adaptation under distinct mechanical constraints against experimental observations from the literature. These experiments include overloading of pericardium explants until failure, static uniaxial and biaxial loading of cell-seeded gels in vitro and shortening of periosteum explants. In addition, remodeling under hypothetical conditions is explored to demonstrate how collagen might adapt to small differences in constraints. Typical aspects of all essentially different experimental conditions are captured quantitatively or qualitatively. Differences between predictions and experiments as well as new insights that emerge from the present simulations are discussed. This model is anticipated to evolve into a mechanistic description of collagen adaptation, which may assist in developing load-regimes for functional tissue engineered constructs, or may be employed to improve our understanding of the mechanisms behind physiological and pathological collagen remodeling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. The chemical reactivity and structure of collagen studied by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Wess, T.J.; Wess, L.; Miller, A. [Univ. of Stirling (United Kingdom)

    1994-12-31

    The chemical reactivity of collagen can be studied using neutron diffraction (a non-destructive technique), for certain reaction types. Collagen contains a number of lysine and hydroxylysine side chains that can react with aldehydes and ketones, or these side chains can themselves be converted to aldehydes by lysyl oxidase. The reactivity of these groups not only has an important role in the maintenance of mechanical strength in collagen fibrils, but can also manifest pathologically in the cases of aging, diabetes (reactivity with a variety of sugars) and alcoholism (reactivity with acetaldehyde). The reactivity of reducing groups with collagen can be studied by neutron diffraction, since the crosslink formed in the adduction process is initially of a Schiff base or keto-imine nature. The nature of this crosslink allows it to be deuterated, and the position of this relatively heavy scattering atom can be used in a process of phase determination by multiple isomorphous replacement. This process was used to study the following: the position of natural crosslinks in collagen; the position of adducts in tendon from diabetic rats in vivo and the in vitro position of acetaidehyde adducts in tendon.

  8. The structural and optical properties of type III human collagen biosynthetic corneal substitutes

    Science.gov (United States)

    Hayes, Sally; Lewis, Phillip; Islam, M. Mirazul; Doutch, James; Sorensen, Thomas; White, Tomas; Griffith, May; Meek, Keith M.

    2015-01-01

    The structural and optical properties of clinically biocompatible, cell-free hydrogels comprised of synthetically cross-linked and moulded recombinant human collagen type III (RHCIII) with and without the incorporation of 2-methacryloyloxyethyl phosphorylcholine (MPC) were assessed using transmission electron microscopy (TEM), X-ray scattering, spectroscopy and refractometry. These findings were examined alongside similarly obtained data from 21 human donor corneas. TEM demonstrated the presence of loosely bundled aggregates of fine collagen filaments within both RHCIII and RHCIII-MPC implants, which X-ray scattering showed to lack D-banding and be preferentially aligned in a uniaxial orientation throughout. This arrangement differs from the predominantly biaxial alignment of collagen fibrils that exists in the human cornea. By virtue of their high water content (90%), very fine collagen filaments (2–9 nm) and lack of cells, the collagen hydrogels were found to transmit almost all incident light in the visible spectrum. They also transmitted a large proportion of UV light compared to the cornea which acts as an effective UV filter. Patients implanted with these hydrogels should be cautious about UV exposure prior to regrowth of the epithelium and in-growth of corneal cells into the implants. PMID:26159106

  9. Multifunctional role of osteopontin in directing intrafibrillar mineralization of collagen and activation of osteoclasts

    Science.gov (United States)

    Rodriguez, Douglas E.; Thula-Mata, Taili; Toro, Edgardo J.; Yeh, Ya-Wen; Holt, Carl; Holliday, L. Shannon; Gower, Laurie B.

    2013-01-01

    Mineralized collagen composites are of interest because they have the potential to provide a bone-like scaffold that stimulates the natural processes of resorption and remodeling. Working toward this goal, our group has previously shown that the nanostructure of bone can be reproduced using a polymer-induced liquid-precursor (PILP) process, which enables intrafibrillar mineralization of collagen with hydroxyapatite (HA) to be achieved. This prior work used polyaspartic acid (pASP), a simple mimic for acidic non-collagenous proteins (NCPs), to generate nanodroplets/nanoparticles of an amorphous mineral precursor which can infiltrate the interstices of type-I collagen fibrils. In this study we show that osteopontin (OPN) can similarly serve as a process-directing agent for the intrafibrillar mineralization of collagen, even though OPN is generally considered a mineralization inhibitor. We also found that inclusion of OPN in the mineralization process promotes the interaction of mouse marrow-derived osteoclasts with PILP-remineralized bone that was previously demineralized, as measured by actin ring formation. While osteoclast activation occurred when pASP was used as the process-directing agent, using OPN resulted in a dramatic effect on osteoclast activation, presumably because of the inherent arginine-glycine-aspartate acid (RGD) ligands of OPN. By capitalizing on the multifunctionality of OPN, these studies may lead the way to producing biomimetic bone substitutes with the capability of tailorable bioresorption rates. PMID:24140612

  10. The chemical reactivity and structure of collagen studied by neutron diffraction

    International Nuclear Information System (INIS)

    Wess, T.J.; Wess, L.; Miller, A.

    1994-01-01

    The chemical reactivity of collagen can be studied using neutron diffraction (a non-destructive technique), for certain reaction types. Collagen contains a number of lysine and hydroxylysine side chains that can react with aldehydes and ketones, or these side chains can themselves be converted to aldehydes by lysyl oxidase. The reactivity of these groups not only has an important role in the maintenance of mechanical strength in collagen fibrils, but can also manifest pathologically in the cases of aging, diabetes (reactivity with a variety of sugars) and alcoholism (reactivity with acetaldehyde). The reactivity of reducing groups with collagen can be studied by neutron diffraction, since the crosslink formed in the adduction process is initially of a Schiff base or keto-imine nature. The nature of this crosslink allows it to be deuterated, and the position of this relatively heavy scattering atom can be used in a process of phase determination by multiple isomorphous replacement. This process was used to study the following: the position of natural crosslinks in collagen; the position of adducts in tendon from diabetic rats in vivo and the in vitro position of acetaidehyde adducts in tendon

  11. Role of Decorin Core Protein in Collagen Organisation in Congenital Stromal Corneal Dystrophy (CSCD.

    Directory of Open Access Journals (Sweden)

    Christina S Kamma-Lorger

    Full Text Available The role of Decorin in organising the extracellular matrix was examined in normal human corneas and in corneas from patients with Congenital Stromal Corneal Dystrophy (CSCD. In CSCD, corneal clouding occurs due to a truncating mutation (c.967delT in the decorin (DCN gene. Normal human Decorin protein and the truncated one were reconstructed in silico using homology modelling techniques to explore structural changes in the diseased protein. Corneal CSCD specimens were also examined using 3-D electron tomography and Small Angle X-ray diffraction (SAXS, to image the collagen-proteoglycan arrangement and to quantify fibrillar diameters, respectively. Homology modelling showed that truncated Decorin had a different spatial geometry to the normal one, with the truncation removing a major part of the site that interacts with collagen, compromising its ability to bind effectively. Electron tomography showed regions of abnormal stroma, where collagen fibrils came together to form thicker fibrillar structures, showing that Decorin plays a key role in the maintenance of the order in the normal corneal extracellular matrix. Average diameter of individual fibrils throughout the thickness of the cornea however remained normal.

  12. The role of protonation in protein fibrillation

    DEFF Research Database (Denmark)

    Jeppesen, Martin D; Westh, Peter; Otzen, Daniel E

    2010-01-01

    Many proteins fibrillate at low pH despite a high population of charged side chains. Therefore exchange of protons between the fibrillating peptide and its surroundings may play an important role in fibrillation. Here, we use isothermal titration calorimetry to measure exchange of protons between...... buffer and the peptide hormone glucagon during fibrillation. Glucagon absorbs or releases protons to an extent which allows it to attain a net charge of zero in the fibrillar state, both at acidic and basic pH. Similar results are obtained for lysozyme. This suggests that side chain pKa values change...

  13. New Grocott Stain without Using Chromic Acid

    International Nuclear Information System (INIS)

    Shiogama, Kazuya; Kitazawa, Kayo; Mizutani, Yasuyoshi; Onouchi, Takanori; Inada, Ken-ichi; Tsutsumi, Yutaka

    2015-01-01

    We established a new “ecological” Grocott stain for demonstrating fungi, based upon a 4R principle of refusal, reduction, reuse, and recycle of waste management. Conventional Grocott stain employs environmentally harsh 5% chromic acid for oxidization. Initially, we succeeded in reducing the concentration of chromic acid from 5% to 1% by incubating the solution at 60°C and using five-fold diluted chromic acid solution at which point it was reusable. Eventually, we reached the refusal level where 1% periodic acid oxidization was efficient enough, when combined with preheating of sections in the electric jar, microwave oven, or pressure pan. For convenience sake, we recommend pressure pan heating in tap water for 10 min. Stainability of fungi in candidiasis and aspergillosis was comparable with conventional Grocott stain, while Mucor hyphae showed enhanced staining. The modified sequence was further applicable to detecting a variety of mycotic pathogens in paraffin sections. Our environmentally-friendly Grocott stain also has the advantage of avoiding risk of human exposure to hexavalent chromium solution in the histopathology laboratory. The simple stain sequence is can be easily applied worldwide

  14. Stop-and-go kinetics in amyloid fibrillation

    DEFF Research Database (Denmark)

    Ferkinghoff-Borg, Jesper; Fonslet, Jesper; Andersen, Christian Beyschau

    2010-01-01

    Many human diseases are associated with protein aggregation and fibrillation. We present experiments on in vitro glucagon fibrillation using total internal reflection fluorescence microscopy, providing real-time measurements of single-fibril growth. We find that amyloid fibrils grow in an intermi......Many human diseases are associated with protein aggregation and fibrillation. We present experiments on in vitro glucagon fibrillation using total internal reflection fluorescence microscopy, providing real-time measurements of single-fibril growth. We find that amyloid fibrils grow...

  15. Agar/collagen membrane as skin dressing for wounds

    Energy Technology Data Exchange (ETDEWEB)

    Bao Lei; Yang Wei; Mao Xuan; Mou Shansong; Tang Shunqing [Biomedical Engineering Institute, Jinan University, Guangzhou (China)], E-mail: tshunqt@jnu.edu.cn, E-mail: tmuss@jnu.edu.cn

    2008-12-15

    Agar, a highly hydrophilic polymer, has a special gel property and favorable biocompatibility, but moderate intension strength in an aqueous condition and a low degradation rate. In order to tailor both properties of mechanical intension and degradation, type I collagen was composited with agar in a certain ratio by drying at 50 {sup 0}C or by a freeze-dry process. Glutaraldehyde was chosen as a crosslinking agent, and the most favorable condition for crosslinking was that the weight ratio of agar to glutaraldehyde was 66.7 and the pH value about 5. Dynamic mechanical analysis results showed that the single agar membrane had a modulus value between 640 MPa and 1064 MPa, but it was between 340 MPa and 819 MPa after being composited with type I collagen. It was discovered under an optical microscope that the pores were interconnected in the composite scaffolds instead of the honeycomb-like pores in a single type I collagen scaffold or the laminated gaps in a single agar scaffold. The results of an acute toxicity test disclosed that the composites were not toxic to mice although the composites were crosslinked with a certain concentration of glutaraldehyde. The results of gross examinations showed that when the composite membranes or scaffolds were applied to a repair rabbit skin lesion, the composites had a good repair effect without infection, liquid exudation or visible scar in the lesion covered with them. But in the control group, the autologous skin showed necrosis and there were a lot of scar tissues in the lesion site. H and E staining results showed that the repair tissue was similar to the normal one and very few scaffolds or membranes were left without degradation after 2 or 3 weeks. In conclusion, it is proved that type I collagen increases the toughness of the agar membrane, and the agar/type I collagen composites are promising biomaterials as wound dressings for healing burns or ulcers.

  16. Agar/collagen membrane as skin dressing for wounds

    International Nuclear Information System (INIS)

    Bao Lei; Yang Wei; Mao Xuan; Mou Shansong; Tang Shunqing

    2008-01-01

    Agar, a highly hydrophilic polymer, has a special gel property and favorable biocompatibility, but moderate intension strength in an aqueous condition and a low degradation rate. In order to tailor both properties of mechanical intension and degradation, type I collagen was composited with agar in a certain ratio by drying at 50 0 C or by a freeze-dry process. Glutaraldehyde was chosen as a crosslinking agent, and the most favorable condition for crosslinking was that the weight ratio of agar to glutaraldehyde was 66.7 and the pH value about 5. Dynamic mechanical analysis results showed that the single agar membrane had a modulus value between 640 MPa and 1064 MPa, but it was between 340 MPa and 819 MPa after being composited with type I collagen. It was discovered under an optical microscope that the pores were interconnected in the composite scaffolds instead of the honeycomb-like pores in a single type I collagen scaffold or the laminated gaps in a single agar scaffold. The results of an acute toxicity test disclosed that the composites were not toxic to mice although the composites were crosslinked with a certain concentration of glutaraldehyde. The results of gross examinations showed that when the composite membranes or scaffolds were applied to a repair rabbit skin lesion, the composites had a good repair effect without infection, liquid exudation or visible scar in the lesion covered with them. But in the control group, the autologous skin showed necrosis and there were a lot of scar tissues in the lesion site. H and E staining results showed that the repair tissue was similar to the normal one and very few scaffolds or membranes were left without degradation after 2 or 3 weeks. In conclusion, it is proved that type I collagen increases the toughness of the agar membrane, and the agar/type I collagen composites are promising biomaterials as wound dressings for healing burns or ulcers.

  17. The Luna stain, an improved selective stain for detection of microsporidian spores in histologic sections

    Science.gov (United States)

    Peterson, Tracy S.; Spitsbergen, Jan M.; Feist, Stephen W.; Kent, Michael L.

    2014-01-01

    Microsporidia in histologic sections are most often diagnosed by observing spores in host tissues. Spores are easy to identify if they occur in large aggregates or xenomas when sections are stained with hematoxylin and eosin (H&E). However, individual spores are not frequently detected in host tissues with conventional H&E staining, particularly if spores are scattered within the tissues, areas of inflammation or small spores in nuclei (i.e., Nucleospora salmonis). Hence, a variety of selective stains that enhance visualization of spores are recommended. We discovered that the Luna stain, used to highlight eosinophils, red blood cells and chitin in arthropods and other invertebrates, also stains spores of Pseudoloma neurophilia. We compared this stain to the Gram, Fite’s acid fast, Giemsa, and H&E stains on eight aquatic microsporidian organisms that were readily available in our two laboratories: Loma salmonae, Glugea anomala, Pseudoloma neurophilia, Pleistophora hyphessobryconis, Pleistophora vermiformis, Glugea sp., Steinhausia mytilovum and an unidentified microsporidian from E. sinensis, UK. Based on tinctorial properties and background staining, the Luna stain performed better for detection of 6 of the 8 microsporidia. Gram stain was superior for the two microsporidia from invertebrates, Steinhausia mytilovum and the unidentified microsporidian from E. sinensis. PMID:21848126

  18. In-situ Damage Assessment of Collagen within Ancient Manuscripts Written on Parchment: A Polarized Raman Spectroscopy Approach

    Science.gov (United States)

    Schütz, R.; Rabin, I.; Hahn, O.; Fratzl, P.; Masic, A.

    2010-08-01

    The collection generally known as Qumran scrolls or Dead Sea Scrolls (DSS) comprises some 900 highly fragmented manuscripts (mainly written on parchment) from the Second Temple period. In the years since their manufacture the writing materials have undergone serious deterioration due to a combination of natural ageing and environmental effects. Therefore, understanding quantitatively state of conservation of such manuscripts is a challenging task and a deep knowledge of damage pathways on all hierarchical levels (from molecular up to macroscopic) results of fundamental importance for a correct protection and conservation strategy. However, the degradation of parchments is very complex and not well understood process. Parchment is a final product of processing of animal skin and consist mainly of type I collagen, which is the most abundant constituent of the dermal matrix. Collagen molecule is built by folding of three polypeptide α-chains into a right-handed triple helix. Every α-chain is made by a repetitive sequence of (Gly-X-Y)n, where X and Y are often proline and hydroxyproline. Parallel and staggered collagen triple helices associate into fibrils, which than assemble into fibers. Deterioration of parchment is caused by chemical changes due to gelatinization, oxidation and hydrolysis of the collagen chains, promoted by several factors, summarized as biological and microbiological (bacteria, fungi etc.), heat, light, humidity and pollutants (1, 2). In this work we have focused on studying the collagen within parchments on two different levels of organization (molecular and fibrilar) by applying polarized Raman spectroscopic technique. Beside spectral information related to chemical bonding, polarization anisotropy of some collagen bands (i.e. amide I) has been used to explore organization of collagen on higher levels (three-dimensional arrangement of the triple-helix molecules and their alignment within a fibril of collagen). To this aim we have compared

  19. Association of altered collagen content and lysyl oxidase expression in degenerative mitral valve disease.

    Science.gov (United States)

    Purushothaman, K-Raman; Purushothaman, Meerarani; Turnbull, Irene C; Adams, David H; Anyanwu, Anelechi; Krishnan, Prakash; Kini, Annapoorna; Sharma, Samin K; O'Connor, William N; Moreno, Pedro R

    Collagen cross-linking is mediated by lysyl oxidase (LOX) enzyme in the extracellular matrix (ECM) of mitral valve leaflets. Alterations in collagen content and LOX protein expression in the ECM of degenerative mitral valve may enhance leaflet expansion and disease severity. Twenty posterior degenerative mitral valve leaflets from patients with severe mitral regurgitation were obtained at surgery. Five normal posterior mitral valve leaflets procured during autopsy served as controls. Valvular interstitial cells (VICs) density was quantified by immunohistochemistry, collagen Types I and III by picro-sirius red staining and immunohistochemistry, and proteoglycans by alcian blue staining. Protein expression of LOX and its mediator TGFβ1 were quantified by immunofluorescence and gene expression by PCR. VIC density was increased, structural Type I collagen density was reduced, while reparative Type III collagen and proteoglycan densities were increased (PDegenerative Mitral Valve Disease may be secondary to alterations in LOX protein expression, contributing to disorganization of ECM and disease severity. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Cyclophilin-B Modulates Collagen Cross-linking by Differentially Affecting Lysine Hydroxylation in the Helical and Telopeptidyl Domains of Tendon Type I Collagen.

    Science.gov (United States)

    Terajima, Masahiko; Taga, Yuki; Chen, Yulong; Cabral, Wayne A; Hou-Fu, Guo; Srisawasdi, Sirivimol; Nagasawa, Masako; Sumida, Noriko; Hattori, Shunji; Kurie, Jonathan M; Marini, Joan C; Yamauchi, Mitsuo

    2016-04-29

    Covalent intermolecular cross-linking provides collagen fibrils with stability. The cross-linking chemistry is tissue-specific and determined primarily by the state of lysine hydroxylation at specific sites. A recent study on cyclophilin B (CypB) null mice, a model of recessive osteogenesis imperfecta, demonstrated that lysine hydroxylation at the helical cross-linking site of bone type I collagen was diminished in these animals (Cabral, W. A., Perdivara, I., Weis, M., Terajima, M., Blissett, A. R., Chang, W., Perosky, J. E., Makareeva, E. N., Mertz, E. L., Leikin, S., Tomer, K. B., Kozloff, K. M., Eyre, D. R., Yamauchi, M., and Marini, J. C. (2014) PLoS Genet 10, e1004465). However, the extent of decrease appears to be tissue- and molecular site-specific, the mechanism of which is unknown. Here we report that although CypB deficiency resulted in lower lysine hydroxylation in the helical cross-linking sites, it was increased in the telopeptide cross-linking sites in tendon type I collagen. This resulted in a decrease in the lysine aldehyde-derived cross-links but generation of hydroxylysine aldehyde-derived cross-links. The latter were absent from the wild type and heterozygous mice. Glycosylation of hydroxylysine residues was moderately increased in the CypB null tendon. We found that CypB interacted with all lysyl hydroxylase isoforms (isoforms 1-3) and a putative lysyl hydroxylase-2 chaperone, 65-kDa FK506-binding protein. Tendon collagen in CypB null mice showed severe size and organizational abnormalities. The data indicate that CypB modulates collagen cross-linking by differentially affecting lysine hydroxylation in a site-specific manner, possibly via its interaction with lysyl hydroxylases and associated molecules. This study underscores the critical importance of collagen post-translational modifications in connective tissue formation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Cyclophilin-B Modulates Collagen Cross-linking by Differentially Affecting Lysine Hydroxylation in the Helical and Telopeptidyl Domains of Tendon Type I Collagen*

    Science.gov (United States)

    Terajima, Masahiko; Taga, Yuki; Chen, Yulong; Cabral, Wayne A.; Hou-Fu, Guo; Srisawasdi, Sirivimol; Nagasawa, Masako; Sumida, Noriko; Hattori, Shunji; Kurie, Jonathan M.; Marini, Joan C.; Yamauchi, Mitsuo

    2016-01-01

    Covalent intermolecular cross-linking provides collagen fibrils with stability. The cross-linking chemistry is tissue-specific and determined primarily by the state of lysine hydroxylation at specific sites. A recent study on cyclophilin B (CypB) null mice, a model of recessive osteogenesis imperfecta, demonstrated that lysine hydroxylation at the helical cross-linking site of bone type I collagen was diminished in these animals (Cabral, W. A., Perdivara, I., Weis, M., Terajima, M., Blissett, A. R., Chang, W., Perosky, J. E., Makareeva, E. N., Mertz, E. L., Leikin, S., Tomer, K. B., Kozloff, K. M., Eyre, D. R., Yamauchi, M., and Marini, J. C. (2014) PLoS Genet. 10, e1004465). However, the extent of decrease appears to be tissue- and molecular site-specific, the mechanism of which is unknown. Here we report that although CypB deficiency resulted in lower lysine hydroxylation in the helical cross-linking sites, it was increased in the telopeptide cross-linking sites in tendon type I collagen. This resulted in a decrease in the lysine aldehyde-derived cross-links but generation of hydroxylysine aldehyde-derived cross-links. The latter were absent from the wild type and heterozygous mice. Glycosylation of hydroxylysine residues was moderately increased in the CypB null tendon. We found that CypB interacted with all lysyl hydroxylase isoforms (isoforms 1–3) and a putative lysyl hydroxylase-2 chaperone, 65-kDa FK506-binding protein. Tendon collagen in CypB null mice showed severe size and organizational abnormalities. The data indicate that CypB modulates collagen cross-linking by differentially affecting lysine hydroxylation in a site-specific manner, possibly via its interaction with lysyl hydroxylases and associated molecules. This study underscores the critical importance of collagen post-translational modifications in connective tissue formation. PMID:26934917

  2. Ultrastructural and biochemical characterization of mechanically adaptable collagenous structures in the edible sea urchin Paracentrotus lividus.

    Science.gov (United States)

    Barbaglio, Alice; Tricarico, Serena; Ribeiro, Ana R; Di Benedetto, Cristiano; Barbato, Marta; Dessì, Desirèe; Fugnanesi, Valeria; Magni, Stefano; Mosca, Fabio; Sugni, Michela; Bonasoro, Francesco; Barbosa, Mario A; Wilkie, Iain C; Candia Carnevali, M Daniela

    2015-06-01

    The viscoelastic properties of vertebrate connective tissues rarely undergo significant changes within physiological timescales, the only major exception being the reversible destiffening of the mammalian uterine cervix at the end of pregnancy. In contrast to this, the connective tissues of echinoderms (sea urchins, starfish, sea cucumbers, etc.) can switch reversibly between stiff and compliant conditions in timescales of around a second to minutes. Elucidation of the molecular mechanism underlying such mutability has implications for the zoological, ecological and evolutionary field. Important information could also arise for veterinary and biomedical sciences, particularly regarding the pathological plasticization or stiffening of connective tissue structures. In the present investigation we analyzed aspects of the ultrastructure and biochemistry in two representative models, the compass depressor ligament and the peristomial membrane of the edible sea urchin Paracentrotus lividus, compared in three different mechanical states. The results provide further evidence that the mechanical adaptability of echinoderm connective tissues does not necessarily imply changes in the collagen fibrils themselves. The higher glycosaminoglycan (GAG) content registered in the peristomial membrane with respect to the compass depressor ligament suggests a diverse role of these molecules in the two mutable collagenous tissues. The possible involvement of GAG in the mutability phenomenon will need further clarification. During the shift from a compliant to a standard condition, significant changes in GAG content were detected only in the compass depressor ligament. Similarities in terms of ultrastructure (collagen fibrillar assembling) and biochemistry (two alpha chains) were found between the two models and mammalian collagen. Nevertheless, differences in collagen immunoreactivity, alpha chain migration on SDS-PAGE and BLAST alignment highlighted the uniqueness of sea urchin

  3. Deficiency of CRTAP in non-lethal recessive osteogenesis imperfecta reduces collagen deposition into matrix.

    Science.gov (United States)

    Valli, M; Barnes, A M; Gallanti, A; Cabral, W A; Viglio, S; Weis, M A; Makareeva, E; Eyre, D; Leikin, S; Antoniazzi, F; Marini, J C; Mottes, M

    2012-11-01

    Deficiency of any component of the ER-resident collagen prolyl 3-hydroxylation complex causes recessive osteogenesis imperfecta (OI). The complex modifies the α1(I)Pro986 residue and contains cartilage-associated protein (CRTAP), prolyl 3-hydroxylase 1 (P3H1) and cyclophilin B (CyPB). Fibroblasts normally secrete about 10% of CRTAP. Most CRTAP mutations cause a null allele and lethal type VII OI. We identified a 7-year-old Egyptian boy with non-lethal type VII OI and investigated the effects of his null CRTAP mutation on collagen biochemistry, the prolyl 3-hydroxylation complex, and collagen in extracellular matrix. The proband is homozygous for an insertion/deletion in CRTAP (c.118_133del16insTACCC). His dermal fibroblasts synthesize fully overmodified type I collagen, and 3-hydroxylate only 5% of α1(I)Pro986. CRTAP transcripts are 10% of control. CRTAP protein is absent from proband cells, with residual P3H1 and normal CyPB levels. Dermal collagen fibril diameters are significantly increased. By immunofluorescence of long-term cultures, we identified a severe deficiency (10-15% of control) of collagen deposited in extracellular matrix, with disorganization of the minimal fibrillar network. Quantitative pulse-chase experiments corroborate deficiency of matrix deposition, rather than increased matrix turnover. We conclude that defects of extracellular matrix, as well as intracellular defects in collagen modification, contribute to the pathology of type VII OI. © 2011 John Wiley & Sons A/S.

  4. Evolutionary origins of C-terminal (GPPn 3-hydroxyproline formation in vertebrate tendon collagen.

    Directory of Open Access Journals (Sweden)

    David M Hudson

    Full Text Available Approximately half the proline residues in fibrillar collagen are hydroxylated. The predominant form is 4-hydroxyproline, which helps fold and stabilize the triple helix. A minor form, 3-hydroxyproline, still has no clear function. Using peptide mass spectrometry, we recently revealed several previously unknown molecular sites of 3-hydroxyproline in fibrillar collagen chains. In fibril-forming A-clade collagen chains, four new partially occupied 3-hydroxyproline sites were found (A2, A3, A4 and (GPPn in addition to the fully occupied A1 site at Pro986. The C-terminal (GPPn motif has five consecutive GPP triplets in α1(I, four in α2(I and three in α1(II, all subject to 3-hydroxylation. The evolutionary origins of this substrate sequence were investigated by surveying the pattern of its 3-hydroxyproline occupancy from early chordates through amphibians, birds and mammals. Different tissue sources of type I collagen (tendon, bone and skin and type II collagen (cartilage and notochord were examined by mass spectrometry. The (GPPn domain was found to be a major substrate for 3-hydroxylation only in vertebrate fibrillar collagens. In higher vertebrates (mouse, bovine and human, up to five 3-hydroxyproline residues per (GPPn motif were found in α1(I and four in α2(I, with an average of two residues per chain. In vertebrate type I collagen the modification exhibited clear tissue specificity, with 3-hydroxyproline prominent only in tendon. The occupancy also showed developmental changes in Achilles tendon, with increasing 3-hydroxyproline levels with age. The biological significance is unclear but the level of 3-hydroxylation at the (GPPn site appears to have increased as tendons evolved and shows both tendon type and developmental variations within a species.

  5. Study of polarization colors in the connective tissue wall of odontogenic cysts using picrosirius red stain

    Directory of Open Access Journals (Sweden)

    Anusha Shetty

    2015-01-01

    Full Text Available Background: Lesions of odontogenic origin comprise the heterogeneous group ranging from hamartomatous proliferations, cysts to benign and malignant tumors. Interplay between the epithelium and connective tissue can be assumed to play a significant role in the pathogenesis of odontogenic cysts. Aims and Objectives: A study was taken up to show the role of picrosirius red (PSR stain to demonstrate the fibers and also to assess the difference in the nature of the fibers (different color patterns and to find out the role of it, if any in the pathogenesis and biological behavior of the commonly occurring odontogenic cysts. Materials and Methods: Collagen fibers of 30 cases of odontogenic cysts (10 radicular cysts, 10 odontogenic keratocysts (OKC′s, and 10 dentigerous cysts were studied by staining the sections with PSR stain and examining them under bright field and polarizing microscope. Results: Sixty-seven percentage of the thin collagen fibers and 55% of the thick fibers in radicular cyst showed green-yellow birefringence. Fifty-seven percentage of the thin collagen fibers and 15% of the thick fibers in OKC showed green-yellow birefringence. Eighty-two percentage of the thin collagen fibers and 66% of the thick fibers in dentigerous cysts showed green-yellow birefringence. Rest of the fibers showed orange-red birefringence. Statistical analysis with one-way ANOVA was significant with a P < 0.01 only for thick fibers. Moreover, comparison of polarization colors of thick fibers of odontogenic cysts with duration of the lesion gave statistically significant results. Conclusion: The observations in the present study with respect to color profiles of the collagen fibers in the three commonly occurring odontogenic cysts possibly explain the biological behavior of the lesions. The predominant orange-red birefringence in OKC′s in comparison to radicular and dentigerous cysts suggests that OKC′s exhibit well organized and tightly packed fibers. This

  6. Selection and application of exterior stains for wood

    Science.gov (United States)

    R. Sam. Williams; William C. Feist

    1999-01-01

    Exterior stains for wood protect the wood surface from sunlight and moisture. Because stains are formulated to penetrate the wood surface, they are not prone to crack or peel as can film-forming finishes, such as paints. This publication describes the properties of stains and wood, methods for applying stains, and the expected service life of stains.

  7. Fourier Transform Infrared (FTIR) Spectroscopy, Ultraviolet Resonance Raman (UVRR) Spectroscopy, and Atomic Force Microscopy (AFM) for Study of the Kinetics of Formation and Structural Characterization of Tau Fibrils.

    Science.gov (United States)

    Ramachandran, Gayathri

    2017-01-01

    Kinetic studies of tau fibril formation in vitro most commonly employ spectroscopic probes such as thioflavinT fluorescence and laser light scattering or negative stain transmission electron microscopy. Here, I describe the use of Fourier transform infrared (FTIR) spectroscopy, ultraviolet resonance Raman (UVRR) spectroscopy, and atomic force microscopy (AFM) as complementary probes for studies of tau aggregation. The sensitivity of vibrational spectroscopic techniques (FTIR and UVRR) to secondary structure content allows for measurement of conformational changes that occur when the intrinsically disordered protein tau transforms into cross-β-core containing fibrils. AFM imaging serves as a gentle probe of structures populated over the time course of tau fibrillization. Together, these assays help further elucidate the structural and mechanistic complexity inherent in tau fibril formation.

  8. Distribution of Basement Membrane Molecules, Laminin and Collagen Type IV, in Normal and Degenerated Cartilage Tissues.

    Science.gov (United States)

    Foldager, Casper Bindzus; Toh, Wei Seong; Gomoll, Andreas H; Olsen, Bjørn Reino; Spector, Myron

    2014-04-01

    The objective of the present study was to investigate the presence and distribution of 2 basement membrane (BM) molecules, laminin and collagen type IV, in healthy and degenerative cartilage tissues. Normal and degenerated tissues were obtained from goats and humans, including articular knee cartilage, the intervertebral disc, and meniscus. Normal tissue was also obtained from patella-tibial enthesis in goats. Immunohistochemical analysis was performed using anti-laminin and anti-collagen type IV antibodies. Human and goat skin were used as positive controls. The percentage of cells displaying the pericellular presence of the protein was graded semiquantitatively. When present, laminin and collagen type IV were exclusively found in the pericellular matrix, and in a discrete layer on the articulating surface of normal articular cartilage. In normal articular (hyaline) cartilage in the human and goat, the proteins were found co-localized pericellularly. In contrast, in human osteoarthritic articular cartilage, collagen type IV but not laminin was found in the pericellular region. Nonpathological fibrocartilaginous tissues from the goat, including the menisci and the enthesis, were also positive for both laminin and collagen type IV pericellularly. In degenerated fibrocartilage, including intervertebral disc, as in degenerated hyaline cartilage only collagen type IV was found pericellularly around chondrocytes but with less intense staining than in non-degenerated tissue. In calcified cartilage, some cells were positive for laminin but not type IV collagen. We report differences in expression of the BM molecules, laminin and collagen type IV, in normal and degenerative cartilaginous tissues from adult humans and goats. In degenerative tissues laminin is depleted from the pericellular matrix before collagen type IV. The findings may inform future studies of the processes underlying cartilage degeneration and the functional roles of these 2 extracellular matrix proteins

  9. Distribution of Basement Membrane Molecules, Laminin and Collagen Type IV, in Normal and Degenerated Cartilage Tissues

    Science.gov (United States)

    Toh, Wei Seong; Gomoll, Andreas H.; Olsen, Bjørn Reino; Spector, Myron

    2014-01-01

    Objective: The objective of the present study was to investigate the presence and distribution of 2 basement membrane (BM) molecules, laminin and collagen type IV, in healthy and degenerative cartilage tissues. Design: Normal and degenerated tissues were obtained from goats and humans, including articular knee cartilage, the intervertebral disc, and meniscus. Normal tissue was also obtained from patella-tibial enthesis in goats. Immunohistochemical analysis was performed using anti-laminin and anti–collagen type IV antibodies. Human and goat skin were used as positive controls. The percentage of cells displaying the pericellular presence of the protein was graded semiquantitatively. Results: When present, laminin and collagen type IV were exclusively found in the pericellular matrix, and in a discrete layer on the articulating surface of normal articular cartilage. In normal articular (hyaline) cartilage in the human and goat, the proteins were found co-localized pericellularly. In contrast, in human osteoarthritic articular cartilage, collagen type IV but not laminin was found in the pericellular region. Nonpathological fibrocartilaginous tissues from the goat, including the menisci and the enthesis, were also positive for both laminin and collagen type IV pericellularly. In degenerated fibrocartilage, including intervertebral disc, as in degenerated hyaline cartilage only collagen type IV was found pericellularly around chondrocytes but with less intense staining than in non-degenerated tissue. In calcified cartilage, some cells were positive for laminin but not type IV collagen. Conclusions: We report differences in expression of the BM molecules, laminin and collagen type IV, in normal and degenerative cartilaginous tissues from adult humans and goats. In degenerative tissues laminin is depleted from the pericellular matrix before collagen type IV. The findings may inform future studies of the processes underlying cartilage degeneration and the functional

  10. Aspects epidemiologiques et etiologiques de la fibrillation ...

    African Journals Online (AJOL)

    Conclusion : La fibrillation auriculaire est fréquente chez l'adulte noir togolais. Ses étiologies sont dominées par l'hypertension artérielle et les cardiomyopathies dilatées. complications and stoke. Aim: Our aim was to study epidemiologic and etiologic aspects of atrial fibrillation in black togolese in hospital circle. Material ...

  11. Fibril assembly in whey protein mixtures

    NARCIS (Netherlands)

    Bolder, S.G.

    2007-01-01

    The objective of this thesis was to study fibril assembly in mixtures of whey proteins. The effect of the composition of the protein mixture on the structures and the resulting phase behaviour was investigated. The current work has shown that beta-lactoglobulin is responsible for the fibril assembly

  12. Raman spectroscopy enables noninvasive biochemical identification of the collagen regeneration in cutaneous wound healing of diabetic mice treated with MSCs.

    Science.gov (United States)

    Yan, Wenxia; Liu, Hanping; Deng, Xiaoyuan; Jin, Ying; Sun, Huimin; Li, Caiyun; Wang, Ning; Chu, Jing

    2017-07-01

    Mesenchymal stem cells (MSCs) had been reported as a novel therapeutic strategy for non-healing diabetic cutaneous wound mainly by promoting the formation of extracellular matrix (ECM) and neovasculature. Collagen regeneration is one of the key processes of ECM remodeling in wound healing. Accordingly, rapid assessment of the collagen content in a noninvasive manner can promptly provide objective evaluation for MSC therapy of cutaneous wound healing and strength evidence to adjust therapeutic regimen. In the present study, noninvasive Raman microspectroscopy was used for tracing the regeneration status of collagen during diabetic wound healing with MSCs. Wound tissues of normal mice, diabetic mice, and MSC-treated diabetic mice were subjected to Masson trichrome staining assay and submitted to spectroscopic analysis by Raman microspectroscopy after wounding 7, 14, and 21 days. Masson trichrome staining demonstrated that there was more collagen deposition in diabetic + MSCs group relative to diabetic group. The relative intensity of Raman collagen peak positions at 937, 1004, 1321, 1452, and 1662 cm -1 increased in MSC-treated diabetic group compared to diabetic group, although normal mice group had the highest relative intensity of collagen peak bands. Correlation analysis suggested that the spectral bands had a high positive correlation with the collagen intensity detected by Masson trichrome staining in wound tissues of three groups. Our results demonstrate that Raman microspectroscopy has potential application in rapidly and quantitatively assessing diabetic wound healing with MSCs by monitoring collagen variation, which may provide a novel method for the study of skin regeneration.

  13. Combined Effect of a Microporous Layer and Type I Collagen Coating on a Biphasic Calcium Phosphate Scaffold for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Mun-Hwan Lee

    2015-03-01

    Full Text Available In this study, type I collagen was coated onto unmodified and modified microporous biphasic calcium phosphate (BCP scaffolds. Surface characterization using a scanning electron microscope (SEM and a surface goniometer confirmed the modification of the BCP coating. The quantity of the collagen coating was investigated using Sirius Red staining, and quantitative assessment of the collagen coating showed no significant differences between the two groups. MG63 cells were used to evaluate cell proliferation and ALP activity on the modified BCP scaffolds. The modified microporous surfaces showed low contact angles and large surface areas, which enhanced cell spreading and proliferation. Coating of the BCP scaffolds with type I collagen led to enhanced cell-material interactions and improved MG63 functions, such as spreading, proliferation, and differentiation. The micropore/collagen-coated scaffold showed the highest rate of cell response. These results indicate that a combination of micropores and collagen enhances cellular function on bioengineered bone allograft tissue.

  14. Open tubular capillary electrochromatography: A useful microreactor for collagen I glycation and interaction studies with low-density lipoprotein particles

    International Nuclear Information System (INIS)

    D'Ulivo, Lucia; Witos, Joanna; Ooerni, Katariina; Kovanen, Petri T.; Riekkola, Marja-Liisa

    2010-01-01

    Diabetes, a multifunctional disease and a major cause of morbidity and mortality in the industrialized countries, strongly associates with the development and progression of atherosclerosis. One of the consequences of high level of glucose in the blood circulation is glycation of long-lived proteins, such as collagen I, the most abundant component of the extracellular matrix (ECM) in the arterial wall. Glycation is a long-lasting process that involves the reaction between a carbonyl group of the sugar and an amino group of the protein, usually a lysine residue. This reaction generates an Amadori product that may evolve in advanced glycation end products (AGEs). AGEs, as reactive molecules, can provoke cross-linking of collagen I fibrils. Since binding of low-density lipoproteins (LDLs) to the ECM of the inner layer of the arterial wall, the intima, has been implicated to be involved in the onset of the development of an atherosclerotic plaque, collagen modifications, which can affect the affinity of native and oxidized LDL for collagen I, can promote the entrapment of LDLs in the intima and accelerate the progression of atherosclerosis. In this study, open tubular capillary electrochromatography is proposed as a new microreactor to study in situ glycation of collagen I. The kinetics of glycation was first investigated in a fused silica collagen I-coated capillary. Dimethyl sulphoxide, injected as an electroosmotic flow marker, gave information about the charge of coating. Native and oxidized LDL, and selected peptide fragments from apolipoprotein B-100, the protein covering LDL particles, were injected as marker compounds to clarify the interactions between LDLs and the glycated collagen I coating. The method proposed is simple and inexpensive, since only small amounts of collagen and LDL are required. Atomic force microscopy images complemented our studies, highlighting the difference between unmodified and glycated collagen I surfaces.

  15. Open tubular capillary electrochromatography: A useful microreactor for collagen I glycation and interaction studies with low-density lipoprotein particles

    Energy Technology Data Exchange (ETDEWEB)

    D' Ulivo, Lucia; Witos, Joanna [Laboratory of Analytical Chemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki (Finland); Ooerni, Katariina; Kovanen, Petri T. [Wihuri Research Institute, Kalliolinnantie 4, FIN-00140, Helsinki (Finland); Riekkola, Marja-Liisa, E-mail: marja-liisa.riekkola@helsinki.fi [Laboratory of Analytical Chemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki (Finland)

    2010-04-07

    Diabetes, a multifunctional disease and a major cause of morbidity and mortality in the industrialized countries, strongly associates with the development and progression of atherosclerosis. One of the consequences of high level of glucose in the blood circulation is glycation of long-lived proteins, such as collagen I, the most abundant component of the extracellular matrix (ECM) in the arterial wall. Glycation is a long-lasting process that involves the reaction between a carbonyl group of the sugar and an amino group of the protein, usually a lysine residue. This reaction generates an Amadori product that may evolve in advanced glycation end products (AGEs). AGEs, as reactive molecules, can provoke cross-linking of collagen I fibrils. Since binding of low-density lipoproteins (LDLs) to the ECM of the inner layer of the arterial wall, the intima, has been implicated to be involved in the onset of the development of an atherosclerotic plaque, collagen modifications, which can affect the affinity of native and oxidized LDL for collagen I, can promote the entrapment of LDLs in the intima and accelerate the progression of atherosclerosis. In this study, open tubular capillary electrochromatography is proposed as a new microreactor to study in situ glycation of collagen I. The kinetics of glycation was first investigated in a fused silica collagen I-coated capillary. Dimethyl sulphoxide, injected as an electroosmotic flow marker, gave information about the charge of coating. Native and oxidized LDL, and selected peptide fragments from apolipoprotein B-100, the protein covering LDL particles, were injected as marker compounds to clarify the interactions between LDLs and the glycated collagen I coating. The method proposed is simple and inexpensive, since only small amounts of collagen and LDL are required. Atomic force microscopy images complemented our studies, highlighting the difference between unmodified and glycated collagen I surfaces.

  16. Cetirizine-Induced atrial fibrillation

    Directory of Open Access Journals (Sweden)

    Altuğ Osken

    2016-01-01

    Full Text Available Atrial fibrillation (AF is the most common observed arrhythmia in clinical practice. In the literature, AF events associated with drug induction are available. Cetirizine is a second-generation histamine antagonist used in the treatment of allergies, angioedema, and urticaria. We wish to present an atypical case who took cetirizine medication for relieving symptoms of upper tract respiratory system infection, experienced rapid ventricular response AF and treated successfully. To best of our knowledge, this is the first case of cetirizine-induced AF.

  17. Fibromodulin deficiency reduces collagen structural network but not glycosaminoglycan content in a syngeneic model of colon carcinoma.

    Science.gov (United States)

    Olsson, P Olof; Kalamajski, Sebastian; Maccarana, Marco; Oldberg, Åke; Rubin, Kristofer

    2017-01-01

    Tumor barrier function in carcinoma represents a major challenge to treatment and is therefore an attractive target for increasing drug delivery. Variables related to tumor barrier include aberrant blood vessels, high interstitial fluid pressure, and the composition and structure of the extracellular matrix. One of the proteins associated with dense extracellular matrices is fibromodulin, a collagen fibrillogenesis modulator expressed in tumor stroma but scarce in normal loose connective tissues. Here, we investigated the effects of fibromodulin on stroma ECM in a syngeneic murine colon carcinoma model. We show that fibromodulin deficiency decreased collagen fibril thickness but glycosaminoglycan content and composition were unchanged. Furthermore, vascular density, pericyte coverage and macrophage amount were unaffected. Fibromodulin can therefore be a unique effector of dense collagen matrix assembly in tumor stroma and, without affecting other major matrix components or the cellular composition, can function as a main agent in tumor barrier function.

  18. Comparism of Various Staining Techniques in the Diagnosis of ...

    African Journals Online (AJOL)

    SITWALA COMPUTERS

    external intermediate host, usually an animal, in which sporogenesis and oocyst ... the parasite was detected in 111 of the samples stained,. 100(90.0%) of which .... screen stained slide was the auramine fluorochrome stain. The widely used ...

  19. Pleural and Pulmonary Staining at Inferior Phrenic Arteriography Mimicking a Tumor Staining of Hepatocellular Carcinoma

    International Nuclear Information System (INIS)

    Lee, Deok Hee; Hwang, Jae Cheol; Lim, Soo Mee; Yoon, Hyun-Ki; Sung, Kyu-Bo; Song, Ho-Young

    2000-01-01

    Purpose: To describe the findings of pleural and pulmonary staining of the inferior phrenic artery, which can be confused with tumor staining during transarterial chemoembolization (TACE) of hepatoma.Methods: Fifteen patients who showed pleural and pulmonary staining without relationship to hepatic masses at inferior phrenic arteriography were enrolled. The staining was noted at initial TACE (n = 8), at successive TACE (n = 5), and after hepatic surgery (n = 2). The angiographic pattern, the presence of pleural change on computed tomography (CT), and clinical history were evaluated.Results: Draining pulmonary veins were seen in all cases. The lower margin of the staining corresponded to the lower margin of the pleura in 10 patients. CT showed pleural and/or pulmonary abnormalities in all cases. After embolization of the inferior phrenic artery, the accumulation of iodized oil in the lung was noted.Conclusion: Understanding the CT and angiographic findings of pleural and pulmonary staining during TACE may help differentiate benign staining from tumor staining

  20. Extrafibrillar collagen demineralization-based chelate-and-rinse technique bridges the gap between wet and dry dentin bonding.

    Science.gov (United States)

    Mai, Sui; Wei, Chin-Chuan; Gu, Li-Sha; Tian, Fu-Cong; Arola, Dwayne D; Chen, Ji-Hua; Jiao, Yang; Pashley, David H; Niu, Li-Na; Tay, Franklin R

    2017-07-15

    -exclusion characteristics of fibrillar collagen; molecules larger than 40kDa are prevented from accessing the intrafibrillar water compartments of the collagen fibrils. Using this chelate-and-rinse extrafibrillar calcium chelation concept, collagen fibrils with retained intrafibrillar minerals will not collapse upon air-drying. This enables adhesive infiltration into the mineral-depleted extrafibrillar spaces without relying on wet-bonding. By bridging the gap between wet and dry dentine bonding, the chelate-and-rinse concept introduces additional insight to the field by preventing exposure of endogenous proteases via preservation of the intrafibrillar minerals within a collagen matrix. If successfully validated, this should help prevent degradation of resin-dentine bonds by collagenolytic enzymes. Published by Elsevier Ltd.

  1. Interfibrillar stiffening of echinoderm mutable collagenous tissue demonstrated at the nanoscale.

    Science.gov (United States)

    Mo, Jingyi; Prévost, Sylvain F; Blowes, Liisa M; Egertová, Michaela; Terrill, Nicholas J; Wang, Wen; Elphick, Maurice R; Gupta, Himadri S

    2016-10-18

    The mutable collagenous tissue (MCT) of echinoderms (e.g., sea cucumbers and starfish) is a remarkable example of a biological material that has the unique attribute, among collagenous tissues, of being able to rapidly change its stiffness and extensibility under neural control. However, the mechanisms of MCT have not been characterized at the nanoscale. Using synchrotron small-angle X-ray diffraction to probe time-dependent changes in fibrillar structure during in situ tensile testing of sea cucumber dermis, we investigate the ultrastructural mechanics of MCT by measuring fibril strain at different chemically induced mechanical states. By measuring a variable interfibrillar stiffness (E IF ), the mechanism of mutability at the nanoscale can be demonstrated directly. A model of stiffness modulation via enhanced fibrillar recruitment is developed to explain the biophysical mechanisms of MCT. Understanding the mechanisms of MCT quantitatively may have applications in development of new types of mechanically tunable biomaterials.

  2. Short Nissl staining for incubated cryostat sections of the brain.

    Science.gov (United States)

    Lindroos, O F

    1991-01-01

    Nissl stain often binds poorly to cryostat sections which have been incubated in solutions of radiolabeled ligands. Such incubation is used in receptor autoradiography of the brain when using the in vitro method. We have developed a rapid (16 min) modification of Nissl staining for sections that bind stain poorly, e.g., incubated sections. The method stains well sections which cannot be stained with other rapid Nissl staining methods.

  3. Increased expression of NF-AT3 and NF-AT4 in the atria correlates with procollagen I carboxyl terminal peptide and TGF-β1 levels in serum of patients with atrial fibrillation.

    Science.gov (United States)

    Zhao, Fei; Zhang, ShiJiang; Chen, YiJiang; Gu, WeiDong; Ni, BuQing; Shao, YongFeng; Wu, YanHu; Qin, JianWei

    2014-11-25

    Atrial fibrillation (AF) is the most common cardiac arrhythmia in clinical practice. Unfortunately, the precise mechanisms and sensitive serum biomarkers of atrial remodeling in AF remain unclear. The aim of this study was to determine whether the expression of the transcription factors NF-AT3 and NF-AT4 correlate with atrial structural remodeling of atrial fibrillation and serum markers for collagen I and III synthesis. Right and left atrial specimens were obtained from 90 patients undergoing valve replacement surgery. The patients were divided into sinus rhythm (n = 30), paroxysmal atrial fibrillation (n = 30), and persistent atrial fibrillation (n = 30) groups. NF-AT3, NF-AT4, and collagen I and III mRNA and protein expression in atria were measured. We also tested the levels of the carboxyl-terminal peptide from pro-collagen I, the N-terminal type I procollagen propeptides, the N-terminal type III procollagen propeptides, and TGF-β1 in serum using an enzyme immunosorbent assay. NF-AT3 and NF-AT4 mRNA and protein expression were increased in the AF groups, especially in the left atrium. NF-AT3 and NF-AT4 expression in the right atrium was increased in the persistent atrial fibrillation group compared the sinus rhythm group with similar valvular disease. In patients with AF, the expression levels of nuclear NF-AT3 and NF-AT4 correlated with those of collagens I and III in the atria and with PICP and TGF-β1 in blood. These data support the hypothesis that nuclear NF-AT3 and NF-AT4 participates in atrial structural remodeling, and that PICP and TGF-β1 levels may be sensitive serum biomarkers to estimate atrial structural remodeling with atrial fibrillation.

  4. Collagen crosslinks in chondromalacia of the patella.

    Science.gov (United States)

    Väätäinen, U; Kiviranta, I; Jaroma, H; Arokosi, J; Tammi, M; Kovanen, V

    1998-02-01

    The aim of the study was to determine collagen concentration and collagen crosslinks in cartilage samples from chondromalacia of the patella. To study the extracellular matrix alterations associated to chondromalacia, we determined the concentration of collagen (hydroxyproline) and its hydroxylysylpyridinoline and lysylpyridinoline crosslinks from chondromalacia foci of the patellae in 12 patients and 7 controls from apparently normal cadavers. The structure of the collagen network in 8 samples of grades II-IV chondromalacia was examined under polarized light microscopy. The full-thickness cartilage samples taken with a surgical knife from chondromalacia lesions did not show changes in collagen, hydroxylysylpyridinoline and lysylpyridinoline concentration as compared with the controls. Polarized light microscopy showed decreased birefringence in the superficial cartilage of chondromalacia lesions, indicating disorganization or disappearance of collagen fibers in this zone. It is concluded that the collagen network shows gradual disorganization with the severity of chondromalacia lesion of the patella without changes in the concentration or crosslinks of collagen.

  5. A comparative assessment of commonly employed staining ...

    African Journals Online (AJOL)

    Following an increase in the number of reports of Cryptosporidium infections and the problems encountered in detecting these organisms in faecal smears, a comparative assessment of a modification of the Sheather's flotation technique and other commonly employed staining procedures proved the modified Sheather's ...

  6. Photoacoustic imaging of port-wine stains

    NARCIS (Netherlands)

    Kolkman, Roy G. M.; Mulder, Miranda J.; Glade, Conrad P.; Steenbergen, Wiendelt; van Leeuwen, Ton G.

    2008-01-01

    BACKGROUND AND OBJECTIVE: To optimize laser therapy of port-wine stains (PWSs), information about the vasculature as well as lesion depth is valuable. In this study we investigated the use of photoacoustic imaging (PAI) to obtain this information. STUDY DESIGN/MATERIALS AND METHODS: PAI uses pulsed

  7. Photoacoustic Imaging of Port-Wine Stains

    NARCIS (Netherlands)

    Kolkman, R.G.M.; Mulder, M.J.; Mulder, Miranda J.; Glade, Conrad P.; Steenbergen, Wiendelt; van Leeuwen, Ton

    2008-01-01

    Background and Objective: To optimize laser therapy of port-wine stains (PWSs), information about the vasculature as well as lesion depth is valuable. In this study we investigated the use of photoacoustic imaging (PAI) to obtain this information. - Study Design/Materials and Methods: PAI uses

  8. Atrial fibrillation after cardiac surgery

    Directory of Open Access Journals (Sweden)

    Nair Suresh

    2010-01-01

    Full Text Available Once considered as nothing more than a nuisance after cardiac surgery, the importance of postoperative atrial fibrillation (POAF has been realized in the last decade, primarily because of the morbidity associated with the condition. Numerous causative factors have been described without any single factor being singled out as the cause of this complication. POAF has been associated with stroke, renal failure and congestive heart failure, although it is difficult to state whether POAF is directly responsible for these complications. Guidelines have been formulated for prevention of POAF. However, very few cardiothoracic centers follow any form of protocol to prevent POAF. Routine use of prophylaxis would subject all patients to the side effects of anti-arrhythmic drugs, while only a minority of the patients do actually develop this problem postoperatively. Withdrawal of beta blockers in the postoperative period has been implicated as one of the major causes of POAF. Amiodarone, calcium channel blockers and a variety of other pharmacological agents have been used for the prevention of POAF. Atrial pacing is a non-pharmacological measure which has gained popularity in the prevention of POAF. There is considerable controversy regarding whether rate control is superior to rhythm control in the treatment of established atrial fibrillation (AF. Amiodarone plays a central role in both rate control and rhythm control in postoperative AF. Newer drugs like dronedarone and ranazoline are likely to come into the market in the coming years.

  9. Building blocks of Collagen based biomaterial devices

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Building blocks of Collagen based biomaterial devices. Collagen as a protein. Collagen in tissues and organs. Stabilizing and cross linking agents. Immunogenicity. Hosts (drugs). Controlled release mechanisms of hosts. Biodegradability, workability into devices ...

  10. Atrial fibrillation and survival in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Justin Timothy A

    2004-11-01

    Full Text Available Abstract Background Survival in colorectal cancer may correlate with the degree of systemic inflammatory response to the tumour. Atrial fibrillation may be regarded as an inflammatory complication. We aimed to determine if atrial fibrillation is a prognostic factor in colorectal cancer. Patients and methods A prospective colorectal cancer patient database was cross-referenced with the hospital clinical-coding database to identify patients who had underwent colorectal cancer surgery and were in atrial fibrillation pre- or postoperatively. Results A total of 175 patients underwent surgery for colorectal cancer over a two-year period. Of these, 13 patients had atrial fibrillation pre- or postoperatively. Atrial fibrillation correlated with worse two-year survival (p = 0.04; log-rank test. However, in a Cox regression analysis, atrial fibrillation was not significantly associated with survival. Conclusion The presence or development of atrial fibrillation in patients undergoing surgery for colorectal cancer is associated with worse overall survival, however it was not found to be an independent factor in multivariate analysis.

  11. Three-Dimensional Geometry of Collagenous Tissues by Second Harmonic Polarimetry.

    Science.gov (United States)

    Reiser, Karen; Stoller, Patrick; Knoesen, André

    2017-06-01

    Collagen is a biological macromolecule capable of second harmonic generation, allowing label-free detection in tissues; in addition, molecular orientation can be determined from the polarization dependence of the second harmonic signal. Previously we reported that in-plane orientation of collagen fibrils could be determined by modulating the polarization angle of the laser during scanning. We have now extended this method so that out-of-plane orientation angles can be determined at the same time, allowing visualization of the 3-dimensional structure of collagenous tissues. This approach offers advantages compared with other methods for determining out-of-plane orientation. First, the orientation angles are directly calculated from the polarimetry data obtained in a single scan, while other reported methods require data from multiple scans, use of iterative optimization methods, application of fitting algorithms, or extensive post-optical processing. Second, our method does not require highly specialized instrumentation, and thus can be adapted for use in almost any nonlinear optical microscopy setup. It is suitable for both basic and clinical applications. We present three-dimensional images of structurally complex collagenous tissues that illustrate the power of such 3-dimensional analyses to reveal the architecture of biological structures.

  12. Calcified cartilage or bone? Collagens in the tessellated endoskeletons of cartilaginous fish (sharks and rays).

    Science.gov (United States)

    Seidel, Ronald; Blumer, Michael; Pechriggl, Elisabeth-Judith; Lyons, Kady; Hall, Brian K; Fratzl, Peter; Weaver, James C; Dean, Mason N

    2017-10-01

    The primary skeletal tissue in elasmobranchs -sharks, rays and relatives- is cartilage, forming both embryonic and adult endoskeletons. Only the skeletal surface calcifies, exhibiting mineralized tiles (tesserae) sandwiched between a cartilage core and overlying fibrous perichondrium. These two tissues are based on different collagens (Coll II and I, respectively), fueling a long-standing debate as to whether tesserae are more like calcified cartilage or bone (Coll 1-based) in their matrix composition. We demonstrate that stingray (Urobatis halleri) tesserae are bipartite, having an upper Coll I-based 'cap' that merges into a lower Coll II-based 'body' zone, although tesserae are surrounded by cartilage. We identify a 'supratesseral' unmineralized cartilage layer, between tesserae and perichondrium, distinguished from the cartilage core in containing Coll I and X (a common marker for mammalian mineralization), in addition to Coll II. Chondrocytes within tesserae appear intact and sit in lacunae filled with Coll II-based matrix, suggesting tesserae originate in cartilage, despite comprising a diversity of collagens. Intertesseral joints are also complex in their collagenous composition, being similar to supratesseral cartilage closer to the perichondrium, but containing unidentified fibrils nearer the cartilage core. Our results indicate a unique potential for tessellated cartilage in skeletal biology research, since it lacks features believed diagnostic for vertebrate cartilage mineralization (e.g. hypertrophic and apoptotic chondrocytes), while offering morphologies amenable for investigating the regulation of complex mineralized ultrastructure and tissues patterned on multiple collagens. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The triple helix of collagens - an ancient protein structure that enabled animal multicellularity and tissue evolution.

    Science.gov (United States)

    Fidler, Aaron L; Boudko, Sergei P; Rokas, Antonis; Hudson, Billy G

    2018-04-09

    The cellular microenvironment, characterized by an extracellular matrix (ECM), played an essential role in the transition from unicellularity to multicellularity in animals (metazoans), and in the subsequent evolution of diverse animal tissues and organs. A major ECM component are members of the collagen superfamily -comprising 28 types in vertebrates - that exist in diverse supramolecular assemblies ranging from networks to fibrils. Each assembly is characterized by a hallmark feature, a protein structure called a triple helix. A current gap in knowledge is understanding the mechanisms of how the triple helix encodes and utilizes information in building scaffolds on the outside of cells. Type IV collagen, recently revealed as the evolutionarily most ancient member of the collagen superfamily, serves as an archetype for a fresh view of fundamental structural features of a triple helix that underlie the diversity of biological activities of collagens. In this Opinion, we argue that the triple helix is a protein structure of fundamental importance in building the extracellular matrix, which enabled animal multicellularity and tissue evolution. © 2018. Published by The Company of Biologists Ltd.

  14. Riboflavin/UVA Collagen Cross-Linking-Induced Changes in Normal and Keratoconus Corneal Stroma

    Science.gov (United States)

    Hayes, Sally; Boote, Craig; Kamma-Lorger, Christina S.; Rajan, Madhavan S.; Harris, Jonathan; Dooley, Erin; Hawksworth, Nicholas; Hiller, Jennifer; Terill, Nick J.; Hafezi, Farhad; Brahma, Arun K.; Quantock, Andrew J.; Meek, Keith M.

    2011-01-01

    Purpose To determine the effect of Ultraviolet-A collagen cross-linking with hypo-osmolar and iso-osmolar riboflavin solutions on stromal collagen ultrastructure in normal and keratoconus ex vivo human corneas. Methods Using small-angle X-ray scattering, measurements of collagen D-periodicity, fibril diameter and interfibrillar spacing were made at 1 mm intervals across six normal post-mortem corneas (two above physiological hydration (swollen) and four below (unswollen)) and two post-transplant keratoconus corneal buttons (one swollen; one unswollen), before and after hypo-osmolar cross-linking. The same parameters were measured in three other unswollen normal corneas before and after iso-osmolar cross-linking and in three pairs of swollen normal corneas, in which only the left was cross-linked (with iso-osmolar riboflavin). Results Hypo-osmolar cross-linking resulted in an increase in corneal hydration in all corneas. In the keratoconus corneas and unswollen normal corneas, this was accompanied by an increase in collagen interfibrillar spacing (priboflavin solutions are more likely a consequence of treatment-induced changes in tissue hydration rather than cross-linking. PMID:21850225

  15. Tenascin-X, Collagen, Elastin and the Ehlers-Danlos Syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Bristow, James; Carey, William; Schalkwijk, Joost

    2005-08-31

    Tenascin-X is an extracellular matrix protein initially identified because of its overlap with the human CYP21B gene. Because studies of gene and protein function of other tenascins had been poorly predictive of essential functions in vivo, we used a genetic approach that critically relied on an understanding of the genomic locus to uncover an association between inactivating tenascin-X mutations and novel recessive and dominant forms of Ehlers-Danlos syndrome. Tenascin-X provides the first example of a gene outside of the fibrillar collagens and their processing enzymes that causes Ehlers-Danlos syndrome. Tenascin-X null mice recapitulate the skin findings of the human disease, confirming a causative role for this gene in Ehlers-Danlos syndrome. Further evaluation of these mice showed that tenascin-X is an important regulator of collagen deposition in vivo, suggesting a novel mechanism of disease in this form of Ehlers-Danlos syndrome. Further studies suggest that tenascin-X may do this through both direct and indirect interactions with the collagen fibril. Recent studies show that TNX effects on matrix extend beyond the collagen to the elastogenic pathway and matrix remodeling enzymes. Tenascin-X serves as a compelling example of how human experiments of nature can guide us to an understanding of genes whose function may not be evident from their sequence or in vitro studies of their encoded proteins.

  16. Entrapment of cultured pancreas islets in three-dimensional collagen matrices.

    Science.gov (United States)

    Chao, S H; Peshwa, M V; Sutherland, D E; Hu, W S

    1992-01-01

    In vitro culture of islets of Langerhans decreases their immunogenicity, presumably by eliminating passenger leukocytes and other Ia+ presenting cells within the islets. Islets cultivated in petri dishes either at 37 degrees C or at 25 degrees C gradually disintegrate during culture in a time-dependent manner which is related to the free-floating condition of the islets. Also, a fraction of the islets disperse as single cells and beta-cell aggregates or adhere to the bottom of the culture dishes. Thus, the retrieval rate of transplantable islets is dampened due to their disintegration and spontaneous dispersion in conventional petri dish cultures. Entrapment of freshly harvested islets of Langerhans in a three-dimensional collagen matrix was studied as an alternative method for islet cultivation. The contraction of collagen fibrils during in vitro culture counteracts the dispersion of islets and helps in maintaining their integrity while in culture. It was observed that the entrapped islets maintain satisfactory morphology, viability, and capability of glucose-dependent insulin secretion for over 2 wk. The oxygen consumption rate and glucose metabolism of these islets was not deranged when entrapped in collagen. Also, the retrieval of islets is easier and more efficient than that observed in conventional culture systems. Our results indicate that culture of islets in three-dimensional collagen gels can potentially develop into an ideal system applicable to clinical transplantation of cultured islets or beta-cell aggregates.

  17. Protective Effect of Pyruvate Against Radiation-Induced Damage in Collagenized Tissues

    Science.gov (United States)

    Griko, Y. V.; Yan, Xiaoli

    2016-01-01

    Exposure to high doses of ionizing radiation produces both acute and late effects on the collagenized tissues and have profound effects on wound healing. Because of the crucial practical importance for new radioprotective agents, our study has been focused on evaluation of the efficacy of non-toxic naturally occurring compounds to protect tissue integrity against high-dose gamma radiation. Here, we demonstrate that molecular integrity of collagen may serve as a sensitive biological marker for quantitative evaluation of molecular damage to collagenized tissue and efficacy of radioprotective agents. Increasing doses of gamma radiation (0-50kGy) result in progressive destruction of the native collagen fibrils, which provide a structural framework, strength, and proper milieu for the regenerating tissue. The strategy used in this study involved the thermodynamic specification of all structural changes in collagenized matrix of skin, aortic heart valve, and bone tissue induced by different doses and conditions of g-irradiation. This study describes a simple biophysical approach utilizing the Differential Scanning Calorimetry (DSC) to characterize the structural resistance of the aortic valve matrix exposed to different doses of g-irradiation. It allows us to identify the specific response of each constituent as well as to determine the influence of the different treatments on the characteristic parameters of protein structure. We found that pyruvate, a substance that naturally occurs in the body, provide significant protection (up to 80%) from biochemical and biomechanical damage to the collagenized tissue through the effective targeting of reactive oxygen species. The recently discovered role of pyruvate in the cell antioxidant defense to O2 oxidation, and its essential constituency in the daily human diet, indicate that the administration of pyruvate-based radioprotective formulations may provide safe and effective protection from deleterious effects of ionizing

  18. Comparison of in vitro behavior of as-sprayed, alkaline-treated and collagen-treated bioceramic coatings obtained by high velocity oxy-fuel spray

    Energy Technology Data Exchange (ETDEWEB)

    Melero, H., E-mail: hortensia.melero.correas@gmail.com [Thermal Spray Centre, Universitat de Barcelona, Martí i Franqués, 1, 08028 Barcelona (Spain); Garcia-Giralt, N. [URFOA, IMIM (Institut Hospital del Mar d’Investigacions Mèdiques), RETICEF, Doctor Aiguader, 80, 08003 Barcelona (Spain); Fernández, J. [Thermal Spray Centre, Universitat de Barcelona, Martí i Franqués, 1, 08028 Barcelona (Spain); Díez-Pérez, A. [URFOA, IMIM (Institut Hospital del Mar d’Investigacions Mèdiques), RETICEF, Doctor Aiguader, 80, 08003 Barcelona (Spain); Servei de Medicina Interna, Hospital del Mar, Barcelona (Spain); Guilemany, J.M. [Thermal Spray Centre, Universitat de Barcelona, Martí i Franqués, 1, 08028 Barcelona (Spain)

    2014-07-01

    Hydroxyapatite (HAp)–TiO{sub 2} samples obtained using high velocity oxy-fuel spray (HVOF), that had previously shown excellent mechanical behaviour, were innovatively surface treated in order to improve their biological performance. The chosen treatments were an alkaline treatment to increase –OH radicals density on the surface (especially on TiO{sub 2} zones), and a collagen treatment to bond collagen fibrils to the –OH radicals present in hydroxyapatite. These coatings were analysed using scanning electron microscopy, energy-dispersive X-ray spectroscopy and infrared spectroscopy, and tested for human osteoblast biocompatibility and functionality. In the case of the alkaline treatment, although the –OH radicals density did not increase compared to the as-sprayed coatings, a nanostructured layer of sodium hydroxycarbonate precipitated on the surface, thus improving biological behaviour due to the nanoroughness effect. For the collagen-treated samples, collagen fibrils appeared well-adhered to the surface, and in vitro cell culture tests showed that these surfaces were much more conducive to cell adhesion and differentiation than the as-sprayed and alkaline-treated samples. These results pointed to collagen treatment as a very promising method to improve bioactivity of HAp–TiO{sub 2} thermal-sprayed coatings.

  19. Multispectral Enhancement Method to Increase the Visual Differences of Tissue Structures in Stained Histopathology Images

    Directory of Open Access Journals (Sweden)

    Pinky A. Bautista

    2012-01-01

    Full Text Available In this paper we proposed a multispectral enhancement scheme in which the spectral colors of the stained tissue-structure of interest and its background can be independently modified by the user to further improve their visualization and color discrimination. The colors of the background objects are modified by transforming their N-band spectra through an NxN transformation matrix, which is derived by mapping the representative samples of their original spectra to the spectra of their target colors using least mean square method. On the other hand, the color of the tissue structure of interest is modified by modulating the transformed spectra with the sum of the pixel’s spectral residual-errors at specific bands weighted through an NxN weighting matrix; the spectral error is derived by taking the difference between the pixel’s original spectrum and its reconstructed spectrum using the first M dominant principal component vectors in principal component analysis. Promising results were obtained on the visualization of the collagen fiber and the non-collagen tissue structures, e.g., nuclei, cytoplasm and red blood cells (RBC, in a hematoxylin and eosin (H&E stained image.

  20. The C-terminus hot spot region helps in the fibril formation of bacteriophage-associated hyaluronate lyase (HylP2).

    Science.gov (United States)

    Shukla, Harish; Singh, Sudhir Kumar; Singh, Amit Kumar; Mitra, Kalyan; Akhtar, Md Sohail

    2015-09-23

    The bacteriophage encoded hyaluronate lyases (HylP and HylP2) degrade hyaluronan and other glycosaminoglycans. HylP2 forms a functional fibril under acidic conditions in which its N-terminus is proposed to form the fibrillar core, leading to nucleation and acceleration of fibril formation. Here we report the presence of a hot spot region (A144GVVVY149) towards the carboxy terminus of HylP2, essential for the acceleration of fibril formation. The 'hot spot' is observed to be inherently mutated for valines (A178AMVMY183) in case of HylP. The N- terminal swapped chimeras between these phage HLs ((N)HylP2(C)HylP and (N)HylP(C)HylP2) or HylP did not form fibrils at acidic pH. However, seeding of prefibrils of HylP2 recompensed nucleation and led to fibrillation in (N)HylP(C)HylP2. The V147A mutation in the 'hot spot' region abolished fibril formation in HylP2. The M179V and M181V double mutations in the 'hot spot' region of HylP led to fibrillation with the seeding of prefibrils. It appears that fibrillation in HylP2 even though is initiated by the N-terminus, is accelerated by the conserved 'hot spot' region in the C-terminus. A collagenous (Gly-X-Y)10 motif in the N-terminus and a mutated 'hot spot' region in the C-terminus of HylP affect fibrillar nucleation and acceleration respectively.

  1. Sucrose modulates insulin amyloid-like fibril formation: effect on the aggregation mechanism and fibril morphology

    DEFF Research Database (Denmark)

    Marasini, Carlotta; Foderà, Vito; Vestergaard, Bente

    2017-01-01

    the protein self-assembly pathways. Using a combination of fluorescence spectroscopy, synchrotron radiation circular dichroism and transmission electron microscopy, we study the kinetics of formation and structural properties of human insulin fibrils in the presence of sucrose. The presence of sucrose results...... in a delay of the onset of fibrillation. Moreover, it leads to a dramatic change in both the morphology and overall amount of fibrils. Our results emphasize that the detailed composition of protein surroundings likely influences not only the fibrillation kinetics but also the balance between different...

  2. Laser Treatment of Port Wine Stains

    Science.gov (United States)

    Majaron, Boris; Nelson, J. Stuart

    Port wine stain (PWS), also called nevus flammeus, is a congenital, cutaneous vascular malformation involving post-capillary venules which produce a light pink to red to dark-red-violet discoloration of human skin [1]. PWS occurs in an estimated 3 children per 1000 live births, affecting males and females and all racial groups equally [2]. There appears to be no hereditary predilection for PWS within families. There are no known risk factors or ways to prevent PWS.

  3. Psychosomatic correlations in atrial fibrillations

    Directory of Open Access Journals (Sweden)

    Vladimir Ernstovich Medvedev

    2011-01-01

    Full Text Available Patients with atrial fibrillations (AF and comorbid mental disorders were examined. Two patient groups differing in the structure of psychosomatic ratios were identified. Group 1 comprised patients with AF and signs of reactivity lability that manifested itself as psychopathological reactions to the primary manifestations of AF; Group 2 included those who had developed mental disorders mainly in end-stage cardiovascular disease (predominantly a permanent form of AF in the presence of such events as chronic heart failure (CHF. The results of the study suggest that the patients with AF have frequently anxiety and hypochondriacal disorders, which agrees with the data available in the literature. In addition, end-stage AF is marked by depressive syndromes caused by the severe course of cardiovascular diseases resulting in CHF.

  4. Idiopathic ventricular tachycardia and fibrillation.

    Science.gov (United States)

    Belhassen, B; Viskin, S

    1993-06-01

    Important data have recently been added to our understanding of sustained ventricular tachyarrhythmias occurring in the absence of demonstrable heart disease. Idiopathic ventricular tachycardia (VT) is usually of monomorphic configuration and can be classified according to its site of origin as either right monomorphic (70% of all idiopathic VTs) or left monomorphic VT. Several physiopathological types of monomorphic VT can be presently individualized, according to their mode of presentation, their relationship to adrenergic stress, or their response to various drugs. The long-term prognosis is usually good. Idiopathic polymorphic VT is a much rarer type of arrhythmia with a less favorable prognosis. Idiopathic ventricular fibrillation may represent an underestimated cause of sudden cardiac death in ostensibly healty patients. A high incidence of inducibility of sustained polymorphic VT with programmed ventricular stimulation has been found by our group, but not by others. Long-term prognosis on Class IA antiarrhythmic medications that are highly effective at electrophysiologic study appears excellent.

  5. Collagens--structure, function, and biosynthesis.

    Science.gov (United States)

    Gelse, K; Pöschl, E; Aigner, T

    2003-11-28

    The extracellular matrix represents a complex alloy of variable members of diverse protein families defining structural integrity and various physiological functions. The most abundant family is the collagens with more than 20 different collagen types identified so far. Collagens are centrally involved in the formation of fibrillar and microfibrillar networks of the extracellular matrix, basement membranes as well as other structures of the extracellular matrix. This review focuses on the distribution and function of various collagen types in different tissues. It introduces their basic structural subunits and points out major steps in the biosynthesis and supramolecular processing of fibrillar collagens as prototypical members of this protein family. A final outlook indicates the importance of different collagen types not only for the understanding of collagen-related diseases, but also as a basis for the therapeutical use of members of this protein family discussed in other chapters of this issue.

  6. Quantification of aortic and cutaneous elastin and collagen morphology in Marfan syndrome by multiphoton microscopy.

    Science.gov (United States)

    Cui, Jason Z; Tehrani, Arash Y; Jett, Kimberly A; Bernatchez, Pascal; van Breemen, Cornelis; Esfandiarei, Mitra

    2014-09-01

    In a mouse model of Marfan syndrome, conventional Verhoeff-Van Gieson staining displays severe fragmentation, disorganization and loss of the aortic elastic fiber integrity. However, this method involves chemical fixatives and staining, which may alter the native morphology of elastin and collagen. Thus far, quantitative analysis of fiber damage in aorta and skin in Marfan syndrome has not yet been explored. In this study, we have used an advanced noninvasive and label-free imaging technique, multiphoton microscopy to quantify fiber fragmentation, disorganization, and total volumetric density of aortic and cutaneous elastin and collagen in a mouse model of Marfan syndrome. Aorta and skin samples were harvested from Marfan and control mice aged 3-, 6- and 9-month. Elastin and collagen were identified based on two-photon excitation fluorescence and second-harmonic-generation signals, respectively, without exogenous label. Measurement of fiber length indicated significant fragmentation in Marfan vs. control. Fast Fourier transform algorithm analysis demonstrated markedly lower fiber organization in Marfan mice. Significantly reduced volumetric density of elastin and collagen and thinner skin dermis were observed in Marfan mice. Cutaneous content of elastic fibers and thickness of dermis in 3-month Marfan resembled those in the oldest control mice. Our findings of early signs of fiber degradation and thinning of skin dermis support the potential development of a novel non-invasive approach for early diagnosis of Marfan syndrome. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Stain Deconvolution Using Statistical Analysis of Multi-Resolution Stain Colour Representation.

    Directory of Open Access Journals (Sweden)

    Najah Alsubaie

    Full Text Available Stain colour estimation is a prominent factor of the analysis pipeline in most of histology image processing algorithms. Providing a reliable and efficient stain colour deconvolution approach is fundamental for robust algorithm. In this paper, we propose a novel method for stain colour deconvolution of histology images. This approach statistically analyses the multi-resolutional representation of the image to separate the independent observations out of the correlated ones. We then estimate the stain mixing matrix using filtered uncorrelated data. We conducted an extensive set of experiments to compare the proposed method to the recent state of the art methods and demonstrate the robustness of this approach using three different datasets of scanned slides, prepared in different labs using different scanners.

  8. Investigation of black soot staining in houses

    Energy Technology Data Exchange (ETDEWEB)

    Fugler, D. [Canada Mortgage and Housing Corp., Ottawa, ON (Canada)

    2000-07-01

    Air quality investigators are frequently called upon to determine the origin of streaking, staining or soot marks in both new and old homes. Those marks display common characteristics: black marks along baseboards at interior or exterior walls, behind furniture and at doorways; black smudges on window frames and plastic cabinets; and even shadowing of studs on exterior wall drywall in a few cases. In most instances, carbon soot from a combustion source is the culprit. The combustion sources include furnaces, water heaters, fireplaces, gas dryers, gas ranges, smoking, vehicle exhaust and candle burning. Scepticism about candle soot is prevalent among callers. As a result, a study was initiated in homes where occupants burn candles regularly to investigate soot problems. Samples were collected from five homes, and included stained carpets, filters, and swab samples of black dust or soot. All the houses selected for the study had been built within a three-year period. Some samples of candles commonly burned in those homes were burnt in a laboratory. Air quality audits had been performed in the homes and had revealed other potential pollutant sources. Best practices for cost-effective clean up and control of soot were researched in industry information. The tests conducted in the laboratory found materials consistent with candle soot or residue during microscopic investigations, but no link was established with the stained material obtained from the homes. A few tips for homeowners were included concerning candle burning, and tips for builders were also offered. 1 tab.

  9. Perivenous and perisinusoidal collagen content in the acinar zone 3 in the "normal" liver. A light microscopical study

    DEFF Research Database (Denmark)

    Junge, Jette; Vyberg, M; Horn, T

    1988-01-01

    The thickness of the terminal hepatic vein wall (TTHV) and the content of perisinusoidal collagen in 989 zone 3 areas in Picro-Sirius-stained sections from 117 liver biopsies with normal morphology or slight non-specific changes were analyzed. TTHV varied from 0.4 micron to 21.3 microns (median 3.......8 microns). A positive correlation was found between TTHV and the diameter of the terminal hepatic vein. The average TTHV of the individual biopsies was not correlated to age, sex or liver morphology. The average zone 3 collagen content did not exceed that of zones 2 and 1, with the exception of biopsies...... with slight steatosis, where a minimal increase in zone 3 collagen was found. The normal variability of TTHV and the correlation to the diameter of THV must be considered in the evaluation of perivenular fibrosis. Even a slight increase in perisinusoidal collagen content may be suggestive of a pathological...

  10. Atrial Fibrillation During an Exploration Class Mission

    Science.gov (United States)

    Lipsett, Mark; Hamilton, Douglas; Lemery, Jay; Polk, James

    2011-01-01

    This slide presentation reviews a possible scenario of an astronaut having Atrial Fibrillation during a Mars Mission. In the case review the presentation asks several questions about the alternatives for treatment, medications and the ramifications of the decisions.

  11. [Relations between FANS, PPI and atrial fibrillation].

    Science.gov (United States)

    Ricci, Fabrizio; De Caterina, Raffaele

    2013-05-01

    Recent evidence supports the existence of an association between the use of non-steroidal anti-inflammatory drugs and the risk of atrial fibrillation. Anti-inflammatory drugs are widely used for the treatment of systemic inflammatory disorders, and chronic inflammation is a well-known risk factor for the development of myocardial fibrosis. The latter accounts for atrial inhomogeneities of conduction, thus triggering and perpetuating atrial fibrillation. Atrial inflammatory remodeling may therefore be responsible for the higher incidence of atrial fibrillation among patients assuming steroidal and non-steroidal anti-inflammatory drugs because of an underlying inflammatory disorders. Alternative theories contemplate gastroesophageal reflux, which is extremely common during the use of non-steroidal anti-inflammatory drugs and may trigger atrial fibrillation, as mediating the above-mentioned association.

  12. Collagen cross linking: Current perspectives

    Directory of Open Access Journals (Sweden)

    Srinivas K Rao

    2013-01-01

    Full Text Available Keratoconus is a common ectatic disorder occurring in more than 1 in 1,000 individuals. The condition typically starts in adolescence and early adulthood. It is a disease with an uncertain cause and its progression is unpredictable, but in extreme cases, vision deteriorates and can require corneal transplant surgery. Corneal collagen cross-linking (CCL with riboflavin (C3R is a recent treatment option that can enhance the rigidity of the cornea and prevent disease progression. Since its inception, the procedure has evolved with newer instrumentation, surgical techniques, and is also now performed for expanded indications other than keratoconus. With increasing experience, newer guidelines regarding optimization of patient selection, the spectrum of complications and their management, and combination procedures are being described. This article in conjunction with the others in this issue, will try and explore the uses of collagen cross-linking (CXL in its current form.

  13. Salbutamol Abuse is Associated with Ventricular Fibrillation

    Directory of Open Access Journals (Sweden)

    Emin UYSAL

    2015-06-01

    Full Text Available SUMMARY: Salbutamol-induced cardiac complications are well-established. Herein, we describe a case of a 24-year female who was admitted to the emergency department because of a suicide attempt with salbutamol (76 mg. Salbutamol abuse induced the development of supraventricular tachycardia and ventricular fibrillation. Regular sinus rhythm was restored with defibrillation. The hypokalemic patient who stayed in the intensive care unit was discharged after 48 hours of hospitalization. Key words: Salbutamol, suicide, ventricular fibrillation

  14. A Quantitative Study of the Relationship between the Distribution of Different Types of Collagen and the Mechanical Behavior of Rabbit Medial Collateral Ligaments

    Science.gov (United States)

    Wan, Chao; Hao, Zhixiu; Wen, Shizhu; Leng, Huijie

    2014-01-01

    The mechanical properties of ligaments are key contributors to the stability and function of musculoskeletal joints. Ligaments are generally composed of ground substance, collagen (mainly type I and III collagen), and minimal elastin fibers. However, no consensus has been reached about whether the distribution of different types of collagen correlates with the mechanical behaviors of ligaments. The main objective of this study was to determine whether the collagen type distribution is correlated with the mechanical properties of ligaments. Using axial tensile tests and picrosirius red staining-polarization observations, the mechanical behaviors and the ratios of the various types of collagen were investigated for twenty-four rabbit medial collateral ligaments from twenty-four rabbits of different ages, respectively. One-way analysis of variance was used in the comparison of the Young's modulus in the linear region of the stress-strain curves and the ratios of type I and III collagen for the specimens (the mid-substance specimens of the ligaments) with different ages. A multiple linear regression was performed using the collagen contents (the ratios of type I and III collagen) and the Young's modulus of the specimens. During the maturation of the ligaments, the type I collagen content increased, and the type III collagen content decreased. A significant and strong correlation () was identified by multiple linear regression between the collagen contents (i.e., the ratios of type I and type III collagen) and the mechanical properties of the specimens. The collagen content of ligaments might provide a new perspective for evaluating the linear modulus of global stress-strain curves for ligaments and open a new door for studying the mechanical behaviors and functions of connective tissues. PMID:25062068

  15. A quantitative study of the relationship between the distribution of different types of collagen and the mechanical behavior of rabbit medial collateral ligaments.

    Science.gov (United States)

    Wan, Chao; Hao, Zhixiu; Wen, Shizhu; Leng, Huijie

    2014-01-01

    The mechanical properties of ligaments are key contributors to the stability and function of musculoskeletal joints. Ligaments are generally composed of ground substance, collagen (mainly type I and III collagen), and minimal elastin fibers. However, no consensus has been reached about whether the distribution of different types of collagen correlates with the mechanical behaviors of ligaments. The main objective of this study was to determine whether the collagen type distribution is correlated with the mechanical properties of ligaments. Using axial tensile tests and picrosirius red staining-polarization observations, the mechanical behaviors and the ratios of the various types of collagen were investigated for twenty-four rabbit medial collateral ligaments from twenty-four rabbits of different ages, respectively. One-way analysis of variance was used in the comparison of the Young's modulus in the linear region of the stress-strain curves and the ratios of type I and III collagen for the specimens (the mid-substance specimens of the ligaments) with different ages. A multiple linear regression was performed using the collagen contents (the ratios of type I and III collagen) and the Young's modulus of the specimens. During the maturation of the ligaments, the type I collagen content increased, and the type III collagen content decreased. A significant and strong correlation (R2 = 0.839, P < 0.05) was identified by multiple linear regression between the collagen contents (i.e., the ratios of type I and type III collagen) and the mechanical properties of the specimens. The collagen content of ligaments might provide a new perspective for evaluating the linear modulus of global stress-strain curves for ligaments and open a new door for studying the mechanical behaviors and functions of connective tissues.

  16. A quantitative study of the relationship between the distribution of different types of collagen and the mechanical behavior of rabbit medial collateral ligaments.

    Directory of Open Access Journals (Sweden)

    Chao Wan

    Full Text Available The mechanical properties of ligaments are key contributors to the stability and function of musculoskeletal joints. Ligaments are generally composed of ground substance, collagen (mainly type I and III collagen, and minimal elastin fibers. However, no consensus has been reached about whether the distribution of different types of collagen correlates with the mechanical behaviors of ligaments. The main objective of this study was to determine whether the collagen type distribution is correlated with the mechanical properties of ligaments. Using axial tensile tests and picrosirius red staining-polarization observations, the mechanical behaviors and the ratios of the various types of collagen were investigated for twenty-four rabbit medial collateral ligaments from twenty-four rabbits of different ages, respectively. One-way analysis of variance was used in the comparison of the Young's modulus in the linear region of the stress-strain curves and the ratios of type I and III collagen for the specimens (the mid-substance specimens of the ligaments with different ages. A multiple linear regression was performed using the collagen contents (the ratios of type I and III collagen and the Young's modulus of the specimens. During the maturation of the ligaments, the type I collagen content increased, and the type III collagen content decreased. A significant and strong correlation (R2 = 0.839, P < 0.05 was identified by multiple linear regression between the collagen contents (i.e., the ratios of type I and type III collagen and the mechanical properties of the specimens. The collagen content of ligaments might provide a new perspective for evaluating the linear modulus of global stress-strain curves for ligaments and open a new door for studying the mechanical behaviors and functions of connective tissues.

  17. Chirality and chiroptical properties of amyloid fibrils.

    Science.gov (United States)

    Dzwolak, Wojciech

    2014-09-01

    Chirality of amyloid fibrils-linear beta-sheet-rich aggregates of misfolded protein chains-often manifests in morphological traits such as helical twist visible in atomic force microscopy and in chiroptical properties accessible to vibrational circular dichroism (VCD). According to recent studies the relationship between molecular chirality of polypeptide building blocks and superstructural chirality of amyloid fibrils may be more intricate and less deterministic than previously assumed. Several puzzling experimental findings have put into question earlier intuitive ideas on: 1) the bottom-up chirality transfer upon amyloidogenic self-assembly, and 2) the structural origins of chiroptical properties of protein aggregates. For example, removal of a single amino acid residue from an amyloidogenic all-L peptide was shown to reverse handedness of fibrils. On the other hand, certain types of amyloid aggregates revealed surprisingly strong VCD spectra with the sign and shape dependent on the conditions of fibrillation. Hence, microscopic and chiroptical studies have highlighted chirality as one more aspect of polymorphism of amyloid fibrils. This brief review is intended to outline the current state of research on amyloid-like fibrils from the perspective of their structural and superstructural chirality and chiroptical properties. © 2014 Wiley Periodicals, Inc.

  18. How Glycosaminoglycans Promote Fibrillation of Salmon Calcitonin*

    Science.gov (United States)

    Malmos, Kirsten Gade; Bjerring, Morten; Jessen, Christian Moestrup; Nielsen, Erik Holm Toustrup; Poulsen, Ebbe T.; Christiansen, Gunna; Vosegaard, Thomas; Skrydstrup, Troels; Enghild, Jan J.; Pedersen, Jan Skov; Otzen, Daniel E.

    2016-01-01

    Glycosaminoglycans (GAGs) bind all known amyloid plaques and help store protein hormones in (acidic) granular vesicles, but the molecular mechanisms underlying these important effects are unclear. Here we investigate GAG interactions with the peptide hormone salmon calcitonin (sCT). GAGs induce fast sCT fibrillation at acidic pH and only bind monomeric sCT at acidic pH, inducing sCT helicity. Increasing GAG sulfation expands the pH range for binding. Heparin, the most highly sulfated GAG, binds sCT in the pH interval 3–7. Small angle x-ray scattering indicates that sCT monomers densely decorate and pack single heparin chains, possibly via hydrophobic patches on helical sCT. sCT fibrillates without GAGs, but heparin binding accelerates the process by decreasing the otherwise long fibrillation lag times at low pH and accelerates fibril growth rates at neutral pH. sCT·heparin complexes form β-sheet-rich heparin-covered fibrils. Solid-state NMR reveals that heparin does not alter the sCT fibrillary core around Lys11 but makes changes to Val8 on the exterior side of the β-strand, possibly through contacts to Lys18. Thus GAGs significantly modulate sCT fibrillation in a pH-dependent manner by interacting with both monomeric and aggregated sCT. PMID:27281819

  19. Modeling generic aspects of ideal fibril formation

    Energy Technology Data Exchange (ETDEWEB)

    Michel, D., E-mail: denis.michel@live.fr [Universite de Rennes1-IRSET, Campus de Beaulieu Bat. 13, 35042 Rennes (France)

    2016-01-21

    Many different proteins self-aggregate into insoluble fibrils growing apically by reversible addition of elementary building blocks. But beyond this common principle, the modalities of fibril formation are very disparate, with various intermediate forms which can be reshuffled by minor modifications of physico-chemical conditions or amino-acid sequences. To bypass this complexity, the multifaceted phenomenon of fibril formation is reduced here to its most elementary principles defined for a linear prototype of fibril. Selected generic features, including nucleation, elongation, and conformational recruitment, are modeled using minimalist hypotheses and tools, by separating equilibrium from kinetic aspects and in vitro from in vivo conditions. These reductionist approaches allow to bring out known and new rudiments, including the kinetic and equilibrium effects of nucleation, the dual influence of elongation on nucleation, the kinetic limitations on nucleation and fibril numbers, and the accumulation of complexes in vivo by rescue from degradation. Overlooked aspects of these processes are also pointed: the exponential distribution of fibril lengths can be recovered using various models because it is attributable to randomness only. It is also suggested that the same term “critical concentration” is used for different things, involved in either nucleation or elongation.

  20. Comparative Study of Clinical Staging of Oral Submucous Fibrosis with Qualitative Analysis of Collagen Fibers Under Polarized Microscopy.

    Science.gov (United States)

    Modak, Neha; Tamgadge, Sandhya; Tamgadge, Avinash; Bhalerao, Sudhir

    2015-01-01

    Oral submucous fibrosis (OSMF) is a condition where excessive deposition of dense collagen fibers occurred in the connective tissue of oral mucosa. An alteration of collagen necessitates an in depth understanding of collagen in oral tissues as no breakthrough studies have been reported. T herefore the aim was to correlate the clinical, functional and histopathological staging and to analyze the polarization colors and thickness of the collagen fibers in different stages of OSMF using picrosirius red stain under polarizing microscopy so as to assess the severity of disease. The study was conducted in the department of Oral Pathology and Microbiology at Padm. Dr. D. Y Patil Dental and Hospital, Navi Mumbai, India (2012-13). A sample size was of a total 40 subjects, of which 30 patients had OSMF, and 10 were in control group. Clinical, functional and histopathological staging were done depending upon definite criteria. Collagen fibers were analyzed for polarizing colors and thickness. Further clinical, functional and histopathological stages as well as qualitative parameters of collagen fibers were compared. The correlation between clinical and functional staging was not significant ( P >0.05) whereas the comparison of the functional staging with histopathological staging was more reliable ( P qualitative change in the collagen fibers of OSMF patients using polarized microscopy would help to assess its role in diagnostic evaluation, to determine the prognosis of the disease as well as to provide useful predictive treatment modalities to them.

  1. Sumoylation of the Tumor Suppressor Promyelocytic Leukemia Protein Regulates Arsenic Trioxide-Induced Collagen Synthesis in Osteoblasts.

    Science.gov (United States)

    Xu, Wen-Xiao; Liu, Sheng-Zhi; Wu, Di; Qiao, Guo-Fen; Yan, Jinglong

    2015-01-01

    Promyelocytic leukemia (PML) protein is a tumor suppressor that fuses with retinoic acid receptor-α (PML-RARα) to contribute to the initiation of acute promyelocytic leukemia (APL). Arsenic trioxide (ATO) upregulates expression of TGF-β1, promoting collagen synthesis in osteoblasts, and ATO binds directly to PML to induce oligomerization, sumoylation, and ubiquitination. However, how ATO upregulates TGF-β1 expression is uncertain. Thus, we suggested that PML sumoylation is responsible for regulation of TGF-β1 protein expression. Kunming mice were treated with ATO, and osteoblasts were counted under scanning electron microscopy. Masson's staining was used to quantify collagen content. hFOB1.19 cells were transfected with siRNA against UBC9 or RNF4, and then treated with ATO or FBS. TGF-β1, PML expression, and sumoylation were quantified with Western blot, and collagen quantified via immunocytochemistry. ATO enhanced osteoblast accumulation, collagen synthesis, and PML-NB formation in vivo. Knocking down UBC9 in hFOB1.19 cells inhibited ATO- and FBS-induced PML sumoylation, TGF-β1 expression, and collagen synthesis. Conversely, knocking down RNF4 enhanced ATO- and FBS-induced PML sumoylation, TGF-β1 expression, and collagen synthesis. These data suggest that PML sumoylation is required for ATO-induced collagen synthesis in osteoblasts. © 2015 S. Karger AG, Basel.

  2. RR-Interval variance of electrocardiogram for atrial fibrillation detection

    Science.gov (United States)

    Nuryani, N.; Solikhah, M.; Nugoho, A. S.; Afdala, A.; Anzihory, E.

    2016-11-01

    Atrial fibrillation is a serious heart problem originated from the upper chamber of the heart. The common indication of atrial fibrillation is irregularity of R peak-to-R-peak time interval, which is shortly called RR interval. The irregularity could be represented using variance or spread of RR interval. This article presents a system to detect atrial fibrillation using variances. Using clinical data of patients with atrial fibrillation attack, it is shown that the variance of electrocardiographic RR interval are higher during atrial fibrillation, compared to the normal one. Utilizing a simple detection technique and variances of RR intervals, we find a good performance of atrial fibrillation detection.

  3. The comparison of pyrosequencing molecular Gram stain, culture, and conventional Gram stain for diagnosing orthopaedic infections.

    Science.gov (United States)

    Kobayashi, Naomi; Bauer, Thomas W; Tuohy, Marion J; Lieberman, Isador H; Krebs, Viktor; Togawa, Daisuke; Fujishiro, Takaaki; Procop, Gary W

    2006-08-01

    We have developed a combined real-time PCR and pyrosequencing assay that successfully differentiated the vast majority of gram-positive and gram-negative bacteria when bacterial isolates were tested. The purpose of this study was to evaluate this assay on clinical specimens obtained from orthopedic surgeries, and to prospectively compare the results of "molecular Gram stain" with culture and conventional direct Gram stain. Forty-five surgical specimens were obtained from patients who underwent orthopedic surgery procedures. The DNA was extracted and a set of broad-range PCR primers that targeted a part of the 16S rDNA gene was used for pan-bacterial PCR. The amplicons were submitted for pyrosequencing and the resulting molecular Gram stain characteristics were recorded. Culture and direct Gram staining were performed using standard methods for all cases. Surgical specimens were reviewed histologically for all cases that had a discrepancy between culture and molecular results. There was an 86.7% (39/45) agreement between the traditional and molecular methods. In 12/14 (85.7%) culture-proven cases of bacterial infection, molecular Gram stain characteristics were in agreement with the culture results, while the conventional Gram stain result was in agreement only for five cases (35.7%). In the 31 culture negative cases, 27 cases were also PCR negative, whereas 4 were PCR positive. Three of these were characterized as gram negative and one as gram positive by this molecular method. Molecular determination of the Gram stain characteristics of bacteria that cause orthopedic infections may be achieved, in most instances, by this method. Further studies are necessary to understand the clinical importance of PCR-positive/culture-negative results.

  4. On the role of fibril mechanics in the work of separation of fibrillating interfaces

    NARCIS (Netherlands)

    Vossen, B.G.; Sluis, van der O.; Schreurs, P.J.G.; Geers, M.G.D.; Neggers, J.; Hoefnagels, J.P.M.

    2015-01-01

    High values for the work of separation have been reported in peel tests on fibrillating interfacial systems. The exact origin of these high values is not properly understood, since it remains unclear which dissipative mechanisms related to fibrillation cause a significant increase in the work of

  5. Curcumin Protects β-Lactoglobulin Fibril Formation and Fibril-Induced Neurotoxicity in PC12 Cells.

    Directory of Open Access Journals (Sweden)

    Mansooreh Mazaheri

    Full Text Available In this study the β-lactoglobulin fibrillation, in the presence or absence of lead ions, aflatoxin M1 and curcumin, was evaluated using ThT fluorescence, Circular dichroism spectroscopy and atomic force microscopy. To investigate the toxicity of the different form of β-Lg fibrils, in the presence or absence of above toxins and curcumin, we monitored changes in the level of reactive oxygen species and morphology of the differentiated neuron-like PC12 cells. The cell viability, cell body area, average neurite length, neurite width, number of primary neurites, percent of bipolar cells and node/primary neurite ratios were used to assess the growth and complexity of PC12 cells exposed to different form of β-Lg fibrils. Incubation of β-Lg with curcumin resulted in a significant decrease in ROS levels even in the presence of lead ions and aflatoxin M1. The β-Lg fibrils formed in the presence of lead ions and aflatoxin M1 attenuated the growth and complexity of PC12 cells compared with other form of β-Lg fibrils. However, the adverse effects of these toxins and protein fibrils were negated in the presence of curcumin. Furthermore, the antioxidant and inhibitory effects of curcumin protected PC12 cells against fibril neurotoxicity and enhanced their survival. Thus, curcumin may provide a protective effect toward β-Lg, and perhaps other protein, fibrils mediated neurotoxicity.

  6. Novel synthesis strategy for composite hydrogel of collagen/hydroxyapatite-microsphere originating from conversion of CaCO3 templates.

    Science.gov (United States)

    Wei, Qingrong; Lu, Jian; Wang, Qiaoying; Fan, Hongsong; Zhang, Xingdong

    2015-03-20

    Inspired by coralline-derived hydroxyapatite, we designed a methodological route to synthesize carbonated-hydroxyapatite microspheres from the conversion of CaCO3 spherulite templates within a collagen matrix under mild conditions and thus constructed the composite hydrogel of collagen/hydroxyapatite-microspheres. Fourier transform infrared spectroscopy (FTIR) and x-ray diffraction (XRD) were employed to confirm the successful generation of the carbonated hydroxyapatite phase originating from CaCO3, and the ratios of calcium to phosphate were tracked over time. Variations in the weight portion of the components in the hybrid gels before and after the phase transformation of the CaCO3 templates were identified via thermogravimetric analysis (TGA). Scanning electron microscopy (SEM) shows these composite hydrogels have a unique multiscale microstructure consisting of a collagen nanofibril network and hydroxyapatite microspheres. The relationship between the hydroxyapatite nanocrystals and the collagen fibrils was revealed by transmission electron microscopy (TEM) in detail, and the selected area electron diffraction (SAED) pattern further confirmed the results of the XRD analyses which show the typical low crystallinity of the generated hydroxyapatite. This smart synthesis strategy achieved the simultaneous construction of microscale hydroxyapatite particles and collagen fibrillar hydrogel, and appears to provide a novel route to explore an advanced functional hydrogel materials with promising potentials for applications in bone tissue engineering and reconstruction medicine.

  7. Investigation of the effect of hydration on dermal collagen in ex vivo human skin tissue using second harmonic generation microscopy

    Science.gov (United States)

    Samatham, Ravikant; Wang, Nicholas K.; Jacques, Steven L.

    2016-02-01

    Effect of hydration on the dermal collagen structure in human skin was investigated using second harmonic generation microscopy. Dog ears from the Mohs micrographic surgery department were procured for the study. Skin samples with subject aged between 58-90 years old were used in the study. Three dimensional Multiphoton (Two-photon and backward SHG) control data was acquired from the skin samples. After the control measurement, the skin tissue was either soaked in deionized water for 2 hours (Hydration) or kept at room temperature for 2 hours (Desiccation), and SHG data was acquired. The data was normalized for changes in laser power and detector gain. The collagen signal per unit volume from the dermis was calculated. The desiccated skin tissue gave higher backward SHG compared to respective control tissue, while hydration sample gave a lower backward SHG. The collagen signal decreased with increase in hydration of the dermal collagen. Hydration affected the packing of the collagen fibrils causing a change in the backward SHG signal. In this study, the use of multiphoton microscopy to study the effect of hydration on dermal structure was demonstrated in ex vivo tissue.

  8. A Novel Matrix Protein Hic31 from the Prismatic Layer of Hyriopsis Cumingii Displays a Collagen-Like Structure.

    Science.gov (United States)

    Liu, Xiaojun; Zeng, Shimei; Dong, Shaojian; Jin, Can; Li, Jiale

    2015-01-01

    In this study, we clone and characterize a novel matrix protein, hic31, from the mantle of Hyriopsis cumingii. The amino acid composition of hic31 consists of a high proportion of Glycine residues (26.67%). Tissue expression detection by RT-PCR indicates that hic31 is expressed specifically at the mantle edge. In situ hybridization results reveals strong signals from the dorsal epithelial cells of the outer fold at the mantle edge, and weak signals from inner epithelial cells of the same fold, indicating that hic31 is a prismatic-layer matrix protein. Although BLASTP results identify no shared homology with other shell-matrix proteins or any other known proteins, the hic31 tertiary structure is similar to that of collagen I, alpha 1 and alpha 2. It has been well proved that collagen forms the basic organic frameworks in way of collagen fibrils and minerals present within or outside of these fibrils. Therefore, hic31 might be a framework-matrix protein involved in the prismatic-layer biomineralization. Besides, the gene expression of hic31 increase in the early stages of pearl sac development, indicating that hic31 may play important roles in biomineralization of the pearl prismatic layer.

  9. A Novel Matrix Protein Hic31 from the Prismatic Layer of Hyriopsis Cumingii Displays a Collagen-Like Structure.

    Directory of Open Access Journals (Sweden)

    Xiaojun Liu

    Full Text Available In this study, we clone and characterize a novel matrix protein, hic31, from the mantle of Hyriopsis cumingii. The amino acid composition of hic31 consists of a high proportion of Glycine residues (26.67%. Tissue expression detection by RT-PCR indicates that hic31 is expressed specifically at the mantle edge. In situ hybridization results reveals strong signals from the dorsal epithelial cells of the outer fold at the mantle edge, and weak signals from inner epithelial cells of the same fold, indicating that hic31 is a prismatic-layer matrix protein. Although BLASTP results identify no shared homology with other shell-matrix proteins or any other known proteins, the hic31 tertiary structure is similar to that of collagen I, alpha 1 and alpha 2. It has been well proved that collagen forms the basic organic frameworks in way of collagen fibrils and minerals present within or outside of these fibrils. Therefore, hic31 might be a framework-matrix protein involved in the prismatic-layer biomineralization. Besides, the gene expression of hic31 increase in the early stages of pearl sac development, indicating that hic31 may play important roles in biomineralization of the pearl prismatic layer.

  10. Persistent atrial fibrillation vs paroxysmal atrial fibrillation: differences in management.

    Science.gov (United States)

    Margulescu, Andrei D; Mont, Lluis

    2017-08-01

    Atrial fibrillation (AF) is the most common human arrhythmia. AF is a progressive disease, initially being nonsustained and induced by trigger activity, and progressing towards persistent AF through alteration of the atrial myocardial substrate. Treatment of AF aims to decrease the risk of stroke and improve the quality of life, by preventing recurrences (rhythm control) or controlling the heart rate during AF (rate control). In the last 20 years, catheter-based and, less frequently, surgical and hybrid ablation techniques have proven more successful compared with drug therapy in achieving rhythm control in patients with AF. However, the efficiency of ablation techniques varies greatly, being highest in paroxysmal and lowest in long-term persistent AF. Areas covered: In this review, we discuss the fundamental differences between paroxysmal and persistent AF and the potential impact of those differences on patient management, emphasizing the available therapeutic strategies to achieve rhythm control. Expert commentary: Treatment to prevent AF recurrences is suboptimal, particularly in patients with persistent AF. Emerging technologies, such as documentation of atrial fibrosis using magnetic resonance imaging and documentation of electrical substrate using advanced electrocardiographic imaging techniques are likely to provide valuable insights about patient-specific tailoring of treatments.

  11. Histological Stains: A Literature Review and Case Study.

    Science.gov (United States)

    Alturkistani, Hani A; Tashkandi, Faris M; Mohammedsaleh, Zuhair M

    2015-06-25

    The history of histology indicates that there have been significant changes in the techniques used for histological staining through chemical, molecular biology assays and immunological techniques, collectively referred to as histochemistry. Early histologists used the readily available chemicals to prepare tissues for microscopic studies; these laboratory chemicals were potassium dichromate, alcohol and the mercuric chloride to harden cellular tissues. Staining techniques used were carmine, silver nitrate, Giemsa, Trichrome Stains, Gram Stain and Hematoxylin among others. The purpose of this research was to assess past and current literature reviews, as well as case studies, with the aim of informing ways in which histological stains have been improved in the modern age. Results from the literature review has indicated that there has been an improvement in histopathology and histotechnology in stains used. There has been a rising need for efficient, accurate and less complex staining procedures. Many stain procedures are still in use today, and many others have been replaced with new immunostaining, molecular, non-culture and other advanced staining techniques. Some staining methods have been abandoned because the chemicals required have been medically proven to be toxic. The case studies indicated that in modern histology a combination of different stain techniques are used to enhance the effectiveness of the staining process. Currently, improved histological stains, have been modified and combined with other stains to improve their effectiveness.

  12. Effect of age on stroke prevention therapy in patients with atrial fibrillation: the atrial fibrillation investigators

    DEFF Research Database (Denmark)

    van Walraven, Carl; Hart, Robert G; Connolly, Stuart

    2009-01-01

    contains patient level-data from randomized trials of stroke prevention in atrial fibrillation. We used Cox regression models with age as a continuous variable that controlled for sex, year of randomization, and history of cerebrovascular disease, diabetes, hypertension, and congestive heart failure......BACKGROUND AND PURPOSE: Stroke risk increases with age in patients who have nonvalvular atrial fibrillation. It is uncertain whether the efficacy of stroke prevention therapies in atrial fibrillation changes as patients age. The objective of this study was to determine the effect of age...... on the relative efficacy of oral anticoagulants (OAC) and antiplatelet (AP) therapy (including acetylsalicylic acid and triflusal) on ischemic stroke, serious bleeding, and vascular events in patients with atrial fibrillation. METHODS: This is an analysis of the Atrial Fibrillation Investigators database, which...

  13. A modified elliptical formula to estimate kidney collagen content in a model of chronic kidney disease.

    Science.gov (United States)

    Nieto, Jake A; Zhu, Janice; Duan, Bin; Li, Jingsong; Zhou, Ping; Paka, Latha; Yamin, Michael A; Goldberg, Itzhak D; Narayan, Prakash

    2018-01-01

    The extent of scarring or renal interstitial collagen deposition in chronic kidney disease (CKD) can only be ascertained by highly invasive, painful and sometimes risky, tissue biopsy. Interestingly, while CKD-related abnormalities in kidney size can often be visualized using ultrasound, not only does the ellipsoid formula used today underestimate true renal size, but the calculated renal size does not inform tubulointerstitial collagen content. We used coronal kidney sections from healthy mice and mice with kidney disease to develop a new formula for estimating renal parenchymal area. While treating the kidney as an ellipse with the major axis (a) the polar distance, this technique involves extending the minor axis (b) into the renal pelvis to obtain a new minor axis, be. The calculated renal parenchymal area is remarkably similar to the true or measured area. Biochemically determined kidney collagen content revealed a strong and positive correlation with the calculated renal parenchymal area. Picrosirius red staining for tubulointerstitial collagen also correlated with calculated renal parenchymal area. The extent of renal scarring, i.e. kidney interstitial collagen content, can now be computed by making just two axial measurements which can easily be accomplished via noninvasive imaging of this organ.

  14. Improvement of skin condition by oral administration of collagen hydrolysates in chronologically aged mice.

    Science.gov (United States)

    Wang, Zhenbin; Wang, Qing; Wang, Lin; Xu, Weidong; He, Yuanqing; Li, Yunliang; He, Song; Ma, Haile

    2017-07-01

    Collagen hydrolysates (CHs) have been demonstrated to have positive effects on skin photoaging by topical application or oral ingestion. However, there has been little research on their influence on skin chronological aging. In this study, 9-month-old female ICR mice were given normal AIN-93M diets containing CHs (2.5, 5 and 10% w/w) from Nile tilapia scale. After 6 months, the collagen content and antioxidant enzyme (superoxide dismutase and glutathione peroxidase) activities increased significantly (P skin did not change (P > 0.05). The color, luster and quantity of hair were obviously ameliorated. Moreover, the structure of epidermis and dermis, the density and distribution of collagen fibers and the ratio of type I to type III collagen were improved in a dose-dependent manner as shown by histochemical staining. Oral ingestion of CHs increased the collagen content and antioxidant enzyme activities and improved the appearance and structure of skin. These results suggest the potential of CHs as an anti-skin-aging ingredient in nutraceuticals or functional foods. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. Oral Bilateral Collagenous Fibroma: A previously unreported case and literature review.

    Science.gov (United States)

    Vasconcelos, Ana-Carolina; Gomes, Ana-Paula; Tarquinio, Sandra; Abduch-Rodrigues, Eduardo; Mesquita, Ricardo; Silva, Karine

    2018-01-01

    Collagenous fibroma, also known as desmoplastic fibroblastoma, is a rare benign slow growing tumor particularly uncommon in the oral cavity. The aim of this study was to analyze the clinical and histopathological features of an oral collagenous fibroma as well as to compare this data with those reported in an English-literature review. The thirteenth case of collagenous fibroma in the oral cavity and the first to present clinically as a bilateral mass was described. A 48-years-old female patient was referred to a School of Dentistry, complaining about an asymptomatic swelling on the hard palate, lasting around ten years. The intraoral examination revealed two well-defined mass, bilaterally in the hard palate. An excisional biopsy was performed. Microscopically, the connective tissue consisted of dense collagen bundles in which were seen scarcely distributed spindle-shaped to stellate fibroblastic cells. Blood vessels were few, as well as inflammatory cells. Immunohistochemical staining was positive for vimentin, α-smooth muscle actin and factor XIIIa and negative for S-100, CD68, CD34, HHF35, desmin and AE1/AE3. The patient remains disease-free 24 months after excision. In conclusion, oral collagenous fibroma should be included in the differential diagnosis of bilateral sessile nodules in the oral cavity. Key words: Connective tissue, mouth diseases, mouth neoplasms, oral diagnosis, oral pathology.

  16. Culture of bovine articular chondrocytes in funnel-like collagen-PLGA hybrid sponges

    International Nuclear Information System (INIS)

    Lu Hongxu; Ko, Young-Gwang; Kawazoe, Naoki; Chen Guoping

    2011-01-01

    Three-dimensional porous scaffolds play an important role in tissue engineering and regenerative medicine. Structurally, these porous scaffolds should have an open and interconnected porous architecture to facilitate a homogeneous cell distribution. Moreover, the scaffolds should be mechanically strong to support new tissue formation. We developed a novel type of funnel-like collagen sponge using embossing ice particulates as a template. The funnel-like collagen sponges could promote the homogeneous cell distribution, ECM production and chondrogenesis. However, the funnel-like collagen sponges deformed during cell culture due to their weak mechanical strength. To solve this problem, we reinforced the funnel-like collagen sponges with a knitted poly(D,L-lactic-co-glycolic acid) (PLGA) mesh by hybridizing these two types of materials. The hybrid scaffolds were used to culture bovine articular chondrocytes. The cell adhesion, distribution, proliferation and chondrogenesis were investigated. The funnel-like structure promoted the even cell distribution and homogeneous ECM production. The PLGA knitted mesh protected the scaffold from deformation during cell culture. Histological and immunohistochemical staining and cartilaginous gene expression analyses revealed the cartilage-like properties of the cell/scaffold constructs after in vivo implantation. The hybrid scaffold, composed of a funnel-like collagen sponge and PLGA mesh, would be a useful tool for cartilage tissue engineering.

  17. Comparative study of collagen deposition in the colon wall of patients operated for sigmoid diverticular disease.

    Science.gov (United States)

    Pantaroto, Mário; Lopes Filho, Gaspar de Jesus; Pinto, Clovis Antonio Lopes; Antico Filho, Armando

    2015-10-01

    To investigate the deposition of collagen in the colon wall of patients with sigmoid diverticulitis. Samples of sigmoid tissue from 15 patients (disease group), seven men and eight women aged 37-77 years who underwent surgery for the treatment of diverticulitis, were selected. For the control group, specimens from five patients, three men and two women aged 19-58 years undergoing emergency surgery for sigmoid trauma were selected. These subjects had no associated diseases. The histological study of the surgical specimens was performed by staining with hematoxylin-eosin and picrosirius and using a histochemical method for collagen quantification. Collagen deposition in the colon wall in terms of area (F), glandular epithelium (E) and total area was significantly higher in the disease group compared to control (p=0.003, p=0.026 and p=0.010, respectively). The collagen volume fraction (F fraction) and muscle tissue (M fraction) were also significantly higher compared to control (p=0.044 and p=0.026, respectively). The muscle (M area) and volume fraction of glandular epithelium (E fraction) did not differ significantly between the two groups, (p=0.074 and p=1.000, respectively). In this study, collagen deposition in the colon wall of the patients operated for sigmoid diverticulitis was higher compared to patients without the disease.

  18. Direct microneedle array fabrication off a photomask to deliver collagen through skin.

    Science.gov (United States)

    Kochhar, Jaspreet Singh; Anbalagan, Parthiban; Shelar, Sandeep Balu; Neo, Jun Kai; Iliescu, Ciprian; Kang, Lifeng

    2014-07-01

    To fabricate microneedle arrays directly off a photomask using a simple photolithographical approach and evaluate their potential for delivering collagen. A simple photolithographical approach was developed by using photomask consisting of embedded micro-lenses that govern microneedle geometry in a mould free process. Microneedle length was controlled by use of simple glass scaffolds as well as addition of backing layer. The fabricated arrays were tested for their mechanical properties by using a force gauge as well as insertion into human skin with trypan blue staining. Microneedle arrays were then evaluated for the delivery of fluorescent collagen, which was evaluated using a confocal laser scanning microscope. Microneedles with sharp tips ranging between 41.5 ± 8.4 μm and 71.6 ± 13.7 μm as well as of two different lengths of 1336 ± 193 μm and 957 ± 171 μm were fabricated by using the photomasks. The microneedles were robust and resisted fracture forces up to 25 N. They were also shown to penetrate cadaver human skin samples with ease; especially microneedle arrays with shorter length of 957 μm penetrated up to 72% of needles. The needles were shown to enhance permeation of collagen through cadaver rat skin, as compared to passive diffusion of collagen. A simple and mould free approach of fabricating polymeric microneedle array is proposed. The fabricated microneedle arrays enhance collagen permeation through skin.

  19. Culture of bovine articular chondrocytes in funnel-like collagen-PLGA hybrid sponges

    Energy Technology Data Exchange (ETDEWEB)

    Lu Hongxu; Ko, Young-Gwang; Kawazoe, Naoki; Chen Guoping, E-mail: Guoping.Chen@nims.go.jp [Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2011-08-15

    Three-dimensional porous scaffolds play an important role in tissue engineering and regenerative medicine. Structurally, these porous scaffolds should have an open and interconnected porous architecture to facilitate a homogeneous cell distribution. Moreover, the scaffolds should be mechanically strong to support new tissue formation. We developed a novel type of funnel-like collagen sponge using embossing ice particulates as a template. The funnel-like collagen sponges could promote the homogeneous cell distribution, ECM production and chondrogenesis. However, the funnel-like collagen sponges deformed during cell culture due to their weak mechanical strength. To solve this problem, we reinforced the funnel-like collagen sponges with a knitted poly(D,L-lactic-co-glycolic acid) (PLGA) mesh by hybridizing these two types of materials. The hybrid scaffolds were used to culture bovine articular chondrocytes. The cell adhesion, distribution, proliferation and chondrogenesis were investigated. The funnel-like structure promoted the even cell distribution and homogeneous ECM production. The PLGA knitted mesh protected the scaffold from deformation during cell culture. Histological and immunohistochemical staining and cartilaginous gene expression analyses revealed the cartilage-like properties of the cell/scaffold constructs after in vivo implantation. The hybrid scaffold, composed of a funnel-like collagen sponge and PLGA mesh, would be a useful tool for cartilage tissue engineering.

  20. Complete Histological Resolution of Collagenous Sprue

    Directory of Open Access Journals (Sweden)

    Hugh J Freeman

    2004-01-01

    Full Text Available A 65-year-old woman developed a watery diarrhea syndrome with collagenous colitis. Later, weight loss and hypoalbuminemia were documented. This prompted small bowel biopsies that showed pathological changes of collagenous sprue. An apparent treatment response to a gluten-free diet and prednisone resulted in reduced diarrhea, weight gain and normalization of serum albumin. Later repeated biopsies from multiple small and large bowel sites over a period of over three years, however, showed reversion to normal small intestinal mucosa but persistent collagenous colitis. These results indicate that collagenous inflammatory disease may be a far more extensive process in the gastrointestinal tract than is currently appreciated. Moreover, collagenous colitis may be a clinical signal that occult small intestinal disease is present. Finally, collagenous sprue may, in some instances, be a completely reversible small intestinal disorder.

  1. A novel functional role of collagen glycosylation

    DEFF Research Database (Denmark)

    Jürgensen, Henrik J; Madsen, Daniel H; Ingvarsen, Signe

    2011-01-01

    Collagens make up the most abundant component of interstitial extracellular matrices and basement membranes. Collagen remodeling is a crucial process in many normal physiological events and in several pathological conditions. Some collagen subtypes contain specific carbohydrate side chains......, the function of which is poorly known. The endocytic collagen receptor urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180 plays an important role in matrix remodeling through its ability to internalize collagen for lysosomal degradation. uPARAP/Endo180 is a member of the mannose...... receptor protein family. These proteins all include a fibronectin type II domain and a series of C-type lectin-like domains, of which only a minor part possess carbohydrate recognition activity. At least two of the family members, uPARAP/Endo180 and the mannose receptor, interact with collagens...

  2. SU-E-J-107: Supervised Learning Model of Aligned Collagen for Human Breast Carcinoma Prognosis

    International Nuclear Information System (INIS)

    Bredfeldt, J; Liu, Y; Conklin, M; Keely, P; Eliceiri, K; Mackie, T

    2014-01-01

    Purpose: Our goal is to develop and apply a set of optical and computational tools to enable large-scale investigations of the interaction between collagen and tumor cells. Methods: We have built a novel imaging system for automating the capture of whole-slide second harmonic generation (SHG) images of collagen in registry with bright field (BF) images of hematoxylin and eosin stained tissue. To analyze our images, we have integrated a suite of supervised learning tools that semi-automatically model and score collagen interactions with tumor cells via a variety of metrics, a method we call Electronic Tumor Associated Collagen Signatures (eTACS). This group of tools first segments regions of epithelial cells and collagen fibers from BF and SHG images respectively. We then associate fibers with groups of epithelial cells and finally compute features based on the angle of interaction and density of the collagen surrounding the epithelial cell clusters. These features are then processed with a support vector machine to separate cancer patients into high and low risk groups. Results: We validated our model by showing that eTACS produces classifications that have statistically significant correlation with manual classifications. In addition, our system generated classification scores that accurately predicted breast cancer patient survival in a cohort of 196 patients. Feature rank analysis revealed that TACS positive fibers are more well aligned with each other, generally lower density, and terminate within or near groups of epithelial cells. Conclusion: We are working to apply our model to predict survival in larger cohorts of breast cancer patients with a diversity of breast cancer types, predict response to treatments such as COX2 inhibitors, and to study collagen architecture changes in other cancer types. In the future, our system may be used to provide metastatic potential information to cancer patients to augment existing clinical assays

  3. Guiding the orientation of smooth muscle cells on random and aligned polyurethane/collagen nanofibers.

    Science.gov (United States)

    Jia, Lin; Prabhakaran, Molamma P; Qin, Xiaohong; Ramakrishna, Seeram

    2014-09-01

    Fabricating scaffolds that can simulate the architecture and functionality of native extracellular matrix is a huge challenge in vascular tissue engineering. Various kinds of materials are engineered via nano-technological approaches to meet the current challenges in vascular tissue regeneration. During this study, nanofibers from pure polyurethane and hybrid polyurethane/collagen in two different morphologies (random and aligned) and in three different ratios of polyurethane:collagen (75:25; 50:50; 25:75) are fabricated by electrospinning. The fiber diameters of the nanofibrous scaffolds are in the range of 174-453 nm and 145-419 for random and aligned fibers, respectively, where they closely mimic the nanoscale dimensions of native extracellular matrix. The aligned polyurethane/collagen nanofibers expressed anisotropic wettability with mechanical properties which is suitable for regeneration of the artery. After 12 days of human aortic smooth muscle cells culture on different scaffolds, the proliferation of smooth muscle cells on hybrid polyurethane/collagen (3:1) nanofibers was 173% and 212% higher than on pure polyurethane scaffolds for random and aligned scaffolds, respectively. The results of cell morphology and protein staining showed that the aligned polyurethane/collagen (3:1) scaffold promote smooth muscle cells alignment through contact guidance, while the random polyurethane/collagen (3:1) also guided cell orientation most probably due to the inherent biochemical composition. Our studies demonstrate the potential of aligned and random polyurethane/collagen (3:1) as promising substrates for vascular tissue regeneration. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  4. SMOOTH MYOCYTES AND COLLAGENOUS FIBERS OF THE URINARY BLADDER OF RATS IN DIABETES MELLITUS

    Directory of Open Access Journals (Sweden)

    Nadiya Tokaruk

    2015-12-01

    Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine   Key words: diabetes mellitus; smooth myocytes; collagenous fibers.   Introduction. Diabetes mellitus (DM causes diabetic cystopathy, which is associated with detrusor dysfunction and the content of collagenous fibers. The results of the performed studies are ambiguous and often contradictory, requiring objective data which could be obtained on the basis of the simultaneous determination of relative areas of smooth myocytes and collagenous fibers and their ultrastructural study. Objective: To determine the peculiarities of the structural and metric organization of smooth myocytes and collagenous fibers of the urinary bladder (UB of rats during different stages of DM. Materials and methods. DM was modeled by streptozotocin in Wistar rats. Relative areas of the studied structures were defined on digital images of histological sections of UB stained by Mason using the original automatic way. Smooth myocytes were studied ultrastructurally. Results. During the 14th-28th day of DM development the percent of collagenous fibers area decreases and the percentage of smooth myocytes area of UB wall increases. The expanding of intercellular spaces and the development of vacuolar degeneration of myocytes are observed. During the 42nd-56th days the percentage of collagenous fibers area increases and the percentage of the area of smooth myocytes decreases. Ultrastructurally subsiding of vacuolar dystrophy, short-term baloon dystrophy, the appearance of dark myocytes, moderate karyorrhexis were observed. During the 70th day of the experiment the percentage of collagenous fibers and smooth myocytes areas does not change significantly, most dark myocytes are involutive, there are local fibrosis and myocyte sequestration areas. Conclusions. Ultrastructural changes are characterized by a pronounced polymorphism and have a chronological relationship. Author’s worked out original method of determination of the

  5. SU-E-J-107: Supervised Learning Model of Aligned Collagen for Human Breast Carcinoma Prognosis

    Energy Technology Data Exchange (ETDEWEB)

    Bredfeldt, J; Liu, Y; Conklin, M; Keely, P; Eliceiri, K; Mackie, T [University of Wisconsin, Madison, WI (United States)

    2014-06-01

    Purpose: Our goal is to develop and apply a set of optical and computational tools to enable large-scale investigations of the interaction between collagen and tumor cells. Methods: We have built a novel imaging system for automating the capture of whole-slide second harmonic generation (SHG) images of collagen in registry with bright field (BF) images of hematoxylin and eosin stained tissue. To analyze our images, we have integrated a suite of supervised learning tools that semi-automatically model and score collagen interactions with tumor cells via a variety of metrics, a method we call Electronic Tumor Associated Collagen Signatures (eTACS). This group of tools first segments regions of epithelial cells and collagen fibers from BF and SHG images respectively. We then associate fibers with groups of epithelial cells and finally compute features based on the angle of interaction and density of the collagen surrounding the epithelial cell clusters. These features are then processed with a support vector machine to separate cancer patients into high and low risk groups. Results: We validated our model by showing that eTACS produces classifications that have statistically significant correlation with manual classifications. In addition, our system generated classification scores that accurately predicted breast cancer patient survival in a cohort of 196 patients. Feature rank analysis revealed that TACS positive fibers are more well aligned with each other, generally lower density, and terminate within or near groups of epithelial cells. Conclusion: We are working to apply our model to predict survival in larger cohorts of breast cancer patients with a diversity of breast cancer types, predict response to treatments such as COX2 inhibitors, and to study collagen architecture changes in other cancer types. In the future, our system may be used to provide metastatic potential information to cancer patients to augment existing clinical assays.

  6. Mutations in the collagen XII gene define a new form of extracellular matrix-related myopathy.

    Science.gov (United States)

    Hicks, Debbie; Farsani, Golara Torabi; Laval, Steven; Collins, James; Sarkozy, Anna; Martoni, Elena; Shah, Ashoke; Zou, Yaqun; Koch, Manuel; Bönnemann, Carsten G; Roberts, Mark; Lochmüller, Hanns; Bushby, Kate; Straub, Volker

    2014-05-01

    Bethlem myopathy (BM) [MIM 158810] is a slowly progressive muscle disease characterized by contractures and proximal weakness, which can be caused by mutations in one of the collagen VI genes (COL6A1, COL6A2 and COL6A3). However, there may be additional causal genes to identify as in ∼50% of BM cases no mutations in the COL6 genes are identified. In a cohort of -24 patients with a BM-like phenotype, we first sequenced 12 candidate genes based on their function, including genes for known binding partners of collagen VI, and those enzymes involved in its correct post-translational modification, assembly and secretion. Proceeding to whole-exome sequencing (WES), we identified mutations in the COL12A1 gene, a member of the FACIT collagens (fibril-associated collagens with interrupted triple helices) in five individuals from two families. Both families showed dominant inheritance with a clinical phenotype resembling classical BM. Family 1 had a single-base substitution that led to the replacement of one glycine residue in the triple-helical domain, breaking the Gly-X-Y repeating pattern, and Family 2 had a missense mutation, which created a mutant protein with an unpaired cysteine residue. Abnormality at the protein level was confirmed in both families by the intracellular retention of collagen XII in patient dermal fibroblasts. The mutation in Family 2 leads to the up-regulation of genes associated with the unfolded protein response (UPR) pathway and swollen, dysmorphic rough-ER. We conclude that the spectrum of causative genes in extracellular matrix (ECM)-related myopathies be extended to include COL12A1.

  7. Effect of radiation on rat skin collagen

    International Nuclear Information System (INIS)

    Nogami, Akira

    1980-01-01

    I. Albino male rats were exposed for 16 weeks to ultraviolet light (UVL) which has principle emission at 305 nm. There were no significant changes between control and UVL-exposed skins in the total hydroxyproline content. However, a little increase of citrate-soluble collagen, a little decrease of insoluble collagen and a decrease of aldehyde content in soluble collagen were observed with UVL exposure. Total acid glycosaminoglycan in skin increased 30% or more from control. These results show that the effect of UVL on rat skin in vivo was merely inflammation phenomenon and that the 'aging' process of skin was not caused in our experimental conditions. II. The effects of radiation on the solubility of rat skin collagen were examined under various conditions. 1) When intact rats were exposed to a single dose of radiation from 43 kVp X-ray source, the solubility in skin collagen did not change at 4,000 R dosage, while in irradiation of 40,000 R a decreased solubility in collagen was observed. When rats were given 400 R a week for 12 weeks, there was no changes in the solubility of collagen during experimental period. 2) In vitro exposure to skins, an irradiation of 40,000 R from 43 kVp X-ray source caused a decrease in the solubility of collagen. While an irradiation of 40,000 R of dosage from 200 kVp X-ray source resulted in the increase in soluble collagen and the decrease in insoluble collagen. 3) When intact rats were given a single dose of 40,000 R from 60 Co- gamma -ray, insoluble collagen decreased in both young and adult rats. Similar changes in collagen solubility were observed in vitro gamma -irradiation. (author)

  8. Peptide p5 binds both heparinase-sensitive glycosaminoglycans and fibrils in patient-derived AL amyloid extracts

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Emily B.; Williams, Angela [Department of Medicine, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Heidel, Eric [Department of Surgery, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Macy, Sallie [Department of Medicine, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Kennel, Stephen J. [Department of Medicine, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Department of Radiology, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Wall, Jonathan S., E-mail: jwall@utmck.edu [Department of Medicine, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Department of Radiology, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States)

    2013-06-21

    Highlights: •Polybasic peptide p5 binds human light chain amyloid extracts. •The binding of p5 with amyloid involves both glycosaminoglycans and fibrils. •Heparinase treatment led to a correlation between p5 binding and fibril content. •p5 binding to AL amyloid requires electrostatic interactions. -- Abstract: In previously published work, we have described heparin-binding synthetic peptides that preferentially recognize amyloid deposits in a mouse model of reactive systemic (AA) amyloidosis and can be imaged by using positron and single photon emission tomographic imaging. We wanted to extend these findings to the most common form of visceral amyloidosis, namely light chain (AL); however, there are no robust experimental animal models of AL amyloidosis. To further define the binding of the lead peptide, p5, to AL amyloid, we characterized the reactivity in vitro of p5 with in situ and patient-derived AL amyloid extracts which contain both hypersulfated heparan sulfate proteoglycans as well as amyloid fibrils. Histochemical staining demonstrated that the peptide specifically localized with tissue-associated AL amyloid deposits. Although we anticipated that p5 would undergo electrostatic interactions with the amyloid-associated glycosaminoglycans expressing heparin-like side chains, no significant correlation between peptide binding and glycosaminoglycan content within amyloid extracts was observed. In contrast, following heparinase I treatment, although overall binding was reduced, a positive correlation between peptide binding and amyloid fibril content became evident. This interaction was further confirmed using synthetic light chain fibrils that contain no carbohydrates. These data suggest that p5 can bind to both the sulfated glycosaminoglycans and protein fibril components of AL amyloid. Understanding these complex electrostatic interactions will aid in the optimization of synthetic peptides for use as amyloid imaging agents and potentially as

  9. Crystal structure of the second fibronectin type III (FN3) domain from human collagen α1 type XX.

    Science.gov (United States)

    Zhao, Jingfeng; Ren, Jixia; Wang, Nan; Cheng, Zhong; Yang, Runmei; Lin, Gen; Guo, Yi; Cai, Dayong; Xie, Yong; Zhao, Xiaohong

    2017-12-01

    Collagen α1 type XX, which contains fibronectin type III (FN3) repeats involving six FN3 domains (referred to as the FN#1-FN#6 domains), is an unusual member of the fibril-associated collagens with interrupted triple helices (FACIT) subfamily of collagens. The results of standard protein BLAST suggest that the FN3 repeats might contribute to collagen α1 type XX acting as a cytokine receptor. To date, solution NMR structures of the FN#3, FN#4 and FN#6 domains have been determined. To obtain further structural evidence to understand the relationship between the structure and function of the FN3 repeats from collagen α1 type XX, the crystal structure of the FN#2 domain from human collagen α1 type XX (residues Pro386-Pro466; referred to as FN2-HCXX) was solved at 2.5 Å resolution. The crystal structure of FN2-HCXX shows an immunoglobulin-like fold containing a β-sandwich structure, which is formed by a three-stranded β-sheet (β1, β2 and β5) packed onto a four-stranded β-sheet (β3, β4, β6 and β7). Two consensus domains, tencon and fibcon, are structural analogues of FN2-HCXX. Fn8, an FN3 domain from human oncofoetal fibronectin, is the closest structural analogue of FN2-HCXX derived from a naturally occurring sequence. Based solely on the structural similarity of FN2-HCXX to other FN3 domains, the detailed functions of FN2-HCXX and the FN3 repeats in collagen α1 type XX cannot be identified.

  10. Quantitative Raman characterization of cross-linked collagen thin films as a model system for diagnosing early osteoarthritis

    Science.gov (United States)

    Wang, Chao; Durney, Krista M.; Fomovsky, Gregory; Ateshian, Gerard A.; Vukelic, Sinisa

    2016-03-01

    The onset of osteoarthritis (OA)in articular cartilage is characterized by degradation of extracellular matrix (ECM). Specifically, breakage of cross-links between collagen fibrils in the articular cartilage leads to loss of structural integrity of the bulk tissue. Since there are no broadly accepted, non-invasive, label-free tools for diagnosing OA at its early stage, Raman spectroscopyis therefore proposed in this work as a novel, non-destructive diagnostic tool. In this study, collagen thin films were employed to act as a simplified model system of the cartilage collagen extracellular matrix. Cross-link formation was controlled via exposure to glutaraldehyde (GA), by varying exposure time and concentration levels, and Raman spectral information was collected to quantitatively characterize the cross-link assignments imparted to the collagen thin films during treatment. A novel, quantitative method was developed to analyze the Raman signal obtained from collagen thin films. Segments of Raman signal were decomposed and modeled as the sum of individual bands, providing an optimization function for subsequent curve fitting against experimental findings. Relative changes in the concentration of the GA-induced pyridinium cross-links were extracted from the model, as a function of the exposure to GA. Spatially resolved characterization enabled construction of spectral maps of the collagen thin films, which provided detailed information about the variation of cross-link formation at various locations on the specimen. Results showed that Raman spectral data correlate with glutaraldehyde treatment and therefore may be used as a proxy by which to measure loss of collagen cross-links in vivo. This study proposes a promising system of identifying onset of OA and may enable early intervention treatments that may serve to slow or prevent osteoarthritis progression.

  11. Routes towards Novel Collagen-Like Biomaterials

    Directory of Open Access Journals (Sweden)

    Adrian V. Golser

    2018-04-01

    Full Text Available Collagen plays a major role in providing mechanical support within the extracellular matrix and thus has long been used for various biomedical purposes. Exemplary, it is able to replace damaged tissues without causing adverse reactions in the receiving patient. Today’s collagen grafts mostly are made of decellularized and otherwise processed animal tissue and therefore carry the risk of unwanted side effects and limited mechanical strength, which makes them unsuitable for some applications e.g., within tissue engineering. In order to improve collagen-based biomaterials, recent advances have been made to process soluble collagen through nature-inspired silk-like spinning processes and to overcome the difficulties in providing adequate amounts of source material by manufacturing collagen-like proteins through biotechnological methods and peptide synthesis. Since these methods also open up possibilities to incorporate additional functional domains into the collagen, we discuss one of the best-performing collagen-like type of proteins, which already have additional functional domains in the natural blueprint, the marine mussel byssus collagens, providing inspiration for novel biomaterials based on collagen-silk hybrid proteins.

  12. Interaction of magnetic nanoparticles with lysozyme amyloid fibrils

    Energy Technology Data Exchange (ETDEWEB)

    Gdovinová, Veronika [Institute of Experimental Physics SAS, Watsonova 47, 040 01 Košice (Slovakia); Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Region (Russian Federation); Tomašovičová, Natália, E-mail: nhudak@saske.sk [Institute of Experimental Physics SAS, Watsonova 47, 040 01 Košice (Slovakia); Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Region (Russian Federation); Batko, Ivan; Batková, Marianna; Balejčíková, Lucia [Institute of Experimental Physics SAS, Watsonova 47, 040 01 Košice (Slovakia); Garamus, Vasyl M. [Helmholtz-Zentrum Geesthacht: Zentrum fr Material, und Kstenforschung GmbH, Max-Plank-Strae 1, Geesthacht 216502 (Germany); Petrenko, Viktor I. [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Region (Russian Federation); Physics Department, Taras Shevchenko Kyiv National University, Volodymyrska Street 64, 01601 Kyiv (Ukraine); Avdeev, Mikhail V. [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Region (Russian Federation); Kopčanský, Peter [Institute of Experimental Physics SAS, Watsonova 47, 040 01 Košice (Slovakia)

    2017-06-01

    This work is devoted to the structural study of complex solutions of magnetic nanoparticles with lysozyme amyloid fibrils due to possible ordering of such system by applying the external magnetic field. The interaction of magnetic nanoparticles with amyloid fibrils has been followed by atomic force microscopy and small-angle X-ray scattering. It has been observed that magnetic nanoparticles (MNPs) adsorb to lysozyme amyloid fibrils. It was found that MNPs alter amyloids structures, namely the diameter of lysozyme amyloid fibrils is increased whereas the length of fibrils is decreased. In the same time MNPs do not change the helical pitch significantly. - Highlights: • Solution of MNPs with lysozyme amyloid fibrils was characterized by AFM and SAXS. • MNPs adsorb to lysozyme amyloid fibrils. • Diameter and size of lysozyme amyloid fibrils change due to doping with MNPs.

  13. Spectral of electrocardiographic RR intervals to indicate atrial fibrillation

    Science.gov (United States)

    Nuryani, Nuryani; Satrio Nugroho, Anto

    2017-11-01

    Atrial fibrillation is a serious heart diseases, which is associated on the risk of death, and thus an early detection of atrial fibrillation is necessary. We have investigated spectral pattern of electrocardiogram in relation to atrial fibrillation. The utilized feature of electrocardiogram is RR interval. RR interval is the time interval between a two-consecutive R peaks. A series of RR intervals in a time segment is converted to a signal with a frequency domain. The frequency components are investigated to find the components which significantly associate to atrial fibrillation. A segment is defined as atrial fibrillation or normal segments by considering a defined number of atrial fibrillation RR in the segment. Using clinical data of 23 patients with atrial fibrillation, we find that the frequency components could be used to indicate atrial fibrillation.

  14. Risk of atrial fibrillation and stroke in rheumatoid arthritis

    DEFF Research Database (Denmark)

    Lindhardsen, Jesper; Ahlehoff, Ole; Gislason, Gunnar Hilmar

    2012-01-01

    To determine if patients with rheumatoid arthritis have increased risk of atrial fibrillation and stroke.......To determine if patients with rheumatoid arthritis have increased risk of atrial fibrillation and stroke....

  15. Treatment Guidelines of Atrial Fibrillation (AFib or AF)

    Science.gov (United States)

    ... Artery Disease Venous Thromboembolism Aortic Aneurysm More Treatment Guidelines of Atrial Fibrillation (AFib or AF) Updated:Jun 28,2017 What are the treatment guidelines for atrial fibrillation? Medical guidelines are written by ...

  16. Management of atrial fibrillation in the setting of heart failure

    NARCIS (Netherlands)

    Crijns, HJGM; VandenBerg, MP; VanGelder, IC; VanVeldhuisen, DJ

    Heart failure is often complicated by atrial fibrillation. Once atrial fibrillation has started it further enhances heart failure due to uncontrolled rate with shortened filling time and provocation of tachycardiomyopathy. Absent atrial kick and irregularity of the ventricular rhythm also

  17. Effects of Erythropoietin Administration on Adrenal Glands of Landrace/Large White Pigs after Ventricular Fibrillation

    Directory of Open Access Journals (Sweden)

    Armando Faa

    2016-01-01

    Full Text Available Aim. To evaluate the effects of erythropoietin administration on the adrenal glands in a swine model of ventricular fibrillation and resuscitation. Methods. Ventricular fibrillation was induced via pacing wire forwarded into the right ventricle in 20 female Landrace/Large White pigs, allocated into 2 groups: experimental group treated with bolus dose of erythropoietin (EPO and control group which received normal saline. Cardiopulmonary resuscitation (CPR was performed immediately after drug administration as per the 2010 European Resuscitation Council (ERC guidelines for Advanced Life Support (ALS until return of spontaneous circulation (ROSC or death. Animals who achieved ROSC were monitored, mechanically ventilated, extubated, observed, and euthanized. At necroscopy, adrenal glands samples were formalin-fixed, paraffin-embedded, and routinely processed. Sections were stained with hematoxylin-eosin. Results. Oedema and apoptosis were the most frequent histological changes and were detected in all animals in the adrenal cortex and in the medulla. Mild and focal endothelial lesions were also detected. A marked interindividual variability in the degree of the intensity of apoptosis and oedema at cortical and medullary level was observed within groups. Comparing the two groups, higher levels of pathological changes were detected in the control group. No significant difference between the two groups was observed regarding the endothelial changes. Conclusions. In animals exposed to ventricular fibrillation, EPO treatment has protective effects on the adrenal gland.

  18. Morphometric analysis of collagen and inflammatory cells in periodontal disease

    Directory of Open Access Journals (Sweden)

    Golijanin Ranko

    2015-01-01

    Full Text Available Background/Aim. Periodontal disease affects gingival tissue and supporting apparatus of the teeth leading to its decay. The aim of this study was to highlight and precisely determine histological changes in the gum tissue. Methods. Gingival biopsy samples from 53 healthy and parodontopathy-affected patients were used. Clinical staging of the disease was performed. Tissue specimens were fixed and routinely processed. Sections, 5 μm thin, were stained with hematoxylin and eosin, histochemical Van-Gieson for the collagen content, Spicer method for mast-cells and immunochemical method with anti-CD68 and anti-CD38 for the labelling of the macrophages and plasma-cells. Morphometric analysis was performed by a M42 test system. Results. While the disease advanced, collagen and fibroblast volume density decreased almost twice in the severe cases compared to the control ones, but a significant variation was observed within the investigated groups. The mast-cell number increased nearly two times, while the macrophage content was up to three times higher in severe parodontopathy than in healthy gingival tissue. However, the relative proportion of these cells stayed around 6% in all cases. Plasma-cells had the most prominent increase in the number (over 8 times compared to the control, but again, a variation within investigated groups was very high. Conclusion. Gingival tissue destruction caused by inflammatory process leads to significant changes in collagen density and population of resident connective tissue cells. Although inflammatory cells dominated with the disease advancing, a high variation within the same investigated groups suggests fluctuation of the pathological process.

  19. High resolution imaging of collagen organisation and synthesis using a versatile collagen specific probe

    NARCIS (Netherlands)

    Boerboom, R.A.; Krahn - Nash, K.; Megens, R.T.A.; Zandvoort, van M.; Merkx, M.; Bouten, C.V.C.

    2007-01-01

    Collagen is the protein primarily responsible for the load-bearing properties of tissues and collagen architecture is one of the main determinants of the mechanical properties of tissues. Visualisation of changes in collagen three-dimensional structure is essential in order to improve our

  20. Port wine stain on a child's face (image)

    Science.gov (United States)

    Port wine stains are always present at birth. In an infant, they are flat, pink, vascular lesions. Common locations ... may be present anywhere on the body. Port wine stains may appear in association with other syndromes.

  1. Characterization of site-specific biomechanical properties of human meniscus-Importance of collagen and fluid on mechanical nonlinearities.

    Science.gov (United States)

    Danso, E K; Mäkelä, J T A; Tanska, P; Mononen, M E; Honkanen, J T J; Jurvelin, J S; Töyräs, J; Julkunen, P; Korhonen, R K

    2015-06-01

    Meniscus adapts to joint loads by depth- and site-specific variations in its composition and structure. However, site-specific mechanical characteristics of intact meniscus under compression are poorly known. In particular, mechanical nonlinearities caused by different meniscal constituents (collagen and fluid) are not known. In the current study, in situ indentation testing was conducted to determine site-specific elastic, viscoelastic and poroelastic properties of intact human menisci. Lateral and medial menisci (n=26) were harvested from the left knee joint of 13 human cadavers. Indentation tests, using stress-relaxation and dynamic (sinusoidal) loading protocols, were conducted for menisci at different sites (anterior, middle, posterior, n=78). Sample- and site-specific axisymmetric finite element models with fibril-reinforced poroelastic properties were fitted to the corresponding stress-relaxation curves to determine the mechanical parameters. Elastic moduli, especially the instantaneous and dynamic moduli, showed site-specific variation only in the medial meniscus (pmeniscus. The phase angle showed no statistically significant variation between the sites (p>0.05). The values for the strain-dependent fibril network modulus (nonlinear behaviour of collagen) were significantly different (pmeniscus only between the middle and posterior sites. For the strain-dependent permeability coefficient, only anterior and middle sites showed a significant difference (pmeniscus. This parameter demonstrated a significant difference (pmeniscus shows more site-dependent variation in the mechanical properties as compared to lateral meniscus. In particular, anterior horn of medial meniscus was the stiffest and showed the most nonlinear mechanical behaviour. The nonlinearity was related to both collagen fibrils and fluid. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Rising rates of hospital admissions for atrial fibrillation

    DEFF Research Database (Denmark)

    Friberg, Jens; Buch, Nina Pernille Gardshodn; Scharling, Henrik

    2003-01-01

    Atrial fibrillation is a common arrhythmia associated with excess morbidity and mortality. We studied temporal changes in hospital admission rates for atrial fibrillation using data from a prospective population-based cohort study spanning 2 decades (the Copenhagen City Heart Study).......Atrial fibrillation is a common arrhythmia associated with excess morbidity and mortality. We studied temporal changes in hospital admission rates for atrial fibrillation using data from a prospective population-based cohort study spanning 2 decades (the Copenhagen City Heart Study)....

  3. Evaluation of a collagen-chitosan hydrogel for potential use as a pro-angiogenic site for islet transplantation.

    Directory of Open Access Journals (Sweden)

    Joanne E McBane

    Full Text Available Islet transplantation to treat type 1 diabetes (T1D has shown varied long-term success, due in part to insufficient blood supply to maintain the islets. In the current study, collagen and collagen:chitosan (10:1 hydrogels, +/- circulating angiogenic cells (CACs, were compared for their ability to produce a pro-angiogenic environment in a streptozotocin-induced mouse model of T1D. Initial characterization showed that collagen-chitosan gels were mechanically stronger than the collagen gels (0.7 kPa vs. 0.4 kPa elastic modulus, respectively, had more cross-links (9.2 vs. 7.4/µm(2, and were degraded more slowly by collagenase. After gelation with CACs, live/dead staining showed greater CAC viability in the collagen-chitosan gels after 18 h compared to collagen (79% vs. 69%. In vivo, collagen-chitosan gels, subcutaneously implanted for up to 6 weeks in a T1D mouse, showed increased levels of pro-angiogenic cytokines over time. By 6 weeks, anti-islet cytokine levels were decreased in all matrix formulations ± CACs. The 6-week implants demonstrated increased expression of VCAM-1 in collagen-chitosan implants. Despite this, infiltrating vWF(+ and CXCR4(+ angiogenic cell numbers were not different between the implant types, which may be due to a delayed and reduced cytokine response in a T1D versus non-diabetic setting. The mechanical, degradation and cytokine data all suggest that the collagen-chitosan gel may be a suitable candidate for use as a pro-angiogenic ectopic islet transplant site.

  4. Collagen gel protects L929 cells from TNFα-induced death by activating NF-κB.

    Science.gov (United States)

    Wang, Hong-Ju; Li, Meng-Qi; Liu, Wei-Wei; Hayashi, Toshihiko; Fujisaki, Hitomi; Hattori, Shunji; Tashiro, Shin-Ichi; Onodera, Satoshi; Ikejima, Takashi

    2017-09-01

    Type I collagen is one of the most abundant components of extracellular matrix. We previously illustrated that murine fibrosarcoma L929 cells grew well on type I collagen gel and escaped from TNFα-induced cell death. In this study, we investigated the mechanism underlying the protective effect of collagen gel. We used western blot, confocal microscopy, MTT assay and flow cytometry by introducing fluorescence staining to determine the expression levels of nuclear factor kappa B (NF-κB), inhibitory ratio and autophagy. L929 cells on collagen gel showed higher expression of NF-κB in the nucleus. Inhibition of NF-κB with pyrrolidine dithiocarbamate hydrochloride (PDTC) or knockdown by NF-κB-siRNA canceled the protective effect of collagen gel on L929 cells from TNFα-induced death, suggesting for the role of NF-κB in the protection from cell death. We found a new aspect of the effect of PDTC on L929 cells cultured on collagen gel. PDTC alone without TNFα induced apoptosis in the L929 cells cultured on collagen gel but not the cells on plastic dish. The apoptosis induction of the L929 cells cultured on collagen gel with PDTC was repressed by inhibiting autophagy with chloroquine, an autophagy inhibitor, suggesting that autophagy contributes to the death induced by the treatment with PDTC. Possible underlying mechanism of this finding is discussed. NF-κB played an important role in protecting the L929 cells cultured on collagen gel from TNFα-induced death.

  5. Consortium for Osteogenesis Imperfecta Mutations in the Helical Domain of Type I Collagen: Regions Rich in Lethal Mutations Align With Collagen Binding Sites for Integrins and Proteoglycans

    Science.gov (United States)

    Marini, Joan C.; Forlino, Antonella; Cabral, Wayne A.; Barnes, Aileen M.; San Antonio, James D.; Milgrom, Sarah; Hyland, James C.; Körkkö, Jarmo; Prockop, Darwin J.; De Paepe, Anne; Coucke, Paul; Symoens, Sofie; Glorieux, Francis H.; Roughley, Peter J.; Lund, Alan M.; Kuurila-Svahn, Kaija; Hartikka, Heini; Cohn, Daniel H.; Krakow, Deborah; Mottes, Monica; Schwarze, Ulrike; Chen, Diana; Yang, Kathleen; Kuslich, Christine; Troendle, James; Dalgleish, Raymond; Byers, Peter H.

    2014-01-01

    Osteogenesis imperfecta (OI) is a generalized disorder of connective tissue characterized by fragile bones and easy susceptibility to fracture. Most cases of OI are caused by mutations in type I collagen. We have identified and assembled structural mutations in type I collagen genes (COL1A1 and COL1A2, encoding the proα1(I) and proα2(I) chains, respectively) that result in OI. Quantitative defects causing type I OI were not included. Of these 832 independent mutations, 682 result in substitution for glycine residues in the triple helical domain of the encoded protein and 150 alter splice sites. Distinct genotype–phenotype relationships emerge for each chain. One-third of the mutations that result in glycine substitutions in α1(I) are lethal, especially when the substituting residues are charged or have a branched side chain. Substitutions in the first 200 residues are nonlethal and have variable outcome thereafter, unrelated to folding or helix stability domains. Two exclusively lethal regions (helix positions 691–823 and 910–964) align with major ligand binding regions (MLBRs), suggesting crucial interactions of collagen monomers or fibrils with integrins, matrix metalloproteinases (MMPs), fibronectin, and cartilage oligomeric matrix protein (COMP). Mutations in COL1A2 are predominantly nonlethal (80%). Lethal substitutions are located in eight regularly spaced clusters along the chain, supporting a regional model. The lethal regions align with proteoglycan binding sites along the fibril, suggesting a role in fibril–matrix interactions. Recurrences at the same site in α2(I) are generally concordant for outcome, unlike α1(I). Splice site mutations comprise 20% of helical mutations identified in OI patients, and may lead to exon skipping, intron inclusion, or the activation of cryptic splice sites. Splice site mutations in COL1A1 are rarely lethal; they often lead to frameshifts and the mild type I phenotype. In α2(I), lethal exon skipping events are

  6. Modulation of hematopoietic progenitor cell fate in vitro by varying collagen oligomer matrix stiffness in the presence or absence of osteoblasts.

    Science.gov (United States)

    Chitteti, Brahmananda Reddy; Kacena, Melissa A; Voytik-Harbin, Sherry L; Srour, Edward F

    2015-10-01

    To recreate the in vivo hematopoietic cell microenvironment or niche and to study the impact of extracellular matrix (ECM) biophysical properties on hematopoietic progenitor cell (HPC) proliferation and function, mouse bone-marrow derived HPC (Lin-Sca1+cKit+/(LSK) were cultured within three-dimensional (3D) type I collagen oligomer matrices. To generate a more physiologic milieu, 3D cultures were established in both the presence and absence of calvariae-derived osteoblasts (OB). Collagen oligomers were polymerized at varying concentration to give rise to matrices of different fibril densities and therefore matrix stiffness (shear storage modulus, 50-800 Pa). Decreased proliferation and increased clonogenicity of LSK cells was associated with increase of matrix stiffness regardless of whether OB were present or absent from the 3D culture system. Also, regardless of whether OB were or were not added to the 3D co-culture system, LSK within 800 Pa collagen oligomer matrices maintained the highest percentage of Lin-Sca1+ cells as well as higher percentage of cells in quiescent state (G0/G1) compared to 50 Pa or 200Pa matrices. Collectively, these data illustrate that biophysical features of collagen oligomer matrices, specifically fibril density-induced modulation of matrix stiffness, provide important guidance cues in terms of LSK expansion and differentiation and therefore maintenance of progenitor cell function. Copyright © 2015. Published by Elsevier B.V.

  7. Modified Genta triple stain for identifying Helicobacter pylori.

    OpenAIRE

    el-Zimaity, H M; Wu, J; Graham, D Y

    1999-01-01

    AIM: To evaluate whether lead nitrate could replace uranyl nitrate in the Genta stain for H pylori without sacrificing the advantages of the triple stain (Steiner silver impregnation combined with Alcian blue and haematoxylin/eosin (H&E)). METHODS: A comparison was made in 16 specimens between the original triple stain and the revised version. One pathologist evaluated all sections. RESULTS: Direct substitution of lead nitrate for uranium nitrate produced well stained organisms without interf...

  8. Utility of Modified Ultrafast Papanicolaou Stain in Cytological Diagnosis.

    Science.gov (United States)

    Sinkar, Prachi; Arakeri, Surekha Ulhas

    2017-03-01

    Need for minimal turnaround time for assessing Fine Needle Aspiration Cytology (FNAC) has encouraged innovations in staining techniques that require lesser staining time with unequivocal cell morphology. The standard protocol for conventional Papanicolaou (PAP) stain requires about 40 minutes. To overcome this, Ultrafast Papanicolaou (UFP) stain was introduced which reduces staining time to 90 seconds and also enhances the quality. However, reagents required for this were not easily available hence, Modified Ultrafast Papanicolaou (MUFP) stain was introduced subsequently. To assess the efficacy of MUFP staining by comparing the quality of MUFP stain with conventional PAP stain. FNAC procedure was performed by using 10 ml disposable syringe and 22-23 G needle. Total 131 FNAC cases were studied which were lymph node (30), thyroid (38), breast (22), skin and soft tissue (24), salivary gland (11) and visceral organs (6). Two smears were prepared and stained by MUFP and conventional PAP stain. Scores were given on four parameters: background of smears, overall staining pattern, cell morphology and nuclear staining. Quality Index (QI) was calculated from ratio of total score achieved to maximum score possible. Statistical analysis using chi square test was applied to each of the four parameters before obtaining the QI in both stains. Students t-test was applied to evaluate the efficacy of MUFP in comparison with conventional PAP stain. The QI of MUFP for thyroid, breast, lymph node, skin and soft tissue, salivary gland and visceral organs was 0.89, 0.85, 0.89, 0.83, 0.92, and 0.78 respectively. Compared to conventional PAP stain QI of MUFP smears was better in all except visceral organ cases and was statistically significant. MUFP showed clear red blood cell background, transparent cytoplasm and crisp nuclear features. MUFP is fast, reliable and can be done with locally available reagents with unequivocal morphology which is the need of the hour for a cytopathology set-up.

  9. Discriminative staining methods for the nervous system: luxol fast blue--periodic acid-Schiff--hematoxylin triple stain and subsidiary staining methods.

    Science.gov (United States)

    Goto, N

    1987-09-01

    This paper describes a new series of staining methods which can discriminatively demonstrate every structure of the nervous system, including axons and capillaries, in animal and human materials. Methods described in this paper consist of one primary stain, luxol fast blue-periodic acid Schiff-hematoxylin (LPH) and six different subsidiary staining methods. The LPH triple stain can precisely differentiate the following structures: neurons (Nissl bodies, cytoplasm, nuclear membrane and nucleolus), various kinds of nuclei (glia, ependyma, endothelium, leucocyte, connective tissue, etc.), myelin sheaths, neuronal processes (axons and dendrites), reacted glial cell bodies (protoplasmic astrocytes, foamy cells, etc.), blood vessels (arteries, veins and capillaries), meninges, intervening connective tissue, erythrocytes, lipofuscin granules, amyloid bodies, and others. Subsidiary staining methods are also described briefly. Applications are discussed in the context of staining technology and neuromorphological research.

  10. Tissue-specific expression of type IX collagen

    International Nuclear Information System (INIS)

    Nishimura, I.; Muragaki, Y.; Ninomiya, Y.; Olsen, B.R.; Hayashi, M.

    1990-01-01

    This paper reports on the tissue-specific expression of type IX collagen, a major component of cartilage fibrils. It contains molecules with three genetically distinct subunits. The subunits form three triple-helical (CO) domains separated by non-triple-helical (NC) sequences. One of the subunits in cartilage, α1(IX), contains a large amino-terminal globular domain, NC4, while a second subunit, α2(IX), contains a covalently attached chondroitin sulfate chain. The site of attachment for this chain is located within the non-triple-helical sequence NC3, which separates the amino-terminal and central triple-helical domains of the type IX molecules. The NC3 region is 5 amino acid residues longer in the α2(IX) chain than in the α1(IX) and α3(IX) chains. This may explain why type IX molecules tend to show a sharp angle in the NC3 region, and why monoclonal antibody molecules that are specific for the stub left after chondroitinase ABC digestion of the chondroitin sulfate side chain always are located on the outside of the angle

  11. Laser welding and collagen crosslinks

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, K.M.; Last, J.A. [California Univ., Davis, CA (United States). Dept. of Medicine; Small, W. IV; Maitland, D.J.; Heredia, N.J.; Da Silva, L.B.; Matthews, D.L. [Lawrence Livermore National Lab., CA (United States)

    1997-02-20

    Strength and stability of laser-welded tissue may be influenced, in part, by effects of laser exposure on collagen crosslinking. We therefore studied effects of diode laser exposure (805 nm, 1-8 watts, 30 seconds) + indocyanine green dye (ICG) on calf tail tendon collagen crosslinks. Effect of ICG dye alone on crosslink content prior to laser exposure was investigated; unexpectedly, we found that ICG-treated tissue had significantly increased DHLNL and OHP, but not HLNL. Laser exposure after ICG application reduced elevated DHLNL and OHP crosslink content down to their native levels. The monohydroxylated crosslink HLNL was inversely correlated with laser output (p<0.01 by linear regression analysis). DHLNL content was highly correlated with content of its maturational product, OHP, suggesting that precursor-product relations are maintained. We conclude that: (1)ICG alone induces DHLNL and OHP crosslink formation; (2)subsequent laser exposure reduces the ICG-induced crosslinks down to native levels; (3)excessive diode laser exposure destroys normally occurring HLNL crosslinks.

  12. Modern collagen wound dressings: function and purpose.

    Science.gov (United States)

    Fleck, Cynthia Ann; Simman, Richard

    2010-09-01

    Collagen, which is produced by fibroblasts, is the most abundant protein in the human body. A natural structural protein, collagen is involved in all 3 phases of the wound-healing cascade. It stimulates cellular migration and contributes to new tissue development. Because of their chemotactic properties on wound fibroblasts, collagen dressings encourage the deposition and organization of newly formed collagen, creating an environment that fosters healing. Collagen-based biomaterials stimulate and recruit specific cells, such as macrophages and fibroblasts, along the healing cascade to enhance and influence wound healing. These biomaterials can provide moisture or absorption, depending on the delivery system. Collagen dressings are easy to apply and remove and are conformable. Collagen dressings are usually formulated with bovine, avian, or porcine collagen. Oxidized regenerated cellulose, a plant-based material, has been combined with collagen to produce a dressing capable of binding to and protecting growth factors by binding and inactivating matrix metalloproteinases in the wound environment. The increased understanding of the biochemical processes involved in chronic wound healing allows the design of wound care products aimed at correcting imbalances in the wound microenvironment. Traditional advanced wound care products tend to address the wound's macroenvironment, including moist wound environment control, fluid management, and controlled transpiration of wound fluids. The newer class of biomaterials and wound-healing agents, such as collagen and growth factors, targets specific defects in the chronic wound environment. In vitro laboratory data point to the possibility that these agents benefit the wound healing process at a biochemical level. Considerable evidence has indicated that collagen-based dressings may be capable of stimulating healing by manipulating wound biochemistry.

  13. Artificial atrial fibrillation in the dog. An artifact?

    NARCIS (Netherlands)

    Strackee, J.; Hoelen, A.J.; Zimmerman, A.N.E.; Meijler, F.L.

    R-R interval sequences during artificial atrial fibrillation in dogs were studied in the same way as in patients in a previous study and compared with results obtained in dogs with spontaneous atrial fibrillation. Artificial atrial fibrillation was effected by right atrial stimulation in three

  14. 7 CFR 28.442 - Middling Yellow Stained Color.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Middling Yellow Stained Color. 28.442 Section 28.442... Stained Color. Middling Yellow Stained Color is American Upland cotton which in color is deeper than Middling Tinged Color. [57 FR 34498, Aug. 5, 1992] below color grade cotton ...

  15. 7 CFR 28.441 - Strict Middling Yellow Stained Color.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strict Middling Yellow Stained Color. 28.441 Section... Strict Middling Yellow Stained Color. Strict Middling Yellow Stained Color is color which is deeper than that of Strict Middling Tinged Color. [57 FR 34498, Aug. 5, 1992] ...

  16. CD3 immunohistochemical staining in diagnosis of lymphocytic colitis

    DEFF Research Database (Denmark)

    Fiehn, Anne-Marie Kanstrup; Engel, Ulla; Holck, Susanne

    2016-01-01

    and eosin (HE) stainings were available. At the second assessment, a supplementary CD3 immunohistochemical staining was also available. The aim was to evaluate whether a supplementary CD3 would increase the diagnostic agreement among pathologists, and whether a CD3 stain would change the diagnosis based...

  17. Disorganized collagen scaffold interferes with fibroblast mediated deposition of organized extracellular matrix in vitro.

    Science.gov (United States)

    Saeidi, Nima; Guo, Xiaoqing; Hutcheon, Audrey E K; Sander, Edward A; Bale, Shyam Sundar; Melotti, Suzanna A; Zieske, James D; Trinkaus-Randall, Vickery; Ruberti, Jeffrey W

    2012-10-01

    Many tissue engineering applications require the remodeling of a degradable scaffold either in vitro or in situ. Although inefficient remodeling or failure to fully remodel the temporary matrix can result in a poor clinical outcome, very few investigations have examined in detail, the interaction of regenerative cells with temporary scaffoldings. In a recent series of investigations, randomly oriented collagen gels were directly implanted into human corneal pockets and followed for 24 months. The resulting remodeling response exhibited a high degree of variability which likely reflects differing regenerative/synthetic capacity across patients. Given this variability, we hypothesize that a disorganized, degradable provisional scaffold could be disruptive to a uniform, organized reconstruction of stromal matrix. In this investigation, two established corneal stroma tissue engineering culture systems (collagen scaffold-based and scaffold-free) were compared to determine if the presence of the disorganized collagen gel influenced matrix production and organizational control exerted by primary human corneal fibroblast cells (PHCFCs). PHCFCs were cultured on thin disorganized reconstituted collagen substrate (RCS--five donors: average age 34.4) or on a bare polycarbonate membrane (five donors: average age 32.4 controls). The organization and morphology of the two culture systems were compared over the long-term at 4, 8, and 11/12 weeks. Construct thickness and extracellular matrix organization/alignment was tracked optically with bright field and differential interference contrast (DIC) microscopy. The details of cell/matrix morphology and cell/matrix interaction were examined with standard transmission, cuprolinic blue and quick-freeze/deep-etch electron microscopy. Both the scaffold-free and the collagen-based scaffold cultures produced organized arrays of collagen fibrils. However, at all time points, the amount of organized cell-derived matrix in the scaffold

  18. Three dimensional microstructural network of elastin, collagen, and cells in Achilles tendons.

    Science.gov (United States)

    Pang, Xin; Wu, Jian-Ping; Allison, Garry T; Xu, Jiake; Rubenson, Jonas; Zheng, Ming-Hao; Lloyd, David G; Gardiner, Bruce; Wang, Allan; Kirk, Thomas Brett

    2017-06-01

    Similar to most biological tissues, the biomechanical, and functional characteristics of the Achilles tendon are closely related to its composition and microstructure. It is commonly reported that type I collagen is the predominant component of tendons and is mainly responsible for the tissue's function. Although elastin has been found in varying proportions in other connective tissues, previous studies report that tendons contain very small quantities of elastin. However, the morphology and the microstructural relationship among the elastic fibres, collagen, and cells in tendon tissue have not been well examined. We hypothesize the elastic fibres, as another fibrillar component in the extracellular matrix, have a unique role in mechanical function and microstructural arrangement in Achilles tendons. It has been shown that elastic fibres present a close connection with the tenocytes. The close relationship of the three components has been revealed as a distinct, integrated and complex microstructural network. Notably, a "spiral" structure within fibril bundles in Achilles tendons was observed in some samples in specialized regions. This study substantiates the hierarchical system of the spatial microstructure of tendon, including the mapping of collagen, elastin and tenocytes, with 3-dimensional confocal images. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1203-1214, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  19. Fibroblast Cluster Formation on 3D Collagen Matrices Requires Cell Contraction-Dependent Fibronectin Matrix Organization

    Science.gov (United States)

    da Rocha-Azevedo, Bruno; Ho, Chin-Han; Grinnell, Frederick

    2012-01-01

    Fibroblasts incubated on 3D collagen matrices in serum or lysophosphatidic acid (LPA)-containing medium self-organize into clusters through a mechanism that requires cell contraction. However, in platelet-derived growth factor (PDGF)-containing medium, cells migrate as individuals and do not form clusters even though they constantly encounter each other. Here, we present evidence that a required function of cell contraction in clustering is formation of fibronectin fibrillar matrix. We found that in serum or LPA but not in PDGF or basal medium, cells organized FN (both serum and cellular) into a fibrillar, detergent-insoluble matrix. Cell clusters developed concomitant with FN matrix formation. FN fibrils accumulated beneath cells and along the borders of cell clusters in regions of cell-matrix tension. Blocking Rho kinase or myosin II activity prevented FN matrix assembly and cell clustering. Using siRNA silencing and function-blocking antibodies and peptides, we found that cell clustering and FN matrix assembly required α5β1 integrins and fibronectin. Cells were still able to exert contractile force and compact the collagen matrix under the latter conditions, which showed that contraction was not sufficient for cell clustering to occur. Our findings provide new insights into how procontractile (serum/LPA) and promigratory (PDGF) growth factor environments can differentially regulate FN matrix assembly by fibroblasts interacting with collagen matrices and thereby influence mesenchymal cell morphogenetic behavior under physiologic circumstances such as wound repair, morphogenesis and malignancy. PMID:23117111

  20. Fibroblast cluster formation on 3D collagen matrices requires cell contraction dependent fibronectin matrix organization.

    Science.gov (United States)

    da Rocha-Azevedo, Bruno; Ho, Chin-Han; Grinnell, Frederick

    2013-02-15

    Fibroblasts incubated on 3D collagen matrices in serum or lysophosphatidic acid (LPA)-containing medium self-organize into clusters through a mechanism that requires cell contraction. However, in platelet-derived growth factor (PDGF)-containing medium, cells migrate as individuals and do not form clusters even though they constantly encounter each other. Here, we present evidence that a required function of cell contraction in clustering is formation of fibronectin (FN) fibrillar matrix. We found that in serum or LPA but not in PDGF or basal medium, cells organized FN (both serum and cellular) into a fibrillar, detergent-insoluble matrix. Cell clusters developed concomitant with FN matrix formation. FN fibrils accumulated beneath cells and along the borders of cell clusters in regions of cell-matrix tension. Blocking Rho kinase or myosin II activity prevented FN matrix assembly and cell clustering. Using siRNA silencing and function-blocking antibodies and peptides, we found that cell clustering and FN matrix assembly required α5β1 integrins and fibronectin. Cells were still able to exert contractile force and compact the collagen matrix under the latter conditions, which showed that contraction was not sufficient for cell clustering to occur. Our findings provide new insights into how procontractile (serum/LPA) and promigratory (PDGF) growth factor environments can differentially regulate FN matrix assembly by fibroblasts interacting with collagen matrices and thereby influence mesenchymal cell morphogenetic behavior under physiologic circumstances such as wound repair, morphogenesis and malignancy. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Microfibrous {beta}-TCP/collagen scaffolds mimic woven bone in structure and composition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Shen; Zhang Xin; Cai Qing; Yang Xiaoping [Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Wang Bo; Deng Xuliang, E-mail: yangxp@mail.buct.edu.c [Department of VIP Dental Service, School and Hospital of Stomatology, Peking University, Beijing 100081 (China)

    2010-12-15

    Woven bone, as the initial form of bone tissue, is always found in developing and repairing bone. It is thought of as a temporary scaffold for the deposition of osteogenic cells and the laying down of lamellar bone. Thus, we hypothesize that a matrix which resembles the architecture and components of woven bone can provide an osteoblastic microenvironment for bone cell growth and new bone formation. In this study, woven-bone-like beta-tricalcium phosphate ({beta}-TCP)/collagen scaffolds were fabricated by sol-gel electrospinning and impregnating methods. Optimization studies on sol-gel synthesis and electrospinning process were conducted respectively to prepare pure {beta}-TCP fibers with dimensions close to mineralized collagen fibrils in woven bone. The collagen-coating layer prepared by impregnation had an adhesive role that held the {beta}-TCP fibers together, and resulted in rapid degradation and matrix mineralization in in vitro tests. MG63 osteoblast-like cells seeded on the resultant scaffolds showed three-dimensional (3D) morphologies, and merged into multicellular layers after 7 days culture. Cytotoxicity test further revealed that extracts from the resultant scaffolds could promote the proliferation of MG63 cells. Therefore, the woven-bone-like matrix that we constructed favored the attachment and proliferation of MG63 cells in three dimensions. It has great potential ability to shorten the time of formation of new bone.

  2. Microfibrous β-TCP/collagen scaffolds mimic woven bone in structure and composition

    International Nuclear Information System (INIS)

    Zhang Shen; Zhang Xin; Cai Qing; Yang Xiaoping; Wang Bo; Deng Xuliang

    2010-01-01

    Woven bone, as the initial form of bone tissue, is always found in developing and repairing bone. It is thought of as a temporary scaffold for the deposition of osteogenic cells and the laying down of lamellar bone. Thus, we hypothesize that a matrix which resembles the architecture and components of woven bone can provide an osteoblastic microenvironment for bone cell growth and new bone formation. In this study, woven-bone-like beta-tricalcium phosphate (β-TCP)/collagen scaffolds were fabricated by sol-gel electrospinning and impregnating methods. Optimization studies on sol-gel synthesis and electrospinning process were conducted respectively to prepare pure β-TCP fibers with dimensions close to mineralized collagen fibrils in woven bone. The collagen-coating layer prepared by impregnation had an adhesive role that held the β-TCP fibers together, and resulted in rapid degradation and matrix mineralization in in vitro tests. MG63 osteoblast-like cells seeded on the resultant scaffolds showed three-dimensional (3D) morphologies, and merged into multicellular layers after 7 days culture. Cytotoxicity test further revealed that extracts from the resultant scaffolds could promote the proliferation of MG63 cells. Therefore, the woven-bone-like matrix that we constructed favored the attachment and proliferation of MG63 cells in three dimensions. It has great potential ability to shorten the time of formation of new bone.

  3. [Identification of Zaocys type II collagen and its effect on arthritis in mice with collagen-induced arthritis].

    Science.gov (United States)

    Wang, Hao; Feng, Zhi-tao; Zhu, Jun-qing; Wu, Xiang-hui; Li, Juan

    2014-06-01

    To analyze the homology of Zaocys type 1I collagen ( ZC II ) with the C II collagen from other species, and to investigate the effect of ZC II on arthritis in mice with collagen-induced arthritis (CIA). ZC II was purified with restriction pepsin digestion. Then SDS-PAGE gel electrophoresis and UV spectrophotometry were used to identify the protein,the homology of the ZC II peptide was analyzed with Mass Spectrometry. The model of CIA mice were induced by subcutaneous injection of Chicken C II into male C57BL/6 mice from the base of the tails. After immunization,ZC II [H,M,L:40,20 and 10 μg/(kgd) ]was administered orally to mice from day 21 to 28 accordingly. The severity of the arthritis in each limb was evaluated using a macroscopic scoring system, and his- topathological change of joint was observed by light microscope with HE staining. The molecular weight of ZC II protein deter- mined by SDS-PAGE gel electrophoresis was between 110 kD and 140 kD, and UV absorption peak appeared at around 230 nm in wave- length. The peptide mass fingerprinting(PMF) of the purified protein by Mass Spectrometry analysis showed that it had at least 4 peptides matched with other species,and the protein score was greater than 95%. Compared with normal group,the CIA model group had significantly higher scores for arthritis and histopathological changes (P II peptide-treated mice with CIA were significantly lower than the mice from CIA model group(P II has high homology with the C II from other species. Oral administration of ZC II can suppress arthritis in mice with CIA and ameliorate the histopathological changes of the joint.

  4. Alcohol consumption and risk of atrial fibrillation

    DEFF Research Database (Denmark)

    Tolstrup, Janne Schurmann; Wium-Andersen, Marie Kim; Ørsted, David Dynnes

    2016-01-01

    BACKGROUND: The aim of this study was to test the hypothesis that alcohol consumption, both observational (self-reported) and estimated by genetic instruments, is associated with a risk of atrial fibrillation and to determine whether people with high cardiovascular risk are more sensitive towards...... alcohol than people with low risk. METHODS: We used data for a total of 88,782 men and women from the Copenhagen City Heart Study 1991-1994 and 2001-2003 and the Copenhagen General Population Study 2003-2010. Information on incident cases of atrial fibrillation was obtained from a validated nationwide...... register. As a measure of alcohol exposure, both self-reported consumption and genetic variations in alcohol metabolizing genes (ADH1B/ADH1C) were used as instrumental variables. The endpoint was admission to hospital for atrial fibrillation as recorded in a validated hospital register. RESULTS: A total...

  5. The atrial fibrillation ablation pilot study

    DEFF Research Database (Denmark)

    Arbelo, Elena; Brugada, Josep; Hindricks, Gerhard

    2014-01-01

    AIMS: The Atrial Fibrillation Ablation Pilot Study is a prospective registry designed to describe the clinical epidemiology of patients undergoing an atrial fibrillation (AFib) ablation, and the diagnostic/therapeutic processes applied across Europe. The aims of the 1-year follow-up were to analyse...... was achieved in 40.7% of patients (43.7% in paroxysmal AF; 30.2% in persistent AF; 36.7% in long-lasting persistent AF). A second ablation was required in 18% of the cases and 43.4% were under antiarrhythmic treatment. Thirty-three patients (2.5%) suffered an adverse event, 272 (21%) experienced a left atrial...... tachycardia, and 4 patients died (1 haemorrhagic stroke, 1 ventricular fibrillation in a patient with ischaemic heart disease, 1 cancer, and 1 of unknown cause). CONCLUSION: The AFib Ablation Pilot Study provided crucial information on the epidemiology, management, and outcomes of catheter ablation of AFib...

  6. Antihypertensive treatment and risk of atrial fibrillation

    DEFF Research Database (Denmark)

    Marott, Sarah C W; Nielsen, Sune F; Benn, Marianne

    2014-01-01

    AIMS: To examine the associations between antihypertensive treatment with angiotensin-converting enzyme inhibitors (ACEis) or angiotensin receptor blockers (ARBs), β-blockers, diuretics, or calcium-antagonists, and risk of atrial fibrillation. We examined these associations using the entire Danish...... population from 1995 through 2010. METHODS AND RESULTS: Excluding medication used in atrial fibrillation, we matched individuals on ACEi monotherapy 1:1 with individuals on β-blocker (n = 48 658), diuretic (n = 69 630), calcium-antagonist (n = 57 646), and ARB monotherapy (n = 20 158). Likewise, individuals...... on ARB monotherapy were matched 1:1 with individuals on β-blocker (n = 20 566), diuretic (n = 20 832), calcium-antagonist (n = 20 232), and ACEi monotherapy (n = 20 158). All were free of atrial fibrillation and of predisposing diseases like heart failure, ischaemic heart disease, diabetes mellitus...

  7. Digoxin for atrial fibrillation and atrial flutter

    DEFF Research Database (Denmark)

    Sethi, Naqash J; Nielsen, Emil E; Safi, Sanam

    2018-01-01

    BACKGROUND: During recent years, systematic reviews of observational studies have compared digoxin to no digoxin in patients with atrial fibrillation or atrial flutter, and the results of these reviews suggested that digoxin seems to increase the risk of all-cause mortality regardless...... of concomitant heart failure. Our objective was to assess the benefits and harms of digoxin for atrial fibrillation and atrial flutter based on randomized clinical trials. METHODS: We searched CENTRAL, MEDLINE, Embase, LILACS, SCI-Expanded, BIOSIS for eligible trials comparing digoxin versus placebo......, no intervention, or other medical interventions in patients with atrial fibrillation or atrial flutter in October 2016. Our primary outcomes were all-cause mortality, serious adverse events, and quality of life. Our secondary outcomes were heart failure, stroke, heart rate control, and conversion to sinus rhythm...

  8. Chirality and helicity of poly-benzyl-L-glutamate in liquid crystals and a wave structure that mimics collagen helicity in crimp

    Directory of Open Access Journals (Sweden)

    Vidal Benedicto de Campos

    2001-01-01

    Full Text Available Ideal biocompatible polymers must show a mimetic superstructure with biological supra-organization. Collagen-rich structures like tendons and ligaments are materials with various levels of order, from molecules to bundles of fibers, which affect their biomechanical properties and cellular interactions. Poly-benzyl-L-glutamate (PBLG displaying helicity was used here to test the development of wave-like structures as those occurring in collagen fibers. Birefringence of PBLG under various crystallization conditions was studied with a lambda/4 compensator according to Sénarmont. Qualitative observations were plainly sufficient to conclude that the PBLG fibrils were supra-organized helically as a chiral object. During crystallization stretched PBLG formed a helical superstructure with characteristic striation resembling waves (crimp. Supported by optical anisotropy findings, a twisted grain boundary liquid crystal type is proposed as a transition phase in the formation of the PBLG chiral object. A similarity with the wavy organization (crimp of collagen bundles is proposed.

  9. Recombinant gelatin and collagen from methylotrophic yeasts

    NARCIS (Netherlands)

    Bruin, de E.C.

    2002-01-01

    Based on its structural role and compatibility within the human body, collagen is a commonly used biomaterial in medical applications, such as cosmetic surgery, wound treatment and tissue engineering. Gelatin is in essence denatured and partly degraded collagen and is,

  10. Biomimetic soluble collagen purified from bones.

    Science.gov (United States)

    Ferreira, Ana Marina; Gentile, Piergiorgio; Sartori, Susanna; Pagliano, Cristina; Cabrele, Chiara; Chiono, Valeria; Ciardelli, Gianluca

    2012-11-01

    Type I collagen has been extensively exploited as a biomaterial for biomedical applications and drug delivery; however, small molecular alterations occurring during the isolation procedure and its interaction with residual bone extracellular matrix molecules or proteins might affect the overall material biocompatibility and performance. The aim of the current work is to study the potential alterations in collagen properties and organization associated with the absence of proteoglycans, which mimic pathological conditions associated with age-related diseases. A new approach for evaluating the effect of proteoglycans on the properties of isolated type I collagen from the bone matrix is described. Additional treatment with guanidine hydrochloride was introduced to remove residual proteoglycans from the collagen matrix. The properties of the isolated collagen with/without guanidine hydrochloride treatment were investigated and compared with a commercial rabbit collagen as control. We demonstrate that the absence of proteoglycans in the isolated type I collagen affects its thermal properties, the extraction into its native structure, and its ability to hydrate and self-assemble into fibers. The fine control and tuning of all these features, linked to the absence of non-collagenous proteins as proteoglycans, offer the possibility of designing new strategies and biomaterials with advanced biomimetic properties aimed at regenerating bone tissue in the case of fragility and/or defects. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Bi-allelic Alterations in AEBP1 Lead to Defective Collagen Assembly and Connective Tissue Structure Resulting in a Variant of Ehlers-Danlos Syndrome

    KAUST Repository

    Blackburn, Patrick R.; Xu, Zhi; Tumelty, Kathleen E.; Zhao, Rose W.; Monis, William J.; Harris, Kimberly G.; Gass, Jennifer M.; Cousin, Margot A.; Boczek, Nicole J.; Mitkov, Mario V.; Cappel, Mark A.; Francomano, Clair A.; Parisi, Joseph E.; Klee, Eric W.; Faqeih, Eissa; Alkuraya, Fowzan S.; Layne, Matthew D.; McDonnell, Nazli B.; Atwal, Paldeep S.

    2018-01-01

    AEBP1 encodes the aortic carboxypeptidase-like protein (ACLP) that associates with collagens in the extracellular matrix (ECM) and has several roles in development, tissue repair, and fibrosis. ACLP is expressed in bone, the vasculature, and dermal tissues and is involved in fibroblast proliferation and mesenchymal stem cell differentiation into collagen-producing cells. Aebp1 mice have abnormal, delayed wound repair correlating with defects in fibroblast proliferation. In this study, we describe four individuals from three unrelated families that presented with a unique constellation of clinical findings including joint laxity, redundant and hyperextensible skin, poor wound healing with abnormal scarring, osteoporosis, and other features reminiscent of Ehlers-Danlos syndrome (EDS). Analysis of skin biopsies revealed decreased dermal collagen with abnormal collagen fibrils that were ragged in appearance. Exome sequencing revealed compound heterozygous variants in AEBP1 (c.1470delC [p.Asn490_Met495delins(40)] and c.1743C>A [p.Cys581]) in the first individual, a homozygous variant (c.1320_1326del [p.Arg440Serfs3]) in the second individual, and a homozygous splice site variant (c.1630+1G>A) in two siblings from the third family. We show that ACLP enhances collagen polymerization and binds to several fibrillar collagens via its discoidin domain. These studies support the conclusion that biallelic pathogenic variants in AEBP1 are the cause of this autosomal-recessive EDS subtype.

  12. Bi-allelic Alterations in AEBP1 Lead to Defective Collagen Assembly and Connective Tissue Structure Resulting in a Variant of Ehlers-Danlos Syndrome

    KAUST Repository

    Blackburn, Patrick R.

    2018-03-29

    AEBP1 encodes the aortic carboxypeptidase-like protein (ACLP) that associates with collagens in the extracellular matrix (ECM) and has several roles in development, tissue repair, and fibrosis. ACLP is expressed in bone, the vasculature, and dermal tissues and is involved in fibroblast proliferation and mesenchymal stem cell differentiation into collagen-producing cells. Aebp1 mice have abnormal, delayed wound repair correlating with defects in fibroblast proliferation. In this study, we describe four individuals from three unrelated families that presented with a unique constellation of clinical findings including joint laxity, redundant and hyperextensible skin, poor wound healing with abnormal scarring, osteoporosis, and other features reminiscent of Ehlers-Danlos syndrome (EDS). Analysis of skin biopsies revealed decreased dermal collagen with abnormal collagen fibrils that were ragged in appearance. Exome sequencing revealed compound heterozygous variants in AEBP1 (c.1470delC [p.Asn490_Met495delins(40)] and c.1743C>A [p.Cys581]) in the first individual, a homozygous variant (c.1320_1326del [p.Arg440Serfs3]) in the second individual, and a homozygous splice site variant (c.1630+1G>A) in two siblings from the third family. We show that ACLP enhances collagen polymerization and binds to several fibrillar collagens via its discoidin domain. These studies support the conclusion that biallelic pathogenic variants in AEBP1 are the cause of this autosomal-recessive EDS subtype.

  13. Atrial natriuretic peptide in patients with heart failure and chronic atrial fibrillation : Role of duration of at atrial fibrillation

    NARCIS (Netherlands)

    Van Den Berg, MP; Crijns, HJGM; Van Veldhuisen, DJ; Van Gelder, IC; De Kam, PJ; Lie, KI

    The purpose of this study was to analyze the determinants of atrial natriuretic peptide level in patients with congestive heart failure and atrial fibrillation. In particular, the duration of atrial fibrillation was analyzed because atrial fibrillation per se might have a specific effect on atrial

  14. Patients with atrial fibrillation and permanent pacemaker

    DEFF Research Database (Denmark)

    Dalgaard, Frederik; Ruwald, Martin H; Lindhardt, Tommi Bo

    2018-01-01

    BACKGROUND: The management of patients with non-valvular atrial fibrillation (NVAF) with rate-lowering or anti-arrhythmic drugs has markedly changed over the last decade, but it is unknown how these changes have affected patients with NVAF with a permanent pacemaker (PPM). METHODS: Through Danish......,261. Thus, the proportional amount of NVAF patients with a PPM decreased from 1.3% to 1.1% (p = 0.015). Overall 45.9% had atrial fibrillation (AF) duration less than one year and the proportion declined from 55.5% to 42.4% (p

  15. Atrial fibrillation and risk of stroke

    DEFF Research Database (Denmark)

    Christiansen, Christine Benn; Gerds, Thomas A.; Olesen, Jonas Bjerring

    2016-01-01

    AIM: Although the relation between stroke risk factors and stroke in patients with atrial fibrillation (AF) has been extensively examined, only few studies have explored the association of AF and the risk of ischaemic stroke/systemic thromboembolism/transient ischaemic attack (stroke.......5-10.6), and 15.4% (14.5-16.4), respectively. CONCLUSIONS: Stroke/TE/TIA risk was particularly increased when prior stroke/TE/TIA was present. Atrial fibrillation is associated with an increase in risk of stroke/TE/TIA in the absence of other risk factors but only a moderate increase in risk when other risk...

  16. Integrating new approaches to atrial fibrillation management

    DEFF Research Database (Denmark)

    Kotecha, Dipak; Breithardt, Günter; Camm, A John

    2018-01-01

    There are major challenges ahead for clinicians treating patients with atrial fibrillation (AF). The population with AF is expected to expand considerably and yet, apart from anticoagulation, therapies used in AF have not been shown to consistently impact on mortality or reduce adverse...... of the Atrial Fibrillation Network (AFNET) and the European Heart Rhythm Association (EHRA), held at the European Society of Cardiology Heart House in Sophia Antipolis, France, 17-19 January 2017. Sixty-two global specialists in AF and 13 industry partners met to develop innovative solutions based on new...

  17. Initiation of anticoagulation in atrial fibrillation

    DEFF Research Database (Denmark)

    Gundlund, A.; Staerk, L.; Fosbøl, E. L.

    2017-01-01

    Background: The use of non-vitamin K antagonist oral anticoagulants (NOACs) for stroke prophylaxis in atrial fibrillation (AF) is increasing rapidly. We compared characteristics of AF patients initiated on NOACs versus vitamin K antagonists (VKAs). Methods: Using Danish nationwide registry data, we...... compared with a VKA [odds ratio (OR) 1.35, 95% confidence interval (CI) 1.28–1.43]. By contrast, patients with a history of myocardial infarction were less likely to be initiated on a NOAC compared with a VKA (OR 0.72, 95% CI 0.67–0.77). Conclusions: Atrial fibrillation patients who were initiated...

  18. Cryoballoon Catheter Ablation in Atrial Fibrillation

    Directory of Open Access Journals (Sweden)

    Cevher Ozcan

    2011-01-01

    Full Text Available Pulmonary vein isolation with catheter ablation is an effective treatment in patients with symptomatic atrial fibrillation refractory or intolerant to antiarrhythmic medications. The cryoballoon catheter was recently approved for this procedure. In this paper, the basics of cryothermal energy ablation are reviewed including its ability of creating homogenous lesion formation, minimal destruction to surrounding vasculature, preserved tissue integrity, and lower risk of thrombus formation. Also summarized here are the publications describing the clinical experience with the cryoballoon catheter ablation in both paroxysmal and persistent atrial fibrillation, its safety and efficacy, and discussions on the technical aspect of the cryoballoon ablation procedure.

  19. Atrial fibrillation and the 4P medicine.

    Science.gov (United States)

    Censi, Federica; Cianfrocca, Cinzia; Purificato, Ivana

    2013-01-01

    Although the paradigm of the 4P medicine - Predictive, Personalized, Preemptive, and Participatory - has been suggested several years ago, its application to atrial fibrillation is still far away. Given the increasing prevalence and incidence of this pathology it is the time to promote preventive strategies, by identifying the risk factors associated to life style and by incentivizing innovative diagnostic technologies. The promotion of the correct life style and of the use of diagnostic devices based on innovative and reliable technologies, represent a first step towards the full realization of the revolution of 4P medicine in atrial fibrillation.

  20. Atrial fibrillation and the 4P medicine

    Directory of Open Access Journals (Sweden)

    Federica Censi

    2013-09-01

    Full Text Available Although the paradigm of the 4P medicine - Predictive, Personalized, Preemptive, and Participatory - has been suggested several years ago, its application to atrial fibrillation is still far away. Given the increasing prevalence and incidence of this pathology it is the time to promote preventive strategies, by identifying the risk factors associated to life style and by incentivizing innovative diagnostic technologies. The promotion of the correct life style and of the use of diagnostic devices based on innovative and reliable technologies, represent a first step towards the full realization of the revolution of 4P medicine in atrial fibrillation.

  1. Transforming growth factor-β-mediated CD44/STAT3 signaling contributes to the development of atrial fibrosis and fibrillation.

    Science.gov (United States)

    Chang, Shang-Hung; Yeh, Yung-Hsin; Lee, Jia-Lin; Hsu, Yu-Juei; Kuo, Chi-Tai; Chen, Wei-Jan

    2017-09-04

    Atrial fibrillation (AF) is associated with atrial fibrosis. Inhibition of atrial fibrosis might be a plausible approach for AF prevention and therapy. This study is designed to evaluate the potential role of CD44, a membrane receptor known to regulate fibrosis, and its related signaling in the pathogenesis of atrial fibrosis and AF. Treatment of cultured rat atrial fibroblasts with transforming growth factor-β (TGF-β, a key mediator of atrial fibrosis) led to a higher expression of hyaluronan (HA), CD44, STAT3, and collagen (a principal marker of fibrosis) than that of ventricular fibroblasts. In vivo, TGF-β transgenic mice and AF patients exhibited a greater expression of HA, CD44, STAT3, and collagen in their atria than wild-type mice and sinus rhythm subjects, respectively. Treating TGF-β transgenic mice with an anti-CD44 blocking antibody resulted in a lower expression of STAT3 and collagen in their atria than those with control IgG antibody. Programmed stimulation triggered less AF episodes in TGF-β transgenic mice treated with anti-CD44 blocking antibody than in those with control IgG. Blocking CD44 signaling with anti-CD44 antibody and mutated CD44 plasmids attenuated TGF-β-induced STAT3 activation and collagen expression in cultured atrial fibroblasts. Deletion and mutational analysis of the collagen promoter along with chromatin immunoprecipitation demonstrated that STAT3 served as a vital transcription factor in collagen expression. TGF-β-mediated HA/CD44/STAT3 pathway plays a crucial role in the development of atrial fibrosis and AF. Blocking CD44-dependent signaling may be a feasible way for AF management.

  2. Centrifuge-operated specimen staining method and apparatus

    Science.gov (United States)

    Clarke, Mark S. F. (Inventor); Feeback, Daniel L. (Inventor)

    1999-01-01

    A method of staining preselected, mounted specimens of either biological or nonbiological material enclosed within a staining chamber where the liquid staining reagents are applied and removed from the staining chamber using hypergravity as the propelling force. In the preferred embodiment, a spacecraft-operated centrifuge and method of diagnosing biological specimens while in orbit, characterized by hermetically sealing a shell assembly. The assembly contains slide stain apparatus with computer control therefor, the operative effect of which is to overcome microgravity, for example on board an International Space Station.

  3. Modified silk fibroin scaffolds with collagen/decellularized pulp for bone tissue engineering in cleft palate: Morphological structures and biofunctionalities

    International Nuclear Information System (INIS)

    Sangkert, Supaporn; Meesane, Jirut; Kamonmattayakul, Suttatip; Chai, Wen Lin

    2016-01-01

    Cleft palate is a congenital malformation that generates a maxillofacial bone defect around the mouth area. The creation of performance scaffolds for bone tissue engineering in cleft palate is an issue that was proposed in this research. Because of its good biocompatibility, high stability, and non-toxicity, silk fibroin was selected as the scaffold of choice in this research. Silk fibroin scaffolds were prepared by freeze-drying before immerging in a solution of collagen, decellularized pulp, and collagen/decellularized pulp. Then, the immersed scaffolds were freeze-dried. Structural organization in solution was observed by Atomic Force Microscope (AFM). The molecular organization of the solutions and crystal structure of the scaffolds were characterized by Fourier transform infrared (FT-IR) and X-ray diffraction (XRD), respectively. The weight increase of the modified scaffolds and the pore size were determined. The morphology was observed by a scanning electron microscope (SEM). Mechanical properties were tested. Biofunctionalities were considered by seeding osteoblasts in silk fibroin scaffolds before analysis of the cell proliferation, viability, total protein assay, and histological analysis. The results demonstrated that dendrite structure of the fibrils occurred in those solutions. Molecular organization of the components in solution arranged themselves into an irregular structure. The fibrils were deposited in the pores of the modified silk fibroin scaffolds. The modified scaffolds showed a beta-sheet structure. The morphological structure affected the mechanical properties of the silk fibroin scaffolds with and without modification. Following assessment of the biofunctionalities, the modified silk fibroin scaffolds could induce cell proliferation, viability, and total protein particularly in modified silk fibroin with collagen/decellularized pulp. Furthermore, the histological analysis indicated that the cells could adhere in modified silk fibroin

  4. A long-term in vivo investigation on the effects of xenogenous based, electrospun, collagen implants on the healing of experimentally-induced large tendon defects.

    Science.gov (United States)

    Oryan, A; Moshiri, A; Parizi Meimandi, A; Silver, I A

    2013-09-01

    This study was designed to investigate the effect of novel 3-dimensional (3-D) collagen implants on the healing of large, experimentally-induced, tendon-defects in rabbits. Forty mature male white New Zealand rabbits were divided randomly into treated and control groups. Two cm of the left Achilles tendon was excised and the gap was spanned by Kessler suture. In the treated group, a novel 3-D collagen implant was inserted between the cut ends of the tendon. No implant was used in the control group. During the course of the experiment the bioelectrical characteristics of the healing and normal tendons of both groups were investigated weekly. At 120 days post injury (DPI), the tendons were dissected and inspected for gross pathology, examined by transmission and scanning electron microscopy, and their biomechanical properties, percentage dry matter and hydroxyproline concentration assessed. The collagen implant significantly improved the bioelectrical characteristics, gross appearance and tissue alignment of the healed, treated tendons, compared to the healed, control scars. It also significantly increased fibrillogenesis, diameter and density of the collagen fibrils, dry matter content, hydroxyproline concentration, maximum load, stiffness, stress and modulus of elasticity of the treated tendons, as compared to the control tendons. Treatment also significantly decreased peri-tendinous adhesions, and improved the hierarchical organization of the tendon from the collagen fibril to fibre-bundle level. 3-D xenogeneic-based collagen implants induced newly regenerated tissue that was ultrastructurally and biomechanically superior to tissue that was regenerated by natural unassisted healing. This type of bioimplant was biocompatible, biodegradable and appeared suitable for clinical use.

  5. Hirschsprung's disease diagnosis: Comparison of immunohistochemical, hematoxilin and eosin staining

    Science.gov (United States)

    Memarzadeh, Mehrdad; Talebi, Ardeshir; Edalaty, Masod; Hosseinpour, Mehrdad; Vahidi, Nasrin

    2009-01-01

    Background: The diagnosis of Hirschsprung's disease (HD) is based on the absence of ganglion cells. In hemotoxilin and eosin (H and E) as well as acetylcholine esterase staining there are limitations in the diagnosis of immature ganglion cells in neonates. Methods: In this prospective study, 54 biopsies taken from suspected HD patients (five mucosal specimens and 49 full thickness specimens) were studied. In the laboratory, after preparing sections of paraffin embedded tissues, H and E staining slides were compared with immunohistochemical (IHC) staining including: S100, NSE, CD117, CD56, Cathepsin D, Vimentin, BCL2, GFAP, Synaptophysin and chromogranin. Results: The study revealed 30 negative (absence of ganglion cells) cases (55.5%), 17 positive cases (31.04%) and seven suspected cases (12.9%) of ganglion cells on the H and E staining. On IHC staining with CD56 and Cathepsin D, all of the 17 positive cases detected through H and E, were confirmed for having ganglion cells and out of 30 cases reported negative on H and E staining, 28(93.3%) were reported negative and two (6.7%) positive by IHC staining. Of the seven suspected cases H and E staining), IHC staining detectedganglion cells only in five slides; two remained negative. Conclusions: IHC staining using CD56 and Cathepsin D improved the accuracy of diagnosis in HD when used in addition to H and E staining technique, especially for negative or suspicious slides. PMID:20671847

  6. Factors regulating collagen synthesis and degradation during second-intention healing of wounds in the thoracic region and the distal aspect of the forelimb of horses.

    Science.gov (United States)

    Schwartz, Anne J; Wilson, David A; Keegan, Kevin G; Ganjam, Venkataseshu K; Sun, Yao; Weber, Karl T; Zhang, Jiakun

    2002-11-01

    To determine significant molecular and cellular factors responsible for differences in second-intention healing in thoracic and metacarpal wounds of horses. 6 adult mixed-breed horses. A full-thickness skin wound on the metacarpus and another such wound on the pectoral region were created, photographed, and measured, and tissue was harvested from these sites weekly for 4 weeks. Gene expression of type-I collagen, transforming growth factor (TGF)-beta1, matrix metalloproteinase (MMP)-1, and tissue inhibitor of metalloproteinase (TIMP)-1 were determined by quantitative in situ hybridization. Myofibroblasts were detected by immunohistochemical labeling with alpha-smooth muscle actin (alpha-SMA). Collagen accumulation was detected by use of picrosirius red staining. Tissue morphology was examined by use of H&E staining. Unlike thoracic wounds, forelimb wounds enlarged during the first 2 weeks. Myofibroblasts, detected by week 1, remained abundant with superior organization in thoracic wounds. Type-I collagen mRNA accumulated progressively in both wounds. More type-I collagen and TGF-beta1 mRNA were seen in forelimb wounds. Volume of MMP-1 mRNA decreased from day 0 in both wounds. By week 3, TIMP-1 mRNA concentration was greater in thoracic wounds. Greater collagen synthesis in metacarpal than thoracic wounds was documented by increased concentrations of myofibroblasts, type-I collagen mRNA,TGF-beta1 mRNA, and decreased collagen degradation (ie, MMP-1). Imbalanced collagen synthesis and degradation likely correlate with development of exuberant granulation tissue, delaying healing in wounds of the distal portions of the limbs. Factors that inhibit collagen synthesis or stimulate collagenase may provide treatment options for horses with exuberant granulation tissue.

  7. New risk factors for atrial fibrillation : causes of 'not-so-lone atrial fibrillation'

    NARCIS (Netherlands)

    Schoonderwoerd, Bas A.; Smit, Marcelle D.; Pen, Lucas; Van Gelder, Isabelle C.

    Atrial fibrillation (AF) is a prevalent arrhythmia in patients with cardiovascular disease. The classical risk factors for developing AF include hypertension, valvular disease, (ischaemic) cardiomyopathy, diabetes mellitus, and thyroid disease. In some patients with AF, no underlying

  8. Postnatal changes to the mechanical properties of articular cartilage are driven by the evolution of its collagen network

    Directory of Open Access Journals (Sweden)

    AR Gannon

    2015-01-01

    Full Text Available While it is well established that the composition and organisation of articular cartilage dramatically change during skeletal maturation, relatively little is known about how this impacts the mechanical properties of the tissue. In this study, digital image correlation was first used to quantify spatial deformation within mechanically compressed skeletally immature (4 and 8 week old and mature (1 and 3 year old porcine articular cartilage. The compressive modulus of the immature tissue was relatively homogeneous, while the stiffness of mature articular cartilage dramatically increased with depth from the articular surface. Other, well documented, biomechanical characteristics of the tissue also emerged with skeletal maturity, such as strain-softening and a depth-dependent Poisson’s ratio. The most significant changes that occurred with age were in the deep zone of the tissue, where an order of magnitude increase in compressive modulus (from 0.97 MPa to 9.4 MPa for low applied strains was observed from 4 weeks postnatal to skeletal maturity. These temporal increases in compressive stiffness occurred despite a decrease in tissue sulphated glycosaminoglycan content, but were accompanied by increases in tissue collagen content. Furthermore, helium ion microscopy revealed dramatic changes in collagen fibril alignment through the depth of the tissue with skeletal maturity, as well as a fivefold increase in fibril diameter with age. Finally, computational modelling was used to demonstrate how both collagen network reorganisation and collagen stiffening play a key role in determining the final compressive mechanical properties of the tissue. Together these findings provide a unique insight into evolving structure-function relations in articular cartilage.

  9. Multiphoton microscopic imaging of histological sections without hematoxylin and eosin staining differentiates carcinoma in situ lesion from normal oesophagus

    Science.gov (United States)

    Chen, Jianxin; Xu, Jian; Kang, Deyong; Xu, Meifang; Zhuo, Shuangmu; Zhu, Xiaoqin; Jiang, Xingshan

    2013-10-01

    Multiphoton microscopy (MPM) has become a powerful, important tool for tissues imaging at the molecular level. In this paper, this technique was extended to histological investigations, differentiating carcinoma in situ (CIS) lesion from normal oesophagus by imaging histological sections without hematoxylin and eosin (H&E) staining. The results show that the histology procedures of dehydration, paraffin embedding, and de-paraffinizing highlighted two photon excited fluorescence of cytoplasm and nucleolus of epithelial cell and collagen in stroma. MPM has the ability to identify the characteristics of CIS lesion including changes of squamous cells and full epithelium, identification of basement membrane, especially prominent nucleolus. The studies described here show that MPM has the potential for future retrospective studies of tumor staging by employing on histological section specimens without H&E staining.

  10. Abnormal Type I Collagen Post-translational Modification and Crosslinking in a Cyclophilin B KO Mouse Model of Recessive Osteogenesis Imperfecta

    Science.gov (United States)

    Cabral, Wayne A.; Perdivara, Irina; Weis, MaryAnn; Terajima, Masahiko; Blissett, Angela R.; Chang, Weizhong; Perosky, Joseph E.; Makareeva, Elena N.; Mertz, Edward L.; Leikin, Sergey; Tomer, Kenneth B.; Kozloff, Kenneth M.; Eyre, David R.; Yamauchi, Mitsuo; Marini, Joan C.

    2014-01-01

    crosslink pattern was associated with decreased collagen deposition into matrix in culture, altered fibril structure in tissue, and reduced bone strength. These studies demonstrate novel consequences of the indirect regulatory effect of CyPB on collagen hydroxylation, impacting collagen glycosylation, crosslinking and fibrillogenesis, which contribute to maintaining bone mechanical properties. PMID:24968150

  11. Abnormal type I collagen post-translational modification and crosslinking in a cyclophilin B KO mouse model of recessive osteogenesis imperfecta.

    Directory of Open Access Journals (Sweden)

    Wayne A Cabral

    2014-06-01

    crosslink pattern was associated with decreased collagen deposition into matrix in culture, altered fibril structure in tissue, and reduced bone strength. These studies demonstrate novel consequences of the indirect regulatory effect of CyPB on collagen hydroxylation, impacting collagen glycosylation, crosslinking and fibrillogenesis, which contribute to maintaining bone mechanical properties.

  12. Abnormal type I collagen post-translational modification and crosslinking in a cyclophilin B KO mouse model of recessive osteogenesis imperfecta.

    Science.gov (United States)

    Cabral, Wayne A; Perdivara, Irina; Weis, MaryAnn; Terajima, Masahiko; Blissett, Angela R; Chang, Weizhong; Perosky, Joseph E; Makareeva, Elena N; Mertz, Edward L; Leikin, Sergey; Tomer, Kenneth B; Kozloff, Kenneth M; Eyre, David R; Yamauchi, Mitsuo; Marini, Joan C

    2014-06-01

    pattern was associated with decreased collagen deposition into matrix in culture, altered fibril structure in tissue, and reduced bone strength. These studies demonstrate novel consequences of the indirect regulatory effect of CyPB on collagen hydroxylation, impacting collagen glycosylation, crosslinking and fibrillogenesis, which contribute to maintaining bone mechanical properties.

  13. Protein Polymerization into Fibrils from the Viewpoint of Nucleation Theory.

    Science.gov (United States)

    Kashchiev, Dimo

    2015-11-17

    The assembly of various proteins into fibrillar aggregates is an important phenomenon with wide implications ranging from human disease to nanoscience. Using general kinetic results of nucleation theory, we analyze the polymerization of protein into linear or helical fibrils in the framework of the Oosawa-Kasai (OK) model. We show that while within the original OK model of linear polymerization the process does not involve nucleation, within a modified OK model it is nucleation-mediated. Expressions are derived for the size of the fibril nucleus, the work for fibril formation, the nucleation barrier, the equilibrium and stationary fibril size distributions, and the stationary fibril nucleation rate. Under otherwise equal conditions, this rate decreases considerably when the short (subnucleus) fibrils lose monomers much more frequently than the long (supernucleus) fibrils, a feature that should be born in mind when designing a strategy for stymying or stimulating fibril nucleation. The obtained dependence of the nucleation rate on the concentration of monomeric protein is convenient for experimental verification and for use in rate equations accounting for nucleation-mediated fibril formation. The analysis and the results obtained for linear fibrils are fully applicable to helical fibrils whose formation is describable by a simplified OK model. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Collagen/silk fibroin composite scaffold incorporated with PLGA microsphere for cartilage repair

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jianhua; Yang, Qiu; Cheng, Niangmei [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Tao, Xiaojun [Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan (China); Zhang, Zhihua; Sun, Xiaomin [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Zhang, Qiqing, E-mail: zhangqiq@126.com [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Key Laboratory of Biomedical Materials of Tianjin, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192 (China)

    2016-04-01

    For cartilage repair, ideal scaffolds should mimic natural extracellular matrix (ECM) exhibiting excellent characteristics, such as biocompatibility, suitable porosity, and good cell affinity. This study aimed to prepare a collagen/silk fibroin composite scaffold incorporated with poly-lactic-co-glycolic acid (PLGA) microsphere that can be applied in repairing cartilage. To obtain optimum conditions for manufacturing a composite scaffold, a scaffold composed of different collagen-to-silk fibroin ratios was evaluated by determining porosity, water absorption, loss rate in hot water, and cell proliferation. Results suggested that the optimal ratio of collagen and silk fibroin composite scaffold was 7:3. The microstructure and morphological characteristics of the obtained scaffold were also examined through scanning electron microscopy and Fourier transform infrared spectroscopy. The results of in vitro fluorescence staining of bone marrow stromal cells revealed that collagen/silk fibroin composite scaffold enhanced cell proliferation without eliciting side effects. The prepared composite scaffold incorporated with PLGA microsphere was implanted in fully thick articular cartilage defects in rabbits. Collagen/silk fibroin composite scaffold with PLGA microspheres could enhance articular cartilage regeneration and integration between the repaired cartilage and the surrounding cartilage. Therefore, this composite will be a promising material for cartilage repair and regeneration. - Highlights: • Collagen/silk fibroin composite scaffold incorporated with PLGA microsphere proposed for cartilage repair was created. • In vivo, scaffold could enhance cartilage regeneration and integration between the repaired and surrounding cartilage. • In vitro, scaffold exhibits excellent characteristics, such as, improved porosity water absorption and good cell affinity.

  15. Regionally variant collagen alignment correlates with viscoelastic properties of the disc of the human temporomandibular joint.

    Science.gov (United States)

    Gutman, Shawn; Kim, Daniel; Tarafder, Solaiman; Velez, Sergio; Jeong, Julia; Lee, Chang H

    2018-02-01

    To determine the regionally variant quality of collagen alignment in human TMJ discs and its statistical correlation with viscoelastic properties. For quantitative analysis of the quality of collagen alignment, horizontal sections of human TMJ discs with Pricrosirius Red staining were imaged under circularly polarized microscopy. Mean angle and angular deviation of collagen fibers in each region were analyzed using a well-established automated image-processing for angular gradient. Instantaneous and relaxation moduli of each disc region were measured under stress-relaxation test both in tensile and compression. Then Spearman correlation analysis was performed between the angular deviation and the moduli. To understand the effect of glycosaminoglycans on the correlation, TMJ disc samples were treated by chondroitinase ABC (C-ABC). Our imaging processing analysis showed the region-variant direction of collagen alignment, consistently with previous findings. Interestingly, the quality of collagen alignment, not only the directions, was significantly different in between the regions. The angular deviation of fiber alignment in the anterior and intermediate regions were significantly smaller than the posterior region. Medial and lateral regions showed significantly bigger angular deviation than all the other regions. The regionally variant angular deviation values showed statistically significant correlation with the tensile instantaneous modulus and the relaxation modulus, partially dependent on C-ABC treatment. Our findings suggest the region-variant degree of collagen fiber alignment is likely attributed to the heterogeneous viscoelastic properties of TMJ disc that may have significant implications in development of regenerative therapy for TMJ disc. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Metastable Amyloid Phases and their Conversion to Mature Fibrils

    Science.gov (United States)

    Muschol, Martin; Miti, Tatiana; Mulaj, Mentor; Schmit, Jeremy

    Self-assembly of proteins into amyloid fibrils plays a key role in both functional biological responses and pathogenic disorders which include Alzheimer's disease and type II diabetes. Amyloid fibril assembly frequently generates compact oligomeric and curvilinear polymeric intermediates which are implicated to be toxic to cells. Yet, the relation between these early-stage oligomeric aggregates and late-stage rigid fibrils, which are the hallmark structure of amyloid plaques, has remained unclear. Our measurements indicate that lysozyme amyloid oligomers and their curvilinear fibrils only form after crossing a salt and protein concentration dependent threshold. These oligomeric aggregates are structurally distinct from rigid fibrils and are metastable against nucleation and growth of rigid fibrils. Our experimental transition boundaries match well with colloidal model predictions accounting for salt-modulated charge repulsion. We also report our preliminary findings on the mechanism by which these metastable oligomeric phases are converted into stable amyloid fibrils.

  17. Embolic Risk in Atrial Fibrillation that Arises from Hyperthyroidism

    Science.gov (United States)

    Traube, Elie; Coplan, Neil L.

    2011-01-01

    Atrial fibrillation, the most common cardiac complication of hyperthyroidism, occurs in an estimated 10% to 25% of overtly hyperthyroid patients. The prevalence of atrial fibrillation increases with age in the general population and in thyrotoxic patients. Other risk factors for atrial fibrillation in thyrotoxic patients include male sex, ischemic or valvular heart disease, and congestive heart failure. The incidence of arterial embolism or stroke in thyrotoxic atrial fibrillation is less clear. There are many reports of arterial thromboembolism associated with hyperthyroidism, including cases of young adults without coexisting risk factors other than thyrotoxic atrial fibrillation. The use of anticoagulative agents to prevent thromboembolic sequelae of thyrotoxic atrial fibrillation is controversial: national organizations provide conflicting recommendations in their practice guidelines. Herein, we review the medical literature and examine the evidence behind the recommendations in order to determine the best approach to thromboembolic prophylaxis in patients who have atrial fibrillation that is associated with hyperthyroidism. PMID:21720457

  18. Disruption of fibronectin matrix affects type IV collagen, fibrillin and laminin deposition into extracellular matrix of human trabecular meshwork (HTM) cells.

    Science.gov (United States)

    Filla, Mark S; Dimeo, Kaylee D; Tong, Tiegang; Peters, Donna M

    2017-12-01

    Fibronectin fibrils are a major component of the extracellular matrix (ECM) of the trabecular meshwork (TM). They are a key mediator of the formation of the ECM which controls aqueous humor outflow and contributes to the pathogenesis of glaucoma. The purpose of this work was to determine if a fibronectin-binding peptide called FUD, derived from the Streptococcus pyogenes Functional Upstream Domain of the F1 adhesin protein, could be used to control fibronectin fibrillogenesis and hence ECM formation under conditions where its expression was induced by treatment with the glucocorticoid dexamethasone. FUD was very effective at preventing fibronectin fibrillogenesis in the presence or absence of steroid treatment as well as the removal of existing fibronectin fibrils. Disruption of fibronectin fibrillogenesis by FUD also disrupted the incorporation of type IV collagen, laminin and fibrillin into the ECM. The effect of FUD on these other protein matrices, however, was found to be dependent upon the maturity of the ECM when FUD was added. FUD effectively disrupted the incorporation of these other proteins into matrices when added to newly confluent cells that were forming a nascent ECM. In contrast, FUD had no effect on these other protein matrices if the cell cultures already possessed a pre-formed, mature ECM. Our studies indicate that FUD can be used to control fibronectin fibrillogenesis and that these fibrils play a role in regulating the assembly of other ECM protein into matrices involving type IV collagen, laminin, and fibrillin within the TM. This suggests that under in vivo conditions, FUD would selectively disrupt fibronectin fibrils and de novo assembly of other proteins into the ECM. Finally, our studies suggest that targeting fibronectin fibril assembly may be a viable treatment for POAG as well as other glaucomas involving excessive or abnormal matrix deposition of the ECM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Electrostatic control of the coffee stain effect

    Science.gov (United States)

    Wray, Alex; Papageorgiou, Demetrios; Sefiane, Khellil; Matar, Omar

    2013-11-01

    The ``coffee stain effect,'' as first explained by Deegan et al. 1997, has received a great deal of attention amongst modellers and experimentalists in recent years, perhaps due in part to its obvious casual familiarity. However, it maintains interest because of its intriguing reliance on an interplay of a trio of effects: contact line pinning, inhomogeneous mass flux, and resulting capillarity-driven flow. What is more, the effect, and especially its suppression or reversal, find applications in fields as diverse as sample recovery, mass spectroscopy and the printing of Organic LEDs. We examine the motion a nanoparticle-laden droplet deposited on a precursor film, incorporating the effects of capillarity, concentration-dependent rheology, together with a heated substrate and resultant mass flux and Marangoni effects. We allow the substrate to act as an electrode and incorporate a second electrode above the droplet. The potential difference together with a disparity in electrical properties between the two regions results in electrical (Maxwell) stresses at the interface. We show via lubrication theory and via direct numerical simulations that the ring effect typically observed may be suppressed or augmented via appropriate use of electric fields. EPSRC DTG

  20. Erbium doped stain etched porous silicon

    International Nuclear Information System (INIS)

    Gonzalez-Diaz, B.; Diaz-Herrera, B.; Guerrero-Lemus, R.; Mendez-Ramos, J.; Rodriguez, V.D.; Hernandez-Rodriguez, C.; Martinez-Duart, J.M.

    2008-01-01

    In this work a simple erbium doping process applied to stain etched porous silicon layers (PSLs) is proposed. This doping process has been developed for application in porous silicon solar cells, where conventional erbium doping processes are not affordable because of the high processing cost and technical difficulties. The PSLs were formed by immersion in a HF/HNO 3 solution to properly adjust the porosity and pore thickness to an optimal doping of the porous structure. After the formation of the porous structure, the PSLs were analyzed by means of nitrogen BET (Brunauer, Emmett and Teller) area measurements and scanning electron microscopy. Subsequently, the PSLs were immersed in a saturated erbium nitrate solution in order to cover the porous surface. Then, the samples were subjected to a thermal process to activate the Er 3+ ions. Different temperatures and annealing times were used in this process. The photoluminescence of the PSLs was evaluated before and after the doping processes and the composition was analyzed by Fourier transform IR spectroscopy

  1. Spontaneous conversion of first onset atrial fibrillation

    DEFF Research Database (Denmark)

    Lindberg, Søren Østergaard; Hansen, Sidsel; Nielsen, Tonny

    2011-01-01

    Background  We studied all patients admitted to hospital with first onset atrial fibrillation (AF) to determine the probability of spontaneous conversion to sinus rhythm and to identify factors predi